
FICOFICO R⃝R⃝ Xpress OptimizationXpress Optimization

6.0

Last update March 2022

REFERENCE MANUAL

FICO R⃝ Xpress Mosel

©2001–2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes
to determine whether to purchase a license to the software described in this documentation, or as otherwise
set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and
no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except as
may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular
purpose. Portions of this documentation and the software described in it may contain copyright of various
authors and may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Xpress Mosel

Deliverable Version: A

Last Revised: March 2022

Version 6.0

Contents

1 Introduction 1
1.1 What is Mosel? . 1
1.2 General organization . 1
1.3 Running Mosel . 2

1.3.1 mosel command: invocation . 2
1.3.2 mosel command: interactive debugger . 6
1.3.3 mosel command: tracing mode . 10
1.3.4 mosel command: restricted mode . 11
1.3.5 mosel command: securing bim files . 12

1.4 References . 12
1.5 Structure of this manual . 13

I Core System 14

2 The Mosel Language 15
2.1 Introduction . 15

2.1.1 Comments . 15
2.1.2 Identifiers . 15
2.1.3 Reserved words . 16
2.1.4 Separation of instructions, line breaking . 16
2.1.5 Conventions in this document . 16

2.2 Structure of the source file . 17
2.3 The compiler directives . 17

2.3.1 Directive uses . 17
2.3.2 Directive imports . 18
2.3.3 Directive options . 19
2.3.4 Directive version . 19

2.4 The parameters block . 20
2.5 Source file preprocessing . 20

2.5.1 Source file character encoding . 20
2.5.2 Source file inclusion . 20
2.5.3 Line control directives . 21

2.6 The declaration block . 21
2.6.1 Elementary types . 22

2.6.1.1 Basic types . 22
2.6.1.2 MP types . 22

2.6.2 Sets . 23
2.6.3 Lists . 23
2.6.4 Arrays . 24

2.6.4.1 Special case of dynamic arrays of a type not supporting assignment . . . 25
2.6.5 Records . 25
2.6.6 Subroutine references . 25
2.6.7 Unions . 26
2.6.8 Constants . 26

Fair Isaac Corporation Proprietary Information i

Contents

2.6.9 User defined types . 27
2.6.9.1 Naming new types . 27
2.6.9.2 Combining types . 27

2.7 Expressions . 28
2.7.1 Type conversions and constructors . 31

2.7.1.1 Union constructors and subroutine parameters 32
2.7.2 Aggregate operators . 32
2.7.3 Arithmetic expressions . 33
2.7.4 String expressions . 33
2.7.5 Set expressions . 34
2.7.6 List expressions . 34
2.7.7 Boolean expressions . 35
2.7.8 Linear constraint expressions . 36
2.7.9 Automatic arrays . 37
2.7.10 Operator -> (reference to) . 37

2.8 Statements . 37
2.8.1 Simple statements . 37

2.8.1.1 Assignment . 37
2.8.1.2 Assignment of structured types . 38
2.8.1.3 Assignment of subroutine references . 38
2.8.1.4 Assignment of unions . 39
2.8.1.5 About implicit declarations . 39
2.8.1.6 Inline initialization . 39
2.8.1.7 Linear constraint expression . 40
2.8.1.8 Procedure call . 40

2.8.2 Initialization block . 40
2.8.2.1 Handling of unions . 43
2.8.2.2 About automatic finalization . 43

2.8.3 Selections . 43
2.8.3.1 If statement . 43
2.8.3.2 Case statement . 44

2.8.4 Loops . 45
2.8.4.1 Forall loop . 45
2.8.4.2 While loop . 45
2.8.4.3 Repeat loop . 45
2.8.4.4 break and next statements . 46
2.8.4.5 with statement . 46

2.9 Procedures and functions . 47
2.9.1 Definition . 47
2.9.2 Variable number of parameters . 48
2.9.3 Formal parameters: passing convention . 48
2.9.4 Local declarations . 48
2.9.5 Overloading . 49
2.9.6 Forward declaration . 49
2.9.7 Suffix notation . 50

2.10 Problems . 50
2.10.1 The mpproblem type . 51

2.11 The public qualifier . 52
2.12 Packages . 53

2.12.1 Version management . 53
2.12.2 The requirements block . 53
2.12.3 Control parameters . 54

2.13 Namespaces . 54
2.14 Annotations . 55

2.14.1 Syntax . 55

Fair Isaac Corporation Proprietary Information ii

Contents

2.14.2 Symbol association . 57
2.14.3 Declaration . 57

2.15 File names and input/output drivers . 59
2.16 Character encoding of text files . 60
2.17 Working directory and temporary directory . 61
2.18 Handling of input/output . 61
2.19 Deploying models . 62
2.20 Documenting models using annotations . 63

2.20.1 doc annotation category . 63
2.20.1.1 Global definitions . 64
2.20.1.2 Document structure . 64
2.20.1.3 Symbol definitions . 65
2.20.1.4 Annotation definitions . 67
2.20.1.5 Package control parameters . 67

2.20.2 moseldoc documentation processor . 67
2.20.2.1 Running moseldoc . 67
2.20.2.2 Structure of the generated document . 68
2.20.2.3 Processing of annotation values . 68

2.21 Message translation . 68
2.21.1 Preparing the model source . 68
2.21.2 Building the message catalogs . 69
2.21.3 Model execution . 70

3 Predefined functions and procedures 71
abs . 72
arctan . 73
asproc . 74
assert . 75
bitflip . 76
bitneg . 77
bitset . 78
bitshift . 79
bittest . 80
bitval . 81
ceil . 82
compare . 83
cos . 84
create . 85
currentdate . 86
currenttime . 87
cutelt . 88
cutfirst . 89
cuthead . 90
cutlast . 91
cuttail . 92
delcell . 93
datablock . 94
dumpcallstack . 95
exists . 96
exit . 97
exp . 98
exportprob . 99
fclose . 101
fflush . 102
finalize . 103

Fair Isaac Corporation Proprietary Information iii

Contents

findfirst . 104
findlast . 105
floor . 106
fopen . 107
fselect . 108
fskipline . 109
fwrite, fwriteln . 110
getact . 111
getcoeff . 112
getcoeffs . 113
getdual . 114
getelt . 115
geteltype . 116
getfid . 117
getfirst . 118
gethead . 119
getfname . 120
getlast . 121
getnbdim . 122
getobjval . 123
getparam . 124
getrcost . 127
getreadcnt . 128
getreverse . 129
getsize . 130
getslack . 131
getsol . 132
getstruct . 133
gettail . 135
gettype . 136
gettypeid . 137
getvars . 138
isdefined . 139
isdynamic . 140
iseof . 141
isfinite . 142
ishidden . 143
isinf . 144
isnan . 145
isodd . 146
ln . 147
localsetparam . 148
log . 149
makesos1, makesos2 . 150
maxlist . 151
memoryuse . 152
minlist . 153
newmuid . 154
publish . 155
random . 156
read, readln . 157
reset . 158
restoreparam . 159
reverse . 160
round . 161

Fair Isaac Corporation Proprietary Information iv

Contents

setcoeff . 162
sethidden . 163
setioerr . 164
setmatherr . 165
setname . 166
setparam . 167
setrandseed . 169
setrange . 170
settype . 171
sin . 172
splithead . 173
splittail . 174
sqrt . 175
strfmt . 176
substr . 177
timestamp . 178
unpublish . 179
versionnum, versionstr . 180
write, writeln . 181

II Modules 182

4 deploy 183
4.1 Procedures and functions . 183

argc . 184
argv . 185

4.2 I/O drivers . 186
4.2.1 Driver csrc . 186
4.2.2 Driver exe . 186

5 mmetc 188
5.1 Procedures and functions . 188

disc . 189
diskdata . 190

5.2 I/O drivers . 192
5.2.1 Driver diskdata . 192

6 mmhttp 194
6.1 New functionality for the Mosel language . 194

6.1.1 The type reqqueue . 194
6.2 Control parameters . 194

http_async . 195
http_browser . 195
http_cookies . 196
http_defpage . 196
http_defport . 196
http_expire . 196
http_freeasync . 197
http_keephdr . 197
http_listen . 197
http_maxconn . 197
http_maxcontime . 198
http_maxreq . 198
http_maxreqtime . 198
http_maxasync . 199

Fair Isaac Corporation Proprietary Information v

Contents

http_port . 199
http_proxy . 199
http_proxyport . 199
http_srvconfig . 200
http_startwb . 200
https_defport . 200
https_listen . 201
https_port . 201

6.3 Constants . 201
6.4 Procedures and functions . 202

6.4.1 HTTP client . 202
delcookies . 204
findcookie . 205
httpcancel . 206
httpdel . 207
httpget . 208
httpgetheader . 209
httphead . 210
httppatch . 211
httppost . 212
httpput . 213
httpreason . 214
loadcookies . 215
savecookies . 216
setcookie . 217
tcpping . 218
urlencode . 219

6.4.2 HTTP server . 220
httppending . 223
httpqueueinfo . 224
httpreply . 225
httpreplycode . 226
httpreplyjson . 227
httpreqconstat . 228
httpreqcookies . 229
httpreqfile . 230
httpreqfrom . 231
httpreqheader . 232
httpreqlabel . 233
httpreqpop . 234
httpreqpush . 235
httpreqpushlim . 236
httpreqstat . 237
httpreqtype . 238
httpstartsrv . 239
httpstopsrv . 240
jsonread . 241
jsonwrite . 242
mksetcookie . 243

6.5 I/O drivers . 244
6.5.1 Driver url . 244

7 mmjava 245
7.1 I/O drivers . 245

7.1.1 Driver java . 245

Fair Isaac Corporation Proprietary Information vi

Contents

7.1.2 Driver jraw . 246

8 mmjobs 247
8.1 Example . 247
8.2 Data sharing between models . 248
8.3 Control parameters . 248

conntmpl . 249
nodenumber . 249
defaultnode . 249
jobid . 250
parentnumber . 250
keepalive . 250
fsrvport . 250
fsrvdelay . 251
fsrvnbiter . 251
sshcmd . 251

8.4 Procedures and functions . 252
8.4.1 Mosel instance management . 252

connect . 253
disconnect . 254
clearaliases . 255
getbanner . 256
gethostalias . 257
getaliases . 258
sethostalias . 259
findxsrvs . 260

8.4.2 Model management . 261
compile . 262
detach . 264
load . 265
setdefstream . 267
resetmodpar . 268
setcontrol . 269
setmodpar . 270
setworkdir . 271
run . 272
getdsoprop, getdsopropnum . 273
getgid . 274
getid . 275
getmodprop, getmodpropnum . 276
getnode . 277
getrmtid . 278
getstatus . 279
getuid . 280
getexitcode . 281
stop . 282
reset . 283
unload . 284
getannidents . 285
getannotations . 286

8.4.3 Synchronization . 287
canceltimer . 288
send . 289
settimer . 290
setuid . 291

Fair Isaac Corporation Proprietary Information vii

Contents

setgid . 292
wait . 293
waitexpired . 294
waitfor . 295
waitforend . 297
getnextevent . 298
dropnextevent . 299
isqueueempty . 300
nullevent . 301
getfromid . 302
getfromgid . 303
getfromuid . 304
getclass . 305
gettimer . 306
getvalue . 307
peeknextevent . 308
pipeflush . 309
pipenotify . 310

8.5 I/O drivers . 311
8.5.1 Driver shmem . 311
8.5.2 Driver mempipe . 311
8.5.3 Driver rcmd . 312
8.5.4 Driver xsrv . 312
8.5.5 Driver xssh . 312
8.5.6 Driver rmt . 313

8.6 The Mosel Remote Launcher xprmsrv . 313
8.6.1 Running the xprmsrv command . 313

8.6.1.1 Main command line options . 313
8.6.1.2 Secure server . 315
8.6.1.3 Private key management . 315
8.6.1.4 Mode of operation . 315

8.6.2 Configuration file . 316
8.6.2.1 Access control list . 318

9 mmnl 320
9.1 New functionality for the Mosel language . 320

9.1.1 The problem type mpproblem.nl . 320
9.1.2 The type nlctr and its operators . 320
9.1.3 Setting initial values . 320
9.1.4 Example: using mmnl for QCQP . 321

9.2 Procedures and functions . 322
clearinitvals . 324
copysoltoinit . 325
setinitval . 326
getsol . 327
ishidden . 328
sethidden . 329
gettype . 330
pwlin . 331
setname . 332
settype . 333

10 mmoci 334
10.1 Prerequisite . 334
10.2 Example . 334

Fair Isaac Corporation Proprietary Information viii

Contents

10.3 Data transfer between Mosel and Oracle . 335
10.3.1 From Oracle to Mosel . 335
10.3.2 From Mosel to Oracle . 336

10.4 Control parameters . 338
OCIautocommit . 339
OCIautondx . 339
OCIbufsize . 340
OCIcolsize . 340
OCIconnection . 340
OCIdebug . 340
OCIfirstndx . 341
OCIndxcol . 341
OCIrowcnt . 341
OCIrowxfr . 341
OCIsuccess . 342
OCItruncsize . 342
OCIverbose . 342

10.5 Procedures and functions . 342
OCIlogon . 344
OCIlogoff . 345
OCIexecute . 346
OCIreadinteger . 347
OCIreadreal . 348
OCIreadstring . 349
OCIcommit . 350
OCIrollback . 351

10.6 I/O drivers . 352
10.6.1 Driver oci . 352

11 mmodbc 353
11.1 Prerequisite . 353
11.2 Example . 353
11.3 Data transfer between Mosel and the database . 354

11.3.1 From the database to Mosel . 354
11.3.2 From Mosel to the database . 355

11.4 ODBC and MS Excel . 357
11.5 Control parameters . 358

SQLautocommit . 358
SQLautondx . 359
SQLbufsize . 359
SQLcolsize . 359
SQLconnection . 360
SQLdebug . 360
SQLdm . 360
SQLextn . 360
SQLfirstndx . 361
SQLndxcol . 361
SQLrowcnt . 361
SQLrowxfr . 361
SQLsuccess . 362
SQLtruncsize . 362
SQLverbose . 362

11.6 Procedures and functions . 362
SQLcolumns . 364
SQLcommit . 365

Fair Isaac Corporation Proprietary Information ix

Contents

SQLconnect . 366
SQLdataframe . 368
SQLdisconnect . 369
SQLexecute . 370
SQLparam . 372
SQLgetparam . 373
SQLindices . 374
SQLprimarykeys . 375
SQLreadinteger . 376
SQLreadreal . 377
SQLreadstring . 378
SQLrollback . 379
SQLtables . 380
SQLupdate . 381

11.7 I/O drivers . 382
11.7.1 Driver odbc . 382

12 mmquad 383
12.1 New functionality for the Mosel language . 383

12.1.1 The type qexp and its operators . 383
12.1.1.1 Example: using mmquad for Quadratic Programming 383

12.1.2 Procedures and functions . 384
exportprob . 385
getsol . 386

12.2 Published library functions . 387
12.2.1 Complete module example . 387
12.2.2 Description of the library functions . 389

getqexpsol . 390
getqexpstat . 391
clearqexpstat . 392
getqexpnextterm . 393

13 mmreflect 394
13.1 New functionality for the Mosel language . 394

13.1.1 The type iterator . 394
13.1.2 The type reflecterror . 394

13.2 Procedures and functions . 395
callfunc, callfunclsa . 396
callproc, callproclsa . 397
findident . 398
getallidents . 400
getallparams . 401
getannidents . 402
getannotations . 403
getarrval . 404
getcode . 405
geteltype . 406
getindices . 407
getmsg . 408
getnbargs . 409
getrettype . 410
getsignature . 411
getstatus . 412
inititer . 413
nextcell . 414

Fair Isaac Corporation Proprietary Information x

Contents

setarrval . 415
setindices . 416
testtype . 417

14 mmrobust 418
14.1 New functionality for the Mosel language . 418

14.1.1 The problem type mpproblem.xprs.robust . 418
14.1.2 The type uncertain . 418
14.1.3 The type robustctr and its operators . 419
14.1.4 The type uncertainctr and its operators . 419
14.1.5 Example: using mmrobust for solving a robust problem 419

14.2 Control parameters . 420
robust_uncertain_overlap . 420
robust_check_feas_uncertainty_set . 420
robust_check_feas_original_problem . 421

14.3 Procedures and functions . 421
cardinality . 422
getsol . 423
getact . 424
ishidden . 425
scenario . 426
sethidden . 427
getnominal . 428
gettype . 429
setnominal . 430
settype . 431

15 mmsheet 432
15.1 I/O drivers . 432

15.1.1 Driver excel . 433
15.1.2 Driver xls/xlsx . 434
15.1.3 Driver csv . 434

16 mmssl 436
16.1 Overview . 436

16.1.1 Document encryption in Mosel . 436
16.1.2 The mmssl command . 436

16.2 Control parameters . 437
https_cacerts . 438
https_ciphers . 438
https_cltcrt . 438
https_cltkey . 439
https_srvcrt . 439
https_srvkey . 439
https_trustsrv . 440
ssl_cipher . 440
ssl_digest . 440
ssl_dir . 441
ssl_privkey . 441

16.3 Procedures and functions . 442
RSAfingerprint . 443
RSAgenkey . 444
RSAgetkeysize . 445
RSAisprivate . 446
RSAloadkey . 447

Fair Isaac Corporation Proprietary Information xi

Contents

RSApubdecrypt . 448
RSAprivdecrypt . 449
RSAprivencrypt . 450
RSApubencrypt . 451
RSAsavekey . 452
msgdigest . 453
msgsign . 454
msgverify . 455
sslivsize . 456
sslkeysize . 457
sslmdsize . 458
sslrandom . 459
sslrandomdata . 460
x509check . 461
x509getinfo . 462
x509newcrt . 463

16.4 I/O drivers . 464
16.4.1 Driver base64 . 464
16.4.2 Driver hex . 464
16.4.3 Driver crypt . 464
16.4.4 Driver hmac . 465

17 mmsvg 466
17.1 SVG graph structure . 466

17.1.1 Object groups . 466
17.1.2 SVG styling . 467
17.1.3 Interaction with the graphical display . 468
17.1.4 Example . 468

17.2 Control parameters . 469
MMSVGDISPLAY . 469
MMSVGTGZ . 470

17.3 Procedures and Functions . 470
svgaddgroup . 472
svgaddarrow . 473
svgaddcircle . 474
svgaddellipse . 475
svgaddfile . 476
svgaddimage . 477
svgaddline . 478
svgaddpie . 479
svgaddpoint . 480
svgaddpolygon . 481
svgaddrectangle . 482
svgaddtext . 483
svgaddxmltext . 484
svgclosing . 485
svgcolor . 486
svgdelobj . 487
svgerase . 488
svggetgraphstyle . 489
svggetgraphstylesheet . 490
svggetgraphviewbox . 491
svggetlastobj . 492
svggetstyle . 493
svggetstylesheet . 494

Fair Isaac Corporation Proprietary Information xii

Contents

svgpause . 495
svgrefresh . 496
svgsave . 497
svgsetgraphlabels . 498
svgsetgraphpointsize . 499
svgsetgraphscale . 500
svgsetgraphstyle . 501
svgsetgraphstylesheet . 502
svgsetgraphviewbox . 503
svgsetreffreq . 504
svgsetstyle . 505
svgsetstylesheet . 506
svgshowgraphaxes . 507
svgwaitclose . 508

18 mmsystem 509
18.1 New functionality for the Mosel language . 509

18.1.1 The type text . 509
18.1.2 The type date . 509
18.1.3 The type time . 509
18.1.4 The type datetime . 510
18.1.5 The type parsectx . 510
18.1.6 The type textarea . 510

18.2 Control parameters . 510
datefmt . 511
timefmt . 511
datetimefmt . 512
monthnames . 512
sys_endparse . 513
sys_fillchar . 513
sys_pid . 513
sys_qtype . 513
sys_regcache . 514
sys_sepchar . 514
sys_trim . 514
sys_txtmem . 514

18.3 Procedures and functions . 515
addmonths . 518
compareic . 519
copytext . 520
cuttext . 521
deltext . 522
endswith . 523
erase . 524
expandpath . 525
fcopy . 526
fdelete . 527
findfiles . 528
findtext . 529
fmove . 530
formattext . 531
getasnumber . 533
getchar . 534
getcwd . 535
getdate . 536

Fair Isaac Corporation Proprietary Information xiii

Contents

getday . 537
getdaynum . 538
getdays . 539
getdirsep . 540
getdsoparam . 541
getendparse, setendparse . 542
getenv . 543
getfsize . 544
getfstat, getflstat . 545
getftime . 546
gethour . 547
getminute . 548
getmonth . 549
getmsec . 550
getoserror . 551
getoserrmsg . 552
getpathsep . 553
getsucc, setsucc . 554
getqtype, setqtype . 555
getsecond . 556
getsepchar, setsepchar . 557
getsize . 558
getstart, setstart . 559
getsysinfo . 560
getsysstat . 561
gettime . 562
gettmpdir . 563
gettrim, settrim . 564
getweekday . 565
getyear . 566
inserttext . 567
isvalid . 568
jointext . 569
makedir . 570
makepath . 571
newtar . 572
newzip . 573
nextfield . 574
openpipe . 575
parseextn . 576
parseint . 577
parsereal . 579
parsetext . 580
pastetext . 582
pathmatch . 583
pathsplit . 584
qsort . 585
quote . 587
readlink . 588
readtextline . 589
regmatch . 590
regreplace . 592
removedir . 593
removefiles . 594
setchar . 595

Fair Isaac Corporation Proprietary Information xiv

Contents

setdate . 596
setday . 597
setdsoparam . 598
setenv . 599
setoserror . 600
sethour . 601
setminute . 602
setmonth . 603
setmsec . 604
setsecond . 605
settime . 606
setyear . 607
sleep . 608
splittext . 609
startswith . 610
symlink . 611
system . 612
tarlist . 614
textfmt . 615
tolower . 617
toupper . 618
trim . 619
untar . 620
unzip . 621
ziplist . 622

18.4 I/O drivers . 623
18.4.1 Driver text . 623
18.4.2 Driver pipe . 623

18.5 Published library functions . 624
18.5.1 Description of the library functions . 624

gettime . 626
settime . 627
getdate . 628
setdate . 629
getdatetime . 630
setdatetime . 631
getcsttxtbuf . 632
gettxtsize . 633
gettxtbuf . 634
txtresize . 635

19 mmxml 636
19.1 Document representation in mmxml . 636

19.1.1 Data model . 636
19.1.2 Paths in a document . 637

19.1.2.1 Axis specifier . 638
19.1.2.2 Node test . 638
19.1.2.3 Abbreviated notation . 638
19.1.2.4 Predicate . 638

19.1.3 JSON document as an XML tree . 639
19.2 New functionality for the Mosel language . 641

19.2.1 The type xmldoc . 641
19.3 Procedures and functions . 641

addnode . 643
copynode . 645

Fair Isaac Corporation Proprietary Information xv

Contents

delattr . 646
delnode . 647
getattr . 648
testattr . 649
getencoding . 650
getname . 651
getvalue . 652
getfirstattr . 653
getnext . 654
getfirstchild . 655
getlastchild . 656
getnode . 657
getnodes . 658
getparent . 659
gettype . 660
getstandalone . 661
getxmlversion . 662
gethspace . 663
getvspace . 664
getindentmode . 665
getindentskip . 666
getlinelen . 667
getmaxnodes . 668
getsize . 669
jsonload . 670
jsonparse . 671
jsonsave . 673
load . 674
save . 675
setattr . 676
setencoding . 677
setmaxnodes . 678
setname . 679
setvalue . 680
sethspace . 681
setvspace . 683
setindentmode . 684
setindentskip . 685
setlinelen . 686
setstandalone . 687
setxmlversion . 688
xmlattr . 689
xmlencode . 690
xmldecode . 691
xmlparse . 692

20 mmxnlp 694
20.1 New functionality for the Mosel language . 694

20.1.1 The userfunc type . 694
20.1.2 The tolset type . 695
20.1.3 The mpproblem.xprs.xnlp problem type . 695

20.2 mmxnlp and the other Mosel modules . 695
20.2.1 Overloaded functions . 695
20.2.2 Module compatibility . 696

20.3 Control parameters . 696

Fair Isaac Corporation Proprietary Information xvi

Contents

XNLP_AUTOELIM . 697
XNLP_LOADASNL . 697
XNLP_LOADNAMES . 697
XNLP_NLPSTATUS . 698
XNLP_SOLVER . 698
XNLP_VERBOSE . 698
20.4 Procedures and functions . 698

addmultistart . 700
chgdeltatype . 701
F . 702
generateUFparallel . 704
printmodelmemory . 705
printmodelscaling . 706
setcallback . 707
setcomplementary . 708
setdefvar . 709
setdetrow . 710
setenforcedctr . 711
setinitsb . 712
settol . 713
settolset . 714
userfuncinfo . 715
userfuncMosel . 716
validate . 717

20.5 Error codes issued by mmxnlp . 718

21 mmxprs 720
21.1 New functionality for the Mosel language . 720

21.1.1 The problem type mpproblem.xprs . 720
21.1.2 The type basis . 720
21.1.3 The type mpsol . 720
21.1.4 The type boolvar . 721
21.1.5 The type logctr . 721

21.2 Control parameters . 721
XPRS_colorder . 722
XPRS_enumsols . 722
XPRS_enummaxsol . 722
XPRS_enumduplpol . 723
XPRS_fullversion . 723
XPRS_loadnames . 723
XPRS_maxupdc . 723
XPRS_problem . 724
XPRS_probname . 724
XPRS_verbose . 724

21.3 Procedures and functions . 724
addmipsol . 728
basisstability . 729
calcsolinfo . 730
clearmipdir . 731
clearmodcut . 732
command . 733
copysoltoinit . 734
crossoverlpsol . 735
defdelayedrows . 736
defsecurevecs . 737

Fair Isaac Corporation Proprietary Information xvii

Contents

estimatemarginals . 738
fixglobal . 739
getbstat . 740
getcomputeallowed . 741
getdualray . 742
getiis . 743
getiissense . 744
getiistype . 745
getinfcause . 746
getinfeas . 747
getlb . 748
getloadedlinctrs . 749
getloadedmpvars . 750
getmatcoeff . 751
getname . 752
getprimalray . 753
getprobstat . 754
getrange . 755
getscale . 756
getsensrng . 757
getsize . 758
getsol . 759
getvar . 760
getub . 761
getvars . 762
hasfeature . 763
implies . 764
indicator . 765
isiisvalid . 766
isintegral . 767
loadbasis . 768
loadlpsol . 769
loadmipsol . 770
loadprob . 772
maximize, minimize . 773
postsolve . 775
readbasis . 776
readdirs . 777
readsol . 778
refinemipsol . 779
rejectintsol . 780
repairinfeas . 781
resetbasis . 783
resetiis . 784
resetsol . 785
savebasis . 786
savemipsol . 787
savesol . 788
savestate . 789
selectsol . 790
setarchconsistency . 791
setbstat . 792
setcallback . 793
setcomputeallowed . 796
setcbcutoff . 797

Fair Isaac Corporation Proprietary Information xviii

Contents

setgndata . 798
setlb . 799
setmatcoeff . 800
setmipdir . 801
setmodcut . 802
setsol . 803
setub . 804
setucbdata . 805
stopoptimize . 806
unloadprob . 807
uselastbarsol . 808
writebasis . 809
writedirs . 810
writeprob . 811
writesol . 812
xor . 813
xprsmemoryuse . 814

21.4 Cut Pool Manager . 815
addcut . 816
addcuts . 817
delcuts . 818
dropcuts . 819
getcnlist . 820
getcplist . 821
loadcuts . 822
storecut . 823
storecuts . 824

22 python3 825
22.1 Introduction . 825

22.1.1 Prerequisites . 825
22.1.2 Windows Anaconda Setup . 826
22.1.3 Linux Anaconda Setup . 826
22.1.4 Python initialization . 827
22.1.5 Data types . 827

22.2 Xpress Insight 4 configuration . 828
22.3 Xpress Insight 5 configuration . 829
22.4 Control parameters . 830

pyinitverbose . 831
pyusepandas . 831

22.5 Procedures and functions . 831
pycall . 833
pyexec . 835
pyget . 836
pygetdf . 837
pyinit . 839
pyinitpandas . 840
pyrun . 841
pyset . 842
pysetdf . 843
pyunload . 844

22.6 I/O drivers . 845
22.6.1 Driver python . 845

22.6.1.1 Type mapping to Python . 845
22.6.1.2 Type mapping from Python . 846

Fair Isaac Corporation Proprietary Information xix

Contents

22.7 Troubleshooting . 847

23 R 848
23.1 Introduction . 848

23.1.1 Prerequisites . 848
23.1.2 R initialization . 849
23.1.3 Memory limit on Windows . 849
23.1.4 Data types . 850

23.2 Example . 852
23.3 Control parameters . 853

Rverbose . 853
Rinteractive . 854
Rusemosstreams . 854
Rcleanscript . 854
Runloadscript . 854
Rsessionmode . 855

23.4 Procedures and functions . 855
Reval . 856
Rfree . 857
Rgetarr . 858
Rgetbool . 859
Rgetint . 860
Rgetreal . 861
Rgetstr . 862
Rinit . 863
Rprint . 864
Rset . 865
Rsetdf . 866
Rsource . 867
Rerrcode . 868
Rerrmsg . 869
Rclearerr . 870

23.5 I/O drivers . 871
23.5.1 Driver rws . 871

23.6 Troubleshooting . 871

24 zlib 873
24.1 I/O drivers . 873

24.1.1 Driver gzip . 873
24.1.2 Driver deflate . 873
24.1.3 Driver zip . 873

Appendix 875

A Syntax diagrams for the Mosel language 876
A.1 Main structures and statements . 876
A.2 Expressions . 880
A.3 Initializations data file format . 883

B Remote Invocation Protocol 884
B.1 Instance control parameters . 884
B.2 mcmd pseudo file . 885
B.3 Profiler interface . 889
B.4 Debugger interface . 889

Fair Isaac Corporation Proprietary Information xx

Contents

C Error messages 891
C.1 General errors . 891
C.2 Parser/compiler errors . 893

C.2.1 Errors related to modules . 901
C.2.2 Errors related to packages . 901

C.3 Runtime errors . 901
C.3.1 Initializations . 901
C.3.2 General runtime errors . 902
C.3.3 BIM reader . 904
C.3.4 Module manager errors . 904

D Contacting FICO 906
Product support . 906
Product education . 906
Product documentation . 906
Sales and maintenance . 907
Related services . 907
FICO Community . 907
About FICO . 907

Index 908

Fair Isaac Corporation Proprietary Information xxi

CHAPTER 1

Introduction

1.1 What is Mosel?
Mosel is an environment for modeling and solving problems. To this aim, it provides a language that is
both a modeling and a programming language. The originality of the Mosel language is that there is no
separation between a modeling statement (e.g. declaring a decision variable or expressing a constraint)
and a procedure that actually solves the problem (e.g. call to an optimizing command). Thanks to this
synergy, one can program a complex solution algorithm by combining modeling and solving statements.

Each category of problem comes with its own particular types of variables and constraints and a single
kind of solver cannot be efficient in all cases. To take this into account, the Mosel system does not
integrate any solver by default but offers a dynamic interface to external solvers provided as modules.
Each solver module comes with its own set of procedures and functions that directly extends the
vocabulary and capabilities of the Mosel language. The link between Mosel and a solving module is
achieved at the memory level and does not require any modification of the core system.

This open architecture can also be used as a means to connect Mosel to other software. For instance, a
module could define the functionality required to communicate with a specific database.

The modeling and solving tasks are usually not the only operations performed by a software application.
This is why the Mosel environment is provided either in the form of libraries or as a standalone program.

1.2 General organization
As input, Mosel expects a text file containing the source of the model/program to execute (henceforth we
use just the term ’model’ for ’model/program’ except where there might be an ambiguity). This source file
is first compiled by the Mosel compiler. During this operation, the syntax of the model is checked but no
operation is executed. The result of the compilation is a BInary Model (BIM) that is saved in a second file.
In this form, the model is ready to be executed and the source file is not required any more. To actually
’run’ the model, the BIM file must be read in again by Mosel and then executed. These different phases
are handled by different modules that comprise the Mosel environment:

The runtime library: This library contains the VIrtual MAchine (VIMA) interpreter. It knows how to load a
model in its binary format and how to execute it. It also implements a model manager (for handling
several models at a time) and a Dynamic Shared Objects manager (for loading and unloading modules
required by a given model). All the features of this library can be accessed from a user application.

The compiler library: The role of this module is to translate a source file into a binary format suitable for
being executed by the VIMA Interpreter.

The standalone application: The ’mosel’ application, also known as ’Mosel Console’, is a command line
interpreter linked to the two previous modules. It provides a single program to compile and execute
models.

Various modules: These modules complete the Mosel set of functionalities by providing, for instance,

Fair Isaac Corporation Proprietary Information 1

Chapter 1: Introduction

optimization procedures. As an example, the mmxprs module extends the Mosel language with the
procedure maximize that optimizes the current problem using the Xpress Optimizer.

This modularized structure offers various advantages:

■ Once compiled, a model can be run several times, for instance with different data sets, without the
need for recompiling it.

■ The compiled form of the program is system and architecture independent: it can be run on any
operating system equipped with the Mosel runtime library and any modules required.

■ The BIM file can be generated in order to contain no symbols at all. It is then safe, in terms of
intellectual property, to distribute a model in its binary form.

■ As a library, Mosel can be easily integrated into a larger application. The model may be provided as
a BIM file and the application only linked to the runtime library.

■ The Mosel system does not integrate any kind of solver but is designed in a way that a module can
provide solving facilities. The direct consequence of this is that Mosel can be linked to different
solvers and communicate with them directly through memory.

■ This open architecture of Mosel makes extensions of the functionality possible on a case by case
basis, without the need to modify the Mosel internals.

1.3 Running Mosel
The Mosel environment may be accessed either through its libraries or by means of two applications,
perhaps the simplest of which is Xpress Workbench, a development studio type environment for working
with your Mosel models. Xpress Workbench is a complete modeling and optimization development
environment that presents Mosel in an easy-to-use graphical interface with a built-in text editor.

In its standalone version, Mosel offers a simple interface to execute certain generic commands directly
from the command prompt (or shell) of the operating system. The user may compile or execute source
models or programs (.mos files), run binary models (.bim files) or retrieve information related to the
Mosel environment itself (like properties of modules or version number of the system). An interactive
debugger as well as a profiler are also included: the debugger allows to execute the model step by step,
specify breakpoints from where status of the model can be examined. Running a model with the profiler
provides detailed information on what part of the code is actually executed and how much time each
statement requires. This information may be helpful for optimizing the model (by locating hot spots
where the code is using a great deal of computer time) and also for building testsuites (by checking
whether the data sets used in the test set exercise all statements of a given model).

1.3.1 mosel command: invocation
The mosel executable is typically used with the following syntax from an operating system console:

mosel command [-l lang] [-d dir] [-tf trf] [-sdm sdm] [-sr rst]
[-dp dsopath] [-bx bimpfx] cmd_args

Where the option -l selects the language for message translation (see Section 2.21); the option -d sets
the working directory of the process; the option -tf defines a trace file (see command trace below);
the option -sdm specifies the maximum size of stack dumps (displayed when a model terminates on a
runtime error, an assertion fails or triggered by a call to dumpcallstack; this can also be set via the
environment variable MOSEL_SDMAX, the default value of 0 disables the display of the stack trace); the
option -sr defines the active restrictions (see Section 1.3.4) and -dp specify an initial DSO path (to
locate modules and packages) while -bx sets a list of bim file prefixes (used to find packages, see

Fair Isaac Corporation Proprietary Information 2

Chapter 1: Introduction

Section 2.3.1). Both options -dp and -bxmight be stated several times, the resulting setting will
correspond to the concatenation of the provided values separated by the appropriate symbol. The
command parameter is one of the following commands and cmd_args are the associated arguments that
must be stated after the options described above (square brackets indicate optional arguments):

comp[ile] [-gGIpwiweninaxSETVFD] [-pwd pwd] [-pk priv] [-k|-kf pub]
[-ix incpfx] [-o outf] [-c usrcom] src [src2 ...]

Compile the model src and generate the corresponding Binary Model (BIM) file if the compilation
succeeds. The extension .mos is appended to src if no extension is provided. If option ’-o
outf’ (filename to use for saving BIM file) is not given, the extension .bim is used to form the
name of the binary file. The flag ’-g’ adds debugging information: private object names (e.g.
variables, constraints) are included in the BIM file as well as required information for locating
runtime errors. The flag ’-G’ adds both debugging and tracing information: it is required to run the
model with the debugger. When the ’-G’ flag is used, the compiler adds instructions in the
generated code that may slow down execution speed of the model. The flag ’-I’ may also be
added to enable the xbim extension (see Section 2.3.3). The flag ’-D’ enables generation of
documentation annotations in the resulting BIM file (by default documentation annotations are
ignored). The flag ’-na’ disables assertions when the model is compiled with debug information
(see assert). With the flag ’-wi’, the compiler emits a warning message each time a symbol is
implicitly declared and the flag ’-ni’ disables implicit declarations (see Section 2.8.1.5). When the
flag ’-we’ is used warnings are handled like errors such that any warning will make the compilation
fail. The option ’-c usrcom’ may be used to add a commentary to the BIM file (see debugger
command LSMODS). The option ’-ix’ defines the file name prefix for file inclusion (see Section
2.5.2). If the flag ’-p’ is selected, only the syntax of the source file is checked, the compilation is
not performed and no output file is generated.
The flag ’-x’ will be used to generate a POT file (Portable Object Template) for message
translation (see Section 2.21).
The other options are related to handling encrypted or signed BIM files (see Section 1.3.5): option
’-S’ will be used to produce a signed file. Unless the option ’-pk’ is specified, the default private
key personal.key (see ssl_dir) is used for the signature. The options ’-V’ and ’-T’ control
how to handle signed packages: by default signature of packages is ignored but, if the first option
is used, the signature is checked and the loading fails if it cannot be verified. With option ’-T’, only
signed packages with a valid signature can be used (i.e. packages without signature are not
allowed). Public keys that are required for the verification are searched for in the default public
keys directory pubkeys (see ssl_dir).
BIM file encryption is enabled by the ’-E’ option: the encryption key is either deduced from the
password stated via option ’-pwd’ (if the flag ’-F’ is active, the value of ’-pwd’ is interpreted as a
text file the first line of which is the password) or generated randomly. Optionally, the encryption
key can be stored in the BIM file itself in encrypted form (this is required if it has been randomly
generated): in this case the encryption requires public keys of the recipients of the BIM file (who
will be able to decrypt the file using their own private keys). Public keys can be listed by using the
’-k’ or ’-kf’ options: in the first case, one public key is listed at a time (the ’-k’ parameter may be
used several times) and in the second case a file containing a list of keys is specified. Each line of
this file is interpreted as a key file name (except empty lines or lines starting with ’!’ or ’#’ that are
ignored). Unless they include a path specification, key files are considered to be located in the
default public keys directory (for instance the key file "somekey" is searched in the public keys
directory but the file "./somekey" comes from the current working directory). An encrypted BIM
file can always be decrypted by its creator thanks to his private key.
Several source files may be passed to the compiler command in a single step (this is not
compatible with option ’-o’): each file gets compiled individually.

run [-TVF] [-pwd pwd] [-pk priv] [-k|-kf pub] [-is in] [-os out] [-es err]
[-dbg|-prof|-cov|-trac] [-sdir dir] [-nl] bim [param=value [...]]

Load the provided BIM file bim and then run it. Options ’-is in’, ’-os out’ and ’-es err’ can
be specified to define alternative default input, ouput and error streams to be used by Mosel. With
option ’-prof’ or ’-cov’ the model is run through the profiler (see commands profile and

Fair Isaac Corporation Proprietary Information 3

Chapter 1: Introduction

coverage below), the option ’-trac’ activates the tracing mode (see command trace) and with
option ’-dbg’ it is passed to the interactive debugger (see command debug). The option ’-sdir’
can be used in addition to the profiler or debugger to indicate alternative locations for source files
(this option may be stated several times).
The options ’-V’ and ’-T’ control how to handle signed BIM files (see Section 1.3.5): by default
signature of files is ignored but, if the first option is used, the signature is checked and the loading
fails if it cannot be verified. With the second option, only signed BIM files with a valid signature
can be used (i.e. files without signature are not allowed). For this verification task public keys are
usually searched for in the default public keys directory pubkeys (see ssl_dir) but alternatively
a list of expected keys may be specified with the ’-k’ or ’-kf’ options: in the first case, one public
key is listed at a time (the ’-k’ parameter may be used several times) and in the second case a list
of keys is read from the given file. Each line of this file is interpreted as a key file name (except
empty lines or lines starting with ’!’ or ’#’ that are ignored). Unless they include a path
specification, key files are considered to be located in the default public keys directory (for
instance the key file "somekey" is searched in the public keys directory but the file
"./somekey" comes from the current working directory). Moreover, the special file name ⁎
implies that keys stored in the default location can also be used.
The options ’-pwd’ and ’-pk’ may be required to load an encrypted BIM file: the former defines the
password to use (if the flag ’-F’ is active, the value of ’-pwd’ is interpreted as a text file the first
line of which is the password) and the option ’-pk’ servers to specify a private key file (to be used
in place of the default personal.key in ssl_dir).
Optionally, a list of parameter values may be provided in order to initialize the run-time parameters
of the model and/or the control parameters of the modules used. The syntax of such an
initialization is param_name = value for a model parameter and dsoname.ctrpar_name =
value for a control parameter, where dsoname is the name of a module and ctrpar_name the
control parameter to set.
The option ’-nl’ can be used when running the debugger on Unix/Linux systems to deactivate the
command history if the terminal is not properly handled by the command history mechanism.

exec[ute] [compile_opts] [run_opts] src [param=value [...]]
Compile src, load, and then run the model. This command is equivalent to the consecutive
execution of compile and run except that no BIM file is generated. All options documented for
both, compile and run, can be used with this command. The use of option ’-prof’, ’-cov’ or
’-trac’ implies the compiler flag ’-G’ and the use of option -dbg will also add compiler flag ’-G’ if
flag ’-g’ is not explicitly specified.

debug [compile_opts] [run_opts] src [param=value [...]]
This command is equivalent to ’execute -dbg’, the model is compiled and then run through the
interactive debugger. If the model is compiled with flag ’-G’ (the default with this command), the
execution is immediately suspended before the first statement. Otherwise the execution starts as
usual but can be suspended by pressing ctrl-C. Note that if a critical operation is being processed,
the interruption is delayed until the operation completes (for instance, the Optimizer cannot be
interrupted during an iteration of its algorithm). Execution is suspended once more just before the
program terminates: this makes it possible to inspect model data before the end of execution.
Refer to the Section 1.3.2 below for further information on the use of the debugger.

prof[ile] [compile_opts] [run_opts] src [param=value [...]]
This command is equivalent to ’execute -prof’, the model is compiled and then run through
the profiler. After execution, the total execution time and some source coverage information is
displayed. Moreover a file sourcefile.prof is generated based on the original source file. Each
line of this file consists in:

■ the number of times the corresponding statement has been executed;
■ the total amount of time (in seconds) or the percentage of the total execution time (if option

’-prof 2’ is used) spent on this particular line (this measure is not valid if the statement is a
recursive call);

Fair Isaac Corporation Proprietary Information 4

Chapter 1: Introduction

■ the elapsed time (in seconds) between the beginning of the execution and the last time the
line was executed;

■ the text of the model source

All lines of the original source file are transferred, lines that do not correspond to the beginning of
a statement are directly copied without further information.
If the model runs additional submodels via mmjobs, a report for each model execution is also
displayed and the associated annotated files are generated in a similar way as for the main model.

cover[age] [compile_opts] [run_opts] src [param=value [...]]
This command is equivalent to ’execute -cov’, the model is compiled and then run through the
profiler. The difference with the profile command described above is the type of reports generated:
the files produced are taking the .cov extension and only collect the number of times each
statement has been executed (if option ’-cov 2’ is used it is 0 or 1). Moreover existing files are
updated instead of being replaced (i.e. iteration counts of each statement are added up).

trace [compile_opts] [run_opts] src [param=value [...]]
This command is equivalent to ’execute -trac’, the model is compiled and then run in tracing
mode: the activity of the program is logged in a trace file that is automatically generated or
extended (if the file already existed). The file name for this report is either defined using the ’-tf’
option or taken from the environment variable MOSEL_TRFILE. In both cases a question mark in
the file name will be replaced by the process ID expressed in hexadecimal. If no trace file is defined
the default name ’tmpdir/xprm_?.trac’ will be used (’tmpdir’ being the temporary
directory of the system). Refer to the Section 1.3.3 below for further information on the trace file.

exam[ine] [-pwd pwd] [-pk priv] [-cspthHirvaumLVF] [mod|pkg [mod|pkg...]]
Display the list of constants, procedures/functions, types, IO drivers, control parameters and
annotations of modules, packages or the Mosel core library. By default required packages are not
loaded (but modules are loaded): using option ’-L’ will force loading of all dependencies. To load
only the header of the bim file to check its dependencies use option ’-H’. Optional flags may be
used to select which type of information is displayed: ’-h’ for general information, ’-c’ for
constants, ’-s’ for subroutines, ’-v’ for variables, ’-r’ for requirements, ’-t’ for types, ’-i’ for IO
drivers, ’-p’ for control parameters and ’-a’ for annotations. By default, listings are sorted in
alphabetical order, option ’-u’ disables sorting. If both, a package and a module of the same name,
are available only the information relating to the package is displayed. To select either the
package or the module, extension .bim or .dso can be appended to the library name. If the flag
’-m’ is used and no package or module can be located then a binary model file is searched for in
the current working directory. The displayed information is related to the Mosel core library if no
name is specified with the command.
The option ’-V’ can be added for checking the signature of signed BIM files (the result of the
verification is reported in the header output). The options ’-pwd’ and ’-pk’ may be required to load
an encrypted BIM file: the former defines the password to use (if the flag ’-F’ is active, the value of
’-pwd’ is interpreted as a text file the first line of which is the password) and the second option
specifies a private key file (to be used in place of the default personal.key in ssl_dir).

lslib [-p|-m]
Display a list of available modules and packages. Use the optional flag ’-p’ to list only packages
and ’-m’ to get modules only.

If none of the above keywords is recognized, the first argument of the command is interpreted as a Mosel
file. In the case of a BIM file, the command ’run’ is executed; otherwise the file name is passed to the
command ’execute’.

The mosel command may also be started using only flags. Besides options ’-V’ (Mosel version
information) and ’-h’ (short help message), all other options relate to starting Mosel in server mode when
it is invoked from a remote instance: they should not be used directly (see the documentation of module
mmjobs in Chapter 8 for further explanations).

Fair Isaac Corporation Proprietary Information 5

Chapter 1: Introduction

After the completion of a command the mosel executable returns a non-zero status to the operating
system in case of error and the execution status of the model if a model has been run (e.g. with the
command execute). This execution status is the value provided via the procedure exit in the model
(by default this is 0).

Some examples:

Execute model ’mymodel.mos’ setting values for the model parameters A,B,C and D

> mosel mymodel A=33 B="word" C=true D=5.3e-5

Compile model ’m.mos’ located on a web service and store the bim file locally in compressed form

> mosel comp -o zlib.gzip:m.bim.gz mmhttp.url:http://websrv/m.mos

Run ’optmod.bim’ from the debugger enabling verbose mode of module ’mmxprs’

> mosel run -dbg optmod mmxprs.XPRS_verbose=true

List all available modules and packages

> mosel lslib

Display the list of subroutines defined by ’mmxprs’

> mosel exam -s mmxprs

Display all constants defined in the Mosel language

> mosel exam -c

Display version information of Mosel

> model -V

1.3.2 mosel command: interactive debugger
When a model that is executed through the debugger is interrupted (for instance, because the user has
typed ctrl-C or an error has occured), the execution is suspended, the text source of the statement being
processed is displayed and an interactive session starts. This mode is signaled by the specific prompt
’dbg>’ and the following commands may be entered (the arguments enclosed in square brackets [] are
optional). The command line interpreter is case-insensitive, although we display commands in upper
case for clarity:

BCONDITION bk [cond]
Define or remove a condition on a breakpoint. This command may be used to put a condition
(Boolean expression) on the specified break point: the execution is suspended at the breakpoint
only if the given condition is verified. To remove a condition previously set up, enter this
command without specifying any condition.

BREAK [procname]|[line [file]]
Install a breakpoint. When a breakpoint has been set up, execution is interrupted whenever the
statement corresponding to the specified location is reached. A procedure or function name
may be used as the location: in this case a breakpoint is installed at the beginning of each
procedure or function of the provided name. If this command is used without parameters, the
breakpoint is defined at the current location.

Fair Isaac Corporation Proprietary Information 6

Chapter 1: Introduction

BREAKPOINTS
List the defined breakpoints.

BREAKSUB [0|1]
Decide whether to suspend execution whenever a submodel is started.

CONTINUE
Resume execution. If the interruption was not due to an error, execution of the model continues,
otherwise the execution of the model is aborted and Mosel exits.

DELETE [bk]
Delete a breakpoint.

DISPLAY [expression]
Record an expression to be displayed at every interruption. Used with no expression, this
command gives a list of all recorded expressions.

DOWN [nblev]
Go down in the calling stack. If an argument is provided, it indicates how many levels down to go
(default is 1).

EXPORTPROB [-pms] [filename [objective]]
Display or save to the given file (option filename) the matrix corresponding to the active
problem. The matrix output uses the LP format (default) or the MPS format (flag ’-m’). A problem
is available after the execution of a model. The flags may be used to select the direction of the
optimization (’-p’: maximize), the file format (’-m’: MPS format) and whether real object names
should be used (’-s’: scrambled names — this is the default if the object names are not
available). The objective may also be selected by specifying a constraint name.

FINISH
Continue execution until the end of the current subroutine. The execution continues but will be
interrupted again after the subroutine terminates.

INFO [⁎|symbol [symbol...]]
Without arguments, this command displays information about the program being executed (this
may be useful for problem reporting). Any specified argument is interpreted as a symbol from
the current model. If the requested symbol exists in the model, this command displays some
information about its type and structure. Several symbols may be given in a single call and if ’⁎’
is used in place of a symbol name then the information is displayed for every symbol of the
model.

LIST [[start] nblines]
Display the source file that corresponds to the model being executed. When used with no extra
argument, this command lists 10 lines of the source model starting at the current statement;
used with a single positive parameter nblines, it displays nblines lines instead of the default 10
lines. If the parameter nblines is negative, it is interpreted as a starting point for the listing
relative to the current statement. When 2 parameters are used, the first one is understood as the
first line to display (a negative value is relative to the current line) and the second one as the
number of lines to display.
Examples (assuming current line is 5):

>list displays lines 5 to 14
>list 5 displays lines 5 to 9
>list -2 displays lines 3 to 14
>list -2 5 displays lines 3 to 7

LSATTR [typename]
Display the list of available attributes for all used native types or only those related to the
specified type typename

Fair Isaac Corporation Proprietary Information 7

Chapter 1: Introduction

LSLIBS
Display the list of all loaded dynamic shared objects (DSO) together with, for each module, its
version number and its number of references (i.e. number of loaded models using it).

LSLOCAL
Display the list of symbols defined locally to the current context.

LSMODS
Display the list of all models currently loaded in core memory. The information displayed for
each model is:

■ name: the model name and version number (given by the model and version statements
in the source file);

■ number: the model number is automatically assigned when the model is loaded;
■ size: the amount of memory used by the model (in bytes);
■ system comment: a text string generated by the compiler indicating the source filename

and if the model contains debugging information and/or symbols;
■ user comment: the comment defined by the user at compile time (cf. command

compile);
■ modules: the name and version number of each module required by the model;
■ pkg. req.: if the model is a package, the name and version number of each package

required by a model using this package;
■ pkg. imp.: the name and version number of each package included by this model.

The active model is marked by an asterisk (’⁎’) in front of its name.

LSSYMB [-cspou]
Display the list of symbols published by the current model. The optional flags may be used to
filter what kind of symbol to display: ’-c’ for constants, ’-s’ for subroutines, ’-p’ for parameters
and ’-o’ for everything else. By default the list is sorted in alphabetical order, option ’-u’ disables
sorting.

MODEL [modnum]
With no argument this command lists all models running concurrently. The active model
(debugger commands are applied to this model) is identified by a star ("⁎"). If provided, the
argument is interpreted as a model number that becomes the active model.

NEXT [line [file]]
Continue execution until the next statement. The execution continues but will be interrupted
again after the current statement has been completed. If a location information is provided (by
means of a line number and, if necessary, a file name), the next interruption will occur before the
specified statement is executed.

OPTION name [[=] value]
View or change the value of a command line parameter. These parameters are used by the
command line interpreter to display real values (especially in command PRINT):

■ realfmt: C-style format for printing floating point numbers (default value: "%.10g")
■ zerotol: zero tolerance to decide whether two values are equal (default value: 1e-13). It

is also used when printing very small numbers: if a value is smaller than zerotol, "0" is
displayed instead.

Although these parameters have the same name and function as those used by Mosel when
running a model, they are not synchronised with their internal counterpart.

Fair Isaac Corporation Proprietary Information 8

Chapter 1: Introduction

PRINT expression [>>filename]
Evaluate then display the value of the given arithmetic or Boolean expression. For building the
expression, the following functions can be used: getparam, ceil, floor, round, abs,
getsize, getmodprop as well as all attributes (see LSATTR command above). In addition to
these Mosel functions, the interpreter implements getnbdim that returns the number of
dimensions of an array and getndx# that gets the index set of dimension number ’#’ of an
array (’#’ being an integer between 1 and the number of dimensions of the array). get-functions
may be called using the suffix notation (e.g. getact(c) is equivalent to c.act). For unions,
the notation symbol.type is supported (e.g. "myun.integer"), it is also possible to use
suffixes array, set and list to access union values. Some functions can be applied to arrays:
the result is the evaluation of the function for each cell of the array. Symbols are expected to be
fully qualified: even if a symbol is expressed without namespace reference in the model source
(thanks to the namespace search, see Section 2.13) it is necessary to use its full name from the
debugger. In particular private symbols of packages must be prefixed by the package name (for
instance the identifier aa declared in the package mypkg can be accessed using mypkg~aa). It
is possible to report only a part of a collection (array, set or list) by specifying range information.
Ranges definitions take one of these two forms:

■ [maxelt]: get at most ’maxelt’ elements
■ [skip maxelt]: get at most ’maxelt’ entries after skipping ’skip’ elements

Several range definitions may be specified (separated by blanks): they are used when exploring
complex structures (e.g. a list of list).
The display format of this command is compatible with the data file format of Mosel. Use the
operator >>filename to append output of the command to the file filename.
Examples:

>print getsol(x) >> solfile.txt
>print getact(C(1,"tut"))+c.size
>print toto~a
>print abs(mytol)>1
>print myarray.ndx2 [3]

QUIT
Terminate the debug session. Model execution is aborted and Mosel exits.

STEP
Continue execution until the next statement stepping into procedures and functions. The
execution continues but will be interrupted again after the current statement has been
completed. If the current statement contains function or procedure calls, interruption will
happen in these procedures or functions.

UNDISPLAY [disp]
Remove an expression recorded with DISPLAY. If no parameter is provided, all recorded
expressions are removed, otherwise the parameter is understood as a record number.

UP [nblev]
Go up in the calling stack. If an argument is provided, it indicates how many levels up to go
(default is 1). Note that expressions are evaluated according to the current stack frame. For
example, if variable i is defined in procedure B and execution is suspended in procedure A called
by B; it is necessary to go up in the stack in order to view the value of i because it does not exist
in the current frame.

WHERE [nblev]
Display the calling stack. The calling stack corresponds to the sequence of procedure and
function calls being processed. For instance assume the model calls procedure A which calls
procedure B and the execution is suspended in procedure B: the calling stack will contain 3
records (location where A is called, location where B is called and current statement).

Fair Isaac Corporation Proprietary Information 9

Chapter 1: Introduction

If a command is not recognized, a list of possible keywords is displayed together with a short explanation.
The command names can be shortened as long as there is no ambiguity (e.g. un can be used in place of
UNDISPLAY but u is not sufficient because it could equally denote the UP command). String arguments
(the parameter 10 is a number, but "10" or ’10’ are text strings) may be quoted with either single or
double quotes. Quoting is required if the text string starts with a digit or contains spaces and/or quotes.

Execution step by step and breakpoints can be used only if the model has been compiled using option -G.
In this case, before the execution starts, a breakpoint is automatically put at the first statement of the
model. Otherwise (model has been compiled with option -g), the model will be interrupted only if an error
occurs or keys ctrl-C are pressed.

When debugging a model that runs submodels via mmjobs a message is displayed each time a
submodel starts or terminates. Moreover, interrupting the execution of the model also suspends the
execution of all submodels: the entered commands are applied to the selected active model, the choice
of which can be changed with the command MODEL.

A program may interrupt its execution and trigger the interactive debugger by using the following special
annotation (See section 2.14):

!@mc.dbgmsg break

When the program is compiled with tracing information (option -G) this annotation is replaced by a
special instruction that will cause an interruption when the program is being run through the debugger
(otherwise it is silently ignored).

1.3.3 mosel command: tracing mode
Running a program in tracing mode results in the generation of a trace file that collects the activity of the
program. Each record of this file consists in a single line of text that can take the following forms:

0O timestamp
The file has been open

0C timestamp
The file has been closed

mmS timestamp modelname
The model number mm with name modelname is starting. Line tracing is enabled

mmTrr timestamp modelname
The model number mm with name modelname is finishing, its status code is rr

mm- timestamp msg
The model number mm has disabled line tracing (with optional message msg), submodels are
not affected

mm+ timestamp msg
The model number mm has enabled line tracing (with optional message msg), submodels are
not affected

mm! timestamp msg
The model number mm logs message msg

mmLpp timestamp
The model number mm is loaded by model number pp

mmUpp timestamp
The model number mm is unloaded by model number pp

Fair Isaac Corporation Proprietary Information 10

Chapter 1: Introduction

mm:nn fname
The model number mm is executing the statement at line nn of file fname (that becomes the
current file for this model). These records are not emitted when line tracing is disabled.

mm nn
The model number mm is executing the statement at line nn of current file as specified
previously for the given model These records are not emitted when line tracing is disabled.

A program may control the behaviour of the tracer using the special annotation mc.dbgmsg (See section
2.14). The following annotations are interpreted:

!@mc.dbgmsg traceoff msg
!@mc.dbgmsg traceon msg
!@mc.dbgmsg tracelog msg

When the program is compiled with tracing information (option -G) this annotation is replaced by a
special instruction that communicates with the tracer (it is silently ignored if the program is not run in
tracing mode). The first syntax disables the line tracing (it is active by default), the second has the
opposite effect while the last syntax makes it possible to insert a message in the trace file. In all cases
the message text msg is optional.

1.3.4 mosel command: restricted mode
Mosel may be run in restricted mode: by selecting which restrictions are to be applied, it is possible to
control what operations models can perform (in particular regarding disk access). Upon startup, if the
option -sr is not stated, the command line interpreter uses the value of the environment variable
MOSEL_RESTR for setting the execution restrictions. These restrictions are bit-encoded as an integer
(each bit corresponding to a specific restriction) but restrictions can also be expressed by a list of one or
more of the following keywords (symbols are not case-sensitive and can be optionally separated by
spaces):

NoWrite (bit 0, value 1)
Disable write access on the local system. This restriction concerns all file access except
databases. Access to the temporary directory is not affected.

NoRead (bit 1, value 2)
Disable read access on the local system (this also implies NoWrite). This restriction concerns
all file access except databases. When this option is selected, the current working directory is
automatically set to the temporary directory (which can still be accessed).

NoExec (bit 2, value 4)
Disable external command execution. This restriction deactivates some procedures/functions
allowing execution of commands external to Mosel (for instance system or command). Also,
Mosel can only load modules from read-only locations when this restriction is active.

WDOnly (bit 3, value 8)
File access is limited to the current working directory and its subdirectories as well as the paths
specified by the environment variables MOSEL_RWPATH (for reading and writing) and
MOSEL_ROPATH (for reading only). The temporary directory can still be accessed.

NoTmp (bit 4, value 16)
Access to the temporary directory is disabled.

NoDB (bit 5, value 32)
Disable access to databases by blocking connection routines (e.g. SQLconnect or OCIlogon).

Fair Isaac Corporation Proprietary Information 11

Chapter 1: Introduction

For example, to disable write access and execution of external commands the environment variable
MOSEL_RESTR will have to be either the integer value 5 (1+4) or the string "NoWrite NoExec".

Restricted mode is observed by the Mosel core libraries (when accessing files and managing directories)
and the system requires that modules also satisfy the stated restrictions (although implementation of
restrictions may vary depending on the type of functionality provided by a given module): a module that
does not support the restricted mode of execution will fail to load when Mosel is running in this mode.

1.3.5 mosel command: securing bim files
The bim file format is secure with respect to the intellectual property of the author of the model (i.e. it is
not possible to recover the original model from the bim file). However, further security mechanisms may
be required when a bim file is to be transferred over an insecure media (like the internet): in particular it
might be necessary to (1) make sure the file has not been modified during the transfer and (2) guarantee
that only the addressee can access the file.

A digital signature ensures the first requirement: it is computed using a private key (exclusively owned by
the sender of the document) such that any addressee having the corresponding public key (provided by
the sender) can, at the same time, verify that the document has been prepared by the sender and that it
has not been altered during the transfer. From the Mosel command line tool, creating a signed bim file
can be done by using the ’-S’ compiler option. When loading a signed bim file with the run command, it
is required to enable the signature verification with options ’-V’ or ’-T’ as verification is not performed by
default.

The second requirement can be satisfied by encrypting the bim file such that it appears as random data
during the transfer. Mosel supports two kinds of encryption processes: it can use a usual password
based key. In this case the same password is used for both encrypting and decrypting the bim file (the
sender and the recipient have to share this key). The alternative is to rely on private/public key pairs like
for the signature procedure outlined above: encryption is achieved with the public key of the adressee.
Only the recipient will be able to decrypt the bim file using his private key. From the Mosel command line
tool, creating an encrypted bim file can be done by using the ’-E’ compiler option. A password is
specified with the ’-pwd’ option otherwise the public keys of the recipients have to be stated with the ’-k’
or ’-kf’ options (a bim file can be encrypted for up to 128 public keys).

Both signature and encryption require the management of private and public keys. These keys are
expected to be stored in a predefined location specified by the module parameter ssl_dir.

Mosel relies on the RSA cryptographic system for the management of private/public key pairs (keys must
be of at least 1024bits). The signature procedure uses the SHA256 message digest algorithm. Bim files
are encrypted using the AES block cipher with keys of 128 bits.

1.4 References
Mosel could be described as an original combination of a couple of well known technologies. Here is a
non-exhaustive list of the most important ’originators’ of Mosel:

■ The overall architecture of the system (compiler, virtual machine, native interface) is directly
inspired by the Java language. Similar implementations are also commonly used in the languages
for artificial intelligence (e.g. Prolog, Lisp).

■ The syntax and the major building blocks of the Mosel language are in some aspects a
simplification and for other aspects extensions of the Pascal language.

■ The aggregate operators (like ’sum’) are inherited from the ’tradition of model builders’ and can be
found in most of today’s modeling languages.

■ The dynamic arrays and their particular link with sets are probably unique to Mosel but are at their
origin a generalization of the sparse tables of the mp-model model builder.

Fair Isaac Corporation Proprietary Information 12

Chapter 1: Introduction

1.5 Structure of this manual
The main body of this manual is essentially organized into two parts. In Chapter 2, the basic building
blocks of Mosel’s modeling and programming language are discussed.

Chapter 3 begins the reference section of this manual, providing a full description of all the functions and
procedures defined as part of the core Mosel language. The functionality of the Mosel language may be
expanded by loading modules: the following chapters describe the modules currently provided with the
standard Mosel distribution.

Fair Isaac Corporation Proprietary Information 13

I. Core System

CHAPTER 2

The Mosel Language

The Mosel language can be thought of as both a modeling language and a programming language. Like
other modeling languages it offers the required facilities to declare and manipulate problems, decision
variables, constraints and various data types and structures like sets and arrays. On the other hand, it
also provides a complete set of functionalities proper to programming languages: it is compiled and
optimized, all usual control flow constructs are supported (selection, loops) and can be extended by
means of modules. Among these extensions, optimizers can be loaded just like any other type of
modules and the functionality they offer may be used in the same way as any Mosel procedures or
functions. These properties make of Mosel a powerful modeling, programming and solving language with
which it is possible to write complex solution algorithms.

The syntax has been designed to be easy to learn and maintain. As a consequence, the set of reserved
words and syntax constructs has deliberately been kept small avoiding shortcuts and ‘tricks’ often
provided by modeling languages. These facilities are sometimes useful to reduce the size of a model
source (not its readability) but also are likely to introduce inconsistencies and ambiguities in the language
itself, making it harder to understand and maintain.

2.1 Introduction
2.1.1 Comments

A comment is a part of the source file that is ignored by the compiler. It is usually used to explain what
the program is supposed to do. Either single line comments or multi lines comments can be used in a
source file. For the first case, the comment starts with the ’!’ character and terminates with the end of
the line. A multi-line commentary must be inclosed in ’(!’ and ’!)’. Note that it is possible to nest several
multi-line commentaries.

! In a comment
This text will be analyzed
(! Start of a multi line
(! Another comment
blabla
end of the second level comment !)

end of the first level !) Analysis continues here

Comments may appear anywhere in the source file.

2.1.2 Identifiers
Identifiers are used to name objects (variables, for instance). An identifier is an alphanumeric (plus ’_’)
character string starting with an alphabetic character or ’_’. All characters of an identifier are significant
and the case is important (the identifier ’word’ is not equivalent to ’Word’).

Fair Isaac Corporation Proprietary Information 15

Chapter 2: The Mosel Language

2.1.3 Reserved words
The reserved words are identifiers with a particular meaning that determine a specific behaviour within
the language. Because of their special role, these keywords cannot be used to name user defined objects
(i.e. they cannot be redefined). The list of reserved words is:

and, array, as, boolean, break, case, constant, count, counter, declarations, div, do,
dynamic, elif, else, end, evaluation, false, forall, forward, from, function, hashmap, if,
imports, in, include, initialisations, initializations, integer, inter, is, is_binary,
is_continuous,
is_free, is_integer, is_partint, is_semcont, is_semint, is_sos1, is_sos2, linctr, list,
max, min, mod, model, mpvar, namespace, next, not, nsgroup, nssearch, of, options, or,
package, parameters, procedure, public, prod, range, real, record, repeat, requirements,
return, set, shared, string, sum, then, to, true, union, until, uses, version, while, with.

Note that, although the lexical analyzer of Mosel is case-sensitive, the reserved words are defined both as
lower and upper case (i.e. AND and and are keywords but not And).

2.1.4 Separation of instructions, line breaking
In order to improve the readability of the source code, each statement may be split across several lines
and indented using as many spaces or tabulations as required. However, as the line breaking is the
expression terminator, if an expression is to be split, it must be cut after a symbol that implies a
continuation like an operator (’+’, ’-’, ...) or a comma (’,’) in order to warn the analyzer that the expression
continues in the following line(s).

A+B ! Expression 1
-C+D ! Expression 2
A+B- ! Expression 3...
C+D ! ...end of expression 3

Moreover, the character ’;’ can be used as an expression terminator.

A+B ; -C+D ! 2 expressions on the same line

Some users prefer to explicitly mark the end of each expression with a particular symbol. This is possible
using the option explterm (see Section 2.3) which disables the default behaviour of the compiler. In
that case, the line breaking is not considered any more as an expression separator and each statement
finishing with an expression must be terminated by the symbol ’;’.

A+B; ! Expression 1
-C+D; ! Expression 2
A+B ! Expression 3...
-C+D; ! ...end of expression 3

2.1.5 Conventions in this document
In the following sections, the language syntax is explained. In all code templates, the following
conventions are employed:

■ word: ’word’ is a keyword and should be typed as is;

■ todo: ’todo’ is to be replaced by something else that is explained later;

■ [something]: ’something’ is optional and the entire block of instructions may be omitted;

■ [something ...]: ’something’ is optional but if used, it can be repeated several times.

Fair Isaac Corporation Proprietary Information 16

Chapter 2: The Mosel Language

2.2 Structure of the source file
The Mosel compiler may compile both models and packages source files. Once compiled, a model is
ready for execution but a package is intended to be used by a model or another package (see Section 2.3).

The general structure of a model source file is as follows:

modelmodel_name
[Directives]
[Parameters]
[Body]
end-model

The model statement marks the beginning the program and the statement end-model its end. Any text
following this instruction is ignored (this can be used for adding plain text comments after the end of the
program). The model name may be any quoted string or identifier, this name will be used as the model
name in the Mosel model manager. An optional set of directives and a parameters block may follow. The
actual program/model is described in the body of the source file which consists of a succession of
declaration blocks, subroutine definitions and statements.

The structure of a package (see Section 2.12) source file is similar to the one of a model:

package package_name
[Directives]
[Parameters]
[Body]
end-package

The package statement marks the beginning the library and the statement end-package its end. The
package name must be a valid identifier.

It is important to understand that the language is procedural and not declarative: the declarations and
statements are compiled and executed in the order of their appearance. As a consequence, it is not
possible to refer to an identifier that is declared later in the source file or consider that a statement
located later in the source file has already been executed. Moreover, the language is compiled and not
interpreted: the entire source file is first translated — as a whole — into a binary form (the BIM file), then
this binary form of the program is read again to be executed. During the compilation, except for some
simple constant expressions, no action is actually performed. This is why only some errors can be
detected during the compilation time, any others being detected when running the program.

2.3 The compiler directives
The compiler accepts four different types of directives: the uses statement, the imports statement, the
options statement and the version statement. Namespace declarations are also expressed by
means of directives, see Section 2.13 for further explanations.

2.3.1 Directive uses
The general form of a uses statement is:

uses libname1 [, libname2 ...][;]

This clause asks the compiler to load the listed modules or packages and import the symbols they define.
Both modules and packages must still be available for running the model. If the source file being

Fair Isaac Corporation Proprietary Information 17

Chapter 2: The Mosel Language

processed is a package, the bim files associated to the listed packages must be available for compiling
another file using this package. It is also possible to merge bim files of several packages by using
imports instead of uses when building packages.

By default the compiler tries first to find a package (the corresponding file is libname.bim) then, if this
fails, it searches for a module (which file name is libname.dso). It is possible to indicate the type of library
to look for by appending either ".bim" or ".dso" to the name (then the compiler does not try the
alternative in case of failure). A package may also be specified by an extended file name (see Section
2.15) including the IO driver in order to disable the automatic search (i.e. "a.bim" searches the file a.bim
in the library path but ":a.bim" takes the file a.bim from the current directory).

For example,

uses 'mmsystem','mmxprs.dso','mypkg.bim'
uses ':/tmp/otherpkg.bim'

Both packages and modules are searched in a list of possible locations. Upon startup, Mosel uses as the
default for this list the value of the environment variable MOSEL_DSO completed by a path deduced from
the location (rtdir) of the Mosel runtime library (in the following # can be "32" on a 32bit system, "64" on a
64bit system or an empty string):

"rtdir\..\dso#" Under Windows if rtdir terminates by "\bin#" and "rtdir\..\dso#" exists or

"rtdir/../dso#" On Posix systems if rtdir terminates by "/lib#" and "rtdir/../dso#" exists
or

"rtdir/dso#" if this directory exists or

"rtdir" if none of the above rules apply

The variable MOSEL_DSO is expected to be a list of paths conforming to the operating system
conventions: for a Posix system the path separator is ’:’ (e.g. "/opt/Mosel/dso:/tmp") and it is ’;’
under Win32 (e.g. "E:\Mosel\Dso;C:\Temp"). The search path for modules and packages may also
be set from the mosel command (using the -dp option, see Section 1.3) as well as inspected and
modified from the Mosel Libraries (see functions XPRMgetdsopath and XPRMsetdsopath in the
Mosel Libraries Reference Manual). Note however that Mosel will ignore modules not located in read-only
locations when the restriction NoExec is active (see Section 1.3.4).

For locating packages Mosel will use the list of prefixes defined by the compiler option -bx (Section 1.3)
or the environment variable MOSEL_BIM before proceeding to the search as decribed above. This
parameter consists in a list of strings separated by the sequence || that are used as prefixes to the
package name. For instance if the option -bx "bimdir/||tmp:" is used with the directive uses
’mypkg’, the compiler will try to load the package "bimdir/mypkg.bim", then "tmp:mypkg.bim"
before looking for "mypkg.bim" and "mypkg.dso" in the usual locations.

2.3.2 Directive imports
The general form of an imports statement is:

imports pkgname1 [, pkgname2 ...][;]

This clause is a special version of the uses directive that can only be used for packages: it asks the
compiler to load the listed packages, import the symbols they define and incorporate the corresponding
bim file. As a consequence, the generated file provides the functionality of the packages it imports. When
used on a model file it removes the dynamic dependency on the listed packages (i.e. these packages are
no longer required to run the model).

For example,

Fair Isaac Corporation Proprietary Information 18

Chapter 2: The Mosel Language

imports 'mypkg'

2.3.3 Directive options
The compiler options may be used to modify the default behaviour of the compiler. The general form of
an options statement is:

options optname1 [, optname2 ...]

The supported options are:

■ explterm: asks the compiler to expect explicit expression termination (see Section 2.1.4).

■ noimplicit: disables the implicit declarations (see Section 2.8.1.5). This option can also be
activated by using the ’-ni’ compiler flag (see Section 1.3)

■ noautofinal: by default initialization from blocks finalize sets they populate (section 2.8.2.2).
This option disables this behaviour that may be activated afterwards using the autofinal control
parameter (cf. setparam).

■ keepassert: assertions (cf. assert) are compiled only in debug mode. With this option
assertions are preserved regardless of the compilation mode.

■ xbim: store additional symbol information in the generated bim file (in particular array index
names). This option can also be enabled by using the ’-I’ compiler flag (see Section 1.3).

■ fctasproc: by default return values of functions must be used such that a function call is not a
valid statement. With this option functions can be used as procedures: when a statement consists
in a function call its return value is silently ignored (see also asproc).

■ tagpriv: when the model is compiled with debug information private symbols are preserved.
When this option is used these symbols are prefixed with ’~’ such that they can be easily
identified.

■ dynonly: this option can only be applied to a package: it marks the package as dynamic only such
that it cannot be imported (see Section 2.3.2).

For example,

options noimplicit,explterm

2.3.4 Directive version
In addition to the model/package name, a file version number may be specified using this directive: a
version number consists in 1, 2 or 3 integers between 0 and 999 separated by the character ’.’.

versionmajor [. minor [. release]]

For example,

version 1.2

The file version is stored in the BIM file and can be displayed from the Mosel console (command list)
or retrieved using the Mosel Libraries (see function XPRMgetmodprop in the Mosel Libraries Reference
Manual). From the model itself, the version number is recorded as a string in the control parameter
model_version (see function getparam).

Fair Isaac Corporation Proprietary Information 19

Chapter 2: The Mosel Language

2.4 The parameters block
A model parameter is a symbol, the value of which can be set just before running the model (optional
parameter of the ’run’ command of the command line interpreter). The general form of the parameters
block is:

parameters
ident1 = Expression1

[ident2 = Expression2 ...]
end-parameters

where each identifier identi is the name of a parameter and the corresponding expression Expressioni its
default value. This value is assigned to the parameter if no explicit value is provided at the start of the
execution of the program (e.g. as a parameter of the ’run’ command). Note that the type (integer, real, text
string or Boolean) of a parameter is implied by its default value. Model parameters are manipulated as
constants in the rest of the source file (it is not possible to alter their original value).

parameters
size=12 ! Integer parameter
R=12.67 ! Real parameter
F="myfile" ! Text string parameter
B=true ! Boolean parameter

end-parameters

In addition to model parameters, Mosel and some modules and packages provide control parameters :
they can be used to give information on the system (e.g. success of an I/O operation) or control its
behaviour (e.g. select output format of real numbers). These parameters can be accessed and modified
using the routines getparam and setparam. Refer to the documentation of these functions for a
complete listing of available Mosel parameters. The documentation of the modules include the
description of the parameters they publish.

2.5 Source file preprocessing
2.5.1 Source file character encoding

The Mosel compiler expects source files to be encoded in UTF-8 and will handle properly UTF-16 and
UTF-32 encodings when the file begins with a BOM (Byte Order Mark). It is also possible to select an
alternative encoding using the encoding annotation (see section 2.14).

For instance to notify the compiler that the the source file is encoded using ISO-8859-1, the following
comment has to be copied at the beginning of the fie:

!@encoding:iso-8859-1

2.5.2 Source file inclusion
A Mosel program may be split into several source files by means of file inclusion. The ’include’
instruction performs this task:

include filename

where filename is the name of the file to be included. This file name may contain environment variable
references using the notation ${varname} (e.g. ’${MOSEL}/examples/mymodel’) that are expanded
to generate the actual name. The ’include’ instruction is replaced at compile time by the contents of

Fair Isaac Corporation Proprietary Information 20

Chapter 2: The Mosel Language

the file filename.

Assuming the file a.mos contains:

model "Example for file inclusion"
writeln('From the main file')
include "b.mos"

end-model

And the file b.mos:

writeln('From an included file')

Due to the inclusion of b.mos, the file a.mos is equivalent to:

model "Example for file inclusion"
writeln('From the main file')
writeln('From an included file')

end-model

If the compiler option -ix is used (Section 1.3) all file names used in the ’include’ instruction will be
prefixed as requested. For instance, if the option -ix "incdir/" is used with the compiler, the
statement include "myfile.mos" will be replaced by the content of "incdir/myfile.mos".

Note that file inclusion cannot be used inside of blocks of instructions or before the body of the program
(as a consequence, a file included cannot contain any of the following statements: uses, options or
parameters).

2.5.3 Line control directives
In some cases it may be useful to process a Mosel source through an external preprocessor before
compilation. For instance this may enable the use of facilities not supported by the Mosel compiler like
macros, unrestricted file inclusion or conditional compilation. In order to generate meaningful error
messages, the Mosel compiler supports line control directives: these directives are inserted by
preprocessors (e.g. cpp or m4) to indicate the original location (file name and line number) of generated
text.

#[line] linenum [filename]

To be properly interpreted, a line control directive must be the only statement of the line. Malformed
directives and text following valid directives are silently ignored.

2.6 The declaration block
The role of the declaration block is to give a name, a type, and a structure to the entities that the
processing part of the program/model will use. The type of a value defines its domain (for instance
integer or real) and its structure, how it is organized, stored (for instance a reference to a single value or
an ordered collection in the form of an array). The declaration block is composed of a list of declaration
statements enclosed between the instructions declarations and end-declarations.

declarations
Declare_stat
[Declare_stat ...]

end-declarations

Several declaration blocks may appear in a single source file but a symbol introduced in a given block

Fair Isaac Corporation Proprietary Information 21

Chapter 2: The Mosel Language

cannot be used before that block. Once a name has been assigned to an entity, it cannot be reused for
anything else.

2.6.1 Elementary types
Elementary objects are used to build up more complex data structures like sets or arrays. It is, of course,
possible to declare an entity as a reference to a value of one of these elementary types. Such a
declaration looks as follows:

ident1 [, ident2 ...]: [shared] type_name

where type_name is the type of the objects to create. Each of the identifiers identi is then declared as a
reference to a value of the given type. The type name may be either a basic type (integer, real,
string, boolean), an MP type (mpvar, linctr), an external type or a user defined type (see section
2.6.9). MP types are related to Mathematical Programming and allow declaration of decision variables
and linear constraints. Note that the linear constraint objects can also be used to store linear expressions.
External types are defined by modules (the documentation of each module describes how to use the
type(s) it implements). The qualifier shared identifies variables that will be shared between several
concurrent models (see Section 8.2). Only entities of basic types and external types supporting sharing
can be shared.

declarations
i,j: integer
str: string
x,y,z: mpvar

end-declarations

2.6.1.1 Basic types
The basic types are:

■ integer: an integer value between -2147483648 and 2147483647. Integers may also be
expressed in hexadecimal by using the prefix 0x or 0X (e.g. 0x7b is the same as 123)

■ real: an approximation of a real value stored as a double precision floating-point number (values
ranging between -1.7e+308 and 1.7e+308). Floating point numbers expressed in hexadecimal
can also be used as real constants. The general form of such a constant is 0xh.hhhp[+/-]ddd
where ’h’ are hexadecimal digits and ’d’ decimal digits (e.g. 0x1.9p+3 is the same as 12.5)

■ string: some text.

■ boolean: the result of a Boolean (logical) expression. The value of a Boolean entity is either the
symbol true or the symbol false.

After its declaration, each entity receives an initial value of 0, an empty string, or false depending on its
type.

2.6.1.2 MP types
Two special types are provided for mathematical programming.

■ mpvar: a decision variable

■ linctr: a linear constraint

Fair Isaac Corporation Proprietary Information 22

Chapter 2: The Mosel Language

2.6.2 Sets
Sets are used to group an unordered collection of elements of a given type. Set elements are unique: if an
element is added several times it is only contained once in the set. Declaring a set consists of defining
the type of elements to be collected.

The general form of a set declaration is:

ident1 [, ident2 ...] : [shared] [dynamic] set of [constant] type_name

where type_name is one of the elementary types. Each of the identifiers identi is then declared as a set of
the given type. The qualifier shared identifies sets that will be shared between several concurrent
models (see Section 8.2). Only sets of basic types can be shared. If the qualifier dynamic is used the
corresponding set(s) will never be finalized (see Section 2.8.2.2 and procedure finalize).

A set may collect references to constant elements of non-basic types: this kind of set will be created if
the type name is preceded by the constant keyword. Only native types supporting the constant
keyword and user defined types (see Section 2.6.9) referring to records including only basic types (see
Section 2.6.5) or unions compatible only with basic types (see Section 2.6.7) can be used in this context.
As opposed to an ordinary set, a set of constant references behaves as if it was collecting values of the
native type entities instead of their references. For instance adding 2 different variables of some native
type to a normal set will always result in 2 elements added to the set. However a single element will be
added to a set of constant references if these 2 variables have the same content (or the same textual
representation). Moreover, since references are not directly collected, any change to a variable previously
added to a set of constant references has no impact on the content of this set.

A particular set type is also available that should be preferred to the general form wherever possible
because of its better efficiency: the range set is an ordered collection of consecutive integers in a given
interval. The declaration of a range set is achieved by:

ident1 [, ident2 ...] : [shared] [dynamic] range [set of integer]

Each of the identifiers identi is then declared as a range set of integers. Every newly created set is empty.

declarations
s1: set of string
r1: range
ds: set of constant date ! type 'date' from module 'mmsystem'

end-declarations

2.6.3 Lists
Lists are used to group a collection of elements of a given type. An element can be stored several times
in a list and order of the elements is specified by construction. Declaring a list consists of defining the
type of elements to be collected.

The general form of a list declaration is:

ident1 [, ident2 ...] : [shared] list of type_name

where type_name is one of the elementary types. Each of the identifiers identi is then declared as a list of
the given type. The qualifier shared identifies lists that will be shared between several concurrent
models (see Section 8.2). Only lists of basic types can be shared.

Every newly created list is empty.

declarations

Fair Isaac Corporation Proprietary Information 23

Chapter 2: The Mosel Language

l1: list of string
l2: list of real

end-declarations

A list element can be accessed using its order number. The first element has number 1 and index values
inferior to 1 point to elements starting from the end of the list. For instance if l is a list, l(2) is the
second element of this list, l(0) is the last element of the list and l(-1) its predecessor.

2.6.4 Arrays
An array is a collection of labelled objects of a given type. A label is defined by a list of indices taking their
values in domains characterized by sets: the indexing sets. An array may be either dense or sparse: every
possible index tuple is associated to a cell in a dense array while sparse arrays are created empty. The
cells are then created explicitly (cf. procedure create) or when they are assigned a value (cf. Section
2.8.1.1) and the array may then grow ‘on demand’. It is also possible to delete some or all cells of a
dynamic array using the procedure delcell. A cell that has not been created can be identified using the
exists function and its value is the default initial value of the type of the array. The general form of an
array declaration is:

ident1 [, ident2 ...] : [shared] [dynamic|hashmap] array(list_of_sets) of type_name

where list_of_sets is a list of set declarations/expressions separated by commas and type_name is one of
the elementary types. Each of the identifiers identi is then declared as an array of the given type and
indexed by the given sets. In the list of indexing sets, a set declaration can be anonymous (i.e. rs:set
of real can be replaced by set of real if no reference to rs is required) or shortened to the type of
the set (i.e. set of real can be replaced by real in that context). An anonymous indexing set is
attached to the array: it is created at the same time as the array and, if its reference has not been saved
separately, it will be cleared when the array is reset (see reset) and deleted when the array is released.
Note also that different arrays sharing the same declaration including anonymous sets will not use the
same indexing sets. For instance, in the following declaration the arrays a1 and a2 do not have the same
first indexing set:

declarations
a1,a2:array (range, S:set of string) of real

end-declarations

The qualifier shared identifies arrays that will be shared between several concurrent models (see Section
8.2). Only arrays of basic types and indiced by shared or constant sets of basic types can be shared.

declarations
e: set of string
t1:array (e, rs:set of real, range, integer) of real
t2:array ({"i1","i2"}, 1..3) of integer

end-declarations

By default an array is dense (or static). For best performane it is better to index static arrays with
constant sets or initialize and finalize indexing sets as soon as possible (cf. procedure finalize). An
array is sparse (or dynamic) and created empty if either the qualifier dynamic or hashmap is used.
Arrays declared with either of these qualifiers behave the same but their internal representation differ: the
dynamic representation requires less memory and is faster for linear enumeration while the hashmap
representation is faster for random access.

Note that once a set is employed as an indexing set, Mosel makes sure that its size is never reduced in
order to guarantee that no entry of any array becomes inaccessible. Such a set is called fixed.

Fair Isaac Corporation Proprietary Information 24

Chapter 2: The Mosel Language

2.6.4.1 Special case of dynamic arrays of a type not supporting assign-
ment

Certain types do not have assignment operators: for instance, writing x:=1 is a syntax error if x is of type
mpvar. If an array of such a type is defined as dynamic the corresponding cells are not created. In that
case, it is required to create each of the relevant entries of the array by using the procedure create since
entries cannot be defined by assignment.

2.6.5 Records
A record is a finite collection of objects of any type. Each component of a record is called a field and is
characterized by its name (an identifier) and its type. The general form of a record declaration is:

ident1 [, ident2 ...] : record
field1 [, field2 ...]: type_name
[...]

end-record

where fieldi are the identifiers of the fields of the record and type_name one of the elementary types. Each
of the identifiers identi is then declared as a record including the listed fields.

Example:

declarations
r1: record

i,j:integer
r:real
end-record

end-declarations

Each record declaration is considered unique by the compiler. In the following example, although r1 and
r2 have the same definitions, they are not of the same type (but r3 is of course of the type of r2):

declarations
r1: record

i,j:integer
end-record

r2,r3: record
i,j:integer
end-record

end-declarations

2.6.6 Subroutine references
Subroutines are typically used to execute predefined operations, for instance, the function cos computes
a cosine value while the procedure write displays some text on the console. A subroutine reference is
an entity that is able to store a reference to a procedure or a function. The general form of a subroutine
reference declaration is:

ident1 [, ident2 ...] : procedure [(List_of_params)]
or
ident1 [, ident2 ...] : function [(List_of_params)]: Type

Where List_of_params and Type are the properties of a compatible subroutine (see section 2.9). After its
creation a subroutine reference does not refer to any actual routine and is considered as undefined (use
isdefined to identify this state); it can only be used (see section 2.7 and 2.8.1.8) once it has been

Fair Isaac Corporation Proprietary Information 25

Chapter 2: The Mosel Language

associated to a proper routine via an assignment (see section 2.8.1.3). This association may be cancelled
using reset.

The following example declares myfunc as a reference to a function returning a real and expecting a real
as parameter; this symbol could be used to hold any function similar to cos or arctan for instance:

declarations
myfunct: function (real):real

end-declarations

2.6.7 Unions
A union is a container capable of holding an object of one of a predefined set of types. Defining an entity
of this kind consists in specifying this set of compatible types or using the predefined union type any
than can handle any type without restriction. The general form of a union declaration is:

ident1 [, ident2 ...] : type1 or type2 [or type3...]
or
ident1 [, ident2 ...] : any

where typei is one of the compatible types for each of the identfiers identi. Although this enumeration is
not ordered the first type (type1) has a special meaning as it defines the representation to use when the
union is initialized from some textual form (see Section 2.8.2). In the case of the predefined union type
any the textual representation is handled by a string. If one of the compatible types is also a union the
resulting set of compatible types will include all types of this union.

Example:

declarations
u: string or integer or boolean
ua: text or any
end-declarations

In the example above the identifier ’u’ can contain either a string or an integer or a boolean (but not
several values of these types at the same time). The identifier ’ua’ can receive a value of any type as if it
was declared as an ’any’ except that the type ’text’ will be used for textual initialisation (instead of ’string’
as implied by ’any’).

In its initial state a union is undefined: it gets a value (and a type) either via assignment (see Section
2.8.1.4) or with the help of the create function. The state of a union can be checked with isdefined
and the function resetmay be used to clear a union and restore its initial state.

2.6.8 Constants
A constant is an identifier for which the value is known at declaration time and that will never be modified.
The general form of a constant declaration is:

identifier = Expression

where identifier is the name of the constant and Expression its initial and only value. The expression must
be of one of the basic types, a set or a list of one of these types, a native type supporting constant
definition, or a record type containing only basic types.

Example:

declarations
STR='my const string'

Fair Isaac Corporation Proprietary Information 26

Chapter 2: The Mosel Language

I1=12
R=1..10 ! constant range
S={2.3,5.6,7.01} ! constant set
L=[2,4,6] ! constant list

end-declarations

The compiler supports two kinds of constants: a compile time constant is a constant which value can be
computed by the compiler. A run time constant will be known only when the model is run.

Example:

parameters
P=0

end-parameters
declarations
I=1/3 ! compile time constant
J=P⁎2 ! run time constant

end-declarations

2.6.9 User defined types
2.6.9.1 Naming new types
A new type may be defined by associating an identifier to a type declaration. The general form of a type
definition is:

identifier = Type_def

where Type_def is a type (elementary, set, list, array or record) to be associated to the symbol identifier.
After such a definition, the new type may be used wherever a type name is required.

Example:

declarations
entier=integer
setint=set of entier
arr=array(range) of integer
myany=string or integer
i:entier ! <=> i:integer
s:setint ! <=> s:set of integer
a:arr ! <=> a:array(range) of integer

end-declarations

2.6.9.2 Combining types
Thanks to user defined types one can create complex data structures by combining structures offered by
the language. For instance an array of sets may be defined as follows:

declarations
typset=set of integer
a1:array(1..10) of typset

end-declarations

In order to simplify the description of complex data structures, the Mosel compiler can generate
automatically the intermediate user types. Using this property, the example above can be written as
follows (both arrays a1 and a2 are of the same type):

declarations
a2:array(1..10) of set of integer

end-declarations

Fair Isaac Corporation Proprietary Information 27

Chapter 2: The Mosel Language

2.7 Expressions
Expressions are, together with the keywords, the major building blocks of a language. This section
summarizes the different basic operators and connectors used to build expressions.

Expressions are constructed using constants, operators and identifiers (of objects or functions). If an
identifier appears in an expression its value is the value referenced by this identifier. In the case of a set, a
list, an array or a record, it is the whole structure. To access a single cell of an array, it is required to
’dereference’ this array. The dereferencing of an array is denoted as follows:

array_ident (Exp1 [, Exp2 ...])

where array_ident is the name of the array and Expi an expression of the type of the ith indexing set of the
array. The type of such an expression is the type of the array and its value the value stored in the array
with the label ’Exp1 [, Exp2 ...]’. In order to access the cell of an array of arrays, additional indexing
sequences may be appended or the list of indices for the second array can be added to the list of indices
of the first array. For instance, the array a:array(1..10) of array(1..10) of integer can be
dereferenced with a(1)(2) or a(1,2).

Indexing sets of an array may be accessed using the following syntax:

array_ident.index(i) [.type_name]
or
array_ident.index(i).range

Where array_ident is a reference to an array and i an integer indicating which index to consider (e.g. 1 for
the first index set, see getnbdim). The value of this expression is a set which type will be defined only
when the index set number is a compile time constant. The type type_name (or the keyword range)
might be added to the expression in order to enforce a type when it cannot be detected at compile time (a
runtime error will be raised if this type does not correspond to the set or if the index number is not valid).

Similarly, to access the field of a record, it is required to ’dereference’ this record. The dereferencing of a
record is denoted as follows:

record_ident.field_ident

where record_ident is the name of the record and field_ident the name of the required field.

Dereferencing arrays of records is achieved by combining the syntax for the two structures. For instance
a(1).b

Accessing the value of a union is about the same as dereferencing a record except that field names are
replaced by type names:

union_ident.type_name

where union_ident is the name of the union and type_name the name of one of its compatible types (for
instance u.integer). Trying to access a type that does not correspond to the actual value stored in the
union will cause the execution of the program to terminate on an error: the properties of the union to
inspect must be checked prior to its dereferencing (see functions gettypeid, getstruct and
geteltype or Section 2.7.7 regarding the is operator). However, dereferencing a union for an
assignment (see Section 2.8.1.1) will impose the type of the union: if the union is already of the designed
type, its value will be updated, otherwise the current entity held in the union will be released and a new
instance of the requested type will be created.

Unions may also be accessed via the expected structure they hold:

Fair Isaac Corporation Proprietary Information 28

Chapter 2: The Mosel Language

union_ident.struct_name[.type_name]

Where struct_name is either array, set, range or list. With only a structure this expression is untyped
and can be only used in operations where knowing the structure is sufficient (e.g. with the function
getsize or the construct index on an array as described above). Except for range it is necessary to
append a type name to get a fully defined expression (for instance u.set.integer).

Arrays and lists held in a union can be directly dereferenced as follows:

union_ident.array(Exp1 [, Exp2 ...]).type_name
or
union_ident.list(Exp1).type_name

As for the preceding options for derefrencing unions, the structure and type of the entity stored in the
union must match the expression otherwise a runtime error is raised.

Each type is associated with an identification number. This ID, a positive integer, can be retrieved using
the following notation:

type_name.id

where type_name is the name of a type. The elementary types integer, real, string, boolean,
mpvar and linctr have a constant ID (respectively 1,2,3,4,5 and 6) that never changes but all other
types (like native types published by modules or user defined types) are assigned their ID at the beginning
of the execution of the model such that it may change between executions (but this value is constant
during a given execution).

A function call is denoted as follows:

function_ident
or
function_ident (Exp1 [, Exp2 ...])

where function_ident is either the name of a function or a function reference and Expi the ith parameter
required by this function (note that function parameters are evaluated from right to left). The first form is
for a function requiring no parameter.

The special function if is an operator that allows one to make a selection among expressions. Its syntax
is the following:

if (Bool_expr, Exp1, Exp2)

which evaluates to Exp1 if Bool_expr is true or Exp2 otherwise. The type of this expression is the type of
Exp1 and Exp2 which must be of the same type.

Parentheses may be used to modify the predefined evaluation order of the operators (see Table 2.1) or
simply to group subexpressions.

Operators that result in statements are discussed in other sections:

■ assignment operators: := += -= (see Section 2.8.1.1)

■ inline array initialization: :: (see Section 2.8.1.6))

Table 2.2 summarizes the meaning and applicability of operators that are discussed for the different
expression types in the following sections.

Fair Isaac Corporation Proprietary Information 29

Chapter 2: The Mosel Language

Table 2.1: Priority and evaluation order of operators in Mosel (smaller values indicate higher priority)

Priority Operators Sense of evaluation
1 () {} [] . if count function calls type conversions →
2 -unary ˆ is ←
3 ⁎ / div mod prod inter →
4 + -binary sum union max min →
5 < <= > >= = <> in not in →
6 not →
7 and →
8 or →
9 array →

Table 2.2: Meaning of operators for different expression types

Type Operators Description
All expressions () Changing the evaluation order
All except linear constraints if Inline ’if’
Unions is is not Test properties
Symbols -> ’reference to’ operator
Arithmetic expressions count Counter

ˆ Exponential operator
⁎ / prod Multiplication and division
div mod Integer division and modulo
+ - sum Addition and substraction
max min Maximum and minimum value
< <= > >= = <> Comparators

String expressions + Concatenation
- Difference
< <= > >= = <> Comparators (see Section 2.7.7)

Set expressions {} Constant set definition
⁎ inter Intersection
+ union Union
- Difference
<= Subset
>= Superset
= <> Equality and difference of contents
in not in Set element
range set Constructors; clone operators

List expressions [] Constant list definition
+ sum Concatenation
- Difference
= <> Equality and difference of contents
list Constructor; clone operator

Boolean expressions not Negation
and Logic ’and’
or Logic ’or’

Linear constraint expressions ⁎ Multiplication (one operand must be of numerical type)
+ - sum Addition / subtraction
<= >= = Relational operators

Automatic arrays :: Inline array initialization (see Section 2.8.1.6)
= <> Equality and difference of contents
array Constructor

Fair Isaac Corporation Proprietary Information 30

Chapter 2: The Mosel Language

2.7.1 Type conversions and constructors
The Mosel compiler operates automatic conversions to the type required by a given operator in the
following cases:

■ in the dereference list of an array:
integer→ real;

■ in a function or procedure parameter list:
integer→ real, linctr;
real→ linctr;
mpvar→ linctr;

■ anywhere else:
integer→ real, string, linctr;
real→ string, linctr;
mpvar→ linctr;
boolean→ string.

It is possible to force a basic type conversion using the type name as a function (i.e. integer, real,
string, boolean). In the case of string, the result is the textual representation of the converted
expression. Note that the conversion of a real to a string depends on the control parameters realfmt,
zerotol and txtztol (see setparam). In the case of boolean, for numerical values, the result is
true if the value is nonzero and for strings the result is true if the string is the word ‘true’. When
converting a real to an integer the result is the integral part of the number (no rounding is performed).
Note that explicit conversions are not defined for MP types, and structured types (e.g. linctr(x) is a
syntax error).
For generating numerical values from strings it is in general preferrable to use the subroutines
parseint/parsereal that provide error handling functionality in place of the basic conversion
available through integer/real.

! Assuming A=3.6, B=2
integer(A+B) ! = 5
string(A-B) ! = "1.6"
real(integer(A+B)) ! = 5.6 (because the compiler simplifies

the expression)

Some native and record types might be used as function names to create new instances of the
corresponding type (see the documentation of each individual type for a list of possible constructors). If
the only argument of such a function call is an entity of the same type the result is a copy of the argument
(the type must support assignment). For record types a specific syntax makes it possible to create and
initialize each field of the newly created entity in a single operation:

type_name (.field1:=val1 [, .field2:=val2 ...])

where type_name is the name of a record type and fieldi one of its fields to be initialised with the
corresponding vali value.

A local instance of a given type can be obtained with the following syntax:

(type_name)

Where type_name is the name of a non basic type (i.e. any type except integer, real, string and
boolean). The result of this expression is a newly created instance of the type local to the current
expression.

Fair Isaac Corporation Proprietary Information 31

Chapter 2: The Mosel Language

The constructor array (see 2.7.9) for creating new arrays ad-hoc is an aggregate operator, via list (see
2.7.6), set and range (see 2.7.5) it is possible to perform transformations between set and list
structures.

2.7.1.1 Union constructors and subroutine parameters
Similarly to native types a union type may be used as a function that takes a single parameter. As a result
of such a construct a new instance of the specified union type is returned taking the same value and type
as the given parameter. If this parameter is not of a basic type (like a native object) the newly created
entity will contain a reference to this object. Moreover if the parameter is another union the resulting
entity will receive a reference to the value of this union (instead of a reference to the union) if this value is
also a reference. However it will receive a copy of this value if it is a basic type. Note that in this case the
compiler may not be able to detect a type incompatibility and a runtime error may happen if the value of
the entity given as parameter is not compatible with the target union.

This wrapping mechanism is also used when a subroutine expects a union but it receives a compatible
type or a different union type: the compiler creates a local union of the required type initialized with the
provided value or reference.

2.7.2 Aggregate operators
Table 2.3: Aggregate operators in Mosel with default values for empty expressions

Operator Description Default values
count Counter 0
prod Product 1
inter Intersection of sets empty set
sum Sum (arithmetic); concatenation (list, text) arithmetic: 0, list: empty list
union Union of sets; concatenation of lists empty set or list
max Maximum value real: -MAX_REAL, integer: -MAX_INT-1
min Minimum value real: MAX_REAL, integer: MAX_INT
and Logic ’and’ true
or Logic ’or’ false
array Array creation dynamic empty array

An operator is said to be aggregate when it is associated to a list of indices for each of which a set or list
of values is defined. This operator is then applied to its operands for each possible tuple of values (e.g.
the summation operator sum is an aggregate operator). The general form of an aggregate operator is:

Aggregate_ident (Iterator1 [, Iterator2 ...]) Expression
or
count (Iterator1 [, Iterator2 ...])

where the Aggregate_ident is the name of the operator and Expression an expression compatible with this
operator (see below for the different available operators). The type of the result of such an aggregate
expression is the type of Expression. The count operator does not require an additional expression: its
value, an integer, corresponds to the number of times the expression of another aggregate operator used
with the same iterator list would be evaluated (i.e. it is equivalent to sum(iteratorlist) 1).

An iterator is one of the following constructs:

Fair Isaac Corporation Proprietary Information 32

Chapter 2: The Mosel Language

SetList_expr
or
ident1 [, ident2 ...] in SetList_expr [| Bool_expr]
or
ident = Expression [| Bool_expr]
or
ident as counter

The first form gives the list of the values to be taken without specifying an index name. With the second
form, the indices named identi take successively all values of the set or list defined by SetList_expr. With
the third form, the index ident is assigned a single value (which must be a scalar). For the second and
third cases, the scope of the created identifier is limited to the scope of the operator (i.e. it exists only for
the following iterators and for the operand of the aggregate operator). Moreover, an optional condition
can be stated by means of Bool_expr which can be used as a filter to select the relevant elements of the
domain of the index. It is important to note that this condition is evaluated as early as possible. As a
consequence, a Boolean expression that does not depend on any of the defined indices in the considered
iterator list is evaluated only once, namely before the aggregate operator itself and not for each possible
tuple of indices. The last form of an iterator declares a counter for the operator: the value of the
corresponding symbol is incremented each time the operator’s expression is evaluated. For this case, if
ident has been declared before, it must be integer or real and its value is not reset. Otherwise, as for
indices, the scope of the created integer identifier is limited to the scope of the operator and its initial
value is 0. There can be only one counter for a given aggregate operator.

The Mosel compiler performs loop optimization when function exists is used as the first factors of the
condition in order to enumerate only those tuples of indices that correspond to actual cells in the array
instead of all possible tuples. To be effective, this optimization requires that sets used to declare the
array on which the exist condition applies must be named and the same sets must be used to define the
index domains. Moreover, the maximum speedup is obtained when order of indices is respected and all
indices are defined in the same aggregate operator.

An index is considered to be a constant: it is not possible to change explicitly the value of a named index
(using an assignment for instance).

2.7.3 Arithmetic expressions
Numerical constants can be written using the common scientific notation. Arithmetic expressions are
naturally expressed by means of the usual operators (+, -, ⁎, / division, unary -, unary +,ˆraise to the
power). For integer values, the operators mod (remainder of division) and div (integral division) are also
defined. Note that mpvar objects are handled like real values in expression.

The sum (summation) aggregate operators is defined on integers, real and mpvar. The aggregate
operators prod (product), min (minimum) and max (maximum) can be used on integer and real values.

x⁎5.5+(2+z)^4+cos(12.4)
sum(i in 1..10) (min(j in s) t(i)⁎(a(j) mod 2))

2.7.4 String expressions
Constant strings of characters must be quoted with single (’) or double quote (") and may extend over
several lines. Strings enclosed in double quotes may contain C-like escape sequences introduced by the
’backslash’ character (\a \b \f \n \r \t \v \xxx \uhhhh with xxx being the character code as an
octal number and hhhh a Unicode code as a four hexadecimal digits number).

Each sequence is replaced by the corresponding control character (e.g. \n is the ‘new line’ command) or,
if no control character exists, by the second character of the sequence itself (e.g. \\ is replaced by ’\’).

Fair Isaac Corporation Proprietary Information 33

Chapter 2: The Mosel Language

The escape sequences are not interpreted if they are contained in strings that are enclosed in single
quotes.

Example:

’c:\ddd1\ddd2\ddd3’ is understood as c:\ddd1\ddd2\ddd3
"c:\ddd1\ddd2\ddd3" is understood as c:ddd1ddd2ddd3

There are two basic operators for strings: the concatenation, written ’+’ and the difference, written ’-’.

"a1b2c3d5"+"e6" ! = "a1b2c3d5e6"
'a1b2c3d5'-"3d5" ! = "a1b2c"

A constant string may also take 2 additional forms: initialised from the content of an external file or as a
portion of the current input file. For the first case, a text string enclosed in backquotes will be replaced by
the content of the file identified by this enclosed text. For the second case, a line ending by the backquote
character optionally followed by some label (consisting in any sequence of characters not including
backquote) will be interpreted as the beginning of a text block. The end of this text block is marked by a
line starting with the previously used label (if any) followed by the backquote character.

Example:

`afile.txt` ! This string is the content of "afile.txt"
`MyMarker
line1
line2
MyMarker` ! This string is equivalent to "line1\nline2\n"

2.7.5 Set expressions
Constant sets are described using one of the following constructs:

{[Exp1 [, Exp2 ...]]}
or
Integer_exp1 .. Integer_exp2

The first form enumerates all the values contained in the set and the second form, restricted to sets of
integers, gives an interval of integer values. This form implicitly defines a range set.

The basic operators on sets are the union written +, the difference written - and the intersection written ⁎.

The aggregate operators union and inter can also be used to build up set expressions.

{1,2,3}+{4,5,6}-(5..8)⁎{6,10} ! = {1,2,3,4,5}
{'a','b','c'}⁎{'b','c','d'} ! = {'b','c'}
union(i in 1..4|i<>2) {i⁎3} ! = {3,9,12}
inter(i in [2,3]) union(j in 1..10) {i⁎j} ! = {6,12,18}

If several range sets are combined in the same expression, the result is either a range or a set of integers
depending on the continuity of the produced domain. If range sets and sets of integers of more than one
element are combined in an expression, the result is a set of integers. It is however possible to convert a
set of integers to a range by using the notation range(setexpr) where setexpr is a set expression
which result is either a set of integers or a range. Similarly stating set(lstexpr) will generate a set
from the elements of the list expression lstexpr.

2.7.6 List expressions
A constant list consist in a list of expressions enclosed in square brackets:

Fair Isaac Corporation Proprietary Information 34

Chapter 2: The Mosel Language

[[Exp1 [, Exp2 ...]]]

There are two basic operators for lists: the concatenation, written ’+’ and the difference, written ’-’. The
aggregate operator sum can also be used to build up list expressions (the operator union behaves like
sum when applied to lists).

[1,2,3]+[1,2,3] ! = [1,2,3,1,2,3]
[1,2,3,4]-[3,4] ! = [1,2]
sum(i in 1..3) [i⁎3] ! = [3,6,9]

List expressions are untyped when they include values of different types. When possible the compiler will
convert elements of an untyped list to the required type. For instance list of a mix of integers and reals (or
a list of integers) will be converted to a list of reals to perform an assignment to a list of reals. Otherwise
untyped lists are converted to lists of any (see Section 2.6.7).

A list can also be constructed from the elements of a set using the syntax list(setexpr) where
setexpr is a set expression.

2.7.7 Boolean expressions
A Boolean expression is an expression whose result is either true or false. The traditional comparators
are defined on integer and real values: <, <=, =, <> (not equal), >=, >. Comparisons are performed within
the tolerance specified by the control parameter "zerotol" (see setparam) when these operators are
applied to reals. For instance, two real values a and b will be considered equal if abs(a – b) ≤ zerotol.

These comparison operators are also defined for string expressions. In that case, the order is defined by
the ISO-8859-1 character set (i.e. roughly: punctuation <digits <capitals <lower case letters <accented
letters).

With sets, the comparators <= (‘is subset of’), >= (‘is superset of’), = (‘equality of contents’) and <>
(‘difference of contents’) are defined. These comparators must be used with two sets of the same type.
Moreover, the operator ‘expr in Set_expr’ is true if the expression expr is contained in the set Set_expr.
The opposite, the operator not in is also defined.

With lists, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined. These
comparators must be used with two lists of the same type.

With arrays, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.
These comparators must be used with two arrays of the same type and this type must support the
requested operator (for instance arrays of mpvar cannot be compared).

With records, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.
These comparators must be used with two records of the same type and all fields of this record type
must support the requested operator (for instance records including mpvar entries cannot be compared).

With unions, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.
These comparators can be used either between two unions (not necessarily from the same definition) or
between a union and an entity of one of its compatible types. The result of the comparison is true if the
two operands are of the same type, can be compared and have the same value. Two unions are also
considered equal if they are both uninitialized.

The operator is (as well as its opposite is not) is also defined on unions: its left operand must be a
union and its right operand can be either a type name (like integer or string) or a structure name
(array, set, range, list, record, procedure or function) optionally followed by of and a type
specification (for instance u is list of real). The value of the test is true if the type ID of the
union (see gettypeid) corresponds to the specified type or if the union is of the specified structure
(see getstruct).

To combine Boolean expressions, the operators and (logical and) and or (logical or) as well as the unary

Fair Isaac Corporation Proprietary Information 35

Chapter 2: The Mosel Language

operator not (logical negation) can be used. The evaluation of an arithmetic expression stops as soon as
its value is known.

The aggregate operators and and or are the natural extension of their binary counterparts.

3<=v1 and v2>=45 or t<>r and not r in {1..10}
and(i in 1..10) 3<=arr(i)

2.7.8 Linear constraint expressions
Linear constraints are built up using linear expressions on the decision variables (type mpvar).

The different forms of constraints are:

Linear_expr
or
Linear_expr1 Ctr_cmp Linear_expr2
or
Linear_expr SOS_type
or
mpvar_ref mpvar_type1
or
mpvar_ref mpvar_type2 Arith_expr

In the case of the first form, the constraint is unconstrained and is just a linear expression. For the second
form, the valid comparators are <=, >=, = (range constraints may be created using the procedure
setrange). The third form is used to declare special ordered sets. The types are then is_sos1 and
is_sos2. The coefficients of the variables in the linear expression are used as weights for the SOS (as a
consequence, a 0-weighted variable cannot be represented this way, procedure makesos1 or makesos2
has to be used instead).

The last two types are used to set up special types for decision variables. The first series does not require
any extra information: is_continuous (default), is_integer, is_binary, is_free. Continuous
and integer variables have the default lower bound 0, binary variables only take the values 0 or 1, and ’free’
means that the variable is unbounded (i.e. ranging from -∞ to +∞). The second series of types is
associated with a threshold value stated by an arithmetic expressions: is_partint for partial integer,
the value indicates the limit up to which the variable must be integer, above which it is continuous. For
is_semcont (semi-continuous) and is_semint (semi-continuous integer) the value gives the
semi-continuous limit of the variable (that is, the lower bound on the part of its domain that is continuous
or consecutive integers respectively). Note that these constraints on single variables are also considered
as common linear constraints.

3⁎y+sum(i in 1..10) x(i)⁎i >= z-t
x is_free ! Define an unbounded variable
x <= -2 ! Upper bound on x
t is_integer ! Define an integer variable t=0,1,2,...
t >= -7 ! Change lower bound on t: t=-7,-6,-5,...
sum(i in 1..10) i⁎x(i) is_sos1 ! SOS1 {x(1),x(2),...} with

! weights 1,2,...
y is_semint 5 ! y=0 or y=5,6,...
y <= 20 ! Upper bound on y: y=0 or y=5,6,...,20

Internally all linear constraints are stored in the same form: a linear expression (including a constant
term) and a constraint type (the right hand side is always 0). This means, the constraint expression
3⁎x>=5⁎y-10 is internally represented by: 3⁎x-5⁎y+10 and the type ‘greater than or equal to’. When a
reference to a linear constraint appears in an expression, its value is the linear expression it contains. For
example, if the identifier ctl refers to the linear constraint 3⁎x>=5⁎y-10, the expression z-x+ctl is
equal to: z-2⁎x-5⁎y+10.

Fair Isaac Corporation Proprietary Information 36

Chapter 2: The Mosel Language

Note that the value of a unary constraint of the type x is_type threshold is x-threshold.

2.7.9 Automatic arrays
The array keyword can be used as an aggregate operator in order to create an array that will exist only
for the duration of the expression.

array (Iterator1 [, Iterator2 ...]) Expression

here, the iterators define the indices of the array and the expression, the associated values.

This automatic array may be used wherever a reference to an array is expected: for instance to save the
solution values of an array of decision variables in an initialization block (see Section 2.8.2).

initializations to "mydata.txt"
evaluation of array(i in 1..10) x(i).sol as "mylabel"

end-initializations

2.7.10 Operator -> (reference to)
The reference to operator creates a reference to its operand.

->NameRef
or
->(Expr)

Where NameRef is the name of a subroutine, the name of a global entity of any type, or any dereferencing
of a non-basic type, and Expr an expression of a non-basic type.

When the reference to operator is applied to a subroutine name or to a subroutine reference, it returns a
subroutine reference instead of trying to call the routine (see section 2.6.6). This subroutine reference
can be used wherever the corresponding type is expected, in particular for an assignment that initialises
another subroutine reference (see section 2.8.1.3). Note that the compiler does not guarantee which
routine is returned if the name of a subroutine refers to several implementations (i.e. the routine has been
overloaded, see section 2.9.5) and the context does not make it possible to select a particular version.

In all other cases this operator is essentially used to create aliases (see section 2.8.1.4).

2.8 Statements
Four types of statements are supported by the Mosel language. The simple statements can be seen as
elementary operations. The initialization block is used to load data from a file or save data to a file.
Selection statements allow one to choose between different sets of statements depending on conditions.
Finally, the loop statements are used to repeat operations.

Each of these constructs is considered as a single statement. A list of statements is a succession of
statements. No particular statement separator is required between statements except if a statement
terminates by an expression. In that case, the expression must be finished by either a line break or the
symbol ’;’.

2.8.1 Simple statements
2.8.1.1 Assignment
An assignment consists in changing the value associated to an identifier. The general form of an

Fair Isaac Corporation Proprietary Information 37

Chapter 2: The Mosel Language

assignment is:

ident_ref := Expression
or
ident_ref += Expression
or
ident_ref -= Expression

where ident_ref is a reference to a value (i.e. an identifier or an array/record dereference) and Expression
is an expression of a compatible type with ident_ref. The direct assignment, denoted := replaces the
value associated with ident_ref by the value of the expression. The additive assignment, denoted +=, and
the subtractive assignment, denoted -=, are basically combinations of a direct assignment with an
addition or a subtraction. They require an expression of a type that supports these operators (for
instance it is not possible to use additive assignment with Boolean objects).

The additive and subtractive assignments have a special meaning with linear constraints in the sense
that they preserve the constraint type of the assigned identifier: normally a constraint used in an
expression has the value of the linear expression it contains, the constraint type is ignored.

c:= 3⁎x+y >= 5
c+= y ! Implies c is 3⁎x+2⁎y-5 >= 0
c:= 3⁎x+y >= 5
c:= c + y ! Implies c is 3⁎x+2⁎y-5 (c becomes unconstrained)

2.8.1.2 Assignment of structured types
The direct assignment := can also be used with sets, lists, arrays and records under certain conditions.
For sets and lists, reference and value must be of the same type, the system performing no conversion on
structures. For instance it is not possible to assign a set of integers to a set of reals although assigning
an integer value to a real object is valid.

When assigning records, reference and value must be of the same type and this type must be assignment
compatible: two records having identical definitions are not considered to be the same type by the
compiler. In most cases it will be necessary to employ a user type to declare the objects. A record is
assignment compatible if all the fields it includes can be assigned a value. For instance a record
including a decision variable (type mpvar) cannot be used in an assignment: copying a value of such a
type has to be performed one field at a time skiping those fields that cannot be assigned.

Two arrays can be used in an assignment if they have strictly the same definition and are assignment
compatible (i.e. their type supports assignment).

2.8.1.3 Assignment of subroutine references
Only the direct assignment := can be used with subroutine references, the value assigned to the entity
must have a compatible type and will usually be the result of the -> operator to prevent calling of the
operand. As the result of such a statement both subroutine references refer to the same routine and, if
the source reference is undefined the destination of the assignment will also become undefined.

declarations
myfunc,fct2,fct0:function (real):real

end-declarations
myfunc:=->cos ! 'myfunc' refers to 'cos'
fct2:=->myfunc ! as well as 'fct2'
writeln(myfunc(0),"=",fct2(0)) ! => 1=1
fct2:=->fct0 ! fct2 becomes undefined
writeln(isdefined(->fct2)) ! => false

Fair Isaac Corporation Proprietary Information 38

Chapter 2: The Mosel Language

2.8.1.4 Assignment of unions
Only the direct assignment := can be used with union entities: the value associated with the union is
replaced by a copy of the value of the expression that must have a type compatible with the union
(otherwise a compilation error is raised). If the current value of the union is of the same type as the
expression then a direct assignment between the entity stored in the union and the provided expression
is performed. Otherwise, the current value of the union is released and a new instance of the required
type is created before a direct assignment is performed. Note that although no implicit type conversion is
performed, assigning an integer to a union compatible only with reals will succeed (i.e. the integer value
will be automatically converted to real).

If the expression is also a union then the assignment operation is executed on the value stored in this
union, if its type is not compatible with the destination of the assignment a runtime error will be raised. If
the expression is an undefined union then the destination entity will also become undefined (i.e. the
current value of the union is released and the entity returns to its initial state).

If the expression is the result of the -> operator then the union will become an alias to the source
expression instead of receiving a copy of its value.

declarations
S:set of integer
u:any

end-declarations
u:=->S ! 'u' and 'S' refer to the same set
S:={1,2,3}
writeln(u) ! => {1,2,3}
u.set.integer+={4}
writeln(u) ! => {1,2,3,4}
writeln(S) ! => {1,2,3,4}

2.8.1.5 About implicit declarations
Each symbol should be declared before being used. However, an implicit declaration is issued when a
new symbol is assigned a value the type of which is unambiguous.

! Assuming A,S,SE are unknown symbols
A:= 1 ! A is automatically defined

! as an integer reference
S:={1,2,3} ! S is automatically defined

! as a set of integers
SE:={} ! This produces a parser error as

! the type of SE is unknown

In the case of arrays, the implicit declaration should be avoided or used with particular care as Mosel tries
to deduce the indexing sets from the context and decides automatically whether the created array must
be dynamic. The result is not necessarily what is expected.

A(1):=1 ! Implies: A:array(1..1) of integer
A(t):=2.5 ! Assuming "t in 1..10|f(t) > 0"

! implies: A:dynamic array(range) of real

The option noimplicit disables implicit declarations (see Section 2.3.3).

2.8.1.6 Inline initialization
Using inline initialization it is possible to assign several cells of an array in a single statement. The general
form of an inline initialization is:

Fair Isaac Corporation Proprietary Information 39

Chapter 2: The Mosel Language

ident_ref ::[Exp1 [, Exp2 ...]]
or
ident_ref ::(Ind1 [, Ind2 ...])[Exp1 [, Exp2 ...]]

where ident_ref is the object to initialize (array, set or list) and Expi are expressions of a compatible type
with ident_ref. The first form of this statement may be used with lists, sets and arrays indiced by ranges:
the list of expressions is used to initialize the object. In the case of lists and sets this operation is similar
to a direct assignment, with an array, the first index of each dimension is the lower bound of the indexing
range or 1 if the range is empty.

The second form is used to initialize regions of arrays or arrays indiced by general sets: each Indi
expression indicates the index or list of indices for the corresponding dimension. An index list can be a
constant, a list of constants (e.g. [’a’,’b’,’c’]) or a constant range (e.g. 1..10) but all values must
be known at compile time.

declarations
T:array(1..10) of integer
U:array(1..9,{'a','b','c'}) of integer
end-declarations
T::[2,4,6,8] ! <=> T(1):=2; T(2):=4;...
T::(2..5)[7,8,9,19] ! <=> T(2):=7; T(3):=8;...
U::([1,3,6],'b')[1,2,3]! <=> U(1,'b'):=1; U(3,'b'):=2;...

2.8.1.7 Linear constraint expression
A linear constraint expression can be assigned to an identifier but can also be stated on its own. In that
case, the constraint is said to be anonymous and is added to the set of already defined constraints. The
difference from a named constraint is that it is not possible to refer to an anonymous constraint again, for
instance to modify it.

10<=x; x<=20
x is_integer

2.8.1.8 Procedure call
Not all required actions are coded in a given source file. The Mosel language comes with a set of
predefined procedures that perform specific actions (like displaying a message). It is also possible to
import procedures from external locations by using modules or packages (cf. Section 2.3).

The general form of a procedure call is:

procedure_ident
procedure_ident (Exp1 [, Exp2 ...])

where procedure_ident is either the name of a procedure or a procedure reference and, if required, Expi is
the ith parameter for the call (note that parameters of procedures are evaluated from right to left). Refer
to Chapter 3 of this manual for a comprehensive listing of the predefined procedures.The modules
documentation should also be consulted for explanations about the procedures provided by each module.

writeln("hello!") ! Displays the message: hello!

2.8.2 Initialization block
The initialization block may be used to initialize objects (scalars, arrays, lists or sets) of basic type from
files or to save the values of such objects to files. Scalars and arrays of external/user types supporting
this feature may also be initialized using this facility.

Fair Isaac Corporation Proprietary Information 40

Chapter 2: The Mosel Language

The first form of an initialization block is used to initialize data from a file:

initializations from Filename
item1 [as Label1]
or
[itemT11,itemT12 [,IdentT13 ...]] asLabelT1

[
item2 [as Label2]
or
[itemT21,itemT22 [,IdentT23 ...]] asLabelT2

...]
end-initializations

where Filename, a string expression, is the name of the file to read, itemi any object identifier and itemTij
an array identifier. Each identifier is automatically associated to a label: by default this label is the
identifier itself but a different name may be specified explicitly using a string expression Labeli. If a given
item is of a record type, the operation is permitted only if all fields it contains can be initialized. For
instance, if one of the fields is a decision variable (type mpvar), the compilation will fail. Alternatively, the
fields to be initialized can be listed using the following syntax as an item:

Identifier(field1 [,filedi ...])

If a given item is a namespace (see Section 2.13) all the identifiers it includes at the time of parsing the
statement are implicitly added to the block with the exception of namespaces and entities that are not
compatible with initializations (like decision variables). The associated labels are the fully qualified
names of the objects (i.e. the identifier prefixed by the namespace) unless a label is specified for this
record: in this case it is used as a replacement for the default prefix when generating the per entity labels
such that an empty string will remove entirely the prefix. Using the compiler option -wimakes it possible
to get a list of included identifiers by means of a compiler warning (see Section 1.3).

When an initialization block is executed, the given file is opened and the requested labels are searched for
in this file to initialize the corresponding objects. Several arrays may be initialized with a single record. In
this case they must be all indexed by the same sets, have scalar types and the label is obligatory. After
the execution of an initializations from block, the control parameter nbread reports the number
of items actually read in. Moreover, if control parameter readcnt is set to true before the execution of
the block, counting is also achieved at the label level: the number of items actually read in for each label
may be obtained using function getreadcnt.

An initialization file must contain one or several records of the following form:

Label: value

where Label is a text string and value either a constant of a basic type (integer, real, string or
boolean) or a collection of values separated by spaces and enclosed in square brackets. Collections of
values are used to initialize lists, sets records or arrays — if such a record is requested for a scalar, then
the first value of the collection is selected. When used for arrays, indices enclosed in round brackets may
be inserted in the list of values to specify a location in the corresponding array.

Note also that:

■ no particular formatting is required: spaces, tabulations, and line breaks are just normal separators

■ the special value ’*’ implies a no-operation (i.e. the corresponding entity is not initialized)

■ the special value ’?’ (nil value) implies a reset of the corresponding entity (the reset procedure is
applied to references, 0,false or and empty string is assigned to variables of basic types)

Fair Isaac Corporation Proprietary Information 41

Chapter 2: The Mosel Language

■ single line comments are supported (i.e. starting with ’!’ and terminated by the end of the line)

■ Boolean constants are either the identifiers false (FALSE) and true (TRUE) or the numerical
constants 0 and 1

■ all text strings (including the labels) may be quoted using either single or double quotes. In the
latter case, escape sequences are interpreted (i.e. use of ’\’).

By default Mosel expects that initialization files are encoded in UTF-8 and it can handle UTF-16 and
UTF-32 when a BOM (Byte Order Mark) is used. To process files in another encoding, a special encoding
comment line must be put at the beginning of the file (see section 2.5.1). For instance a data file encoded
with CP1252 should start with the following comment line:

!@encoding:CP1252

The second form of an initialization block is used to save data to a file:

initializations to Filename
item1 [as Label1]
or
[itemT11,itemT12 [,IdentT13 ...]]asLabelT1

[
item2 [as Label2]
or [itemT21,itemT22 [,IdentT23 ...]]asLabelT2

...]
end-initializations

In this form, any itemi can be replaced by the value of an expression using the following construct (Labeli
is mandatory in this case):

evaluation of expression

When this second form is executed, the value of all provided labels is updated with the current value of
the corresponding identifier1 in the given file. If a label cannot be found, a new record is appended to the
end of the file and the file is created if it does not yet exist.

For example, assuming the file a.dat contains:

! Example of the use of initialization blocks
t:[(1 un) [10 11] (2 deux) [⁎ 22] (3 trois) [30 33]]
t2:[10 (4) 30 40]
'nb used': ?

consider the following program:

model "Example initblk"
declarations
nb_used:integer
s: set of string
ta,tb: dynamic array(1..3,s) of real
t2: array(1..5) of integer
end-declarations

initializations from 'a.dat'
[ta,tb] as 't' ! ta=[(1,'un',10),(3,'trois',30)]

! tb=[(1,'un',11),(2,'deux',22),(3,'trois',33)]
t2 ! t2=[10,0,0,30,40]

1A copy of the original file is saved prior to the update (i.e. the original version of fname can be found in fname˜).

Fair Isaac Corporation Proprietary Information 42

Chapter 2: The Mosel Language

nb_used as "nb used" ! nb_used=0
end-initializations

nb_used+=1
ta(2,"quatre"):=1000

initializations to 'a.dat'
[ta,tb] as 't'
nb_used as "nb used"
s
end-initializations
end-model

After the execution of this model, the data file contains:

! Example of the use of initialization blocks
t:[(1 'un') [10 11] (2 'deux') [⁎ 22] (2 'quatre') [1000 ⁎]

(3 'trois') [30 33]]
t2:[10 (4) 30 40]
'nb used': 1
's': ['un' 'deux' 'trois' 'quatre']

In case of error (e.g. file not found, corrupted data format) during the processing of an initialization block,
the execution of the model is interrupted. However if the value of control parameter ioctrl is true,
executions continues. It is up to the user to verify whether data has been properly transfered by checking
the value of control parameter iostatus.

2.8.2.1 Handling of unions
When initializing unions the procedure will consider only scalar values of basic types: integers, reals and
booleans are assigned to the union; textual values are used to initialize the entity employing the first type
from the list of compatible types specified for this union (for the union ’any’ this is a string). An I/O error
will be raised if this type does not support initialization.

When exporting unions, any non-scalar value and type that does not support conversion to string will
result in a NIL value in the generated file.

2.8.2.2 About automatic finalization
During the execution of an initializations from block all sets are automatically finalized just after having
been initialized (unless they have been explicitly declared as dynamic). This also applies to sets indirectly
initialized through the non-dynamic arrays for which they are index sets. In addition, such an array is
created as a static array if it has not been used before the initialization block.

This behaviour is controled by the autofinal control parameter which value may be changed using the
setparam procedure (i.e. it is therefore possible to have automatic finalization active for only some
initializations blocks). The compiler option noautofinal (see section 2.3.3) allows to disable this
feature from the beginning of the model (although it can be re-enabled as required using the control
parameter).

2.8.3 Selections
2.8.3.1 If statement
The general form of the if statement is:

Fair Isaac Corporation Proprietary Information 43

Chapter 2: The Mosel Language

if Bool_exp_1
then Statement_list_1
[

elif Bool_exp_2
then Statement_list_2

...]
[else Statement_list_E]
end-if

The selection is executed as follows: if Bool_exp_1 is true then Statement_list_1 is executed and the
process continues after the end-if instruction. Otherwise, if there are elif statements, they are
executed in the same manner as the if instruction itself. If, all boolean expressions evaluated are false
and there is an else instruction, then Statement_list_E are executed; otherwise no statement is executed
and the process continues after the end-if keyword.

if c=1
then writeln('c=1')
elif c=2
then writeln('c=2')
else writeln('c<>1 and c<>2')
end-if

2.8.3.2 Case statement
The general form of the case statement is:

case Expression_0 of
Expression_1: Statement_1
or
Expression_1: do Statement_list_1 end-do
[

Expression_2: Statement_2
or
Expression_2: do Statement_list_2 end-do

...]
[else Statement_list_E]
end-case

The selection is executed as follows: Expression_0 (that must be of type integer, real, string or boolean) is
evaluated and compared sequentially with each expression of the list Expression_i until a match is found.
Then the statement Statement_i (resp. list of statements Statement_list_i) corresponding to the matching
expression is executed and the execution continues after the end-case instruction. If no matching is
found and an else statement is present, the list of statements Statement_list_E is executed, otherwise
the execution continues after the end-case instruction. Note that, each of the expression lists
Expression_i can be either a scalar, a set or a list of expressions separated by commas. In the last two
cases, the matching succeeds if the expression Expression_0 corresponds to an element of the set or an
entry of the list.

case c of
1 : writeln('c=1')
2..5 : writeln('c in 2..5')
6,8,10: writeln('c in {6,8,10}')
else writeln('c in {7,9} or c >10 or c <1')

end-case

Fair Isaac Corporation Proprietary Information 44

Chapter 2: The Mosel Language

2.8.4 Loops
2.8.4.1 Forall loop
The general form of the forall statement is:

forall (Iterator_list) Statement
or
forall (Iterator_list) do Statement_list end-do

The statement Statement (resp. list of statements Statement_list) is repeated for each possible index
tuple generated by the iterator list (cf. Section 2.7.2).

forall (i in 1..10, j in 1..10 | i<>j) do
write(' (' , i, ',' , j, ')')
if isodd(i⁎j) then s+={i⁎j}
end-if

end-do

2.8.4.2 While loop
The general form of the while statement is:

while (Bool_expr) Statement
or
while (Bool_expr) do Statement_list end-do

The statement Statement (resp. list of statements Statement_list) is repeated as long as the condition
Bool_expr is true. If the condition is false at the first evaluation, the while statement is entirely skipped.

i:=1
while(i<=10) do

write(' ',i)
if isodd(i) then s+={i}
end-if
i+=1

end-do

2.8.4.3 Repeat loop
The general form of the repeat statement is:

repeat
Statement1
[Statement2 ...]
until Bool_expr

The list of statements enclosed in the instructions repeat and until is repeated until the condition
Bool_expr is true. As opposed to the while loop, the statement(s) is (are) executed at least once.

i:=1
repeat
write(' ',i)
if isodd(i) then s+={i}
end-if
i+=1

until i>10

Fair Isaac Corporation Proprietary Information 45

Chapter 2: The Mosel Language

2.8.4.4 break and next statements
The statements break and next are respectively used to interrupt and jump to the next iteration of a
loop. The general form of the break and next statements is:

break [n|label]
or
next [n|label]

where n is an optional integer constant: n-1 nested loops are stopped before applying the operation. This
optional argument may also be a label (in the form an identifier or a string constant): in this case the loop
to consider is identified by a label that must be defined just before the corresponding loop using the
following syntax:

label :

The label can be either an identifier (that is not associated to any entity) or a constant string. The scope
of each label is limited to the loop it identifies.

! in this example only the loop controls are shown
L1: ! 1: Define label "L1"
repeat ! 2: Loop L1
forall (i in S) do ! 3: Loop L2
while (C3) do ! 4: Loop L3
break 3 ! 5: Stop the 3 loops and continue after line 12
next ! 6: Go to next iteration of L3 (line 4)
next 2 ! 7: Stop L3 and go to next 'i' (line 3)
end-do ! 8: End of L3
next "L1" ! 9: Stop L2, go to next iteration of L1 (line 12)
break !10: Stop L2 and continue after line 11
end-do !11: End of L2
until C1 !12: End of L1

2.8.4.5 with statement
The general syntax of this statement is:

with locdef_1 [, locdef_2...] do
Statement
[Statement ...]

end-do

Where locdef_i are local definitions of the following form:

ident=exp
or
ident(idndx_1 [, idndx_2...])=id_arr

In the first form ident is defined as an alias to the given expression exp and in the second form ident is
equivalent to the array reference id_arr and each idndx_i are the corresponding indexing sets.

Although the with statement is not a loop it is handled like a single iteration forall loop such that it is
possible to use the break and next statements within the block of instructions.

! in this example LR is an array of records
with r=LR(10) do
r.x:=10 ! update LR(10).x
r.y:=20 ! update LR(10).y

Fair Isaac Corporation Proprietary Information 46

Chapter 2: The Mosel Language

end-do

2.9 Procedures and functions
It is possible to group sets of statements and declarations in the form of subroutines that, once defined,
can be called several times during the execution of the model. There are two kinds of subroutines in
Mosel, procedures and functions. Procedures are used in the place of statements (e.g.
writeln("Hi!")) and functions as part of expressions (because a value is returned, e.g.
round(12.3)). Procedures and functions may both receive arguments, define local data and call
themselves recursively.

2.9.1 Definition
Defining a subroutine consists of describing its external properties (i.e. its name and arguments) and the
actions to be performed when it is executed (i.e. the statements to perform). The general form of a
procedure definition is:

procedure name_proc [(list_of_parms)]
Proc_body

end-procedure

where name_proc is the name of the procedure and list_of_parms its list of formal parameters (if any).
This list is composed of symbol declarations (cf. Section 2.6) separated by commas. The only
differences from usual declarations are that the variable name can be omitted (the declaration states
only the type of the entity) and no constants or expressions are allowed, including in the indexing list of
an array (for instance A=12 or t1:array(1..4) of real are not valid parameter declarations). The
body of the procedure is the usual list of statements and declaration blocks except that no type,
procedure or function definition can be included.

procedure myproc
writeln("In myproc")

end-procedure

procedure withparams(a:array(r:range) of real, i,j:integer)
writeln("I received: i=",i," j=",j)
forall(n in r) writeln("a(",n,")=",a(n))

end-procedure

declarations
mytab:array(1..10) of real

end-declarations

myproc ! Call myproc
withparams(mytab,23,67) ! Call withparams

The definition of a function is very similar to the one of a procedure:

function name_func [(List_of_params)]: Type
Func_body

end-function

The only difference with a procedure is that the function type must be specified: it can be any type. Inside
the body of a function, a special variable of the type of the function is automatically defined: returned.
This variable is used as the return value of the function, it must therefore be assigned a value during the
execution of the function.

Fair Isaac Corporation Proprietary Information 47

Chapter 2: The Mosel Language

function multiply_by_3(i:integer):integer
returned:=i⁎3

end-function

writeln("3⁎12=", multiply_by_3(12)) ! Call the function

Normally all statements of a subroutine are executed in sequence. It is however possible to interrupt the
execution and return to the caller by using the special statement return.

2.9.2 Variable number of parameters
A subroutine may accept a variable number of parameters. To declare a routine of this kind, the last
parameter of the list of parameters must have the special type ...: this parameter will receive all the
additional arguments as a list of any (see Section 2.6.7) when the routine is called.

procedure printall(prefix:string,argv:...)
if argv.size=0 then
writeln(prefix) ! just the prefix
else
forall(p in argv) writeln(prefix,p) ! prefix and other arguments
end-if
end-procedure

printall("nothing")
printall("data ",1,"a",true)

The above code extract displays:

nothing
data 1
data a
data true

2.9.3 Formal parameters: passing convention
Formal Parameters of basic types are passed by value and all other types are passed by reference. In
practice, when a parameter is passed by value, the subroutine receives a copy of the information so, if the
subroutine modifies this parameter, the effective parameter remains unchanged. But if a parameter is
passed by reference, the subroutine receives the parameter itself. As a consequence, if the parameter is
modified during the process of the subroutine, the effective parameter is also affected.

procedure alter(s:set of integer,i:integer)
i+=1
s+={i}

end-procedure

gs:={1}
gi:=5
alter(gs,gi)
writeln(gs," ",gi) ! Displays: {1,6} 5

2.9.4 Local declarations
Several declaration blocks may be used in a subroutine and all identifiers declared are local to this
subroutine. This means that all of these symbols exist only in the scope of the subroutine (i.e. between
the declaration and the end-procedure or end-function statement) and all of the resource they use
is released once the subroutine terminates its execution unless they are referenced outside of the routine
(e.g. member of a set defined globally). As a consequence, active constraints (linctr that are not just
linear expressions) declared inside a subroutine and the variables they employ are still effective after the

Fair Isaac Corporation Proprietary Information 48

Chapter 2: The Mosel Language

termination of the subroutine (because they are part of the current problem) even if the symbols used to
name the related objects are not defined any more. Note also that a local declaration may hide a global
symbol.

declarations ! Global definition
i,j:integer

end-declarations

procedure myproc
declarations

i:string ! This declaration hides the global symbol
end-declarations
i:="a string" ! Local 'i'
j:=4
writeln("Inside of myproc, i=",i," j=",j)

end-procedure

i:=45 ! Global 'i'
j:=10
myproc
writeln("Outside of myproc, i=",i," j=",j)

This code extract displays:

Inside of myproc, i=a string j=4
Outside of myproc, i=45 j=4

2.9.5 Overloading
Mosel supports overloading of procedures and functions. One can define the same function several
times with different sets of parameters and the compiler decides which subroutine to use depending on
the parameter list. This also applies to predefined procedures and functions.

! Returns a randomly generated integer in the interval [1,limit]
function random(limit:integer):integer
returned:=round(.5+random⁎limit) ! Use the predefined

! 'random' function
end-function

It is important to note that:

■ a procedure cannot overload a function and vice versa;

■ it is not possible to redefine any identifier; this rule also applies to procedures and functions. A
subroutine definition can be used to overload another subroutine only if it differs for at least one
parameter. This means, a difference in the type of the return value of a function is not sufficient.

2.9.6 Forward declaration
During the compilation phase of a source file, only symbols that have been previously declared can be
used at any given point. If two procedures call themselves recursively (cross recursion), it is therefore
necessary to be able to declare one of the two procedures in advance. Moreover, for the sake of clarity it
is sometimes useful to group all procedure and function definitions at the end of the source file. A
forward declaration is provided for these uses: it consists of stating only the header of a subroutine that
will be defined later. The general form of a forward declaration is:

forward procedure Proc_name [(List_of_params)]
or
forward function Func_name [(List_of_params)]: Type

Fair Isaac Corporation Proprietary Information 49

Chapter 2: The Mosel Language

where the procedure or function Func_name will be defined later in the source file. Alternatively a
subroutine can be declared by stating its header inside of a declarations block. Note that a forward
declaration for which no actual definition can be found is considered as an error by Mosel.

forward function f2(x:integer):integer

function f1(x:integer):integer
returned:=x+if(x>0,f2(x-1),0) ! f1 needs to know f2

end-function

function f2(x:integer):integer
returned:=x+if(x>0,f1(x-1),0) ! f2 needs to know f1

end-function

2.9.7 Suffix notation
Functions which name begins with get and taking a single argument may be called using a suffix
notation. This alternative syntax is constructed by appending to the variable name (the intended function
parameter) a dot followed by the function name without its prefix get. For instance the call getsol(x)
is the same as x.sol. The compiler performing internally the translation from the suffix notation to the
usual function call notation, the two syntaxes are equivalent.

Similarly, calls to procedures which name begins with set and taking two arguments may be written as
an assignment combined with a suffix notation. In this case the statement can be replaced by the
variable name (the intended first procedure parameter) followed by a dot and the procedure name
without its prefix set then the assignment sign := and the value corresponding to the second parameter.
For instance the statement sethidden(ctl,true) can also be written ctl.hidden:=true. As for
the other alternative notation, the compiler performs the rewriting internally and the two syntaxes are
equivalent.

2.10 Problems
In Mosel terms, a problem is a container holding various attributes and entities. The nature of the
information stored is characterised by a problem type. The core system of Mosel provides the
mpproblem problem type for the representation of mathematical programming problems with linear
constraints. Other types may be published by modules either as entirely new problem types or as problem
type extensions. An extension adds extra functionality or properties to an existing type; for instance,
mpproblem.xprs provided by the module mmxprs adds support for solving mpproblem problems
while the type mpproblem.nl of mmnlmakes it possible to include non-linear constraints in an
mpproblem.

When the execution of the model starts, an instance of each of the available problem types is created:
this main problem constitutes the default problem context. As a consequence, all problem related
operations (e.g., add constraints, solve...) refer to this context. Further problem instances may be
declared just like any other symbol using a declarations section. The specification of a problem type (that
is used as an elementary type in a declaration) has two forms:

problem_type
or
problem_type1 and problem_type2 [and problem_typen ...]

where problem_type* are problem type names. The second syntax allows to define a problem instance
that refers to several problem types: this can be useful if a particular problem consists in the combination
of several problem types. Note also that the main problem can be seen as an instance of the combination
of all available problem types.

The with construct can be used to switch to a different problem context for the duration of a block of

Fair Isaac Corporation Proprietary Information 50

Chapter 2: The Mosel Language

instructions. The general form of this construct is:

with prob do
Statement
[Statement ...]

end-do

where prob is a problem reference or a problem type specification. In the first case the referenced
problem is selected, in the second case, a new problem instance is created for the duration of the block
(i.e., it is released after the block has been processed). Both statements and declaration blocks as well as
other with constructs may be included in this section: they are all executed in the context of the selected
problem.

declarations
p1,p2:mpproblem
p3:mpproblem and mypb ! assuming 'mypb' is a problem type
PT=mpproblem and mypb ! user defined problem type
a:array(1..10) of PT
x,y:mpvar

end-declarations
with p1 do
x+y>=0
end-do
with p2 do
x-y=1
end-do

Some problem types support assignment (operator :=) and additive assignment (operator +=). These
operators can be used between objects of same type but also when the right parameter of the operator is
a component of the assigned object. For instance, assuming the declarations of the previous example we
could state p3:=p2meaning that the mpproblem part of p3must be replaced by a copy of p2, the mypb
part of p3 remaining unchanged. From the same context, the assignment p2:=p3 produces a
compilation error.

2.10.1 The mpproblem type
An mpproblem instance basically consists in a set of linear constraints (the decision variables defined
anywhere in a model are shared by all problems). A constraint is incorporated into a problem when it is
expressed, so having the declaration of a linctr identifier in the context of a problem is not sufficient to
attach it to this problem. The association will occur when the symbol is assigned its first value.
Afterwards, the constraint will remain part of the same problem even if it is altered from within the
context of another problem (a constraint cannot belong to several problems at the same time).

with p1 do
C1:=x+y+z>=0
x is_integer
end-do
with p2 do
2⁎x-3⁎z=0 ! here we state constraints of p2
...
minimize(z)
C1+= x.sol⁎z.sol
end-do

In the example above, the constraint C1 is part of problem p1. From the context of a second problem p2
the constraint C1 is modified using solution information of p2: this change affects only the first problem
since the constraint does not belong to the current context. Note that since is_integer is a (unary)
constraint, the decision variable x is integer for problem p1 but it is a continuous variable in p2.

Fair Isaac Corporation Proprietary Information 51

Chapter 2: The Mosel Language

When a problem is released or reset (see reset), all its constraints are detached. Constraints which are
not referenced (anonymous constraints) are released at the same time, named constraints however are
not freed, they become available to be associated to some other problem.

with mpproblem do
C1:=x+y+z>=0 ! (1)
x-2⁎y=10 ! (2)
x is_integer ! (3)
end-do
with p1 do
C1
end-do

In this example, at the end of the first with block, the local problem is released. As a consequence the
constraint C1 is detached from this problem (but remains unchanged) and the 2 other constraints are
freed. The following statements add C1 to the problem p1.

The type mpproblem supports both assignment (operator :=) and additive assignment (operator +=).

2.11 The public qualifier
Once a source file has been compiled, the identifiers used to designate the objects of the model become
useless for Mosel. In order to access information after a model has been executed (for instance using
the print command of the interractive debugger), a table of symbols is saved in the BIM file.

The qualifier public can be used in declaration and definition of objects to mark those identifiers
(including subroutines) that must be published in the table of symbols. Without this qualifier a symbol is
considered to be private and it is not recorded in the table of symbols (unless the source is compiled with
debugging information).

public declarations
e:integer ! e is published
f:integer ! f is published

end-declarations

declarations
public a,b,c:integer ! a,b and c are published
d:real ! d is private

end-declarations

forward public procedure myproc(i:integer) ! 'myproc' is published

This qualifier can also be used when declaring record types in order to select the fields of the record that
can be accessed from outside of the file making the definitions: this allows to make available only a few
fields of a record, hidding what is considered to be internal data.

declarations
public t1=record

i:integer ! t1.i is private
public j:real ! t1.j is public

end-record
public t2=public record

i:integer ! t2.i is public
j:real ! t2.j is public

end-record
end-declarations

Note that a public record type can only contain public types even if it does not publish its fields.

Fair Isaac Corporation Proprietary Information 52

Chapter 2: The Mosel Language

2.12 Packages
Declarations may be stored in a package: once compiled, the package can be used by any model by
means of the uses or import statements (see Section 2.3.1). Except for its beginning and termination
(keyword model is replaced by package) a package source is similar to a normal model source. The
following points should be noticed:

■ all statements and declarations outside procedure or function definitions are used as an
initialization routine: they are automatically executed before statements of the model using the
package;

■ symbols that should be published by the package must be made explicitly public using the public
qualifier (see Section 2.11);

■ model parameters of a package are automatically added to the list of parameters of the model
using the package;

■ a package cannot be imported several times by a model and packages publish symbols of
packages they import. For instance, assuming package P1 imports package P2, a model using P1
cannot import or use explicitly P2 but has access to the functionality of P2 via P1.

2.12.1 Version management
When a package defines a version number (see Section 2.3.4) Mosel implements a compatility rule
similar to the one used for modules: a package version A can be used in place of package version B if
major(A) = major(B) and minor(A) ≥minor(B). This mechanism applies at compile time (when using
different packages with the same dependencies) and at runtime when loading a model. It is
recommended to update package version numbers as follows:

■ major number: any changes that will require recompilation of models using the package (in
particular removal of public functionality from the package)

■ minor number: addition of new functionality that does not influence the behavior of existing uses of
the package

■ release number: bug fixes

2.12.2 The requirements block
Requirements are symbols a package requires for its processing but does not define. These required
symbols are declared in requirement blocks which are a special kind of declaration blocks in which
constants are not allowed but procedure/functions can be declared. The symbols of such a block have to
be defined when the model using the package is compiled: the definitions may appear either in the model
or in another package but cannot come from a module. Several packages used by a given model may
have the same requirements (i.e. same identifier and same declaration). It is also worth noting that a
package inherits the requirements of the packages it uses.

requirements
an_int:integer
s0: set of string
bigar: array(S0) of real
procedure doit(i:integer)

end-requirements

Fair Isaac Corporation Proprietary Information 53

Chapter 2: The Mosel Language

2.12.3 Control parameters
Packages may define control parameters that can be used just like those of modules via routines
getparam and setparam. A control parameter is defined in the parameters block (see Section 2.4)
using the following syntax:

pname: type_name

where pname is the name of the parameter as a constant string and type_name its type (either integer,
real, string or boolean). In addition to this declaration accessor routines must be defined: for
handling integer parameters the public function pkgname~getiparam(pname:string):integer
and the public procedure pkgname~setparam(pname:string,v:integer)must be defined
(pkgname being the name of the current package). The function will be called by getparam to retrieve
the value of the specified parameter (as a string in lower case) and the procedure will be used by
setparam to change the parameter value. Similar definitions will be required for the other types
(assuming the package declares parameters of the corresponding types), namely getrparam (real
parameters), getsparam (string parameters) and getbparam (Boolean parameters) as well as the
associated procedures setparam. The following example shows the required definitions for the
package mypkg to publish real parameters p1 and p2:

parameters
"p1":real
"p2":real

end-parameters

declarations
myp1,myp2:real ! private variables to hold parameter values
end-declarations

! get value function for real parameters
public function mypkg~getrparam(p:string):real
case p of
"p1": returned:=myp1
"p2": returned:=myp2
end-case
end-function

! set value procedure for real parameters
public procedure mypkg~setparam(p:string,v:real)
case p of
"p1": myp1:=v
"p2": myp2:=v
end-case
end-procedure

2.13 Namespaces
All identifiers (variables and subroutines names) of a program are implicitly collected in a global
dictionary shared by the program itself and all packages and modules it uses. It is also possible to group
certain identifiers under a namespace that is characterised by a name. A given identifier may appear in
several namespaces and each of its occurrences refers to a different entity, as a consequence an entity is
unambiguously identified by its name and the namespace to which it is a member: this is the fully
qualified name of this entity that is noted:

nspc~ident

Where nspc is a namespace name and ident an identifier in this namespace.

A namespace’s name is also an identifier that must be declared before being used even if it is defined by

Fair Isaac Corporation Proprietary Information 54

Chapter 2: The Mosel Language

a package already loaded. This declaration is achieved using the namespace compiler directive:

namespace ns1 [, ns2 ...]

Where nsi are the names of the namespaces that will be used in the program. As an identifier a
namespace may be declared as part of another namespace and any of the nsi may have the form
nsx~nsy to declare nsy as a namespace included in nsx. Several namespace directives may be stated.

When the compilation starts a namespace is automatically created: it is used to collect all private
symbols of the program. When compiling a model this namespace has an empty name (i.e. a fully
qualified name of this namespace is of the form ~ident) and for a package it has the same name as the
package.

When looking for an identifier (that is not fully qualified) the compiler tries first to find it in the global
dictionary and then searches in a predefined list of namespaces. This list is initialised with the
namespace of private symbols and may be extended using the nssearch directive:

nssearch ns1 [, ns2 ...]

This statement adds the specified namespaces to the search list. If the directive is stated several times,
each added list is appended to the current list of namespaces. The namespace search is not recursive: it
is not sufficient to add a namespace to the search list to have all its included namespaces to be also part
of the search list (e.g. if ns1 includes ns11 and ns12, the 3 names ns1,ns1~ns11 and ns1~ns12must
be put into the search list for all the identifiers to be searchable). Note that namespaces listed in a
nssearch directive do not need to be declared in a namespace directive.

Any namespace defined in a package is available to any model or package using it (and all the identifiers
it includes are implicitly public). Defining a namespace group makes it possible to allow only certain
packages to access a given namespace. The definition of such a group requires the use of a dedicated
compiler directive:

nsgroup nspc: pkg1 [, pkg2 ...]
or
nsgroup nspc

Where pkgi are the package names (as constant strings) that will be allowed to access namespace nspc.
By default the automatic namespace containing the private symbols of a package has a group containing
only the package itself such that it cannot be used by any external component. It is however possible to
redefine this initial group with a nsgroup directive, in particular the second form of the directive (without
specifying any package) makes the corresponding namespace available to any package. Note that
namespaces listed in a nsgroup directive do not need to be declared in a namespace directive.

2.14 Annotations
Annotations are meta data expressed in the Mosel source file that are stored in the resulting bim file after
compilation. Thanks to a dedicated API it is possible to retrieve the information both from the model
itself during its execution (see getannotations) or before/after execution from a host application (see
function XPRMgetannotations in the Mosel Libraries Reference Manual).

2.14.1 Syntax
Annotations are organised in categories. A category groups a set of annotations and other categories (or
sub-categories). When expressing a full annotation name, categories are separated by the ’.’ symbol.
For instance:

Fair Isaac Corporation Proprietary Information 55

Chapter 2: The Mosel Language

doc.name

will be used to select the annotation name that is a member of the doc category. Similarly:

mycat1.cat2.info

will reference the annotation info recorded in the category cat2 that is itself part of category mycat1.
Annotations and annotation categories must be valid Mosel identifiers: their names can only use
alpha-numeric symbols plus ’_’.

Some predefined categories are available at the beginning of the compilation:

■ the default category (its name is empty) collects annotations that are not explicitly member of any
particular category. For instance the annotation myannot will be recorded in the default category.
This annotation may also be referenced by its full name .myannot

■ mc (for Mosel Compiler) is used to pass information to the compiler during the compilation. For
example, the mc.def annotation makes it possible to declare an annotation type (see section
2.14.3)

■ doc can be used to document a model or package file (see section 2.20)

In the Mosel source file annotations are included in special comments. A single-line annotation is of the
form:

!@ name value

Here name is the name of the annotation (spaces between ’@’ and the name are ignored) and the
following text (up to the end of line) its corresponding value. The separation character between the name
and the value can be a space, ’:’ or ’=’ (there must be no space between the name and the symbol).
There is no restriction on the content of the value: it can be any kind of text (unless the annotation is
typed—see section 2.14.3).

A multi-line annotation is of the form:

(!@name value
...
@name2 value2
...

!)

where name is an annotation name while the text following this name is its associated value. With this
syntax the value may spread over several lines, its termination is marked either by the end of the
comment block or by a new annotation specification. In this context, a new annotation must start with
the ’@’ symbol at the beginning of a new line (leading spaces are ignored). As for a one-line annotation,
symbols ’:’ and ’=’ can be used instead of a space to separate the name and its value.

If several annotations of the same category have to be defined in the same block, a current category may
be defined such that following annotation names can be shortened. This mechanism is activated by
specifying the category name terminated by a dot (the remainder of this line is ignored) before the first
annotation statement. The category selection is effective for the current comment block only and
remains active until the next selection. Using a dot in place of a category name restores the default
behaviour (i.e. the full path must be used for annotation reference). For instance:

(!@doc. Switch to 'doc' category (this text is ignored)
@name:my_function
@type:integer
@mycat.cat1. Switch to 'mycat.cat1'

Fair Isaac Corporation Proprietary Information 56

Chapter 2: The Mosel Language

@memb1 10
@memb2 20
@. Unselect current category
@glb=useless

!)

Is equivalent to:

(!@doc.name:my_function
@doc.type:integer
@mycat.cat1.memb1 10
@mycat.cat1.memb2 20
@glb=useless

!)

By default any new annotation name is added to the internal dictionary and no checking is applied to the
provided value. If a given annotation is defined several times only the last assignment is preserved. The
compiler will however emit a warning if an attempt is made to assign a value to a category or to use an
annotation as a category. For instance:

!@mycat.memb1 10
!@mycat.memb1.memb2 20

The second definition will fail to use mycat.memb1 as a category because the first one has already
implicitly declared it as an annotation.

2.14.2 Symbol association
An annotation is either global or associated with a specific public symbol (see section 2.11). The
association depends on the location of the definition in the source code:

■ annotations preceding a subroutine declaration (forward statement) or definition are associated
with the subroutine name

■ annotations preceding a declarations block are distributed to all the symbols declared in the block

■ inside of a declarations block: annotations preceding or terminating the line of a declaration are
associated with the corresponding symbols

In all other cases the annotations are global (i.e. not associated with any particular symbol) — in
particular trying to associate annotations to private symbols will result in global annotations.

Annotations that precede a subroutine declaration, a declarations block or an entity in a declarations
block can be turned into global annotations by inserting the compiler annotation mc.flush between the
annotation and the following code.

2.14.3 Declaration
Declaration of annotations is achieved via the mc.def compiler annotation. Once an annotation is
declared, the compiler checks the validity of definitions and rejects those that are not compliant, issuing a
warning message (invalid annotations will not make the compilation fail unless the flag strict is used).

The general syntax of the annotation declaration statement is:

!@mc.def aname [prop1[,prop2...]]

Where aname is an annotation name and prop? a property keyword. The possible keywords are:

Fair Isaac Corporation Proprietary Information 57

Chapter 2: The Mosel Language

alias name1 name2... aname Defining an alias to name1, name2...

text|integer|real|boolean Type of the annotation value (default:text).

last|first|merge|multi Handling of multiple definitions of an annotation (default:last)

■ last: the last definition is kept
■ first: keep the first definition (the following ones are ignored)
■ merge: definitions are concatenated (separated by new lines)
■ multi: all definitions are kept

global|specific By default, the association of annotations depends on the location of the
definition. If global is stated, the annotation is always global; with option specific,
the annotation will be kept only if it can be associated with a symbol (otherwise it is
ignored instead of being stored as a global one).

values=v1 v2 v3... If used, this option must be the last one of the definition and it cannot be
combined with range. It defines a list of possible values for the annotation.

range=lb ub If used, this option must be the last one of the definition, it requires the type to be
specified (integer or real) and it cannot be combined with values. It defines a range
of possible values.

strict When this option has been stated any error detected on this annotation (or path when
applied to a category) will make the compilation fail

Example:

!@mc.def person.name text,first,specific
!@mc.def person.age integer,first,specific,range=0 150
!@mc.def person.gender values=male female

Categories are implicitly declared by the annotations they include (for instance declaring
@mycat.myann implies the creation of mycat as a category). It is also possible to explicitly declare an
empty category (i.e. containing no annotation) using the mc.def construct by appending a dot to the
category name (the only supported property is strict). For instance:

!@mc.def mycat.

For a given annotation the declaration may be stated several times but the properties of an annotation
cannot be changed. For instance, the following declarations can be used in the same source:

!@mc.def myann
!@mc.def myann text,last

But the following declaration cannot be combined with any of the two preceding ones as they both result
in the annotation type text:

!@mc.def myann integer

Declarations included in models are not exported to the bim file (i.e. they are only used during the
compilation procedure) but declarations stated in packages are published if they are relative to a user
defined category: any model using the package inherits the annotation declarations of the package.

Additional properties can be set using the mc.set compiler annotation. The general syntax of this
special statement is:

Fair Isaac Corporation Proprietary Information 58

Chapter 2: The Mosel Language

!@mc.set name flag

Where name is an annotation or category name and flag one of the following keywords:

complete Applied to a category this flag indicates that no other annotation can be added to this
category (ignored for an annotation). It is however still possible to declare aliases. Note
that sub-categories are not concerned by this flag: if required each sub-category has also
to be tagged.

disable Disable the named category or annotation. From the point where this flag has been set
onwards, all definitions deriving from the provided name are silently ignored.

enable Revert the effect of disable.

unpublish Disable the automatic publication of the specified declaration.

publish Publish the specified declaration.

Note that mc.set expects a full explicit name: for this command ann refers to category ann and not to
annotation .ann as in other places.

2.15 File names and input/output drivers
Mosel handles data streams using I/O drivers: a driver is an interface between Mosel and a physical data
source. Its role is to expose the data source in a standard way such that from the user perspective, all
data sources can be accessed using the same methods (i.e. initializations blocks, file handling
functions). Drivers are specified in file names: all Mosel functions supporting I/O operations through
drivers can be given an extended file name. This type of name is composed of the pair
driver_name:file_name. When Mosel needs to access a file, it looks for the specified driver in the table of
available drivers. This table contains all predefined drivers as well as drivers published by modules
currently loaded in memory. If the driver is provided by a module, the module name may also be indicated
in the extended file name: module_name.driver_name:file_name. Using this notation, Mosel loads the
required module if necessary (otherwise the file operation fails if the module is not already loaded). For
instance it is better to use mmodbc.odbc:database than odbc:database.

The file_name part of the extended file name is specific to the driver and its structure and meaning
depends on the driver. For instance, the sysfd driver expects a numerical file descriptor so file sysfd:1
is a valid name but sysfd:myfile cannot work. A driver may act as a filter and expects as file_name
another extended file name (e.g. zlib.deflate:mem:myblk).

When no driver name is specified, Mosel uses the default driver which name is an empty string (myfile
is equivalent to :myfile). This driver relies on OS functions to access files from the file system. Note
that on the Windows operating system Mosel does not support relative paths on a specified drive (i.e. the
file "C:myfile" is equivalent to "C:\myfile", the behaviour may be different in other environments).

The tmp driver is an extension to the default driver: it locates the specified file in the temporary directory
used by Mosel (i.e. "tmp:toto" is equivalent to the expression getparam("tmpdir")+"/toto").

The null driver can be used to disable a stream: whatever written to file "null:" is ignored and reading
from it is like reading from an empty file.

The mem driver uses a memory block instead of a file handled by the operating system. A file name for
this driver is of the form mem:label[/minsize[/incstep]] where label is an identifier whose first
character is a letter and minsize an optional initial amount of memory to be reserved (size is expressed
in bytes, in kilobytes with suffix "k" or in megabytes with suffix "m"). The label being recorded in the
dictionary of the model symbols it cannot be identical to any of the identifiers of the model (the function
newmuidmight be used to generate a unique identifier). The memory block is allocated dynamically and
resized as necessary. By default the size of the memory block is increased by pages of 4 kilobytes: the

Fair Isaac Corporation Proprietary Information 59

Chapter 2: The Mosel Language

optional parameter incstepmay be used to change this page size (i.e. the default setting is
"label/0/4k"). The special value 0 modifies the allocation policy: instead of being increased of a fixed
amount, the block size is doubled. In all cases unused memory is released when the file is closed.
The mem driver may also be used to exchange data with an application using the Mosel libraries (refer to
the Mosel Libraries Reference Manual for further explanation).

The tee driver can only be open for writing and expects as file name a list of up to 6 extended file names
separated with ‘&’: it opens all the specified files and duplicates what it receives to each of them. If only
one file is given or if the string terminates with ‘&’, output is also sent to the default output stream (or
error stream if the file is used for errors). For instance, writing to the file "tee:log1&log2&" has the
effect of writing at the same time to files "log1" and "log2" as well as sending a copy to the console.

The bin driver can only be used for initializations blocks as a replacement of the default driver: it
allows to write (and read) data files in a platform independent binary format. This file format is generally
smaller than its ASCII equivalent and preserves accuracy of floating point numbers. This driver can be
used in 2 different ways: a single file including all records of the initialisations block is produced if a file
name is provided. For instance, in the following example the file "mydata" will contain both A and B:

initialisations to "bin:mydata"
A
B

end-initialisations

With the second form (without file name) one file is generated for each record of the block. The following
example produces 2 files: "mydata_A" to contain the values of record A and "mydata_B" for values of
B:

initialisations to "bin:"
A as "mydata_A"
B as "mydata_B"

end-initialisations

When using this form in an initialisations to block, the option appendmay be specified such
that files are open in append mode.

The other predefined drivers (sysfd, cb and raw) are useful when interfacing Mosel with a host
application. They are described in detail in the Mosel Libraries Reference Manual.

I/O drivers provided by modules of the Mosel distribution are documented with the corresponding
module (see Part II of this manual).

2.16 Character encoding of text files
Mosel uses UTF-8 for its internal representation of text strings and this is also the default character
encoding for text files. It is however possible to read and write text files in different encodings: for model
source and initialization block files the selection can be achieved by means of a special comment (see
sections 2.5.1 and 2.8.2) but the encoding may also be specified at the time of opening a file by prefixing
its name with the "enc:" prefix:

enc:encoding [+unix|+dos|+sys] [+bom|+nobom],filename

Mosel supports natively the encodings UTF-8, UTF-16, UTF-32, ISO-8859-1, ISO-8859-15, CP1252 and
US-ASCII. For UTF-16 and UTF-32 the byte ordering depends on the architecture of the running system
(e.g. this is Little Endian on an x86 processor) but it can also be specified by appending LE (Little Endian)
or BE (Big Endian) to the encoding name (e.g. UTF-16LE). The availability and names of other encodings
depends on the operating system.

The following aliases may also be used in place of an encoding name: RAW (no encoding), SYS (default

Fair Isaac Corporation Proprietary Information 60

Chapter 2: The Mosel Language

system encoding), WCHAR (wide character for the C library), FNAME (encoding used for file names), TTY
(encoding of the output stream of the console), TTYIN (encoding of the input stream of the console),
STDIN, STDOUT, STDERR (encoding of the default input/output/error stream).

In addition to the encoding name a couple of options might be applied: +unix and +dos select the line
termination (note that +dos is automatically used when writing to a physical file on Windows). Options
+bom and +nobom decides whether a Byte Order Mark is to be inserted at the beginning of the file (this
option only applies to UTF encodings when the file is not open in appending mode). By default a BOM is
inserted when the encoding is UTF-16 or UTF-32, the option +nobom disables this insertion. The option
+bom implies the insertion of a BOM on UTF-8 encoded files (this is usually not required for this encoding
but often used on Windows systems). The option +sys selects the line termination and BOM convention
of the running system (i.e. it is equivalent to +unix on a Posix system and +dos+bom on a Windows
machine).

2.17 Working directory and temporary directory
Except for absolute path names, file or path name expansion are relative to the current working directory.
By default this reference location corresponds to the operating system current working directory which
usually is the directory from which Mosel has been started. Since the working directory is an execution
parameter, a model may be running with a current working directory which might be different from the
one used by the operating system. It is therefore recommended to use absolute file names when a Mosel
model communicates with an external component (for instance when a file name is part of the DSN to be
used for an ODBC connection).

In addition to the current working directory, Mosel creates a temporary directory that is shared by all
models for storing temporary data handled as physical files. This directory is identified by the
environment variable MOSEL_TMP or located in the system temporary directory as specified by one of the
environment variables TMP, TEMP or USERPROFILE under Windows and TMPDIR on Posix systems. If
none of these environment variables is defined, the default base directory will be "C:\" on Windows and
"/tmp" on Posix systems. The Mosel temporary directory is automatically created when needed and
deleted at program termination.

The path names of the working directory and the temporary directory are identified respectively by the
"workdir" and "tmpdir" control parameters and can be retrieved using the getparam function. It is
possible to change the current working directory of a running model by updating the "workdir"
parameter using setparam.

2.18 Handling of input/output
At the start of the execution of a program/model, three text streams are created automatically: the
standard input, output and error streams. The standard output stream is used by the procedures writing
text (write, writeln, fflush). The standard input stream is used by the procedures reading text
(read, readln, fskipline). The standard error stream is the destination of error messages reported
by Mosel during its execution. These streams are inherited from the environment in which Mosel is being
run: usually using an output procedure implies printing something to the console and using an input
procedure implies expecting something to be typed by the user.

The procedures fopen and fclosemake it possible to associate text files to the input, output and error
streams: in this case the IO functions can be used to read from or write to files. Note that when a file is
opened, it is automatically made the active input, output or error stream (according to its opening status)
but the file that was previously assigned to the corresponding stream remains open. It is however
possible to switch between different open files using the procedure fselect in combination with the
function getfid.

model "test IO"

Fair Isaac Corporation Proprietary Information 61

Chapter 2: The Mosel Language

def_out:=getfid(F_OUTPUT) ! Save file ID of default output
fopen("mylog.txt",F_OUTPUT) ! Switch output to 'mylog.txt'
my_out:=getfid(F_OUTPUT) ! Save ID of current output stream

repeat
fselect(def_out) ! Select default ouput...
write("Text? ") ! ...to print a message
text:=''
readln(text) ! Read a string from the default input
fselect(my_out) ! Select the file 'mylog.txt'
writeln(text) ! Write the string into the file
until text=''
fclose(F_OUTPUT) ! Close current output (='mylog.txt')
writeln("Finished!") ! Display message to default output
end-model

2.19 Deploying models
Once a model has been compiled to a BIM file it may be deployed in a variety of ways. It may be

■ run from some remote code using the remote invocation library XPRD (see the XPRD reference
manual),

■ be integrated in an application through the Mosel libraries (see Mosel libraries reference manual),

■ form part of an Xpress Insight application (see the Xpress Insight Developer Guide), or

■ simply be invoked from a command window or shell.

For the last option the usual approach consists in using the mosel command line tool (see section 1.3)
with the run command. For instance, the following command may be used to run the model mycmd.bim:

> mosel run mycmd.bim

The aim of the deploy module is to ease the use of a model published this way. This module makes it
possible to generate an executable program from the BIM file. Moreover, it gives the model access to the
command line arguments and exposes a method for embedding configuration files into the resulting
program. The deploy module is usually used through one of its two IO drivers: the first driver, csrc,
generates a C program (based on the Mosel libraries) from a BIM file and the second one, exe, produces
directly the executable by running a C compiler on the generated C source (this requires the availability of
a C compiler on the system). For example the following command will create the program runmycmd (or
runmycmd.exe on Windows) from the model mycmd.mos:

> mosel comp mycmd.mos -o deploy.exe:runmycmd

In addition to its IO drivers, the deploy module publishes two functions for accessing the program
arguments: argc returns the number of parameters passed to the command (counting the command
itself as the first) and argv(i) returns the ith argument (as a string). As an example, the following model
displays the arguments it receives:

model mycmd
uses 'deploy'

writeln("My arguments:")
forall(i in 1..argc) writeln(argv(i))
end-model

After compiling this example into an executable with the command shown above, an execution of the
command runmycmd a b c will display:

Fair Isaac Corporation Proprietary Information 62

Chapter 2: The Mosel Language

My arguments:
runmycmd
a
b
c

In addition to giving access to command line arguments, deploy makes it possible to embed files into the
resulting executable. File locations are passed via model parameters. The following example outputs its
source when the program is called with the argument ’src’ — otherwise it reports an error message:

model mycmd2
uses 'deploy','mmsystem'

parameters
SRC="null:"
end-parameters

if argc<>2 or argv(2)<>"src" then
writeln("Usage: ", argv(1), " src")
exit(1)
else
writeln("Source:")
fcopy(SRC,"")
end-if
end-model

In this example, the source file is identified by the model parameter SRC. To generate the program, the
following command has to be issued:

> mosel comp mycmd2.mos -o deploy.exe:runmycmd2,SRC=mycmd2.mos

With the command above, the file mycmd2.mos is included in the executable and the SRC parameter is
redefined such that the model can access the file through memory. Note that the model file can also be
included in the executable in compressed form. To enable this feature, the parameter name has to be
suffixed with -z in the compilation command:

> mosel comp mycmd2.mos -o deploy.exe:runmycmd2,SRC-z=mycmd2.mos

2.20 Documenting models using annotations
The predefined doc annotation category can be used to document a Mosel file. Using a dedicated set of
annotations the model author can add descriptions to the various entities defined in the source, the
user-defined descriptions are completed by definitions automatically generated by the Mosel compiler.

From a bim file that includes such definitions a documentation processor may produce a complete
document: as an example, the Xpress distribution comes with the moseldoc processor that generates an
HTML documentation from an annotated bim file.

2.20.1 doc annotation category
Unlike other annotation categories, the doc annotation category is disabled by default such that the
corresponding annotations are silently ignored. To generate a documentation-enabled bim file the
compiler has to be run with the option -D. In addition to enabling the doc category, this flag also
activates the automatic generation of certain documentation annotations by the compiler. Alternatively to
using this flag, a model may define the following annotations:

!@mc.set doc enable
!@doc.autogen=true

Fair Isaac Corporation Proprietary Information 63

Chapter 2: The Mosel Language

Note that these special annotations can also be used in the source file as a means to exclude some
definitions from the documentation, setting doc.autogen to false right before the definitions to be
excluded and back to true immediately after.

2.20.1.1 Global definitions
The following global annotations are automatically generated by the compiler:

@doc.name Name of the package or model

@doc.version Version number as stated by the ’version’ statement

@doc.date Current date

@doc.ispkg Set to ’true’ if the file is a package

All automatic annotations can also be defined explicitly in the Mosel source to overwrite their default
values.

The following annotations may be added to complete the general appearance of the document to be
produced (they are used by the moseldoc documentation processor):

@doc.title Title of the document

@doc.subtitle Subtitle of the document

@doc.xmlheader Header of the XML document

@doc.xmlroot Name of the XML element containing the documentation

@doc.id Prefix used to generate IDs of chapters, sections, and subsections. If the
documentation for several packages is generated from a single master model then
a unique ID must be explicitly defined in each of the packages in order to avoid ID
collision

The @doc category is complete (i.e. it is not possible to create new doc.X annotations), however, the
category @doc.ext can be used to define further information assuming a particular documentation
processor can exploit it.

2.20.1.2 Document structure
Optionally, the resulting document may be organised in chapters, sections and subsections. Each of
these constructs can contain both text paragraphs and entity descriptions (declarations and subroutines).
To enter a new documentation component, one of the following annotations has to be defined:

@doc.chapter Start a chapter

@doc.section Start a section inside of a chapter

@doc.subsection Start a subsection inside of a section

Chapters and sections may also be taken from external files: the annotation @doc.include specifies a
file name that must be a valid XML document including either chapters (tag <chapter>) or sections (tag
<section>). The Mosel compiler will record the location of the inclusion that will be executed by the
moseldoc processor.

In addition to the provided title a short title might also be defined (using @doc.shorttitle) that will be
used in place of the (long) title in the table of contents. Whenever a new division starts, a unique ID is

Fair Isaac Corporation Proprietary Information 64

Chapter 2: The Mosel Language

automatically generated based on the section number and any defined prefix specified in the header of
the document with @doc.id. It is also possible to explicitly define an ID using @doc.id just after
entering the section (this is required when the section has to be referenced using a <ref> tag).

From inside of any of these divisions a new paragraph is added with the @doc.p annotation. By default
any new addition (paragraph or entity description) is appended to the current component but it is possible
to select an alternative location. A target location has first to be defined using the annotation
@doc.location: this creates a label associated with the current section. Defining the annotation
@doc.relocate with this target elsewhere in the source file will move all subsequent additions to the
target location; this relocation will continue up to the next division marker or relocation definition. Note
that defining an empty relocation reverts to the effective current location. Example:

(!@doc.
@chapter My first chapter
@p some text related to the first chapter
@location first_chap
@section first section of first chapter
@p something about the section
@relocate first_chap
@p this paragraph will be inserted directly under first chapter
@relocate
@p but this one will remain in the section

!)

2.20.1.3 Symbol definitions
The following sections list the various documentation annotations that can be defined depending on the
kind of the entity (parameter, variable, type or subroutine) to be documented. Some of these annotations
are automatically defined by the compiler: in the case of values (like the value of a constant) the
automatic definition may not be performed if the value is the result of a calculation that cannot be
evaluated at compile time ("runtime constant"). In this case it is required to explicitly specify the text that
should be retained in the documentation.

Parameters

@doc.descr Description (1-2 text lines)

@doc.default Default value (automatically generated)

@doc.type Type (automatically generated)

@doc.value Possible value and explanation of its meaning (may be defined several times)

@doc.info Some more detailed explanations (may be defined several times)

@doc.ignore The symbol will be ignored by the documentation processor

@doc.deprecated The parameter is deprecated and should no longer be used (an explanation can be
given)

Types, constants and variables
This set of annotations apply to symbols declared in declarations blocks. Record fields (both for a type
declaration and for a variable) can be described using @doc.recflddescr: the value of this annotation
consists in the name of the field followed by its description (a space should separate these two
components)

@doc.descr Description (1-2 text lines)

@doc.const For a constant: value (automatically generated)

Fair Isaac Corporation Proprietary Information 65

Chapter 2: The Mosel Language

@doc.type Type (automatically generated)

@doc.typedef For a type definition: type (automatically generated)

@doc.value Possible value and explanation of its meaning (may be defined several times)

@doc.info Some more detailed explanations (may be defined several times)

@doc.setby Name of subroutines modifying this entity

@doc.recfldtype Type of a record field (automatically generated)

@doc.recflddescr Description of a record field

@doc.ignore The symbol will be ignored by the documentation processor

@doc.reqmt The symbol is a requirement (automatically generated)

@doc.deprecated The type or variable is deprecated and should no longer be used (an explanation
can be given)

Procedures and functions
Information from different overloaded versions of a given subroutine is merged automatically. The
@doc.group annotation may be used to merge information of routines with different names but used for
a similar task (up to 3 different subroutine names can be grouped). The @doc.param annotation is used
to describe the parameters of the routine: the value of this annotation consists in the name of the
parameter followed by its description (a space should separate these two components)

@doc.group Name of another subroutine that this one should be grouped with

@doc.descr Description (1-2 text lines)

@doc.shortdescr Shortened description for table of contents and list display

@doc.syntax Routine signature (automatically generated)

@doc.param Name and meaning of a subroutine argument (may be defined several times)

@doc.paramval Possible value and meaning of a subroutine argument (may be defined several
times). The value of this annotation is the name of the parameter (as specified with
a preceding @doc.param) followed by the value and the explanation

@doc.return For functions only: what is returned

@doc.err Possible error code (may be defined several times)

@doc.example Example of use (may be defined several times)

@doc.info Some more detailed explanations (may be defined several times)

@doc.related List of related symbols

@doc.ignore The subroutine will be ignored by the documentation processor

@doc.reqmt The subroutine is a requirement (automatically generated)

@doc.deprecated The subroutine is deprecated and should no longer be used (an explanation can
be given)

Fair Isaac Corporation Proprietary Information 66

Chapter 2: The Mosel Language

2.20.1.4 Annotation definitions
A special set of annotations (category @doc.annot) is available for documenting annotation definitions
in Mosel packages (not supported for Mosel models). The annotations for documenting annotation
definitions are global annotations, their value must start with an annotation name in order to associate
them with the corresponding annotation definition.

@doc.annot.descr Annotation name followed by a short description (1-2 text lines)

@doc.annot.default Annotation name and default value

@doc.annot.value Annotation name, possible value and explanation of its meaning (may be defined
several times)

@doc.annot.type Annotation type

@doc.annot.info Annotation name and some more detailed explanations (may be defined several
times)

@doc.annot.deprecated Annotation name and optionally some explanatory text

@doc.annotcat Annotation category to document (may be defined several times), if undefined all
categories are documented

@doc.annotloc Insertion point (specified via @doc.location) for annotations documentation

2.20.1.5 Package control parameters
A special set of annotations (category @doc.cparam) is available for documenting control parameters of
Mosel packages. The annotations for documenting control parameters are global annotations, their value
must start with a parameter name in order to associate them with the corresponding control parameter.

@doc.cparam.descr Parameter name followed by a short description (1-2 text lines)

@doc.cparam.default Parameter name and default value

@doc.cparam.value Parameter name, possible value and explanation of its meaning (may be
defined several times)

@doc.cparam.type Parameter type (automatically generated by the compiler)

@doc.cparam.info Parameter name and some more detailed explanations (may be defined several
times)

@doc.cparam.deprecated Parameter name and optionally some explanatory text

@doc.cparamloc Insertion point (specified via @doc.location) for control parameters
documentation

2.20.2 moseldoc documentation processor
2.20.2.1 Running moseldoc
The moseldoc program takes as input either a bim file produced from a Mosel model compiled with the
-D compiler option or directly a Mosel source file (in which case a compilation step is automatically
executed). Typically the generation of the documentation from a source file will be obtained with the
following command:

>moseldoc mymodel.mos

Fair Isaac Corporation Proprietary Information 67

Chapter 2: The Mosel Language

The result of this process is an XML file ("mymodel_doc.xml") and a directory containing an HTML
version of the documentation ("mymodel_html"). The program will produce only the XML file (from a
bim or source file) if option -xml is used and only the HTML output (from an XML file) if -html is
selected. The option -f is required to force the replacement of existing files.

As a Mosel program available in source form, moseldoc can be adapted to fit specific requirements. To
re-generate the executable use this compilation command:

>mosel comp -s moseldoc.mos -o deploy.exe:moseldoc,css-z=moseldoc.css

2.20.2.2 Structure of the generated document
The resulting document respects the structure defined by the dedicated annotations (chapter, section,
subsection). In each of these divisions, the paragraphs are exposed first, then the parameters and
variables and finally the list of subroutines. If no structural elements have been defined, a chapter per
entity type is automatically created to group similar objects (Parameters, Constants, Types, Variables and
Subroutines).

2.20.2.3 Processing of annotation values
Values associated with descriptive text annotations (like section titles or descriptions) are interpreted as
XML. Paragraphs (@doc.p) and examples (@doc.example) are handled in a specific way: by default the
value is inserted as XML but, if the value starts with [TXT], the content is treated as plain text; if it starts
with [SRC], the value is considered to be some example code and it is reproduced preserving spacing. If
it starts with [NOD], it is interpreted as a self-contained XML node (i.e. it is not inserted in a paragraph
block). In an XML block of text, the markers ref (chapter/section/subsection reference), fctRef
(subroutine reference) and entRef (entity reference) are processed such that in the HTML document
they are turned into hyperlinks to the corresponding objects. Similarly, the tt element type is replaced by
an appropriate style for displaying code samples.

2.21 Message translation
Mosel supports a message translation mechanism that makes it possible to display messages in the
current language of the operating environment. This system requires that all messages are originally
written in English and identified as messages to be translated (it is usually not desirable to translate all
text strings of a model). The Mosel compiler can then collect all messages to be translated for building
message catalogs. Each message catalog file contains the translations of the messages for a given
language: Mosel will select the appropriate file for the current language during its execution to use the
right set of translations. The system is designed such that it will not fail if a translation or an entire
language is missing: in such a case the original English text is used.

2.21.1 Preparing the model source
Most often, not all text strings occurring in a program are to be translated to native language. This is why
it is necessary to tag each message to be translated such that the automatic message translation system
can process only the relevant texts. The tagging is achieved by using the operators _c(), _() or the
modified procedures write_(), writeln_(), fwrite_() and fwriteln_().

The operator _c() is used to identify constant strings that should be collected for translation but the
string will not be translated at the place where it is used. This operator can be applied to a list of string
constants. A similar effect can be obtained with the annotation mc.msgid.

The function _() applies to both constant strings and variables: it replaces its argument by the
translated string. As with the operator _c() constant strings are collected for the message catalogs, but
they will also be replaced by their translation at the place where the operator is applied to the string.

Fair Isaac Corporation Proprietary Information 68

Chapter 2: The Mosel Language

The write_ and writeln_ procedures are equivalent to their normal versions except that they process
the constant strings they have to display for translation.

All translations of a model (or package) are grouped under a domain: this identifier is used to name the
message catalog files. The default domain name is the model (or package) name after having replaced
spaces and non-ascii characters by underscores (for instance the domain name of the model "my mod"
is "my_mod"). The domain name can also be specified using the mc.msgdom annotation.

The following model example shows the use of the various markers:

model translate
! The message domain is 'trs' (default name would be the model name 'translate')
!@mc.msgdom trs

declarations
! The elements of 'nums' are kept in English, but collected for translation
nums=[_c("one","two","three")]
! Add 'four' to the message catalogs (although it is not used here)
!@mc.msgid:four
end-declarations

! Translate the message text, without translating 'nums'
writeln_("all numbers (in English): ", nums)
n:=getfirst(nums)
! Translate the message text and the first occurrence of 'n', but not
! its second occurrence
writeln_("the first number is: ", _(n), " (in English:", n, ")")
end-model

2.21.2 Building the message catalogs
Once the model source has been prepared, the list of messages to be translated can be extracted. This
operation is performed by the Mosel compiler when executed with the option -x:

>mosel comp -x mymod.mos -o trs.pot

The output of this command is a Portable Object Template (POT): this is a text file consisting of a list of
pairs msgid (message to translate), msgstr (translation) for which only the first entry is populated.

With the example model from the previous section the generated POT file results in the following:

Created by Mosel v4.0.0 from 'translate.mos'
Domain name: trs

msgid "all numbers (in English): %L\n"
msgstr ""

msgid "four"
msgstr ""

msgid "one"
msgstr ""

msgid "the first number is: %s (in English:%s)\n"
msgstr ""

msgid "three"
msgstr ""

msgid "two"
msgstr ""

For each of the supported languages a separate PO (Portable Object) file that will contain the
corresponding translations has to be created from this template. The command xprnls is used for this

Fair Isaac Corporation Proprietary Information 69

Chapter 2: The Mosel Language

task (for further details please refer to the XPRNLS Reference Manual). For instance the following
command will create the file for the Italian translations of the messages:

>xprnls init -o trs.it.po trs.pot

Here we name the file domain.language.po in order to ease the management of these translation files
(where language stands for the ISO639 language code).

The generated file is a copy of the template with an additional header that should be completed by the
translator (it is pre-populated with information obtained from the system), in particular the language
(property "Language") and the encoding (property "Content-Type"). For each of the msgid records
the translation in the language associated to the file has to be provided in the msgstr record. Note that
some messages include escape sequences (like "\n") and format markers (e.g. "%s"): the
corresponding translation must include the same format markers as the original text and they must
appear in the same order (otherwise the translation will be ignored).

The beginning of the translation file of our example for French (named "trs.fr.po") should be similar
to the following (the extract below shows only the header and the translation of the first message):

msgid ""
msgstr ""
"Project-Id-Version: My translation example\n"
"POT-Creation-Date: 2015-12-04 18:16+0100\n"
"PO-Revision-Date: 2015-12-04 18:16+0100\n"
"Last-Translator: Jules Verne\n"
"Language: fr\n"
"Content-Type: text/plain; charset=ISO8859-15\n"

msgid "all numbers (in English): %L\n"
msgstr "tous les nombres (en anglais): %L\n"

The message catalogs for the PO files are obtained by running once more the xprnls command, this
time using the option mogen:

>xprnls mogen -d locale trs.⁎.po

This command will compile each of the PO files into a Machine Object (MO) file named trs.mo that will be
saved under the directory locale/lang/LC_MESSAGES. This directory tree must be distributed along
with the model file for the automatic translation to work.

2.21.3 Model execution
During the execution of the model the message catalogs for the current language (as indicated by the
operating system) are loaded automatically from the ’locale’ directory. This location is defined by the
"localedir" control parameter (by default this is "./locale"). If no message catalog can be found
for the requested language then the original English text is used. This will also be the case if a translation
is missing (e.g. if the message catalog has not been updated after some model source change).

When run on a computer configured for French our example displays:

tous les nombres (en anglais): [`one',`two',`three']
le premier nombre est: un (en anglais:one)

Fair Isaac Corporation Proprietary Information 70

CHAPTER 3

Predefined functions and procedures

This chapter lists in alphabetical order all predefined functions and procedures included in the Mosel
language. Certain functions or procedures take predefined constants as input values or return values that
correspond to predefined constants. In every case, these constants are documented with the function or
procedure. In addition, Mosel defines a few other useful numerical constants:

MAX_INT maximum integer number

MAX_REAL maximum real number

M_E base of natural logarithms e

M_PI value of π

INFINITY Infinity

NAN Not A Number

Fair Isaac Corporation Proprietary Information 71

Chapter 3: Predefined functions and procedures

abs

Purpose
Get the absolute value of an integer or real.

Synopsis
function abs(i:integer):integer
function abs(r:real):real

Arguments
i Integer number for which to calculate the absolute value
r Real number for which to calculate the absolute value

Return value
Absolute value of an integer or real number.

Further information
This function returns the absolute value of an integer or real number. The returned type corresponds to
the type of the input.

Related topics
exp, ln, log, sqrt.

Fair Isaac Corporation Proprietary Information 72

Chapter 3: Predefined functions and procedures

arctan

Purpose
Get the arctangent of a value.

Synopsis
function arctan(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return value
Arctangent of the argument.

Example
The following functions compute the arcsine and arccosine of a value:

function arcsin(s:real):real
returned:=arctan(s/sqrt(1-s^2))
end-function

function arccos(c:real):real
returned:=arctan(sqrt(1-c^2)/c)
end-function

Related topics
cos, sin

Fair Isaac Corporation Proprietary Information 73

Chapter 3: Predefined functions and procedures

asproc

Purpose
Ignore the return value of a function call.

Synopsis
procedure asproc(fctcall)

Argument
fctcall A function call

Example

asproc(splithead(L,2))

Further information
This procedure makes it possible to call a function and ignore its return value (see also option
fctasproc in section 2.3.3).

Fair Isaac Corporation Proprietary Information 74

Chapter 3: Predefined functions and procedures

assert

Purpose
Abort execution if a condition is not satisfied.

Synopsis
procedure assert(c:boolean)
procedure assert(c:boolean,m:string)
procedure assert(c:boolean,m:string,e:integer)

Arguments
c Condition to verify
m Error message to display in case of failure
e Error code to return in case of failure (default: 8)

Example

assert(and(i in I) mydata(i)>0)
assert(isodd(a),"a is not odd!!")

Further information

1. If the condition c is satisfied, this procedure has no effect, otherwise it displays an error message, calls
dumpcallstack(0), and aborts execution by calling exit. The versions of the procedure with 2 and 3
parameters can be used to replace the default message (location of the statement in the source) and
default exit value (8).

2. If the message m starts with the symbols "." or ":" (e.g. ": my error") the resulting message will
be prefixed by the location of the statement in the source. Otherwise the provided message will replace
the default text and be printed unchanged.

3. Assertions are usually used as a debugging tool and are ignored (i.e. the statemens are not included at
all) when the model is compiled without debugging information (i.e. none of options -g or -G is used) or
if the compiler flag -na is used. It is however possible to keep assert statements even when no
debugging information is included by specifying the compiler directive keepassert (see Section 2.3).

Related topics
exit, dumpcallstack

Fair Isaac Corporation Proprietary Information 75

Chapter 3: Predefined functions and procedures

bitflip

Purpose
Flip bits (bitwise XOR).

Synopsis
function bitflip(i:integer, j:integer):integer

Arguments
i Integer to be set
j Value to flip

Return value
Bitwise XOR of the operands.

Example
In the following, i takes the value 9, j takes the value 141, and k takes the value 7:

i:= bitflip(12, 5)
j:= biflip(13, 128)
k:= bitflip(13, 10)

Further information
This function computes the bitwise exclusive OR of its operands.

Related topics
bittest, bitshift, bitset, bitneg, bitval

Fair Isaac Corporation Proprietary Information 76

Chapter 3: Predefined functions and procedures

bitneg

Purpose
Bitwise negation (bitwise NOT).

Synopsis
function bitneg(i:integer):integer

Argument
i Integer to negate

Return value
Negated value of argument.

Example
In the following, i takes the value -6, j takes the value 2147483647, and k takes the value -4:

i:= bitneg(5)
j:= bitneg(-2147483647-1)
k:= bitneg(3)

Further information
The bitwise NOT (or complement) consists in computing the logical negation of each bit: 1 is replaced by
0 and 0 is replaced by 1.

Related topics
bitset, bittest, bitflip, bitshift, bitval

Fair Isaac Corporation Proprietary Information 77

Chapter 3: Predefined functions and procedures

bitset

Purpose
Set bits (bitwise OR).

Synopsis
function bitset(i:integer, j:integer):integer

Arguments
i Integer to be set
j Value to set

Return value
Bitwise OR of the operands.

Example
In the following, i takes the value 13, j takes the value 141, and k takes the value 15:

i:= bitset(12, 5)
j:= bitset(13, 128)
k:= bitset(13, 10)

Further information
This function computes the bitwise OR of its operands.

Related topics
bittest, bitshift, bitflip, bitneg, bitval

Fair Isaac Corporation Proprietary Information 78

Chapter 3: Predefined functions and procedures

bitshift

Purpose
Shift an integer by a number of bits.

Synopsis
function bitshift(i:integer, n:integer):integer

Arguments
i Integer to be shifted
n Number of bits: >0 for shifting to the left and <0 for shifting to the right

Return value
Shifted integer.

Example
In the following, i takes the value 160, j takes the value 32, and k takes the value 1:

i:= bitshift(5, 5)
j:= bitshit(1, 5)
k:= bitshit(128, -7)

Further information
Shifting of 1 bit to the right is the same as dividing it by 2 and shifting of 1 bit to the left is the same as
multiplying by 2.

Related topics
bitset, bittest, bitflip, bitneg, bitval

Fair Isaac Corporation Proprietary Information 79

Chapter 3: Predefined functions and procedures

bittest

Purpose
Test bit settings (bitwise AND).

Synopsis
function bittest(i:integer, mask:integer):integer

Arguments
i Integer to be tested
mask Bit mask

Return value
Bits selected by the mask.

Example
In the following, i takes the value 4, j takes the value 5, and k takes the value 8:

i:= bittest(12, 5)
j:= bittest(13, 5)
k:= bittest(13, 10)

Further information
This function compares a given number with a bit mask and returns those bits selected by the mask that
are set in the number (bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on - use function
bitval to get the value of a bit).

Related topics
bitset, bitshift, bitflip, bitneg, bitval

Fair Isaac Corporation Proprietary Information 80

Chapter 3: Predefined functions and procedures

bitval

Purpose
Compute the value corresponding to a bit number.

Synopsis
function bitval(i:integer):integer

Argument
i Bit number (between 0 and 31)

Return value
Value of the selected bit.

Example
In the following, i takes the value 1, j takes the value -2147483648, and k takes the value 16:

i:= bitval(0)
j:= bitval(31)
k:= bitval(4)

Further information
This function computes the value corresponding to a bit number. The evaluation of bitval(i)
corresponds to bitshift(1,i)

Related topics
bitset, bitshift, bitflip, bitneg, bittest

Fair Isaac Corporation Proprietary Information 81

Chapter 3: Predefined functions and procedures

ceil

Purpose
Round a number to the next largest integer.

Synopsis
function ceil(r:real):integer

Argument
r Real number to be rounded

Return value
Rounded value.

Example
In the following, i takes the value 6, j takes the value -6, and k takes the value 13:

i := ceil(5.6)
j := ceil(-6.7)
k := ceil(12.3)

Related topics
floor, round.

Fair Isaac Corporation Proprietary Information 82

Chapter 3: Predefined functions and procedures

compare

Purpose
Compare 2 values.

Synopsis
function compare(arg1:ordered type, arg2:same type as arg1):integer

Arguments
arg1 First operand for the comparison
arg2 Second operand for the comparison (same type as arg1)

Return value
0 if arguments are identical, -1 if the first argument is less than the second argument and 1 otherwise.

Further information
This function is defined for integer, real, string and boolean variables. It is also available for module types
that implement the necessary functionality.

Fair Isaac Corporation Proprietary Information 83

Chapter 3: Predefined functions and procedures

cos

Purpose
Get the cosine of a value.

Synopsis
function cos(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return value
Cosine value of the argument.

Example
The function tangent can be implemented as follows:

function tangent(x:real):real
returned:=sin(x)/cos(x)
end-function

Related topics
arctan, sin.

Fair Isaac Corporation Proprietary Information 84

Chapter 3: Predefined functions and procedures

create

Purpose
Create explicitly a cell of a dynamic array.

Synopsis
procedure create(x:array reference)
procedure create(u:union reference)

Arguments
x Cell to be created
u Union to initialize

Example
The following declares a dynamic array of variables, creating only those corresponding to the odd indices.
It also initializes a union as a decision variable. Finally, it defines the linear expression ux + x(1) +
x(3) + x(5) + x(7):

declarations
x: dynamic array(1..8) of mpvar
ux: any
end-declarations

create(ux.mpvar)
forall(i in 1..8| isodd(i)) create(x(i))
C:= ux.mpvar + sum(i in 1..8) x(i)

Further information

1. Usually cells of dynamic arrays are created by means of assignments. This procedure can be used as a
replacement for an assignment, in particular when the type of a dynamic array does not provide any
assignment operator (like mpvar for instance).

2. In a similar way as for an array cell the create procedure may be used to initialize and set the type of a
union. If the union has already the requested type no operation if performed, otherwise the current value
is deleted and the new type is assigned to the entity (in association with the corresponding default value).

Related topics
Section 2.6.4, Section 2.6.7, reset, delcell.

Fair Isaac Corporation Proprietary Information 85

Chapter 3: Predefined functions and procedures

currentdate

Purpose
Return the current date as a Julian Day Number (JDN).

Synopsis
function currentdate:integer

Return value
The number of days elapsed since 1/1/1970 as an integer.

Further information

1. The control parameter "UTC" indicates whether this function returns a date in local or UTC time.

2. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
setparam,timestamp,currenttime

Fair Isaac Corporation Proprietary Information 86

Chapter 3: Predefined functions and procedures

currenttime

Purpose
Return the current time as the number of milliseconds since midnight.

Synopsis
function currenttime:integer

Return value
The number of milliseconds since midnight as an integer.

Further information

1. The control parameter "UTC" indicates whether this function returns a time in local or UTC time.

2. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
setparam,timestamp,currentdate

Fair Isaac Corporation Proprietary Information 87

Chapter 3: Predefined functions and procedures

cutelt

Purpose
Extract an element from a set or a list.

Synopsis
function cutelt(e:set):type_of_e
function cutelt(l:list):type_of_l
function cutelt(l:list,p:integer):type_of_l

Arguments
e A set
l A list
p Index of the element to remove (default:1)

Return value
An element of the set or list after it has been removed from its container.

Further information
When applied to a range set or list this function behaves like cutfirst. An error is generated if the
argument of the function is empty.

Related topics
getelt.

Fair Isaac Corporation Proprietary Information 88

Chapter 3: Predefined functions and procedures

cutfirst

Purpose
Extract the first element of a range set or a list.

Synopsis
function cutfirst(r:range):integer
function cutfirst(l:list):type_of_l

Arguments
r A range set
l A list

Return value
The first element of the set or list after it has been removed from its container.

Further information
This function is equivalent to calling getfirst and then cuthead for dropping one element.

Related topics
cutlast, cutelt.

Fair Isaac Corporation Proprietary Information 89

Chapter 3: Predefined functions and procedures

cuthead

Purpose
Cut the first elements of a list.

Synopsis
procedure cuthead(l:list, o:integer)

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Example

L:=[1,2,3,4,5]
cuthead(L,2) ! => L=[3,4,5]
cuthead(L,-1) ! => L=[5]

Further information
If the second parameter is 0, the list is unchanged. If the same parameter is larger than the size of the list,
all elements are deleted.

Related topics
cuttail

Fair Isaac Corporation Proprietary Information 90

Chapter 3: Predefined functions and procedures

cutlast

Purpose
Extract the last element of a range set or a list.

Synopsis
function cutlast(r:range):integer
function cutlast(l:list):type_of_l

Arguments
r A range set
l A list

Return value
The last element of the set or list after it has been removed from its container.

Further information
This function is equivalent to calling getlast and then cuttail for dropping one element.

Related topics
cutfirst, cutelt.

Fair Isaac Corporation Proprietary Information 91

Chapter 3: Predefined functions and procedures

cuttail

Purpose
Cut the last elements of a list.

Synopsis
procedure cuttail(l:list, o:integer)

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Example

L:=[1,2,3,4,5]
cuttail(L,2) ! => L=[1,2,3]
cuttail(L,-1) ! => L=[1]

Further information
If the second parameter is 0, the list is unchanged. If the same parameter is larger than the size of the list,
all elements are deleted.

Related topics
cuthead

Fair Isaac Corporation Proprietary Information 92

Chapter 3: Predefined functions and procedures

delcell

Purpose
Delete a cell or all cells of a dynamic array.

Synopsis
procedure delcell(x:array reference)
procedure delcell(a:array)

Arguments
x Cell to be deleted
a An array

Further information

1. The first form of the routine can only be applied to dynamic arrays (it is not possible to delete a cell of a
dense array). Using the second syntax of the procedure will release all cells of the array, note that in the
case of a dense array the entire data set will be reallocated when the array is accessed again.

2. Deleting a cell of an array of referenced objects (like mpvar) may not effectively release that object.
Actually, a referenced object is released only when all its references have been removed. For instance, if
an object appears in a set, deleting its main reference using delcell will not remove this object from
the set.

Related topics
Section 2.6.4, create, reset.

Fair Isaac Corporation Proprietary Information 93

Chapter 3: Predefined functions and procedures

datablock

Purpose
Get the file name of an embedded data block .

Synopsis
function datablock(src:string, prefix:string):string
function datablock(src:string):string

Arguments
src Name of the file to be embedded
prefix Prefix to be used for accessing the data block (default: "zlib.deflate:")

Return value
A file name pointing to the data block

Example
In the following code extract the bim file for submod.mos is generated during the compilation of the
current (master) model and is included in the resulting bim file for this model. At execution time the
master model will therefore not require any additional file for this submodel:

load(submod,datablock("mmsystem.pipe:mosel comp -o - submod.mos"))
run(submod)
waitforend(submod)

Note that the output of the compilation for the file submod.mos is redirected via the ’pipe’ onto the
master model while this model itself is being compiled.

Further information

1. This function makes it possible to embed in a bim file any data files that are available during the
compilation of the model source but cannot be accessed at execution time. The files specified by this
routine are made available as memory blocks (see Section 2.15) during the execution of the model.

2. The file specified by the src argument is loaded into memory and saved in the resulting bim file during
the compilation of the source model. At execution time this function call results in a file name pointing to
a memory location storing the previously saved data.

3. The file name src is handled in the same way as for source file inclusion (see Section 2.5.2), in particular
the same rules apply regarding the file location and the expansion of environment variables.

4. The prefix argument can be used to select a driver for processing the file. With its default value
("zlib.deflate:") the file is compressed before being stored in the bim file, the decompression
occurs when the file is accessed during execution (i.e. the file name returned by the function begins with
the string "zlib.deflate:"). To keep the file in its original form use an empty string as the prefix (i.e.
"").

5. When several data blocks with the same name and prefix are used in a model source the corresponding
file is loaded and stored only once.

6. If the file to store is empty (or if its name is an empty string) the function call is replaced by the constant
"null:" and no memory block is created.

Fair Isaac Corporation Proprietary Information 94

Chapter 3: Predefined functions and procedures

dumpcallstack

Purpose
Display the current call stack of the system.

Synopsis
procedure dumpcallstack(ml:integer)

Argument
ml Maximum number of levels to display

Further information

1. This procedure displays the call stack of the running model, that is the sequence of subroutine calls
leading to the current statement. The parameter ml sets a limit on the number of steps to report, if this
value is 0 the default value defined at the global level will be used (see Section 1.3.1).

2. Stack dumps require debugging information: if the model has not been compiled with options -g or -G
calling the procedure will have no effect.

Related topics
assert.

Fair Isaac Corporation Proprietary Information 95

Chapter 3: Predefined functions and procedures

exists

Purpose
Check if a given entry in a dynamic array has been created.

Synopsis
function exists(x):boolean

Argument
x Array reference (e.g. t(1))

Return value
true if the entry exists, false otherwise.

Example
The following, a dynamic array of decision variables only has its even elements created, which is checked
by displaying the existing variables:

declarations
S=1..8
x: dynamic array(S) of mpvar
end-declarations

forall(i in S| not isodd(i)) create(x(i))
forall(i in S| exists(x(i)))
writeln("x(", i, ") exists")

Further information

1. If an array is declared dynamic its elements are not created at its declaration. This function indicates if a
given element has been created.

2. Under certain conditions, the exists function call is optimized by the compiler when used for filtering an
aggregate operator: the loop is only performed for the existing entries instead of enumerating all possible
tuples of indices for finding the relevant ones.

Related topics
Section 2.7.2, create.

Fair Isaac Corporation Proprietary Information 96

Chapter 3: Predefined functions and procedures

exit

Purpose
Terminate the program.

Synopsis
procedure exit(code:integer)

Argument
code Value to be returned by the program

Further information
This procedure terminates the current program and returns the given value. Models exit by default with a
value of 0 unless this is changed using exit. The Mosel command line interpreter uses this value as exit
status.

Related topics
Section 1.3.

Fair Isaac Corporation Proprietary Information 97

Chapter 3: Predefined functions and procedures

exp

Purpose
Get the natural exponent of a value.

Synopsis
function exp(r:real):real

Argument
r Real value the function is applied to.

Return value
Natural exponent (er) of the argument.

Related topics
abs, exp, ln, log, sqrt.

Fair Isaac Corporation Proprietary Information 98

Chapter 3: Predefined functions and procedures

exportprob

Purpose
Export the current LP/MIP problem held in Mosel core (the portion of a problem defined with mpvar and
linctr only) to a file.

Synopsis
procedure exportprob(options:integer, filename:string, obj:linctr)
procedure exportprob(options:integer, filename:string)
procedure exportprob(filename:string, obj:linctr)
procedure exportprob(filename:string)
procedure exportprob

Arguments
options File format options:

EP_MIN minimization (default)
EP_MAX maximization
EP_MPS MPS format
EP_STRIP Use scrambled names
EP_HEX Ouput numbers in hexadecimal when using MPS format
Several options may be combined using +.

filename Name of the output file. If the empty string "" is given, output is printed to the standard
output (the screen)

obj Objective function constraint

Example
The following prints the current problem to the screen using the default format and with MinCost as
objective function. The second statement exports the problem in LP-format and with scrambled names
to the file prob1.lpmaximizing the constraint Profit:

declarations
MinCost, Profit:linctr
end-declarations

exportprob(0, "", MinCost)
exportprob(EP_MAX+EP_STRIP, "prob1", Profit)

Fair Isaac Corporation Proprietary Information 99

Chapter 3: Predefined functions and procedures

Further information

1. Problem types: This function exports only the LP/MIP problem directly handled by the Mosel core
libraries. It cannot report problem extensions managed by external modules—these are silently ignored.
For instance, quadratic constraints, indicator constraints or general constraints provided by the Xpress
Optimizer are not shown by this routine: for this type of problems, the module-specific writeprob
routine has to be used instead of exportprob.

2. Number format: Except when option EP_MPS+EP_HEX is used numbers are ouput according to the
realfmt, txtztol and zerotolmodel parameters (see setparam). Mosel’s real number formatting
follows C printing format which is different, for example, from the formatting rules applied by Xpress
Optimizer, in particular in the module-specific writeprob routine.

3. File extension: If the given filename uses the default IO driver (no driver specified) and has no extension,
Mosel appends .lp to it for LP format files and .mps for MPS format.

4. Entity names: Normally, local symbols (i.e. defined in a procedure or function) are replaced by generated
names in the exported matrix. However, if the model has been compiled with option -G, names defined
locally to the routine calling exportprob are used in the exported matrix. Moreover, if a local symbol
hides a global one, this symbol is prefixed by ’~’.

5. If the model is compiled with -G and the control parameter recloc is set to true (see setparam),
missing constraint names are replaced by the source location of the constraint definition (i.e. a
combination of the row number, source file name and line number in the file).

6. If no option is provided, the default format is LP for a minimization; if no constraint is given, the current
objective (if available) is exported. The matrix is printed to the standard output when this function is used
without parameter.

Related topics
setname.

Fair Isaac Corporation Proprietary Information 100

Chapter 3: Predefined functions and procedures

fclose

Purpose
Close the active input, output or error stream.

Synopsis
procedure fclose(stream:integer)

Argument
stream The stream to close:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Further information

1. This procedure closes the file that is currently associated with the given stream. The file preceding the
closed file (in the order of opening) is then assigned to the corresponding stream. A file that is closed
with this procedure must previously have been opened with fopen. This function has no effect if the
corresponding stream is not associated with any explicitly opened file (i.e. it is not possible to close the
default input, output or error streams). All open streams are automatically closed when the program
terminates.

2. An IO error will be raised if the operation does not succeed.

Related topics
fflush, fopen, fselect, getfid, iseof.

Fair Isaac Corporation Proprietary Information 101

Chapter 3: Predefined functions and procedures

fflush

Purpose
Force the operating system to write buffered data.

Synopsis
procedure fflush

Further information
This procedure forces a write of all buffered data of the default output stream. fflush is automatically
called when the stream is closed either with fclose or when the program terminates.

Related topics
fclose, fopen.

Fair Isaac Corporation Proprietary Information 102

Chapter 3: Predefined functions and procedures

finalize

Purpose
Finalize the definition of a set or list.

Synopsis
procedure finalize(s:set)
procedure finalize(l:list)

Arguments
s Dynamic set
l Dynamic list

Further information

1. This procedure finalizes the definition of a set (or list), that is, it turns a dynamic set into a constant set
consisting of the elements that are currently in the set.

2. Using this routine on sets declared dynamic has no effect.

Fair Isaac Corporation Proprietary Information 103

Chapter 3: Predefined functions and procedures

findfirst

Purpose
Find the first occurrence of an element in a list.

Synopsis
function findfirst(l:list, e:type_of_l):integer

Arguments
l A list
e The element to look for (it must be of the type of l)

Return value
The position of the element or 0 if the element is not included in the list.

Example

L:=['a','b','c','d','b']
i:=findfirst(L,'b') ! => i=2
i:=findlast(L,'f') ! => i=0

Related topics
findlast

Fair Isaac Corporation Proprietary Information 104

Chapter 3: Predefined functions and procedures

findlast

Purpose
Find the last occurrence of an element in a list.

Synopsis
function findlast(l:list, e:type_of_l):integer

Arguments
l A list
e The element to look for (it must be of the type of l)

Return value
The position of the element or 0 if the element is not included in the list.

Example

L:=['a','b','c','d','b']
i:=findlast(L,'b') ! => i=5
i:=findlast(L,'f') ! => i=0

Related topics
findfirst

Fair Isaac Corporation Proprietary Information 105

Chapter 3: Predefined functions and procedures

floor

Purpose
Round a number to the next smallest integer.

Synopsis
function floor(r:real):integer

Argument
r Real number to be rounded

Return value
Rounded value.

Example
In the following, i takes the value 5, j the value -7, and k the value 12:

i := floor(5.6)
j := floor(-6.7)
k := floor(12.3)

Related topics
ceil, round.

Fair Isaac Corporation Proprietary Information 106

Chapter 3: Predefined functions and procedures

fopen

Purpose
Open a file and make it the active input, output or error stream.

Synopsis
procedure fopen(f:string, mode:integer)

Arguments
f The name of the file to be opened
mode The open mode that consists in a stream selection and optional flags. The stream is one of:

F_INPUT Input stream (for reading)
F_OUTPUT Output stream (for writing)
F_ERROR Error stream (for writing error messages)
Possible optional flags (to be combined with the stream selection):

F_APPEND Open for writing, appending new data to the end of the file (otherwise the file is
cleared before opening)

F_TEXT Text mode (the default)
F_BINARY Binary mode
F_LINBUF If open for writing, flushes buffer after end of each line (default when writing to a

console or for an error stream)
F_SILENT Do not display IO error messages

Further information

1. This procedure opens a file for reading or writing. If the operation succeeds, depending on the opening
mode, the file becomes the active input, output or error stream. The procedures write and writeln are
used to write data to the default output stream and the functions read, readln, and fskipline are
used to read data from the default input stream. Error messages are sent to the error stream.

2. The behavior of this function in case of an IO error (i.e. the file cannot be opened) is directed by the
control parameter ioctrl (see setparam): if the value of this parameter is ‘false’ (default value), the
interpreter stops. Otherwise, the interpreter ignores the error and continues. The error status of an IO
operation is stored in the control parameter iostatus (see getparam) which is 0 when the last
operation has been executed successfully. Note that this parameter is automatically reset once its value
has been read using the function getparam. The behavior of IO operations after an unhandled error is
not defined.

3. The binary mode disables character encoding conversion (see section 2.16).

Related topics
fclose, fselect, getfid.

Fair Isaac Corporation Proprietary Information 107

Chapter 3: Predefined functions and procedures

fselect

Purpose
Select the active input, output or error stream.

Synopsis
procedure fselect(stream:integer)

Argument
stream The stream number

Example
The following saves the file ID of the default output before switching output to the file mylog.txt.
Subsequently, the file ID of the current output stream is saved and the default output is again selected.

def_out:= getfid(F_OUTPUT)
fopen("mylog.txt", F_OUTPUT)

...
my_out:= getfid(F_OUTPUT)
fselect(def_out)

Further information

1. This procedure selects the given stream as the active input, output or error stream. The concerned
stream is designated by the opening status of the given stream (that is, if the given stream has been
opened for reading, it will be assigned to the default input stream). The stream number can be obtained
with the function getfid.

2. The default input, output and error streams have respectively numbers 0, 1 and 2.

3. An IO error will be raised if the requested file ID does not exist.

Related topics
fclose, fopen, getfid, fwrite, fwriteln.

Fair Isaac Corporation Proprietary Information 108

Chapter 3: Predefined functions and procedures

fskipline

Purpose
Advance in the default input stream as long as comment lines are found.

Synopsis
procedure fskipline(filter:string)

Argument
filter List of comment signs

Example
In the following, the first statement skips all lines beginning with either ‘#’ or ‘!’. The second statement
skips any following blank lines:

fskipline("!#")
fskipline("\n")

Further information
This procedure advances in the input stream using the given list of comment signs as a filter. Each
character of the given string is considered to be a symbol that marks the beginning of a comment line.
Note that the character ‘\n’ designates lines starting with nothing, that is, empty lines. During the parsing,
spaces and tabulations are ignored.

Related topics
read, readln.

Fair Isaac Corporation Proprietary Information 109

Chapter 3: Predefined functions and procedures

fwrite, fwriteln

Purpose
Send an expression or list of expressions to the specified output stream.

Synopsis
procedure fwrite(fd:integer, e1:expr[, e2:expr...])
procedure fwriteln(fd:integer)
procedure fwriteln(fd:integer, e1:expr[, e2:expr...])

Arguments
fd An output stream number
e1, e2,... Expression or list of expressions

Further information

1. These procedures are equivalent to calling fselect before using the corresponding output procedure
and then restore the initial current stream with a second call to fselect.

2. The selected stream may also be an error stream.

Related topics
write, writeln, fselect, getfid.

Fair Isaac Corporation Proprietary Information 110

Chapter 3: Predefined functions and procedures

getact

Purpose
Get the activity value of a constraint.

Synopsis
function getact(c:linctr):real

Argument
c A linear constraint

Return value
Activity value or 0.

Further information
This function returns the activity value of a constraint if the problem has been solved successfully,
otherwise 0 is returned.

Related topics
getdual, getslack, getsol.

Fair Isaac Corporation Proprietary Information 111

Chapter 3: Predefined functions and procedures

getcoeff

Purpose
Get a constraint coefficient or constant term.

Synopsis
function getcoeff(c:linctr):real
function getcoeff(c:linctr, x:mpvar):real
function getcoeff(c:linctr, n:integer):real

Arguments
c A linear constraint
x A decision variable
n -1 for constant term, -2 for range lower bound

Return value
Coefficient of the variable or a constant term.

Example
In this example a single constraint with three variables is defined. The calls to getcoeff result in r
taking the value -1 and s taking the value -12.

declarations
x,y,z:mpvar
end-declarations

c:= 4⁎x + y -z <= 12
r:= getcoeff(c, z)
s:= getcoeff(c)

Further information
This function returns the coefficient of a given variable in a constraint, or if no variable is given, the
constant term (= -RHS) of the constraint. The returned values correspond to a normalised constraint
representation with all variable and constant terms on the left side of the (in)equality sign.

Related topics
getcoeffs, getvars, setcoeff.

Fair Isaac Corporation Proprietary Information 112

Chapter 3: Predefined functions and procedures

getcoeffs

Purpose
Get all variable coefficients of a constraint.

Synopsis
procedure getcoeffs(c:linctr, a:array(set of mpvar) of real, s:set of

mpvar)

Arguments
c A linear constraint
a An array of reals indiced by decision variables
s A set of decision variables

Further information

1. This procedure returns in the parameter a the coefficients of all variables of a constraint. After calling
this procedure, the coefficient of variable v of constraint c is a(v). The set s is used to specify for which
variables the coefficients have to be retrieved (if this set is empty all variables are considered).

2. If set s is empty all cells of array a are updated (i.e. cells corresponding to variables not included in
constraint c are set to 0). Otherwise only cells corresponding to elements of s are modified.

Related topics
getcoeffs, getcoeff

Fair Isaac Corporation Proprietary Information 113

Chapter 3: Predefined functions and procedures

getdual

Purpose
Get the dual value of a constraint.

Synopsis
function getdual(c:linctr):real

Argument
c A linear constraint

Return value
Dual value or 0.

Further information
This function returns the dual value of a constraint if the problem has been solved successfully and the
constraint is contained in the problem, otherwise 0 is returned.

Related topics
getrcost, getslack, getsol.

Fair Isaac Corporation Proprietary Information 114

Chapter 3: Predefined functions and procedures

getelt

Purpose
Get an element of a set or a list.

Synopsis
function getelt(e:set):type_of_e
function getelt(l:list):type_of_l

Arguments
e A set
l A list

Return value
An element of the set or list.

Further information
When applied to a range set or list this function behaves like getfirst. An error is generated if the
argument of the function is empty.

Related topics
cutelt.

Fair Isaac Corporation Proprietary Information 115

Chapter 3: Predefined functions and procedures

geteltype

Purpose
Get the type ID of an element of a collection type.

Synopsis
function geteltype(u: union): integer
function geteltype(tid: integer): integer

Arguments
u A union
tid A type ID

Return value
A type ID or -1 if the provided parameter is not a valid type ID or the union is not defined.

Example

declarations
MYSET=set of integer
s: MYSET
u1,u2,u3: any
end-declarations

...
u1:=s
u2:="bla"
writeln("ElType of MYSET: ", geteltype(MYSET.id), ! = integer.id=1

"\nElType of u1: ", u1.eltype, ! = integer.id=1
"\nElType of u2: ", u2.eltype, ! = string.id=3
"\nElType of u3: ", u3.eltype) ! = -1

Further information

1. This function retrieves the type ID of an element of a collection (array, set or list) represented by a type ID
or the value stored in a union. If the referenced type is not a collection (i.e. it is a constant or a reference)
the type of the entity itself will be returned (that is the same value as gettypeid).

2. There are 2 versions of this routine: when used with a union the information reported comes from the
current value of this union (-1 is returned if the union is not initialized). If applied to an integer the
function expects this integer to be a type ID (-1 is returned if this value does not correspond to a type ID).

Related topics
getstruct, gettypeid, geteltype.

Fair Isaac Corporation Proprietary Information 116

Chapter 3: Predefined functions and procedures

getfid

Purpose
Get the stream number of the active input, output or error stream.

Synopsis
function getfid(stream:integer):integer

Argument
stream The stream to query:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Return value
Stream number.

Further information
The returned value can be used as parameter for the function fselect.

Related topics
fselect.

Fair Isaac Corporation Proprietary Information 117

Chapter 3: Predefined functions and procedures

getfirst

Purpose
Get the first element of a range set or a list.

Synopsis
function getfirst(r:range):integer
function getfirst(l:list):type_of_l

Arguments
r A range set
l A list

Return value
The first element of the set or list.

Example
In this example the range set r is defined before its first and last elements are retrieved and displayed:

declarations
r=2..8
end-declarations

...
writeln("First element of r: ", getfirst(r),

"\nLast element of r: ", getlast(r))

Further information
When applied to a list, the type of the function is the type of the list. An error is generated if the argument
of the function is empty.

Related topics
getlast, cutfirst.

Fair Isaac Corporation Proprietary Information 118

Chapter 3: Predefined functions and procedures

gethead

Purpose
Get a copy of the first elements of a list.

Synopsis
function gethead(l:list, o:integer):list

Arguments
l A list
o Number of elements to copy if >0 or number of elements to ignore if <0

Return value
A (partial) copy of the list.

Example

L:=[1,2,3,4,5]
L2:=gethead(L,2) ! => L2=[1,2]
L2:=gethead(L,-1) ! => L2=[1,2,3,4]

Further information
This function does not alter its input list. If the second parameter is 0 an empty list is returned. If the
same parameter is larger than the size of the list the function returns a copy of the original list.

Related topics
gettail

Fair Isaac Corporation Proprietary Information 119

Chapter 3: Predefined functions and procedures

getfname

Purpose
Get the file name associated to the active input, output or error stream.

Synopsis
function getfname(stream:integer):string

Argument
stream The stream to query:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Return value
File name.

Fair Isaac Corporation Proprietary Information 120

Chapter 3: Predefined functions and procedures

getlast

Purpose
Get the last element of a range set or a list.

Synopsis
function getlast(r:range):integer
function getlast(l:list):type_of_l

Arguments
r A range set
l A list

Return value
The last element of the set or list.

Example
In this example the range set r is defined before its first and last elements are retrieved and displayed:

declarations
r=2..8
end-declarations

...
writeln("First element of r: ", getfirst(r),

"\nLast element of r: ", getlast(r))

Further information
When applied to a list, the type of the function is the type of the list. An error is generated if the argument
of the function is empty.

Related topics
getfirst.

Fair Isaac Corporation Proprietary Information 121

Chapter 3: Predefined functions and procedures

getnbdim

Purpose
Get the number of dimensions of an array.

Synopsis
function getnbdim(a:array):integer

Argument
a An array

Return value
Number of dimensions of the array.

Fair Isaac Corporation Proprietary Information 122

Chapter 3: Predefined functions and procedures

getobjval

Purpose
Get the objective function value.

Synopsis
function getobjval:real

Return value
Objective function value or 0.

Further information
This function returns the objective function value if the problem has been solved successfully. If integer
feasible solution(s) have been found, the value of the best is returned, otherwise the value of the last LP
solved.

Related topics
getsol.

Fair Isaac Corporation Proprietary Information 123

Chapter 3: Predefined functions and procedures

getparam

Purpose
Get the current value of a control parameter.

Synopsis
function getparam(name:string):integer|string|real|boolean

Argument
name Name of the control parameter whose value is to be returned (case insensitive).

Return value
Current setting of the control parameter.

Fair Isaac Corporation Proprietary Information 124

Chapter 3: Predefined functions and procedures

Further information

1. Parameters whose values may be returned by this function include the settings of Mosel as well as those
of any loaded module or package. The location of the parameter may be specified by prefixing its name
with the name of the module or package defining it (e.g. mmxprs.XPRS_verbose). The type of the
return value corresponds to the type of the parameter.

2. This function can be applied only to control parameters whose value can be accessed.

3. The name argument must be a constant string: a model parameter, variable or string expression cannot
be used as a control parameter name.

4. The following control parameters are supported by Mosel:
realfmt Default C printing format for real numbers (string)
zerotol zero tolerance in comparisons between reals (real)
txtztol zero tolerance is used when converting real values to their textual representation (Boolean)
ioctrl the interpreter ignores IO errors (Boolean)
iostatus status of the last IO operation (integer), which is 0 when the last operation has been

executed successfully. This parameter is automatically reset once its value has been read. Not
doing so may result in undefined behavior. When ioctrl is active the IO status must be read
(and reset) after every IO operation

nbread number of items recognized by the last read procedure or read in by the last initializations
block (integer)

readcnt generate per label counting when executing ‘initializations from’ blocks (Boolean)
UTC indicate whether the time functions return time expressed in local (false) or UTC (true) time

(Boolean)
autofinal indicate whether initialisation from blocks are finalizing sets (Boolean)
tmpdir the Mosel temporary directory (string)
workdir the current working directory of the model (string)
restrict active restrictions (integer). See Section 1.3.4 for further details.
modelname internal unique name of the model being executed.
modelnumber order number of the model being executed.
recloc indicate whether automatic recording of source location of constraints definitions is active

(Boolean)
localedir directory where message catalogs are stored (string)
lang current language (string)
runparams parameter string used for the current execution (string)
bimprefix list of bim file prefixes (string)
sharingstatus sharing status of the model (integer). This parameter is -1 if the model does not

share any data; 0 if the model shares data but no submodel is using it; 1 when shared data is in
use; 2 if the model is a submodel using shared data (see Section 8.2)

5. Function getparammay also be used to retrieve parser parameters. As opposed to the other parameters
whose value is computed at run time, these parameters are evaluated as soon as they are parsed:
parser_line number of the line being parsed (integer)
parser_file current source file name (string)
parser_date current local date (string)
parser_time current local time (string)
parser_UTCdate current UTC date (string)
parser_UTCtime current UTC time (string)
parser_version Mosel version (string)
model_version Version of the model as given by the version directive (string)

Fair Isaac Corporation Proprietary Information 125

Chapter 3: Predefined functions and procedures

Related topics
setparam, getdsoparam.

Fair Isaac Corporation Proprietary Information 126

Chapter 3: Predefined functions and procedures

getrcost

Purpose
Get the reduced cost value of a variable.

Synopsis
function getrcost(v:mpvar):real

Argument
v A decision variable

Return value
Reduced cost value or 0.

Further information
This function returns the reduced cost value of a variable if the problem has been solved successfully and
the variable is contained in the problem, otherwise 0 is returned.

Related topics
getslack, getsol, getdual.

Fair Isaac Corporation Proprietary Information 127

Chapter 3: Predefined functions and procedures

getreadcnt

Purpose
Get the number of items read in during last ‘initializations from’ for a given label.

Synopsis
function getreadcnt(l:string):integer

Argument
l A label

Return value
Number of items read in for label l.

Further information
Value 0 is returned if the given string does not correspond to a label or if control parameter readcnt has
not been set to true before execution of the initializations block.

Fair Isaac Corporation Proprietary Information 128

Chapter 3: Predefined functions and procedures

getreverse

Purpose
Duplicate and reverse a list.

Synopsis
function getreverse(l:list):list

Argument
l A list

Return value
A reversed copy of the provided list.

Example

L:=[1,2,3,4,5]
L2:=L.reverse ! => L=[5,4,3,2,1]

Related topics
reverse.

Fair Isaac Corporation Proprietary Information 129

Chapter 3: Predefined functions and procedures

getsize

Purpose
Get the size of an array, set, list, constraint or string.

Synopsis
function getsize(a:array):integer
function getsize(s:set):integer
function getsize(l:list):integer
function getsize(t:string):integer
function getsize(c:linctr):integer

Arguments
a An array
s A set
l A list
t A string
c A linear constraint

Return value
Number of effective entries for an array, number of elements for a set or a list, number of characters for a
string, number of terms for a constraint.

Example
In the following, a dynamic array is declared holding eight elements, of which only two are actually
defined. Calling getsize on this array returns 2 rather than 8. The length lw of the string w is 9.

declarations
a:dynamic array(1..8) of real
w = "some text"
end-declarations

a(1):= 4
a(5):= 7.2
la:= getsize(a)
lw:= getsize(w)

Further information
In the case of a dynamic array that has been declared with a maximal range this number may be smaller
than the size of the range, but it cannot exceed it. When used with a string, this function returns the length
of the string (i.e. the number of characters it contains). If used with a linear constraint, this function
returns the number of terms of the constraint (the constant term is not taken into account).

Fair Isaac Corporation Proprietary Information 130

Chapter 3: Predefined functions and procedures

getslack

Purpose
Get the slack value of a constraint.

Synopsis
function getslack(c:linctr):real

Argument
c A linear constraint

Return value
Slack value or 0.

Further information
This function returns the slack value of a constraint if the problem has been solved successfully and the
constraint is contained in the problem, otherwise 0 is returned.

Related topics
getdual, getrcost, getsol.

Fair Isaac Corporation Proprietary Information 131

Chapter 3: Predefined functions and procedures

getsol

Purpose
Get the solution value of a variable or a linear expression (constraint).

Synopsis
function getsol(v:mpvar):real
function getsol(c:linctr):real

Arguments
c A linear constraint
v A decision variable

Return value
Solution value or 0.

Further information
This function returns the (primal) solution value of a variable if the problem has been solved successfully
and the variable is contained in the problem (otherwise 0). If used with a constraint, it returns the
evaluation of the corresponding linear expression using the current solution.

Related topics
getdual, getrcost, getobjval.

Fair Isaac Corporation Proprietary Information 132

Chapter 3: Predefined functions and procedures

getstruct

Purpose
Get the structure of a type.

Synopsis
function getstruct(u: union): integer
function getstruct(tid: integer): integer

Arguments
u A union
tid A type ID

Return value
Type structure as an integer. Possible structures are:
STRUCT_CONST A constant
STRUCT_REF A reference
STRUCT_ARRAY An array
STRUCT_SET A set
STRUCT_LIST A list
STRUCT_ROUTINE A subroutine
STRUCT_NATTYPE A native type
STRUCT_PROBLEM A problem
STRUCT_RECORD A record
STRUCT_USRTYPE A user type
STRUCT_UNION A union
-1 If the provided parameter is not a valid type ID or the union is not defined

Example
declarations
MYSET=set of integer
s: MYSET
u1,u2,u3: any

end-declarations
...

u1:=s
u2:="bla"
writeln("ElType of MYSET: ", getstruct(MYSET.id), ! = STRUCT_SET=12288

"\nElType of u1: ", u1.struct, ! = STRUCT_SET=12288
"\nElType of u2: ", u2.struct, ! = STRUCT_CONST=0
"\nElType of u3: ", u3.struct) ! = -1

Further information

1. This function retrieves the structure (constant, reference, array, set, list, or subroutine) of a type
represented by its ID or by the value stored in a union. The type ID of an element of a non-scalar type may
be obtained with geteltype.

2. When applied to the ID of a basic type (integer, real, string or boolean) this function will return
STRUCT_CONST although a variable of these types is a reference and a union may hold either a reference
or a constant for basic types.

3. There are 2 versions of this routine: when used with a union the information reported comes from the
current value of this union (-1 is returned if the union is not initialized). If applied to an integer the
function expects this integer to be a type ID (-1 is returned if this value does not correspond to a type ID).

Fair Isaac Corporation Proprietary Information 133

Chapter 3: Predefined functions and procedures

Related topics
geteltype, gettypeid.

Fair Isaac Corporation Proprietary Information 134

Chapter 3: Predefined functions and procedures

gettail

Purpose
Get a copy of the last elements of a list.

Synopsis
function gettail(l:list, o:integer):list

Arguments
l A list
o Number of elements to copy if >0 or number of elements to ignore if <0

Return value
A (partial) copy of the list.

Example

L:=[1,2,3,4,5]
L2:=gettail(L,2) ! => L2=[4,5]
L2:=gettail(L,-1) ! => L2=[2,3,4,5]

Further information
This function does not alter its input list. If the second parameter is 0 an empty list is returned. If the
same parameter is larger than the size of the list the function returns a copy of the original list.

Related topics
gethead

Fair Isaac Corporation Proprietary Information 135

Chapter 3: Predefined functions and procedures

gettype

Purpose
Get the type of a constraint.

Synopsis
function gettype(c:linctr):integer

Argument
c A linear constraint

Return value
Constraint type. Values applicable to any type of linear constraint are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_RNG Range
CT_UNB Non-binding constraint
CT_SOS1 Special ordered set of type 1
CT_SOS2 Special ordered set of type 2
Values applicable for unary constraints are:
CT_CONT Continuous
CT_INT Integer
CT_BIN Binary
CT_PINT Partial integer
CT_SEC Semi-continuous
CT_SINT Semi-continuous integer
CT_FREE Free

Related topics
settype.

Fair Isaac Corporation Proprietary Information 136

Chapter 3: Predefined functions and procedures

gettypeid

Purpose
Get the type ID of the value of a union.

Synopsis
function gettypeid(u: union): integer

Argument
u A union

Return value
A type ID, 0 if the information is not available or -1 if the union is not defined.

Example

declarations
MYSET=set of integer
s: MYSET
u1,u2,u3,u4: any
end-declarations

...
u1:=s
u2:={1,2,3}
u4:=13.3
writeln("ElType of u1: ", u1.typeid, ! = MYSET.id

"\nElType of u4: ", u4.typeid, ! = real.id=2
"\nElType of u2: ", u2.typeid, ! = 0
"\nElType of u3: ", u3.typeid) ! = -1

Further information

1. This function retrieves the type ID of the value stored in a union. This information is always defined if the
value is a scalar (i.e. a constant or a reference) but it will be available for a structured type only if the
value comes from an entity that is defined as an instance of a defined user type.

2. When the function returns 0, the properties of the value stored in the union can still be obtained via
getstruct and geteltype.

Related topics
getstruct, geteltype.

Fair Isaac Corporation Proprietary Information 137

Chapter 3: Predefined functions and procedures

getvars

Purpose
Get the set of variables of a constraint.

Synopsis
procedure getvars(c:linctr,s:set of mpvar)

Arguments
c A linear constraint
s A set of decision variables

Example
The following returns the set of variables in a linear constraint to the set variable vset, and then loops
through them to find their solution values:

declarations
c:linctr
vset: set of mpvar
end-declarations

getvars(c,vset)
forall(x in vset) writeln(getsol(x))

Further information
This procedure returns in the parameter s the set of variables of a constraint. Note that this procedure
replaces the content of the set.

Related topics
getcoeffs, getcoeff

Fair Isaac Corporation Proprietary Information 138

Chapter 3: Predefined functions and procedures

isdefined

Purpose
Check whether an entity is defined.

Synopsis
function isdefined(v:reference):boolean

Argument
v A variable of a reference type

Return value
true if the provided entity is defined.

Example

declarations
f: function(real):real
u: any
end-declarations
writeln(isdefined(u)) ! = false
u:=1.5
writeln(isdefined(u)) ! = true

writeln(isdefined(->f)) ! = false
f:=->cos
writeln(isdefined(->f)) ! = true
reset(->f)
writeln(isdefined(->f)) ! = false

Further information
This function returns true if the provided entity is not a NULL reference and, in the case of a union or a
subroutine, if it has been assigned a value.

Fair Isaac Corporation Proprietary Information 139

Chapter 3: Predefined functions and procedures

isdynamic

Purpose
Check whether an array, set, or list is dynamic.

Synopsis
function isdynamic(a:array):boolean
function isdynamic(s:set):boolean
function isdynamic(l:list):boolean

Arguments
a An array
s A set
l A list

Return value
true if the provided entity is dynamic.

Further information
This function returns true when applied to sparse arrays (i.e. declared either as dynamic or hashmap).

Fair Isaac Corporation Proprietary Information 140

Chapter 3: Predefined functions and procedures

iseof

Purpose
Test whether the end of the default input stream has been reached.

Synopsis
function iseof:boolean

Return value
true if the end of the default input stream has been reached, false otherwise.

Example
The following opens a datafile of integers, reads one from each line and prints it to the console until the
end of the file is reached:

declarations
d:integer
end-declarations

...
fopen("datafile.dat", F_INPUT)
while(not iseof) do

readln(d)
writeln(d)

end-do
fclose(F_INPUT)

Further information
This function returns the “end of file” status of the active input stream.

Related topics
fclose, fopen.

Fair Isaac Corporation Proprietary Information 141

Chapter 3: Predefined functions and procedures

isfinite

Purpose
Test whether a real value is finite.

Synopsis
function isfinite(r: real):boolean

Argument
r The value to test

Return value
true if the value is neither (-)INFINITY nor NAN.

Further information
The call isfinite(v) is equivalent to (not isnan(v) and not isinf(v)).

Related topics
setmatherr, isnan, isinf.

Fair Isaac Corporation Proprietary Information 142

Chapter 3: Predefined functions and procedures

ishidden

Purpose
Test whether a constraint is hidden.

Synopsis
function ishidden(c:linctr):boolean

Argument
c A linear constraint

Return value
true if the constraint is hidden, false otherwise.

Further information
This function tests the current status of a constraint. At its creation a constraint is added to the current
problem, but using the function sethidden it may be hidden. This means, the constraint will not be
contained in the problem that is solved by the optimizer but it is not deleted from the definition of the
problem in Mosel.

Related topics
sethidden.

Fair Isaac Corporation Proprietary Information 143

Chapter 3: Predefined functions and procedures

isinf

Purpose
Test whether a real value is an infinity.

Synopsis
function isinf(r: real):boolean

Argument
r The value to test

Return value
true if the value is INFINITY or -INFINITY.

Further information
When the parameter matherr is set to true (see setparam) mathematical functions return the
constant NAN or INFINITY instead of failing. This function can be used to identify incorrect results
(direct comparison to NAN or INFINITY always fails).

Related topics
setmatherr, isnan, isfinite.

Fair Isaac Corporation Proprietary Information 144

Chapter 3: Predefined functions and procedures

isnan

Purpose
Test whether a real value is valid.

Synopsis
function isnan(r: real):boolean

Argument
r The value to test

Return value
true if the value is not valid (i.e. it corresponds to Not A Number).

Further information
When the parameter matherr is set to true (see setparam) mathematical functions return the
constant NAN or INFINITY instead of failing. This function can be used to identify incorrect results
(direct comparison to NAN or INFINITY always fails).

Related topics
setmatherr, isinf, isfinite.

Fair Isaac Corporation Proprietary Information 145

Chapter 3: Predefined functions and procedures

isodd

Purpose
Test whether an integer is odd.

Synopsis
function isodd(i:integer):boolean

Argument
i An integer number

Return value
true if the given integer is odd, false if it is even.

Fair Isaac Corporation Proprietary Information 146

Chapter 3: Predefined functions and procedures

ln

Purpose
Get the natural logarithm of a value.

Synopsis
function ln(r:real):real

Argument
r Real value the function is applied to. This value must be positive.

Return value
Natural logarithm of the argument.

Example
The following example provides a function for calculating logarithms to any (positive) base:

function logn(base,number: real):real
if (number > 0 and base > 0) then
returned:= ln(number)/ln(base)

else
exit(1)

end-if
end-function

Related topics
exp, log, sqrt.

Fair Isaac Corporation Proprietary Information 147

Chapter 3: Predefined functions and procedures

localsetparam

Purpose
Set the value of a control parameter locally to a subroutine.

Synopsis
procedure localsetparam(name:string,val:integer|string|real|boolean)

Arguments
name Name of a control parameter (case insensitive).
val New value for the control parameter

Further information

1. This procedure is a special version of setparam that can only be used from a subroutine: the effect of
the parameter change is reverted at the end of the subroutine.

2. Independently of the location of the call to this procedure and whether other modifications are performed
on the parameter (using for instance setparam) the original value of the parameter is saved at the
beginning of the execution of the routine and restored before its termination.

Related topics
setparam, setdsoparam, restoreparam.

Fair Isaac Corporation Proprietary Information 148

Chapter 3: Predefined functions and procedures

log

Purpose
Get the base 10 logarithm of a value.

Synopsis
function log(r:real):real

Argument
r Real value the function is applied to. This value must be positive.

Return value
Base 10 logarithm of the argument.

Related topics
exp, ln, sqrt.

Fair Isaac Corporation Proprietary Information 149

Chapter 3: Predefined functions and procedures

makesos1, makesos2

Purpose
Creates a special ordered set (SOS) using a set of decision variables and a linear constraint.

Synopsis
procedure makesos1(cs:linctr, s:set of mpvar, c:linctr)
procedure makesos1(s:set of mpvar, c:linctr)
procedure makesos2(cs:linctr, s:set of mpvar, c:linctr)
procedure makesos2(s:set of mpvar, c:linctr)

Arguments
cs A linear constraint
s A set of decision variables
c A linear constraint

Example
The following generates the SOS1 set mysos based on the linear constraint rr. The resulting set
contains the variables x, y, and z with the weights 0,2, and 4.

declarations
x,y,z: mpvar
rr,mysos: linctr
end-declarations

rr:= 2⁎y+4⁎z
makesos1(mysos, {x,y,z}, rr)

Further information
These procedures generate a SOS set containing the decision variables of the set s with the coefficients
of the linear constraint c. The resulting set it assigned to cs if it is provided. Note that these procedures
simplify the generation of SOS with weights of value 0.

Fair Isaac Corporation Proprietary Information 150

Chapter 3: Predefined functions and procedures

maxlist

Purpose
Get the maximum value of a list of integers or reals.

Synopsis
function maxlist(i1:integer, i2:integer[, i3:integer...]):integer
function maxlist(r1:real, r2:real[, r3:real...]):real

Arguments
i1,i2,... List of integer numbers
r1,r2,... List of real numbers

Return value
Largest value in the given list.

Example
In the following r is assigned the value 7 by maxlist:

r:= maxlist(-1, 4.5, 2, 7, -0.3)

Further information
The returned type corresponds to the type of the input.

Related topics
minlist.

Fair Isaac Corporation Proprietary Information 151

Chapter 3: Predefined functions and procedures

memoryuse

Purpose
Get an estimate of the memory usage of an entity, a module or the entire model.

Synopsis
function memoryuse:real
function memoryuse(ent:any entity):real
function memoryuse(mname:string):real

Arguments
ent An entity
mname A Module name

Return value
An estimate of the memory usage in bytes or -1 if the evaluation cannot be performed.

Further information

1. When used with no argument this function returns the total amount of memory used by the running
model including the loaded modules (if they implement the functionality). A constant string is interpreted
as the name of a module: the returned value is the memory consumed by this module that must be
currently used by the model.

2. For entities of type integer, real, boolean and mpvar the value returned is the constant amount of
memory required by a variable of the corresponding type. For a reference to a string or linctr the
effective memory used by the internal datastructure is returned. In the case of a set or a list only the
memory used to represent the collection is accounted, not its content. However the value reported for an
array or record includes the memory used by the content of the structure except for strings.

Related topics
getmodpropnum.

Fair Isaac Corporation Proprietary Information 152

Chapter 3: Predefined functions and procedures

minlist

Purpose
Get the minimum value of a list of integers or reals.

Synopsis
function minlist(i1:integer, i2:integer[, i3:integer...]):integer
function minlist(r1:real, r2:real[, r3:real...]):real

Arguments
i1,i2,... List of integer numbers
r1,r2,... List of real numbers

Return value
Smallest value in the given list.

Example
In the following r is assigned the value -1 by maxlist:

r:= minlist(-1, 4.5, 2, 7, -0.3)

Further information
The returned type corresponds to the type of the input.

Related topics
maxlist.

Fair Isaac Corporation Proprietary Information 153

Chapter 3: Predefined functions and procedures

newmuid

Purpose
Generate a unique identifier.

Synopsis
function newmuid:string

Return value
An identifier string.

Further information
This function returns a string of the form muid#_xxx where # is an execution number in hexadecimal
(specific to this model execution) and xxx a random hexadecimal number. It is guaranteed that each
generated value does not correspond to any symbol of the model and that it will never be returned again.

Fair Isaac Corporation Proprietary Information 154

Chapter 3: Predefined functions and procedures

publish

Purpose
Publish a symbol.

Synopsis
procedure publish(name:string, ref:string, external or structured)

Arguments
name Symbol to identify the object
ref A reference to an object of an external type, a structure (e.g. set, list or array) or a string

Further information

1. This procedure can be used to publish an object in the model dictionary such that it can be found by native
code using name. Any entity (including local and private) can be exposed with this routine as long as it is
of a referenced type (basically any type except integer, real and boolean). If a string variable is used the
published symbol corresponds to a string constant initialized with the current value of this variable.

2. The provided namemust be a valid identifier that is not yet being used by the model as symbol name
(including entity and subroutine names). In case of error the procedure raises an IO error.

Related topics
unpublish, newmuid.

Fair Isaac Corporation Proprietary Information 155

Chapter 3: Predefined functions and procedures

random

Purpose
Generate a random number.

Synopsis
function random:real

Return value
A randomly generated number in the interval [0,1).

Example
In the following i is assigned a random integer value between 1 and 10:

i:= integer(round((10⁎random)+0.5))

Further information
Each model uses its own generator which is randomly initialized when the model execution starts. The
sequence may also be reset using procedure setrandseed.

Related topics
setrandseed.

Fair Isaac Corporation Proprietary Information 156

Chapter 3: Predefined functions and procedures

read, readln

Purpose
Read in formatted data from the active input stream.

Synopsis
procedure read(e1:expr[, e2:expr...])
procedure readln
procedure readln(e1:expr[, e2:expr...])

Argument
e1, e2,... Expression or list of expressions of basic type

Example
The following reads (possible split over several lines) 12 45 word, followed by toto(12 and
45)=word:

declarations
i,j:integer
s:string
ts:array (range,range) of string
end-declarations
read(i, j, s)
readln("toto(", i, "and", j, ")=", ts(i,j))

Further information

1. These procedures assign the data read from the active input stream to the given symbols or try to match
the given expressions with what is read from the input stream. If ei is a symbol that can be assigned a
value, the procedure tries to recognise from the input stream a constant of the required type and, if
successful, assigns the resulting value to ei. If ei is a constant or a symbol that cannot be reassigned,
the procedure tries to read in a constant of the required value and succeeds if the resulting value
corresponds to ei. These procedures do not fail but set the control parameter nbread to the number of
items actually recognized.

2. Note that the read procedures are based on the lexical analyser of Mosel: items are separated by spaces
and a string that contains spaces must be quoted using either single or double quotes (the quotes are
automatically removed once the string has been identified).

3. The procedure readln expects all the items to be recognized to be contained in single line. The function
read ignores changes of line. If the procedure readln is used without parameters it skips the end of the
current line.

Related topics
write, writeln, readtextline.

Fair Isaac Corporation Proprietary Information 157

Chapter 3: Predefined functions and procedures

reset

Purpose
Reset an entity.

Synopsis
procedure reset(x:resettable entity)

Argument
x A reference to a set, a list, an array, a union, a record, an object of an external type or a problem

Further information
Only types supporting the ’copy’ operation (i.e. they can be assigned a value) can be reset, as a
consequence, a record can be reset only if all its fields can also be reset. The effect of this routine
depends on the type of the object, typically the object returns to its state just after being created. For
instance, applying it to an mpproblem will clear the problem by detaching all constraints it contains.

Related topics
delcell.

Fair Isaac Corporation Proprietary Information 158

Chapter 3: Predefined functions and procedures

restoreparam

Purpose
Restore the value of a control parameter.

Synopsis
procedure restoreparam(name:string)

Argument
name Name of a control parameter (case insensitive).

Further information

1. This procedure can only be used from a subroutine to restore the value of a parameter to its state at the
beginning of the routine.

2. Independently of the location of the call to this procedure and whether modifications are performed on
the parameter (using for instance setparam) the original value of the parameter is saved at the
beginning of the execution of the routine and restored before its termination.

Related topics
setparam, setdsoparam, localsetparam.

Fair Isaac Corporation Proprietary Information 159

Chapter 3: Predefined functions and procedures

reverse

Purpose
Reverse a list.

Synopsis
procedure reverse(l:list)

Argument
l A list

Example

L:=[1,2,3,4,5]
reverse(L) ! => L=[5,4,3,2,1]
reverse(L) ! => L=[1,2,3,4,5]

Related topics
getreverse.

Fair Isaac Corporation Proprietary Information 160

Chapter 3: Predefined functions and procedures

round

Purpose
Round a number to the nearest integer.

Synopsis
function round(r:real):integer

Argument
r Real number to be rounded

Return value
Rounded value.

Example
In the following, i takes the value 6, j the value -7, and k the value 12:

i := round(5.5)
j := round(-6.7)
k := round(12.3)

Related topics
ceil, floor.

Fair Isaac Corporation Proprietary Information 161

Chapter 3: Predefined functions and procedures

setcoeff

Purpose
Set the coefficient of a variable or the constant term.

Synopsis
procedure setcoeff(c:linctr, x:mpvar, r:real)
procedure setcoeff(c:linctr, r:real)

Arguments
c A linear constraint
x A decision variable
r Coefficient or constant term

Example
The following declares a constraint c and then changes some of its terms:

declarations
x,y,z: mpvar
end-declarations

c:= 4⁎x + y -z <= 12

setcoeff(c, y, 2)
setcoeff(c, 8.1)

The constraint is now 4 · x + 2 · y – z ≤ –8.1.

Further information
If a variable is given then this procedure sets the coefficient of this variable in the constraint to the given
value. Otherwise, it sets the constant term of the constraint.

Related topics
getcoeff.

Fair Isaac Corporation Proprietary Information 162

Chapter 3: Predefined functions and procedures

sethidden

Purpose
Hide or unhide a constraint.

Synopsis
procedure sethidden(c:linctr, b:boolean)

Arguments
c A linear constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Example
THe following defines a constraint and then sets it as hidden:

declarations
x,y,z: mpvar
end-declarations

c:= 4⁎x + y -z <= 12
sethidden(c, true)

Further information
At its creation a constraint is added to the current problem, but using this procedure it may be hidden.
This means that the constraint will not be contained in the problem that is solved by the optimizer but it is
not deleted from the definition of the problem in Mosel. Function ishidden can be used to test the
current status of a constraint.

Related topics
ishidden.

Fair Isaac Corporation Proprietary Information 163

Chapter 3: Predefined functions and procedures

setioerr

Purpose
Raise an IO error.

Synopsis
procedure setioerr(msg:string)

Argument
msg Error message to display (or an empty string)

Further information
This function sets the control parameter iostatus (see getparam) such that an IO error is raised. If IO
errors are not handled by the model (see setparam), the execution is interrupted.

Related topics
setmatherr.

Fair Isaac Corporation Proprietary Information 164

Chapter 3: Predefined functions and procedures

setmatherr

Purpose
Raise a Math error.

Synopsis
procedure setmatherr(msg:string)

Argument
msg Error message to display (or an empty string)

Further information
If mathematical errors are not handled by the model (see setparam), the execution is interrupted. A
function ending with a call to this routine may set its return value to NAN or INFINITY in order to indicate
its error status.

Related topics
setioerr, isnan, isinf, isfinite.

Fair Isaac Corporation Proprietary Information 165

Chapter 3: Predefined functions and procedures

setname

Purpose
Associate a matrix name to a constraint or variable.

Synopsis
procedure setname(c:linctr, n:string)
procedure setname(v:mpvar, n:string)

Arguments
c A linear constraint
v A decision variable
n Name given to the constraint or variable

Further information

1. When exporting a problem to a matrix file, constraint/variable names are deduced from the global public
symbols: anonymous and local entities are usually named after their row/column number in the matrix.
This procedure makes it possible to give a name to these entities.

2. If the given name starts with the ’#’ character, the generated matrix name will include the order number
of the constraint or variable in the matrix.

Related topics
exportprob.

Fair Isaac Corporation Proprietary Information 166

Chapter 3: Predefined functions and procedures

setparam

Purpose
Set the value of a control parameter.

Synopsis
procedure setparam(name:string,val:integer|string|real|boolean)

Arguments
name Name of a control parameter (case insensitive).
val New value for the control parameter

Example
See example of function getparam.

Fair Isaac Corporation Proprietary Information 167

Chapter 3: Predefined functions and procedures

Further information

1. Control parameters include the settings of Mosel as well as those of any loaded module or package. The
location of the parameter may be specified by prefixing its name with the name of the module or package
defining it (e.g. mmxprs.XPRS_verbose). The type of the value must correspond to the type expected
by the parameter.

2. This procedure can be applied only to control parameters the value of which can be modified.

3. The name argument must be a constant string: a model parameter, variable or string expression cannot
be used as a control parameter name.

4. The following control parameters, supported by Mosel, can be altered with this procedure:
realfmt Default C printing format for real numbers (string, default: "%.10g")
zerotol zero tolerance in comparisons between reals (non-negative real strictly smaller than 1, default:

1.0e-13), see Section 2.7.7. This parameter is also used when displaying reals if the parameter
txtztol is true: any value smaller than the zero tolerance is handled like the zero constant

txtztol decide whether values smaller than the zero tolerance must be reported as the zero constant
when converting a real value to its textual representation (Boolean, default: true)

ioctrl specify whether the interpreter ignores IO errors (Boolean, default: false). When ioctrl is
enabled it is required to get (and reset) the iostatus parameter (see getparam) after every IO
operation. Not doing so may result in undefined behavior

mathctrl specify whether the interpreter ignores Maths errors (Boolean, default: false)
readcnt generate per label counting when executing ‘initializations from’ blocks (Boolean, default:

false)
UTC indicate whether the time functions return time expressed in local (false) or UTC (true) time

(Boolean, default: false)
autofinal indicate whether initialisation from blocks are finalizing sets (Boolean, default: true or

false if compiler option noautofinal is used)
workdir specify the current working directory of the model (string, initialised with the current working

directory of the Mosel instance). The provided value can be a relative path (e.g. "../somedir")
recloc enable (or disable) automatic recording of source location of constraints definitions (Boolean,

default: false). This parameter can be set to true only if the model has been compiled with
option -G; it makes it possible the creation of meaningful constraint names when exporting a
matrix (see exportprob)

localedir directory where message catalogs are stored (string, default: "./locale")
bimprefix list of bim file prefixes (string). This parameter is used to locate packages when compiling

a model (compile) and loading a bim file (load), see Section 2.3.1.

5. The parameter realfmt requires a format of the form %[f][w][.p]c where f (flags) is an optional
string of 1 to 3 characters from the list ’#0 -+’; w (width) an optional string of 1 to 3 digits (the first one
cannot be 0); p (precision) an optional string of 1 to 2 digits and c (conversion specifier) a character from
the list ’eEfgGaAjy’ (see formattext for further details). The conversion specifiers j and y are
Mosel extensions to the C standard that support flags ’0 -+’ and the optional width: they produce a
reversible textual representation of the real number (i.e. converting the string back to real restores the
exact original value). The format ’j’ generates a decimal notation similar to the specification ECMA-262
(e.g. "123.456") while the format ’y’ produces a scientific notation in all cases (e.g. "1.2345e2").

Related topics
getparam, setdsoparam, localsetparam, restoreparam.

Fair Isaac Corporation Proprietary Information 168

Chapter 3: Predefined functions and procedures

setrandseed

Purpose
Initialize the random number generator.

Synopsis
procedure setrandseed(s:integer)

Argument
s Seed value

Further information
This procedure sets its argument as the seed for a new sequence of pseudo-random numbers to be
returned by the function random.

Related topics
random.

Fair Isaac Corporation Proprietary Information 169

Chapter 3: Predefined functions and procedures

setrange

Purpose
Set the domain range of a constraint.

Synopsis
procedure setrange(c:linctr, lb:real, ub:real)

Arguments
c A linear constraint expression
lb Lower bound
ub Upper bound

Example
The following sets the domain of the x variable and defines c as a range constraint.

declarations
x,y,z: mpvar
c: linctr
end-declarations

c:= 2⁎y+4⁎z+5
setrange(x,3,10) ! 3<=x<=10
setrange(c,1,30) ! -4<=2⁎y+4⁎z<=25

Further information

1. If the parameter c is a linear expression a new anonymous range constraint is added to the problem.
Otherwise, the provided constraint is turned into a range constraint (and added to the problem if required).

2. This procedure changes the type of the provided constraint to CT_RNG, stores the provided lower bound
as an external information and records the upper bound as the constant term of the constraint. As a
consequence defining the range of a constraint modifies its constant term, this has to be taken into
account if a range constraint is converted to another type or used as part of a linear expression.

Fair Isaac Corporation Proprietary Information 170

Chapter 3: Predefined functions and procedures

settype

Purpose
Set the type of a constraint.

Synopsis
procedure settype(c:linctr, type:integer)

Arguments
c A linear constraint
type Constraint type

Further information
The type (type) of a linear constraint may be set to one of:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint
CT_SOS1 Special ordered set of type 1
CT_SOS2 Special ordered set of type 2
Values applicable for unary constraints only are:
CT_CONT Continuous
CT_INT Integer
CT_BIN Binary
CT_PINT Partial integer
CT_SEC Semi-continuous
CT_SINT Semi-continuous integer
CT_FREE Free

Related topics
gettype

Fair Isaac Corporation Proprietary Information 171

Chapter 3: Predefined functions and procedures

sin

Purpose
Get the sine of a value.

Synopsis
function sin(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return value
Sine value of the argument.

Related topics
arctan, cos.

Fair Isaac Corporation Proprietary Information 172

Chapter 3: Predefined functions and procedures

splithead

Purpose
Split a list returning the first elements.

Synopsis
function splithead(l:list, o:integer):list

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Return value
The list of elements removed.

Example

L:=[1,2,3,4,5]
L2:=splithead(L,2) ! => L=[3,4,5] L2=[1,2]
L2:=splithead(L,-1) ! => L=[5] L2=[3,4]

Further information
If the second parameter is 0, the list is unchanged and an empty list is returned. If the same parameter is
larger than the size of the list, all elements are deleted and the function returns a copy of the original list.

Related topics
splittail

Fair Isaac Corporation Proprietary Information 173

Chapter 3: Predefined functions and procedures

splittail

Purpose
Split a list returning the last elements.

Synopsis
function splittail(l:list, o:integer):list

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Return value
The list of elements removed.

Example

L:=[1,2,3,4,5]
L2:=splittail(L,2) ! => L=[1,2,3] L2=[4,5]
L2:=splittail(L,-1) ! => L=[1] L2=[2,3]

Further information
If the second parameter is 0, the list is unchanged and an empty list is returned. If the same parameter is
larger than the size of the list, all elements are deleted and the function returns a copy of the original list.

Related topics
splithead

Fair Isaac Corporation Proprietary Information 174

Chapter 3: Predefined functions and procedures

sqrt

Purpose
Get the positive square root of a value.

Synopsis
function sqrt(r:real):real

Argument
r Real value the function is applied to. This value must be non-negative.

Return value
Square root of the argument.

Related topics
abs, exp, ln, log.

Fair Isaac Corporation Proprietary Information 175

Chapter 3: Predefined functions and procedures

strfmt

Purpose
Create a formatted string from a string or a number.

Synopsis
function strfmt(str:string,len:integer):string
function strfmt(i:integer, len:integer):string
function strfmt(r:real, len:integer):string
function strfmt(r:real, len:integer, dec:integer):string

Arguments
str String to be formatted
i Integer to be formatted
r Real to be formatted
len Reserved length (may be exceeded if given string is longer, in this case the string is always left

justified).
<0 Left justified within reserved space
>0 Right justified within reserved space
0 Use defaults

dec Number of digits after the decimal point

Return value
Formatted string.

Example
The following:

writeln("text1", strfmt("text2",8), "text3")
writeln("text1", strfmt("text2",-8), "text3")
r:=789.123456
writeln(strfmt(r,0)," ", strfmt(r,4,2), strfmt(r,8,0))

produces this output:

text1 text2text3
text1text2 text3
789.123 789.12 789

Further information

1. This function creates a formatted string from a string or an integer or real number. It can be used at any
place where strings may be used. Its most likely use is for generating printed output (in combination with
write and writeln).

2. If the resulting string is longer than the reserved space it is not cut but printed in its entirety, overflowing
the reserved space to the right.

Related topics
write, writeln.

Fair Isaac Corporation Proprietary Information 176

Chapter 3: Predefined functions and procedures

substr

Purpose
Get a substring of a string.

Synopsis
function substr(str:string, i1:integer, i2:integer):string

Arguments
str String
i1 Starting position of the substring
i2 End position of the substring

Return value
Substring of the given string.

Example

write(substr("Example text", 3, 10))

This outputs the text: ample te

Further information
This function returns the substring from the i1th to the i2th character of a given string (the counting starts
from 1). This function returns an empty string if the bounds are not compatible with the string (e.g.
starting position larger than the length of the string) or inconsistent (e.g. starting position after end
position).

Fair Isaac Corporation Proprietary Information 177

Chapter 3: Predefined functions and procedures

timestamp

Purpose
Generate a timestamp by combining the current UTC date and time.

Synopsis
function timestamp:real

Return value
The number of seconds since 1/1/1970 at midnight as a real.

Further information

1. This function corresponds to the expression (using UTC time):
real(currentdate)⁎86400+currenttime/1000

2. A local time timestamp may be obtained using: getasnumber(datetime(SYS_NOW))

3. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
currenttime,currentdate

Fair Isaac Corporation Proprietary Information 178

Chapter 3: Predefined functions and procedures

unpublish

Purpose
Unpublish a symbol.

Synopsis
procedure unpublish(name:string)

Argument
name Symbol to be removed from the dictionary

Further information
This procedure has the opposite effect of publish. If the given name does not correspond to a
previously published symbol no operation is performed.

Related topics
publish.

Fair Isaac Corporation Proprietary Information 179

Chapter 3: Predefined functions and procedures

versionnum, versionstr

Purpose
Version of Mosel, a module or package.

Synopsis
function versionnum(what:string):integer
function versionstr(what:string):string

Argument
what A module name, a package name, the string "xpress" or an empty string

Return value
A version number as a string formatted as "maj.min.rel" (with versionstr) or as an integer (with
versionnum). An empty string or -1 is returned if the requested library cannot be found.

Further information
With an empty string these routines return the version of Mosel currently running, with the string
"xpress" they give the version of the current FICO Xpress installation. Otherwise the argument is
expected to be the name of a module (no suffix or name ending with ".dso"), or the name of a package
(name ending with ".bim"). In both cases the library must be currently used by the model. For a
package both imported and loaded at runtime packages are considered.

Fair Isaac Corporation Proprietary Information 180

Chapter 3: Predefined functions and procedures

write, writeln

Purpose
Send an expression or list of expressions to the active output stream.

Synopsis
procedure write(e1:expr[, e2:expr...])
procedure writeln
procedure writeln(e1:expr[, e2:expr...])

Argument
e1, e2,... Expression or list of expressions

Example
The following lines

Set1:={"first", "second", "fifth"}
write(Set1) ! Print set contents without return
writeln ! Print an empty line
b:=true
writeln("A real:", strfmt(7.1234, 4, 2), ", a Boolean:",b)

! Output followed by return

produce this output:

{`first', `second', `fifth'}
A real:7.12, a Boolean:true

Further information
These procedures write the given expression or list of expressions to the active output stream. The
procedure writeln adds the return character to the end of the output. Numbers may be formatted using
function strfmt (default formatting relies on parameters realfmt, zerotol and txtztol, see
setparam). Basic types are printed "as is". For elementary but non-basic types (linctr, mpvar) only
the address is printed. If the expression is a set or array, all its elements are printed.

Related topics
fwrite, fwriteln, read, readln, strfmt, formattext.

Fair Isaac Corporation Proprietary Information 181

II. Modules

CHAPTER 4

deploy

This module defines two I/O drivers, deploy.csrc and deploy.exe for generating an executable program
from a BIM file, along with two utility routines for accessing the program arguments with the Mosel
model. Its use is discussed in Section 2.19.

4.1 Procedures and functions
argc Retrieve the number of arguments passed to a model executable. p. 184

argv Retrieve an argument passed to a model executable. p. 185

Fair Isaac Corporation Proprietary Information 183

Chapter 4: deploy

argc

Purpose
Retrieve the number of arguments passed to a model executable.

Synopsis
function argc: integer

Return value
Number of parameters passed to the command used for executing a model (counting the command
itself as the first).

Further information
This function makes it possible to access the program arguments when a model is run as an executable
that has been generated via the deploy.exe I/O driver (see Section 4.2.2). If the model is not run as an
executable but has instead been compiled to a standard BIM file then the returned value is always 1.

Example
See examples in Section 2.19.

Related topics
argv

Module
deploy

Fair Isaac Corporation Proprietary Information 184

Chapter 4: deploy

argv

Purpose
Retrieve an argument passed to a model executable.

Synopsis
function argv(ind: integer):string

Argument
ind index of the argument (positive integer)

Return value
Returns as a string the ith argument passed to the command used for executing a model.

Further information
This function makes it possible to access the program arguments when a model is run as an executable
that has been generated via the deploy.exe I/O driver (see Section 4.2.2). The number of arguments can
be retrieved via argc. If the model is not run as an executable but has instead been compiled to a
standard BIM file then there will be a single argument with the value mosel.

Example
See examples in Section 2.19.

Related topics
argc

Module
deploy

Fair Isaac Corporation Proprietary Information 185

Chapter 4: deploy

4.2 I/O drivers
The two I/O drivers provided by this module are designed to be used in combination with a Mosel
command compiling a model by applying them to the output filename. They are not intended to be used
in any other contexts.

deploy.⁎:filename[,p1[-z]=fp1[,...]]

4.2.1 Driver csrc
csrc:filename[,p1[-z]=fp1[,...]]

The csrc driver takes the following options:

filename Destination file name

p1[-z]=fp1 list of labels and filenames, the optional -z flag indicates that compression is to be used

Example:

mosel comp mymodel.mos -o deploy.csrc:runmymod

This command produces a file runmymod.c that contains the model mymodel.mos in compiled (BIM)
form and a complete C program for executing it via the Mosel C Library API. The generated code needs to
be compiled into an executable for the targeted platform (see the makefile provided with the Mosel
Library API examples).

4.2.2 Driver exe
exe:filename[,p1[-z]=fp1[,...]]

The exe driver takes the following options:

filename Destination file name

p1[-z]=fp1 list of labels and filenames, the optional -z flag indicates that compression is to be used

Example:

mosel comp mymodel.mos -o deploy.exe:runmymod,MYFILE-z=otherfile.txt

Provided that a C compiler is available on the system, this command produces an executable for the
platform in which it is invoked (resulting in a file named runmymod on Unix platforms or runmymod.exe
under Windows). The executable serves for running the specified model, it also includes a second file
otherfile.txt in compressed form, identified via the model parameter MYFILE.

The generation of this executable is obtained by producing a C source using the deploy.csrc driver
that is compiled using the C-compiler installed on the system. This compiler can be specified by means
of the CC environment variable (default value: cl on Windows and cc on Posix systems) and its default
parameters can be selected with the environment variable CFLAGS. The location of the Xpress libraries is
automatically deduced from the running program that is expected to be part of a standard Xpress
installation.

For a full example, the reader is refered to the source of the moseldoc tool that is provided among the
Mosel examples of the Xpress distribution.

Fair Isaac Corporation Proprietary Information 186

Chapter 4: deploy

Note that the generated executable only includes the compiled model and the specified additional files, it
requires the same Xpress runtime dependencies (see the chapter Creating runtime distributions of the
Xpress Installation Guide) for its execution as what would be required for running the model after
compiling it into a standard BIM file.

Fair Isaac Corporation Proprietary Information 187

CHAPTER 5

mmetc

This compatibility module just defines the diskdata procedure required to use data files formatted for
mp-model from Mosel and provides a commercial discounting function. To use this module, the following
line must be included in the header of the Mosel model file:

uses 'mmetc'

5.1 Procedures and functions
disc Annual discount. p. 189

diskdata Read in or write an array or set of strings to a file. p. 190

Fair Isaac Corporation Proprietary Information 188

Chapter 5: mmetc

disc

Purpose
Annual discount.

Synopsis
function disc(a:real, t:real)

Arguments
a Discount factor, real number greater than -1
t Time, real number

Return value
Annual discount value: 1/(1 + a)t–1.

Further information
This function calculates the annual discount for the given period of time and discount factor.

Module
mmetc

Fair Isaac Corporation Proprietary Information 189

Chapter 5: mmetc

diskdata

Purpose
Read in or write an array or set of strings to a file.

Synopsis
procedure diskdata(format:integer, file:string, a:array)
procedure diskdata(format:integer, file:string, s:set)
procedure diskdata(format:integer, file:string, l:list)

Arguments
format Format options:

ETC_DENSE dense data format
ETC_SPARSE sparse data format
ETC_SGLQ strings quoted with single quotes
ETC_NOQ strings are not quoted in the file
ETC_OUT write to a file
ETC_APPEND append output to the end of an existing file
ETC_TRANS tables are transposed
ETC_IN read from file (default)
ETC_NOZEROS skip zero values
ETC_CSV use CSV format
ETC_SKIPH skip first line (header) of the file
ETC_AUTONDX similar to sparse format but indices are not read or written (only applies

to 1-dimension arrays indiced by ranges)
ETC_EMPTYNDX missing indices are replaced by a default value
ETC_DATAFRAME dense data format for a 2-dimension array and first index as a range (for

the line numbers)
Several options may be combined using ‘+’.

file Extended file name
a Array to export or initialize
s Set to export or initialize
l List to export or initialize

Example
The following example declares two sets and two dynamic arrays. The array ar1 is read in from the file
in.dat. Then both arrays, ar1 and ar2, are saved to the file out.dat (in sparse format) and finally the
contents of the set Set1 is appended to the file out.dat.

declarations
Set1: set of string
R: range
ar1,ar2: array(Set1,R) of real
end-declarations

diskdata(ETC_SPARSE, "in.dat", ar1)
diskdata(ETC_OUT, "out.dat", [ar1, ar2])
diskdata(ETC_OUT+ETC_APPEND, "out.dat", Set1)

Fair Isaac Corporation Proprietary Information 190

Chapter 5: mmetc

Further information

1. This procedure reads in data from a file or writes to a file, depending on the parameter settings. The file
format used is compatible with the command DISKDATA of the modeler mp-model (unless the option
ETC_CSV is specified).

2. Only arrays lists and sets of basic and native types (including mpvar and linctr for writing) can be
used with this procedure, in particular records are not supported.

3. If option "dataframe" is combined with "skiph" the array to be processed must be indiced by a range
and a set of strings. The second index is automatically populated with the column names of the header
row when reading (the same line is generated when writing).

4. In case of error the procedure raises an IO error.

Module
mmetc

Fair Isaac Corporation Proprietary Information 191

Chapter 5: mmetc

5.2 I/O drivers
This module provides the diskdata IO driver designed to be used as an interface for initializations
blocks for both reading and writing files formated for the diskdata procedure.

5.2.1 Driver diskdata
diskdata:[dense|sparse|autondx|dataframe;][sglq|noq|csv;][cols();]

[skiph;emptyndx;append;trans;nozeros;fsep=c;dsep=c]

The driver can only be used in ‘initializations’ blocks. In the opening part of the block, no file name has to
be provided, but general options can be stated at this point: they will be applied to all labels. In the block,
each label entry is understood as the file name to use for the actual processing. Note that, before the file
name, one can add further options separated by comas or semicolons, that are effective to the particular
entry. Here, the csv option might be followed by a list of columns separated by commas and enclosed in
parenthesis. This selection may also be achieved using the cols option. The columns are identified by
their number (first column has index 1) and must be given in ascending order without duplicate. If the last
column number is suffixed by the plus sign, the following columns will also be included in the selection
(e.g. "csv(1,3+)" skips the second column). To use names, the option skiphmust be used and the
column names are taken from the header row that is skipped through this option. When using skiph,
column numbers need to be stated by prefixing the column number by # (even in this case columns must
be given in ascending order).This column selection is ignored for a writing operation. The file name given
can use extended notation.

The diskdata driver takes the following options:

dense dense data format

sparse sparse data format

autondx sparse data format with automatic indexation (applies only to 1-dimension arrays indiced
by ranges)

autondx=st same as autondx but starting index is set to st (instead of 1)

dataframe dense data format for a 2-dimension array and first index as a range (for the line numbers)

sglq strings quoted with single quotes

noq strings are not quoted in the file

csv use CSV format: quoting and escaping with double quotes, all lines are processed (i.e.
characters ’!’ and ’&’ are ordinary symbols), all columns are interpreted as text

cols(c1[,c2,...]) select a list of columns

skiph When reading, the first line of the file is skipped, when writing, the first line of the file is
preserved (or a comment line is inserted if the file does not already exist)

emptyndx When reading array indices an empty cell causes a failure. With this option empty cells are
replaced by the default value of the corresponding type (e.g. 0 for a numerical value)

append append output to the end of an existing file

trans tables are transposed

nozeros skip zero values

fsep=c character used to separate fields. The default value is ","; tabulation or ";" are also
often employed

Fair Isaac Corporation Proprietary Information 192

Chapter 5: mmetc

dsep=c character used as decimal separator (default: ".")

Example:

declarations
Set1: set of string ! Declare a set of strings
ar1,ar2: array(Set1,range) of real ! Declare two dynamic arrays
r: real ! Declare a real value
end-declarations

initializations from "diskdata:" ! Use 'diskdata' format for reading
ar1 as "sparse;csv(1,3,4);ind.dat" ! Read `ar1' from 'in.dat' in sparse format

! using CSV conventions and selecting columns 1,3 and 4
r as "r_init.dat" ! Initialize `r' from 'r_init.dat'
end-initializations

initializations to "diskdata:append" ! Use 'diskdata' format for output
[ar1, ar2] as "out.dat" ! Save two arrays in sparse format
Set1 as "out.dat" ! Save set `Set1' to the same file
end-initializations

Fair Isaac Corporation Proprietary Information 193

CHAPTER 6

mmhttp

The module mmhttp makes it possible to communicate with external components via HTTP requests.
Both modes, client or server side, can be used in a Mosel model: the client routines allow a Mosel model
to send the HTTP requests GET, POST, PUT, PATCH or DELETE to a web service. A model may also act as
a web service by starting the integrated HTTP server. In this mode, the model gets notified about
connections from remote clients via specific mmjobs events. The model can then reply to these requests
using a set of dedicated routines.
To use this module, the following line must be included in the header of the Mosel model file:

uses 'mmhttp'

6.1 New functionality for the Mosel language
6.1.1 The type reqqueue

The type reqqueue can be used to implement multithreaded HTTP servers: it represents a queue of
pending HTTP requests to be processed by the server. A queue of this type must be declared as a global
shared entity such that each cloned submodel of the master model can access it. A submodel ready to
handle a new request has to call httpreqpop in order to warn the queue manager of its availability and
then wait for an event. When the server receives a request that has to be processed by one of these
submodels it moves this request to the queue using httpreqpushlim or httpreqpush, as a result the
request is sent to one of the available submodels that is notified as if the request had been directly
received from the network (see Section 6.4.2). If no submodel is ready, the request is recorded in the
queue until a model becomes available for processing it.

6.2 Control parameters
The following parameters are defined by mmhttp:

http_async HTTP requests processing mode. p. 195

http_browser Path to the web browser. p. 195

http_cookies Handling of cookies. p. 196

http_defpage Default page of the web server. p. 196

http_defport Default server TCP port. p. 196

http_expire Expiration delay of open connections. p. 196

http_freeasync Number of available asynchronous connections. p. 197

Fair Isaac Corporation Proprietary Information 194

Chapter 6: mmhttp

http_keephdr Whether to keep HTTP headers in results. p. 197

http_listen Interface used by server. p. 197

http_maxasync Maximum number of pending asynchronous requests. p. 199

http_maxconn Maximum number of open connections. p. 197

http_maxcontime Maximum time for a connection. p. 198

http_maxreq Maximum number of waiting connections. p. 198

http_maxreqtime Maximum time for a connection. p. 198

http_port Server TCP port. p. 199

http_proxy Proxy address. p. 199

http_proxyport Proxy TCP port. p. 199

http_srvconfig Server options. p. 200

http_startwb Decide whether to start a web browser with the server. p. 200

https_defport Default secure server TCP port. p. 200

https_listen Interface used by secure server. p. 201

https_port Secure server TCP port. p. 201

http_async

Description This parameter selects the processing mode of the HTTP request functions
(httpget|put|post|del). These functions return immediately after the connection to the server
has been established (without waiting for the reply by the server) when this parameter is set to
true. The model is notified about the completion of the request via an event of class
EVENT_HTTPEND.

Type Boolean, read/write

Default value false

Affects routines httpdel, httpget, httppost, httpput, httppatch.

See also http_maxasync.

Module mmhttp

http_browser

Description The path to a web browser to be executed when the parameter http_startwb is active.

Type String, read/write

Values Path to a web browser

Affects routines httpstartsrv.

See also http_startwb.

Module mmhttp

Fair Isaac Corporation Proprietary Information 195

Chapter 6: mmhttp

http_cookies

Description Decides whether cookie management is enabled: when this parameter is set to true the
cookie store is updated according to server replies and request headers are completed with the
relevant cookies. Changing the value of this parameter does not affect the cookie store (i.e.
existing cookies are not modified).

Type Boolean, read/write

Default value false

Affects routines httpdel, httpget, httppost, httpput, httppatch.

Module mmhttp

http_defpage

Description The default page is selected when the server receives a request not specifying any path (e.g.
"http://server/").

Type String, read/write

Values The label to be used as the default page. Selecting an empty string restores the default value

Default value "index.html"

Affects routines httpstartsrv.

Module mmhttp

http_defport

Description This is the port number used by the web server upon its startup. If this parameter is 0, the port
number is selected automatically by the operating system (the actual port number can be
retrieved through parameter http_port).

Type Integer, read/write

Values Between 0 and 65535

Default value 0

Affects routines httpstartsrv.

See also http_port.

Module mmhttp

http_expire

Description Connections held in the connection pool are automatically closed if they are not used for more
than the amount of time (in seconds) defined by this parameter.

Type Integer, read/write

Values Between 5 and 60 by steps of 5 seconds

Fair Isaac Corporation Proprietary Information 196

Chapter 6: mmhttp

Default value 5

See also http_maxconn.

Module mmhttp

http_freeasync

Description Up to http_maxasync asynchronous requests can be used concurrently. This parameter
reports the current number of asynchronous requests that can still be initiated.

Type Integer, read only

See also http_maxasync.

Module mmhttp

http_keephdr

Description By default results of HTTP queries do not include the HTTP header lines. This parameter can be
used to retrieve these header lines in addition to the result document (use httpgetheader to
separate the header from the effective result document).

Type Boolean, read/write

Default value false

Affects routines httpdel, httpget, httppost, httpput, httppatch.

Module mmhttp

http_listen

Description This is the interface used by the web server upon its startup. The default value implies binding
to all available interfaces.

Type String, read/write

Default value 0.0.0.0

Affects routines httpstartsrv.

Module mmhttp

http_maxconn

Description This parameter defines the size of the connection pool: whenever an HTTP request is emitted
mmhttp tries to use one of the already open connections. After the end of the operation the
connection is saved into the pool (if the server supports this functionality). Setting this
parameter to 0 disables the pool (i.e. each query is executed on a new connection). When this
parameter is changed all connections of the pool are closed.

Type Integer, read/write

Values Between 0 and 8

Default value 4

Fair Isaac Corporation Proprietary Information 197

Chapter 6: mmhttp

See also http_expire.

Module mmhttp

http_maxcontime

Description Maximum amount of time (in seconds) allowed for connecting to a HTTP server and send a
request. If the operation is longer than the specified duration the request is cancelled and the
procedure results in an IO error. A value of 0 disables this time limit.

Type Integer, read/write

Default value 0

See also http_maxreqtime.

Affects routines httpdel, httpget, httppost, httpput, httppatch.

Module mmhttp

http_maxreq

Description The maximum number of active concurrent connections the server is maintaining. Above this
limit, connections are rejected and clients are notified with the HTTP code 500.

Type Integer, read/write

Values At least 1

Default value 16

Affects routines httpstartsrv.

Module mmhttp

http_maxreqtime

Description Maximum amount of time (in seconds) allowed for processing a request. If the operation is
longer than the specified duration the request is cancelled and the procedure results in an IO
error. A value of 0 disables this time limit.

Type Integer, read/write

Default value 0

See also http_maxcontime.

Affects routines httpdel, httpget, httppost, httpput, httppatch.

Module mmhttp

Fair Isaac Corporation Proprietary Information 198

Chapter 6: mmhttp

http_maxasync

Description This parameter defines the maximum number of active asynchronous requests that can be
sent by a Mosel model. This parameter can only be changed if asynchronous mode is not
active and there is no active request.

Type Integer, read/write

Values Between 4 and 58

Default value 8

Affects routines httpdel, httpget, httppost, httpput, httppatch.

See also http_async, http_freeasync.

Module mmhttp

http_port

Description This parameter reports the port number currently used by the web server.

Type Integer, read only

Affects routines httpstartsrv.

See also http_defport.

Module mmhttp

http_proxy

Description When this parameter is defined, HTTP connections are sent through this proxy server (instead
of establishing direct connections).

Type Integer, read/write

Default value ""

Affects routines httpdel, httpget, httppost, httpput, httppatch.

See also http_proxyport.

Module mmhttp

http_proxyport

Description The value of this parameter corresponds to the connection port of the proxy server (when
defined).

Type Integer, read/write

Values Between 1 and 65535

Default value 80

Affects routines httpdel, httpget, httppost, httpput, httppatch.

See also http_proxy.

Module mmhttp

Fair Isaac Corporation Proprietary Information 199

Chapter 6: mmhttp

http_srvconfig

Description This parameter specifies which request types are accepted by the HTTP server started from a
Mosel model. For instance, if the application will only process HTTP GET queries the value of
this parameter should be HTTP_GET. Moreover, if the flag HTTP_SSL is set, the server will also
listen for HTTPS connections and, if the flag HTTP_SSLONLY is used, only the HTTPS server
will be started (i.e. normal HTTP queries will be rejected). When an HTTPS server is started, the
flag HTTP_CLTAUTH enables client authentication: clients are accepted only if they present a
known certificate.

Type Integer, read/write

Default value HTTP_DELETE+HTTP_GET+HTTP_POST+HTTP_PUT

Affects routines httpstartsrv.

Module mmhttp

http_startwb

Description If this parameter is true a web browser pointing to the default page is launched just after the
web server starts.

Type Boolean, read/write

Default value false

Affects routines httpstartsrv.

See also http_browser.

Module mmhttp

https_defport

Description This is the port number used by the web secure server upon its startup. If this parameter is 0,
the port number is selected automatically by the operating system (the actual port number can
be retrieved through parameter https_port).

Type Integer, read/write

Values Between 0 and 65535

Default value 0

Affects routines httpstartsrv.

See also https_port.

Module mmhttp

Fair Isaac Corporation Proprietary Information 200

Chapter 6: mmhttp

https_listen

Description This is the interface used by the secure web server upon its startup. The default value implies
binding to all available interfaces.

Type String, read/write

Default value 0.0.0.0

Affects routines httpstartsrv.

Module mmhttp

https_port

Description This parameter reports the port number currently used by the secure web server.

Type Integer, read only

Affects routines httpstartsrv.

See also https_defport.

Module mmhttp

6.3 Constants
mmhttp defines the following constants for frequently used HTTP status codes (the codes of the 200
series indicate success, the 400 series are error codes, according to the RFC 2616 specification). Note
that the textual representations of HTTP status codes can be obtained via function httpreason.

■ HTTP_OK: 200

■ HTTP_CREATED: 201

■ HTTP_ACCEPTED: 202

■ HTTP_NO_CONTENT: 204

■ HTTP_RESET_CONTENT: 205

■ HTTP_BAD_REQUEST: 400

■ HTTP_UNAUTHORIZED: 401

■ HTTP_PAYMENT_REQUIRED: 402

■ HTTP_FORBIDDEN: 403

■ HTTP_NOT_FOUND: 404

■ HTTP_METHOD_NOT_ALLOWED: 405

■ HTTP_NOT_ACCEPTABLE: 406

■ HTTP_PROXY_AUTHENTICATION_REQUIRED: 407

■ HTTP_REQUEST_TIMEOUT: 408

Fair Isaac Corporation Proprietary Information 201

Chapter 6: mmhttp

6.4 Procedures and functions
6.4.1 HTTP client

The HTTP requests GET, HEAD, POST, PUT, PATCH and DELETE can be sent to a web service using
functions httpget, httphead, httppost, httpput, httppatch and httpdel respectively. Each of
these functions takes at least two parameters: the URL of the resource and a file name where to store the
result of the operation. POST, PUT and PATCH requests require an additional file, namely the data source
to be sent to the web service.
HTTP requests are either processed synchronously or asynchronously.

When a request is sent in synchronous mode (the default), the HTTP function call returns after the
processing has completed and the return value corresponds to the status of the request (a successful
request will have a status value between 200 and 299). The following example uses www.bing.com to
search for ’FICO’ using a synchronous request:

status:=httpget("http://www.bing.com/search?q=FICO", "result.html")
if status div 100=2 then
writeln("Found FICO!")
else
writeln("Request failed with code :", status, " (", httpreason(status), ")")
end-if

If the asynchronous mode is active (that is, the parameter http_async is set to true) the HTTP
functions return just after the request has been sent, without waiting for the reply by the server. The
processing continues in a separate thread of execution (up to http_maxasync requests can be handled
at the same time) and the function returns a request identifier (or an error code in case of failure during
the connection phase). Once the request has completed (i.e. the server has replied) an event of class
EVENT_HTTPEND is raised (please refer to the documentation of the module mmjobs for further
explanation on how to handle events). The associated value of this event is
request_id+status/1000. For instance if request number 1300 succeeded with status 204 (’no
data’) the corresponding event value is 1300.204. An asynchronous request can be cancelled using
httpcancel: in this case an event is still generated but its status is 998.
In the following example, search for ’FICO’ is sent to BING, Yahoo and Ask at the same time. A loop is
then started to wait for answers from each of the search engines.

setparam("http_async",true) ! Switch to asynchronous mode
reqyahoo:=httpget("http://us.search.yahoo.com/search/?p=FICO", "resyahoo.html")
writeln("Request ", reqyahoo, " sent to Yahoo")
reqbing:=httpget("http://www.bing.com/search?q=FICO", "resbing.html")
writeln("Request ", reqbing, " sent to BING")
reqask:=httpget("http://uk.ask.com/web?q=FICO", "resask.html")
writeln("Request ", reqask, " sent to Ask")
if reqbing<1000 or reqyahoo<1000 or reqask<1000 then
writeln("A request has failed!")
else
nbdone:=0
repeat
wait ! Wait for an event
evt:=getnextevent
if evt.class = EVENT_HTTPEND then ! One of the requests completed
reqnum:=floor(evt.value) ! Get request number
write("Request ", reqnum, " done: ")
status:=round((evt.value-reqnum)⁎1000) ! Get HTTP status
if status div 100=2 then ! 200<=status<300 is success
writeln("Found FICO!")

else ! Any other value is an error code
writeln("Failed with code :", status, " (", httpreason(status), ")")

end-if
nbdone+=1
end-if

Fair Isaac Corporation Proprietary Information 202

Chapter 6: mmhttp

until nbdone=3 ! Finished when all requests are done
end-if

By default the module performs direct TCP connections to the servers but a proxy may be specified using
the http_proxy and http_proxyport parameters.

It is possible to set a limit on the time spent for connecting to a server by using http_maxcontime. The
parameter http_maxreqtime defines a time limit on the entire request (i.e. connection and retrieval of
result). mmhttp will wait undefinitely for each request if none of these parameters is defined.

When requests are sent to a secure server (i.e. URL starting with "https://") the trusted certificates
file https_cacertsmust be available such that authenticity of servers can be verified. If this
verification is not required, the control parameter https_trustsrv has to be set to true. If the
requested secure server requires client authentication, client certificate https_cltcrt and associated
private key https_cltkeymust be defined. Note that these parameters are published by mmssl: this
module has to be used when a secure requests have to be sent.

HTTP client functions:

delcookies Delete cookies from the cookie store. p. 204

findcookie Get the value of a cookie from the cookie store. p. 205

httpcancel Cancel an asynchronous request. p. 206

httpdel Perform an HTTP DELETE request. p. 207

httpget Perform an HTTP GET request. p. 208

httpgetheader Extract the HTTP header of a result file. p. 209

httphead Perform an HTTP HEAD request. p. 210

httppatch Perform an HTTP PATCH request. p. 211

httppost Perform an HTTP POST request. p. 212

httpput Perform an HTTP PUT request. p. 213

httpreason Generate the text representation of an HTTP status code. p. 214

loadcookies Load cookies from a file. p. 215

savecookies Save the cookie store into a file. p. 216

setcookie Define or update a cookie. p. 217

tcpping Test availability of a service on a server. p. 218

urlencode Encode a text string for a URL. p. 219

Fair Isaac Corporation Proprietary Information 203

Chapter 6: mmhttp

delcookies

Purpose
Delete cookies from the cookie store.

Synopsis
procedure delcookies(domain:text|string)

Argument
domain Domain filter of the cookies to be deleted or an empty string to select all cookies

Related topics
setcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 204

Chapter 6: mmhttp

findcookie

Purpose
Get the value of a cookie from the cookie store.

Synopsis
function findcookie(name:string, domain:text, path:text, strict:boolean,

val:text)

Arguments
name Cookie name
domain Domain of the cookie
path Path in the domain
strict If true perfect matching is required for name, domain and path (like for setcookie),

otherwise any cookie of the requested name with a compatible domain and path is returned
val Returned value when a corresponding cookie is found

Return value
true if the cookie was found (its value is saved in val), false otherwise

Related topics
delcookies, findcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 205

Chapter 6: mmhttp

httpcancel

Purpose
Cancel an asynchronous request.

Synopsis
procedure httpcancel(id: integer)

Argument
id Number of the request to cancel

Further information
This procedure has no effect if the request number cannot be found (e.g. the request has completed in
the meantime). If the request is effectively cancelled an event of class EVENT_HTTPEND is raised with a
request status of value 998.

Related topics
httppost, httpput, httpget, httphead, httpdel, httppatch.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 206

Chapter 6: mmhttp

httpdel

Purpose
Perform an HTTP DELETE request.

Synopsis
function httpdel(url:string|text, result:string):integer
function httpdel(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if the asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after having sent
the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"
and "null:" can still be used).

2. When cookie management is enabled (see http_cookies) an additional header "Cookie:" is inserted
into the request if the cookie store contains compatible cookies. This behaviour is disabled if this
optional header is already specified via the parameter xhdr.

3. An IO error will be raised if the destination file cannot be accessed.
Related topics

httppost, httpput, httppatch, httpget, httphead, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 207

Chapter 6: mmhttp

httpget

Purpose
Perform an HTTP GET request.

Synopsis
function httpget(url:string|text, result:string):integer
function httpget(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if asynchronous mode is active

Example
Retrieve the default entry page of the FICO website in French and store it in the file "fico.html":

status:=httpget('http://www.fico.com/fr/Pages/default.aspx', 'fico.html')

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after having sent
the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"
and "null:" can still be used).

2. When building a query it is important to encode data to be sent using urlencode

3. By default the header "Accept-Encoding: gzip" is inserted into the request and the result data is
automatically decompressed if the server supports compression. This behaviour is disabled if this
optional header is already specified (e.g. the parameter xhdr includes "Accept-Encoding:
identity").

4. When cookie management is enabled (see http_cookies) an additional header "Cookie:" is inserted
into the request if the cookie store contains compatible cookies. This behaviour is disabled if this
optional header is already specified via the parameter xhdr.

5. An IO error will be raised if the destination file cannot be accessed.
Related topics

httppost, httpput, httppatch, httpdel, httphead, urlencode, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 208

Chapter 6: mmhttp

httpgetheader

Purpose
Extract the HTTP header of a result file.

Synopsis
function httpgetheader(sfile:string|text):text
function httpgetheader(sfile:string|text, dfile:string|text):text

Arguments
sfile Name of the file to process
dfile Destination file (can be the same as sfile)

Return value
Header of the result document

Further information

1. Result files of queries inlude the HTTP header when the parameter http_keephdr is set to true: this
function returns the header of a result file when this setting is active.

2. The optional destination file dfile receives a copy of the original result file after the header has been
removed.

3. An IO error will be raised in case of failure during a file operation.

Related topics
httpget, httppost, httpput, httppatch, httpdel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 209

Chapter 6: mmhttp

httphead

Purpose
Perform an HTTP HEAD request.

Synopsis
function httphead(url:string|text, result:string):integer
function httphead(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if asynchronous mode is active

Further information

1. The HEAD request is equivalent to a GET request except that no result is returned by the server, only the
header can be retrieved (see httpgetheader).

2. An IO error will be raised if the destination file cannot be accessed.
Related topics

httppost, httpput, httppatch, httpdel, httpget, urlencode, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 210

Chapter 6: mmhttp

httppatch

Purpose
Perform an HTTP PATCH request.

Synopsis
function httppatch(url:string|text, data:string, result:string):integer
function httppatch(url:string|text, data:string, result:string,

xhdr:string|text):integer

Arguments
url URL to process
data Data file to be sent to the server
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after having sent
the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"
and "null:" can still be used).

2. The parameter xhdr is typically used when the data type has to be specified. For instance, when the data
sent is URL-encoded it may be necessary to use "Content-Type:
application/x-www-form-urlencoded" as the value for xhdr in order to indicate to the server
how to decode and process this data.

3. When cookie management is enabled (see http_cookies) an additional header "Cookie:" is inserted
into the request if the cookie store contains compatible cookies. This behaviour is disabled if this
optional header is already specified via the parameter xhdr.

4. An IO error will be raised in case of failure during a file operation.

Related topics
httpget, httphead, httpput, httppost, httpdel, urlencode, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 211

Chapter 6: mmhttp

httppost

Purpose
Perform an HTTP POST request.

Synopsis
function httppost(url:string|text, data:string, result:string):integer
function httppost(url:string|text, data:string, result:string,

xhdr:string|text):integer

Arguments
url URL to process
data Data file to be sent to the server
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after having sent
the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"
and "null:" can still be used).

2. The parameter xhdr is typically used when the data type has to be specified. For instance, when the data
sent is URL-encoded it may be necessary to use "Content-Type:
application/x-www-form-urlencoded" as the value for xhdr in order to indicate to the server
how to decode and process the data.

3. By default the header "Accept-Encoding: gzip" is inserted into the request and the result data is
automatically decompressed if the server supports compression. This behaviour is disabled if this
optional header is already specified (e.g. the parameter xhdr includes "Accept-Encoding:
identity").

4. When cookie management is enabled (see http_cookies) an additional header "Cookie:" is inserted
into the request if the cookie store contains compatible cookies. This behaviour is disabled if this
optional header is already specified via the parameter xhdr.

5. An IO error will be raised in case of failure during a file operation.

Related topics
httpget, httphead, httpput, httppatch, httpdel, urlencode, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 212

Chapter 6: mmhttp

httpput

Purpose
Perform an HTTP PUT request.

Synopsis
function httpput(url:string|text, data:string, result:string):integer
function httpput(url:string|text, data:string, result:string,

xhdr:string|text):integer

Arguments
url URL to process
data Data file to be sent to the server
result File to store the result of the request
xhdr Additional headers to add to the request

Return value
HTTP status of the request (e.g. 200 for success, see Section 6.3 for a list of predefined status code
constants; value 999 indicates that an I/O error occurred during the operation) or the request number (≥
1000) if asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after having sent
the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"
and "null:" can still be used).

2. The parameter xhdr is typically used when the data type has to be specified. For instance, when the data
sent is URL-encoded it may be necessary to use "Content-Type:
application/x-www-form-urlencoded" as the value for xhdr in order to indicate to the server
how to decode and process this data.

3. When cookie management is enabled (see http_cookies) an additional header "Cookie:" is inserted
into the request if the cookie store contains compatible cookies. This behaviour is disabled if this
optional header is already specified via the parameter xhdr.

4. An IO error will be raised in case of failure during a file operation.

Related topics
httpget, httphead, httppost, httppatch, httpdel, urlencode, httpcancel.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 213

Chapter 6: mmhttp

httpreason

Purpose
Generate the text representation of an HTTP status code.

Synopsis
function httpreason(code:integer):string

Argument
code HTTP status code (see Section 6.3 for a list of predefined status code constants)

Return value
Text associated to the provided status code or an empty string if the code is unknown

Example
The following displays "Bad Request":

writeln(httpreason(400))

Further information
The HTTP standard specifies a set of predefined status codes. This function returns the text associated
with a given code. For instance, upon success a request will reply with code 200 ("OK") or 204 ("No
Content").

Module
mmhttp

Fair Isaac Corporation Proprietary Information 214

Chapter 6: mmhttp

loadcookies

Purpose
Load cookies from a file.

Synopsis
function loadcookies(fname:string|text, host:string):integer

Arguments
fname Source file name
host If not empty only cookies compatible with this host name are recorded

Return value
Number of cookies added to the store

Further information

1. This function loads cookies from the specified file and record them into the cookie store. The file must be
encoded as a HTTP header and only "Set-Cookie" headers are processed (other lines are silently
ignored).

2. An IO error will be raised if the source file cannot be accessed.
Related topics

savecookies, setcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 215

Chapter 6: mmhttp

savecookies

Purpose
Save the cookie store into a file.

Synopsis
function savecookies(fname:string|text, domain:string):integer

Arguments
fname Destination file name
domain Domain filter of the cookies to be saved or an empty string to select all cookies

Return value
Number of records generated

Further information

1. This function saves the selected cookies into a text file. The cookies are encoded according to the
standard "Set-Cookie" header (one record per line per cookie).

2. An IO error will be raised if the destination file cannot be accessed.
Related topics

loadcookies, findcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 216

Chapter 6: mmhttp

setcookie

Purpose
Define or update a cookie.

Synopsis
procedure setcookie(name:string, value:text, domain:text, path:text,

exp:integer)

Arguments
name Cookie name
value Associated value
domain Domain of the cookie: if it does not start with a dot the domain is interpreted as a host name

and the cookie is a host only cookie
path Path in the domain
exp Expiration time: with a negative value the cookie is deleted; with 0 the cookie never expires

(session cookie) and a positive value is interpreted as an amount of time in seconds after
which the cookie will expire

Further information
This procedure adds a cookie to the cookie store. If an existing cookie has the same name, domain and
path as those specified to the procedure its value and expiration information is updated.

Related topics
delcookies, findcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 217

Chapter 6: mmhttp

tcpping

Purpose
Test availability of a service on a server.

Synopsis
function tcpping(host:string|text,port:integer):integer

Arguments
host Name of server to test
port Service port

Return value
Test result:
0 Connection succeeded
1 Invalid parameters
2 Host name not found
3 Connection failed

Further information
This function opens a TCP connection to to the given host and port and closes it immediately in case of
success.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 218

Chapter 6: mmhttp

urlencode

Purpose
Encode a text string for a URL.

Synopsis
function urlencode(data:string|text):text

Argument
data Text to encode

Return value
Encoded text suitable for building a URL

Example
The following request sends query "qry" to the server "srv" requiring parameters "a" and "b". The
values associated with these parameters are URL-encoded:

status:=httpget("http://srv/qry?a="+urlencode(a)+
"&b="+urlencode(b), "result.txt")

Further information

1. This function converts a text string into a format that is compatible with URL conventions. The
conversion consists in replacing characters with a special meaning by a portable representation based
on the character code. For example, the character "&" is replaced by "%26".

2. Typically, query parameters have to be encoded when sending them via an HTTP GET request, data sent
via POST may also have to be encoded.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 219

Chapter 6: mmhttp

6.4.2 HTTP server
The mmhttp module integrates an HTTP server that is started using the procedure httpstartsrv and
stopped with httpstopsrv (the server is stopped in any case when the execution of the model
terminates). The server behaviour may be changed using these module parameters: http_defport
defines the TCP port on which the server is listening (by default a random port is selected);
http_defpage indicates which page or label the server has to consider when no path is specified in a
request (by default this is "index.html"); http_srvconfig defines the set of request types
supported by the model (for instance only GET and POST) as well as whether a secure server is to be
started; http_maxreq sets a limit on the number of simultaneous connections that are kept active.

When a secure server (HTTPS) is requested (the server config includes flags HTTP_SSL or
HTTP_SSLONLY) besides the optional basic settings similar to those used for the standard server (like
https_defport) additional parameters have to be set. The server certificate https_srvcrt as well
as its private key https_srvkey are required. Moreover, if the clients are requested to authenticate
themselves (server option HTTP_CLTAUTH), the authorised certificate file https_cacertsmust
include the expected certificates. Note that these parameters are published by mmssl: this module has to
be used when a secure server is started.

The server runs in the background and notifies the model of incoming connections through events of
class EVENT_HTTPNEW (please refer to the documentation of mmjobs for further explanation on how to
handle events). The value associated with this event is a request number: the connection to the client is
kept open and the model has to reply to the request in order to complete the operation. Any data
associated with the incoming request (query in the case of a GET or data sent via POST, PUT or PATCH) is
saved into a temporary file before the event is sent. URL encoded information is automatically decoded
and converted to a format compatible with initialisations from blocks. The function
httppendingmay also be used to retrieve the list of requests currently waiting for a reply.

Request properties can be obtained through a set of dedicated routines: httpreqfrom is the IP address
of the client; httpreqtype is the request type (i.e. GET, POST, PUT, PATCH or DELETE);
httpreqheader is the request header; httpreqstat reports the status associated to a request
number (for instance whether it is active, or has associated data); httpreqlabel is the label of the
request; httpreqcookies returns the cookies found in the header. The label of a request is its URL
after having removed server reference and the query data (for example, the label returned for
"http://srv/some/path?a=10" is "some/path"); httpreqfile is the name of the temporary
file holding data associated to the request. The connection status of a request might be inspected with
httpreqconstat that indicates whether the cleint is still waiting for a reply.

Three different methods can be used to reply to a request: httpreplycode will only return a status
code associated with a short (error) message; httpreply takes as input a file to be sent back to the
client (with a success status code) and httpreplyjson converts its input parameter into JSON data
that is sent back to the client.

The following example shows how to implement a simple file server. This program expects GET
(download a file) and PUT (upload a file) requests sent to the port 2533. The URI of the request is
interpreted as the file name: for example, the URL "http://srv:2533/myfile.txt" could be used
to access file "myfile.txt" stored on host "srv" running this example.

setparam("http_defport", 2533) ! Set server port (2533)
setparam("http_srvconfig",HTTP_GET+HTTP_PUT) ! Only GET and PUT requests
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
httpstartsrv ! Server now running
repeat
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
fname:=httpreqlabel(r) ! File name will be the URI
if httpreqtype(r)=HTTP_GET then ! Client wants to get the file
if bittest(getfstat(fname), SYS_TYP) = SYS_REG then

Fair Isaac Corporation Proprietary Information 220

Chapter 6: mmhttp

httpreply(r,fname) ! If available: send it
else
httpreplycode(r,404) ! Otherwise: reply "Not Found"
end-if
elif httpreqtype(r)=HTTP_PUT and ! Client wants to put a file

httpreqstat(r)>=2 then ! File must be non-empty
fmove(httpreqfile(r), fname) ! Try to save it
if getsysstat=0 then
httpreplycode(r,204) ! If success: reply "No Content"
else
httpreplycode(r,403) ! Otherwise: reply "Forbidden"
end-if
else
httpreplycode(r,400) ! Empty files are refused

end-if
end-if
until false

In the above example all requests are handled by the same model but it is also possible to dispatch the
processing of the requests to several submodels running concurrently to improve the efficiency of the
service. To implement a multithreaded server a queue of requests of type reqqueue (See Section 6.1)
has to be declared as a global shared entity and each of the submodels must be clones of the server
model (in order to have access to this shared queue). The master model can then start all of its
submodels and initialise the HTTP server as in the preceding example but it can move the HTTP requests
it receives to the queue using httpreqpush. The submodels enter a loop starting with a call to
httpreqpop (to indicate that they are ready to handle a request) followed by a wait: requests coming
from the master model are notified via an event of class EVENT_HTTPNEW and exposed just as in a
single-model server. The general structure of the server looks like the following:

parameters
MASTER=true ! Running the master or a worker?
NBW=5 ! Number of submodels to start
end-parameters

declarations
queue: shared reqqueue ! The shared queue of requests
procedure run_master
procedure run_worker
procedure process_request(req:integer)
end-declarations

if MASTER then
run_master
else
run_worker
end-if

! The master model runs the HTTP server
procedure run_master
declarations
workers:array(1..NBW) of Model
end-declarations
forall(i in 1..NBW) do
load(workers(i)) ! Each worker is a clone of the server
run(workers(i),"MASTER=false")
end-do
setparam("http_defport", 2533) ! Set server port (2533)
setparam("http_srvconfig",HTTP_GET+HTTP_PUT) ! Only GET and PUT requests
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
httpstartsrv ! Server now running
repeat
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
httpreqpush(r,queue) ! Move it to the queue

Fair Isaac Corporation Proprietary Information 221

Chapter 6: mmhttp

end-if
until false
end-procedure

! Each worker waits for requests sent by the master model and processes them
procedure run_worker
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
repeat
httpreqpop(queue) ! Model ready
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
process_request(r) ! Actual processing
end-if
until false
end-procedure

HTTP server functions:

httppending Get a list of requests waiting for a reply. p. 223

httpqueueinfo Get size information of a queue of requests. p. 224

httpreply Reply to an HTTP request with a file. p. 225

httpreplycode Reply to an HTTP request only with a status code. p. 226

httpreplyjson Reply to an HTTP request with JSON data. p. 227

httpreqconstat Check the connection status of a request. p. 228

httpreqcookies Retrieve the cookies of a request. p. 229

httpreqfile Get the data file associated to a request. p. 230

httpreqfrom Get the IP address of the sender of a request. p. 231

httpreqheader Get the header associated to a request. p. 232

httpreqlabel Get the label associated to a request. p. 233

httpreqpop Ask for a HTTP request from a queue. p. 234

httpreqpush Move a request to a queue. p. 235

httpreqpushlim Move a request to a queue with restriction. p. 236

httpreqstat Get the status associated with a request. p. 237

httpreqtype Get the type of a request. p. 238

httpstartsrv Start the HTTP server. p. 239

httpstopsrv Stop the HTTP server. p. 240

jsonread Initialise a Mosel entity from a JSON data file. p. 241

jsonwrite Generate a JSON representation of a Mosel entity. p. 242

mksetcookie Generate a set-cookie header line. p. 243

Fair Isaac Corporation Proprietary Information 222

Chapter 6: mmhttp

httppending

Purpose
Get a list of requests waiting for a reply.

Synopsis
function httppending(lp:list of integer):integer
function httppending:integer

Argument
lp List of request numbers

Return value
Number of requests in the waiting queue

Further information
This function returns in lp the list of requests currently waiting for a reply in the server queue (the
content of the list is replaced).

Module
mmhttp

Fair Isaac Corporation Proprietary Information 223

Chapter 6: mmhttp

httpqueueinfo

Purpose
Get size information of a queue of requests.

Synopsis
function httpqueueinfo(rq:reqqueue, what:integer):integer

Arguments
rq A queue of requests
what What information to retrieve:

0 Number of requests waiting in the queue
1 Number of models having access to the queue
2 Number of models ready for processing a request
3 The result of httpqueueinfo(rq,2)-httpqueueinfo(rq,0)

Return value
Requested information or 0 for an unknown code.

Related topics
httpreqpushlim.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 224

Chapter 6: mmhttp

httpreply

Purpose
Reply to an HTTP request with a file.

Synopsis
procedure httpreply(reqid:integer)
procedure httpreply(reqid:integer, fname:string)
procedure httpreply(reqid:integer, fname:string|text, xhdr:string|text)
procedure httpreply(reqid:integer, code:integer, fname:string|text,

xhdr:string|text)

Arguments
reqid Request number
code 0 or HTTP status code to be returned (see Section 6.3 for a list of predefined status code

constants)
fname Name of the file holding the response data
xhdr Additional headers to include in the response

Further information

1. This procedure replies to the specified request sending the provided file and using 200 (’OK’) as the HTTP
status code (if no code is given or if its value is 0).

2. The first form of the procedure is the same as providing an empty file name with the second form: in this
case no data is sent to the client and the returned status code becomes 204 (’No Content’).

3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part of the
result.

4. An IO error will be raised if the response file cannot be accessed.

Related topics
httpreplycode, httpreplyjson, mksetcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 225

Chapter 6: mmhttp

httpreplycode

Purpose
Reply to an HTTP request only with a status code.

Synopsis
procedure httpreplycode(reqid:integer, code:integer)
procedure httpreplycode(reqid:integer, code:integer, msg:string)
procedure httpreplycode(reqid:integer, code:integer, msg:string,

xhdr:string|text)

Arguments
reqid Request number
code HTTP status code to be returned (see Section 6.3 for a list of predefined status code constants)
msg Explanation text
xhdr Additional headers to include in the response

Further information

1. This procedure replies to the specified request using the provided code that should be a valid HTTP
status (i.e. 3 digit number).

2. Unless the provided code is 204 (No Content) a basic HTML page is generated as the data associated to
the response including the standard reason (e.g. Bad Request for code 400) as well as the given
explanation text.

3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part of the
result.

Related topics
httpreply, httpreplyjson, mksetcookie, Section 6.3.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 226

Chapter 6: mmhttp

httpreplyjson

Purpose
Reply to an HTTP request with JSON data.

Synopsis
procedure httpreplyjson(reqid:integer)
procedure httpreplyjson(reqid:integer, mosobj:⁎)

Arguments
reqid Request number
mosobj Mosel object to use for the reply

Further information

1. This procedure replies to the specified request by sending the provided Mosel object encoded as a JSON
object and a status code of 200.

2. When the first form is used, the returned data is the JSON constant null.

3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part of the
result.

Related topics
httpreply, httpreplycode.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 227

Chapter 6: mmhttp

httpreqconstat

Purpose
Check the connection status of a request.

Synopsis
function httpreqconstat(reqid:integer):integer

Argument
reqid Request number

Return value
Request status:
<0 Invalid request number
0 Request not active
1 The client has closed the connection
2 The client is still waiting for a reply

Further information

1. A disconnection can only be reliably detected if the remote end of the link has performed an orderly
shutdown. As a consequence a return status 2 is not the guarantee that the connection to the client is
effectively still valid.

2. A request must always be released by a call to a reply routine (e.g. httpreply), even after a
disconnection has been detected.

Related topics
httpreqstat.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 228

Chapter 6: mmhttp

httpreqcookies

Purpose
Retrieve the cookies of a request.

Synopsis
procedure httpreqcookies(reqid:integer, cook:array(string) of text)

Arguments
reqid Request number
cook An array where cookie values are returned (indiced by the names of the cookies)

Further information
This procedure decodes the header "Cookie" of a request to populate the provided array.

Related topics
httpreqfrom, httpreqlabel, httpreqstat, httpreqtype, httpreqheader, httpreqfile,
mksetcookie.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 229

Chapter 6: mmhttp

httpreqfile

Purpose
Get the data file associated to a request.

Synopsis
function httpreqfile(reqid:integer):string

Argument
reqid Request number

Return value
Full path to the data file

Further information

1. Each request is associated with a data file located in the temporary directory. This function returns the
full path to this file.

2. The data file is specific to the given request number and can be used (for instance, to store the response
to the request) even if no data is associated with the request.

Related topics
httpreqfrom, httpreqlabel, httpreqstat, httpreqtype, httpreqheader,
httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 230

Chapter 6: mmhttp

httpreqfrom

Purpose
Get the IP address of the sender of a request.

Synopsis
function httpreqfrom(reqid:integer):text

Argument
reqid Request number

Return value
IP of the sender of the request as a text string

Related topics
httpreqtype, httpreqfile, httpreqstat, httpreqlabel, httpreqheader,
httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 231

Chapter 6: mmhttp

httpreqheader

Purpose
Get the header associated to a request.

Synopsis
function httpreqheader(reqid:integer):text

Argument
reqid Request number

Return value
Header of the request

Further information
The header of the request is a block of text consisting of lines of the form fieldname:value (e.g.
Content-Type: application/json).

Related topics
httpreqfrom, httpreqfile, httpreqstat, httpreqlabel, httpreqtype, httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 232

Chapter 6: mmhttp

httpreqlabel

Purpose
Get the label associated to a request.

Synopsis
function httpreqlabel(reqid:integer):text

Argument
reqid Request number

Return value
Label of the request

Further information

1. The label of the GET or DELETE request is the URL after having removed server reference and query data
(for instance the label returned for "http://srv/some/path?a=10" is "some/path"). Any query
data is automatically saved into the associated request file (httpreqfile) in a format compatible with
initialisations blocks. When such a file has been created the request status (httpreqstat) has value 3.

2. In the case of a POST, a PUT or a PATCH request the returned value also includes the undecoded data.

Related topics
httpreqfrom, httpreqfile, httpreqstat, httpreqtype, httpreqheader, httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 233

Chapter 6: mmhttp

httpreqpop

Purpose
Ask for a HTTP request from a queue.

Synopsis
procedure httpreqpop(rq:reqqueue)

Argument
rq A queue of requests

Further information

1. This procedure has to be used by a model to notify the manager of a queue of requests that it is ready for
processing an HTTP request. After this call, as soon as a new request is available an event of class
EVENT_HTTPNEW is sent to the model that can handle it as if it was running the HTTP server.

2. The model is flagged as available if no request is waiting in the queue. This flag is cleared when a request
is passed to the model: it is therefore required to call the procedure again after a request has been
processed.

Related topics
httpreqpushlim, httpreqpush, httpqueueinfo.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 234

Chapter 6: mmhttp

httpreqpush

Purpose
Move a request to a queue.

Synopsis
procedure httpreqpush(reqid:integer,rq:reqqueue)

Arguments
reqid Request number or -1
rq A queue of requests

Further information

1. This routine moves the selected request to a queue of requests in order to make it available to other
server models. The request can no longer be accessed by the calling model after it has been passed to
this procedure.

2. If the provided request is -1 this routine only clears the availability flag of the model (i.e. it is no longer
ready to process a request).

Related topics
httpreqpushlim, httpreqpop, httpqueueinfo.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 235

Chapter 6: mmhttp

httpreqpushlim

Purpose
Move a request to a queue with restriction.

Synopsis
function httpreqpushlim(reqid:integer,rq:reqqueue,lim:integer):boolean

Arguments
reqid Request number or -1
rq A queue of requests
lim Maximum number of waiting requests or -1 for no limit

Return value
true if the operation succeeded, false otherwise.

Further information

1. This function moves the selected request to a queue of requests in order to make it available to other
server models. The operation is canceled if the current number of elements in the queue exceeds the
given limit lim and false is returned. Otherwise, true is returned and the request can no longer be
accessed by the calling model.

2. If the provided request is -1 this routine only clears the availability flag of the model (i.e. it is no longer
ready to process a request). In this case the return value indicates whether the flag was reset or not: with
a false result the flag was already cleared before the function call.

Related topics
httpreqpush, httpreqpop, httpqueueinfo.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 236

Chapter 6: mmhttp

httpreqstat

Purpose
Get the status associated with a request.

Synopsis
function httpreqstat(reqid:integer):integer

Argument
reqid Request number

Return value
Request status:
<0 Invalid request number
0 Request not active
1 No associated data
2 Raw data available
3 ’initialisations from’ data available

Further information

1. If the return value is 2 or 3 a data file is available (see httpreqfile). If this function returns 3 then the
file can be read using an initialisations from block: data that was originally URL-encoded has been
decoded by the server and stored using Mosel’s initialisations format.

2. The status 3 will be produced when the request is of type GET or DELETE and has associated data. This
will also be the case with a query of type POST or DELETE if the content type is
"application/x-www-form-urlencoded".

Related topics
httpreqfrom, httpreqfile, httpreqlabel, httpreqtype, httpreqheader, httpreqcookies,
httpreqconstat.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 237

Chapter 6: mmhttp

httpreqtype

Purpose
Get the type of a request.

Synopsis
function httpreqtype(reqid:integer):integer

Argument
reqid Request number

Return value
Request type:
<0 Invalid request number
0 Request not active
HTTP_GET GET (1)
HTTP_POST POST (2)
HTTP_PUT PUT (4)
HTTP_DELETE DELETE (8)
HTTP_HEAD HEAD (128)
HTTP_PATCH PATCH (256)

Related topics
httpreqfrom, httpreqfile, httpreqstat, httpreqlabel, httpreqheader,
httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 238

Chapter 6: mmhttp

httpstartsrv

Purpose
Start the HTTP server.

Synopsis
procedure httpstartsrv
procedure httpstartsrv(srvdir:string, moslab:string)

Arguments
srvdir Server directory
moslab Label identifying commands

Further information

1. The server takes its configuration from the parameters http_defport, http_srvconfig,
http_listen, http_maxreq and http_defpage.

2. Only one server can be run by a model: if the server is already running, no operation is performed.

3. The server processes only authorised request types (see http_srvconfig): the model is notified of
every valid request by an event of class EVENT_HTTPNEW. Malformed or unauthorised requests are
automatically rejected.

4. When the function is used with arguments, srvdir designates a directory: mmhttp will act as a file
server for the files stored in this directory (via GET queries). The argument moslab is a prefix that
identifies requests that are to be handled by the model.

5. An IO error is raised if the server cannot start because of a network setting (typically the TCP port is
already used or requires higher privileges).

6. If the parameter http_startwb is set to true a web browser (as defined by http_browser) is
launched just after the server has started.

Related topics
httpstopsrv.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 239

Chapter 6: mmhttp

httpstopsrv

Purpose
Stop the HTTP server.

Synopsis
procedure httpstopsrv

Further information

1. This procedure has no effect if no server is running.

2. During its shutting down procedure the server closes all waiting requests (with a response code 410)
such that it is no longer possible for the model to reply to these requests (however, events corresponding
to these requests may still be in the event queue).

Related topics
httpstartsrv.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 240

Chapter 6: mmhttp

jsonread

Purpose
Initialise a Mosel entity from a JSON data file.

Synopsis
procedure jsonread(fname:text|string, mosobj:⁎)

Arguments
fname Name of a JSON file
mosobj A Mosel entity

Further information

1. This procedure accepts basic types (integer, real, boolean, string), native types compatible with
from/tostring (e.g. text or date, they are initialised from json strings), records (only public fields of
supported types are populated from the corresponding json object members), lists of compatible types
(populated from json arrays) and unions. Unsupported entities are silently ignored (e.g. sets and arrays)
and entries in the JSON document that do not correspond to an expected entry are also ignored.

2. Unions have a special handling: they can be initialised with a scalar (number, boolean or string) or an
object if the union itself is already a field of a record (in this case the union takes the type of the structure
that includes it).

3. Although basic types are supported the routine cannot initialise a scalar of a basic type: its input
parameter must be a record, a union, a variable of a native type (supporting serialisation) or a list.

4. The procedure does not reset its input parameter: in particular when initialising a list, the values from the
JSON file will be appended to the existing content. Note that the special value null from the JSON data
might be applied to lists, records and unions to reset these entities.

5. An IO error will be raised if the source file cannot be accessed or if a parsing error occurs.

Related topics
jsonwrite.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 241

Chapter 6: mmhttp

jsonwrite

Purpose
Generate a JSON representation of a Mosel entity.

Synopsis
procedure jsonwrite(fname:text|string, mosobj:⁎)
procedure jsonwrite(fname:text|string, mosobj:⁎, flags:integer)

Arguments
fname Name of a file to store the generated text
mosobj A Mosel entity
flags Option flags (can be combined with ’+’):

HTTP_SKIP_EMPTYCOL Skip empty collections in records
HTTP_SKIP_EMPTYUNION Skip empty unions in records

Further information

1. This procedure generates a JSON representation of a Mosel entity: records are exposed as json objects;
lists and sets are represented by json arrays; arrays result in either json objects or arrays depending on
their structure and scalar values are output as json numbers, Booleans or strings. Types not supporting
serialisation (i.e. conversion from/to some textual representation) are reported as the null json value.

2. When exporting a record, only public fields of types supporting serialisation are output: for instance a
field of type mpvar will be silently ignored. With the flag HTTP_SKIP_EMPTYCOL empty collections
(list,set or array) will also be skipped, and with the option HTTP_SKIP_EMPTYUNION undefined unions
will be ignored.

3. If the file name is an empty string, the generated text is sent to the current output stream (by default this
is the console). An IO error will be raised if the destination file cannot be accessed.

Related topics
jsonread.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 242

Chapter 6: mmhttp

mksetcookie

Purpose
Generate a set-cookie header line.

Synopsis
function mksetcookie(name:string, value:text, domain:text, path:text,

exp:integer):text

Arguments
name Cookie name
value Associated value
domain Domain of the cookie: if it does not start with a dot the domain is interpreted as a host name

and the cookie is a host only cookie
path Path in the domain
exp Expiration time: with a negative value the cookie will be deleted; with 0 the cookie never

expires (session cookie) and a positive value is interpreted as an amount of time in seconds
after which the cookie will expire

Return value
A text string of the form "Set-Cookie: name=value\n"

Further information
This function may be used to send cookies to a client by generating a set-cookie header that can be
directly appended to the additional headers string of httpreply or httpreplycode. The returned
string is terminated by an end of line.

Related topics
httpreply, httpreplycode, httpreqcookies.

Module
mmhttp

Fair Isaac Corporation Proprietary Information 243

Chapter 6: mmhttp

6.5 I/O drivers
The mmhttp module publishes the url driver with which a URL can be used as a file. Thanks to this
facility it is possible to use files stored on an HTTP enabled file server just as if they were located on the
local file system. For example, the following command downloads and executes the Mosel file
"hello.mos" stored on the web server mysrv:

> mosel exec mmhttp.url:http://mysrv/hello.mos

6.5.1 Driver url
url:URL

The file name for this driver is a URL. Currently only HTTP URLs are supported (i.e. the name must begin
with "http://"). The behaviour of the driver depends on the file operation:

reading A GET request is sent to the specified URL at the time of opening the file. The following
read operations are executed directly from the result stream generated by the server.

writing The written data is first saved into a temporary file and then sent to the specified URL via
a PUT request when the file is closed.

deleting When deleting a file (e.g., using fdelete) through this driver a DELETE request is sent to
the specified URL.

Fair Isaac Corporation Proprietary Information 244

CHAPTER 7

mmjava

The mmjava module for Mosel is intended for users who integrate their Mosel models into Java
applications. This module can only be used from a Java enabled application.

7.1 I/O drivers
This module provides the java and jraw IO drivers. The first one can be used to link a Mosel output (input)
stream to a Java OutputStream (InputStream) or a Java ByteBuffer. The second driver is a
modified version of the raw driver suitable for Java: instead of an address, this driver takes as input a
reference to an object.

For both drivers, file names are replaced by references to objects. These references are of two kinds:
direct references to public static objects (e.g. "java.lang.Sytem.out") and names defined using the
XPRM.bindmethod. The second technique will be used with non static objects: the method XPRM.bind
establishes a link between a name and an object. This name can then be used as an object reference for
mmjava drivers.

When using Java object from Mosel, it is important to make sure objects and related fields can be
accessed: in particular the class and its fields must be public.

7.1.1 Driver java
java:[rewind,]static object|named object

With this driver a Java stream (OutputStream or InputStream) as well as a ByteBuffer can be
used in place of a file in Mosel. This facility is specially useful for redirecting default Mosel streams to
Java objects. Note that the Mosel Java interface uses this driver for redirecting default streams (in, out,
and error) to the corresponding Java streams (System.in, System.out and System.err).
When the file is open for reading and the referenced object is a ByteBuffer, the option rewind can be
used in order to rewind the buffer before starting to read.

Example:

mosel=new XPRM();
mosel.bind("out", myout); /⁎ Associate 'myout' object with string "out" ⁎/

/⁎ Redirect default output to 'myout' ⁎/
mosel.setDefaultStream(XPRM.F_OUTPUT|XPRM.F_LINBUF, "java:out")

/⁎ Redirect error stream to Java output stream ⁎/
mosel.setDefaultStream(XPRM.F_ERROR, "java:java.lang.System.out"

If the driver is used in an initializations from block (resp. initializations to block) and
the provided object implements interface XPRMInitializationFrom (resp.
XPRMInitializationTo) then the corresponding Java methods are used to process the initialization
(refer to the Mosel Library JavaDoc for further explanation).

Fair Isaac Corporation Proprietary Information 245

Chapter 7: mmjava

This driver supports the delete operation: deleting a java file name from the Mosel code (e.g.
fdelete("java:out")) corresponds to executing unbind on the corresponding identifier. The
operator first tries to unbind the identifier associated to the running model (XPRMModel.unbind) and
then uses the global reference (XPRM.unbind) if the first attempt fails.

7.1.2 Driver jraw
jraw:[noindex,all]

The driver can only be used in ‘initializations’ blocks. In the opening part of the block, no file name has to
be provided, but general options can be stated at this point: they will be applied to all labels. Two options
are supported:

all forces output of all cells of an array even if it is dynamic (by default only existing cells are
considered).

noindex indicates that only data (no indices) are transfered between the Java objects and Mosel.
By default, the first fields of each object are interpreted as index values for the array to be
transfered. This behavior is changed by this option.

In the block, each label entry is understood as an object reference to use for the actual processing. Note
that, before the object reference, one can add further options separated by comas, that are effective to
the particular entry.

If the Model object to be initialized (or saved) is a scalar or an array with option noindex, the driver
expects a Java object of a corresponding type (i.e. same basic type and scalar or one dimension array). If
the option noindex is not used and the Mosel object is an array, the label must specify which fields of
the class have to be taken into account for the mapping. This is indicated by a list of field names
separated by commas and noted in brackets (e.g. "myobj(fi1,fi2,fi3)").

In the following example the jraw driver is used to initialize an array of reals, a, and an array of integers,
ia, with data held in the Java application that executes the model.

Java part:

public class MyData { /⁎ A class to store an `array(string, int) of real' ⁎/
public String s; public int r; public double v;
MyData(String i1, int i2, double v0) { s=i1; r=i2; v=v0; }

}
...
MyData[] data;
int[] intarr;
...
mosel=new XPRM();
mosel.bind("data", data); /⁎ Associate `data' object with string "data" ⁎/
mosel.bind("ia", intarr); /⁎ Associate `intarr' object with string "ia" ⁎/

Mosel part:

declarations
a:array(string, range) of real
ia:array(range) of integer
end-declarations
...
initializations from "jraw:"
aa as "data(s,r,v)" ! Initialize `aa' with fields s,r,v of object `data'
ia as "noindex,ia" ! Initialize `ia' with array `ia'; no index (only values)
end-initializations

Fair Isaac Corporation Proprietary Information 246

CHAPTER 8

mmjobs

Thanks to this module it is possible to load several models in memory and execute them concurrently. In
addition, other instances of Mosel might be started (either locally to the running system or remotely on
another machine through the network) and used to run additional models controlled by the model that
has started them. This means that the computing capacity of the running model is not restricted to the
executing process. A general synchronization mechanism based on event queues as well as two
specialized IO drivers are also provided in order to ease the implementation of parallel algorithms in
Mosel.
To use this module, the following line must be included in the header of the Mosel model file:

uses 'mmjobs'

8.1 Example
The following example shows how to compile, load, and then run a model from another model. After
having started the execution, it waits for 60 seconds before stopping the secondary model if the latter
has not yet finished.

model "mmjobs example"
uses "mmjobs","mmsystem"

declarations
mymod: Model
event: Event
end-declarations

! Compile 'mymod.mos' to memory
if compile("","mymod.mos","shmem:bim")<>0
then
exit(1)
end-if

load(mymod,"shmem:bim") ! Load bim file from memory...
fdelete("shmem:bim") ! ... and release the memory block

! Disable model output
setdefstream(mymod,"","null:","null:")
run(mymod) ! Start execution and
wait(60) ! wait 1 min for an event

if waitexpired then ! No event has been sent...
writeln("Model too long: stopping it!")
stop(mymod) ! ... stop the model then wait
wait
end-if

! An event is available: model finished
event:=getnextevent
writeln("Exit status: ", getvalue(event))

Fair Isaac Corporation Proprietary Information 247

Chapter 8: mmjobs

writeln("Exit code : ", getexitcode(mymod))

unload(mymod)
end-model

8.2 Data sharing between models
A model may share data with its submodels under certain conditions: any initialisation performed by the
master model on these shared entities is available to the submodels at their startup and any modification
carried out by both the master model and its submodels are effective for all models.

Entities to be shared must be global and identified by the declaration qualifier shared (they do not need
to be public). Only scalars of basic types and native types supporting sharing, as well as sets, lists and
arrays of basic types can be shared. For the arrays, index sets must be either shared or constants of
basic types, shared hashmap arrays cannot have more than 1 dimension.

declarations
sci: shared integer
ss: shared set of string
sa: shared dynamic array(ss,1..2) of real
end-declarations

Data sharing is possible only between a model (the master model) and its clones (i.e. submodels loaded
from the running model see load). The master model can manipulate its shared entities just like any
other data structure as long as no compatible submodel is running. However, as soon as a submodel
using shared data is started the sharing mode is enabled and access to shared entities is altered as
follows: sets and lists behave as if they were constant, the structure of arrays is locked (i.e. it is no longer
possible to add or remove cells of sparse arrays). Normal access to shared entities is restored when all
submodels using them are reset (reset) or unloaded (unload). The current status of the sharing mode
can be obtained from the sharingstatus control parameter (getparam).

model "shared example"
uses 'mmjobs'

declarations
a: shared array(1..3) of integer
m: Model
end-declarations

if getparam("sharingstatus")<>2 then
! in master model ('a' is empty)

forall(i in 1..3) a(i):=i ! initialise 'a'
writeln("master:",a) ! output: master:[1,2,3]
load(m) ! clone master then run it
run(m)
waitforend(m) ! wait for its termination
writeln("aftersub:",a) ! output: aftersub:[2,3,4]
else

! in submodel ('a' is already initialised)
writeln("sub:",a) ! output: sub:[1,2,3]
forall(i in 1..3) a(i)+=1 ! modify 'a'
end-if

end-model

8.3 Control parameters
The following parameters are defined by mmjobs:

conntmpl Default connection template. p. 249

Fair Isaac Corporation Proprietary Information 248

Chapter 8: mmjobs

defaultnode Default node number used by driver ’rmt:’. p. 249

fsrvdelay Maximum wait time for findxsrvs. p. 251

fsrvnbiter Number of iterations performed by findxsrvs. p. 251

fsrvport UDP port used by findxsrvs. p. 250

jobid ID of the current model. p. 250

keepalive Keepalive timer setting. p. 250

nodenumber ID of the current instance. p. 249

parentnumber ID of the parent of the current instance. p. 250

sshcmd SSH command for xssh driver. p. 251

conntmpl

Description The connection template is used by the connect function to generate a valid host specification
from an identifier (typically corresponding to a host name). The generation is performed by
replacing in the template each occurrence of the %hmarker by the original identifier.

Type String, read/write

Values A string containing "%h" at least once

Default value "xsrv:%h"

Affects routines connect.

Module mmjobs

nodenumber

Description The ID (or node number) of the current instance as returned by the function getid applied to
this instance. The ID of the initial (root) instance is 0

Type Integer, read only

Module mmjobs

defaultnode

Description This parameter is used by the IO driver "rmt:" when it is not given any node reference (see
Section 8.5.6). By default its value is 0 (the initial node) but it may be changed by a parent
model using the instance parameter defaultnode (see Annex B).

Type Integer, read only

Module mmjobs

Fair Isaac Corporation Proprietary Information 249

Chapter 8: mmjobs

jobid

Description The ID of the current model as returned by the function getid applied to this model. The ID of
the initial (root) model is 0

Type Integer, read only

Module mmjobs

parentnumber

Description The ID (or node number) of the parent (i.e., creator) of the current instance. The ID of the initial
instance is 0 and its parent is -1.

Type Integer, read only

Module mmjobs

keepalive

Description When using a Mosel remote instance (see connect), the server sends to its client a keepalive
message at fixed interval. A connection is considered broken if more than
maxfail*interval seconds have elapsed since the last message received. Setting 0 for
maxfail disables this mechanism. This parameter can only be changed if no remote Mosel
instance is connected.

Type String, read/write

Values A string of the form "maxfail/interval"

Default value "2/60"

Module mmjobs

fsrvport

Description This parameter defines the UDP port to be used by the findxsrvs routine for its broadcast
messages.

Type Integer, read/write

Default value 2514

Affects routines findxsrvs.

See also fsrvnbiter, fsrvdelay.

Module mmjobs

Fair Isaac Corporation Proprietary Information 250

Chapter 8: mmjobs

fsrvdelay

Description After it has sent its broadcast message, the findxsrvs routine waits for up to fsrvdelay
milliseconds for answers before aborting.

Type Integer, read/write

Default value 1000

Affects routines findxsrvs.

See also fsrvnbiter, fsrvport.

Module mmjobs

fsrvnbiter

Description This control parameter specifies the number of times the procedure findxsrvs sends a
broadcast message.

Type Integer, read/write

Default value 1

Affects routines findxsrvs.

See also fsrvdelay, fsrvport.

Module mmjobs

sshcmd

Description When connecting to a remote host via the "xssh:" I/O driver, an external program is used to
establish the SSH tunnel: this parameter specifies which program to use. The arguments of the
program are identified with the symbol "%h" for the target host, "%p" for the TCP port and
"%f" for the known host file (which is "-" when no file is provided). For instance the following
string will select ssh as the program to handle the secure tunnel: "ssh -q -p %p -s %h
xprmsrv".
Note that this control parameter is read-only when Mosel is running under restriction NoExec
(see Section 1.3.4).

Type String, read/write

Affects routines connect.

Values A string including at least "%h"

Default value "xprmsrv -sshclt %h -p %p -kh %f"

Module mmjobs

Fair Isaac Corporation Proprietary Information 251

Chapter 8: mmjobs

8.4 Procedures and functions
8.4.1 Mosel instance management

The type Mosel is used to reference a Mosel instance. Before an instance can execute commands (like
loading or running a model), it must be connected. Connecting an instance consists in starting an
additional operating system process running Mosel: this is done by the connect function. To improve
readability of the model source, one can use host aliases (defined by means of the sethostalias
routine) to designate connection targets. Once work with a particular instance has been finished, the
instance can be disconnected (disconnect): this terminates the process running Mosel (and releases
all associated resources).

clearaliases Delete all defined aliases. p. 255

connect Connect a Mosel instance. p. 253

disconnect Disconnect a Mosel instance. p. 254

findxsrvs Search xprmsrv servers on the local network. p. 260

getaliases Retrieve the list of all defined aliases. p. 258

getbanner Get the banner displayed by an instance on startup. p. 256

gethostalias Get the value of a host alias. p. 257

sethostalias Define a host alias. p. 259

Fair Isaac Corporation Proprietary Information 252

Chapter 8: mmjobs

connect

Purpose
Connect a Mosel instance.

Synopsis
function connect(mi:Mosel, host:string|text):integer

Arguments
mi The instance to connect
host A host specification

Return value
0 if successful, a positive value otherwise

Example
Start instance inst1 on a separate process:

r:=connect(ins1,"")

With default settings, the 2 following statements are equivalent:

r:=connect(ins2,"ariane")
r:=connect(ins3,"xsrv:ariane")

Further information

1. Any Mosel instance has to be connected before it can be used for executing commands.

2. If the host provided is an empty string (""), it is replaced by "rcmd:" (instance started on the same
machine in a separate process). Otherwise, the string host is searched in the list of defined aliases (see
sethostalias) and, if found, it is replaced by the associated text. If the resulting specification does not
contain any IO driver reference, a valid specification is generated using the current connection template
(see conntmpl): each occurrence of the %hmarker in the template is replaced by the value of host.

3. The host argument (or the string resulting from the transformations described above) is expected to be
an extended file name using an IO driver the task of which is to start a process running the mosel
program in remote mode and create/manage the communication streams between the processes. The
mmjobs module provides three drivers supporting this service (see Section 8.5): "rcmd:" to start a
Mosel instance on a separate process on the same machine, "xsrv:" to start a Mosel instance on a
host running the Mosel Remote Launcher (see Section 8.6) and "xssh:" to use a secure connection
with an xprmsrv server.

Related topics
sethostalias, findxsrvs, disconnect, Driver rcmd, Driver xsrv, Driver xssh

Module
mmjobs

Fair Isaac Corporation Proprietary Information 253

Chapter 8: mmjobs

disconnect

Purpose
Disconnect a Mosel instance.

Synopsis
procedure disconnect(mi:Mosel)

Argument
mi The instance to disconnect

Further information
This routine should be used to terminate a Mosel instance started by connect.

Related topics
connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 254

Chapter 8: mmjobs

clearaliases

Purpose
Delete all defined aliases.

Synopsis
procedure clearaliases

Further information
This routine deletes all host aliases previously defined by sethostalias.

Related topics
sethostalias,getaliases,gethostalias,connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 255

Chapter 8: mmjobs

getbanner

Purpose
Get the banner displayed by an instance on startup.

Synopsis
function getbanner(mi:Mosel):string

Argument
mi A connected instance

Return value
The text displayed by Mosel when it started the instance

Further information
When a new instance is started, the text displayed by Mosel is saved (this includes typically copyright
notice and version information): this function returns this startup banner.

Related topics
connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 256

Chapter 8: mmjobs

gethostalias

Purpose
Get the value of a host alias.

Synopsis
function gethostalias(alias:string):string

Argument
alias Internal identifier

Return value
The host specification corresponding to the alias or an empty string if the alias is not defined

Related topics
sethostalias,clearaliases,getaliases, connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 257

Chapter 8: mmjobs

getaliases

Purpose
Retrieve the list of all defined aliases.

Synopsis
procedure getaliases(aliases:list of string)

Argument
aliases A list to return the aliases

Example
The following procedure displays all aliases:

procedure showaliases
declarations
l:list of string

end-declarations

getaliases(l)
forall(h in l)
writeln(h,"->",gethostalias(h))

end-procedure

Further information
This procedure resets its aliases argument.

Related topics
sethostalias,clearaliases,gethostalias, connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 258

Chapter 8: mmjobs

sethostalias

Purpose
Define a host alias.

Synopsis
procedure sethostalias(alias:string,host:string)

Arguments
alias Internal identifier
host Corresponding host specification

Example
The first statement defines "localhost" as a separate process on the same machine and "win" for a
remote access to the machine "winpc":

sethostalias("localhost","rcmd:")
sethostalias("win","xsrv:winpc")

Further information
Host aliases are used by connect to start Mosel instances. If the argument host is the empty string,
the corresponding alias is removed from the list (or nothing is done if the alias was not defined before).

Related topics
gethostalias,clearaliases,getaliases, connect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 259

Chapter 8: mmjobs

findxsrvs

Purpose
Search xprmsrv servers on the local network.

Synopsis
procedure findxsrvs(group:integer,maxip:integer,addrs:set of string)

Arguments
group Group number of the request
maxip Maximum number of addresses to collect
addrs Set to store the addresses found

Further information

1. This procedure sends a broadcast message over the local network and waits for replies from running
xprmsrv servers (see Section 8.6). A given server will reply only to selected group numbers: the group
argument specifies this property.

2. The IP addresses of the hosts having replied to the request are returned via the last argument of the
procedure in the form of strings. The maximum size of this set is fixed by maxip. Note that the provided
set is not cleared: if it already contains maxip elements the routine returns immediately.

3. Control parameters fsrvnbiter, fsrvdelay and fsrvport can be used to tune the behaviour of
findxsrvs. This routine repeats fsrvnbiter times the following procedure: it sends a broadcast
message to the fsrvport UDP port and then waits for up to fsrvdelaymilliseconds for replies.

Related topics
connect, disconnect.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 260

Chapter 8: mmjobs

8.4.2 Model management
The type Model is used to reference a Mosel model. This section describes the procedures and functions
available for model management: compilation of source model files, loading of bim files, execution and
retrieval of model information. Note that before it can be used, a model has to be initialized by loading a
bim file (load).

compile Compile a source model. p. 262

detach Detach the current model from its parent node. p. 264

getannidents Get model identitifiers for which annotations are available. p. 285

getannotations Get model annotations associated to a given symbol. p. 286

getdsoprop, getdsopropnum Get module information. p. 273

getexitcode Get the exit code of a model. p. 281

getgid Get the group ID of a model. p. 274

getid Get the ID of a model or Mosel instance. p. 275

getmodprop, getmodpropnum Get model information. p. 276

getnode Get the ID (node number) of the Mosel instance of a model. p. 277

getrmtid Get the ID of a model on a remote instance. p. 278

getstatus Get the status of a model or of an instance. p. 279

getuid Get the user ID of a model. p. 280

load Load a Binary Model file. p. 265

reset Reset a model. p. 283

resetmodpar Remove a parameter from a model parameter string. p. 268

run Run a model. p. 272

setcontrol Set an instance control parameter on a remote instance. p. 269

setdefstream Set default input/output streams of a model. p. 267

setmodpar Add or change the value of a parameter in a model parameter string. p. 270

setworkdir Set the initial working directory of a model. p. 271

stop Stop a running model. p. 282

unload Unload a model. p. 284

Fair Isaac Corporation Proprietary Information 261

Chapter 8: mmjobs

compile

Purpose
Compile a source model.

Synopsis
function compile(src:string|text):integer
function compile(opt:string|text, src:string|text):integer
function compile(opt:string|text, src:string|text, dst:

string|text):integer
function compile(opt:string|text, src:string|text, dst: string|text,

com:string|text, pass:string|text, pke:string|text,
kls:string|text):integer

function compile(mi:Mosel, opt:string|text, src:string|text, dst:
string|text):integer

function compile(mi:Mosel, opt:string|text, src:string|text, dst:
string|text, com:string|text, pass:string|text, pke:string|text,
kls:string|text):integer

Arguments
opt Compilation options (may be separated by spaces or ’-’ symbols):

"g" Include debugging information
"G" Include tracing information
"s" Strip symbols
"p" parse only: stop after the syntax analysis of the source file, do not compile (no file

generated)
"bx=prefix" Package prefix list (can be quoted with single or double quotes)
"ix=prefix" Include source prefix (can be quoted with single or double quotes)
"S" Sign the bim file
"E" Encrypt the bim file
"F" The argument pass is a file name (not the password itself)
"V" Accept to load signed packages only if their signature can be verified
"T" Accept to load only signed packages with a valid signature

src Source file name
dst Destination file name
com Comment to store in the bim file
mi The Mosel instance to perform the compilation
pass Password or password file (for encryption with a password)
pke Private key file (for bim file signing)
kls File of public keys (for encryption with public keys)

Return value
0 Function executed successfully
1 Parsing phase has failed (syntax error or file access error)
2 Error in compilation phase (a semantic error has been detected)
3 Error writing the output file
4 License error (compiler not authorized)

Example
Compile the local file "src.mos" stored on the current directory using the instance inst1 and store the
resulting BIM file on the current directory of this instance:

r:=compile(ins1,"","rmt:src.mos","dst.bim")

Fair Isaac Corporation Proprietary Information 262

Chapter 8: mmjobs

Further information

1. This function compiles a given model source file into a binary model file (bim file) that is required as input
to function load for executing the model.

2. If no destination file name is provided, the output file takes the same name as the source file with the
extension .bim.

3. When sending a compilation request to a separate Mosel instance, it is important to keep in mind that the
operation is performed in the environment of this instance (in particular its current working directory) and
file names should be specified appropriately (the rmt: IO driver can be particularly helpful in this
context). An IO error will be raised in case of network failure.

4. The argument kls is a list of public key files (i.e. each line of the file is a key file name): when encrypting
a file, the encryption is performed for each of the listed public keys such that the bim file can be
decrypted by any of the corresponding private keys.

5. When prefixes provided via bx or ix are quoted with double quotes, backslashes are interpreted such
that special characters can be included in the string. It is therefore required to double this symbol when it
has to be included (e.g. ’bx="C:\\mydir"’).

6. If the option bx is not stated, the current value of the control parameter bimprefix will be used instead
during the compilation for loading packages (See section 2.3.1).

Related topics
load.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 263

Chapter 8: mmjobs

detach

Purpose
Detach the current model from its parent node.

Synopsis
procedure detach

Further information

1. This procedure detaches the model calling it from its parent model such that it becomes a master model
running on a root node. As a consequence the connection to its parent model is closed, its model number
is set to 0 and the node number of its instance becomes 0 (root node). The parent node is notified of the
detachment by means of a termination event for the model which gets the status RT_DETACHED.

2. The operation is possible only if the hosting intance is running exclusively this model (i.e. no submodel is
loaded at the time of calling detach) and no file is open between the hosting instance or the model and
its parent (in particular the default streams have to be set to "null:").

3. After a model is detached, it can no longer communicate with its parent using events or access files
through the "rmt:" driver. The HTTP protocol (available through the module mmhttp) might be used as
an alternative to the facilities provided by mmjobs in this case.

4. The instance running the detached model terminates automatically after the end of execution of the
model.

5. This routine can only be called by a submodel running on a remote instance. It has no effect if used by a
master model.

Related topics
getstatus, run.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 264

Chapter 8: mmjobs

load

Purpose
Load a Binary Model file.

Synopsis
procedure load(mo:Model)
procedure load(mo:Model, bimf:string|text)
procedure load(mo:Model, mr:Model)
procedure load(mo:Model, bimf:string|text, opt:string|text,

pass:string|text, pke:string|text, kls:string|text)
procedure load(mi:Mosel, mo:Model, bimf:string|text)
procedure load(mi:Mosel, mo:Model, bimf:string|text, opt:string|text,

pass:string|text, pke:string|text, kls:string|text)

Arguments
mo Model object to be initialized
mr Model object used as a reference
bimf Bim file name
mi The instance on which the model will be run
opt Loading options (may be separated by spaces or ’-’ symbols):

"c" Check signature (if the file is signed)
"V" If the file is signed, load it only if the signature is valid
"T" Load only signed files with a valid signature
"F" The argument pass is a file name (not the password itself)
"l" Do not load required packages

pass Password or password file (for encrypted bim files)
pke Private key file (for encrypted bim files)
kls File of public keys

Further information

1. This procedure initializes the model mo with the bim file bimf. If mo has already been initialized, the
model it references is unloaded before trying to load the new file (note that this operations fails if the
model is running). If the file bimf cannot be accessed or one of the required modules cannot be loaded,
the procedure generates an IO error (which may be intercepted if the control parameter ioctrl is true).

2. When loading a model from a separate Mosel instance, it is important to keep in mind that the operation
is performed in the environment of this instance (in particular its current working directory) and file
names should be specified appropriately (the rmt: IO driver can be particularly helpful in this context).

3. The argument kls is a list of public key files (i.e. each line of the file is a key file name): when a signed
bim file is loaded, its signature is checked with the keys listed in this file. If this argument is not specified,
the signing key is searched in the default public keys directory located at
getparam("ssl_dir")+"/pubkeys".

4. Packages required for the loading of a model are located using the list of prefixes defined by the control
parameter bimprefix (See section 2.3.1).

5. When invoked with a single argument this routine creates a new model from the one being executed
(without using any bim file): this clone can access data shared by its master model (see Section 8.2).
Similarly, when a model is used in place of a bim file the new generated model is a copy of the provided
reference model. Note that all copies of a given model share the constant information (like constant
strings or the code segment) of the reference model. As a consequence, during a debugging session,
setting a breakpoint in a model loaded this way also installs the same breakpoint in all other models
coming from the same source (including the reference model).

Fair Isaac Corporation Proprietary Information 265

Chapter 8: mmjobs

Related topics
compile, setdefstream, run, unload.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 266

Chapter 8: mmjobs

setdefstream

Purpose
Set default input/output streams of a model.

Synopsis
procedure setdefstream(mo:Model, wmd:integer, fname:string)
procedure setdefstream(mo:Model, input:string, output:string, error:string)
procedure setdefstream(mi:Mosel, wmd:integer, fname:string)
procedure setdefstream(mi:Mosel, input:string, output:string, error:string)

Arguments
mo A Model
mi A Mosel instance
wmd Stream to set. Possible values:

F_INPUT Default input stream
F_OUTPUT Default output stream
F_ERROR Default error stream
F_LINBUF Use line buffering

fname Extended file name to be used for the stream.
input Extended file name to be used for the input stream.
output Extended file name to be used for the output stream.
error Extended file name to be used for the error stream.

Further information

1. This function sets default IO streams to be used by a model. Model streams can be changed only when
the model is not running. Each stream is associated to an extended file name (i.e. IO drivers can be used).
For output streams, F_LINBUFmay be specified (e.g.F_OUTPUT+F_LINBUF) in order to enable line
buffering for the corresponding stream (the error stream is always open using line buffering).

2. For input and output streams, the filename is stored and streams are actually open when execution of the
model starts: in case of an invalid file name, the error is not reported by this function. The error stream is
immediately opened so in the case of an invalid file name it is detected by this function.

3. Using an empty string as the file name implies resetting to the original default stream.

4. When applied to a Mosel instance, this routine sets the default streams for this instance. These streams
can only be changed if the instance has not yet loaded any model.

5. When using this routine on a separate Mosel instance or on a model loaded on a separate Mosel instance,
it is important to keep in mind that the operation is performed in the environment of this instance (in
particular its current working directory) and file names should be specified appropriately (the rmt: IO
driver can be particularly helpful in this context).

6. An IO error will be raised in case of failure during a file operation.

Related topics
getfname.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 267

Chapter 8: mmjobs

resetmodpar

Purpose
Remove a parameter from a model parameter string.

Synopsis
procedure resetmodpar(plist:text, pname:string|text)

Arguments
plist Text object storing the parameters
pname Parameter name

Further information

1. This function helps in building the model parameter string to be passed to the run procedure by
removing a parameter definition (previously set with setmodpar) from a parameter string. The plist
text is left unchanged if the requested parameter cannot be found.

2. It is expected that the provided text string is either empty or composed of a list of assignments of the
form "pname=val,pname2=val2...".

Related topics
setmodpar, run.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 268

Chapter 8: mmjobs

setcontrol

Purpose
Set an instance control parameter on a remote instance.

Synopsis
procedure setcontrol(mi:Mosel, ctrl:string, val:string)
procedure setcontrol(mo:Model, ctrl:string, val:string)

Arguments
mi A Mosel instance
mo A model reference (it must be loaded onto a remote instance)
ctrl Control name
val Control value

Further information

1. This procedure is used to change an instance control parameter in the context of the Remote Invocation
Protocol (see Annex B).

2. An IO error is raised in case of error.
Module

mmjobs

Fair Isaac Corporation Proprietary Information 269

Chapter 8: mmjobs

setmodpar

Purpose
Add or change the value of a parameter in a model parameter string.

Synopsis
procedure setmodpar(plist:text, pname:string|text,

val:integer|real|boolean|string|text)

Arguments
plist Text object storing the parameters
pname Parameter name
val Value assigned to the parameter.

Further information

1. This function helps in building the model parameter string to be passed to the run procedure. As input it
takes a text object that it modifies by either adding an assignment of the form pname=val or by
replacing an existing assignment. The routine adds the necessary quoting as necessary.

2. It is expected that the provided text string is either empty or composed of a list of assignments of the
form "pname=val,pname2=val2...".

Related topics
resetmodpar, run.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 270

Chapter 8: mmjobs

setworkdir

Purpose
Set the initial working directory of a model.

Synopsis
procedure setworkdir(mo:Model, cwd:string)

Arguments
mo A model reference
cwd Initial working directory

Example
The following statement sets the initial working directory of submodel sub to the current directory of its
master model:

setworkdir(sub,'.')

Further information

1. This procedure defines the initial working directory to be used when the execution of the model (re)starts.
As a consequence it cannot be used to change the environment of a running model.

2. For a local execution the provided path is expanded just before the beginning of the execution relatively
to the current working directory of the caller. For a remote execution the path is relative to the directory of
the instance running the model.

Related topics
run.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 271

Chapter 8: mmjobs

run

Purpose
Run a model.

Synopsis
procedure run(mo:Model)
procedure run(mo:Model, plist:string|text)

Arguments
mo Model to be executed
plist String composed of model parameter initializations separated by commas

Further information

1. This procedure starts the execution of a model in a new thread: when the procedure returns, the model is
not necessarily started (this may be delayed depending on the operating system load) and not
necessarily terminated (the second model is executing concurrently to the caller).

2. By default the execution starts in the working directory of the Mosel instance (that might be different
from the working directory of the calling model). A different initial path can be setup using setworkdir.

3. When the execution of the model is completed (normal termination, interruption after calling stop, or
runtime error) or could not be started, an event of class EVENT_END is sent to the caller. The execution
status is returned via the event value but it may also be obtained using getstatus. The exit code related
to the last execution may be retrieved using getexitcode.

4. An event EVENT_END is also received after a model has detached itself although its execution may
continue (see detach). In this case the model status is RT_DETACHED and its associated instance is
disconnected.

5. The specified model must have been previously initialized with load and must not be running. If the
same model has to be executed several times concurrently, it must be loaded several times in different
model objects.

6. The parameter string plistmay be built and modified using setmodpar and resetmodpar. These
routines handle transparently the protection of parameter values by adding the appropriate quotes when
required.

Related topics
load, wait, waitforend, setmodpar, stop, getstatus, getexitcode, reset.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 272

Chapter 8: mmjobs

getdsoprop, getdsopropnum

Purpose
Get module information.

Synopsis
function getdsoprop(dso:string, prop:integer):string
function getdsopropnum(dso:string, prop:integer):real

Arguments
dso The name of a module currently loaded into memory
prop The property to retrieve. Possible values:

PROP_NAME Module name
PROP_VERSION Module version
PROP_PATH Path to the module file

Return value
The property as a string (real for getdsopropnum) or an empty string (-1 for getdsopropnum) in case
of error (invalid property or the module was not found)

Related topics
getmodprop

Module
mmjobs

Fair Isaac Corporation Proprietary Information 273

Chapter 8: mmjobs

getgid

Purpose
Get the group ID of a model.

Synopsis
function getgid(mo:Model):integer

Argument
mo A model

Return value
Group ID of the model

Further information
A model can be associated with a group ID using setgid. This group ID may be used to identify the
origin of an event (see getfromgid) or as a filter for a wait (see waitfor).

Related topics
getuid, getid, setgid

Module
mmjobs

Fair Isaac Corporation Proprietary Information 274

Chapter 8: mmjobs

getid

Purpose
Get the ID of a model or Mosel instance.

Synopsis
function getid(mo:Model):integer
function getid(mi:Mosel):integer

Arguments
mo A model
mi A Mosel instance

Return value
ID of the model or instance as an integer

Further information

1. Each model object has a unique ID number that can be obtained with this function. This ID may be used
to identify the origin of an event (see getfromid) or as a filter for a wait (see waitfor).

2. The ID number of a Mosel instance is its node number. The initial instance has node number 0.
Related topics

getuid, getgid, jobid

Module
mmjobs

Fair Isaac Corporation Proprietary Information 275

Chapter 8: mmjobs

getmodprop, getmodpropnum

Purpose
Get model information.

Synopsis
function getmodprop(mo:Model, prop:integer):string
function getmodprop(prop: integer):string
function getmodpropnum(mo:Model, prop:integer):real
function getmodpropnum(prop: integer):real

Arguments
mo A model
prop The property to retrieve. Possible values:

PROP_NAME Model name (cf. model statement)
PROP_ID Order number
PROP_VERSION Model version
PROP_SYSCOM System comment
PROP_USRCOM User comment
PROP_SIZE Amount of memory (in bytes) used by the model
PROP_DATE Compilation date
PROP_UNAME Unique model name

Return value
The property as a string (real for getmodpropnum) or an empty string (-1 for getmodpropnum) in case
of error

Further information
The second form of the function reports information for the calling model.

Related topics
getdsoprop, memoryuse

Module
mmjobs

Fair Isaac Corporation Proprietary Information 276

Chapter 8: mmjobs

getnode

Purpose
Get the ID (node number) of the Mosel instance of a model.

Synopsis
function getnode(mo:Model):integer
function getnode(mi:Mosel):integer

Arguments
mo A model
mi A Mosel instance

Return value
ID of the instance on which the model is loaded as an integer or -1 if the model has not been loaded

Further information

1. This function returns the node number of the current instance if the provided model is local.

2. When applied to a Mosel instance this function returns the same information as getid.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 277

Chapter 8: mmjobs

getrmtid

Purpose
Get the ID of a model on a remote instance.

Synopsis
function getrmtid(mo:Model):integer

Argument
mo A model

Return value
ID of the model on the remote instance as an integer or -1 if the model has not been loaded or is local to
the running instance.

Further information
This ID corresponds to the model number assigned to the model by Mosel when it is loaded (i.e. the value
of the control parameter modelnumber). This function can only be used on models handled by remote
instances.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 278

Chapter 8: mmjobs

getstatus

Purpose
Get the status of a model or of an instance.

Synopsis
function getstatus(mo:Model):integer
function getstatus(mi:Mosel):integer

Arguments
mo A model
mi A Mosel instance

Return value
The status of a Mosel instance is 0 if it is connected, any other value indicates that it is not ready. The
model status can be:
RT_NOTINIT Model has not been initialized or has been unloaded
RT_RUNNING Model is running
RT_OK Model is ready for execution and/or no error occurred during last execution
RT_MATHERR A mathematical error occurred
RT_ERROR A runtime error occurred
RT_IOERR An IO error occurred
RT_NULL A NULL reference error occurred
RT_LICERR Execution could not start because no license was available
RT_FDCLOSED Execution on a separate instance has been interrupted
RT_DETACHED Execution on a separate instance continues although the instance has been

disconnected (see detach)
RT_STOP Execution has been interrupted by a call to stop

Related topics
connect, stop, getexitcode.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 279

Chapter 8: mmjobs

getuid

Purpose
Get the user ID of a model.

Synopsis
function getuid(mo:Model):integer

Argument
mo A model

Return value
User ID of the model

Further information
A model can be associated with a user ID using setuid. This user ID may be used to identify the origin
of an event (see getfromuid) or as a filter for a wait (see waitfor).

Related topics
getgid, getid, setuid

Module
mmjobs

Fair Isaac Corporation Proprietary Information 280

Chapter 8: mmjobs

getexitcode

Purpose
Get the exit code of a model.

Synopsis
function getexitcode(mo:Model):integer

Argument
mo A model

Return value
Exit code of the last execution or 0

Further information

1. The exit code of the last execution corresponds to the value stated via a call to the procedure exit. The
default exit value (i.e. procedure exit has not been called) is 0.

2. The value of the exit code is defined only when the execution of the model succeeded (i.e. its status is
RT_OK). This function will return 0 before the model is executed or after a runtime error.

Related topics
getstatus.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 281

Chapter 8: mmjobs

stop

Purpose
Stop a running model.

Synopsis
procedure stop(mo:Model)

Argument
mo Model to interrupt

Further information
If the model is not currently running, no operation is performed. Note that the effect of this call may not
be immediate and the corresponding model may continue running a few seconds before its effective
interruption (for instance the time required to complete an IO operation).

Related topics
run.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 282

Chapter 8: mmjobs

reset

Purpose
Reset a model.

Synopsis
procedure reset(mo:Model)

Argument
mo Model to reset

Further information
This procedure resets a model after its execution: all resources it has allocated are released. The model
returns to its state just after it has been loaded into memory. Note that this function is automatically
called before a model is unloaded or run.

Related topics
run, unload.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 283

Chapter 8: mmjobs

unload

Purpose
Unload a model.

Synopsis
procedure unload(mo:Model)

Argument
mo Model to unload

Further information

1. This procedure unloads the given model. All resources used by this model, including modules, are
released. The function fails if the model is running.

2. An IO error will be raised in case of network failure while unloading a model from a remote instance.

Related topics
load.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 284

Chapter 8: mmjobs

getannidents

Purpose
Get model identitifiers for which annotations are available.

Synopsis
procedure getannidents(mo:Model, si:set of string)

Arguments
mo A model reference
si Set receiving the identifiers

Further information
This routine cannot be used with remote models.

Related topics
getannotations, applied to the model itself: getannidents.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 285

Chapter 8: mmjobs

getannotations

Purpose
Get model annotations associated to a given symbol.

Synopsis
procedure getannotations(mo:Model, id:string, prefix:string, si:set of

string, ann:array(string) of string)
procedure getannotations(mo:Model, id:string, prefix:string, lsa:list of

string)

Arguments
mo A model reference
id Symbol for which annotations are requested (an empty string will report global declarations)
prefix Prefix filter: only annotations with a name starting by the specified prefix will be returned
si Set receiving the annotation names
ann Array receiving the annotation values (indiced by names)
lsa List receiving the annotation names and values

Example
The following code snippet implements a function to retrieve a specific annotation for the specified
model entity (if several matching annotations are found the value of the first is returned):

public function getannot(mo:Model, symb:string, aname:string):string
declarations

l:list of string
end-declarations
getannotations(mo,symb,aname,l)
if l.size>=2 and l(1)=aname then

returned:=l(2)
end-if

end-function

writeln("Value of first annotation 'my.annot' for entity 'x': ",
getannot(mo,"x","my.annot"))

writeln("Value of first global annotation 'my.annot': ",
getannot(mo,"","my.annot"))

Further information

1. With the version taking a list, each annotation is represented by 2 entries: the first one is the annotation
name and the second one its value. Note that the version returning information via an array will only
report partial information in the case of annotations defined several times.

2. These routines cannot be used with remote models.
Related topics

getannidents, applied to the model itself: getannotations.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 286

Chapter 8: mmjobs

8.4.3 Synchronization
Synchronization between running models can be implemented using events. Events are characterized by
a class and a value and may be exchanged between a model and its parent model. The model from which
an event has been sent is identified by its unique ID, its user ID and its group ID. An event queue is
attached to each model to collect all events sent to this model and is managed with a FIFO policy (First In
– First Out). Depending on the needs, a model may check whether its queue is empty or simply suspend
its execution until it has been sent an event.

The type Event represents an event in the Mosel language. Objects of type Event may be compared with =
or <> and assigned with :=. The function nullevent returns an event without class and value: this is
the initial value of a newly created event and no model can send an event of this kind (i.e. the class is
necessarily not null).

canceltimer Cancel an active timer. p. 288

dropnextevent Drop the next event in the event queue of the model. p. 299

getclass Get the class of an event. p. 305

getfromgid Get the group ID of the sender of an event. p. 303

getfromid Get the ID of the sender of an event. p. 302

getfromuid Get the user ID of the sender of an event. p. 304

getnextevent Get the next event in the event queue of the model. p. 298

gettimer Get the amount of time remaining before a timer expires. p. 306

getvalue Get the value associated with an event. p. 307

isqueueempty Check whether there are events waiting in the event queue. p. 300

nullevent Return a ‘null’ event. p. 301

peeknextevent Peek the next event in the event queue of the model. p. 308

pipeflush Clears the internal buffer of a memory pipe. p. 309

pipenotify Register for a notification associated to a memory pipe. p. 310

send Send an event to a running model. p. 289

setgid Set the group ID of a model. p. 292

settimer Create or update a timer. p. 290

setuid Set the user ID of a model. p. 291

wait Wait for an event. p. 293

waitexpired Indicate whether the previous ’wait’ or ’waitfor’ expired. p. 294

waitfor Wait for specific events. p. 295

waitforend Wait for the end of execution of a model. p. 297

Fair Isaac Corporation Proprietary Information 287

Chapter 8: mmjobs

canceltimer

Purpose
Cancel an active timer.

Synopsis
procedure canceltimer(tid:integer)

Argument
tid A timer identifier

Further information

1. This procedure has no effect if it cannot find the requested timer. However it will delete from the event
queue the event EVENT_TIMER coresponding to a timer that is no longer active.

2. If the provided timer identifier tid is negative or null all timers are cancelled.

Related topics
settimer, gettimer.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 288

Chapter 8: mmjobs

send

Purpose
Send an event to a running model.

Synopsis
procedure send(mo:Model, class:integer, value:real)
procedure send(class:integer, value:real)

Arguments
mo Model to send the event to
class Event class (must be >1)
value Event value

Further information

1. Events can be sent to models started by the caller (the child models) by using the first form of the
procedure and to the model having started the caller (the parent model) with the second form of the
procedure. An event can be received only by a running model using the mmjobs module: sending an event
to a model that is not running or not using mmjobs is a no-operation.

2. Events are characterized by a class and a value. Event class values can be used to indicate the cause
of the event (for instance, 2 could mean ‘a new solution has been found’) and the associated value may
specify a property of the given instance (for example an objective value). Except for the special value 1
(EVENT_END) class values have no predefined meaning.

3. An event of class EVENT_END (=1) and model status as the event value is automatically sent by each
model to its parent model when it terminates its execution.

Related topics
wait, waitfor.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 289

Chapter 8: mmjobs

settimer

Purpose
Create or update a timer.

Synopsis
function settimer(tid:integer, dur:integer, rep:boolean):integer
function settimer(dur:integer, rep:boolean):integer

Arguments
tid A timer identifier
dur A duration in milliseconds
rep Decides whether the timer will be armed one time only or automatically repeated

Return value
Timer identifier as a positive integer

Further information

1. This function creates or updates an interval timer: after a timer has been armed by a call to this routine an
event of class EVENT_TIMER is scheduled for being sent to the model after the specified amount of time
has elapsed. The value of such an event is the timer identifier tid. Note that the system will not emit a
new event if an identical event is already in the queue.

2. If the option rep is set to false the timer is released after its termination, otherwise it is immediately
re-armed with the same interval after each expiration until it is explicitly cancelled (see canceltimer).

3. If the provided identifier tid is not positive a new timer is created with a newly generated identifier, this
corresponds to the behaviour of the second form of this function.

4. When the provided identifier corresponds to an existing timer, this one is first cancelled with a call to
canceltimer before being re-created with the new properties.

Related topics
canceltimer, gettimer.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 290

Chapter 8: mmjobs

setuid

Purpose
Set the user ID of a model.

Synopsis
procedure setuid(mo:Model,uid:integer)

Arguments
mo A model
uid New user ID

Further information
This function defines the user ID associated to a model (by default it is 0). This user ID may be used to
identify the origin of an event (see getfromuid).

Related topics
setgid, getuid

Module
mmjobs

Fair Isaac Corporation Proprietary Information 291

Chapter 8: mmjobs

setgid

Purpose
Set the group ID of a model.

Synopsis
procedure setgid(mo:Model,gid:integer)

Arguments
mo A model
gid New group ID

Further information
This function defines the group ID associated to a model (by default it is 0). This group ID may be used to
identify the origin of an event (see getfromgid).

Related topics
setuid, getgid

Module
mmjobs

Fair Isaac Corporation Proprietary Information 292

Chapter 8: mmjobs

wait

Purpose
Wait for an event.

Synopsis
procedure wait
procedure wait(dur:integer)

Argument
dur A duration in seconds or the constant WAIT_INFINITE

Further information
This procedure suspends the execution of the caller until an event is available. The second form specifies
a time limit: the processing is suspended for at most dur seconds, the special value WAIT_INFINITE is
interpreted as an infinite duration. The behaviour of the procedure is undefined if the specified duration is
smaller than 1 second.

Related topics
send, waitfor, waitforend, waitexpired, isqueueempty, getnextevent, dropnextevent.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 293

Chapter 8: mmjobs

waitexpired

Purpose
Indicate whether the previous ’wait’ or ’waitfor’ expired.

Synopsis
function waitexpired:boolean

Return value
true if the last call to wait or waitfor terminated after expiration of a time limit

Related topics
wait, waitfor.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 294

Chapter 8: mmjobs

waitfor

Purpose
Wait for specific events.

Synopsis
procedure waitfor(mask:integer)
procedure waitfor(mask:integer,dur:integer)
procedure waitfor(mask:integer,dur:integer,opt:integer)
procedure waitfor(mask:integer,id:integer,dur:integer,opt:integer)

Arguments
mask Bit mask of expected events
id ID of model for which events are expected
dur A duration in seconds, the constant WAIT_INFINITE or a timer identifier as a negative integer
opt Options:

WAIT_EXACT Mask must be exactly matched
WAIT_KEEP Keep unexpected events
WAIT_UID Wait for a particular user ID
WAIT_GID Wait for a particular group ID

Example
The following statement waits for an event of class 3 coming from a model of group 100 without
dropping any event:

waitfor(3,100,WAIT_INFINITE,WAIT_KEEP+WAIT_EXACT+WAIT_GID)

Further information

1. This procedure suspends the execution of the caller until an event of a particular class is available. The
second form specifies a time limit: the processing is suspended for at most dur seconds, the special
value WAIT_INFINITE is interpreted as an infinite duration.

2. If the time limit is 0 the execution is not suspended but the queue of events is processed once and a
subsequent call to waitexpired will return true if no valid event was found.

3. The parameter durmay also take a negative value: in this case it is interpreted as the opposite of a timer
identifier (see settimer) and the function will wait until this timer expires if no valid event arrives. When
the routine interrupts its monitoring due to the expiration of a timer the first event in the queue is the
event EVENT_TIMER associated to this timer. Note that if no timer corresponds to the given value the
routine will terminate only when an expected event is available as if WAIT_INFINITE had been used.

4. By default, the parameter mask is interpreted as a bit mask to select the expected events: all events sent
to the model are automatically dropped until an event ev satisfies the following condition:

bittest(getclass(ev),mask)<>0

5. If the parameter opt includes option WAIT_EXACT, the parameter mask becomes the target event class:
the wait will end when an event of a class equal to mask is found.

6. If the parameter opt includes option WAIT_KEEP, unexpected events are not dropped but the first event
satisfying the condition is moved to the top of the queue such that it is returned by the next call to
getnextevent.

7. With the last form of the function an ID is specified: it characterises events coming from a particular
model or a group of models. By default the argument id is interpreted as the unique model ID (see
getid), if option WAIT_UID is used, the ID is interpreted as a user ID (see getuid) and with option
WAIT_GID the argument is a group ID (see getgid).

Fair Isaac Corporation Proprietary Information 295

Chapter 8: mmjobs

Related topics
send, wait, waitexpired, isqueueempty, getnextevent, dropnextevent.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 296

Chapter 8: mmjobs

waitforend

Purpose
Wait for the end of execution of a model.

Synopsis
procedure waitforend(mo:Model)
procedure waitforend(mo:Model,dur:integer)

Arguments
mo A model
dur A duration in seconds, the constant WAIT_INFINITE or a timer identifier as a negative integer

Further information

1. This procedure suspends the execution of the caller until a given model has terminated its execution. The
second form specifies a time limit: the processing is suspended for at most dur seconds, the special
value WAIT_INFINITE is interpreted as an infinite duration.

2. Before the procedure returns all events received from the model to monitor are removed from the event
queue (including the EVENT_END event) unless the time limit has been reached. In this case some of the
events of the submodel may have been removed from the event queue.

3. If the time limit is 0 the execution is not suspended but the queue of events is processed once and a
subsequent call to waitexpired will return true if the model was still running when the procedure was
called (the event queue is not modified in this case).

4. The parameter durmay also take a negative value: in this case it is interpreted as the opposite of a timer
identifier (see settimer) and the function will wait until this timer expires if no valid event arrives. When
the routine interrupts its monitoring due to the expiration of a timer the first event in the queue is the
event EVENT_TIMER associated to this timer. Note that if no timer corresponds to the given value the
routine will terminate only when an expected event is available as if WAIT_INFINITE had been used.

Related topics
wait, waitexpired.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 297

Chapter 8: mmjobs

getnextevent

Purpose
Get the next event in the event queue of the model.

Synopsis
function getnextevent:Event

Return value
The next event or nullevent if the queue is empty

Further information
The returned event is removed from the queue after it has been retrieved with this function.

Related topics
peeknextevent, dropnextevent, isqueueempty.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 298

Chapter 8: mmjobs

dropnextevent

Purpose
Drop the next event in the event queue of the model.

Synopsis
procedure dropnextevent

Further information
This procedure has no effect if the event queue is empty.

Related topics
peeknextevent, getnextevent, isqueueempty.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 299

Chapter 8: mmjobs

isqueueempty

Purpose
Check whether there are events waiting in the event queue.

Synopsis
function isqueueempty:boolean

Return value
false if at least one event is available in the queue, true otherwise.

Related topics
dropnextevent, peeknextevent, getnextevent.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 300

Chapter 8: mmjobs

nullevent

Purpose
Return a ‘null’ event.

Synopsis
function nullevent:Event

Return value
An event of class and value equal to 0

Further information
Variables of type Event are initialized with this function.

Related topics
getnextevent.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 301

Chapter 8: mmjobs

getfromid

Purpose
Get the ID of the sender of an event.

Synopsis
function getfromid(ev:Event):integer

Argument
ev An event

Return value
The ID of the sender of the event. 0 is returned for a nullevent

Further information

1. Each model has a unique ID that is attached to each event it sends. With this function one can identify the
sender of a given event.

2. The ID of an event sent from the parent model is always 0.

Related topics
getid, getfromgid, getfromuid, getvalue, getclass.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 302

Chapter 8: mmjobs

getfromgid

Purpose
Get the group ID of the sender of an event.

Synopsis
function getfromgid(ev:Event):integer

Argument
ev An event

Return value
The group ID of the sender of the event. 0 is returned for a nullevent

Further information

1. Each model can be associated with a group ID that is attached to each event it sends. With this function
one can identify the sender of a given event.

2. The group ID of an event sent from the parent model is always 0.

Related topics
getgid, setgid, getvalue, getfromid, getfromuid, getclass.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 303

Chapter 8: mmjobs

getfromuid

Purpose
Get the user ID of the sender of an event.

Synopsis
function getfromuid(ev:Event):integer

Argument
ev An event

Return value
The user ID of the sender of the event. 0 is returned for a nullevent

Further information

1. Each model can be associated with a user ID that is attached to each event it sends. With this function
one can identify the sender of a given event.

2. The user ID of an event sent from the parent model is always 0.

Related topics
getuid, setuid, getvalue, getfromid, getfromgid, getclass.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 304

Chapter 8: mmjobs

getclass

Purpose
Get the class of an event.

Synopsis
function getclass(ev:Event):integer

Argument
ev An event

Return value
The class of the event (>0) or 0 for a nullevent

Further information
A model sends automatically an event of class EVENT_END(=1) when it terminates its processing. Other
values are application specific.

Related topics
getvalue, getfromid, getfromgid, getfromuid.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 305

Chapter 8: mmjobs

gettimer

Purpose
Get the amount of time remaining before a timer expires.

Synopsis
function gettimer(tid:integer):integer

Argument
tid A timer identifier

Return value
Remaining time in milliseconds before the timer expires or 0 if the corresponding event is already
available in the queue or -1 if no timer corresponds to the provided identifier

Further information
This function will return 0 if an event corresponding to the specified timer is waiting in the queue of event
even if this timer has been automatically re-armed.

Related topics
canceltimer, settimer.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 306

Chapter 8: mmjobs

getvalue

Purpose
Get the value associated with an event.

Synopsis
function getvalue(ev:Event):real

Argument
ev An event

Return value
The value of the event

Further information
In the case of an event of class EVENT_END(=1), this value corresponds to the model status.

Related topics
getclass, getfromid, getfromgid, getfromuid.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 307

Chapter 8: mmjobs

peeknextevent

Purpose
Peek the next event in the event queue of the model.

Synopsis
function peeknextevent:Event

Return value
A copy of the next event or nullevent if the queue is empty

Further information
The returned event is a copy of the first available event of the queue. The event queue is not changed by
this function.

Related topics
getnextevent, dropnextevent, isqueueempty.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 308

Chapter 8: mmjobs

pipeflush

Purpose
Clears the internal buffer of a memory pipe.

Synopsis
function pipeflush(pname:string):boolean

Argument
pname Name of the pipe to clear

Return value
true if the operation was successful

Further information
This function can be called only if the caller is the model that has opened the pipe for reading or if no
model is reading from this pipe.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 309

Chapter 8: mmjobs

pipenotify

Purpose
Register for a notification associated to a memory pipe.

Synopsis
function pipenotify(pname:string,class:integer,value:real):boolean

Arguments
pname Name of the pipe to monitor
class Event class (0 or must be >1)
value Event value

Return value
true if the operation was successful

Further information

1. This function sets up a monitor on a memory pipe (See section 8.5.2) such that an event (with the
specified class and value) is sent to the model when some data is available for reading from the pipe.
The event is sent immediately and no monitor is installed if the pipe is already non-empty.

2. The mechanism is effective for one notification only: after the event has been sent the monitor is
removed, the function must be called again if the program requires further notifications.

3. It is not possible to install several monitors on a given pipe (the function returns false if a monitor is
already active), however a model can remove a monitor that it has previously requested through this
function by calling it again with a class set to 0.

Module
mmjobs

Fair Isaac Corporation Proprietary Information 310

Chapter 8: mmjobs

8.5 I/O drivers
The mmjobs module provides a modified version of the mem IO driver designed to be used in a
multithreaded environment: memory blocks allocated by the shmem IO driver are persistent (i.e. they are
not released after the model terminates) and can be used by several models. Thanks to this facility,
models running concurrently may exchange data through memory by means of initialization blocks for
instance.

The driver mempipe offers another communication mechanism between models: a memory pipe may be
open by two models simultaneously. One of them for writing and the other one for reading. This driver
also supports initialization blocks.

The drivers rcmd, xsrv and xssh allow to start additional Mosel instances: they have to be used to build
host specifications as expected by the connect function. Finally, thanks to the rmt driver a Mosel
instance can access files available from the environment of another instance.

8.5.1 Driver shmem
shmem:label[/minsize[/incstep]]

The file name for this driver is a label: this is the identifier (the first character must be a letter) of the
memory block. A label is not local to a particular model and remains valid after the end of the execution
of the model having created it. All memory blocks are released when the module mmjobs is unloaded but
a given memory block may also be deleted explicitly by calling the fdelete procedure of module
mmsystem or by using the fremove C-function of the Native Interface. Note also that deleting the
special file "shmem:⁎" has the effect of releasing all memory blocks handled by the driver.

Several models may open a given label at the same time and several read operations may be performed
concurrently. However, writing to a memory block can be done by only one model at a time: if several
models try to read and write from/to the same label, only one (it becomes the owner of the memory
block) performs its IO operations for writing and the others are suspended until the owner closes its file
descriptor to the specified label. Then, one of the waiting models is restarted and becomes the new
owner: this process continues until all file descriptors to the label are closed.

The memory block is allocated dynamically and resized as necessary. By default the size of the memory
block is increased by pages of 4 kilobytes: the optional parameter incstepmay be used to change this
page size (i.e. the default setting is "label/0/4k"). The special value 0 modifies the allocation policy:
instead of being increased of a fixed amount, the block size is doubled. In all cases unused memory is
released when the file is closed.

8.5.2 Driver mempipe
mempipe:name[/minsize]

A memory pipe is characterized by its name. Only one model may open a pipe for reading but several
models may open the same pipe for writing. However, if several models try to write to the same pipe, only
one (it becomes the owner of the memory pipe) performs its IO operations and the others are suspended
until the owner closes its file descriptor to the specified pipe. Then, one of the waiting models is restarted
and becomes the new owner: this process continues until all file descriptors to the pipe are closed.

Each pipe is associated with a buffer: a model can write to a pipe without blocking until this buffer is full.
The default size of such a buffer is of 2 kilobytes but a different size may be specified by appending the
required size to the pipe name (e.g. "mempipe:mypipe/256" sets the size of the pipe to 256 bytes).
This setting will be ignored if the buffer has already been allocated and is larger than the requested size,
the buffer will be reallocated anyway if it is not large enough to store a write operation.

There is no notion of ’end of file’ in a pipe: if a model tries to read from an empty pipe (i.e. no model is

Fair Isaac Corporation Proprietary Information 311

Chapter 8: mmjobs

writing to the other end and the pipe buffer is empty) no error is raised and the model is suspended until
something is available. Similarly trying to write to a pipe for which no model is reading from the other end
might be a blocking operation if its buffer is full. In order to avoid lock ups, it is usually good practice to
synchronize the models relying on events, for instance using the pipenotify function. Also, getting the
size of a memory pipe with getfsize will return the amount of data currently available in the pipe
internal buffer and deleting a pipe with fdelete will release the data structure allocated for the pipe.
The content of a pipe may also be cleared thanks to function pipeflush.

8.5.3 Driver rcmd
rcmd:[command]

This driver starts the specified command in a new process and connects its standard input and output
streams to the calling Mosel instance. The created process is executed in the same current working
directory as the controlling model and inherits the environment variables defined using setenv. The
default command is "mosel -r". A typical use for this driver is to start an instance on the current
machine or on a remote computer through an external program. For instance:

rcmd:rsh sunbox mosel -r

When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables this driver.

8.5.4 Driver xsrv
xsrv:hostname[(port)][/ctx[/pass]][|var=val...]

This driver connects to the host hostname running the Mosel Remote Launcher (see Section 8.6)
through a TCP socket on port port (default value: 2513) asking for the context ctx (default: xpress)
using the password pass (default: no password). Additional environment variables can be specified:
assignments of the form var=valmust be separated by the symbol | and variable values may include
variable references noted ${varname} (expansion is performed on the remote host in the context of its
environment). The special environment variable MOSEL_CWD defines the current working directory for the
newly created instance.

xsrv:winbox(3211)/xpr64|MOSEL_CWD=C:\workdir|MYDATA=${MOSEL_CWD}\data

8.5.5 Driver xssh
xssh:hostname[(port,kwf)][/ctx[/pass]][|var=val...]

This driver is the secure version of the xsrv driver decribed above: it establishes the connection to the
xprmsrv server through an encrypted SSH tunnel (using 2515 as the default TCP port number). In addition
to the port number, the driver can also take a file name (kwf) used as the known host file for server
authentication: this file contains the list of known hosts with their corresponding public keys. When the
connection is established to the remote host, the public key stored in this file is compared with the key
provided by the server. The connection is canceled if keys do not match. Generating this known hosts file
requires running the command xprmsrv -key public on the remote server in order to retrieve its
public key (see Section 8.6.1).

For instance, the following command will include the server mysun in the knownhosts.txt file (the
command must be run on the server):

xprmsrv -key public -hn mysun >>knownhosts.txt

Fair Isaac Corporation Proprietary Information 312

Chapter 8: mmjobs

Then after having moved the file to the machine(s) from where connections are initiated, the following
connection string may be used to open secure connections with server authentication:

xssh:mysun(knownhosts.txt)

The remote connection is handled by a separate process. By default the program xprmsrv is used as the
helper program but it can be replaced by another SSH client by changing the control parameter sshcmd.

8.5.6 Driver rmt
rmt:[node,bs]filename

This driver can be used with any routine expecting a physical file for accessing files on remote instances.
By default, the file is located on the instance running on the node identified by the parameter
defaultnode but a particular instance may be specified by prefixing the file name by its node number
enclosed in square brackets. The special node number -1 designates the parent node of the current
instance.

load(mi,mo,"rmt:[-1]model.bim")

By default the driver creates a buffer of 8 kilobytes for its communication operations. The size of this
buffer might be changed by specifying the desired buffer size (in kilobytes) after the node number (for
instance "rmt:[0,4]filename" to use a 4096 bytes buffer). If only the buffer size has to be stated
the node number can be omitted (e.g. "rmt:[,4]filename"). Note that a buffer size must be between
2 and 63.

In addition to physical files, this driver also emulates the behaviour of drivers cb, sysfd, tmp, shmem,
mempipe (for writing only) and java such that it can transfer streams from one instance to another. For
instance, "rmt:sysfd:2" is the standard error stream of the process running the default node.

8.6 The Mosel Remote Launcher xprmsrv
The xprmsrv program is the server part of the "xsrv:" and "xssh:" IO drivers: it must be running on
each computer on which instances will be started using these drivers. The communication between two
Mosel instances is achieved through a single TCP stream. Mosel instances are started in the context of
execution environments: such an environment consists in a set of environment variables as well as the
name of the program to start with its initial working directory. The server can manage different execution
environments which are identified by a name and optionally protected by a password. Thanks to this
feature a single server can offer several versions of Xpress or dedicated settings for particular distributed
applications.

This program is also used as an SSH client by mmjob and XPRD when connecting to an xprmsrv server
through a secure tunnel. Therefore it must be available when using the "xssh:" IO driver even if no
server is to be run on the host machine.

8.6.1 Running the xprmsrv command
8.6.1.1 Main command line options
The first argument of the command that is not identified as an option is used as the name for a
configuration file. The following options are accepted:

-h Display a short help message and terminate.

-V Display the version number and terminate.

Fair Isaac Corporation Proprietary Information 313

Chapter 8: mmjobs

-tc Display the current configuration and terminate.

-tm # The server will terminate after # seconds of inactivity.

-f Force automatic setting of environment variable XPRESSDIR even if it is already defined.

-v [#] Set the verbosity level of the communication protocol. The default value is 1 (report only
errors) when the server is running in background (service/daemon) and 2 (report activity)
when the server is run from a console.

-l fname Set a logfile to record all messages.

-li addr Set the address of the interface to use (default: 0.0.0.0 for all interfaces).

-p port Set the TCP port to listen to (default port is 2513, -1 to disable).

-bp port Set the UDP port for broadcast (default port is 2514, -1 to disable).

-pf pfname Define a file name for recording the process number of the server. This file is removed
when the server exits.

-d Start the server in background (or as a daemon on Posix systems).

The following options are used by the Windows version of the server:

-service install Install the server as a service. All other provided options (including configuration
file) are recorded and will be used by the server. If the corresponding service has already
been installed, its execution settings are updated with the provided options.

-service remove Remove the previously installed service.

-service start Start the previously installed service.

-service reload Reload configuration.

-service stop Stop the previously started service.

-service status Check whether the service is already running.

-u user This option is used only when installing the service: it selects the user running the service.

-pwd pwd This option specifies the password required for the user indicated by the -u option.

The following options are used by all other platforms:

-u user User that should be running the server.

-g group Group that should be running the server.

When the server is run as a service (under Windows) or as a daemon (on Posix systems) that are usually
started by a privileged user, it is recommended to use the appropriate option to run the process as an
unprivileged user for security reasons. For instance, under Windows, installing the service can be done
using the following command in order to use the network service account:

xprmsrv -service install -u "NT AUTHORITY\NetworkService" conffile

Similarly on a Posix system, the server can be run as the nobody user:

xprmsrv -d -u nobody conffile

Fair Isaac Corporation Proprietary Information 314

Chapter 8: mmjobs

8.6.1.2 Secure server
xprmsrv can also accept secure connections through SSH tunnels: this is the protocol used by the xssh
IO driver. The following options are used to setup the secure server:

-sp port Set the TCP port for SSH connections (default port is 2515, -1 to disable).

-k fname Private key file name.

-sc cilst Set the list of accepted ciphers in order of preference (default: "aes256-ctr
aes192-ctr aes128-ctr aes256-cbc aes192-cbc aes128-cbc
blowfish-cbc 3des-cbc").

The secure server requires a private key to authenticate itself (see following section). By default it will use
the file "xprmsrv_rsa.pem" located in the same directory as the xprmsrv executable. It is important to
store this file in a secure location as it identifies the server, in particular it must not be readable by Mosel
models started by the server. If this file is missing or the provided file name cannot be accessed the
secure server will be disabled.

8.6.1.3 Private key management
A new private key can be generated with the following command:

xprmsrv -key new

Additionally, option -k filename can be specified to change the default key file location. Note that this
procedure does not remove an existing key file.

The following command loads and check the validity of a key file:

xprmsrv -key check

When executed on a valid key file this command displays the fingerprint of the public part of the key as
well as its properties.

The SSH protocol makes possible authentication of a server by a client. This optional feature, supported
by the IO driver xssh, requires a known host file on the client side: this text file consists in a list of host
server names with their associated public key. The command xprmsrv -key public generates the
required data for such a file using the hostname reported by the operating system to identify the server.
Often this hostname does not correspond to the public name of the machine. In such a case, it is
possible to replace the label in the file or use the option -hn name to select a different name. For
instance, the following command will append to the file knownhosts.txt the public data key for the
server using keyfile mykey.pem with host name srvname:

xprmsrv -key public -k mykey.pem -hn srvname >>knownhosts.txt

8.6.1.4 Mode of operation
The server proceeds as follows:

1. If the environment variable XPRESSDIR is not defined or if the -f option is in use, the value of this
environment variable is deduced from the location of the program itself. Under Posix operating
systems, the environment variable XPAUTH_PATH is also set up.

2. The environment variables MOSEL_DSO and MOSEL_BIM (see Section 2.3.1), MOSEL_TMP (see
Section 2.17), MOSEL_EXECPATH (see system), MOSEL_RWPATH, MOSEL_ROPATH (see Section

Fair Isaac Corporation Proprietary Information 315

Chapter 8: mmjobs

1.3.4) and XPRMSRV_ACCESS (see Section 8.6.2.1) are cleared and the environment variable
MOSEL_RESTR is initialised with value "NoReadNoWriteNoExecNoDBWDOnly" (see Section
1.3.4).

3. The default execution environment xpress is created: it refers to the Xpress installation detected
at the first step.

4. If available, the configuration file is read (see Section 8.6.2): it can be used to define global settings
(e.g., defining the logfile) or/and create and modify execution environments by defining
environment variables.

5. The process then starts its main loop listening to the specified TCP and UDP ports.

6. When a connection is requested, a new session is started to process commands from the client.
These commands are used to authenticate the client, select an environment and finally start the
Mosel program in a separate process. This process inherits all the environment variables defined in
the context and starts in the specified working directory (by default: the location pointed by
XPRESSDIR). In addition, on Posix systems, the path ${XPRESSDIR}/lib is added to the
dynamic library path of the operating system. Once the process is started, xprmsrv detaches itself
from the client — the communication is established directly between the two Mosel instances.

8.6.2 Configuration file
The configuration file consists in a list of variable definitions of one of the following forms:

varname=value

varname?=value

Each statement is recorded in the current environment. The valuemay contain variable references noted
${varname}, the expansion is executed when the environment is processed except for self references
that are expanded at the time of defining the variable (e.g.PATH=${PATH}:otherpath). When the first
syntax is used, the variable cannot be changed by a remote host; the second syntax (using ?=) allows a
remote host to modify the corresponding variable before starting the Mosel instance.

Switching to a different environment is done by giving the name of the environment enclosed in square
brackets:

[newenv]

If the environment name has not yet been used, a new environment is created unless the line ends with
the symbol ’+’ (e.g. [myenv]+). In this case the following definitions are included only if the
environment already exists. If the line ends with the symbol ’=’ (e.g. [myenv]=) the previous definitions
for this context are cleared. These markers can be combined (e.g. [myenv]+=) such that the definition
block replaces the corresponding context only if it exists.

Upon startup, two environments are automatically created: "global" to store general configuration and
settings shared by all environments and "xpress" (it can also be referred to as ⁎ or default) the
default execution environment. When the reading of the configuration file begins, the global environment
is selected: in this environment all variable definitions are processed immediatly and added to the
xprmsrv process environment. In this context, some variables have a special meaning and are not
handled as ordinary environment variables (all paths must be absolute):

LOGFILE the file to be used for recording all messages. Messages are sent to the standard error
stream when this parameter is not set.

LISTEN address of the interface to use (default value: 0.0.0.0 for all interfaces).

Fair Isaac Corporation Proprietary Information 316

Chapter 8: mmjobs

TCP_PORT the port number to use for TCP connections (default value: 2513, -1 to disable).

UDP_PORT the port number to use for UDP connections (default value: 2514, -1 to disable). The server
listen to this port for broadcast messages (see procedure findxsrvs).

SSH_PORT the port number to use for SSH connections (default value: 2515, -1 to disable).

KEYFILE private key file name used by the SSH protocol (default value: xprmsrv_rsa.pem located in
the same directory as the xprmsrv executable).

SSH_CIPHERS the list of accepted ciphers in order of preference (default: "aes256-ctr
aes192-ctr aes128-ctr aes256-cbc aes192-cbc aes128-cbc
blowfish-cbc 3des-cbc").

VERBOSITY verbosity level for the communication protocol (default value: 1 if the server is running in
background and 2 if it is run from a console).

GROUPMASK Bit mask to select what broadcast requests to accept (default value: ANY). The server
replies to a request of group grp only if bit test grp&GROUPMASK is not 0 (see procedure
findxsrvs). The mask value can be given as an integer (e.g. 3 to allow groups 1 and 2),
an hexadecimal number (e.g. 0xFF for groups 1 to 128) or the special keyword ANY (all
groups allowed).

MAXAUTHTIME a connection is closed if the authentication procedure takes more than the specified
amount of time in seconds (default value:30).

MAXSESSIONS maximum number of concurrent sessions (the default value 0 disables this limitation).

XPRMSRV_ACCESS access control list (see Section 8.6.2.1).

CONFDIR a configuration directory path. The server includes each of the files stored in this directory
(sorted in alphabetical order) after it has finished reading the main configuration file.

If the corresponding command line options are used (namely options -l, -p, -bp, -sp, -k, -sc and -v)
the settings of the configuration file are ignored.

In other contexts, the following variables have a special meaning:

MOSEL_CMD the command to execute. The default value is "${XPRESSDIR}/bin/mosel -r"

MOSEL_CWD default working directory. The default value is "${XPRESSDIR}"

RUN_BEFORE command to be run before MOSEL_CMD. This command is executed in the same
environment as MOSEL_CMD after all variables have been defined.

RUN_AFTER command to be run after MOSEL_CMD. This command is executed in the environment of
the server but the variable itself is expanded in the context of MOSEL_CMD before its
execution.

PASS password required to use this environment (empty by default). If this variable is set to the
special value "⁎", the associated environment is disabled.

MAXSESSIONS maximum number of concurrent sessions running under this context (by default there is
no limit; a maximum of 0 or less disables the environment).

XPRMSRV_ACCESS context specific access control list (applied after the global access list).

XPRMSRV_SID session ID: if not explicitly defined this variable is automatically set by the server.

XPRMSRV_PEER IP address of the remote host: if not explicitly defined this variable is automatically set
by the server.

Fair Isaac Corporation Proprietary Information 317

Chapter 8: mmjobs

For instance, the following configuration file sets the logfile to "/tmp/logfile.txt"; adds the
password "hardone" to the default context and defines an additional context named xptest pointing
to a different installation of xpress:

simple xprmsrv config file
LOGFILE=/tmp/logfile.txt

[xpress]
PASS=hardone

[xptest]
XPRESSDIR=/opt/xpressmp/testing
XPAUTH_PATH=/opt/xpressmp/lic
MOSEL_RESTR=NoWriteNoDBNoExecWDOnly
MOSEL_CWD?=${XPRESSDIR}/workdir

Assuming the server using this configuration is running on the machine mypc, the following statements
will create two instances on this machine, one for each of the defined execution environments:

r1:=connect(m1, "xsrv:mypc/xpress/hardone")
r2:=connect(m2, "xsrv:mypc/xptest")

Since MOSEL_CWD has been initialised with the ?= symbol, the remote host can change its working
directory. For instance:

r2:=connect(m2, "xsrv:mypc/xptest|MOSEL_CWD=/tmp")

While the server is running it is possible to request a reload of its configuration: this procedure consists in
reading again the configuration file(s) in order to update the definition of the contexts. During this
operation only context specific definitions are processed (all global definitions are silently ignored). Under
Windows configuration change can only be requested on a running service using the reload command:

xprmsrv -service reload

On a Unix system configuration change is performed after reception of a signal USR1. For instance if PID
is the process ID of a running xprmsrv server:

kill -USR1 PID

The configuration update can only be executed when the server is not monitoring any Mosel instance. If a
request cannot be processed immediately it is delayed until the server is idle. Moreover if an error is
detected while reading the configuration an error is reported but the server continues running with its
current settings.

8.6.2.1 Access control list
The environment variable XPRMSRV_ACCESSmay be defined in each context of the configuration file.
This variable defines which hosts are allowed to connect to the server or use a particular context. The
restriction applies to the server itself when the variable is defined in the global context and as a
supplementary restriction when it is included in any other context (i.e. a host cannot be allowed in a
context if it is rejected by the global context).

The value of the variable must consist in a list of hosts and subnetworks separated by spaces. Each entry
of this list can optionally be preceded by the + sign (for accepting the host; this is the default if no policy
is specified) or - sign (to reject connection). Order of the list members is important: when checking
authorisation for a given host the list is processed from left to right. The first matching entry will decide
whether access is allowed or denied. A given host will be rejected if no matching entry can be found.

Fair Isaac Corporation Proprietary Information 318

Chapter 8: mmjobs

A host is identified by its name (e.g. myhost) or its IP address (e.g. 192.168.1.1). A subnetwork is
defined by a routing prefix that can be expressed as a partial address (e.g. 192.168.1); or using the
CIDR notation - the first address of the network followed by the bit-length of the prefix, separated by a
slash "/" character (e.g. 192.168.1.0/24). The subnet mask may also be used instead of the
bit-length which is a quad-dotted decimal representation like an address (e.g.
192.168.1.0/255.255.255.0). The special identifier ALL is replaced by the subnetwork definition
0.0.0.0/0 (any host) and the identifier SELF is replaced by the hostname of the server.

In the first example below, host uranus is rejected and subnetwork 192.168.1.0/24 is allowed to
connect. Note that uranus will be rejected even if it is part of the autorised subnetwork because its
reference appears first in the list. In the second example, all hosts are allowed except 2 subnetworks
(192.168.1.0/24 and 192.168.2.0/24):

XPRMSRV_ACCESS=-uranus 192.168.1
XPRMSRV_ACCESS=-192.168.1.0/255.255.255.0 -192.168.2.0/24 +ALL

All defined control lists are preprocessed just after the configuration file has been read in order to resolve
host names and check for syntax errors. Unresolved host names are ignored (although a warning is
displayed in such a case) but a syntax error on a control list will cause the server to abort its processing.

Fair Isaac Corporation Proprietary Information 319

CHAPTER 9

mmnl

The mmnl module extends the Mosel language with a new type for representing nonlinear expressions
and constraints and also with some additional subroutines. To use this module the following line must be
included in the header of the Mosel model file:

uses 'mmnl'

The first section presents the new functionality for the Mosel language provided by mmnl, namely the
new type nlctr and a set of subroutines that may be applied to objects of this type.

The following sections give detailed documentation of the subroutines (other than mathematical
operators) defined by this module.

9.1 New functionality for the Mosel language
9.1.1 The problem type mpproblem.nl

This module exposes its functionality through an extension to the mpproblem problem type. As a
consequence, all routines presented here are executed in the context of the current problem.

9.1.2 The type nlctr and its operators
The module mmnl defines the type nlctr to represent nonlinear constraints in the Mosel Language. As
shown in the following example (Section 9.1.4), mmnl also defines the standard arithmetic operations
that are required for working with objects of this type. By and large, these are the same operations as for
linear expressions (type linctr of the Mosel language) with additionally the possibility to multiply or
divide by decision variables and to use the exponential notation x̂r (assuming that x is of type mpvar).
Nonlinear constraints may also be defined by using overloaded versions of Mosel’s arithmetic and
trigonometric functions on expressions involving decision variables (see Section 9.2 for a complete list).

9.1.3 Setting initial values
An important feature in Nonlinear Programming is the possibility to set initial values for decision variables.
With mmnl this is done by the procedure setinitval. Nonlinear solvers use initial values as starting
point for the search. The choice of the initial values may not only have an impact on the time spent by the
solver but also, depending on the problem type, on the best (locally optimal) solution found by the solver.

The definitions of initial values can be removed with clearinitvals. It is also possible to employ the
solution values obtained from the immediately preceding optimization run as initial values to the next by
calling the procedure copysoltoinit.

Fair Isaac Corporation Proprietary Information 320

Chapter 9: mmnl

9.1.4 Example: using mmnl for QCQP
The following example shows how to solve a QCQP (Quadratically Constrained Quadratic Programming)
problem with the Xpress-MP QCQP solver. To use this solver we need to load the module mmxprs in
addition to mmnl since the module mmnl does not include any solver.

The problem we wish to solve is a classical NLP test problem (source:
http://www.orfe.princeton.edu/ rvdb/ampl/nlmodels/ that determines the shape of a hanging chain by
minimizing its potential energy. The objective function is linear and the problem has convex quadratic
constraints.

model "catenary"
uses "mmxprs", "mmnl"

parameters
N = 100 ! Number of chainlinks
L = 1 ! Difference in x-coordinates of endlinks
H = 2⁎L/N ! Length of each link
end-parameters

declarations
RN = 0..N
x: array(RN) of mpvar ! x-coordinates of endpoints of chainlinks
y: array(RN) of mpvar ! y-coordinates of endpoints of chainlinks
end-declarations

forall(i in RN) x(i) is_free
forall(i in RN) y(i) is_free

! Objective: minimise the potential energy
potential_energy:= sum(j in 1..N) (y(j-1)+y(j))/2

! Bounds: positions of endpoints
! Left anchor
x(0) = 0; y(0) = 0

! Right anchor
x(N) = L; y(N) = 0

! Constraints: positions of chainlinks
forall(j in 1..N)
Link_up(j):= (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2

! Setting start values
forall(j in RN) setinitval(x(j), j⁎L/N)
forall(j in RN) setinitval(y(j), 0)

setparam("XPRS_verbose", true)
minimise(potential_energy)

writeln("Solution: ", getobjval)
forall(j in RN)
writeln(strfmt(getsol(x(j)),10,5), " ", strfmt(getsol(y(j)),10,5))

end-model

A QCQP matrix can be exported to a text file (in MPS or LP format) by adding the following lines to your
model after the problem definition:

setparam("XPRS_loadnames", true) ! Enable loading of names
loadprob(potential_energy) ! Load the problem
writeprob("catenary.mat", "") ! Write an MPS matrix ("l" for LP format)

Not all problems with quadratic constraints conform with the properties required by QCQP solvers.
Xpress-Optimizer therefore performs a convexity check before starting the optimization. This test takes
some time and if you know that your problem is convex you may disable it by setting the following

Fair Isaac Corporation Proprietary Information 321

http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/

Chapter 9: mmnl

parameter before starting the optimization.

setparam("XPRS_ifcheckconvexity", false) ! Disable convexity check

9.2 Procedures and functions
The module mmnl overloads certain mathematical functions of the Mosel language, replacing an
argument of type real by the types linctr and nlctr. The return value of these functions is of type
nlctr. This means they can be used as operators in the definition of nonlinear constraints as shown in
the example of Section 9.1.4. The relevant functions are:

■ Arithmetic functions:

abs absolute value
ceil rounding to the next largest integer
exp natural exponent of the argument
floor rounding to the next smallest integer
ln natural logarithm of the argument
log base 10 logarithm of the argument
round rounding to the nearset integer
sqrt positive square root of the argument
sign sign of an expression (-1 if negative, 1 if positive, 0 othewise)
fmin Minimum value of a list of expressions (this function accepts a variable number of

arguments or a list)
fmax Maximum value of a list of expressions (this function accepts a variable number of

arguments or a list)

■ Trigonometric functions:

arccos arccosine of the argument
arcsin arcsine of the argument
arctan arctangent of the argument
cos cosine of the argument
sin sine of the argument
tan tangent of the argument

Since these mathematical operators are fairly self-explanatory, we shall forego any more detailed
documentation of these functions.

The following list gives an overview of all other functions and procedures defined by mmnl for which we
give detailed descriptions later.

clearinitvals Delete all initial value definitions. p. 324

copysoltoinit Copy solution values to initial values. p. 325

getsol Get the solution value of a nonlinear constraint. p. 327

gettype Get the type of a nonlinear constraint. p. 330

ishidden Test whether a constraint is hidden. p. 328

Fair Isaac Corporation Proprietary Information 322

Chapter 9: mmnl

pwlin Generate a piecewise linear function. p. 331

sethidden Hide or unhide a nonlinear constraint. p. 329

setinitval Set an initial value (start value) for a variable. p. 326

setname Associate a matrix name to a nonlinear constraint. p. 332

settype Set the type of a nonlinear constraint. p. 333

Fair Isaac Corporation Proprietary Information 323

Chapter 9: mmnl

clearinitvals

Purpose
Delete all initial value definitions.

Synopsis
procedure clearinitvals

Example
The following copies the solution values from an optimization run to the initial values of the variables
involved. Later all initial value definitions are deleted and a new initial value is set for variable x.

uses "mmnl"
declarations
x,y: mpvar
end-declarations
...
minimize(sin(x+y))
copysoltoinit
...
clearinitvals
setinitval(x, -1)

Further information
This procedure deletes all previously defined initial values for decision variables.

Related topics
copysoltoinit, setinitval.

Module
mmnl

Fair Isaac Corporation Proprietary Information 324

Chapter 9: mmnl

copysoltoinit

Purpose
Copy solution values to initial values.

Synopsis
procedure copysoltoinit

Example
The following copies the solution values of all variables in an optimization run to their initial values and
then sets a different initial value for variable x(1).

uses "mmnl"
declarations
x: array(1..10) of mpvar
y,z: mpvar
end-declarations
...
maximize(x(1)⁎x(3) + ln(y+z))
copysoltoinit
setinitval(x(1), 0)

Further information
This procedure copies the solution values of decision variables in the immediately preceding optimization
run to their initial values for the next run. Doing so it overrides any previously set initial values for the
involved variables. However, the settings for decision variables that did not occur in the previously solved
problem remain unchanged.

Related topics
copysoltoinit, clearinitvals, setinitval.

Module
mmnl

Fair Isaac Corporation Proprietary Information 325

Chapter 9: mmnl

setinitval

Purpose
Set an initial value (start value) for a variable.

Synopsis
procedure setinitval(x:mpvar, val:real)

Arguments
x A decision variable
val A real number to be used as initial value

Example
The following sets an initial value of 0 for variable x. For y its solution from the preceding optimization is
set as its new initial value.

uses "mmnl"
declarations
x,y: mpvar
end-declarations
setinitval(x, 0)
setinitval(y, getsol(y))

Further information
This procedure sets an initial value for a decision variable. Initial values are used by nonlinear solvers as a
(good) starting point for the search. It is in general not required that the initial values be part of a feasible
solution to the optimization problem. All previously set initial values can be removed by calling
clearinitvals. The procedure copysoltoinit can be used to turn the solution of a previous
optimization run into initial values for the next run.

Related topics
clearinitvals, copysoltoinit.

Module
mmnl

Fair Isaac Corporation Proprietary Information 326

Chapter 9: mmnl

getsol

Purpose
Get the solution value of a nonlinear constraint.

Synopsis
function getsol(c:nlctr):real

Argument
c A nonlinear constraint

Return value
Solution value or 0.

Example
The following prints the solution values of a nonlinear constraint and a nonlinear expression.

uses "mmnl"
declarations
x,y,z: mpvar
Ctr: nlctr
end-declarations

... ! (Define and solve the problem)
writeln("Evalution of Ctr: ", getsol(Ctr))
writeln("Evaluation of an expression: ", getsol(abs(x⁎y)+5⁎z^3))

Further information
This function returns the evaluation of a nonlinear constraint using the current solution values of its
variables. Note that the solution value of a variable is 0 if the problem has not been solved or the variable
is not contained in the problem that has been solved.

Related topics
maximize/minimize, copysoltoinit.

Module
mmnl

Fair Isaac Corporation Proprietary Information 327

Chapter 9: mmnl

ishidden

Purpose
Test whether a constraint is hidden.

Synopsis
function ishidden(c:nlctr):boolean

Argument
c A nonlinear constraint

Return value
true if the constraint is hidden, false otherwise.

Example
The following tests whether a nonlinear constraint is hidden.

uses "mmnl"
declarations
c: nlctr
end-declarations

if ishidden(c) then
writeln("Constraint 'c' is currently hidden.")
end-if

Further information
This function tests the current status of a constraint. At its creation a constraint is added to the current
problem, but using the function sethidden it may be hidden. This means, the constraint will not be
contained in the problem that is solved by the nonlinear solver but it is not deleted from the definition of
the problem in Mosel.

Related topics
sethidden.

Module
mmnl

Fair Isaac Corporation Proprietary Information 328

Chapter 9: mmnl

sethidden

Purpose
Hide or unhide a nonlinear constraint.

Synopsis
procedure sethidden(c:nlctr, b:boolean)

Arguments
c A nonlinear constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Example
The following defines a constraint and then sets it as hidden:

uses "mmnl"
declarations
x,y,z: mpvar
end-declarations

c:= 4⁎cos(x) + y - z^2 <= 12
sethidden(c, true)

Further information
At its creation a constraint is added to the current problem, but using this procedure it may be hidden.
This means that the constraint will not be contained in the problem that is solved by the nonlinear solver
but it is not deleted from the definition of the problem in Mosel. Function ishidden can be used to test
the current status of a constraint.

Related topics
ishidden.

Module
mmnl

Fair Isaac Corporation Proprietary Information 329

Chapter 9: mmnl

gettype

Purpose
Get the type of a nonlinear constraint.

Synopsis
function gettype(c:nlctr):integer

Argument
c A nonlinear constraint

Return value
Constraint type. Applicable values for nonlinear constraints are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint, i.e. free

Related topics
settype.

Module
mmnl

Fair Isaac Corporation Proprietary Information 330

Chapter 9: mmnl

pwlin

Purpose
Generate a piecewise linear function.

Synopsis
function pwlin(x:mpvar, points:list of real):nlctr
function pwlin(x:mpvar, brks:list of real, slopes:list of real):nlctr
function pwlin(fcts:list of pws):nlctr

Arguments
x Input variable of the function
points List of breakpoints; each point is defined by its coordinates (i.e. the size of the list must be

even)
brks List of x-values for the breakpoints
slopes List of slopes to be applied between each breakpoint (there must be 1 more slope than

breakpoints)
fcts List of segments of the function by means of pws constructs

Return value
The piecewise linear expression as an nlctr entity

Example
The following code extract generates 3 identical piecewise linear functions using the different methods
supported by this routine:

pwl1:=pwlin(x,[0.0,0, 1,10, 2,13, 3,15, 4,16])
pwl2:=pwlin(x,[1.0,2,3],[10.0,3,2,1])
pwl3:=pwlin([pws(0,10⁎x),pws(1,10+3⁎(x-1)),pws(2,13+2⁎(x-2)),

pws(3,15+(x-3))])

Further information

1. The first form of the routine expects a list of coordinates: each point is defined by the value for the
variable x and the value of the function on this point. With the second form the list brks specifies the
points where the slope of the function changes and the list slopes gives the actual slopes. The first
slope applies for values before the first breakpoint and the last one is for values after the last breakpoint.
Note that with this syntax it is assumed that the evaluation of the function is 0 for x=0.

2. Using the last form of the routine makes it possible to describe the function by means of linear
expressions. Each element of the list fctsmust be a pws construct that is composed of a real (the first
x-value of the segment) and a linear expression on the input variable (segments must depend on the
same input variable).

Module
mmnl

Fair Isaac Corporation Proprietary Information 331

Chapter 9: mmnl

setname

Purpose
Associate a matrix name to a nonlinear constraint.

Synopsis
procedure setname(c:nlctr, n:string)

Arguments
c A nonlinear constraint
n Name given to the constraint

Further information

1. When exporting a problem to a matrix file, constraint names are deduced from the global public symbols:
anonymous and local constraints are usually named after their row number in the matrix. This procedure
makes it possible to give a name to these constraints.

2. If the given name starts with the ’#’ character, the generated matrix name will include the row number of
the constraint in the matrix.

Fair Isaac Corporation Proprietary Information 332

Chapter 9: mmnl

settype

Purpose
Set the type of a nonlinear constraint.

Synopsis
procedure settype(c:nlctr, type:integer)

Arguments
c A nonlinear constraint
type Constraint type. Applicable values are:

CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint

Further information
This procedure can be used to change the type of a nonlinear constraint, turning it into an equality or
inequality or making it unbounded, i.e. free.

Related topics
gettype.

Module
mmnl

Fair Isaac Corporation Proprietary Information 333

CHAPTER 10

mmoci

The Mosel OCI (Oracle Call Interface) interface provides a set of procedures and functions that may be
used to access Oracle databases. To use the OCI interface, the following line must be included in the
header of a Mosel model file:

uses 'mmoci'

This manual describes the Mosel OCI interface and shows how to use some standard PL/SQL
commands, but it is not meant to serve as a manual for PL/SQL. The reader is referred to the
documentation of Oracle for more detailed information on these topics.

10.1 Prerequisite
The Oracle interface defined by the module mmoci accesses Oracle databases via the Oracle Call
Interface (OCI). Oracle’s Instant Client package must be installed on the machine that runs the Mosel
model.

10.2 Example
Assume that the Oracle database contains a table “pricelist” of the following form:

articlenum color price

1001 blue 10.49
1002 red 10.49
1003 black 5.99
1004 blue 3.99

...

The following small example shows how to logon to a database from an Mosel model file, read in data,
and logoff from the database.

model 'OCIexample'
uses 'mmoci'

declarations
prices: array (range) of real
end-declarations

setparam("OCIverbose", true) ! Enable OCI message printing in case of error
OCIlogon("scott","tiger","") ! connect to Oracle as the user 'scott/tiger'

Fair Isaac Corporation Proprietary Information 334

Chapter 10: mmoci

writeln("Connection number: ", getparam("OCIconnection"))

OCIexecute("select articlenum,price from pricelist", prices)
! Get the entries of field `price' (indexed by
! field `articlenum') in table `pricelist'

OCIlogoff ! Disconnect from the database
end-model

Here the OCIverbose control parameter is set to true to enable OCI message printing in case of error.
Following the connection, the procedure OCIexecute is called to retrieve entries from the field price
(indexed by field articlenum) in the table pricelist. Finally, the connection is closed.

For further examples of working with databases and spreadsheets, the reader is referred to the Xpress
whitepaper Using ODBC and other database interfaces with Mosel.

10.3 Data transfer between Mosel and Oracle
Data transfer beetween Mosel and Oracle is achieved by calls to the procedure OCIexecute. The value
of the control parameter OCIndxcol and the type and structure of the second argument of the
procedure decide how the data are transferred between the two systems.

10.3.1 From Oracle to Mosel
Information is moved from Oracle to Mosel when performing a SELECT command for instance.
Assuming mt has been declared as follows:

mt: array(1..10,1..3) of integer

the execution of the call:

OCIexecute("SELECT c1,c2,c3 from T", mt)

behaves differently depending on the value of OCIndxcol. If this control parameter is true, the
columns c1 and c2 are used as indices and c3 is the value to be assigned. For each row (i,j,k) of the
result set, the following assignment is performed by mmoci:

mt(i,j):=k

With a table T containing:

c1 c2 c3 c4
1 2 5 7
4 3 6 8

We obtain the initialization:

m2(1,2)=5, m(4,3)=6

If the control parameter OCIndxcol is false, all columns are treated as data. In this case, for each row
(i,j,k) the following assignments are performed:

mt(r,1):=i; mt(r,2):=j; mt(r,3):=k

where r is the row number in the result set.

Here, the resulting initialization is:

mt(1,1)=1, mt(1,2)=2, mt(1,3)=5

Fair Isaac Corporation Proprietary Information 335

Chapter 10: mmoci

mt(2,1)=4, mt(2,2)=3, mt(2,3)=6

If the SQL statement selects 4 columns (instead of 3) as in:

OCIexecute("SELECT c1,c2,c3,c4 from T", mt)

and the control parameter OCIndxcol is false, the first column is used as the first array index while
the remaining columns are treated as data. As a consequence, for each row (i,j,k,l) the following
assignments are performed:

mt(i,1):=j; mt(i,2):=k; mt(i,3):=l

The resulting initialization is therefore:

mt(1,1)=2, mt(1,2)=5, mt(1,3)=7
mt(4,1)=3, mt(4,2)=6, mt(4,3)=8

The second argument of OCIexecutemay also be a list of arrays. When using this version, the value of
OCIndxcol is ignored and the first column(s) of the result set are always considered as indices and the
following ones as values for the corresponding arrays. For instance, assuming we have the following
declarations:

m1, m2: array(1..10) of integer

With the statement:

OCIexecute("SELECT c1,c2,c3 from T", [m1,m2])

for each row (i,j,k) of the result set, the following assignments are performed:

m1(i):=j; m2(i):=k

So, if we use the table T of our previous example, we get the initialization:

m1(1)=2, m1(4)=5
m2(1)=3, m2(4)=6

10.3.2 From Mosel to Oracle
Information is transferred from Mosel to Oracle when performing an INSERT command for instance. In
this case, the way to use the Mosel arrays has to be specified by using parameters in the SQL command.
These parameters are identified by their name in the expression. For instance in the following expression
3 parameters (:1, :2 and :3) are used:

INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)

mmoci expects that parameters are always named :n where n is the parameter number starting at 1 but
does not impose any order (i.e. :3,:1,:2 is also valid) and a given parameter may be used several
times in an expression. The command is then executed repeatedly as many times as the provided data
allows to build new tuples of parameters. The initialization of parameters is similar to what is done for a
SELECT statement.

Assuming mt has been declared as follows:

mt: array(1..2,1..3) of integer

and initialized with this assignment:

mt::[1,2,3,

Fair Isaac Corporation Proprietary Information 336

Chapter 10: mmoci

4,5,6]

the execution of the call:

OCIexecute("INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)",mt)

behaves differently depending on the value of OCIndxcol. If this control parameter is true, for each
execution of the command, the following assignments are performed by mmoci:

':1':= i, ':2':= j, ':3':= mt(i,j)

The execution is repeated for all possible values of i and j (in our example 6 times). The resulting table T
is therefore:

c1 c2 c3
1 1 1
1 2 2
1 3 3
2 1 4
2 2 5
2 3 6

Note that mmoci uses the names of the parameters to perform an initialization and not their relative
position. This property is particularly useful for UPDATE statements where the order of parameters needs
to be changed. For instance, if we want to update the table T instead of inserting new rows, we can write:

OCIexecute("UPDATE T c3=:3 WHERE c1=:1, c2=:2",mt)

This command is executed exactly in the same way as the INSERT example above (i.e. we do not have
’:3’:=i, ’:1’:=j, ’:2’:=mt(i,j) as the order of appearance in the command suggests but
’:1’:=i, ’:2’:=j, ’:3’:=mt(i,j)).

The same functionality may also be used to reorder or repeat columns. With the same definition of the
array mt as before and a 4-column table S in the database the execution of the command

OCIexecute("INSERT INTO S (c1,c2,c3,c4) VALUES (:1,:2,:3,:2)",mt)

results in the following contents of table S:

c1 c2 c3 c4
1 1 1 1
1 2 2 2
1 3 3 3
2 1 4 1
2 2 5 2
2 3 6 3

If the control parameter OCIndxcol is false, only the values of the Mosel array are used to initialize the
parameters. So, for each execution of the command of our initial example (with 3 parameters), we have:

':1':=mt(i,1), ':2':=mt(i,2), ':3':=mt(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T is
therefore:

c1 c2 c3
1 2 3
4 5 6

However if the SQL query defines 4 parameters (instead of 3) as in:

Fair Isaac Corporation Proprietary Information 337

Chapter 10: mmoci

OCIexecute("INSERT INTO T (c1,c2,c3,c4) VALUES (:1,:2,:3,:4)",mt)

and the control parameter OCIndxcol is false, the first parameter is used as the first array index while
the remaining parameters are populated with data. As a consequence, for each execution of the
command, the following assignments are performed by mmoci:

':1':= i, ':2':= mt(i,1), ':3':= mt(i,2), ':4':=mf(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T is
therefore:

c1 c2 c3 c4
1 1 2 3
2 4 5 6

When OCIexecute is used with a list of arrays, the behavior is again similar to what has been described
earlier for the SELECT command: the first parameter(s) are assigned index values and the final ones the
actual array values. For instance, assuming we have the following declarations:

m1,m2: array(1..3) of integer

And the arrays have been initialized as follows:

m1::[1,2,3]
m2::[4,5,6]

Then the following call:

OCIexecute("INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)",[m1,m2])

executes 3 times the INSERT command. For each execution, the following parameter assignments are
performed:

':1':=i, ':2':=m1(i), ':3':=m2(i)

The resulting table T is therefore:

c1 c2 c3
1 1 4
2 2 5
3 3 6

10.4 Control parameters
The following parameters are defined by mmoci:

OCIautocommit Enable/disable "commit on success" in OCI. p. 339

OCIautondx Enable automatic indexation of arrays. p. 339

OCIbufsize Data buffer size. p. 340

OCIcolsize Maximum string length. p. 340

OCIconnection Identification number of the active OCI connection. p. 340

OCIdebug Enable/disable debug mode. p. 340

OCIfirstndx Initial index value for an automatic indexation. p. 341

Fair Isaac Corporation Proprietary Information 338

Chapter 10: mmoci

OCIndxcol Indicate whether to use first columns as indices. p. 341

OCIrowcnt Number of lines affected by the last SQL command. p. 341

OCIrowxfr Number of lines transferred during the last SQL command. p. 341

OCIsuccess Indicate whether the last SQL command succeeded. p. 342

OCItruncsize Length of the largest string that has been truncated. p. 342

OCIverbose Enable/disable message printing by OCI. p. 342

All parameters can be accessed with the Mosel function getparam, and those that are not marked
read-only in the list below may be set using the procedure setparam.

Example:

setparam("OCIverbose", true) ! Enable message printing by OCI
csize:=getparam("OCIcolsize") ! Get the maximum string length
setparam("OCIconnection", 3) ! Select the connection number 3

OCIautocommit

Description Enable/disable "commit on success" in OCI.

Type Boolean, read/write

Values true Changes to the database are committed automatically.
false transactions have to be explicitly committed (or rolled back) using OCIcommit (or

OCIrollback).

Default value true

Module mmoci

OCIautondx

Description Enable automatic indexation of arrays.

Type Boolean, read/write

Values true Enable automatic indexation.
false Disable automatic indexation.

Default value false

Note Automatic indexation affects handling of arrays in SQL queries. It can be used only on
1-dimension arrays indiced by ranges: when this mode is enabled indices are not imported or
exported, only array values are exchanged with the database. For reading, the initial index value
is taken from the parameter OCIfirstndx and incremented at each iteration. When writing all
cells of the arrays are exported.

Affects routines OCIexecute.

See also OCIfirstndx.

Module mmoci

Fair Isaac Corporation Proprietary Information 339

Chapter 10: mmoci

OCIbufsize

Description Size in kilobytes of the buffer used for exchanging data between Mosel and Oracle.

Type Integer, read/write

Values At least 1

Default value 4

Affects routines OCIexecute, OCIreadstring.

Module mmoci

OCIcolsize

Description Maximum length of strings accepted to exchange data, anything exceeding this size is cut off.

Type Integer, read/write

Values At least 8

Default value 64

Note When exporting external type entities as text strings to the database and the column size is too
small the resulting cells might be empty.

Affects routines OCIexecute, OCIreadstring.

See also OCItruncsize.

Module mmoci

OCIconnection

Description Identification number of the active OCI connection. By changing the value of this parameter, it
is possible to work with several connections simultaneously.

Type Integer, read/write

Affects routines OCIlogoff, OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.

Set by routines OCIlogon.

Module mmoci

OCIdebug

Description When this parameter is set to true, OCIverbose is also enabled and any SQL request sent to
Oracle is displayed to the error stream before execution. This option is ignored if the model is
not compiled with debug information.

Type Boolean, read/write

Values true Enable debug mode.
false Disable debug mode.

Default value false

See also OCIverbose.

Module mmoci

Fair Isaac Corporation Proprietary Information 340

Chapter 10: mmoci

OCIfirstndx

Description Initial index value for an automatic indexation.

Type Integer, read/write

Default value 1

Affects routines OCIexecute.

See also OCIautondx.

Module mmoci

OCIndxcol

Description Indicates whether the first columns of each row must be interpreted as indices in all cases.
Setting it to the value falsemight be useful, for example, if one is trying to access a
non-relational table, perhaps a dense table. Note this mode can be enabled only is at least the
last dimension of each array is of fixed size.

Type Boolean, read/write

Values true Interpret the first columns of each row as indices.
false Do not interpret the first columns of each row as indices.

Default value true

Affects routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.

Module mmoci

OCIrowcnt

Description Number of lines affected by the last SQL command.

Type Integer, read only

Set by routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.

See also OCIrowxfr.

Module mmoci

OCIrowxfr

Description Number of lines transferred during the last SQL command.

Type Integer, read only

Set by routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.

See also OCIrowcnt.

Module mmoci

Fair Isaac Corporation Proprietary Information 341

Chapter 10: mmoci

OCIsuccess

Description Indicate whether the last SQL command has been executed successfully.

Type Boolean, read only

Values true Succes.
false Error.

Set by routines All OCI functions.

Module mmoci

OCItruncsize

Description Length of the largest string that has been truncated.

Type Integer, read only

Note When exporting text to the database all strings must fit into the predefined column size
(OCIcolsize). If strings are truncated due to this limit the operation status is set to false
(see OCIsuccess) and this parameter receives the size that should be used to avoid any
truncation.

Set by routines OCIexecute.

See also OCIsuccess, OCIcolsize.

Module mmoci

OCIverbose

Description Enable/disable message printing by OCI.

Type Boolean, read/write

Values true Enable message printing.
false Disable message printing.

Default value true

Module mmoci

10.5 Procedures and functions
This section lists in alphabetical order the functions and procedures that are provided by the mmoci
module.

OCIcommit Commit the current transaction. p. 350

OCIexecute Execute an SQL command. p. 346

OCIlogoff Terminate the active database connection. p. 345

OCIlogon Connect to a database. p. 344

OCIreadinteger Read an integer value from a database. p. 347

Fair Isaac Corporation Proprietary Information 342

Chapter 10: mmoci

OCIreadreal Read a real value from a database. p. 348

OCIreadstring Read a string from a database. p. 349

OCIrollback Roll back the current transaction. p. 351

Fair Isaac Corporation Proprietary Information 343

Chapter 10: mmoci

OCIlogon

Purpose
Connect to a database.

Synopsis
procedure OCIlogon(s:string|text)
procedure OCIlogon(u:string|text, p:string|text, db:string|text)

Arguments
s Logon string as "user/password@db"
n User name
p Password
db Database name (may be "" for the default database)

Example
The following connects to the database ‘test’ as the user ‘yves’ with the password ‘DaSH’:

OCIlogon("yves/DaSH@test")

Open a connection to the default database the user ’scott’ with the password ’tiger’

OCIlogon("scott","tiger","")

Further information

1. This procedure establishes a connection to the database db as user n/p. It is possible to open several
connections but the connection established last becomes active. Each connection is assigned an
identification number which can be obtained by getting the value of the parameter OCIconnection after
this procedure has been executed. This parameter can also be used to change the active connection.

2. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoDB disables this routine.

Related topics
OCIlogoff.

Module
mmoci

Fair Isaac Corporation Proprietary Information 344

Chapter 10: mmoci

OCIlogoff

Purpose
Terminate the active database connection.

Synopsis
procedure OCIlogoff

Further information
The active connection can be accessed or changed by setting the control parameter OCIconnection.

Related topics
OCIlogon.

Module
mmoci

Fair Isaac Corporation Proprietary Information 345

Chapter 10: mmoci

OCIexecute

Purpose
Execute an SQL command.

Synopsis
procedure OCIexecute(s:string|text)
procedure OCIexecute(s:string|text, a:array)
procedure OCIexecute(s:string|text, l:list)
procedure OCIexecute(s:string|text, m:set)

Arguments
s SQL command to be executed
a An array
l A list. May be a list of arrays
m A set

Example
The following example contains four OCIexecute statements performing the following tasks:

■ Get all different values of the column color in the table pricelist.
■ Initialize the arrays colors and prices with the values of the columns color and price of the

table pricelist.
■ Create a new table newtab in the active database with 2 columns, ndx and price.
■ Add data entries to table newtab.

declarations
prices: array(1001..1004) of real
colors: array(1001..1004) of string
allcolors: set of string
end-declarations

OCIexecute("select color from pricelist", allcolors)
OCIexecute("select articlenum,color,price from pricelist",

[colors,prices])
OCIexecute("create table newtab (ndx integer, price double)")
OCIexecute("insert into newtab (ndx, price) values (:1,:2)", prices)

Further information

1. This procedure executes the given SQL command. The user is referred to the Oracle documentation for
further information on PL/SQL.

2. For output commands (like insert into) this procedure accepts arrays, sets and lists of basic types
(integer, real, string or Boolean) as well as module types for which from/to string conversions are
available. Record types composed of scalars or other records can also be used (the fields that cannot be
handled are silently ignored). It is also possible to use a list of arrays of basic types (all arrays must be
indexed by the same sets) or a list of scalar elements of different basic or module types.

3. For input commands (like select from) the same restrictions apply for arrays,lists and list of arrays
but sets must be of a basic type.

Related topics
OCIreadinteger, OCIreadreal, OCIreadstring.

Module
mmoci

Fair Isaac Corporation Proprietary Information 346

Chapter 10: mmoci

OCIreadinteger

Purpose
Read an integer value from a database.

Synopsis
function OCIreadinteger(s:string|text):integer

Argument
s SQL command for selecting the value to be read

Return value
Integer value read or 0.

Example
The following gets the article number of the first data item in table pricelist for which the field color
is set to blue:

i:=OCIreadinteger(
"select articlenum from pricelist where color=blue")

Further information

1. 0 is returned if no integer value can be found.

2. If the given SQL selection command does not denote a single value, the first value to which the selection
criterion applies is returned.

Related topics
OCIexecute, OCIreadreal, OCIreadstring.

Module
mmoci

Fair Isaac Corporation Proprietary Information 347

Chapter 10: mmoci

OCIreadreal

Purpose
Read a real value from a database.

Synopsis
function OCIreadreal(s:string|text):real

Argument
s SQL command for selecting the value to be read

Return value
Real value read or 0.

Example
The following returns the price of the data item with index 2 in table newtab:

r:=OCIreadreal("select price from newtab where ndx=2")

Further information

1. 0 is returned if no real value can be found.

2. If the given SQL selection command does not denote a single value, the first value to which the selection
criterion applies is returned.

Related topics
OCIexecute, OCIreadinteger, OCIreadstring.

Module
mmoci

Fair Isaac Corporation Proprietary Information 348

Chapter 10: mmoci

OCIreadstring

Purpose
Read a string from a database.

Synopsis
function OCIreadstring(s:string|text):string

Argument
s SQL command for selecting the string to be read

Return value
String read or empty string.

Example
The following retrieves the color of the (first) data item in table pricelist with article number 1004:

s:=OCIreadstring(
"select color from pricelist where articlenum=1004")

Further information

1. The empty string is returned if no real value can be found.

2. If the given SQL selection command does not denote a single entry, the first string to which the selection
criterion applies is returned.

Related topics
OCIexecute, OCIreadinteger, OCIreadreal.

Module
mmoci

Fair Isaac Corporation Proprietary Information 349

Chapter 10: mmoci

OCIcommit

Purpose
Commit the current transaction.

Synopsis
procedure OCIcommit

Further information
This procedure is required only if the control parameter OCIautocommit is set to false.

Related topics
OCIrollback.

Module
mmoci

Fair Isaac Corporation Proprietary Information 350

Chapter 10: mmoci

OCIrollback

Purpose
Roll back the current transaction.

Synopsis
procedure OCIrollback

Further information
This procedure can be used only if the control parameter OCIautocommit is set to false.

Related topics
OCIcommit.

Module
mmoci

Fair Isaac Corporation Proprietary Information 351

Chapter 10: mmoci

10.6 I/O drivers
This module provides a driver designed to be used in initializations blocks for both reading and
writing data. The oci IO driver simplifies access to Oracle databases.

10.6.1 Driver oci
oci:[debug;][noindex;][colsize=#;][bufsize=#;]logstring

The driver can only be used in ‘initializations’ blocks. The database to use has to be given in the opening
part of the block as user/password@dbname. Before this identifier, the following options may be
stated:

debug to execute the block in debug mode (to display what SQL queries are produced). This
option is ignored if the model is not compiled with debug information.

noindex to indicate that only data (no indices) are transferred between the data source and Mosel.
By default, the first columns of each table are interpreted as index values for the array to
be transferred. This behaviour is changed by this option.

colsize=c to set the size of a text column (default 64 characters).

bufsize=c to set the size of the data buffer in kilobytes (default 4).

In the block, each label entry is understood as a table name optionally followed by a list of column names
in brackets (e.g. "my_table(col1,col2)"). All columns are used if no list of names is specified. Note
that, before the table name, one can add option noindex to indicate that for this particular entry indices
are not used.

Example:

initializations from "mmoci.oci:scott/tiger@orcl"
NWeeks as "PARAMS(Weeks)" ! Initialize `NWeeks' with column `Weeks'

! of table `PARAMS'
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with table `BPROFILE'

! all columns being data (no indices)
end-initializations

Fair Isaac Corporation Proprietary Information 352

CHAPTER 11

mmodbc

The Mosel ODBC interface provides a set of procedures and functions that may be used to access
databases for which an ODBC driver is available. This module also includes the SQLite database engine
that can be directly run without the need for any additional software.
To use the ODBC interface, the following line must be included in the header of a Mosel model file:

uses 'mmodbc'

This manual describes the Mosel ODBC interface and shows how to use some standard SQL commands,
but it is not meant to serve as a manual for SQL. The reader is referred to the documentation of the
software he is using for more detailed information on these topics.

11.1 Prerequisite
The ODBC technology relies on a driver manager that is used as an interface between applications (like
mmodbc) and a data source itself accessed through a dedicated driver. As a consequence, this module
requires that both, a driver manager and the necessary drivers (one for each data source to be used), are
installed and set up on the operating system.

Under Windows, usually the driver manager is part of the system and most data sources are provided
with their ODBC driver (for instance Excel, Access or SQLServer).

On the other supported operating systems it may be necessary to install a driver manager (as well as the
necessary drivers). The module mmodbc supports two driver managers: iODBC (http://www.iodbc.org)
and unixODBC (http://www.unixodbc.org). Upon startup the module tries to load the dynamic library
"libiodbc.so" then, if this fails, tries "libodbc.so". If none of these libraries can be found only the
SQLite integrated driver will be available, please make sure that one of the driver managers is installed
and that the corresponding libraries can be accessed (in general this requires updating some
environment variable).

11.2 Example
Assume that the data source “mydata” defines a database that contains a table “pricelist” of the following
form:

articlenum color price

1001 blue 10.49
1002 red 10.49
1003 black 5.99
1004 blue 3.99

...

Fair Isaac Corporation Proprietary Information 353

http://www.iodbc.org
http://www.unixodbc.org

Chapter 11: mmodbc

The following small example shows how to connect to a database from an Mosel model file, read in data,
and disconnect from the data source.

model 'ODBCexample'
uses 'mmodbc'

declarations
prices: array (range) of real
end-declarations

setparam("SQLverbose", true) ! Enable ODBC message printing in case of error
SQLconnect("DSN=mydata") ! Connect to the database defined by `mydata'

writeln("Connection number: ", getparam("SQLconnection"))

SQLexecute("select articlenum,price from pricelist", prices)
! Get the entries of field `price' (indexed by
! field `articlenum') in table `pricelist'

SQLdisconnect ! Disconnect from the database
end-model

Here the SQLverbose control parameter is set to true to enable ODBC message printing in case of
error. Following the connection, the procedure SQLexecute is called to retrieve entries from the field
price (indexed by field articlenum) in the table pricelist. Finally, the connection is closed.

For further examples of working with databases and spreadsheets, the reader is referred to the Xpress
whitepaper Using ODBC and other database interfaces with Mosel.

11.3 Data transfer between Mosel and the database
Data transfer beetween Mosel and the database is achieved by calls to the procedure SQLexecute. The
value of the control parameter SQLndxcol and the type and structure of the second argument of the
procedure decide how the data are transferred between the two systems.

11.3.1 From the database to Mosel
Information is moved from the database to Mosel when performing a SELECT command for instance.
Assuming mt has been declared as follows:

mt: array(1..10,1..3) of integer

the execution of the call:

SQLexecute("SELECT c1,c2,c3 from T", mt)

behaves differently depending on the value of SQLndxcol. If this control parameter is true, the
columns c1 and c2 are used as indices and c3 is the value to be assigned. For each row (i,j,k) of the
result set, the following assignment is performed by mmodbc:

mt(i,j):=k

With a table T containing:

c1 c2 c3 c4
1 2 5 7
4 3 6 8

We obtain the initialization:

Fair Isaac Corporation Proprietary Information 354

Chapter 11: mmodbc

m2(1,2)=5, m(4,3)=6

If the control parameter SQLndxcol is false, all columns are treated as data. In this case, for each row
(i,j,k) the following assignments are performed:

mt(r,1):=i; mt(r,2):=j; mt(r,3):=k

where r is the row number in the result set.

Here, the resulting initialization is:

mt(1,1)=1, mt(1,2)=2, mt(1,3)=5
mt(2,1)=4, mt(2,2)=3, mt(2,3)=6

If the SQL statement selects 4 columns (instead of 3) as in:

SQLexecute("SELECT c1,c2,c3,c4 from T", mt)

and the control parameter SQLndxcol is false, the first column is used as the first array index while
the remaining columns are treated as data. As a consequence, for each row (i,j,k,l) the following
assignments are performed:

mt(i,1):=j; mt(i,2):=k; mt(i,3):=l

The resulting initialization is therefore:

mt(1,1)=2, mt(1,2)=5, mt(1,3)=7
mt(4,1)=3, mt(4,2)=6, mt(4,3)=8

The second argument of SQLexecutemay also be a list of arrays. When using this version, the value of
SQLndxcol is ignored and the first column(s) of the result set are always considered as indices and the
following ones as values for the corresponding arrays. For instance, assuming we have the following
declarations:

m1, m2: array(1..10) of integer

With the statement:

SQLexecute("SELECT c1,c2,c3 from T", [m1,m2])

for each row (i,j,k) of the result set, the following assignments are performed:

m1(i):=j; m2(i):=k

So, if we use the table T of our previous example, we get the initialization:

m1(1)=2, m1(4)=5
m2(1)=3, m2(4)=6

11.3.2 From Mosel to the database
Information is transferred from Mosel to the database when performing an INSERT command for
instance. In this case, the way to use the Mosel arrays has to be specified by using parameters in the SQL
command. These parameters are identified by the symbol ‘?’ in the expression. For instance in the
following expression 3 parameters are used:

INSERT INTO T (c1,c2,c3) VALUES (?,?,?)

The command is then executed repeatedly as many times as the provided data allows to build new tuples
of parameters. The initialization of parameters is similar to what is done for a SELECT statement.

Fair Isaac Corporation Proprietary Information 355

Chapter 11: mmodbc

Assuming mt has been declared as follows:

mt: array(1..2,1..3) of integer

and initialized with this assignment:

mt::[1,2,3,
4,5,6]

the execution of the call:

SQLexecute("INSERT INTO T (c1,c2,c3) VALUES (?,?,?)",mt)

behaves differently depending on the value of SQLndxcol. If this control parameter is true, for each
execution of the command, the following assignments are performed by mmodbc (?1,?2,?3 denote
respectively the first second and third parameter):

'?1':= i, '?2':= j, '?3':= mt(i,j)

The execution is repeated for all possible values of i and j (in our example 6 times). The resulting table T
is therefore:

c1 c2 c3
1 1 1
1 2 2
1 3 3
2 1 4
2 2 5
2 3 6

If the control parameter SQLndxcol is false, only the values of the Mosel array are used to initialize the
parameters. So, for each execution of the command, we have:

'?1':=mt(i,1), '?2':=mt(i,2), '?3':=mt(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T is
therefore:

c1 c2 c3
1 2 3
4 5 6

However if the SQL query defines 4 parameters (instead of 3) as in:

SQLexecute("INSERT INTO T (c1,c2,c3,c4) VALUES (?,?,?,?)",mt)

and the control parameter SQLndxcol is false, the first parameter is used as the first array index while
the remaining parameters are populated with data. As a consequence, for each execution of the
command, the following assignments are performed by mmodbc:

'?1':= i, '?2':= mt(i,1), '?3':= mt(i,2), '?4':=mf(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T is
therefore:

c1 c2 c3 c4
1 1 2 3
2 4 5 6

When SQLexecute is used with a list of arrays, the behavior is again similar to what has been described

Fair Isaac Corporation Proprietary Information 356

Chapter 11: mmodbc

earlier for the SELECT command: the first parameter(s) are assigned index values and the final ones the
actual array values. For instance, assuming we have the following declarations:

m1,m2: array(1..3) of integer

And the arrays have been initialized as follows:

m1::[1,2,3]
m2::[4,5,6]

Then the following call:

SQLexecute("INSERT INTO T (c1,c2,c3) VALUES (?,?,?)",[m1,m2])

executes 3 times the INSERT command. For each execution, the following parameter assignments are
performed:

'?1':=i, '?2':=m1(i), '?3':=m2(i)

The resulting table T is therefore:

c1 c2 c3
1 1 4
2 2 5
3 3 6

11.4 ODBC and MS Excel
Microsoft Excel is a spreadsheet application. Since ODBC was primarily designed for databases special
rules have to be followed to read and write Excel data using ODBC:

■ A table of data is referred to as either a named range (e.g. MyRange), a worksheet name (e.g.
[Sheet1$]) or an explicit range (e.g. [Sheet1$B2:C12]).

■ By default, the first row of a range is used for naming the columns (to be used in SQL statements).
The option FIRSTROWHASNAMES=0 disables this feature and columns are implicitly named F1, F2...
However, even with this option, the first row is ignored and cannot contain data.

■ The data type of columns is deduced by the Excel driver by scanning the first 8 rows. The number of
rows analyzed can be changed using the option MAXSCANROWS=n (n between 1 and 8).

It is important to be aware that when writing to database tables specified by a named range in Excel, they
will increase in size if new data is added using an INSERT statement. To overwrite existing data in the
worksheet, the SQL statement UPDATE can be used in most cases (although this command is not fully
supported). Now suppose that we wish to write further data over the top of data that has already been
written to a range using an INSERT statement. Within Excel it is not sufficient to delete the previous data
by selecting it and hitting the Delete key. If this is done, further data will be added after a blank rectangle
where the deleted data used to reside. Instead, it is important to use Edit/Delete/Shift cells up within
Excel, which will eliminate all traces of the previous data, and the enlarged range.

Microsoft Excel tables can be created and opened by only one user at a time. However, the "Read Only"
option available in the Excel driver options allows multiple users to read from the same .xls files.

When first experimenting with acquiring or writing data via ODBC it is tempting to use short names for
column headings. This can lead to horrible-to-diagnose errors if you inadvertently use an SQL keyword.
We strongly recommend that you use names like “myParameters”, or “myParams”, or “myTime”, which
will not clash with SQL reserved keywords.

Fair Isaac Corporation Proprietary Information 357

Chapter 11: mmodbc

11.5 Control parameters
The following parameters are defined by mmodbc:

SQLautocommit Enable/disable auto commit mode. p. 358

SQLautondx Enable automatic indexation of arrays. p. 359

SQLbufsize Data buffer size. p. 359

SQLcolsize Maximum string length. p. 359

SQLconnection Identification number of the active ODBC connection. p. 360

SQLdebug Enable/disable debug mode. p. 360

SQLdm Driver manager currently used. p. 360

SQLextn Enable/Disable extended syntax. p. 360

SQLfirstndx Initial index value for an automatic indexation. p. 361

SQLndxcol Indicate whether to use first columns as indices. p. 361

SQLrowcnt Number of lines affected by the last SQL command. p. 361

SQLrowxfr Number of lines transferred during the last SQL command. p. 361

SQLsuccess Indicate whether the last SQL command succeeded. p. 362

SQLtruncsize Length of the largest string that has been truncated. p. 362

SQLverbose Enable/disable message printing by the ODBC driver. p. 362

All parameters can be accessed with the Mosel function getparam, and those that are not marked
read-only in the list below may be set using the procedure setparam.

Example:

setparam("SQLverbose", true) ! Enable message printing by the ODBC driver
csize:=getparam("SQLcolsize") ! Get the maximum string length
setparam("SQLconnection", 3) ! Select the connection number 3

SQLautocommit

Description When this parameter is set to true (the default), any change to the database is sent
immediately. Otherwise, if transactions are supported by the database, changes are retained
until a call to SQLcommit (commit changes) or SQLrollback (discard changes) is issued.
The value of this parameter is used at the time the database is open with SQLconnect: once
connection is established, changing this parameter has no impact on the existing connections
(i.e. they remain in their initial transaction mode)

Type Boolean, read/write

Values true Enable auto commit mode.
false Disable auto commit mode (i.e. transactions).

Default value true

Affects routines SQLconnect.

Module mmodbc

Fair Isaac Corporation Proprietary Information 358

Chapter 11: mmodbc

SQLautondx

Description Enable automatic indexation of arrays.

Type Boolean, read/write

Values true Enable automatic indexation.
false Disable automatic indexation.

Default value false

Note Automatic indexation affects handling of arrays in SQL queries. It can be used only on
1-dimension arrays indiced by ranges: when this mode is enabled indices are not imported or
exported, only array values are exchanged with the database. For reading, the initial index value
is taken from the parameter SQLfirstndx and incremented at each iteration. When writing all
cells of the arrays are exported.

Affects routines SQLexecute.

See also SQLfirstndx.

Module mmodbc

SQLbufsize

Description Size in kilobytes of the buffer used for exchanging data between Mosel and the ODBC driver.

Type Integer, read/write

Values At least 1

Default value 4 on Posix systems and 8 on Windows

Affects routines SQLexecute, SQLreadstring.

Module mmodbc

SQLcolsize

Description Maximum length of strings accepted to exchange data, anything exceeding this size is cut off.

Type Integer, read/write

Values At least 8

Default value 64

Affects routines SQLexecute, SQLreadstring.

Note The column size is expressed in bytes when using an ANSI interface (with a multibyte encoding
a single character may occupy more than one byte) and in characters when using a Unicode
interface. When exporting text strings to the database and the column size is significantly too
small the resulting cells might be empty.

See also SQLtruncsize.

Module mmodbc

Fair Isaac Corporation Proprietary Information 359

Chapter 11: mmodbc

SQLconnection

Description Identification number of the active ODBC connection. By changing the value of this parameter,
it is possible to work with several connections simultaneously.

Type Integer, read/write

Affects routines SQLdisconnect, SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.

Set by routines SQLconnect.

Module mmodbc

SQLdebug

Description When this parameter is set to true, SQLverbose is also enabled and any SQL request sent to
ODBC is displayed to the error stream before execution. This option is ignored if the model is
not compiled with debug information.

Type Boolean, read/write

Values true Enable debug mode.
false Disable debug mode.

Default value false

See also SQLverbose.

Module mmodbc

SQLdm

Description Driver manager currently used.

Type Integer, read only

Values <0 No driver manager available (Unix/Linux).
0 Unspecified (manager not loaded dynamically).
1 iODBC.
2 unixODBC.

Note A negative value for this parameter indicates that no driver manager could be found on the
system. As a consequence only the integrated SQLite driver can be accessed.

Module mmodbc

SQLextn

Description Enable/Disable extended syntax.

Type Boolean, read/write

Values true Enable extended syntax.
false Disable extended syntax.

Default value true

Affects routines SQLconnect, SQLexecute.

Module mmodbc

Fair Isaac Corporation Proprietary Information 360

Chapter 11: mmodbc

SQLfirstndx

Description Initial index value for an automatic indexation.

Type Integer, read/write

Default value 1

Affects routines SQLexecute.

See also SQLautondx.

Module mmodbc

SQLndxcol

Description Indicates whether the first columns of each row must be interpreted as indices in all cases.
Setting it to the value falsemight be useful, for example, if one is trying to access a
non-relational table, perhaps a dense spreadsheet table. Note this mode can be enabled only if
at least the last dimension of each array is of fixed size.

Type Boolean, read/write

Values true Interpret the first columns of each row as indices.
false Do not interpret the first columns of each row as indices.

Default value true

Affects routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.

Module mmodbc

SQLrowcnt

Description Number of lines affected by the last SQL command.

Type Integer, read only

Set by routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.

See also SQLrowxfr.

Module mmodbc

SQLrowxfr

Description Number of lines transferred during the last SQL command.

Type Integer, read only

Set by routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.

See also SQLrowcnt.

Module mmodbc

Fair Isaac Corporation Proprietary Information 361

Chapter 11: mmodbc

SQLsuccess

Description Indicate whether the last SQL command has been executed successfully.

Type Boolean, read only

Values true Succes.
false Error.

Set by routines All ODBC functions.

Module mmodbc

SQLtruncsize

Description Length of the largest string that has been truncated.

Type Integer, read only

Note When exporting text to the database all strings must fit into the predefined column size
(SQLcolsize). If strings are truncated due to this limit the operation status is set to false
(see SQLsuccess) and this parameter receives the size that should be used to avoid any
truncation.

Set by routines SQLexecute.

See also SQLsuccess, SQLcolsize.

Module mmodbc

SQLverbose

Description Enable/disable message printing by the ODBC driver.

Type Boolean, read/write

Values true Enable message printing.
false Disable message printing.

Default value true

Module mmodbc

11.6 Procedures and functions
This section lists in alphabetical order the functions and procedures that are provided by the mmodbc
module.

SQLcolumns Get the columns of a given table. p. 364

SQLcommit Terminate the current transaction by committing any pending changes.
p. 365

SQLconnect Connect to a database. p. 366

SQLdataframe Retrieve a dataframe of an SQL query. p. 368

Fair Isaac Corporation Proprietary Information 362

Chapter 11: mmodbc

SQLdisconnect Terminate the active database connection. p. 369

SQLexecute Execute an SQL command. p. 370

SQLgetparam Get the value of an SQL parameter. p. 373

SQLindices Get the list of indices of a given table. p. 374

SQLparam Generate an SQL parameter. p. 372

SQLprimarykeys Get the list of primary keys of a given table. p. 375

SQLreadinteger Read an integer value from a database. p. 376

SQLreadreal Read a real value from a database. p. 377

SQLreadstring Read a string from a database. p. 378

SQLrollback Terminate the current transaction by discarding any pending changes. p. 379

SQLtables Get the list of tables available in the database. p. 380

SQLupdate Update the selected data with the provided array(s). p. 381

Fair Isaac Corporation Proprietary Information 363

Chapter 11: mmodbc

SQLcolumns

Purpose
Get the columns of a given table.

Synopsis
function SQLcolumns(t:string,cname:array(range) of

string,cstype:array(range) of string):integer
function SQLcolumns(t:string,cname:array(range) of

string,citype:array(range) of integer):integer
function SQLcolumns(t:string,cname:array(range) of string):integer

Arguments
t The table name
cname An array of strings to return the column names
cstype An array of strings to return the column types (textual representation)
citype An array of integers to return the column types (type codes)

Return value
Number of columns.

Example
The following example displays the names and types of columns of table ’dtt’:

declarations
CR:range
cname:dynamic array(CR) of string
ctype:dynamic array(CR) of string
end-declarations

nbc:=SQLcolumns("dtt",cname,ctype)
write("Table 'dtt' has columns:")
forall(c in 1..nbc) write(' ',cname(c),'(',ctype(c),')')
writeln

Related topics
SQLtables, SQLprimarykeys, SQLindices.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 364

Chapter 11: mmodbc

SQLcommit

Purpose
Terminate the current transaction by committing any pending changes.

Synopsis
procedure SQLcommit

Further information
If the database supports transactions and the connection has been created in manual commit mode (see
SQLautocommit), all changes to the database are recorded as a transaction. This procedure commits
all pending changes corresponding to the current transaction and starts a new transaction.

Related topics
SQLrollback.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 365

Chapter 11: mmodbc

SQLconnect

Purpose
Connect to a database.

Synopsis
procedure SQLconnect(s:string|text)

Argument
s Connection string

Example
The following connects to the MySQL database ‘test’ as the user ‘yves’ with the password ‘DaSH’:

SQLconnect("DSN=mysql;DB=test;UID=yves;PWD=DaSH")

Open the database mydata.sqlite with the integrated SQLite engine:

SQLconnect("mydata.sqlite")

Fair Isaac Corporation Proprietary Information 366

Chapter 11: mmodbc

Further information

1. This procedure establishes a connection to the database defined by the given connection string. If
extended mode is in use (default) and the ODBC driver manager publishes its driver list, the connection
string may be reduced to a file name as long as this name allows identification of the required driver (by
using the filename extension).

2. Both Unicode and ANSI ODBC interfaces are supported. By default the Unicode interface is used on
Windows and the ANSI interface is selected on Posix systems. It is possible to choose the interface by
using the "enc:" file name prefix: any of the UTF encodings (except UTF-8) will enable the Unicode
interface. Otherwise the ANSI interface is selected using the specified encoding. For instance for using
the ANSI interface under Windows with an Access database: "enc:sys,mydb.mdb". Similarly, to use
the Unicode interface of MySQL on a Unix machine, the connection strings looks like:
"enc:wchar,DSN=mysql;DB=test".

3. It is possible to open several connections but the connection established last becomes active. Each
connection is assigned an identification number which can be obtained by getting the value of the
parameter SQLconnection after this procedure has been executed. This parameter can also be used to
change the active connection.

4. ODBC drivers are not necessarily executed from the same working directory as the model. As a
consequence, a driver expecting a file as data source may not be able to locate the file if its name is
relative to the current directory (e.g. "DSN=Microsoft Access Driver; DBQ=mydb.mdb"). The
use of the function expandpath from mmsystem allows to avoid this problem by generating an absolute
path name for the given name (e.g. "DSN=Microsoft Access Driver;
DBQ="+expandpath("mydb.mdb")).

5. When Mosel is running in restricted mode (see Section 1.3.4), connections using a file name are not
possible if restriction NoRead or NoWrite is active and connections using a DSN are disabled by
restriction NoDB.

6. The embedded SQLite database engine is selected when specifying a file name with extension ".db",
".db3", ".sqlite" or ".sqlite3". The driver may also be selected with the help of an extended
connection string starting with the DRIVER keyword and using "mmsqlite" as the driver name. In this
case the option DB has to be set in order to select the database file and READONLYmay also be added to
open the database read-only. The option TIMEOUT will define the busy timeout for the connection: this is
an amount of time (in milliseconds) indicating for how long SQLite will try to execute a query when the
database is locked (by default the query fails if the database is already used by a concurrent connection).
A typical connection string for this SQLite driver is therefore of the form:
"DRIVER=mmsqlite;READONLY=FALSE;TIMEOUT=0;DB=mydata.db" (that is the same as
"mydata.db"). When using this syntax a temporary database can be created by using an empty file
name and an in-memory database is generated if the file name is ":memory:".

Related topics
SQLdisconnect.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 367

Chapter 11: mmodbc

SQLdataframe

Purpose
Retrieve a dataframe of an SQL query.

Synopsis
procedure SQLdataframe(query: string|text, dfrm: array(R:range, C:set of

string))

Arguments
query SQL query
dfrm An array to receive the dataframe

Example
The example shows how to populate an array of type any from a join of two tables.

declarations
DFT:array(RT:range,CST:set of string) of text
DFA:array(RA:range,CSA:set of string) of any

end-declarations
SQLdataframe("select ⁎ from mytesttable", DFT)
writeln("Field indices: ", CST)

SQLdataframe("select ⁎ from mytesttable inner join anothertable " +
"on id=customer", DFA)

writeln("Field indices: ", CSA)
writeln("Number of data records (rows): ", RA.size)

Further information

1. This procedure retrieves the dataframe associated to an SQL query: lines of the result set are numbered
starting from 1 (index set R) and columns (index set C) are named after the corresponding column names
of the result set (if a column has no name a unique identifier is generated by the routine), the type of the
output array is expected to be compatible with the columns of the result set.

2. The routine supports union types (like any), this will be the preferred approach when getting the
dataframe from a query for which no type information is available. Otherwise the data received from the
database is cast to the type of the provided array (this may lead to invalid data for instance if the
database returns some textual information while the array if of a numerical type).

Related topics
SQLexecute

Fair Isaac Corporation Proprietary Information 368

Chapter 11: mmodbc

SQLdisconnect

Purpose
Terminate the active database connection.

Synopsis
procedure SQLdisconnect

Further information
The active connection can be accessed or changed by setting the control parameter SQLconnection.

Related topics
SQLconnect.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 369

Chapter 11: mmodbc

SQLexecute

Purpose
Execute an SQL command.

Synopsis
procedure SQLexecute(s:string|text)
procedure SQLexecute(s:string|text, a:array)
procedure SQLexecute(s:string|text, l:list)
procedure SQLexecute(s:string|text, m:set)
procedure SQLexecute(s:string|text, lp:list, a:array)
procedure SQLexecute(s:string|text, lp:list, l:list)
procedure SQLexecute(s:string|text, lp:list, m:set)

Arguments
s SQL command to be executed
a An array
l A list
m A set
lp A list of parameters

Example
The following example contains four SQLexecute statements performing the following tasks:

■ Get all different values of the column color in the table pricelist.
■ Initialize the arrays colors and prices with the values of the columns color and price of the

table pricelist.
■ Create a new table newtab in the active database with 2 columns, ndx and price.
■ Add data entries to table newtab.

declarations
prices: array(1001..1004) of real
colors: array(1001..1004) of string
allcolors: set of string
end-declarations

SQLexecute("select color from pricelist", allcolors)
SQLexecute("select articlenum,color,price from pricelist",

[colors,prices])
SQLexecute("create table newtab (ndx integer, price double)")
SQLexecute("insert into newtab (ndx, price) values (?,?)", prices)

Fair Isaac Corporation Proprietary Information 370

Chapter 11: mmodbc

Further information

1. This procedure executes the given SQL command. The user is referred to the documentation of the
database driver he is using for more information about the commands that are supported by it. Note that
if extended syntax is in use (default), parameters usually noted ’?’ in normal SQL queries may be
numbered (like ’?1’,’?2’,...) in order to control in which order are mapped columns of data source table to
Mosel arrays. This feature is especially useful when writing ’update’ queries for which indices must
appear after values (e.g. "update mytable set datacol=?2 where ndxcol=?1").

2. For output commands (like insert into) this procedure accepts arrays, sets and lists of basic types
(integer, real, string or Boolean) as well as module types for which from/to string conversions are
available. Record types composed of scalars or other records can also be used (the fields that cannot be
handled are silently ignored). It is also possible to use a list of arrays of basic types (all arrays must be
indexed by the same sets) or a list of scalar elements of different basic or module types.

3. For input commands (like select from) the same restrictions apply for arrays,lists and list of arrays
but sets must be of a basic type.

4. The form using an extra list argument will be used with input commands requiring parameters: the list
defines the value of the parameters.

Related topics
SQLupdate, SQLreadinteger, SQLreadreal, SQLreadstring, SQLdataframe.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 371

Chapter 11: mmodbc

SQLparam

Purpose
Generate an SQL parameter.

Synopsis
function SQLparam(i:integer):SQLparameter
function SQLparam(r:real):SQLparameter
function SQLparam(s:string):SQLparameter

Arguments
i The initial value as an integer
r The initial value as a real
s The initial value as a string

Return value
SQL parameter suitable for SQL routines.

Example
The following calls a procedure named myproc using 3 parameters. The first one is an input string
parameter (’hello’), the second is an input/output integer parameter (10) and the last one is an output
string parameter. The procedure returns a result set that mmodbc will use to initialise result. After
execution of the query, the new values of the 2 input/output parameters set by the procedure may be
displayed using the appropriate SQLgetparam routines.

SQLexecute("CALL myproc(?,?,?)",
['hello',SQLparam(10),SQLparam("")],result)

writeln("P1=",SQLgetiparam(1))
writeln("P2=",SQLgetsparam(2))

Further information

1. This routine can only be used in a list of parameters for an SQL query: it defines an input/output
parameter. The input value of the parameter is provided via the argument function (an integer, a real or a
string) and the output value (set by the database during the execution of the query) can be retrieved using
one of the SQLgetparam functions.

2. SQL parameters are typed: the type of the parameter is deduced from its initial values (passed to the
SQLparam function).

Related topics
SQLexecute, SQLreadreal, SQLreadstring, SQLreadinteger, SQLgetparam.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 372

Chapter 11: mmodbc

SQLgetparam

Purpose
Get the value of an SQL parameter.

Synopsis
function SQLgetiparam(n:integer):integer
function SQLgetrparam(n:integer):real
function SQLgetsparam(n:integer):string

Argument
n Parameter number (≥ 1)

Return value
The value of the corresponding parameter.

Further information

1. This routine can be used after a query using input/output SQL parameters has been executed to retrieve
the values of the parameters.

2. Each of the 3 functions is associated to a specific type: for instance SQLgetiparam will return values
only for integer parameters.

Related topics
SQLparam.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 373

Chapter 11: mmodbc

SQLindices

Purpose
Get the list of indices of a given table.

Synopsis
procedure SQLindices(t:string,ls:list of string)

Arguments
t The table name
ls A list of strings to return the index names

Further information
The provided list is reset.

Related topics
SQLtables, SQLcolumns, SQLprimarykeys.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 374

Chapter 11: mmodbc

SQLprimarykeys

Purpose
Get the list of primary keys of a given table.

Synopsis
procedure SQLprimarykeys(t:string,ls:list of string)
procedure SQLprimarykeys(t:string,li:list of integer)

Arguments
t The table name
ls A list of strings to return the column names
li A list of strings to return the column numbers

Further information
The provided list is reset.

Related topics
SQLtables, SQLcolumns, SQLindices.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 375

Chapter 11: mmodbc

SQLreadinteger

Purpose
Read an integer value from a database.

Synopsis
function SQLreadinteger(s:string|text):integer
function SQLreadinteger(s:string|text,p:list):integer

Arguments
s SQL command for selecting the value to be read
p A list of SQL parameters

Return value
Integer value read or 0.

Example
The following gets the article number of the first data item in table pricelist for which the field color
is set to blue:

i:=SQLreadinteger(
"select articlenum from pricelist where color=blue")

Further information

1. 0 is returned if no integer value can be found.

2. If the given SQL selection command does not denote a single value, the first value to which the selection
criterion applies is returned.

3. The second argument can be used to specify SQL parameter values if the SQL query contains parameter
markers.

Related topics
SQLexecute, SQLreadreal, SQLreadstring.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 376

Chapter 11: mmodbc

SQLreadreal

Purpose
Read a real value from a database.

Synopsis
function SQLreadreal(s:string|text):real
function SQLreadreal(s:string|text,p:list):real

Arguments
s SQL command for selecting the value to be read
p A list of SQL parameters

Return value
Real value read or 0.

Example
The following returns the price of the data item with index 2 in table newtab:

r:=SQLreadreal("select price from newtab where ndx=2")

Further information

1. 0 is returned if no real value can be found.

2. If the given SQL selection command does not denote a single value, the first value to which the selection
criterion applies is returned.

3. The second argument can be used to specify SQL parameter values if the SQL query contains parameter
markers.

Related topics
SQLexecute, SQLreadinteger, SQLreadstring.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 377

Chapter 11: mmodbc

SQLreadstring

Purpose
Read a string from a database.

Synopsis
function SQLreadstring(s:string|text):string
function SQLreadstring(s:string|text,p:list):string

Arguments
s SQL command for selecting the string to be read
p A list of SQL parameters

Return value
String read or empty string.

Example
The following retrieves the color of the (first) data item in table pricelist with article number 1004:

s:=SQLreadstring(
"select color from pricelist where articlenum=1004")

Further information

1. The empty string is returned if no real value can be found.

2. If the given SQL selection command does not denote a single entry, the first string to which the selection
criterion applies is returned.

3. The second argument can be used to specify SQL parameter values if the SQL query contains parameter
markers.

Related topics
SQLexecute, SQLreadinteger, SQLreadreal.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 378

Chapter 11: mmodbc

SQLrollback

Purpose
Terminate the current transaction by discarding any pending changes.

Synopsis
procedure SQLrollback

Further information
If the database supports transactions and the connection has been created in manual commit mode (see
SQLautocommit), all changes to the database are recorded as a transaction. This procedure discards
all pending changes corresponding to the current transaction and starts a new transaction.

Related topics
SQLcommit.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 379

Chapter 11: mmodbc

SQLtables

Purpose
Get the list of tables available in the database.

Synopsis
procedure SQLtables(l:list of string)

Argument
l A list of strings to return the table names

Further information
This procedure retrieves the list of tables available in the current database. The provided list is reset.

Related topics
SQLcolumns, SQLprimarykeys, SQLindices.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 380

Chapter 11: mmodbc

SQLupdate

Purpose
Update the selected data with the provided array(s).

Synopsis
procedure SQLupdate(s:string|text, a:array)
procedure SQLupdate(s:string|text, la:list)

Arguments
s An SQL ‘SELECT’ command
a An array of one of the basic types (integer, real, string or Boolean)
la A list of arrays of basic types (integer, real string or Boolean)

Example
The following example initializes the array prices with the values of the table pricelist, changes
some values in the array and finally, updates the date in the table pricelist.

declarations
prices: array(1001..1004) of real
end-declarations
SQLexecute("select articlenum,price from pricelist", prices)
prices(1002):=prices(1002)⁎0.9; prices(1003):=prices(1003)⁎0.8
SQLupdate("select articlenum,price from pricelist", prices)

Further information
This procedure updates the data selected by an SQL command (usually ‘SELECT’) with an array or tuple of
arrays. This procedure is available only if the data source supports positioned updates (for instance, MS
Access does but MS Excel does not). An IO error will be raised if the required functionality is not available.

Related topics
SQLexecute.

Module
mmodbc

Fair Isaac Corporation Proprietary Information 381

Chapter 11: mmodbc

11.7 I/O drivers
In order to simplify access to ODBC enabled data sources, this module provides a driver designed to be
used in initializations blocks for both reading and writing data.

11.7.1 Driver odbc
odbc:[debug;][noindex;][colsize=#;][bufsize=#;]DSN

The driver can only be used in ‘initializations’ blocks. The Data Source Name to use has to be given in the
opening part of the block. Before the DSN, the following options may be stated:

debug to execute the block in debug mode (to display what SQL queries are produced). This
option is ignored if the model is not compiled with debug information,

noindex to indicate that only data (no indices) are transferred between the data source and Mosel.
By default, the first columns of each table are interpreted as index values for the array to
be transferred. This behaviour is changed by this option,

colsize=c to set the size of a text column (default 64 characters),

bufsize=c to set the size of the data buffer in kilobytes (default 4).

In the block, each label entry is understood as a table name optionally followed by a list of column names
in brackets (e.g. "my_table(col1,col2)"). All columns are used if no list of names is specified. Note
that, before the table name, one can add option noindex to indicate that for this particular entry indices
are not used.

Example:

initializations from "mmodbc.odbc:auction.db3"
NWeeks as "PARAMS(Weeks)" ! Initialize `NWeeks' with column `Weeks'

! of table `PARAMS'
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with table `BPROFILE'

! all columns being data (no indices)
end-initializations

Fair Isaac Corporation Proprietary Information 382

CHAPTER 12

mmquad

The mmquad module extends the Mosel language with a new type for representing quadratic
expressions.To use this module, the following line must be included in the header of the Mosel model file:

uses 'mmquad'

The first section presents the new functionality for the Mosel language that is provided by mmquad,
namely the new type qexp and a set of subroutines that may be applied to objects of this type.

Via the inter-module communication interface, the module mmquad publishes several of its library
functions. These are documented in the second section. By means of an example it is shown how the
functions published by mmquad can be used in another module for accessing quadratic expressions and
working with them.

12.1 New functionality for the Mosel language
12.1.1 The type qexp and its operators

The module mmquad defines the type qexp to represent quadratic expressions in the Mosel Language.
As shown in the following example, mmquad also defines the standard arithmetic operations that are
required for working with objects of this type. By and large, these are the same operations as for linear
expressions (type linctr of the Mosel language) with in addition the possibility to multiply two decision
variables or one variable with itself. For the latter, the exponential notation x̂2may be used (assuming
that x is of type mpvar).

12.1.1.1 Example: using mmquad for Quadratic Programming
Quadratic expressions as defined with the help of mmquad may be used to define quadratic objective
functions for Quadratic Programming (QP) or Mixed Integer Quadratic Programming (MIQP) problems.
The Xpress-Optimizer module mmxprs for instance accepts expressions of type qexp as arguments for
its optimization subroutines minimize and maximize, and for the procedure loadprob (see also the
mmxprs Reference Manual). The following

model "Small MIQP example"
uses "mmxprs", "mmquad"

declarations
x: array(1..4) of mpvar
Obj: qexp
end-declarations

! Define some linear constraints
x(1) + 2⁎x(2) - 4⁎x(4) >= 0
3⁎x(1) - 2⁎x(3) - x(4) <= 100

Fair Isaac Corporation Proprietary Information 383

Chapter 12: mmquad

x(1) + 3⁎x(2) + 3⁎x(3) - 2⁎x(4) >= 10
x(1) + 3⁎x(2) + 3⁎x(3) - 2⁎x(4) <= 30

2 <= x(1); x(1) <= 20
x(2) is_integer; x(3) is_integer
x(4) is_free

! The objective function is a quadratic expression
Obj:= x(1) + x(1)^2 + 2⁎x(1)⁎x(2) + 2⁎x(2)^2 + x(4)^2

! Solve the problem and print its solution
minimize(Obj)

writeln("Solution: ", getobjval)
forall(i in 1..4) writeln(getsol(x(i)))
end-model

12.1.2 Procedures and functions
The module mmquad overloads certain subroutines of the Mosel language, replacing an argument of type
linctr by the type qexp.

exportprob Export a quadratic problem to a file. p. 385

getsol Get the solution value of a quadratic expression. p. 386

Fair Isaac Corporation Proprietary Information 384

Chapter 12: mmquad

exportprob

Purpose
Export a quadratic problem to a file.

Synopsis
procedure exportprob(options:integer, filename:string, obj:qexp)
procedure exportprob(filename:string, obj:qexp)

Arguments
options File format options:

EP_MIN LP format, minimization
EP_MAX LP format, maximization
EP_MPS MPS format
EP_STRIP Use scrambled names
EP_HEX Ouput numbers in hexadecimal when using MPS format

filename Name of the output file; if empty, output printed to standard output (screen)
obj Objective function (quadratic expression)

Example
The following example prints the problem to screen using the default format, and then exports the
problem in LP-format to the file prob1.lpmaximizing constraint Profit:

uses "mmquad"
declarations
Profit:qexp
end-declarations
...
exportprob(0, "", Profit)
exportprob(EP_MAX, "prob1", Profit)

Further information
This procedure overloads the exportprob subroutine of Mosel to handle quadratic objective functions.
It exports the current problem to a file, or if no file name is given (empty string ""), prints it on screen. If
the given filename has no extension, Mosel appends .lp to it for LP format files and .mat for MPS
format.

Module
mmquad

Fair Isaac Corporation Proprietary Information 385

Chapter 12: mmquad

getsol

Purpose
Get the solution value of a quadratic expression.

Synopsis
function getsol(q:qexp):real

Argument
q A quadratic expression

Return value
Solution value or 0.

Example

uses "mmquad"
declarations
x,y,z: mpvar
Profit:qexp
end-declarations

... ! (Define and solve the problem)
writeln("Profit value: ", getsol(Profit))
writeln("Evaluation of an expression: ", getsol(x⁎y+5⁎z^2))

Further information
This function returns the evaluation of a given quadratic expression using the current (primal) solution
values of its variables. Note that the solution value of a variable is 0 if the problem has not been solved or
the variable is not contained in the problem that has been solved.

Module
mmquad

Fair Isaac Corporation Proprietary Information 386

Chapter 12: mmquad

12.2 Published library functions
The module mmquad publishes some of its library functions via the service IMCI for use by other
modules (see the Mosel Native Interface Reference Manual for more detail about services). The list of
published functions is contained in the interface structure mmquad_imci that is defined in the module
header file mmquad.h.

From another module, the context of mmquad and its communication interface can be obtained using
functions of the Mosel Native Interface as shown in the following example.

static XPRMnifct mm;
XPRMcontext mmctx;
XPRMdsolib dso;
mmquad_imci mq;
void ⁎⁎quadctx;

dso=mm->finddso("mmquad"); /⁎ Retrieve the mmquad module⁎/
quadctx=⁎(mm->getdsoctx(mmctx, dso, (void ⁎⁎)(&mq)));

/⁎ Get the module context and the
communication interface of mmquad ⁎/

Typically, a module calling functions that are provided by mmquad will include this module into its list of
dependencies in order to make sure that mmquad will be loaded by Mosel at the same time as the calling
module. The “dependency” service of the Mosel Native Interface has to be used to set the list of module
dependencies:

static const char ⁎deplist[]={"mmquad",NULL}; /⁎ Module dependency list ⁎/

static XPRMdsoserv tabserv[]= /⁎ Table of services ⁎/
{
{XPRM_SRV_DEPLST, (void ⁎)deplist}

};

12.2.1 Complete module example
If the Mosel procedures write / writeln are applied to a quadratic expression, they print the address
of the expression and not its contents (just the same would happen for types mpvar or linctr).
Especially for debugging purposes, it may be useful to be able to display some more detailed information.
The module example printed below defines the procedure printqexp that displays all the terms of a
quadratic expression (for simplicity’s sake, we do not retrieve the model names for the variables but
simply print their addresses).

model "Test printqexp module"
uses "printqexp"

declarations
x: array(1..5) of mpvar
q: qexp
end-declarations

printqexp(10+x(1)⁎x(2)-3⁎x(3)^2)

q:= x(1)⁎(sum(i in 1..5) i⁎x(i))
printqexp(q)
end-model

Note that in this model it is not necessary to load explicitly the mmquad module. This will be done by the
printqexp module because mmquad appears in its dependency list.

#include <stdlib.h>

Fair Isaac Corporation Proprietary Information 387

Chapter 12: mmquad

#include "xprm_ni.h"
#include "mmquad.h"

/⁎⁎⁎⁎ Function prototypes ⁎⁎⁎⁎/
static int printqexp(XPRMcontext ctx,void ⁎libctx);

/⁎⁎⁎⁎ Structures for passing info to Mosel ⁎⁎⁎⁎/
/⁎ Subroutines ⁎/
static XPRMdsofct tabfct[]=

{
{"printqexp", 1000, XPRM_TYP_NOT, 1, "|qexp|", printqexp}

};

static const char ⁎deplist[]={"mmquad",NULL}; /⁎ Module dependency list ⁎/

/⁎ Services ⁎/
static XPRMdsoserv tabserv[]=

{
{XPRM_SRV_DEPLST, (void ⁎)deplist}
};

/⁎ Interface structure ⁎/
static XPRMdsointer dsointer=

{
0,NULL, sizeof(tabfct)/sizeof(XPRMdsofct),tabfct,
0,NULL, sizeof(tabserv)/sizeof(XPRMdsoserv),tabserv
};

/⁎⁎⁎⁎ Structures used by this module ⁎⁎⁎⁎/
static XPRMnifct mm; /⁎ For storing Mosel NI function table ⁎/

/⁎⁎⁎⁎ Initialize the module library just after loading it ⁎⁎⁎⁎/
DSO_INIT printqexp_init(XPRMnifct nifct, int ⁎interver,int ⁎libver, XPRMdsointer ⁎⁎interf)
{
mm=nifct; /⁎ Save the table of Mosel NI functions ⁎/
⁎interver=MM_NIVERS; /⁎ Mosel NI version ⁎/
⁎libver=MM_MKVER(0,0,1); /⁎ Module version ⁎/
⁎interf=&dsointer; /⁎ Pass info about module contents to Mosel ⁎/

return 0;
}

/⁎⁎⁎⁎ Implementation of "printqexp" ⁎⁎⁎⁎/
static int printqexp(XPRMcontext ctx, void ⁎libctx)
{
XPRMdsolib dso;
mmquad_imci mq;
mmquad_qexp q;
void ⁎⁎quadctx;
void ⁎prev;
XPRMmpvar v1,v2;
double coeff;
int nlin,i;

dso=mm->finddso("mmquad"); /⁎ Retrieve reference to the mmquad module⁎/
quadctx=⁎(mm->getdsoctx(ctx, dso, (void ⁎⁎)(&mq)));

/⁎ Get the module context and the
communication interface of mmquad ⁎/

q = XPRM_POP_REF(ctx); /⁎ Get the quadratic expression from the stack ⁎/

/⁎ Get the number of linear terms ⁎/
mq->getqexpstat(ctx, quadctx, q, &nlin, NULL, NULL, NULL);

/⁎ Get the first term (constant) ⁎/
prev=mq->getqexpnextterm(ctx, quadctx, q, NULL, &v1, &v2, &coeff);
if(coeff!=0) mm->printf(ctx, "%g ", coeff);
for(i=0;i<nlin;i++) /⁎ Print all linear terms ⁎/
{

Fair Isaac Corporation Proprietary Information 388

Chapter 12: mmquad

prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
mm->printf(ctx,"%+g %p ", coeff, v2);
}
while(prev!=NULL) /⁎ Print all quadratic terms ⁎/
{
prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
mm->printf(ctx,"%+g %p ⁎ %p ", coeff, v1, v2);
}
mm->printf(ctx,"\n");

return XPRM_RT_OK;
}

12.2.2 Description of the library functions
clearqexpstat Free the memory allocated by getqexpstat. p. 392

getqexpnextterm Enumerate the terms of a quadratic expression. p. 393

getqexpsol Evaluate a quadratic expression. p. 390

getqexpstat Get information about a quadratic expression. p. 391

Fair Isaac Corporation Proprietary Information 389

Chapter 12: mmquad

getqexpsol

Purpose
Return an evaluation of a quadratic expression based on the current solution.

Synopsis
double getqexpsol(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression

Return value
An evaluation of the expression on the current solution.

Further information
This function returns an evaluation of a quadratic expression based on last solution obtained from the
optimizer. This is the function called when using getsol on a quadratic expression from a Mosel
program.

Module
mmquad

Fair Isaac Corporation Proprietary Information 390

Chapter 12: mmquad

getqexpstat

Purpose
Get information about a quadratic expression.

Synopsis
int getqexpstat(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q, int ⁎nblin, int

⁎nbqd, int ⁎changed, XPRMmpvar ⁎⁎lsvar);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression
nblin Pointer to which the number of linear terms is returned (may be NULL)
nbqd Pointer to which the number of quadratic terms is returned (may be NULL)
changed Pointer to which the change flag is returned (may be NULL). Possible values of this flag:

1 The expression q has been modified since the last call to this function
0 Otherwise

lsvar Pointer to which is returned the table of variables that appear in the quadratic expression q
(may be NULL)

Return value
Total number of terms in the expression.

Further information
This function returns in its arguments information about a given quadratic expression. Any of these
arguments may be NULL to indicate that the corresponding information is not required. The last entry of
the table lsvar is NULL to indicate its end. This table is allocated by the module mmquad, it must be
freed by the next call to this function or with function clearqexpstat.

Module
mmquad

Fair Isaac Corporation Proprietary Information 391

Chapter 12: mmquad

clearqexpstat

Purpose
Free the memory allocated by getqexpstat.

Synopsis
void clearqexpstat(XPRMctx ctx, void ⁎quadctx);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad

Further information
A call to this function frees the table of variables that has previously been allocated by a call to function
getqexpstat.

Related topics
getqexpstat.

Module
mmquad

Fair Isaac Corporation Proprietary Information 392

Chapter 12: mmquad

getqexpnextterm

Purpose
Enumerate the list of terms contained in a quadratic expression.

Synopsis
void ⁎getqexpnextterm(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q, void ⁎prev,

XPRMmpvar ⁎v1, XPRMmpvar ⁎v2, double ⁎coeff);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression
prev Last value returned by this function. Should be NULL for the first call
v1,v2 Pointers to return the decision variable references for the current term
coeff Pointer to return the coefficient of the current term

Return value
The value to be used as prev for the next call o NULL when all terms have been returned.

Example
The following displays the terms of a quadratic expression:

void dispqexp(XPRMcontext ctx, mmquad_qexp q)
{
void ⁎prev;
XPRMmpvar v1,v2;
double coeff;
int nlin,ct;

mq->getqexpstat(ctx, quadctx, q, &nlin, NULL, NULL, NULL);
ct=0;
prev=mq->getqexpnextterm(ctx, quadctx, q, NULL, &v1, &v2, &coeff);
mm->printf(ctx, "%g ", coeff);
while(prev!=NULL) {
prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
if(ct<nlin) { mm->printf(ctx,"%+g %p", coeff, v2); ct++; }
else mm->printf(ctx,"%+g %p ⁎ %p", coeff, v1, v2);

}
mm->printf(ctx,"\n");

}

Further information
This function can be called repeatedly to enumerate all terms of a quadratic expression. For the first call,
the parameter prevmust be NULL and the function returns the constant term of the quadratic
expression (for v1 and v2 the value NULL is returned and coeff contains the constant term). For the
following calls, the value of prevmust be the last value returned by the function. The enumeration is
completed when the function returns NULL.
If this function is called repeatedly, after the constant term it returns next all linear terms and then the
quadratic terms.

Module
mmquad

Fair Isaac Corporation Proprietary Information 393

CHAPTER 13

mmreflect

This module allows a model or package to programatically access Mosel entities whose names and
types were not known at compile-time. To use this module, the following line must be included in the
header of the Mosel model file:

uses 'mmreflect'

13.1 New functionality for the Mosel language
13.1.1 The type iterator

This module provides the type iterator for enumerating the cells of an array without referring to its
individual indices. This type acts as an indexer such that an entity of this type can be used as the only
index of a compatible array for its dereferencing. Internally it maintains a reference to an array and a
position in this array in the form of an index tuple.

Before an iterator is used it must be initialised and bound to an array with a call to inititer (this
association may be cancelled by resetting the entity with reset). The status of an iterator (e.g. whether
it has been initialised, whether the enumeration has been completed) is returned by getstatus and
positioning it to the next available cell of the array is achieved by calling nextcell. The index tuple held
in an iterator can be accessed with getindices and setindices. The following example shows how
to copy the content of array ar1 to array ar2 using an iterator:

declarations
ar1:dynamic array(S1:set of string,R1:range) of integer
ar2:dynamic array(set of string,set of integer) of real
itr:iterator

end-declarations
ar1('a',1):=10
ar1('b',1):=20

inititer(itr,ar1) ! 'itr' is associated to 'ar1'
while(nextcell(itr)) do ! iterate over the existing cells of 'ar1'

ar2(itr):=ar1(itr) ! 'itr' can be used with both 'ar1' and 'ar2'
writeln("indices:", itr.indices)

end-do

Note that although the iterator itr is bound to array ar1, it can also be used to dereference ar2 since
this array is compatible with ar1 in terms of number and type of its indexing sets.

13.1.2 The type reflecterror
An entity of type reflecterror is returned by certain functions of this module: it characterises the
execution status of the function. The code and message associated to this status can be retrieved with

Fair Isaac Corporation Proprietary Information 394

Chapter 13: mmreflect

getcode and getmsg, no error occurred if the code is 0.

This type is defined such that an expression of type reflecterror used as a statement will cause a
runtime error if the status is not null and it will be ignored otherwise. Thanks to this property a function
returning an entity of this type can be used either as a function or as a procedure: in the first case error
management will be handled by the model and in the second case any error will cause a program
termination.

err:=callproc("myproc")
if err.code<>0 then
writeln("Failed to call 'myproc' (",err.msg,")")
exit(1)

end-if

13.2 Procedures and functions
callfunc, callfunclsa Call a public function with the given name. p. 396

callproc, callproclsa Call a public procedure with the given name. p. 397

findident Find an identifier in the dictionary. p. 398

getallidents Get all identitifiers of a model. p. 400

getallparams Get all runtime parameters. p. 401

getannidents Get all identitifiers of a model for which annotations are available. p. 402

getannotations Get model annotations associated to a given symbol. p. 403

getarrval Get the value of a cell of an array. p. 404

getcode Get the code associated to a reflect error. p. 405

geteltype Get the type ID of an element of a collection. p. 406

getindices Retrieve the index tuple held in an iterator. p. 407

getmsg Get the message associated to a reflect error. p. 408

getnbargs Retrieve the number of arguments required by a subroutine. p. 409

getrettype Retrieve the return type of a subroutine. p. 410

getsignature Retrieve the signature of a subroutine. p. 411

getstatus Get the status of an iterator. p. 412

inititer Initialise an iterator. p. 413

nextcell Advance an iterator to the next cell of its array. p. 414

setarrval Set the value of a cell of an array. p. 415

setindices Set the index tuple of an iterator. p. 416

testtype Test the return value of findident. p. 417

Fair Isaac Corporation Proprietary Information 395

Chapter 13: mmreflect

callfunc, callfunclsa

Purpose
Call a public function with the given name.

Synopsis
function callfunc(func:string|any, retval:any):reflecterror
function callfunc(func:string|any, retval:any, p1, p2...):reflecterror
function callfunclsa(func:string|any, retval:any, lsa:list):reflecterror

Arguments
func The name or a reference to the function to call
retval Union where the result of the function call is returned
pi Parameters of the function
lsa List of parameters of the function

Return value
The error status as a reflecterror

Example
The following Mosel code:

public function product(i:integer,j:integer):integer
returned:=i⁎j
end-function
declarations
u:any
end-declarations

callfunc('product',u,4,4)
writeln("4⁎4=",u.integer)

produces this output:

4⁎4=16

Further information

1. When used with a name, this routine selects the function to call based on the provided arguments without
performing any conversion (for instance, using an integer where a real is expected will not work). The
execution will terminate on a runtime error if no compatible function can be found.

2. The result of the function call is returned via the parameter retval that must be a union compatible with
the type of the function. The execution will terminate on a runtime error if the result of the call cannot be
saved in the provided entity.

3. The last version of the subroutine makes it possible to pass all the subroutine parameters via a single list.

4. The execution status of the function is notified via its return value. If this value is ignored (i.e. the function
is used as a procedure) the execution of the model will be interrupted in case of error (e.g. routine not
found or invalid number or type of parameters).

Related topics
callproc

Module
mmreflect

Fair Isaac Corporation Proprietary Information 396

Chapter 13: mmreflect

callproc, callproclsa

Purpose
Call a public procedure with the given name.

Synopsis
function callproc(proc:string|any):reflecterror
function callproc(proc:string|any, p1, p2...):reflecterror
function callproclsa(proc:string|any, lsa:list):reflecterror

Arguments
proc The name or a reference to the procedure to call
pi Parameters of the procedure
lsa List of parameters of the procedure

Return value
The error status as a reflecterror

Example
The following Mosel code:

public procedure myproc(i:integer)
writeln('hello world ',i);
end-procedure

callproc('myproc',333)

produces this output:

hello world 333

Further information

1. When used with a name this routine selects the procedure to call based on the provided arguments
without performing any conversion (for instance, using an integer where a real is expected will not work).
The execution will terminate on a runtime error if no compatible procedure can be found.

2. The last version of the subroutine makes it possible to pass all the subroutine parameters via a single list.

3. The execution status of the function is notified via its return value. If this value is ignored (i.e. the function
is used as a procedure) the execution of the model will be interrupted in case of error (e.g. routine not
found or invalid number or type of parameters).

Related topics
callfunc

Module
mmreflect

Fair Isaac Corporation Proprietary Information 397

Chapter 13: mmreflect

findident

Purpose
Find an identifier in the dictionary.

Synopsis
function findident(name:string, value:any):integer
function findident(name:string, value:any, exptype:integer):integer
function findident(name:string, values:list of any):integer

Arguments
name Identifier
value Union where the value of the dictionary entry is returned
values List of all entities having this name as a list of unions
exptype Expected type

Return value
Aggregated type information of the returned dictionary entry, 0 if the identifier cannot be found or -1 if the
value cannot be saved in the value variable.

Example
The following:

public declarations
glbint:integer
val:any
procintarg=procedure(integer)
end-declarations

public procedure doit(i:integer)
writeln("Got ",i)
end-procedure

writeln("glbint=",glbint)
if testtype(findident("glbint",val),STRUCT_REF+integer.id) then
val.integer:=123
end-if
writeln("glbint=",glbint)

if findident("doit",val,procintarg.id)<>0 then
val.procintarg(33) ! Call the procedure
end-if

produces this output:

glbint=0
glbint=123
Got 33

Fair Isaac Corporation Proprietary Information 398

Chapter 13: mmreflect

Further information

1. This function returns the dictionary entry of a given identifier along with its type. The returned type
information is bit encoded and includes a type code and a structure that can be decoded using
getstruct, geteltype and gettypeid. Alternatively, testtypemight be used to filter this value.

2. When using the second form, the function succeeds only if it can find an entity of the provided type
exptype. Note that the value returned in this case is not necessarily exptype (i.e. the function has
succeeded when its return value is positive).

3. The last form of the function makes it possible to retrieve all overloaded versions of a subroutine. As for
the previous case, the function has succeeded if its return value is positive.

4. If the identifier corresponds to a global entity of a basic type (i.e. integer, real, boolean or string) the
resulting union value will contain a reference to the actual variable and any change to its value will be
applied to the global entity.

Related topics
testtype, getstruct, geteltype

Module
mmreflect

Fair Isaac Corporation Proprietary Information 399

Chapter 13: mmreflect

getallidents

Purpose
Get all identitifiers of a model.

Synopsis
procedure getallidents(li:list of string)

Argument
li List receiving the identifiers

Further information
When the model is compiled with debugging information both private and public identifiers are returned
(otherwise only the public symbols are reported).

Related topics
getallparams, getannidents.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 400

Chapter 13: mmreflect

getallparams

Purpose
Get all runtime parameters.

Synopsis
procedure getallparams(li:list of string)

Argument
li List receiving the identifiers

Related topics
getallidents, getannidents.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 401

Chapter 13: mmreflect

getannidents

Purpose
Get all identitifiers of a model for which annotations are available.

Synopsis
procedure getannidents(si:set of string)
procedure getannidents(li:list of string)

Arguments
si Set receiving the identifiers
li List receiving the identifiers

Related topics
getannotations, applied to submodels: getannidents.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 402

Chapter 13: mmreflect

getannotations

Purpose
Get model annotations associated to a given symbol.

Synopsis
procedure getannotations(id:string, prefix:string, si:set of string,

ann:array(string) of string)
procedure getannotations(id:string, prefix:string, lsa:list of string)

Arguments
id Symbol for which annotations are requested (an empty string will report global annotations)
prefix Prefix filter: only annotations with a name starting with the specified prefix will be returned
si Set receiving the annotation names
ann Array receiving the annotation values (indexed by anootation names)
lsa List receiving the annotation names and values

Example
The following code snippet implements a function to retrieve a specific annotation for the specified
model entity (if several matching annotations are found the value of the first is returned):

public function getannot(symb:string, aname:string):string
declarations

l:list of string
end-declarations
getannotations(symb,aname,l)
if l.size>=2 and l(1)=aname then

returned:=l(2)
end-if

end-function

writeln("Value of first annotation 'my.annot' for entity 'x': ",
getannot("x","my.annot"))

writeln("Value of first global annotation 'my.annot': ",
getannot("","my.annot"))

Further information
With the version taking a list, each annotation is represented by 2 entries: the first one is the annotation
name and the second one its value. Note that the version returning information via an array will only
report partial information in the case of annotations defined several times.

Related topics
getannidents, applied to submodels: getannotations.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 403

Chapter 13: mmreflect

getarrval

Purpose
Get the value of a cell of an array.

Synopsis
function getarrval(arr:array, val:any, ...):reflecterror
function getarrval(arr:array, val:any, lsndx:list):reflecterror

Arguments
arr An array or a union containg an array
val A union reference where the value will be returned
lsndx List of indices to use

Return value
The error status as a reflecterror

Further information

1. The procedure will use the arguments after val as the list of indices to use (that can be an iterator) or
take the provided list lsndx if it is the only argument.

2. Thanks to this procedure it is possible to retrieve the value of an array cell without knowing its type.
However, it is more efficient to dereference the array directly when the type is known (e.g.
un.array(1).integer).

3. The execution status of the function is notified via its return value. If this value is ignored (i.e. the function
is used as a procedure) the execution of the model will be interrupted in case of error (e.g. invalid number
or type of indices).

Related topics
setarrval.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 404

Chapter 13: mmreflect

getcode

Purpose
Get the code associated to a reflect error.

Synopsis
function getcode(rst:reflecterror):integer

Argument
rst A reflect error

Return value
The code associated to the error entity or 0 if no error was recorded

Related topics
getmsg.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 405

Chapter 13: mmreflect

geteltype

Purpose
Get the type ID of an element of a collection.

Synopsis
function geteltype(a: array): integer
function geteltype(s: set): integer
function geteltype(l: list): integer

Arguments
a An array
s A set
l A list

Return value
A type ID.

Example

public declarations
myar: dynamic array(range,set of integer) of real

end-declarations

writeln(myar.eltype=real.id) ! = true

Related topics
geteltype.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 406

Chapter 13: mmreflect

getindices

Purpose
Retrieve the index tuple held in an iterator.

Synopsis
function getindices(it:iterator):list of any

Argument
it An iterator

Return value
The list of indices stored in the iterator or an empty list if the iterator is not in the state ITER_READY

Example
See example in section 13.1.1.

Further information
Trying to use this function on an unbound iterator will cause a runtime error.

Related topics
setindices.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 407

Chapter 13: mmreflect

getmsg

Purpose
Get the message associated to a reflect error.

Synopsis
function getmsg(rst:reflecterror):string

Argument
rst A reflect error

Return value
The message associated to the error entity

Related topics
getcode.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 408

Chapter 13: mmreflect

getnbargs

Purpose
Retrieve the number of arguments required by a subroutine.

Synopsis
function getnbargs(sbr:procedure|function):integer

Argument
sbr A reference to a subroutine or a union containing a subroutine

Return value
The number of arguments required by the subroutine

Example
See example for getsignature.

Related topics
getsignature, getrettype.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 409

Chapter 13: mmreflect

getrettype

Purpose
Retrieve the return type of a subroutine.

Synopsis
function getrettype(sbr:procedure|function):integer

Argument
sbr A reference to a subroutine or a union containing a subroutine

Return value
The return type of the subroutine (this is 0 for a procedure)

Example
See example for getsignature.

Related topics
getsignature, getnbargs.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 410

Chapter 13: mmreflect

getsignature

Purpose
Retrieve the signature of a subroutine.

Synopsis
function getsignature(sbr:procedure|function):string

Argument
sbr A reference to a subroutine or a union containing a subroutine

Return value
The signature of the subroutine

Example

public declarations
f2: function(real, set of string):boolean

end-declarations

writeln("f takes ", getnbargs(->f2)," arguments, ", ! = 2
"f returns a boolean: ", getrettype(->f2)=boolean.id, ! = true
", signature of f: ", getsignature(->f2)) ! = rEs

Further information
The signature of a subroutine is a text string characterising the types of the parameters it requires (but it
does not provide information on the return type of a function). This string is empty for a subroutine not
requiring any argument.

Related topics
getnbargs, getrettype.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 411

Chapter 13: mmreflect

getstatus

Purpose
Get the status of an iterator.

Synopsis
function getstatus(it:iterator):integer

Argument
it An iterator

Return value
Status of the iterator:
ITER_FREE Not bound to any array (initial state)
ITER_BOUND Bound to an array but enumeration has not yet started
ITER_READY The iterator contains a valid reference
ITER_DONE Enumeration has finished

Example

declarations
it: iterator
A: hashmap array(range,string) of real

end-declarations
A(2,'a'):= 0.5; A(3,'b'):= 1.25
writeln(it.status=ITER_FREE) ! true
inititer(it,A)
writeln(it.status=ITER_BOUND) ! true
while (nextcell(it)) do

writeln(it.status=ITER_READY) ! true
writeln('A(', it.indices, ')=', A(it)) ! A([2,'a'])=0.5 A([3,'b'])=1.25

end-do
writeln(it.status=ITER_DONE) ! true
reset(it)
writeln(it.status=ITER_FREE) ! true

Further information
An iterator can be used to dereference an array only when it is in the ITER_READY state.

Related topics
inititer, nextcell.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 412

Chapter 13: mmreflect

inititer

Purpose
Initialise an iterator.

Synopsis
procedure inititer(it:iterator, a:array)
procedure inititer(it:iterator, a:array, sparsenum:boolean)

Arguments
it An iterator
a An array reference
sparsenum Sparse enumeration (default: true)

Example
See example for getstatus and section 13.1.1.

Further information

1. This function (re)initialises an iterator by binding it to the specified array and setting its state to
ITER_BOUND. The iterator is first reset if it was already in use.

2. The sparsenum argument decides whether the enumeration should select only the existing entries of
the array if it is of a sparse format (this option has no effect on a dense array).

Related topics
getstatus, nextcell.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 413

Chapter 13: mmreflect

nextcell

Purpose
Advance an iterator to the next cell of its array.

Synopsis
function nextcell(it:iterator):boolean

Argument
it An iterator

Return value
true if the iterator is positioned on a cell, false if the enumeration has finished

Example
See example for getstatus and section 13.1.1.

Further information

1. Once an iterator has been bound to an array with inititer this function can be called iteratively until it
returns false in order to enumerate all cells of the associated array. The state of the iterator is set to
ITER_READY whenever true is returned (i.e. the iterator can be used to dereference an array).

2. After this function has returned false the iterator is in the state ITER_DONE. Calling it again will have no
effect and the return value will remain false.

3. Trying to use this function on an unbound iterator will cause a runtime error.

Related topics
getstatus, inititer.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 414

Chapter 13: mmreflect

setarrval

Purpose
Set the value of a cell of an array.

Synopsis
function setarrval(arr:array, val:any, ...):reflecterror
function setarrval(arr:array, val:any, lsndx:list):reflecterror

Arguments
arr An array or a union containing an array
val Value to be assigned
lsndx List of indices to use

Return value
The error status as a reflecterror

Further information

1. The procedure will use the arguments after val as the list of indices for accessing a cell of the array (this
can also be an iterator) or it takes the provided list lsndx if this is the only argument.

2. If the provided value val is a string and the array is of a native type, this procedure will try to initialise the
array cell from this textual representation. Otherwise the specified value must be of the same type as the
array.

3. The execution status of the function is notified via its return value. If this value is ignored (i.e. the function
is used as a procedure) the execution of the model will be interrupted in case of error (e.g. invalid number
or type of indices).

Related topics
getarrval.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 415

Chapter 13: mmreflect

setindices

Purpose
Set the index tuple of an iterator.

Synopsis
procedure setindices(it:iterator, lsndx:list)
procedure setindices(it:iterator, ...)

Arguments
it An iterator
lsndx List of indices to use

Further information

1. The procedure will use the arguments after it as the list of indices forming the index tuple or it takes the
provided list lsndx if this is the only argument. After this call the iterator is in state ITER_READY even if
the designated cell does not exist in the array.

2. This procedure will cause a runtime error if the program is trying to set indices that are not compatible
with the corresponding indexing sets of the reference array (e.g. incompatible type or non-existent
element of a finalised set).

3. Trying to use this procedure on an unbound iterator will cause a runtime error.

Related topics
getindices.

Module
mmreflect

Fair Isaac Corporation Proprietary Information 416

Chapter 13: mmreflect

testtype

Purpose
Test the return value of findident.

Synopsis
function testtype(rts:integer, props:integer):boolean

Arguments
rts Return value of findident
props Properties to test (can be combined by addition):

STRUCT_⁎ A structure (e.g. STRUCT_ARRAY)
⁎.id A type ID (e.g. integer.id)
EPROP_PRIV Entity is private
EPROP_PUBLIC Entity is public
EPROP_CONST Entity is constant
EPROP_VAR Entity is not constant
EPROP_RANGE Entity is a range set
EPROP_GENSET Entity is a general set (i.e. not a range)
EPROP_DENSE Entity is a dense array
EPROP_SPARSE Entity is a sparse array
EPROP_DYNAMIC Entity is a sparse dynamic array
EPROP_HASHMAP Entity is a sparse hashmap array

Return value
true if the provided encoded type has all the requested properties

Example

public declarations
Ar: dynamic array(1..10) of real
S=1..5
u1,u2:any

end-declarations
r1:=findident("Ar",u1)
r2:=findident("S",u2)
writeln(testtype(r1,STRUCT_ARRAY+EPROP_SPARSE)) ! true
writeln(testtype(r1,EPROP_DENSE)) ! false
writeln(testtype(r2,EPROP_RANGE+EPROP_CONST)) ! true
writeln(testtype(r2,STRUCT_SET+integer.id)) ! true

Further information

1. This function checks whether an encoded type returned by findident corresponds to a set of
properties.

2. The props argument cannot include more than one structure and one type ID each (all conditions must
be satisfied at the same time). The function will always return false if it is given an invalid combination
(for instance EPROP_CONST+EPROP_VAR or STRUCT_SET+EPROP_DENSE cannot succeed).

Module
mmreflect

Fair Isaac Corporation Proprietary Information 417

CHAPTER 14

mmrobust

The mmrobust module extends the Mosel language with new types for representing robust constraints
and describe the associated uncertainty sets. To use this module the following line must be included in
the header of the Mosel model file:

uses 'mmrobust'

This is the reference manual of mmrobust. It is highly recommended to study the Xpress white paper on
robust optimization found under docs/robust in the Xpress installation.

The first section presents the new functionality for the Mosel language provided by mmrobust, namely
the new types uncertain, robustctr and uncertainctr and a set of subroutines that may be
applied to objects of these types.

The following sections give detailed documentation of the subroutines (other than mathematical
operators) defined by this module.

14.1 New functionality for the Mosel language
14.1.1 The problem type mpproblem.xprs.robust

This module exposes its functionality through an extension to the mpproblem.xprs problem type. As a
consequence, all routines presented here are executed in the context of the current problem.

14.1.2 The type uncertain
An uncertain is a quantity whose value is not known, but carries a level of uncertainty. The type
uncertain is used in the robust constraints of type robctr to express constraints that are subject to
uncertainty, and in uncertainctr constraints that describe the set of values that the uncertain can
take. The values of the uncertain quantity will take the possible worst case against the optimality and
feasibility of the problem. An uncertain can be intuitively thought of as a variable that is not under our
control, but which has a value defined by an opponent to be the worst with respect to the model.

It is important to note that an uncertain does not have a default lower bound of zero imposed by
Mosel, in contrast to mpvars. This difference in default behavior is to reflect the most typical use cases.

An uncertain can be assigned a nominal value using the assignement operator :=. The working of the
nominal value is discussed in the Xpress robust optimization white paper found under docs/robust in the
Xpress installation.

The actual value of uncertains and robust constraints can be obtained after the solution of the robust
problem through getsol and getact. The usage of getsol is extended as explained below.

Fair Isaac Corporation Proprietary Information 418

Chapter 14: mmrobust

If an uncertain u is used in a single robust constraint or only in the objective function, then getsol(u)
returns one of the possible realizations of the uncertainty set that induced the optimal solution found by
Mosel.

If the same uncertain is used in two robust constraints named RCon1 and RCon2 respectively, the
optimal solution of the problem may imply that the uncertain has different values for RCon1 and RCon2.
Then its value can be obtained for the two constraints via the command getsol(u,RCon1) and
getsol(u,RCon2).

Finally, the left-hand side of a robust constraint (e.g. RCon1) can simply be obtained via the command
getact(RCon1), whereas getsol(RCon1) returns the evaluation of left-hand side - right-hand side.

14.1.3 The type robustctr and its operators
The module mmrobust defines the type robustctr to represent robust constraints in the Mosel
Language. It also defines the standard arithmetic operations that are required for working with objects of
this type. By and large, these are the same operations as for linear expressions (type linctr of the
Mosel language) with additionally the possibility to include uncertain terms (i.e. of type uncertain).

14.1.4 The type uncertainctr and its operators
An uncertainty constraint uncertainctr describes the possible values of the uncertain data, or in
other words defines the feasible set of the uncertains. Intuitively, if we visualize the role of an
uncertain as a value under the control of an opponent, then the set of uncertainctrs defines the
limitations under which the opponent is operating when choosing the worst possible values in respect of
the optimality and feasibility of the model.

14.1.5 Example: using mmrobust for solving a robust problem
Consider the following example

model BaseModel
uses "mmrobust";

declarations
x, y, z : mpvar
end-declarations

x + 2⁎y + 3⁎z <= 10

maximize(x+y+z)

writeln("x = ", getsol(x), " y = ", getsol(y), " z = ", getsol(z))

end-model

This problem will solve to "x = 10 y = 0 z = 0".

Let us now assume that we only know that the sum of the first two coefficients is 3, and we need a
solution that is valid for all realizations within this assumption.

model RobustModel
uses "mmrobust";

declarations
x, y, z : mpvar
u, v : uncertain
end-declarations

Fair Isaac Corporation Proprietary Information 419

Chapter 14: mmrobust

u⁎x + v⁎y + 3⁎z <= 10

u+v <= 4

setparam("xprs_verbose", true)
maximize(x+y+z)

writeln("x = ", getsol(x), " y = ", getsol(y), " z = ", getsol(z), "; u = ", getsol(u), " v = ", getsol (v))

end-model

This problem will solve to "x = 2.5 y = 2.5 z = 0; u = 2 v = 2".

It is easy to check that any realization of the uncertains u and v will keep the solution vector feasible, and
that it is optimal within this assumption.

14.2 Control parameters
The following parameters are defined by mmrobust:

robust_check_feas_original_problem Check if original, non-robust problem is feasible. p. 421

robust_check_feas_uncertainty_set Check if uncertainty sets are non-empty. p. 420

robust_uncertain_overlap Use of uncertain data in multiple robust constraints. p. 420

robust_uncertain_overlap

Description This parameter allows for models where more than one robust constraint can use an
uncertain. Because each robust constraint is dealt with independently in the robust problem,
the optimal solution implicitly may associate different values of the uncertain quantities with
each robust constraint.

Type Boolean, read/write

Default value false

Module mmrobust

robust_check_feas_uncertainty_set

Description This parameter allows for checking whether the uncertainty sets contain at least one feasible
vector of uncertains. In other words, with this parameter set to true Mosel will check if the
opponent actually has a choice of uncertains. If at least one uncertainty set is empty, a warning
will be issued. Uncertainty sets should not be empty as otherwise a robust problem cannot be
created.

Type Boolean, read/write

Default value false

Module mmrobust

Fair Isaac Corporation Proprietary Information 420

Chapter 14: mmrobust

robust_check_feas_original_problem

Description This parameter allows for checking whether the problem where all uncertains are set to their
default value is feasible or not. This is off by default but can be useful to check correctness of
one’s model without uncertainty before solving the robust problem.

Type Boolean, read/write

Default value false

Module mmrobust

14.3 Procedures and functions
The module mmrobust overloads certain mathematical operators making possible the expression of
linear and quadratic expressions involving the type uncertain in order to create both robustctr and
uncertainctr objects. Since these mathematical operators are fairly self-explanatory, we shall forego
any more detailed documentation of these functions.

The following list gives an overview of all other functions and procedures defined by mmrobust for which
we give detailed descriptions later.

cardinality Create a cardinality uncertain constraint. p. 422

getact Get the activity value of a robust constraint. p. 424

getnominal Get the nominal value of an uncertain. p. 428

getsol Get the realisation of an uncertain or robust constraint. p. 423

gettype Get the type of a constraint. p. 429

ishidden Test whether a constraint is hidden. p. 425

scenario Create a scenario uncertain constraint. p. 426

sethidden Hide or unhide a constraint. p. 427

setnominal Set the nominal value of an uncertain. p. 430

settype Set the type of a constraint. p. 431

Fair Isaac Corporation Proprietary Information 421

Chapter 14: mmrobust

cardinality

Purpose
Create a cardinality uncertain constraint.

Synopsis
function cardinality(su:set of uncertain,m:integer):uncertainctr

Arguments
su Uncertains to be added to the constraint
m Maximum number of uncertains that can be different from their nominal value

Return value
The new cardinality uncertain constraint.

Further information
A cardinality unertain constraint limits the number of unceratins that can take a non-zero value, or be
different from their nominal value.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 422

Chapter 14: mmrobust

getsol

Purpose
Get the realisation of an uncertain or robust constraint.

Synopsis
function getsol(u:uncertain, rc:robustctr):real
function getsol(u:uncertain):real
function getsol(rc:robustctr):real

Arguments
rc A robust constraint
u An uncertain

Return value
Solution value or 0.

Further information
This function returns the realization of uncertain u for the robust optimization problem solved. The value
of u is only available after solving the robust optimization problem. The value of u is 0 if the problem has
not been solved or the uncertain or constraint is not contained in the problem that has been solved.
If the uncertain u appears in more than one constraint, it is necessary to specify the constraint with
function call getsol(u,rc): this is a consequence of robust optimization, for which the same
uncertain can assume different values in different constraints. If the uncertain u only appears in one
constraint, then it suffices to call getsol(u).
The function getsol(rc) returns the evaluation of a constraint with the current realization of the
solution and the uncertains. Therefore, if a constraint is of the form u⁎x + v⁎y + z ≤ 3 and
x,y,zare variables while u,v are uncertains, the current realization of x,y,z,u,v will be used to return
u⁎x + v⁎y + z - 3.
Note that robust equality constraints (for instance, u⁎x + v⁎y + z = 3) have a special status in
Mosel. The value of uncertains u and v is, in general, related to an inequality constraint and can be safely
obtained in this case only. In order to use getsol for equality robust constraints as well, it would be best
to decompose these constraints into two inequality constraints (i.e. u⁎x + v⁎y + z ≤ 3 and u⁎x +
v⁎y + z ≥ 3) and then request u and v from each of the two constraints. Note that both uncertains
might differ in value when requested from either inequality constraint.

Related topics
getact.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 423

Chapter 14: mmrobust

getact

Purpose
Get the activity value of a robust constraint.

Synopsis
function getact(rc:robustctr):real

Argument
rc A robust constraint

Return value
Solution value or 0.

Further information
This function returns returns the value of the left-hand side of a constraint with the current realization of
the solution and the uncertains. Therefore, if a constraint is of the form u⁎x + v⁎y + z ≤ 3 and
x,y,zare variables while u,v are uncertains, the current realization of x,y,z,u,v will be used to return
u⁎x + v⁎y + z.
Note that robust equality constraints (for instance, u⁎x + v⁎y + z = 3) have a special status in
Mosel. The value of uncertains u and v is, in general, related to an inequality constraint and can be safely
obtained in this case only. In order to use getact for equality robust constraints as well, it would be best
to decompose these constraints into two inequality constraints (i.e. u⁎x + v⁎y + z ≤ 3 and u⁎x +
v⁎y + z ≥ 3) and then request u and v from each of the two constraints. Note that both uncertains
might differ in value when requested from either inequality constraint.

Related topics
getsol.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 424

Chapter 14: mmrobust

ishidden

Purpose
Test whether a constraint is hidden.

Synopsis
function ishidden(rc:robustctr):boolean
function ishidden(uc:uncertainctr):boolean

Arguments
rc A robust constraint
uc An uncertain constraint

Return value
true if the constraint is hidden, false otherwise.

Further information
This function tests the current status of a constraint. At its creation a constraint is added to the current
problem, but using the function sethidden it may be hidden. This means, the constraint will not be
contained in the problem that is solved by the solver but it is not deleted from the definition of the
problem in Mosel.

Related topics
sethidden.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 425

Chapter 14: mmrobust

scenario

Purpose
Create a scenario uncertain constraint.

Synopsis
function scenario(data:array (range,set of uncertain) of real):uncertainctr

Argument
data Scenario data

Return value
The new scenario uncertain constraint.

Further information
A scenario uncertain constraint takes historical data of the possible realizations of the uncertain data.
In effect, the introduced uncertain constraint enforced that for any solution to the robust optimization
problem, any robust constraint robustctr is satisfied for all realizations of the uncertains as defined
by the data array.
This function stores a reference to the provided array (i.e. it does not make a copy of it). As a
consequence any modification to the array will imply modifications to the constraint even after the
constraint has been built. Invalid data is only reported at the time of loading the problem into the
optimiser.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 426

Chapter 14: mmrobust

sethidden

Purpose
Hide or unhide a constraint.

Synopsis
procedure sethidden(rc:robustctr, b:boolean)
procedure sethidden(uc:uncertainctr, b:boolean)

Arguments
rc A robust constraint
uc An uncertain constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Further information
At its creation a constraint is added to the current problem, but using this procedure it may be hidden.
This means that the constraint will not be contained in the problem that is solved by the solver but it is
not deleted from the definition of the problem in Mosel. Function ishidden can be used to test the
current status of a constraint.

Related topics
ishidden.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 427

Chapter 14: mmrobust

getnominal

Purpose
Get the nominal value of an uncertain.

Synopsis
function getnominal(u:uncertain):real

Argument
u An uncertain

Return value
The nominal value of the uncertain

Related topics
setnominal.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 428

Chapter 14: mmrobust

gettype

Purpose
Get the type of a constraint.

Synopsis
function gettype(rc:robustctr):integer
function gettype(uc:uncertainctr):integer

Arguments
rc A robust constraint
uc An uncertain constraint

Return value
Constraint type. Applicable values for nonlinear constraints are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_CARD Cardinality
CT_SCEN Scenario
CT_UNB Non-binding constraint, i.e. free

Related topics
settype.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 429

Chapter 14: mmrobust

setnominal

Purpose
Set the nominal value of an uncertain.

Synopsis
procedure setnominal(u:uncertain,n:real)

Arguments
u An uncertain
n A real constant

Further information
Calling this procedure has the same effect as assigning a value to the uncertain using the operator :=.

Related topics
getnominal.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 430

Chapter 14: mmrobust

settype

Purpose
Set the type of a constraint.

Synopsis
procedure settype(rc:robustctr, type:integer)
procedure settype(uc:uncertainctr, type:integer)

Arguments
rc A robust constraint
uc An uncertain constraint
type Constraint type. Applicable values are:

CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint

Further information
This procedure can be used to change the type of a constraint, turning it into an equality or inequality or
making it unbounded, i.e. free.

Related topics
gettype.

Module
mmrobust

Fair Isaac Corporation Proprietary Information 431

CHAPTER 15

mmsheet

The Mosel module mmsheet implements several I/O drivers for accessing and modifying spreadsheet
files in different formats from ‘initializations’ blocks. The I/O drivers rely on different technologies for
accessing spreadsheets.

15.1 I/O drivers
The I/O drivers provided by mmsheet are all designed to be used in ‘initializations’ blocks and expect the
same type of information regarding file names and record references. The common form of a file
specification for all the mmsheet drivers is:

mmsheet.⁎:[noindex|partndx|autondx[=#];][grow;][skiph;][emptyndx;][bufsize=#;]filename

The spreadsheet file name must be a physical file (with its extension), except for the "csv:" driver that
accepts extended file names. The driver options (stated before the file name) shared by all mmsheet
drivers are:

noindex Indicates that only data (no indices) are transferred between the spreadsheet and Mosel.
By default, the first columns of each table are interpreted as index values for the array to
be transferred. This behaviour is changed by this option.

partndx Indicates that the first nbdim-1 columns are interpreted as indices (nbdim being the
number of dimensions of the array to process) and remaining ones are used as data for
the last dimension.

autondx[=st] Indices are not read or written but automatically generated from the line number (this
option only applies to 1-dimension arrays indiced by ranges). By default the first index has
value 1 but a different value stmay be stated.

grow When writing data, the driver uses the provided range ignoring the end of the data if there
is not enough space. When this option is specified, the driver extends the range by adding
lines if necessary.

skiph With this option, the driver skips the first line (or header) of the provided range. If the
range contains only one line, the following line is selected.

emptyndx When reading array indices an empty cell causes a failure. With this option empty cells are
replaced by the default value of the corresponding type (e.g. 0 for a numerical value)

bufsize=c To set the size of the data buffer in kilobytes (default c=2).

The driver-specific options are documented separately for each driver in the following sections.

Fair Isaac Corporation Proprietary Information 432

Chapter 15: mmsheet

In the initializations block, each label entry is understood as a range in the workbook: named ranges are
represented by their name (e.g. "MyRange") and explicit ranges are noted using square brackets (e.g.
"[sheet1$a1:c2]"). For explicit ranges, the sheet is identified by its name or number and separated
from the cell selection with the $ sign. The first sheet of the workbook is selected if no indication is given.
Similarly, the used cells of the selected sheet are assumed if no selection is provided. The cell selection
can be stated either using the usual format with a letter to select the column followed by a line number
(e.g. "a1:c1") or by specifying row and column numbers by prefixing the row number by the letter "R"
and the column number by the letter "C" (e.g. "R1C1:R1C3"). It is also possible to select some of the
columns from the specified range: this can be done either with a list of names or a list of column
numbers (relative to the beginning of the range) noted in parentheses after the range description. To use
names, the option skiphmust be used and the column names are taken from the header row that is
skipped through this option. When using skiph, column numbers need to be stated by prefixing the
column number by #. Note that, before the range selection, one can add options as for the file opening.
For instance, "skiph;grow;" can be used for writing data to a named range formatted for an ODBC
connection.

In addition to the above options a label may consist in the string "rangesize;" followed by a range
specification (e.g. "rangesize;[]"), this special label can only be used to populate a list of integers
that receives the size of the range in the form of 2 integers (number of lines and number of columns).

Example:

initializations from "mmsheet.excel:skiph;auction.xls"
NWeeks as "[b1:d12]" ! Initialize `NWeeks' with data in b2:d12
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with named range `BPROFILE'

! all columns being data (no indices)
mycols as "[b1:h12](#3,#5,#7)" ! Initialize `mycols' with columns d2:d12,

! f2:f12 and h2:h12
mycol2 as "[b1:h12](nam1,#5,nam3)"

! Initialize `mycol2' with the column named
! 'nam1', the column f2:f12 and the column
! named 'nam3'

end-initializations

The mapping between the selected cells of the workbook and the Mosel data structures is similar to the
one used for databases (options noindex and partndx correspond to setting parameter
mmodbc.SQLndxcol to false): refer to the section Data transfer between Mosel and the database of
the mmodbc chapter for further explanation.

Although direct read and write operations are not supported by these drivers, a spreadsheet may be open
using fopen: this allows to keep the document open across several ’initializations’ blocks and avoid the
cost of loading and unloading the file (that may be expensive particularly with the "excel:" driver).

Cells of a spreadsheet are implicitly typed as either numbers, booleans or text strings. When getting the
value of a cell the driver may have to perform a type conversion: the conversion from a number to its
textual representation relies on the real format "realfmt" (see setparam) that may have to be
changed when using a driver of this module. For instance the number 1234567 will be converted to the
text string 1.23457e+06 with the default real format ("%g"). To preserve the integer representation of
such a cell it is required to use "%.10g" as the real format.

For further examples of working with databases and spreadsheets, the reader is referred to the Xpress
whitepaper Using ODBC and other database interfaces with Mosel.

15.1.1 Driver excel
mmsheet.excel:[noindex|partndx;][grow;][skiph;][emptyndx;][newxl;][bufsize=#;]filename

This driver uses directly the application Excel for accessing the file (relying on COM/OLE as the
communication channel): as a consequence it is available only under the Windows platform and requires

Fair Isaac Corporation Proprietary Information 433

Chapter 15: mmsheet

Excel to be installed on the host executing the Mosel model. All file formats handled by the version of
Excel can be used but this driver does not support creation of new files (i.e. it can only modify existing
files). In addition to the options described in the introductory section, the option newxlmay be used: by
default the driver does not open the file if it can find a running instance of Excel having the required file
open: it works directly with the application and modifications made to the workbook are not saved when
the file is closed in Mosel. If this option is specified a new instance of Excel is started in all cases and the
workbook is saved before quitting the application when the file is closed in Mosel.

15.1.2 Driver xls/xlsx
mmsheet.xls:[noindex|partndx|autondx[=#];][grow;][skiph[+];][emptyndx;]

[bufsize=#;]filename

mmsheet.xlsx:[noindex|partndx|autondx[=#];][grow;][skiph[+];]
[emptyndx;][bufsize=#;]filename

These two drivers rely on the libxl library to access the spreadsheet file: they are available on the
Windows, Linux and MacOS platforms and do not require any additional software. The first driver handles
xls files while the second deals with xlsx and xlsm format Excel files. These drivers can be used to create
new files: when used for writing (through an ‘initializations to’ block) non-existing sheets are
automatically added to the workbook and the file is created if necessary. When the option skiph+ is
used instead of skiph when writing to a file, the necessary header row is created if this row is empty
(this option behaves like skiph when reading a file and when no column name is provided).

15.1.3 Driver csv
mmsheet.csv:[noindex|partndx|autondx[=#];][alltxt;][grow;][skiph[+];][emptyndx;]

[bufsize=#;][fsep=c;][dsep=c;][true=s;][false=s;]filename

This driver works on spreadsheets saved in ascii CSV format (Comma Separated Values). It is available
on all platforms that are supported by Mosel and can open or create files using extended format file
names (i.e. combining several I/O drivers). A CSV file contains a single sheet (number 1 identified as
"Sheet1") and does not support named ranges, that is, cell references must use the explicit notation.
When the option skiph+ is used instead of skiph when writing to a file, the necessary header row is
created if this row is empty (this option behaves like skiph when reading a file and when no column
name is provided). The following driver-specific options may be used to specify the properties of the
format to handle:

alltxt by default the driver tries to guess the type of the cells while reading the document (cells
can be either numbers, booleans or text strings). When this option is used all cells are
recorded as text strings

dsep=c character used as decimal separator (default: ".")

fsep=c character used to separate fields. The default value is ","; tabulation or ";" are also
often employed

true=s text representing the true value of a Boolean (default: "TRUE")

false=s text representing the false value of a Boolean (default: "FALSE")

For example, the following statements will read data from a file formatted for the French language and
that has been compressed with gzip:

initializations from "mmsheet.csv:fsep=;;dsep=,;true=vrai;false=faux;zlib.gzip:mydata.csv.gz"
A as "[a1:c12]"
end-initializations

Fair Isaac Corporation Proprietary Information 434

Chapter 15: mmsheet

The csv driver supports the getfsize function applied to a file already loaded into memory: it reports
the amount of memory currently allocated for the corresponding document. For instance the following
displays the memory used by "mydata.csv":

fopen("mmsheet.csv:mydata.csv",F_INPUT)
writeln(getfsize("mmsheet.csv:mydata.csv"))
fclose(F_INPUT)

Fair Isaac Corporation Proprietary Information 435

CHAPTER 16

mmssl

The Mosel module mmssl is an interface to the OpenSSL cryptographic library (http://www.openssl.org).
It brings most of the functionality of this library to the Mosel language and serves as the cryptographic
component in other parts of Mosel. In particular, it provides support for the HTTPS protocol in mmhttp
and implements the encryption and signing mechanisms used by the Mosel core libraries when secure
BIM files are used.

16.1 Overview
16.1.1 Document encryption in Mosel

Encryption and decryption of documents are achieved by cipher algorithms. Ciphers can be of two kinds:
symmetric ciphers use the same encryption key to perform the encryption and decryption tasks while
asymmetric ciphers require one key to execute the encryption and another one for the decryption. In
mmssl, symmetric ciphers are made available through the crypt I/O driver (Section 16.4.3): the encryption
key (the size of which depends on the cipher) is automatically generated based on some given
passphrase (either input from an external file or directly in the file name specification). The
implementation of the crypt driver allows the user to select which specific cipher algorithm it should use
(for instance AES, DES or IDEA).

For asymmetric encryption, mmssl relies on the RSA cryptographic system. For the RSA algorithm, a key
(RSAgenkey) consists of two components: a public part that is usually distributed to the individuals with
whom documents are to be exchanged and a private part that must be kept secret by the owner of the key
(this private key also includes the public key). In this framework, a document encrypted using a public key
(RSApubencrypt) can only be decrypted with the corresponding private key (RSAprivdecrypt).
Moreover, the key pair can also be used for signing documents: the electronic signature of a document is
created with a private key (msgsign) and the corresponding public key is used to verify this signature
(msgverify). Since only the owner of the private key can create the signature, the recipient has a
guarantee on the origin of the document.

RSA keys are commonly stored as text files in the OpenSSL PEM standard format, this is also the most
convenient representation for exchanging key information (RSAsavekey). In addition to this file format,
mmssl can store a key in the form of a Mosel array of integers (RSAloadkey). By using this encoding a
model may embbed keys or retrieve them from any of the usual model data sources.

16.1.2 The mmssl command
The module mmssl is distributed together with a command line tool of the same name as the module:
mmssl. This program helps setting up an initial working environment and performs basic key and
certificate operations directly from a shell (Unix) or command window (Windows). Running the mmssl
program without any arguments will display a short help message, otherwise the following commands
can be used:

Fair Isaac Corporation Proprietary Information 436

http://www.openssl.org

Chapter 16: mmssl

setup
Check the configuration directory of mmssl and create it if necessary (see parameter ssl_dir)

genkey keyfile [size]
Generate a new RSA key pair of the specified size (default: 1024) and save it into keyfile.

getpub keyfile keyfilepub
Extract the public key of the private RSA key file keyfile and save it into keyfilepub

chkkey keyfile [keyfile...]
Check the validity of the provided key file(s)

gencert certfile [prod=value...]
Generate an X509 certificate using the provided properties (see x509newcrt for further detail)

chkcert certfile [keyfile]
Check the validity of the provided X509 certificate. If an additional private key file is provided, its
compatibility with the certificate is also checked.

list [digest|cipher]
Display the list of supported message digests (digest) or cipher algorithms (cipher). Both
lists are reported with the short form of the command.

Many procedures of the mmssl module require the availability of a configuration directory. To create and
populate an initial setup it is recommended to run the following command before starting to use the
module:

> mmssl setup

Note that the setup procedure is not destructive: if the configuration directory has already been created
the command will only check its validity, add any missing components and suggest how to proceed in
case of incorrect settings.

16.2 Control parameters
Via the getparam function and the setparam procedure it is possible to access the following control
parameters of module mmssl (the reader is reminded that parameters may be spelled with lower or upper
case letters or a mix of both):

https_cacerts List of trusted certification authorities. p. 438

https_ciphers Ciphers accepted for SSL communication. p. 438

https_cltcrt HTTPS client certificate. p. 438

https_cltkey HTTPS client private key. p. 439

https_srvcrt HTTPS server certificate. p. 439

https_srvkey HTTPS server private key. p. 439

https_trustsrv Whether to trust server certificates. p. 440

ssl_cipher Default symmetric cipher. p. 440

ssl_digest Default message digest algorithm. p. 440

ssl_dir mmssl configuration directory. p. 441

ssl_privkey Default user private key. p. 441

Fair Isaac Corporation Proprietary Information 437

Chapter 16: mmssl

https_cacerts

Description Location of the file containing the certificates of the trusted certification authorities.

Type String, read/write

Note The file identified by this parameter consists of a list of certificates (in PEM format) of trusted
certification authorities (in order to be able to check the validity of servers they have certified)
and certificates of servers trusted by the application (typically using self-signed certificates
that could not be certified by an external authority, see x509newcrt). This file is used when
HTTPS client connections are established to check the identity of the server unless the control
parameter https_trustsrv is set to true. It is also required by servers that perform client
authentication (see option HTTP_CLTAUTH of server configuration http_srvconfig): in this
case the certificates are used to identify the clients.
When this parameter has not been initialised, the default location
getparam("ssl_dir")+"/ca-bundle.crt" is used. This default file collecting the
certificates of the major certification authorities is installed by the mmssl setup command
(Section 16.1.2).

Affects routines httpget, httppost, httpdel, httpput, httpstartsrv

See also https_trustsrv

Module mmssl

https_ciphers

Description This parameter is used during the algorithm negociation of an HTTPS session initialisation to
select which cryptographic algorithm to use.

Type String, read/write

Default value "TLSv1.2+HIGH:TLSv1+HIGH:@STRENGTH"

Note This parameter is employed by both the server and the client in an HTTPS session. Please refer
to the OpenSSL documentation for a detailed explanation on how to build this selection string.

Affects routines httpstartsrv, httpget, httppost, httpdel, httpput

Module mmssl

https_cltcrt

Description Location of the client certificate (for HTTPS queries).

Type String, read/write

Note This parameter specifies the location of the client certificate (that must be in PEM format).
Such a certificate (and its associated private key https_cltkey) is required when sending
HTTPS requests to a server that requires client authentication (see option HTTP_CLTAUTH of
server configuration http_srvconfig).

Affects routines httpget, httppost, httpdel, httpput

See also https_cltkey

Module mmssl

Fair Isaac Corporation Proprietary Information 438

Chapter 16: mmssl

https_cltkey

Description Location of the client private key (for HTTPS queries).

Type String, read/write

Note This parameter specifies the location of the client private key. Such a key (and its associated
certificate https_cltcrt) is required when sending HTTPS requests to a server that requires
client authentication (see option HTTP_CLTAUTH of server configuration http_srvconfig).

Affects routines httpget, httppost, httpdel, httpput

See also https_cltcrt

Module mmssl

https_srvcrt

Description Location of the server certificate (required by an HTTPS server).

Type String, read/write

Note Running an HTTPS server requires a server certificate and its associated private key. This
parameter defines the location of the certificate file (in PEM format); to create a certificate you
can either use the mmssl command (Section 16.1.2) or the Mosel function x509newcrt. If no
value has been assigned to this parameter the default certificate file
getparam("ssl_dir")+"/server.crt" will be used by the server.

Affects routines httpstartsrv

See also https_srvkey

Module mmssl

https_srvkey

Description Location of the server private key (required by an HTTPS server).

Type String, read/write

Note Running an HTTPS server requires a server certificate and its associated private key. This
parameter defines the location of the private key file; to create a certificate use either the
mmssl command (Section 16.1.2) or the function x509newcrt). If no value has been assigned
to this parameter the default key file getparam("ssl_dir")+"/server.key" will be used
by the server.

Affects routines httpstartsrv

See also https_srvcrt

Module mmssl

Fair Isaac Corporation Proprietary Information 439

Chapter 16: mmssl

https_trustsrv

Description This parameter decides whether the HTTPS client should trust servers without checking their
certificates.

Type Boolean, read/write

Default value false

Note When this parameter is false (the default) whenever an HTTPS connection is opened (via
httpget for instance) the authenticity of the remote server is checked using the list of trusted
certification authorities (as defined by the control parameter https_cacerts) and the
operation is aborted if the verification fails. Changing the value of this parameter disables this
test.

Affects routines httpget, httppost, httpdel, httpput

See also https_cacerts

Module mmssl

ssl_cipher

Description Name of symmetric cipher to use when no algorithm is specified.

Type String, read/write

Default value "AES-128-CBC"

Note This parameter defines the default symmetric cipher used by the crypt I/O driver. The name of a
cipher consists in up to 3 components separated by the "-" symbol: the algorithm name (e.g.
aes, bf, des), the key size (when the algorithm may be used with different sizes of keys) and the
block chaining mode (e.g. cbc, cfb1, cfb8, ecb, ofb). For instance, "des-ofb" designates DES
with Output Feedback chaining.
Use the command mmssl list cipher to get a full list of the supported cipher names.

Affects routines I/O driver "crypt:" (Section 16.4.3)

Module mmssl

ssl_digest

Description Name of message digest to use when no algorithm is specified.

Type String, read/write

Default value "SHA256"

Note This parameter defines the default message digest algorithm used by the crypt I/O driver,
msgdigest, msgsign and msgverify.
Use the command mmssl list digest to get a full list of the supported names.

Affects routines msgdigest, msgsign, msgverify, I/O driver "crypt:" (Section 16.4.3)

Module mmssl

Fair Isaac Corporation Proprietary Information 440

Chapter 16: mmssl

ssl_dir

Description This parameter is the path to the configuration directory of mmssl. Its content is used by both
the mmssl routines and the Mosel core libraries for handling signed and encrypted bim files.

Type String, read only

Note By default this location is the path "$HOME/.mmssl" (on Unix systems) or
"%USERPROFILE%\.mmssl" (on Windows). Assuming the active restrictions do not prevent
the operation, this directory will be created if it does not exist at the time of loading the module.
It is also possible to select a different location by defining the environment variable MOSEL_SSL
(in this case, the directory is not automatically created and must be available at loading time).

The configuration directory should contain the following entries:

personal.key RSA private key of the user: it is used for signing documents to be
published and for decrypting documents that have been encrypted with
the corresponding public key.

personal RSA public key of the user: to be provided with documents signed with
personal.key such that recipients can check the signature. The public
key is also used to encrypt documents to be decrypted with
personal.key.

pubkeys public keys repository: this directory is the default location where public
keys are searched for checking the signature of a document.

ca-bundle.crt trusted certificates file: mmhttp uses this file when checking authenticity
of servers (HTTPS client) or clients (HTTPS server).

server.crt HTTPS server certificate: this file is required by the HTTPS server of
mmhttp together with the corresponding private key.

server.key HTTPS server private key: this file is required by the HTTPS server of
mmhttp together with the corresponding certificate.

The program mmssl can be used to create and populate this directory (Section 16.1.2).

Even if Mosel is run under restrictions, mmssl can still access its configuration directory for
getting public keys stored under the pubkeys directory, read the file of trusted certificates
ca-bundle.crt and load the private key personal.key to decrypt a document. However,
the module requires explicit read access to use the private key personal.key for signing
tasks and load the HTTPS server configuration (files server.key and server.crt).

Module mmssl

ssl_privkey

Description Name of the file holding the user’s private key.

Type String, read/write

Note The key identified by this parameter is used when a required private key is not provided.
If no value has been assigned to this parameter the default key file
getparam("ssl_dir")+"/personal.key" will be used.

Affects routines msgsign, x509newcrt, RSAprivdecrypt, BIM file signing and encryption

Module mmssl

Fair Isaac Corporation Proprietary Information 441

Chapter 16: mmssl

16.3 Procedures and functions
msgdigest Compute the message digest of a document. p. 453

msgsign Compute the digital signature of a document. p. 454

msgverify Verify the digital signature of a document. p. 455

RSAfingerprint Generate the fingerprint of an RSA key. p. 443

RSAgenkey Create a new RSA key pair. p. 444

RSAgetkeysize Get the size of an RSA key. p. 445

RSAisprivate Check whether an RSA key is private. p. 446

RSAloadkey Load an RSA key file into memory. p. 447

RSAprivdecrypt Decrypt a document using an RSA private key. p. 449

RSAprivencrypt Encrypt a document using an RSA private key. p. 450

RSApubdecrypt Decrypt a document using an RSA public key. p. 448

RSApubencrypt Encrypt a document using an RSA public key. p. 451

RSAsavekey Save an RSA key to a file. p. 452

sslivsize Get the size of the initialisation vector of a cipher. p. 456

sslkeysize Get the size of the key required by a symmetric cipher. p. 457

sslmdsize Get the size of a message digest. p. 458

sslrandom Generate a random number. p. 459

sslrandomdata Generate a random data file. p. 460

x509check Check the compatibility of a private key with an X509 certificate. p. 461

x509getinfo Retrieve information stored in an X509 certificate. p. 462

x509newcrt Create a new self-signed X509 certificate. p. 463

Fair Isaac Corporation Proprietary Information 442

Chapter 16: mmssl

RSAfingerprint

Purpose
Generate the fingerprint of an RSA key.

Synopsis
function RSAfingerprint(key:array(range) of integer):text
function RSAfingerprint(key:array(range) of integer, mdalg:string):text
function RSAfingerprint(kfile:string):text

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
mdalg Name of the digest algorithm to use (default: MD5)

Return value
Fingerprint as a text string of hexadecimal digits.

Further information

1. By default mmssl uses an MD5 hash of the public part of the RSA key as its fingerprint. Unless another
digest algorithm is selected, the return value of this function is therefore a text string of 32 hexadecimal
digits that characterises a given key.

2. The function can process both public and private keys either directly from a key file or from an array of
integers (as produced by RSAloadkey or RSAgenkey).

Related topics
RSAloadkey

Module
mmssl

Fair Isaac Corporation Proprietary Information 443

Chapter 16: mmssl

RSAgenkey

Purpose
Create a new RSA key pair.

Synopsis
function RSAgenkey(size:integer, key:array(range) of integer):integer
function RSAgenkey(size:integer, kfile:string):integer

Arguments
size Size of the key to generate (in bits, must be at least 1024)
key Array to store the new key
kfile File where to save the key

Return value
Number of integers (first syntax) or size of the file (second syntax) or -1 in case of I/O error and -2 if the
provided array is not suitable to store the key.

Further information

1. The generated key can be retrieved either as an array of integers or directly saved into a file. In both
cases, the public key may be extracted using RSAsavekey.

2. The function creates keys of at least 1024 bits: a request for a key of a smaller size will result in a 1024
bits key.

Related topics
RSAloadkey, RSAsavekey

Module
mmssl

Fair Isaac Corporation Proprietary Information 444

Chapter 16: mmssl

RSAgetkeysize

Purpose
Get the size of an RSA key.

Synopsis
function RSAgetkeysize(key:array(range) of integer):integer
function RSAgetkeysize(kfile:string, ispriv:boolean):integer

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
ispriv Must be true if the key file contains a private key

Return value
Size of the key (number of bits) or -1 in case of an error.

Further information
A return value of -1 indicates an error condition. Typically this will occur if the file cannot be accessed or
the ispriv parameter is not correct (e.g. ispriv is true and the file is a public key).

Related topics
RSAisprivate, RSAloadkey

Module
mmssl

Fair Isaac Corporation Proprietary Information 445

Chapter 16: mmssl

RSAisprivate

Purpose
Check whether an RSA key is private.

Synopsis
function RSAisprivate(key:array(range) of integer):boolean
function RSAisprivate(kfile:string):boolean

Arguments
key RSA key in the form of an array of integer
kfile File containing the key

Return value
true if the key is an RSA private key, false otherwise.

Further information
A return value of false does not necessarily indicate that the provided data corresponds to a valid public
key: this value is also returned in the case of an I/O error (e.g. the file does not exist).

Related topics
RSAloadkey

Module
mmssl

Fair Isaac Corporation Proprietary Information 446

Chapter 16: mmssl

RSAloadkey

Purpose
Load an RSA key file into memory.

Synopsis
function RSAloadkey(key:array(range) of integer, kfile:string,

ispriv:boolean):integer
function RSAloadkey(key:array(range) of integer, kfile:string):integer

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
ispriv Must be true if the key file contains a private key

Return value
The number of integers saved into the array, or -1 in the case of an I/O error, or -2 if the provided array is
not suitable to store the key.

Further information
If the ispriv parameter is not provided, the function calls first RSAisprivate to determine its value.

Related topics
RSAsavekey

Module
mmssl

Fair Isaac Corporation Proprietary Information 447

Chapter 16: mmssl

RSApubdecrypt

Purpose
Decrypt a document using an RSA public key.

Synopsis
function RSApubdecrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the public key
src Name of the file to decrypt
dst Name of the file to store the decrypted document

Return value
Length of the resulting document or -1 in the case of an error.

Further information

1. This function is used to decrypt a document that has been encrypted using RSAprivencrypt. It
requires the public part of the key used for encryption.

2. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the default
public keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current working
directory. It is required to prefix the key file name with "./" in order to access a key file from the current
directory (e.g."./somekey").

Related topics
RSAprivencrypt, msgverify

Module
mmssl

Fair Isaac Corporation Proprietary Information 448

Chapter 16: mmssl

RSAprivdecrypt

Purpose
Decrypt a document using an RSA private key.

Synopsis
function RSAprivdecrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the private key
src Name of the file to decrypt
dst Name of the file to store the decrypted document

Return value
Length of the resulting document or -1 in the case of an error.

Further information
This function is used to decrypt a document that has been encrypted using RSApubencrypt. It requires
the private part of the key used for encryption.

Related topics
RSApubencrypt

Module
mmssl

Fair Isaac Corporation Proprietary Information 449

Chapter 16: mmssl

RSAprivencrypt

Purpose
Encrypt a document using an RSA private key.

Synopsis
function RSAprivencrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the private key
src Name of the file to encrypt
dst Name of the file to store the encrypted document

Return value
Length of the resulting document or -1 in the case of an error.

Further information

1. This function can be used to encrypt a document using an RSA private key (with PKCS1 as the padding
algorithm). Decryption will be done using function RSApubdecrypt with the help of the corresponding
RSA public key.

2. The algorithm used here cannot handle documents larger than (RSAgetkeysize(kfile)/8-11)
bytes. It is usually used to generate a digital signature from a message digest.

Related topics
RSApubdecrypt, msgsign

Module
mmssl

Fair Isaac Corporation Proprietary Information 450

Chapter 16: mmssl

RSApubencrypt

Purpose
Encrypt a document using an RSA public key.

Synopsis
function RSApubencrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the public key
src Name of the file to encrypt
dst Name of the file to store the encrypted document

Return value
Length of the resulting document or -1 in the case of an error.

Further information

1. This function can be used to encrypt a document using an RSA public key (with PKCS1 OAEP as the
padding algorithm). Decryption will be done using function RSAprivdecrypt with the help of the
corresponding RSA private key.

2. The algorithm used here cannot handle documents larger than (RSAgetkeysize(kfile)/8-41)
bytes. Typically, encryption of larger documents will be performed with a symmetric cipher (see crypt
I/O driver, Section 16.4.3) using a randomly generated key (that can be produced with sslrandomdata),
in which case the asymmetric cipher is used to encrypt only this random key. The decryption then also
operates in two steps: the key is first decrypted using RSAprivdecrypt (with a private key) and after
this the document can be restored from the decrypted symmetric key.

3. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the default
public keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current working
directory. It is required to prefix the key file name with "./" in order to access a key file from the current
directory (e.g."./somekey").

Related topics
RSAprivdecrypt

Module
mmssl

Fair Isaac Corporation Proprietary Information 451

Chapter 16: mmssl

RSAsavekey

Purpose
Save an RSA key to a file.

Synopsis
function RSAsavekey(key:array(range) of integer, kfile:string,

ispriv:boolean):integer
function RSAsavekey(key:array(range) of integer, kfile:string):integer

Arguments
key RSA key in the form of an array of integer
kfile Destination file
ispriv Save the private key if true, only the public key otherwise

Return value
A positive value on success or -1 in case of error.

Example
In the code below a new 2048 bits key is generated and both, private and public parts are saved into
different files:

if RSAgenkey(2048,k)<=0 then
writeln("Failed to create RSA key")
elif RSAsavekey(k,"perso.key",true)<1 or

RSAsavekey(k,"perso",false)<1 then
writeln("Failed to save key file")
end-if

Further information

1. This function saves the RSA key that is provided as an array of string into a file in a textual representation.
The ispriv parameter can be used to select which part of the key to export.

2. If the ispriv parameter is not provided, the function will produce a private key file if the key is private
and a public key file otherwise.

Related topics
RSAloadkey, RSAgenkey

Module
mmssl

Fair Isaac Corporation Proprietary Information 452

Chapter 16: mmssl

msgdigest

Purpose
Compute the message digest of a document.

Synopsis
function msgdigest(mdalg:string, fname:string, mdf:string):integer
function msgdigest(fname:string, mdf:string):integer

Arguments
mdalg Name of the algorithm to use
fname Name of the file to be processed
mdf File where to store the digest

Return value
Size of the message digest in bytes or -1 if case of error.

Example
The following procedure implements the command ’md5sum’:

procedure md5sum(f:string)
if msgdigest("md5",f,"mem:dgst")<>16 then
writeln("Failed to compute digest")

else
fcopy("mem:dgst",F_BINARY,"hex:",F_TEXT)
writeln(" ",f)

end-if
end-procedure

Further information

1. This function computes a message digest (MD) using either the algorithm specified by the mdalg
argument or the default algorithm as defined by the control parameter ssl_digest. The produced
output takes the form of a binary file the size of which is returned by the function.

2. The set of supported algorithms includes "md5", "sha", and "sha256". For a full list use the command
mmssl list digest.

Related topics
sslmdsize

Module
mmssl

Fair Isaac Corporation Proprietary Information 453

Chapter 16: mmssl

msgsign

Purpose
Compute the digital signature of a document.

Synopsis
function msgsign(mdalg:string, pkey:string, fname:string,

sgf:string):integer
function msgsign(fname:string, sgf:string):integer

Arguments
mdalg Name of the message digest algorithm to use
pkey Name of the private key file to use for signing
fname File to sign
sgf File where the signature is to be saved

Return value
Length of the signature or -1 in the case of an error.

Further information

1. This function computes the digital signature of a document by encrypting the message digest of its input
file using an RSA private key. The resulting signature can be verified with the function msgverify used
with the appropriate public key.

2. If no message digest algorithm is specified, the default algorithm defined by the control parameter
ssl_digest is used. Unless a specific key file is selected, the default private key defined by the control
parameter ssl_privkey or, (if this parameter is not defined) the key under
getparam("ssl_dir")+"/personal.key" is used.

Related topics
msgverify

Module
mmssl

Fair Isaac Corporation Proprietary Information 454

Chapter 16: mmssl

msgverify

Purpose
Verify the digital signature of a document.

Synopsis
function msgverify(mdalg:string, key:string, fname:string,

sgf:string):integer
function msgverify(key:string, fname:string, sgf:string):integer

Arguments
mdalg Name of the message digest algorithm to use
key Name of the public key file to use
fname File to verify
sgf Signature used for the verification

Return value
1 if the signature is valid, 0 if the verification failed and -1 in the case of an error.

Further information

1. This function verifies the digital signature of a document by comparing the message digest of the
document with the information obtained by decrypting the provided signature with a given RSA public key.
Typically this signature has been obtained with the function msgsign and the appropriate private key.

2. If no message digest algorithm is specified, the default algorithm defined by the control parameter
ssl_digest is used. Note that the same algorithm has to be used for both signing and verifying.

3. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the default
public keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current working
directory. It is required to prefix the key file name with "./" in order to access a key file from the current
directory (e.g."./somekey").

Related topics
msgsign

Module
mmssl

Fair Isaac Corporation Proprietary Information 455

Chapter 16: mmssl

sslivsize

Purpose
Get the size of the initialisation vector (IV) required by a symmetric cipher.

Synopsis
function sslivsize(cipalg:string):integer

Argument
cipalg Name of the cipher to consider

Return value
Size of a IV in bytes or -1 if the cipher is not supported.

Example
The following statement generates a random IV for the default cipher algorithm:

sslrandomdata("myiv",sslivsize(""))

Further information
Some encryption algorithms require an initialisation vector (IV) in addition to the encryption key. Like the
key, the IV is an array of bytes of a fixed size. This function returns the length (in bytes) of the IV required
by a given symmetric cipher algorithm. A return value of -1 indicates an unrecognised algorithm name:
this property can be used to check whether a given algorithm is available.

Related topics
sslkeysize

Module
mmssl

Fair Isaac Corporation Proprietary Information 456

Chapter 16: mmssl

sslkeysize

Purpose
Get the size of the key required by a symmetric cipher.

Synopsis
function sslkeysize(cipalg:string):integer

Argument
cipalg Name of the cipher to consider

Return value
Size of a key in bytes or -1 if the cipher is not supported.

Further information
This function returns the length (in bytes) of an encryption key required by a given symmetric cipher
algorithm. A return value of -1 indicates that the algorithm name has not been recognised: this property
can be used to check whether a given algorithm is available.

Related topics
sslivsize

Module
mmssl

Fair Isaac Corporation Proprietary Information 457

Chapter 16: mmssl

sslmdsize

Purpose
Get the size of a message digest.

Synopsis
function sslmdsize(mdalg:string):integer

Argument
mdalg Algorithm to consider

Return value
Size of the message digest in bytes or -1 if the algorithm is not supported.

Further information
This function returns the length (in bytes) of a digest produced by the requested message digest
algorithm. A return value of -1 indicates that the algorithm name has not been recognised: this property
can be used to check whether a given algorithm is available.

Related topics
msgdigest

Module
mmssl

Fair Isaac Corporation Proprietary Information 458

Chapter 16: mmssl

sslrandom

Purpose
Generate a random number.

Synopsis
function sslrandom:integer

Return value
A randomly generated integer.

Further information
This function returns an integer by combining 4 bytes obtained from a cryptographically strong
pseudo-random generator.

Related topics
sslrandomdata

Module
mmssl

Fair Isaac Corporation Proprietary Information 459

Chapter 16: mmssl

sslrandomdata

Purpose
Generate a random data file.

Synopsis
procedure sslrandomdata(fname:string, size:integer)

Arguments
fname Name of the file where to save the generated data
size Number of bytes to generate

Example
The following statement generates a random key for the default cipher algorithm:

sslrandomdata("mykey",sslkeysize(""))

Further information

1. This function generates size bytes from a cryptographically strong pseudo-random generator that it
saves in the specified file fname.

2. An IO error will be raised if the destination file cannot be accessed.
Related topics

sslrandom

Module
mmssl

Fair Isaac Corporation Proprietary Information 460

Chapter 16: mmssl

x509check

Purpose
Check the compatibility of a private key with an X509 certificate.

Synopsis
function x509check(x509:string, kfile:string):integer

Arguments
x509 File containing the certificate in PEM format
kfile File containing the private key

Return value
0 if the key is compatible with the certificate, 1 if the key is not compatibe and -1 in the case of an error.

Further information
This function checks whether the public key recorded in the specified certificate corresponds to the
provided private key (the certificate can only be used by the owner of the public key).

Related topics
x509getinfo

Module
mmssl

Fair Isaac Corporation Proprietary Information 461

Chapter 16: mmssl

x509getinfo

Purpose
Retrieve information stored in an X509 certificate.

Synopsis
function x509getinfo(x509:string, info:array(string) of text):integer

Arguments
x509 Certificate file in PEM format
info Array where to store certificate information

Return value
Number of items stored in the array or -1 in case of error.

Example
The example below shows how to display the properties of a certificate:

declarations
info:array(S:set of string) of text
end-declarations

if x509getinfo("srv.crt",info)<1 then
writeln("Failed to load certificate")
else
forall(s in S | exists(info(s)))
writeln(" ", s, ":", info(s))

end-if

Further information
This function retrieves some of the information recorded in an X509 certificate. The data is recorded in
the provided array indexed by the labels of the records in the certificate. The possible labels are:
Version Format version of the certificate
Serial Serial number
Issuer Issuer of the certificate
Subject Entity associated to the public key stored in the certificate
NotBefore Valid after this date
NotAfter Valid until this date
SgnAlg Algorithm used to sign the certificate
A self-signed certificate (such as those created with x509newcrt) will have identical values for Issuer
and Subject.

Related topics
x509check

Module
mmssl

Fair Isaac Corporation Proprietary Information 462

Chapter 16: mmssl

x509newcrt

Purpose
Create a new self-signed X509 certificate.

Synopsis
function x509newcrt(x509:string, kfile:string, info:array(string) of

text):integer

Arguments
x509 Certificate file to create (PEM format)
kfile File containing the private key
info Array describing the certificate properties

Return value
0 if success or -1 in the case of an error.

Example
The following example creates a certificate that is valid for 3 years, using a new RSA key:

info("Version"):="1"
info("Serial"):="123456789"
info("Duration"):=text(365⁎3)
info("C"):="FR"
info("O"):="My Company"
info("CN"):="www.mycomp.com"
if RSAgenkey(1024,"srv.key")<=0 then
writeln("Failed to create RSA key")
elif x509newcrt("srv.crt","srv.key",info)<>0 then
writeln("Failed to create certificate")
end-if

Further information

1. This function creates a self-signed X509 certificate. Such a certificate can be used to run an HTTPS
server but clients of such a server have to disable server certificate verification (see https_trustsrv)
or include this certificate in their trusted certificate file (see https_cacerts).

2. The routine expects an array with indices defining the following entries (a default value applies if the entry
is missing):
Version Format version of the certificate (default: 1)
Serial Serial number (default: 1)
Duration Validity (in days) from the current date (default: 365)
C Country code (default: system country or ’EU’)
O Organisation name (default: anonymous)
CN Common Name (typically the host name to authenticate, default: localhost)
The entries C, O and CN are used to generate the Issuer and Subject records of the certificate. The
provided key is used both as the certificate key (using the public part of the key) and as the signing key.

Related topics
x509check, x509getinfo

Module
mmssl

Fair Isaac Corporation Proprietary Information 463

Chapter 16: mmssl

16.4 I/O drivers
The mmssl module publishes two drivers for converting binary documents to textual representation and a
driver dedicated to symmetric encryption. These drivers have the same behaviour: encryption or
encoding is performed when the driver is used for writing while decryption/decoding is done on a stream
that is open for reading.

16.4.1 Driver base64
base64:[nonl,]filename

This driver can be used to handle documents encoded using the base64 standard. When used in an
output stream, it generates the base64 encoded version of its binary input and in an input stream it
expects a base64 encoded document that it decodes.

For instance the following statement encodes "mydata.bin":

fcopy("mydata.bin",F_BINARY,"mmssl.base64:mydata.b64",F_TEXT)

By default a base64 document is split into lines of 76 characters but with the option nonl the entire
document is output as (or read from) a single line.

16.4.2 Driver hex
hex:filename

This driver produces a textual representation of a binary document by replacing each byte by its
hexadecimal representation (e.g. the value 13 is converted to the string "0d").

The following code extract displays the hexadecimal representation of the binary input file "mem:md5":

fcopy("mem:md5",F_BINARY,"mmssl.hex:",F_TEXT)
writeln

16.4.3 Driver crypt
crypt:[[nosalt,][md=a,][cipher=c,][key=kf,][iv=if,]pwd=p|pf]filename

The crypt driver performs encryption (when writing) or decryption (when reading) of its stream using a
symmetric cipher (that is, the same key is used for encryption and decryption). Options are provided
enclosed in square brackets, at the least a password has to be provided. For instance, the following
statement encrypts the file "mydata" using the password stored in the file "passfile":

fcopy("mydata","mmssl.crypt:[passfile]mydata.enc")

The password is read from the first line of the password file (that is opened as a text document).
Alternatively, the password may be directly passed through the file name using the pwd= option:

fcopy("mydata","mmssl.crypt:[pwd=mysecret]mydata.enc")

Encryption (or decryption) is performed using the default cipher as defined by the control parameter
ssl_cipher. Another cipher can be selected using the cipher option.

The encryption (or decryption) process requires a key as well as an initialisation vector. The size of these
components depends of the selected cipher and the appropriate data is generated by a key derivation

Fair Isaac Corporation Proprietary Information 464

Chapter 16: mmssl

routine using the provided password as input. This procedure employs a message digest algorithm and
may use some initial value (or salt). Without any specific option the driver relies on the default message
digest algorithm defined by the control parameter ssl_digest and generates a random salt of 8 bytes.
These bytes are then saved at the beginning of the encrypted document such that the decryption process
can retrieve them and regenerate the encryption key and initialisation vector from the provided password.
This default behaviour can be changed using the nosalt option to avoid using a salt and the option md
to select some other message digest algorithm. It is also possible to provide the encryption key and the
initialisation vector via dedicated files using options key and iv. In this case no password has to be
provided.

16.4.4 Driver hmac
hmac:[[md=a,]key=kf|key]filename

The hmac driver computes a HMAC (keyed-hash message authentication code) of its input stream using
the provided key and hash function (the driver does not support reading). Options are provided enclosed
in square brackets, at the least a key has to be provided. For instance, the following statement generates
the HMAC of the file "mydata" using the key stored in the file "keyfile":

fcopy("mydata","mmssl.hmac:[keyfile]mydata.hmac")

The key is read from the key file that is opened as a binary document. Alternatively, the key may be
directly passed through the file name using the key= option:

fcopy("mydata","mmssl.hmac:[key=mykey]mydata.hmac")

Computation of a HMAC is based on a message digest algorithm, without any specific option the driver
relies on the default message digest algorithm defined by the control parameter ssl_digest otherwise,
the option md can be used to select some other algorithm.

Fair Isaac Corporation Proprietary Information 465

CHAPTER 17

mmsvg

The mmsvg package provides a set procedures which allow users to display graphs of functions,
diagrams, networks, various shapes etc. in SVG format. To use this module the following line must be
included in the header of the Mosel model file:

uses "mmsvg"

mmsvg requires a webbrowser in order to be able to display graphics. Running a Mosel model that uses
the svgrefresh routine provided by this module opens a window in the default browser that is
configured on the system. In the absence of a webbrowser, it is still possible to generate graphics and
save them to file via svgsave.

17.1 SVG graph structure
The SVG graph format is an XML format, that is, the elements of a graph are organized in a hierarchical
tree structure. mmsvg structures graphical objects in three levels:

1. SVG graph

2. object group

3. graphical object

Each individual graphical object (line, polygon, text etc.) must be created within an object group. By
default this is the last group that has been added to the graph, but some other object reference can be
stated. A default graph object is always present and object groups are created within this default graph.

17.1.1 Object groups
Object groups are identified via a string ID that is specified by the user at their creation, this ID must be
unique. Each object group receives an entry in the legend of the graph. Typically a group serves to
represent a collection of graphical objects that are logically related. The style defined for a group is
applied to all its objects unless it is overwritten by individual settings, meaning that it is usually more
efficient to state generally valid style settings for an entire group instead of repeating them for each
individual object.

At the creation of a group, optionally a group color can be specified. If no color is given, then a default
color will be selected from a built-in list of color values.

Graphical objects are displayed in the order of definition of object groups, and within each group in the
order of their definition.

Fair Isaac Corporation Proprietary Information 466

Chapter 17: mmsvg

17.1.2 SVG styling
Style definitions can be applied to all levels of SVG elements, to the graph, object groups, or for individual
objects. mmsvg defines a set of property constants but other SVG styling options can equally be used by
directly stating their name in the svgset[graph]style routines. For a complete list of SVG style
properties and their permissible values the reader is refered to the SVG property specifications at
https://www.w3.org/TR/SVG/propidx.html.

SVG_COLOR Default color name (for object groups)

SVG_DECORATION Text decoration; possible values include ’none’, ’underline’, ’overline’,
’line-through’, ’blink’

SVG_FILL Fill color name

SVG_FILLOPACITY Fill opacity; values between 0.0 and 1.0

SVG_FONT Whitespace separated list of font settings

SVG_FONTFAMILY Font family definition; this can be generic families (’serif’, ’sans-serif’,
’cursive’, ’fantasy’, ’monospace’) or specific font names

SVG_FONTSIZE Font size; constants (’xx-small’, ’x-small’, ’small’, ’medium’, ’large’, ’x-large’,
’xx-large) or percentage value or length (e.g. in ’em’, ’pt’, ’px’, ’cm’)

SVG_FONTSTYLE Font style; values ’normal’, ’italic’, ’oblique’

SVG_FONTWEIGHT Font weight; numbers 100,...900 or constants (’bold’, ’bolder’, ’lighter’,
’normal’)

SVG_OPACITY Generic opacity setting; values between 0.0 and 1.0

SVG_STROKE Color for lines and borders

SVG_STROKEDASH Line style; comma-separated list of lengths or percentages specifying
lengths of alternating dashes and gaps

SVG_STROKEOPACITY Stroke opacity, values between 0.0 and 1.0

SVG_STROKEWIDTH Stroke width; percentage or length

SVG_TEXTANCHOR Vertical alignment of text; possible values include ’start’, ’middle’, ’end’

Other predefined constants are SVG_CURRENT for the current color and SVG_NONE.

mmsvg defines the following color constants (applicable to the properties SVG_COLOR, SVG_FILL,
SVG_STROKE) that can be used in place of SVG color keywords or color definitions generated via the
svgcolor routine:

■ SVG_BLACK, SVG_BLUE, SVG_BROWN, SVG_CYAN, SVG_GOLD, SVG_GRAY, SVG_GREEN,
SVG_LIME, SVG_MAGENTA, SVG_ORANGE, SVG_PINK, SVG_PURPLE, SVG_RED, SVG_SILVER,
SVG_WHITE, SVG_YELLOW

For a full list of SVG color keywords and their definitions please see
https://www.w3.org/TR/SVG/types.html.

The complete set of style properties specified for a graph, object group or individual objects can be
retrieved via the routines svggetstylesheet and svggetgraphstylesheet, for example in order to
copy them to some other object via svgsetstylesheet or svgsetgraphstylesheet respectively.

Fair Isaac Corporation Proprietary Information 467

https://www.w3.org/TR/SVG/propidx.html
https://www.w3.org/TR/SVG/types.html#ColorKeywords

Chapter 17: mmsvg

17.1.3 Interaction with the graphical display
The command svgrefresh sends the current graph and any additional files that might have been added
to it (see svgaddfile) to the built-in server that handles the coordination with the display and triggers
an update of the graphical display. The end of the model execution will also terminate the display, unless
a call to the routine svgwaitclose is added at the end of the model, in which case the model waits for
the closing of the display window.

Inserting a call to the routine svgpause into a model will pause its execution at this point until the user
hits the ’Continue’ button in the graphical display. Typically, this feature will be used to allow the user time
for visual inspection of the output if a model iteratively generates graphics or updates to a graphic.

17.1.4 Example
The following example shows how to define a few simple graphical objects, saves the resulting graphic to
a file and also displays it in a webbrowser. The model waits until the browser is closed.

model "svg example"
uses "mmsvg"

! ⁎⁎⁎⁎ Line objects ⁎⁎⁎⁎
svgaddgroup("gl", "Lines") ! Group with automatic color
svgaddline(10,10,250,10) ! Simple line with default style
PointList:=sum(i in 1..20)[i⁎10,40+round(20⁎random)]
svgaddline(PointList) ! Polyline
l:=svggetlastobj ! Retrieve object reference
svgsetstyle(l, SVG_STROKE, SVG_MAGENTA) ! Change line color
svgsetstyle(l, SVG_STROKEDASH, "1,1") ! Dotted line

! ⁎⁎⁎⁎ Various shapes ⁎⁎⁎⁎
svgaddgroup("gs", "Shapes", SVG_GREY) ! Group with user-defined color
svgaddrectangle(275,25,250,250) ! Draw a square
svgsetstyle(svggetlastobj, SVG_STROKEWIDTH, 3) ! Wider border
svgaddcircle(400,150,75) ! Draw a circle
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT) ! Fill with group color
svgaddpolygon([200,400,200,350,300,300,500,350,600,350,600,400])
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREEN) ! Fill with user color

! ⁎⁎⁎⁎ Pie chart ⁎⁎⁎⁎
forall(i in 1..6) svgaddgroup("gp"+i,"Pie"+i) ! Pie slices with auto-colors
setrandseed(3); ttl:=0.0
forall(i in 1..5) do
rd:=random/6
svgaddpie("gp"+i, 150, 525, 100, ttl, ttl+rd)
ttl+=rd

end-do
svgaddpie("gp6", 150, 525, 100, ttl, 1)

! ⁎⁎⁎⁎ Text objects ⁎⁎⁎⁎
svgaddgroup("gt", "Text", SVG_BLACK) ! Group with user-defined color
svgaddtext(20, 100, "Text with default formatting")
svgaddtext(20, 120, "Formatted text")
t:=svggetlastobj
svgsetstyle(t, SVG_FONTSIZE, "20pt")
svgsetstyle(t, SVG_FONTSTYLE, "italic")
svgsetstyle(t, SVG_FONTWEIGHT, "bold")
svgsetstyle(t, SVG_COLOR, SVG_BLUE)
svgaddxmltext(20, 150, 'XML formatted text:
<tspan font-size="large"> large</tspan>
<tspan text-decoration="underline">underlined</tspan>
<tspan stroke="red"> red</tspan>')

svgsetgraphviewbox(0,0,610,635) ! Optional: specify graph size

svgsave("svgexpl.svg") ! Save graphic to file

Fair Isaac Corporation Proprietary Information 468

Chapter 17: mmsvg

svgrefresh ! Display graphic
svgwaitclose ! Wait until window is closed
end-model

Figure 17.1: Graphical output produced by the example

17.2 Control parameters
The following parameters are defined by mmsvg:

MMSVGDISPLAY Enable/disable rendering. p. 469

MMSVGTGZ Location of the mmsvg.tgz archive. p. 470

MMSVGDISPLAY

Description When this parameter is set to true (the default) the first call to svgrefresh starts a web
browser for displaying the current graph. Changing the value of this parameter disables
rendering: after a warning message is reported calls to svgrefresh have no effect and the
function svgclosing always returns true. Note that setting the environment variable
MMSVGDISPLAY to a non empty string has the same effect as changing this control parameter.

Type Boolean, read/write

Values true Enable rendering.
false Disable rendering.

Default value true

Affects routines svgrefresh, svgclosing.

Module mmsvg

Fair Isaac Corporation Proprietary Information 469

Chapter 17: mmsvg

MMSVGTGZ

Description The function svgrefresh requires the archive mmsvg.tgz for its processing. By default this
file is expected to be located in the same directory as the module mmsystem. This parameter
makes it possible to specify an alternate location.

Type String, read/write

Default value ""

Affects routines svgrefresh.

Module mmsvg

17.3 Procedures and Functions
svgaddarrow Add an arrow to an object group. p. 473

svgaddcircle Add a circle to an object group. p. 474

svgaddellipse Add an ellipse to an object group. p. 475

svgaddfile Add a file to a graph. p. 476

svgaddgroup Add a new object group to the user graph. p. 472

svgaddimage Add an image to an object group. p. 477

svgaddline Add a line or polyline to an object group. p. 478

svgaddpie Add a pie slice. p. 479

svgaddpoint Add a small square to mark a point. p. 480

svgaddpolygon Add a polygon to an object group. p. 481

svgaddrectangle Add a rectangle to an object group. p. 482

svgaddtext Add a text to an object group. p. 483

svgaddxmltext Add an XML formatted text to an object group. p. 484

svgclosing Test whether the display window is being closed. p. 485

svgcolor Compute a composite color. p. 486

svgdelobj Delete the specified graphical object. p. 487

svgerase Erase all object groups or the contents of a specific group. p. 488

svggetgraphstyle Retrieve a style property of a graph. p. 489

svggetgraphstylesheet Retrieve the style definitions of a graph. p. 490

svggetgraphviewbox Retrieve the viewbox definition of a graph. p. 491

svggetlastobj Retrieve the identifier of a graphical object. p. 492

svggetstyle Retrieve a style property of a graphical object or object group. p. 493

svggetstylesheet Retrieve style definitions of a graphical object or object group. p. 494

svgpause Suspend the execution of a model. p. 495

Fair Isaac Corporation Proprietary Information 470

Chapter 17: mmsvg

svgrefresh Refresh the graph display. p. 496

svgsave Save a graph to a file. p. 497

svgsetgraphlabels Set x- and y-axis labels for a graph. p. 498

svgsetgraphpointsize Set point size property for a graph. p. 499

svgsetgraphscale Set scaling value for a graph. p. 500

svgsetgraphstyle Set a style property of a graph. p. 501

svgsetgraphstylesheet Set the style definitions for a graph. p. 502

svgsetgraphviewbox Set the visible area for a user graph. p. 503

svgsetreffreq Set the refresh frequency for a graph. p. 504

svgsetstyle Set a style property for a graphical object or object group. p. 505

svgsetstylesheet Set the style for a graphical object or object group. p. 506

svgshowgraphaxes Force displaying of graph axes. p. 507

svgwaitclose Delay model termination. p. 508

Fair Isaac Corporation Proprietary Information 471

Chapter 17: mmsvg

svgaddgroup

Purpose
Add a new object group to the user graph.

Synopsis
procedure svgaddgroup(gid: string, desc: text, color: text)
procedure svgaddgroup(gid: string, desc: text)

Arguments
gid Object group ID (must be unique within a graph).
desc A text that will appear in the legend.
color A color specification obtained using svgcolor or one of the predefined constants (see list in

section 17.1.2).

Example
The following adds two groups ’g1’ and ’g2’ to the user graph:

svgaddgroup("g1", "sine", SVG_RED) ! User-specified group color
svgaddgroup("g2", "random numbers") ! Automatically selected color

Further information

1. A group is identified by its ID whereas the ’desc’ serves as text for the legend of the graphic. A group
contains any number of individual objects (points, lines, arrows, texts etc.) which were added to it.

2. An empty string for the ’desc’ attribute indicates that the group is not to be included in the legend.

3. If no color is specified at the creation of a group it will be assigned a default color from a built-in list. This
setting can be overwritten for individual objects within the group. Note that any style settings that are
common to a large number of objects within a group should preferrably be specified for the group rather
than for the individual objects.

Related topics
svgsetstyle.

Fair Isaac Corporation Proprietary Information 472

Chapter 17: mmsvg

svgaddarrow

Purpose
Add an arrow to an object group.

Synopsis
procedure svgaddarrow(gid: string, x1: real, y1: real, x2: real, y2: real)
procedure svgaddarrow(x1: real, y1: real, x2: real, y2: real)

Arguments
gid Object group ID.
x1 The x coordinate of the first point.
y1 The y coordinate of the first point.
x2 The x coordinate of the second point.
y2 The y coordinate of the second point.

Example
The following adds two arrows to a group named ‘thetime’. The arrows suggest three o’clock:

svgaddgroup("arrows", "thetime", SVG_BLACK)
svgaddarrow("arrows", 0, 0, 0, 5)
svgaddarrow(0, 0, 4.5, 0)
svgsetgraphviewbox(-5, -6, 10, 12)

Further information

1. The arrow connects the two points whose coordinates are given as parameters, pointing to the second
one.

2. If no group ID is specified, the arrow is added to the last group that has been created.

Fair Isaac Corporation Proprietary Information 473

Chapter 17: mmsvg

svgaddcircle

Purpose
Add a circle to an object group.

Synopsis
procedure svgaddcircle(gid: string, x: real, y: real, r: real)
procedure svgaddcircle(x: real, y: real, r: real)

Arguments
gid Object group ID.
x The x coordinate of the center point.
y The y coordinate of the center point.
r The length of the radius of the circle.

Example
The following code draws a filled, semi-transparent circle centered at the origin with a radius of 10.

declarations
circ: integer

end-declarations

svgaddcircle(0, 0, 10)
circ:=svggetlastobj
svgsetstyle(circ, SVG_FILL, SVG_CYAN)
svgsetstyle(circ, SVG_OPACITY, 0.5)

Further information
If no group ID is specified, the circle is added to the last group that has been created.

Fair Isaac Corporation Proprietary Information 474

Chapter 17: mmsvg

svgaddellipse

Purpose
Add an ellipse to an object group.

Synopsis
procedure svgaddellipse(gid: string, x: real, y: real, rx: real, ry: real)
procedure svgaddellipse(x: real, y: real, rx: real, ry: real)

Arguments
gid Object group ID.
x The x coordinate of the center point of the ellipse.
y The y coordinate of the center point of the ellipse.
rx The horizontal radius.
ry The vertical radius.

Example
The following code draws a very "flat" ellipse centered at the origin filled with the group color.

svgaddellipse(0,0,5,0.5)
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT)

Further information
If no group ID is specified, the ellipse is added to the last group that has been created.

Fair Isaac Corporation Proprietary Information 475

Chapter 17: mmsvg

svgaddfile

Purpose
Add a file to a graph.

Synopsis
procedure svgaddfile(fname: string, fid: string)

Arguments
fname Filename (including path) of the file to be included.
fid Name for the file used within the SVG graph.

Example
The following code adds an image file to the current graph and displays it in an area with corner points at
the coordinates (100,100) and (250,250).

svgaddfile("./someimage.png", "myimg.png")
svgaddimage("myimg.png", 100, 100, 150, 150)

Further information

1. This routine is typically used in combination with svgaddimage to associate some external file with the
graph.

2. Using an empty file name fname will remove the corresponding fid from the file database.

Related topics
svgaddimage.

Fair Isaac Corporation Proprietary Information 476

Chapter 17: mmsvg

svgaddimage

Purpose
Add an image to an object group.

Synopsis
procedure svgaddimage(gid: string, fid: text, x: real, y: real, w: real, h:

real)
procedure svgaddimage(fid: text, x: real, y: real, w: real, h: real)

Arguments
gid Object group ID.
fid Name for the file used within the SVG graph.
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the image.
h The height of the image.

Example
The following code adds an image file to the current graph and displays it 3 times at different positions (3
squares forming a row).

svgaddfile("./someimage.png", "myimg.png")
forall(i in 1..3)

svgaddimage("myimg.png", 100⁎i, 100, 100, 100)

Further information

1. Any external file to be displayed within a graph needs to be associated with the graph via a call to
svgaddfile.

2. If no group ID is specified, the image is added to the last group that has been created.

Related topics
svgaddfile.

Fair Isaac Corporation Proprietary Information 477

Chapter 17: mmsvg

svgaddline

Purpose
Add a line or polyline to an object group.

Synopsis
procedure svgaddline(gid: string, x1: real, y1: real, x2: real, y2: real)
procedure svgaddline(x1: real, y1: real, x2: real, y2: real)
procedure svgaddline(gid: string, points: list of integer|real)
procedure svgaddline(points: list of integer|real)

Arguments
gid Object group ID.
x1 The x coordinate of the first point.
y1 The y coordinate of the first point.
x2 The x coordinate of the second point.
y2 The y coordinate of the second point.
points A list of points.

Example
The following code draws the outline of a triangle, given the correct aspect ratio of the user graph.

svgaddgroup("t", "triangle", SVG_ORANGE)
svgaddline([-2, -2, 0, 2, 2, -2, -2, -2)])
svgsetgraphviewbox(-5, -5, 10, 10)

If the shape is to be filled (here: using the group color), you need to use polygon drawing instead of a
polyline:

svgaddpolygon([-2, -2, 0, 2, 2, -2)])
svgsetstyel(svggetlastobj, SVG_FILL, SVG_CURRENT)

Further information

1. The line connects the two points whose coordinates are given as parameters or the points contained in
the specified list in their order of appearance in the list.

2. If no group ID is specified, the line is added to the last group that has been created.

Related topics
svgaddpolygon.

Fair Isaac Corporation Proprietary Information 478

Chapter 17: mmsvg

svgaddpie

Purpose
Add a filled pie slice at the given coordinates.

Synopsis
procedure svgaddpie(gid: string, x: real, y: real, r: real, p1: real, p2:

real)
procedure svgaddpie(x: real, y: real, r: real, p1: real, p2: real)

Arguments
gid Object group ID.
x The x coordinate of the center point.
y The y coordinate of the center point.
r Radius (side length of the pie slice).
p1 Start position on the circle (percentage).
p2 End position on the circle (percentage).

Example
This code draws a pie chart with 5 slices of 20% width each around the center point (150,150) with a
radius of 100.

forall(i in 1..5) do
svgaddgroup("gp"+i, "Pie"+i)
svgaddpie(150, 150, 100, (i-1)⁎0.2, i⁎0.2)

end-do

Further information

1. Pie slices are by default filled with the group color. If they are not to be filled with any color specify value
SVG_NONE for the style property SVG_FILL.

2. If no group ID is specified, the pie slice is added to the last group that has been created.

Fair Isaac Corporation Proprietary Information 479

Chapter 17: mmsvg

svgaddpoint

Purpose
Add a small square to mark a point at the given coordinates.

Synopsis
procedure svgaddpoint(gid: string, x: real, y: real)
procedure svgaddpoint(x: real, y: real)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.

Example
This code plots 100 random points:

svgaddgroup("cloud", "Random points", SVG_YELLOW)
svgsetgraphviewbox(-5, -5, 10, 10)
forall(i in 1..100)

svgaddpoint("cloud", -2+4⁎random, -2+4⁎random)

Further information
If no group ID is specified, the point is added to the last group that has been created.

Related topics
svgsetgraphpointsize.

Fair Isaac Corporation Proprietary Information 480

Chapter 17: mmsvg

svgaddpolygon

Purpose
Add a polygon to an object group.

Synopsis
procedure svgaddpolygon(gid: string, points: list of integer|real)
procedure svgaddpolygon(points: list of integer|real)

Arguments
gid Object group ID.
points A list of points.

Example
The following code draws two semi-transparent, partially overlapping polygons, the first is filled with the
group color, the second with a different color:

svgaddgroup("p", "Polygons")
svgsetstyle(SVG_OPACITY, 0.5)
svgsetstyle(SVG_FILL, SVG_CURRENT)
svgaddpolygon([-2, -2, 0, 2, 2, -2)])
svgaddpolygon([-1, -2, 1, 2, 3, -2)])
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREY)

Further information

1. The last point in the list of points is automatically connected to the first point in the list to form a closed
shape.

2. If no group ID is specified, the polygon is added to the last group that has been created.

Related topics
svgaddline.

Fair Isaac Corporation Proprietary Information 481

Chapter 17: mmsvg

svgaddrectangle

Purpose
Add a rectangle to an object group.

Synopsis
procedure svgaddrectangle(gid: string, x: real, y: real, w: real, h: real)

Arguments
gid Object group ID.
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the rectangle.
h The height of the rectangle.

Example
The following code draws a rectangle filled with the group color covering an area 10 units long and 1 unit
high starting at the origin.

svgaddrectangle(0,0,10,1)
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT

Further information
If no group ID is specified, the rectangle is added to the last group that has been created.

Fair Isaac Corporation Proprietary Information 482

Chapter 17: mmsvg

svgaddtext

Purpose
Add a text to an object group.

Synopsis
procedure svgaddtext(gid: string, x: real, y: real, msg: text)
procedure svgaddtext(x: real, y: real, msg: text)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.
text The text that will be displayed at the given point.

Example
This code complements the time graph with a dial:

! This should complement the example for svgaddarrow
forall(i in 1..12)

svgaddtext(4.8⁎cos(1.57-6.28⁎i/12), 5⁎sin(1.57-6.28⁎i/12), text(i))

Further information

1. By default the specified point denotes the lower left corner of the text display area; the vertical alignment
can be changed via the style option SVG_ANCHOR (values ’start’, ’middle’, or ’end’).

2. If no group ID is specified, the text is added to the last group that has been created.

Related topics
svgaddxmltext.

Fair Isaac Corporation Proprietary Information 483

Chapter 17: mmsvg

svgaddxmltext

Purpose
Add an XML formatted text to an object group.

Synopsis
procedure svgaddxmltext(gid: string, x: real, y: real, msg: text)
procedure svgaddxmltext(x: real, y: real, msg: text)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.
text The text that will be displayed at the given point.

Example
This code displays some text with individual formatting on different words:

svgaddxmltext(20, 150, 'XML formatted text:
<tspan font-size="20px">large</tspan>,
<tspan font-style="oblique">oblique</tspan>,
<tspan font-weight="bold">bold</tspan>,
<tspan text-decoration="underline">underlined</tspan>,
<tspan stroke="red">red</tspan>')

Further information

1. By default the specified point denotes the lower left corner of the text display area; the vertical alignment
can be changed via the style option SVG_ANCHOR (values ’start’, ’middle’, or ’end’).

2. If no group ID is specified, the text is added to the last group that has been created.

Related topics
svgaddtext.

Fair Isaac Corporation Proprietary Information 484

Chapter 17: mmsvg

svgclosing

Purpose
Test whether the display window is being closed.

Synopsis
function svgclosing:boolean

Return value
’false’ until the display window is about to be closed, ’true’ afterwards.

Example
The following loop uses the browser window opening status as stopping criterion.

solct:= 0
svgrefresh ! Start graph display before svgclosing test
while (solct<NBSOL and not svgclosing) do

solct+=1
draw_solution(solct) ! Draws a graph calling svgrefresh and svgpause

end-do
svgwaitclose

Further information
This function can be used to intercept the event of the display window being closed in order to adapt the
behaviour of the model execution (e.g. to interrupt a loop with repeated graphical displays or an
optimization solver run).

Related topics
svgwaitclose.

Fair Isaac Corporation Proprietary Information 485

Chapter 17: mmsvg

svgcolor

Purpose
Compute a composite color by combining amounts of red, green and blue.

Synopsis
function svgcolor(red, green, blue: integer): text
function svgcolor(red, green, blue: real): text
function svgcolor(red, green, blue: text): text

Arguments
red Amount of red (integer between 0 and 255, real between 0 and 1, or hexadecimal value between

0 and FF).
green Amount of green (integer between 0 and 255, real between 0 and 1, or hexadecimal value

between 0 and FF).
blue Amount of blue (integer between 0 and 255, real between 0 and 1, or hexadecimal value between

0 and FF).

Return value
Hexadecimal representation of the composite color.

Example
The following definitions mix red with green and store the result in a variable. All three forms result in the
same color.

declarations
a_color: text

end-declarations

a_color:=svgcolor(255,255,0)
a_color:=svgcolor(1.0,1.0,0.0)
a_color:=svgcolor("FF","FF","0")

Further information
If the color component values are out of range, mmsvg will raise an I/O error.

Fair Isaac Corporation Proprietary Information 486

Chapter 17: mmsvg

svgdelobj

Purpose
Delete the specified graphical object.

Synopsis
procedure svgdelobj(obj: integer)

Argument
obj Object ID as returned by svggetlastobj.

Further information
This procedure serves for deleting a specific graphical object. Use svgerase to delete the whole
contents of an object group or all groups.

Related topics
svgerase, svggetlastobj.

Fair Isaac Corporation Proprietary Information 487

Chapter 17: mmsvg

svgerase

Purpose
Erase all object groups or the contents of a specific group.

Synopsis
procedure svgerase
procedure svgerase(gid: string)

Argument
gid Object group ID.

Further information

1. This procedure can be used together with svgpause to explore a number of different user graph
versions during the execution of a Mosel model.

2. If a group ID is specified only the objects within this group are removed without deleting the group
definition itself.

3. Use svgdelobj to delete individual graphical objects.

Related topics
svgdelobj, svgpause.

Fair Isaac Corporation Proprietary Information 488

Chapter 17: mmsvg

svggetgraphstyle

Purpose
Retrieve a style property of a graph.

Synopsis
function svggetgraphstyle(prop: string):text

Argument
prop The desired property (mmsvg constant or SVG property name).

Return value
Value of the property or empty string.

Example
This code retrieves the font family defined for a graph and applies it to an object group.

svgaddgroup("g", "A group")
svgsetstyle("g", SVG_FONTFAMILY, svggetgraphstyle("b", SVG_FONTFAMILY))

Further information
This function can be used to retrieve a style property of a graph in order to apply it to some object or
group of objects. Use svggetgraphstylesheet to retrieve the whole set of style properties of a graph.

Related topics
svggetstyle, svgsetstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 489

Chapter 17: mmsvg

svggetgraphstylesheet

Purpose
Retrieve the style definitions of a graph.

Synopsis
function svggetgraphstylesheet:array of text

Return value
An array of style properties (’stylesheet’) with their respective values.

Example
This code retrieves the style properties of a graph and applies them to an object group.

svgaddgroup("a", "A group")
svgsetstylesheet("a", svggetgraphstylesheet)

Further information
This function can be used to retrieve the set of style properties (’stylesheet’) of a graph in order to apply it
to some object or group of objects. Use svggetgraphstyle to retrieve individual style properties of a
graph.

Related topics
svggetstyle, svgsetstyle, svggetgraphstyle, svgsetgraphstyle,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 490

Chapter 17: mmsvg

svggetgraphviewbox

Purpose
Retrieve the viewbox definition of a graph.

Synopsis
function svggetgraphviewbox:svgbox

Return value
An object of type ’svgbox’ that holds the view box defined for the graph.

Example
This code displays the viewbox defined for a graph.

writeln(svggetgraphviewbox)

Further information
This function can be used to retrieve the viewbox (=visible area) defined for a graph.

Related topics
svgsetgraphviewbox.

Fair Isaac Corporation Proprietary Information 491

Chapter 17: mmsvg

svggetlastobj

Purpose
Retrieve the identifier of a graphical object.

Synopsis
function svggetlastobj:integer

Return value
Integer identifier of the last graphical object that has been added.

Example
This code retrieves an object identifier to apply several style settings.

declarations
t: integer

end-declarations

svgaddgroup("gt", "Text")
svgaddtext(20, 120, "Formatted text")
t:=svggetlastobj
svgsetstyle(t, SVG_COLOR, SVG_GREEN)
svgsetstyle(t, SVG_FONTSTYLE, "italic")

Further information
This function serves for retrieving the identifier of a graphical object, in particular in order to apply style
settings to this object.

Related topics
svgsetstyle.

Fair Isaac Corporation Proprietary Information 492

Chapter 17: mmsvg

svggetstyle

Purpose
Retrieve a style property of a graphical object or object group.

Synopsis
function svggetstyle(gid: string, prop: string):text
function svggetstyle(prop: string):text
function svggetstyle(obj: integer, prop: string):text

Arguments
gid Object group ID.
obj Object ID.
prop The desired property (mmsvg constant or SVG property name).

Return value
Value of the property or empty string.

Example
This code retrieves the color of a group and applies it to an object belonging to another group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstyle(svggetlastobj, SVG_COLOR, svggetstyle("b", SVG_COLOR))

Further information
This function can be used to retrieve a style property of some object in order to apply it to some other
object or group of objects. Use svggetstylesheet to retrieve the whole set of style properties of an
object or group of objects.

Related topics
svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet, svggetstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 493

Chapter 17: mmsvg

svggetstylesheet

Purpose
Retrieve style definitions of a graphical object or object group.

Synopsis
function svggetstylesheet(gid: string):array of text
function svggetstylesheet:array of text
function svggetstylesheet(obj: integer):array of text

Arguments
gid Object group ID.
obj Object ID.

Return value
An array of style properties (’stylesheet’) with their respective values.

Example
This code retrieves the style properties of a group and applies them to an object belonging to another
group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstylesheet(svggetlastobj, svggetstylesheet("b"))

Further information
This function can be used to retrieve the set of style properties (’stylesheet’) of some object in order to
apply it to some other object or group of objects. Use svggetstyle to retrieve individual style
properties of an object or group of objects.

Related topics
svggetstyle, svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 494

Chapter 17: mmsvg

svgpause

Purpose
Suspend the execution of a Mosel model at the line where the call occurs.

Synopsis
procedure svgpause

Further information
While the model run is suspended, the displayed graph or other model output can be inspected. This
allows for visualization of intermediate states or solutions. To continue, click on the ’Continue’ button in
the display window.

Fair Isaac Corporation Proprietary Information 495

Chapter 17: mmsvg

svgrefresh

Purpose
Refresh the graph display.

Synopsis
procedure svgrefresh

Example
This code defines some objects and draws the graph, it then adds further objects and updates te display..

svgaddgroup("a", "Group A")
svgaddtext(0, 0, "Some text")
svgrefresh ! Display the graph
svgaddgroup("b", "Group B")
svgaddtext("a", 0, 20, "Some more text")
svgaddcircle(10,10, 45)
svgrefresh ! Update the display

Further information
svgrefresh needs to be called in order to trigger the display of a graph. The subroutine can be called
repeatedly in order to update the display—each time it will be completely redrawn. The refresh frequency
can be controlled via svgsetreffreq.

Related topics
svgsetreffreq.

Fair Isaac Corporation Proprietary Information 496

Chapter 17: mmsvg

svgsave

Purpose
Save a graph to a file.

Synopsis
procedure svgsave(fname: string)

Argument
fname The (extended) filename to be used as output destination.

Example
This code saves a graph to the file ’mygraph.svg’ in the model working directory.

svgaddgroup("a", "Group A")
svgaddrectangle(20, 120, 200, 250)
svgsave("mygraph.svg")

Further information
This procedure can be used independently of the graphical display in order to produce output in SVG
format of the current graph definition.

Fair Isaac Corporation Proprietary Information 497

Chapter 17: mmsvg

svgsetgraphlabels

Purpose
Set x- and y-axis labels for a graph.

Synopsis
procedure svgsetgraphlabels(xlabel: text, ylabel: text)

Arguments
xlabel Label text for the x-axis.
ylabel Label text for the y-axis.

Example
The following line sets the x-axis label text to ’Time in sec’ and the y-axis label to ’Solution value’.

svgsetgraphlabels("Time in sec", "Solution value")

Further information

1. By default (no labels specified or empty strings) no label text is displayed.

2. The axes are displayed only if a label is defined (for x or y axis) unless svgshowgraphaxes has been
used.

Related topics
svgsetgraphscale, svgsetgraphpointsize, svgsetgraphviewbox, svgshowgraphaxes.

Fair Isaac Corporation Proprietary Information 498

Chapter 17: mmsvg

svgsetgraphpointsize

Purpose
Set point size property for a graph.

Synopsis
procedure svgsetgraphpointsize(val: real)

Argument
val The new value for the point size.

Example
This code shows how to modify graph scaling properties.

svgsetgraphpointsize(0.5)
svgsetgraphscale(10)

Further information
This routine is likely to be used in combination with svgsetgraphscale in order to resize a graph.

Related topics
svgsetgraphscale, svggetgraphstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet.

Fair Isaac Corporation Proprietary Information 499

Chapter 17: mmsvg

svgsetgraphscale

Purpose
Set scaling value for a graph.

Synopsis
procedure svgsetgraphscale(val: real)

Argument
val The new scaling value.

Example
This code shows how to modify graph scaling properties.

svgsetgraphpointsize(0.5)
svgsetgraphscale(10)

Further information
This routine is likely to be used in combination with svgsetgraphpointsize in order to resize a graph
for display.

Related topics
svgsetgraphpointsize, svggetgraphstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet.

Fair Isaac Corporation Proprietary Information 500

Chapter 17: mmsvg

svgsetgraphstyle

Purpose
Set a style property of a graph.

Synopsis
procedure svgsetgraphstyle(prop: string, val: text|real)

Arguments
prop The desired property (mmsvg constant or SVG property name).
val The new value for the property (usually a text, but properties like SVG_OPACITY or

SVG_STROKEWIDTH also accept numerical values).

Return value
Value of the property or empty string.

Example
This code retrieves the font family defined for a group and applies it to the entire graph.

svgaddgroup("g", "A group")
svgsetgraphstyle(SVG_FONTFAMILY, svggetstyle("g", SVG_FONTFAMILY))

Further information
This procedure can be used to define a style property of a graph. Use svgsetgraphstylesheet to
define the whole set of style properties of a graph.

Related topics
svggetstyle, svgsetstyle, svggetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 501

Chapter 17: mmsvg

svgsetgraphstylesheet

Purpose
Set the style definitions for a graph.

Synopsis
procedure svgsetgraphstylesheet(stsh: array (svgstyleattrs) of text)

Argument
stsh Style definition.

Example
This code retrieves the style properties of a group and applies them to the entire graph.

svgaddgroup("a", "A group")
svgsetgraphstylesheet(svggetstylesheet("a"))

Further information
This procedure can be used to define the set of style properties (’stylesheet’) of a graph. Use
svgsetgraphstyle to define individual style properties of a graph.

Related topics
svggetstyle, svgsetstyle, svggetgraphstyle, svgsetgraphstyle,
svggetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 502

Chapter 17: mmsvg

svgsetgraphviewbox

Purpose
Set the visible area for a user graph.

Synopsis
procedure svgsetgraphviewbox(x: real, y: real, w: real, h: real)
procedure svgsetgraphviewbox(box: svgbox)

Arguments
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the viewbox.
h The height of the viewbox.
box Viewbox specification as returned by svggetgraphviewbox.

Further information

1. The viewable area is determined by its lower left corner, its width and height.

2. mmsvg automatically determines a viewbox (enclosing all specified coordinates) that can be retrieved
with svggetgraphviewbox.

Related topics
svggetgraphviewbox, svgsetgraphlabels, svgsetgraphscale.

Fair Isaac Corporation Proprietary Information 503

Chapter 17: mmsvg

svgsetreffreq

Purpose
Set the refresh frequency for a graph.

Synopsis
procedure svgsetreffreq(val: real)

Argument
val The new refresh frequency (maximum number of refreshs per second).

Further information
The refresh frequency indicates how often individual calls to svgrefresh are posted to the display. If
several refresh occur during the specified time span, only the last one is executed.

Related topics
svgrefresh.

Fair Isaac Corporation Proprietary Information 504

Chapter 17: mmsvg

svgsetstyle

Purpose
Set a style property for a graphical object or object group.

Synopsis
procedure svgsetstyle(gid: string, prop: string, val: text|real)
procedure svgsetstyle(prop: string, val: text|real)
procedure svgsetstyle(obj: integer, prop: string, val: text|real)

Arguments
gid Object group ID.
obj Object ID.
prop The desired property (mmsvg constant or SVG property name).
val The new value for the property (usually a text, but properties like SVG_OPACITY or

SVG_STROKEWIDTH also accept numerical values).

Example
This code retrieves the color of a group and applies it to an object belonging to another group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstyle(svggetlastobj, SVG_COLOR, svggetstyle("b", SVG_COLOR))

Further information
This procedure can be used to define a style property of some object or group of objects. Use
svgsetstylesheet to redefine the whole set of style properties of an object or group of objects.

Related topics
svggetstyle, svggetgraphstylesheet, svgsetgraphstylesheet, svggetstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 505

Chapter 17: mmsvg

svgsetstylesheet

Purpose
Set the style for a graphical object or object group.

Synopsis
procedure svgsetstylesheet(gid: string, stsh: array (svgstyleattrs) of

text)
procedure svgsetstylesheet(stsh: array(svgstyleattrs) of text)
procedure svgsetstylesheet(obj: integer, stsh: array(svgstyleattrs) of

text)

Arguments
gid Object group ID.
obj Object ID.
stsh Style definition.

Example
This code retrieves the style properties of a group and applies them to an object belonging to another
group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstylesheet(svggetlastobj, svggetstylesheet("b"))

Further information
This procedure can be used to define a set of style properties (’stylesheet’) of some object or group of
objects. Use svgsetstyle to modify individual style properties of an object or group of objects.

Related topics
svggetstyle, svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Proprietary Information 506

Chapter 17: mmsvg

svgshowgraphaxes

Purpose
Force displaying of graph axes.

Synopsis
procedure svgshowgraphaxes(force:boolean)

Argument
force Decide whether graph axes must be shown when no label is defined.

Further information
By default the axes are only shown if a label text is defined (for x or y axis). This procedure makes it
possible to display the axes even if no label is used.

Related topics
svgsetgraphlabels.

Fair Isaac Corporation Proprietary Information 507

Chapter 17: mmsvg

svgwaitclose

Purpose
Delay model termination.

Synopsis
procedure svgwaitclose(msg:text,mode:integer)
procedure svgwaitclose(msg:text)
procedure svgwaitclose

Arguments
msg Some message to display.
mode Mode of operation:

0 Wait until the browser window is closed
1 Same as above except if running from Workbench: termination occurs after the

graph is loaded

Example
This code shows a typical call sequence for graphical display.

svgaddgroup("a", "Group A")
svgaddrectangle(20, 120, 200, 250)
svgrefresh ! Display the graphic
svgwaitclose ! Model waits here until display window is closed

Further information

1. A call to this routine is typically added to the end of any model that includes graphical display (that is,
calls to svgrefresh) via mmsvg to allow the user time for inspecting the graphical output. If this
subroutine call is not present, then model termination may close the display window or prevent the
browser to load the graph.

2. The last form of the routine is equivalent to svgwaitclose("",0).

Related topics
svgrefresh, svgclosing.

Fair Isaac Corporation Proprietary Information 508

CHAPTER 18

mmsystem

The mmsystem module provides a set of procedures and functions related to the operating system. Note
that the behavior of these operators may vary between systems. To use this module, the following line
must be included in the header of the Mosel model file:

uses 'mmsystem'

18.1 New functionality for the Mosel language
18.1.1 The type text

This module provides the type text for text manipulation. Like the Mosel basic type string, this new
type may be generated from all objects that can be converted to a text representation and supports the
usual string operations (like concatenation or formatting). In addition, text objects can be generated from
structured entities (like arrays or lists); altered (one can get and change a single as well as a sequence of
characters in a text); offer a wider set of operations (like insertion/deletion/search of substrings) and, as
all module types, are passed by reference to subroutines. Note that this type supports creation of
constants (i.e. it can be used in sets of constants) and implicit conversion from string: a routine
expecting a text as parameter may be used with a string instead (in this case the compiler creates a
temporary text from the provided string). When creating a text object from a structured type it is possible
to specify a limit on the size of the generated string. For instance if S is a set, text(S,128) will produce
a textual representation of S of at most 128 characters.

18.1.2 The type date
As the name suggests, the type date is used to represent a calendar date. Internally, a date is stored as
three independent integers for representing the year (-32768 to 32767), the month (-128 to 127) and the
day in the month (-128 to 127). The validity of a date can be checked using the function isvalid. A date
object can be initialized by a text string, a single or three numerical values. In the first case, the conversion
is processed using a predefined date format (see datefmt); in the second case, the integer is interpreted
as the number of days elapsed since 1/1/1970 (this value can be negative); finally, if three integers are
used, they are respectively interpreted as the year, month and day for the date. The constant SYS_NOW
may also be used to initialize a date: date(SYS_NOW) is the current date (local time). This type also
supports creation of constants (i.e. it can be used in sets of constants), assignment, comparison as well
as difference (returned in number of days) and addition/subtraction of an integer (number of days).

18.1.3 The type time
The type time is used to represent a time during the day. Internally, a time object is stored as an integer
representing a number of milliseconds. A time object can be initialized by a text string or one to four
numerical values. In the first case, the conversion is processed using a predefined time format (see

Fair Isaac Corporation Proprietary Information 509

Chapter 18: mmsystem

timefmt); in the second case, the integer is interpreted as a number of milliseconds. When two to four
integers are used, they are understood as the hours, minutes, seconds and milliseconds. The constant
SYS_NOWmay also be used to initialize a time: time(SYS_NOW) is the current time (local time). This
type also supports creation of constants (i.e. it can be used in sets of constants), assignment,
comparison as well as difference (returned in number of milliseconds) and addition/subtraction of an
integer (number of milliseconds).

18.1.4 The type datetime
The type datetime is used to represent a timestamp by combining a date and a time. A datetime object
can be initialized by a text string, a pair date and time or a numerical value. In the first case, the
conversion is processed using a predefined time format (see datetimefmt); in the third case, the
number is interpreted as the number of seconds elapsed since 1/1/1970 at midnight (this value can be
negative). If the provided number is a real value, the fractional part is stored as a number of milliseconds.
The constant SYS_NOWmay also be used to initialize a datetime: datetime(SYS_NOW) is the current
date and time (local time). This type also supports creation of constants (i.e. it cand be used in sets of
constants), assignment, comparison as well as difference (returned in number of seconds) and
addition/subtraction of a numerical value (number of seconds).

18.1.5 The type parsectx
This module publishes a set of routines for parsing input text strings (for instance parseint or
nextfield). These routines use several module parameters for both their configuration and as a way to
record their internal state: a variable of type parsectxmay be used as a replacement for these module
parameters in order to implement parsing procedures independent of the rest of the program. A single
parsectx object integrates endparse (see sys_endparse), sepchar (see sys_sepchar), trim
(see sys_trim) and qtype (see sys_qtype). The current value of each of these components can be
accessed using the corresponding set and get routine (for instance getendparse).

18.1.6 The type textarea
The textarea type is used by the regular expression matching function regmatch to return locations in
the input string. Each text area is defined by a starting position (that is an offset in the original string) and
an ending position characterised by the offset of the character following the region to be considered.
Functions getstart and getsucc can be used to retrieve these properties.

For instance, the following statement displays the region ta of the text txt:

writeln(copytext(txt,ta.start,ta.succ-1))

This can also be written as follows:

writeln(copytext(txt,ta))

18.2 Control parameters
Via the getparam function and the setparam procedure it is possible to access the following control
parameters of module mmsystem (the reader is reminded that parameters may be spelled with lower or
upper case letters or a mix of both):

datefmt Date text format. p. 511

datetimefmt Date and time text format. p. 512

Fair Isaac Corporation Proprietary Information 510

Chapter 18: mmsystem

monthnames List of month names. p. 512

sys_endparse End of parsing position. p. 513

sys_fillchar Padding character for text resize. p. 513

sys_pid Process identification. p. 513

sys_qtype Text quoting convention. p. 513

sys_regcache Number of regular expressions in cache. p. 514

sys_sepchar Separator character. p. 514

sys_trim Whether to trim spaces in text parsing. p. 514

sys_txtmem Size of the text block. p. 514

timefmt Time text format. p. 511

datefmt

Description Define the text format for both reading and writing a date.

Type String, read/write

Default value "%.y-%0m-%0d"

Note The date format consists in a text string in which the date information (like day number) is
specified using tags. A tag begins by the character "%" optionally followed by "." or "0" and
a character indicating which specific information must be provided. The possible values are:
C Century
Y Year number in the century
y Year
m Month (1-12)
N Name of month according to parameter monthnames
d Day (1-31)
% The symbol "%"

If the second character is used, the corresponding information is produced in fixed format with
space (".") or zero ("0") as the padding character. For instance, the day 1 will be displayed as
"1" with the format "%d"; as " 1" with "%.d" and as "01" with "%0d".

See also datetimefmt,monthnames

Module mmsystem

timefmt

Description Define the text format for both reading and writing time.

Type String, read/write

Default value "%0H:%0M:%0S%f"

Note The time format consists in a text string in which the time information (like number of seconds)
is specified using tags. A tag begins by the character "%" optionally followed by "." or "0"
and a character indicating which specific information must be provided. The possible values
are:

Fair Isaac Corporation Proprietary Information 511

Chapter 18: mmsystem

H Hour (0-23)
h Hour (1-12)
M Minute (0-59)
S Seconds (0-59)
s Milliseconds (0-999)
f Milliseconds as a fractonal value with a comma as the decimal separator (,001-,999)
F Milliseconds as a fractonal value with a dot as the decimal separator (.001-.999)
p text "pm" or "am"
P text "PM" or "AM"
% The symbol "%"

If the second character is used, the corresponding information is produced in fixed format with
space (".") or zero ("0") as the padding character. For instance, the hour 1 will be displayed
as "1" with the format "%H"; as " 1" with "%.H" and as "01" with "%0H". When the
formats f or F are used for parsing they both accept dot and comma as the decimal separator.
The formats f and F without second character ("." or "0") display nothing if the number of
milliseconds is 0.

See also datetimefmt

Module mmsystem

datetimefmt

Description Define the text format for both reading and writing a datetime object.

Type String, read/write

Default value "%.y-%0m-%0dT%0H:%0M:%0S%f"

Note The datetime format accepts the syntaxes of the date format and the time format in the same
string.

See also datefmt,timefmt

Module mmsystem

monthnames

Description Define month names to be used with the %N format.

Type String, read/write

Default value "jan feb mar apr may jun jul aug sep oct nov dec"

Note This parameter is used when converting dates from/to strings with the %N format. The string
must contain 12 words separated by spaces. For conversions from strings, the comparison is
not case sensitive.

See also datefmt,datetimefmt

Module mmsystem

Fair Isaac Corporation Proprietary Information 512

Chapter 18: mmsystem

sys_endparse

Description Index in the text string where the parsing stopped. This parameter is updated and may be used
(as a starting position) by the parse⁎ routines.

Type Integer, read/write

Set by routines parseint, parsereal, parseextn, parsetext, nextfield

Module mmsystem

sys_fillchar

Description Character code used to fill empty regions generated in text strings when using the function
setchar.

Type Integer, read/write

Values Between 1 and 127

Default value 32 (space character)

Affects routines setchar

Module mmsystem

sys_pid

Description System identification (Process ID) of the process running Mosel.

Type Integer, read only

Default value assigned by the operating system

Module mmsystem

sys_qtype

Description Convention to use when quoting/parsing a text string.

Type Integer, read/write

Default value 0

Note Supported quoting conventions are:
0 Mosel: strings optionally quoted with either single or double quotes. With

double quotes, escape sequences starting with the backslash character ("\")
are supported

1 C/C++: double quotes with escape sequences starting with the backslash
character ("\")

2 CSV: strings are optionally quoted with double quotes. The symbol "double
quotes" is doubled when it is included in a quoted string

3 JSON: double quotes with escape sequences starting with the backslash char-
acter ("\")

-1 No quoting

Affects routines parsetext, quote

Module mmsystem

Fair Isaac Corporation Proprietary Information 513

Chapter 18: mmsystem

sys_regcache

Description Regular expression searches require a compilation procedure to be performed before the actual
search. In order to speedup handling of expressions, a number of compiled expressions are
saved in a cache pool: this parameter specifies the size of this pool. Note that setting this
parameter has the effect of clearing the cache (even if the pool size if kept unchanged).

Type Integer, read/write

Values Between 1 and 25

Default value 3

Affects routines regmatch, regreplace

Module mmsystem

sys_sepchar

Description Character code used as a field separator for text parsing routines.

Type Integer, read/write

Values Between 1 and 127

Default value 32 (space character)

Affects routines parsetext, quote, nextfield

Module mmsystem

sys_trim

Description If this parameter is true, function nextfield skips blank characters around field separators.

Type Boolean, read/write

Default value true

Affects routines nextfield

Set by routines nextfield

See also sys_sepchar

Module mmsystem

sys_txtmem

Description All text objects are stored in a single block of memory. This parameter corresponds to the
size of this block expressed in kilobytes. Changing this value makes it possible either to
pre-allocate memory by increasing the size of the block or release unused memory by reducing
its size. If the requested size is not large enough to contain the currently defined text objects,
the memory block is reduced to the smallest possible size.

Type Integer, read/write

Default value 0 (at program startup)

Module mmsystem

Fair Isaac Corporation Proprietary Information 514

Chapter 18: mmsystem

18.3 Procedures and functions
In general, the procedures and functions of mmsystem do not fail but set a status variable that can be
read with getsysstat. To make sure the operation has been performed correctly, check the value of
this variable after each system call.

addmonths Add a number of months to a date or datetime. p. 518

compareic Compare 2 text strings ignoring case. p. 519

copytext Copy a part of a text or string. p. 520

cuttext Cut a part of a text returning a copy of the deleted string. p. 521

deltext Delete a part of a text. p. 522

endswith Check whether a text or string ends with a given string. p. 523

erase Securely deletes the content of a text entity. p. 524

expandpath Expand a path or file name. p. 525

fcopy Copy a file. p. 526

fdelete Delete a file. p. 527

findfiles Search for files according to file name patterns. p. 528

findtext Search for a string in a text or string. p. 529

fmove Rename or move a file. p. 530

formattext Create a text from a format string and its parameters. p. 531

getasnumber Convert a date, time or datetime into a number. p. 533

getchar Get a character in a string or text. p. 534

getcwd Get the current working directory. p. 535

getdate Get the date part of a datetime. p. 536

getday Get the day number in the month of a date or datetime. p. 537

getdaynum Get the day number in the year of a date or datetime. p. 538

getdays Get the number of days of a month. p. 539

getdirsep Get the directory separator of the running operating system. p. 540

getdsoparam Get the value of a control parameter. p. 541

getendparse, setendparse Get and set endparse property of a parser context. p. 542

getenv Get the value of an environment variable. p. 543

getfsize Get the size of a file. p. 544

getfstat, getflstat Get the status of a file or directory. p. 545

getftime Get time information of a file. p. 546

gethour Get the hour part of a time or datetime. p. 547

getminute Get the minute part of a time or datetime. p. 548

Fair Isaac Corporation Proprietary Information 515

Chapter 18: mmsystem

getmonth Get the month number of a date or datetime. p. 549

getmsec Get the millisecond part of a time or datetime. p. 550

getoserrmsg Get the message associated to a system error code. p. 552

getoserror Get the system error code of the last command. p. 551

getpathsep Get the path separator of the running operating system. p. 553

getqtype, setqtype Get and set qtype property of a parser context. p. 555

getsecond Get the second part of a time or datetime. p. 556

getsepchar, setsepchar Get and set sepchar property of a parser context. p. 557

getsize Get the size of a text. p. 558

getstart, setstart Get and set start property of a text area. p. 559

getsucc, setsucc Get and set succ (position of successor character) property of a text area.
p. 554

getsysinfo Get information about the running operating system. p. 560

getsysstat Get the system status. p. 561

gettime Get a time measure or the time part of a datetime. p. 562

gettmpdir Get the temporary directory as a text object. p. 563

gettrim, settrim Get and set trim property of a parser context. p. 564

getweekday Compute the day of the week for a date or datetime. p. 565

getyear Get the year part of a date or datetime. p. 566

inserttext Paste a text or string into a text. p. 567

isvalid Check whether a date, time or datetime is valid. p. 568

jointext Merge elements of a list or set into a text string. p. 569

makedir Create a new directory in the given file system. p. 570

makepath Create a new directory including its parents if necessary. p. 571

newtar Create a Unix tar archive from a list of files. p. 572

newzip Create a Zip archive from a list of files. p. 573

nextfield Advance to next field in a structured text string. p. 574

openpipe Start an external process for bidirectional communication. p. 575

parseextn Initialise an object of a module type from a text. p. 576

parseint Convert a text into an integer. p. 577

parsereal Convert a text into a real. p. 579

parsetext Extract a text from a text. p. 580

pastetext Paste a text or string into a text. p. 582

pathmatch Check whether a file name matches a given pattern. p. 583

Fair Isaac Corporation Proprietary Information 516

Chapter 18: mmsystem

pathsplit Split a path into its components. p. 584

qsort Sort a list or an array or (a subset of) the indices of an array. p. 585

quote Quote and encode a text string. p. 587

readlink Get the value of a symbolic link. p. 588

readtextline Read a line of text from the current input stream. p. 589

regmatch Compare text strings using a regular expression. p. 590

regreplace Replace portions of a text string based on a regular expression. p. 592

removedir Remove a directory. p. 593

removefiles Remove files selected using file name patterns. p. 594

setchar Set a character in a text. p. 595

setdate Set the date part of a datetime. p. 596

setday Set the day number of a date or datetime. p. 597

setdsoparam Set the value of a control parameter. p. 598

setenv Set the value of an environment variable. p. 599

sethour Set the hour part of a time or datetime. p. 601

setminute Set the minute part of a time or datetime. p. 602

setmonth Set the month number of a date or datetime. p. 603

setmsec Set the millisecond part of a time or datetime. p. 604

setoserror Set the current system error code. p. 600

setsecond Set the second part of a time or datetime. p. 605

settime Set the time part of a datetime. p. 606

setyear Set the year part of a date or datetime. p. 607

sleep Suspend execution for a fixed amount of time. p. 608

splittext Split a text string. p. 609

startswith Check whether a text or string starts with a given string. p. 610

symlink Create a symbolic link. p. 611

system Execute an external program. p. 612

tarlist Get the list of files included in a Unix tar archive. p. 614

textfmt Create a formatted text from a string, a text or a number. p. 615

tolower Generate the lowercase version of the provided text. p. 617

toupper Generate the uppercase version of the provided text. p. 618

trim Remove blank characters at the beginning and/or end of a text string. p. 619

untar Extract files from a Unix tar archive. p. 620

unzip Extract files from a Zip archive. p. 621

ziplist Get the list of files included in a Zip archive. p. 622

Fair Isaac Corporation Proprietary Information 517

Chapter 18: mmsystem

addmonths

Purpose
Add a number of months to a date or datetime.

Synopsis
function addmonths(d:date, nbm:integer):date
function addmonths(dt:datetime, nbm:integer):datetime

Arguments
d A date object
dt A datetime object
nbm The number of months to be added (can be negative)

Return value
The modified date or datetime.

Example

writeln(addmonths(date(2000,1,31),1)) ! displays: 2000-02-29
writeln(addmonths(date(2012,12,12),-12)) ! displays: 2011-12-12

Further information
The day number is preserved unless it is not compatible with the computed month: in this case the day
number is moved to the last day of the month.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 518

Chapter 18: mmsystem

compareic

Purpose
Compare 2 text strings ignoring case.

Synopsis
function compareic(arg1:string|text, arg2:string|text):integer

Arguments
arg1 First operand for the comparison
arg2 Second operand for the comparison

Return value
0 if strings are identical, -1 if the first string is less than the second string and 1 otherwise.

Further information
This function behaves like compare but ignoring case.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 519

Chapter 18: mmsystem

copytext

Purpose
Copy a part of a text or string.

Synopsis
function copytext(t:text|string, i1:integer, i2:integer):text
function copytext(t:text|string, ta:textarea):text

Arguments
t A string or text object
i1 Starting position of the region to copy
i2 End position of the region to copy
ta A text area object

Return value
A copy of the region.

Example
The following:

writeln(copytext("abcdefgh",3,7))
writeln(copytext("abcdefgh",7,10))

produces this output:

cdefg
gh

Further information
This function returns an empty text if the bounds are not compatible with the string (e.g. starting position
larger than the length of the string) or inconsistent (e.g. starting position after end position).

Related topics
deltext, inserttext, pastetext, cuttext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 520

Chapter 18: mmsystem

cuttext

Purpose
Cut a part of a text returning a copy of the deleted string.

Synopsis
function cuttext(txt:text, i1:integer, i2:integer):text
function cuttext(txt:text, ta:textarea):text

Arguments
txt A text object
i1 Starting position of the region to cut
i2 End position of the region to cut
ta A text area object

Return value
A copy of the region. The input text is modified accordingly.

Example
The following:

t:=text("abcdefgh")
writeln(cuttext(t,3,7))
writeln(t)

produces this output:

cdefg
abh

Further information
This function returns an empty text if the bounds are not compatible with the string (e.g. starting position
larger than the length of the string) or inconsistent (e.g. starting position after end position).

Related topics
deltext, inserttext, pastetext, copytext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 521

Chapter 18: mmsystem

deltext

Purpose
Delete a part of a text.

Synopsis
procedure deltext(txt:text, i1:integer, i2:integer)
procedure deltext(txt:text, ta:textarea)

Arguments
txt A text object
i1 Starting position of the region to delete
i2 End position of the region to delete
ta A text area object

Example
The following:

t:=text("abcdefgh")
deltext(t,3,7)
writeln(t)

produces this output:

abh

Related topics
cuttext, inserttext, pastetext, copytext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 522

Chapter 18: mmsystem

endswith

Purpose
Check whether a text or string ends with a given string.

Synopsis
function endswith(txt:text|string, tofs:text|string):boolean

Arguments
txt A string or text object
tofs String to find

Return value
true if the ending of txt corresponds to tofs.

Related topics
startswith

Module
mmsystem

Fair Isaac Corporation Proprietary Information 523

Chapter 18: mmsystem

erase

Purpose
Securely deletes the content of a text entity.

Synopsis
procedure erase(txt:text)

Argument
txt A text object to be erased

Further information
This function resets the text string it receives after having replaced each of its characters by a space.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 524

Chapter 18: mmsystem

expandpath

Purpose
Expand a path or file name.

Synopsis
function expandpath(fname:string|text):text

Argument
fname File name to be expanded

Return value
An absolute path to the given file name or an empty string in case of failure.

Further information

1. This function expands a path or file name: it replaces all relative references (like "." or "..") and
completes the path such that the returned string is an absolute path to the provided file name.

2. Only the "tmp:" IO driver can be expanded: any other driver reference will make the function fail and
result in an empty string.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 525

Chapter 18: mmsystem

fcopy

Purpose
Copy a file.

Synopsis
procedure fcopy(namesrc:string|text, namedest:string|text)
procedure fcopy(namesrc:text, opts:integer, namedest:text, optd:integer)

Arguments
namesrc The name of the file to be copied
opts Open options for the input file
namedest The destination name
optd Open options for the output file

Example
The following statement appends file "src" to file "dst":

fcopy("src",0,"dst",F_APPEND)

Further information

1. This procedure copies the file namesrc to namedest (that is replaced if it already exists). The provided
names may use extended notation.

2. With the second form of the procedure it is possible to select options used to open the 2 files (as used
with the fopen procedure). The first syntax corresponds to:
fcopy(src,F_SILENT+F_BINARY,dst,F_SILENT+F_BINARY)

Related topics
fopen, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 526

Chapter 18: mmsystem

fdelete

Purpose
Delete a file.

Synopsis
procedure fdelete(filename:string|text)

Argument
filename The extended name of the file to be deleted

Further information
The provided name may use extended notation.

Related topics
removedir, removefiles, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 527

Chapter 18: mmsystem

findfiles

Purpose
Search for files according to file name patterns.

Synopsis
procedure findfiles(opt:integer,lsf:list of text,

dir:string|text,filters:string|text)
procedure findfiles(opt:integer,lsf:list of text,filters:string|text)
procedure findfiles(lsf:list of text,filters:string|text)
procedure findfiles(lsf:list of text)

Arguments
opt Options (several options can be combined):

SYS_RECURS Recursive search in subdirectories
SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories
SYS_REVORD Reverse sort order
SYS_NOSORT Do not sort resulting list

lsf Resulting list of file names
dir Base directory for the search (default: current directory)
filters File name filters (default: all files reported)

Example
The following prints the list of files with extension .mos and .bim of the current directory:

findfiles(lsf,"⁎.mos|⁎.bim")
writeln(lsf)

Further information

1. The filters argument consists in a list of patterns separated by the symbol ";": for each of these
patterns the function executes a search from the specified dir directory. A pattern is composed of a
path (using the usual operating system conventions) which last component may include wildcard
characters "⁎" (any text of any length), "?" (any single character) and "|" (logical "or"). For instance
"bin/⁎.exe;models/⁎.mos|⁎.dat" will select all files with extension ".exe" in the "bin"
directory as well as files with extension ".mos" and ".dat" in the "models" directory.

2. File name matching is achieved using function pathmatch and differences may be observed depending
on the operating system (e.g. file names are case sensitive under Posix systems but not under Windows).

3. Unless option SYS_NOSORT is used, the resulting list is sorted and duplicate entries are removed. Note
also that the provided list lsf is not reset: the result of the search is appended to this list.

Related topics
removefiles, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 528

Chapter 18: mmsystem

findtext

Purpose
Search for a string in a text or string.

Synopsis
function findtext(txt:text, toft:text, start:integer):integer
function findtext(txt:text, tofs:string, start:integer):integer
function findtext(str:string, tofs:string, start:integer):integer

Arguments
txt A text object
str String
toft Text to find
tofs String to find
start Starting position for the search

Return value
Index of the string or 0 if not found.

Example
The following:

writeln(findtext("abcdefgh","de",2))
writeln(findtext("abcdefgh","de",5))

produces this output:

4
0

Related topics
regmatch

Module
mmsystem

Fair Isaac Corporation Proprietary Information 529

Chapter 18: mmsystem

fmove

Purpose
Rename or move a file.

Synopsis
procedure fmove(namesrc:string|text,namedest:string|text)

Arguments
namesrc The name of the file to be moved or renamed
namedest The destination name and/or path

Further information
This procedure renames the file namesrc to namedest. If the second name is a directory, the file is
moved into that directory; if it is an existing file it is first removed before the renaming. The provided
names may use extended notation.

Related topics
getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 530

Chapter 18: mmsystem

formattext

Purpose
Create a text from a format string and its parameters.

Synopsis
function formattext(fmt:string, a1, a2...):text
function formattext(fmt:string, l: list):text

Arguments
fmt Format string
ai Parameters of the format string
l List of parameters of the format string

Return value
Formatted text.

Example
The following:

writeln(formattext("text1%8stext3", "text2"))
writeln(formattext("text1%-8stext3", "text2"))
r:=789.123456
writeln(formattext("%1$r %1$4.2f%1$8.0f",r))

produces this output:

text1 text2text3
text1text2 text3
789.123 789.12 789

Fair Isaac Corporation Proprietary Information 531

Chapter 18: mmsystem

Further information

1. This procedure behaves in a similar way as the sprintf function of the C language: the resulting text is
generated by inserting each of the parameters ai in the format string at locations identified by a marker.
This marker is of the form:

%[index$][flags][width][.precision]conv

Where index (a non negative integer), flags (string of ’ ’, ’-’, ’+’, ’0’ and ’#’), width (positive
integer) and precision (non negative integer) are optional.
The index indicates which parameter to use for the conversion (first parameter has number 1), when it is
not specified the marker position is used instead (e.g. the third marker is used for the third parameter).
The flags essentially affect numerical conversions: with the flag ’0’ the value is zero padded; with ’-’
the value is left justified; with a space a blank is put before positive numbers and with ’+’ positive
numbers are preceded by the ’+’ sign.
The width defines a minimum width for the field.
The precision gives the minimum number of digits to appear for an integer conversion. With a floating
point value and a conversion ’a’, ’A’, ’e’, ’E’ or ’f’ it states the number of digits to appear after the
radix and for a ’g’ conversion it is the maximum number of significant digits. The precision indicates a
maximum number of characters to display with textual conversions.
The conversion specifier conv is a letter indicating how to process the corresponding parameter and what
to ouput. Possible values for this character are:
diouxX an integer value is output: the parameter must be an integer or a Boolean. The value is

displayed as a decimal number (’d’ or ’i’), an octal number (’o’), an unsigned number (’u’)
or a hexadecimal number (’x’ or ’X’)

eEfgraAjy a real value is output: the parameter must be a real or an integer. If it is a real and
parameter txtztol is true then any value smaller than parameter zerotol will be replaced 0.
When using the ’r’ conversion the optional part components of the marker are ignored and the
value is converted using the current real printing format (according to the realfmt parameter,
see setparam). The conversions ’e’ and ’E’ format the number as [-]d.ddde+/-dd;
conversion ’f’ uses a format of the form [-]ddd.ddd and conversion ’g’ selects format ’e’
or ’f’ depending on the value of the number. With ’a’ and ’A’ the value is converted to an
hexadecimal representation of the form [-]0xh.hhhp[+/-]ddd where ’h’ are hexadecimal
digits and ’d’ decimal digits. The conversions ’j’ and ’y’ produce a reversible textual
representation of the real number (i.e. converting the string back to real restores the exact
original value). The format ’j’ generates a decimal notation similar to the specification
ECMA-262 (e.g. "123.456") while the format ’y’ produces a scientific notation in all cases
(e.g. "1.2345e2").

b ’true’ or ’false’ is output: the parameter must be a Boolean
c a character is output: the parameter must be an integer that is interpreted as a Unicode code

point
s a text string is output: the parameter must be a string or any type supporting conversion to text
p a pointer expressed in hexadecimal is output: the parameter can be any referenced entity

2. To include the symbol ’%’ in the format string use the sequence ’%%’.

Related topics
textfmt, setparam

Module
mmsystem

Fair Isaac Corporation Proprietary Information 532

Chapter 18: mmsystem

getasnumber

Purpose
Convert a date, time or datetime into a number.

Synopsis
function getasnumber(d:date):integer
function getasnumber(t:time):integer
function getasnumber(dt:datetime):real

Arguments
d A date object
t A time object
dt A datetime object

Return value
The numerical representation of the argument.

Further information
A date is converted to an integer Julian Day Number (number of days since 1/1/1970 at midnight). This
function returns an integer number of milliseconds for a time and a real number of seconds for a
datetime. This number represents the number of seconds and milliseconds (as the fractional part of
the number) since 1/1/1970 at midnight.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 533

Chapter 18: mmsystem

getchar

Purpose
Get a character in a string or text.

Synopsis
function getchar(txt:text, index:integer):integer
function getchar(str:string, index:integer):integer

Arguments
txt A text object
str String
index Position of the character

Return value
Character code or -1 if the index is not valid.

Related topics
setchar

Module
mmsystem

Fair Isaac Corporation Proprietary Information 534

Chapter 18: mmsystem

getcwd

Purpose
Get the current working directory.

Synopsis
function getcwd:string

Return value
The current working directory.

Further information

1. This function returns the current working directory, that is the directory where the model is being
executed and where files are looked for.

2. The returned value corresponds to getparam("workdir"). The current working directory can also be
changed via this control parameter (for instance setparam("workdir","../somedir").

Module
mmsystem

Fair Isaac Corporation Proprietary Information 535

Chapter 18: mmsystem

getdate

Purpose
Get the date part of a datetime.

Synopsis
function getdate(dt:datetime):date

Argument
dt A datetime object

Return value
A date object.

Related topics
gettime, getasnumber

Module
mmsystem

Fair Isaac Corporation Proprietary Information 536

Chapter 18: mmsystem

getday

Purpose
Get the day number in the month of a date or datetime.

Synopsis
function getday(d:date):integer
function getday(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return value
Day number in the month.

Related topics
getyear, getmonth, getdaynum

Module
mmsystem

Fair Isaac Corporation Proprietary Information 537

Chapter 18: mmsystem

getdaynum

Purpose
Get the day number in the year of a date or datetime.

Synopsis
function getdaynum(d:date):integer
function getdaynum(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return value
Day number in the year.

Example

writeln(getdaynum(date(2010,2,1))) ! displays: 32

Related topics
getday

Module
mmsystem

Fair Isaac Corporation Proprietary Information 538

Chapter 18: mmsystem

getdays

Purpose
Get the number of days of a month.

Synopsis
function getdays(y:integer, m:integer):integer
function getdays(d:date):integer
function getdays(dt:datetime):integer

Arguments
y Year
m Month
d A date object
dt A datetime object

Return value
Number of days for the given month in the specified year.

Example

writeln(getdays(2016,2)) ! displays: 29

Module
mmsystem

Fair Isaac Corporation Proprietary Information 539

Chapter 18: mmsystem

getdirsep

Purpose
Get the directory separator of the running operating system.

Synopsis
function getdirsep:string

Return value
"/" on Posix systems and "\" on Windows.

Related topics
getpathsep

Module
mmsystem

Fair Isaac Corporation Proprietary Information 540

Chapter 18: mmsystem

getdsoparam

Purpose
Get the value of a control parameter.

Synopsis
function getdsoparam(name:string|text):text

Argument
name Name of a control parameter (including the module name).

Return value
Current setting of the control parameter as a text.

Further information

1. This function is similar to getparam except that the control parameter name is searched at runtime. As
a consequence this identifier does not need to be a constant string but the execution is significantly
slower than getparam and it cannot be applied to package parameters.

2. The provided parameter name must include the module name (e.g. "mmsystem.datefmt") otherwise
the identifier is searched only in the list of Mosel parameters.

3. As opposed to getparam this procedure does not raise an error in case of failure (like parameter not
found): use getsysstat to detect error conditions.

Related topics
setdsoparam, getsysstat

Fair Isaac Corporation Proprietary Information 541

Chapter 18: mmsystem

getendparse, setendparse

Purpose
Get and set endparse property of a parser context.

Synopsis
function getendparse(pctx:parsectx):integer
procedure setendparse(pctx:parsectx, ep:integer)

Arguments
pctx A parser context
ep New endparse value

Return value
Current endparse value stored in the context.

Related topics
sys_endparse, getsepchar, gettrim, getqtype

Module
mmsystem

Fair Isaac Corporation Proprietary Information 542

Chapter 18: mmsystem

getenv

Purpose
Get the value of an environment variable of the operating system.

Synopsis
function getenv(name:string|text):string

Argument
name Name of the environment variable

Return value
Value of the environment variable (an empty string if the variable is not defined).

Further information
This procedure is included in the published interface of mmsystem (see Section 18.5).

Example
The value of the environment variable PATH is retrieved as follows:

str:= getenv("PATH")

Related topics
setenv

Module
mmsystem

Fair Isaac Corporation Proprietary Information 543

Chapter 18: mmsystem

getfsize

Purpose
Get the size of a file.

Synopsis
function getfsize(filename:string|text):integer

Argument
filename Name (and path) of the file

Return value
The size of the file in bytes or -1 in case of error

Further information
The function returns -1 if the file cannot be found or accessed and MAX_INT if the size exceeds the
integer capacity (~2Gb).

Related topics
getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 544

Chapter 18: mmsystem

getfstat, getflstat

Purpose
Get the status (type and access mode) of a file or directory.

Synopsis
function getfstat(filename:string|text):integer
function getflstat(filename:string|text):integer

Argument
filename Name (and path) of the file or directory to check

Return value
Bit encoded type and mode of the given file or 0 if the file cannot be accessed.

Example
The following determines whether ftest is a directory and if it is writable:

fstat:= getfstat("ftest")
if bittest(fstat, SYS_TYP)=SYS_DIR
then writeln("ftest is a directory")
end-if
if bittest(fstat, SYS_WRITE)=SYS_WRITE
then writeln("ftest is writeable")
end-if

Further information

1. The returned status type may be decoded using the constant mask SYS_TYP (the types are exclusive).
Possible values are:
SYS_DIR Directory
SYS_REG Regular file
SYS_LNK Symbolic link
SYS_OTH Special file (device, pipe...)
The access mode may be decoded using the constant mask SYS_MOD (the access modes are additive).
Possible values are:
SYS_READ Can be read
SYS_WRITE Can be modified
SYS_EXEC Is executable

2. The 2 versions of this function behave the same except for symbolic links: the first one (getfstat) reports
the properties of the linked file while the second (getflstat) reports a type SYS_LNK.

Related topics
readlink, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 545

Chapter 18: mmsystem

getftime

Purpose
Get time information of a file.

Synopsis
function getftime(filename:string|text,what:integer):real

Arguments
filename Name (and path) of the file
what Information requested. Possible values:

SYS_FTIM_ACC Last access
SYS_FTIM_MOD Last modification

Return value
The time requested as the number of seconds elapsed since 1/1/1970 at midnight or 0 in case of error.

Related topics
getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 546

Chapter 18: mmsystem

gethour

Purpose
Get the hour part of a time or datetime.

Synopsis
function gethour(t:time):integer
function gethour(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return value
Hour as an integer.

Related topics
getminute, getsecond, getmsec

Module
mmsystem

Fair Isaac Corporation Proprietary Information 547

Chapter 18: mmsystem

getminute

Purpose
Get the minute part of a time or datetime.

Synopsis
function getminute(t:time):integer
function getminute(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return value
Minute as an integer.

Related topics
gethour, getsecond, getmsec

Module
mmsystem

Fair Isaac Corporation Proprietary Information 548

Chapter 18: mmsystem

getmonth

Purpose
Get the month number of a date or datetime.

Synopsis
function getmonth(d:date):integer
function getmonth(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return value
Month number in the year.

Related topics
getyear, getday

Fair Isaac Corporation Proprietary Information 549

Chapter 18: mmsystem

getmsec

Purpose
Get the millisecond part of a time or datetime.

Synopsis
function getmsec(t:time):integer
function getmsec(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return value
Millisecond as an integer.

Related topics
gethour, getminute, getsecond

Module
mmsystem

Fair Isaac Corporation Proprietary Information 550

Chapter 18: mmsystem

getoserror

Purpose
Get the system error code of the last command.

Synopsis
function getoserror:integer

Return value
A system error code or 0 if the last operation of the module was executed sucessfully.

Further information
This function reports the current system error code (corresponding to the C-variable errno on Posix and
the C-function GetLastError() on Windows): it can be used after getsysstat has returned a
non-zero status to get the actual system error (if the failure was actually due to a system error). This code
is system dependent but the corresponding error message might be retrieved using getoserrmsg.

Related topics
setoserror

Module
mmsystem

Fair Isaac Corporation Proprietary Information 551

Chapter 18: mmsystem

getoserrmsg

Purpose
Get the message associated to a system error code.

Synopsis
function getoserrmsg(ec:integer):text

Argument
ec A system error code

Return value
The message corresponding to the provided code or an empty string if the code is not known.

Further information
This function returns an explanatory message associated to the error code obtained from getoserror.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 552

Chapter 18: mmsystem

getpathsep

Purpose
Get the path separator of the running operating system.

Synopsis
function getpathsep:string

Return value
":" on Posix systems and ";" on Windows.

Related topics
getdirsep

Module
mmsystem

Fair Isaac Corporation Proprietary Information 553

Chapter 18: mmsystem

getsucc, setsucc

Purpose
Get and set succ (position of successor character) property of a text area.

Synopsis
function getsucc(ta:textarea):integer
procedure setsucc(ta:textarea, st:integer)

Arguments
ta A text area object
st New succ value

Return value
Current succ value stored in the object.

Related topics
getstart

Module
mmsystem

Fair Isaac Corporation Proprietary Information 554

Chapter 18: mmsystem

getqtype, setqtype

Purpose
Get and set qtype property of a parser context.

Synopsis
function getqtype(pctx:parsectx):integer
procedure setqtype(pctx:parsectx, qt:integer)

Arguments
pctx A parser context
qt New qtype value

Return value
Current qtype value stored in the context.

Related topics
sys_qtype, getsepchar, gettrim, getendparse

Module
mmsystem

Fair Isaac Corporation Proprietary Information 555

Chapter 18: mmsystem

getsecond

Purpose
Get the second part of a time or datetime.

Synopsis
function getsecond(t:time):integer
function getsecond(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return value
Second as an integer.

Related topics
gethour, getminute, getmsec

Module
mmsystem

Fair Isaac Corporation Proprietary Information 556

Chapter 18: mmsystem

getsepchar, setsepchar

Purpose
Get and set sepchar property of a parser context.

Synopsis
function getsepchar(pctx:parsectx):integer
procedure setsepchar(pctx:parsectx, sc:integer)

Arguments
pctx A parser context
sc New sepchar value

Return value
Current sepchar value stored in the context.

Related topics
sys_sepchar, getendparse, gettrim, getqtype

Module
mmsystem

Fair Isaac Corporation Proprietary Information 557

Chapter 18: mmsystem

getsize

Purpose
Get the size of a text.

Synopsis
function getsize(txt:text):integer
function getsize(ta:textarea):integer

Arguments
txt A text object
ta A text area object

Return value
The number of characters included in the text or text area.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 558

Chapter 18: mmsystem

getstart, setstart

Purpose
Get and set start property of a text area.

Synopsis
function getstart(ta:textarea):integer
procedure setstart(ta:textarea, st:integer)

Arguments
ta A text area object
st New start value

Return value
Current start value stored in the object.

Related topics
getsucc

Module
mmsystem

Fair Isaac Corporation Proprietary Information 559

Chapter 18: mmsystem

getsysinfo

Purpose
Get information about the running operating system.

Synopsis
function getsysinfo:string
function getsysinfo(what:integer):string
function getsysinfo(I:Mosel):string
function getsysinfo(I:Mosel,what:integer):string

Arguments
what What information to collect:

SYS_NAME Name of the operating system
SYS_VER Version name of the operating system
SYS_REL Release number of the operating system
SYS_PROC Processor type
SYS_ARCH Processor architecture (32 or 64 bit)
SYS_NODE Computer name
SYS_RAM Total amount of system memory (in megabytes)

I A Mosel instance

Return value
A text string reporting the requested information.

Example
The following prints the computer name and its operating system version:

writeln("Node ",getsysinfo(SYS_NODE),
" is running ",getsysinfo(SYS_NAME+SYS_REL))

Further information

1. Several information items can be obtained in a single call by summing up the option codes. In such a
case, the resulting string consists in the different items separated by commas.

2. When the function is used without the what parameter, all information items are returned.

3. This function may also be used with a Mosel instance as its first parameter. In this case the returned
information relates to the system running this instance instead of the current system.

Related topics
mmjobs

Module
mmsystem

Fair Isaac Corporation Proprietary Information 560

Chapter 18: mmsystem

getsysstat

Purpose
Get the system status.

Synopsis
function getsysstat:integer

Return value
0 if the last operation of the module was executed sucessfully.

Example
In this example we attempt to delete the file randomfile. If this is unsuccessful, a warning message is
displayed:

fdelete("randomfile")
if getsysstat <> 0 then
writeln("randomfile could not be deleted.")
end-if

Further information
This function should be used after every system call in order to check the status of the operation.

Related topics
getoserror, getoserrmsg

Module
mmsystem

Fair Isaac Corporation Proprietary Information 561

Chapter 18: mmsystem

gettime

Purpose
Get a time measure or the time part of a datetime.

Synopsis
function gettime:real
function gettime(dt:datetime):time

Argument
dt A datetime object

Return value
Time measure in seconds or a time object.

Example
The following prints the program execution time:

starttime:= gettime ! Get the start time
... ! Do something

write("Time: ",gettime-starttime)

Further information

1. The measure returned by this function corresponds to the elapsed time since the module has been
initialized (just before execution of the model starts).

2. The second form of this function is used to extract the time part of a datetime structure.

Related topics
getdate, getasnumber

Module
mmsystem

Fair Isaac Corporation Proprietary Information 562

Chapter 18: mmsystem

gettmpdir

Purpose
Get the temporary directory as a text object.

Synopsis
function gettmpdir:text

Return value
Temporary directory as a text object.

Further information
This function is equivalent to text(getparam("tmpdir")).

Module
mmsystem

Fair Isaac Corporation Proprietary Information 563

Chapter 18: mmsystem

gettrim, settrim

Purpose
Get and set trim property of a parser context.

Synopsis
function gettrim(pctx:parsectx):boolean
procedure settrim(pctx:parsectx, t:boolean)

Arguments
pctx A parser context
t New trim value

Return value
Current trim value stored in the context.

Related topics
sys_trim, getsepchar, getendparse, getqtype

Module
mmsystem

Fair Isaac Corporation Proprietary Information 564

Chapter 18: mmsystem

getweekday

Purpose
Compute the day of the week for a date or datetime.

Synopsis
function getweekday(d:date):integer
function getweekday(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return value
The number of the day in the week (1-7).

Further information
The first day of the week (number 1) is Monday.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 565

Chapter 18: mmsystem

getyear

Purpose
Get the year part of a date or datetime.

Synopsis
function getyear(d:date):integer
function getyear(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return value
Year as an integer.

Related topics
getmonth, getday

Module
mmsystem

Fair Isaac Corporation Proprietary Information 566

Chapter 18: mmsystem

inserttext

Purpose
Paste a text or string into a text.

Synopsis
procedure inserttext(txt:text, str:string, start:integer)
procedure inserttext(txt:text, src:text, start:integer)

Arguments
txt A text object
src A text object
str A string
start Insert position

Example
The following:

t:=text("abcdefgh")
inserttext(t,"123",2)
writeln(t)
inserttext(t,"456",8)
writeln(t)

produces this output:

a123bcdefgh
a123bcd456efgh

Related topics
cuttext, deltext, pastetext, copytext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 567

Chapter 18: mmsystem

isvalid

Purpose
Check whether a date, time or datetime is valid.

Synopsis
function isvalid(d:date):boolean
function isvalid(t:time):boolean
function isvalid(dt:datetime):boolean

Arguments
d A date object
t A time object
dt A datetime object

Return value
True if the argument is valid.

Further information
A date is valid if its month number is in the range 1-12 and its day number is in the range 1-31 and is
compatible with its month number (for instance 2006-2-29 is not a valid date). A time is valid if it is
positive and smaller than an entire day. A datetime is valid if both its date part and its time part are
valid.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 568

Chapter 18: mmsystem

jointext

Purpose
Merge elements of a list or set into a text string.

Synopsis
function jointext(ls:list|set):text
function jointext(ls:list|set, mxe:integer):text
function jointext(ls:list|set, sep:string):text
function jointext(ls:list|set, sep:string, mxe:integer):text

Arguments
ls List or set to use as input
sep Separator string (default: ’,’)
mxe Maximum number of elements to merge (default: 0 for no limit)

Return value
A text string consisting of the concatenation of set or list elements.

Further information

1. This function concatenates the elements of an input list or set to produce a text string. Items are
separated by the provided separator string that may be an empty string.

2. The argument mxemay be used to specify a maximum number of elements to process (the remaining
portion of the input data is ignored). If this limit is negative then the elements are taken from the end of
the collection (e.g. with -3 the last 3 elements of the collection are used), otherwise elements are taken
from the beginning.

Related topics
splittext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 569

Chapter 18: mmsystem

makedir

Purpose
Create a new directory in the given file system.

Synopsis
procedure makedir(dirname:string|text)

Argument
dirname The name and path of the directory to be created

Related topics
removedir, makepath, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 570

Chapter 18: mmsystem

makepath

Purpose
Create a new directory including its parents if necessary.

Synopsis
procedure makepath(dirname:string|text)
procedure makepath(dirname:string|text,last_is_file:boolean)

Arguments
dirname The name and path of the directory to be created
last_is_file If true, the last component of the path is ignored

Further information

1. This routine creates the directory dirname as well as intermediate directories in the path if necessary.
For instance, makepath("/tmp/dir1/dir2") will create "/tmp" then "/tmp/dir1" before
"/tmp/dir1/dir2" if these directories are missing.

2. As opposed to makedir, this routine does not return an error condition if the path already exists.

3. The second form of this procedure can be used when the argument is a path to a file in order to create
the directory in which the file can be created. For instance, makepath("/tmp/dir1/myfile",true)
will create "/tmp/dir1" such that file /tmp/dir1/myfile" can be created.

Related topics
removedir, makedir, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 571

Chapter 18: mmsystem

newtar

Purpose
Create a Unix tar archive from a list of files.

Synopsis
procedure newtar(opt:integer, tarfile:text, dir:text,

lsf:list of text|string)
procedure newtar(tarfile:text, lsf:list of text|string)

Arguments
opt Options:

SYS_NODIR Do not store directories (only files)
SYS_DIRONLY Store only directories
SYS_FLAT Store all files in the root directory of the archive (i.e. do not preserve

directory structure)
tarfile File name of the archive
dir Base directory (default: current directory)
lsf List of files and directories to store in the archive (file names are relative to the dir directory)

Example
The following creates an archive of the Xpress installation including only binary files:

findfiles(SYS_RECURS,lsf,getenv("XPRESSDIR"),"bin/⁎;lib/⁎;dso/⁎")
newtar(0,"xpress.tar",getenv("XPRESSDIR"),lsf)

Further information

1. This implementation processes only regular files, symbolic links (on Posix systems) and directories:
other file types are silently ignored and not included in the archive.

2. By default file names are represented according the current system encoding in the archive. To select a
different encoding use the enc: file name prefix (see Section 2.16) on the archive name (e.g.
"enc:utf-8,myarc.tar").

3. File names including ".." are silently ignored unless option SYS_FLAT is used.

Related topics
tarlist, untar, newzip, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 572

Chapter 18: mmsystem

newzip

Purpose
Create a Zip archive from a list of files.

Synopsis
procedure newzip(opt:integer, zipfile:text, dir:text,

lsf:list of text|string, password:text)
procedure newzip(opt:integer, zipfile:text, dir:text,

lsf:list of text|string)
procedure newzip(zipfile:text, lsf:list of text|string)

Arguments
opt Options:

SYS_NODIR Do not store directories (only files)
SYS_DIRONLY Store only directories
SYS_FLAT Store all files in the root directory of the archive (i.e. do not preserve

directory structure)
zipfile File name of the archive (that must be a physical file)
dir Base directory (default: current directory)
lsf List of files and directories to store in the archive (file names are relative to the dir

directory)
password Password to generate en encrypted zip file

Example
The following creates an archive of the Xpress installation including only binary files:

findfiles(SYS_RECURS,lsf,getenv("XPRESSDIR"),"bin/⁎;lib/⁎;dso/⁎")
newzip(0,"xpress.zip",getenv("XPRESSDIR"),lsf)

Further information

1. This implementation only supports the standard Zip format (only 32bit and basic encryption algorithm)
with symbolic links on Posix systems.

2. By default file names are represented according the current system encoding in the archive. To select a
different encoding use the enc: file name prefix (see Section 2.16) on the archive name (e.g.
"enc:utf-8,myarc.zip").

3. File names including ".." are silently ignored unless option SYS_FLAT is used.

Related topics
ziplist, unzip, newtar, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 573

Chapter 18: mmsystem

nextfield

Purpose
Advance to next field in a structured text string.

Synopsis
function nextfield(txt:text,start:integer,trim:boolean):boolean
function nextfield(txt:text):boolean
function nextfield(txt:text,pctx:parsectx):boolean

Arguments
txt A text object
pctx A parser context
start Starting position in the text (default value depends on which other arguments are used)
trim Whether to skip blank characters around separators

Return value
true if more data can be parsed.

Example
The following function returns the list of records of a text string using comma as the field separator
character:

function split(t:text):list of text
declarations
pctx:parsectx

end-declarations

pctx.sepchar:=44 ! ','
while(nextfield(t,pctx)) do
returned+=[parsetext(t,pctx)]

end-do
end-function

Further information

1. When start is 0, this routine saves the position of the first character of the text string in the control
parameter sys_endparse and returns true.

2. When start is greater than 0 and the character located at position start is the separator character
sys_sepchar, the position start+1 is saved in control parameter sys_endparse and true is
returned. In all other cases false is returned.

3. This function returns false if the provided text txt is empty or the starting position start is not valid.

4. If argument trim is true, blank characters are skipped before and after the separator character. The
provided value is saved in parameter sys_trim when start is 0.

5. In the second form of the routine, parameters sys_endparse and sys_trim are used as default values
for arguments start and trim.

6. The version using a parser context works with the information contained in this context instead of the
global parameters (see Section 18.1.5).

Related topics
parseint, parsereal, parseextn, parsetext, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 574

Chapter 18: mmsystem

openpipe

Purpose
Start an external process for bidirectional communication.

Synopsis
procedure openpipe(cmd:string|text)

Argument
cmd The command to be executed in the separate process

Example
The following example uses an external program sort (we assume it writes a sorted copy of what it reads)
to display a sorted list of the content of set ToSort:

openpipe("sort")
forall(i in ToSort)
writeln(i)
fclose(F_OUTPUT)

while(not iseof) do
readln(l)
writeln(l)
end-do
fclose(F_INPUT)

Further information

1. Pipes required by this procedure are created using the pipe driver of this module (see Section 18.4.2). As
a consequence, the string provided as argument must be suitable for the driver (i.e. a program name
followed by its options separated by spaces).

2. This procedure opens both an input and output streams that must be closed explicitly using fclose.
Note that the output stream must be closed first otherwise the program may lock up.

3. When Mosel is running in restricted mode (see Section 1.3.4), this procedure behaves like the system
procedure.

4. In case of failure the procedure raises an IO error.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 575

Chapter 18: mmsystem

parseextn

Purpose
Initialise an object of a module type from a text.

Synopsis
procedure parseextn(txt:text,start:integer,e:mtype)
procedure parseextn(txt:text,e:mtype)
procedure parseextn(txt:text,pctx:parsectx,e:mtype)
procedure parseextn(txt:text,ta:textarea,e:mtype)

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text (default value depends on which other arguments are used)
e An object of an external type

Example
The following:

d:=date(SYS_NOW)
t:=text("1-Oct-2015")
setparam("datefmt", "%d-%N-%y")
parseextn(t,1,d)
if getsysstat<>0 then
writeln("Error")
else
writeln("year:",d.year)
end-if

produces this output:

year:2015

Further information

1. This function can only be used with types supporting initialisation from a string (like date or time for
instance). The parsing begins at the specified starting position and stops as soon as an invalid character
is found or when the end of the text is reached.

■ Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in the
parameter sys_endparse.

■ Version using a parser context: the information contained in the parser context is used instead of the
global parameters (see Section 18.1.5); the context property endparse indicates the starting
position and is updated with the location where parsing stops.

■ Version using a textarea object: the routine uses the start property of the object (see Section
18.1.6) as the starting position but it does not store the position where parsing stops, in particular it
does not modify the parameter sys_endparse.

2. In case of error the system status is set with a non-zero value (see getsysstat).

Related topics
parseint, parsereal, parsetext, nextfield, sys_endparse

Module
mmsystem

Fair Isaac Corporation Proprietary Information 576

Chapter 18: mmsystem

parseint

Purpose
Convert a text into an integer.

Synopsis
function parseint(txt:text,start:integer):integer
function parseint(txt:text,start:integer,base:integer):integer
function parseint(txt:text):integer
function parseint(txt:text,pctx:parsectx):integer
function parseint(txt:text,pctx:parsectx,base:integer):integer
function parseint(txt:text,ta:textarea):integer
function parseint(txt:text,ta:textarea,base:integer):integer

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text (default value depends on which other arguments are used)
base Base to use for the conversion (between 2 and 36)

Return value
The integer represented by the string.

Example
The following:

t:=text("a123.4b")
writeln(parseint(t,2))
writeln(getparam("sys_endparse"))

produces this output:

123
5

Fair Isaac Corporation Proprietary Information 577

Chapter 18: mmsystem

Further information

1. The parsing begins at the specified starting position and stops as soon as an invalid character is found or
when the end of the text is reached.

■ Standard (initial three) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in the
parameter sys_endparse.

■ Version using a parser context: the information contained in the parser context is used instead of the
global parameters (see Section 18.1.5); the context property endparse indicates the starting
position and is updated with the location where parsing stops.

■ Version using a textarea object: the routine uses the start property of the object (see Section
18.1.6) as the starting position but it does not store the position where parsing stops, in particular it
does not modify the parameter sys_endparse.

2. In case of error (no valid character found or overflow) the system status is set with a non-zero value (see
getsysstat) and, depending on the situation, 0, MAX_INT or -MAX_INT-1 is returned.

3. The optional base argument may be used if the text is not expressed in base 10. Valid values for this
parameter is 0 and 2 to 36. If base is zero or 16, the string may then include a ’0x’ prefix, and the number
will be read in base 16. Furthermore, if the base is 0, the text will be read in base 8 if the first character is
0 and in base 10 otherwise.

4. The base value may also be negative: in this case the input data is interpreted as an unsigned integer.

Related topics
parsereal, parseextn, parsetext, nextfield, sys_endparse

Module
mmsystem

Fair Isaac Corporation Proprietary Information 578

Chapter 18: mmsystem

parsereal

Purpose
Convert a text into a real.

Synopsis
function parsereal(txt:text,start:integer):real
function parsereal(txt:text):real
function parsereal(txt:text,pctx:parsectx):real
function parsereal(txt:text,ta:textarea):real

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text (default value depends on which other arguments are used)

Return value
The real represented by the string.

Example
The following:

t:=text("a123.4b")
writeln(parsereal(t,2))
writeln(getparam("sys_endparse"))

produces this output:

123.4
7

Further information

1. The parsing begins at the specified starting position and stops as soon as an invalid character is found or
when the end of the text is reached.

■ Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in the
parameter sys_endparse.

■ Version using a parser context: the information contained in the parser context is used instead of the
global parameters (see Section 18.1.5); the context property endparse indicates the starting
position and is updated with the location where parsing stops.

■ Version using a textarea object: the routine uses the start property of the object (see Section
18.1.6) as the starting position but it does not store the position where parsing stops, in particular it
does not modify the parameter sys_endparse.

2. If the string starts with the sequence "0x" or "OX" an hexadecimal representation of a floating point
value will be expected. This representation is of the form "[+/-]0xh.hhhp[+/-]ddd" where ’h’ are
hexadecimal digits and ’d’ decimal digits.

3. In case of error (no valid character found or overflow) the system status is set with a non-zero value (see
getsysstat) and, depending on the situation, 0, MAX_REAL or -MAX_REAL is returned.

Related topics
parseint, parseextn, parsetext, nextfield, sys_endparse

Module
mmsystem

Fair Isaac Corporation Proprietary Information 579

Chapter 18: mmsystem

parsetext

Purpose
Extract a text from a text.

Synopsis
function parsetext(txt:text,start:integer):text
function parsetext(txt:text):text
function parsetext(txt:text,pctx:parsectx):text
function parsetext(txt:text,ta:textarea):text

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text (default value depends on which other arguments are used)

Return value
Decoded text.

Example
The following:

t:=text("a123.4b")
setparam("sys_sepchar",46) ! '.'
writeln(parsetext(t,2))
writeln(getparam("sys_endparse"))

produces this output:

123
5

Fair Isaac Corporation Proprietary Information 580

Chapter 18: mmsystem

Further information

1. The behaviour of this routine depends on 2 control parameters: sys_sepchar (or context property
sepchar) defines a field separator that may mark the end of a non-quoted string and the parameter
sys_qtype (or context property qtype) specifies the convention to use for quoted strings: if this
parameter has value 0 (the default), Mosel quoting convention is used (both single and double quotes
may be employed and with double quotes escape sequences are allowed); with value -1 no quoting is
expected; with value 1, C/C++ quoting convention applies (only double quotes with escape sequences);
with value 3, JSON quoting convention applies (only double quotes with escape sequences). Finally, with
value 2, CSV convention is expected (double quotes and repetition of double quotes to escape this
character). The returned string is decoded: quotes are removed and escape sequences are replaced by
their corresponding characters.

2. The parsing begins at the specified starting position and stops as soon as the separator character
(sys_sepchar or context property sepchar respectively) is found or the quoted string is terminated.

■ Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in the
parameter sys_endparse.

■ Version using a parser context: the information contained in the parser context is used instead of the
global parameters (see Section 18.1.5); the context property endparse indicates the starting
position and is updated with the location where parsing stops.

■ Version using a textarea object: the routine uses the start property of the object (see Section
18.1.6) as the starting position but it does not store the position where parsing stops, in particular it
does not modify the parameter sys_endparse.

3. In case of error, getsysstat will return a negative value. A positive value indicates that a quoted string
is unfinished (i.e. the end of the source text is reached although no matching quote has been found).

Related topics
parseint, parsereal, parseextn, nextfield, sys_sepchar, sys_qtype, sys_endparse

Module
mmsystem

Fair Isaac Corporation Proprietary Information 581

Chapter 18: mmsystem

pastetext

Purpose
Paste a text or string into a text.

Synopsis
procedure pastetext(txt:text, str:string, start:integer)
procedure pastetext(txt:text, src:text, start:integer)

Arguments
txt A text object
src A text object
str A string
start Paste position

Example
The following:

t:=text("abcdefgh")
pastetext(t,"123",2)
writeln(t)
pastetext(t,"456",8)
writeln(t)

produces this output:

a123efgh
a123efg456

Related topics
cuttext, inserttext, deltext, copytext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 582

Chapter 18: mmsystem

pathmatch

Purpose
Check whether a file name matches a given pattern.

Synopsis
function pathmatch(filename:string|text,pattern:string|text):boolean

Arguments
filename The file name to evaluate
pattern Matching pattern that may include ⁎ (any text of any length) or ? (any single character)

Return value
true if the file name matches the pattern.

Example
The following function identifies Mosel source file names:

function is_mosel_file(f:text):boolean
returned:=pathmatch(f,"⁎.mos")
end-function

Further information
The comparison respects the operating environment conventions and behaviour may differ depending of
the operating system. In particular, under Posix systems comparisons are case sensitive; this is not the
case on Windows (i.e. file names are not case sensitive).

Related topics
regmatch

Module
mmsystem

Fair Isaac Corporation Proprietary Information 583

Chapter 18: mmsystem

pathsplit

Purpose
Split a path into its components.

Synopsis
function pathsplit(how:integer,path:text,rem:text):text
function pathsplit(how:integer,path:text):text

Arguments
how How to split the path:

SYS_DIR Directory (i.e. part preceding the last directory separator)
SYS_FNAME File name (i.e. part following the last directory separator)
SYS_EXTN File name extension (i.e. part following the last dot)

path The path name to split
rem Remaining part of the path after the returned value has been removed

Return value
The requested part of the path.

Example
The following function returns the base name of a path (file name without directory and extension):

function basename(f:text):text
returned:=pathsplit(SYS_FNAME,f)
dummy:=pathsplit(SYS_EXTN,returned,returned)
end-function

Further information
Arguments path and rem can be the same object.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 584

Chapter 18: mmsystem

qsort

Purpose
Sort a list or an array or (a subset of) the indices of an array.

Synopsis
procedure qsort(sense:boolean, lvals:list)
procedure qsort(sense:boolean, vals:array of integer|real|string)
procedure qsort(sense:boolean, cvals:array|list of array, ndx:array)
procedure qsort(sense:boolean, cvals:array|list of array, ndx:array,

sel:set)
procedure qsort(sense:boolean, cvals:array|list of array, lndx:list)
procedure qsort(sense:boolean, cvals:array|list of array, lndx:list,

sel:set)
procedure qsort(sense:boolean, cmpfct:string|function, cmpctx:?, vals:array,

ndx:array)
procedure qsort(sense:boolean, cmpfct:string|function, cmpctx:?, vals:array,

ndx:array, sel:set)
procedure qsort(sense:boolean, cmpfct:string|function, cmpctx:?, vals:array,

lndx:list)
procedure qsort(sense:boolean, cmpfct:string|function, cmpctx:?, vals:array,

lndx:list, sel:set)

Arguments
sense Sense of the sorting:

SYS_UP Ascending order
SYS_DOWN Descending order

lvals List to be sorted
vals One-dimensional array to be sorted
cvals One-dimensional array to be sorted or list of one-dimensional arrays
cmpfct The name of or a reference to a comparator function of the form function

cmpfct(cmpctx,e1,e2):integer that behaves as compare with e1 and e2 of the same
type as the array to sort

cmpctx The value to be passed as the first argument to cmpfct (this parameter is not used by qsort)
ndx One-dimensional array of the same type and size as the indexing set of vals
lndx List of the same type as the indexing set of vals
sel Subset of the indexing set of vals

Example
The following example sorts an array of real numbers:

declarations
ar: array(1..10) of real
end-declarations

ar:: [1.2, -3, -8, 10.5, 4, 7, 2.9, -1, 0, 5]
qsort(true, ar)
writeln("Sorted array: ", ar)

Fair Isaac Corporation Proprietary Information 585

Chapter 18: mmsystem

Further information

1. In the first two versions of the procedure (with two arguments, sense and vals or lvals) the input
array (list) vals (lvals) is overwritten by the resulting sorted array (list).

2. When an array ndx is provided, the resulting sorted array is returned in the argument ndx in the form of
its sorted index set. If a selection set sel of indices is provided, only the specified indices are processed.

3. When a list lndx is provided, the resulting sorted array is returned in the argument lndx in the form of a
list of sorted indices. If a selection set sel of indices is provided, only the specified indices are
processed.

4. When applied to a dynamic array this procedure processes all indices of the index set including those not
referring to an existing cell (a subset of the indexing set sel can be used to select only the existing
entries).

5. The second version of the routine can handle arrays of integers, reals and strings. Other versions also
accept module types supporting ordering (like text or date for instance).

6. When the parameter cvals is a list of arrays it is expected that all these arrays have one dimension and
are all indiced by the same set. The list can contain up to 10 arrays. When performing the sorting the
routine will use the first array values as the primary sorting criteria and then the following array in case of
equality.

7. A comparator routine may also be provided in the form of user-defined function which name is cmpfct
(the function must be declared public). The first parameter of this function is given via cmpctx that can
be of any scalar type (including a record), it is not used by the qsort algorithm but may be employed by
the comparator function to store data required for the comparison. The 2 other arguments, that are of the
same type as the array to sort, are the elements to compare: the function must return 0 if the 2 elements
are identical, -1 if the first element is smaller or 1 otherwise. When using this form there is no restriction
on the type of the array to sort.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 586

Chapter 18: mmsystem

quote

Purpose
Quote and encode a text string.

Synopsis
function quote(txt:text,qtype:integer,sepchar:integer):text
function quote(txt:text):text

Arguments
txt A text object
qtype Quoting convention
sepchar Code of the separator character or 0

Example
The following statement:

writeln(quote('test CSV "quoted" string',2,44))

displays: "test CSV ""quoted"" string"

Further information

1. This function generates an encoded form of the provided text string according to the given quoting
convention qtype (see sys_qtype) and separator character sepchar. The provided text may be
returned unchanged if the selected convention does not require quotes and the text does not include any
special character or the specified separator character.

2. If argument sepchar is 0, quoting is enforced even if the selected quoting convention would not require
quotes.

3. In the second form of the routine, parameters sys_qtype and sys_sepchar are used as default values
for arguments qtype and sepchar.

Related topics
parsetext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 587

Chapter 18: mmsystem

readlink

Purpose
Get the value of a symbolic link.

Synopsis
function readlink(string|txt:fname):text

Argument
fname A file name

Return value
Linked file name or an empty string if the file cannot be accessed.

Further information
This function can be applied to a symbolic link to get its value. The file name itself is returned if the
provided file is not a symbolic link.

Related topics
getflstat, symlink, getsysstat

Fair Isaac Corporation Proprietary Information 588

Chapter 18: mmsystem

readtextline

Purpose
Read a line of text from the current input stream.

Synopsis
function readtextline(txt:text):integer
function readtextline(txt:text,msize:integer):integer

Arguments
txt A text object
msize Maximum number of bytes to read

Return value
Number of characters read or -1 if end of file.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 589

Chapter 18: mmsystem

regmatch

Purpose
Compare text strings using a regular expression.

Synopsis
function regmatch(src:text, regex:string):boolean
function regmatch(src:text, regex:string, start:integer,

flags:integer):boolean
function regmatch(src:text, regex:string, start:integer, flags:integer,

mp:array(range) of textarea):boolean

Arguments
src Text to process
regex Regular expression
start Position where to start the search
flags Search options:

REG_EXTENDED Use Extended Regular Expression syntax (ERE), default is to interpret the
expression as a Basic Regular Expression (BRE)

REG_ICASE Comparison is performed case insensitive (by default it is case sensitive)
REG_NEWLINE The character newline (\n) is treated as the end of line (by default it is

handled as an ordinary symbol)
REG_NOTBOL The beginning of the text string is not the beginning of a line
REG_NOTEOL The end of the text string is not the end of a line

mp Matching regions as an array of text area objects

Return value
true if a match was found.

Example
The following example extracts the value of ’pars2’ from an input text consisting of lines of the form
name=value:

declarations
m:array(range) of textarea
t:text
end-declarations

t:="p1=10\npars2=234\nparam9=56\n"
if regmatch(t,'pars2=\(.⁎\)$',1,REG_NEWLINE,m) then
pars2:=parseint(t,m(1))
writeln(pars2)
end-if

Further information

1. This function relies on the TRE library (see http://laurikari.net/tre). Please refer to the documentation of
this library for a detailed description of the supported expression syntax.

2. When the mp argument is provided and the search is successful, the result of the processing is returned
via this array as textarea objects (see Section 18.1.6): the array cell 0 refers to the entire matching
region and the following ones to each of the subexpressions.

Related topics
findtext, pathmatch, regreplace, sys_regcache

Fair Isaac Corporation Proprietary Information 590

http://laurikari.net/tre

Chapter 18: mmsystem

Module
mmsystem

Fair Isaac Corporation Proprietary Information 591

Chapter 18: mmsystem

regreplace

Purpose
Replace portions of a text string based on a regular expression.

Synopsis
function regreplace(src:text, regex:string, repl:string):integer
function regreplace(src:text, regex:string, repl:string, start:integer,

flags:integer):integer

Arguments
src Text to process
regex Regular expression
repl Replacement string expression
start Position where to start the search
flags Search options:

REG_EXTENDED Use Extended Regular Expression syntax (ERE), default is to interpret the
expression as a Basic Regular Expression (BRE)

REG_ICASE Comparison is performed case insensitive (by default it is case sensitive)
REG_NEWLINE The character newline (\n) is treated as the end of line (by default it is

handled as an ordinary symbol)
REG_NOTBOL The beginning of the text string is not the beginning of a line
REG_NOTEOL The end of the text string is not the end of a line
REG_ONCE Stop after the first replacement (by default the entire input string is

processed)

Return value
The number of replacements performed.

Example
The following statement transforms dates expressed as year-month-day to dates in the form
day/month/year

nbr:=regreplace(t,
'([[:digit:]]{4})-([01]?[[:digit:]])-([0-3]?[[:digit:]])',
'\3/\2/\1',1,REG_EXTENDED)

Further information

1. This function relies on the TRE library (see http://laurikari.net/tre). Please refer to the documentation of
this library for a detailed description of the supported expression syntax.

2. In the replacement string repl the backslash character (’\’) has a special meaning: if followed by
another baskslash character it is replaced by a single backslash; if followed by a digit it is replaced by the
corresponding subexpression defined by the regular expression. The subexpression number 0
corresponds to the entire matching region.

Related topics
regmatch, sys_regcache

Module
mmsystem

Fair Isaac Corporation Proprietary Information 592

http://laurikari.net/tre

Chapter 18: mmsystem

removedir

Purpose
Remove a directory.

Synopsis
procedure removedir(dirname:string|text)

Argument
dirname The name and path of the directory to delete

Further information
For deletion of a directory to succeed, the given directory must be empty.

Related topics
fdelete, makedir, removefiles, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 593

Chapter 18: mmsystem

removefiles

Purpose
Remove files selected using file name patterns.

Synopsis
procedure removefiles(opt:integer, dir:text,filters:text)
procedure removefiles(filters:text)

Arguments
opt Options (several options can be combined):

SYS_RECURS Recursive search in subdirectories
SYS_NODIR Do not remove directories (only files)
SYS_DIRONLY Remove only directories

dir Base directory for the search (default: current directory)
filters File name filters (default: all files removed)

Example
The following deletes directory "mydir" including its content:

removefiles(SYS_RECURS,"mydir","⁎")
removedir("mydir")

Further information

1. The filters argument consists in a list of patterns separated by the symbol ";". A pattern is
composed of a path (using the usual operating system conventions) which last component may include
wildcard characters "⁎" (any text of any length), "?" (any single character) and "|" (logical "or"). For
instance "bin/⁎.exe;models/⁎.mos|⁎.dat" will select all files with extension ".exe" in the
"bin" directory as well as files with extension ".mos" and ".dat" in the "models" directory.

2. File name matching is achieved using function pathmatch and differences may be observed depending
on the operating system (e.g. file names are case sensitive under Posix systems but not under Windows).

Related topics
findfiles, fdelete, removedir, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 594

Chapter 18: mmsystem

setchar

Purpose
Set a character in a text.

Synopsis
procedure setchar(txt:text, index:integer, c:integer)

Arguments
txt A text object
str String
index Position of the character
c Character code

Further information
If the index requested is after the end of the text, the text is expanded as necessary and the newly created
space is padded with the character which code is the parameter sys_fillchar.

Related topics
getchar, sys_fillchar, pastetext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 595

Chapter 18: mmsystem

setdate

Purpose
Set the date part of a datetime.

Synopsis
procedure setdate(dt:datetime,d:date)

Arguments
dt A datetime object
d A date object

Related topics
settime

Module
mmsystem

Fair Isaac Corporation Proprietary Information 596

Chapter 18: mmsystem

setday

Purpose
Set the day number of a date or datetime.

Synopsis
procedure setday(d:date,j:integer)
procedure setday(dt:datetime,j:integer)

Arguments
d A date object
dt A datetime object
j Day number

Related topics
setyear, setmonth

Module
mmsystem

Fair Isaac Corporation Proprietary Information 597

Chapter 18: mmsystem

setdsoparam

Purpose
Set the value of a control parameter.

Synopsis
procedure

setdsoparam(name:string|text,val:integer|string|text|real|boolean)

Arguments
name Name of a control parameter (including the module name).
val New value for the control parameter

Further information

1. This procedure is similar to setparam except that the control parameter name is searched at runtime.
As a consequence this identifier does not need to be a constant string but the execution is significantly
slower than setparam and it cannot be applied to package parameters.

2. The provided parameter name must include the module name (e.g. "mmsystem.datefmt") otherwise
the identifier is searched only in the list of Mosel parameters.

3. As opposed to setparam this procedure does not raise an error in case of failure (like parameter not
found or invalid value): use getsysstat to detect error conditions.

Related topics
getdsoparam, getsysstat

Fair Isaac Corporation Proprietary Information 598

Chapter 18: mmsystem

setenv

Purpose
Set the value of an environment variable of the operating system.

Synopsis
procedure setenv(name:string|text,value:string|text)

Arguments
name Name of the environment variable
value New value for the environment variable

Further information

1. The environment variable is deleted if it is assigned an empty string.

2. Variables created or modified with this procedure can be retrieved using the getenv function and are
inherited by processes started by system or openpipe.

3. The effect of this procedure is local to the running model (i.e. system calls like the C function getenv will
not work for these variables). However, another module may access the environment maintained by
mmsystem using the IMCI function getenv (see Section 18.5).

4. This procedure is included in the published interface of mmsystem (see Section 18.5).

Related topics
getenv, system, openpipe, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 599

Chapter 18: mmsystem

setoserror

Purpose
Set the current system error code.

Synopsis
procedure setoserror(ec:integer)

Argument
ec A system error code

Further information
This function sets the current system error code that can be retrieved using getoserror. As a side
effect of using this routine the status returned by getsysstat is 0 if the error code is also 0 and 1
otherwise.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 600

Chapter 18: mmsystem

sethour

Purpose
Set the hour part of a time or datetime.

Synopsis
procedure sethour(t:time,h:integer)
procedure sethour(dt:datetime,h:integer)

Arguments
t A time object
dt A datetime object
h Hour

Related topics
setminute, setsecond, setmsec

Fair Isaac Corporation Proprietary Information 601

Chapter 18: mmsystem

setminute

Purpose
Set the minute part of a time or datetime.

Synopsis
procedure setminute(t:time,m:integer)
procedure setminute(dt:datetime,m:integer)

Arguments
t A time object
dt A datetime object
m Minute

Related topics
sethour, setsecond, setmsec

Module
mmsystem

Fair Isaac Corporation Proprietary Information 602

Chapter 18: mmsystem

setmonth

Purpose
Set the month number of a date or datetime.

Synopsis
procedure setmonth(d:date,m:integer)
procedure setmonth(dt:datetime,m:integer)

Arguments
d A date object
dt A datetime object
m Month number

Related topics
setyear, setday

Fair Isaac Corporation Proprietary Information 603

Chapter 18: mmsystem

setmsec

Purpose
Set the millisecond part of a time or datetime.

Synopsis
procedure setmsec(t:time,ms:integer)
procedure setmsec(dt:datetime,ms:integer)

Arguments
t A time object
dt A datetime object
ms Millisecond

Related topics
sethour, setminute, setsecond

Module
mmsystem

Fair Isaac Corporation Proprietary Information 604

Chapter 18: mmsystem

setsecond

Purpose
Set the second part of a time or datetime.

Synopsis
procedure setsecond(t:time,s:integer)
procedure setsecond(dt:datetime,s:integer)

Arguments
t A time object
dt A datetime object
s Second

Related topics
sethour, setminute, setmsec

Module
mmsystem

Fair Isaac Corporation Proprietary Information 605

Chapter 18: mmsystem

settime

Purpose
Set the time part of a datetime.

Synopsis
procedure settime(dt:datetime,t:time)

Arguments
dt A datetime object
t A time object

Related topics
setdate

Module
mmsystem

Fair Isaac Corporation Proprietary Information 606

Chapter 18: mmsystem

setyear

Purpose
Set the year part of a date or datetime.

Synopsis
procedure setyear(d:date,y:integer)
procedure setyear(dt:datetime,y:integer)

Arguments
d A date object
dt A datetime object
y Year

Related topics
setmonth, setday

Module
mmsystem

Fair Isaac Corporation Proprietary Information 607

Chapter 18: mmsystem

sleep

Purpose
Suspend execution for a fixed amount of time.

Synopsis
procedure sleep(duration:int)

Argument
duration Sleep time in milliseconds

Further information
The model uses no CPU while it is suspended.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 608

Chapter 18: mmsystem

splittext

Purpose
Split a text string.

Synopsis
function splittext(ts:text, sep:string):list of text
function splittext(ts:text, sep:string, mxe:integer):list of text
function splittext(qt:integer, ts:text, sep:string):list of text
function splittext(qt:integer, ts:text, sep:string, mxe:integer):list of

text

Arguments
qt Quoting type (see parameter sys_qtype, default: -1 for no quoting)
ts Text string to process
sep Separator string
mxe Maximum number of elements to collect (default: 0 for no limit)

Return value
The list of identified items.

Example
The following statements:

write(splittext("some/path/to/a.file","/",-2))
writeln(splittext(2,'cv1,"cv""2""",cv3',","))

result in this display: [some/path/to,a.file][cv1,cv"2",cv3]

Further information

1. This function splits the input text string ts using the string sep as the field delimiter and returns the
identified items as a list of texts. The argument mxe defines a maximum number of elements to put into
this result list. If this limit is reached while the input string has not been entirely processed the last added
item includes the remaining part of the input data as a single record.

2. When the quoting type is not specified or when it is set to -1 the separator string may be an empty string
and the maximum number of elements may take a negative value. With an empty separator the input text
is split into individual characters. If the maximum number of elements is negative the decomposition is
performed from the end of the string.

3. When quoting is active (i.e. qt is not -1) a parsing error may occur: in this case the system status it set
to a non-zero value (see getsysstat) and the parsing is interrupted (typically after an error the last item
added to the result list is not valid).

Related topics
jointext

Module
mmsystem

Fair Isaac Corporation Proprietary Information 609

Chapter 18: mmsystem

startswith

Purpose
Check whether a text or string starts with a given string.

Synopsis
function startswith(txt:text|string, tofs:text|string):boolean
function startswith(txt:text|string, tofs:text|string,

start:integer):boolean

Arguments
txt A string or text object
tofs String to find
start Starting position for the search

Return value
true if the beginning of txt corresponds to tofs.

Related topics
endswith

Module
mmsystem

Fair Isaac Corporation Proprietary Information 610

Chapter 18: mmsystem

symlink

Purpose
Create a symbolic link.

Synopsis
procedure symlink(string|txt:target, string|txt:linkpath)

Arguments
target Value of the link
linkpath File to create

Further information
This procedure works only on systems supporting symbolic links, in particular it cannot be executed on
Windows (i.e. on this platform getsysstat will always report a failure after calling this routine).

Related topics
readlink, getsysstat

Fair Isaac Corporation Proprietary Information 611

Chapter 18: mmsystem

system

Purpose
Execute an external program.

Synopsis
procedure system(command:string|text)
procedure system(command:string|text,...)
procedure system(command:string|text,args:list)

Arguments
command The command to be executed
args List containing the arguments for the command

Example
The following displays the functionality of the mmsystem and mmjobsmodules using the program
mosel:

system('mosel exam mmsystem"')
system('mosel','exam','mmjobs')

Further information

1. The given program is executed directly: if the specified expression is a shell command, it is necessary to
call the shell explicitly. For instance to get a directory listing under Windows the command will be "cmd
/C dir".

2. Using this procedure should be avoided in applications that are to be run on different systems because
such a call is always system dependent and may not be portable.

3. The generated process inherits the current system environment plus the environment variables
modified/created using the setenv procedure.

4. On Windows the program to execute is located using the current process environment, as a consequence
any modification of the PATH environment variable or working directory has no effect on finding this
executable. The behaviour is different on Posix systems where the search for the program to execute is
performed from the subprocess environment.

5. The default output and error streams of the generated process are redirected to the corresponding Mosel
streams. The default input stream is closed.

6. This procedure is included in the published interface of mmsystem (see Section 18.5).

7. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables this routine
unless the environment variable MOSEL_EXECPATH is defined. This variable, used in a similar way as the
PATH environment variable, gives a list of paths than can still be used under the restriction. In addition to
directories, the definition of the variable may include paths to executables such that it may directly
specify a list of programs. It is also worth noting that no search is performed (i.e. executables must be
given with their full path) and that path expansion is performed a the time of loading mmsystem relative
to the Mosel initial working directory.

8. The command may be preceded by the prefix "enc:" to specify the encoding of the output streams (see
Section 2.16).

9. When using the second and third forms of the procedure the command and each element of the list of
arguments are taken individually. This can be helpful if the command or the arguments contain spaces or
special characters (they should be quoted appropriately when using the procedure with a single
argument).

Fair Isaac Corporation Proprietary Information 612

Chapter 18: mmsystem

Related topics
getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 613

Chapter 18: mmsystem

tarlist

Purpose
Get the list of files included in a Unix tar archive.

Synopsis
procedure tarlist(opt:integer,tarfile:text,lsf:list of text,

filters:string)
procedure tarlist(tarfile:text,lsf:list of text)

Arguments
opt Options:

SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories

tarfile File name of the archive
lsf Resulting list of file names
filters File name filters (default: all files reported)

Example
The following prints the list of files included in the archive myfiles.tar:

tarlist("myfiles.tar",lsf)
writeln(lsf)

Further information

1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file is
reported if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differences
may be observed depending on the operating system (e.g. file names are case sensitive under Posix
systems but not under Windows).

3. This implementation processes only regular files and directories: other file types included in the archive
(like links) are silently ignored.

4. By default file names are expected to be represented according the current system encoding in the
archive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archive
name (e.g. "enc:utf-8,myarc.tar").

Related topics
untar, newtar, ziplist, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 614

Chapter 18: mmsystem

textfmt

Purpose
Create a formatted text from a string, a text or a number.

Synopsis
function textfmt(str:string, len:integer):text
function textfmt(txt:text, len:integer):text
function textfmt(i:integer, len:integer):text
function textfmt(i:integer, len:integer, flag:integer, base:integer):text
function textfmt(r:real, len:integer):text
function textfmt(r:real, len:integer, dec:integer):text

Arguments
str String to be formatted
txt Text to be formatted
i Integer to be formatted
r Real to be formatted
len Reserved length (may be exceeded if given string is longer, in this case the string is always left

justified).
<0 Left justified within reserved space
>0 Right justified within reserved space
0 Use defaults

flag Bit encoded options:
1 Left padding with "0" (instead of space)
2 Use capital letters for bases greater than 10

base Encoding base (between 2 and 36)
dec Number of digits after the decimal point

Return value
Formatted text.

Example
The following:

writeln("text1", textfmt("text2",8), "text3")
writeln("text1", textfmt("text2",-8), "text3")
r:=789.123456
writeln(textfmt(r,0)," ", textfmt(r,4,2), textfmt(r,8,0))

produces this output:

text1 text2text3
text1text2 text3
789.123 789.12 789

Further information

1. If the resulting string is longer than the reserved space it is not cut but printed in its entirety, overflowing
the reserved space to the right.

2. When processing an integer specifying a base, the provided value is treated as an unsigned integer if the
base is negative.

Related topics
formattext

Fair Isaac Corporation Proprietary Information 615

Chapter 18: mmsystem

Module
mmsystem

Fair Isaac Corporation Proprietary Information 616

Chapter 18: mmsystem

tolower

Purpose
Generate the lowercase version of the provided text.

Synopsis
function tolower(t:text|string):text
function tolower(c:integer):integer

Return value
The lowercase version of the input string or a character code.

Arguments
t Text to convert
c Character code

Further information
When this function is used with a text string, it returns a copy of its argument converted to lowercase.
When it is called with an integer, the returned value corresponds to the character code of the lowercase
version of the provided code. In both cases, the function will return an unmodified copy of its argument if
no conversion can be done.

Related topics
toupper

Module
mmsystem

Fair Isaac Corporation Proprietary Information 617

Chapter 18: mmsystem

toupper

Purpose
Generate the uppercase version of the provided text.

Synopsis
function toupper(t:text|string):text
function toupper(c:integer):integer

Return value
The uppercase version of the input string or a character code.

Arguments
t Text to convert
c Character code

Further information
When this function is used with a text string, it returns a copy of its argument converted to uppercase.
When it is called with an integer, the returned value corresponds to the character code of the uppercase
version of the provided code. In both cases, the function will return an unmodified copy of its argument if
no conversion can be done.

Related topics
tolower

Module
mmsystem

Fair Isaac Corporation Proprietary Information 618

Chapter 18: mmsystem

trim

Purpose
Remove blank characters at the beginning and/or end of a text string.

Synopsis
procedure trim(t:text)
procedure trim(t:text,where:boolean)

Arguments
t Text to trim
where Part of the text to trim:

SYS_LEFT Beginning of the string
SYS_RIGHT End of the string

Further information
When the function is used with a single argument, both starting and ending blank characters are deleted.

Module
mmsystem

Fair Isaac Corporation Proprietary Information 619

Chapter 18: mmsystem

untar

Purpose
Extract files from a Unix tar archive.

Synopsis
procedure untar(opt:integer,tarfile:text,dir:text,

filters:string)
procedure untar(tarfile:text,dir:text)
procedure untar(tarfile:text)

Arguments
opt Options:

SYS_OVERWRT Replace existing files
SYS_NODIR Do not extract directories (only files)
SYS_DIRONLY Extract only directories
SYS_FLAT Extract files without directory structure
SYS_VERB Report activity to the error stream
SYS_NOFAIL Do not abort procedure if a file cannot be written

tarfile File name of the archive
dir Destination path (default: current directory)
filters File name filters (default: all files extracted)

Example
The following extracts all files included in the archive myfiles.tar to directory mydir:

untar("myfiles.tar","mydir")

Further information

1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file is
extracted if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differences
may be observed depending on the operating system (e.g. file names are case sensitive under Posix
systems but not under Windows).

3. This implementation processes only regular files, symbolic links (when supported by the system) and
directories: other file types included in the archive are silently ignored.

4. By default file names are expected to be represented according the current system encoding in the
archive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archive
name (e.g. "enc:utf-8,myarc.tar").

Related topics
tarlist, newtar, unzip, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 620

Chapter 18: mmsystem

unzip

Purpose
Extract files from a Zip archive.

Synopsis
procedure unzip(opt:integer, zipfile:text, dir:text,

filters:string, password:text)
procedure unzip(opt:integer, zipfile:text, dir:text,

filters:string)
procedure unzip(zipfile:text, dir:text)
procedure unzip(zipfile:text)

Arguments
opt Options:

SYS_OVERWRT Replace existing files
SYS_NODIR Do not extract directories (only files)
SYS_DIRONLY Extract only directories
SYS_FLAT Extract files without directory structure
SYS_VERB Report activity to the error stream
SYS_NOFAIL Do not abort procedure if a file cannot be written

zipfile File name of the archive (that must be a physical file)
dir Destination path (default: current directory)
filters File name filters (default: all files extracted)
password Password to access an encrypted archive

Example
The following extracts all files included in the archive myfiles.zip to directory mydir:

unzip("myfiles.zip","mydir")

Further information

1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file is
extracted if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differences
may be observed depending on the operating system (e.g. file names are case sensitive under Posix
systems but not under Windows).

3. This implementation only supports the standard Zip format (only 32bit and basic encryption algorithm)
and symbolic links are silently ignored if the system does not support them.

4. By default file names are expected to be represented according the current system encoding in the
archive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archive
name (e.g. "enc:utf-8,myarc.zip").

Related topics
ziplist, newzip, untar, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 621

Chapter 18: mmsystem

ziplist

Purpose
Get the list of files included in a Zip archive.

Synopsis
procedure ziplist(opt:integer, zipfile:text, lsf:list of text,

filters:string)
procedure ziplist(zipfile:text, lsf:list of text)

Arguments
opt Options:

SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories

zipfile File name of the archive
lsf Resulting list of file names
filters File name filters (default: all files reported)

Example
The following prints the list of files included in the archive myfiles.zip:

ziplist("myfiles.zip",lsf)
writeln(lsf)

Further information

1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file is
reported if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differences
may be observed depending on the operating system (e.g. file names are case sensitive under Posix
systems but not under Windows).

3. By default file names are expected to be represented according the current system encoding in the
archive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archive
name (e.g. "enc:utf-8,myarc.zip").

Related topics
unzip, newzip, tarlist, getsysstat

Module
mmsystem

Fair Isaac Corporation Proprietary Information 622

Chapter 18: mmsystem

18.4 I/O drivers
The mmsystem module provides two IO drivers: the first one allows to use a string or text object as a file
and the second connects a Mosel input or output stream to a program started in a different process.
Using this driver, it is possible to get the output of an external program (for instance the result of a
preprocessor to feed the Mosel compiler) or implement a basic bidirectional inter process
communication thanks to the openpipe procedure (which relies on this IO driver).

18.4.1 Driver text
text:ident

This driver uses a model variable of type string or text as its input or output media. The ident
argument it requires is therefore the name of this variable that must be declared globally public to the
model or have been published with publish (such that it can always be found independently of the
compiler settings).String objects can only be accessed for reading while text entities can be used for
both reading and writing.

In the following example the constant string "T" is used as the initialization file for variable "A":

declarations
public T="A:123"
A:integer
end-declarations
initializations from "text:T"
A
end-initializations

18.4.2 Driver pipe
pipe:program [options...]

The file name for this driver is an external program with its options. Options are separated by spaces or
tabulations and may be quoted using either single or double quotes. A quoted option may contain any
kind of character except the quote used to delimit the string.

When the system opens a pipe, a new process is started for executing the given program and default
input and output streams are directed to system pipes. If the file is open for reading (resp. writing), the
default ouput stream (resp. input stream) of the new process becomes the current input stream (resp.
output stream) of the model. To locate the program to be executed, the system relies on the PATH
environment variable. Detection of error (typically the program cannot be found or is not executable)
differs depending on the operating system: under Windows, the error is reported immediately and the
pipe is not open. With Posix systems, no error is reported but following IO operations fail.

When the file is closed, both input and output streams of the external process are closed then the system
waits for its termination: in order to avoid a lock up of the Mosel program one must make sure that the
external program ends its execution when default input and output streams are closed.

Example: the following command could be used with Mosel Console for compiling the model
mymod.mos after it has been processed by the C preprocessor. Note that we have to provide an output
file name since the compiler cannot deduce it from the source file name.

For a Posix systems:

compile 'mmsystem.pipe:cpp mymod.mos' '' mymod.bim

For Windows (with MSVC):

Fair Isaac Corporation Proprietary Information 623

Chapter 18: mmsystem

compile 'mmsystem.pipe:cl /E mymod.mos' '' mymod.bim

When Mosel is running in restricted mode (see Section 1.3.4), this driver behaves like the system
procedure.

18.5 Published library functions
The module mmsystem publishes its implementation of getenv, setenv and system as well as the
functions gettxtsize, getcsttxtbuf, gettxtbuf and txtresize for text access via the service
IMCI for use by other modules (see the Mosel Native Interface Reference Manual for more detail about
services). The list of published functions is contained in the interface structure mmsystem_imci that is
defined in the module header file mmsystem.h.

From another module, the context of mmsystem and its communication interface can be obtained using
functions of the Mosel Native Interface as shown in the following example.

static XPRMnifct mm;
XPRMcontext mmctx;
XPRMdsolib dso;
mmsystem_imci mmsys;
void ⁎⁎sysctxref;

dso=mm->finddso("mmsystem"); /⁎ Retrieve the mmsystem module⁎/
sysctxref=mm->getdsoctx(mmctx, dso, (void ⁎⁎)(&mmsys));

/⁎ Get the module context and the
communication interface of mmsystem ⁎/

Typically, a module calling functions that are provided by mmsystem will include this module into its list
of dependencies in order to make sure that mmsystem will be loaded by Mosel at the same time as the
calling module. The “dependency” service of the Mosel Native Interface has to be used to set the list of
module dependencies:

static const char ⁎deplist[]={"mmsystem",NULL}; /⁎ Module dependency list ⁎/

static XPRMdsoserv tabserv[]= /⁎ Table of services ⁎/
{
{XPRM_SRV_DEPLST, (void ⁎)deplist}

};

Using these functions a module may access and modify the environment of the calling model and
execute an external program with automatic redirection of default streams:

mmsys->setenv(ctx,⁎sysctxref,"MYVAR","A_VALUE");
rts=mmsys->system(ctx,⁎sysctxref,"myprogram arg1 arg2");

18.5.1 Description of the library functions
getcsttxtbuf Get a reference to the constant character buffer of a text object. p. 632

getdate Get the date of a date object. p. 628

getdatetime Get the date and time of a datetime object. p. 630

gettime Get the time of a time object. p. 626

gettxtbuf Get a reference to the character buffer of a text object. p. 634

gettxtsize Get the size of a text object. p. 633

Fair Isaac Corporation Proprietary Information 624

Chapter 18: mmsystem

setdate Set the date of a date object. p. 629

setdatetime Set the date and time of a datetime object. p. 631

settime Set the time of a time object. p. 627

txtresize Resize a text object. p. 635

Fair Isaac Corporation Proprietary Information 625

Chapter 18: mmsystem

gettime

Purpose
Get the time of a time object.

Synopsis
int gettime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎h, int ⁎mi, int ⁎s,

int ⁎ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a time object
h Reference to store the hours or NULL
mi Reference to store the minutes or NULL
s Reference to store the seconds or NULL
ms Reference to store the milliseconds or NULL

Return value
0 if successful or -1 if t is NULL.

Further information
Provided references are set even if the function fails.

Related topics
settime

Module
mmsystem

Fair Isaac Corporation Proprietary Information 626

Chapter 18: mmsystem

settime

Purpose
Set the time of a time object.

Synopsis
int settime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int h, int mi, int s, int

ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a time object
h hours
mi minutes
s seconds
ms milliseconds

Return value
0 if successful or -1 if t is NULL.

Related topics
gettime

Module
mmsystem

Fair Isaac Corporation Proprietary Information 627

Chapter 18: mmsystem

getdate

Purpose
Get the date of a date object.

Synopsis
int getdate(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎y, int ⁎m, int ⁎d);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Reference to store the years or NULL
m Reference to store the months or NULL
d Reference to store the days or NULL

Return value
0 if successful or -1 if t is NULL.

Further information
Provided references are set even if the function fails.

Related topics
setdate

Module
mmsystem

Fair Isaac Corporation Proprietary Information 628

Chapter 18: mmsystem

setdate

Purpose
Set the date of a date object.

Synopsis
int setdate(XPRMctx ctx, void ⁎sysctx, void ⁎t, int y, int m, int d);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Years
m Months
d days

Return value
0 if successful or -1 if t is NULL.

Related topics
getdate

Module
mmsystem

Fair Isaac Corporation Proprietary Information 629

Chapter 18: mmsystem

getdatetime

Purpose
Get the date and time of a datetime object.

Synopsis
int getdatetime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎y, int ⁎m, int ⁎d,

int ⁎h, int ⁎mi, int ⁎s, int ⁎ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Reference to store the years or NULL
m Reference to store the months or NULL
d Reference to store the days or NULL
h Reference to store the hours or NULL
mi Reference to store the minutes or NULL
s Reference to store the seconds or NULL
ms Reference to store the milliseconds or NULL

Return value
0 if successful or -1 if t is NULL.

Further information
Provided references are set even if the function fails.

Related topics
setdatetime

Module
mmsystem

Fair Isaac Corporation Proprietary Information 630

Chapter 18: mmsystem

setdatetime

Purpose
Set the date and time of a datetime object.

Synopsis
int setdatetime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int y, int m, int d,

int h, int mi, int s, int ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Years
m Months
d days
h hours
mi minutes
s seconds
ms milliseconds

Return value
0 if successful or -1 if t is NULL.

Related topics
getdatetime

Module
mmsystem

Fair Isaac Corporation Proprietary Information 631

Chapter 18: mmsystem

getcsttxtbuf

Purpose
Get a reference to the constant character buffer of a text object.

Synopsis
const char ⁎getcsttxtbuf(XPRMctx ctx, void ⁎sysctx, void ⁎t);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object

Return value
A reference to the character buffer.

Further information

1. The buffer returned is terminated by the character 0 (like a C string), and it must not be modified (even if
the provided text object is not constant). The function gettxtbuf should be used instead when the
buffer of a non-constant text has to be altered.

2. Since the memory management of the module may move text buffers when allocating memory, the
pointer returned by this function is only valid until the next memory allocation.

Related topics
gettxtsize, gettxtbuf

Module
mmsystem

Fair Isaac Corporation Proprietary Information 632

Chapter 18: mmsystem

gettxtsize

Purpose
Get the size of a text object.

Synopsis
int gettxtsize(XPRMctx ctx, void ⁎sysctx, void ⁎t);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object

Return value
The size of the character buffer (excluding the terminating 0 character).

Related topics
txtresize, gettxtbuf

Module
mmsystem

Fair Isaac Corporation Proprietary Information 633

Chapter 18: mmsystem

gettxtbuf

Purpose
Get a reference to the character buffer of a text object.

Synopsis
char ⁎gettxtbuf(XPRMctx ctx, void ⁎sysctx, void ⁎t);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object

Return value
A reference to the character buffer or NULL if the provided text object is constant.

Further information

1. The buffer returned is terminated by the character 0 (like a C string) and can be modified as long as the
size is not changed. If the length of the buffer has to be altered, use the function txtresize.

2. A NULL pointer will be returned if the provided text object is constant. Use getcsttxtbuf to retrieve the
buffer of a constant text.

3. Since the memory management of the module may move text buffers when allocating memory, the
pointer returned by this function is only valid until the next memory allocation.

Related topics
txtresize, gettxtsize, getcsttxtbuf

Module
mmsystem

Fair Isaac Corporation Proprietary Information 634

Chapter 18: mmsystem

txtresize

Purpose
Resize and get a reference to the character buffer of a text object.

Synopsis
char ⁎txtresize(XPRMctx ctx, void ⁎sysctx, void ⁎t, int s);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object
s New size of the buffer (terminating 0 is not counted)

Return value
A reference to the new character buffer or NULL in case of memory error or if the provided text object is
constant.

Further information

1. The buffer returned is terminated by the character 0 (like a C string) and can be modified as long as the
size is not changed.

2. Since the memory management of the module may move text buffers when allocating memory, the
pointer returned by this function is only valid until the next memory allocation.

Related topics
gettxtsize

Module
mmsystem

Fair Isaac Corporation Proprietary Information 635

CHAPTER 19

mmxml

This module provides an XML parser and generator for the manipulation of XML documents from Mosel
models. To use this module, the following line must be included in the header of the Mosel model file:

uses 'mmxml'

mmxml relies on the XML parser EXPAT by James Clark (http://www.libexpat.org) for loading documents.

19.1 Document representation in mmxml
19.1.1 Data model

The XML document is stored as a list of nodes. Different node types are used to represent the document
structure:

■ element node

■ text section

■ comment

■ CDATA

■ processing instruction

In addition to these usual node types, the type DATA is used for XML constructs not supported by mmxml
(for instance a DOCTYPE declaration is recorded as a DATA section). Although they are not directly
recorded in the document tree, attributes are also stored as nodes of a dedicated type.

Each node is characterised by a name and a value. Nodes of type text, comment, CDATA and DATA have a
constant name. The name of a processing instruction is the processing instruction’s target and its value
the remaining part of the statement (e.g. the name of <?proc inst> is proc and its value is inst).
The value of comment and CDATA sections is the content of the section without its delimiters but the
value of a DATA block includes the delimiters. Element nodes have also an ordered list of child nodes.
The value of an element node corresponds to the value of the first child text node (if any).

The root node is a special element node with no name, no parent and no successor that includes the
entire document as its children.

Fair Isaac Corporation Proprietary Information 636

http://www.libexpat.org

Chapter 19: mmxml

Example of an XML document with node types:

<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?> XML header
<?xml-stylesheet type="text/css" href="examplestyle.css" ?> Processing instruc.
<!DOCTYPE exampleList SYSTEM "examples.dtd" [DATA

<!ENTITY otherfile SYSTEM "anotherfile.xml">
]>

<!-- List of optimization application examples --> Comment
<exampleList> Element node

<!-- Example B3 --> Comment
<model id="book_B_3"> Element node
<modFile date="Mar.2002"> Element node
b3jobshop.mos Text node

</modFile>
<modData file="b3jobshop.dat" /> Element node
<modData file="b3jobshop2.dat" /> Element node
<modTitle> Element node
Job shop scheduling Text node

</modTitle>
<modRating> Element node
3 Text node

</modRating>
<modFeatures> Element node
<![CDATA[dynamic array, range, exists, forall-do]]> CDATA

</modFeatures>
</model>

</exampleList>

19.1.2 Paths in a document
Nodes can be retrieved using a path similar to a directory path used to locate a file. An XML path consists
in a list of location steps separated by the slash character ("/"): each step selects a set of nodes from
the input set resulting from the preceding step (context nodes). The initial set of the path is either the
root node (absolute path) or some specified node (relative path).

A step is composed of an optional axis specifier followed by a node test and possibly completed by a
predicate. The axis specifies the tree relationship between the nodes selected by the step and the context
node. The node test is either an element name (to select elements of the given name) or a node type (to
select nodes by their type). The predicate is a Boolean expression the truth value of which decides
whether a selected node is kept in the result set of the step.

Examples:

/examples/chapter all element nodes ’chapter’ under elements ’examples’

/examples/chapter/model/modRating[number()>=4]/.. all ’model’ nodes under
’examples/chapter’ for which element ’modRating’ has a value greater than
or equal to 4

//⁎[@attribute1 and @attribute2=’value2’] all element nodes of the document having
’attribute1’ defined and ’attribute2’ with value ’value2’

/descendant::text() all text sections of the document

.//mytag all element nodes named ’mytag’ starting from the current node

Fair Isaac Corporation Proprietary Information 637

Chapter 19: mmxml

19.1.2.1 Axis specifier
An axis specifier consists in an axis name followed the the symbol ::. The supported axes are:

child children of the context node (this is the default if no axis is given)

parent parent of the context node

self the context node itself

attribute the attributes of the context node

following following node of the context node

descendant-or-self the context node as well as all its descendants

descendant all descendants of the context node

19.1.2.2 Node test
By default only element nodes are considered, the node test is used to select the nodes by their name.
The special name "⁎" will keep all element nodes. Alternatively, the test can be related to the type of the
nodes; in this case all nodes are considered and the test is one of the following expressions:

text() to select text nodes

comment() to select comment nodes

cdata() to select CDATA nodes

data() to select DATA nodes

processing-instruction() to select processing instruction nodes

node() to keep all nodes (independently of the type and name)

19.1.2.3 Abbreviated notation
Common combinations of axis-node tests have an abbreviated notation. The supported abbrevations are:

. is equivalent to self::node()

.. is equivalent to parent::node()

// (used in place of /) is the same as descendant-or-self::node()

19.1.2.4 Predicate
A predicate is a Boolean expression enclosed in square brakets. The expression evaluator supports
Boolean, text and numerical values (encoded as floating point numbers). Type conversions are implicit
and implied by the operators: for instance the additive operator "+" operates on numbers, as a
consequence its operands are systematically converted to numbers. Constant strings must be quoted
using either single or double quotes.

The notation @attname designates the attribute which name is "attname": if used where a Boolean
value is expected, it is true if the attribute is defined for the current node. Otherwise, this is the value of
the attribute.

Fair Isaac Corporation Proprietary Information 638

Chapter 19: mmxml

Supported arithmetic operators include +, -, *, div (division on floating point numbers, not integral division
as in Mosel!), mod (modulo on floating point numbers). Boolean expressions can be composed using
and and or; the usual comparators <, <=, >=, >, =, <>(or !=) can be applied to numbers. Note that equality
testing (= and <>) is defined for all types. The following predefined functions can also be used in
expressions:

name() name of the node

string() value of the node

number() value of the node as a number

boolean() value of the node as a Boolean

position() position of the current node in the selected set (first node has
position 1)

not(boolexp) true if ’boolexp’ is false, false otherwise

true() value true

false() value false

string-length()/getsize() length of the node value

string-length(strexp)/getsize(strexp) length of the text passed as parameter

starts-with(strexp1,strexp2) true if text ’strexp1’ starts with text ’strexp2’

contains(strexp1,strexp2) true if text ’strexp1’ contains text ’strexp2’

round(numexp) rounded value of ’numexp’

floor(numexp) floor value of ’numexp’

ceiling(numexp)/ceil(numexpr) ceil value of ’numexp’

abs(numexp) absolute value of ’numexp’

If the predicate [expr] is not a Boolean value, the whole expression is interpreted as
[position()=expr].

19.1.3 JSON document as an XML tree
In addition to XML documents mmxml can also load and generate JSON documents represented as XML
trees such that the information contained in the document can be handled using the routines published by
this module. The procedure jsonload parses a JSON file that it maps to the internal XML representation
using the following conventions: every JSON syntactic entity is converted to an XML element the value of
which corresponds to the associated JSON value. The type of the value is identified via the attribute
"jst" that can be "str" (string), "num" (numeric), "boo" (Boolean), "nul" (null object), "obj"
(object) or "arr" (array). Names of object components can be mapped to either the name of the XML
element or to an attribute (the behaviour of the parser is selected via an option of jsonload).

For instance, consider the following JSON document:

[{
"name": "bob",
"age": 25,
"student": true,
"phone": [
{ "type": "home", "number": "1234567900" },
{ "type": "work", "number": "6789012345" }
]

}]

Fair Isaac Corporation Proprietary Information 639

Chapter 19: mmxml

It will be represented by the following XML document when object member names are turned into XML
element names:

<?xml version="1.0" encoding="iso-8859-1"?>
<jsv jst="arr">

<jsv jst="obj">
<name jst="str">bob</name>
<age jst="num">25</age>
<student jst="boo">true</student>
<phone jst="arr">

<jsv jst="obj">
<type jst="str">home</type>
<number jst="str">1234567900</number>

</jsv>
<jsv jst="obj">
<type jst="str">work</type>
<number jst="str">6789012345</number>

</jsv>
</phone>

</jsv>
</jsv>

Note that with this representation the generated XML document is not necessarily valid XML (this
mapping can for instance produce XML elements that have a number as name) and trying to export a
JSON document using the save procedure may produce a file that cannot be processed by an XML
parser. Using the second mode of operation avoids this problem: all elements are named "jsv" and
object names are represented by attributes. The resulting XML document is larger than the one produced
with the first mode:

<?xml version="1.0" encoding="iso-8859-1"?>
<jsv jst="arr">

<jsv jst="obj">
<jsv jst="str" name="name">bob</jsv>
<jsv jst="num" name="age">25</jsv>
<jsv jst="boo" name="student">true</jsv>
<jsv jst="arr" name="phone">

<jsv jst="obj">
<jsv jst="str" name="type">home</jsv>
<jsv jst="str" name="number">1234567900</jsv>

</jsv>
<jsv jst="obj">
<jsv jst="str" name="type">work</jsv>
<jsv jst="str" name="number">6789012345</jsv>

</jsv>
</jsv>

</jsv>
</jsv>

Assuming an XML tree has been built using the above conventions, the procedure jsonsave can be
used to generate a JSON document. The XML document may combine the two representations described
above and in most cases the jst attribute can be omitted. Therefore, jsonsave will produce the same
JSON document as the example shown at the start of this section from the following XML file:

<?xml version="1.0" encoding="iso-8859-1"?>
<jsv>

<jsv>
<name>bob</name>
<jsv name="age">25</jsv>
<student>true</student>
<jsv name="phone">

<jsv>
<type>home</type>
<jsv name="number" jst="str">1234567900</jsv>

</jsv>

Fair Isaac Corporation Proprietary Information 640

Chapter 19: mmxml

<jsv>
<jsv name="type">work</jsv>
<jsv name="number" jst="str">6789012345</jsv>

</jsv>
</jsv>

</jsv>
</jsv>

19.2 New functionality for the Mosel language
19.2.1 The type xmldoc

The type xmldoc represents an XML document stored in the form of a tree. Each node of the tree is
identified by a node number (an integer) that is attached to the document (i.e. a node number cannot be
shared by different documents and in two different documents the same number represents two different
nodes). The root node of the document has number 0: the content of the document is stored as the
children of this root node. In addition to structural properties (e.g. name, value, successor, parent) nodes
have 2 formatting properties: vertical (setvspace) and horizontal (sethspace) spacing. These
indications are used when the document is saved in text form for controling how the resulting text has to
be organised (see save). The general formatting policy is defined by a set of document settings:
indentation mode (setindentmode), indentation skip (setindentskip) and line length
(setlinelen). Also used when exporting the documents are the XML version (setxmlversion),
standalone status (setstandalone) and encoding (setencoding).

19.3 Procedures and functions
addnode Add a node to a document tree. p. 643

copynode Copy a node. p. 645

delattr Delete an attribute of an element node. p. 646

delnode Delete a node in a document tree. p. 647

getattr Get the value of an attribute. p. 648

getencoding Get the character encoding of the document. p. 650

getfirstattr Get the first attribute of an element node. p. 653

getfirstchild Get the first child of an element node. p. 655

gethspace Get horizontal spacing of a node. p. 663

getindentmode Get indent mode of the document. p. 665

getindentskip Get the size of an indentation step. p. 666

getlastchild Get the last child of an element node. p. 656

getlinelen Get the length of a line. p. 667

getmaxnodes Get the number of nodes currently allocated for a document. p. 668

getname Get the name of a node. p. 651

getnext Get the successor of a node. p. 654

getnode Get the first node returned by a path specification. p. 657

getnodes Get the list of nodes returned by a path specification. p. 658

Fair Isaac Corporation Proprietary Information 641

Chapter 19: mmxml

getparent Get the parent of a node. p. 659

getsize Get the size of a document. p. 669

getstandalone Get the standalone flag of the document. p. 661

gettype Get the type of a node. p. 660

getvalue Get the value of a node. p. 652

getvspace Get vertical spacing of a node. p. 664

getxmlversion Get the XML version of the document. p. 662

jsonload Load a JSON document. p. 670

jsonparse Parse a JSON document. p. 671

jsonsave Save a JSON document. p. 673

load Load an XML document. p. 674

save Save an XML document. p. 675

setattr Set the value of an attribute. p. 676

setencoding Set the character encoding of the document. p. 677

sethspace Set horizontal spacing of a node. p. 681

setindentmode Set indent mode for the document. p. 684

setindentskip Set the size of an indentation step. p. 685

setlinelen Set the length of a line. p. 686

setmaxnodes Set the number of allocated nodes for a document. p. 678

setname Set the name of a node. p. 679

setstandalone Set the standalone flag of the document. p. 687

setvalue Set the value of a node. p. 680

setvspace Set vertical spacing of a node. p. 683

setxmlversion Set the XML version of the document. p. 688

testattr Test existence of an attribute for a given element node. p. 649

xmlattr Get an attribute during parsing of an element. p. 689

xmldecode Decode a text string for XML. p. 691

xmlencode Encode a text string for XML. p. 690

xmlparse Parse an XML document. p. 692

Fair Isaac Corporation Proprietary Information 642

Chapter 19: mmxml

addnode

Purpose
Add a node to a document tree.

Synopsis
function addnode(doc:xmldoc, n:integer, where:integer, type:integer,

name:string, value:text):integer
function addnode(doc:xmldoc, n:integer, where:integer, type:integer,

nameval:string|text):integer
function addnode(doc:xmldoc, n:integer, type:integer, name:string,

value:text):integer
function addnode(doc:xmldoc, n:integer, type:integer,

nameval:string|text):integer
function addnode(doc:xmldoc, n:integer, type:integer):integer
function addnode(doc:xmldoc, n:integer, name:string,

value:text|string|boolean|integer|real):integer

Arguments
doc Document to use
n Node number where to attach the new node
where How to attach the new node to the node n:

XML_FIRST as the first element of the list where node n is located
XML_LAST as the last element of the list where node n is located
XML_NEXT after node n
XML_FIRSTCHILD as the first child of node n (node nmust be an element)
XML_LASTCHILD as the last child of node n (node nmust be an element)
When the function is used without this parameter, XML_LASTCHILD is assumed.

type Type of node to add:

XML_ELT an element
XML_TXT a text block
XML_CDATA a CDATA section
XML_COM a comment
XML_DATA non interpreted data
XML_PINST processing instruction
When the function is used without this parameter, XML_ELT is assumed.

name Name associated to the new node. Only element and processing instruction nodes have a
name

value Value associated to the new node. An element node does not have any value: if this
parameter is provided for a node of this type, an additional text node with the specified value
is added as the first child of the new node

nameval If the type is XML_ELT or XML_PINST this parameter is used as the name of this node.
Otherwise it is the value of the new node

Return value
Number of the newly created node within the document.

Example
The following code extract appends a new node ’employee’ as last child to the node APAC. It shows how
to use diffrent versions of addnode for the creation of descendants of the new node.

declarations
DB: xmldoc

Fair Isaac Corporation Proprietary Information 643

Chapter 19: mmxml

APAC, NewPers, n, k: integer
end-declarations

APAC:= getnode(DB, "personnelList/region[@id='APAC']")
! Append a new node to 'APAC' and set its attribute 'id':
NewPers:= addnode(DB, APAC, XML_LASTCHILD, XML_ELT, "employee")
setattr(DB, NewPers, "id", "T432")

! Create a comment:
n:= addnode(DB, NewPers, XML_COM, "This is a new employee")

! Add 2 nodes containing the specified text (nodes):
n:= addnode(DB, NewPers, XML_ELT, "startDate", text(2012))
n:= addnode(DB, NewPers, XML_ELT, "name", "Tim")

! Add an empty node, then set its contents:
n:= addnode(DB, NewPers, XML_ELT, "address")
setvalue(DB, n, "Sydney")

! Add an empty node, then create its contents as a text node:
n:= addnode(DB, NewPers, XML_ELT, "language")
k:= addnode(DB, n, XML_TXT, "English")

XML resulting from this code:

<employee id="T432">
<!--This is a new employee-->
<startDate>2012</startDate>
<name>Tim</name>
<address>Sydney</address>
<language>English</language>

</employee>

Further information

1. An element or processing instruction node must be named: trying to create a node of these types with an
empty name will cause an error.

2. It is not possible to add attributes with this function. Use setattr for this purpose.

Related topics
copynode, delnode

Module
mmxml

Fair Isaac Corporation Proprietary Information 644

Chapter 19: mmxml

copynode

Purpose
Copy a node.

Synopsis
function copynode(src:xmldoc, s:integer, dst:xmldoc, d:integer,

where:integer):integer

Arguments
src Document of node to be copied
s Number of the node to copy
dst Destination document
d Node number where to attach the new node in the destination document
where How to attach the copy of the source node to the node d:

XML_FIRST as the first element of the list where node d is located
XML_LAST as the last element of the list where node d is located
XML_NEXT after node d
XML_FIRSTCHILD as the first child of node d (node dmust be an element)
XML_LASTCHILD as the last child of node d (node dmust be an element)

Example
The following code extract shows how to move (copy node, then delete original) and edit a node with all
its descendants

declarations
DB: xmldoc
APAC, NewPers, Pers: integer

end-declarations

! Retrieve destination region node
APAC:= getnode(DB, "personnelList/region[@id='APAC']")

! Retrieve employee record (node) for 'Lisa'
Pers:=

getnode(DB, "personnelList/region/employee/name[string()='Lisa']/..")
! Employee Lisa moves to Delhi: copy node & delete in original location
NewPers:= copynode(DB, Pers, DB, APAC, XML_LASTCHILD)
delnode(DB, Pers)

! Update the 'address' information
setvalue(DB, getnode(DB, NewPers, "address"), "Delhi")

Further information
This routine copies the node as well as all of its descendants if it is an element node. Source and
destination documents may be the same.

Related topics
addnode, delnode

Module
mmxml

Fair Isaac Corporation Proprietary Information 645

Chapter 19: mmxml

delattr

Purpose
Delete an attribute of an element node.

Synopsis
procedure delattr(doc:xmldoc, n:integer, name:string)

Arguments
doc Document to use
n Element node to modify
name Name of the attribute to remove

Example
See testattr.

Further information
This routine has no effect if the element does not have any attribute of the specified name.

Related topics
setattr

Module
mmxml

Fair Isaac Corporation Proprietary Information 646

Chapter 19: mmxml

delnode

Purpose
Delete a node in a document tree.

Synopsis
procedure delnode(doc:xmldoc, n:integer)

Arguments
doc Document to use
n Number of the node to delete

Example
See copynode.

Further information
This routine deletes the node as well as all of its descendants if it is an element node.

Related topics
addnode, copynode

Module
mmxml

Fair Isaac Corporation Proprietary Information 647

Chapter 19: mmxml

getattr

Purpose
Get the value of an attribute.

Synopsis
function getattr(doc:xmldoc, n:integer, name:string):text
function getboolattr(doc:xmldoc, n:integer, name:string):boolean
function getintattr(doc:xmldoc, n:integer, name:string):integer
function getrealattr(doc:xmldoc, n:integer, name:string):real
function getstrattr(doc:xmldoc, n:integer, name:string):string

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute

Return value
The value of the attribute or an empty string, 0 or false depending on the expected type.

Example
The following code extract prints the contents of ’name’ (leftbound in a 10 character space) and the
attributes ’id’ of all ’employee’ nodes, and the ’id’ of their parent node.

declarations
DB: xmldoc
AllEmployees: list of integer

end-declarations

getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(p in AllEmployees)

writeln(textfmt(getvalue(DB, getnode(DB, p, "name")), -10),
"(ID: ", getattr(DB,p,"id"), ") ",
"region: ", getattr(DB, getparent(DB, p), "id"))

Output produced by this code will look as follows:

Lisa (ID: L234) region: EMEA
James (ID: J876) region: APAC
Sarah (ID: S678) region: AM

Further information

1. Values of attributes are stored as text objects: the first version of the routine returns a reference to the
object containing the attribute value. Modifying this text will also alter the attribute value. Using one of
the alternative versions of this routine allows to avoid having to perform a type conversion. Note however
that no validation is performed and a conversion error will result in a 0 for a number and false for a
Boolean without raising any error.

2. A default value (empty string, 0 or false) is returned if the requested attribute is not defined. Use function
testattr to check whether a given node has a particular attribute.

Related topics
setattr, testattr, getfirstattr

Module
mmxml

Fair Isaac Corporation Proprietary Information 648

Chapter 19: mmxml

testattr

Purpose
Test existence of an attribute for a given element node.

Synopsis
function testattr(doc:xmldoc, n:integer, name:string):boolean

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute

Return value
true if the requested attribute is defined for the node.

Example
This example tests whether the attribute ’parttime’ is defined for an employee, and if this is the case the
attribute gets deleted after printing the name of the employee.

declarations
DB: xmldoc
AllEmployees: list of integer

end-declarations

getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(p in AllEmployees | testattr(DB, p, "parttime")) do

writeln(getvalue(DB, getnode(DB, p, "name")))
delattr(DB, p, "parttime")

end-do

Related topics
setattr, getattr

Module
mmxml

Fair Isaac Corporation Proprietary Information 649

Chapter 19: mmxml

getencoding

Purpose
Get the character encoding of the document.

Synopsis
function getencoding(doc:xmldoc):string

Argument
doc Document to use

Return value
Character encoding of the document

Related topics
getstandalone, getxmlversion

Module
mmxml

Fair Isaac Corporation Proprietary Information 650

Chapter 19: mmxml

getname

Purpose
Get the name of a node.

Synopsis
function getname(doc:xmldoc, n:integer):string

Arguments
doc Document to use
n Node number

Return value
The name of the node depending on the node type:
XML_ELT name of the element section
XML_TXT "#text"
XML_CDATA "#cdata-section"
XML_COM "#comment"
XML_DATA "#data"
XML_PINST processing instruction target
XML_ATTR name of the attribute

Example
The following example collects the names of all element nodes occurring in a document.

declarations
DB: xmldoc
NodeList: list of integer
NodeNames: set of string

end-declarations

getnodes(DB, "/descendant-or-self::node()", NodeList)
NodeNames:= union(r in NodeList | gettype(DB,r)=XML_ELT) {getname(DB,r)}
writeln("Names of element nodes: ", NodeNames)

Further information
Only element, attribute and processing instruction nodes have a name, for all other node types the above
listed constant name is returned.

Related topics
gettype, getvalue, setname

Module
mmxml

Fair Isaac Corporation Proprietary Information 651

Chapter 19: mmxml

getvalue

Purpose
Get the value of a node.

Synopsis
function getvalue(doc:xmldoc, n:integer):text
function getboolvalue(doc:xmldoc, n:integer):boolean
function getintvalue(doc:xmldoc, n:integer):integer
function getrealvalue(doc:xmldoc, n:integer):real
function getstrvalue(doc:xmldoc, n:integer):string

Arguments
doc Document to use
n Node number

Return value
The value of the node.

Example
This code prints out the name of the employee with attribute id="T345".

declarations
DB: xmldoc

end-declarations

writeln("Person with id='T345': ", getvalue(DB, getnode(DB,
"personnelList/region/employee[@id='T345']/name")))

Further information

1. Values of nodes are stored as text objects: the first version of the routine returns a reference to the
object containing the value. Modifying this text will also alter the node value. Using one of the alternative
versions of this routine allows to avoid having to perform a type conversion. Note however that no
validation is performed and a conversion error will result in a 0 for a number and false for a Boolean
without raising any error.

2. Element nodes have no value: the returned value corresponds to the value of the first child of type text of
this element (or an empty string if no such child can be found).

Related topics
gettype, getname, setvalue

Module
mmxml

Fair Isaac Corporation Proprietary Information 652

Chapter 19: mmxml

getfirstattr

Purpose
Get the first attribute of an element node.

Synopsis
function getfirstattr(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return value
The node number of the first attribute of the element node provided or -1 if there is no attribute.

Example
The following example displays all attributes of node e:

declarations
DB: xmldoc
a,e: integer

end-declarations

a:=getfirstattr(DB,e)
while(a>0) do

writeln(getname(DB,a), "=", getvalue(DB,a))
a:=getnext(DB,a)

end-do

Further information
Attributes are represented by nodes of type XML_ATTR: all node-related routines can be applied to
attribute nodes.

Related topics
getnext, getfirstchild, getlastchild, getparent

Module
mmxml

Fair Isaac Corporation Proprietary Information 653

Chapter 19: mmxml

getnext

Purpose
Get the successor of a node.

Synopsis
function getnext(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return value
The node number of the following node or -1 if the current node is the last of the list.

Example
This example enumerates all child nodes within a specific region and displays the ’id’ for all ’employee’
nodes on a single line, adding a line break after the last name:

declarations
DB: xmldoc
APAC, Pers: integer

end-declarations

APAC:= getnode(DB, "personnelList/region[@id='APAC']")
Pers:= getfirstchild(DB, APAC)
LastPers:= getlastchild(DB, APAC)
while(Pers>-1) do

if getname(DB, Pers)="employee" then
write(" ", getattr(DB,Pers,"id"))

end-if
if Pers=LastPers then writeln; end-if
Pers:= getnext(DB, Pers)

end-do

Further information
Node numbers returned by Mosel are not directly related to the order of nodes within the XML document
(i.e. a larger node number does not imply that a node succeeds a node with a smaller number).

Related topics
getfirstattr, getfirstchild, getlastchild, getparent

Module
mmxml

Fair Isaac Corporation Proprietary Information 654

Chapter 19: mmxml

getfirstchild

Purpose
Get the first child of an element node.

Synopsis
function getfirstchild(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return value
The node number of the first child or -1 if there is no child.

Example
See getnext.

Related topics
getfirstattr, getnext, getlastchild, getparent

Module
mmxml

Fair Isaac Corporation Proprietary Information 655

Chapter 19: mmxml

getlastchild

Purpose
Get the last child of an element node.

Synopsis
function getlastchild(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return value
The node number of the last child or -1 if there is no child.

Example
See getnext.

Related topics
getfirstattr, getfirstchild, getnext, getparent

Module
mmxml

Fair Isaac Corporation Proprietary Information 656

Chapter 19: mmxml

getnode

Purpose
Get the first node returned by a path specification.

Synopsis
function getnode(doc:xmldoc, n:integer, p:string|text):integer
function getnode(doc:xmldoc, n:integer):integer
function getnode(doc:xmldoc, p:string):integer

Arguments
doc Document to use
n Base node number (0 when not provided)
p Path to the node ("⁎" when not provided)

Return value
The node number of the first node selected by the path p; -1 if no node can be found.

Example
The following example shows different forms of the getnode function.

declarations
DB: xmldoc
Root, EMEA: integer

end-declarations

! Get the first element that is not a comment or a processing instruction
Root:= getnode(DB,"⁎") ! Same as: getnode(DB,0,"⁎")

! Get the 'region' node with id=EMEA
EMEA:= getnode(DB, "personnelList/region[@id='EMEA']")

! Check for employee record (node) for 'Sam' under 'EMEA'
if getnode(DB, EMEA, "employee/name[string()='Sam']/..")<0 then
writeln("No employee called 'Sam' in EMEA")

end-if

Further information

1. Refer to section 19.1.2 for a detailed description of the syntax and semantic of XML paths.

2. This function is the same as getfirstchild when used without path specification.

Related topics
getnodes, getfirstchild

Module
mmxml

Fair Isaac Corporation Proprietary Information 657

Chapter 19: mmxml

getnodes

Purpose
Get the list of nodes returned by a path specification.

Synopsis
procedure getnodes(doc:xmldoc, n:integer, p:string|text, l:list of integer)
procedure getnodes(doc:xmldoc, p:string, l:list of integer)
procedure getnodes(doc:xmldoc, n:integer, l:list of integer)

Arguments
doc Document to use
n Base node number (0 when not provided)
p Path to the node ("⁎" when not provided)
l List where result is returned

Example
Here are a number of examples how to retrieve nodes with specific properties:

declarations
DB: xmldoc
Employees, AllEmployees: list of integer

end-declarations

! Get all employees in the Americas
getnodes(DB, "personnelList/region[@id='AM']/employee", Employees)

! All employees who started before 2005
getnodes(DB, "personnelList/region/employee/startDate[number()<2005]/..",

Employees)

! All employees whose names start with "J"
getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(n in AllEmployees) do

getnodes(DB, n, "./name[starts-with(string(),'J')]/..", Employees)
forall(p in Employees) save(DB, p, "")

end-do

! Employees speaking at least 3 languages (=have a third "language" entry)
getnodes(DB, "personnelList/region/employee/language[position()=3]/..",

Employees)

Further information

1. Refer to section 19.1.2 for a detailed description of the syntax and semantic of XML paths.

2. This function resets the list it receives as parameter: the provided list is returned empty if no node can be
found.

Related topics
getnode

Module
mmxml

Fair Isaac Corporation Proprietary Information 658

Chapter 19: mmxml

getparent

Purpose
Get the parent of a node.

Synopsis
function getparent(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return value
The node number of the parent node or -1 if n=0 (root node has no parent).

Example
See getattr.

Related topics
getfirstattr, getfirstchild, getlastchild, getnext

Module
mmxml

Fair Isaac Corporation Proprietary Information 659

Chapter 19: mmxml

gettype

Purpose
Get the type of a node.

Synopsis
function gettype(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return value
The type of the node:
XML_ELT an element
XML_TXT a text
XML_CDATA a CDATA section
XML_COM a comment
XML_DATA a data section
XML_PINST a processing instruction
XML_ATTR an attribute
-1 if the node number is not valid

Example
See getname.

Further information
This function returns -1 if the provided node number is not valid: this feature can be used to verify the
validity of a node number before using it with other functions.

Related topics
getname, getvalue

Module
mmxml

Fair Isaac Corporation Proprietary Information 660

Chapter 19: mmxml

getstandalone

Purpose
Get the standalone flag of the document.

Synopsis
function getstandalone(doc:xmldoc):integer

Argument
doc Document to use

Return value
Standalone flag:
-1 flag not specified
0 standalone=no
1 standalone=yes

Further information
The value of this flag is not used by mmxml. This is just an information to be saved in the header of the
XML document. The default value for this flag is -1.

Related topics
getencoding, getxmlversion

Module
mmxml

Fair Isaac Corporation Proprietary Information 661

Chapter 19: mmxml

getxmlversion

Purpose
Get the XML version of the document.

Synopsis
function getxmlversion(doc:xmldoc):string

Argument
doc Document to use

Return value
XML version as a text string

Further information
The XML version number is not used by mmxml. This is just an information to be saved in the header of
the XML document. The default value for this option is 1.0.

Related topics
getencoding, getstandalone

Module
mmxml

Fair Isaac Corporation Proprietary Information 662

Chapter 19: mmxml

gethspace

Purpose
Get horizontal spacing of a node.

Synopsis
function gethspace(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return value
Number of spaces inserted before the node output

Further information
This spacing indicates the number of spaces to insert before displaying the node from the start of a new
line when outputing the document. The horizontal spacing setting is only used when the indentation is in
manual mode (see setindentmode).

Related topics
getvspace, getindentmode

Module
mmxml

Fair Isaac Corporation Proprietary Information 663

Chapter 19: mmxml

getvspace

Purpose
Get vertical spacing of a node.

Synopsis
function getvspace(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return value
Number of carriage returns inserted before the node output

Further information
This spacing indicates the number of empty lines to insert before displaying the node when outputing the
document. The vertical spacing setting is only used when the indentation is in manual mode (see
setindentmode).

Related topics
gethspace, getindentmode

Module
mmxml

Fair Isaac Corporation Proprietary Information 664

Chapter 19: mmxml

getindentmode

Purpose
Get indent mode of the document.

Synopsis
function getindentmode(doc:xmldoc):integer

Argument
doc Document to use

Return value
Indent mode:
XML_AUTO automatic indentation
XML_NONE no formatting
XML_MANUAL use vertical/horizontal spacing settings of each node

Related topics
setindentmode, getindentskip, getlinelen

Module
mmxml

Fair Isaac Corporation Proprietary Information 665

Chapter 19: mmxml

getindentskip

Purpose
Get the size of an indentation step.

Synopsis
function getindentskip(doc:xmldoc):integer

Argument
doc Document to use

Return value
Number of spaces to add for each indentation

Related topics
setindentskip, getindentmode, getlinelen

Module
mmxml

Fair Isaac Corporation Proprietary Information 666

Chapter 19: mmxml

getlinelen

Purpose
Get the length of a line.

Synopsis
function getlinelen(doc:xmldoc):integer

Argument
doc Document to use

Return value
Length of a line in characters for outputting the XML document

Related topics
setlinelen, getindentmode, getindentskip

Module
mmxml

Fair Isaac Corporation Proprietary Information 667

Chapter 19: mmxml

getmaxnodes

Purpose
Get the number of nodes currently allocated for a document.

Synopsis
function getmaxnodes(doc:xmldoc):integer

Argument
doc Document to use

Return value
Number of nodes currently allocated

Further information
This function returns the amount of memory (in number of nodes) currently allocated for a given
document. This amount may be larger than the amount actually in use.

Related topics
setmaxnodes, getsize

Module
mmxml

Fair Isaac Corporation Proprietary Information 668

Chapter 19: mmxml

getsize

Purpose
Get the size of a document.

Synopsis
function getsize(doc:xmldoc):integer

Argument
doc Document to use

Return value
The number of nodes used by the document.

Related topics
getmaxnodes

Module
mmxml

Fair Isaac Corporation Proprietary Information 669

Chapter 19: mmxml

jsonload

Purpose
Load a JSON document.

Synopsis
procedure jsonload(doc:xmldoc, fname:text)
procedure jsonload(doc:xmldoc, fname:text, mode:integer)

Arguments
doc Document to use
fname File name of the document to load
mode How to handle JSON object names:

0 Object names are converted to XML element names (default)
1 Object names are saved as the attribute "name"

Further information

1. This routine replaces the content of the provided document object with the JSON file given as second
argument. If the file cannot be accessed or if an error occurs during reading, the procedure generates an
IO error (which may be intercepted if the control parameter ioctrl is true).

2. The parser converts the original JSON document into an XML representation (See Section 19.1.3). Using
the version of the procedure without the mode argument is the same as using 0 for this parameter.

Related topics
jsonsave, jsonparse, load

Module
mmxml

Fair Isaac Corporation Proprietary Information 670

Chapter 19: mmxml

jsonparse

Purpose
Parse a JSON document.

Synopsis
function jsonparse(afct:array(range) of string|function,ctx:ctxtype):

integer

Arguments
afct Event function table. Each entry of this array is the name of or a reference to the function to call

when the corresponding event occurs. The expected events are (all of these entries are optional):

JSON_FCT_OPEN_OBJ Opening of an object
JSON_FCT_CLOSE_OBJ Closing of an object
JSON_FCT_OPEN_ARR Opening of an array
JSON_FCT_CLOSE_ARR Closing of an array
JSON_FCT_TEXT A textual value
JSON_FCT_NUM A numerical value
JSON_FCT_BOOL A Boolean value
JSON_FCT_NULL The null value

ctx Value passed as firt argument of all event functions

Return value
0 if successful, 1 in case of parsing error or a non-zero value returned by an event function

Example
This example displays values of object members "name" and "age" of a JSON document:

declarations
afct:array(range) of string
s_ctx=record
cnt:integer

end-record
c:s_ctx

end-declarations

public function setvalue_all(ctx:s_ctx,name:text,type:integer,val:text):integer
if name="name" or name="age" then
writeln(name,":",val)
ctx.cnt+=1

end-if
end-function

afct(JSON_FCT_TEXT):="setvalue_all" ! A value as a text
fopen("mydoc.json",F_INPUT)
rts:=jsonparse(afct,c)
fclose(F_INPUT)
writeln("line count:",c.cnt)

Fair Isaac Corporation Proprietary Information 671

Chapter 19: mmxml

Further information

1. This function is an alternative approach to jsonload for processing JSON documents: instead of
loading into memory the entire document this function calls a dedicated routine whenever it identifies a
JSON entity. For instance a specific function is called when an object is open and another one when it is
closed. It is up to the Mosel program to decide how to handle the document via these event handling
functions.

2. To each event type corresponds a specific function signature. These functions return an integer that
decides whether parsing should continue: a non-zero value will cause the parsing to cancel (this value is
used as the return value of jsonparse). The expected function signatures are:

JSON_FCT_OPEN_OBJ function open_object(ctx:ctxtype, name:text):integer
JSON_FCT_CLOSE_OBJ function close_object(ctx:ctxtype):integer
JSON_FCT_OPEN_ARR function open_array(ctx:ctxtype, name:text):integer
JSON_FCT_CLOSE_ARR function close_array(ctx:ctxtype):integer
JSON_FCT_TEXT function text_val(ctx:ctxtype, name:text, type:integer,

val:text):integer
JSON_FCT_NUM function num_val(ctx:ctxtype, name:text, val:real):integer
JSON_FCT_BOOL function bool_val(ctx:ctxtype, name:text,

val:boolean):integer
JSON_FCT_NULL function null_val(ctx:ctxtype, name:text):integer

In addition to the pre-defined arguments these functions take a context as their first parameter. This
variable (that can be of any type) is provided to the jsonparse routine and can be used by the event
functions for storing progress information.
The name argument is not empty only when the value corresponds to an object member: in this case this
parameter is the label of this member. The type argument passed to the text_val function indicates the
type of the data (0 for null, 1 for text, 2 for numerical and 3 for Boolean): this function is used with the
textual representation of the value when the required type-specific function is not available. For instance
this function will be called with type=3 if a Boolean value has been read and the entry JSON_FCT_BOOL
is not defined in the function table.

3. An error message indicating the location of the error is displayed when the parsing fails or if an event
function returns a negative value (a positive value also interrupts parsing but no message is displayed).

Related topics
jsonload

Module
mmxml

Fair Isaac Corporation Proprietary Information 672

Chapter 19: mmxml

jsonsave

Purpose
Save a JSON document.

Synopsis
procedure jsonsave(doc:xmldoc, fname:text)

Arguments
doc Document to save
fname Destination file name

Further information

1. This routine generates a JSON file from the provided xmldoc object. It is assumed that the document is
built according to the JSON conventions (See Section 19.1.3). The result is undefined if the conventions
are not respected.

2. This procedure does not require that the elements of the tree are typed using the "jst" attribute: the
type is deduced from the value of the node when this attribute is missing. Moreover, both object member
naming conventions can be used: when outputing an object, the member name can be taken either from
the element name or from the attribute "name". If both are available, the attribute takes precedence.

3. An IO error will be raised if the destination file cannot be accessed.
Related topics

jsonload, save

Module
mmxml

Fair Isaac Corporation Proprietary Information 673

Chapter 19: mmxml

load

Purpose
Load an XML document.

Synopsis
procedure load(doc:xmldoc, fname:text)

Arguments
doc Document to use
fname File name of the document to load

Example
This code reads in a document and displays its contents on screen applying automatic formatting
instead of its original formatting.

declarations
DB: xmldoc

end-declarations

! Reading data from an XML file
load(DB, "refexample.xml")

! Set indentation mode for XML output (default after load: MANUAL)
setindentmode(DB, XML_AUTO)

! Display document contents on screen
save(DB, "")

Further information
This routine replaces the content of the provided document object with the XML file given as second
argument: all properties of the document are reset to their default value and the indentation mode is set
to XML_MANUAL (see setindentmode). Vertical and horizontal spacing of each loaded node are set in
order to preserve as much as possible the original formatting of the document. If the file cannot be
accessed or if an error occurs during reading, the procedure generates an IO error (which may be
intercepted if the control parameter ioctrl is true).

Related topics
save, xmlparse, jsonload

Module
mmxml

Fair Isaac Corporation Proprietary Information 674

Chapter 19: mmxml

save

Purpose
Save an XML document.

Synopsis
procedure save(doc:xmldoc, fname:text)
procedure save(doc:xmldoc, n:integer, fname:text)

Arguments
doc Document to save
n Node number to use as root node (default: 0)
fname Destination file name

Example
This example shows the two versions of this procedure.

declarations
DB: xmldoc
Pers: integer

end-declarations

! Save XML document to file 'results.xml'
save(DB, "results.xml")

! Display a subtree on screen
Pers:= getnode(DB, "personnelList/region/employee[@id='T345']")
save(DB, Pers, "")

Further information

1. This routine generates an XML file from the provided xmldoc object. The XML header is produced using
the properties defined with setencoding, setxmlversion and setstandalone. No header is
emitted if either the encoding or the version is an empty string.

2. When providing an alternative root node, only the specified part of the document tree is exported without
any XML header.

3. The document is formatted according to the indentation mode and its associated settings (see
setindentmode); XML control characters are encoded (see xmlencode).

4. An IO error will be raised if the destination file cannot be accessed.
Related topics

load, save

Module
mmxml

Fair Isaac Corporation Proprietary Information 675

Chapter 19: mmxml

setattr

Purpose
Set the value of an attribute.

Synopsis
procedure setattr(doc:xmldoc, n:integer, name:string,

v:text|string|boolean|integer|real)

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute
v New value for the attribute

Example
See addnode.

Further information

1. Attribute values are stored as text objects: the versions of this procedure accepting other types perform
the conversion implicitly.

2. Attributes are nodes of type XML_ATTR: procedure setvaluemay also be used to change the value of
an attribute.

3. Setting an empty value to an attribute does not remove this attribute from the attribute list of the element.
Use delattr for this purpose.

Related topics
getattr, delattr

Module
mmxml

Fair Isaac Corporation Proprietary Information 676

Chapter 19: mmxml

setencoding

Purpose
Set the character encoding of the document.

Synopsis
procedure setencoding(doc:xmldoc, enc:string)

Arguments
doc Document to use
enc Name of the character encoding

Further information
The default character encoding is UTF-8.

Related topics
save, setstandalone, setxmlversion

Module
mmxml

Fair Isaac Corporation Proprietary Information 677

Chapter 19: mmxml

setmaxnodes

Purpose
Set the number of allocated nodes for a document.

Synopsis
procedure setmaxnodes(doc:xmldoc, m:integer)

Arguments
doc Document to use
m Number of nodes to reserve

Further information
This procedure sets the amount of memory reserved for a document. Normally, mmxml allocates
memory on demand but using this procedure it is possible to allocate at once a larger block of memory to
possibly speedup the loading of very large documents. If the requested amount is smaller than what is
required to represent the document currently held in the doc object, the memory block is reduced as
much as possible such that the document can still be stored.

Related topics
getmaxnodes

Module
mmxml

Fair Isaac Corporation Proprietary Information 678

Chapter 19: mmxml

setname

Purpose
Set the name of a node.

Synopsis
procedure setname(doc:xmldoc, n:integer,name:string)

Arguments
doc Document to use
n Node number (must be an element or processing instruction)
name New name for the node

Further information
Only element and processing instruction nodes can be modified with this routine; for all other node types
an error will be raised.

Related topics
setvalue

Module
mmxml

Fair Isaac Corporation Proprietary Information 679

Chapter 19: mmxml

setvalue

Purpose
Set the value of a node.

Synopsis
procedure setvalue(doc:xmldoc, n:integer,

v:text|string|integer|real|boolean)

Arguments
doc Document to use
n Node number
v New value for the node

Example
See copynode.

Further information

1. Node values are stored as text objects: the versions of this procedure accepting other types perform
the conversion implicitly.

2. Element nodes have no value: this procedure will modify the value of the first child text node of the
element. If no such node exists, a new text node will be added to the beginning of the list of children.

Related topics
setname

Module
mmxml

Fair Isaac Corporation Proprietary Information 680

Chapter 19: mmxml

sethspace

Purpose
Set horizontal spacing of a node.

Synopsis
procedure sethspace(doc:xmldoc, n:integer, s:integer)

Arguments
doc Document to use
n Node number
s Number of spaces to put before the node output

Example
The following example reformats the XML document layout by adding an additional line before ’region’
nodes and printing three consecutive tags within ’employee’ on a single line. The indentmode is set to
’manual’ in order to apply the user formatting (instead of automatic or none).

declarations
DB: xmldoc
NodeList, Employees: list of integer

end-declarations

! New line without indentation for Root
setvspace(DB, Root, 1)

! Add extra line in between regions, keeping original indentation
getnodes(DB, "personnelList/region", NodeList)
forall(r in NodeList) setvspace(DB, r, 2)

! Spacing/indentation for 'employee' tag
getnodes(DB, "personnelList/region/employee", Employees)
forall(p in Employees) do

setvspace(DB, p, 1); sethspace(DB, p, 4)

! Within 'employee', display up to 3 consecutive tags on a single line
getnodes(DB, p, "child::node()[position() mod 3=1]", NodeList)
forall(r in NodeList) do

setvspace(DB, r, 1); sethspace(DB, r, 6)
end-do
getnodes(DB, p, "child::node()[position() mod 3<>1]", NodeList)
forall(r in NodeList) do

setvspace(DB, r, 0); sethspace(DB, r, 1)
end-do

end-do

! Set indentation mode to 'manual' to use our own formatting for display
setindentmode(DB, XML_MANUAL)
save(DB, "")

Further information
This spacing indicates the number of spaces to skip from the start of a new line before displaying the
node when outputing the document. The horizontal spacing setting is only used when the indentation is
in manual mode (see setindentmode).

Fair Isaac Corporation Proprietary Information 681

Chapter 19: mmxml

Related topics
setvspace, setindentmode

Module
mmxml

Fair Isaac Corporation Proprietary Information 682

Chapter 19: mmxml

setvspace

Purpose
Set vertical spacing of a node.

Synopsis
procedure setvspace(doc:xmldoc, n:integer, s:integer)

Arguments
doc Document to use
n Node number
s Number of carriage return to put before the node output

Example
See sethspace.

Further information
This spacing indicates the number of empty lines to add before displaying the node when outputing the
document. The vertical spacing setting is only used when the indentation is in manual mode (see
setindentmode).

Related topics
sethspace, setindentmode

Module
mmxml

Fair Isaac Corporation Proprietary Information 683

Chapter 19: mmxml

setindentmode

Purpose
Set indent mode for the document.

Synopsis
procedure setindentmode(doc:xmldoc, imod:integer)

Arguments
doc Document to use
imod Indent mode:

XML_AUTO automatic indentation
XML_NONE no formatting
XML_MANUAL use vertical/horizontal spacing of each node

Example
See sethspace.

Further information
This parameter specifies how the XML document must be formatted by the save routine. Automatic
indentation can be tuned by redefining the indent skip (setindentskip) and line length (setlinelen).
If the indent mode is set to XML_NONE, the document is exported on a single line without formatting.
Finally, with manual indenting, each node is placed according to its horizontal/vertical spacing as
specified by setvspace and sethspace.

Related topics
save, setindentskip, setlinelen

Module
mmxml

Fair Isaac Corporation Proprietary Information 684

Chapter 19: mmxml

setindentskip

Purpose
Set the size of an indentation step.

Synopsis
procedure setindentskip(doc:xmldoc, skip:integer)

Arguments
doc Document to use
skip Number of spaces to add for each indentation (at least 1; default is 2)

Example
This code reads in a document and displays its contents on screen applying automatic formatting with
single space indentation and increased line length.

declarations
DB: xmldoc

end-declarations

! Reading data from an XML file
load(DB, "refexample.xml")

! Set indentation mode for XML output (default after load: MANUAL)
setindentmode(DB, XML_AUTO)

! Set smaller indentation skip than default
setindentskip(DB, 1)

! Increase default line length
setlinelen(DB, 80)

! Display document contents on screen
save(DB, "")

Further information
When the document is formatted automatically (see setindentmode) the number of spaces specified
by this procedure is added to the current margin each time a new indent step is created.

Related topics
save, setindentmode, setlinelen

Module
mmxml

Fair Isaac Corporation Proprietary Information 685

Chapter 19: mmxml

setlinelen

Purpose
Set the length of a line.

Synopsis
procedure setlinelen(doc:xmldoc, len:integer)

Arguments
doc Document to use
len Length of a line in characters (at least 1; default is 70)

Example
See setindentskip.

Further information
When outputing the document, a line break is inserted between nodes or while displaying a list of element
attributes whenever more than the specified number of characters has been written.

Related topics
save, setindentmode, setindentskip

Module
mmxml

Fair Isaac Corporation Proprietary Information 686

Chapter 19: mmxml

setstandalone

Purpose
Set the standalone flag of the document.

Synopsis
procedure setstandalone(doc:xmldoc, std:integer)

Arguments
doc Document to use
std Standalone flag:

-1 flag not specified
0 standalone=no
1 standalone=yes

Further information
The value of this flag is not used by mmxml. This is just an information to be saved in the header of the
XML document. The default value for this flag is -1.

Related topics
save, setencoding, setxmlversion

Module
mmxml

Fair Isaac Corporation Proprietary Information 687

Chapter 19: mmxml

setxmlversion

Purpose
Set the XML version of the document.

Synopsis
procedure setxmlversion(doc:xmldoc, xv:string)

Arguments
doc Document to use
xv XML version

Further information
The XML version number is not used by mmxml. This is just an information to be saved in the header of
the XML document. The default value for this option is 1.0.

Related topics
save, setencoding, setstandalone

Module
mmxml

Fair Isaac Corporation Proprietary Information 688

Chapter 19: mmxml

xmlattr

Purpose
Get an attribute during parsing of an element.

Synopsis
procedure xmlattr(ndx:integer, name:text, val:text)
procedure xmlattr(aname:string, val:text)

Arguments
ndx Attribute index
name Attribute name (returned by the procedure)
val Attribute value (returned by the procedure)
aname Attribute name (provided to the procedure)

Further information

1. This procedure can only be used from the open element function while parsing an XML document with
the xmlparse function.

2. With the first syntax, the attribute index ndx is returned by the procedure (both its name and value). This
index value must range between 1 and the last index as passed to the open element function. With the
second syntax the name of the attribute to retrieve is given to the procedure. An empty string is returned
if this attribute is not defined for the current element.

Related topics
xmlparse

Module
mmxml

Fair Isaac Corporation Proprietary Information 689

Chapter 19: mmxml

xmlencode

Purpose
Encode a text string for XML.

Synopsis
function xmlencode(t:text):text

Argument
t text to encode

Further information
Encode a text string for XML by replacing control characters (<, >, &, ’, ") by their encoded equivalent.

Related topics
xmldecode

Module
mmxml

Fair Isaac Corporation Proprietary Information 690

Chapter 19: mmxml

xmldecode

Purpose
Decode a text string for XML.

Synopsis
function xmldecode(t:text):text

Argument
t text to decode

Further information
Decode a text string from XML by replacing encoded sequences (< > & ' ") by the
corresponding control characters.

Related topics
xmlencode

Module
mmxml

Fair Isaac Corporation Proprietary Information 691

Chapter 19: mmxml

xmlparse

Purpose
Parse an XML document.

Synopsis
function xmlparse(afct:array(range) of

string|function,mode:integer,ctx:ctxtype): integer

Arguments
afct Event function table. Each entry of this array is the name of or a reference to the function to call

when the corresponding event occurs. The expected events are (all of these entries are optional):

XML_FCT_DECL Document declarations
XML_FCT_TXT A text node (same value as ML_TEXT)
XML_FCT_CDATA A CDATA node
XML_FCT_COM A commentary node
XML_FCT_DATA A DATA node
XML_FCT_PINST A processing instruction node
XML_FCT_OPEN_ELT Opening of a new element node
XML_FCT_CLOSE_ELT Closing of an element node

mode If 0, spaces are preserved and returned as text elements. Otherwise all text elements are
trimmed

ctx Value passed as first argument of all event functions

Return value
0 if successful, 1 in case of parsing error or a non-zero value returned by an event function

Example
This example displays the structure of an XML document without loading it into memory.

! Display element name and update indentation
public function start_elt(spce:text,name:text,nba:integer):integer
writeln(spce,name)
spce+=" "
end-function

! Update indentation when element closes
function end_elt(spce:text):integer
spce-=" "
end-function

declarations
afct:array(range) of any
end-declarations

afct(XML_FCT_OPEN_ELT):="start_elt" ! define open element
afct(XML_FCT_CLOSE_ELT):=->end_elt ! define close element
fopen("mydocument.xml",F_INPUT)
rts:=xmlparse(afct,1,text(""))
fclose(F_INPUT)

Fair Isaac Corporation Proprietary Information 692

Chapter 19: mmxml

Further information

1. This function is an alternative approach to load for processing XML documents: instead of loading into
memory the entire document this function calls a dedicated routine whenever it identifies an XML entity.
For instance a specific function is called when an element is open and another one when it is closed. It is
up to the Mosel program to decide how to handle the document via these event handling functions.

2. To each event type corresponds a specific function signature. These functions return an integer that
decides whether parsing should continue: a non-zero value will cause the parsing to cancel (this value is
used as the return value of xmlparse). The expected function signatures are:

XML_FCT_DECL function xmldecl(ctx:ctxtype, vers:text, enc:text,
std:integer):integer

XML_FCT_TXT function text_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_CDATA function cdata_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_COM function comment_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_DATA function data_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_PINST function processing_instr(ctx:ctxtype, target:text,
data:text):integer

XML_FCT_OPEN_ELT function open_element(ctx:ctxtype, name:text,
nba:integer):integer

XML_FCT_CLOSE_ELT function close_element(ctx:ctxtype):integer

In addition to the pre-defined arguments these functions take a context as their first parameter. This
variable (that can be of any type) is provided to the xmlparse routine and can be used by the event
functions for storing progress information.
The type passed to the text node functions is the XML type corresponding to the function (namely
XML_TXT, XML_CDATA, XML_COM, XML_DATA).
The open_element function receives the name of the element as well as the number of defined attributes.
To retrieve these attributes xmlattr can be used.

3. An error message indicating the location of the error is displayed when the parsing fails or if an event
function returns a negative value (a positive value also interrupts parsing but no message is displayed).

Related topics
load

Module
mmxml

Fair Isaac Corporation Proprietary Information 693

CHAPTER 20

mmxnlp

The mmxnlp module provides access to nonlinear solvers, extending the capabilities provided by the
mmxprs and mmnl modules. In particular, this module allows existing linear or mixed integer (MIP)
models to be upgraded to include nonlinearities, without requiring unnecessary changes to the
formulation. To use this module, the following line must be included in the header of the Mosel model file:

uses 'mmxnlp'

Problem type and module hierarchy

Module mmxprs provides

■ linear models and

■ mixed integer linear models.

Module mmnl adds support for

■ convex quadratic models,

■ convex quadratic mixed integer models,

■ convex, quadratically constrained models, and

■ convex, quadratically constrained mixed integer models.

Module mmxnlp adds support for

■ general nonlinear problems and

■ general nonlinear mixed integer problems.

If the mmxnlp module is used for a model which does not require a general nonlinear solver, this should
be equivalent to using the appropriate mmxprs or mmnl module directly.

20.1 New functionality for the Mosel language
20.1.1 The userfunc type

A nonlinear model may employ one or more black box evaluation functions, which can be used to provide
function evaluations to the solver. These are represented in mmxnlp by the new userfunc type. The
implementation of each userfuncmust be described by calling one of:

Fair Isaac Corporation Proprietary Information 694

Chapter 20: mmxnlp

■ userfuncMosel: to declare that a user function is implemented as a Mosel function

Note that user functions returning multiple arguments are support by the mmxnlp module. The F
construction allows a userfunc to be included in any nonlinear (nlctr) expression, and groups each
occurrence of the userfunc with its parameters . During the solve, the parameters (which are of type nlctr
themselves) will be evaluated at the current solution, and the real-valued results passed to the userfunc
implementation. The function userfuncinfo can be used to find out which parameters the system has
deduced it needs to pass to a particular userfunc.

20.1.2 The tolset type
The module provides a large number of configurable tolerances for users of the Xpress NonLinear SLP
solver. A tolset describes a convergence tolerance set, which can be used for those nonlinear solvers
supporting variable-specific convergence tolerances. The elements of a tolerance set are defined by
using settol, and assigned to a variable or list of variables using settolset. For more details on
tolerance sets, please refer to the Xpress NonLinear Reference Manual.

■ XNLP_TOL_TC: The absolute closure tolerance

■ XNLP_TOL_TA: The absolute delta tolerance

■ XNLP_TOL_RA: The relative delta tolerance

■ XNLP_TOL_TM: The absolute matrix tolerance

■ XNLP_TOL_RM: The relative matrix tolerance

■ XNLP_TOL_TI: The absolute impact tolerance

■ XNLP_TOL_RI: The relative impact tolerance

■ XNLP_TOL_TS: The relative slack impact tolerance

■ XNLP_TOL_RS: The absolute slack impact tolerance

20.1.3 The mpproblem.xprs.xnlp problem type
When using the mmxnlp module, the type of the active Mosel problem is changed from mpproblem.xprs
to the extended type mpproblem.xprs.xnlp. This means that all of the routines presented in this section
operate in the context of the current Mosel problem.

20.2 mmxnlp and the other Mosel modules
mmxnlp is designed to provide seamless integration with other Mosel functionalities. However, the
fundamentally different nature of nonlinear problems makes some compromises necessary; these are
listed in this section.

20.2.1 Overloaded functions
The following functionality is modified or extended by the mmxnlp module:

■ Retrieval of solution values with getsol, both for variables and nonlinear constraints. A detailed
description of the behaviour of this function can be found in the documentation for the mmxprs and
mmnl modules.

Fair Isaac Corporation Proprietary Information 695

Chapter 20: mmxnlp

■ Functions implemented in the mmnl module are extended for nonlinear solvers:

– setinitval, clearinitvals and copysoltoinit to manage initial values.
– Mathematical functions: abs, exp, ln, log, sqrt, cos, sin, tan, arccos, arcsin, arctan.
– Mosel constraint and constraint visibility functions: gettype, settype, ishidden and
sethidden.

■ Functions implemented in the mmxprs module are extended for nonlinear solvers:

– maximize and minimize to solve the problem.
– getprobstat to return the problem solution status.
– fixglobal for managing integer problems.
– Exporting the current status (for debugging purposes) with loadprob, writeprob and
savestate.

20.2.2 Module compatibility
The mmquad module is incompatible with the mmxnlp module, and should not be used together with it.

The mmxprs and mmnl modules are automatically loaded when using the mmxnlp module.

The mmnl module defines several discontinuous functions for use with decision variables (mpvar), which
are not supported by the mmxnlp module. These constructions should instead be modelled with integer
constraints. The functions are: round, ceil, floor, idiv and mod.

The following standard functionalities are not available for nonlinear problems:

■ Functions for working with a basis: loadbasis, readbasis and savebasis.

■ Logical constraints of the form logctr, and their operators: implies, indicator, or, xor and
and.

■ Functions for working with multiple MIP solutions, the solution pool and the solution enumerator:
selectsol, XPRS_enumduplpol, XPRS_enummaxsol and XPRS_enumsols.

■ Functions for cut management, including model cuts and delayed rows: addcut, addcuts,
loadcuts, storecut, storecuts, delcuts, dropcuts, getcnlist and getcplist.

■ Functions for determining irreducible infeasible sets, and for repairing infeasibility: getiis,
getiissense, getiistype, isiisvalid, resetiis and repairinfeas and getinfeas.

20.3 Control parameters
When using mmxnlp, getparam and setparam are extended to additionally provide access to all the
control and problem parameters of the Xpress NonLinear SLP solver. The module also provides the
following controls of its own:

XNLP_AUTOELIM When set to true, Mosel uses the model’s semantics to break down nonlinear
formulas and feed the information to the solver for nonlinear eliminations
and to detect network structures in the model. p. 697

XNLP_LOADASNL When set to true, quadratic expressions will be treated as being of general
nonlinear type. If they are known to be non-convex, the overhead of
attempting to treat the expression as convex initially is avoided. p. 697

Fair Isaac Corporation Proprietary Information 696

Chapter 20: mmxnlp

XNLP_LOADNAMES When set to true, names from the Mosel file will be passed to the underlying
solver to improve the readability of messages it generates. This is an alias
for XPRS_LOADNAMES. p. 697

XNLP_NLPSTATUS The solution status of the problem. For a detailed description of this value,
please see the documentation for the XSLP_NLPSTATUS attribute in the
Xpress NonLinear Reference Manual. p. 698

XNLP_SOLVER Solver selection when available. p. 698

XNLP_VERBOSE When set to true, informative messages from any underlying nonlinear solver
will be displayed. This is an alias for XPRS_VERBOSE. p. 698

XNLP_AUTOELIM

Description When set to true, Mosel uses the model’s semantics to break down nonlinear formulas and feed
the information to the solver for nonlinear eliminations and to detect network structures in the
model.

Type Integer, read/write

Values 0 Disable
1 Enable

Default value 1

Module mmxnlp

XNLP_LOADASNL

Description When set to true, quadratic expressions will be treated as being of general nonlinear type. If
they are known to be non-convex, the overhead of attempting to treat the expression as convex
initially is avoided.

Type Integer, read/write

Values 0 Assume that quadratic expressions are convex
1 Assume that quadratic expressions are non-convex

Default value 0

Module mmxnlp

XNLP_LOADNAMES

Description When set to true, names from the Mosel file will be passed to the underlying solver to improve
the readability of messages it generates. This is an alias for XPRS_LOADNAMES.

Type Integer, read/write

Values 0 Names are not loaded into the solver
1 Names are loaded into the solver

Default value 0

Module mmxnlp

Fair Isaac Corporation Proprietary Information 697

Chapter 20: mmxnlp

XNLP_NLPSTATUS

Description The solution status of the problem. For a detailed description of this value, please see the
documentation for the XSLP_NLPSTATUS attribute in the Xpress NonLinear Reference Manual.

Type Integer, read only

Values 0 Optimization unstarted
1 Locally optimal
2 Optimal
3 Locally infeasible
4 Infeasible
5 Unbounded
6 Unfinished

Default value 0

Module mmxnlp

XNLP_SOLVER

Description Solver selection when available.

Type Integer, read/write

Values -1 Determine automatically, based on problem characteristics and availability of solvers
0 Xpress NonLinear (SLP)
1 Knitro

Default value -1

Module mmxnlp

XNLP_VERBOSE

Description When set to true, informative messages from any underlying nonlinear solver will be displayed.
This is an alias for XPRS_VERBOSE.

Type Integer, read/write

Values 0 No solver logging
1 Solver log is displayed

Default value 0

Module mmxnlp

20.4 Procedures and functions
This section lists in alphabetical order the functions and procedures that are provided by the mmxnlp
module.

addmultistart Loads a single or a set of multistart job(s) into the multistart job pool. p. 700

Fair Isaac Corporation Proprietary Information 698

Chapter 20: mmxnlp

chgdeltatype Changes the type of a delta variable associated to an mpvar. p. 701

F Include a user function in a nonlinear constraint. p. 702

generateUFparallel Generates a parallel version of a Mosel user function that is implemented as
a Mosel package. p. 704

printmodelmemory Print a summary of the current memory usage of the nonlinear module.
p. 705

printmodelscaling Print a summary of the scaling of the model, as loaded into the solver. p. 706

setcallback Set nonlinear callback functions and procedures. p. 707

setcomplementary Set two variables as being complementary. p. 708

setdefvar Set a variable to be purely defined by a constriant. p. 709

setdetrow Set the determining row for a variable. p. 710

setenforcedctr Mark a nonlinear constraint as enforced. p. 711

setinitsb Provide the initial step bound for a variable. p. 712

settol Define a particular tolerance in a tolerance set. p. 713

settolset Assigns a tolerance set to a variable, or list of variables. p. 714

userfuncinfo Print the inferred prototype of the given user function. p. 715

userfuncMosel Create a user function from a Mosel function. p. 716

validate Print a summary of the feasibility of the current solution. p. 717

Fair Isaac Corporation Proprietary Information 699

Chapter 20: mmxnlp

addmultistart

Purpose
Loads a single or a set of multistart job(s) into the multistart job pool.

Synopsis
addmultistart(descr:string)
addmultistart(descr:string, controls:array(set of string) of real)
addmultistart(descr:string, initvalues:array(set of mpvar) of real)
addmultistart(descr:string, initvalues:array(set of mpvar) of real,

controls: array(set of string) of real)
addmultistart(descr:string, controls:array(set of string) of real,

initvalues:array(set of mpvar) of real)
addmultistart(descr:string, preset:integer)
addmultistart(descr:string, preset:integer, cnt:integer)
addmultistart(descr:string, preset:integer, initvalues:array(set of mpvar)

of real, controls:array(set of string) of real)
addmultistart(descr:string, preset:integer, cnt:integer,

initvalues:array(set of mpvar) of real, controls:array(set of string)
of real)

Arguments
descr Text description of the job. Used in reporting and in callbacks.
controls An array containing the controls to be set for the loaded multistart job.
initvalues An array containing initial values to be set for the loaded multistart job.
preset The multistart preset of jobs to be loaded. Please see the Xpress NonLinear Reference

Manual for the list of possible presets.
cnt The upper bound on the number of jobs to be created, in case a preset is used.

Further information
Adds a job or a preset to the multistart job pool. Multistart jobs are automatically executed on the next
minimize/maximize command, unless the XSLP_MULTISTART control is set to 0. Please refer to the
Xpress NonLinear Reference Manual for a detailed description of multistart.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 700

Chapter 20: mmxnlp

chgdeltatype

Purpose
Changes the type of a delta variable associated to an mpvar.

Synopsis
procedure chgdeltatype(col:mpvar, type:integer, value:real)

Arguments
col The column for which the delta is to be changed.
type The new type of the delta.
value Value associated to the new delta type.

Further information
Please refer to the Xpress NonLinear Reference Manual for more details about delta types.

Related topics
setinitval, setinitsb, setdetrow, setenforcedctr.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 701

Chapter 20: mmxnlp

F

Purpose
Include a user function in a nonlinear constraint.

Synopsis
function F(UF:userfunc, arg:linctr):nlctr
function F(UF:userfunc, arg:nlctr):nlctr
function F(UF:userfunc, arg:list of nlctr):nlctr
function F(UF:userfunc, arg:array(any sets) of nlctr):nlctr
function F(UF:userfunc, arg:list of nlctr, returnarg:integer):nlctr
function F(UF:userfunc, arg:array(any sets) of nlctr,

returnarg:integer):nlctr

Arguments
UF A user function of type userfunc
arg Argument to be passed to the user function
returnarg Return argument to be substituted into the formula for multivalued user functions

Return value
A nonlinear expression which may form part of any nlctr.

Example
The following example shows how to implement a negative cosine function.

model "SimpleUF"
uses "mmxnlp"
declarations
obj: nlctr
x: mpvar
MinusSine: userfunc

end-declarations

! Creation and assignment of the user function
MinusSine := userfuncMosel("MinusSineImplementation")
! which can then be embedded into any nonlinear expression
obj := F(MinusSine,x)
minimize(obj)

public function MinusSineImplementation (x:real): real
returned := -sin(x)

end-function
end-model

Further information
User functions allow extremely complex, recursive or non-algebraic expressions to be included in
nonlinear formulae. As such they may make use of simulators or other black box evaluators. The actual
parameters to a user function depend upon the way it is bound to the model by the F function. Please see
the chapter on user functions for more details. Each user function instance defined by the means of the F
function must share the same argument syntax structure, however the actual formula content may differ:
e.g. if a function takes an array of nonlinear expressions as input arguments, each instance of the
function corresponding to the same definition based on the same F instance must have the same
underlying array structure, although the expressions stored in them may differ. If a separate F instance is
used using the same function implementation, this rule does not apply. Also note, that for Mosel to be
able to correctly cross reference the sets used in the definition of an array, the sets must be named.

Fair Isaac Corporation Proprietary Information 702

Chapter 20: mmxnlp

Related topics
userfuncMosel.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 703

Chapter 20: mmxnlp

generateUFparallel

Purpose
Generates a parallel version of a Mosel user function that is implemented as a Mosel package.

Synopsis
procedure generateUFparallel(bimname:string, fctname:string)

Arguments
bimname Path to the compiled Mosel package implementing the user function.
fctname The public user function inside the package.

Further information
Please refer to the Xpress NonLinear Reference Manual for more details about this functionality.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 704

Chapter 20: mmxnlp

printmodelmemory

Purpose
Print a summary of the current memory usage of the nonlinear module.

Synopsis
procedure printmodelmemory

Further information
This procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose of model
analysis and debugging.

Related topics
validate, printmodelscaling, userfuncinfo.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 705

Chapter 20: mmxnlp

printmodelscaling

Purpose
Print a summary of the scaling of the model, as loaded into the solver.

Synopsis
procedure printmodelscaling

Further information
This procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose of model
analysis and debugging.

Related topics
validate, printmodelmemory, userfuncinfo.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 706

Chapter 20: mmxnlp

setcallback

Purpose
Set nonlinear callback functions and procedures.

Synopsis
procedure setcallback(cbtype:integer, cb:string)

Arguments
cbtype Type of the callback:

XSLP_CB_ITERSTART SLP iteration start callback
XSLP_CB_ITEREND SLP iteration end callback
XSLP_CB_ITERVAR Nonlinear variable convergence check callback
XSLP_CB_CASCADESTART Cascading start callback
XSLP_CB_CASCADEVAR Variable cascaded callback
XSLP_CB_CASCADEEND Cascading end callback
XSLP_CB_START SLP solve start callback
XSLP_CB_END SLP solve end callback
XSLP_CB_PRENODE MISLP node setup callback
XSLP_CB_INTSOL New integer solution found callback
XSLP_CB_OPTNODE MISLP node solved and (SLP) optimal callback
XSLP_CB_CONSTRUCT Construct start callback
XSLP_CB_MSJOBSTART A new multistart job is about to be solved callback
XSLP_CB_MSJOBEND A multistart job has been solved callback
XSLP_CB_MSWINNER Winner multistart job callback

cb Name of the callback function/procedure; the parameters and the type of the return value (if
any) vary depending on the type of the callback:
function cb:integer XSLP_CB_ITERSTART
function cb:integer XSLP_CB_ITEREND
function cb(var:mpvar) : integer XSLP_CB_ITERVAR
function cb:integer XSLP_CB_CASCADESTART
function cb(var:mpvar):integer XSLP_CB_CASCADEVAR
function cb:integer XSLP_CB_CASCADEEND
function cb:integer XSLP_CB_START
function cb:integer XSLP_CB_END
function cb:integer XSLP_CB_PRENODE
function cb:integer XSLP_CB_INTSOL
function cb:integer XSLP_CB_OPTNODE
function cb:integer XSLP_CB_CONSTRUCT
function cb(description:string):integer XSLP_CB_MSJOBSTART
function cb(description:string):integer XSLP_CB_MSJOBEND
function cb(description:string):integer XSLP_CB_MSWINNER

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 707

Chapter 20: mmxnlp

setcomplementary

Purpose
Set two variables as being complementary.

Synopsis
procedure setcomplementary(var1:mpvar, var2:mpvar)

Arguments
var1 The first variable of the variable pair to be set as complementing
var2 The first variable of the variable pair to be set as complementing

Further information
A complementing variable pair implements the constraint that is equivalent with the product of the
variables being zero. However, the solvers may be able to treat such constraints in a special, more
efficient ways, which may make a difference if the complementarity constraints are the problematic part
of the model. Note that Knitro only allows non-overlapping complementary variables, and in the presence
of overlaps Xpress will default to use SLP. Complementary variables must have a lower bound of zero.

Related topics
setinitval, setinitsb, setdetrow, setenforcedctr.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 708

Chapter 20: mmxnlp

setdefvar

Purpose
Set a variable to be purely defined by a constriant.

Synopsis
procedure setdefvar(var:mpvar, row:linctr)
procedure setdefvar(var:mpvar, row:nlctr)

Arguments
var The variable being made defined by the constraint.
row The constraint that defines the value of the variable.

Further information
The variable will be made free (its bounds removed) since it’s value is now defined by the contraint’s
value. Ideally, the variable should appear linearly in the constriant, in which case unless a circular
reference is detected it will used for eliminate on in the nonlinear presolver. The purpose of the construct
is to break large nonliner expressions.

Related topics
setdetrow

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 709

Chapter 20: mmxnlp

setdetrow

Purpose
Set the determining row for a variable.

Synopsis
procedure setdetrow(var:mpvar, row:linctr)
procedure setdetrow(var:mpvar, row:nlctr)
procedure setdetrow(row:linctr, var:mpvar)
procedure setdetrow(row:nlctr, var:mpvar)

Arguments
var The variable for which the determining row is provided
row The row that determines the value of the variable.

Further information
A row which is determining for a variable defines the value of that variable. This means that the variable
is a derived value which is calculated in another part of the model. Some solvers will use such
designations to refine their search, and in particular in sequential linear programming, a process called
cascading makes use of determining rows. Please refer to the Xpress NonLinear Reference Manual
(chapter ’Cascading’) for more information.

Related topics
setinitval, setinitsb, setenforcedctr.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 710

Chapter 20: mmxnlp

setenforcedctr

Purpose
Mark a nonlinear constraint as enforced.

Synopsis
procedure setenforcedctr(row:nlctr)

Argument
row The constraint to be set enforced

Further information
A constraint which is marked as enforced will not have penalty error vectors introduced upon it by solvers
which use such techniques. This may be useful for constraints which are hard to satisfy.

Related topics
setinitval, setinitsb, setdetrow.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 711

Chapter 20: mmxnlp

setinitsb

Purpose
Provide the initial step bound for a variable.

Synopsis
procedure setinitsb(var:mpvar, value:real)

Arguments
var The variable for which the step bound is provided
value Value to be used as initial value

Further information
The initial step bounds define in turn the size of the initial trust region. Please refer to the Xpress
NonLinear Reference Manual for more information.

Related topics
setinitval, setdetrow, setenforcedctr.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 712

Chapter 20: mmxnlp

settol

Purpose
Define a particular tolerance in a tolerance set.

Synopsis
procedure settol(tset:tolset, which:integer, value:real)

Arguments
tset The tolerance set to be modified
which The tolerance which is being defined
value The new value of the tolerance

Further information
The tolerances which may be defined by this method are:

XNLP_TOL_TC The absolute closure tolerance
XNLP_TOL_TA The absolute delta tolerance
XNLP_TOL_RA The relative delta tolerance
XNLP_TOL_TM The absolute matrix tolerance
XNLP_TOL_RM The relative matrix tolerance
XNLP_TOL_TI The absolute impact tolerance
XNLP_TOL_RI The relative impact tolerance
XNLP_TOL_TS The relative slack impact tolerance
XNLP_TOL_RS The absolute slack impact tolerance

Please refer to the Xpress NonLinear Reference Manual, and particularly the chapter ’Convergence
criteria’, for more information on these tolerances.

Related topics
setinitval, setinitsb, setdetrow, setenforcedctr.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 713

Chapter 20: mmxnlp

settolset

Purpose
Assigns a tolerance set to a variable, or list of variables.

Synopsis
procedure settolset(var:mpvar, tset:tolset)
procedure settolset(vars:list of mpvar, tset:tolset)

Arguments
var Variable to which the tolerance set is to be assigned
vars List pf variable to which the tolerance set is to be assigned
tset The tolerance set to be assigned to the variable(s)

Related topics
settol.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 714

Chapter 20: mmxnlp

userfuncinfo

Purpose
Print the inferred prototype of the given user function.

Synopsis
procedure userfuncinfo(UF:userfunc)

Argument
UF The user function to be analyzed

Further information
The type and signature of a user function are inferred from its use in calls to the F function in the current
model. This procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose of
model analysis and debugging.

Related topics
validate, printmodelmemory, printmodelscaling.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 715

Chapter 20: mmxnlp

userfuncMosel

Purpose
Create a user function from a Mosel function.

Synopsis
function userfuncMosel(fctname:string):userfunc
function userfuncMosel(fctname:string, options:integer):userfunc

Arguments
fctname Name of the Mosel function to wrap
options Options describing special properties of the user function

Return value
A userfunc object that can be used in the F functions to be embedded in formulas.

Further information
User functions allow extremely complex, recursive or non-algebraic expressions to be included in
nonlinear formulae. As such they may make use of simulators or other black box evaluators. The actual
parameters to a user function depend upon the way it is bound to the model by the F function. Please see
the chapter on user functions for more details.
There is support for user functions providing their own derivatives. Currently, user functions taking an
array of nlctr and returning a single function values may provide their own derivatives. To mark a
function as returning it’s own derivatives, use option XNLP_DERIVATIVES or XNLP_DELTAS to indicate
that the solver should suggest perturbation values for the variables.

Related topics
F.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 716

Chapter 20: mmxnlp

validate

Purpose
Print a summary of the feasibility of the current solution.

Synopsis
procedure validate

Further information
This procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose of model
analysis and debugging.

Related topics
printmodelmemory, printmodelscaling, userfuncinfo.

Module
mmxnlp

Fair Isaac Corporation Proprietary Information 717

Chapter 20: mmxnlp

20.5 Error codes issued by mmxnlp
1 Out of memory

The system has run out of memory.

2 No purchase authorization found
No license found

3 Failed to initialize XSLP
Cannot initialize the XPRS library. There may be a licensing problem

4 Unsupported XSLP version
The version of the ’XSLP’ library is incompatible with the current module. The Xpress installation
may be corrupt

5 Failed to create the XSLP problem object
Cannot create the XSLP optimizer problem. There may be a licensing problem

6 Unexpected mmxnlp user function signature
The provided user functions’ signature does not match any expected format.

7 Unexpected external token in mmxnlp
An unexpected external token found by the ’mmxnlp’ module. Please contact support.

8 Unsupported operator
The provided operator is not supported by ’mmxnlp’.

9 Failed to load problem
Could not load the problem into the optimizer.

10 Variable bound conflict in problem
Inconsistent bounds provided for the variable.

11 Failed to load user function
The user function could not be loaded into the optimizer.

12 Error evaluating user function
Error while evaluation the user function. The user function likely to have returned an error code.

13 Unknown tolerance set
The provided tolerance set is invalid.

14 List tpype error in user function
The list provided to the user function is not valid for the function.

15 Failed to create save file
The savefile could not be created.

16 Error in optimization
An error has occured during optimization.

17 Cannot reoptimize using a different objective (use named linctr or nlctr)
The objective has unexpectedly changed

Fair Isaac Corporation Proprietary Information 718

Chapter 20: mmxnlp

18 Internal error in mmxnlp. Please contact FICO support
An internal error has occurred. Please contact support.

20 Incompatible array definitions for user function arguments
The user function received incompatible arrays.

21 Non-Mosel user functions only take ’list of nlctr’ type arguments
User functions that are not implemented as a Mosel function can only take list of ’nlctr’ arguments
(no arrays).

22 Invalid argument list for external function
The provided argument list is not valid for the external function.

23 Provided user function is not returning a single real
The provided user function was expected to return a single real value.

24 Provided user function is not returning an array indexed by integers
The provided user function was expected to return an array of reals indexed by integers.

25 User function must be loaded before it’s properties can be retrieved
The user function must be loaded before it’s properties are interrogated. Please use ’loadprob’ to
load the model including the user function.

26 Unexpected variable found. Please reload problem first using ’loadprob’
An unexpected variable has been used. Please reload the problem to load the variable.

27 Operation only supported on the main problem (e.g. not inside multi-start callbacks)
This operation is only supported in the main problem. It cannot be used on worker problems.

28 Math error while evaluating expression
A mathematical error has occurred while evaluating the expression.

Fair Isaac Corporation Proprietary Information 719

CHAPTER 21

mmxprs

The mmxprs module provides access to FICO R⃝ Xpress Optimizer from within a Mosel model and as such
it requires the Xpress Optimizer library (XPRS) to be installed on the system. To use this module, the
following line must be included in the header of the Mosel model file:

uses 'mmxprs'

A large number of optimization-related routines are provided, ranging from those for finding a solution to
the problem, to those for setting callbacks and cut manager functions. Whilst a description of their usage
is provided in this manual, further details relating to the usage of these may be found by consulting the
Xpress Optimizer Reference Manual.

21.1 New functionality for the Mosel language
21.1.1 The problem type mpproblem.xprs

This module exposes its functionality through an extension to the mpproblem problem type. As a
consequence, all routines presented here are executed in the context of the current problem. In particular,
the setting of a control parameter is applied only to the current problem and each problem has its own set
of settings and solution information. However, when a new problem instance is created, the value of the
control parameters XPRS_colorder, XPRS_enummaxsol, XPRS_enumduplpol, XPRS_loadnames
and XPRS_verbose are initialised with the settings of the main problem.

21.1.2 The type basis
The module mmxprs defines the type basis to represent solution basis in the Mosel Language. This new
type is used to store a basis computed by the optimizer during its solution process (savebasis). A basis
can then be loaded again into the optimiser with loadbasis, inspected (by getting the basis status of
each variable/constraint it includes with getbstat) or modified (by changing this basis status using
setbstat). The type basis supports assignment and test of equality. This comparison only checks
whether two basis contain the same information, it does not indicate whether the basis are equivalent.

21.1.3 The type mpsol
The type mpsol characterises a solution of an MP problem by associating a value to each decision
variable (type mpvar) of the problem. Initialising such an object can be achieved by saving the current
solution found by the optimiser (savesol or savemipsol) or by building it one variable at a time
(setsol). Various routines requiring solution information support the solution object. For instance
getsolmay be used to evaluate an expression on a specific solution; loadmipsol and addmipsol
accept this object as input. A solution might be saved into a file using writesol and the resulting file

Fair Isaac Corporation Proprietary Information 720

Chapter 21: mmxprs

can be loaded into the optimiser with readsol. The type mpsol supports assignment and test of
equality.

21.1.4 The type boolvar
An entity of type boolvar is a pseudo boolean decision variable. This type supports operators and, or
and not for building logical expressions and can be combined with ordinary Boolean variables. A logical
constraint is specified either by associating a pseudo boolean variable to a logical expression using the
following syntax:

boolvar = logical_expression

or by forcing the truth value (i.e. true or false) of an expression as follows:

logical_expression = boolean

When a logical expression is used on its own as a statement it is implicitly turned into a constraint (forced
to true) and added to the constraint store.

Each boolvar is represented in the MIP problem by two binary variables (mpvar): one for the value
itself and another one for its negation. These decision variables can be accessed from the model using
the function getvar such that they can be used in linear constraints. The solution value of a boolvar is
of type boolean and can be obtained using getsol.

21.1.5 The type logctr
The type logctr represents either a logical expression over linear constraints, a logical
expession/constraint over pseudo boolean decision variables (boolvar) or an indicator constraint (see
indicator). Logical expressions can be built using standard operators (and, or, not) or with the help
of the dedicated functions implies and xor (for logical expressions over linear constraints only). These
logical constructs are handled like linear constraints: they are associated to the current problem, can be
(re)defined via assignments and hidden using sethidden. Note however that logical constructs are not
shown by exportprob although the mmxprs routine writeprob will report them.

If logical expressions over linear constraints are employed in a model, the loading of the problem into the
optimizer requires the use of the helper package "advmod":

uses 'advmod'

This package is not necessary when a model uses only logical constraints over pseudo boolean variables
or indicator constraints directly.

21.2 Control parameters
This module extends the getparam function and the setparam procedure in order to access all the
control and problem parameters of Optimizer (for example the problem attribute LPSTATUS is mapped to
the mmxprs control parameter XPRS_lpstatus). In addition to these, the following control parameters
are also defined:

XPRS_colorder Reorder matrix columns before loading the problem. p. 722

XPRS_enumduplpol Handling of duplicate solutions during an enumeration. p. 723

XPRS_enummaxsol Maximum number of solutions to be saved during an enumeration. p. 722

Fair Isaac Corporation Proprietary Information 721

Chapter 21: mmxprs

XPRS_enumsols Number of solutions found during the last enumeration. p. 722

XPRS_fullversion Optimizer version number. p. 723

XPRS_loadnames Enable/disable loading of MPS names into the Optimizer. p. 723

XPRS_maxupdc Size of the pool of matrix updates. p. 723

XPRS_problem Optimizer problem pointers. p. 724

XPRS_probname Read/set the problem name used by the Optimizer. p. 724

XPRS_verbose Enable/disable message printing by the Optimizer. p. 724

Example:

setparam("XPRS_verbose", true) ! Turn on message printing
pstat:= getparam("XPRS_lpstatus") ! Get the problem LP optimization status
writeln("Best bound=", getparam("XPRS_bestbound")) ! Display the best bound value

XPRS_colorder

Description Reorder matrix columns before loading the problem.

Type Integer, read/write

Values 0 Mosel implicit ordering
1,3 Reorder using a numeric criterion
2 Alphabetical order of the variable names (this requires the names to be available)
4 Random ordering

Default value 0

Module mmxprs

XPRS_enumsols

Description Number of solutions found during the last enumeration. The value of this parameter is -1 is no
enumeration has been run.

Type Integer, read only

Affects routines maximize, minimize.

Module mmxprs

XPRS_enummaxsol

Description Maximum number of solutions to be saved during an enumeration.

Type Integer, read/write

Default value 10

Affects routines maximize, minimize.

Module mmxprs

Fair Isaac Corporation Proprietary Information 722

Chapter 21: mmxprs

XPRS_enumduplpol

Description Handling of duplicate solutions during an enumeration. Refer to the MSP control parameter
MSP_DUPLICATESOLUTIONSPOLICY for further information.

Type Integer, read/write

Values 0 All solutions kept
1 Continuous
2 Discrete and continuous separate
3 Discrete only

Default value 3

Affects routines maximize, minimize.

Module mmxprs

XPRS_fullversion

Description The full Optimizer version number in the form major.minor.build (e.g."20.01.03").

Type String, read only

Module mmxprs

XPRS_loadnames

Description Enable/disable loading of MPS names into the Optimizer.

Type Boolean, read/write

Values true Enable loading of names
false Disable loading of names

Default value false

Affects routines loadprob, maximize, minimize.

Module mmxprs

XPRS_maxupdc

Description By default any call to setcoeff is recorded only in the Mosel representation of the problem
and requires a full reload of the matrix when the problem is solved. When this parameter is
non-zero these changes to the problem are also reported to the matrix loaded into the optimiser
such that the following solving operation does not require a regeneration of the matrix (as long
as the problem has not been updated by another operation). The value of the parameter is the
number of changes to be sent to the optimiser at once, pending operations are executed before
solving the problem or exporting it via writeprob. They are also run whenever the parameter
is updated.

Type Integer, read/write

Values Any non-negative integer

Fair Isaac Corporation Proprietary Information 723

Chapter 21: mmxprs

Default value 0

Affects routines setcoeff, setmatcoeff, maximize, minimize.

Module mmxprs

XPRS_problem

Description The Optimizer problem (XPRSprob), MIP solution pool (XPRSmipsolpool) and MIP solution
enumerator (XPRSmipsolenum) pointers separated by spaces. This attribute is only required
in applications using both Mosel and the Optimizer at the C level.

Type String, read only

Module mmxprs

XPRS_probname

Description Read/set the problem name used by the Optimizer to build its working files (this name may
contain a full path). If set to the empty string (default value), a unique name with a path to the
temporary directory of the operating system is generated.

Type String, read/write

Module mmxprs

XPRS_verbose

Description Enable/disable message printing by the Optimizer.

Type Boolean, read/write

Values true Enable message printing
false Disable message printing

Default value false

Module mmxprs

21.3 Procedures and functions
This section lists in alphabetical order the functions and procedures that are provided by the mmxprs
module.

addmipsol Add a MIP solution to the optimizer. p. 728

basisstability Get basis stability information. p. 729

calcsolinfo Calculates a property of an mpsol solution. p. 730

clearmipdir Delete all defined MIP directives. p. 731

clearmodcut Delete all defined model cuts. p. 732

command Execute an Optimizer command. p. 733

Fair Isaac Corporation Proprietary Information 724

Chapter 21: mmxprs

copysoltoinit Copy solution values to initial values of an NL problem. p. 734

crossoverlpsol Crosses over a previously loaded LP solution to a basic solution. p. 735

defdelayedrows Define the set of constraints to be treated as delayed rows. p. 736

defsecurevecs Define the variables and constraints to be preserved. p. 737

estimatemarginals Estimate better marginal values for variables and constraints for degenerate
problems. p. 738

fixglobal Fix values of discrete entitites. p. 739

getbstat Get the status of a variable or constraint in a basis. p. 740

getcomputeallowed Get whether Insight Compute Interface integration is allowed p. 741

getdualray Get a dual ray for an infeasible problem. p. 742

getiis Compute then get the Irreductible Infeasible Sets (IIS). p. 743

getiissense Decode the sense part of an IIS bound type information. p. 744

getiistype Decode the type part of an IIS bound type information. p. 745

getinfcause Returns the variable or constraint causing infeasibility. p. 746

getinfeas Returns sets of infeasible primal and dual variables. p. 747

getlb Get the lower bound of a variable. p. 748

getloadedlinctrs Get the linear constraints loaded into the optimiser. p. 749

getloadedmpvars Get the decision variables loaded into the optimiser. p. 750

getmatcoeff Get the coefficient of a variable or the constant term of a constraint directly
from the Optimizer. p. 751

getname Get the name of a decision variable or constraint. p. 752

getprimalray Get a primal ray for an unbounded problem. p. 753

getprobstat Get the Optimizer problem status. p. 754

getrange Get a range value for a variable or constraint. p. 755

getscale Retrieves scaling information about the currently loaded problem. p. 756

getsensrng Get sensitivity ranges for objective function coefficients, RHS coefficients,
variable upper bounds or variable lower bounds. p. 757

getsize Get the size of a solution. p. 758

getsol Get the solution value of an expression from a solution object. p. 759

getub Get the upper bound of a variable. p. 761

getvar Get the decision variable associated to a pseudo boolean. p. 760

getvars Get the set of variables of a solution. p. 762

hasfeature Check if a specific feature is supported by the currently used license. p. 763

implies Create an implies expression. p. 764

indicator Create an indicator constraint. p. 765

Fair Isaac Corporation Proprietary Information 725

Chapter 21: mmxprs

isiisvalid Check whether an IIS number exists. p. 766

isintegral Check whether a solution value is integral. p. 767

loadbasis Load a previously saved basis. p. 768

loadlpsol Load an LP solution into the optimizer. p. 769

loadmipsol Load a MIP solution into the optimizer. p. 770

loadprob Load a problem into the optimizer. p. 772

maximize, minimize Maximize/minimize the current problem. p. 773

postsolve Postsolve the current matrix. p. 775

readbasis Read a basis from a file. p. 776

readdirs Read directives from a file. p. 777

readsol Read a solution from a file. p. 778

refinemipsol Executes the MIP solution refiner on an mpsol solution. p. 779

rejectintsol Reject a PREINTSOL solution. p. 780

repairinfeas Relaxing bounds to repair infeasibility. p. 781

resetbasis Reset a basis. p. 783

resetiis Reset the search for IIS. p. 784

resetsol Reset a solution. p. 785

savebasis Save the current basis. p. 786

savemipsol Save the current solution into the provided array or solution object. p. 787

savesol Save the current solution into a solution object. p. 788

savestate Save current state of the Optimizer to a file. p. 789

selectsol Select one of the solutions found by solution enumerator. p. 790

setarchconsistency Sets the optimizer architecture control. p. 791

setbstat Set the status of a variable or constraint in a basis. p. 792

setcallback Set optimizer callback functions and procedures. p. 793

setcbcutoff Set cutoff for PREINTSOL callback. p. 797

setcomputeallowed Set whether Insight Compute Interface integration is allowed p. 796

setgndata Update data for GAPNOTIFY callback. p. 798

setlb Set the lower bound of a variable. p. 799

setmatcoeff Set the coefficient of a variable or the constant term directly in the Optimizer.
p. 800

setmipdir Set a directive on a variable or Special Ordered Set. p. 801

setmodcut Mark a constraint as a model cut. p. 802

setsol Define the value associated to a decision variabe in a solution object. p. 803

Fair Isaac Corporation Proprietary Information 726

Chapter 21: mmxprs

setub Set the upper bound of a variable. p. 804

setucbdata Update data for CHGBRANCH callback. p. 805

stopoptimize Interrupt the optimizer algorithms. p. 806

unloadprob Unload the problem held in the optimizer. p. 807

uselastbarsol Sets up the last barrier solve’s solution as the current one if one is available
p. 808

writebasis Write the current basis to a file. p. 809

writedirs Write current directives to a file. p. 810

writeprob Write the current problem to a file. p. 811

writesol Write a solution to a file. p. 812

xor Create an exclusive or expression. p. 813

xprsmemoryuse Retrieve memory usage statistics. p. 814

Fair Isaac Corporation Proprietary Information 727

Chapter 21: mmxprs

addmipsol

Purpose
Add a MIP solution to the optimizer.

Synopsis
procedure addmipsol(solid:string,s:array(set of mpvar) of real)
procedure addmipsol(solid:string,ms:mpsol)

Arguments
solid Identifier to be assigned to the solution
s An array containing the solution
ms A solution object

Further information

1. This function is used to provide the expectations of the modeler on the values of selected variables in
possible MIP solutions. It is different to loadmipsol in that it is not necessary to provide full, feasible
MIP solutions. The values provided will be used by the Optimizer to attempt to generate full MIP
solutions. The addmipsol function can therefore be used to trial the feasibility of certain variable value
assignments without the need to fix them in the problem formulation itself.

2. The solution value array s is created by assigning values to discrete variables in the problem, such as
s(x):= 1 (where x is a decision variable of type mpvar). It is also possible to use a solution that has
previously been saved using the procedure savemipsol.

3. If the provided solution is found to be infeasible, a limited local search heuristic will be run in an attempt
to find a close feasible integer solution.

4. The current problem definition must be loaded into the Optimizer for addmipsol to have any effect. If
this has not recently been done, e.g., by calling maximize or minimize, the problem must be explicitly
loaded using loadprob.

5. The function returns immediately after passing the solution to the Optimizer. The solution is placed in a
pool until the optimizer is able to analyze the solution during a MIP solve.

6. The SOLNOTIFY callback function can be used to discover the outcome of a loaded solution, based on
the identifier assigned to the solution (see setcallback).

Related topics
savemipsol, loadmipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 728

Chapter 21: mmxprs

basisstability

Purpose
Get basis stability information.

Synopsis
function basisstability(type:integer,norm:integer,scaled:boolean):real

Arguments
type Which information to return. Possible values:

0 Condition number of the basis
1 Stability measure for the solution relative to the current basis
2 Stability measure for the duals relative to the current basis
3 Stability measure for the right hand side relative to the current basis
4 Stability measure for the basic part of the objective relative to the current basis

norm Which norm to use. Possible values:
0 Use the infinity norm
1 Use the 1 norm
2 Use the Euclidian norm for vectors, and the Frobenius norm for matrices

scaled If false, work on the unscaled matrix

Return value
Basis stability information.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 729

Chapter 21: mmxprs

calcsolinfo

Purpose
Calculates a property of an mpsol solution.

Synopsis
function calcsolinfo(solution:mpsol, option:integer):mpsol

Arguments
solution The solution to be checked
option Which information to return. Possible values:

XPRS_SOLINFO_ABSPRIMALINFEAS Calculate the maximum absolute primal
infeasibility

XPRS_SOLINFO_RELPRIMALINFEAS Calculate the maximum relative primal
infeasibility

XPRS_SOLINFO_MAXMIPFRACTIONAL Calculate the maximum fractionality of the
integer variables

Related topics
refinemipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 730

Chapter 21: mmxprs

clearmipdir

Purpose
Delete all defined MIP directives.

Synopsis
procedure clearmipdir

Further information
This procedure clears the list of directives defined so far.

Related topics
setmipdir.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 731

Chapter 21: mmxprs

clearmodcut

Purpose
Delete all defined model cuts.

Synopsis
procedure clearmodcut

Further information
This procedure clears the list of model cuts defined so far.

Related topics
setmodcut.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 732

Chapter 21: mmxprs

command

Purpose
Execute an Optimizer command or enter interactive mode of the Optimizer.

Synopsis
procedure command(cmd:string)
procedure command

Argument
cmd Command or sequence of commands separated by "\n" character

Example
Solve a MIP problem and then enter interactive mode:

command("minim\nglobal")
command

Further information

1. When used without parameter, this procedure enters an interactive mode of the Optimizer similar to the
console mode: model execution is suspended and Optimizer commands can be typed directly. Model
execution resumes after command quit has been typed or the input stream has reached an end of file.
Using the alternate form of the procedure with an argument, one can send a command (or sequence of
commands) to the Optimizer: this may be useful to execute commands for which there is no mmxprs
interface.
During the execution of this procedure, callbacks set up in the model are effective and the problem
solution status of mmxprs is updated upon termination. Note that, commands altering the problem must
be avoided (like readprob, change of name of the problem, etc.) in order to preserve consistency
between Mosel and Optimizer representations of the problem.

2. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables this routine.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 733

Chapter 21: mmxprs

copysoltoinit

Purpose
Copy solution values to initial values of an NL problem.

Synopsis
procedure copysoltoinit(ms:mpsol)

Argument
ms A solution object

Further information

1. This procedure copies the solution values of decision variables from the provided solution ms to their
initial values for the next run. Doing so it overrides any previously set initial values for the involved
variables. However, the settings for decision variables that are not included in the solution ms remain
unchanged.

2. This operation can only be performed on a non-linear problem described using the module mmnl.

Related topics
copysoltoinit, clearinitvals, setinitval.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 734

Chapter 21: mmxprs

crossoverlpsol

Purpose
Crosses over a previously loaded LP solution to a basic solution.

Synopsis
function crossoverlpsol:boolean

Return value
Operation status:
FALSE No valid starting solution provided prior to call using loadlpsol
TRUE Crossover called

Further information
This procedure calls the crossover procedure for an already loaded LP solution followed by the usual
simplex solve afterwards. The solution, solution status and all attributes are set up to match the solve
and are available the usual way.

Related topics
loadlpsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 735

Chapter 21: mmxprs

defdelayedrows

Purpose
Define the set of constraints to be treated as delayed rows.

Synopsis
procedure defdelayedrows(cset:set of linctr)

Argument
cset Set of constraints to load or {} to reset a previous setting

Further information
This procedure stores a reference to the provided set that is used when the problem is loaded into the
optimizer. This set can be modified after the call to this procedure: the optimizer will use the current
content of the set at the time of loading the problem.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 736

Chapter 21: mmxprs

defsecurevecs

Purpose
Define the sets of variables and constraints that must not be removed by presolve.

Synopsis
procedure defsecurevecs(vset:set of mpvar,cset:set of linctr)

Arguments
vset Set of decision variables to preserve or {} to reset a previous setting
cset Set of constraints to preserve or {} to reset a previous setting

Further information
This procedure stores references to the provided sets that are used when the problem is loaded into the
optimizer. These sets can be modified after the call to this procedure: the optimizer will use the current
content of the sets at the time of loading the problem.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 737

Chapter 21: mmxprs

estimatemarginals

Purpose
Estimate better marginal values for variables and constraints for degenerate problems.

Synopsis
procedure estimatemarginals(sbvars:array(vars: set of mpvar) of real)
procedure estimatemarginals(dualslb:array(constriants: set of linctr) of

real, dualsub:array(constriants: set of linctr) of real)
procedure estimatemarginals(sbvars:array(vars: set of mpvar) of real,

efforlimit:integer, delta:real)
procedure estimatemarginals(dualslb:array(constriants: set of linctr) of

real, dualsub:array(constriants: set of linctr) of real,
effortlimit:integer)

Arguments
sbvars An array of reals that will be populated with the approximations for the marginal values.

The approximation is carried out for the variables included in the variables set.
dualslb An array of reals that will be populated with the approximations for the lower bounds for

the row marginal values. The approximation is carried out for the constraints in the
constraints set.

dualsub An array of reals that will be populated with the approximations for the upper bounds for
the row marginal values. The approximation is carried out for the constraints in the
constraints set.

efforlimit Effort limit spent to approximate the effect of the move of a variable, expressed as an
upper limit of simplex iterations per variable.

delta The size of the perturbation applied to force a movement in the variable.

Further information

1. This procedure can be used to estimate the marginal values of variables in degenerate problems. In
degenerate problems, the reduced costs and row duals do not always provide a good representation of
the effect on the objective when forcing a move in a variable. Also, in degenerate problems, the reduced
costs and row duals may depend on the final basis found, and multiple correct alternatives might exists.
This function attempts to identify better marginal values by simulating a move in the variables.

2. Prior to calling estimatemarginals, the current LP problem must have been solved to optimality and an
optimal basis must be available.

3. It is important to note that the procedure provides an estimate only.

4. This procedure relies on the XPRSstrongbranch and XPRSestimaterowdualranges functions,
refer to the Xpress Optimizer Reference Manual for more information.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 738

Chapter 21: mmxprs

fixglobal

Purpose
Fix values of discrete entitites according to the current solution.

Synopsis
procedure fixglobal
procedure fixglobal(options:integer)

Argument
options Options sent to the library routine XPRSfixglobals

Example
Solve the MIP problem, reload the problem after solving, fix discrete entities to their solution values, and
finally solve the LP for the continous variables in order to be able to use getrange.

minimize(obj)
fixglobal
minimize(XPRS_LIN, obj)
writeln(getrange(XPRS_UPACT,x))

Further information

1. This procedure fixes the non-continuous variables to their value of the current solution. A call to this
function is required when performing sensitivity analysis on MIP problems using getrange.

2. The first form of the procedure corresponds to fixglobal(0).

Related topics
getrange.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 739

Chapter 21: mmxprs

getbstat

Purpose
Get the status of a variable or constraint in a basis.

Synopsis
function getbstat(b:basis,v:mpvar):integer
function getbstat(b:basis,c:linctr):integer

Arguments
b A basis
v A decision variable
c A linear constraint

Return value
Basis status. For a variable:
-1 Variable is not in the basis
0 Variable is non-basic at lower bound, or superbasic at zero if the variable has no lower bound
1 Variable is basic
2 Variable is non-basic at upper bound
3 Variable is super-basic
For a constraint:
-1 Constraint is not in the basis
0 Slack, surplus or artificial is non-basic at lower bound
1 Slack, surplus or artificial is basic
2 Slack or surplus is non-basic at upper bound
3 Slack or surplus is super-basic

Related topics
savebasis, setbstat, resetbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 740

Chapter 21: mmxprs

getcomputeallowed

Purpose
Query in what circumstances the current Mosel instance can send optimizations to the Insight Compute
Interface.

Synopsis
function getcomputeallowed:integer

Return value
Value controlling in what circumstances solves may be sent to Insight Compute Interface. Will be one of
the following constants:
XPRS_ALLOW_COMPUTE_ALWAYS Always allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_NEVER Never allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_DEFAULT Allow solves to be sent to Compute only from non-OEM

applications.

Related topics
setcomputeallowed.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 741

Chapter 21: mmxprs

getdualray

Purpose
Get a dual ray for an infeasible problem.

Synopsis
function getdualray(ray:array(set of linctr) of real):boolean

Argument
ray An array of reals over all constraints in the problem (as loaded) in which the dual ray is returned.

Return value
This procedure returns the dual ray found for the problem if the problem is found to be dual unbounded
(thus primal infeasible) and one is available.

Further information

1. The return value of the function is true if a dual ray is available, and false otherwise.

2. The dimension and base set of the ray argument will be set up by the function.

Example

declarations
all_constraints : set of linctr
dual_ray : array(all_constraints) of real
end-declarations
if getprobstat <> XPRS_INF then

writeln("Problem not infeasible.")
else

HasRay := getdualray(dual_ray)
if HasRay then
writeln("Dual ray:")
forall (c in all_constraints)

writeln(getname(c), " ", dual_ray(c))
else
writeln("No dual ray was found")

end-if
end-if

Related topics
getprimalray

Module
mmxprs

Fair Isaac Corporation Proprietary Information 742

Chapter 21: mmxprs

getiis

Purpose
Compute then get the Irreductible Infeasible Sets (IIS).

Synopsis
procedure getiis(vset:set of mpvar,cset:set of linctr)
procedure getiis(numiis:integer,vset:set of mpvar,cset:set of linctr)
procedure getiis(numiis:integer,ctrtype:array(linctr) of integer)
procedure getiis(numiis:integer,duals:array(linctr) of real)
procedure getiis(numiis:integer,isolrow:array(linctr) of boolean)
procedure getiis(numiis:integer,bndtype:array(mpvar) of integer)
procedure getiis(numiis:integer,rdcs:array(mpvar) of real)
procedure getiis(numiis:integer,isolcol:array(mpvar) of boolean)

Arguments
vset Set to return the decision variables of the IIS or {} if not required
cset Set to return the constraints of the IIS or {} if not required
numiis Ordinal number of the IIS
ctrtype Array to return the sense or type of rows in the IIS (XPRS_IIS_LEQ, XPRS_IIS_GEQ,

XPRS_IIS_EQ , XPRS_IIS_SOS1, XPRS_IIS_SOS2 or XPRS_IIS_INDIC)
duals Array to return the dual multipliers associated with the rows of the IIS
isolrow Array to return the isolation status of the the rows of the IIS
bndtype Array to return the encoded sense and type of bounds in the IIS
rdcs Array to return the dual multipliers associated with the bounds of the IIS
isolcol Array to return the isolation status of the the bounds of the IIS

Further information

1. This procedure computes the IIS and stores the result in the provided parameters. The first form of the
routine (numiis not specified) computes all IIS and returns the last set found.

2. The bndtype values have to be decoded using getiissense and getiistype. The first routine may
return XPRS_IIS_LEQ (upper bound), XPRS_IIS_GEQ (lower bound), XPRS_IIS_RNG (lower and upper
bound) or XPRS_IIS_EQ (fixed bound). The second one may give XPRS_IIS_BIN (binary),
XPRS_IIS_INT (integer), XPRS_IIS_PINT (partial integer), XPRS_IIS_SEC (semi continuous) or
XPRS_IIS_SINT (semi continuous integer).

3. The sets passed to this procedure are reset before being used.

Related topics
resetiis, isiisvalid, getinfeas.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 743

Chapter 21: mmxprs

getiissense

Purpose
Decode the sense part of an IIS bound type information.

Synopsis
function getiissense(i:bndtype):integer

Argument
bndtype A bound type as returned by getiis

Return value
Sense part of an IIS bound type.

Related topics
getiis, getiistype.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 744

Chapter 21: mmxprs

getiistype

Purpose
Decode the type part of an IIS bound type information.

Synopsis
function getiistype(i:bndtype):integer

Argument
bndtype A bound type as returned by getiis

Return value
Type part of an IIS bound type.

Related topics
getiis, getiissense.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 745

Chapter 21: mmxprs

getinfcause

Purpose
Returns the variable or constraint causing infeasibility.

Synopsis
procedure getinfcause(vars:set of mpvar,ctrs:set of linctr)

Arguments
vars Set to return the infeasible variable or {} if not required
ctrs Set to return infeasible constraint or {} if not required

Further information

1. This function can be used to get the variable or constraint responsible for an infeasibility detected either
during matrix generation (invalid bound) or when presolving the problem.

2. The sets passed to this procedure are reset before being used.

Related topics
getinfeas.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 746

Chapter 21: mmxprs

getinfeas

Purpose
Returns sets of infeasible primal and dual variables.

Synopsis
procedure getinfeas(mx:set of mpvar,mslack:set of linctr,mdual:set of

linctr,mdj:set of mpvar)

Arguments
mx Set to return the infeasible variables or {} if not required
mslack Set to return infeasible constraints or {} if not required
mdual Set to return dual infeasible constraints or {} if not required
mdj Set to return the dual infeasible variables or {} if not required

Related topics
getiis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 747

Chapter 21: mmxprs

getlb

Purpose
Get the lower bound of a variable.

Synopsis
function getlb(x:mpvar):real

Argument
x A decision variable

Return value
Lower bound of the variable.

Further information
This function returns the lower bound of a variable that is currently held by the Optimizer. The bound
value may be changed directly in the Optimizer using setlb. Changes to the variable in Mosel are not
taken into account by this function unless the problem has been reloaded since (procedure loadprob).

Related topics
getub, setlb, setub.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 748

Chapter 21: mmxprs

getloadedlinctrs

Purpose
Get the linear constraints loaded into the optimiser.

Synopsis
procedure getloadedlinctrs(sc:set of linctr)

Argument
sc A set of linear constraints

Further information
The result of the operation is added to the current content of the provided set (i.e. the set is not cleared).

Related topics
getloadedmpvars

Module
mmxprs

Fair Isaac Corporation Proprietary Information 749

Chapter 21: mmxprs

getloadedmpvars

Purpose
Get the decision variables loaded into the optimiser.

Synopsis
procedure getloadedmpvars(sv:set of mpvar)

Argument
sv A set of decision variables

Further information
The result of the operation is added to the current content of the provided set (i.e. the set is not cleared).

Related topics
getloadedlinctrs

Module
mmxprs

Fair Isaac Corporation Proprietary Information 750

Chapter 21: mmxprs

getmatcoeff

Purpose
Get the coefficient of a variable or the constant term of a constraint directly from the Optimizer.

Synopsis
function getmatcoeff(c:linctr, x:mpvar):real
function getmatcoeff(c:linctr):real

Arguments
c A linear constraint
x A decision variable

Return value
The coefficient of the varible or the constant term.

Further information

1. This function behaves like getcoeff except that it gets the information from the matrix loaded into the
Optimizer.

2. The routine will fail if no problem has been loaded into the Optimizer or if the constraint or the variable is
not part of the current matrix.

Related topics
getcoeff, setmatcoeff, maximize, minimize.

Fair Isaac Corporation Proprietary Information 751

Chapter 21: mmxprs

getname

Purpose
Get the name of a decision variable or constraint of the problem.

Synopsis
function getname(x:mpvar):string
function getname(c:linctr):string
function getname(nl:nlctr):string

Arguments
x A decision variable used in the problem
c A constraint (or SOS) of the problem
nl A non linear constraint of the problem

Return value
Name of the given object.

Further information

1. This function returns the name of a decision variable or constraint of the problem that would be used for
matrix exportation. The parameter of this function must be part of the problem — for instance a hidden
constraint cannot be assigned a name.

2. This function requires that the matrix has been generated (e.g. by a call to exportprob or loadprob).
When used with a non linear constraint it is further required for the problem to be loaded into the
optimiser and the parameter XPRS_loadnamesmust be true.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 752

Chapter 21: mmxprs

getprimalray

Purpose
Get a primal ray for an unbounded problem.

Synopsis
function getprimalray(ray:array(set of mpvar) of real):boolean

Argument
ray An array of reals over all constraints in the problem (as loaded) in which the primal ray is

returned.

Return value
This procedure returns the primal ray found for the problem if the problem is found to be primal
unbounded (thus dual infeasible) and one is available.

Further information

1. The return value of the function is true if a primal ray is available, and false otherwise.

2. The dimension and base set of the ray argument will be set up by the function.

Example

declarations
all_variables : set of mpvar
primal_ray : array(all_variables) of real
end-declarations
if getprobstat <> XPRS_UNB then

writeln("Problem is not unbounded.")
else

HasRay := getprimalray(primal_ray)
if HasRay then
writeln("Primal ray:")
forall (c in all_variables)

writeln(getname(c), " ", primalray(c))
else
writeln("No primal ray was found")

end-if
end-if

Related topics
getdualray

Module
mmxprs

Fair Isaac Corporation Proprietary Information 753

Chapter 21: mmxprs

getprobstat

Purpose
Get the Optimizer problem status.

Synopsis
function getprobstat:integer

Return value
Status of the problem currently held in the Optimizer:
XPRS_OPT Solved to optimality
XPRS_UNF Unfinished
XPRS_INF Infeasible
XPRS_UNB Unbounded
XPRS_OTH Unsolved or objective worse than cutoff

Example
The following procedure displays the current problem status:

procedure print_status
declarations
status: string

end-declarations

case getprobstat of
XPRS_OPT: status:="Optimum found"
XPRS_UNF: status:="Unfinished"
XPRS_INF: status:="Infeasible"
XPRS_UNB: status:="Unbounded"
XPRS_OTH: status:="Failed"
else status:="???"

end-case

writeln("Problem status: ", status)
end-procedure

Further information
More detailed information than what is provided by this function can be obtained with function
getparam, retrieving the problem attributes XPRS_presolvestate, XPRS_lpstatus, and
XPRS_mipstatus (see the Xpress Optimizer Reference Manual).

Related topics
getparam.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 754

Chapter 21: mmxprs

getrange

Purpose
Get a range value for a variable or constraint.

Synopsis
function getrange(w:integer, x:mpvar):real
function getrange(w:integer, c:linctr):real

Arguments
w Which information to return. Possible values for a variable:

XPRS_UPACT For a variable which is at one of its bounds, the largest value which that bound
can take while the current basis remains optimal

XPRS_LOACT For a variable which is at one of its bounds, the smallest value which that bound
can take while the current basis remains optimal

XPRS_UUP The change in objective value per unit increase in the variable activity, assuming
the the current basis remains optimal

XPRS_UDN The change in objective value per unit decrease in the variable activity,
assuming the the current basis remains optimal

XPRS_UCOST The largest value which this variable’s objective coefficient can take while the
current basis remains optimal

XPRS_LCOST The smallest value which this variable’s objective coefficient can take while the
current basis remains optimal

Possible values for a constraint:

XPRS_UPACT The largest value which the constraint RHS can take while the current basis
remains optimal

XPRS_LOACT The smallest value which the constraint RHS can take while the current basis
remains optimal

XPRS_UUP The change in objective value per unit increase in the constraint RHS, assuming
the the current basis remains optimal

XPRS_UDN The change in objective value per unit decrease in the constraint RHS, assuming
the the current basis remains optimal

x A variable of the problem
c A constraint of the problem

Return value
Range information depending on the value of w.

Further information
This function returns ranging information to be used for sensitivity analysis after the problem has been
optimized. On MIP problems, discrete entities have to be “fixed” using the procedure fixglobal before
this function can be called.

Related topics
fixglobal.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 755

Chapter 21: mmxprs

getscale

Purpose
Retrieves scaling information about the currently loaded problem.

Synopsis
procedure getscale(options:integer, scaling:array(set of integer) of

integer)

Arguments
options Bitmap, matrix data to include: +1 for coefficients, +2 for RHS and +4 for objective
scaling Array where scaling information is returned.

Further information
The indices of the returned array indicate buckets of powers of 10. For example, if scaling(3) is 11, then
there are 11 elements in the range of [100, 1000]. The scaling array needs to be declared dynmaic.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 756

Chapter 21: mmxprs

getsensrng

Purpose
Get sensitivity ranges for objective function coefficients, RHS coefficients, variable upper bounds or
variable lower bounds.

Synopsis
function getsensrng(w:integer, x:mpvar):real
function getsensrng(w:integer, c:linctr):real

Arguments
w Which information to return. Possible values:

XPRS_UP Upper sensitivity range
XPRS_DN Lower sensitivity range
XPRS_UP+XPRS_UBND Upper sensitivity range of the upper bound of the variable
XPRS_DN+XPRS_UBND Lower sensitivity range of the upper bound of the variable
XPRS_UP+XPRS_LBND Upper sensitivity range of the lower bound of the variable
XPRS_DN+XPRS_LBND Lower sensitivity range of the lower bound of the variable

x A variable of the problem
c A constraint of the problem

Return value
Sensivity range information depending on the value of w.

Further information
This function returns sensitivity ranges for RHS coefficients (if used with a constraint); and for objective
function coefficients, upper bounds or lower bounds (if used with a variable). getsensrng can be called
only if an optimal LP solution is available and the problem is not MIP presolved.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 757

Chapter 21: mmxprs

getsize

Purpose
Get the size of a solution.

Synopsis
function getsize(ms:mpsol):integer

Argument
ms A solution object

Return value
The number of variables stored in the solution.

Related topics
getvars.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 758

Chapter 21: mmxprs

getsol

Purpose
Get the solution value of an expression from a solution object.

Synopsis
function getsol(ms:mpsol,v:mpvar):real
function getsol(ms:mpsol,c:linctr):real
function getsol(ms:mpsol,nl:nlctr):real
function getsol(bv:boolvar):boolean
function getsol(ms:mpsol,bv:boolvar):boolean
function getsol(lc:logctr):boolean
function getsol(ms:mpsol,lc:logctr):boolean

Arguments
ms A solution object
v A decision variable
bv A pseudo boolean decision variable
c A linear constraint
nl A non linear constraint
lc A logical constraint

Return value
Solution value or 0 (or false for a logical parameter).

Further information
This function returns an evaluation of an expression using the provided solution object as solution values
for the decision variables.

Related topics
setsol, savesol, savemipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 759

Chapter 21: mmxprs

getvar

Purpose
Get the decision variable associated to a pseudo boolean.

Synopsis
function getvar(bv:boolvar):mpvar

Argument
bv A pseudo boolean decision variable

Return value
The decision variable associated to the given parameter.

Further information
Each pseudo boolean variable is associated to two decision variables of type mpvar. This function
makes it possible to retrieve these variables: it can be applied to both the variable itself (e.g.
getvar(bv)) and its negation (e.g. getvar(not bv)).

Module
mmxprs

Fair Isaac Corporation Proprietary Information 760

Chapter 21: mmxprs

getub

Purpose
Get the upper bound of a variable.

Synopsis
function getub(x:mpvar):real

Argument
x A decision variable

Return value
Upper bound of the variable.

Further information
The bound value may be changed directly in the optimizer using setub. Changes to the variable in Mosel
are not taken into account by this function unless the problem has been reloaded since (procedure
loadprob).

Related topics
getlb, setlb, setub.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 761

Chapter 21: mmxprs

getvars

Purpose
Get the set of variables of a solution.

Synopsis
procedure getvars(ms:mpsol,s:set of mpvar)

Arguments
ms A solution object
s A set of decision variables

Further information
This procedure returns in the parameter s the set of variables used by a solution object. Note that this
procedure replaces the content of the set.

Related topics
getsize.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 762

Chapter 21: mmxprs

hasfeature

Purpose
Check if a specific feature is supported by the currently used license.

Synopsis
function hasfeature(feature:string):boolean

Argument
feature The name of the feature to check, as it would appear in the Xpress license file

Return value
true if the requested feature is supported, false otherwise.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 763

Chapter 21: mmxprs

implies

Purpose
Create an implies expression.

Synopsis
function implies(c1:log_or_linctr,c2:log_or_linctr):logctr

Arguments
c1 A linear constraint (linctr) or logical expression (logctr)
c2 A linear constraint (linctr) or logical expression (logctr)

Return value
A new logctr representing the expression.

Example
The following example shows several ways of stating the logical relation ’if x1 ≥ 10 then x1 + x2 ≥ 12 and
not x2 ≤ 5’. The implied constraint L is itself a logical constraint, built up by using the operators and and
not in combination with linear constraints.

declarations
R=1..2
C: array(range) of linctr ! Linear constraints
L: logctr ! Logical constraint
x: array(R) of mpvar ! Decision variables
end-declarations

C(1):= x(1)>=10 ! Define (temporary) linear ctrs
C(2):= x(2)<=5
C(3):= x(1)+x(2)>=12

implies(C(1), C(3) and not C(2)) ! State the implication
forall(j in 1..3) C(j):=0 ! Delete the auxiliary ctrs

! The same implication constraint can be stated by:
implies(x(1)>=10, x(1)+x(2)>=12 and not x(2)<=5)

! Or also by:
L:= x(1)+x(2)>=12 and not x(2)<=5 ! Define (temporary) logical ctr
implies(x(1)>=10, L) ! State the implication
L:= 0 ! Delete the auxiliary ctr

Further information

1. This function creates a logctr constraint representing an implies condition: if c1 is valid then c2 is
enforced.

2. The helper package ’advmod’ must be loaded if this function is used:

uses 'advmod'

Related topics
indicator, xor

Module
mmxprs

Fair Isaac Corporation Proprietary Information 764

Chapter 21: mmxprs

indicator

Purpose
Create an indicator constraint.

Synopsis
function indicator(type:integer,y:mpvar,ctr:linctr|nlctr):logctr

Arguments
type The indicator type:

-1 for indicator y=0 -> ctr
1 for indicator y=1 -> ctr

y The variable associated to the constraint
ctr An inequality constraint

Return value
A new logctr representing the indicator.

Example
This example shows how to define two indicator constraints. The second constraint labeled L is stated
with the help of an auxiliary linear constraint definition. This temporary constraint C needs to be deleted
from the problem after having been used in the definition of the indicator constraint. The notation
b(1)=1 -> ... should be read as ’if b(1) takes the value 1 then ... must hold’

declarations
R=1..2, S=1..3
C: linctr ! Linear constraint
L: logctr ! Logical (indicator) constraint
x: array(S) of mpvar ! Decision variables
b: array(R) of mpvar ! Indicator variables
end-declarations

forall(i in R)
b(i) is_binary ! Indicator variables must be binaries

C:= x(2)+x(3)<=5 ! Constraint to transform into indicator ctr.

! Define 2 indicator constraints
indicator(1, b(1), x(1)+x(2)>=12) ! b(1)=1 -> x(1)+x(2)>=12
L:= indicator(-1, b(2), C) ! b(2)=0 -> x(2)+x(3)<=5

C:=0 ! Delete the auxiliary constraint definition

Related topics
implies, xor

Module
mmxprs

Fair Isaac Corporation Proprietary Information 765

Chapter 21: mmxprs

isiisvalid

Purpose
Check whether an IIS number exists.

Synopsis
function isiisvalid(numiis:integer):boolean

Argument
numiis Ordinal number of the IIS

Return value
true if numiis corresponds to an existing IIS.

Related topics
resetiis, getiis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 766

Chapter 21: mmxprs

isintegral

Purpose
Check whether a variable (or set of variables) solution value is integral.

Synopsis
function isintegral(x:mpvar):boolean
function isintegral(s:set of mpvar):boolean

Arguments
x A decision variable
s A set of decision variables

Return value
true if the variable (or all variables of the set) is integral.

Further information
This function checks whether the current solution value of a variable is integral with respect to the
tolerance value of the optimizer (XPRS_MIPSOL). When used with a set, the function returns true if all
variables of the set satisfy the condition.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 767

Chapter 21: mmxprs

loadbasis

Purpose
Load a previously saved basis.

Synopsis
procedure loadbasis(b:basis)

Argument
b A basis

Example
The following saves a basis, changes the problem, and then loads it into the Optimizer, reloading the old
basis:

declarations
MinCost:linctr
mybasis:basis
end-declarations

savebasis(mybasis)
...
loadprob(MinCost)
loadbasis(mybasis)

Further information

1. This procedure loads a basis into the optimizer that has previously been saved using procedure
savebasis or constructed using setbstat.

2. The problem must be loaded in the Optimzer for loadbasis to have any effect. If this has not recently
been carried out using maximize or minimize it must be explicitly loaded using loadprob.

Related topics
loadprob, savebasis, setbstat, getbstat, resetbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 768

Chapter 21: mmxprs

loadlpsol

Purpose
Load an LP solution into the optimizer.

Synopsis
procedure loadlpsol(x:array(set of mpvar) of real, slack:array(set of

linctr) of real, dual:array(set of linctr) of real, dj:array(set of
mpvar) of real)

procedure loadlpsol(x:array(set of mpvar) of real, dual:array(set of linctr)
of real)

procedure loadlpsol(x:array(set of mpvar) of real)

Arguments
x An array containing the primal solution
slack An array containing the constraint slacks
dual An array containing the dual multipliers
dj An array containing the reduced cost values

Related topics
crossoverlpsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 769

Chapter 21: mmxprs

loadmipsol

Purpose
Load a MIP solution into the optimizer.

Synopsis
function loadmipsol(s:array(set of mpvar) of real):integer
function loadmipsol(solnum:integer):integer
function loadmipsol(ms:mpsol):integer

Arguments
s An array containing the solution
solnum Solution number (between 1 and XPRS_enumsols)
ms A solution object

Return value
Operation status:
-1 Solution rejected because an error occurred
0 Solution accepted. When loading a solution before a MIP solve, the solution is always accepted.

It is placed in temporary storage until the MIP solve is started.
1 Solution rejected because it is infeasible
2 Solution rejected because it is cut off
3 Solution rejected because the LP reoptimization was interrupted

Example
The following saves a MIP solution, modifies the problem, and then loads it into the Optimizer, reloading
the MIP solution:

declarations
MinCost:linctr
mysol: array(set of mpvar) of real
result: integer
end-declarations

savemipsol(mysol)
... ! Make some changes
loadprob(MinCost)
result:= loadmipsol(mysol)
if result<>0 then writeln("Loading MIP solution failed"); end-if
minimize(MinCost)

Fair Isaac Corporation Proprietary Information 770

Chapter 21: mmxprs

Further information

1. This function loads a MIP solution into the optimizer that has previously been saved using procedure
savemipsol or constructed by some external heuristic. In the latter case a value needs to be assigned
to each discrete variable in the problem, such as mysol(x):= 1 (where x is a decision variable of type
mpvar).

2. The values for the continuous variables in the s array are ignored and are calculated by fixing the integer
variables and reoptimizing.

3. The second form of the routine can be called after a search for n-best solutions has been performed by
the optimiser: the selected solution is used as input.

4. The current problem definition must be loaded into the Optimizer for loadmipsol to have any effect. If
this has not recently been done, e.g., by calling maximize or minimize, the problem must be explicitly
loaded using loadprob.

5. If the MIP solution is accepted by the Optimizer it causes the MIPABSCUTOFF control to be set
accordingly. The provided MIP solution may help guiding the MIP heuristics but the branch-and-bound
search will start from the initial LP relaxation solution as usual.

Related topics
savemipsol, addmipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 771

Chapter 21: mmxprs

loadprob

Purpose
Load a problem into the optimizer.

Synopsis
procedure loadprob(obj:linctr)
procedure loadprob(obj:linctr, extravar:set of mpvar)
procedure loadprob(qobj:qexp)
procedure loadprob(qobj:qexp, extravar:set of mpvar)
procedure loadprob(nlobj:nlctr)
procedure loadprob(nlobj:nlctr, extravar:set of mpvar)
procedure loadprob(rbobj:robustctr)
procedure loadprob(rbobj:robustctr, extravar:set of mpvar)

Arguments
obj Objective function constraint
qobj Quadratic objective function (with module mmquad)
nlobj Non linear objective function (with module mmnl)
rbobj Robust objective function (with module mmrobust)
extravar Extra variables to include

Further information

1. This procedure explicitly loads a problem into the optimizer. It gets called automatically by the
optimization procedures minimize and maximize if the problem has been modified in Mosel since the
last call to the optimizer. Nevertheless in some cases, namely before loading a basis, it may be necessary
to reload the problem explicitly using this procedure. The parameter extravar is a set of variables to be
included into the problem even if they do not appear in any constraint (i.e. they become empty columns in
the matrix).

2. Support for quadratic programming requires the module mmnl.

3. Support for general nonlinear programming requires the module mmxnlp.

4. Support for robust programming requires the module mmrobust.

Related topics
maximize, minimize.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 772

Chapter 21: mmxprs

maximize, minimize

Purpose
Maximize/minimize the current problem.

Synopsis
procedure maximize(alg:integer, obj:linctr)
procedure maximize(obj:linctr)
procedure maximize(alg:integer, qobj:qexp)
procedure maximize(qobj:qexp)
procedure maximize(alg:integer, nlobj:nlctr)
procedure maximize(nlobj:nlctr)
procedure maximize(rbobj:robustctr)
procedure maximize(alg:integer, rbobj:robustctr)

Arguments
alg Algorithm choice:

XPRS_BAR Newton-Barrier to solve LP
XPRS_DUAL Dual simplex
XPRS_NET Network solver
XPRS_LIN Only solve LP ignoring all discrete entities
XPRS_PRI Primal simplex
XPRS_ENUM Start a search for the n-best MIP solutions
XPRS_LPSTOP Stop the MIP solution process after solving the first LP
XPRS_CONT Continue a previously interrupted solution process
XPRS_LOCAL Solve the linearization of the problem (mmxnlp only)
XPRS_COREPB Solve the linear part of the problem (mmxnlp only)
XPRS_TUNE Enable the tuner

obj Objective function constraint
qobj Quadratic objective function (with module mmquad)
nlobj Non linear objective function (with module mmnl)
rbobj Robust objective function (with module mmrobust)

Example
The following maximizes Profit using the dual simplex algorithm and stops before the
branch-and-bound search:

declarations
Profit:linctr

end-declarations

maximize(XPRS_DUAL+XPRS_LPSTOP, Profit)

The following minimizes MinCost using the Newton-Barrier algorithm and ignoring all discrete entities

declarations
MinCost:linctr
end-declarations

minimize(XPRS_BAR+XPRS_LIN, MinCost)

Fair Isaac Corporation Proprietary Information 773

Chapter 21: mmxprs

Further information

1. This procedure calls the Optimizer to maximize/minimize the current problem (excluding all hidden
constraints) using the given constraint as objective function. Optionally, the algorithm to be used can be
defined. By default, the branch-and-bound search is executed automatically if the problem contains any
discrete entities. Where appropriate, several algorithm choice parameters may be combined (using plus
signs).

2. If XPRS_LIN is specified, then the discreteness of all discrete entities is ignored, even during the
presolve procedure.

3. If XPRS_LPSTOP is specified, then just the LP at the top node is solved and no Branch-and-Bound search
is initiated. But the discreteness of the discrete entities is taken into account in presolving the LP at the
top node. Note also that getprobstat still returns information related to the MIP problem when this
option is used although only an LP solve has been executed and the solution information returned by
getsol corresponds to the current LP solution. However, if the the MIP is solved to optimality during this
call, the MIP optimal solution will be returned by getsol.

4. If XPRS_CONT is used after a solve has completed, the routine returns immediately without altering the
current problem status.

5. If XPRS_ENUM is specified, the optimiser starts a search for the n-best MIP solutions. The maximum
number of solutions to store may be specified using the XPRS_enummaxsol (default: 10). After the
execution of the enumeration, the number of solutions found during the search is returned by the control
parameter XPRS_enumsols. The procedure selectsol can then be used to select one of these
solutions.

6. If XNLP_LOCAL is specified for a non-linear problem having been loaded using mmxnlp and which have
been solved using XSLP, then the current linearization will be reoptimized.

7. If XPRS_TUNE is specified the problem will be tuned and then solved with the best control settings
identified by the tuner. For a user guide about the tuner, please refer to the documentation of the Xpress
Optimizer.

8. If XNLP_COREPB is specified for a non-linear problem having been loaded using mmxnlp, then only the
linear part of the problem will be loaded and optimized. This is usefull for checking if the linear part of the
problem is well posed.

9. Support for quadratic programming requires the module mmnl.

10. Support for general nonlinear programming requires the module mmxnlp.

11. Support for robust programming requires the module mmrobust.

Related topics
postsolve, loadprob, selectsol, XPRS_maxupdc.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 774

Chapter 21: mmxprs

postsolve

Purpose
Postsolve the current matrix.

Synopsis
procedure postsolve

Further information
After an optimisation operation has been interrupted before its completion, the matrix held into the
optimiser remains in a presolved state. In this state direct matrix operations (like fixing bounds) cannot
be applied: this routine restores the problem in its original state that is just after it was loaded into the
optimiser. As an alternative to postsolving the matrix, the problem may be entirely reloaded using
loadprob.

Related topics
maximize, minimize.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 775

Chapter 21: mmxprs

readbasis

Purpose
Read a basis from a file.

Synopsis
procedure readbasis(fname:string,options:string)

Arguments
fname Extended file name
options String of options

Further information
This procedure reads in a basis from a file by calling the function XPRSreadbasis of the Optimizer. Note
that basis save/read procedures can be used only if the constraint and variable names have been loaded
into the Optimizer (control parameter XPRS_loadnames set to true) and all constraints are named. For
more detail on the options and behavior of this procedure refer to the Xpress Optimizer Reference Manual.

Related topics
writebasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 776

Chapter 21: mmxprs

readdirs

Purpose
Read directives from a file.

Synopsis
procedure readdirs(fname:string)

Argument
fname Extended file name

Further information
This procedure reads in directives from a file by calling the function XPRSreaddirs of the Optimizer.
Note that directives save/read procedures can be used only if variable names have been loaded into the
Optimizer (parameter XPRS_loadnames set to true).

Related topics
writedirs.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 777

Chapter 21: mmxprs

readsol

Purpose
Read a solution from a file.

Synopsis
procedure readsol(fname:string,options:string)

Synopsis
procedure readsol(fname:string,options:string)
procedure readsol(sol:array(mpvar) of real,fname:string,options:string)
procedure readsol(sol:mpsol,fname:string,options:string)
procedure readsol(sol:mpvar,fname:string,options:string)

Arguments
fname Extended file name
options String of options
sol Object to load the solution into

Further information
This procedure reads in a solution from a file by calling the function XPRSreadslxsol of the Optimizer.
Note that solution save/read procedures can be used only if the constraint and variable names have been
loaded into the Optimizer (control parameter XPRS_loadnames set to true) and all constraints are
named. For more detail on the options and behavior of this procedure refer to the Xpress Optimizer
Reference Manual.

Related topics
writesol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 778

Chapter 21: mmxprs

refinemipsol

Purpose
Executes the MIP solution refiner on an mpsol solution.

Synopsis
function refinemipsol(solution:mpsol):mpsol
function refinemipsol(solution:mpsol, options:integer):mpsol

Arguments
solution The solution to be refined
options Options passed to the solution refiner. Please refer to XPRSrefinemipsol for the

available options

Related topics
calcsolinfo.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 779

Chapter 21: mmxprs

rejectintsol

Purpose
Reject the solution provided to the PREINTSOL callback.

Synopsis
procedure rejectintsol

Further information
This procedure cannot be called from outside of the PREINTSOL callback.

Related topics
setcallback.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 780

Chapter 21: mmxprs

repairinfeas

Purpose
Relaxing bounds to repair infeasibility.

Synopsis
procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of

real, albp:array(mpvar) of real, aubp:array(mpvar) of real)
procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of

real, albp:array(mpvar) of real, aubp:array(mpvar) of real,
phs2:string, delta:real,optfg:string)

procedure repairinfeas(flags:string, lrp:real, grp:real, lbp:real, ubp:real,
delta:real)

procedure repairinfeas(flags:string)
procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of

real, albp:array(mpvar) of real, aubp:array(mpvar) of
real,alrb:array(linctr) of real,agrb:array(linctr) of
real,albb:array(mpvar) of real,aubb:array(mpvar) of
real,phs2:string,delta:real,optfg:string)

Arguments
alrp Array of preferences for relaxing the less or equal side of row
agrp Array of preferences for relaxing the greater or equal side of row
albp Array of preferences for relaxing lower bounds
aubp Array of preferences for relaxing upper bounds
alrb Array of upper bounds to be imposed on the amount of relaxation allowed for the less or equal

side of row
agrb Array of upper bounds to be imposed on the amount of relaxation allowed for the greater or

equal side of row
albb Array of upper bounds to be imposed on the amount of relaxation allowed for lower bounds
aubb Array of upper bounds to be imposed on the amount of relaxation allowed for upper bounds
phs2 A 1-character string controling the second phase optimization
lrp Preference for relaxing the less or equal side of row
grp Preference for relaxing the greater or equal side of row
lbp Preference for relaxing lower bounds
ubp Preference for relaxing upper bounds
delta Relaxation multiplier for the second phase-1
flags A 3-character string defining the p/o/g flags
optfg Flags to be passed to the optimizer

Fair Isaac Corporation Proprietary Information 781

Chapter 21: mmxprs

Further information

1. This routine is an interface to the Optimizer functions XPRSrepairweightedinfeas and
XPRSrepairinfeas. Please refer to the Xpress Optimizer Reference Manual for further details.

2. The 2 first forms call the Optimizer routine XPRSrepairweightedinfeas. Missing preferences are
treated as 0; the default value for phs2 is "d" and the default value for delta is 0.001.

3. The third and fourth forms call the Optimizer routine XPRSrepairinfeas. If flags is not specified
(empty string), a default value of "cog" is used. If preferences and delta are not given, all preferences
are set to 1 and delta is 0.001.

4. The last form calls the Optimizer routine XPRSrepairweightedinfeasbounds, allowing to bound the
amount of relaxation applied on a per row or bound basis. Only positive bounds are applied; a zero or
negative bound is ignored and the amount of relaxation allowed for the corresponding row or bound is
not limited. The effect of a zero bound on a row or bound would be equivalent with not relaxing it, and can
be achieved by setting its preference array value to zero instead, or not including it in the preference
arrays. The default value for phs2 is "d".

5. Negative preferences translate to quadratic penalties applied for the corresponding rows or bounds.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 782

Chapter 21: mmxprs

resetbasis

Purpose
Reset a basis.

Synopsis
procedure resetbasis(b:basis)

Argument
b A basis

Further information
This function clears the information stored in a basis object.

Related topics
loadbasis, savebasis, setbstat, resetbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 783

Chapter 21: mmxprs

resetiis

Purpose
Reset the search for IIS.

Synopsis
procedure resetiis

Further information
This procedure resets the search for IIS and clears all information already computed related to IIS.

Related topics
getiis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 784

Chapter 21: mmxprs

resetsol

Purpose
Reset a solution.

Synopsis
procedure resetsol(ms:mpsol)
procedure resetsol(ms:mpsol,v:mpvar)
procedure resetsol(ms:mpsol,bv:boolvar)

Arguments
ms A solution object
v A decision variable
bv A pseudo boolean decision variable

Further information
When used with a single argument this procedure clears the information stored in the specified solution
object (this is equivalent to calling reset). With two arguments the designated entity is removed from
the solution object (no operation is performed if the corresponding variable was not yet part of the
solution).

Related topics
setsol, savesol, savemipsol, getsize.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 785

Chapter 21: mmxprs

savebasis

Purpose
Save the current basis.

Synopsis
procedure savebasis(b:basis)

Argument
b A basis

Further information
This function saves the current basis into the provided basis object.

Related topics
loadbasis, setbstat, getbstat, resetbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 786

Chapter 21: mmxprs

savemipsol

Purpose
Save the current solution into the provided array or solution object.

Synopsis
procedure savemipsol(s:array(set of mpvar) of real)
procedure savemipsol(ms:mpsol)

Arguments
s An array to return the solution
ms A solution object

Further information

1. This procedure saves the current solution into the provided array. The resulting datastructure may be
used as input for the loadmipsol function.

2. If the index set of the array is dynamic, the procedure may extend it in order to have all variables of the
problem. Otherwise the solution is saved only for the variables included in this set.

3. Only non-continuous variables are saved when this procedure is used with an mpsol argument. Use
savesol to save the values of all variables.

Related topics
loadmipsol, savesol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 787

Chapter 21: mmxprs

savesol

Purpose
Save the current solution into a solution object.

Synopsis
procedure savesol(ms:mpsol)

Argument
ms A solution object

Further information
This procedure saves the current solution into the provided solution object. As opposed to the
savemipsol routine all variables are saved independently of their type.

Related topics
savemipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 788

Chapter 21: mmxprs

savestate

Purpose
Save current state of the Optimizer to a file.

Synopsis
procedure savestate(fname:string)

Argument
fname Extended file name

Further information
The produced file (Optimizer SVF file format) can then be used as input to Optimizer console using
optimizer’s command RESTORE.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 789

Chapter 21: mmxprs

selectsol

Purpose
Select one of the solutions found by solution enumerator.

Synopsis
procedure selectsol(solnum:integer)

Argument
solnum Solution number (between 1 and XPRS_enumsols)

Further information

1. This routine can be called after a search for n-best solutions has been performed by the optimizer in order
to select a particular solution.

2. Once a solution has been selected, the functions getsol (applied to decision variables) and getobjval
return values related to this solution.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 790

Chapter 21: mmxprs

setarchconsistency

Purpose
Sets the value of the optimizer architecture control.

Synopsis
procedure setarchconsistency(controlvalue:integer)

Argument
controlvalue Value of the optimizer architecture control

Further information
Please refer to the Xpress Optimizer Reference Manual for more details.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 791

Chapter 21: mmxprs

setbstat

Purpose
Set the status of a variable or constraint in a basis.

Synopsis
procedure setbstat(b:basis,v:mpvar,s:integer)
procedure setbstat(b:basis,c:linctr,s:integer)

Arguments
b A basis
v A decision variable
c A linear constraint
s Basis status. For a variable:

-1 Remove the variable from the basis
0 Variable is non-basic at lower bound, or superbasic at zero if the variable has no

lower bound
1 Variable is basic
2 Variable is non-basic at upper bound
3 Variable is super-basic
For a constraint:
-1 Remove the constraint from the basis
0 Slack, surplus or artificial is non-basic at lower bound
1 Slack, surplus or artificial is basic
2 Slack or surplus is non-basic at upper bound
3 Slack or surplus is super-basic

Related topics
savebasis, getbstat, resetbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 792

Chapter 21: mmxprs

setcallback

Purpose
Set optimizer callback functions and procedures.

Synopsis
procedure setcallback(cbtype:integer, cb:string)
procedure setcallback(cbtype:integer, pr:procedure|function)

Arguments
cbtype Type of the callback:

XPRS_CB_LPLOG Simplex log callback
XPRS_CB_CUTLOG Cut log callback
XPRS_CB_GLOBALLOG Global log callback
XPRS_CB_BARLOG Barrier log callback
XPRS_CB_CHGNODE User select node callback
XPRS_CB_PRENODE User preprocess node callback
XPRS_CB_OPTNODE User optimal node callback
XPRS_CB_INFNODE User infeasible node callback
XPRS_CB_INTSOL User integer solution callback
XPRS_CB_NODECUTOFF User cut-off node callback
XPRS_CB_NEWNODE New node callback
XPRS_CB_BARITER Barrier iteration callback
XPRS_CB_CUTMGR Cut manager (branch-and-bound node) callback
XPRS_CB_CHGBRANCH User choose branching variable callback
XPRS_CB_PREINTSOL Integer solution callback called before acceptation
XPRS_CB_GAPNOTIFY Gap notify callback
XPRS_CB_SOLNOTIFY Integer notify callback called each time a solution added

with addmipsol is processed
XPRS_CB_PRESOLVE A callback fired after presolve is performed
XPRS_CB_COMPUTERESTART A callback fired when a solve in compute mode had to be

restarted
XPRS_CB_CHECKTIME Check time callback

cb Name of the callback function/procedure (that must be public); the parameters and the type of

Fair Isaac Corporation Proprietary Information 793

Chapter 21: mmxprs

the return value (if any) vary depending on the type of the callback:
function cb:boolean XPRS_CB_LPLOG
function cb:boolean XPRS_CB_CUTLOG
function cb:boolean XPRS_CB_GLOBALLOG
function cb:boolean XPRS_CB_BARLOG
function cb(node:integer):integer XPRS_CB_CHGNODE
function cb:boolean XPRS_CB_PRENODE
function cb:boolean XPRS_CB_OPTNODE
procedure cb XPRS_CB_INFNODE
procedure cb XPRS_CB_INTSOL
procedure cb(node:integer) XPRS_CB_NODECUTOFF
procedure cb(parent:integer,new:integer,branch:integer)

XPRS_CB_NEWNODE
function cb:integer XPRS_CB_BARITER
function cb:boolean XPRS_CB_CUTMGR
procedure cb(e:integer,u:integer,d:real) XPRS_CB_CHGBRANCH
procedure cb(isheur:boolean,cutoff:real) XPRS_CB_PREINTSOL
procedure cb(rt:real,at:real,aot:real,abt:real) XPRS_CB_GAPNOTIFY
procedure cb(solid:string,status:integer) XPRS_CB_SOLNOTIFY
procedure cb XPRS_CB_PRESOLVE
procedure cb XPRS_CB_COMPUTERESTART
function cb:boolean XPRS_CB_CHECKTIME

pr A subroutine reference compatible with the corresponding callback (see above).

Example
The following example defines a procedure to handle solution printing and sets it to be called whenever
an integer solution is found using the integer solution callback:

public procedure printsol
declarations
objval:real

end-declarations

objval:= getparam("XPRS_lpobjval")
writeln("Solution value: ", objval)
end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

Fair Isaac Corporation Proprietary Information 794

Chapter 21: mmxprs

Further information

1. This procedure sets the optimizer callback functions and procedures. For a detailed description of these
callbacks the user is referred to the Xpress Optimizer Reference Manual.

2. Passing an empty string ("") as the function name disables the corresponding callback.

3. The arguments of the Mosel subroutines implementing callback functions correspond to the arguments
documented in the Xpress Optimizer Reference Manual, with the exception of arguments that are used for
passing back information to the solver: these are replaced by the subroutine return values. For the logging
callbacks, the return value true interrupts the solving. For the PRENODE and OPTNODE callbacks the
return value true declares the current node to be infeasible. The return value of the BARITER callback is
the selected barrier action (see XPRSaddcbbariteraction in the Xpress Optimizer Reference Manual
for details). The cut manager routine is called repeatedly at each node until it returns false.

4. Whilst the solution values can be accessed from Mosel in any callback function/procedure, all other
information such as the problem status or the value of the objective function must be obtained directly
from the Optimizer using function getparam.

5. The function setucbdata can be used to return information to the optimizer from the callback
‘CHGBRANCH’.

6. The functions rejectintsol and setcbcutoff can be used to return information to the optimizer
from the callback ‘PREINTSOL’.

7. The function setgndata can be used to return information to the optimizer from the callback
‘GAPNOTIFY’.

8. When the mmxnlp model is used, this function can also be used to set the callbacks relevant to non-linear
problems only. Please see the documentation of the mmxnlp module for the list of extra callbacks.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 795

Chapter 21: mmxprs

setcomputeallowed

Purpose
Controls in what circumstances the current Mosel instance can send optimizations to the Insight
Compute Interface.

Synopsis
procedure setcomputeallowed(allowed:integer)

Argument
allowed Value controlling in what circumstances solves may be sent to Insight Compute Interface.

Must be one of the following constants:
XPRS_ALLOW_COMPUTE_ALWAYS Always allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_NEVER Never allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_DEFAULT Allow solves to be sent to Compute only from

non-OEM applications.

Further information

1. This procedure affects all models running in the current Mosel instance.

2. If the user enables Insight 5 Compute Interface but the value passed to this function does not allow the
Insight Compute Interface to be used, any solves will terminate with an immediate error. This function
can be used to prevent solves from being sent to Insight Compute but cannot be used to force solves to
be performed locally. The purpose of this function is to allow applications that do not want to support
Insight Compute Interface to prevent it being used.

Related topics
getcomputeallowed.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 796

Chapter 21: mmxprs

setcbcutoff

Purpose
Set the cutoff to be returned to the Optimizer by the PREINTSOL callback.

Synopsis
procedure setcbcutoff(cutoff:real)

Argument
cutoff New cutoff value for the current solution

Further information
This procedure cannot be called from outside of the PREINTSOL callback.

Related topics
setcallback.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 797

Chapter 21: mmxprs

setgndata

Purpose
Update data to be returned to the Optimizer by the GAPNOTIFY callback.

Synopsis
procedure setgndata(what:integer, target:real)

Arguments
what What target to update. Possible values:

XPRS_GN_RELTARGET Relative gap
XPRS_GN_ABSTARGET Absolute gap
XPRS_GN_ABSOBJTARGET Absolute gap on objective
XPRS_GN_ABSBOUNDTARGET Absolute gap on bound

target New target value

Further information
This procedure stores the provided information that will be returned to the optimizer when the callback
terminates. This procedure cannot be called from outside of the GAPNOTIFY callback.

Related topics
setcallback.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 798

Chapter 21: mmxprs

setlb

Purpose
Set the lower bound of a variable.

Synopsis
procedure setlb(x:mpvar,r:real)

Arguments
x A decision variable
r Lower bound value

Further information
This procedure changes the lower bound of a variable directly in the Optimizer, that is, the bound is
modified in the problem that is currently loaded in the Optimizer but does not get recorded in the problem
definition held in Mosel. If the problem has not yet been loaded into the Optimizer then the new bound
value is ignored. Reloading the problem into the Optimizer after a call to setlb will reset the lower bound
for the variable to the value computed by Mosel, that is, the bound value resulting from setlb is
overwritten.

Related topics
getlb, getub, loadprob, setub.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 799

Chapter 21: mmxprs

setmatcoeff

Purpose
Set the coefficient of a variable or the constant term directly in the Optimizer.

Synopsis
procedure setmatcoeff(c:linctr, x:mpvar, r:real)
procedure setmatcoeff(c:linctr, r:real)

Arguments
c A linear constraint
x A decision variable
r Coefficient or constant term

Further information

1. This procedure behaves like setcoeff except that it updates only the matrix loaded into the Optimizer,
the problem representation of Mosel is not changed. Reloading the problem into the Optimizer will
restore the matrix to the Mosel representation of the problem.

2. The routine will fail if no problem has been loaded into the Optimizer or if the constraint or the variable is
not part of the current matrix.

3. After a call to this procedure the control parameter XPRS_maxupdc gets the value 1 if it was set to 0
before.

Related topics
setcoeff, setlb, setub, maximize, minimize, XPRS_maxupdc, getmatcoeff.

Fair Isaac Corporation Proprietary Information 800

Chapter 21: mmxprs

setmipdir

Purpose
Set a directive on a variable or Special Ordered Set.

Synopsis
procedure setmipdir(x:mpvar,t:integer,r:real)
procedure setmipdir(x:mpvar,t:integer)
procedure setmipdir(c:linctr,t:integer,r:real)
procedure setmipdir(c:linctr,t:integer)

Arguments
x A decision variable
c A linear constraint (of type SOS)
r A real value
t Directive type, which may be one of:

XPRS_PR r is a priority (integer value between 1 and 1000 where 1 is the highest priority, 1000
the lowest)

XPRS_UP Force up first
XPRS_DN Force down first
XPRS_PU r is an up pseudo cost
XPRS_PD r is a down pseudo cost
XPRS_BR Force branching even if satisfied

Further information
This procedure sets a directive on a discrete entity. Note that the priority value is converted into an
integer. The directives are loaded into the Optimizer at the same time as the problem itself.

Related topics
clearmipdir, readdirs, writedirs.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 801

Chapter 21: mmxprs

setmodcut

Purpose
Mark a constraint as a model cut.

Synopsis
procedure setmodcut(c:linctr)

Argument
c A linear constraint

Further information
This procedure marks the given constraint as a model cut. The list of model cuts is sent to the Optimizer
when the matrix is loaded.

Related topics
clearmodcut.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 802

Chapter 21: mmxprs

setsol

Purpose
Define the value associated to a decision variabe in a solution object.

Synopsis
procedure setsol(ms:mpsol,v:mpvar,s:real)
procedure setsol(ms:mpsol,bv:boolvar,t:boolean)

Arguments
ms A solution object
v A decision variable
bv A pseudo boolean decision variable
s The solution value as a real
t The solution value as a boolean

Further information

1. This procedure associates a solution value to a decision variable in a solution object. If the variable is
already included in the solution, its value is replaced. Otherwise the solution is extended with the new
variable.

2. When the function is applied to a pseudo boolean variable, the values for the two decision variables
associated to the entity are updated (value and its negation).

Related topics
getsol, resetsol, savesol, savemipsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 803

Chapter 21: mmxprs

setub

Purpose
Set the upper bound of a variable.

Synopsis
procedure setub(x:mpvar,r:real)

Arguments
x A decision variable
r Upper bound value

Further information
This procedure changes the upper bound of a variable directly in the Optimizer, that is, the bound is
modified in the problem that is currently loaded in the Optimizer but does not get recorded in the problem
definition held in Mosel. If the problem has not yet been loaded into the Optimizer then the new bound
value is ignored. Reloading the problem into the Optimizer after a call to setub will reset the upper bound
for the variable to the value computed by Mosel, that is, the bound value resulting from setub is
overwritten.

Related topics
getlb, getub, loadprob, setlb.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 804

Chapter 21: mmxprs

setucbdata

Purpose
Update data to be returned to the Optimizer by the CHGBRANCH callback.

Synopsis
procedure setucbdata(x:mpvar, u:integer, e:real)
procedure setucbdata(s:linctr, u:integer, e:real)
procedure setucbdata(n:integer, u:integer, e:real)

Arguments
x A decision variable
s An SOS
n A column or SOS number as provided by the optimizer
u Direction for branching. Possible values:

0 Upward branch made second (branch on column)
1 Upward branch made first (branch on column)
2 Upward branch made second (branch on SOS)
3 Upward branch made first (branch on SOS)

e Estimated degradation at the node

Further information
This procedure stores the provided information that will be returned to the optimizer when the callback
terminates. This procedure cannot be called from outside of the CHGBRANCH callback.

Related topics
setcallback.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 805

Chapter 21: mmxprs

stopoptimize

Purpose
Interrupt the optimizer algorithms.

Synopsis
procedure stopoptimize(why:integer)

Argument
why The reason for stopping. Possible reasons:

XPRS_STOP_TIMELIMIT Time limit hit
XPRS_STOP_CTRLC Control C hit
XPRS_STOP_NODELIMIT Node limit hit
XPRS_STOP_ITERLIMIT Iteration limit hit
XPRS_STOP_MIPGAP MIP gap is sufficiently small
XPRS_STOP_SOLLIMIT Solution limit hit
XPRS_STOP_USER User interrupt

Further information
This procedure can be called from any callback. It is ignored if used from outside an optimization
process.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 806

Chapter 21: mmxprs

unloadprob

Purpose
Unload the problem held in the optimizer.

Synopsis
procedure unloadprob

Further information

1. This procedure "unloads" the optimizer by releasing all the resources it has allocated for its processing
(internal representation, solution information, working files).

2. This procedure resets the control parameters XPRS_EXTRACOLS, XPRS_EXTRAROWS,
XPRS_EXTRAELEMS to their default values.

Related topics
maximize, minimize, loadprob.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 807

Chapter 21: mmxprs

uselastbarsol

Purpose
Sets up the last barrier solve’s solution as the current one if one is available

Synopsis
function uselastbarsol:boolean

Return value
Operation status:
FALSE No barrier solution is available
TRUE The barrier solution is now the active solution

Further information
This fucntion allows to access the barrier solution before a crossover was performed. The solution,
solution status and objective are set up to match the barrier solution and are available the usual way.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 808

Chapter 21: mmxprs

writebasis

Purpose
Write the current basis to a file.

Synopsis
procedure writebasis(fname:string,options:string)

Arguments
fname Extended file name
options String of options

Further information
This procedure writes the current basis to a file by calling the Optimizer function XPRSwritebasis.
Note that basis save/read procedures can be used only if the constraint and variable names have been
loaded into the Optimizer (parameter XPRS_loadnames set to true) and all constraints are named. For
more detail on the options and behavior of this procedure, refer to the Xpress Optimizer Reference Manual.

Related topics
readbasis.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 809

Chapter 21: mmxprs

writedirs

Purpose
Write current directives to a file.

Synopsis
procedure writedirs(fname:string)

Argument
fname Extended file name

Further information
This procedure writes the current directives to a file using the Optimizer file format.

Related topics
clearmipdir, setmipdir, readdirs.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 810

Chapter 21: mmxprs

writeprob

Purpose
Write the current problem to a file.

Synopsis
procedure writeprob(fname:string, options:string)
procedure writeprob(fname:string, options:string, fnamed:string)

Arguments
fname Extended file name for the matrix
options String of format options (default: full precision)
fnamed Extended file name for the directives

Example
Load the current problem into the Optimizer and save it to an MPS file "mypb.mps" in hexadecimal
format (’x’) and to the file "mypb.lp" in LP format (’l’) using scrambled names (’s’):

loadprob(myobj)
setparam("xprs_objsense",1) ! for 'minimize'
writeprob("mypb.mps","x")
writeprob("mypb.lp","ls")

Further information
This procedure writes the current problem held in the Optimizer to a file by calling the Optimizer function
XPRSwriteprob and XPRSwritedirs if a file name for the directives is also specified. Note that the
matrix written by this procedure may be different from the one produced by exportprob since it may
include the effects of presolve or cuts generated by the Optimizer. For more detail on the options and
behavior of this procedure, refer to the Xpress Optimizer Reference Manual.

Related topics
exportprob, writedirs.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 811

Chapter 21: mmxprs

writesol

Purpose
Write a solution to a file.

Synopsis
procedure writesol(fname:string,options:string)
procedure writesol(ms:mpsol,sname:string,fname:string,options:string)

Arguments
fname Extended file name
options String of options
ms A solution object
sname Solution name

Further information

1. When using the first syntax this procedure writes the current solution to a file by calling the Optimizer
function XPRSwriteslxsol. For more detail on the options and behavior of this procedure, refer to the
Xpress Optimizer Reference Manual.

2. With the second syntax, the file is generated from a solution object. In this case, the solution name has to
be provided (default name is "solution") and the only supported option is "x" to output the numbers
in hexadecimal.

3. Solution save/read procedures can be used only if the constraint and variable names have been loaded
into the Optimizer (parameter XPRS_loadnames set to true) and all constraints are named.

Related topics
readsol.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 812

Chapter 21: mmxprs

xor

Purpose
Create an exclusive or expression.

Synopsis
function xor(c1:log_or_linctr,c2:log_or_linctr):logctr

Arguments
c1 A linear constraint (linctr) or logical expression (logctr)
c2 A linear constraint (linctr) or logical expression (logctr)

Return value
A new logctr representing the expression.

Example
This example shows how to state an exclusive ’or’ constraint that expresses the disjunction between two
tasks with start time sj and fixed duration Dj. A non-exclusive ’or’ relation can be stated by using the or
operator as shown in the last line (constraint L).

declarations
R=1..2
C: array(range) of linctr ! Linear constraints
L: logctr ! Logical constraint
s: array(R) of mpvar ! Decision variables (start times)
D: array(R) of real ! Data (durations)
end-declarations

C(1):= s(1)+D(1)>=s(2) ! Define (temporary) linear constraints
C(2):= s(2)+D(2)>=s(1)

xor(C(1), C(2)) ! State an exclusive 'or'
forall(j in 1..2) C(j):=0 ! Delete the auxiliary constraints

! The same 'xor' constraint can be stated by:
xor(s(1)+D(1)>=s(2), s(2)+D(2)>=s(1))

! A non-exclusive 'or' relation is stated by using the 'or' operator:
L:= s(1)+D(1)>=s(2) or s(2)+D(2)>=s(1)

Further information

1. This function creates a logctr constraint representing an exclusive or condition: either c1 or c2 is valid,
not both.

2. The helper package ’advmod’ must be loaded if this function is used:

uses 'advmod'

Related topics
indicator, implies

Module
mmxprs

Fair Isaac Corporation Proprietary Information 813

Chapter 21: mmxprs

xprsmemoryuse

Purpose
Retrieve memory usage statistics.

Synopsis
function xprsmemoryuse(what:string):real

Argument
what The information to retrieve. Possible values are "available", "current", "peak",

"system" and "total"

Return value
An amount of memory expressed in bytes or -1 if the provided identifier is not valid.

Further information
The provided identifier corresponds to an Optimizer problem attribute (e.g. "peak" refers to the attribute
XPRS_PEAKMEMORY). This argument is not case sensitive and the parameter name may be directly used
(e.g. "XPRS_TOTALMEMORY" is the same as "total").

Related topics
memoryuse

Module
mmxprs

Fair Isaac Corporation Proprietary Information 814

Chapter 21: mmxprs

21.4 Cut Pool Manager
This section contains the functions and procedures of the Xpress Optimizer cut manager. For a detailed
description of the cut manager and its functionality the user is referred to the Xpress Optimizer Reference
Manual. To run the cut manager from Mosel, it may be necessary to (re)set certain control parameters of
the optimizer. For example, switching off presolve and automatic cut generation, and reserving space for
extra rows in the matrix may be useful:

setparam("XPRS_presolve", 0); ! Switch presolve off...
setparam("XPRS_presolveops", 2270); ! ...or use secure setting for presolve
setparam("XPRS_cutstrategy", 0); ! Switch automatic cut generation off
setparam("XPRS_extrarows", 5000); ! Reserve space for 5000 extra rows in

! the matrix

The callback functions and procedures that are relevant to the cut manager are initialized with function
setcallback, in common with the other Optimizer callbacks.

It should be noted that cuts are not stored by Mosel but sent immediately to the Optimizer. Consequently,
if a problem is reloaded into the Optimizer, any previously defined cuts will be lost. In Mosel, cuts are
defined by specifying a linear expression (i.e. an unbounded constraint) and the operator sign
(inequality/equality). If instead of a linear expression a constraint is given, it will also be added to the
system as an additional constraint.

addcut Add a cut to the problem in the optimizer. p. 816

addcuts Add an array of cuts to the problem in the optimizer. p. 817

delcuts Delete cuts from the problem in the optimizer. p. 818

dropcuts Drop a set of cuts from the cut pool. p. 819

getcnlist Get the set of cuts active at the current node. p. 820

getcplist Get a set of cut indices from the cut pool. p. 821

loadcuts Load a set of cuts into the problem in the optimizer. p. 822

storecut Store a cut into the cut pool. p. 823

storecuts Store an array of cuts into the cut pool. p. 824

Fair Isaac Corporation Proprietary Information 815

Chapter 21: mmxprs

addcut

Purpose
Add a cut to the problem in the optimizer.

Synopsis
procedure addcut(cuttype:integer, type:integer, linexp:linctr)

Arguments
cuttype Integer number for identification of the cut
type Cut type (equation/inequality), which may be one of:

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Linear expression (= unbounded constraint)

Further information
This procedure adds a cut to the problem in the Optimizer. The cut is applied to the current node and all
its descendants.

Related topics
addcuts, delcuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 816

Chapter 21: mmxprs

addcuts

Purpose
Add an array of cuts to the problem in the optimizer.

Synopsis
procedure addcuts(cuttype:array(range) of integer, type:array(range) of

integer, linexp:array(range) of linctr)

Arguments
cuttype Array of integer number for identification of the cuts
type Array of cut types (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Array of linear expressions (= unbounded constraints)

Further information
This procedure adds an array of cuts to the problem in the Optimizer. The cuts are applied to the current
node and all its descendants. Note that the three arrays that are passed as parameters to this procedure
must have the same index set.

Related topics
addcut, delcuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 817

Chapter 21: mmxprs

delcuts

Purpose
Delete cuts from the problem in the optimizer.

Synopsis
procedure delcuts(keepbasis:boolean, cuttype:integer,

interpret:integer,delta:real, cuts:set of integer)
procedure delcuts(keepbasis:boolean, cuttype:integer, interpret:integer,

delta:real)

Arguments
keepbasis false Cuts with non-basic slacks may be deleted

true Ensures that the basis will be valid
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Delete all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (delete cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (delete cut if all bits match those set in cuttype)

delta Only delete cuts with an absolute slack value greater than delta. To delete all the cuts set
this parameter to a very small value (e.g. -MAX_REAL)

cuts Set of cut indices, if not specified all cuts of type cuttype are deleted

Further information
This procedure deletes cuts from the problem loaded in the Optimizer. If a cut is ruled out by any of the
given criteria it will not be deleted.

Related topics
addcut, addcuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 818

Chapter 21: mmxprs

dropcuts

Purpose
Drop a set of cuts from the cut pool.

Synopsis
procedure dropcuts(cuttype:integer, interpret:integer, cuts:set of integer)
procedure dropcuts(cuttype:integer, interpret:integer)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Drop all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (delete cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (delete cut if all bits match those set in cuttype)

cuts Set of cut indices in the cut pool, if not specified all cuts of type cuttype are deleted

Further information
This procedure drops a set of cuts from the cut pool. Only those cuts which are not applied to active
nodes in the branch-and-bound tree will be deleted.

Related topics
storecut, storecuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 819

Chapter 21: mmxprs

getcnlist

Purpose
Get the set of cuts active at the current node.

Synopsis
procedure getcnlist(cuttype:integer,interpret:integer, cuts:set of integer)

Arguments
cuttype Integer number for identification of the cut(s), -1 to return all active cuts
interpret The way in which the cut type is interpreted:

-1 Get all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (get cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (get cut if all bits match those set in cuttype)

cuts Set of cut indices

Further information
This procedure gets the set of active cut indices at the current node in the Optimizer. The set of cut
indices is returned in the parameter cuts.

Related topics
getcplist.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 820

Chapter 21: mmxprs

getcplist

Purpose
Get a set of cut indices from the cut pool.

Synopsis
procedure getcplist(cuttype:integer,interpret:integer,delta:real, cuts:set

of integer,viol:array(range) of real)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Get all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (get cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (get cut if all bits match those set in cuttype)

delta Only return cuts with an absolute slack value greater than delta
cuts Set of cut indices in the cut pool
viol Array where the slack variables for the cuts will be returned

Further information
This procedure gets a set of cut indices from the cut pool. The set of indices is returned in the parameter
cuts.

Related topics
getcnlist.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 821

Chapter 21: mmxprs

loadcuts

Purpose
Load a set of cuts from the cut pool into the problem in the optimizer.

Synopsis
procedure loadcuts(cuttype:integer, interpret:integer, cuts:set of integer)
procedure loadcuts(cuttype:integer, interpret:integer)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Load all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (load cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (load cut if all bits match those set in cuttype)

cuts Set of cut indices in the cut pool, if not specified all cuts of type cuttype are loaded

Further information
This procedure loads a set of cuts into the Optimizer. The cuts remain active at all descendant nodes.

Related topics
storecut, storecuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 822

Chapter 21: mmxprs

storecut

Purpose
Store a cut into the cut pool.

Synopsis
function storecut(nodupl:integer, cuttype:integer, type:integer,

linexp:linctr):integer

Arguments
nodupl Flag indicating how to deal with duplicate entries:

0 No check
1 Check for duplicates among cuts of the same cut type
2 Check for duplicates among all cuts

cuttype Integer number for identification of the cut
type Cut type (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Linear expression (= unbounded constraint)

Return value
Index number of the cut stored in the cut pool.

Further information
This function stores a cut into the cut pool without applying it to the problem at the current node. The cut
has to be loaded into the problem with procedure loadcuts in order to become active at the current
node.

Related topics
dropcuts, loadcuts, storecuts.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 823

Chapter 21: mmxprs

storecuts

Purpose
Store an array of cuts into the cut pool.

Synopsis
procedure storecuts(nodupl:integer, cuttype:array(range) of integer,

type:array(range) of integer,
linexp:array(range) of linctr,
ndx_a:array(range) of integer)

procedure storecuts(nodupl:integer, cuttype:array(range) of integer,
type:array(range) of integer,
linexp:array(range) of linctr,
ndx_s:set of integer)

Arguments
nodupl Flag indicating how to deal with duplicate entries:

0 No check
1 Check for duplicates among cuts of the same cut type
2 Check for duplicates among all cuts

cuttype Array of integer number for identification of the cuts
type Array of cut types (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Array of linear expressions (= unbounded constraints)
ndx_a Interval of index numbers of stored cuts
ndx_s Set of index numbers of stored cuts

Further information
This function stores an array of cuts into the cut pool without applying them to the problem at the current
node. The cuts have to be loaded into the problem with procedure loadcuts in order to become active
at the current node. The cut manager returns the indices of the stored cuts in the form of an array ndx_a
or a set of integers ndx_s. Note that the four arrays that are passed as parameters to this procedure
must have the same index set.

Related topics
dropcuts, loadcuts, storecut.

Module
mmxprs

Fair Isaac Corporation Proprietary Information 824

CHAPTER 22

python3

The python3 Mosel module ("python3.dso") makes it possible to easily exchange data between Mosel and
Python R⃝ and to execute Python scripts from within Mosel.

Python is an interpreted programming language for general-purpose programming that has also become
popular for scientific and numeric computing. The reference implementation (CPython) is available as
Free Software under the terms of the Python Software Foundation License, which is compatible with the
GNU General Public License. "Python" is a registered trademark of the Python Software Foundation.

To use this module, the following line must be included in the header of the Mosel model file:

uses "python3"

22.1 Introduction
This module implements functionality for exchanging data between a Mosel model and Python 3
(CPython) and for calling Python 3 scripts.

The python3 module defines an I/O driver for exchanging data using the initializations from and
initializations toMosel constructs.

It is the Mosel run-time library that loads and runs the Python interpreter, not the other way round.

The purpose of the module is to make the extensive scientific and numeric capabilities of Python
available from Mosel. This module does not implement an interactive Python shell. However, the
interaction of the Mosel model and the Python interpreter is similar to an interactive shell: transferring
data to Python and executing Python scripts changes the state of the interpreter.

22.1.1 Prerequisites
This module does not include Python binaries. In order to use Python you need a working installation of
Python 3 targeting the same platform as Mosel (you won’t be able to use, e.g., the Windows 32-bit version
of Python from the Windows 64-bit version of Mosel). The supported Python versions are 3.7 to 3.9.
Version 3.8.0 is not and cannot be supported, because of Python issue #37633. For Windows users it is
recommended to get the binaries from www.python.org. Advanced users, who want to use multiple
Python environments on a single machine, can download and install the Anaconda Python distribution
from www.anaconda.com. On recent versions of Mac OS, Python 3 should be pre-installed. Advanced
users can also install the binaries from the Python or Anaconda website or via Homebrew. On Linux,
Python 3 is usually part of your distribution and provided in a package called "python3" that can be
installed via the package manager. Note that Python 3 is not part of the Red Hat 6 standard repository. In
order to use the latest Python release on Red Hat 6, we recommend to download the latest Anaconda
Python distribution for Linux from the Anaconda website. It is not recommended to compile Python from
source.

Fair Isaac Corporation Proprietary Information 825

https://bugs.python.org/issue37633
http://www.python.org
http://www.anaconda.com

Chapter 22: python3

The Mosel module python3 tries to automatically locate the correct Python libraries on your system,
applying the following rules. If the environment variable PYTHONHOME is specified, it will load the libraries
of the Python installation in that directory. Otherwise, it searches for the Python executable in the
directories specified in the PATH environment variable. If the Python executable has been found, the
module will try to load the libraries of the Python installation of that Python executable. If the libraries
could not be loaded with the help of the environment variables, then on Windows they are loaded from the
latest Python installation specified in the registry (keys: HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\3.⁎\InstallPath). If the previous
steps failed, then the python3 module will load the most recent libraries from the standard library search
paths. On Windows it looks for python3⁎.dll and python3.dll, on Linux for
libpython3.⁎[m].so and libpython3.so, and on Mac OSX for libpython3.⁎[m].dylib and
libpython3.dylib.

If you have multiple installations of Python, or if Python could not be located automatically, or if the
initialization of Python fails, you will need to set the environment variable PYTHONHOME to point to your
Python installation directory or set PATH to include the location of the Python executable.

Note that the loading of Python is not influenced by Mosel statements like
setparam("workdir",...) or setenv("PYTHONHOME",...) in the Mosel model that uses the
Python module since these don’t affect the process environment used for Python loading. The
environment variables must be set before launching the Mosel instance that serves for executing Python
scripts in order to influence the loading of Python.

As an example, if Python 3.x is installed on Windows in "C:\Program Files\Python3x" then this
directory is also the correct value for the PYTHONHOME environment variable or alternatively, add this
directory to the PATH environment variable.

The module supports the conversion between Mosel types and pandas and NumPy types. The supported
pandas versions are 0.25 to 1.3 and the supported NumPy versions are 1.16 to 1.21. NumPy 1.19.4 is not
supported on Windows, because of a problem in the Windows runtime (#1207405).

22.1.2 Windows Anaconda Setup
Set the PYTHONHOME system environment variable to the base directory of Anaconda or to the home
directory of a specific Anaconda environment, e.g., C:\ProgramData\Anaconda3\envs\py373. The
NumPy module that ships with Anaconda requires the Math Kernel Library (MKL). It is necessary to add

%PYTHONHOME%\Library\bin

to the PATH system environment variable such that NumPy can find the DLLs of that library. If NumPy
cannot find the library, the import of NumPy and pandas will fail with an error message similar to:

Traceback ...
from . import _mklinit

ImportError: DLL load failed: The specified module could not be found.

If you change the system environment variables, then it is necessary to restart Workbench such that the
changes take effect. If you run an Insight 5 Execution Worker, setting the system environment variables
PYTHONHOME or PATH has no effect on the Insight app, because Insight does not pass those variables to
the Insight app. Section Xpress Insight 5 configuration provides information about how to set those
variables in Insight.

22.1.3 Linux Anaconda Setup
Set the PYTHONHOME environment variable to the base directory of Anaconda or to the home directory of
a specific Anaconda environment, e.g., /opt/anaconda3/envs/py373. The pandas module that ships

Fair Isaac Corporation Proprietary Information 826

https://tinyurl.com/y3dm3h86

Chapter 22: python3

with Anaconda may require a version of the C++ standard library which is more recent than the one that
ships with your operating system. The required library ships with Anaconda and the loading of that library
can be forced by adding

$PYTHONHOME/lib/libstdc++.so

to the LD_PRELOAD environment variable. If an incompatible version gets loaded, then the initialization
of pandas will fail with an error message similar to:

ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found

If you run an Insight 5 Execution Worker, setting the system environment variables PYTHONHOME or
LD_PRELOAD has no effect on the Insight app, because Insight does not pass those variables to the
Insight app. Section Xpress Insight 5 configuration provides information about how to set those variables
in Insight.

22.1.4 Python initialization
The Python environment is automatically initialized at the point where a Mosel model uses for the first
time any function that requires it. So we can have the following small example that just executes a
Python script:

model "Python script example"
uses "python3"
pyrun("my-python-script.py")

end-model

Alternatively it is possible to explicitly initialize Python using the pyinit function. If the initialization fails,
activate additional logging by setting the parameter pyinitverbose to true before initializing Python
and double check the values of your environment variables (see previous sections).

At the end of the model execution, the Python environment will automatically be released. It is also
possible to explicitly release the environment using pyunload. This can be useful for freeing resources
allocated by Python.

It is only possible to initialize one Python interpreter per Mosel instance. For that reason it is not possible
to initialize and use the Python interpreter in two models in parallel if both models are run in the same
Mosel instance. However, you can initialize and use multiple interpreters in concurrent models if each
model is run in a separate Mosel instance.

22.1.5 Data types
The types of data that can be exchanged with Python are the Mosel types boolean, integer, real,
string and text, plus arrays, lists and sets of these. Nested compositions are supported. Mosel lists
and sets are exported to Python lists and sets. Both, dense and sparse Mosel arrays are supported and
by default they are mapped to dictionaries of the corresponding element type. If the pandas interface is
initialized, then arrays and lists of arrays can also be mapped to pandas Series and DataFrames.
Moreover, Mosel arrays can be initialized from NumPy ndarrays and Mosel scalars be initialized from
NumPy scalars (see pyinitpandas and pyusepandas for more details).

The following example shows how to invert a matrix with NumPy:

declarations
I, J: range
A, A_inverse: array(I, J) of real

end-declarations

Fair Isaac Corporation Proprietary Information 827

Chapter 22: python3

writeln("Run Python script that defines invert_matrix function.")
pyinitpandas
pyrun("invert_matrix.py")

I := 0..2
J := 0..2
A :: [1,0,3,

0,1,2,
0,0,1]

writeln("Invert matrix with NumPy.")
pycall("invert_matrix", A_inverse, A)

writeln("Matrix A_inverse:")
writeln("A_inverse: ", A_inverse)

At the beginning of this code snippet the pandas interface is initialized via a call to pyinitpandas. This
enables the conversion of Mosel arrays from and to pandas Series and from NumPy arrays from this
point onwards—this statement will typically occur at the beginning of the program, but standard python3
functionality can already be used before to it. After the pandas initialization a Python example script in a
separate file invert_matrix.py is executed, which defines the invert_matrix Python function.
This function is then invoked via the pycall procedure. The first parameter of this procedure is the
Python function name, the second one is the Mosel array that will be used for storing the result, and the
last parameter is the input parameter for the Python function. The Python function takes a pandas Series
with a two-dimensional MultiIndex as input and returns a two-dimensional NumPy ndarray:

def invert_matrix(series):
Get pivot table of MultiIndex Series as DataFrame.
df = series.unstack()

Compute and return inverse matrix as NumPy ndarray.
return inv(df)

See the model invert-matrix.mos for a full example. At first, the function creates a pivot table of the
MultiIndex Series, such that the resulting DataFrame looks like a two-dimensional matrix. This matrix-like
DataFrame is used as an input value for the NumPy inv function, which returns a two-dimensional
ndarray, which is then passed to Mosel.

Note that sparse Mosel arrays are exported to sparse Python dictionaries or pandas Series. In this
example, the Mosel matrix A is dense, hence the pandas Series is also dense, that is, for each index tuple
(i, j) in the cross product of I and J the pandas Series has a value.

When initializing a Mosel array, list, or set from a Python type, the initialization of the Mosel type is
additive, which means that the elements of the Python type are added to the existing Mosel array, list, or
set. In the example above, the pandas Series is dense such that all elements of the Mosel array will be
overwritten. However, if the pandas Series (or dictionary) is sparse and the Mosel array is non-zero, it is
necessary to manually clear its contents before initializing it with values from the sparse Python type. In
that situation, the Mosel array should be cleared with reset. See Section 22.6.1 for an example with a
sparse array and reset: io_example.mos.

22.2 Xpress Insight 4 configuration
The python3 module can only be used when Mosel restrictions are disabled (MOSEL_RESTR=0). When
the restrictions are disabled, any executed Mosel and Python code have the same rights (in particular for
file system access) as the operating system user that runs the Insight Execution Worker. In order to use
the python3 module in an Insight app, it is necessary to relax the Mosel restrictions in the Insight
Execution Worker configuration file. On Windows, the default location of the worker configuration file is
%XPRESSDIR%\bin\xprmsrv.cfg. After relaxing the Mosel restrictions, we strongly recommend that
the Insight administrator makes sure of the following points:

Fair Isaac Corporation Proprietary Information 828

Chapter 22: python3

■ The operating system user that runs the Insight Execution Worker should only be granted the
minimal rights that are necessary for running the Insight app.

■ Access to the workers should be protected by a password and additionally by IP filters (see the
example extract of the configuration file xprmsrv.cfg below).

■ If the network is not trusted, the workers should only accept SSH connections: Set TCP_PORT=-1
(configurable via xprmsrv.cfg) and use xssh instead of the xsrv protocol (Execution Worker
configuration in the Insight admin interface).

■ Only trusted users should be granted the right to upload trusted Insight apps to the Insight Server.

And the Insight app developer needs to address the following points:

■ The app should not execute any untrusted Python scripts that an end user may have uploaded as an
app attachment (see pyrun function).

■ The app should not concatenate untrusted strings entered by the end user (e.g. Insight scalars or
arrays) into a Python evaluation string, because this could allow an attacker to inject and execute
custom Python code. For example, the first function input parameter of pycall, pyexec and
pyget is a Python evaluation string. Note that it is safe to transfer untrusted data between Mosel
and Python variables. The developer just needs to avoid using untrusted strings directly in a Python
evaluation string parameter.

If the Insight Execution Worker runs on the same machine as the Insight Server, it is recommended to
modify the configuration settings in xprmsrv.cfg as follows:

...
INFO: It is recommended to replace +ALL by -ALL in XPRMSRV_ACCESS when MOSEL_RESTR=0.
XPRMSRV_ACCESS=+127.0.0.1 -ALL
[insight]
INFO: It is recommended to protect the worker with a password when MOSEL_RESTR=0.
PASS=my_password
IMPORTANT: Replace the existing MOSEL_RESTR line to disable the Mosel restrictions.
MOSEL_RESTR=0
PYTHONHOME=C:\ProgramData\Anaconda3
PATH=${PYTHONHOME}\Library\bin;${PATH}
...

Restart the Execution Worker after changing the configuration file. Then log into the Insight admin
interface, go to Execution Services, edit the Execution Worker, enter the password in the password edit
field and save the changes.

Depending on your system configuration, the PYTHONHOME environment variable is optional. The PATH
entry is only necessary for Anaconda on Windows. You can also specify the PYTHONHOME and PATH
environment variables as system environment variables. Note that it is not sufficient to specify them for
your personal user account, because the Insight service runs as a different user.

22.3 Xpress Insight 5 configuration
The python3 module can only be used when Mosel restrictions are disabled (MOSEL_RESTR=0). When
the restrictions are disabled, any executed Mosel and Python code have the same rights (in particular for
file system access) as the operating system user that runs the Insight Execution Worker. In order to use
the python3 module in an Insight Mosel app, it is necessary to relax the Mosel restrictions in the Insight
Execution Worker application.properties file. On Windows, the default location of the worker
properties file is
C:\ProgramData\FICO\XpressInsight\Worker\config\application.properties. To
disable the restrictions, add the following line:

Fair Isaac Corporation Proprietary Information 829

Chapter 22: python3

insight.worker.execution.environment.MOSEL_RESTR=0

After relaxing the Mosel restrictions, we strongly recommend that the Insight administrator makes sure of
the following points:

■ The operating system user that runs the Insight Execution Worker should only be granted the
minimal rights that are necessary for running the Insight app.

■ Only trusted users should be granted the right to upload trusted Insight apps to the Insight Server.

And the Insight app developer needs to address the following points:

■ The app should not execute any untrusted Python scripts that an end user may have uploaded as an
app attachment (see pyrun function).

■ The app should not concatenate untrusted strings entered by the end user (e.g. Insight scalars or
arrays) into a Python evaluation string, because this could allow an attacker to inject and execute
custom Python code. For example, the first function input parameter of pycall, pyexec and
pyget is a Python evaluation string. Note that it is safe to transfer untrusted data between Mosel
and Python variables. The developer just needs to avoid using untrusted strings directly in a Python
evaluation string parameter.

The Insight worker controls the environment variables under which the model runs. In particular, it clears
all environment variables except for a list of allowed variables related to Xpress. For this reason, it may be
necessary to set certain environment variables in the worker application.properties file, such that
the python3.dso Mosel module can find and use Python. For example:

...
MANDATORY: Replace the existing MOSEL_RESTR line to disable the Mosel restrictions.
insight.worker.execution.environment.MOSEL_RESTR=0

IMPORTANT: Use one of the following example blocks to configure a Python environment:

Windows: No configuration needed for using the latest Python.org
installation that is registered in the Windows registry.

Configuration for a specific installation from Python.org.
insight.worker.execution.environment.PATH=C:\\Program Files\\Python39

Alternative configuration for a specific installation from Python.org.
insight.worker.execution.environment.PYTHONHOME=C:\\Program Files\\Python39

Configuration for the base environment of Anaconda on Windows.
insight.worker.execution.environment.PYTHONHOME=C:\\ProgramData\\Anaconda3
insight.worker.execution.environment.PATH=\
${insight.worker.execution.environment.PYTHONHOME}\\Library\\bin
...

Restart the Execution Worker after changing the properties file.

Depending on your system configuration, the PYTHONHOME environment variable is optional. Adding
${PYTHONHOME}\Library\bin to the PATH is only necessary for Anaconda on Windows. Note that it
is not sufficient to add these as either system or user environment variables as the worker only uses the
environment variables configured in its application.properties file and the allowed Xpress related
variables.

22.4 Control parameters
The following parameters are defined by the module python3:

Fair Isaac Corporation Proprietary Information 830

Chapter 22: python3

pyinitverbose Show additional log messages when initializing Python. p. 831

pyusepandas Enable and control pandas and NumPy conversion. p. 831

pyinitverbose

Description Set this parameter to true to activate some additional logging of how the module looks for and
finds your Python environment. The log messages are written to the model’s output stream.

Type Boolean, read/write

Default value false

See also pyinit, pyinitpandas

Module python3

pyusepandas

Description If this parameter is true, then the next usage of any Python functionality will trigger the
initialization of the pandas interface. When the interface is initialized, Mosel scalars can also be
initialized from NumPy scalars, arrays can also be initialized from NumPy ndarrays and pandas
Series, and lists of arrays can be initialized from pandas DataFrames. Once initialized, the
pandas interface will remain initialized even after switching pyusepandas off. In particular, it
will still be possible to initialize Mosel types from pandas and NumPy types.
When converting data from Mosel to Python, the target type depends on the value of
pyusepandas: When the parameter is true, Mosel arrays and lists of arrays are converted to
pandas Series and DataFrames; when it is false, then Mosel arrays will be converted to
Python dictionaries. Mosel lists of arrays cannot be initialized to a Python type when this
parameter is disabled.

Type Boolean, read/write

Default value false

See also pyinitpandas, Driver python

Module python3

22.5 Procedures and functions
The procedures and functions of the python3 module fail in case of Python compile-time or run-time
errors.

pycall Call a Python object, e.g. a function, with optional input arguments and
convert the result to a Mosel variable. p. 833

pyexec Execute Python statements from a string. p. 835

pyget Get the result of a Python expression as Mosel variable. p. 836

pygetdf Initialize a list of Mosel arrays from the columns of a pandas DataFrame.
p. 837

pyinit Initialize the Python interpreter. p. 839

Fair Isaac Corporation Proprietary Information 831

Chapter 22: python3

pyinitpandas Set pyusepandas parameter to true and initialize the pandas interface.
p. 840

pyrun Run a Python script and wait until it is finished. p. 841

pyset Assign a Mosel value to a global Python variable. p. 842

pysetdf Convert a list of Mosel arrays to a pandas DataFrame. p. 843

pyunload Release the Python interpreter and its resources. p. 844

Fair Isaac Corporation Proprietary Information 832

Chapter 22: python3

pycall

Purpose
Call a Python object, e.g. a function, with optional input arguments and convert the result to a Mosel
variable.

Synopsis
procedure pycall(expr:string,result:array|set|list[, arg1...])
procedure pycallvoid(expr:string[, arg1...])
function pycallbool(expr:string[, arg1...]):boolean
function pycallint(expr:string[, arg1...]):integer
function pycallreal(expr:string[, arg1...]):real
function pycallstr(expr:string[, arg1...]):string
function pycalltext(expr:string[, arg1...]):text

Arguments
expr Global name of a callable Python object or Python expression that evaluates to a

callable object
result Result Mosel array, set or list
arg1, arg2,... Optional input arguments for the object call

Example 1
The following example calls the Python print and max functions. The Mosel input arguments are
automatically converted to Python objects and the return value of max is converted to a Mosel real.

pycallvoid("print", "Python objects:", true, 1, 2.2, [3,4], {5})
writeln("max: ", pycallreal("max", [1.1, 7.7, 4.4]))

Example 2
The following example uses pandas to compute the mean value of two Mosel arrays. The Mosel input
arrays are passed as a single list of arrays with compatible array indices and are automatically converted
to a single pandas DataFrame. The return value of the mean function is a pandas Series and its elements
will be written to the Mosel Result array.

declarations
Input1, Input2, Result: array(range) of real

end-declarations

Input1 :: (0..4)[1, 2, 3, 4, 5]
Input2 :: (0..4)[7, -1, -3, 1, 2]
pyinitpandas
pyexec("def mean(df, axis): return df.mean(axis)")
pycall("mean", Result, [Input1, Input2], 1)
writeln("mean: ", Result)

It is recommended to define small global wrapper functions like in this example, instead of calling
functions or methods with the help of an expression like "pandas.Series.mean". The global function
can be found directly without having to perform an expensive Python string evaluation to retrieve the
callable object.

Fair Isaac Corporation Proprietary Information 833

Chapter 22: python3

Further information

1. At first, the function interprets the expression string as a global Python object name and tries to access it
by getting it from the attributes of the Python __main__module. If this fails, the expression is evaluated
by Python. Then the expression result object will be called with the optional input arguments. Finally, the
result of the object call is stored in or returned as a Mosel variable. This is equivalent to the Python
expression:

expr(arg1, ...)

It is a fatal error if the expression cannot be evaluated or if the object call or the type conversion between
Python and Mosel fails.

2. The first version of the pycall routine stores the result in an array, set or list. Its behavior is additive: it
writes the new elements to the existing Mosel array, set or list without clearing previously existing
elements. Use reset to manually clear an array, set or list before calling this function.

3. See the I/O Driver python Section for further details about type conversions.

4. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress Insight
5 configuration for more information.

Related topics
pyexec, pyget, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 834

Chapter 22: python3

pyexec

Purpose
Execute Python statements from a string.

Synopsis
procedure pyexec(code:string)

Argument
code Python statements to execute

Example
The following model runs Python statements from a string:

model "Python script from string"
uses "python3"
writeln("Python version:")
pyexec("import platform; print(platform.python_version())")

end-model

Further information

1. This function compiles and runs a Python script from a string buffer and waits for its termination. It is a
fatal error if the compilation fails or if a Python run-time error occurs.

2. Use the I/O Driver python and the functions pyget and pyset to transfer data between Mosel and
Python. Use pyget to evaluate a single expression with return value and use pycall to call a single
function with input arguments or return value.

3. Do not concatenate untrusted strings from the end user into the code string. See Section Xpress Insight
5 configuration for more information.

Related topics
pycall, pyget, pyrun, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 835

Chapter 22: python3

pyget

Purpose
Get the result of a Python expression as Mosel variable.

Synopsis
procedure pyget(expr:string,var:array|set|list)
function pygetbool(expr:string):boolean
function pygetint(expr:string):integer
function pygetreal(expr:string):real
function pygetstr(expr:string):string
function pygettext(expr:string):text

Arguments
expr Python expression to evaluate
var Destination Mosel array, set or list

Example
The following example evaluates a Python dictionary expression and writes the result to a Mosel array. It
then retrieves a real value from Python:

declarations
Arr: dynamic array(set of integer) of real

end-declarations

pyexec("import math")
Arr(0) := 0.1; Arr(1) := 1.1 ! Old array data
reset(Arr) ! Clear old array data
pyget("{1: math.pi, 2: math.e}", Arr) ! Add new data to array

writeln("Arr: ", Arr)
writeln("pi: ", pygetreal("math.pi"))

Further information

1. At first, the function interprets the expression as a global variable name and tries to access the variable
by getting it from the attributes of the Python __main__module. If this fails, the expression is evaluated
by Python and the result is written to or returned as a Mosel variable. It is a fatal error if the expression
evaluation or the type conversion fails.

2. The first version of the pyget routine is additive: it writes the new elements to the existing Mosel array,
set or list without clearing previously existing elements. Use reset to manually clear an array, set or list
before calling this function.

3. See the I/O Driver python Section for further details about type conversions. Use pycall to call a single
function with input arguments or return value.

4. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress Insight
5 configuration for more information.

Related topics
pycall, pygetdf, pyset, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 836

Chapter 22: python3

pygetdf

Purpose
Initialize a list of Mosel arrays from the columns of a pandas DataFrame.

Synopsis
procedure pygetdf(expr:string,result:list of array)
procedure pygetdf(expr:string,result:list of array,labels:list of string)

Arguments
expr Python expression that evaluates to a pandas DataFrame
result Mosel list of arrays to be initialized from pandas DataFrame
labels Labels of the pandas DataFrame columns used for initialization

Example
In this example, two Mosel arrays with the same index sets are initialized from a DataFrame. With the first
call to pygetdf, the arrays are initialized based on the order of the DataFrame columns, with the second
they are initialized using column labels.

declarations
I, J: set of integer
Numbers: dynamic array(I, J) of integer
Labels: dynamic array(I, J) of string

end-declarations

pyinitpandas
pyexec(`
import pandas as pd
df = pd.DataFrame(

data=[[11, "eleven"], [23, "twenty-three"], [42, "forty-two"]],
index=pd.MultiIndex.from_tuples([(1, 1), (2, 3), (4, 2)]),
columns=["number", "label"])

print(df)
`)

pygetdf("df", [Numbers, Labels])
writeln("I: ", I, "\nJ: ", J)
writeln("Numbers: ", Numbers, "\nLabels: ", Labels)

reset(Numbers); reset(Labels)
pygetdf("df", [Labels, Numbers], ["label", "number"])
writeln("Numbers: ", Numbers, "\nLabels: ", Labels)

Fair Isaac Corporation Proprietary Information 837

Chapter 22: python3

Further information

1. The first version of the procedure initializes the arrays based on the order of the DataFrame columns. The
second version uses column labels to select the DataFrame columns that are used for the initialization.

2. At first, the procedure interprets the expression as a global variable name and tries to access the variable
by getting it from the attributes of the Python __main__module. If this fails, the expression is evaluated
by Python and the result is used for the Mosel array initialization. It is a fatal error if the expression
evaluation or the type conversion fails.

3. The initialization of the result arrays is additive: new elements are written to the existing arrays without
clearing previously existing elements. Use reset to manually clear the arrays before calling this
procedure.

4. DataFrame conversion is supported in all module functions that accept lists of arrays. In particular, it is
supported by pycall and the I/O Driver python .

5. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress Insight
5 configuration for more information.

Related topics
pyget, pysetdf, pyinitpandas

Module
python3

Fair Isaac Corporation Proprietary Information 838

Chapter 22: python3

pyinit

Purpose
Initialize the Python interpreter.

Synopsis
procedure pyinit

Example
The following example initializes Python:

pyinit

Further information

1. The use of this procedure is optional: Python is automatically initialized upon first use.

2. You can only initialize one Python interpreter per Mosel instance. The initialization will fail if you attempt
to initialize two interpreters in the same Mosel instance. Use pyunload to release the interpreter and its
resources. The interpreter cannot be reinitialized in the same Mosel instance after unloading it.

3. In order to use multiple interpreters in parallel, it is necessary to create a new Mosel instance for each
additional interpreter. Use the connect function from the mmjobs module to create a new instance.

4. If the initialization of Python fails, activate additional logging by setting the parameter pyinitverbose
to true before initializing Python, double check the values of your environment variables (see the
Introduction section) and check the Troubleshooting section.

Related topics
connect, pyinitverbose, pyinitpandas, pyunload

Module
python3

Fair Isaac Corporation Proprietary Information 839

Chapter 22: python3

pyinitpandas

Purpose
Set pyusepandas parameter to true and initialize the pandas interface.

Synopsis
procedure pyinitpandas

Example
The following example first prints a Mosel array as Python dictionary and then initializes the pandas
interface and prints the array as pandas Series:

declarations
A: array(range) of real

end-declarations

A :: (-1..2)[-1.1, 0, 1.1, 2.2]
pycallvoid("print", "A as Python dict:\n", A)
pyinitpandas
pycallvoid("print", "A as pandas Series:\n", A)

Further information

1. This procedure is equivalent to the following two commands:

setparam("pyusepandas", true)
pyinit

See the documentation of pyusepandas and pyinit for further information. The I/O Driver python
section provides an overview of the additionally available type mappings after having initialized the
pandas interface.

2. At first, the procedure sets the parameter pyusepandas to true, then it initializes the Python interpreter if
it has not yet been initialized and finally it initializes the pandas interface if it has not yet been initialized.
Once initialized, the pandas functionality will continue to be available even after switching pyusepandas
off. See pyusepandas for more information.

Related topics
pyinit, pyinitverbose, pyunload, pyusepandas, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 840

Chapter 22: python3

pyrun

Purpose
Run a Python script and wait until it is finished.

Synopsis
procedure pyrun(filename:string)

Argument
filename Regular file name of a Python script

Example
The following model runs a Python script:

model "Python script example"
uses "python3"
pyrun("my-python-script.py")

end-model

Further information

1. The function compiles and runs a Python script and waits for its termination. It is a fatal error if the
compilation fails or if a Python run-time error occurs.

2. Use the I/O Driver python and the functions pyget and pyset to transfer data between Mosel and
Python.

3. Do not run untrusted scripts, e.g., scripts provided by the end user. See Section Xpress Insight 5
configuration for more information.

Related topics
pycall, pyexec, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 841

Chapter 22: python3

pyset

Purpose
Assign a Mosel value to a global Python variable.

Synopsis
procedure

pyset(varname:string,var:boolean|integer|real|string|text|array|list|set)

Arguments
varname Global Python variable name
var Mosel value to be assigned to Python variable

Example
The following example writes a Mosel array to a Python dictionary and a Mosel list to a Python list:

declarations
MosArray: array(set of string) of real

end-declarations

pyset('py_list', [1, 2, 3]) ! Mosel list -> Python list.
pyexec('print("py_list:", py_list)')

MosArray('e') := M_E; MosArray('pi') := M_PI

setparam('pyusepandas', false) ! Mosel array -> Python dictionary.
pyset('py_dict', MosArray)
pyexec('print("py_dict:", py_dict)')

setparam('pyusepandas', true) ! Mosel array -> Pandas Series.
pyset('pd_series', MosArray)
pyexec('print("pd_series:", pd_series, sep="\n")')

Further information

1. The procedure creates or overwrites the global variable by writing the new value to the attributes of the
Python __main__module. If the variable name is not a valid Python variable identifier the procedure will
succeed anyway and write the value to the module attributes using the name specified in varname.

2. The procedure replaces previously existing global variables. It does not update or add data to existing
Python structures.

3. See the I/O Driver python Section for more details about type conversions.

Related topics
pyget, pyexec, pysetdf, pyusepandas, Driver python

Module
python3

Fair Isaac Corporation Proprietary Information 842

Chapter 22: python3

pysetdf

Purpose
Convert a list of Mosel arrays to a pandas DataFrame.

Synopsis
procedure pysetdf(varname:string,input:list of array)
procedure pysetdf(varname:string,input:list of array,labels:list of string)

Arguments
varname Global Python variable name for the new DataFrame
input Mosel list of arrays to be converted to the DataFrame
labels Labels for the DataFrame columns

Example
In this example, two Mosel arrays with the same index sets are converted to a DataFrame. With the first
call to pysetdf, a DataFrame is created with integer column labels and the second creates a DataFrame
with string column labels.

declarations
I, J: set of integer
Numbers: dynamic array(I, J) of integer
Labels: dynamic array(I, J) of string

end-declarations

pyinitpandas
Numbers(1,1) := 11; Labels(1,1) := "eleven"
Numbers(2,3) := 23; Labels(2,3) := "twenty-three"
Numbers(4,2) := 42; Labels(4,2) := "forty-two"

writeln("Integer column labels:")
pysetdf("df", [Numbers, Labels])
pyexec("print(df)")

pysetdf("df", [Numbers, Labels], ["number", "label"])
writeln("\nString column labels:")
pyexec("print(df)")

Further information

1. The first version of the procedure creates a new DataFrame with numbers as column labels and the
second version uses the provided string column labels.

2. The procedure creates or overwrites the global variable by writing the new value to the attributes of the
Python __main__module. If the variable name is not a valid Python variable identifier the procedure will
succeed anyway and write the value to the module attributes using the name specified in varname.

3. The procedure replaces previously existing global variables. It does not update or add data to existing
Python structures.

4. DataFrame conversion is supported in all module functions that accept lists of arrays. In particular, it is
supported by pycall and the I/O Driver python .

Related topics
pygetdf, pyset, pyinitpandas

Module
python3

Fair Isaac Corporation Proprietary Information 843

Chapter 22: python3

pyunload

Purpose
Release the Python interpreter and its resources.

Synopsis
procedure pyunload

Example
The following example releases the Python interpreter:

pyunload

Further information

1. The use of this procedure is optional: the Python interpreter is automatically released at the end of a
model execution. However, you may prefer to release it sooner to free resources allocated by Python.

2. After unloading the interpreter it cannot be reinitialized in the same Mosel instance. This is due to a bug
in Python’s finalization function and its extension modules. For example, NumPy and pandas do not work
after reinitializing the interpreter in the same process, i.e., in the same Mosel instance. See
https://docs.python.org/3/c-api/init.html#c.Py_FinalizeEx and
https://github.com/numpy/numpy/issues/8097 for more details.

Related topics
pyinit

Module
python3

Fair Isaac Corporation Proprietary Information 844

https://docs.python.org/3/c-api/init.html#c.Py_FinalizeEx
https://github.com/numpy/numpy/issues/8097

Chapter 22: python3

22.6 I/O drivers
The python3 module provides a driver that is designed to be used in initializations blocks for both
reading data from and writing data to Python.

22.6.1 Driver python
python:optional_module_name

The driver can only be used in ‘initializations’ blocks. The optional string after the colon is the Python
module name to read the data from or write the data to. If a module name is provided, then the optional
item labels are understood as attribute names of the specified module. Initializing data to, for example,
"python:client_data" will create a new module called client_data. To access that module in
Python, you need to import it like a normal Python module ("import client_data"). After importing
the module, the converted Mosel variables will be the attributes of the module, for example,
client_data.demand.

If no module name is provided, i.e. if the file name is "python:", then the driver behaves like pyset and
pyget: When writing data to Python, the optional labels are understood as global variable names. The
driver creates or overwrites the global variables by writing the new values to the attributes of the Python
__main__module. If a variable name is not a valid Python variable identifier the driver will succeed
anyway and write the value to the module attributes using the name specified in the label. When reading
data from Python, the optional labels are understood as Python expressions. At first, the driver checks
whether an expression is a global variable and tries to access it by getting it from the attributes of the
Python __main__module. If this fails, the expression is evaluated by Python and the result is written to
the Mosel variable.

The driver throws an I/O error if the expression evaluation or the type conversion fails. Use the
parameters ioctrl (see setparam) and iostatus (see getparam) to catch I/O errors.

When initializing data from Mosel to Python, a possibly existing Python object with the same name will be
replaced by a new Python object with a Python object type that matches the type of the Mosel source
variable.

When initializing arrays, sets, or lists from Python to Mosel, the initialization behavior is additive: The
elements of the Python structures are added to the Mosel structures and existing elements in the Mosel
structures will not be deleted automatically. If, for example, the target Mosel array is dense and the
source Python dictionary or Series is sparse, then the Mosel array may contain old and new values after
initialization from Python. If the Mosel array is meant to contain only the values retrieved from the Python
dictionary, it is recommended to clear the array with reset before initializing it from Python.

22.6.1.1 Type mapping to Python
■ Mosel boolean→

– Python bool
– NumPy bool_ if element of pandas Series

■ Mosel integer→

– Python int
– NumPy int64 if element of pandas Series

■ Mosel real→

– Python float

Fair Isaac Corporation Proprietary Information 845

Chapter 22: python3

– NumPy float64 if element of pandas Series

■ Mosel string/text→ Python str

■ Mosel set→ Python set

■ Mosel list→ Python list

■ Mosel array(I)→

– If pyusepandas: pandas Series with one-dimensional index
– If not pyusepandas: Python dictionary with scalar keys

■ Mosel array(I, J, ...)→

– If pyusepandas: pandas Series with multi-dimensional index
– If not pyusepandas: Python dictionary with tuples of scalars as keys

■ Mosel list of array→

– If pyusepandas: pandas DataFrame with one- or multi-dimensional index
– If not pyusepandas: not supported

■ Mosel nested types→ Python nested type

■ Mosel records: not supported

■ Other Mosel external types: not supported

22.6.1.2 Type mapping from Python
The NumPy and pandas types are only supported if the pandas interface is initialized.

■ Mosel boolean← Python bool; NumPy bool_

■ Mosel int← Python int, bool; NumPy integer, bool_

■ Mosel real← Python float, int, bool; Numpy floating, integer, bool_

■ Mosel string/text← String representation of Python object as returned by repr()

■ Mosel list← Python list

■ Mosel set← iterable types (e.g., set, generator expression, classes that implement __iter__())

■ Mosel array←

– pandas Series with one- or multi-dimensional index
– NumPy ndarray with one or multiple dimensions
– Python dictionary with scalar or tuple keys

■ Mosel list of array←

– pandas DataFrame with one- or multi-dimensional index

■ Mosel nested types← Python nested type of supported subtypes

■ Mosel records: not supported

■ Other Mosel external types: not supported

Fair Isaac Corporation Proprietary Information 846

Chapter 22: python3

In the following example, a sparse array is transferred to Python and then the same array is reused for
retrieving data from a sparse Python dictionary.

model "Python I/O example"
uses "python3"

declarations
I = 1..4
A: dynamic array(I) of integer

end-declarations

A(1) := 1⁎2; A(3) := 3⁎2

initializations to "python:"
I as "MyRange"
A

end-initializations

pyrun("io-example.py")
reset(A) ! Delete existing elements from array A.

initializations from "python:"
A

end-initializations

writeln("Values initialized from Python:")
writeln(" A = ", A)

end-model

The content of io-example.py:

print("Values initialized to Python:")
print(" MyRange =", MyRange)
print(" A =", A)
print("Modifying data in Python...")
A = {i: 2 ⁎ i for i in MyRange if i % 2 == 0}

Executing this model generates the following output:

Values initialized to Python:
MyRange = range(1, 5)
A = {1: 2, 3: 6}

Modifying data in Python...
Values initialized from Python:

A = [(2,4),(4,8)]

22.7 Troubleshooting
This section describes some known issues and possible solutions.

■ Mosel: E-353: Module ‘python3’ disabled by restrictions.
This module does not handle Mosel restrictions, it will therefore fail to load if Mosel is run in
restricted mode. Section 22.3 provides information about configuring the security restrictions.

■ If the initialization of a Python extension module fails when it is imported from within Mosel, then
first check which Python environment is used from within Mosel (set pyinitverbose to true) and
check whether the extension module is installed in that environment. If it is installed and can be
imported from within the interactive shell of that environment, but fails when it is imported from
within Mosel, then check whether your environment is set up correctly: Windows Anaconda Setup,
Linux Anaconda Setup.

Fair Isaac Corporation Proprietary Information 847

CHAPTER 23

R

The module r makes it possible to easily exchange data with R and execute R scripts or evaluate
expressions in the R language.
R is a free software environment for statistical computing and graphics. R is available as Free Software
under the terms of the Free Software Foundation’s GNU General Public License.
To use this module, the following line must be included in the header of the Mosel model file:

uses 'r';

23.1 Introduction
This module implements functionality for exchanging data between a Mosel model and R and for calling
R functions from a Mosel model.

The r module also defines an I/O driver for exchanging data using the initializations from and
initializations toMosel constructs.

It is the Mosel run-time library that loads and runs R, not vice versa.

The purpose of the module is to make the extensive data processing capabilities of R available within
Mosel. The interactive and graphing features of R are beyond the scope of this module as it does not
implement a full interactive R GUI. However, it is possible to use some of these to a limited extent.

23.1.1 Prerequisites
This module does not include R binaries. In order to use R you need a working installation of R, version
3.0 or newer and targeting the same platform as Mosel (you won’t be able to use, e.g., the Windows 32-bit
version of R from the Windows 64-bit version of Mosel). The most recent supported R version is 4.1.x. To
download R, please visit the R Project web site at www.r-project.org.

This module will try to load R from the directory specified by the R_HOME environment variable, if set, or
from the default R installation locations otherwise.

More specifically Mosel looks for a file named R.dll in Windows, libR.so in Linux, and libR.dylib
in Mac OS X.

For Windows platforms, the default location is retrieved from the registry (from registry key
HKEY_LOCAL_MACHINE\Software\R-core\R\InstallationPath); it is
/Library/Frameworks/R.framework/Resources for Mac OS X, /usr/lib/R for 32bit Linux, and
either /usr/lib64/R or /usr/lib/R for 64bit Linux.

If R_HOME and R_ARCH environment variables are defined, they are used to construct a path like
R_HOME/lib in Linux and like R_HOME\bin\R_ARCH in Windows (the default for R_ARCH is x64 or
i386 respectively for Windows 64-bit and Windows 32-bit).

Fair Isaac Corporation Proprietary Information 848

http://www.r-project.org

Chapter 23: R

If you have multiple installations of R, or if R is installed in a different location or not automatically found,
you will need to set the environment variable R_HOME to point to your R installation directory.

Note that the loading of R is not influenced by eventual Mosel statements like
setparam(’workdir’,...) or setenv(’R_HOME’,...) as these don’t affect the process’s
environment used for R loading. The environment variables or current path must eventually be set before
launching Mosel in order for this to influence R loading.

As an example, if R 3.2.3 is installed in "C:\Program Files\R\R-3.2.3\bin\..." in Windows
64-bit, then the correct value for the R_HOME environment variable (or registry key) is C:\Program
Files\R\R-3.2.3 (thus, without the bin subdirectory) and Mosel would try and load R.dll from
C:\Program Files\R\R-3.2.3\bin\x64\R.dll.

23.1.2 R initialization
The R environment is automatically initialized at the point where a Mosel model uses for the first time any
function that requires it. So we can have the following small example that just prints the R version (it
prints the same output as if you typed R.version.string on an R console):

model "r version example"
uses 'r';
Rprint('R.version.string')

end-model

Alternatively it is possible to explicitly initialize R using the Rinit function. This can be useful in order to
retrieve a status code or to specify non-default initialization options.

By default, R is initialized with the options "–slave –vanilla", so no site or user environment, profile, history
and workspace files are processed. Please refer to the R documentation for more details on these and
other options (http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R).

Upon startup, only the "utils", "stats", and "methods" R packages are loaded by default. Other packages
can be loaded via R statements (using for example the library or require R functions) or a different
initial package list can be specified by setting the R_DEFAULT_PACKAGES environment variable (prior to
running Mosel).

As R is single-threaded, it is not possible to create more than one R session per model, nor to execute two
models in parallel if both use R.

23.1.3 Memory limit on Windows
On Windows platforms, R has an internal mechanism that can limit the maximum amount of memory it
can use. The limit can be read or changed using the R memory.limit function; for example, the current
limit can be printed from Mosel with

writeln('R memory limit is ',Rgetreal("memory.limit()"),' MB')

and the limit can be set, e.g. to 16 GB, with

Reval("memory.limit(16⁎1024)")

Note that in versions of R prior to 3.6 the default value for this limit is different when R is executed as a
standalone application rather than embedded in another application (including Mosel): in the first case
the limit is set to the amount of physical memory available whereas it is fixed to 2 GB for embedded
mode. Therefore, in order to allow R to use more than 2 GB of memory from Mosel on Windows it is
necessary to explicitly raise this limit as shown above. Starting with R version 3.6, by default there is no
memory limit anymore when R is executed in embedded mode.

Fair Isaac Corporation Proprietary Information 849

http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R

Chapter 23: R

23.1.4 Data types
The types of data that can be exchanged with R are the four Mosel elementary types boolean, integer,
real and string, plus arrays, lists and sets of these (nested compositions are not supported). Both
static and dynamic Mosel arrays are supported and mapped into R atomic vectors of the corresponding
type. Mosel lists and sets can also be exported into R vectors.

In general, there is no direct mapping of more complex R types such as factors or data.frames, with the
exception of the Rsetdf function, however these can be exchanged after conversion to basic types. For
example, a factor can be loaded into a Mosel array as an array of integers with:

Rgetarr("unclass(f)", intarray)

or as an array of strings with:

Rgetarr("levels(f)[f]", strarray)

Note that the first is also equivalent to this simpler form:

Rgetarr("f", intarray)

since this module ignores the factor’s "class" and "levels" attributes; similarly the second is equivalent to
the simpler:

Rgetarr("f", strarray)

since the casting to string, performed within R, automatically takes into account the "levels" attribute.

To load a data.frame into Mosel, it should be converted to a matrix (for instance using as.matrix if the
column types allow that) or split into individual column vectors.

For the opposite operation, that is, exporting a Mosel array to R, note that, except for the Rsetdf function,
Mosel arrays are always exported as R (dense) atomic vectors. Any index that is not a 1-based integer
range is created in R as a named index. Index names, in R, are always strings, so for example, when the
Mosel array in the following example is converted to R, the index set J is kept as an unnamed integer
index, while I (which does not start with 1) and K (which has holes) are created as named indices.

model "array to r"
uses "r"

declarations
I= 2..3
J= {1,2}
K= {1,3}
a: array(I,J,K) of integer

end-declarations

a(2,1,1):=4 ! Define some test data entry
Rset('aR',a) ! Copy data to R
writeln("Array in R:")
Rprint("aR") ! Display data held in R
writeln("dimnames(aR):")
Rprint("dimnames(aR)") ! Display R indices

end-model

Executing this model generates the following output:

Array in R:
, , 1

Fair Isaac Corporation Proprietary Information 850

Chapter 23: R

[,1] [,2]
2 4 0
3 0 0

, , 3

[,1] [,2]
2 0 0
3 0 0

dimnames(aR):
[[1]]
[1] "2" "3"

[[2]]
NULL

[[3]]
[1] "1" "3"

Note how the first and last entry of dimnames, which correspond to indices I and K respectively, are set
to the list of index elements converted to strings; while the second entry is left to NULL since the index
set J is a 1-based integer index with contiguous elements.

Conversion to R data frames can be done using function Rsetdf. If this does not provide the required
data frame format or other complex R data structures are needed, then the conversion should be done in
the R realm and is outside of the scope of this guide. A few examples are shown below, but please refer
to the R documentation for further information.

Some common and useful R functions to convert vectors into data frames are e.g. data.frame(),
as.data.frame(), and the functions from the reshape or reshape2 packages, just to name a few. Also
functions names() (for 1-dimensional vectors) or dimnames() (for any vectors) can be used to retrieve
the index names of a vector.
In the following example, a Mosel single-indexed demand array is converted to a 2-column R data frame:
the first column for the index and the second column for the value:

model "dataframe"
uses "r"

declarations
Locations = {12,34,56}
demand: dynamic array(Locations) of real

end-declarations

forall(l in Locations) demand(l):=l⁎100 ! Fill array with some data
Rset("demand", demand)
Rprint("table <- data.frame(Loc=names(demand),Dem=demand,row.names=NULL)")

end-model

This is the resulting output:

Loc Dem
1 12 1200
2 34 3400
3 56 5600

Note that this is the same result that you would get, more simply, with Rsetdf("table", demand,
["Loc","Dem"]).

Alternatively, calling data.frame just as data.frame(demand) without any other parameters would
create a data frame with a single column (for demand) and named rows, thus yielding:

demand

Fair Isaac Corporation Proprietary Information 851

Chapter 23: R

12 1200
34 3400
56 5600

A bidimensional demand array such as:

declarations
Locations = {12,34,56}
C={"A","B"}
demand: dynamic array(Locations,C) of real

end-declarations
demand(12,"A"):=1234
demand(56,"B"):=6789
Rset("demand", demand)

using Rsetdf("df", demand, ["Loc","C", "Value"]) would yield:

Loc C Value
1 12 A 1234
2 56 B 6789

or it could be converted to a data frame via data.frame(Loc=dimnames(demand)[[1]],demand,
row.names=NULL) which results in the following form:

Loc A B
1 12 1234 NA
2 34 NA NA
3 56 NA 6789

Finally, for instance by calling function melt form the reshape2 package such as melt(demand,
varnames = c(’Loc’,’Prod’), value.name = ’Demand’), it is possible to obtain a data
frame with a column for each index plus a column with the array values like the following:

Loc Prod Demand
1 12 A 1234
2 34 A NA
3 56 A NA
4 12 B NA
5 34 B NA
6 56 B 6789

23.2 Example
The following example shows how to execute R statements and exchange data with the R workspace.

model "r example"
uses "r"

declarations
CITIES = {"LONDON", "PARIS", "ROME"}
ZONES = 1..4
mosarray, backarr, backarrio: array(ZONES, CITIES) of integer
backnum: real

end-declarations

setparam("Rverbose",true) ! Enable showing R error messages

! Reval evaluates arbitrary R statements
Reval("t<-Sys.time();now<-format(t, '%H:%M')")

! Rprint also prints the result (via the R print function)
Rprint("paste('Hello from R at',now)")

Fair Isaac Corporation Proprietary Information 852

Chapter 23: R

! Assign some Mosel scalars to R vars and show results
Rset("a_num", 1.2)
Reval("str(a_num)")
Rset("a_chr", "word")
Reval("str(a_chr)")

! The lvalue can be any R valid lvalue, e.g. the dim attribute
Rset("a_vec", 1..6) ! a_vec is an R vector
Rset("dim(a_vec)", [2,3]) ! change its dimensions
writeln("a_vec")
Rprint("a_vec") ! now it is a 2x3 matrix

! Assign a Mosel array to an R variable
forall(i in ZONES, c in CITIES) mosarray(i,c):=i⁎10+getsize(c)
Rset("arr", mosarray)

! The R vector keeps index names
writeln("arr")
Rprint("arr")

! Retrieve R variables
writeln("a_num is ", Rgetreal("a_num"))
writeln("a_chr is ", Rgetstr("a_chr"))
Rgetarr("arr", backarr)
writeln("arr is ", backarr)

! Data can also be exchanged via the I/O driver
newnumber:=1.3
mosarray(1,"LONDON"):=1

! Send data to R
initializations to "r.rws:"
newnumber as "a_num"
mosarray as "arr"

end-initializations
! Get data back from R
initializations from "r.rws:"
backnum as "a_num"
backarrio as "arr"

end-initializations
writeln("backnum is ", backnum)
writeln("backarrio is ", backarrio)

end-model

23.3 Control parameters
The following parameters are defined by the module r:

Rcleanscript R cleanup script to be run at the end of a session. p. 854

Rinteractive Control the R interactive flag. p. 854

Rsessionmode R session handling mode. p. 855

Runloadscript R unload script to be run at the end of a session. p. 854

Rusemosstreams Enable/disable R output redirection. p. 854

Rverbose Enable/disable R error messages. p. 853

Rverbose

Description Enables or disables the printing of error messages when errors occur during the evaluation of R
statements. When this parameter is set, two corresponding R options are set accordingly,

Fair Isaac Corporation Proprietary Information 853

Chapter 23: R

namely show.error.messages, which is set to the same value as this parameter, and warn
which is set to 1 or -1 when this parameter is set to true or false respectively.

Type Boolean, read/write

Default value false

Module r

Rinteractive

Description This has effects on eventual user prompts and confirmation requests from R, please refer to R
documentation (e.g. on "interactive()") for more details.

Type Boolean, read/write

Default value false

Module r

Rusemosstreams

Description By default R sends output to stdout and stderr. Using this parameter it is possible to redirect R
console output to Mosel streams instead. Note that the R notion of stdin connection is not
affected by this parameter.

Type Boolean, read/write

Default value true

Module r

Rcleanscript

Description This parameter can be used to specify the R statement(s) to be executed at the end of an R
session; its purpose should be to clear the R workspace. Note that this script is run only for
session modes 2 and 3.

Type String, write only

Default value remove all objects currently defined in the R workspace

Affects routines Rfree.

Module r

Runloadscript

Description This parameter can be used to specify the R statement(s) to be executed at the end of an R
session; its purpose should be to free and unload all resources used by R. Note that this script
is run only for session mode 3 and after the Rcleanscript statement(s).

Type String, write only

Default value unload all packages and dynamic libraries

Affects routines Rfree.

Module r

Fair Isaac Corporation Proprietary Information 854

Chapter 23: R

Rsessionmode

Description Specifies what actions are taken at the end of an R session.

Type Integer, read/write

Values 0 END: the R session is ended.
1 KEEP: the R session is kept alive and the current R workspace is preserved.
2 CLEAR: the R session is kept alive and the Rcleanscript is executed.
3 UNLOAD: both the Rcleanscript and Runloadscript are executed, then R is unloaded.

Default value 2

Notes This parameter is useful mainly when multiple Mosel models that use R are executed within the
same process.
When an R session is ended, R does not allow the creation of further sessions, therefore R will
not be usable again within the same process.
Session mode 3, by unloading R, should enable the possibility to create new R sessions within
the same process, however it may not completely free all resources allocated by R.

Affects routines Rfree.

Module r

23.4 Procedures and functions
All R statements are evaluated in the R Global Environment, more often known as the user’s workspace.

In general, the procedures and functions of r do not fail in case of R parsing or evaluation errors but set
an internal status variable that can be read with Rerrcode. To make sure that an operation has been
performed correctly, it is recommended to check the value of this variable after each call.

Rclearerr Clear the last error code and message. p. 870

Rerrcode Get the last error code. p. 868

Rerrmsg Get the last error message. p. 869

Reval Evaluate R statements. p. 856

Rfree Terminate an R session. p. 857

Rgetarr Get the resulting array of an R expression. p. 858

Rgetbool Get the boolean value of an R expression. p. 859

Rgetint Get the integer value of an R expression. p. 860

Rgetreal Get the real value of an R expression. p. 861

Rgetstr Get the string value of an R expression. p. 862

Rinit Initialize an R session. p. 863

Rprint Evaluate R statements and print the result. p. 864

Rset Assign a Mosel value to an R object. p. 865

Rsetdf Assign a Mosel array to an R data.frame object. p. 866

Rsource Evaluate an R script file. p. 867

Fair Isaac Corporation Proprietary Information 855

Chapter 23: R

Reval

Purpose
Evaluate R statements.

Synopsis
procedure Reval(cmd:string)

Argument
cmd Statements to evaluate

Example
The following example loads the datasets package, calculates summary statistics of the attenu
dataset and prints results:

Reval('library(datasets); s<-summary(attenu)')
Rprint('s')

Further information
It is possible to evaluate multiple statements separating them with semicolons.

Related topics
Rprint.

Fair Isaac Corporation Proprietary Information 856

Chapter 23: R

Rfree

Purpose
Terminate an R session.

Synopsis
procedure Rfree

Example
The following example terminates the R session:

Rfree

Further information
The use of this procedure is optional: R is automatically terminated at the end of a model execution.
However you may prefer to terminate it sooner to free resources allocated by R.

Related topics
Rinit.

Fair Isaac Corporation Proprietary Information 857

Chapter 23: R

Rgetarr

Purpose
Get the resulting array of an R expression.

Synopsis
procedure Rgetarr(cmd:string, arr:array)

Arguments
cmd Statements to evaluate
arr Destination Mosel array

Example
The following example loads the R cars example dataset into the Mosel array cars:

declarations
cars:array(range, set of string) of integer

end-declarations
Rgetarr('as.matrix(datasets::cars)',cars)

Further information

1. If cmd contains more than one statement, the returned value is the result of the last one.

2. The Mosel array arrmust have the same number of dimensions as the R array; NA entries in R are
skipped and corresponding entries in arr are left unchanged (note that arr is not cleared before loading
R data).

3. Supported index types for the arr array are string and integer. In the case of strings, the R array must
have a valid names or dimnames attribute for the corresponding dimension; in the case of integers, the R
integer indices (1 to n) are used. All entries of the R array are converted to the same type as the
destination array within R.

Related topics
Rgetarr, Rgetint, Rgetreal, Rgetstr

Fair Isaac Corporation Proprietary Information 858

Chapter 23: R

Rgetbool

Purpose
Get the boolean value of an R expression.

Synopsis
function Rgetbool(cmd:string):boolean

Argument
cmd Statements to evaluate

Return value
The result of the evaluation as a boolean.

Example
The following example checks if the R entity vec is atomic and sets the boolean variable boolvar
accordingly:

boolvar:=Rgetbool('is.atomic(vec)')

Further information
If cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then false is returned. The returned value is first converted to logical within R.

Related topics
Rgetarr, Rgetint, Rgetreal, Rgetstr

Fair Isaac Corporation Proprietary Information 859

Chapter 23: R

Rgetint

Purpose
Get the integer value of an R expression.

Synopsis
function Rgetint(cmd:string):integer

Argument
cmd Statements to evaluate

Return value
The result of the evaluation as an integer.

Example
The following example retrieves the length of the R entity vec into variable intvar:

intvar:=Rgetint('length(vec)')

Further information
If cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then the R NA_Integer value (-231) is returned. The returned value is first converted to integer
within R.

Related topics
Rgetarr, Rgetbool, Rgetint, Rgetstr

Fair Isaac Corporation Proprietary Information 860

Chapter 23: R

Rgetreal

Purpose
Get the real value of an R expression.

Synopsis
function Rgetreal(cmd:string):real

Argument
cmd Statements to evaluate

Return value
The result of the evaluation as a real.

Example
The following example retrieves the mean of the speed/dist ratios for the cars dataset into the variable
realvar:

realvar:=Rgetreal('mean(cars$speed/cars$dist)')

Further information
If cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then a NaN value is returned. The returned value is first converted to numeric within R.

Related topics
Rgetarr, Rgetbool, Rgetint, Rgetstr

Fair Isaac Corporation Proprietary Information 861

Chapter 23: R

Rgetstr

Purpose
Get the string value of an R expression.

Synopsis
function Rgetstr(cmd:string):string

Argument
cmd Statements to evaluate

Return value
The result of the evaluation as a string.

Example
The following example retrieves the version string of R into the variable strvar:

strvar:=Rgetstr('R.version.string')

Further information
If cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then the string "NA" is returned. The returned value is first converted to string within R.

Related topics
Rgetarr, Rgetbool, Rgetreal, Rgetstr

Fair Isaac Corporation Proprietary Information 862

Chapter 23: R

Rinit

Purpose
Initialize an R session.

Synopsis
function Rinit([args:string...]): integer

Argument
args List of R startup options (optional)

Return value
0 if the initialization was successful.

Example
The following example initializes R with default options:

initok:=Rinit
if initok<>0 then writeln('Failed to initialize R')
end-if

Further information
The use of this function is optional: R is automatically initialized upon first use. Default R startup options
are "–slave", "–vanilla", so no site or user environment, profile, history and workspace files are processed.
Please refer to the R documentation for the exact meaning of these and other options
(http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R).

Related topics
Rfree.

Fair Isaac Corporation Proprietary Information 863

Chapter 23: R

Rprint

Purpose
Evaluate R statements and print the result.

Synopsis
procedure Rprint(cmd:string)

Argument
cmd Statements to evaluate and print

Example
The following example prints the R version number and summary statistics of the cars dataset:

Rprint("R.version.string")
Rprint('library(datasets); summary(cars)')

Further information
It is possible to evaluate multiple statements separating them with semicolons. The return value of the
last statement is printed using R’s own print function, thus with R style and formatting.

Related topics
Reval.

Fair Isaac Corporation Proprietary Information 864

Chapter 23: R

Rset

Purpose
Assign a Mosel value to an R object.

Synopsis
procedure Rset(dst:string, value:[set|array|list of]

boolean|integer|real|string)

Arguments
dst An R variable name
value The Mosel value to be assigned to dst

Example
The following example assigns values 1.2, "hello" and an array with numbers 1 to 6 to the R objects a_num,
a_string and a_vec respectively:

Rset('a_num', 1.2)
Rset('a_string', 'hello')
Rset("a_vec", 1..6) ! An R vector with real values 1 to 6
Rset("dim(a_vec)", [2,3]) ! Change its dimensions into a 2x3 matrix

Further information

1. A new temporary R entity is created from value and then assigned to dst, unless value is a scalar and
dst is an existing R entity of the corresponding type, in which case dst is just set to the new value

2. Argument dst can represent any assignable expression (including subsetting and attributes).

3. The type of argument value can be any elementary Mosel type, or an array, list or set of these
(compositions are not supported).

4. When value is an array, for each of the array’s dimensions, its index values are exported into the
corresponding R array’s names or dimnames attribute (after conversion to string) unless the indices are
integer values from 1 to that dimension size.

5. If value is a dynamic array, only the existing values are copied to R and the remaining array entries are
set to NA (Not Available).

Related topics
Reval, Rsetdf.

Fair Isaac Corporation Proprietary Information 865

Chapter 23: R

Rsetdf

Purpose
Assign a Mosel array to an R data.frame object.

Synopsis
procedure Rsetdf(dst:string, arr:array of boolean|integer|real|string)

Synopsis
procedure Rsetdf(dst:string, arr:array of boolean|integer|real|string,

cname:list of string)

Arguments
dst An R variable name
arr The Mosel array to be assigned to dst
cname List of names to be assigned to the data.frame columns

Example
The following:

declarations
CITIES = {"LONDON", "NEW YORK", "ROME"}
ZONES = 1..4
myarray: dynamic array(ZONES, CITIES) of integer

end-declarations
myarray(1,'LONDON') := 8
myarray(1,'ROME') := 3
myarray(2,'NEW YORK') := 9
Rsetdf("a_df", myarray, ['Zone','City','Value'])
Rprint("a_df")

produces this output:

Zone City Value
1 1 LONDON 8
2 1 ROME 3
3 2 NEW YORK 9

Further information

1. A new R data.frame is created from arr and assigned to dst

2. The argument dst can represent any assignable expression (including subsetting and attributes).

3. The R data.frame is constructed with n+1 columns (where n is the number of dimensions of arr): one
column for each of the array’s indices, plus one column for the array’s values; and one row for each
existing value of the array.

4. Rows are numbered from 1 to the number of existing values of arr and column names are taken from the
cname argument, when given.

5. Only the first n+1 strings from cname are used; if cname is shorter, then the right-most columns are left
unnamed.

Related topics
Reval, Rset.

Fair Isaac Corporation Proprietary Information 866

Chapter 23: R

Rsource

Purpose
Evaluate an R script file.

Synopsis
procedure Rsource(filename:string)

Argument
filename Filename of the R script to evaluate

Example
The following example executes the myscript.R file:

Rsource('myscript.R')

Related topics
Reval.

Fair Isaac Corporation Proprietary Information 867

Chapter 23: R

Rerrcode

Purpose
Get the last error code.

Synopsis
function Rerrcode:integer

Return value
0 if the last operations were executed successfully.

Example
The following example prints an error message in case of errors in R evaluations:

Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Further information
The Rerrcode is set to non-zero values in case of errors, but not cleared after successful operations, so
it is possible to check it after several operations to verify that all executed without errors. To clear it, use
function Rclearerr.

Related topics
Rclearerr, Rerrmsg.

Fair Isaac Corporation Proprietary Information 868

Chapter 23: R

Rerrmsg

Purpose
Get the last error message.

Synopsis
function Rerrmsg:string

Return value
The last error message in case of errors, or the empty string otherwise.

Example
The following example prints an error message in case of errors in R evaluations:

Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Further information
The message returned by this function is a top-level description of the error. It is possible to also retrieve
R own error message for example with Rgetstr("geterrmessage()").

Related topics
Rclearerr, Rerrcode.

Fair Isaac Corporation Proprietary Information 869

Chapter 23: R

Rclearerr

Purpose
Clear the last error code and message.

Synopsis
procedure Rclearerr

Example
The following example prints an error message in case of errors in R evaluations and subsequently clears
the error information:

Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Related topics
Rerrcode, Rerrmsg.

Fair Isaac Corporation Proprietary Information 870

Chapter 23: R

23.5 I/O drivers
In order to simplify access to R this module provides a driver that is designed to be used in
initializations blocks for both reading and writing data, providing the same functionalities as the
Rget and Rset functions.

23.5.1 Driver rws
rws:

The driver can only be used in ‘initializations’ blocks. It does not take any argument and provides access
to the R workspace.

In the block, each label entry is understood as one or more R statements. For ’from’ blocks, if the label
contains more than one statement, the value from the last one is returned. For ’to’ blocks, the label must
contain only one expression.

This driver requires an existing R session, therefore it is necessary to initialize R (either by calling function
Rinit or any of the other module functions that create an R session) before using it.

Example:

initok:=Rinit ! Initialize R
initializations to "r.rws:" ! Send data to R
scalarvar as "val"
arrayvar as "arr"

end-initializations
initializations from "r.rws:" ! Get data from R
backscalar as "val"
backarr as "arr"

end-initializations

23.6 Troubleshooting
This section describes some known issues and possible solutions.

■ When running a model in Windows, a dialog is shown with title ’Unable to locate component’ and
content ’The application has failed to start because Rlapack.dll was not found...’.
This may occur with Windows 2003. Please add your R binary directory (usually ’C:\Program
Files\R\R-3.x.x\bin\i386’ or ’C:\Program Files\R\R-3.x.x\bin\x64’ to the system PATH environment
variable.

■ When an R session is initialized in Windows, R installs a console handler to detect Ctrl-C events
which may prevent Mosel from properly detecting these same events itself.

■ In Linux, R may fail to load if the dynamic libraries in $R_HOME/lib cannot be found by the dynamic
linker. In this case, please add $R_HOME/lib to the LD_LIBRARY_PATH environment variable.

■ This module is not compatible with Mosel security restrictions, therefore it would fail to load if
Mosel is run in restricted mode.

■ On Mac OS X, if the R release being used is linking the Apple CoreFoundation library, then this
module can only be successfully initialized from the main thread of the process in which Mosel is
running (because the CoreFoundation library can only be loaded from the main thread of a process).
So, for example, the module would fail to load R from an mmjobs submodel. In this case, it is
possible to overcome this issue by setting the environment variable DYLD_INSERT_LIBRARIES to
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation

Fair Isaac Corporation Proprietary Information 871

Chapter 23: R

(use the correct path to the CoreFoundation library on your system) before launching the Mosel
process, thus forcing an anticipated loading of the CoreFoundation library at process creation.

Fair Isaac Corporation Proprietary Information 872

CHAPTER 24

zlib

The zlib Mosel module is an interface to the zlib compression library by Jean-Loup Gailly and Mark Adler
(http://zlib.net). Thanks to two IO drivers it makes possible the creation and use of compressed files from
Mosel models. As an additional feature this module also integrates the MiniZip library by Gilles Vollant
(http://www.winimage.com/zLibDll/minizip.html) for supporting the ZIP archive format.

24.1 I/O drivers
The following two drivers behave the same: a stream open for reading is decompressed and a stream
open for writing is created compressed. Both drivers are also based on the same compression algorithm
(deflate) but use different container formats. The last published driver (zip) can only be open for reading:
it will be used to access a file stored in a zip archive. For more advanced use of ZIP archives please refer
to the dedicated routines proposed by the mmsystem module.

24.1.1 Driver gzip
gzip:filename

This driver handles files compressed using the gzip compression format: this corresponds to files
created using the gzip compression tool.

For instance the following statement decompresses the file "myfile.gz":

fcopy("zlib.gzip:myfile.gz","myfile")

24.1.2 Driver deflate
deflate:filename

This driver handles files compressed using the zlib compression format. This driver can read documents
compressed by gzip but compressed files it generates are not compatible with this tool.

24.1.3 Driver zip
zip:zipfile,filename

This driver handles archives using the ZIP format. It can be used only for reading files: the filename of
this driver consists in two parts separated by a coma. The first part is the name of the archive to open
(that must be a physical file) and the second one is the archive member name.

For instance the following statement compiles the file "main.mos" stored in the archive
"myproject.zip":

Fair Isaac Corporation Proprietary Information 873

http://zlib.net
http://www.winimage.com/zLibDll/minizip.html

Chapter 24: zlib

compile("G","zlib.zip:myproject.zip,main.mos","tmp:main.bim")

Fair Isaac Corporation Proprietary Information 874

Appendix

APPENDIX A

Syntax diagrams for the Mosel language

A.1 Main structures and statements
⟨Model⟩ ::=-- ‘model’ ⟨Label⟩ · · ·

· · · �� ⟨Directives⟩ ���� ⟨Parameters⟩ ���� ⟨Body⟩ �� ‘end-model’ -�

⟨Package⟩ ::=-- ‘package’ Identifier · · ·
· · · �� ⟨Directives⟩ ���� ⟨Parameters⟩ ���� ⟨Body⟩ �� ‘end-package’ -�

⟨Label⟩ ::=- � String� Identifier ��-

⟨Directives⟩ ::=-

� �
� � ‘uses’

� ‘,’ �� String �
� ‘imports’

� ‘,’ �� String � �
� ‘options’

� ‘,’ �� Identifier � �
� ‘namespace’

� ‘,’ �� Identifier � �
� ‘nssearch’

� ‘,’ �� Identifier � �� ‘nsgroup’ Identifier �
� ‘:’

� ‘,’ �� String � �
� �

� ‘version’ Integer �� ‘.’ Integer �� ‘.’ Integer �� �� �

� �-

⟨Parameters⟩ ::=- · · ·
· · · ‘parameters’ · · ·

· · ·
� �� �Identifier ‘=’ ⟨Expression⟩� String ‘:’ � ‘integer’� ‘real’ �� ‘string’ �� ‘boolean’ �

� �� � · · ·

· · · ‘end-parameters’ -

Fair Isaac Corporation Proprietary Information 876

Appendix A: Syntax diagrams for the Mosel language

⟨Body⟩ ::=-
� �� � ⟨Declarations⟩� ⟨Requirements⟩ �� ⟨Subroutine_decl⟩ �� ⟨Subroutine_def⟩ �� ‘include’ � String� Identifier �� �

� ⟨Statement⟩ �

� �-

⟨Declarations⟩ ::=- · · ·
· · · �� ‘public’ �� ‘declarations’ · · ·

· · ·
� �� ��� ‘public’ ��� Identifier ‘=’ � ⟨Expression⟩� ⟨Type_descr⟩ ��

�� ‘,’ �� Identifier � ‘:’ �� ‘shared’ ��⟨Type_descr⟩ �
�

� ⟨Procedure_head⟩ �� ⟨Function_head⟩ �

� � · · ·

· · · ‘end-declarations’ -

⟨Requirements⟩ ::=- · · ·
· · · ‘requirements’ · · ·

· · ·

� �
� �� ‘,’ �� Identifier � ‘:’ ⟨Type_descr⟩� ⟨Procedure_head⟩ �� ⟨Function_head⟩ �

� � · · ·

· · · ‘end-requirements’ -

⟨Type_descr⟩ ::=- · · ·

· · · � � ‘or’ �� ⟨Type_name⟩ �� �� ‘dynamic’ �� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �
� �� ‘dynamic’ �� ‘set’ ‘of’ �� ‘constant’ ��⟨Type_descr⟩ �
� ‘list’ ‘of’ ⟨Type_descr⟩ �
� � ‘and’ �� Identifier � �
��� ‘dynamic’ �� ‘hashmap’ �

� ‘array’ ‘(’
� ‘,’ �� ⟨Set_def⟩ � ‘)’ ‘of’ ⟨Type_descr⟩ �

� �� ‘public’ �� ‘record’
� �� ⟨Field_descr⟩ � ‘end-record’ �

� ‘procedure’ �� ⟨Form_params⟩ �� �
� ‘function’ �� ⟨Form_params⟩ �� ‘:’ ⟨Type_name⟩ �

�-

⟨Field_descr⟩ ::=- �� ‘public’ ��Identifier ‘:’ ⟨Type_descr⟩ -

Fair Isaac Corporation Proprietary Information 877

Appendix A: Syntax diagrams for the Mosel language

⟨Type_name⟩ ::=- � ‘integer’� ‘real’ �� ‘string’ �� ‘boolean’ �� ‘mpvar’ �� ‘linctr’ �� Identifier �

�-

⟨Set_def⟩ ::=- ��� Identifier ‘:’ �� ‘set’ ‘of’ �� ‘constant’ ��⟨Type_name⟩� �� Identifier ‘:’ �� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �
� ⟨Type_name⟩ �� ⟨Set_expr⟩ �

�-

⟨Subroutine_decl⟩ ::=- ‘forward’ �⟨Procedure_head⟩� ⟨Function_head⟩ ��-

⟨Subroutine_def⟩ ::=- �⟨Procedure_head⟩
� �� �⟨Declarations⟩� ⟨Statement⟩ �� � ‘end-procedure’

� ⟨Function_head⟩
� �� �⟨Declarations⟩� ⟨Statement⟩ �� � ‘end-function’ �

�-

⟨Procedure_head⟩ ::=- �� ‘public’ �� ‘procedure’ Identifier �� ⟨Form_params⟩ ��-
⟨Function_head⟩ ::=- · · ·

· · · �� ‘public’ �� ‘function’ Identifier �� ⟨Form_params⟩ �� ‘:’ ⟨Type_name⟩ -

⟨Form_params⟩ ::=- ‘(’
� ‘,’ �� ⟨Form_param⟩ ����� Identifier ‘:’ �� ‘...’ �� ‘)’ -

⟨Form_param⟩ ::=- · · ·
· · · ��

�� ‘,’ �� Identifier � ‘:’ �
�� ⟨Type_name⟩� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �
� ‘set’ ‘of’ �� ‘constant’ ��⟨Type_name⟩ �

�

��� Identifier ‘:’ �� ‘array’ ‘(’
� ‘,’ �� ⟨Set_def⟩ � ‘)’ ‘of’ ⟨Type_name⟩ �

�-

Fair Isaac Corporation Proprietary Information 878

Appendix A: Syntax diagrams for the Mosel language

⟨Statement⟩ ::=- · · ·
· · · � ⟨Name_ref⟩ � ‘:=’� ‘+=’ �� ‘-=’ �

�⟨Expression⟩

� Identifier �‘(’
� ‘,’ �� ⟨Expression⟩ � ‘)’� �� �

� ⟨Ctr_expr⟩ �� ‘if’ ⟨Bool_expr⟩ ‘then’ ⟨Stat_list⟩ ⟨Elif_body⟩ �� ⟨Else_body⟩ �� ‘end-if’ �
� ‘case’ ⟨Expression⟩ ‘of’ ⟨Case_list⟩ �� ⟨Else_body⟩ �� ‘end-case’ �
� �� ⟨Label⟩ �� ‘forall’ ‘(’ ⟨Iterator_list⟩ ‘)’ �⟨Statement⟩� ⟨Do_block⟩ �� �
� �� ⟨Label⟩ �� ‘while’ ‘(’ ⟨Bool_expr⟩ ‘)’ �⟨Statement⟩� ⟨Do_block⟩ �� �
� �� ⟨Label⟩ �� ‘repeat’ ⟨Stat_list⟩ ‘until’ ⟨Bool_expr⟩ �
� ‘next’ �� Integer �� ⟨Label⟩ �

� �
� ‘break’ �� Integer �� ⟨Label⟩ �

� �
� ⟨Name_ref⟩ ‘::’ �

� ‘(’
� ‘,’ �� ⟨Expression⟩ � ‘)’ �

� ‘[’
� ‘,’ �� ⟨Expression⟩ � ‘]’ �

� �� ⟨Label⟩ ��⟨With_block⟩ �
� ⟨Init_block⟩ �� ‘return’ �

�-

⟨Elif_body⟩ ::=- �� �� ‘elif’ ⟨Bool_expr⟩ ‘then’ ⟨Stat_list⟩ �� ��-
⟨Else_body⟩ ::=- ‘else’ ⟨Stat_list⟩ -

⟨Case_body⟩ ::=-
� �� ⟨Expression⟩ ‘:’ �⟨Statement⟩� ⟨Do_block⟩ �� �-

⟨With_block⟩ ::=- ‘with’ � ⟨Name_ref⟩�� ‘and’ �� Identifier � �
� � ‘,’ �� ⟨With_decl⟩ � �

�⟨With_body⟩ -

⟨With_decl⟩ ::=- � Identifier ‘=’ ⟨Expression⟩� Identifier ‘(’
� ‘,’ �� Identifier � ‘)’ ‘=’ ⟨Name_ref⟩ �

�-

Fair Isaac Corporation Proprietary Information 879

Appendix A: Syntax diagrams for the Mosel language

⟨With_body⟩ ::=- ‘do’
� �� � ⟨Statement⟩� ⟨Declarations⟩ �� � ‘end-do’ -

⟨Init_block⟩ ::=- ‘initializations’ �‘from’� ‘to’ ��⟨String_expr⟩ · · ·

· · ·
� �� � ⟨Init_item⟩�� ⟨Init_item⟩� ‘[’

� ‘,’ �� ⟨Init_item⟩ � ‘]’ �
� ‘as’ ⟨String_expr⟩ �� � · · ·

· · · ‘end-initializations’ -

⟨Init_item⟩ ::=- �Identifier �
� ‘(’

� ‘,’ �� ⟨Init_fieldsel⟩ � ‘)’ �
�

� ‘evaluation of’ ⟨Expression⟩ �
�-

⟨Init_fieldsel⟩ ::=- Identifier �
� ‘(’

� ‘,’ �� ⟨Init_fieldsel⟩ � ‘)’ �
�-

⟨Do_block⟩ ::=- ‘do’ ⟨Stat_list⟩ ‘end-do’ -

⟨Stat_list⟩ ::=-
� �� ⟨Statement⟩ �-

A.2 Expressions
⟨Expression⟩ ::=- � ⟨Bool_expr⟩� ⟨Set_expr⟩ �� ⟨List_expr⟩ �� ⟨Arith_expr⟩ �� ⟨String_expr⟩ �� ⟨Array_expr⟩ �� ⟨NewRec_expr⟩ �� ⟨Ctr_expr⟩ �� ⟨RefTo_expr⟩ �

�-

⟨Comparator⟩ ::=- � ‘<’� ‘<=’ �� ‘=’ �� ‘<>’ �� ‘>=’ �� ‘>’ �

�-

Fair Isaac Corporation Proprietary Information 880

Appendix A: Syntax diagrams for the Mosel language

⟨Bool_expr⟩ ::=- � ⟨Bool_expr⟩ �‘and’� ‘or’ ��⟨Bool_expr⟩� �‘and’� ‘or’ �� ‘(’ ⟨Iterator_list⟩ ‘)’ ⟨Bool_expr⟩ �
� ⟨Expression⟩ �� ‘not’ �� ‘in’ ⟨Set_expr⟩ �
� ⟨Is_expr⟩ �� ⟨Expression⟩ ⟨Comparator⟩ ⟨Expression⟩ �� ‘not’ ⟨Bool_expr⟩ �� ‘if’ ‘(’ ⟨Bool_expr⟩ ‘,’ ⟨Bool_expr⟩ ‘,’ ⟨Bool_expr⟩ ‘)’ �� ⟨Name_ref⟩ �� ‘true’ �� ‘false’ �� ‘boolean’ ‘(’ ⟨Expression⟩ ‘)’ �� ‘(’ ⟨Bool_expr⟩ ‘)’ �

�-

⟨Is_expr⟩ ::=- ⟨Name_ref⟩ ‘is’ �� ‘not’ ��� ⟨Type_name⟩��‘array’� ‘set’ �� ‘list’ �
��� ‘of’ ⟨Type_name⟩ �� �

� ‘range’ �� ‘record’ �� ‘procedure’ �� ‘function’ �

�-

⟨Set_expr⟩ ::=- � ⟨Set_expr⟩ � ‘+’� ‘-’ �� ‘⁎’ �
�⟨Set_expr⟩

� � ‘union’� ‘inter’ �� ‘(’ ⟨Iterator_list⟩ ‘)’ ⟨Set_expr⟩ �
� ‘if’ ‘(’ ⟨Bool_expr⟩ ‘,’ ⟨Set_expr⟩ ‘,’ ⟨Set_expr⟩ ‘)’ �� ⟨Name_ref⟩ �� ‘{’ ‘}’ �
� ‘{’

� ‘,’ �� ⟨Expression⟩ � ‘}’ �� ⟨Arith_expr⟩ ‘..’ ⟨Arith_expr⟩ �� ‘set’ ‘(’ � ⟨Set_expr⟩� ⟨List_expr⟩ �� ‘)’ �
� ‘(’ ⟨Set_expr⟩ ‘)’ �

�-

⟨List_expr⟩ ::=- � ⟨List_expr⟩ � ‘+’� ‘-’ ��⟨List_expr⟩� ‘sum’ ‘(’ ⟨Iterator_list⟩ ‘)’ ⟨List_expr⟩ �� ‘if’ ‘(’ ⟨Bool_expr⟩ ‘,’ ⟨List_expr⟩ ‘,’ ⟨List_expr⟩ ‘)’ �� ⟨Name_ref⟩ �� ‘[’ ‘]’ �
� ‘[’

� ‘,’ �� ⟨Expression⟩ � ‘]’ �� ‘list’ ‘(’ � ⟨List_expr⟩� ⟨Set_expr⟩ �� ‘)’ �
� ‘(’ ⟨List_expr⟩ ‘)’ �

�-

Fair Isaac Corporation Proprietary Information 881

Appendix A: Syntax diagrams for the Mosel language

⟨Arith_expr⟩ ::=- � ⟨Arith_expr⟩ � ‘+’� ‘-’ �� ‘⁎’ �� ‘/’ �� ‘div’ �� ‘mod’ �� ‘^’ �

�⟨Arith_expr⟩

� � ‘sum’� ‘prod’ �� ‘min’ �� ‘max’ �
� ‘(’ ⟨Iterator_list⟩ ‘)’ ⟨Arith_expr⟩ �

� ‘count’ ‘(’ ⟨Iterator_list⟩ ‘)’ �� ‘-’ ⟨Arith_expr⟩ �� ‘if’ ‘(’ ⟨Bool_expr⟩ ‘,’ ⟨Arith_expr⟩ ‘,’ ⟨Arith_expr⟩ ‘)’ �� ⟨Name_ref⟩ �� Integer �� Real �� ‘integer’ ‘(’ ⟨Expression⟩ ‘)’ �� ‘real’ ‘(’ ⟨Expression⟩ ‘)’ �� ‘(’ ⟨Arith_expr⟩ ‘)’ �

�-

⟨String_expr⟩ ::=- �⟨String_expr⟩ � ‘+’� ‘-’ ��⟨Expression⟩� ⟨Name_ref⟩ �� String �� ‘string’ ‘(’ ⟨Expression⟩ ‘)’ �� ‘(’ ⟨String_expr⟩ ‘)’ �

�-

⟨NewRec_expr⟩ ::=- Identifier ‘(’
� ‘,’ �� ‘.’ Identifier ‘:=’ ⟨Expression⟩ � ‘)’ -

⟨Array_expr⟩ ::=- ‘array’ ‘(’ ⟨Iterator_list⟩ ‘)’ ⟨Arith_expr⟩ -

⟨Ctr_expr⟩ ::=- � ⟨Arith_expr⟩ ��� ‘<=’� ‘>=’ �� ‘=’ �
�⟨Arith_expr⟩ �

� ‘is_sos1’ �� ‘is_sos2’ �

�

� ⟨Name_ref⟩ � � ‘is_integer’� ‘is_binary’ �� ‘is_continuous’ �� ‘is_free’ �
�

�� ‘is_semcont’� ‘is_semint’ �� ‘is_partint’ �
�⟨Arith_expr⟩ �

� �

� ‘(’ ⟨Ctr_expr⟩ ‘)’ �

�-

⟨RefTo_expr⟩ ::=- ‘->’ � ⟨name_ref⟩� ‘(’ ⟨Expression⟩ ‘)’ ��-

⟨Iterator_list⟩ ::=-
� ‘,’ �� ⟨Iterator⟩ �-

Fair Isaac Corporation Proprietary Information 882

Appendix A: Syntax diagrams for the Mosel language

⟨Iterator⟩ ::=- � � ⟨Set_expr⟩� ⟨List_expr⟩ ��
�� ‘,’ �� Identifier � ‘in’ � ⟨Set_expr⟩� ⟨List_expr⟩ ���� ‘|’ ⟨Bool_expr⟩ �� �
� Identifier ‘=’ ⟨Expression⟩ �� ‘|’ ⟨Bool_expr⟩ �� �
� Identifier ‘as counter’ �

�-

⟨Name_ref⟩ ::=- Identifier �� ⟨Dereferencing⟩ ��-

⟨Dereferencing⟩ ::=-
� �� � ‘.’ � Identifier� ‘set’ �� ‘list’ �� ‘array’ �� ‘range’ �� ⟨Type_name⟩ �

�

� ‘(’
� ‘,’ �� ⟨Expression⟩ � ‘)’ �

� �-

A.3 Initializations data file format

⟨Records⟩ ::=-
� �� �Identifier� String �� ‘:’ ⟨Value⟩ �-

⟨Value⟩ ::=- �Identifier� String �� Integer �� Real �� ‘true’ �� ‘false’ �� ‘⁎’ �� ‘?’ �� ⟨Value_list⟩ �

�-

⟨Value_list⟩ ::=- � ‘[’ ‘]’� ‘[’
� �� �

� ‘(’
� �� ⟨Value⟩ � ‘)’ �

�⟨Value⟩ � ‘]’ �
�-

Fair Isaac Corporation Proprietary Information 883

APPENDIX B

Remote Invocation Protocol

A Mosel instance may be started remotely using either the connect procedure of the module mmjobs or
its equivalent routine of the XPRD library. From any of these environments one can compile, load and run
models as well as access files on the remote system. The remote invocation protocol also makes it
possible to control more precisely the execution of models (e.g. suspending execution or profiling) and
query information of a model (such as the value of entities) or the entire instance (e.g. to retrieve the list
of available modules).

This protocol relies on two mechanisms:

1. the procedure setcontrol (available in mmjobs and XPRD) to (re)define Mosel instance control
parameters

2. the special remote file ’mcmd’ that only supports read access: the file name is interpreted as a
query and the retrieved data is the answer to this request

B.1 Instance control parameters
Mosel instance control parameters are either defined at the instance level or they apply to a specific
model (see setcontrol). Some of the parameters serve for changing the behaviour of other
commands, others provide a means to execute some specific command.

The supported instance parameters are:

■ zerotol (real,instance): set the zero tolerance used for comparison and displaying real numbers
(i.e. a real number smaller than the tolerance is treated as 0)

■ realfmt (string,instance): set the C-format used to display reals

■ flushdso (none,instance): unloads unused modules (i.e. calls XPRMflushdso)

■ lang (string,instance): set the language of the instance

■ defaultnode (integer,instance): set the default node number used by the "rmt:" IO driver when
it is used without node reference (see Section 8.5.6)

■ runmode (int,model): set the execution mode of a model (cannot be changed during the execution
of the model):

– 0: default
– 1: debug
– 2: profile
– 3: tracing

Fair Isaac Corporation Proprietary Information 884

Appendix B: Remote Invocation Protocol

■ dbgctrl (string,model): send a command to the debugger (model must be running in debug
mode). See Section B.4

■ dbgbrksub (int,model): toggle breaksub mode during a debugging session (default is 0)

■ sdmax (int,instance): set the maximum depth of a call stack dump (default is 0)

B.2 mcmd pseudo file
The special remote file ’mcmd’ takes the form of an I/O driver where the file name is interpreted as a
query and the retrieved data is the answer to this request. Except for the dsostream command that can
also be open in write mode, ’mcmd’ only supports read access. A file name for this driver has the
following form:

mcmd:cmd[-opts][@mod[.submod]] cmdargs

cmd: the operation to execute (e.g. ’eval’,’profres’...).

opts: options to change the format of the result. By default all data are sent using the Mosel binary
format ’bin:’. Adding option ’t’ switches to text format (still compatible with initialisations
blocks) and ’j’ will cause results to be sent as a JSON object (not compatible with initialisations
blocks). If option ’z’ is used the resulting file is compressed with gzip. A given command may
also support additional options (see ’lslib’). Except for the ’eval’ command, the result set
publishes always the same records that are either scalars of basic types or lists of basic types.
When a collection of values is returned a specific label indicating the dimension of the list
precedes the list.

mod: master model on which the operation will be performed.

submod: submodel. Only some operations can be applied to a submodel. Note that submodel ’0’ is
the master model itself (the first submodel has ID ’1’).

Supported commands:

covres (model)
Retrieve profiling results for test coverage. This command can only be called after the model has
been run in profiling mode (see Section B.3).

tottime:real
Rlines: range
lines: array(Rlines) of integer
iters: array(Rlines) of integer
Rfiles: range
files: array(Rfiles) of string
Rstarts:range
starts: array(Rstarts) of integer

dbgbrkp [lndx [cond|⁎]] (model or submodel)
Breakpoint management. The model must be suspended. Without any parameters this command
returns the current list of breakpoints; the first parameter is interpreted as a line index and the
second parameter is a logical expression (i.e. the breakpoint condition). With only one parameter,
the breakpoint on the corresponding line index is removed (no operation is performed if there was
no breakpoint). Use ’*’ to remove all breakpoints. With two parameters the corresponding
breakpoint is created (or modified). To set an unconditional breakpoint use ’*’ as the condition.
Note that breakpoints are attached to a model: even if several models running concurrently are
resulting from the same source file, setting a breakpoint for one model (instance) will have no
effect on the others.

Fair Isaac Corporation Proprietary Information 885

Appendix B: Remote Invocation Protocol

Rlndx: range
lndx: array(Rlndx) of integer
cond: array(Rlndx) of string

dbgflndx [fctname|⁎] (model or submodel)
Line indices corresponding to a function name. This command returns the line indices
corresponding to the beginning (lndx) and end (elndx) of the requested function (several values
are returned when the routine is overloaded). The values of elndx are valid only if the model has
been compiled with option -G. Without any arguments or with argument ’*’, the command returns
all functions of the model. If option ’N’ is used, the arrays are sorted according to the function
names. With option ’L’ arrays are sorted following the line indices order.

Rsign: range
sign: array(Rsign) of string
lndx: array(Rsign) of integer
name: array(Rsign) of string
elndx: array(Rsign) of integer

dbglndx (model or submodel)
Retrieve the mapping of the line indices of a model/submodel. The model must be either
suspended or not running. The debugger interface works on line indices: each line index
corresponds to a file name and a line number in this file.

Rfiles: range
files: array(Rlines:range) of integer
Rlines: range
lines: array(Rfiles:range) of string

dbgstat (model or submodel)
Current execution status of a model. The model must be suspended. If no submodel is specified,
statuses of all submodels are returned in addition to the master model (to get the status of the
master model only use submodel ’0’).

Rid: range
id: array(Rid) of integer
stat: array(Rid) of integer
stlev:array(Rid) of integer
lndx: array(Rid) of integer

dbgstlev [stlev|⁎ [maxlev]] (model or submodel)
Stack management. The model must be suspended. Without any arguments or with argument ’*’,
the command returns a stack dump (i.e. a list of line indices). If the argument is ≥ 0, it becomes
the current stack level. The optional argument ’maxlev’ defines the maximum number of levels to
return (default:10). The stack level defines the context in which expression evaluations are
performed in the ’eval’ command.

Rid: range
id: array(Rid) of integer
stat:array(Rid) of integer
stlev:array(Rid) of integer
lndx:array(Rid) of integer

dsostream dsoname [specific parameters] (model or submodel)
This command opens a stream to the specified module (this command supports both read and
write mode). The module must implement the SRV_DSOSTRE service. The behaviour of the
stream and the expected parameters depend on the implementation.

eval label:expression [range] (model or submodel)
Evaluate an expression in the context of the provided model/submodel. Execution of the model
must be completed or suspended. If option ’i’ is used, array indices are reported as order

Fair Isaac Corporation Proprietary Information 886

Appendix B: Remote Invocation Protocol

numbers instead of values. With option ’n’ array values are replaced by empty strings. The label
"label" is used to identify the expresion in the result file: if it is ’.’ no label is generated (the data
result is directly sent to the result file), if it is omitted then the expression itself is used as the label,
otherwise the provided string is the label. Several expressions may be evaluated in a single
request (in this case they must all be labelled).
It is possible to grab only a part of a collection (array, set or list) by specifying range information.
Ranges definitions take one of these two forms:

■ [maxelt]: get at most ’maxelt’ elements
■ [skip maxelt]: get at most ’maxelt’ entries after skipping ’skip’ elements

Several range definitions may be specified (separated by blanks): they are used when exploring
complex structures (e.g. a list of list). The structure and type of the result set depends on the
expression.

info (instance, model or submodel)
This command reports all symbols defined by Mosel (if used without specifying any argument), a
module (the argument is the module name) or a model (the argument is a model or submodel ID).
In the case of a module, the command loads the module if it is not yet in memory. For a model (or
package), it must have been loaded prior to this command since it is referenced by its ID and be
either not running or suspended. Information returned by the ’info’ command:

fmt: integer
Rhdr: range
hdr: array(Rhdr) of string
Rdeps: range
deps: array(Rdeps) of integer
depsvers:array(Rdeps) of integer
depstyp: array(Rdeps) of integer
Rtyps: range
typs: array(Rtyps) of string
typscod: array(Rtyps) of integer
Rparms: range
parms: array(Rparms) of string
parmsval:array(Rparms) of integer
parmsdesc:array(Rparms) of string
Rconsts: range
consts: array(Rconsts) of string
conststyp:array(Rconsts) of integer
Rcstint: range
cstint: array(Rcstint) of integer
Rcststr: range
cststr: array(Rcststr) of string
Rcstdbl: range
cstdbl: array(Rcstdbl) of real
Rvars: range
vars: array(Rvars) of string
varstyp: array(Rvars) of integer
varsopt: array(Rvars) of integer
Rarrndx: range
arrndx: array(Rarrndx) of string
Rfct: range
fct: array(Rfct) of string
fctsign: array(Rfct) of string
fcttyp: array(Rfct) of integer
Rdtyp: range
dtyp: array(Rdtyp:range) of string
dtyptyp: array(Rdtyp) of integer
Rrecsstart:range
recsstart:array(Rrecsstart) of integer
Rrecfield:range
recfield:array(Rrecfield) of string
recftype:array(Rrecfield) of integer
Riodrv: range
iodrv: array(Riodrv) of string

Fair Isaac Corporation Proprietary Information 887

Appendix B: Remote Invocation Protocol

iodrvinfo:array(Riodrv) of string
Rannsident:range
annsident:array(Rannsidente) of string
Rannsstart:range
annsstart:array(Rannsstart) of integer
Ranns: range
anns: array(Ranns) of string

lsattr (model or submodel)
Return the list of available types attributes. The array ’attrsntyp’ gives the type supporting the
attribute and ’attrsatyp’ is the type of the attribute.

Rattrs: range
attrs: array(Rattrs) of string
attrsntyp: array(Rattrs) of integer
attrsatyp: array(Rattrs) of integer

lslib (instance)
Return the list of available packages and modules. If option ’p’ is used, packages are reported with
their full path.

Rpkgs: range
pkgs: array(Rpkgs) of string
Rdsos: range
dsos: array(Rdsos) of string

lsloc (model or submodel)
This command is similar to ’info’ but it can only be applied to a suspended model: it reports all
local variables.

Rtyps: range
typs: array(Rtyps) of string
typscod: array(Rtyps) of integer
Rvars: range
vars: array(Rvars) of string
varstyp: array(Rvars) of integer
varsopt: array(Rvars) of integer
Rarrndx: range
arrndx: array(Rarrndx) of string

profrep [srcpath] (model)
Ask for generation of result files after a profiling or covering execution, the result of this operation
is a list of strings corresponding to the messages displayed by the commands profile or
cover. This command can only be called after the model has been run in profiling or covering
mode (see Section B.3). The optional srcpath argument is a list of paths (conforming to the
operating system conventions) where the source files can be found. The option ’C’ implies the
generation of the coverage files (e.g. ’file.mos.cov’), with option ’c’ the same files are produced
but without counting of lines (i.e. a line that is executed is marked with ’1’ instead of the actual
number of executions). The option ’P’ (the default) will generate the profiling files (e.g.
’file.mos.prof’), with option ’p’ timings are reported in percentage of the total amount of time
(instead of elapsed time).

msg:list of string

profres [path] (model)
Retrieve profiling results. This command can only be called after the model has been run in
profiling mode (see Section B.3). The path argument indicates which execution is requested:
several "executions" may be available when the model starts other models with ’mmjobs’ (the
returned data set includes the number of additional executions available via the nbsub field). For
instance the path 1.3 corresponds to the third "execution" started by the first "execution".

Fair Isaac Corporation Proprietary Information 888

Appendix B: Remote Invocation Protocol

tottime:real
nbsub: integer
nbnoprf:integer
Rlines: range
lines: array(Rlines) of integer
iters: array(Rlines) of integer
times: array(Rlines) of real
elaps: array(Rlines) of real
Rfiles: range
files: array(Rfiles) of string
Rstarts:range
starts: array(Rstarts) of integer

B.3 Profiler interface
Profiling a model requires a bim file compiled with option ’-G’. The runmode has to be set to ’2’ before
starting the execution. After the end of the profiler run, calls to the command ’mcmd:profres’,
’mcmd:profrep’ or ’mcmd:covres’ can be used for retrieving the results.

B.4 Debugger interface
The debugger can be started even if the flag ’-G’ has not been used for compilation but in this case
most commands will fail to return useful information. To run a debugging session the runmode of the
model must be set to ’1’ before starting its execution. If the model was compiled with ’-G’, the
execution is immediately suspended before the first statement of the model and a notification event is
sent.

During a debugging session changes of the model execution status are notified by specific events of
class ’EVENT_DBG’ (32770). The value of these events is a 32bit integer (cast to a real): the first 16 bits
are a parameter (meaning depending on the reason) and the following 16 bits indicate the reason for the
notification:

■ DBG_NOTIF_START (1«16): Submodel starting (the parameter is the submodel ID)

■ DBG_NOTIF_END (2«16): Submodel ending (the parameter is the submodel ID)

■ DBG_NOTIF_STOP (3«16): Execution suspended (the parameter is the VM status)

When an event ’DBG_NOTIF_STOP’ is received, the model (and its submodels) is in suspended state
and can be sent commands (see Section B.2). To continue execution a control parameter ’dbgctrl’
has to be set. The possible values are (the operation applies to the master model unless a submodel
number ’num’ is given):

■ C: continue

■ E: end of execution, abort debugging session

■ N [num]: continue to next statement

■ S [num]: step into subroutine

■ F [num]: continue up to end of subroutine

■ T num lndx: continue up to the specified line number on submodel ’num’ (0 for master model)

Additionally, during the execution of a model running in debugging mode (but that is not suspended), the
following ’dbgctrl’ commands can be used:

Fair Isaac Corporation Proprietary Information 889

Appendix B: Remote Invocation Protocol

■ B: suspend execution (e.g. consequence of ctrl-C)

■ E: end of execution, abort debugging session

When the execution of the model is about to end (including after an error), it is suspended just before
exiting such that the user can look at the current status.

Fair Isaac Corporation Proprietary Information 890

APPENDIX C

Error messages

The Mosel error messages listed in the following are grouped according to the following categories:

■ General errors: may occur either during compilation or when running a model.

■ Parser/compiler errors: raised during the model compilation.

■ Runtime errors: when running a model.

All messages are identified by their code number, preceded either by the letter E for error or W for warning.
Errors cause the compilation or execution of a model to fail, warnings simply indicate that there may be
something to look into without causing a failure or interruption.

This chapter documents the error mesages directly generated by Mosel, not the messages stemming
from Mosel modules or from other libraries used by modules.

C.1 General errors
These errors may occur either during compilation or when running a model.

E-1 Internal error in ‘location’ (errortype)
An unrecoverable error has been detected, Mosel exits. Please contact Xpress Support.

E-2 General error in ‘location’ (errortype)
An internal error has been detected but Mosel can recover. Please contact Xpress Support.

E-4 Not enough memory
Your system has not enough memory available to compile or execute a Mosel model.

E-21 I cannot open file ‘file’ for writing (driver_error)
Likely causes are an incorrect access path or write-protected files.

E-22 I cannot open file ‘file’ for reading (driver_error)
Likely causes are an incorrect access path or filename or not read-enabled files.

E-23 Error when writing to the file ‘file’ (driver_error)
The file could be opened for writing but an error occurred during writing (e.g. disk full).

E-24 Error when reading from the file ‘file’ (driver_error)
The file could be opened for reading but an error occurred while reading it.

E-25 Unfinished string
A string is not terminated, or different types of quotes are used to indicate start and end of a
string.
Examples:

Fair Isaac Corporation Proprietary Information 891

Appendix C: Error messages

writeln("mytext)

E-26 Identifier expected
May occur when reading data files: a label is missing or a numerical value has been found
where a string is expected.
Examples:

declarations
D: range
end-declarations

initializations from "test.dat"
D
end-initializations

Contents of test.dat:

[1 2 3]

The label D: is missing.

E-27 Number expected
May occur when reading data files: another data type has been found where a numerical value
is expected.
Examples:

declarations
C: set of real
end-declarations

initializations from "test.dat"
C
end-initializations

Contents of test.dat:

C: [1 2 c]

c is not a number.

E-28 Digit expected for constant exponent
May occur when using scientific notation for real values.
Examples:

b:= 2E -10

Emust be immediately followed by a signed integer (i.e. no spaces).

E-29 Wrong file descriptor number for selection (num)
fselect is used with an incorrect parameter value.

E-34 I cannot find IO driver ‘driver’
The system cannot locate the IO driver driver for opening a file. This may happen if the driver is
provided by a module not already loaded in memory. To avoid this problem the module name
should be given with the driver name. For instance use "mmodbc.odbc" instead of "odbc"
alone.

E-35 Error when closing file ‘file’ (driver_error)
An error occurred while closing a file. Typically the last write operation for clearing buffers
failed.

E-36 Read error (file)
I/O error during file reading.

Fair Isaac Corporation Proprietary Information 892

Appendix C: Error messages

E-37 Invalid character
Invalid character sequence found while reading a text file, non-conforming to the current
encoding. Possibly an incorrect encoding (Mosel default is UTF-8) has been specified for
accessing this file.

E-38 Unknown compiler flag(s) ‘flag’ ignored
Some of the flag(s) used with compile have not been recognized, please refer to the list
documented for compile.

E-39 Unknown BIM reader flag(s) ‘flag’ ignored
Some of the flag(s) used with load have not been recognized, please refer to the list
documented for load.

E-40 Unsupported encoding ‘encoding’ (ignored)
The encoding name specified after the marker !@encoding is unknown.

C.2 Parser/compiler errors
Whenever possible Mosel displays the location where an error has been detected during compilation in
the format (line_number/character_position_in_line).

E-100 Syntax error before token
The parser cannot continue to analyze the source file because it has encountered an
unexpected token. When the error is not an obvious syntax error, make sure you are not using
an identifier that has not been defined before.
Examples:

token:)

writeln(3 mod)

modmust be followed by an integer (or a numerical expression evaluating to an
integer).
token: write

if i > 0
write("greater")
end-if

then has been omitted.
token: end

if i > 0 then write("greater") end-if

A semicolon must be added to indicate termination of the statement preceeding the
end-if.

E-101 Incompatible types (type_of_problem)
We try to apply an operation to incompatible types. Check the types of the operands.
Examples:

type_of_problem: assignment

i:=0
i:=1.5

The first assignment defines i as an integer, the second tries to re-assign it a real
value: i needs to be explicitly declared as a real.
type_of_problem: cmp

Fair Isaac Corporation Proprietary Information 893

Appendix C: Error messages

12=1=2

A truth value (the result of 12=1 is compared to a numerical value.

E-102 Incompatible types for parameters of ‘routine’
A subroutine is called with the wrong parameter type. This message may also be displayed
instead of E-104 if a subroutine is called with the wrong number of parameters. (This is due to
the possibility to overload the definition of subroutines).
Examples:

procedure myprint(a:integer)
writeln("a: ", a)
end-procedure

myprint(1.5)

The subroutine myprint is called with a real-valued argument instead of an integer.

E-103 Incorrect number of subscripts for ‘array’(num1/num2)
An array is used with num2 subscripts instead of the number of subscripts num1 indicated at its
declaration.
Examples:

‘array’(num1/num2): ‘A’(2/1)

declarations
A: array(1..5,range) of integer
end-declarations

writeln(A(3))

E-104 Incorrect number of parameters for ‘routine’(num1/num2)
Typically displayed if write or read are used without argument(s).

E-106 Division by zero detected
Explicit division by 0 (otherwise error only detected at runtime).

E-107 Math error detected on function ‘fct’
For example, a negative number is used with a fractional exponent.

E-108 Logical expression expected here
Something else than a logical condition is used in an if statement.

E-109 Trying to redefine ‘name’
Objects can only be defined once, changing their type is not possible.
Examples:

i:=0

declarations
i: real
end-declarations

i is already defined as an integer by the assignment.

E-111 Logical expression expected for operator ‘op’
Examples:

op: and

2+3 and true

E-112 Numeric expression expected for operator ‘op’
Examples:

Fair Isaac Corporation Proprietary Information 894

Appendix C: Error messages

op: +

12+{13}

op: *

uses "mmxprs"

declarations
x:mpvar
end-declarations

minimize(x⁎x)

Multiplication of decision variables of type mpvar is only possible if a suitable module
(like mmnl) supporting non-linear expressions is loaded.

E-113 Wrong type for conversion
Mosel performs automatic conversions when required (for instance from an integer to a real) or
when explicitly requested by using the type name, e.g. integer(12.5). This error is raised
when an unsupported conversion is requested or when no implicit conversion can be applied.

E-114 Unknown type for constant ‘const’
A constant is defined but there is not enough information to deduce its type or the type implied
cannot be used for a constant (for instance a linear constraint).

E-115 Expression cannot be passed by reference
We try to use a constant where an identifier is expected. For instance, only non-constants can
be used in an initializations block.

E-118 Wrong logical operator
A logical opeartor is used with a type for which it is not defined.
Examples:

if("abc" in "acd") then writeln("?"); end-if

The operator in is not defined for strings.

W-121 Statement with no effect
A statement is used that has no effet, for example r += 0.

E-122 Control parameter ‘param’ unknown
The control parameters of Mosel are documented in the Mosel Reference manual under
function getparam. All control parameters provided by a module, e.g. mmxprs, can be display
with the command EXAM, e.g. exam -p mmxprs. In IVE this information is displayed by the
module browser.

E-123 ‘identifier’ is not defined
identifier is used without or before declaring it. Check the spelling of the name. If identifier is
defined by a module, make sure that the corresponding module is loaded. If identifier is a
subroutine that is defined later in the program, add a forward declaration at the beginning of
the model.

E-124 An expression cannot be used as a statement
An expression stands where a statement is expected. In this case, the expression is ignored —
typically, a constraint has been stated and the constraint type is missing (i.e. >= or <= ...) or an
equality constraint occurs without decision variables, e.g. 2=1.
This error also appears when the return value of a function call is not retrieved.

E-125 Set expression expected
For instance when trying to compute the union between an integer constant and a set of
integers: union(12+{13})

Fair Isaac Corporation Proprietary Information 895

Appendix C: Error messages

E-126 String expression expected
A string is expected here: for instance a file name for an initializations block.

E-127 A function cannot be of type ‘type’
Some types cannot be the return value of a function. Typically no function can return a decision
variable (type mpvar).

E-128 Type ‘type’ has no field named ‘field’
Trying to access an unknown field in a record type.
Examples:

declarations
myrec=record

i,j:integer
end-record

r:myrec
end-declarations
r.k:=0

k is not a field of r.

E-129 Type ‘type’ is not a record
Trying to use a record dereference on an object that is not a record. For instance using i.j
with i defined as an integer.

E-130 A type definition cannot be local
It is not possible to declare a type in a procedure or function.

W-131 Array ‘identifier’ is not indexed by ranges: assignment may be incorrect
When performing an inline initialization (operator ::) on an array, it is recommended to list
indices if the indexing sets are not ranges. Indeed, since order of set elements is not
guaranteed the values provided may not be assigned to the expected cells in the array.
Examples:

declarations
a:array({3,2,1}) of integer
end-declarations
! a::[3,2,1] !=> a(1)=3 a(2)=2 a(3)=1
a::([3,2,1])[3,2,1] !=> a(1)=1 a(2)=2 a(3)=3

E-132 Set or list expression expected
Aggregate operators (like sum or forall) require sets or lists to describe the domains for their
loops.
Examples:

declarations
i:integer
end-declarations
forall(i = 2) writeln(i)

Since i is declared as an integer before the loop, the expression i=2 is a logical
expression (it checks whether i is equal to 2) instead of an index definition.

W-144 Symbol ‘identifier’ implicitly declared
When a model is compiled with option -wi this message gets displayed for every symbol that
is not explicitly declared by the model.

E-147 Trying to interrupt a non existing loop
break or next is used outside of a loop.

E-148 Procedure/function ‘identifier’ declared but not defined
A procedure or functions is declared with forward, but no definition of the subroutine body
has been found or the subroutine body does not contain any statement.

Fair Isaac Corporation Proprietary Information 896

Appendix C: Error messages

E-149 Some requirements are not met
A package may declare requirements: these are symbols that must be declared by models
using this package. This error occurs when a model uses a package without providing the
definitions for all the requirements.

E-150 End of file inside a commentary
A commentary (usually started with (!) is not terminated. This error may occur, for instance,
with several nested commentaries.

E-151 Incompatible type for subscript num of ‘identifier’
The subscript counter num may be wrong if an incorrect number of subscripts is used.
Examples:

declarations
A:array(1..2,3..4) of integer
end-declarations

writeln(A(1.3))

This prints the value 2 for num, although the second subscript is actually missing.

W-152 Empty set for a loop detected
This warning will be printed in a few cases where it is possible to detect an empty set during
compilation.

E-153 Trying to assign the index ‘idx’
Loop indices cannot be re-assigned.
Examples:

declarations
C: set of string
D: range
end-declarations

forall(d in D) d+=1
forall(c in C) if (c='a') then c:='A'; end-if

Both of these assignments will raise the error. To replace an element of the set C, the
element needs to be removed and the new element added to the set.

E-154 Unexpected end of file
May occur, for instance, if an expression at the end of the model file is incomplete and in
addition end-model is missing.

E-155 Empty ‘case’
A case statement is used without defining any choices.

E-156 ‘identifier’ has no type
The type of identifier cannot be deduced. Typically, an undeclared object is assigned an empty
set.

E-157 Scalar expression expected
Examples:

declarations
B={'a','b','c'}
end-declarations

case B of
1: writeln("stop")
end-case

The case statement can only be used with the basic types (integer, real, boolean,
string).

Fair Isaac Corporation Proprietary Information 897

Appendix C: Error messages

D:: [1,2]

Declaration of arrays by assignment is only possible if the index set can be deduced
(e.g. definition of an array of linear constraints in a loop).

E-159 Compiler option ‘option’ unknown
Valid compiler options include explterm and noimplicit. See section 2.3.3 for more
details.

E-160 Definition of functions and procedures cannot be nested
May occur, for instance, if end-procedure or end-function is missing and the definition of
a second subroutine follows.

E-161 Expressions not allowed as procedure/function parameter
Occurs typically if the index set(s) of an array are defined directly in the procedure/function
prototype.
Examples:

procedure myproc(F:array(1..5) of real)
writeln("something")
end-procedure

Replace either by array(range) or array(set of integer) or define A:=1..5
outside of the subroutine definition and use array(A)

E-162 Non empty string expected here
This error is raised, for example, by uses ""

E-163 Array declarations in the form of a list are not allowed as procedure/function parameter
Basic types may be given in the form of a list, but not arrays.
Examples:

procedure myproc(F,G,H:array(range) of real, a,b,c:real)
writeln("something")
end-procedure

Separate declaration of every array is required:

procedure myproc(F:array(range) of real, G:array(range) of real,
H:array(range) of real, a,b,c:real)

W-164 A local symbol cannot be made public
Examples:

procedure myproc
declarations
public i:integer
end-declarations
i:=1
end-procedure

Any symbol declared in a subroutine is local and cannot be made public.

E-165 Declaration of ‘identifier’ hides a parameter
The name of a function/procedure parameter is re-used in a local declaration.
Examples:

procedure myproc(D:array(range) of real)
declarations
D: integer
end-declarations
writeln(D)
end-procedure

Rename either the subroutine argument or the name used in the declaration.

Fair Isaac Corporation Proprietary Information 898

Appendix C: Error messages

W-166 ‘;’ missing at end of statement
If the option explterm is employed, then all statements must be terminated by a semicolon.

E-167 Operator ‘op’ not defined
A constructor for a type is used in a form that is not defined.
Examples:

uses "complex"
c:=complex(1,2,3)

The module complex defines constructors for complex numbers from one or two reals,
but not from three.

E-168 ‘something’ expected here
Special case of “syntax error” (E-100) where the parser is able to provide a guess of what is
missing.
Examples:

something: :=

a: 3

The assignment is indicated by :=.
something: of

declarations
S: set integer
end-declarations

of has been omitted.
something: ..

declarations
A: array(1:2) of integer
end-declarations

Ranges are specified by ...

E-169 ‘identifier’ cannot be used as an index name (the identifier is already in use or declared)
Examples:

i:=0
sum(i in 1..10)

The identifier i has to be replaced by a different name in one of these lines.

E-170 ‘=’ expects a scalar here (use ‘in’ for a set)
Special case of syntax error (E-100).
Examples:

sum(i = 1..10)

Replace = by in.

E-171 The [upper/lower] bound of a range is not an integer expression
Examples:

declarations
A: array(1..2.5) of integer
end-declarations

Ranges are intervals of integers, so the upper bound of the index range must be
changed to either 2 or 3.

E-172 Only a reference to a public set is allowed here
All index sets of a public array must also be public.

Fair Isaac Corporation Proprietary Information 899

Appendix C: Error messages

E-173 Statement allowed in packages only
The block requirements can only be used in packages.

E-175 Index sets of array types must be named
User types defined as arrays must be indexed by named sets (i.e. declared separately). For
instance it is not allowed to use range or set of string as an index of such an array.

E-176 Only a public type is allowed here
If a user type depending on another user type is declared declared public, the secondary type
must also be public. For instance, assuming type T1 is private, it is not possible to declare T2
as a public T2=set of T1.

E-177 Incorrect number of initializers (n1/n2)
In an inline initialization (operator ::) the number of provided values to assign does not match
the list of indices.

E-202 Integer constant expected
Versions numbers (stated by means of the version compiler directive) must consist in 1 to 3
numbers separated by dots (e.g. 1.2.3). This error is displayed if a version number does not
conform to this syntax.

E-207 Problem reference/type expected here
The operator with is used with something that is not a problem.

E-208 There can be only one counter
The as counter declaration can appear only once in an iterator list.

E-209 Missing loop indices
Typically an iterator list contains only a counter declaration: it is necessary to provide at least
one index.

E-210 String starting at line line is unfinished
A multiline string is not correctly terminated with the matching end marker.

E-211 Invalid annotation syntax (ignored)
Malformed annotation that cannot be identified (e.g. containing .. or invalid characters—only
alphanumeric and underscore are allowed in annotation names).

E-212 Annotations: invalid path ‘name’
Some portion of the path forming an annotation identifier, e.g. cat1.cat2 is the path for the
annotation !@cat1.cat2.name, cannot be accessed.

E-213 Annotations: name ‘name’ not found
Some portion of the path forming an annotation identifier, e.g. cat1.cat2 is the path for the
annotation !@cat1.cat2.name, is not defined.

E-214 Annotations: trying to redefine ‘name’ (ignored)
An annotation can only be defined once.

E-215 Annotations: invalid definition string for ‘name’ (value)
Incorrect or incomplete annotation declaration in an @mc.def statement, such as duplicate or
missing property or value, use of an unknown keyword. Please refer to the list of permissible
declaration statements in Section 2.14.3.

E-217 Annotations: wrong value ‘value’ for ‘name’ (expecting: value2)
An annotation is assigned a value that does not correpond to the value type or set of values
that have been specified in its declaration (via @mc.def).

E-218 Annotations: missing chapter for ‘name’
moseldoc is trying to add a documentation entry under a chapter or section that has not (yet)
been defined.

Fair Isaac Corporation Proprietary Information 900

Appendix C: Error messages

C.2.1 Errors related to modules
E-302 The symbol ‘identifier’ from ‘module’ cannot be defined (redefinition)

Two different modules used by a model define the same symbol (incompatible definitions).

E-303 Wrong type for symbol ‘identifier’ from ‘module’
Internal error in the definition of a user module (an unknown type is used): refer to the list of
type codes in the Native Interface reference manual.

W-306 Unknown operator ‘op’ (code num) in module ‘module’
Internal error in the definition of a user module: refer to the list of operator codes in the Native
Interface reference manual.

E-307 Operator ‘op’ (code num) from module ‘module’ rejected
Internal error in the definition of a user module: an operator is not defined correctly.

E-308 Parameter string of a native routine corrupted
Internal error in the definition of a user module: refer to the list of parameter type codes in the
Native Interface reference manual.

W-309 Problem type ‘typ’ unknown: extension ‘ext’ ignored
A module declares a native type as a problem extension but the compiler cannot find the base
type. For instance the new type is named "myprob.pb" but "myprob" does not exist.

C.2.2 Errors related to packages
E-320 Package ‘package’ not found

A package has not been found in the module path (see section 2.3.1 for the search rules).

E-321 ‘file’ is not a package
Typically displayed if a model is used as a package (the source for the bim file starts with the
model keyword instead of package).

E-322 Wrong version for package ‘package’(using:num1.num2.num3/required:num4.num5.num6)
A model is compiled with package A depending on a package B. The bim file Mosel has loaded
for B is not compatible with the one used for compiling A (found version num1.num2.num3,
required version is num4.num5.num6).

E-323 Package ‘package’ imported several times
A package cannot be imported several times in a model. This error occurs usually when a
model uses packages A and B, and package B already includes A.

C.3 Runtime errors
Runtime errors are usually displayed without any information about where they have occurred. To obtain
the location of the error, use the flag g with the COMPILE, CLOAD, or EXECUTE command.

C.3.1 Initializations
E-30 Duplicate label ‘label’ at line num of file ‘file’ (ignored)

The same label is used repeatedly in a data file.
Examples:

D: [1 2 3]
D: [1 2 4]

Fair Isaac Corporation Proprietary Information 901

Appendix C: Error messages

E-31 Error when reading label ‘label’ at (num1,num2) of file ‘file’
The data entry labeled label has not been read correctly. Usually this message is preceded by a
more detailed one, e.g. E-24, E-27 or E-28.

E-32 Error when writing label ‘label’ at (num1,num2) of file ‘file’
The data entry labeled label has not been written correctly. Usually this message is preceded by
a more detailed one, e.g. E-23.

E-33 Initialization with file ‘file’ failed for: list_of_identifier
Summary report at the end of an initializations section. Usually this message is
preceded by more detailed ones, e.g. E-27, E-28, E-30, E-31.

C.3.2 General runtime errors
E-51 Division by zero

Division by 0 resulting from the evaluation of an expression.

E-52 Math error performing function ‘identifier’
For example ln used with inadmissible argument, such as 0 or negative values.

E-72 Not a runnable model (main procedure not found)
Most likely, you are trying to execute a ’package’ as if it were a ’model’.

E-1000 Inconsistent range
Typically displayed if the lower bound specified for a range is greater than its upper bound.
Examples:

D:=3..-1

E-1001 Conflicting types in set operation (op)
A set operation can only be carried out between sets of the same type.
Examples:

declarations
C: set of integer
D: range
end-declarations

C:={5,7}
D:=C

The inverse, C:=D, is correct because ranges are a special case of sets of integers.

E-1002 An index is out of range
An attempt is being made to access an array entry that lies outside of the index sets of the array.

E-1003 Trying to modify a finalized or fixed set
Occurs, for instance, when it is attempted to re-assign a constant set or to add elements to a
fixed set.

E-1004 Trying to access an uninitialized object (type_of_object)
Occurs typically in models that define subroutines.
Examples:

type_of_object: array

forward procedure myprint
myprint
declarations
A:array(1..2,3..4) of integer
end-declarations

Fair Isaac Corporation Proprietary Information 902

Appendix C: Error messages

procedure myprint
writeln(A(1,2))
end-procedure

Move the declaration of A before the call of the subroutine

E-1005 Wrong type for “procedure”
Occurs when procedures settype or getvars are used with incorrect types.

E-1006 Null reference (internal_function)
This error is a special case of E-1004 when the problem is detected on an external type or scalar
(e.g. accessing a record field on an object that has not been initialized).

E-1009 Too many initializers
The number of data elements exceeds the maximum size of an array.
Examples:

declarations
A:array(1..3) of integer
end-declarations

A::[1,2,3,4]

E-1010 Trying to extend a unary constraint
Most types of unary constraints cannot be transformed into constraints on several variables.
Examples:

declarations
x,y: mpvar
end-declarations

c:=x is_integer
c+=y

E-1011 Dense array too big
The model is trying to create a dense array with more than 4 billion cells, typically such an array
should have been declared as sparse (dynamic or hashmap). This error will be raised when the
array is allocated (after its declaration or when it is first accessed).

E-1013 Infeasible constraint
The simple cases of infeasible unnamed constraints that are detected at run time include:
Examples:

declarations
x:mpvar
end-declarations
i:=-1
if(i>=0,x,0)>=1

! or:
x-x>=1

E-1014 Conflicting types in array operation (op)
An array operation (like assignment) can only be carried out between arrays of the same type
and structure.

E-1015 Trying to modify a constant list
Occurs, for instance, when it is attempted to apply a destructive operation (like splittail) to
a constant list.

E-1016 Trying to get an element in an empty set
The function getfirst or getlast is applied to an empty set.

Fair Isaac Corporation Proprietary Information 903

Appendix C: Error messages

E-1017 Trying to get an element in an empty list
The function getfirst or getlast is applied to an empty list.

E-1018 Invalid identifier ‘identifier’ for publish
The publish command has received an invalid identifier name (e.g. not a valid Mosel
identifier or the name is already in use as Mosel idientifier).

E-1100 Empty problem
We are trying to generate or load an empty problem into a solver (i.e. no constraints; bounds do
not count as constraints).

E-1103 Too many matrix coefficients
Matrix size exceeds machine capacity: for 32bit versions the limit are 2billion (2 · 10E9)
elements.

C.3.3 BIM reader
E-80 ‘file’ is not a BIM file

Trying to load a file that does not have the structure of a BIM file.

E-82 Wrong BIM format version (current:num1/required:num2) for file ‘file’
A BIM file is loaded with an incompatible version of Mosel: preferably the same versions should
be used for generating and running a BIM file.

E-83 BIM file ‘file’ corrupted
A BIM file has been corrupted, e.g. by saving it with a text editor.

E-84 File ‘file’: model cannot be renamed
A model file that is being executed cannot be re-loaded at the same time.

W-85 Trailing data at end of file ‘file’ ignored
At the end of a BIM file additional, unidentifiable data has been found (may be a sign of file
corruption).

E-88 BIM file ‘file’ corrupted
Incomplete or otherwise damaged BIM file.

E-90 Signature error (description)
During the generation of a BIM file, a problem with the signature has occurred.

E-91 Signature verification error (description)
While reading a BIM file, a problem with the signature has occurred (e.g. trying to check
signature for a file that is not signed; or the keys that have been employed don’t match).

E-92 Encryption error (description)
Problem with encryption during the generation of a BIM file (e.g. invalid or missing key).

E-93 Decryption error (description)
Problem with decryption while reading a BIM file (e.g. invalid or missing key).

C.3.4 Module manager errors
E-350 Module ‘module’ not found

A module has not been found in the module path (see section 2.3.1 for the search rules). This
message is also displayed, if a module depends on another library that has not been found (e.g.
module mmxprs has been found but Xpress Optimizer has not been installed or cannot be
located by the operating system).

Fair Isaac Corporation Proprietary Information 904

Appendix C: Error messages

E-351 File ‘file’ is not a Mosel DSO
Typically displayed if Mosel cannot find the module initialization function.

E-352 Module ‘module’ requires a more recent version of Mosel (unsupported interface)
A module is not compatible with the Mosel version used to load it.

E-353 Module ‘module’ disabled by restrictions
Module module either does not implement restriction handling at all or it requires features that
are not authorized. See section 1.3.4 (restricted mode) and section 8.6.2 (Remote Launcher
configuration) to learn how to relax the restrictions.
Examples:

mmxprs will fail with the restriction setting NoTmp

E-354 Error when initializing module ‘module’
Usually preceded by an error message generated by the module. Please refer to the
documentation of the module for further detail.

E-355 Wrong version for module ‘module’(using:num1.num2.num3/required:num4.num5.num6)
A model is run with a version of a module that is different from the version that has been used
to compile the model (trying to run with version num1.num2.num3, required version is
num4.num5.num6).

E-358 Error when resetting module ‘module’
A module cannot be executed (e.g. due to a lack of memory).

E-359 Driver ‘pkg.driver’ rejected (reason)
A module publishes an IO driver which name is invalid or that is missing some mandatory
function.

E-360 Control parameter ‘module.param’ unknown (setting ignored)
It is possible to set module parameters when running a model (using the RUN command for
instance): in the list of assignments, a control parameter cannot be found in the indicated
module.

E-361 Version number truncated (‘vernum’)
A version number (for module, model or package) consists in three positive numbers a.b.c. This
error is raised if one of these numbers is larger than 999.

E-362 The operating system failed to load file ‘file’ (‘description’)
The module file has been found but cannot be loaded by the system—there will typically be
some system error message indicating the exact cause, such as wrong architecture (e.g. using
a library compiled for Windows under Linux or bitness mismatch) or missing additional files
(e.g. tyring to use module matlab without having previously installed Matlab—see the manual
Xpress MATLAB Interface for further detail, or attempting to use mmoci without having installed
the Oracle Instant Client—see setup instructions in the whitepaper Using ODBC and other
database interfaces with Mosel).

Fair Isaac Corporation Proprietary Information 905

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support
FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ’Xpress’ in the subject line of your support queries.

Product education
FICO Product Education is the principal provider of product training for our clients and partners. Product
Education offers instructor-led classroom courses, web-based training, seminars, and training tools for
both new user enablement and ongoing performance support. For additional information, visit the
Product Education home page at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation
FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let us
know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.

Fair Isaac Corporation Proprietary Information 906

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance
If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

■ Phone: +1 (408) 535-1500 or +44 207 940 8718

■ Web: www.fico.com/optimization and use the available contact forms

Related services
Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time to
assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting time
can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community
The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical support,
build relationships with local and remote professionals, and improve your business practices. For
additional information, visit the FICO Community (community.fico.com/welcome).

About FICO
FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper. Founded
in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics and data
science to improve operational decisions. FICO holds more than 165 US and foreign patents on
technologies that increase profitability, customer satisfaction, and growth for businesses in financial
services, telecommunications, health care, retail, and many other industries. Using FICO solutions,
businesses in more than 100 countries do everything from protecting 2.6 billion payment cards from
fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are in the right
place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Proprietary Information 907

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
!, 15
!), 15
!@, 56
(!, 15
(!@, 56
⁎, 33, 34
+, 34, 35
+, 16, 33, 34
+=, 38
,, 16
-, 34, 35
-, 16, 33, 34
-=, 38
->, 37
., 638
.., 34, 638
..., 48
/, 33
//, 638
::, 39
:=, 38
;, 16
;, 16, 37
=, 35
=, 35, 36
@, 56
_, 15, 68
_c, 68

Numbers
1, 718
2, 718
3, 718
4, 718
5, 718
6, 718
7, 718
8, 718
9, 718
10, 718
11, 718
12, 718
13, 718
14, 718
15, 718
16, 718
17, 718
18, 719
20, 719
21, 719
22, 719

23, 719
24, 719
25, 719
26, 719
27, 719
28, 719

A
abs, 72, 322, 639
absolute value, 72, 322
access mode, 545
activity, 111

robust constraint, 421, 424
add

array of cuts, 815, 817
cut, 815, 816
image, 470, 476, 477

addcut, 816
addcuts, 817
addmipsol, 728
addmonths, 518
addmultistart, 700
addnode, 643
aggregate operator, 32
alias, 39, 252, 257

define, 252, 259
delete, 252, 255
list, 252, 258

and, 16, 32, 35, 721
annotated identifiers, 395, 402
annotation, 55

category, 55
current category, 56
documentation, 63, 67
global, 57
multi-line, 56
name, 56
predefined categories, 56
property, 57

annual discount, 188, 189
anonymous constraint, 40
any, 26
append

file, 107
arccos, 322
arcsin, 322
arctan, 73, 322
argc, 184
argument

number of, 183, 184
argument value, 183, 185
arguments, 47

Fair Isaac Corporation Proprietary Information 908

Index

argv, 185
arithmetic expression, 33
array, 24

automatic, 37
compare, 35
create a cell, 85
declaration, 24
delete a cell, 93
dereference, 28
get value, 395, 404
in/output, 188, 190

array, 16, 32, 37
as, 16
asproc, 74
assert, 75
assign R object, 855, 865, 866
assignment, 37

additive, 38
constraints, 38
subtractive, 38

asymmetric ciphers, 436
asynchronous HTTP request, 202
attribute

delete, 641, 646
get first, 641, 653
get value, 641, 648
set value, 642, 676
test existence, 642, 649

attribute, 638
autofinal, 125, 168
axis specifier, 637, 638

B
base64, 464
basic type, 22
basis

load, 726, 768
read, 726, 776
reset, 726, 783
save, 726, 786
status, 725, 726, 740, 792
write, 727, 809

basis, 720
basis stability, 724, 729
basisstability, 729
BCONDITION, 6
best bound, 722
BIM, 1, 3

documentation enabled, 63
encryption, 3
signed, 3

bimprefix, 125, 168
bin, 60
bitflip, 76
bitneg, 77
bitset, 78
bitshift, 79
bittest, 80
bitval, 81
bitwise

and, 80
not, 77
or, 78
shift, 79
value, 81
xor, 76

body
model, 17

boolean, 16, 22, 31, 639
Boolean expression, 35
BREAK, 6
break, 16, 46
BREAKPOINTS, 7
BREAKSUB, 7
buffer size, 340, 359
ByteBuffer, 245

C
calcsolinfo, 730
call Python function, 831, 833
call Python object, 831, 833
callback, 699, 707, 726, 793
callfunc, 396
callfunclsa, 396
callproc, 397
callproclsa, 397
canceltimer, 288
cardinality, 422
cascading, 710
case, 16, 44
case-insensitive, 6
case-sensitive, 16
casting, 31
cb, 60
CDATA, 636
cdata, 638
ceil, 82, 322
ceiling, 639
certificate

client, 438
server, 439

certificate file, 438
character encoding, 60, 641, 642, 650, 677
chgdeltatype, 701
child, 638
child model, 289
cipher algortihm, 436
class

event, 287
clear error

R, 855, 870
clearaliases, 255
clearinitvals, 324
clearmipdir, 731
clearmodcut, 732
clearqexpstat, 392
client certificate, 438
client private key, 439
clone, 265
close

Fair Isaac Corporation Proprietary Information 909

Index

file, 61, 101
stream, 101

coefficient, 112
set, 162

color, 486
column order, 721, 722
command

Optimizer, 733
system, 517, 612

command, 733
command line interpreter, 1
commands

shortening, 10
comment, 8, 15, 42, 636

sign, 109
skip, 109

comment, 638
commentary

multi-line, 15
communication interface, 387, 624
comparator, 35
compare, 83
compareic, 519
comparison tolerance, 35, 168
compile

model, 3
compile, 262
compiled, 17
compiler annotations, 56
compiler directives, 17
compiler library, 1
compiler options, 19
concatenation, 34

list, 35
condition, 33
configuration directory, 437

path, 441
configuration file, 316
connect, 342, 344, 362, 366
connect, 253
connection

number, 340, 360
connection template, 249
connector, 28
conntmpl, 249
constant, 26

compile time, 27
definition, 26
run time, 27

constant, 16, 23
constants, 71
constraint, 22

activity, 111
anonymous, 40
coefficient, 112, 113
dual, 114
hide, 163
name, 40, 166
ranging information, 725, 755
right hand side, 36

sensitivity ranges, 725, 757
set coefficient, 162
set of variables, 138
set type, 171
slack, 131
test hidden, 143
type, 36, 136, 421, 429

contains, 639
context, 387, 624

problem, 50
context node, 637
CONTINUE, 7
control parameter, 20

documentation, 67
get, 124, 515, 541
local set, 148
Mosel instance, 884
restore, 159
set, 167, 517, 598

convergence tolerance, 695
conversion

basic type, 31
copy

file, 515, 526
copynode, 645
copysoltoinit, 325, 734
copytext, 520
cos, 84, 322
count, 16, 32
counter, 16
coverage, 5
create

directory, 516, 570, 571
create, 25, 26, 85
cross recursion, 49
crossoverlpsol, 735
crypt, 464
csrc, 186
csv, 434
CT_BIN, 136, 171
CT_CARD, 429
CT_CONT, 136, 171
CT_EQ, 136, 171, 330, 333, 429, 431
CT_FREE, 136, 171
CT_GEQ, 136, 171, 330, 333, 429, 431
CT_INT, 136, 171
CT_LEQ, 136, 171, 330, 333, 429, 431
CT_PINT, 136, 171
CT_RNG, 136
CT_SCEN, 429
CT_SEC, 136, 171
CT_SINT, 136, 171
CT_SOS1, 136, 171
CT_SOS2, 136, 171
CT_UNB, 136, 171, 330, 333, 429, 431
currentdate, 86
currenttime, 87
cut

add, 815, 816
add array, 815, 817

Fair Isaac Corporation Proprietary Information 910

Index

delete, 815, 818
drop, 815, 819
get active, 815, 820
list from cut pool, 815, 821
load, 822
store, 815, 823
store array, 815, 824

cutelt, 88
cutfirst, 89
cuthead, 90
cutlast, 91
cuttail, 92
cuttext, 521

D
DATA, 636
data

initialization, 40
input, 188, 190
local, 47
output, 188, 190
read, 157
save, 42
sharing, 248

data, 638
data frame, 855, 866
database

connect, 342, 344, 362, 366
disconnect, 363, 369
logoff, 342, 345
transaction, 362, 363, 365, 379

datablock, 94
date, 86
date, 509
datefmt, 511
datetime, 510
datetimefmt, 512
debug mode

OCI, 340
ODBC, 360

debugger, 6
declaration, 17, 21

forward, 49
implicit, 39
list, 23
record, 25
set, 23
union, 26

declarations, 16, 21
declarative, 17
decrypt

private key, 442, 449
public key, 442, 448

defaultnode, 249
defdelayedrows, 736
deflate, 873
defsecurevecs, 737
delattr, 646
delayed rows, 725, 736
delcell, 93

delcookies, 204
delcuts, 818
DELETE, 7
delete

cut, 815, 818
directives, 724, 731
directory, 517, 593
file, 515, 527
model cuts, 724, 732

delnode, 647
delta variable, 699, 701
deltext, 522
dense, 341, 361
dependency

module, 387, 624
service, 387, 624

deploy executable, 62
deploy.dso, 183
descendant, 638
descendant-or-self, 638
detach, 264
determining row, 699, 710
difference, 35

list, 35
set, 34
string, 34

digital signature, see electronic signature, see
electronic signature

directive, 726, 801
delete, 724, 731

directives
read, 726, 777
write, 727, 810

directory, 515, 535
access mode, 545
create, 516, 570, 571
delete, 517, 593
new, 516, 570, 571
remove, 517, 593
status, 545

disc, 189
disconnect, 342, 345, 363, 369
disconnect, 254
diskdata, 190, 192
DISPLAY, 7
display

info, 7
model, 7
models, 8

div, 16, 33
division

integral, 33
remainder, 33

do, 16
doc, 56, 63
doc.annot, 67
doc.cparam, 67
documentation

enable, 63
target location, 65

Fair Isaac Corporation Proprietary Information 911

Index

documentation annotations, 63
DOWN, 7
draw

arrow, 470, 473
ellipse, 470, 474, 475
line, 470, 478, 481
pie, 479
point, 480
polyline, 470, 478, 481
rectangle, 470, 482
text, 470, 483, 484

drop
cut, 815, 819

dropcuts, 819
dropnextevent, 299
DSO, 8
dual value, 114
dumpcallstack, 95
dynamic, 16, 24
dynamic array

of variables, 25
dynamic shared object

version, 8
Dynamic Shared Objects manager, 1
dynonly, 19

E
E-1, 891
E-100, 893
E-1000, 902
E-1001, 902
E-1002, 902
E-1003, 902
E-1004, 902
E-1005, 903
E-1006, 903
E-1009, 903
E-101, 893
E-1010, 903
E-1011, 903
E-1013, 903
E-1014, 903
E-1015, 903
E-1016, 903
E-1017, 904
E-1018, 904
E-102, 894
E-103, 894
E-104, 894
E-106, 894
E-107, 894
E-108, 894
E-109, 894
E-1100, 904
E-1103, 904
E-111, 894
E-112, 894
E-113, 895
E-114, 895
E-115, 895

E-118, 895
E-122, 895
E-123, 895
E-124, 895
E-125, 895
E-126, 896
E-127, 896
E-128, 896
E-129, 896
E-130, 896
E-132, 896
E-147, 896
E-148, 896
E-149, 897
E-150, 897
E-151, 897
E-153, 897
E-154, 897
E-155, 897
E-156, 897
E-157, 897
E-159, 898
E-160, 898
E-161, 898
E-162, 898
E-163, 898
E-165, 898
E-167, 899
E-168, 899
E-169, 899
E-170, 899
E-171, 899
E-172, 899
E-173, 900
E-175, 900
E-176, 900
E-177, 900
E-2, 891
E-202, 900
E-207, 900
E-208, 900
E-209, 900
E-21, 891
E-210, 900
E-211, 900
E-212, 900
E-213, 900
E-214, 900
E-215, 900
E-217, 900
E-218, 900
E-22, 891
E-23, 891
E-24, 891
E-25, 891
E-26, 892
E-27, 892
E-28, 892
E-29, 892
E-30, 901

Fair Isaac Corporation Proprietary Information 912

Index

E-302, 901
E-303, 901
E-307, 901
E-308, 901
E-31, 902
E-32, 902
E-320, 901
E-321, 901
E-322, 901
E-323, 901
E-33, 902
E-34, 892
E-35, 892
E-350, 904
E-351, 905
E-352, 905
E-353, 905
E-354, 905
E-355, 905
E-358, 905
E-359, 905
E-36, 892
E-360, 905
E-361, 905
E-362, 905
E-37, 893
E-38, 893
E-39, 893
E-4, 891
E-40, 893
E-51, 902
E-52, 902
E-72, 902
E-80, 904
E-82, 904
E-83, 904
E-84, 904
E-88, 904
E-90, 904
E-91, 904
E-92, 904
E-93, 904
electronic signature, 436

create, 442, 454
verify, 442, 455

element node, 636
elementary type, 22
elif, 16, 44
else, 16, 44
enc:, 60
encoding, 60
encrypt

private key, 442, 450
public key, 442, 451

encryption
BIM, 3

encryption key, 436
end, 16
end-case, 44
end-declarations, 21

end-function, 48
end-if, 44
end-model, 17
end-package, 17
end-procedure, 48
endswith, 523
enumerate

quadratic terms, 393
environment

current, 316
process, 316

environment variable, 543, 599
MOSEL_BIM, 18, 315
MOSEL_DSO, 18, 315
MOSEL_EXECPATH, 315, 612
MOSEL_RESTR, 11, 316
MOSEL_ROPATH, 11, 315
MOSEL_RWPATH, 11, 315
MOSEL_SDMAX, 2
MOSEL_SSL, 441
MOSEL_TMP, 61, 315

eof, 141
EP_HEX, 99, 385
EP_MAX, 99, 385
EP_MIN, 99, 385
EP_MPS, 99, 385
EP_STRIP, 99, 385
EPROP_CONST, 417
EPROP_DENSE, 417
EPROP_DYNAMIC, 417
EPROP_GENSET, 417
EPROP_HASHMAP, 417
EPROP_PRIV, 417
EPROP_PUBLIC, 417
EPROP_RANGE, 417
EPROP_SPARSE, 417
EPROP_VAR, 417
erase, 524
error

detection, 17
ODBC, 357

error code
R, 855, 868

error control
IO, 107, 125, 168
Maths, 168

error message
R, 855, 869

error stream, 101, 107, 108
escape sequence, 33
escape sequences, 34
estimatemarginals, 738
ETC_APPEND, 190
ETC_AUTONDX, 190
ETC_CSV, 190
ETC_DATAFRAME, 190
ETC_DENSE, 190
ETC_EMPTYNDX, 190
ETC_IN, 190
ETC_NOQ, 190

Fair Isaac Corporation Proprietary Information 913

Index

ETC_NOZEROS, 190
ETC_OUT, 190
ETC_SGLQ, 190
ETC_SKIPH, 190
ETC_SPARSE, 190
ETC_TRANS, 190
evaluate Python expression, 831, 836
evaluate R script, 855, 867
evaluate R statement, 855, 856
evaluation, 16
even number, 146
Event, 287
event

class, 287, 305
drop next, 287, 299
get next, 287, 298
null, 287, 301
peek next, 287, 308
queue, 287, 300
send, 287, 289
sender group ID, 287, 303
sender ID, 287, 302
sender user ID, 287, 304
value, 287, 307
wait for, 287, 293

event class, 287
wait for, 287, 295

event queue, 247
event value, 287
EVENT_END, 272
EVENT_HTTPEND, 202
EVENT_HTTPNEW, 234, 239
EVENT_TIMER, 290
excel, 433
exe, 186
execution environment, 313, 316
exists, 96
exit, 97
exit code

model, 261, 281
exp, 98, 322
expandpath, 525
explterm, 16, 19
exponential function, 98, 322
export

problem, 99
quadratic problem, 384, 385

EXPORTPROB, 7
exportprob, 99, 385
expression, 28

linear constraint, 36
list, 34
print, 110, 181
set, 34
set type, 171, 323, 333, 421, 431
string, 33
terminator, 16
type, 29

extended syntax, 358, 360

F
F, 702
F_APPEND, 107
F_BINARY, 107
F_ERROR, 101, 107, 117, 120
F_INPUT, 101, 107, 117, 120
F_LINBUF, 107
F_OUTPUT, 101, 107, 117, 120
F_SILENT, 107
F_TEXT, 107
failure, 342, 362
false, 16, 22, 639
fclose, 61, 101
fcopy, 526
fctasproc, 19
fdelete, 527
fflush, 61, 102
file

access mode, 545
append, 107
close, 101
compressed, 873
copy, 515, 526
delete, 515, 527
ID, 117
in/output, 188, 190
inclusion, 20, 94
initialization, 41
IO, 61
move, 515, 530
name, 120
open, 107
read, 61, 157
rename, 515, 530
select, 108
size, 544
status, 545
time, 546
write, 110, 181

file extension, 3
file name prefix

file inclusion, 3
files

BIM, 17
finalize

set, 103
finalize, 24, 103
find

identifier, 395, 398
findcookie, 205
findfiles, 528
findfirst, 104
findident, 398
findlast, 105
findtext, 529
findxsrvs, 260
FINISH, 7
fix

variable, 739
fixglobal, 739

Fair Isaac Corporation Proprietary Information 914

Index

floor, 106, 322, 639
flush buffer, 102
fmax, 322
fmin, 322
fmove, 530
following, 638
fopen, 61, 107
forall, 16, 45
format string, 176
formattext, 531
forward, 16, 49
free

info table, 389, 392
from, 16
fselect, 61, 108
fskipline, 61, 107, 109
fsrvdelay, 251
fsrvnbiter, 251
fsrvport, 250
function

call, 395, 396
return value, 47
type, 47

function, 16
function call, 29
fwrite, 110
fwrite_, 68
fwriteln, 110
fwriteln_, 68

G
generateUFparallel, 704
get

active cuts, 815, 820
cuts from cut pool, 815, 821

get pandas DataFrame, 831, 837
get Python variable, 831, 836, 845
get R array, 855, 858
get R boolean, 855, 859
get R integer, 855, 860
get R real, 855, 861
get R string, 855, 862
getact, 111, 424
getaliases, 258
getallidents, 400
getallparams, 401
getannidents, 285, 402
getannotations, 286, 403
getarrval, 404
getasnumber, 533
getattr, 648
getbanner, 256
getboolattr, 641, 648
getboolvalue, 642, 652
getbstat, 740
getchar, 534
getclass, 305
getcnlist, 820
getcode, 405
getcoeff, 112

getcoeffs, 113
getcomputeallowed, 741
getcplist, 821
getcsttxtbuf, 632
getcwd, 535
getdate, 536, 628
getdatetime, 630
getday, 537
getdaynum, 538
getdays, 539
getdirsep, 540
getdsoparam, 541
getdsoprop, 273
getdsopropnum, 273
getdual, 114
getdualray, 742
getelt, 115
geteltype, 116, 406
getencoding, 650
getendparse, 542
getenv, 543
getexitcode, 281
getfid, 61, 117
getfirst, 118
getfirstattr, 653
getfirstchild, 655
getflstat, 545
getfname, 120
getfromgid, 303
getfromid, 302
getfromuid, 304
getfsize, 544
getfstat, 545
getftime, 546
getgid, 274
gethead, 119
gethostalias, 257
gethour, 547
gethspace, 663
getid, 275
getiis, 743
getiissense, 744
getiistype, 745
getindentmode, 665
getindentskip, 666
getindices, 407
getinfcause, 746
getinfeas, 747
getintattr, 641, 648
getintvalue, 642, 652
getlast, 121
getlastchild, 656
getlb, 748
getlinelen, 667
getloadedlinctrs, 749
getloadedmpvars, 750
getmatcoeff, 751
getmaxnodes, 668
getminute, 548
getmodprop, 276

Fair Isaac Corporation Proprietary Information 915

Index

getmodpropnum, 276
getmonth, 549
getmsec, 550
getmsg, 408
getname, 651, 752
getnbargs, 409
getnbdim, 122
getnext, 654
getnextevent, 298
getnode, 277, 657
getnodes, 658
getnominal, 428
getobjval, 123
getoserrmsg, 552
getoserror, 551
getparam, 107, 124, 339, 358, 437, 510, 721, 754
getparent, 659
getpathsep, 553
getprimalray, 753
getprobstat, 754
getqexpnextterm, 393
getqexpsol, 390
getqexpstat, 391
getqtype, 555
getrange, 755
getrcost, 127
getreadcnt, 128
getrealattr, 641, 648
getrealvalue, 642, 652
getrettype, 410
getreverse, 129
getrmtid, 278
getscale, 756
getsecond, 556
getsensrng, 757
getsepchar, 557
getsignature, 411
getsize, 130, 558, 639, 669, 758
getslack, 131
getsol, 132, 327, 386, 390, 423, 759
getstandalone, 661
getstart, 559
getstatus, 279, 412
getstrattr, 641, 648
getstruct, 133
getstrvalue, 642, 652
getsucc, 554
getsysinfo, 560
getsysstat, 561
gettail, 135
gettime, 562, 626
gettimer, 306
gettmpdir, 563
gettrim, 564
gettxtbuf, 634
gettxtsize, 633
gettype, 136, 330, 429, 660
gettypeid, 137
getub, 761
getuid, 280

getvalue, 307, 652
getvar, 760
getvars, 138, 762
getvspace, 664
getweekday, 565
getxmlversion, 662
getyear, 566
GID

event sender, 287, 303
model, 261, 274, 287, 292
wait for, 287, 295

graph, 466
graphical interface, 2
gzip, 873

H
hasfeature, 763
hashmap, 16, 24
hex, 464
hidden constraint, 143, 163, 322, 323, 328, 329

robust constraint, 421, 425, 427
hmac, 465
horizontal spacing, 641, 642, 663, 681
host alias, see alias, see alias
http driver, 244
HTTP request

asynchronous mode, 202
delete, 203, 207
get, 203, 208
head, 203, 210
patch, 203, 211
post, 203, 212
put, 203, 213
status code, 203, 214
synchronous mode, 202

HTTP server, 194
start, 222, 239
stop, 222, 240

HTTP_ACCEPTED, 201
http_async, 195
HTTP_BAD_REQUEST, 201
http_browser, 195
http_cookies, 196
HTTP_CREATED, 201
http_defpage, 196
http_defport, 196
http_expire, 196
HTTP_FORBIDDEN, 201
http_freeasync, 197
http_keephdr, 197
http_listen, 197
http_maxasync, 199
http_maxconn, 197
http_maxcontime, 198
http_maxreq, 198
http_maxreqtime, 198
HTTP_METHOD_NOT_ALLOWED, 201
HTTP_NO_CONTENT, 201
HTTP_NOT_ACCEPTABLE, 201
HTTP_NOT_FOUND, 201

Fair Isaac Corporation Proprietary Information 916

Index

HTTP_OK, 201
HTTP_PAYMENT_REQUIRED, 201
http_port, 199
http_proxy, 199
HTTP_PROXY_AUTHENTICATION_REQUIRED, 201
http_proxyport, 199
HTTP_REQUEST_TIMEOUT, 201
HTTP_RESET_CONTENT, 201
http_srvconfig, 200
http_startwb, 200
HTTP_UNAUTHORIZED, 201
HTTP_SKIP_EMPTYCOL, 242
HTTP_SKIP_EMPTYUNION, 242
httpcancel, 206
httpdel, 207
httpget, 208
httpgetheader, 209
httphead, 210
httppatch, 211
httppending, 223
httppost, 212
httpput, 213
httpqueueinfo, 224
httpreason, 214
httpreply, 225
httpreplycode, 226
httpreplyjson, 227
httpreqconstat, 228
httpreqcookies, 229
httpreqfile, 230
httpreqfrom, 231
httpreqheader, 232
httpreqlabel, 233
httpreqpop, 234
httpreqpush, 235
httpreqpushlim, 236
httpreqstat, 237
httpreqtype, 238
https_cacerts, 438
https_ciphers, 438
https_cltcrt, 438
https_cltkey, 439
https_defport, 200
https_listen, 201
https_port, 201
https_srvcrt, 439
https_srvkey, 439
https_trustsrv, 440
httpstartsrv, 239
httpstopsrv, 240

I
I/O driver, 59

bin:, 60
cb:, 60
default, 59
deploy.csrc:, 62, 186
deploy.exe:, 62, 186
mem:, 59
mmetc.diskdata:, 192

mmhttp.url:, 244
mmjava.java:, 245
mmjava.jraw:, 246
mmjobs.mempipe:, 311
mmjobs.rcmd:, 312
mmjobs.rmt:, 313
mmjobs.shmem:, 311
mmjobs.xsrv:, 312
mmjobs.xssh:, 312
mmoci.oci:, 352
mmodbc.odbc:, 382
mmsheet.csv:, 434
mmsheet.excel:, 433
mmsheet.xls:, 434
mmsheet.xlsx:, 434
mmssl.base64:, 464
mmssl.crypt:, 464
mmssl.hex:, 464
mmssl.hmac:, 465
mmsystem.pipe:, 623
mmsystem.text:, 623
null:, 59
python3.python:, 845
r.rws:, 871
raw:, 60
sysfd:, 60
tee:, 60
tmp:, 59
zlib.deflate:, 873
zlib.gzip:, 873
zlib.zip:, 873

ID
event sender, 287, 302
file, 117
model, 261, 275
stream, 117

identifier, 15
find, 395, 398

if, 16, 29, 43
IIS, see irreducible infeasible set, see irreducible

infeasible set, see irreducible infeasible set
reset search, 726, 784

IMCI, 387, 624
implies, 764
imports, 16, 17
in, 16, 35
include, 16, 20
indent mode, 641, 642, 665, 684
indent skip, 641, 642, 666, 685
indexing set, 24
indicator, 765
indicator constraint, 721, 725, 765
INFINITY, 142, 144, 165
INFINITY, 71
INFO, 7
info

quadratic expression, 389, 391
initial step bound, 699, 712
initial value, 320

copy solution, 322, 325, 725, 734

Fair Isaac Corporation Proprietary Information 917

Index

delete, 322, 324
set, 323, 326

initialisation vector, 464
size, 456

initialisations, 16
initializations, 16
initialize pandas interface, 832, 840
initialize Python, 831, 839
initialize R, 855, 863
inititer, 413
inline initialization, 39
input file, 188, 190
input stream, 101, 107, 108, 245, 261, 267

read, 157
test eof, 141

InputStream, 245
inserttext, 567
instance

banner, 252, 256
connect, 252, 253
disconnect, 252, 254

instance control parameter, 884
integer

read, 342, 347, 363, 376
integer, 16, 22, 31
integrality check, 767
inter, 16, 32, 34
inter-module communication, 387, 624
interface

inter-module communication, 387, 624
interpreted, 17
intersection, 34
IO

error, 107, 125, 168
status, 107, 125
switching between streams, 61

IO driver, see I/O driver
ioctrl, 107, 125, 168
iostatus, 107, 125
irreducible infeasible set, 725, 726, 743, 766
is, 16, 35
is_binary, 16, 36
is_continuous, 16, 36
is_free, 16, 36
is_integer, 16, 36
is_partint, 16, 36
is_semcont, 16, 36
is_semint, 16, 36
is_sos1, 16, 36
is_sos2, 16, 36
isdefined, 139
isdynamic, 140
iseof, 141
isfinite, 142
ishidden, 143, 328, 425
isiisvalid, 766
isinf, 144
isintegral, 767
isnan, 145
isodd, 146

isqueueempty, 300
isvalid, 568
item

number read, 125
ITER_BOUND, 413
ITER_DONE, 414
ITER_READY, 414, 416
ITER_BOUND, 412
ITER_DONE, 412
ITER_FREE, 412
ITER_READY, 412
iterator, 32

index tuple, 395, 407
initialise, 395, 413
next, 395, 414
set indices, 395, 416
status, 395, 412

iterator, 394

J
Java

IO drivers, 245
java, 245
jobid, 250
jointext, 569
jraw, 245
JSON_FCT_BOOL, 671
JSON_FCT_CLOSE_ARR, 671
JSON_FCT_CLOSE_OBJ, 671
JSON_FCT_NULL, 671
JSON_FCT_NUM, 671
JSON_FCT_OPEN_ARR, 671
JSON_FCT_OPEN_OBJ, 671
JSON_FCT_TEXT, 671
jsonload, 670
jsonparse, 671
jsonread, 241
jsonsave, 673
jsonwrite, 242

K
keepalive, 250
keepassert, 19, 75
key, 464
key derivation, 464
key size, 442, 457
keyword

SQL, 357
keywords, 10, 16

L
lang, 125
language, 15
largest value, 151
legend, 466
length

string, 340, 359
library

Run Time, 1
linctr, 16, 22, 320, 322, 383, 384, 387, 419

Fair Isaac Corporation Proprietary Information 918

Index

line breaking, 16
line control directive, 21
line length, 641, 642, 667, 686
lines

number affected, 339, 341, 358, 361
number transferred, 339, 341, 358, 361

LIST, 7
list, 23

compare, 35
constant, 34
finalize, 103
find element, 104, 105
first element, 89, 118
head, 119
last element, 91, 121
remove elements, 90, 92
reverse, 129, 160
size, 130
split, 173, 174
tail, 135

list, 16, 34
ln, 147, 322
load

basis, 726, 768
cut, 822
module, 17
package, 17, 18
problem, 726, 772

load, 265, 674
load document, 642, 670, 674
loadbasis, 768
loadcookies, 215
loadcuts, 822
loadlpsol, 769
loadmipsol, 770
loadprob, 383, 772
localedir, 125, 168
localsetparam, 148
location step, 637
log, 149, 322
logarithm

base 10, 149, 322
natural, 147, 322

logctr, 721, 765
logical and, 35
logical expression, 721

exclusive or, 727, 813
implication, 725, 764

logical negation, 36
logical or, 35
loop, 45
loop statement, 37
lower bound, 725, 748

set, 726, 799
LP format, 7

maximization, 99
minimization, 99

LP solution
load, 726, 769
save, 726, 788

LP status, 721
LSATTR, 7
LSLIBS, 8
LSMODS, 8

M
M_E, 71
M_PI, 71
makedir, 570
makepath, 571
makesos1, 36, 150
makesos2, 36, 150
marginal values, 725, 738
mathctrl, 168
Maths

error, 168
matrix

column order, 721, 722
matrix output, 7
max, 16, 32, 33
MAX_INT, 71
MAX_REAL, 71
maximize, 383, 773
maximum value, 33, 151
maxlist, 151
mc, 56
mc.def, 57
mc.flush, 57
mc.set, 58
mem, 59
memory pipe, 311
memory usage, 152, 261, 276, 727, 814
memoryuse, 152
mempipe, 311
message catalog, 68, 70
message digest, 437, 440, 442, 453

size, 442, 458
message domain, 69
message printing, 339, 342, 358, 362

Optimizer, 722, 724
message translation, 68
min, 16, 32, 33
minimize, 383, 773
minimum value, 33, 153
minlist, 153
MIP solution

add, 724, 728
load, 726, 770
save, 726, 787

mksetcookie, 243
mmetc.dso, 188
mmhttp.dso, 194
mmjobs.dso, 247
mmnl.dso, 320
mmoci.dso, 334
mmodbc.dso, 353
mmquad.dso, 383
mmreflect.dso, 394
mmrobust.dso, 418
mmsheet.dso, 432

Fair Isaac Corporation Proprietary Information 919

Index

mmssl
configuration directory, 437

mmssl.dso, 436
MMSVGDISPLAY, 469
MMSVGTGZ, 470
mmsystem.dso, 509
mmxml.dso, 636
mmxnlp.dso, 694
mmxprs.dso, 720
mod, 16, 33
MODEL, 8
Model, 261
model

active, 8
body, 17
clone, 265
compile, 261, 262
coverage, 5
debug, 6
exit code, 261, 281
GID, 261, 274, 287, 292
handling multiple, 247
ID, 261, 275
load, 261, 265
memory usage, 152, 261, 276
name, 8
pause execution, 495
profile, 4
properties, 261, 276
reset, 261, 283
run, 3, 261, 272
sequence number, 8
size, 8
source, 1
status, 261, 279
stop, 261, 282
structure, 17
trace, 10
UID, 261, 280, 287, 291
unload, 261, 284
version, 8
web service, 194

model, 8, 16, 17
model cut, 726, 802

delete, 724, 732
model management, 261
model manager, 1
model parameter, 20
model_version, 125
modelname, 125
module, 1

dependency, 387, 624
memory usage, 152

module structure
advantages, 2

modules, 15
monthnames, 512
Mosel, 252
mosel, 1

debugger, 6

invocation, 2
restricted mode, 11

Mosel compiler, 1
Mosel Console, 1
Mosel instance, see instance, 560
Mosel Remote Launcher, 313
MOSEL_BIM, 18, 315
MOSEL_DSO, 18, 315
MOSEL_EXECPATH, 315, 612
MOSEL_RESTR, 11, 316
MOSEL_ROPATH, 11, 315
MOSEL_RWPATH, 11, 315
MOSEL_SDMAX, 2
MOSEL_SSL, 441
MOSEL_TMP, 61, 315
moseldoc, 67
move

file, 515, 530
MP type, 22
mpproblem, 50
MPS format, 7, 99
mpsol

reset, 726, 785
mpsol, 720
mpvar, 16, 22, 320, 383, 387
msgdigest, 453
msgsign, 454
msgverify, 455
multiple models, 247
multiple problems, 50
multistart job, 698, 700

N
name

scramble, 99, 385
variable, 752

name, 639
names

loading, 722, 723
namespace, 16
NAN, 142, 145, 165
NAN, 71
nbread, 125, 157
new line, 33
newmuid, 154
newtar, 572
newzip, 573
NEXT, 8
next, 16, 46
nextcell, 414
nextfield, 574
nlctr, 320, 322
noautofinal, 19
NoDB, 11
node, 641, 657, 658

add, 641, 643
copy, 641, 645
delete, 641, 647
get first child, 641, 655
get last child, 641, 656

Fair Isaac Corporation Proprietary Information 920

Index

get name, 641, 651
get next, 641, 654
get parent, 642, 659
get type, 642, 660
get value, 642, 652
set name, 642, 679
set value, 642, 680

node, 638
node test, 637, 638
nodenumber, 249
NoExec, 11
noimplicit, 19, 39
nominal value, 421, 428, 430
non-relational, 341, 361
nonlinear

complementary variables, 699, 708
feasibility, 699, 717
memory usage, 699, 705
scaling, 699, 706
tolerance, 699, 713

nonlinear constraint
enforced, 699, 711
hide, 323, 329
name, 323, 332
set type, 323, 333
solution, 322, 327
test hidden, 322, 328
type, 322, 330

NoRead, 11
not, 16, 36, 639, 721
not in, 35
NoTmp, 11
NoWrite, 11
nsgroup, 16
nssearch, 16
null, 59
nullevent, 301
number

connection, 340, 360
lines, 339, 341, 358, 361

number, 639
NumPy conversion, 831

O
object group, 466
objective value, 123
OCI

debug mode, 340
IO driver, 352

oci, 352
OCIautocommit, 339
OCIautondx, 339
OCIbufsize, 340
OCIcolsize, 340
OCIcommit, 350
OCIconnection, 340, 344
OCIdebug, 340
OCIexecute, 346
OCIfirstndx, 341
OCIlogoff, 345

OCIlogon, 344
OCIndxcol, 341
OCIreadinteger, 347
OCIreadreal, 348
OCIreadstring, 349
OCIrollback, 351
OCIrowcnt, 341
OCIrowxfr, 341
OCIsuccess, 342
OCItruncsize, 342
OCIverbose, 342
ODBC

debug mode, 360
odd number, 146
of, 16
open

file, 107
stream, 107

openpipe, 575
operation

elementary, 37
operator, 28

arithmetic, 33
ealuation order, 29

optimization
direction, 7

Optimizer
loading names, 722, 723
message printing, 722, 724
problem name, 724
problem pointer, 724
version number, 723

optimizer problem status, 725, 754
OPTION, 8
options, 16, 17
or, 16, 32, 35, 721
output file, 188, 190
output stream, 101, 107, 108, 245, 261, 267

flush, 102
write, 110, 181

OutputStream, 245

P
package, 53

annotation declaration, 58
structure, 17

package, 16, 17
pandas conversion, 831
parameter, 20, 124, 148, 159, 167, 515, 517, 541, 598
parameters, 17
parameters, 16
parent, 638
parent model, 289
parentnumber, 250
parseextn, 576
parseint, 577
parser context, 510
parser parameter, 125
parser_date, 125
parser_file, 125

Fair Isaac Corporation Proprietary Information 921

Index

parser_line, 125
parser_time, 125
parser_UTCdate, 125
parser_UTCtime, 125
parser_version, 125
parsereal, 579
parsetext, 580
passphrase, 436
pastetext, 582
pathmatch, 583
pathsplit, 584
pause

model execution, 495
peeknextevent, 308
PEM format, 436
piecewise linear segment, 331
pipeflush, 309
pipenotify, 310
plot

add, 470, 472
PO, see Portable Object
Portable Object, 69
Portable Object Template, 69
position, 639
postsolve, 775
POT, see Portable Object Template
predicate, 637, 638
primal solution, 132
PRINT, 9
print, 110, 181

problem, 99
quadratic problem, 384, 385
R, 855, 864

printing, 339, 342, 358, 362
printing format, 125, 168
printmodelmemory, 705
printmodelscaling, 706
private key, 436
private key file, 441
private symbol, 52
problem, 7

export, 99
handling multiple, 50
load, 726, 772
main, 50
maximize, 726, 773
postsolve, 726, 775
print, 99
status, 725, 754
unload, 727, 807
write, 727, 811

problem context, 50
problem name

Optimizer, 724
problem pointer

Optimizer, 724
problem type, 50

extensions, 50
procedural, 17
procedure, 40

body, 47
call, 395, 397

procedure, 16
procedures

passing of formal parameters, 48
variable number of parameters, 48

processing instruction, 636
processing-instruction, 638
prod, 16, 32, 33
product, 33
profiler, 4
public, 16, 52
public key, 436, 437
publish, 155
pwlin, 331
pws, 331
pycall, 833
pycallbool, 831, 833
pycallint, 831, 833
pycallreal, 831, 833
pycallstr, 831, 833
pycalltext, 831, 833
pycallvoid, 831, 833
pyexec, 835
pyget, 836
pygetbool, 831, 836
pygetdf, 837
pygetint, 831, 836
pygetreal, 831, 836
pygetstr, 831, 836
pygettext, 831, 836
pyinit, 839
pyinitpandas, 840
pyinitverbose, 831
pyrun, 841
pyset, 842
pysetdf, 843
python3.dso, 825
pyunload, 844
pyusepandas, 831

Q
QCQP, see Quadratically Constrained Quadratic

Programming
qexp, 383, 384
qsort, 585
quadratic expression

enumerate terms, 393
get info, 389, 391
solution, 384, 386

quadratic problem
export, 384, 385
print, 384, 385

Quadratically Constrained Quadratic Programming,
321

QUIT, 9
quote, 33
quote, 587

R
r.dso, 848

Fair Isaac Corporation Proprietary Information 922

Index

random, 156
random data file, 442, 460
random number, 156, 169, 442, 459
range, 23

first element, 89, 118
last element, 91, 121

range, 16, 34
range set, 34
ranging information, 725, 755
raw, 60
Rcleanscript, 854
Rclearerr, 870
rcmd, 312
read

basis, 726, 776
directives, 726, 777
integer value, 342, 347, 363, 376
number of items, 125
real value, 343, 348, 363, 377
string, 343, 349, 363, 378
write, 727, 809

read, 61, 107, 125, 157
readbasis, 776
readcnt, 125, 128, 168
readdirs, 777
readlink, 588
readln, 61, 107, 157
readsol, 778
readtextline, 589
real

printing format, 125, 168
read, 343, 348, 363, 377

real, 16, 22, 31, 322
realfmt, 125, 168
recloc, 125, 168
record, 25

compare, 35
dereference, 28
initialization, 31

record, 16
recursion, 47
reduced cost value, 127
reference to, 37
refinemipsol, 779
reflecterror, 394
REG_EXTENDED, 590, 592
REG_ICASE, 590, 592
REG_NEWLINE, 590, 592
REG_NOTBOL, 590, 592
REG_NOTEOL, 590, 592
REG_ONCE, 592
regmatch, 590
regreplace, 592
rejectintsol, 780
release Python, 832, 844
remote command driver, 312
remote driver, 313
remote invocation protocol, 884
remote launcher, 313
remove

directory, 517, 593
removedir, 593
removefiles, 594
rename

file, 515, 530
repairinfeas, 781
repeat, 16, 45
reqqueue, 194
request

client IP, 222, 231
connection status, 222, 228
data file, 222, 230
header, 222, 232
label, 222, 233
status, 222, 237
type, 222, 238

requirement, 53
requirements, 16
Rerrcode, 868
Rerrmsg, 869
reset, 158
reset, 158, 283
resetbasis, 783
resetiis, 784
resetmodpar, 268
resetsol, 785
restoreparam, 159
restrict, 125
restricted mode, 11
restrictions, 11
return, 16, 48
returned, 47
Reval, 856
reverse, 160
Rfree, 857
Rgetarr, 858
Rgetbool, 859
Rgetint, 860
Rgetreal, 861
Rgetstr, 862
Rinit, 863
Rinteractive, 854
rmt, 313
robctr, 418
robust_check_feas_original_problem, 421
robust_check_feas_uncertainty_set, 420
robust_uncertain_overlap, 420
robustctr, 418, 419, 426
root node, 636
round, 161, 322, 639
rounding, 82, 106, 161, 322
Rprint, 864
RSA cryptographic system, 436
RSA key

check private, 442, 446
fingerprint, 442, 443
load, 442, 447
save, 442, 452
size, 442, 445

RSA key pair, 437, 442, 444

Fair Isaac Corporation Proprietary Information 923

Index

RSAfingerprint, 443
RSAgenkey, 444
RSAgetkeysize, 445
RSAisprivate, 446
RSAloadkey, 447
RSAprivdecrypt, 449
RSAprivencrypt, 450
RSApubdecrypt, 448
RSApubencrypt, 451
RSAsavekey, 452
Rsessionmode, 855
Rset, 865
Rsetdf, 866
Rsource, 867
run, 272
run Python script, 832, 841
run Python script from string, 831, 835
Runloadscript, 854
running time, 516, 562
runparams, 125
Rusemosstreams, 854
Rverbose, 853

S
salt, 465
save

basis, 726, 786
Optimizer status, 726, 789

save, 675
save document, 642, 673, 675
savebasis, 786
savecookies, 216
savemipsol, 787
savesol, 788
savestate, 789
scenario, 426
secure vectors, 737
select

file, 108
stream, 108

selection statement, 37, 43
selectsol, 790
self, 638
send, 289
sensitivity ranges, 725, 757
server

trust, 440
server certificate, 439
server private key, 439
service

inter-module communication, 387, 624
module dependency, 387, 624

set, 23
callback, 699, 707, 726, 793
compare, 35
finalize, 103
fixed, 24
in/output, 188, 190
size, 130

set, 16, 34

set pandas DataFrame, 832, 843
set Python variable, 832, 842
setarchconsistency, 791
setarrval, 415
setattr, 676
setbstat, 792
setcallback, 707, 793
setcbcutoff, 797
setchar, 595
setcoeff, 162
setcomplementary, 708
setcomputeallowed, 796
setcontrol, 269
setcookie, 217
setdate, 596, 629
setdatetime, 631
setday, 597
setdefstream, 267
setdefvar, 709
setdetrow, 710
setdsoparam, 598
setencoding, 677
setendparse, 542
setenforcedctr, 711
setenv, 599
setgid, 292
setgndata, 798
sethidden, 163, 329, 427
sethostalias, 259
sethour, 601
sethspace, 681
setindentmode, 684
setindentskip, 685
setindices, 416
setinitsb, 712
setinitval, 326
setioerr, 164
setlb, 799
setlinelen, 686
setmatcoeff, 800
setmatherr, 165
setmaxnodes, 678
setminute, 602
setmipdir, 801
setmodcut, 802
setmodpar, 270
setmonth, 603
setmsec, 604
setname, 166, 332, 679
setnominal, 430
setoserror, 600
setparam, 167, 339, 358, 437, 510, 721
setqtype, 555
setrandseed, 169
setrange, 170
setsecond, 605
setsepchar, 557
setsol, 803
setstandalone, 687
setstart, 559

Fair Isaac Corporation Proprietary Information 924

Index

setsucc, 554
settime, 606, 627
settimer, 290
settol, 713
settolset, 714
settrim, 564
settype, 171, 333, 431
setub, 804
setucbdata, 805
setuid, 291
setvalue, 680
setvspace, 683
setworkdir, 271
setxmlversion, 688
setyear, 607
shared, 16, 22, 248
shared memory driver, 311
sharingstatus, 125, 248
shmem, 311
sign, 322
signature

electronic, 436
sin, 172, 322
size

array, 130
file, 544
list, 130
set, 130

skip
comment, 109

slack value, 131
sleep, 608
smallest value, 153
solution value, 132, 384, 386

nonlinear constraint, 322, 327
robust constraint, 421, 423
uncertain, 421, 423

sorting, 517, 585
SOS, 150

declaration, 36
set type, 171
type, 136

special ordered set, 150
splithead, 173
splittail, 174
splittext, 609
SQL command

execute, 342, 346, 363, 370
update, 363, 381

SQL parameters
define, 363, 372
get value, 363, 373

SQL query
dataframe, 362, 368

SQLautocommit, 358
SQLautondx, 359
SQLbufsize, 359
SQLcolsize, 359
SQLcolumns, 364
SQLcommit, 365

SQLconnect, 366
SQLconnection, 360, 367
SQLdataframe, 368
SQLdebug, 360
SQLdisconnect, 369
SQLdm, 360
SQLexecute, 370
SQLextn, 360
SQLfirstndx, 361
SQLgetparam, 373
SQLindices, 374
SQLndxcol, 361
SQLparam, 372
SQLprimarykeys, 375
SQLreadinteger, 376
SQLreadreal, 377
SQLreadstring, 378
SQLrollback, 379
SQLrowcnt, 361
SQLrowxfr, 361
SQLsuccess, 362
SQLtables, 380
SQLtruncsize, 362
SQLupdate, 381
SQLverbose, 362
sqrt, 175, 322
square root, 175, 322
sshcmd, 251
ssl_cipher, 440
ssl_digest, 440
ssl_dir, 441
ssl_privkey, 441
sslivsize, 456
sslkeysize, 457
sslmdsize, 458
sslrandom, 459
sslrandomdata, 460
stack dump, 2, 95
standalone flag, 642, 661, 687
start value, see initial value, see initial value
starts-with, 639
startswith, 610
statement, 37

separator, 37
status, 342, 362

directory, 545
file, 545
IO, 107, 125
model, 261, 279
problem, 725, 754
save, 726, 789
system, 516, 561

STEP, 9
stop, 282
stopoptimize, 806
store

array of cuts, 815, 824
cut, 815, 823

storecut, 823
storecuts, 824

Fair Isaac Corporation Proprietary Information 925

Index

stream
close, 101
ID, 117
input, 261, 267
open, 107
output, 261, 267
select, 108

strfmt, 176
string

formatted, 176
get substring, 177
maximum length, 340, 359
read, 343, 349, 363, 378

string, 16, 22, 31, 639
string expression

compare, 35
string-length, 639
STRUCT_ARRAY, 133
STRUCT_CONST, 133
STRUCT_LIST, 133
STRUCT_NATTYPE, 133
STRUCT_PROBLEM, 133
STRUCT_RECORD, 133
STRUCT_REF, 133
STRUCT_ROUTINE, 133
STRUCT_SET, 133
STRUCT_UNION, 133
STRUCT_USRTYPE, 133
stylesheet, 470, 471, 490, 494, 502, 506
submodel, 247
subproblem, 50
subroutine, 47

number of arguments, 395, 409
return type, 395, 410
signature, 395, 411

subroutine reference, 25
subset, 35
substr, 177
success, 342, 362
suffix notation, 9, 50
sum, 16, 32, 33
summation, 33
superset, 35
SVF file format, 789
SVG, 466
SVG_BLACK, 467
SVG_BLUE, 467
SVG_BROWN, 467
SVG_COLOR, 467
SVG_CURRENT, 467
SVG_CYAN, 467
SVG_DECORATION, 467
SVG_FILL, 467
SVG_FILLOPACITY, 467
SVG_FONT, 467
SVG_FONTFAMILY, 467
SVG_FONTSIZE, 467
SVG_FONTSTYLE, 467
SVG_FONTWEIGHT, 467
SVG_GOLD, 467

SVG_GRAY, 467
SVG_GREEN, 467
SVG_LIME, 467
SVG_MAGENTA, 467
SVG_NONE, 467
SVG_OPACITY, 467
SVG_ORANGE, 467
SVG_PINK, 467
SVG_PURPLE, 467
SVG_RED, 467
SVG_SILVER, 467
SVG_STROKE, 467
SVG_STROKEDASH, 467
SVG_STROKEOPACITY, 467
SVG_STROKEWIDTH, 467
SVG_TEXTANCHOR, 467
SVG_WHITE, 467
SVG_YELLOW, 467
svgaddarrow, 473
svgaddcircle, 474
svgaddellipse, 475
svgaddfile, 476
svgaddgroup, 472
svgaddimage, 477
svgaddline, 478
svgaddpie, 479
svgaddpoint, 480
svgaddpolygon, 481
svgaddrectangle, 482
svgaddtext, 483
svgaddxmltext, 484
svgclosing, 485
svgcolor, 486
svgdelobj, 487
svgerase, 488
svggetgraphstyle, 489
svggetgraphstylesheet, 490
svggetgraphviewbox, 491
svggetlastobj, 492
svggetstyle, 493
svggetstylesheet, 494
svgpause, 495
svgrefresh, 496
svgsave, 497
svgsetgraphlabels, 498
svgsetgraphpointsize, 499
svgsetgraphscale, 500
svgsetgraphstyle, 501
svgsetgraphstylesheet, 502
svgsetgraphviewbox, 503
svgsetreffreq, 504
svgsetstyle, 505
svgsetstylesheet, 506
svgshowgraphaxes, 507
svgwaitclose, 508
symbol

declaration, 47
import, 17

SYMBOLS, 8
symlink, 611

Fair Isaac Corporation Proprietary Information 926

Index

symmetric cipher, 440
symmetric ciphers, 436
symmetric cypher

initialisation vector, 456
key size, 442, 457

synchronization mechanism, 247
syntax, 15
sys_endparse, 513
sys_fillchar, 513
SYS_MOD, 545
SYS_NOW, 509, 510
sys_pid, 513
sys_qtype, 513
sys_regcache, 514
sys_sepchar, 514
sys_trim, 514
sys_txtmem, 514
SYS_TYP, 545
SYS_ARCH, 560
SYS_DIR, 545, 584
SYS_DIRONLY, 528, 572, 573, 594, 614, 620–622
SYS_DOWN, 585
SYS_EXEC, 545
SYS_EXTN, 584
SYS_FLAT, 572, 573, 620, 621
SYS_FNAME, 584
SYS_LEFT, 619
SYS_LNK, 545
SYS_NAME, 560
SYS_NODE, 560
SYS_NODIR, 528, 572, 573, 594, 614, 620–622
SYS_NOFAIL, 620, 621
SYS_NOSORT, 528
SYS_OTH, 545
SYS_OVERWRT, 620, 621
SYS_PROC, 560
SYS_RAM, 560
SYS_READ, 545
SYS_RECURS, 528, 594
SYS_REG, 545
SYS_REL, 560
SYS_REVORD, 528
SYS_RIGHT, 619
SYS_UP, 585
SYS_VER, 560
SYS_VERB, 620, 621
SYS_WRITE, 545
sysfd, 60
system, 612
system command, 517, 612
system information, 516, 560
system status, 516, 561

T
table of symbols, 52
tagpriv, 19
tan, 322
tarlist, 614
tcpping, 218
tee, 60

temporary directory, 61
term

enumerate, 393
terminate R, 855, 857
termination, 97
test

eof, 141
hidden constraint, 143
hidden nonlinear constraint, 322, 328

testattr, 649
testtype, 417
text, 509, 638
text section, 636
textfmt, 615
then, 16
time, 87

file, 546
time, 509
time measure, 516, 562
timefmt, 511
timestamp, 178
timestamp, 178
tmp, 59
tmpdir, 125
to, 16
tolerance

zero, 35, 125, 168
tolerance set, 699, 714
tolower, 617
tolset, 695
toupper, 618
trace, 10
transaction

commit, 342, 350
rollback, 343, 351

trigonometric functions, 73, 84, 172, 322
trim, 619
true, 16, 22, 31, 639
txtresize, 635
txtztol, 125, 168
type

constraint, 136, 171
conversion, 31
element, 116
ID, 29, 137
identification number, 29
nonlinear constraint, 322, 323, 330, 333
problem, 50
SOS, 136, 171
structure, 133
variable, 36, 136, 171

U
UID

event sender, 287, 304
model, 261, 280, 287, 291
wait for, 287, 295

uncertain, 418
uncertainctr, 418
unconstrained, 36

Fair Isaac Corporation Proprietary Information 927

Index

UNDISPLAY, 9
union, 26, 34

compare, 35
dereference, 28
set type, 85

union, 16, 32, 34
unique identifier, 154
unload, 284
unloadprob, 807
unpublish, 179
untar, 620
until, 16, 45
unzip, 621
UP, 9
upper bound, 725, 761

set, 727, 804
url, 244
URL encoding, 203, 219
urlencode, 219
uselastbarsol, 808
user comment, 8
user function, 694, 699, 702

info, 699, 715
Mosel, 699, 716
parallel, 699, 704

user graph, 466
add file, 470, 476, 477
add plot, 470, 472
axes labels, 471, 498
closing, 470, 485
color, 486
delete object, 470, 487
draw arrow, 470, 473
draw circle, 470, 474
draw ellipse, 470, 475
draw line, 470, 478
draw pie, 479
draw point, 480
draw polygon, 470, 481
draw rectangle, 470, 482
draw text, 470, 483, 484
erase, 470, 488
get object, 470, 492
get style, 470, 490, 494
get style property, 470, 489, 493
get viewbox, 470, 491
model termination, 471, 508
point size, 471, 499
refresh, 471, 496
refresh frequency, 471, 504
save, 471, 497
scaling, 471, 500
set style, 471, 502, 506
set style property, 471, 501, 505
view box, 471, 503

user type, 27
definition, 27

userfunc, 694
userfuncinfo, 715
userfuncMosel, 716

uses, 16, 17
UTC, 125, 168

V
validate, 717
value

event, 287
variable, 22

check intregrality, 767
environment, 543, 599
fix, 739
initial value, 320, 323, 326
lower bound, 725, 748
name, 752
ranging information, 725, 755
reduced cost, 127
sensitivity ranges, 725, 757
set coefficient, 162
set lower bound, 726, 799
set type, 171
set upper bound, 727, 804
solution, 132
type, 136
upper bound, 725, 761

version, 8, 16, 17
versionnum, 180
versionstr, 180
vertical spacing, 642, 664, 683
viewbox, 470, 491
VIMA, 1
visual environment, 2

W
W-121, 895
W-131, 896
W-144, 896
W-152, 897
W-164, 898
W-166, 899
W-306, 901
W-309, 901
W-85, 904
wait, 293
waitexpired, 294
waitfor, 295
waitforend, 297
WDOnly, 11
WHERE, 9
while, 16, 45
with, 16, 46, 50
workdir, 125, 168
working directory, 61, 261, 271, 515, 535
write

directives, 727, 810
problem, 727, 811

write, 61, 107, 181, 387
write_, 68
writebasis, 809
writedirs, 810
writeln, 61, 107, 181, 387

Fair Isaac Corporation Proprietary Information 928

Index

writeln_, 68
writeprob, 811
writesol, 812

X
X509 certificate, 437

compatibility, 442, 461
create, 442, 463
information, 442, 462

x509check, 461
x509getinfo, 462
x509newcrt, 463
xbim, 19
xls, 434
xlsx, 434
XML

decode, 642, 691
encode, 642, 690

XML document, 641
XML document structure, 636
XML node number, 641
XML node type, 636
XML path, 637
xml version, 642, 662, 688
XML_ATTR, 651, 660
XML_AUTO, 665, 684
XML_CDATA, 643, 651, 660
XML_COM, 643, 651, 660
XML_DATA, 643, 651, 660
XML_ELT, 643, 651, 660
XML_FCT_CDATA, 692
XML_FCT_CLOSE_ELT, 692
XML_FCT_COM, 692
XML_FCT_DATA, 692
XML_FCT_DECL, 692
XML_FCT_OPEN_ELT, 692
XML_FCT_PINST, 692
XML_FCT_TXT, 692
XML_FIRST, 643, 645
XML_FIRSTCHILD, 643, 645
XML_LAST, 643, 645
XML_LASTCHILD, 643, 645
XML_MANUAL, 665, 684
XML_NEXT, 643, 645
XML_NONE, 665, 684
XML_PINST, 643, 651, 660
XML_TXT, 643, 651, 660
xmlattr, 689
xmldecode, 691
xmldoc, 641
xmlencode, 690
xmlparse, 692
XNLP_AUTOELIM, 697
XNLP_LOADASNL, 697
XNLP_LOADNAMES, 697
XNLP_NLPSTATUS, 698
XNLP_SOLVER, 698
XNLP_TOL_RA, 695
XNLP_TOL_RI, 695
XNLP_TOL_RM, 695

XNLP_TOL_RS, 695
XNLP_TOL_TA, 695
XNLP_TOL_TC, 695
XNLP_TOL_TI, 695
XNLP_TOL_TM, 695
XNLP_TOL_TS, 695
XNLP_VERBOSE, 698
xor, 813
Xpress Optimizer, 2
Xpress Workbench, 2
xprmsrv, 313
XPRS_colorder, 722
XPRS_enumduplpol, 723
XPRS_enummaxsol, 722
XPRS_enumsols, 722
XPRS_fullversion, 723
XPRS_loadnames, 723
XPRS_maxupdc, 723
XPRS_problem, 724
XPRS_probname, 724
XPRS_verbose, 724
XPRS_BAR, 773
XPRS_BR, 801
XPRS_CB_BARITER, 793
XPRS_CB_BARLOG, 793
XPRS_CB_CHECKTIME, 793
XPRS_CB_CHGBRANCH, 793
XPRS_CB_CHGNODE, 793
XPRS_CB_COMPUTERESTART, 793
XPRS_CB_CUTLOG, 793
XPRS_CB_CUTMGR, 793
XPRS_CB_GAPNOTIFY, 793
XPRS_CB_GLOBALLOG, 793
XPRS_CB_INFNODE, 793
XPRS_CB_INTSOL, 793
XPRS_CB_LPLOG, 793
XPRS_CB_NEWNODE, 793
XPRS_CB_NODECUTOFF, 793
XPRS_CB_OPTNODE, 793
XPRS_CB_PREINTSOL, 793
XPRS_CB_PRENODE, 793
XPRS_CB_PRESOLVE, 793
XPRS_CB_SOLNOTIFY, 793
XPRS_CONT, 773
XPRS_COREPB, 773
XPRS_DN, 757, 801
XPRS_DUAL, 773
XPRS_ENUM, 773
XPRS_INF, 754
XPRS_LBND, 757
XPRS_LCOST, 755
XPRS_LIN, 773
XPRS_LOACT, 755
XPRS_LOCAL, 773
XPRS_LPSTOP, 773
XPRS_NET, 773
XPRS_OPT, 754
XPRS_OTH, 754
XPRS_PD, 801
XPRS_PR, 801

Fair Isaac Corporation Proprietary Information 929

Index

XPRS_PRI, 773
XPRS_PU, 801
XPRS_STOP_CTRLC, 806
XPRS_STOP_ITERLIMIT, 806
XPRS_STOP_MIPGAP, 806
XPRS_STOP_NODELIMIT, 806
XPRS_STOP_SOLLIMIT, 806
XPRS_STOP_TIMELIMIT, 806
XPRS_STOP_USER, 806
XPRS_TUNE, 773
XPRS_UBND, 757
XPRS_UCOST, 755
XPRS_UDN, 755
XPRS_UNB, 754
XPRS_UNF, 754
XPRS_UP, 757, 801
XPRS_UPACT, 755
XPRS_UUP, 755
xprsmemoryuse, 814
XSLP_CB_CASCADEEND, 707
XSLP_CB_CASCADESTART, 707
XSLP_CB_CASCADEVAR, 707
XSLP_CB_CONSTRUCT, 707
XSLP_CB_END, 707
XSLP_CB_INTSOL, 707
XSLP_CB_ITEREND, 707
XSLP_CB_ITERSTART, 707
XSLP_CB_ITERVAR, 707
XSLP_CB_MSJOBEND, 707
XSLP_CB_MSJOBSTART, 707
XSLP_CB_MSWINNER, 707
XSLP_CB_OPTNODE, 707
XSLP_CB_PRENODE, 707
XSLP_CB_START, 707
xsrv, 312
xssh, 312

Z
zero tolerance, 35, 125, 168
zerotol, 125, 168
zip, 873
ziplist, 622
zlib.dso, 873

Fair Isaac Corporation Proprietary Information 930

	Introduction
	What is Mosel?
	General organization
	Running Mosel
	mosel command: invocation
	mosel command: interactive debugger
	mosel command: tracing mode
	mosel command: restricted mode
	mosel command: securing bim files

	References
	Structure of this manual

	I Core System
	The Mosel Language
	Introduction
	Comments
	Identifiers
	Reserved words
	Separation of instructions, line breaking
	Conventions in this document

	Structure of the source file
	The compiler directives
	Directive uses
	Directive imports
	Directive options
	Directive version

	The parameters block
	Source file preprocessing
	Source file character encoding
	Source file inclusion
	Line control directives

	The declaration block
	Elementary types
	Basic types
	MP types

	Sets
	Lists
	Arrays
	Special case of dynamic arrays of a type not supporting assignment

	Records
	Subroutine references
	Unions
	Constants
	User defined types
	Naming new types
	Combining types

	Expressions
	Type conversions and constructors
	Union constructors and subroutine parameters

	Aggregate operators
	Arithmetic expressions
	String expressions
	Set expressions
	List expressions
	Boolean expressions
	Linear constraint expressions
	Automatic arrays
	Operator -> (reference to)

	Statements
	Simple statements
	Assignment
	Assignment of structured types
	Assignment of subroutine references
	Assignment of unions
	About implicit declarations
	Inline initialization
	Linear constraint expression
	Procedure call

	Initialization block
	Handling of unions
	About automatic finalization

	Selections
	If statement
	Case statement

	Loops
	Forall loop
	While loop
	Repeat loop
	break and next statements
	with statement

	Procedures and functions
	Definition
	Variable number of parameters
	Formal parameters: passing convention
	Local declarations
	Overloading
	Forward declaration
	Suffix notation

	Problems
	The mpproblem type

	The public qualifier
	Packages
	Version management
	The requirements block
	Control parameters

	Namespaces
	Annotations
	Syntax
	Symbol association
	Declaration

	File names and input/output drivers
	Character encoding of text files
	Working directory and temporary directory
	Handling of input/output
	Deploying models
	Documenting models using annotations
	doc annotation category
	Global definitions
	Document structure
	Symbol definitions
	Annotation definitions
	Package control parameters

	moseldoc documentation processor
	Running moseldoc
	Structure of the generated document
	Processing of annotation values

	Message translation
	Preparing the model source
	Building the message catalogs
	Model execution

	Predefined functions and procedures
	abs
	arctan
	asproc
	assert
	bitflip
	bitneg
	bitset
	bitshift
	bittest
	bitval
	ceil
	compare
	cos
	create
	currentdate
	currenttime
	cutelt
	cutfirst
	cuthead
	cutlast
	cuttail
	delcell
	datablock
	dumpcallstack
	exists
	exit
	exp
	exportprob
	fclose
	fflush
	finalize
	findfirst
	findlast
	floor
	fopen
	fselect
	fskipline
	fwrite, fwriteln
	getact
	getcoeff
	getcoeffs
	getdual
	getelt
	geteltype
	getfid
	getfirst
	gethead
	getfname
	getlast
	getnbdim
	getobjval
	getparam
	getrcost
	getreadcnt
	getreverse
	getsize
	getslack
	getsol
	getstruct
	gettail
	gettype
	gettypeid
	getvars
	isdefined
	isdynamic
	iseof
	isfinite
	ishidden
	isinf
	isnan
	isodd
	ln
	localsetparam
	log
	makesos1, makesos2
	maxlist
	memoryuse
	minlist
	newmuid
	publish
	random
	read, readln
	reset
	restoreparam
	reverse
	round
	setcoeff
	sethidden
	setioerr
	setmatherr
	setname
	setparam
	setrandseed
	setrange
	settype
	sin
	splithead
	splittail
	sqrt
	strfmt
	substr
	timestamp
	unpublish
	versionnum, versionstr
	write, writeln

	II Modules
	deploy
	Procedures and functions
	argc
	argv

	I/O drivers
	Driver csrc
	Driver exe

	mmetc
	Procedures and functions
	disc
	diskdata

	I/O drivers
	Driver diskdata

	mmhttp
	New functionality for the Mosel language
	The type reqqueue

	Control parameters
	http_async
	http_browser
	http_cookies
	http_defpage
	http_defport
	http_expire
	http_freeasync
	http_keephdr
	http_listen
	http_maxconn
	http_maxcontime
	http_maxreq
	http_maxreqtime
	http_maxasync
	http_port
	http_proxy
	http_proxyport
	http_srvconfig
	http_startwb
	https_defport
	https_listen
	https_port

	Constants
	Procedures and functions
	HTTP client
	delcookies
	findcookie
	httpcancel
	httpdel
	httpget
	httpgetheader
	httphead
	httppatch
	httppost
	httpput
	httpreason
	loadcookies
	savecookies
	setcookie
	tcpping
	urlencode

	HTTP server
	httppending
	httpqueueinfo
	httpreply
	httpreplycode
	httpreplyjson
	httpreqconstat
	httpreqcookies
	httpreqfile
	httpreqfrom
	httpreqheader
	httpreqlabel
	httpreqpop
	httpreqpush
	httpreqpushlim
	httpreqstat
	httpreqtype
	httpstartsrv
	httpstopsrv
	jsonread
	jsonwrite
	mksetcookie

	I/O drivers
	Driver url

	mmjava
	I/O drivers
	Driver java
	Driver jraw

	mmjobs
	Example
	Data sharing between models
	Control parameters
	conntmpl
	nodenumber
	defaultnode
	jobid
	parentnumber
	keepalive
	fsrvport
	fsrvdelay
	fsrvnbiter
	sshcmd

	Procedures and functions
	Mosel instance management
	connect
	disconnect
	clearaliases
	getbanner
	gethostalias
	getaliases
	sethostalias
	findxsrvs

	Model management
	compile
	detach
	load
	setdefstream
	resetmodpar
	setcontrol
	setmodpar
	setworkdir
	run
	getdsoprop, getdsopropnum
	getgid
	getid
	getmodprop, getmodpropnum
	getnode
	getrmtid
	getstatus
	getuid
	getexitcode
	stop
	reset
	unload
	getannidents
	getannotations

	Synchronization
	canceltimer
	send
	settimer
	setuid
	setgid
	wait
	waitexpired
	waitfor
	waitforend
	getnextevent
	dropnextevent
	isqueueempty
	nullevent
	getfromid
	getfromgid
	getfromuid
	getclass
	gettimer
	getvalue
	peeknextevent
	pipeflush
	pipenotify

	I/O drivers
	Driver shmem
	Driver mempipe
	Driver rcmd
	Driver xsrv
	Driver xssh
	Driver rmt

	The Mosel Remote Launcher xprmsrv
	Running the xprmsrv command
	Main command line options
	Secure server
	Private key management
	Mode of operation

	Configuration file
	Access control list

	mmnl
	New functionality for the Mosel language
	The problem type mpproblem.nl
	The type nlctr and its operators
	Setting initial values
	Example: using mmnl for QCQP

	Procedures and functions
	clearinitvals
	copysoltoinit
	setinitval
	getsol
	ishidden
	sethidden
	gettype
	pwlin
	setname
	settype

	mmoci
	Prerequisite
	Example
	Data transfer between Mosel and Oracle
	From Oracle to Mosel
	From Mosel to Oracle

	Control parameters
	OCIautocommit
	OCIautondx
	OCIbufsize
	OCIcolsize
	OCIconnection
	OCIdebug
	OCIfirstndx
	OCIndxcol
	OCIrowcnt
	OCIrowxfr
	OCIsuccess
	OCItruncsize
	OCIverbose

	Procedures and functions
	OCIlogon
	OCIlogoff
	OCIexecute
	OCIreadinteger
	OCIreadreal
	OCIreadstring
	OCIcommit
	OCIrollback

	I/O drivers
	Driver oci

	mmodbc
	Prerequisite
	Example
	Data transfer between Mosel and the database
	From the database to Mosel
	From Mosel to the database

	ODBC and MS Excel
	Control parameters
	SQLautocommit
	SQLautondx
	SQLbufsize
	SQLcolsize
	SQLconnection
	SQLdebug
	SQLdm
	SQLextn
	SQLfirstndx
	SQLndxcol
	SQLrowcnt
	SQLrowxfr
	SQLsuccess
	SQLtruncsize
	SQLverbose

	Procedures and functions
	SQLcolumns
	SQLcommit
	SQLconnect
	SQLdataframe
	SQLdisconnect
	SQLexecute
	SQLparam
	SQLgetparam
	SQLindices
	SQLprimarykeys
	SQLreadinteger
	SQLreadreal
	SQLreadstring
	SQLrollback
	SQLtables
	SQLupdate

	I/O drivers
	Driver odbc

	mmquad
	New functionality for the Mosel language
	The type qexp and its operators
	Example: using mmquad for Quadratic Programming

	Procedures and functions
	exportprob
	getsol

	Published library functions
	Complete module example
	Description of the library functions
	getqexpsol
	getqexpstat
	clearqexpstat
	getqexpnextterm

	mmreflect
	New functionality for the Mosel language
	The type iterator
	The type reflecterror

	Procedures and functions
	callfunc, callfunclsa
	callproc, callproclsa
	findident
	getallidents
	getallparams
	getannidents
	getannotations
	getarrval
	getcode
	geteltype
	getindices
	getmsg
	getnbargs
	getrettype
	getsignature
	getstatus
	inititer
	nextcell
	setarrval
	setindices
	testtype

	mmrobust
	New functionality for the Mosel language
	The problem type mpproblem.xprs.robust
	The type uncertain
	The type robustctr and its operators
	The type uncertainctr and its operators
	Example: using mmrobust for solving a robust problem

	Control parameters
	robust_uncertain_overlap
	robust_check_feas_uncertainty_set
	robust_check_feas_original_problem

	Procedures and functions
	cardinality
	getsol
	getact
	ishidden
	scenario
	sethidden
	getnominal
	gettype
	setnominal
	settype

	mmsheet
	I/O drivers
	Driver excel
	Driver xls/xlsx
	Driver csv

	mmssl
	Overview
	Document encryption in Mosel
	The mmssl command

	Control parameters
	https_cacerts
	https_ciphers
	https_cltcrt
	https_cltkey
	https_srvcrt
	https_srvkey
	https_trustsrv
	ssl_cipher
	ssl_digest
	ssl_dir
	ssl_privkey

	Procedures and functions
	RSAfingerprint
	RSAgenkey
	RSAgetkeysize
	RSAisprivate
	RSAloadkey
	RSApubdecrypt
	RSAprivdecrypt
	RSAprivencrypt
	RSApubencrypt
	RSAsavekey
	msgdigest
	msgsign
	msgverify
	sslivsize
	sslkeysize
	sslmdsize
	sslrandom
	sslrandomdata
	x509check
	x509getinfo
	x509newcrt

	I/O drivers
	Driver base64
	Driver hex
	Driver crypt
	Driver hmac

	mmsvg
	SVG graph structure
	Object groups
	SVG styling
	Interaction with the graphical display
	Example

	Control parameters
	MMSVGDISPLAY
	MMSVGTGZ

	Procedures and Functions
	svgaddgroup
	svgaddarrow
	svgaddcircle
	svgaddellipse
	svgaddfile
	svgaddimage
	svgaddline
	svgaddpie
	svgaddpoint
	svgaddpolygon
	svgaddrectangle
	svgaddtext
	svgaddxmltext
	svgclosing
	svgcolor
	svgdelobj
	svgerase
	svggetgraphstyle
	svggetgraphstylesheet
	svggetgraphviewbox
	svggetlastobj
	svggetstyle
	svggetstylesheet
	svgpause
	svgrefresh
	svgsave
	svgsetgraphlabels
	svgsetgraphpointsize
	svgsetgraphscale
	svgsetgraphstyle
	svgsetgraphstylesheet
	svgsetgraphviewbox
	svgsetreffreq
	svgsetstyle
	svgsetstylesheet
	svgshowgraphaxes
	svgwaitclose

	mmsystem
	New functionality for the Mosel language
	The type text
	The type date
	The type time
	The type datetime
	The type parsectx
	The type textarea

	Control parameters
	datefmt
	timefmt
	datetimefmt
	monthnames
	sys_endparse
	sys_fillchar
	sys_pid
	sys_qtype
	sys_regcache
	sys_sepchar
	sys_trim
	sys_txtmem

	Procedures and functions
	addmonths
	compareic
	copytext
	cuttext
	deltext
	endswith
	erase
	expandpath
	fcopy
	fdelete
	findfiles
	findtext
	fmove
	formattext
	getasnumber
	getchar
	getcwd
	getdate
	getday
	getdaynum
	getdays
	getdirsep
	getdsoparam
	getendparse, setendparse
	getenv
	getfsize
	getfstat, getflstat
	getftime
	gethour
	getminute
	getmonth
	getmsec
	getoserror
	getoserrmsg
	getpathsep
	getsucc, setsucc
	getqtype, setqtype
	getsecond
	getsepchar, setsepchar
	getsize
	getstart, setstart
	getsysinfo
	getsysstat
	gettime
	gettmpdir
	gettrim, settrim
	getweekday
	getyear
	inserttext
	isvalid
	jointext
	makedir
	makepath
	newtar
	newzip
	nextfield
	openpipe
	parseextn
	parseint
	parsereal
	parsetext
	pastetext
	pathmatch
	pathsplit
	qsort
	quote
	readlink
	readtextline
	regmatch
	regreplace
	removedir
	removefiles
	setchar
	setdate
	setday
	setdsoparam
	setenv
	setoserror
	sethour
	setminute
	setmonth
	setmsec
	setsecond
	settime
	setyear
	sleep
	splittext
	startswith
	symlink
	system
	tarlist
	textfmt
	tolower
	toupper
	trim
	untar
	unzip
	ziplist

	I/O drivers
	Driver text
	Driver pipe

	Published library functions
	Description of the library functions
	gettime
	settime
	getdate
	setdate
	getdatetime
	setdatetime
	getcsttxtbuf
	gettxtsize
	gettxtbuf
	txtresize

	mmxml
	Document representation in mmxml
	Data model
	Paths in a document
	Axis specifier
	Node test
	Abbreviated notation
	Predicate

	JSON document as an XML tree

	New functionality for the Mosel language
	The type xmldoc

	Procedures and functions
	addnode
	copynode
	delattr
	delnode
	getattr
	testattr
	getencoding
	getname
	getvalue
	getfirstattr
	getnext
	getfirstchild
	getlastchild
	getnode
	getnodes
	getparent
	gettype
	getstandalone
	getxmlversion
	gethspace
	getvspace
	getindentmode
	getindentskip
	getlinelen
	getmaxnodes
	getsize
	jsonload
	jsonparse
	jsonsave
	load
	save
	setattr
	setencoding
	setmaxnodes
	setname
	setvalue
	sethspace
	setvspace
	setindentmode
	setindentskip
	setlinelen
	setstandalone
	setxmlversion
	xmlattr
	xmlencode
	xmldecode
	xmlparse

	mmxnlp
	New functionality for the Mosel language
	 The userfunc type
	 The tolset type
	 The mpproblem.xprs.xnlp problem type

	 mmxnlp and the other Mosel modules
	 Overloaded functions
	 Module compatibility

	Control parameters
	XNLP_AUTOELIM
	XNLP_LOADASNL
	XNLP_LOADNAMES
	XNLP_NLPSTATUS
	XNLP_SOLVER
	XNLP_VERBOSE
	Procedures and functions
	addmultistart
	chgdeltatype
	F
	generateUFparallel
	printmodelmemory
	printmodelscaling
	setcallback
	setcomplementary
	setdefvar
	setdetrow
	setenforcedctr
	setinitsb
	settol
	settolset
	userfuncinfo
	userfuncMosel
	validate

	Error codes issued by mmxnlp

	mmxprs
	New functionality for the Mosel language
	The problem type mpproblem.xprs
	The type basis
	The type mpsol
	The type boolvar
	The type logctr

	Control parameters
	XPRS_colorder
	XPRS_enumsols
	XPRS_enummaxsol
	XPRS_enumduplpol
	XPRS_fullversion
	XPRS_loadnames
	XPRS_maxupdc
	XPRS_problem
	XPRS_probname
	XPRS_verbose

	Procedures and functions
	addmipsol
	basisstability
	calcsolinfo
	clearmipdir
	clearmodcut
	command
	copysoltoinit
	crossoverlpsol
	defdelayedrows
	defsecurevecs
	estimatemarginals
	fixglobal
	getbstat
	getcomputeallowed
	getdualray
	getiis
	getiissense
	getiistype
	getinfcause
	getinfeas
	getlb
	getloadedlinctrs
	getloadedmpvars
	getmatcoeff
	getname
	getprimalray
	getprobstat
	getrange
	getscale
	getsensrng
	getsize
	getsol
	getvar
	getub
	getvars
	hasfeature
	implies
	indicator
	isiisvalid
	isintegral
	loadbasis
	loadlpsol
	loadmipsol
	loadprob
	maximize, minimize
	postsolve
	readbasis
	readdirs
	readsol
	refinemipsol
	rejectintsol
	repairinfeas
	resetbasis
	resetiis
	resetsol
	savebasis
	savemipsol
	savesol
	savestate
	selectsol
	setarchconsistency
	setbstat
	setcallback
	setcomputeallowed
	setcbcutoff
	setgndata
	setlb
	setmatcoeff
	setmipdir
	setmodcut
	setsol
	setub
	setucbdata
	stopoptimize
	unloadprob
	uselastbarsol
	writebasis
	writedirs
	writeprob
	writesol
	xor
	xprsmemoryuse

	Cut Pool Manager
	addcut
	addcuts
	delcuts
	dropcuts
	getcnlist
	getcplist
	loadcuts
	storecut
	storecuts

	python3
	Introduction
	Prerequisites
	Windows Anaconda Setup
	Linux Anaconda Setup
	Python initialization
	Data types

	Xpress Insight 4 configuration
	Xpress Insight 5 configuration
	Control parameters
	pyinitverbose
	pyusepandas

	Procedures and functions
	pycall
	pyexec
	pyget
	pygetdf
	pyinit
	pyinitpandas
	pyrun
	pyset
	pysetdf
	pyunload

	I/O drivers
	 Driver python
	Type mapping to Python
	Type mapping from Python

	Troubleshooting

	R
	Introduction
	Prerequisites
	R initialization
	Memory limit on Windows
	Data types

	Example
	Control parameters
	Rverbose
	Rinteractive
	Rusemosstreams
	Rcleanscript
	Runloadscript
	Rsessionmode

	Procedures and functions
	Reval
	Rfree
	Rgetarr
	Rgetbool
	Rgetint
	Rgetreal
	Rgetstr
	Rinit
	Rprint
	Rset
	Rsetdf
	Rsource
	Rerrcode
	Rerrmsg
	Rclearerr

	I/O drivers
	Driver rws

	Troubleshooting

	zlib
	I/O drivers
	Driver gzip
	Driver deflate
	Driver zip

	Appendix
	Syntax diagrams for the Mosel language
	Main structures and statements
	Expressions
	Initializations data file format

	Remote Invocation Protocol
	Instance control parameters
	mcmd pseudo file
	Profiler interface
	Debugger interface

	Error messages
	General errors
	Parser/compiler errors
	Errors related to modules
	Errors related to packages

	Runtime errors
	Initializations
	General runtime errors
	BIM reader
	Module manager errors

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

