FICO® Xpress Optimization

Last update 1 March, 2021

QUICK REFERENCE

Guide for evaluators 2

Advanced optimization tasks

FICO

©2009-2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation ("FICO"). Receipt
or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to
use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this
documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report
them to us in writing. Neither FICO nor its affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement. FICO and its affiliates specifically disclaim any
warranties, express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular purpose.
Portions of this documentation and the software described in it may contain copyright of various authors and may be licensed under
certain third-party licenses identified in the software, documentation, or both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or consequential damages, including
lost profits, arising out of the use of this documentation or the software described in it, even if FICO or its affiliates have been advised of
the possibility of such damage. FICO and its affiliates have no obligation to provide maintenance, support, updates, enhancements, or
modifications except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered trademark of Fair Isaac Corporation
in other countries. Other product and company names herein may be trademarks of their respective owners.

FICO® Xpress Optimization
Last Revised: 1 March, 2021

How to Contact the Xpress Team
Sales and Maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenance contracts or other sales-related
items, contact FICO by:

B Phone: +1(408) 535-1500 or +44 207 940 8718

B Web: www.fico.com/optimization and use the available contact forms
Product Support
Customer Self Service Portal (online support): www.fico.com/en/product-support

Email: Support@fico.com (Please include Xpress’ in the subject line)

For the latest news and Xpress software and documentation updates, please visit the Xpress website at
http://www.fico.com/xpress or subscribe to our mailing list.

http://www.fico.com/optimization
http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/xpress

Introduction

FICO® Xpress Optimization
Guide for evaluators 2

Advanced optimization tasks

1 March, 2021

Introduction

Building on the introductory Guide for evaluators this document provides a framework for evaluating

advanced optimization tasks with FICO® Xpress Optimization. In particular, this guide shows you how to:
1. Parameterize and tune optimization algorithms.

Interact with the solvers through callback functions.

Obtain multiple solutions.

Analyze and handle infeasibility.

Exchange data in memory.

Work on a distributed architecture.

A L T R

Control the remote execution of Mosel models without any local Xpress installation.

All examples in this guide are provided as Xpress Mosel models (Evaluation Scenario 1). Where
applicable, we also explain how to perform the same tasks with Xpress BCL (Evaluation Scenario 2) or
the Xpress Optimizer (Evaluation Scenarios 3 or 4, examples are provided for the Optimizer libraries, the
Optimizer command line, or the Xpress Python interface).

Please refer to the Guide for evaluators for any questions relating to the installation of Xpress or
recommendations for the choice of products from FICO Xpress Optimization.

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 1

Optimizer parameter settings and tuning

1 Optimizer parameter settings and tuning

Among the most frequently used controls are the stopping criteria for the optimization algorithms.
Stopping criteria controls include

Parameter name Description

MAXTIME The maximum time in seconds that the Optimizer will run before it terminates
(0: no time limit; n>0: if an integer solution has been found, stop MIP search
after n seconds, otherwise continue until an integer solution is finally found;
n<0: hard stop after n seconds)

MAXNODES The maximum number of nodes that will be explored by branch and bound.

MIPRELSTOP Stop the MIP search when the gap (difference between the best solution’s
objective function and the current best solution bound) becomes less than
the specified percentage.

MIPABSSTOP Stop the MIP search when the gap (difference between the best solution’s

objective function and the current best solution bound) becomes less than
the specified absolution value.

For the complete list of parameters please refer to the chapter ‘Control parameters’ of the “Xpress
Optimizer Reference Manual”.

>Scenario 1 (Mosel)

Open the model file examples\getting_started\Mosel\foliomip3.mos. This file contains a
version of the portfolio optimization problem from the Mosel part of the 'Getting Started’ manual with
some additional constraints and a larger data set. Try out the effect of setting different values in the
setparam commands (just before the call to the optimization).

>>Scenario 2 (BCL)

Depending on your choice of a host language open one the BCL files foliomip3. [c|cxx | java]
located in the corresponding subdirectory examples\bcl\ [C|Cxx | Java] \UGExpl of the Xpress
distribution. This new version of the portfolio optimization problem from the BCL part of the 'Getting
Started’ manual has some additional constraints and uses a larger data set. Try out the effect of setting
different values for the control parameters (just before the call to the optimization).

Further information
m Mosel: “Xpress Mosel User Guide”, Part Il ‘Advanced language features’

m BCL: see examples documented in the “BCL Reference Manual”, Appendix B ‘Using BCL with the
Optimizer library’

1.1 Tuning the Optimizer

Xpress Optimizer solves optimization problems by applying a number of algorithms and techniques, such
as cutting planes, heuristics, branch and bound search, etc. These internal algorithms are user
customizable through control parameters.

Solver tuning helps the user to identify a favorable set of control parameters that allow the Xpress
Optimizer to solve a particular problem (or a set of problems) faster than by using defaults.

Xpress Optimizer has a built-in tuner that can be used through different APIs on all supported platforms.

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 2

Optimizer parameter settings and tuning

1.1.1 The Xpress Optimizer built-in tuner

The Xpress Optimizer built-in tuner works with LP and MIP problems, and when Xpress Nonlinear is
available it can also work with SLP and MISLP problems. The tuner will solve the problem with its default
baseline control settings and then solve the problem mutiple times with each individual control and
certain combinations of these controls. As the tuner works by solving a problem mutiple times, it is
important and recommended to set time limits. Setting MAXTIME will limit the effort spent on each
individual solve and setting TUNERMAXT IME will limit the overall effort of the tuner.

A tuner run produces detailed log files (by default located under the subdirectory tuneroutput of the
working directory) and also displays a summary progress log.

The tuner works on an optimization problem loaded into the Optimizer or alternatively it can be launched
on a set of matrices in LP or MPS format. The tuning process can be customized by providing pre-defined
lists of controls, so-called factory tuner methods, and through various output and tuning target
settings—the reader is referred to the section Using the Tuner of the “Xpress Optimizer Reference Manua
for further detail.

|u

Applying the tuning results

Copy the control parameter settings of the best strategy into your model or program. Note that any solver
parameters need to be set before starting the optimization.

>Scenario 1 (Mosel)

The tuner can be launched for a specific optimization problem directly from within a Mosel model by
adding the option XPRS_TUNE to the optimization routine call (see the example in file
examples\getting_started\Mosel\foliolptune.mos):

minimize (XPRS_TUNE, MinCost)
maximize (XPRS_TUNE+XPRS_LIN, TotalProfit)

Note that the Optimizer output display (parameter XPRS_VERBOSE) needs to be enabled in order to see
the tuner progress log displayed.

Applying the tuning results
Any parameter settings need to be made before the call to the solution algorithm. Prefix the parameter
name with XPRS_ to obtain its Mosel name:

setparam ("XPRS_PRESOLVE", 0)

Alternatively, define parameter settings as a system command (requires module mmsystem):

command ("PRESOLVE=0")

Xpress Workbench

If you are using Xpress Workbench for working with Mosel models, you can employ the option
XPRS_TUNE to the optimization routine in the Mosel source as described above, or alternatively select
the 'Tools’ button = to open the Run Options Dialog window where you can configure the run mode Tune
the Model to tune the last optimization problem specified within a model. The summary tuner result files
(file with extension . xtr in the tuner log output directory) can be opened in the Workbench editor:

The displayed lines representing individual tuner runs can be re-ordered by clicking on the column
headers. By selecting the copy link in any line of the summary file Workbench opens a message box
showing how to apply the corresponding parameter settings in the Mosel model :

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 3

Optimizer parameter settings and tuning

. Project File Edit Find View Goto Run Tools Window Help foliolptune.mos -0 & - =
S OPEN FILES & B foliolptunemos x result-xprs_28bi x
£ x folioptune.mos

X result-xprs_28bfb88.xtr

v () Mosel
>
folioinsight <
» (29 folioinsightxmi &
e P o o
Xpress Tuner Tuner v& oF § Run
) T Problem Type Version Timestamp Threads ~ Runs PR Logs Status Time Objective
v (0 xprs_28bfb8s_xpr
Xprs_2867088 L 34.01.05 20191015.192725.555923 1 1 copy open Solved 0.001 14.06667
result-xprs_28bi
sors_28bfbgs- | XPrs_28bbs8 LP 34.01.05 20191015.192725.562323 1 1 16 copy open Solved ©0.001 14.06667
Xprs_28bfbss-2 | xprs_28bFb88 LP 34.01.05 20191015.192725.564587 1 1 o copy open Solved 0.001 14.06667
Xprs_28bfb88-2 | xpps 28bfb88 LP 34.01.05 20191015.192725.566673 1 1 1 copy open Solved 0.001 14.06667
Xprs 280f0882 | 2ebebss L 34.01.05 20191015.192725.569061 1 1 2 copy open Solved 0.601 14.06667
Xprs_28bfbes 2
Xprs_2867088 LP 34.01.05 20191015.192725.571415 1 1 3 copy open Solved 0.001 14.06667
Xprs_28bfbes-2
sors_2sbibgs- | XPrs_ 286088 | LP 34.01.05 20191015.192725.574455 1 1 1 copy open Solved 0.001 14.06667
Xprs_28bfb88-2 | xprs_28bfb88 LP 34.01.05 20191015.192725.577111 1 1 2 copy open Solved 0.001 14.06667
1 1 4 copy open Solved 0.006 14.06667

Xprs_28bfb88-2 ypps 28bfb88 LP 34.01.05 20191015.192725.580405

Figure 1: Tuner results display in Xpress Workbench

Mosel code

Copy and paste the following code into your model.

setparam('XPRS_SCALING', 16);

Figure 2: Applying tuner results to a Mosel model

>>Scenario 2 (BCL)

After loading the problem from BCL into the solver, you can use the Xpress Optimizer API functions to set
solver controls and start the tuning for this problem.

m BCL C++:

XPRSprob optprob;
XPRBprob bclprob ("MyProb") ; // Initializes BCL and Optimizer

bclprob.loadMat () ;

optprob = bclprob.getXPRSprob () ; // Retrieve the Optimizer problem
XPRSsetintcontrol (optprob, XPRS_MAXTIME, 60); // Set a time limit
XPRStune (optprob, ""); // Start the tuning

m BCL Java:

XPRBprob bclprob;
XPRSprob optprob;

bcl = new XPRB(); // Initialize BCL

bclprob = bcl.newProb ("MyProb") ; // Create a BCL problem

XPRS.init (); // Initialize Xpress Optimizer
optprob = bclprob.getXPRSprob () ; // Retrieve the Optimizer problem
optprob.setIntControl (XPRS.MAXTIME, 60); // Set a time limit
optprob.tune(""); // Start the tuning

Applying the tuning results

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 4

Solver interaction: Setting up solution callbacks

You need to retrieve the Xpress Optimizer problem associated with the BCL problem to be able to modify
its control parameter settings as shown for the 'MAXTIME’ control in the code snippets above.

>>Scenarios 3 and 4 (Optimizer)

With a loaded problem, the built-in tuner can be started by calling TUNE from the Optimizer console, or
XPRStune from a user application. The Xpress Optimizer API also provides routines for managing tuner
methods.

Optimizer Python interface: After loading the problem file into a Python object, use the Xpress Optimizer
API functions to set solver controls and start the tuning for this problem.

import xpress as xp

p = xp.problem()

p.read('foliolp.mps') # reads MPS file into the problem
p.chgobjsense (sense=xp.maximize)

p.controls.maxtime=60

p.tune(flags='1l') # specify flag 'l' (optional)

At the command prompt, the following sequence of commands can be used to tune an LP problem that is
provided in the form of an MPS matrix in the file foliolp.mps:

optimizer
foliolp
readprob
chgobjsense max
maxtime=60

tune -1

quit

Applying the tuning results

With the Optimizer console, you can modify control parameter settings as shown for the 'MAXTIME'’
control in the command listing above. From an application program you need to use one of the Optimizer
API routines XPRSsetdblcontrol / XPRSsetintcontrol / XPRSsetstrcontrol depending on
the parameter type.

Further information
m Xpress Optimizer: “Xpress Optimizer Reference Manual”, Section 5.10 ‘Using the Tuner’

m Python: see examples in the “Python interface manual”, Chapter 6

2 Solver interaction: Setting up solution callbacks

The solvers of FICO® Xpress Optimization offer various entry points for interaction with the solver during
optimizations runs. This interaction takes the form of user-defined functions with a fixed format (callback
functions) that are invoked by the solver at specific points. Callback functions may be used for logging
purposes, but some also allow you to modify the optimization algorithms, e.g., by adding your own
cutting plane algorithms or even defining new branching objects and strategies for the MIP
branch-and-bound search.

Among the most frequently used functions certainly is the integer solution callback of Xpress Optimizer
that provides access to MIP solutions at the point where they are found during the branch-and-bound

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 5

Multiple solution support

search.

>Scenario 1 (Mosel)

A unique feature of the Mosel language is the possibility to define subroutines in this high-level modeling
language that will be called from the underlying (solver) libraries. It is thus possible to work with
Optimizer callback functions directly in your Mosel models.

Open the file examples\getting_started\Mosel\foliocb.mos to see an example of how to
define an integer solution callback in Mosel.

>>Scenario 2 (BCL)

With BCL you can directly use the callback functionality of the corresponding Xpress Optimizer interface.
Depending on your host language, open the file foliocb. [c|cxx| java] located in the corresponding
subdirectory examples\bcl\ [C|Cxx | Java] \UGExpl for an example of how to use the Optimizer
integer solution callback with a BCL model formulation.

>>Scenario 3 (Optimizer Python interface)

The Xpress Python interface provides a thin-layer API to all of the Optimizer’s callback functions. The
examples\python\ directory contains three examples: example_bbtree.py, example_tsp.py,
and migcgp_solver. py, which showcase the use of callback functions. The first uses branch
callbacks to keep track of the branch-and-bound tree, and uses the collected information to draw the BB
tree using the matplotlib module. The second example, example_tsp.py implements a simple
solver for the Traveling Salesman Problem (TSP), and has callbacks for checking that the solution is a
Hamiltonian tour and for adding subtour-elimination cuts. Finally, migcgp_solver.py is a full-fledged
solver for nonconvex mixed integer quadratically constrained problems, i.e. problems with possibly
quadratic nonconvex function and nonconvex quadratic constraints, and with integrality constraints on
part of the variables. This example is the most complex and shows how to use callbacks for adding cuts
(for convexification of the nonconvex members of the problem), for branching on continuous variables,
and for obtaining feasible solutions.

Further information

m Documentation of Xpress Optimizer callbacks: “Xpress Optimizer Reference Manual”, 5.3 ‘Using the
Callbacks’

m See the “Xpress Mosel User Guide”, 11.1 ‘Cut generation’, and the Xpress whitepapers “Embedding
Optimization Algorithms” and “Hybrid MIP/CP solving” for examples of callback definition in Mosel

m Documentation of Xpress Optimizer callbacks in Mosel: “Mosel Language Reference Manual”,
Chapter 13: ‘mmxprs’

m Examples of using Xpress Optimizer callbacks with BCL: “BCL Reference Manual”, Appendix B
‘Using BCL with the Optimizer library’

m Python: see examples in the “Python interface manual”, Chapter 6

3 Multiple solution support

As we have seen in the previous section it is possible to retrieve into your model/application all MIP
solutions found by Xpress Optimizer during the branch-and-bound search. Alternatively to defining the
integer solution callback and saving the solution in your own structures you can make use of the MIP

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 6

Handling infeasibility

solution pool and MIP solution enumerator functionality to have solutions stored and made accessible
after search has terminated.

>>Scenario 1 (Mosel)

As shown in the example file examples\getting_started\Mosel\folioenumsol.mos the
solution pool functionality is enabled by using the option XPRS_ENUM of the optimization routines
maximize orminimize. Through the control XPRS_ENUMMAXSOL you can set the maximum number of
solutions to save (if the search finds more solutions than the specified value, then only the best solutions
are retained). The solution enumerator configures the optimization algorithms to generate a large
number of feasible solutions, as a consequence, solution times are generally longer than with the default
algorithms that are tuned for maximum speed.

>>Scenario 2 (BCL)

The BCL program example foliosolpool. [c|cxx | java] in directory

examples\bcl\ [C|Cxx|Java] \UGExpl shows how to load solutions saved in the MIP solution pool
into BCL to use its display functions on the model objects. The solution pool collects all solutions found
during the standard search (these are the same solutions as those reported by the MIP solution callback)
and its access functions can be configured, for instance, to return solutions in ascending or descending
order of the value of the optimization criterion.

If you wish to generate many different feasible solutions you can start the optimization through the
solution enumerator, as is shown in the example folioenumsol. [c|cxx | java]. In this case, the
optimization algorithms are configured to produce a large number of integer feasible solutions; solving
times may be longer than with the default algorithm settings that are tuned for maximum speed. The
solutions generated by the solution enumerator are stored in a MIP solution pool associated with the
enumerator. After the optimization run the solutions saved in the pool are loaded into BCL.

>>Scenario 3 (Optimizer)

The example files foliomatsolpool. [c]| java] in directory
examples\getting_started\Optimizer show how to use the solution pool functionality when
inputting a problem directly into Xpress Optimizer. The solution pool captures and stores all solutions
found during the MIP search. The user can query the stored set of solutions for information such as their
objective value and their solution values.

In further example files foliomatenumsol. [c|java] the solution pool and solution enumerator
functionality is demonstrated showing how to capture the n-best solutions of a MIP problem. The
example also shows how to access the information about each of the n solutions found.

Further information

m “MIP Solution Pool Reference Manual”

m Documentation of solution pool functionality in Mosel: “Mosel Language Reference Manual”,
Chapter 13: ‘mmxprs’

m Documentation of solution pool functionality in BCL: “BCL Reference Manual”; “BCL Reference
Manual Javadoc”

4 Handling infeasibility

A problem is said to be infeasible if no solution exists which satisfies all the constraints. The problem

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 7

Handling infeasibility

status ‘infeasible’ generally is an undesirable outcome that should be avoided. In other terms, if an
infeasibility arises you need suitable means to analyze what is going wrong and modeling techniques and
tools to remedy or prevent this state from happening.

The following sections present different possibilities how to deal with infeasibility in FICO Xpress
Optimization models.

4.1 Modeling for infeasibility

By 'modeling for infeasibility’ we mean a model formulation that incorporates some extra freedom to
make the problem feasible and minimizes the utilization of the added freedom. In mathematical terms
this corresponds to introducing deviation variables in constraints to make them feasible and to penalize
these deviations in the objective function. Adding deviation variables to a model formulation implies
being able to modify the definition of variables or constraints after their creation, a feature well supported
in Mosel and BCL.

NB: deviation variables should only be added in constraints that use external data (to make up for
infeasibility in data). Do not relax constraints that have no data, only variables, representing relationships
that must hold, such as inventory balance constraints, physical processes, conversion rates or mass
balance.

>Scenario 1 (Mosel)

The example file examples\getting_started\Mosel\folioinfeas.mos solves an LP problem.
If the problem instance is found to be infeasible the model retrieves and displays the infeasible variables
and constraints, it then adds deviation variables to certain constraints and re-solves the modified
problem. The final solution display takes into account the values of the deviation variables, thus providing
some insight on the type of constraint violations.

>>Scenario 2 (BCL)

The BCL file folioinfeas. [c|cxx|java] in directory examples\bcl\ [C|Cxx|Java] \UGExpl
implements the same algorithm as the Mosel model above: if a problem instance is found to be
infeasible, the program adds deviation variables to certain constraints and re-solves the modified
problem. The final solution display takes into account the values of the deviation variables, thus providing
some insight on the type of constraint violations.

4.2 Analyzing infeasibility: IIS

A general technique to analyze infeasibility is to find a small portion of the matrix that is itself infeasible.
Xpress Optimizer does this by finding irreducible infeasible sets (11Ss). An IS is a minimal set of
constraints and variable bounds which is infeasible, but becomes feasible if any constraint or bound in it
is removed.

>Scenario 1 (Mosel)

Take a look at the Mosel model in file examples\getting_started\Mosel\folioiis.mos. This
example retrieves the IIS sets for an LP-infeasible problem and displays their contents.

>Scenario 2 (BCL)

Similarly, you can use the IIS access functionality of BCL to retrieve and display IIS (see file
folioiis. [c|cxx|java] indirectory examples\bcl\ [C|Cxx|Java] \UGExpl).

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 8

Data exchange in memory for Mosel models

>>-Scenario 3 (Optimizer Python interface)

The Python script examples\python\example_infeasible.py showcases the usage of all
functions for handling infeasibility in an optimization problem, specifically the functions that manage IIS.

4.3 Infeasibility repair

In some cases, identifying the cause of infeasibility, even if the search is based on IISs may prove very
demanding and time consuming. In such cases, a solution that violates the constraints and bounds
minimally can greatly assist modeling. This functionality is provided by the infeasibility repair utility of
Xpress Optimizer. Based on preferences provided by the user, the Optimizer relaxes the constraints and
bounds in the problem by introducing penalized deviation variables associated with selected rows and
columns. The preference values reflect the modeler’s will to relax the corresponding bound or constraint
right-hand-side (the penalty value associated is the reciprocal of the preference), a zero preference
means no relaxation.

>>Scenario 1 (Mosel)

The infeasibility repair functionality in Mosel has two forms, the simpler one lets you define a preference
per constraint type (=, <, >), with its detailed form you can state a preference for every single constraint.
The latter is used in the example implementation in file
examples\getting_started\Mosel\foliorep.mos. This example performs the infeasibility
repair algorithm several times, each time with a different value for the parameter delta to analyze the
effect of extra violations of the constraints and bounds to the underlying model.

>>-Scenario 2 (BCL)

The BCL programs foliorep. [c|cxx | java] in directory examples\bcl\ [C|Cxx|Java] \UGExpl
show how to use the infeasibility repair functionality of the Xpress Optimizer Library with a model defined
in BCL. In analogy to the Mosel model, this example uses the weighted infeasibility repair algorithm that
lets you specify which constraints to relax, and loops over different values for the penalization factor
delta.

Further information
m “Xpress Optimizer Reference Manual”, 3.2 ‘Infeasibility’

m Examples of algorithms modifying constraint definitions in Mosel: “Xpress Mosel User Guide”,
Chapter 12: ‘Extensions to Linear Programming’

|u

m Functions for modifying constraint definitions in BCL: “BCL Reference Manual”, 2.3 ‘Constraints’

m Python: see examples in the “Python interface manual”, Chapter 6

5 Data exchange in memory for Mosel models

The development process of an optimization application typically includes several phases with very
different needs in terms of data handling:

1. Feasibility study: development and implementation of the mathematical model, spending the least
possible effort on data handling, test data possibly even defined directly in the model

2. Initial testing: running the model with different data sets (i.e., need for parameterization of data
instances), possibly producing some performance statistics

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 9

Working in a distributed architecture

3. Prototype for presentation to end users and decision makers: formatted display of results, possibly
including graphics, ‘hiding’ the mathematical model behind a graphical interface that makes
accessible only the most important input and output parameters and data

4. Embedding into the company’s information systems: incorporate the model into a host application
using efficient mechanisms for communicating data and results

With Mosel it is possible to carry through the whole development process using a single model, adding
different interfaces on top of this model that all employ the same mechanism for data input and output
directly in memory.

The following series of examples works with the model file foliomemio.mos located in the directory
examples\getting_started\Mosel of your Xpress installation. This model file implements the
same MIP problem as in foliomip3.mos with the difference that all input and output data (arrays, sets,
and scalars) have been turned into model parameters and the result display has been removed from the
model.

1. Standalone mode: run the model foliomemio.mos in Xpress Workbench or from the Mosel
command line. With all settings at default, this model run reads in data from a text file
(foliol0.dat) and produces an output file listing the result values (file so110out.dat).

2. Submodel to another Mosel model: now run the model runfolio.mos. This model does not
perform any optimization run of its own, it merely serves as an interface to execute the model
foliomemio.mos from which it retrieves the results and generates text output formatted as an
HTML page. Data are exchanged in memory between the two models.

The file runfolio.mos can easily be extended to run several instances of the optimization model
(e.g., with different parameter settings), in sequence or in parallel, and produce the corresponding
summary statistics—an example of such parallel solving is shown in runfoliopar.mos.

3. Embedding into a host application: the C program runfolio.c compiles and runs the Mosel
model foliomemio.mos, initializing its data arrays from data held in C and retrieving result data
into the C application. The Java program runfolio. java does exactly the same for a Java
application, and runfolio.cs is the equivalent C# program. In the place of the fixed-size memory
blocks used in these examples you can also exchange data dynamically using Mosel’s 1/0 callback
functionality—generating data on-the-fly or flexibly (re)sizing output structures (see example files
runfoliod. [c|java|cs]). And yet another option, in Java or C# it is possible to pass data
through buffers (see files runfoliob. java and runfoliob.cs respectively).

Further information

m Further examples: “Xpress Mosel User Guide”, Part Ill: ‘Working with the Mosel Libraries’ and
Chapter 17: ‘Language extensions’; Xpress whitepapers “Generalized file handling in Mosel” and
“Multiple models and parallel solving with Mosel”.

m Documentation of Mosel C libraries: “Xpress Mosel Library Reference Manual”.
m Documentation of Mosel Java libraries: “Xpress Mosel Library Reference Manual JavaDoc”".

m Documentation of the Mosel .NET interface: “Xpress Mosel .NET Interface”.

6 Working in a distributed architecture
6.1 Remote Mosel instances

When working with a Mosel model it is possible to start new instances of Mosel either locally to the
running system or remotely on another machine through the network, and use these instances to run

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 10

Remote applications without local Xpress installation

additional models controlled by the model that has started them. This means that the computing
capacity of the running model is not restricted to the executing process.

Moving from a single instance implementation running multiple models to a distributed architecture most
often requires only few changes to existing models, namely the setup of the remote connections. There
are no restictions on the processor or operating system type: any platforms supported by Xpress can be
used jointly in a distributed model run provided that they have a suitable version of Xpress installed and
licensed.

Please note that before executing models on remote nodes, you need to start the Mosel server 'xprmsrv’
on all nodes you wish to use: in a command line interpreter window type:

Xprmsrv

or alternatively, under Windows, double click on the 'xprmsrv’ icon.

Two examples show how to run remotely the model file foliomemio.mos located in the directory
examples\getting_started\Mosel of your Xpress installation:

The model runfoliodistr.mos is an extension of runfolio.mos presented in the preceding
section. It serves as an interface to execute remotely the model foliomemio.mos from which it
retrieves the results and generates text output formatted as an HTML page.

The model version runfoliopardistr.mos starts several model instances in parallel, each on a
distinct (remote) Mosel instance, and produces the corresponding summary statistics.

Further information

m Examples: Xpress whitepaper “Multiple models and parallel solving with Mosel” (Section ‘Working
with remote Mosel instances’).

m Documentation: Section ‘mmijobs’ of the “Xpress Mosel Language Reference Manual”.

6.2 HTTP

A Mosel model can communicate with external components via HTTP requests. It can act as a client
sending HTTP queries (GET, POST, PUT or DELETE) or as a web service by starting the integrated HTTP
server.

HTTP client functionality in Mosel can be configured to work synchronously (a request waits for the
answer from the server) or asynchronously (functions sending requests return immediatly and
termination messages are sent via separate event messages). Other configuration settings involve, for
example, the maximum number of simultaneous requests accepted by a server or the TCP port to be
used by remote connections.

The example file foliohttpsrv.mos starts up an HTTP server that accepts HTTP requests triggering
the execution of the optimization model in file folioxml.mos. The model foliohttpclient.mos
shows what the corresponding HTTP client might look like, it exchanges input and result data in
XML-format with the HTTP server and displays the solution. Both examples are located in the directory
examples\getting_started\Mosel of your Xpress installation.

Further information

m Documentation: Section ‘mmhttp’ of the “Xpress Mosel Language Reference Manual”.

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 11

7 Remote applications without local Xpress installa-
tion

Managing Mosel model executions in a distributed architecture does not necessarily imply a need for a
local Xpress installation on the machine controling the application: the Mosel remote invocation library
(XPRD) makes it possible to build applications requiring the Xpress technology that run from
environments where Xpress is not installed—including architectures for which Xpress is not available.
XPRD is a self-contained library (i.e. with no dependency on the usual Xpress libraries) that provides the
necessary routines to start Mosel instances either on the local machine or on remote hosts and control
them in a similar way as if they were invoked through the Mosel libraries. Besides the standard instance
and model handling operations, the XPRD library supports the file handling mechanisms of mmjobs as
well as its event signaling system.

Several sets of examples implement the counterparts to the Mosel examples runfoliodistr.mos and
runfoliopardistr.mos for the remote execution of the model file foliomemio.mos without local
installation of Xpress: these C and Java files are located in the directory
examples\mosel\WhitePapers\MoselPar\XPRD.

The example runfoliodistr. [c| java] executes a Mosel model remotely and retrieves the results
via streams. Example versions distfolio. [c|java] anddistfoliopar. [c|java] transfer data
via files using Mosel’s binary format. The file distfolio. [c]| java] starts a single remote model run
anddistfoliopar. [c|java] shows how to perform several concurrent model executions each
using a different (possibly remote) Mosel instance.

Even more advanced is the program version distfoliocbioev. [c| java] where result data is
communicated during the optimization model run. The interaction of the Mosel model and the host
application is coordinated via event messages that are exchanged between the two.

Further information

m Examples: Xpress whitepaper “Multiple models and parallel solving with Mosel” (Section “XPRD:
Remote model execution without local installation’).

m Documentation of the XPRD C library: “XPRD: Mosel Remote Invocation Library Reference Manual”.

m Documentation of the XPRD Java library: “XPRD: Mosel Remote Invocation Library JavaDoc”.

Evaluator guide 2 (Advanced) Fair Isaac Corporation Proprietary Information 12

	Introduction
	Optimizer parameter settings and tuning
	Scenario 1 (Mosel)
	

	Scenario 2 (BCL)
	
	Further information

	Tuning the Optimizer
	The Xpress Optimizer built-in tuner
	Scenario 1 (Mosel)
	Scenario 2 (BCL)
	Scenarios 3 and 4 (Optimizer)
	Further information

	Solver interaction: Setting up solution callbacks
	Scenario 1 (Mosel)
	

	Scenario 2 (BCL)
	

	Scenario 3 (Python)
	
	Further information

	Multiple solution support
	Scenario 1 (Mosel)
	

	Scenario 2 (BCL)
	

	Scenario 3 (Optimizer)
	
	Further information

	Handling infeasibility
	Modeling for infeasibility
	Scenario 1 (Mosel)
	Scenario 2 (BCL)

	Analyzing infeasibility: IIS
	Scenario 1 (Mosel)
	Scenario 2 (BCL)
	Scenario 3 (Optimizer Python interface)

	Infeasibility repair
	Scenario 1 (Mosel)
	Scenario 2 (BCL)
	Further information

	Data exchange in memory for Mosel models
	Further information

	Working in a distributed architecture
	Remote Mosel instances
	Further information

	HTTP
	Further information

	Remote applications without local Xpress installation
	Further information

