
FICOFICO R⃝R⃝ Xpress OptimizationXpress Optimization

40.01

Last update 01 April 2022

REFERENCE MANUAL

FICO R⃝ Xpress Optimizer

©1983–2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes
to determine whether to purchase a license to the software described in this documentation, or as otherwise
set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and
no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except as
may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular
purpose. Portions of this documentation and the software described in it may contain copyright of various
authors and may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Xpress Optimizer

Deliverable Version: A

Last Revised: 01 April 2022

Version 40.01

Contents

1 Introduction 1
1.1 The FICO Xpress Optimizer . 1
1.2 Starting the First Time . 2

1.2.1 Licensing . 2
1.2.2 Starting Console Optimizer . 2
1.2.3 Scripting Console Optimizer . 3
1.2.4 Interrupting Console Optimizer . 5

1.3 Manual Layout . 5

2 Basic Usage 6
2.1 Initialization . 6
2.2 The Problem Pointer . 7
2.3 Logging . 7
2.4 Problem Loading . 8
2.5 Problem Solving . 8
2.6 Interrupting the Solve . 9
2.7 Results Processing . 10
2.8 Function Quick Reference . 11

2.8.1 Administration . 11
2.8.2 Problem Loading . 11
2.8.3 Problem Solving . 11
2.8.4 Results Processing . 12

2.9 Summary . 12

3 Problem Types 13
3.1 Linear Programs (LPs) . 13
3.2 Mixed Integer Programs (MIPs) . 13
3.3 Quadratic Programs (QPs) . 14
3.4 Quadratically Constrained Quadratic Programs (QCQPs) 15

3.4.1 Algebraic and matrix form . 15
3.4.2 Convexity . 15
3.4.3 Characterizing Convexity in Quadratic Constraints 16

3.5 Second Order Cone problems (SOCPs) . 16

4 Solution Methods 18
4.1 Simplex Method . 18

4.1.1 Output . 19
4.2 Newton Barrier Method . 19

4.2.1 Crossover . 19
4.2.2 Output . 20

4.3 Branch and Bound . 20
4.3.1 Theory . 20
4.3.2 Variable Selection and Cutting . 22
4.3.3 Variable Selection for Branching . 22
4.3.4 Cutting Planes . 23
4.3.5 Node Selection . 23

Fair Isaac Corporation Proprietary Information i

Contents

4.3.6 Adjusting the Cutoff Value . 24
4.3.7 Stopping Criteria . 24
4.3.8 Integer Preprocessing . 24

4.4 QCQP and SOCP Methods . 25
4.4.1 Convexity Checking . 25
4.4.2 Quadratically Constrained and Second Order Cone Problems 26

5 Advanced Usage 27
5.1 Problem Names . 27
5.2 Manipulating the Matrix . 27

5.2.1 Reading the Matrix . 28
5.2.2 Modifying the Matrix . 28

5.3 Working with Presolve . 29
5.3.1 (Mixed) Integer Programming Problems . 29

5.4 Working with LP Folding . 30
5.5 Working with Heuristics . 30
5.6 Analyzing and Handling Numerical Issues . 31

5.6.1 Analyzing Models for Numerical Issues . 32
5.6.2 Scaling . 32
5.6.3 Solution Refinement . 33
5.6.4 Other Ways to Handle Numerical Issues . 33

5.7 Common Causes of Confusion . 33
5.8 Using the Callbacks . 33

5.8.1 Output Callbacks . 34
5.8.2 LP Callbacks . 34
5.8.3 Global Search Callbacks . 34

5.9 Working with the Cut Manager . 35
5.9.1 Cuts and the Cut Pool . 35
5.9.2 Cut Management Routines . 35
5.9.3 User Cut Manager Routines . 36

5.10 Solving Problems Using Multiple Threads . 36
5.10.1 The concurrent solver . 37

5.11 Solving Large Models (the 64 bit Functions) . 38
5.12 Using the Tuner . 38

5.12.1 Basic Usage . 38
5.12.2 The Tuner Method . 39
5.12.3 The Tuner Output . 40
5.12.4 The Tuner Target . 40
5.12.5 Restarting the Tuner . 40
5.12.6 Tuner with Multiple Threads . 41
5.12.7 Tuner with Problem Permutations . 41
5.12.8 Tuning a Set of Problems . 41
5.12.9 Advanced Topics . 42

5.13 Remote Solving with Xpress Insight Compute Interface . 42
5.13.1 Authentication . 43
5.13.2 Callbacks . 43
5.13.3 Licensing . 43
5.13.4 Advanced Configuration . 43

6 Infeasibility, Unboundedness and Instability 44
6.1 Infeasibility . 44

6.1.1 Diagnosis in Presolve . 44
6.1.2 Diagnosis using Primal Simplex . 45
6.1.3 Irreducible Infeasible Sets . 45
6.1.4 The Infeasibility Repair Utility . 46

Fair Isaac Corporation Proprietary Information ii

Contents

6.1.5 Integer Infeasibility . 47
6.2 Unboundedness . 47
6.3 Instability . 48

6.3.1 Scaling . 48
6.3.2 Accuracy . 49

7 Console and Library Functions 51
7.1 Console Mode Functions . 51
7.2 Layout for Function Descriptions . 52

Function Name . 52
Purpose . 52
Synopsis . 53
Arguments . 53
Error Values . 53
Associated Controls . 53
Examples . 53
Further Information . 53
Related Topics . 53

XPRS_bo_addbounds . 54
XPRS_bo_addbranches . 55
XPRS_bo_addcuts . 56
XPRS_bo_addrows . 57
XPRS_bo_create . 59
XPRS_bo_destroy . 62
XPRS_bo_getbounds . 63
XPRS_bo_getbranches . 64
XPRS_bo_getid . 65
XPRS_bo_getlasterror . 66
XPRS_bo_getrows . 67
XPRS_bo_setpreferredbranch . 68
XPRS_bo_setpriority . 69
XPRS_bo_store . 70
XPRS_bo_validate . 71
XPRS_ge_addcbmsghandler . 72
XPRS_ge_getcomputeallowed . 73
XPRS_ge_getlasterror . 74
XPRS_ge_removecbmsghandler . 75
XPRS_ge_setarchconsistency (SETARCHCONSISTENCY) . 76
XPRS_ge_setcomputeallowed . 77
XPRS_nml_addnames . 78
XPRS_nml_copynames . 79
XPRS_nml_create . 80
XPRS_nml_destroy . 81
XPRS_nml_findname . 82
XPRS_nml_getlasterror . 83
XPRS_nml_getmaxnamelen . 84
XPRS_nml_getnamecount . 85
XPRS_nml_getnames . 86
XPRS_nml_removenames . 87
XPRSaddcbbariteration . 88
XPRSaddcbbarlog . 90
XPRSaddcbcomputerestart . 91
XPRSaddcbpresolve . 92
XPRSaddcbchecktime . 93
XPRSaddcbchgbranch . 94

Fair Isaac Corporation Proprietary Information iii

Contents

XPRSaddcbchgbranchobject . 95
XPRSaddcbchgnode . 96
XPRSaddcbcutlog . 97
XPRSaddcbcutmgr . 98
XPRSaddcbdestroymt . 99
XPRSaddcbestimate . 100
XPRSaddcbgapnotify . 101
XPRSaddcbgloballog . 103
XPRSaddcbinfnode . 104
XPRSaddcbintsol . 105
XPRSaddcblplog . 107
XPRSaddcbmessage . 108
XPRSaddcbmipthread . 110
XPRSaddcbnewnode . 111
XPRSaddcbnodecutoff . 112
XPRSaddcboptnode . 113
XPRSaddcbpreintsol . 114
XPRSaddcbprenode . 116
XPRSaddcbsepnode . 117
XPRSaddcbusersolnotify . 119
XPRSaddcols, XPRSaddcols64 . 120
XPRSaddcuts, XPRSaddcuts64 . 122
XPRSaddgencons, XPRSaddgencons64 . 123
XPRSaddmipsol . 125
XPRSaddnames . 126
XPRSaddpwlcons, XPRSaddpwlcons64 . 127
XPRSaddqmatrix, XPRSaddqmatrix64 . 129
XPRSaddrows, XPRSaddrows64 . 130
XPRSaddsets, XPRSaddsets64 . 132
XPRSaddsetnames . 133
XPRSalter (ALTER) . 134
XPRSbasiscondition (BASISCONDITION) . 135
XPRSbasisstability (BASISSTABILITY) . 136
XPRSbndsa . 137
XPRSbtran . 138
XPRScalcobjective . 139
XPRScalcreducedcosts . 140
XPRScalcslacks . 141
XPRScalcsolinfo . 142
CHECKCONVEXITY . 143
XPRSchgbounds . 144
XPRSchgcoef . 145
XPRSchgcoltype . 146
XPRSchgglblimit . 147
XPRSchgmcoef, XPRSchgmcoef64 . 148
XPRSchgmqobj, XPRSchgmqobj64 . 149
XPRSchgobj . 150
XPRSchgobjsense (CHGOBJSENSE) . 151
XPRSchgqobj . 152
XPRSchgqrowcoeff . 153
XPRSchgrhs . 154
XPRSchgrhsrange . 155
XPRSchgrowtype . 156
XPRScopycallbacks . 157
XPRSclearrowflags . 158

Fair Isaac Corporation Proprietary Information iv

Contents

XPRScopycontrols . 159
XPRScopyprob . 160
XPRScreateprob . 161
XPRScrossoverlpsol . 162
XPRSdelcols . 163
XPRSdelcpcuts . 164
XPRSdelcuts . 165
XPRSdelgencons . 166
XPRSdelindicators . 167
XPRSdelpwlcons . 168
XPRSdelqmatrix . 169
XPRSdelrows . 170
XPRSdelsets . 171
XPRSdestroyprob . 172
XPRSdumpcontrols (DUMPCONTROLS) . 173
EXIT . 174
XPRSestimaterowdualranges . 175
XPRSfeaturequery . 176
XPRSfixglobals (FIXGLOBALS) . 177
XPRSfree . 179
XPRSftran . 180
XPRSgetattribinfo . 181
XPRSgetbanner . 182
XPRSgetbasis . 183
XPRSgetbasisval . 184
XPRSgetcheckedmode . 185
XPRSgetcoef . 186
XPRSgetcols, XPRSgetcols64 . 187
XPRSgetcoltype . 188
XPRSgetcontrolinfo . 189
XPRSgetcpcutlist . 190
XPRSgetcpcuts, XPRSgetcpcuts64 . 191
XPRSgetcutlist . 193
XPRSgetcutmap . 194
XPRSgetcutslack . 195
XPRSgetdaysleft . 196
XPRSgetdblattrib . 197
XPRSgetdblcontrol . 198
XPRSgetdirs . 199
XPRSgetdualray . 200
XPRSgetgencons, XPRSgetgencons64 . 201
XPRSgetglobal, XPRSgetglobal64 . 203
XPRSgetiisdata . 205
XPRSgetindex . 207
XPRSgetindicators . 208
XPRSgetinfeas . 209
XPRSgetintattrib, XPRSgetintattrib64 . 211
XPRSgetintcontrol, XPRSgetintcontrol64 . 212
XPRSgetlastbarsol . 213
XPRSgetlasterror . 214
XPRSgetlb . 215
XPRSgetlicerrmsg . 216
XPRSgetlpsol . 217
XPRSgetlpsolval . 218
XPRSgetmessagestatus . 219

Fair Isaac Corporation Proprietary Information v

Contents

XPRSgetmipsol . 220
XPRSgetmipsolval . 221
XPRSgetmqobj, XPRSgetmqobj64 . 222
XPRSgetnamelist . 223
XPRSgetnamelistobject . 225
XPRSgetnames . 226
XPRSgetobj . 227
XPRSgetobjecttypename . 228
XPRSgetpivotorder . 229
XPRSgetpivots . 230
XPRSgetpresolvebasis . 231
XPRSgetpresolvemap . 232
XPRSgetpresolvesol . 233
XPRSgetprimalray . 234
XPRSgetprobname . 235
XPRSgetpwlcons, XPRSgetpwlcons64 . 236
XPRSgetqobj . 238
XPRSgetqrowcoeff . 239
XPRSgetqrowqmatrix . 240
XPRSgetqrowqmatrixtriplets . 241
XPRSgetqrows . 242
XPRSgetrhs . 243
XPRSgetrhsrange . 244
XPRSgetrowflags . 245
XPRSgetrows, XPRSgetrows64 . 246
XPRSgetrowtype . 247
XPRSgetscale . 248
XPRSgetscaledinfeas . 249
XPRSgetstrattrib, XPRSgetstringattrib . 251
XPRSgetstrcontrol, XPRSgetstringcontrol . 252
XPRSgetub . 253
XPRSgetunbvec . 254
XPRSgetversion . 255
XPRSglobal (GLOBAL) . 256
HELP . 258
IIS . 259
XPRSiisall . 261
XPRSiisclear . 262
XPRSiisfirst . 263
XPRSiisisolations . 264
XPRSiisnext . 265
XPRSiisstatus . 266
XPRSiiswrite . 267
XPRSinit . 268
XPRSinitglobal . 269
XPRSinterrupt . 270
XPRSloadbasis . 271
XPRSloadbranchdirs . 272
XPRSloadcuts . 273
XPRSloaddelayedrows . 274
XPRSloaddirs . 275
XPRSloadglobal, XPRSloadglobal64 . 276
XPRSloadlp, XPRSloadlp64 . 279
XPRSloadlpsol . 281
XPRSloadmipsol . 282

Fair Isaac Corporation Proprietary Information vi

Contents

XPRSloadmodelcuts . 283
XPRSloadpresolvebasis . 284
XPRSloadpresolvedirs . 285
XPRSloadqcqp, XPRSloadqcqp64 . 286
XPRSloadqcqpglobal, XPRSloadqcqpglobal64 . 290
XPRSloadqglobal, XPRSloadqglobal64 . 294
XPRSloadqp, XPRSloadqp64 . 297
XPRSloadsecurevecs . 300
XPRSlpoptimize (LPOPTIMIZE) . 301
XPRSmaxim, XPRSminim (MAXIM, MINIM) . 302
XPRSmipoptimize (MIPOPTIMIZE) . 304
XPRSobjsa . 305
XPRSpivot . 306
XPRSpostsolve (POSTSOLVE) . 307
XPRSpresolverow . 308
PRINTSOL . 310
QUIT . 311
XPRSreadbasis (READBASIS) . 312
XPRSreadbinsol (READBINSOL) . 313
XPRSreaddirs (READDIRS) . 314
XPRSreadprob (READPROB) . 316
XPRSreadslxsol (READSLXSOL) . 318
XPRSrefinemipsol (REFINEMIPSOL) . 319
XPRSremovecbbariteration . 320
XPRSremovecbcomputerestart . 321
XPRSremovecbpresolve . 322
XPRSremovecbbarlog . 323
XPRSremovecbchgbranch . 324
XPRSremovecbchgbranchobject . 325
XPRSremovecbchecktime . 326
XPRSremovecbchgnode . 327
XPRSremovecbcutlog . 328
XPRSremovecbcutmgr . 329
XPRSremovecbdestroymt . 330
XPRSremovecbestimate . 331
XPRSremovecbgapnotify . 332
XPRSremovecbgloballog . 333
XPRSremovecbinfnode . 334
XPRSremovecbintsol . 335
XPRSremovecblplog . 336
XPRSremovecbmessage . 337
XPRSremovecbmipthread . 338
XPRSremovecbnewnode . 339
XPRSremovecbnodecutoff . 340
XPRSremovecboptnode . 341
XPRSremovecbpreintsol . 342
XPRSremovecbprenode . 343
XPRSremovecbsepnode . 344
XPRSremovecbusersolnotify . 345
XPRSrepairinfeas . 346
XPRSrepairweightedinfeas . 348
XPRSrepairweightedinfeasbounds (REPAIRINFEAS) . 350
XPRSrestore (RESTORE) . 353
XPRSrhssa . 354
XPRSsave, XPRSsaveas (SAVE) . 355

Fair Isaac Corporation Proprietary Information vii

Contents

XPRSscale (SCALE) . 356
XPRSsetbranchbounds . 357
XPRSsetbranchcuts . 358
XPRSsetcheckedmode . 359
XPRSsetdblcontrol . 360
XPRSsetdefaultcontrol (SETDEFAULTCONTROL) . 361
XPRSsetdefaults (SETDEFAULTS) . 362
XPRSsetindicators . 363
XPRSsetintcontrol, XPRSsetintcontrol64 . 364
XPRSsetlogfile (SETLOGFILE) . 365
XPRSsetmessagestatus . 366
XPRSsetprobname (SETPROBNAME) . 367
XPRSsetstrcontrol . 368
STOP . 369
XPRSstorebounds . 370
XPRSstorecuts, XPRSstorecuts64 . 371
XPRSstrongbranch . 373
XPRSstrongbranchcb . 374
TUNE . 375
XPRStune . 377
XPRStunerreadmethod . 378
XPRStunerwritemethod . 379
XPRSunloadprob . 380
XPRSwritebasis (WRITEBASIS) . 381
XPRSwritebinsol (WRITEBINSOL) . 382
XPRSwritedirs (WRITEDIRS) . 383
XPRSwriteprob (WRITEPROB) . 384
XPRSwriteprtsol (WRITEPRTSOL) . 385
XPRSwriteslxsol (WRITESLXSOL) . 386
XPRSwritesol (WRITESOL) . 387

8 Control Parameters 389
8.1 Retrieving and Changing Control Values . 389
ALGAFTERCROSSOVER . 389
ALGAFTERNETWORK . 390
AUTOCUTTING . 390
AUTOSCALING . 390
AUTOPERTURB . 391
BACKTRACK . 391
BACKTRACKTIE . 391
BARALG . 392
BARCRASH . 392
BARDUALSTOP . 393
BARFREESCALE . 393
BARGAPSTOP . 393
BARGAPTARGET . 393
BARFAILITERLIMIT . 394
BARINDEFLIMIT . 394
BARITERLIMIT . 394
BARKERNEL . 395
BAROBJPERTURB . 395
BAROBJSCALE . 395
BARORDER . 396
BARORDERTHREADS . 396
BAROUTPUT . 396

Fair Isaac Corporation Proprietary Information viii

Contents

BARPERTURB . 396
BARREFITER . 397
BARPRESOLVEOPS . 397
BARPRIMALSTOP . 397
BARREGULARIZE . 397
BARRHSSCALE . 398
BARSOLUTION . 398
BARSTART . 399
BARSTARTWEIGHT . 399
BARSTEPSTOP . 399
BARTHREADS . 399
BARCORES . 400
BIGM . 400
BIGMMETHOD . 400
BRANCHCHOICE . 401
BRANCHDISJ . 401
BRANCHSTRUCTURAL . 401
BREADTHFIRST . 402
CACHESIZE . 402
CALLBACKFROMMASTERTHREAD . 403
CHOLESKYALG . 403
CHOLESKYTOL . 404
CLAMPING . 404
COMPUTE . 404
COMPUTEEXECSERVICE . 405
COMPUTEJOBPRIORITY . 405
COMPUTELOG . 405
CONFLICTCUTS . 406
CONCURRENTTHREADS . 406
CORESPERCPU . 406
COVERCUTS . 406
CPIALPHA . 407
CPUPLATFORM . 407
CPUTIME . 407
CRASH . 408
CROSSOVER . 408
CROSSOVERACCURACYTOL . 409
CROSSOVERITERLIMIT . 409
CROSSOVEROPS . 409
CROSSOVERTHREADS . 410
CSTYLE . 410
CUTDEPTH . 410
CUTFACTOR . 410
CUTFREQ . 411
CUTSTRATEGY . 411
CUTSELECT . 411
DEFAULTALG . 412
DENSECOLLIMIT . 412
DETERMINISTIC . 413
DUALGRADIENT . 413
DUALIZE . 413
DUALIZEOPS . 414
DUALPERTURB . 414
DUALSTRATEGY . 414
DUALTHREADS . 415

Fair Isaac Corporation Proprietary Information ix

Contents

EIGENVALUETOL . 415
ELIMFILLIN . 415
ELIMTOL . 415
ESCAPENAMES . 416
ETATOL . 416
EXTRACOLS . 416
EXTRAELEMS . 416
EXTRAMIPENTS . 417
EXTRAPRESOLVE . 417
EXTRAQCELEMENTS . 417
EXTRAQCROWS . 417
EXTRAROWS . 417
EXTRASETELEMS . 418
EXTRASETS . 418
FEASIBILITYPUMP . 418
FEASTOL . 419
FEASTOLPERTURB . 419
FEASTOLTARGET . 419
FORCEOUTPUT . 419
FORCEPARALLELDUAL . 420
GENCONSABSTRANSFORMATION . 420
GENCONSDUALREDUCTIONS . 420
GLOBALFILEBIAS . 421
GLOBALFILELOGINTERVAL . 421
GOMCUTS . 421
HEURBEFORELP . 421
HEURDEPTH . 422
HEURDIVEITERLIMIT . 422
HEURDIVERANDOMIZE . 422
HEURDIVESOFTROUNDING . 423
HEURDIVESPEEDUP . 423
HEURDIVESTRATEGY . 423
HEUREMPHASIS . 424
HEURFORCESPECIALOBJ . 424
HEURFREQ . 424
HEURMAXSOL . 424
HEURNODES . 425
HEURSEARCHEFFORT . 425
HEURSEARCHFREQ . 425
HEURSEARCHROOTCUTFREQ . 426
HEURSEARCHROOTSELECT . 426
HEURSEARCHTREESELECT . 427
HEURSTRATEGY . 427
HEURTHREADS . 428
HISTORYCOSTS . 428
IFCHECKCONVEXITY . 428
INDLINBIGM . 429
INDPRELINBIGM . 429
INPUTTOL . 429
INVERTFREQ . 430
INVERTMIN . 430
IOTIMEOUT . 430
KEEPBASIS . 430
KEEPNROWS . 431
L1CACHE . 431

Fair Isaac Corporation Proprietary Information x

Contents

LINELENGTH . 431
LNPBEST . 431
LNPITERLIMIT . 432
LPFLAGS . 432
LPITERLIMIT . 432
LPREFINEITERLIMIT . 432
LOCALCHOICE . 433
LPFOLDING . 433
LPLOG . 433
LPLOGDELAY . 434
LPLOGSTYLE . 434
LPTHREADS . 434
MARKOWITZTOL . 434
MATRIXTOL . 435
MAXCHECKSONMAXCUTTIME . 435
MAXCHECKSONMAXTIME . 435
MAXMCOEFFBUFFERELEMS . 436
MAXCUTTIME . 436
MAXGLOBALFILESIZE . 436
MAXIIS . 436
MAXIMPLIEDBOUND . 437
MAXLOCALBACKTRACK . 437
MAXMEMORYHARD . 437
MAXMEMORYSOFT . 438
MAXMIPTASKS . 438
MAXMIPSOL . 439
MAXNODE . 439
MAXPAGELINES . 439
MAXSCALEFACTOR . 439
MAXSTALLTIME . 440
MAXTIME . 440
MIPABSCUTOFF . 440
MIPABSGAPNOTIFY . 441
MIPABSGAPNOTIFYBOUND . 441
MIPABSGAPNOTIFYOBJ . 441
MIPABSSTOP . 441
MIPADDCUTOFF . 442
MIPCOMPONENTS . 442
MIPCONCURRENTNODES . 443
MIPCONCURRENTSOLVES . 443
MIPDUALREDUCTIONS . 444
MIPFRACREDUCE . 444
MIPKAPPAFREQ . 445
MIPLOG . 445
MIPPRESOLVE . 446
MIPRAMPUP . 446
MIPRESTART . 447
MIPRESTARTGAPTHRESHOLD . 447
MIPRESTARTFACTOR . 447
MIQCPALG . 448
MIPREFINEITERLIMIT . 448
MIPRELCUTOFF . 448
MIPRELGAPNOTIFY . 448
MIPRELSTOP . 449
MIPTERMINATIONMETHOD . 449

Fair Isaac Corporation Proprietary Information xi

Contents

MIPTHREADS . 450
MIPTOL . 450
MIPTOLTARGET . 450
MPS18COMPATIBLE . 450
MPSBOUNDNAME . 451
MPSECHO . 451
MPSFORMAT . 451
MPSOBJNAME . 451
MPSRANGENAME . 452
MPSRHSNAME . 452
MUTEXCALLBACKS . 452
NETCUTS . 452
NETSTALLLIMIT . 453
NODEPROBINGEFFORT . 453
NODESELECTION . 453
NUMERICALEMPHASIS . 454
OBJSCALEFACTOR . 454
OPTIMALITYTOL . 454
OPTIMALITYTOLTARGET . 454
OUTPUTCONTROLS . 455
OUTPUTLOG . 455
OUTPUTMASK . 455
OUTPUTTOL . 456
PENALTY . 456
PERTURB . 456
PIVOTTOL . 456
PPFACTOR . 456
PREANALYTICCENTER . 457
PREBASISRED . 457
PREBNDREDCONE . 457
PREBNDREDQUAD . 457
PRECLIQUESTRATEGY . 458
PRECOEFELIM . 458
PRECOMPONENTS . 458
PRECOMPONENTSEFFORT . 459
PRECONEDECOMP . 459
PRECONVERTSEPARABLE . 459
PREDOMCOL . 460
PREDOMROW . 460
PREDUPROW . 460
PREELIMQUAD . 461
PREFOLDING . 461
PREIMPLICATIONS . 461
PRELINDEP . 462
PREOBJCUTDETECT . 462
PREPERMUTE . 462
PREPERMUTESEED . 463
PREPROBING . 463
PREPROTECTDUAL . 463
PRESOLVE . 463
PRESOLVEMAXGROW . 464
PRESOLVEOPS . 464
PRESOLVEPASSES . 465
PRESORT . 465
PRICINGALG . 465

Fair Isaac Corporation Proprietary Information xii

Contents

PRIMALOPS . 466
PRIMALPERTURB . 466
PRIMALUNSHIFT . 466
PSEUDOCOST . 467
PWLDUALREDUCTIONS . 467
PWLNONCONVEXTRANSFORMATION . 467
QCCUTS . 468
QCROOTALG . 468
QSIMPLEXOPS . 468
QUADRATICUNSHIFT . 469
RANDOMSEED . 469
REFACTOR . 469
REFINEOPS . 470
RELAXTREEMEMORYLIMIT . 470
RELPIVOTTOL . 471
REPAIRINDEFINITEQ . 471
REPAIRINFEASMAXTIME . 471
RESOURCESTRATEGY . 472
ROOTPRESOLVE . 472
SBBEST . 472
SBEFFORT . 473
SBESTIMATE . 473
SBITERLIMIT . 473
SBSELECT . 473
SCALING . 474
SERIALIZEPREINTSOL . 475
SIFTING . 475
SIFTPASSES . 475
SIFTPRESOLVEOPS . 475
SIFTSWITCH . 476
SLEEPONTHREADWAIT . 476
SOSREFTOL . 476
SYMMETRY . 476
SYMSELECT . 477
THREADS . 477
TRACE . 477
TREECOMPRESSION . 478
TREECOVERCUTS . 478
TREECUTSELECT . 478
TREEDIAGNOSTICS . 479
TREEGOMCUTS . 479
TREEMEMORYLIMIT . 479
TREEMEMORYSAVINGTARGET . 480
TREEQCCUTS . 480
TUNERHISTORY . 480
TUNERMAXTIME . 481
TUNERMETHOD . 481
TUNERMETHODFILE . 481
TUNERMODE . 482
TUNEROUTPUT . 482
TUNEROUTPUTPATH . 482
TUNERPERMUTE . 483
TUNERROOTALG . 483
TUNERSESSIONNAME . 483
TUNERTARGET . 484

Fair Isaac Corporation Proprietary Information xiii

Contents

TUNERTHREADS . 484
TUNERVERBOSE . 485
USERSOLHEURISTIC . 485
VARSELECTION . 486
VERSION . 486

9 Problem Attributes 487
9.1 Retrieving Problem Attributes . 487
ACTIVENODES . 487
ALGORITHM . 487
ATTENTIONLEVEL . 488
AVAILABLEMEMORY . 488
BARAASIZE . 488
BARCGAP . 488
BARCONDA . 488
BARCONDD . 489
BARCROSSOVER . 489
BARDENSECOL . 489
BARDUALINF . 489
BARDUALOBJ . 489
BARITER . 489
BARLSIZE . 490
BARPRIMALINF . 490
BARPRIMALOBJ . 490
BARSING . 490
BARSINGR . 490
BESTBOUND . 490
BOUNDNAME . 491
BRANCHVALUE . 491
BRANCHVAR . 491
CALLBACKCOUNT_CUTMGR . 491
CALLBACKCOUNT_OPTNODE . 491
CHECKSONMAXCUTTIME . 491
CHECKSONMAXTIME . 492
COLS . 492
COMPUTEEXECUTIONS . 492
CONEELEMS . 492
CONES . 493
CORESDETECTED . 493
CORESPERCPUDETECTED . 493
CPISCALEFACTOR . 493
CPUSDETECTED . 494
CURRENTMEMORY . 494
CURRENTNODE . 494
CURRMIPCUTOFF . 494
CUTS . 495
DUALINFEAS . 495
ELEMS . 495
ERRORCODE . 495
GENCONCOLS . 496
GENCONS . 496
GENCONVALS . 496
GLOBALFILESIZE . 496
GLOBALFILEUSAGE . 496
INDICATORS . 497

Fair Isaac Corporation Proprietary Information xiv

Contents

LPOBJVAL . 497
LPSTATUS . 497
MATRIXNAME . 497
MAXABSDUALINFEAS . 498
MAXABSPRIMALINFEAS . 498
MAXKAPPA . 498
MAXMIPINFEAS . 498
MAXPROBNAMELENGTH . 498
MAXRELDUALINFEAS . 498
MAXRELPRIMALINFEAS . 499
MEMORYLIMITDETECTED . 499
MIPBESTOBJVAL . 499
MIPENTS . 499
MIPINFEAS . 499
MIPOBJVAL . 500
MIPSOLNODE . 500
MIPSOLS . 500
MIPSOLTIME . 500
MIPSTATUS . 500
MIPTHREADID . 501
NAMELENGTH . 501
NODEDEPTH . 501
NODES . 502
NUMIIS . 502
OBJNAME . 502
OBJRHS . 502
OBSERVEDPRIMALINTEGRAL . 502
OBJSENSE . 503
ORIGINALCOLS . 503
ORIGINALGENCONS . 503
ORIGINALGENCONCOLS . 503
ORIGINALGENCONVALS . 504
ORIGINALINDICATORS . 504
ORIGINALMIPENTS . 504
ORIGINALPWLS . 504
ORIGINALPWLPOINTS . 504
ORIGINALQCONSTRAINTS . 505
ORIGINALQCELEMS . 505
ORIGINALQELEMS . 505
ORIGINALSETMEMBERS . 505
ORIGINALSETS . 505
ORIGINALROWS . 506
PARENTNODE . 506
PEAKMEMORY . 506
PEAKTOTALTREEMEMORYUSAGE . 506
PENALTYVALUE . 506
PHYSICALCORESDETECTED . 507
PHYSICALCORESPERCPUDETECTED . 507
PREDICTEDATTLEVEL . 507
PRESOLVEINDEX . 507
PRESOLVESTATE . 508
PRIMALDUALINTEGRAL . 508
PRIMALINFEAS . 508
PWLCONS . 508
PWLPOINTS . 509

Fair Isaac Corporation Proprietary Information xv

Contents

QCELEMS . 509
QCONSTRAINTS . 509
QELEMS . 509
RANGENAME . 509
RESTARTS . 510
RHSNAME . 510
ROWS . 510
SIMPLEXITER . 510
SETMEMBERS . 510
SETS . 511
SPARECOLS . 511
SPAREELEMS . 511
SPAREMIPENTS . 511
SPAREROWS . 511
SPARESETELEMS . 512
SPARESETS . 512
STOPSTATUS . 512
SUMPRIMALINF . 512
SYSTEMMEMORY . 513
TIME . 513
TOTALMEMORY . 513
TREECOMPLETION . 513
TREEMEMORYUSAGE . 513
TREERESTARTS . 514
UUID . 514
XPRESSVERSION . 514

10 Return Codes and Error Messages 515
10.1 Optimizer Return Codes . 515
10.2 Optimizer Error and Warning Messages . 515

Appendix 548

A Log and File Formats 549
A.1 File Types . 549

A.1.1 File Compression . 549
A.2 XMPS Matrix Files . 550

A.2.1 NAME section . 551
A.2.2 ROWS section . 551
A.2.3 COLUMNS section . 551
A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only) 551
A.2.5 QCMATRIX section (Quadratic Constraint Programming only) 552
A.2.6 DELAYEDROWS section . 553
A.2.7 MODELCUTS section . 554
A.2.8 INDICATORS section . 554
A.2.9 SETS section (Integer Programming only) . 554
A.2.10 RHS section . 555
A.2.11 RANGES section . 555
A.2.12 BOUNDS section . 556
A.2.13 GENCONS section . 557
A.2.14 ENDATA section . 558
A.2.15 Compatibility . 558
A.2.16 PWLOBJ section . 558
A.2.17 PWLNAM section . 559

Fair Isaac Corporation Proprietary Information xvi

Contents

A.2.18 PWLCON section . 559
A.3 LP File Format . 560

A.3.1 Rules for the LP file format . 561
A.3.2 Comments and blank lines . 561
A.3.3 File lines, white space and identifiers . 561
A.3.4 Sections . 561
A.3.5 Names . 563
A.3.6 Linear expressions . 563
A.3.7 Objective function . 563
A.3.8 Constraints . 563
A.3.9 Delayed rows . 564
A.3.10 Model cuts . 564
A.3.11 Indicator contraints . 564
A.3.12 Bounds . 565
A.3.13 Generals, Integers and binaries . 566
A.3.14 Semi-continuous and semi-integer . 566
A.3.15 Partial integers . 567
A.3.16 Special ordered sets . 567
A.3.17 Quadratic programming problems . 568
A.3.18 Quadratic Constraints . 568
A.3.19 General Constraints . 569
A.3.20 Constraint ranges . 569
A.3.21 Extended naming convention . 570
A.3.22 Compatibility to other extensions . 570

A.4 ASCII Solution Files . 570
A.4.1 Solution Header .hdr Files . 570
A.4.2 CSV Format Solution .asc Files . 571
A.4.3 Fixed Format Solution (.prt) Files . 572
A.4.4 ASCII Solution (.slx) Files . 574

A.5 The Directives (.dir) File . 575
A.6 IIS description file in CSV format . 575
A.7 The Matrix Alteration (.alt) File . 576

A.7.1 Changing Upper or Lower Bounds . 576
A.7.2 Changing Right Hand Side Coefficients . 577
A.7.3 Changing Constraint Types . 577

A.8 The Tuner Method (.xtm) File . 577
A.8.1 The fixed controls . 578
A.8.2 The tunable controls . 578

A.9 The Simplex Log . 578
A.10 The Barrier Log . 579
A.11 The Global Log . 579
A.12 The Tuner Log . 581
A.13 The Remote Solving Configuration file . 582

A.13.1 caCertsPath . 582
A.13.2 cleanupJobs . 582
A.13.3 executionService . 582
A.13.4 logLevel . 583
A.13.5 maxRetries . 583
A.13.6 priority . 583
A.13.7 trustSrv . 583

B Contacting FICO 585
Product support . 585
Product education . 585
Product documentation . 585

Fair Isaac Corporation Proprietary Information xvii

Contents

Sales and maintenance . 586
Related services . 586
FICO Community . 586
About FICO . 586

Index 587

Fair Isaac Corporation Proprietary Information xviii

CHAPTER 1

Introduction

The FICO Xpress Optimization Suite is a powerful mathematical optimization framework well–suited to a
broad range of optimization problems. The core solver of this suite is the FICO Xpress Optimizer, which
combines ease of use with speed and flexibility. It can be interfaced via the command line Console
Optimizer, via the graphical interface application IVE and through a callable library that is accessible from
all the major programming platforms. It combines flexible data access functionality and optimization
algorithms, using state–of–the–art methods, which enable the user to handle the increasingly complex
problems arising in industry and academia.

The Console Optimizer provides a suite of ’Console Mode’ Optimizer functionality. Using the Console
Optimizer the user can load problems from widely used problem file formats such as the MPS and LP
formats and solve them using any of the algorithms supported by the Optimizer. The results may then be
processed and viewed in a variety of ways. The Console Mode provides full access to the Optimizer
control variables allowing the user to customize the optimization algorithms to tune the solving
performance on the most demanding problems.

The FICO Xpress Optimizer library provides full, high performance access to the internal data structures
of the Optimizer and full flexibility to manipulate the problem and customize the optimization process.
For example, the Cut Manager framework allows the user to exploit their detailed knowledge of the
problem to generate specialized cutting planes during branch and bound that may improve solving
performance of Mixed Integer Programs (MIPs).

Of most interest to the library users will be the embedding of the Optimizer functionality within their own
applications. The available programming interfaces of the library include interfaces for C/C++, .NET and
Java. Note that the interface specifications in the following documentation are given exclusively in terms
of the C/C++ language. Short examples of the interface usage using other languages may be found in the
FICO Xpress Getting Started manual.

1.1 The FICO Xpress Optimizer
The FICO Xpress Optimizer is a mathematical programming framework designed to provide high
performance solving capabilities. Problems can be loaded into the Optimizer via matrix files such as MPS
and LP files and/or constructed in memory and loaded using a variety of approaches via the library
interface routines. Note that in most cases it is more convenient for the user to construct their problems
using FICO Xpress Mosel or FICO Xpress BCL and then solve the problem using the interfaces provided
by these packages to the Optimizer.

The solving algorithms provided with the Optimizer include the primal simplex, the dual simplex and the
Newton barrier algorithms. For solving Mixed Integer Programs (MIPs) the Optimizer provides a powerful
branch and bound framework. The various types of problems the Optimizer can solve are outlined in
Chapter 3.

Solution information can be exported to file using a variety of ASCII and binary formats or accessed via
memory using the library interface. Advanced solution information, such as solution bases, can be both

Fair Isaac Corporation Proprietary Information 1

Chapter 1: Introduction

exported and imported either via files or via memory, using the library interface. Note that bases can be
useful for so called ’warm–starting’ the solving of Linear Programming (LP) problems.

1.2 Starting the First Time
We recommend that new FICO Xpress Optimizer users first try running the Console Optimizer ’optimizer’
executable from the command prompt before using the other interfaces of Optimizer. This is because (i)
it is the easiest way to confirm the license status of the installation and (ii) it is an introduction to a
powerful tool with many uses during the development cycle of optimization applications. For this reason
we focus mainly on discussing the Console Optimizer in this section as an introduction to various basic
functions of the Optimizer.

1.2.1 Licensing
To run the Optimizer from any interface it is necessary to have a valid licence file, xpauth.xpr. The
FICO Xpress licensing system is highly flexible and is easily configurable to cater for the user’s
requirements. The system can allow the Optimizer to be run on a specific machine, on a machine with a
specific ethernet address or on a machine connected to an authorized hardware dongle.

If the Optimizer fails to verify a valid license then a message can be obtained that describes the reasons
for the failure and the Optimizer will be unusable. When using the Console Optimizer the licensing failure
message will be displayed on the console. Library users can call the function XPRSgetlicerrmsg to
get the licensing failure message.

On Windows operating systems the Optimizer searches for the license file in the directory containing the
Xpress libraries, which are installed by default into the C:\xpressmp\bin folder. To avoid unnecessary
licensing problems, it is recommended that the XPAUTH_PATH environment variable is not set on
Windows.

On Unix systems it is necessary to set the XPAUTH_PATH environment variable to the full path to the
license file. For ease of support it is recommended that the license file is placed in the bin directory
within your Xpress installation and the XPAUTH_PATH environment variable is set accordingly, e.g.,
/opt/xpressmp/bin/xpauth.xpr.

1.2.2 Starting Console Optimizer
Console Optimizer is an interactive command line interface to the Optimizer. Console Optimizer is started
from the command line using the following syntax:

C:\> optimizer [problem_name] [@filename]

From the command line an initial problem name can be optionally specified together with an optional
second argument specifying a text "script" file from which the console input will be read as if it had been
typed interactively.

Note that the syntax example above shows the command as if it were input from the Windows Command
Prompt (i.e., it is prefixed with the command prompt string C:\>). For Windows users Console Optimizer
can also be started by typing optimizer into the "Run ..." dialog box in the Start menu.

The Console Optimizer provides a quick and convenient interface for operating on a single problem
loaded into the Optimizer. Compare this with the more powerful library interface that allows one or more
problems to co–exist in a process. The Console Optimizer problem contains the problem data as well as
(i) control variables for handling and solving the problem and (ii) attributes of the problem and its solution
information.

Useful features of Console Optimizer include a help system, auto–completion of command names and

Fair Isaac Corporation Proprietary Information 2

Chapter 1: Introduction

integration of system commands.

Typing "help" will list the various options for getting help. Typing "help commands" will list available
commands. Typing "help attributes" and "help controls" will list the available attributes and
controls, respectively. Typing "help" followed by a command name or control/attribute name will list the
help for this item. For example, typing "help lpoptimize" will get help for the LPOPTIMIZE
command.

The Console Optimizer auto–completion feature is a useful way of reducing key strokes when issuing
commands. To use the auto–completion feature, type the first part of an optimizer command name
followed by the Tab key. For example, by typing "lpopt" followed by the Tab key Console Optimizer will
complete to the LPOPTIMIZE command. Note that once you have finished inputting the command name
portion of your command line, Console Optimizer can also auto–complete on file names. For example, if
you have a matrix file named hpw15.mps in the current working directory then by typing "readprob
hpw" followed by the Tab key the command should auto–complete to the string "readprob
hpw15.mps". Note that the auto–completion of file names is case–sensitive.

Console Optimizer also features integration with the operating system’s shell commands. For example,
by typing "dir" (or "ls" under Unix) you will directly run the operating system’s directory listing command.
Using the "cd" command will change the working directory, which will be indicated in the prompt string:

[xpress bin] cd \
[xpress C:\]

Finally, note that when the Console Optimizer is first started it will attempt to read in an initialization file
named optimizer.ini from the current working directory. This is an ASCII file that may contain any
lines that can normally be entered at the console prompt, such as commands or control parameter
settings. The lines of the optimizer.ini file are run with at start up, and can be useful for setting up a
customized default Console Optimizer environment for the user (e.g., defining custom controls settings
on the Console Optimizer problem).

1.2.3 Scripting Console Optimizer
The Console Optimizer interactive command line hosts a TCL script parser (http://www.tcl.tk). With TCL
scripting the user can program flow control into their Console Optimizer scripts. Also TCL scripting
provides the user with programmatic access to a powerful suite of functionality in the TCL library. With
scripting support the Console Optimizer provides a high level of control and flexibility well beyond that
which can be achieved by combining operating system batch files with simple piped script files. Indeed,
with scripting support, Console Optimizer is ideal for (i) early application development, (ii) tuning of
model formulations and solving performance and (iii) analyzing difficulties and bugs in models.

Note that the TCL parser has been customized and simplified to handle intuitive access to the controls
and attributes of the Optimizer. The following example shows how to proceed with write and read access
to the MIPLOG Optimizer control:

[xpress C:\] miplog=3
[xpress C:\] miplog
3

The following shows how this would usually be achieved using TCL syntax:

[xpress C:\] set miplog 3
3
[xpress C:\] $miplog
3

The following set of examples demonstrate how with some simple TCL commands and some basic flow
control constructs the user can quickly and easily create powerful programs.

Fair Isaac Corporation Proprietary Information 3

http://www.tcl.tk/

Chapter 1: Introduction

The first example demonstrates a loop through a list of matrix files where a simple regular expression on
the matrix file name and a simple condition on the number of rows in the problem decide whether or not
the problem is solved using lpoptimize. Note the use of:

■ the creation of a list of file names using the TCL glob command

■ the use of the TCL square bracket notation ([]) for evaluating commands to their string result value

■ the TCL foreach loop construct iterating over the list of file names

■ dereferencing the string value of a variable using ’$’

■ the use of the TCL regexp regular expression command

■ the two TCL if statements and their condition statements

■ the use of the two Optimizer commands READPROB and MINIM

■ the TCL continue command used to skip to the next loop iteration

set filelist [glob ⁎.mps]
foreach filename $filelist {
if { [regexp -all {large_problem} $filename] } continue
readprob $filename
if { $rows > 200 } continue
lpoptimize

}

The second example demonstrates a loop though some control settings and the tracking of the control
setting that gave the best performance. Note the use of:

■ the TCL for loop construct iterating over the values of variable i from --1 to 3

■ console output formatting with the TCL puts command

■ setting the values of Optimizer controls CUTSTRATEGY and MAXNODE

■ multiple commands per line separated using a semicolon

■ use of the MIPSTATUS problem attribute in the TCL if statement

■ comment lines using the hash character ’#’

set bestnodes 10000000
set p hpw15
for { set i -1 } { $i <= 3 } { incr i } {
puts "Solving with cutstrategy : $i"
cutstrategy=$i; maxnode=$bestnodes
readprob $p
mipoptimize
if { $mipstatus == 6 } {
Problem was solved within $bestnodes
set bestnodes $nodes; set beststrat $i

}
}
puts "Best cutstrategy : $beststrat : $bestnodes"

Fair Isaac Corporation Proprietary Information 4

Chapter 1: Introduction

1.2.4 Interrupting Console Optimizer
Console Optimizer users may interrupt the running of the commands (e.g., lpoptimize) by typing
Ctrl–C. Once interrupted Console Optimizer will return to its command prompt. If an optimization
algorithm has been interrupted in this way, any solution process will stop at the first ’safe’ place before
returning to the prompt. Optimization iterations may be resumed by re–entering the interrupted
command. Note that by using this interrupt–resume functionality the user has a convenient way of
dynamically changing controls during an optimization run.

Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl–C input to fail
on some operating systems.

1.3 Manual Layout
So far the manual has given a basic introduction to the FICO Xpress Optimization Suite. The reader
should be able to start the Console Optimizer command line tool and have the license verified correctly.
They should also be able to enter some common commands used in Console Optimizer (e.g., READPROB
and LPOPTIMIZE) and get help on command usage using the Console Optimizer help functionality.

The remainder of this manual is divided into two parts. These are the first chapters up to but not
including Chapter 7 and the remaining chapters from Chapter 7.

The first part of the manual, beginning with Chapter 2, provides a brief overview of common Optimizer
usage, introducing the various routines available and setting them in the typical context they are used.
This is followed in Chapter 3 by a brief overview of the types of problems that the FICO Xpress Optimizer
can be used to solve. Chapter 4 provides a description of the solution methods and some of the more
frequently used parameters for controlling these methods along with some ideas of how they may be
used to enhance the solution process. Finally, Chapter 5 details some more advanced topics in Optimizer
usage.

The second half of the manual is the main reference section. Chapter 7 details all functions in both the
Console and Advanced Modes alphabetically. Chapters 8 and 9 then provide a reference for the various
controls and attributes, followed by a list of Optimizer error and return codes in Chapter 10. A description
of several of the file formats is provided in Appendix A.

Fair Isaac Corporation Proprietary Information 5

CHAPTER 2

Basic Usage

The FICO Xpress Optimization Suite is a powerful and flexible framework catering for the development of
a wide range of optimization applications. From the script–based Console Optimizer providing rapid
development access to a subset of Optimizer functionality (Console Mode) to the more advanced, high
performance access of the full Optimizer functionality through the library interface.

In the previous section we looked at the Console Optimizer interface and introduced some basic
functions that all FICO Xpress Optimizer users should be familiar with. In this section we expand on the
discussion and include some basic functions of the library interface.

2.1 Initialization
Before the FICO Xpress Optimization Suite can be used from any of the interfaces the Optimizer library
must be initialized and the licensing status successfully verified. Details about licensing your installation
can be found in FICO Xpress Installation Guide.

When Console Optimizer is started from the command line the initialization and licensing security checks
happen immediately and the results are displayed with the banner in the console window. For the library
interface users, the initialization and licensing are triggered by a call to the library function XPRSinit,
which must be made before any of the other Optimizer library routines can be successfully called. If the
licensing security checks fail to check out a license then library users can obtain a string message
explaining the issue using the function XPRSgetlicerrmsg.

Note that it is recommended that the users having licensing problems use the Console Optimizer as a
means of checking the licensing status while resolving the issues. This is because it is the quickest and
easiest way to check and display the licensing status.

Once the Optimizer functionality is no longer required the license and any system resources held by the
Optimizer should be released. The Console Optimizer releases these automatically when the user exits
the Console Optimizer with the QUIT or STOP command. For library users the Optimizer can be triggered
to release its resources with a call to the routine XPRSfree, which will free the license checked out in the
earlier call to XPRSinit.

{
if(XPRSinit(NULL)) printf("Problem with XPRSinit\n");
XPRSfree();

}

In general, library users will call XPRSinit once when their application starts and then call XPRSfree
before it exits. This approach is recommended since calls to XPRSinit can have non–negligible (approx.
0.5 sec) overhead when using floating network licensing.

Although it is recommended that the user writes their code such that XPRSinit and XPRSfree are
called only in sequence note that the routine XPRSinitmay be called repeatedly before a call to
XPRSfree. Each subsequent call to XPRSinit after the first will simply return without performing any

Fair Isaac Corporation Proprietary Information 6

Chapter 2: Basic Usage

tasks. In this case note that the routine XPRSfreemust be called the same number of times as the calls
to XPRSinit to fully release the resources held by the library. Only on the last of these calls to
XPRSfree will the library be released and the license freed.

2.2 The Problem Pointer
The Optimizer provides a container or problem pointer to contain an optimization problem and its
associated controls, attributes and any other resources the user may attach to help construct and solve
the problem. Console Optimizer has one of these problem pointers that it uses to provide the user with
loading and solving functionality. This problem pointer is automatically initialized when Console
Optimizer is started and release again when it is stopped.

In contrast to Console Optimizer, library interface users can have multiple problem pointers coexisting
simultaneously in a process. The library user creates and destroys a problem pointer using the routines
XPRScreateprob and XPRSdestroyprob, respectively. In the C library interface, the user passes the
problem pointer as the first argument in routines that are used to operate on the problem pointer’s data.
Note that it is recommended that the library user destroys all problem pointers before calling XPRSfree.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSdestroyprob(prob);

}

2.3 Logging
The Optimizer provides useful text logging messages for indicating progress during the optimization
algorithms and for indicating the status of certain important commands such as XPRSreadprob. The
messages from the optimization algorithms report information on iterations of the algorithm. The most
important use of the logging, however, is to convey error messages reported by the Optimizer. Note that
once a system is in production the error messages are typically the only messages of interest to the user.

Conveniently, Console Optimizer automatically writes the logging messages for its problem pointer to the
console screen. Although message management for the library users is more complicated than for
Console Optimizer users, library users have more flexibility with the handling and routing of messages.
The library user can route messages directly to file or they can intercept the messages via callback and
marshal the message strings to appropriate destinations depending on the type of message and/or the
problem pointer from which the message originates.

To write the messages sent from a problem pointer directly to file the user can call XPRSsetlogfile
with specification of an output file name. To get messages sent from a problem pointer to the library
user’s application the user will define and then register a messaging callback function with a call to the
XPRSaddcbmessage routine.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSdestroyprob(prob);

}

Note that a high level messaging framework is also available — which handles messages from all
problem pointers created by the Optimizer library and messages related to initialization of the library itself
— by calling the XPRS_ge_addcbmsghandler function. A convenient use of this callback, particularly
when developing and debugging an application, is to trap all messages to file. The following line of code
shows how to use the library function XPRSlogfilehandler together with
XPRS_ge_addcbmsghandler to write all library message output to the file log.txt.

Fair Isaac Corporation Proprietary Information 7

Chapter 2: Basic Usage

XPRS_ge_addcbmsghandler(XPRSlogfilehandler, "log.txt", 0);

Details about the use of callback functions can be found in section 5.8.

2.4 Problem Loading
Once a problem pointer has been created, an optimization problem can be loaded into it. The problem
can be loaded either from file or from memory via the suite of problem loading and problem manipulation
routines available in the Optimizer library interface. The simplest of these approaches, and the only
approach available to Console Optimizer users, is to read a matrix from an MPS or LP file using
XPRSreadprob (READPROB).

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSdestroyprob(prob);

}

Library users can construct the problem in their own arrays and then load this problem specification
using one of the functions XPRSloadlp, XPRSloadqp, XPRSloadqcqp, XPRSloadglobal,
XPRSloadqglobal or XPRSloadqcqpglobal. During the problem load routine the Optimizer will use
the user’s data to construct the internal problem representation in new memory that is associated with
the problem pointer. Note, therefore, that the user’s arrays can be freed immediately after the call. Once
the problem has been loaded, any subsequent call to one of these load routines will overwrite the
problem currently represented in the problem pointer.

The names of the problem loading routines indicate the type of problem that can be represented using
the routine. The following table outlines the components of an optimization problem as denoted by the
codes used in the function names.

Code Problem Content
lp Linear Program (LP) (linear constraints and linear objective)
qp Quadratic Program (LP with quadratic objective)
global Global Constraints (LP with discrete entities e.g., binary variables)
qc Quadratic Constraints (LP with quadratic constraints)

Many of the array arguments of the load routines can optionally take NULL pointers if the associated
component of the problem is not required to be defined. Note, therefore, that the user need only use the
XPRSloadqcqpglobal routine to load any problem that can be loaded by the other routines.

Finally, note that the names of the rows and columns of the problem are not loaded together with the
problem specification. These may be loaded afterwards using a call to the function XPRSaddnames.

2.5 Problem Solving
With a problem loaded into a problem pointer the user can run the optimization algorithms on the
problem to solve it.

The two main commands to run the optimization algorithms on a problem are
XPRSmipoptimize(MIPOPTIMIZE) and XPRSlpoptimize(LPOPTIMIZE) depending on whether the
problem needs to be solved with or without global entities. The XPRSlpoptimize function will solve LPs,
QPs and QCQPs or the initial continuous relaxation of a MIP problem, depending on the type of problem
loaded in the problem pointer. The XPRSmipoptimize function will solve MIPs, MIQPs and MIQCQPs.

Fair Isaac Corporation Proprietary Information 8

Chapter 2: Basic Usage

For problems with global entities the Optimizer can be told to stop after having solved the initial
relaxation by passing the ’l’ flag to the XPRSmipoptimize function. The remaining MIP search can be
run by calling the XPRSmipoptimize function without the ’l’ flag.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSmipoptimize(prob, "");
XPRSdestroyprob(prob);

}

2.6 Interrupting the Solve
It is common that users need to interrupt iterations before a solving algorithm is complete. This is
particularly common when solving MIP problems since the time to solve these to completion can be large
and users are often satisfied with near–optimal solutions. The Optimizer provides for this with structured
interrupt criteria using controls and with user–triggered interrupts.

As described previously in section 1.2.4 Console Optimizer can receive a user–triggered interrupt from
the keyboard Ctrl–C event. It was also described in this previous section how interrupted commands
could be resumed by simply reissuing the command. Similarly, optimization runs started from the library
interface and interrupted by either structured or user–triggered interrupts, will return from the call in such
a state that the run may be resumed with a follow–on call.

To setup structured interrupts the user will need to set the value of certain controls. Controls are scalar
values that are accessed by their name in Console Optimizer and by their id number via the library
interface using functions such as XPRSgetintcontrol and XPRSsetintcontrol. These particular
library functions are used for getting and setting the values of integer controls. Similar library functions
are used for accessing double precision and string type controls.

Some types of structured interrupts include limits on iterations of the solving algorithms and a limit on
the overall time of the optimization run. Limits on the simplex algorithms’ iterations are set using the
control LPITERLIMIT. Iterations of the Newton barrier algorithm are limited using the control
BARITERLIMIT. A limit on the number of nodes processed in the branch and bound search when solving
MIP problems is provided with the MAXNODE control. The integer control MAXTIME is used to limit the
overall run time of the optimization run.

Note that it is important to be careful when using interrupts, to ensure that the optimization run is not
being unduly restricted. This is particularly important when using interrupts on MIP optimization runs.
Specific controls to use as stopping criteria for the MIP search are discussed in section 4.3.7.

{
XPRSprob prob;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSsetintcontrol(prob, XPRS_MAXNODE, 20000);
XPRSmipoptimize(prob, "");
XPRSdestroyprob(prob);

}

Finally note that library users can trigger an interrupt on an optimization run (in a similar way to the Ctrl–C
interrupt in Console Optimizer) using a call to the function XPRSinterrupt. It is recommended that the
user call this function from a callback during the optimization run. See section 5.8 for details about using
callbacks.

Fair Isaac Corporation Proprietary Information 9

Chapter 2: Basic Usage

2.7 Results Processing
Once the optimization algorithms have completed, either a solution will be available, or else the problem
will have been identified as infeasible or unbounded. In the latter case, the user might want to know what
caused this particular outcome and take steps to correct it. How to identify the causes of infeasibility and
unboundedness are discussed in Chapter 6. In the former case, however, the user typically wants to
retrieve the solution information into the required format.

The FICO Xpress Optimizer provides a number of functions for accessing solution information. An ASCII
solution file can be obtained by XPRSwriteslxsol (WRITESLXSOL). The .slx format is similar format
to the .mps format for MIP models and to the .sol format. Files in .slx format can be read back into
the optimizer using the XPRSreadslxsol function. An extended solution file with additional information
per column may be obtained as an ASCII file using either of XPRSwritesol (WRITESOL) or
XPRSwriteprtsol(WRITEPRTSOL).

Library interface users may additionally access the current LP, QP or QCQP solution information via
memory using XPRSgetlpsol. By calling XPRSgetlpsol the user can obtain copies of the double
precision values of the decision variables, the slack variables, dual values and reduced costs. Library
interface users can obtain the last MIP solution information with the XPRSgetmipsol function.

In addition to the arrays of solution information provided by the Optimizer, summary solution information
is also available through problem attributes. These are named scalar values that can be accessed by their
id number using the library functions XPRSgetintattrib, XPRSgetdblattrib and
XPRSgetstrattrib. Examples of attributes include LPOBJVAL and MIPOBJVAL, which return the
objective function values for the current LP, QP or QCQP solution and the last MIP solution, respectively. A
full list of attributes may be found in Chapter 9.

When the optimization routine returns it is recommended that the user check the status of the run to
ensure the results are interpreted correctly. For continuous optimization runs (started with
XPRSlpoptimize) the status is available using the LPSTATUS integer problem attribute. For MIP
optimization runs (started with XPRSmipoptimize) the status is available using the MIPSTATUS
integer problem attribute. See the attribute’s reference section for the definition of their values.

{
XPRSprob prob;
int nCols;
double ⁎x;
XPRScreateprob(&prob);
XPRSsetlogfile(prob, "logfile.log");
XPRSreadprob(prob, "hpw15", "");
XPRSgetintattrib(prob, XPRS_COLS, &nCols);
XPRSsetintcontrol(prob, XPRS_MAXNODE, 20000);
XPRSmipoptimize(prob, "");
XPRSgetintattrib(prob, XPRS_MIPSTATUS, &iStatus);
if(iStatus == XPRS_MIP_SOLUTION || iStatus == XPRS_MIP_OPTIMAL) {
x = (double ⁎) malloc(sizeof(double) ⁎ nCols);
XPRSgetmipsol(prob, x, NULL);

}
XPRSdestroyprob(prob);

}

Note that, unlike for LP, QP or QCQP solutions, dual solution information is not provided with the call to
XPRSgetmipsol and is not automatically generated with the MIP solutions. Only the decision and slack
variable values for a MIP solution are obtained when calling XPRSgetmipsol. The reason for this is that
MIP problems do not satisfy the theoretical conditions by which dual information is derived (i.e.,
Karush–Kuhn–Tucker conditions). In particular, this is because the MIP constraint functions are, in
general, not continuously differentiable (indeed, the domains of integer variables are not continuous).

Despite this, some useful dual information can be generated if a MIP has continuous variables and we
solve the resulting LP problem generated by fixing the non–continuous component of the problem to

Fair Isaac Corporation Proprietary Information 10

Chapter 2: Basic Usage

their solution values. Because this process can be expensive it is left to the user to perform this in a post
solving phase where the user will simply call the function XPRSfixglobals followed with a call to the
optimization routine XPRSlpoptimize.

2.8 Function Quick Reference
2.8.1 Administration

XPRSinit Initialize the Optimizer.
XPRScreateprob Create a problem pointer.
XPRSsetlogfile Direct all Optimizer output to a log file.
XPRSaddcbmessage Define a message handler callback function.
XPRSgetintcontrol Get the value of an integer control,
XPRSsetintcontrol Set the value of an integer control.
XPRSinterrupt Set the interrupt status of an optimization run.
XPRSdestroyprob Destroy a problem pointer.
XPRSfree Release resources used by the Optimizer.

2.8.2 Problem Loading
XPRSreadprob Read an MPS or LP format file.
XPRSloadlp Load an LP problem.
XPRSloadqp Load a quadratic objective problem.
XPRSloadqcqp Load a quadratically constrained, quadratic objective problem.
XPRSloadglobal Load a MIP problem.
XPRSloadqglobal Load a quadratic objective MIP problem.
XPRSloadqcqpglobal Load a quadratically constrained, quadratic objective MIP problem.
XPRSaddnames Load names for a range of rows or columns in a problem.

2.8.3 Problem Solving
XPRSreadbasis Read a basis from file.
XPRSloadbasis Load a basis from user arrays.
XPRSreaddirs Read a directives file.
XPRSlpoptimize Solve the problem without global entities.
XPRSmipoptimize Run the problem with global entities.
XPRSfixglobals Fix the discrete variables in the problem to the values of the current

MIP solution stored with the problem pointer.
XPRSgetbasis Copy the current basis into user arrays.
XPRSwritebasis Write the current basis to file.

Fair Isaac Corporation Proprietary Information 11

Chapter 2: Basic Usage

2.8.4 Results Processing
XPRSwritesol Write the current solution to ASCII files.
XPRSwriteprtsol Write the current solution in printable format to file.
XPRSgetlpsol Copy the current LP solution values into user arrays.
XPRSgetmipsol Copy the values of the last MIP solution into user arrays.
XPRSgetintattrib Get the value of an integer problem attribute e.g., by passing the id

MIPSOLS the user can get the number of MIP solutions found.
XPRSgetdblattrib Get the value of a double problem attribute e.g., by passing the id

MIPOBJVAL the user can get the objective value of the last MIP
solution.

XPRSgetstrattrib Get the value of a string problem attribute.

2.9 Summary
In the previous sections a brief introduction is provided to the most common features of the FICO Xpress
Optimizer and its most general usage. The reader should now be familiar with the main routines in the
Optimizer library. These routines allow a user to create problem pointers and load problems into these
problem pointers. The reader should be familiar with the requirements for setting up message handling
with the Optimizer library. Also the reader should know how to run the optimization algorithms on the
loaded problems and be familiar with the various ways that results can be accessed.

Examples of using the Optimizer are available from a number of sources, most notably from FICO Xpress
Getting Started manual. This provides a straight forward, "hands–on" approach to the FICO Xpress
Optimization Suite and it is highly recommended that users read the relevant chapters before considering
the reference manuals. Additionally, more advanced, examples may be downloaded from the website.

Fair Isaac Corporation Proprietary Information 12

CHAPTER 3

Problem Types

The FICO Xpress Optimization Suite is a powerful optimization tool for solving Mathematical
Programming problems. Users of FICO Xpress formulate real–world problems as Mathematical
Programming problems by defining a set of decision variables, a set of constraints on these variables and
an objective function of the variables that should be maximized or minimized. Our FICO Xpress users
have applications that define and solve important Mathematical Programming problems in academia and
industry, including areas such as production scheduling, transportation, supply chain management,
telecommunications, finance and personnel planning.

Mathematical Programming problems are usually classified according to the types of decision variables,
constraints and objective function in the problem. Perhaps the most popular application of the FICO
Xpress Optimizer is for the class of Mixed Integer Programs (MIPs). In this section we will briefly
introduce some important types of problems.

3.1 Linear Programs (LPs)
Linear Programming (LP) problems are a very common type of optimization problems. In this type of
problem all constraints and the objective function are linear expressions of the decision variables. Each
decision variable is restricted to some continuous interval (typically non–negative). Although the
methods for solving these types of problems are well known (e.g., the simplex method), only a few
efficient implementations of these methods (and additional specialized methods for particular classes of
LPs) exists, and these are often crucial for solving the increasingly large instances of LPs arising in
industry.

3.2 Mixed Integer Programs (MIPs)
Many problems can be modeled satisfactorily as Linear Programs (LPs), i.e., with variables that are only
restricted to having values in continuous intervals. However, a common class of problems requires
modeling using discrete variables. These problems are called Mixed Integer Programs (MIPs). MIP
problems are often hard to solve and may require large amounts of computation time to obtain even
satisfactory, if not optimal, results.

Perhaps the most common use of the FICO Xpress Optimization Suite is for solving MIP problems and it
is designed to handle the most challenging of these problems. Besides providing solution support for
MIP problems the Optimizer provides support for a variety of popular MIP modeling constructs:

Binary variables – decision variables that have value either 0 or 1, sometimes called 0/1 variables;

Integer variables – decision variables that have integer values;

Semi–continuous variables – decision variables that either have value 0, or a continuous value
above a specified non–negative limit. Semi–continuous variables are useful for modeling cases

Fair Isaac Corporation Proprietary Information 13

Chapter 3: Problem Types

where, for example, if a quantity is to be supplied at all then it will be supplied starting from some
minimum level (e.g., a power generation unit);

Semi–continuous integer variables – decision variables that either have value 0, or an integer
value above a specified non–negative limit;

Partial integer variables – decision variables that have integer values below a specified limit and
continuous values above the limit. Partial integer variables are useful for modeling cases where a
supply of some quantity needs to be modeled as discrete for small values but we are indifferent
whether it is discrete when the values are large (e.g., because, say, we do not need to distinguish
between 10000 items and 10000.25 items);

Special ordered sets of type one (SOS1) — a set of decision variables ordered by a set of specified
continuous values (or reference values) of which at most one can take a nonzero value. SOS1s are
useful for modeling quantities that are taken from a specified discrete set of continuous values
(e.g., choosing one of a set of transportation capacities);

Special ordered sets of type two (SOS2) – a set of variables ordered by a set of specified
continuous values (or reference values) of which at most two can be nonzero, and if two are
nonzero then they must be consecutive in their ordering. SOS2s are useful for modeling a
piecewise linear quantity (e.g., unit cost as a function of volume supplied);

Indicator constraints – constraints each with a specified associated binary ’controlling’ variable
where we assume the constraint must be satisfied when the binary variable is at a specified binary
value; otherwise the constraint does not need to be satisfied. Indicator constraints are useful for
modeling cases where supplying some quantity implies that a fixed cost is incurred; otherwise if
no quantity is supplied then there is no fixed cost (e.g., starting up a production facility to supply
various types of goods and the total volume of goods supplied is bounded above).

Piecewise linear constraints – constraints that define a piecewise linear relationship between two
variables. These are defined via a set of breakpoints with linearly interpolated values between and
beyond them (with the slope before the first and after the last point continuing the slope between
the first/last two points). The piecewise linear functions are allowed to be discontinuous by
defining multiple points with the same value of the input variable x, in which case the output
variable y is allowed to take any value between the corresponding y-values of these breakpoints,
while the first of them will define the slope before and the last will define the slope after this
x-value. Piecewise linear constraints are useful to model e.g. transportation costs that are
constant/linear in specific intervals but may jump between the different brackets.

General constraints – specific type of MIP constraints to model min, max, and, or, and absolute
value relationships between two or more variables.

All of the above MIP variable types are collectively referred to as global entities.

3.3 Quadratic Programs (QPs)
Quadratic Programming (QP) problems are an extension of Linear Programming (LP) problems where the
objective function may include a second order polynomial. An example of this is where the user wants to
minimize the statistical variance (a quadratic function) of the solution values.

The FICO Xpress Optimizer can be used directly for solving QP problems with support for quadratic
objectives in the MPS and LP file formats and library routines for loading QPs and manipulating quadratic
objective functions. Note that the Optimizer requires the quadratic function to be convex see section
3.4.2 for a description about convexity)

Fair Isaac Corporation Proprietary Information 14

Chapter 3: Problem Types

3.4 Quadratically ConstrainedQuadratic Programs (QC-
QPs)
Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the Quadratic Programming
(QP) problem where the constraints may also include second order polynomials.

A QCQP problem may be written as:

minimize: c1x1+...+cnxn+xTQ0x
subject to: a11x1+...+a1nxn+xTQ1x ≤ b1

...
am1x1+...+amnxn+xTQmx ≤ bm

l1 ≤ x1 ≤ u1,...,ln ≤ xn ≤ un

where any of the lower or upper bounds li or ui may be infinite.

The FICO Xpress Optimizer can be used directly for solving QCQP problems with support for quadratic
constraints and quadratic objectives in the MPS and LP file formats and library routines for loading
QCQPs and manipulating quadratic objective functions and the quadratic component of constraints.

Properties of QCQP problems are discussed in the following few sections.

3.4.1 Algebraic and matrix form
Each second order polynomial can be expressed as xTQx where Q is an appropriate symmetric matrix:
the quadratic expressions are generally either given in the algebraic form

a11x21 + 2a12x1x2 + 2a13x1x3 + ... + a22x22 + 2a23x2x3 + ...

like in LP files, or in the matrix form xTQx where

Q =

a11 a12 · · · a1n
a21 a22
...

. . .
an1 an2 · · · ann

like in MPS files. As symmetry is always assumed, aij = aji for all index pairs (i, j).

3.4.2 Convexity
A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity. A region
is called convex if for any two points from the region the connecting line segment is also part of the
region.

The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in the
objective may introduce the phenomenon of locally optimal solutions that are not global ones (a local
optimal solution is one for which a neighborhood in the feasible region exists in which that solution is the
best). While the lack of convexity in constraints can also give rise to local optima, they may even
introduce non–connected feasible regions as shown in Figure 3.1.

In this example, the feasible region is divided into two parts. In region B, the objective function has two
alternative locally optimal solutions, while in region A the objective function is not even bounded.

For convex problems, each locally optimal solution is a global one, making the characterization of the
optimal solution efficient.

Fair Isaac Corporation Proprietary Information 15

Chapter 3: Problem Types

Figure 3.1: Non-connected feasible regions

3.4.3 Characterizing Convexity in Quadratic Constraints
A quadratic constraint of the form

a1x1 + ... + anxn + xTQx ≤ b

defines a convex region if and only if Q is a so–called positive semi–definite (PSD) matrix.

A square matrix Q is PSD by definition if for any vector (not restricted to the feasible set of a problem) x it
holds that xTQx ≥ 0.

It follows that for greater-than or equal constraints

a1x1 + ... + anxn + xTQx ≥ b

the negative of Q must be PSD.

A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always defines a
nonconvex region (or in other words, if both Q and its negative is PSD, then Q must be equal to the 0
matrix). Therefore, quadratic equality constraints are not allowed by the Optimizer.

Determining whether a matrix is PSD is not always obvious nor trivial. There are certain constructs,
however, that can easily be recognized as being non convex:

1. the product of two variables, say xy, without having both x2 and y2 present;

2. having –x2 in any quadratic expression in a less–than or equal constraint, or having x2 in any
greater– than or equal constraint.

3.5 Second Order Cone problems (SOCPs)
Second order cone problems (SOCP) are a special class of quadratically constrained problems, where the
quadratic matrix Q is not required to be semi–definite.

The FICO Xpress Optimizer supports (mixed integer) second order cone problems that satisfy the
following requirements.

Each quadratic constraint satisfies one of the following two forms:

Fair Isaac Corporation Proprietary Information 16

Chapter 3: Problem Types

1. Second order (or Lorentz) cone: x21 + x21 + ... + x2k – t2 ≤ 0 where t ≥ 0

2. Rotated second order (or Lorentz) cone: x21 + x21 + ... + x2k – 2t1t2 ≤ 0 where t1, t2 ≥ 0

All of the cone coefficients must be exactly one, except for the coefficient of 2 for the t1t2 product.
Constants or linear terms are not allowed.

Cones cannot be overlapping. That is, a variable x can appear in at most one second–order cone
constraint.

Second order cone problems are loaded using the same API functions as for quadratic constraints, and
the conic constraints are auto–detected by the optimizer at run time.

Fair Isaac Corporation Proprietary Information 17

CHAPTER 4

Solution Methods

The FICO Xpress Optimization Suite provides three fundamental optimization algorithms for LP or QP
problems: the primal simplex, the dual simplex and the Newton barrier algorithm (QCQP and SOCP
problems are always solved with the Newton barrier algorithm). Using these algorithms the Optimizer
implements solving functionality for the various types of continuous problems the user may want to
solve.

Typically the user will allow the Optimizer to choose what combination of methods to use for solving their
problem. For example, by default, the FICO Xpress Optimizer uses the dual simplex method for solving LP
problems and the barrier method for solving QP problems. For the initial continuous relaxation of a MIP,
the defaults will be different and depends both on the number of solver threads used, the type of the
problem and the MIP technique selected.

For most users the default behavior of the Optimizer will provide satisfactory solution performance and
they need not consider any customization. However, if a problem seems to be taking an unusually long
time to solve or if the solving performance is critical for the application, the user may consider, as a first
attempt, to force the Optimizer to use an algorithm other than the default.

The main points where the user has a choice of what algorithm to use are (i) when the user calls the
optimization routine XPRSlpoptimize (LPOPTIMIZE) and (ii) when the Optimizer solves the node
relaxation problems during the branch and bound search. The user may force the use of a particular
algorithm by specifying flags to the optimization routine XPRSlpoptimize (LPOPTIMIZE). If the user
specifies flags to XPRSmipoptimize (MIPOPTIMIZE) to select a particular algorithm then this
algorithm will be used for the initial relaxation only. To specify what algorithm to use when solving the
node relaxation problems during branch and bound use the special control parameter, DEFAULTALG.

As a guide for choosing optimization algorithms other than the default consider the following. As a
general rule, the dual simplex is usually much faster than the primal simplex if the problem is neither
infeasible nor near–infeasible. If the problem is likely to be infeasible or if the user wishes to get
diagnostic information about an infeasible problem then the primal simplex is the best choice. This is
because the primal simplex algorithm finds a basic solution that minimizes the sum of infeasibilities and
these solutions are typically helpful in identifying causes of infeasibility. The Newton barrier algorithm
can perform much better than the simplex algorithms on certain classes of problems. The barrier
algorithm will, however, likely be slower than the simplex algorithms if, for a problem coefficient matrix A,
ATA is large and dense.

In the following few sections, performance issues relating to these methods will be discussed in more
detail. Performance issues relating to the search for MIP solutions will also be discussed.

4.1 Simplex Method
The simplex method was the first efficient method devised for solving Linear Programs (LPs). This
method is still commonly used today and there are efficient implementations of the primal and dual
simplex methods available in the Optimizer. We briefly outline some basic simplex theory to give the user

Fair Isaac Corporation Proprietary Information 18

Chapter 4: Solution Methods

a general idea of the simplex algorithm’s behavior and to define some terminology that is used in the
reference sections.

A region defined by a set of constraints is known in Mathematical Programming as a feasible region.
When these constraints are linear the feasible region defines the solution space of a Linear Programming
(LP) problem. Each value of the objective function of an LP defines a hyperplane or a level set. A
fundamental result of simplex algorithm theory is that an optimal value of the LP objective function will
occur when the level set grazes the boundary of the feasible region. The optimal level set either intersects
a single point (or vertex) of the feasible region (if such a point exists), in which case the solution is unique,
or it intersects a boundary set of the feasible region in which case there is an infinite set of solutions.

In general, vertices occur at points where as many constraints and variable bounds as there are variables
in the problem intersect. Simplex methods usually only consider solutions at vertices, or bases (known as
basic solutions) and proceed or iterate from one vertex to another until an optimal solution has been
found, or the problem proves to be infeasible or unbounded. The number of iterations required increases
with model size, and typically goes up slightly faster than the increase in the number of constraints.

The primal and dual simplex methods differ in which vertices they consider and how they iterate. The
dual is the default for LP problems, but may be explicitly invoked using the d flag with XPRSlpoptimize
(LPOPTIMIZE).

4.1.1 Output
While the simplex methods iterate, the Optimizer produces iteration logs. Console Optimizer writes these
logging messages to the screen. Library users can setup logging management using the various relevant
functions in the Optimizer library e.g., XPRSsetlogfile, XPRSaddcbmessage or XPRSaddcblplog.
The simplex iteration log is produced at regular time intervals, determined by an internal deterministic.
When LPLOG is set to 0, a log is displayed only when the optimization run terminates. If it is set to a
positive value, a summary style log is output; otherwise, a detailed log is output.

4.2 Newton Barrier Method
In contrast to the simplex methods that iterate through boundary points (vertices) of the feasible region,
the Newton barrier method iterates through solutions in the interior of the feasible region and will
typically find a close approximation of an optimal solution. Consequently, the number of barrier iterations
required to complete the method on a problem is determined more so by the required proximity to the
optimal solution than the number of decision variables in the problem. Unlike the simplex method,
therefore, the barrier often completes in a similar number of iterations regardless of the problem size.

The barrier solver can be invoked on a problem by using the ’b’ flag with XPRSlpoptimize
(LPOPTIMIZE). This is used by default for QP problems, whose quadratic objective functions in general
result in optimal solutions that lie on a face of the feasible region, rather than at a vertex.

4.2.1 Crossover
Typically the barrier algorithm terminates when it is within a given tolerance of an optimal solution. Since
this solution will not lie exactly on the boundary of the feasible region, the Optimizer can be optionally
made to perform a, so–called, ’crossover’ phase to obtain an optimal solution on the boundary. The
nature of the ’crossover’ phase results in a basic optimal solution, which is at a vertex of the feasible
region. In the crossover phase the simplex method is used to continue the optimization from the solution
found by the barrier algorithm. The CROSSOVER control determines whether the Optimizer performs
crossover. When set to 1 (the default for LP problems), crossover is performed. If CROSSOVER is set to 0,
no crossover will be attempted and the solution provided will be that determined purely by the barrier
method. Note that if a basic optimal solution is required, then the CROSSOVER option must be activated
before optimization starts.

Fair Isaac Corporation Proprietary Information 19

Chapter 4: Solution Methods

4.2.2 Output
While the barrier method iterates, the Optimizer produces iteration log messages. Console Optimizer
writes these log messages to the screen. Library users can setup logging management using the various
relevant functions in the Optimizer library, e.g. XPRSsetlogfile, XPRSaddcbmessage or
XPRSaddcbbarlog. Note that the amount of barrier iteration logging is dependent on the value of the
BAROUTPUT control.

4.3 Branch and Bound
The FICO Xpress Optimizer uses the approach of LP based branch and bound with cutting planes for
solving Mixed Integer Programming (MIP) problems. That is, the Optimizer solves the optimization
problem (typically an LP problem) resulting from relaxing the discreteness constraints on the variables
and then uses branch and bound to search the relaxation space for MIP solutions. It combines this with
heuristic methods to quickly find good solutions, and cutting planes to strengthen the LP relaxations.

The Optimizer’s MIP solving methods are coordinated internally by sophisticated algorithms so the
Optimizer will work well on a wide range of MIP problems with a wide range of solution performance
requirements without any user intervention in the solving process. Despite this the user should note that
the formulation of a MIP problem is typically not unique and the solving performance can be highly
dependent on the formulation of the problem. It is recommended, therefore, that the user undertake
careful experimentation with the problem formulation using realistic examples before committing the
formulation for use on large production problems. It is also recommended that users have small scale
examples available to use during development.

Because of the inherent difficulty in solving MIP problems and the variety of requirements users have on
the solution performance on these problems it is not uncommon that users would like to improve over
the default performance of the Optimizer. In the following sections we discuss aspects of the branch and
bound method for which the user may want to investigate when customizing the Optimizer’s MIP search.

4.3.1 Theory
In this section we present a brief overview of branch and bound theory as a guide for the user on where to
look to begin customizing the Optimizer’s MIP search and also to define the terminology used when
describing branch and bound methods.

To simplify the text in the following, we limit the discussion to MIP problems with linear constraints and a
linear objective function. Note that it is not difficult to generalize the discussion to problems with
quadratic constraints and a quadratic objective function.

The branch and bound method has three main concepts: relaxation, branching and fathoming.

The relaxation concept relates to the way discreteness or integrality constraints are dropped or ’relaxed’
in the problem. The initial relaxation problem is a Linear Programming (LP) problem which we solve
resulting in one of the following cases:

(a) The LP is infeasible so the MIP problem must also be infeasible;

(b) The LP has a feasible solution, but some of the integrality constraints are not satisfied – the MIP
has not yet been solved;

(c) The LP has a feasible solution and all the integrality constraints are satisfied so the MIP has also
been solved;

(d) The LP is unbounded.

Case (d) is a special case. It can only occur when solving the initial relaxation problem and in this

Fair Isaac Corporation Proprietary Information 20

Chapter 4: Solution Methods

situation the MIP problem itself is not well posed (see Chapter 6 for details about what to do in this case).
For the remaining discussion we assume that the LP is not unbounded.

Outcomes (a) and (c) are said to ’fathom’ the particular MIP, since no further work on it is necessary. For
case (b) more work is required, since one of the unsatisfied integrality constraints must be selected and
the concept of separation applied.

To illustrate the branching concept suppose, for example, that the optimal LP value of an integer variable
x is 1.34, a value which violates the integrality constraint. It follows that in any solution to the original
problem either x ≤ 1.0 or x ≥ 2.0. If the two resulting MIP problems are solved (with the integrality
constraints), all integer values of x are considered in the combined solution spaces of the two MIP
problems and no solution to one of the MIP problems is a solution to the other. In this way we have
branched the problem into two disjoint sub–problems.

If both of these sub–problems can be solved and the better of the two is chosen, then the MIP is solved.
By recursively applying this same strategy to solve each of the sub–problems and given that in the
limiting case the integer variables will have their domains divided into fixed integer values then we can
guarantee that we solve the MIP problem.

Branch and bound can be viewed as a tree–search algorithm. Each node of the tree is a MIP problem. A
MIP node is relaxed and the LP relaxation is solved. If the LP relaxation is not fathomed, then the node
MIP problem is partitioned into two more sub–problems, or child nodes. Each child MIP will have the
same constraints as the parent node MIP, plus one additional inequality constraint. Each node is therefore
either fathomed or has two children or descendants.

We now introduce the concept of a cutoff, which is an extension of the fathoming concept. To understand
the cutoff concept we first make two observations about the behavior of the node MIP problems. Firstly,
the optimal MIP objective of a node problem can be no better than the optimal objective of the LP
relaxation. Secondly, the optimal objective of a child LP relaxation can be no better than the optimal
objective of its parent LP relaxation. Now assume that we are exploring the tree and we are keeping the
value of the best MIP objective found so far. Assume also that we keep a ’cutoff value’ equal to the best
MIP objective found so far. To use the cutoff value we reason that if the optimal LP relaxation objective is
no better than the cutoff then any MIP solution of a descendant can be no better than the cutoff and the
node can be fathomed (or cutoff) and need not be considered further in the search.

The concept of a cutoff can be extended to apply even when no integer solution has been found in
situations where it is known, or may be assumed, from the outset that the optimal solution must be better
than some value. If the relaxation is worse than this cutoff, then the node may be fathomed. In this way
the user can reduce the number of nodes processed and improve the solution performance. Note that
there is the possibility, however, that all MIP solutions, including the optimal one, may be missed if an
overly optimistic cutoff value is chosen.

The cutoff concept may also be extended in a different way if the user intends only to find a solution
within a certain tolerance of the overall optimal MIP solution. Assume that we have found a MIP solution
to our problem and assume that the cutoff is maintained at a value 100 objective units better than the
current best MIP solution. Proceeding in this way we are guaranteed to find a MIP solution within 100
units of the overall MIP optimal since we only cutoff nodes with LP relaxation solutions worse than 100
units better than the best MIP solution that we find.

If the MIP problem contains SOS entities then the nodes of the branch and bound tree are determined by
branching on the sets. Note that each member of the set has a double precision reference row entry and

Fair Isaac Corporation Proprietary Information 21

Chapter 4: Solution Methods

the sets are ordered by these reference row entries. Branching on the sets is done by choosing a position
in the ordering of the set variables and setting all members of the set to 0 either above or below the
chosen point. The optimizer used the reference row entries to decide on the branching position and so it
is important to choose the reference row entries which reflect the cost of setting the set member to 0. In
some cases it maybe better to model the problem with binary variables instead of special ordered sets.
This is especially the case if the sets are small.

4.3.2 Variable Selection and Cutting
The branch and bound technique leaves many choices open to the user. In practice, the success of the
technique is highly dependent on several key choices.

(a) Deciding which variable to branch on is known as the variable selection problem and is often the
most critical choice.

(b) Cutting planes are used to strengthen the LP relaxation of a subproblem, and can often bring a
significant reduction in the number of sub–problems that must be solved

The Optimizer incorporates a default strategy for both choices which has been found to work adequately
on most problems. Several controls are provided to tailor the search strategy to a particular problem.

4.3.3 Variable Selection for Branching
Each global entity has a priority for branching, or one set by the user in the directives file. A low priority
value means that the variable is more likely to be selected for branching. The Optimizer uses a priority
range of 400–500 by default. To guarantee that a particular global entitity is always branched first, the
user should assign a priority value less than 400. Likewise, to guarantee that a global entity is only
branched on when it is the only candidate left, a priority value above 500 should be used.

The Optimizer uses a wide variety of information to select among those entities that remain unsatisifed
and which belong to the lowest valued priority class. A pseudo cost is calculated for each candidate entity,
which is typically an estimate of how much the LP relaxation objective value will change (degradationas a
result of branching on this particular candidate. Estimates are calculated separately for the up and down
branches and combined according to the strategy selected by the VARSELECTION control.

The default strategy is based on calculating pseudo costs using the method of strong branching. With
strong brancing, the LP relaxations of the two potential subproblems that would result from branching on
a candidate global entity, are solved partially. Dual simplex is applied for a limited number of iterations
and the change in objective value is recorded as a pseudo cost. This can be very expensive to apply to
every candidate for every node of the branch and bound search, which is why the Optimizer by default will
reuse pseudo costs collected from one node, on subsequent nodes of the search.

Selecting a global entity for branching is a multi–stage process, which combines estimates that are
cheap to compute, with the more expensive strong branching based pseudo costs. The basic selection
process is given by the following outline, together with the controls that affect each step:

1. Pre–filter the set of candidate entities using very cheap estimates.
SBSELECT: determine the filter size.

2. Calculate simple estimates based on local node information and rank the selected candidates.
SBESTIMATE: local ranking function.

3. Calculate strong–branching pseudo costs for candidates lacking such information.
SBBEST: number of variables to strong branch on.
SBITERLIMIT: LP iteration limit for strong branching.

Fair Isaac Corporation Proprietary Information 22

Chapter 4: Solution Methods

4. Select the best candidate using a combination of pseudo costs and the local ranking functions.

The overall amount of effort put into this process can be adjusted using the SBEFFORT control.

4.3.4 Cutting Planes
Cutting planes are valid constraints used for tightening the LP relaxation of a MIP problem, without
affecting the MIP solution space. They can be very effective at reducing the amount of subproblems that
the branch and bound search has to solve. The Optimizer will automatically create many different
well–known classes of cutting planes, such as mixed integer Gomory cuts, lift–and–project cuts, mixed
integer rounding (MIR) cuts, clique cuts, implied bound cuts, flow–path cuts, zero–half cuts, etc. These
classes of cuts are grouped together into two groups that can be controlled separately. The following
table lists the main controls and the related cut classes that are affected by those control:

COVERCUTS Mixed integer rounding cuts
TREECOVERCUTS Lifted cover cuts

Clique cuts
Implied bound cuts
Flow–path cuts
Zero–half cuts

GOMCUTS Mixed integer Gomory cuts
TREEGOMCUTS Lift–and–project cuts

The controls COVERCUTS and GOMCUTS sets an upper limit on the number of rounds of cuts to create for
the root problem, for their respective groups. Correspondingly, TREECOVERCUTS and TREEGOMCUTS
sets an upper limit on the number of rounds of cuts for any subproblem in the tree.

An important aspect of cutting is the choice of how many cuts to add to a subproblem. The more cuts are
added, the harder it becomes to solve the LP relaxation of the node problem. The tradeoff is therefore
between the additional effort in solving the LP relaxation versus the strengthening of the subproblem.
The CUTSTRATEGY control sets the general level of how many cuts to add, expressed as a value from 0
(no cutting at all) to 3 (high level of cuts).

Another important aspect of cutting is how often cuts should be created and added to a subproblem. The
Optimizer will automatically decide on a frequency that attempts to balance the effort of creating cuts
versus the benefits they provide. It is possible to override this and set a fixed strategy using the CUTFREQ
control. When set to a value k, cutting will be applied to every k’th level of the branch and bound tree. Note
that setting CUTFREQ = 0 will disable cutting on subproblems completely, leaving only cutting on the root
problem. This might be advantageous for some problems and the Optimizer uses an ML-based strategy
to detect such cases automatically. This feature can be (de)activated by the AUTOCUTTING control.

4.3.5 Node Selection
The Optimizer applies a search scheme involving best–bound first search combined with dives.
Subproblems that have not been fathomed or which have not been branched further into new
subproblems are referred to as active nodes of the branch and bound search tree. Such activate nodes
are maintained by the Optimizer in a pool.

The search process involves selecting a subproblem (or node) from this active nodes pool and
commencing a dive. When the Optimizer branches on a global entity and creates the two subproblems, it
has a choice of which of the two subproblems to work on next. This choice is determined by the
BRANCHCHOICE control. The dive is a recursive search, where it selects a child problem, branches on it to
create two new child problems, and repeats with one of the new child problems, until it ends with a

Fair Isaac Corporation Proprietary Information 23

Chapter 4: Solution Methods

subproblem that should not be branched further. At this point it will go back to the active nodes pool and
pick a new subproblem to perform a dive on. This is called a backtrack and the choice of node is
determined by the BACKTRACK control. The default backtrack strategy will select the active node with the
best bound.

4.3.6 Adjusting the Cutoff Value
The parameter MIPADDCUTOFF determines the cutoff value set by the Optimizer when it has identified a
new MIP solution. The new cutoff value is set as the objective function value of the MIP solution plus the
value of MIPADDCUTOFF. If MIPADDCUTOFF has not been set by the user, the value used by the
Optimizer will be calculated after the initial LP optimization step as:

max (MIPADDCUTOFF, 0.01 · MIPRELCUTOFF · LP_value)

using the initial values for MIPADDCUTOFF and MIPRELCUTOFF, and where LP_value is the optimal
objective value of the initial LP relaxation.

4.3.7 Stopping Criteria
Often when solving a MIP problem it is sufficient to stop with a good solution instead of waiting for a
potentially long solve process to find an optimal solution. The Optimizer provides several stopping
criteria related to the solutions found, through the MIPRELSTOP and MIPABSSTOP parameters. If
MIPABSSTOP is set for a minimization problem, the Optimizer will stop when it finds a MIP solution with
an objective value equal to or less than MIPABSSTOP. The MIPRELSTOP parameter can be used to stop
the solve process when the found solution is sufficiently close to optimality, as measure relative to the
best available bound. The optimizer will stop due to MIPRELSTOP when the following is satisfied:

| MIPOBJVAL – BESTBOUND | ≤ MIPRELSTOP · max(| BESTBOUND |, | MIPOBJVAL |)

It is also possible to set limits on the solve process, such as number of nodes (MAXNODE), time limit
(MAXTIME) or on the number of solutions found (MAXMIPSOL). If the solve process is interrupted due to
any of these limits, the problem will be left in its unfinished state. It is possible to resume the solve from
an unfinished state by calling XPRSmipoptimize (MIPOPTIMIZE) again.

To return an unfinished problem to its starting state, where it can be modified again, the user should use
the function XPRSpostsolve (POSTSOLVE). This function can be used to restore a problem from an
interrupted global search even if the problem is not in a presolved state.

4.3.8 Integer Preprocessing
If MIPPRESOLVE has been set to a nonzero value before solving a MIP problem, integer preprocessing
will be performed at each node of the branch and bound tree search (including the root node). This
incorporates reduced cost tightening of bounds and tightening of implied variable bounds after
branching. If a variable is fixed at a node, it remains fixed at all its child nodes, but it is not deleted from
the matrix (unlike the variables fixed by presolve).

MIPPRESOLVE is a bitmap whose values are acted on as follows:

Fair Isaac Corporation Proprietary Information 24

Chapter 4: Solution Methods

Bit Value Action
0 1 Reduced cost fixing;
1 2 Integer implication tightening.
2 4 Unused
3 8 Tightening of implied continuous variables.
4 16 Fixing of variables based on dual (i.e. optimality) implications.

So a value of 1+2=3 for MIPPRESOLVE causes reduced cost fixing and tightening of implied bounds on
integer variables.

4.4 QCQP and SOCP Methods
Continuous QCQP and SOCP problems are always solved by the Xpress Newton–barrier solver. For QCQP,
SOCP and QP problems, there is no solution purification method applied after the barrier (such as the
crossover for linear problems). This means that solutions tend to contain more active variables than
basic solutions, and fewer variables will be at or close to one of their bounds.

When solving a linearly constrained quadratic program (QP) from scratch, the Newton barrier method is
usually the algorithm of choice. In general, the quadratic simplex methods are better if a solution with a
low number of active variables is required, or when a good starting basis is available (e.g., when
reoptimizing).

4.4.1 Convexity Checking
The Optimizer requires that the quadratic coefficient matrix in each constraint or in the objective function
is either positive semi–definite or negative semi–definite, depending on the sense of for constraints or
the direction of optimization for the objective. The only exception is when a quadratic constraint
describes a second order cone. Quadratic constraints and a quadratic objective is therefore automatically
checked for convexity. Note that this convexity checker will reject any problem where this requirement is
violated by more than a small tolerance.

Each constraint is checked individually for convexity. In certain cases it is possible that the problem itself
is convex, but the representation of it is not. A simple example would be

minimize: x
subject to: x2–y2+2xy ≤ 1

y=0

The optimizer will deny solving this problem if the automatic convexity check is on, although the problem
is clearly convex. The reason is that convexity of QCQPs is checked before any presolve takes place. To
understand why, consider the following example:

minimize: y
subject to: y–x2 ≤ 1

y=2

This problem is clearly feasible, and an optimal solution is (x, y) = (1, 2). However, when presolving the
problem, it will be found infeasible, since assuming that the quadratic part of the first constraint is convex
the constraint cannot be satisfied (remember that if a constraint is convex, then removing the quadratic
part is always a relaxation). Thus since presolve makes use of the assumption that the problem is
convex, convexity must be checked before presolve.

Fair Isaac Corporation Proprietary Information 25

Chapter 4: Solution Methods

Note that for quadratic programming (QP) and mixed integer quadratic programs (MIQP) where the
quadratic expressions appear only in the objective, the convexity check takes place after presolve,
making it possible to accept matrices that are not PSD, but define a convex function over the feasible
region (note that this is only a chance).

It is possible to turn the automatic convexity check off. By doing so, one may save time when solving
problems that are known to be convex, or one might even want to experiment trying to solve non–convex
problems. For a non–convex problem, any of the following might happen:

1. the algorithm converges to a local optimum which it declares optimal (and which might or might
not be the actual optimum);

2. the algorithm doesn’t converge and stops after reaching the iteration limit;

3. the algorithm cannot make sufficient improvement and stops;

4. the algorithm stops because it cannot solve a subproblem (in this case it will declare the matrix non
semidefinite);

5. presolve declares a feasible problem infeasible;

6. presolve eliminates variables that otherwise play an important role, thus significantly change the
model;

7. different solutions (even feasibility/infeasibility) are generated to the same problem, only by slightly
changing its formulation.

There is no guarantee on which of the cases above will occur, and as mentioned before, the
behavior/outcome might be formulation dependent. One should take extreme care when interpreting the
solution information returned for a non–convex problem.

4.4.2 Quadratically Constrained and Second Order Cone Problems
Quadratically constrained and second order cone problems are solved by the barrier algorithm.

Mixed integer quadratically constrained (MIQCQP) and mixed integer second order problems (MISOCP)
are solved using traditional branch and bound using the barrier to solve the node problems, or by means
of outer approximation, as defined by control MIQCPALG.

It is sometimes beneficial to solve the root node of an MIQCQP or MISOCP by the barrier, even if outer
approximation is used later; controlled by the QCROOTALG control. The number of cut rounds on the root
for outer approximation is defined by QCCUTS.

Fair Isaac Corporation Proprietary Information 26

CHAPTER 5

Advanced Usage

5.1 Problem Names
Problems loaded in the Optimizer have a name. The name is either taken from the file name if the problem
is read into the optimizer or it is specified as a string in a function call when a problem is loaded into the
Optimizer using the library interface. Once loaded the name of the problem can be queried and modified.
For example, the library provides the function XPRSsetprobname for changing the name of a problem.

When reading a problem from a matrix file the user can optionally specify a file extension. The search
order used for matrix files in the case where the file extension is not specified is described in the
reference for the function XPRSreadprob. In this case, the problem name becomes the file name,
including the full path, but without the file extension.

Note that matrix files can be read directly from a gzip compressed file. Recognized names of matrix files
stored with gzip compression have an extension that is one of the usual matrix file format extensions
followed by the .gz extension. For example, hpw15.mps.gz.

The problem name is used as a default base name for the various file system interactions that the
Optimizer may make when handling a problem. For example, when commanded to read a basis file for a
problem and the basis file name is not supplied with the read basis command the Optimizer will try to
open a file with the problem name appended with the .bss extension.

It is useful to note that the problem name can include file system path information. For example,
c:/matrices/hpw15. Note the use of forward slashes in the Windows path string. It is recommended
that Windows users use forward slashes as path delimiters in all file name specifications for the
Optimizer since (i) this will work in all situations and (ii) it avoids any problems with the back slash being
interpreted as the escape character.

5.2 Manipulating the Matrix
In general, the basic usage of the FICO Xpress Optimizer described in the previous chapters will be
sufficient for most users’ requirements. Using the Optimizer in this way simply means load the problem,
solve the problem, get the results and finish.

In some cases, however, it is required that the problem is first solved, then modified, and solved again.
We may want to do this, for example, if a problem was found to be infeasible. In this case, to find a
feasible subset of constraints we iteratively remove some constraints and re–solve the problem. Another
example is when a user wants to ’generate’ columns using the optimal duals of a ’restricted’ LP problem.
In this case we will first need to load a problem and then we will need to add columns to this problem
after it has been solved.

For library users, FICO Xpress provides a suite of functions providing read and modify access to the
matrix.

Fair Isaac Corporation Proprietary Information 27

Chapter 5: Advanced Usage

5.2.1 Reading the Matrix
The Optimizer provides a suite of routines for read access to the optimization problem including access
to the objective coefficients, constraint right hand sides, decision variable bounds and the matrix
coefficients.

It is important to note that the information returned by these functions will depend on whether or not the
problem has been run through an optimization algorithm or if the problem is currently being solved using
an optimization algorithm, in which case the user will be calling the access routines from a callback (see
section 5.8 for details about callbacks). Note that the dependency on when the access routine is called is
mainly due to the way "presolve" methods are applied to modify the problem. How the presolve methods
affect what the user accesses through the read routines is discussed in section 5.3.

The user can access the names of the problem’s constraints, or ’rows’, as well as the decision variables,
or ’columns’, using the XPRSgetnames routine.

The linear coefficients of the problem constraints can be read using XPRSgetrows. Note that for the
cases where the user requires access to the linear matrix coefficients in the column–wise sense the
Optimizer includes the XPRSgetcols function. The type of the constraint, the right hand side and the
right hand side range are accessed using the functions XPRSgetrowtype, XPRSgetrhs and
XPRSgetrhsrange, respectively.

The coefficients of the objective function can be accessed using the XPRSgetobj routine, for the linear
coefficients, and XPRSgetqobj for the quadratic objective function coefficients. The type of a column
(or decision variable) and its upper and lower bounds can be accessed using the routines
XPRSgetcoltype, XPRSgetub and XPRSgetlb, respectively.

The quadratic coefficients in constraints can be accessed either in matrix form, using the
XPRSgetqrowqmatrix routine, or as a list of quadratic coefficients with the
XPRSgetqrowqmatrixtriplets.

Note that the reference section in Chapter 7 of this manual provides details on the usage of these
functions.

5.2.2 Modifying the Matrix
The Optimizer provides a set of routines for manipulating the problem data. These include a set of
routines for adding and deleting problem constraints (’rows’) and decision variables (’columns’). A set of
routines is also provided for changing individual coefficients of the problem and for changing the types of
decision variables in the problem.

Rows and columns can be added to a problem together with their linear coefficients using
XPRSaddrows and XPRSaddcols, respectively. Rows and columns can be deleted using
XPRSdelrows and XPRSdelcols, respectively.

The Optimizer provides a suite of routines for modifying the data for existing rows and columns. The
linear matrix coefficients can be modified using XPRSchgcoef (or use XPRSchgmcoef if a batch of
coefficients are to be changed). Row and column types can be changed using the routines
XPRSchgrowtype and XPRSchgcoltype, respectively. Right hand sides and their ranges may be
changed with XPRSchgrhs and XPRSchgrhsrange. The linear objective function coefficients may be
changed with XPRSchgobj while the quadratic objective function coefficients are changed using
XPRSchgqobj (or use XPRSchgmqobj if a batch of coefficients are to be changed). Likewise, quadratic
coefficients in constraints are changed with XPRSchgqrowcoeff.

Examples of the usage of all the above functions and their syntax may be found in the reference section
of this manual in Chapter 7.

Finally, it is important to note that it is not possible to modify a matrix when it has been ’presolved’ and
has not been subsequently ’postsolved’. The following section 5.3 discusses some important points

Fair Isaac Corporation Proprietary Information 28

Chapter 5: Advanced Usage

concerning reading and modifying a problem that is "presolved".

5.3 Working with Presolve
The Optimizer provides a number of algorithms for simplifying a problem prior to the optimization
process. This elaborate collection of procedures, known as presolve, can often greatly improve the
Optimizer’s performance by modifying the problem matrix, making it easier to solve. The presolve
algorithms identify and remove redundant rows and columns, reducing the size of the matrix, for which
reason most users will find it a helpful tool in reducing solution times. However, presolve is included as
an option and can be disabled if not required by setting the PRESOLVE control to 0. Usually this is set to 1
and presolve is called by default.

For some users the presolve routines can result in confusion since a problem viewed in its presolved
form will look very different to the original model. Under standard use of the Optimizer this may cause no
difficulty. On a few occasions, however, if errors occur or if a user tries to access additional properties of
the matrix for certain types of problem, the presolved values may be returned instead. In this section we
provide a few notes on how such confusion may be best avoided. If you are unsure if the matrix is in a
presolved state or not, check the PRESOLVESTATE attribute

It is important to note that when solving a problem with presolve on, the Optimizer will take a copy of the
matrix and modify the copy. The original matrix is therefore preserved, but will be inaccessible to the user
while the presolved problem exists. Following optimization, the whole matrix is automatically postsolved
to recover a solution to the original problem and restoring the original matrix. Consequently, either before
or after, but not during, a completed optimization run, the full matrix may be viewed and altered as
described above, being in its original form.

A problem might be left in a presolved state if the solve was interrupted, for example due to the Ctrl–C
key combination, or if a time limit (set by MAXTIME) was reached. In such a case, the matrix can always
be returned to its original state by calling XPRSpostsolve (POSTSOLVE). If the matrix is already in the
original state then XPRSpostsolve (POSTSOLVE) will return without doing anything.

While a problem is in a presolved state it is not possible to make any modifications to it, such as adding
rows or columns. The problem must first be returned to its original state by calling XPRSpostsolve
before it can be changed.

5.3.1 (Mixed) Integer Programming Problems
If a model contains global entities, integer presolve methods such as bound tightening and coefficient
tightening are applied to tighten the LP relaxation. As a simple example of this might be if the matrix has
a binary variable x and one of the constraints of the matrix is x ≤ 0.2. It follows that x can be fixed at zero
since it can never take the value 1. If presolve uses the global entities to alter the matrix in this way, then
the LP relaxation is said to have been tightened. For Console users, notice of this is sent to the screen; for
library users it may be sent to a callback function, or printed to the log file if one has been set up. In such
circumstances, the optimal objective function value of the LP relaxation for a presolved matrix may be
different from that for the unpresolved matrix.

The strict LP solution to a model with global entities can be obtained by calling the XPRSlpoptimize
(LPOPTIMIZE) command. This removes the global constraints from the variables, preventing the LP
relaxation from being tightened and solves the resulting matrix. In the example above, x would not be
fixed at 0, but allowed to range between 0 and 0.2.

When XPRSmipoptimize (GLOBAL) finds an integer solution, it is postsolved and saved in memory. The
solution can be read with the XPRSgetmipsol function. A permanent copy can be saved to a solution
file by calling XPRSwritebinsol (WRITEBINSOL), or XPRSwriteslxsol (WRITESLXSOL) for a
simpler text file. This can be retrieved later by calling XPRSreadbinsol (READBINSOL) or
XPRSreadslxsol (READSLXSOL), respectively.

Fair Isaac Corporation Proprietary Information 29

Chapter 5: Advanced Usage

After calling XPRSmipoptimize (MIPOPTIMIZE), the matrix will be postsolved whenever the MIP search
has completed. If the MIP search hasn’t completed the matrix can be postsolved by calling the
XPRSpostsolve (POSTSOLVE) function.

5.4 Working with LP Folding
In addition to presolve procedures, the Optimizer provides an algorithm called LP folding that can further
simplify LP problems. The LP folding is applicable to LP problems that can be partitioned into equitable
partitions, and it works by aggregating matrix columns of equitable partitions and then reducing the
problem size.

Solutions for the folded problem are also valid for the original problem. While it is straightforward to
transfer a solution from the folded problem to the original problem, it is non–trivial to do so for the basis.
When an LP problem is solved to optimality and a basis is needed, the LP unfolding will use the crossover
algorithm to provide one. When the folded LP problem is unbounded or infeasible, or when the solving
process is stopped due to time or iteration limit, the basis will not be available. Please note that LP folding
tends to provide solutions with a larger support (number of variables that are not at any of their bounds).

LP folding is applied automatically when appropriate. It can be enabled or disabled by setting the
LPFOLDING control.

5.5 Working with Heuristics
The Optimizer contains several primal heuristics that help to find feasible solutions during a global
search. These heuristics fall broadly into one of three classes:

1. Simple rounding heuristics
These take the continuous relaxation solution to a node and, through simple roundings of the
solution values for global entities, try to construct a feasible MIP solution. These are typically run
on every node.

2. Diving heuristics
These start from the continuous relaxation solution to a node and combines rounding and fixing of
global entities with occasional reoptimization of the continuous relaxation to construct a better
quality MIP solution. They are run frequently on both the root node and during the branch and
bound tree search.

3. Local search heuristics
The local search heuristics are generally the most expensive heuristics and involve solving one or
more smaller MIPs whose feasible regions describe a neighborhood around a candidate MIP
solution. These heuristics are run at the end of the root solve and typically on every 500–1000
nodes during the tree search.

Some simple heuristics and a few fast diving heuristics, which do not require a starting solution, will be
tried before the initial continuous relaxation of a MIP is solved. On very simple problems, it is possible
that an optimal MIP solution will be found at this point, which can lead to the initial relaxation being cut
off. These heuristics can be enabled or disabled using the HEURBEFORELP control.

The most important control for steering the overall heuristic behavior of the Optimizer is HEUREMPHASIS
Setting this control to 1 will trigger many additional heuristic calls. This setting typically leads to a quicker
reduction of the optimality gap at the beginning of the search. However, it often comes at the expense of
the running time to proven optimality increasing. Consequently, we recommend this setting for use cases
that aim to find a reasonably good solution quickly but for which proving optimality is out of scope.

Setting HEUREMPHASIS to 2 will enable a very aggressive heuristic behavior. While this can be beneficial
for some problems, it is on average inferior to the more balanced setting of 1. Setting HEUREMPHASIS to

Fair Isaac Corporation Proprietary Information 30

Chapter 5: Advanced Usage

0 will disable all heuristics. This replaces the deprecated HEURSTRATEGY=0 setting.

In addition to running the solver with a heuristic emphasis from the beginning, a secondary application of
HEUREMPHASIS is solution polishing. Therefore, the user would alter the heuristic emphasis only when
the solve comes close to the intended time limit or the progress in the optimality gap stalls. This can, e.g.,
happen from a callback. Note that this is most promising when the solver has already made some
significant progress in tree search. Especially for problems that spend a majority of the targeted solution
time in the root node, we recommend setting HEUREMPHASIS=1 from the beginning.

There are a few other controls that affect heuristics. The diving heuristics have the following controls:

HEURFREQ The frequency at which to run a diving heuristic during the branch and
bound tree search. If HEURFREQ=k, a diving heuristic will be applied
when at least k nodes of the tree search have been solved since the last
run. Set this control to zero to disable diving heuristics during the tree
search. With a default setting of -1, the Optimizer will automatically
select a frequency that depends on how expensive it is to run and how
many integer variables need to be rounded. Typically, this results in a
diving heuristic being run for every 10–50 nodes.

HEURDIVESTRATEGY Can be used to select one specific out of 10 predefined diving strategies,
otherwise the Optimizer will automatically select which appears to work
best. Set this control to zero to disable the diving heuristic.

HEURDIVERANDOMIZE How much randomization to introduce into the diving heuristics.

HEURDIVESPEEDUP The amount of effort to put into the individual dives. This essentially
determines how often the continuous relaxation is reoptimized during a
dive.

The local search heuristics have the following controls:

HEURSEARCHFREQ The frequency at which to run the local search heuristics during the branch
and bound tree search. If HEURSEARCHFREQ=k, the local search heuristics
will be run when at least k nodes of the tree search have been solved since
the last run.

HEURSEARCHEFFORT Determines the complexity of the local search MIP problems solved and, if
HEURSEARCHFREQ=-1, also how often they are applied.

HEURSEARCHROOTSELECT Selects which local search heuristics are allowed to be run on the root
node. Each bit of this integer control represents an individual heuristic.

HEURSEARCHTREESELECT Selects which local search heuristics are allowed to be run during the
branch and bound tree search.

The simple rounding heuristics do not have any further controls associated with them.

5.6 Analyzing and Handling Numerical Issues
There are many optimization applications which give rise to numerically challenging models. You might
notice that the Optimizer takes unexpectedly long for simplex reoptimization, that minimal changes in the
models lead to an unexpectedly large change in the optimal solution value or that the optimal solution
shows a certain amount of violation in the postsolved state. The Optimizer provides various tools to
analyze whether a model is numerically challenging and to handle numerical issues when they occur.

Fair Isaac Corporation Proprietary Information 31

Chapter 5: Advanced Usage

5.6.1 Analyzing Models for Numerical Issues
There are two main reasons which can make models numerically challenging: Firstly, using coefficients
that span many orders of magnitude, e.g., using numbers as large as 100 million mixed with numbers as
small as 1 over 100 million. Those span 16 orders of magnitude. A double–precision floating point
number, however, can only represent 15 precise digits. Thus, round–off errors are inevitable. Secondly, if a
model contains structures that amplify the effect of numeric error propagation, e.g., when the result of
subtracting two almost identical values is scaled up and then used for further computations.

To both ends, Xpress provides features to analyze models for numerical stability. Addressing the first
issue, Xpress provides the user with information on the coefficient ranges in both the original problem
and the problem that is solved after presolving and scaling has been applied. In the log, the minimum and
maximum absolute values of the matrix coefficients, the right–hand side/bounds and the objective are
printed. The relevant part for the numerical behavior of the solution process are the coefficient ranges in
the solved model. The difference between the exponents of the min and max values tells you how many
orders of magnitude are covered. As a rule of thumb, those should not be more than nine (and not more
than six in an individual row or column of the original matrix). For MIP solves, Xpress will notify the user
after the solution of the root LP when the coefficient ranges and other stability measures indicate that the
solve might become numerically cumbersome. In such a case, it will print a warning "High attention level
predicted from matrix features" to the log.

The second issue, error propagation, is a bit trickier to trace. The most important source to consider for
this is the multiplication of a vector with the constraint matrix, which gets stored in a factorized fashion.
Hence, it makes sense to consider the condition number of the basis inverse matrix. Computing this can
be expensive and is hence not done by default. You can activate it by setting the MIPKAPPAFREQ control
to one. When setting this control, you will get a final statistic report that summarizes the condition
numbers collected during search. Besides the percentage of stable, suspicious, unstable, and ill–posed
basis inverse matrices, the Optimizer will report a quantity called the attention level after the solve. The
attention level takes values between zero and one. It is equal to zero if all basis inverse matrices are
stable, and one if all basis inverse matrices are ill–posed. The higher the attention level, the more likely
are numerical errors. As a rule of thumb, matrices with an attention level larger than 0.1 should be
investigated further. The attention level is available as an attribute: ATTENTIONLEVEL.

After having solved the root LP relaxation of a MIP solve, the Optimizer applies a Machine Learning model
to predict the attention level of the current MIP solve. If the prediction is larger than 0.1, it will print a
message to the log: "High attention level predicted from matrix features". The predicted attention level is
available as an attribute: PREDICTEDATTLEVEL. Finally, if the Optimizer undergoes numerical failures
during the optimization process, it will report these at the end of the solve. If you see dual, primal or
barrier failures, or single inverts being reported, it might be worthwhile to try some of the methods
described in the following sections.

5.6.2 Scaling
Scaling is a widely used preconditioning technique that aims at reducing the condition number of the
constraint matrix, at reducing error propagation, and at reducing the number of LP iterations required to
solve the problem. In Xpress, both columns and rows are scaled, however, only by powers of 2 to avoid
round–off errors. By default, Xpress applies a machine learning algorithm to choose a scaling variant that
is predicted to give the most stable performance. Although this prediction is correct in most of the cases,
one can try the opposite setting, i.e., setting SCALING to 163 when autoscaling selected Curtis–Reid
scaling and setting scaling to 16 when autoscaling selected standard scaling. Furthermore, disabling
special handling of big-M rows and conduction scaling before presolving, represented by bits 6 and 9 of
the SCALING control, is useful for some problems.

Fair Isaac Corporation Proprietary Information 32

Chapter 5: Advanced Usage

5.6.3 Solution Refinement
The Optimizer offers two methods of refining solutions, both are independent and complement each
other. The first is called LP Refinement and aims at providing LP solutions of a higher precision, i.e., with
more significant bits. It consists of two parts. Standard LP Refinement iteratively attempts to increase the
accuracy of the solution until either both FEASTOLTARGET and OPTIMALITYTOLTARGET are satisfied,
or accuracy cannot further be increased, or some effort limit is exhausted. It is applied by default both to
LP solutions and to MIP solutions. Iterative refinement has the same goal, but uses more expensive, but
also more promising measures of doing so, e.g., quad precision computing. If the postsolved LP solution
is slightly infeasible, setting bits 5 and 6 of the REFINEOPS control aims at reducing those infeasibilities.

The second refinement scheme is called MIP Refinement and aims at providing MIP solutions which are
truly integral and will not lead to infeasibilities when fixing integer variables in the original space. Note
that both Iterative Refinement and MIP Refinement can lead to a slowdown of the solution process which
is more considerable the more numerically challenging the matrix is.

5.6.4 Other Ways to Handle Numerical Issues
In addition to the methods named above, the Optimizer gives the user the possibility to change the
numerical tolerances, such as FEASTOL and MATRIXTOL, but caution is advised here. Finally, if the
numerical issues mainly come from the behavior of the simplex algorithm, setting DUALSTRATEGY to
values 7 or 32 might help, or even using only barrier for solving LPs during a MIP solve, achieved by
changing DEFAULTALG to 4.

In any case, it is best practice to reconsider the model. If you have very small and/or very large values in
there — are those really necessary? Or could they be adapted to some significantly more stable value
while still representing the same logic? Can you determine places where large values might cancel each
other out and the residual is used for further computations? Have you tried using indicator instead of
big-M formulations?

5.7 Common Causes of Confusion
It should be noted that most of the library routines described above and in chapter 7, which modify the
matrix will not work on a presolved matrix. The only exception is inside a callback for a MIP solve, where
cuts may be added or variable bounds tightened (using XPRSchgbounds). Any of these functions expect
references to the presolved problem. If one tries to retrieve rows, columns, bounds or the number of
these, such information will come from the presolved matrix and not the original. A few functions exist
which are specifically designed to work with presolved and scaled matrices, although care should be
exercised in using them. Examples of these include the commands XPRSgetpresolvesol,
XPRSgetpresolvebasis,
XPRSgetscaledinfeas, XPRSloadpresolvebasis and XPRSloadpresolvedirs.

5.8 Using the Callbacks
Console users are constantly provided with information on the standard output device by the Optimizer
as it searches for a solution to the current problem. The same output is also available to library users if a
log file has been set up using XPRSsetlogfile. However, whilst Console users can respond to this
information as it is produced and allow it to influence their session, the same is not immediately true for
library users, since their program must be written and compiled before the session is initiated. For such
users, a more interactive alternative to the above forms of output is provided by the use of callback
functions.

The library callbacks are a collection of functions which allow user–defined routines to be specified to the
Optimizer. In this way, users may define their own routines which should be called at various stages

Fair Isaac Corporation Proprietary Information 33

Chapter 5: Advanced Usage

during the optimization process, prompting the Optimizer to return to the user’s program before
continuing with the solution algorithm. Perhaps the three most general of the callback functions are
those associated with the search for an LP solution. However, the vast majority of situations in which
such routines might be called are associated with the global search, and will be addressed below.

5.8.1 Output Callbacks
Instead of catching the standard output from the Optimizer and saving it to a log file, the callback
XPRSaddcbmessage allows the user to define a routine which should be called every time a text line is
output by the Optimizer. Since this returns the status of each message output, the user’s routine could
test for error or warning messages and take appropriate action accordingly.

5.8.2 LP Callbacks
The functions XPRSaddcblplog and XPRSaddcbbarlog allow the user to respond after each iteration
of either the simplex or barrier algorithms, respectively. The controls LPLOG and BAROUTPUTmay
additionally be set to reduce the frequency at which these routines should be called.

5.8.3 Global Search Callbacks
When a problem with global entities is to be optimized, a large number of subproblems, called nodes,
must typically be solved as part of the global tree search. At various points in this process user–defined
routines can be called, depending on the callback that is used to specify the routine to the Optimizer.

In a global tree search, the Optimizer starts by selecting an active node amongst all candidates (known
as a full backtrack) and then proceed with solving it, which can lead to new descendent nodes being
created. If there is a descendent node, the optimizer will by default select one of these next to solve and
repeat this iterative descend while new descendent nodes are being created. This dive stops when it
reaches a node that is found to be infeasible or cutoff, at which point the Optimizer will perform a full
backtrack again and repeat the process with a new active node.

A routine may be called whenever a node is selected by the optimizer during a full backtrack, using
XPRSaddcbchgnode. This will also allow a user to directly select the active node for the optimizer.
Whenever a new node is created, a routine set by XPRSaddcbnewnode will be called, which can be used
to record the identifier of the new node, e.g. for use with XPRSaddcbchgnode.

When the Optimizer solves a new node, it will first call any routine set by XPRSaddcbprenode, which
can be used to e.g. tighten bounds on columns (with XPRSchgbounds) as part of a user node presolve.
Afterwards, the LP relaxation of the node problem is solved to obtain a feasible solution and a best bound
for the node. This might be followed by one or more rounds of cuts. If the node problem is found to be
infeasible or cutoff during this process, a routine set by XPRSaddcbinfnode will be called. Otherwise, a
routine set by XPRSaddcboptnode will be called to let the user know that the optimizer now has an
optimal solution to the LP relaxation of the node problem. In this routine, the user is allowed to add cuts
(see section 5.9) and tighten bounds to tighten the node problem, or apply branching objects (see
XPRS_bo_create) to separate on the current node problem. If the user modifies the problem inside this
optnode callback routine, the optimizer will automatically resolve the node LP and, if the LP is still
feasible, call the optnode routine again.

If the LP relaxation solution to the node problem also satisfies all global entities and the user has not
added any branching objects, i.e., if it is a MIP solution, the Optimizer will call a routine set by
XPRSaddcbpreintsol before saving the new solution, and call a routine set by XPRSaddcbintsol
after saving the solution. These two routines will also be called whenever a new MIP solution is found
using one of the Optimizer heuristics.

Otherwise, if the node LP solution does not satisfy the global entities (or any user branching objects), the
Optimizer will proceed with branching. After the optimizer has selected the candidate entity for branching,

Fair Isaac Corporation Proprietary Information 34

Chapter 5: Advanced Usage

a routine set by XPRSaddcbchgbranch will be called, which also allows a user to change the selected
candidate. If, during the candidate evaluation the optimizer discovers that e.g. bounds can be tightened,
it will tighten the node problem and go back to resolving the node LP, followed by the callback routines
explained above.

When the Optimizer finds a better MIP solution, it is possible that some of the nodes in the active nodes
pool are cut off due to having an LP solution bound that is worse than the new cutoff value. For such
nodes, a routine set by XPRSaddcbnodecutoff will be called and the node will be dropped from the
active nodes pool.

The final global callback, XPRSaddcbgloballog, is more similar to the LP search callbacks, allowing a
user’s routine to be called whenever a line of the global log is printed. The frequency with which this
occurs is set by the control MIPLOG.

5.9 Working with the Cut Manager
5.9.1 Cuts and the Cut Pool

Solving the LP relaxations during a global search is often made more efficient by supplying additional
rows (constraints) to the matrix which reduce the size of the feasible region, whilst ensuring that it still
contains an optimal integer solution. Such additional rows are called cutting planes, or cuts.

By default, cuts are automatically added to the matrix by the Optimizer during a global search to speed up
the solution process. However, for advanced users, the Optimizer library provides greater freedom,
allowing the possibility of choosing which cuts are to be added at particular nodes, or removing cuts
entirely. The cutting planes themselves are held in a cut pool, which may be manipulated using library
functions.

Cuts may be added directly to the matrix at a particular node, or may be stored in the cut pool first before
subsequently being loaded into the matrix. It often makes little difference which of these two approaches
is adopted, although as a general rule if cuts are cheap to generate, it may be preferable to add the cuts
directly to the matrix and delete any redundant cuts after each sub–problem (node) has been optimized.
Any cuts added to the matrix at a node and not deleted at that node will automatically be added to the cut
pool. If you wish to save all the cuts that are generated, it is better to add the cuts to the cut pool first.
Cuts can then be loaded into the matrix from the cut pool. This approach has the advantage that the cut
pool routines can be used to identify duplicate cuts and save only the stronger cuts.

To help track the cuts that have been added to the matrix at different nodes, the cuts can be classified
according to a user–defined cut type. The cut type can either be a number such as the node number or it
can be a bit map. In the latter case each bit of the cut type may be used to indicate a property of the cut.
For example, cuts could be classified as local cuts applicable at the current node and its descendants, or
as global cuts applicable at all nodes. If the first bit of the cut type is set this could indicate a local cut
and if the second bit is set this could indicate a global cut. Other bits of the cut type could then be used to
signify other properties of the cuts. The advantage of using bit maps is that all cuts with a particular
property can easily be selected, for example all local cuts.

5.9.2 Cut Management Routines
Cuts may be added directly into the matrix at the current node using XPRSaddcuts. Any cuts added to
the matrix at a node will be automatically added to the cut pool and hence restored at descendant nodes
unless specifically deleted at that node, using XPRSdelcuts. Cuts may be deleted from a parent node
which have been automatically restored, as well as those added to the current node using XPRSaddcuts,
or loaded from the cut pool using XPRSloadcuts.

It is recommended to delete only those cuts with basic slacks. Otherwise, the basis will no longer be valid
and it may take many iterations to recover an optimal basis. If the second argument to XPRSdelcuts is

Fair Isaac Corporation Proprietary Information 35

Chapter 5: Advanced Usage

set to 1, this will ensure that cuts with non–basic slacks will not be deleted, even if the other controls
specify that they should be. It is highly recommended that this is always set to 1.

Cuts may be saved directly to the cut pool using the function XPRSstorecuts. Since cuts added to the
cut pool are not automatically added to the matrix at the current node, any such cut must be explicitly
loaded into the matrix using XPRSloadcuts before it can become active. If the third argument of
XPRSstorecuts is set to 1, the cut pool will be checked for duplicate cuts with a cut type identical to
the cuts being added. If a duplicate cut is found, the new cut will only be added if its right hand side value
makes the cut stronger. If the cut in the cut pool is weaker than the added cut, it will be removed unless it
has already been applied to active nodes of the tree. If, instead, this argument is set to 2, the same test is
carried out on all cuts, ignoring the cut type. The routine XPRSdelcpcuts allows the user to remove cuts
from the cut pool, unless they have already been applied to active nodes in the branch and bound tree.

A list of cuts in the cut pool may be obtained using the command XPRSgetcpcuts, whilst
XPRSgetcpcutlist returns a list of their indices. A list of those cuts which are active at the current
node is returned using XPRSgetcutlist.

5.9.3 User Cut Manager Routines
Users may also write their own cut manager routines to be called during the branch and bound search.
Cuts can be added or removed on any node of the branch and bound search using a callback function set
by the routine XPRSaddcboptnode (see section 5.8.3).

Further details of these functions may be found in chapter 7 within the functional reference which follows.

5.10 Solving Problems Using Multiple Threads
It is possible to use multiple processors when solving any type of problem with the Optimizer. On the
more common processor types, such as those from Intel or AMD, the Optimizer will detect how many
logical processors are available in the system and attempt to solve the problem in parallel using as many
threads as possible. The number detected can be read through the CORESDETECTED integer attribute. It
is also possible to adjust the number of threads to use by setting the integer parameter THREADS.

By default a problem will be solved deterministically, in the sense that the same solution path will be
followed each time the problem is solved when given the same number of threads. For an LP this means
that the number of iterations and the optimal, feasible solution returned will always be the same.

When solving a MIP deterministically, each node of the branch–and–bound tree will always be solved the
same. Each node of the branch–and–bound tree can be identified by a unique number, available through
the attribute CURRENTNODE. The tree will always have the same parent/child relationship in terms of
these identifiers. A deterministic MIP solve will always find integer solutions on the same nodes and the
attributes and solutions on a node will always be returned the same from one run to another. Since nodes
will be solved in parallel the order in which nodes are solved can vary. There is an overhead in
synchronizing the threads to make the parallel runs deterministic and it can be faster to run in
non–deterministic mode. This can be done by setting the DETERMINISTIC control to 0.

For an LP problem (or the initial continuous relaxation of a MIP), there are several choices of parallelism.
Both the barrier algorithm and the dual simplex algorithm support multiple threads. The number of
threads to use can be set with BARTHREADS or DUALTHREADS, respectively. It is also possible to run
some or all of primal simplex, dual simplex and the Barrier algorithm side–by–side in separate threads,
known as a concurrent LP solve. This can be useful when none of the methods is the obvious choice. In
this mode, the Optimizer will stop with the first algorithm to solve the problem. The number of threads for
the concurrent LP solve can be set using CONCURRENTTHREADS. The algorithms to use for the
concurrent solve can be specified by concatenating the required "d", "p", "n" and "b" flags when calling
XPRSlpoptimize (LPOPTIMIZE) or XPRSmipoptimize (MIPOPTIMIZE); please refer to section

Fair Isaac Corporation Proprietary Information 36

Chapter 5: Advanced Usage

5.10.1 for more details.

When solving a MIP problem, the Optimizer will try to run the branch and bound tree search in parallel.
Use the MIPTHREADS control to set the number of threads specifically for the tree search.

The operation of the optimizer for MIPs is fairly similar in serial and parallel mode. The MIP callbacks can
still be used in parallel and callbacks are called when each MIP worker problem is created and destroyed.
The mipthread callback (declared with XPRSaddcbmipthread) is called whenever a MIP worker
problem is created and the callback declared with XPRSaddcbdestroymt is called whenever the worker
problem is destroyed. Each worker problem has a unique ID which can be obtained from the
MIPTHREADID integer attribute. When an executing thread solves a branch–and–bound node, it will also
do so on a worker problem assigned to it. Note that a given worker problem can be assigned to different
threads during its lifetime and the threads might differ from one run to another.

When the MIP callbacks are called they are MUTEX protected to allow non threadsafe user callbacks. If a
significant amount of time is spent in the callbacks then it is worth turning off the automatic MUTEX
protection by setting the MUTEXCALLBACKS control to 0. It this is done then the user must ensure that
their callbacks are threadsafe.

On some problems it is also possible to obtain a speedup by using multiple threads for the MIP solve
process between the initial LP relaxation solve and the branch and bound search. The default behavior
here is for the Optimizer to use a single thread to create its rounds of cuts and to run its heuristic
methods to obtain MIP solutions. Extra threads can be started, dedicated to running the heuristics only,
by setting the HEURTHREADS control. By setting HEURTHREADS to a non–zero value, the heuristics will
be run in separate threads, in parallel with cutting.

When a MIP solve is terminated early, due to e.g. a time or node limit, it is possible to select between two
different termination behaviors. This has implications for the determinism of callbacks called near
termination and how quickly the Optimizer stops. In the default behavior, when termination is detected, all
work is immediately stopped and any partial node solves are discarded. It is therefore possible that some
callbacks will have been called for nodes that are discarded at termination. Note that this termination
method does not affect the final state the problem is left in after termination and that any integer solution
for which the preintsol and intsol callbacks are called will never be dropped. By setting the control
MIPTERMINATIONMETHOD to 1, the termination behavior will be changed such that partial work is never
discarded. Instead, all worker threads will be allowed to complete their current work before the solve
stops. This termination behavior might cause a longer delay between termination is detected and the
Optimizer stops, but it will ensure that work is never dropped for any callbacks that have already been
called.

5.10.1 The concurrent solver
The concurrent solve is activated either by passing multiple algorithm flags to XPRSlpoptimize (e.g.
"pb" for running primal and the barrier) or by setting CONCURRENTTHREADS to a positive number. The
order in which threads are allocated to the algorithms is not affected by the order of the flags provided.

Instead of passing flags, you can alternatively set the LPFLAGS control.

If algorithm flags are specified or the LPFLAGS control is set, then concurrent will run the specified
algorithms, provided that the setting of CONCURRENTTHREADS allows for a sufficient number of threads.
When no flags are specified, the automatic order of selecting algorithms starts with dual, followed by
barrier. Primal simplex will be added as a third solver only in a minority of cases, mainly when the
problem has much more columns than rows. The network solver is only used if specified by flags.

CONCURRENTTHREADS represents the total target number of threads that can be used by concurrent.
The optimizer will then first start dual then barrier (if CONCURRENTTHREADS >1), in some cases, see
above, followed by primal (if CONCURRENTTHREADS >2). Any remaining threads will be allocated to
parallel barrier.

If manual algorithm selection has been made using algorithm flags, then CONCURRENTTHREADS will limit

Fair Isaac Corporation Proprietary Information 37

Chapter 5: Advanced Usage

the number of algorithms started (if smaller than the number of algorithms provided), in which case the
number of algorithms started will be the first CONCURRENTTHREADS in the dual → barrier → primal →
network order.

Once an algorithm is started, the direct thread controls BARTHREADS and DUALTHREADS are respected.
Note that due to the latter controls the total number of theads may exceed CONCURRENTTHREADS.

In case a single algorithm is started and relevant controls are on automatic, the value of the THREADS
control is used.

If multiple algorithms have been started and CONCURRENTTHREADS is on automatic, then THREADS will
be used as the overall number of threads used in concurrent (unless overwritten by the relevant algorithm
specific control on a per–algorithm basis).

5.11 Solving Large Models (the 64 bit Functions)
The size of the models that can be loaded into the optimizer using the standard optimizer functions is
limited by the largest number that can be held in a 32–bit integer. This means that it is not possible to
load any problem with more than 2147483648 matrix elements with the standard optimizer functions. On
64–bit machines, it is possible to use the optimizer 64–bit functions to load problems with a larger
number of elements (these functions have 64 appended to the standard optimizer function names). For
example, it is possible to load a problem with a large number of elements with the XPRSloadlp64
function. The only difference between XPRSloadlp64 and XPRSloadlp is that the mstart array
containing the starting points of the elements in each column that is passed to XPRSloadlp64 is a
pointer to an array of 64–bit integers. Typically, the declaration and allocation of space for the 64–bit
mstart array would be as follows:

XPRSint64 ⁎mstart = malloc(ncol ⁎ sizeof(⁎mstart));

The starting points of the elements in mstart can then exceed the largest 32–bit integer.

Wherever there is a need to pass a large array to an optimizer subroutine there is a corresponding 64–bit
function. Once a large model has been loaded into the optimizer then all the standard optimizer functions
(such as XPRSlpoptimize) can be used.

Note that although the 64–bit functions allow very large models to be loaded, there is no guarantee that
such large problems can be solved in a reasonable time. Also if the machine doesn’t have sufficient
memory, the matrix will be constantly swapped in and out of memory which can slow the solution
process considerably.

5.12 Using the Tuner
For a given optimization problem, setting suitable control parameters frequently results in improved
performance such as solution time reduction. The Xpress Optimizer built–in tuner can help a user to
identify such set of control settings that allows the Xpress Optimizer or Xpress SLP to solve problems
faster than by using defaults. For instances that should be tuned for heuristic performance, we
recommend trying HEUREMPHASIS=1 first. This setting addresses instances that will likely not solve to
proven optimality within a given time limit. It aims at reducing the primal-dual gap in an early stage of the
phase, primarily by running more aggressive heuristics.

5.12.1 Basic Usage
With a loaded problem, the tuner can be started by simply calling TUNE from the console, or XPRStune
from a user application. The tuner will then search for better control settings from a list of controls
(called the tuner method). To achieve this, the tuner will solve the problem with its default baseline
control settings and then solve the problem multiple times with each individual control and certain

Fair Isaac Corporation Proprietary Information 38

Chapter 5: Advanced Usage

combinations of these controls.

As the tuner works by solving a problem mutiple times, it is important and recommended to set time
limits. Setting MAXTIME will limit the effort spent on each individual solve and setting TUNERMAXTIME
will limit the overall effort of the tuner.

The tuner works with LP and MIP problems. It automatically determines the problem type by examining
the characteristics of the current problem. It is possible to tune a MIP problem as an LP or vice versa by
passing the flag l or g to XPRStune or TUNE.

The tuner can also work with SLP and MISLP problems when Xpress Nonlinear is available. Note that for
SLP or MISLP problems, the time limit is set with XSLP_MAXTIME.

5.12.2 The Tuner Method
A tuner method consists of a list of controls for the tuner to try with. It is possible to run the tuner with
different pre–defined lists of controls, so–called factory tuner methods, or with a user–defined list of
controls. When using the tuner, it will automatically choose a default factory tuner method according to
the problem type. A non–default factory tuner method can be selected by setting the TUNERMETHOD
control. There are several choices available for factory tuner methods, among them:

■ A simple MIP method, which only features a few controls and can be used in situations where
tuning with the default method would take too long, e.g., because the instance to be tuned takes a
long time for each individual solve

■ A comprehensive MIP method, which features a larger list of controls (and control settings) and can
be used when individual instance solves are relatively fast or the default method could not reveal a
satisfying improvement

■ A root–focus method, which only considers controls that affect the root node processing of the
MIP solve. It can either be used when root and tree behavior should be tuned independently, in a
two stage process, or when it is evident that improvements have to come from root node
processing. When tuning with a root–focus, it might make sense to choose minimizing the primal
dual integral as a tuner target.

■ A tree–focus method, which only considers controls that affect the tree search behavior of the MIP
solve. It can either be used when root and tree behavior should be tuned independently, in a two
stage process, or when it is evident that improvements have to come from the tree search, e.g.,
because the dual bound needs better branching.

■ A method for tuning primal heuristics, which should be used when finding a better MIP solutions is
the only focus and improving the best bound can be neglected. In this case, it might make sense to
choose improvement of the primal bound also as a tuner target.

Please also refer to the documentation of the TUNERMETHOD control.

A tuner method can be written out using XPRStunerwritemethod. This function will create a file in
XTM format, that is effectively a list of Xpress Optimizer controls, each with a set of possible settings to
try in tuning. When writing out one of the factory methods, it is recommended to first select the tuner
method by setting TUNERMETHOD, or to load a targeting problem, so that the tuner can write out suitable
tuner methods for the respective problem types.

Users can provide their own method to the tuner by setting up an XTM file (or editing one that has been
written out). This can be read into the tuner with XPRStunerreadmethod.

An alternate way to load a user–defined tuner method is to set the TUNERMETHODFILE control to the file
name. This will only work when no tuner method has been loaded by explicitly calling
XPRStunerreadmethod. If a user–defined method is successfully loaded, the tuner will use it and not
load any factory tuner method.

Fair Isaac Corporation Proprietary Information 39

Chapter 5: Advanced Usage

Please refer to Appendix A.8 for the format of tuner method file.

5.12.3 The Tuner Output
While the tuner examines various control settings, it prints a progress report to the console. At the same
time, it writes out the result and individual logs to the file system.

On the console, the tuner will print a one–line summary for each finished run. When a new better control
setting is identified, it will be highlighted with an asterisk (*) at the begining of its log line, and followed by
details of the control setting and its log file name. The console progress logging can be switched off by
disabling the OUTPUTLOG control. Please refer to Appendix A.12 for a more detailed description of the
tuner logging.

In the background, the tuner will output the result and individual logs to the file system. By default, all the
output files will be stored in the directory tuneroutput/probname/. The root folder path can be
changed by setting the TUNEROUTPUTPATH control. This is the central folder in which all subfolders for
the results and logs of different problems will be stored. The subfolders themselves are automatically
named using the current problem name. They can be manually given a different name by setting the
TUNERSESSIONNAME control. The subfolder contains one result file in XML format, and many log files,
one for each evaluated control setting. The XML result file consists of the control settings, solution
results and pointers to the log files of all finished tuner runs.

The file output can be turned off completely by disabling the TUNEROUTPUT control.

5.12.4 The Tuner Target
A tuner target defines how to compare two finished runs with different control settings.

A common usage of the tuner is to pursue a solution time reduction, where two runs will be compared by
their solution time, the faster one is considered the better. However, when both of the runs time out, it will
be more meaningful to compare other attributes of the two runs, for example the final gap or the best
integer solution for MIP problems.

The tuner will choose a default tuner target according to problem types. For instance, comparing the time
firstly and then the gap is the default tuner target for MIP problems. A user can select a different target by
setting the TUNERTARGET control. Please refer to the documentation of TUNERTARGET for a list of
supported tuner targets.

5.12.5 Restarting the Tuner
When tuning the same problem again, the tuner will attempt to pick up results from previous tuner runs so
that it can avoid testing with the same control settings again. For this, it checks whether an XML result
file is available in the directory tuneroutput/probname/, see Section 5.12.3. Reusing of the history
results even works when a user changes the baseline settings or uses a different tuner method. In this
case, the tuner will only pick up history results which match the new control combinations. By default,
when a new control setting is evaluated, the result will be appended to the existing result file from the
previous tuner session.

This feature of reusing and appending to previous results can be switched off by setting the
TUNERHISTORY control. This control has the default value 2, which allows both, reusing and appending.
Setting it to 1 will switch off reusing of the results, while still allowing to append new result to the XML
result file. Setting it to 0 will switch off appending as well; consequently, the old result file will be
overwritten. Note that all log files from previous tuner session will always be kept even if they run with
identical settings. This is realized by having a time stamp and a unique number in the file name. Log files
can only be removed manually.

Fair Isaac Corporation Proprietary Information 40

Chapter 5: Advanced Usage

5.12.6 Tuner with Multiple Threads
The tuner can work in parallel, i.e., it can run several evaluations of different control settings
simultaneously. When setting TUNERTHREADS larger than 1, the tuner will start in parallel mode with the
given number of threads. Setting the tuner threads won’t affect the number of threads used by each
individual run. However, it is natural that, when solving different control settings in parallel, each of the
runs may slow down.

When using the parallel tuner, it is worth considering to set the THREADS control as well; ideally such that
the product of THREADS and TUNERTHREADS is at most the number of system threads.

5.12.7 Tuner with Problem Permutations
For a certain problem, there may exist several "lucky" controls, that show a better performance by
coincidence and not due to structural reasons. Such lucky controls will typically not work with other
problems of the same type, or when a user modifies the problem slightly or updates Xpress. They can be
thought of as false positives of tuning.

To address this issue, the tuner can exploit a phenomenon known as performance variability and solve
the problem with multiple random permutations. When setting TUNERPERMUTE to a positive number, for
each control setting, the tuner will solve the original problem and the corresponding number of permuted
problems and finally aggregate their results as one. Generally, tuner results with permutations are
expected to be more stable.

5.12.8 Tuning a Set of Problems
The tuner can tune a set of problems to search for an overall best control setting for all the problems in
the set. Tuning a problem set can be started from the optimizer console with the command

tune probset problem.set,

where the problem.set is a plain text file which contains a list of problem files in MPS or LP format.

The tuner starts by checking all the problems defined in the problem set file. It will read in each problem
to find out its type (one of LP, MIP, SLP and MISLP) and optimization direction. When there are mixed
problem types, the tuner will quit with a warning message. The tuner can work with mixed optimization
directions and it will treat the whole problem set as a minimization problem. For a given problem set, it is
possible to force the tuner to tune the problem set as LP or MIP problems with the command

tune lpset problem.set or tune mipset problem.set

respectively.

For a problem set, the tuner works by solving each individual problem in the set for each specific
combination of control settings separately. When all the problems in the set are solved for a specific
control setting, the tuner combines the individual problem results into a consolidated one and reports it
on the console. During the solve, for each problem in the set, the tuner will output its result and log files to
a path defined by TUNEROUTPUTPATH/PROBLEMNAME. For the main problem set, the tuner will write the
consolidated results to the main output path, together with a concatenated copy of all the individual
problem logs.

When tuning a problem set again, the tuner can pick up the result of existing runs for the main problem
set and for each separate problem in the set as well. If the full problem set can be recovered from the
existing tuning records, the tuner will omit solving them as usual. Otherwise, the tuner will go through all
the problems in the set. For each problem in the set, the tuner will also check whether it is possible to pick
up an existing result with the specific control setting and omit solving for existing ones when possible.

Fair Isaac Corporation Proprietary Information 41

Chapter 5: Advanced Usage

5.12.9 Advanced Topics
Besides explicitly calling TUNE or XPRStune, the tuner can also be started by enabling the TUNERMODE
control. When enabling this control (setting to 1), all the optimization such as XPRSmipoptimize or
XPRSlpoptimize will be carried out as a tuned optimization. The Optimizer will first use the tuner to
find the best setting and then apply the best setting to solve the problem. On the other hand, a user can
disable this control (setting to 0) to always disable the tuner, such that a call to XPRStune will have no
effect. This TUNERMODE has a default value of -1, which won’t affect the behaviour of any of the above
mentioned functions.

When using the tuner from a user application with callbacks, the callbacks will also be passed on to each
individual runs. A user needs to keep in mind that these callbacks may be called mutiple times from the
tuner, as the tuner will solve the problem mutiples times. Moreover, when using the parallel tuner, it is the
user’s responsibility to ensure that callbacks are thread–safe.

Though the tuner is built–in with the Xpress Optimizer, it can tune nonlinear problems when Xpress
Nonlinear is available. Currently, parallel tuning and permutations will be disabled in this case.

5.13 Remote Solving with Xpress Insight Compute In-
terface

The Xpress Optimizer libraries can be configured to outsource optimization computation to a remote
Insight server that supports the Compute Interface. Software applications which depend on the Optimizer
libraries for optimization computation therefore inherit the ability to transparently send jobs to Insight.
This includes the Xpress applications (Optimizer Console, Mosel, Workbench).

When a solve is started, the Optimizer library directs any operations that can be solved remotely to the
remote server. Some features such as callbacks, multi-start, and the solution enumerator have
restrictions applied which are documented here.

To integrate Xpress with an Insight Compute Server you must provide some configuration. Please see
Chapter 3 of the Xpress Insight Compute Interface guide here:
(https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/)

The single solve operations XPRSlpoptimize, XPRSmipoptimize, XSLPnlpoptimize, XSLPminim,
XSLPmaxim, XPRSiis are supported. Calls to XPRSrepairinfeas and XPRStune which generate multiple
problem solves are also supported and each solve will be outsourced to the remote Insight server. The
number of parallel solves in the tuner is driven by the TUNERTHREADS control.

The Xpress Insight execution service and the local client application must be using the same major
version of Xpress. Remote solves by Insight are supported by Xpress v8.10 and higher. Note: If you get a
solve path difference, update the version of Xpress to match the version on the server with that on the
client machine and check hardware controls, in particular threading controls. Solves will use the default
execution service unless you specify one using the COMPUTEEXECSERVICE control or the configuration
file as described in Appendix A.13.3.

Compute solves do not support the continuation of solves once they are interrupted, nor the multistart
nonlinear algorithm.

A remote solve can be terminated by calling XPRSinterrupt. When called from the supported callbacks -
with the exception of the message callback - this will stop the optimizer the same way as for a local solve.
Otherwise, calling XPRSinterrupt outside of the supported callbacks will terminate the solve at the
earliest opportunity, and no results will be generated.

The remote solve is resilient to a temporary loss of connection between client and server. Xpress will try
to reconnect for a period of time and a message will appear in the run log if this is successful, or the
solve will terminate with an error if it is not. If the connection between client and server is established

Fair Isaac Corporation Proprietary Information 42

https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/

Chapter 5: Advanced Usage

when the connection between server and the executing worker is lost then the solve will be restarted to
maintain determinism, and a computerestart callback will be fired to notify the calling application. Any
work done by the disconnected remote worker, including any integer solution callbacks already fired, will
be repeated.

Support for the following features are disabled when solving remotely and calling the related API
methods will cause a runtime error:

■ multiple solution pools,

■ solution enumeration,

■ callbacks not listed as supported above.

5.13.1 Authentication
Please refer to the Insight Compute Interface guide Chapter 2 and 3 for details of connecting Xpress to a
remote Insight server. (https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/)

5.13.2 Callbacks
Callbacks are supported. When submitting a job to a remote machine, these callbacks are restricted to
the message, barlog, globallog, lplog and cutlog, gapnotify, and intsol callbacks. Attempting to set any
other callbacks will cause a runtime error. Controls can be changed in the usual way in all the supported
callbacks with the exception of the message callback. Note: when solving remotely, the value of control
XSLP_AUTOSAVE is always ignored.

Within the supported callbacks, calls can be made to functions that retrieve attributes and setting control
values. Within the intsol callback, calls to XPRSgetmipsol and XPRSgetmipsolvalue are permitted. Calling
any other API function will cause a runtime error, including any XSLP and BCL API calls. Note: While
calling XPRSgetlpsol is also permitted in the intsol callback, it will return the same solution as
XPRSgetmipsol, both being the solution associated to the intsol callback. This is different to non–remote
solves where getmipsol would return the overall best solution instead. It is therefore safe to keep using
getlpsol in applications utilizing compute solves.

Any job that features callbacks which return hardware related attributes will use values from the remote
server. For example, XPRS_CORESDETECTED will reflect the hardware on which the problem is being
solved, not the hardware of the local client.

5.13.3 Licensing
When an Xpress application or an application embedding the Optimizer library is started with remote
solving configured, the local license check is omitted and no local license is required to execute the
application.

When a solve is started, the Optimizer instance will direct any operations that can be solved remotely to
the remote server. This will also be the case if additional Optimizer instances are initiated as separate
threads of the same process.

5.13.4 Advanced Configuration
There are some advanced settings that can be set using the Remote Solving Configuration file; this is
described in section A.13.

Fair Isaac Corporation Proprietary Information 43

https://www.fico.com/fico-xpress-optimization/docs/latest/insight5/compute/

CHAPTER 6

Infeasibility, Unboundedness and Instability

All users will, generally, encounter occasions in which an instance of the model they are developing is
solved and found to be infeasible or unbounded. An infeasible problem is a problem that has no solution
while an unbounded problem is one where the constraints do not restrict the objective function and the
objective goes to infinity. Both situations often arise due to errors or shortcomings in the formulation or
in the data defining the problem. When such a result is found it is typically not clear what it is about the
formulation or the data that has caused the problem.

Problem instability arises when the coefficient values of the problem are such that the optimization
algorithms find it difficult to converge to a solution. This is typically because of large ratios between the
largest and smallest coefficients in the rows or columns and the handling of the range of numerical
values in the algorithm is causing floating point accuracy issues. Problem instability generally manifests
in either long run times or spurious infeasibilities.

It is often difficult to deal with these issues since it is often difficult to diagnose the cause of the
problems. In this chapter we discuss the various approaches and tools provided by the Optimizer for
handling these issues.

6.1 Infeasibility
A problem is said to be infeasible if no solution exists which satisfies all the constraints. The FICO Xpress
Optimizer provides functionality for diagnosing the cause of infeasibility in the user’s problem.

Before we discuss the infeasibility diagnostics of the Optimizer we will define some types of infeasibility
in terms of the type of problem it relates to and how the infeasibility is detected by the Optimizer.

We will consider two basic types of infeasibility. The first we will call continuous infeasibility and the
second discrete or integer infeasibility. Continuous infeasibility is where a non–MIP problem is infeasible.
In this case the feasible region defined by the intersecting constraints is empty. Discrete or integer
infeasibility is where a MIP problem has a feasible relaxation (a relaxation of a MIP is the problem we get
when we drop the discreteness requirement on the variables) but the feasible region of the relaxation
contains no solution that satisfies the discreteness requirement.

Either type of infeasibility may be detected at the presolve phase of an optimization run. Presolve is the
analysis and processing of the problem before the problem is run through the optimization algorithm. If
continuous infeasibility is not detected in presolve then the optimization algorithm will detect the
infeasibility. If integer infeasibility is not detected in presolve, a branch and bound search will be
necessary to detect the infeasibility. These scenarios are discussed in the following sections.

6.1.1 Diagnosis in Presolve
The presolve processing, if activated (see section 5.3), provides a variety of checks for infeasibility. When
presolve detects infeasibility, it is possible to "trace" back the implications that determined an
inconsistency and identify a particular cause. This diagnosis is carried out whenever the control

Fair Isaac Corporation Proprietary Information 44

Chapter 6: Infeasibility, Unboundedness and Instability

parameter TRACE is set to 1 before the optimization routine XPRSlpoptimize (LPOPTIMIZE) is called.
In such a situation, the cause of the infeasibility is then reported as part of the output from the
optimization routine.

6.1.2 Diagnosis using Primal Simplex
The trace presolve functionality is typically useful when the infeasibility is simple, such that the sequence
of bound implications that explains the infeasibility is short. If, however, this sequence is long or there are
a number of sequences on different sets of variables, it might be useful to try forcing presolve to continue
processing and then solve the problem using the primal simplex to get the, so called, ’phase 1’ solution.
To force presolve to continue even when an infeasibility is discovered the user can set the control
PRESOLVE to --1. The ’phase 1’ solution is useful because the sum of infeasibilities is minimized in the
solution and the resulting set of violated constraints and violated variable bounds provides a clear picture
of what aspect of the model is causing the infeasibility.

6.1.3 Irreducible Infeasible Sets
A general technique to analyze infeasibility is to find a small subset of the matrix that is itself infeasible.
The Optimizer does this by finding irreducible infeasible sets (IISs). An IIS is a minimal set of constraints
and variable bounds which is infeasible, but becomes feasible if any constraint or bound in it is removed.

A model may have several infeasibilities. Repairing a single IIS may not make the model feasible, for
which reason the Optimizer can attempt to find an IIS for each of the infeasibilities in a model. The IISs
found by the optimizer are independent in the sense that each constraint and variable bound may only be
present in at most one IIS. In some problems there are overlapping IISs. The number of all IISs present in
a problem may be exponential, and no attempt is made to enumerate all. If the infeasibility can be
represented by several different IISs the Optimizer will attempt to find the IIS with the smallest number of
constraints in order to make the infeasibility easier to diagnose (the Optimizer tries to minimize the
number of constraints involved, even if it means that the IIS will contain more bounds).

Using the library functions IISs can be generated iteratively using the XPRSiisfirst and
XPRSiisnext functions. All (a maximal set of independent) IISs can also be obtained with the
XPRSiisall function. Note that if the problem is modified during the iterative search for IISs, the
process has to be started from scratch. After a set of IISs is identified, the information contained by any
one of the IISs (size, constraint and bound lists, duals, etc.) may be retrieved with the function
XPRSgetiisdata. A summary on the generated IISs is provided by function XPRSiisstatus, while it
is possible to save the IIS data or the IIS subproblem directly into a file in MPS or LP format using
XPRSiiswrite. The information about the IISs is available while the problem remains unchanged. The
information about an IIS may be obtained at any time after it has been generated. Function
XPRSiisclear clears the information already stored about IISs.

On the console, all the IIS functions are available by passing different flags to the IIS console command.
A single IIS may be found with the command IIS. If further IISs are required (e.g., if trying to find the
smallest one) the IIS --n command may be used to generate subsequent IISs, or the IIS --a to
generate all independent IISs, until no further independent IIS exists. These functions display the
constraints and bounds that are identified to be in an IIS as they are found. If further information is
required, the IIS --p num command may be used to retrieve all the data for a given IIS, or the IISw and
IISe functions to create an LP/MPS or CSV containing the IIS subproblem or the additional information
about the IIS in a file.

Once an IIS has been found it is useful to know if dropping a single constraint or bound in the IIS will
completely remove the infeasibility represented by the IIS, thus an attempt is made to identify a subset of
the IIS called a sub--IIS isolation. A sub--IIS isolation is a special constraint or bound in
an IIS. Removing an IIS isolation constraint or bound will remove all infeasibilities in the IIS without
increasing the infeasibilities outside the IIS, that is, in any other independent IISs.

Fair Isaac Corporation Proprietary Information 45

Chapter 6: Infeasibility, Unboundedness and Instability

The IIS isolations thus indicate the likely cause of each independent infeasibility and give an
indication of which constraint or bound to drop or modify. This procedure is computationally expensive,
and is carried out separately by function XPRSiisisolations (IIS--i) for an already identified IIS. It
is not always possible to find IIS isolations.

After an optimal but infeasible first phase primal simplex, it is possible to identify a subproblem
containing all the infeasibilities (corresponding to the given basis) to reduce the IIS work–problem
dramatically. Rows with zero duals (thus with slack variables having zero reduced cost) and columns that
have zero reduced costs may be excluded from the search for IISs. Moreover, for rows and columns with
nonzero costs, the sign of the cost is used to relax equality rows either to less then or greater than equal
rows, and to drop either possible upper or lower bounds on variables. This process is referred to as
sensitivity filter for IISs.

The identification of an IIS, especially if the isolations search is also performed, may take a very long time.
For this reason, using the sensitivity filter for IISs, it is possible to find only an approximation of the IISs,
which typically contains all the IISs (and may contain several rows and bounds that are not part of any
IIS). This approximation is a sub–problem identified at the beginning of the search for IISs, and is referred
to as the initial infeasible sub–problem. Its size is typically crucial to the running time of the IIS procedure.
This sub–problem is accessible by setting the input parameters of XPRSiisfirst or by calling (IIS
--f) on the console. Note that the IIS approximation and the IISs generated so far are always available.

The XPRSgetiisdata function also returns dual multipliers. These multipliers are associated with
Farkas’ lemma of linear optimization. Farkas’ lemma in its simplest form states that if Ax = b, x ≥ 0 has
no solution, then there exists a y for which yTA ≥ 0 and yTb < 0. In other words, if the constraints and
bounds are contradictory, then an inequality of form dTx < 0 may be derived, where d is a constant vector
of nonnegative values. The vector y, i.e., the multipliers with which the constraints and bounds have to be
combined to get the contradiction is called dual multipliers. For each IIS identified, these multipliers are
also provided. For an IIS all the dual multipliers should be nonzero.

6.1.4 The Infeasibility Repair Utility
In some cases, identifying the cause of infeasibility, even if the search is based on IISs may prove very
demanding and time consuming. In such cases, a solution that violates the constraints and bounds
minimally can greatly assist modeling. This functionality is provided by the
XPRSrepairweightedinfeas function.

Based on preferences provided by the user, the Optimizer relaxes the constraints and bounds in the
problem by introducing penalized deviation variables associated with selected rows and columns. Then a
weighted sum of these variables (sometimes referred to as infeasibility breakers) is minimized, resulting
in a solution that violates the constraints and bounds minimally regarding the provided preferences. The
preference associated with a constraint or bound reflects the modeler’s will to relax the corresponding
right–hand–side or bound. The higher the preference, the more willing the modeler is to relax (the penalty
value associated is the reciprocal of the preference). A zero preference reflects that the constraint or
bound cannot be relaxed. It is the responsibility of the modeler to provide preferences that yield a feasible
relaxed problem. Note, that if all preferences are nonzero, the relaxed problem is always feasible (with the
exception of problems containing binary or semi–continuous variables, since because of their special
associated modeling properties, such variables are not relaxed).

Note, that this utility does not repair the infeasibility of the original model, but based on the preferences
provided by the user, it introduces extra freedom into it to make it feasible, and minimizes the utilization
of the added freedom.

The magnitude of the preferences does not affect the quality of the resulting solution, and only the ratios
of the individual preferences determine the resulting solution. If a single penalty value is used for each
constraint and bound group (less than and greater than or equal constraints, as well as lower and upper
bounds are treated separately) the XPRSrepairinfeas (REPAIRINFEAS) function may be used, which
provides a simplified interface to

Fair Isaac Corporation Proprietary Information 46

Chapter 6: Infeasibility, Unboundedness and Instability

XPRSrepairweightedinfeas.

Using the new variables introduced, it is possible to warm start the primal simplex algorithm with a basic
solution. However, based on the value of the control KEEPBASIS, the function may modify the actual
basis to produce a warm start basis for the solution process. An infeasible, but first phase optimal primal
solution typically speeds up the solution of the relaxed problem.

Once the optimal solution to the relaxed problem is identified (and is automatically projected back to the
original problem space), it may be used by the modeler to modify the problem in order to become feasible.
However, it may be of interest to know what the optimal objective value will be if the original problem is
relaxed according to the solution found be the infeasibility repair function.

In order to provide such information, the infeasibility repair tool may carry out a second phase, in which
the weighted violation of the constraints and bounds are restricted to be no greater than the optimum of
the first phase in the infeasibility repair function, and the original objective function is minimized or
maximized.

It is possible to slightly relax the restriction on the weighted violation of the constraints and bounds in the
second phase by setting the value of the parameter delta in
XPRSrepairweightedinfeas, or using the --delta option with the Console Optimizer command
REPAIRINFEAS. If the minimal weighted violation in the first phase is p, a nonzero delta would relax
the restriction on the weighted violations to be less or equal than (1+delta)p. While such a relaxation
allows considering the effect of the original objective function in more detail, on some problems the
trade–off between increasing delta to improve the objective can be very large, and the modeler is
advised to carefully analyze the effect of the extra violations of the constraints and bounds to the
underlying model.

Note, that it is possible that an infeasible problem becomes unbounded in the second phase of the
infeasibility repair function. In such cases, the cause of the problem being unbounded is likely to be
independent from the cause of its infeasibility.

When not all constraints and bounds are relaxed it is possible for the relaxed problem to remain
infeasible. In such cases it is possible to run the IIS tool on the relaxed problem, which can be used to
identify why it is still infeasible.

It is also possible to limit the amount of relaxation allowed on a per constraint side or bound by using
XPRSrepairweightedinfeasbounds.

It can sometimes be desired to achieve an even distribution of relaxation values. This can be achieved by
using quadratic penalties on the added relaxation variables, and is indicated to the optimizer by specifying
a negative preference value for the constraint or bound on which a quadratic penalty should be added.

6.1.5 Integer Infeasibility
In rare cases a MIP problem can be found to be infeasible although its LP relaxation was found to be
feasible. In such circumstances the feasible region for the LP relaxation, while nontrivial, contains no
solutions which satisfy the various integrality constraints. These are perhaps the worst kind of
infeasibilities as it can be hard to determine the cause. In such cases it is recommended that the user try
to introduce some flexibility into the problem by adding slack variables to all of the constraints each with
some moderate penalty cost. With the solution to this problem the user should be able to identify, from
the non–zero slack variables, where the problem is being overly restricted and with this decide how to
modify the formulation and/or the data to avoid the problem.

6.2 Unboundedness
A problem is said to be unbounded if the objective function may be improved indefinitely without violating
the constraints and bounds. This can happen if a problem is being solved with the wrong optimization
sense, e.g., a maximization problem is being minimized. However, when a problem is unbounded and the

Fair Isaac Corporation Proprietary Information 47

Chapter 6: Infeasibility, Unboundedness and Instability

problem is being solved with the correct optimization sense then this indicates a problem in the
formulation of the model or the data. Typically, the problem is caused by missing constraints or the
wrong signs on the coefficients. Note that unboundedness is often diagnosed by presolve.

6.3 Instability
6.3.1 Scaling

When developing a model and the definition of its input data users often produce problems that contain
constraints and/or columns with large ratios in the absolute values of the largest and smallest
coefficients. For example:

maximize: 106x + 7y = z
subject to: 106x + 0.1y ≤ 100

107x + 8y ≤ 500
1012x + 106y ≤ 50⁎106

Here the objective coefficients, constraint coefficients, and right–hand side values range between 0.1 and
1012. We say that the model is badly scaled.

During the optimization process, the Optimizer must perform many calculations involving subtraction and
division of quantities derived from the constraints and the objective function. When these calculations
are carried out with values differing greatly in magnitude, the finite precision of computer arithmetic and
the fixed tolerances employed by FICO Xpress result in a build up of rounding errors to a point where the
Optimizer can no longer reliably find the optimal solution.

To minimize undesirable effects, when formulating your problem try to choose units (or equivalently scale
your problem) so that objective coefficients and matrix elements do not range by more than 106, and the
right–hand side and non–infinite bound values do not exceed 106. One common problem is the use of
large finite bound values to represent infinite bounds (i.e., no bounds) — if you have to enter explicit
infinite bounds, make sure you use values greater than 1020 which will be interpreted as infinity by the
Optimizer. Avoid having large objective values that have a small relative difference — this makes it hard
for the dual simplex algorithm to solve the problem. Similarly, avoid having large right–hand side or
bound values that are close together, but not identical.

In the above example, both the coefficient for x and the last constraint might be better scaled. Issues
arising from the first may be overcome by column scaling, effectively a change of coordinates, with the
replacement of 106x by some new variable. Those from the second may be overcome by row scaling. If
we set x = 106x′ and scale the last row by 10–6, the example becomes the much better scaled problem:

maximize: x’ + 7y = z
subject to: x’ + 0.1y ≤ 100

10x’ + 8y ≤ 500
x’ + y ≤ 50

FICO Xpress also incorporates a number of automatic scaling options to improve the scaling of the
matrix. However, the general techniques described below cannot replace attention to the choice of units
specific to your problem. The best option is to scale your problem following the advice above, and use
the automatic scaling provided by the Optimizer.

The form of scaling provided by the Optimizer depends on the setting of the bits of the control parameter
SCALING. To get a particular form of scaling, set SCALING to the sum of the values corresponding to the
scaling required. For instance, to get row scaling, column scaling and then row scaling again, set
SCALING to 1+2+4=7. The scaling processing is applied after presolve and before the optimization

Fair Isaac Corporation Proprietary Information 48

Chapter 6: Infeasibility, Unboundedness and Instability

algorithm. The most important of the defined bits are given in the following table. For a full list, refer to
SCALING in Chapter 8

Bit Value Type of Scaling
0 1 Row scaling.
1 2 Column scaling.
2 4 Row scaling again.
3 8 Maximin.
4 16 Curtis–Reid.
5 32 0– scale by geometric mean;

1– scale by maximum element
(not applicable if maximin or Curtis–Reid is specified).

7 128 Objective function scaling.
8 256 Exclude the quadratic part of constraint when calculating scaling factors.
9 512 Scale the problem before presolve is applied.

If scaling is not required, SCALING should be set to 0.

If the user wants to get quick results when attempting to solve a badly scaled problem it may be useful to
try running customized scaling on a problem before calling the optimization algorithm. To run the scaling
process on a problem the user can call the routine XPRSscale(SCALE). The SCALING control
determines how the scaling will be applied.

If the user is applying customized scaling to their problem and they are subsequently modifying the
problem, it is important to note that the addition of new elements in the matrix can cause the problem to
become badly scaled again. This can be avoided by reapplying their scaling strategy after completing
their modifications to the matrix.

Finally, note that the scaling operations are determined by the matrix elements only. The objective
coefficients, right hand side values and bound values do not influence the scaling. Only continuous
variables (i.e., their bounds and coefficients) and constraints (i.e., their right–hand sides and coefficients)
are scaled. Discrete entities such as integer variables are not scaled so the user should choose carefully
the scaling of these variables.

6.3.2 Accuracy
The accuracy of the computed variable values and objective function value is affected in general by the
various tolerances used in the Optimizer. Of particular relevance to MIP problems are the accuracy and
cut off controls. The MIPRELCUTOFF control has a non–zero default value, which will prevent solutions
very close but better than a known solution being found. This control can of course be set to zero if
required.

When the LP solver stops at an optimal solution, the scaled constraints will be violated by no more than
FEASTOL and the variables will be within FEASTOL of their scaled bounds. However once the constraints
and variables have been unscaled the constraint and variable bound violation can increase to more than
FEASTOL. If this happens then it indicates the problem is badly scaled. Reducing FEASTOL can help
however this can cause the LP solve to be unstable and reduce solution performance.

However, for all problems it is probably ambitious to expect a level of accuracy in the objective of more
than 1 in 1,000,000. Bear in mind that the default feasibility and optimality tolerances are 10–6. It is often
not practially possible to compute the solution values and reduced costs from a basis, to an accuracy
better than 10–8 anyway, particularly for large models. It depends on the condition number of the basis
matrix and the size of the right—hand side and cost coefficients. Under reasonable assumptions, an
upper bound for the computed variable value accuracy is 4xKx∥RHS∥/1016, where ∥RHS∥ denotes the
L–infinity norm of the right–hand side and K is the basis condition number. The basis condition number

Fair Isaac Corporation Proprietary Information 49

Chapter 6: Infeasibility, Unboundedness and Instability

can be found using the XPRSbasiscondition (BASISCONDITION) function.

You should also bear in mind that the matrix is scaled, which would normally have the effect of increasing
the apparent feasibility tolerance.

Fair Isaac Corporation Proprietary Information 50

CHAPTER 7

Console and Library Functions

A large number of routines are available for both Console and Library users of the FICO Xpress Optimizer,
ranging from simple routines for the input and solution of problems from matrix files to sophisticated
callback functions and greater control over the solution process. Of these, the core functionality is
available to both sets of users and comprises the ’Console Mode’. Library users additionally have access
to a set of more ’advanced’ functions, which extend the functionality provided by the Console Mode,
providing more control over their program’s interaction with the Optimizer and catering for more
complicated problem development.

7.1 Console Mode Functions
With both the Console and Advanced Mode functions described side-by-side in this chapter, library users
can use this as a quick reference for the full capabilities of the Optimizer library. For users of Console
Optimizer, only the following functions will be of relevance:

Command Description Page

CHECKCONVEXITY Convexity checker. p. 143

EXIT Terminate the Console Optimizer. p. 174

HELP Quick reference help for the Optimizer console. p. 258

IIS Console IIS command. p. 259

PRINTSOL Write the current solution to screen. p. 310

QUIT Terminate the Console Optimizer. p. 311

STOP Terminate the Console Optimizer. p. 369

TUNE Console Tuner command. p. 375

SETARCHCONSISTENCY Sets whether to force the same execution path on various CPU architecture extensions,
in particular (pre-)AVX and AVX2. p. 76

ALTER Alters or changes matrix elements, right hand sides and constraint senses in the
current problem. p. 134

BASISCONDITION Calculates the condition number of the current basis after solving the LP relaxation.
p. 135

BASISSTABILITY Calculates various measures for the stability of the current basis, including the basis
condition number. p. 136

CHGOBJSENSE Changes the problem’s objective function sense to minimize or maximize. p. 151

DUMPCONTROLS Displays the list of controls and their current value for those controls that have been set
to a non default value. p. 173

FIXGLOBALS Fixes all the global entities to the values of the last found MIP solution. This is useful
for finding the reduced costs for the continuous variables after the global variables
have been fixed to their optimal values. p. 177

GLOBAL Starts the global search for an integer solution after solving the LP relaxation with
XPRSmaxim (MAXIM) or XPRSminim (MINIM) or continues a global search if it has
been interrupted. p. 256

Fair Isaac Corporation Proprietary Information 51

Chapter 7: Console and Library Functions

LPOPTIMIZE This function begins a search for the optimal continuous (LP) solution. The direction of
optimization is given by OBJSENSE. The status of the problem when the function
completes can be checked using LPSTATUS. Any global entities in the problem will be
ignored. p. 301

MAXIM, MINIM Begins a search for the optimal LP solution. p. 302

MIPOPTIMIZE This function begins a global search for the optimal MIP solution. The direction of
optimization is given by OBJSENSE. The status of the problem when the function
completes can be checked using MIPSTATUS. p. 304

POSTSOLVE Postsolve the current matrix when it is in a presolved state. p. 307

READBASIS Instructs the Optimizer to read in a previously saved basis from a file. p. 312

READBINSOL Reads a solution from a binary solution file. p. 313

READDIRS Reads a directives file to help direct the global search. p. 314

READPROB Reads an (X)MPS or LP format matrix from file. p. 316

READSLXSOL Reads an ASCII solution file (.slx) created by the XPRSwriteslxsol function. p. 318

REFINEMIPSOL Executes the MIP solution refiner. p. 319

REPAIRINFEAS An extended version of XPRSrepairweightedinfeas that allows for bounding the
level of relaxation allowed. p. 350

RESTORE Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE).
Optimization may then recommence from the point at which the file was created. p. 353

SAVE Saves the current data structures to file and terminates the run p. 355

SCALE Re-scales the current matrix. p. 356

SETDEFAULTCONTROL Sets a single control to its default value. p. 361

SETDEFAULTS Sets all controls to their default values. Must be called before the problem is read or
loaded by XPRSreadprob, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp. p. 362

SETLOGFILE This directs all Optimizer output to a log file. p. 365

SETPROBNAME Sets the current default problem name. This command is rarely used. p. 367

WRITEBASIS Writes the current basis to a file for later input into the Optimizer. p. 381

WRITEBINSOL Writes the current MIP or LP solution to a binary solution file for later input into the
Optimizer. p. 382

WRITEDIRS Writes the global search directives from the current problem to a directives file. p. 383

WRITEPROB Writes the current problem to an MPS or LP file. p. 384

WRITEPRTSOL Writes the current solution to a fixed format ASCII file, problem_name .prt. p. 385

WRITESLXSOL Creates an ASCII solution file (.slx) using a similar format to MPS files. These files
can be read back into the Optimizer using the XPRSreadslxsol function. p. 386

WRITESOL Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).
p. 387

For a list of functions by task, refer to 2.8.

7.2 Layout for Function Descriptions
All functions mentioned in this chapter are described under the following set of headings:

Function Name
The description of each routine starts on a new page. The library name for a function is on the left and
the Console Optimizer command name, if one exists, is on the right.

Purpose
A short description of the routine and its purpose begins the information section.

Fair Isaac Corporation Proprietary Information 52

Chapter 7: Console and Library Functions

Synopsis
A synopsis of the syntax for usage of the routine is provided. "Optional" arguments and flags may be
specified as NULL if not required. Where this possibility exists, it will be described alongside the
argument, or in the Further Information at the end of the routine’s description. If the function is available
in the Console, the library syntax is described first, followed by the Console Optimizer syntax.

Arguments
A list of arguments to the routine with a description of possible values for them follows.

Error Values
Optimizer return codes are described in Chapter 10. For library users, however, a return code of 32
indicates that additional error information may be obtained, specific to the function which caused the
error. Such is available by calling

XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

Likely error values returned by this for each function are listed in the Error Values section. A description of
the error may be obtained using the XPRSgetlasterror function. If no attention need be drawn to
particular error values, this section will be omitted.

Associated Controls
Controls which affect a given routine are listed next, separated into lists by type. The control name given
here should have XPRS_ prefixed by library users, in a similar way to the XPRSgetintattrib example
in the Error Values section above. Console Xpress users should use the controls without this prefix, as
described in FICO Xpress Getting Started manual. These controls must be set before the routine is called
if they are to have any effect.

Examples
One or two examples are provided which explain certain aspects of the routine’s use.

Further Information
Additional information not contained elsewhere in the routine’s description is provided at the end.

Related Topics
Finally a list of related routines and topics is provided for comparison and reference.

Fair Isaac Corporation Proprietary Information 53

Chapter 7: Console and Library Functions

XPRS_bo_addbounds

Purpose
Adds new bounds to a branch of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_addbounds(XPRSbranchobject bo, int branch, int nbounds,

const char bndtype[], const int colind[], const double bndval[]);

Arguments
bo The user branching object to modify.
branch The number of the branch to add the new bounds for. This branch must already have been

created using XPRS_bo_addbranches. Branches are indexed starting from zero.
nbounds Number of new bounds to add.
bndtype Character array of length nbounds indicating the type of bounds to add:

L Lower bound.
U Upper bound.

colind Integer array of length nbounds containing the column indices for the new bounds.
bndval Double array of length nbounds giving the bound values.

Example
See XPRS_bo_create for an example using XPRS_bo_addbounds.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 54

Chapter 7: Console and Library Functions

XPRS_bo_addbranches

Purpose
Adds new, empty branches to a user defined branching object.

Synopsis
int XPRS_CC XPRS_bo_addbranches(XPRSbranchobject bo, int nbranches);

Arguments
bo The user branching object to modify.
nbranches Number of new branches to create.

Example
See XPRS_bo_create for an example using XPRS_bo_addbranches.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 55

Chapter 7: Console and Library Functions

XPRS_bo_addcuts

Purpose
Adds stored user cuts as new constraints to a branch of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_addcuts(XPRSbranchobject bo, int branch, int ncuts,

const XPRScut cutind[]);

Arguments
bo The user branching object to modify.
branch The number of the branch to add the cuts for. This branch must already have been

created using XPRS_bo_addbranches. Branches are indexed starting from zero.
ncuts Number of cuts to add.
cutind Array of length ncuts containing the pointers to user cuts that should be added to the

branch.

Related topics
XPRS_bo_create, XPRS_bo_addrows.

Fair Isaac Corporation Proprietary Information 56

Chapter 7: Console and Library Functions

XPRS_bo_addrows

Purpose
Adds new constraints to a branch of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_addrows(XPRSbranchobject bo, int branch, int nrows, int

ncoefs, const char rowtype[], const double rhs[], const int start[],
const int colind[], const double rowcoef[]);

Arguments
bo The user branching object to modify.
branch The number of the branch to add the new constraints for. This branch must already have

been created using XPRS_bo_addbranches. Branches are indexed starting from zero.
nrows Number of new constraints to add.
ncoefs Number of non-zero coefficients in all new constraints.
rowtype Character array of length nrows indicating the type of constraints to add:

L Less than type.
G Greater than type.
E Equality type.

rhs Double array of length nrows containing the right hand side values.
start Integer array of length nrows containing the offsets of the colind and rowcoef arrays

of the start of the non zero coefficients in the new constraints.
colind Integer array of length ncoefs containing the column indices for the non zero

coefficients.
rowcoef Double array of length ncoefs containing the non zero coefficient values.

Example
The following function will create a branching object that branches on constraints x1 + x2 ≥ 1 or
x1 + x2 ≤ 0:

XPRSbranchobject CreateConstraintBranch(XPRSprob xp_mip, int icol)
{

char cRowType;
double dRowRHS;
int mRowBeg;
int mElemCol[2];
double dElemVal[2];

XPRSbranchobject bo = NULL;
int isoriginal = 1;

/⁎ Create the new object with two empty branches. ⁎/
XPRS_bo_create(&bo, xp_mip, isoriginal);
XPRS_bo_addbranches(bo, 2);

/⁎ Add the constraint x1 + x2 >= 1. ⁎/
cRowType = 'G';
dRowRHS = 1.0;
mRowBeg = 0;
mElemCol[0] = 0; mElemCol[1] = 1;
dElemVal[0] = 1.0; dElemVal[1] = 1.0;
XPRS_bo_addrows

(bo, 0, 1, 2, &cRowType, &dRowRHS, &mRowBeg, mElemCol, dElemVal);

Fair Isaac Corporation Proprietary Information 57

Chapter 7: Console and Library Functions

/⁎ Add the constraint x1 + x2 <= 0. ⁎/
cRowType = 'L';
dRowRHS = 0.0;
XPRS_bo_addrows

(bo, 1, 1, 2, &cRowType, &dRowRHS, &mRowBeg, mElemCol, dElemVal);

/⁎ Set a low priority value so our branch object is picked up ⁎/
/⁎ before the default branch candidates. ⁎/
XPRS_bo_setpriority(bo, 100);

return bo;
}

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 58

Chapter 7: Console and Library Functions

XPRS_bo_create

Purpose
Creates a new user defined branching object for the Optimizer to branch on. This function should be
called only from within one of the callback functions set by XPRSaddcboptnode or
XPRSaddcbchgbranchobject.

Synopsis
int XPRS_CC XPRS_bo_create(XPRSbranchobject⁎ p_bo, XPRSprob prob, int

isoriginal);

Arguments
p_bo Pointer to where the new object should be returned.
prob The problem structure that the branching object should be created for.
isoriginal If the branching object will be set up for the original matrix, which determines how

column indices are interpreted when adding bounds and rows to the object:
0 Column indices should refer to the current (presolved) node problem.
1 Column indices should refer to the original matrix.

Fair Isaac Corporation Proprietary Information 59

Chapter 7: Console and Library Functions

Further information

1. In addition to the standard global entities supported by the Optimizer, the Optimizer also allows the user
to define their own global entities for branching, using branching objects.

2. A branching object of type XPRSbranchobject should provide a linear description of how to branch on
the current node for a user’s global entities. Any number of branches is allowed and each branch
description can contain any combination of columns bounds and new constraints.

3. Branching objects must always contain at least one branch and all branches of the object must contain at
least one bound or constraint.

4. If multiple lower or multiple upper bounds on the same variable are given, the strictest one will be applied.

5. When the Optimizer branches the current node on a user’s branching object, a new child node will be
created for each branch defined in the object. The child nodes will inherit the bounds and constraint of
the current node, plus any new bounds or constraints defined for that branch in the object.

6. Inside the callback function set by XPRSaddcboptnode, a user can define any number of branching
objects and pass them to the Optimizer. These objects are added to the set of infeasible global entities
for the current node and the Optimizer will select a best candidate from this extended set using all of its
normal evaluation methods.

7. The callback function set by XPRSaddcbchgbranchobject can be used to override the Optimizer’s
selected branching candidate with the user’s own object. This can for example be used to modify how to
branch on the global entity selected by the Optimizer.

8. The following functions are available to set up a new user branching object:
XPRS_bo_create Creates a new, empty branching object with no branches.
XPRS_bo_addbranches Adds new, empty branches to the object. Branches must be

created before column bounds or rows can be added to a
branch.

XPRS_bo_addbounds Adds new column bounds to a given branch of the object.
XPRS_bo_addrows Adds new constraints to a given branch of the object.
XPRS_bo_setpriority Sets the priority value for the object. These are equivalent

to the priority values for regular global entities that can be
set through directives (see also Appendix A.5).

XPRS_bo_setpreferredbranch Specifies which of the child nodes corresponding to the
branches of the object should be explored first.

XPRS_bo_store Adds the created object to the candidate list for branching.

Example
The following function will create a branching object equivalent to a standard binary branch on a column:

XPRSbranchobject CreateBinaryBranchObject(XPRSprob xp_mip, int icol)
{

char cBndType;
double dBndValue;
int isoriginal = 1;

XPRSbranchobject bo = NULL;

/⁎ Create the new object with two empty branches. ⁎/
XPRS_bo_create(&bo, xp_mip, isoriginal);
XPRS_bo_addbranches(bo, 2);

/⁎ Add bounds to branch the column to either zero or one. ⁎/

Fair Isaac Corporation Proprietary Information 60

Chapter 7: Console and Library Functions

cBndType = 'U';
dBndValue = 0.0;
XPRS_bo_addbounds(bo, 0, 1, &cBndType, &icol, &dBndValue);
cBndType = 'L';
dBndValue = 1.0;
XPRS_bo_addbounds(bo, 1, 1, &cBndType, &icol, &dBndValue);

/⁎ Set a low priority value so our branch object is picked up ⁎/
/⁎ before the default branch candidates. ⁎/
XPRS_bo_setpriority(bo, 100);

return bo;
}

Related topics
XPRSaddcboptnode, XPRSaddcbchgbranchobject.

Fair Isaac Corporation Proprietary Information 61

Chapter 7: Console and Library Functions

XPRS_bo_destroy

Purpose
Frees all memory for a user branching object, when the object was not stored with the Optimizer.

Synopsis
int XPRS_CC XPRS_bo_destroy(XPRSbranchobject bo);

Argument
bo The user branching object to free.

Related topics
XPRS_bo_create, XPRS_bo_store.

Fair Isaac Corporation Proprietary Information 62

Chapter 7: Console and Library Functions

XPRS_bo_getbounds

Purpose
Returns the bounds for a branch of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_getbounds(XPRSbranchobject bo, int branch, int⁎

p_nbounds, int maxbounds, char bndtype[], int colind[], double
bndval[]);

Arguments
bo The branching object to inspect.
branch The number of the branch to get the bounds for.
p_nbounds Location where the number of bounds for the given branch should be returned.
maxbounds Maximum number of bounds to return.
bndtype Character array of length maxbounds where the types of bounds will be returned:

L Lower bound.
U Upper bound.
Allowed to be NULL.

colind Integer array of length maxbounds where the column indices will be returned. Allowed to
be NULL.

bndval Double array of length maxbounds where the bound values will be returned. Allowed to
be NULL.

Related topics
XPRS_bo_create, XPRS_bo_addbounds.

Fair Isaac Corporation Proprietary Information 63

Chapter 7: Console and Library Functions

XPRS_bo_getbranches

Purpose
Returns the number of branches of a branching object.

Synopsis
int XPRS_CC XPRS_bo_getbranches(XPRSbranchobject bo, int⁎ p_nbranches);

Arguments
bo The user branching object to inspect.
p_nbranches Memory where the number of branches should be returned.

Related topics
XPRS_bo_create, XPRS_bo_addbranches.

Fair Isaac Corporation Proprietary Information 64

Chapter 7: Console and Library Functions

XPRS_bo_getid

Purpose
Returns the unique identifier assigned to a branching object.

Synopsis
int XPRS_CC XPRS_bo_getid(XPRSbranchobject bo, int⁎ p_id);

Arguments
bo A branching object.
p_id Pointer to an integer where the identifier should be returned.

Further information

1. Branching objects associated with existing column entities (binaries, integers, semi–continuous and
partial integers), are given an identifier from 1 to MIPENTS.

2. Branching objects associated with existing Special Ordered Sets, are given an identifier from MIPENTS+1
to MIPENTS+SETS.

3. User created branching objects will always have a negative identifier.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 65

Chapter 7: Console and Library Functions

XPRS_bo_getlasterror

Purpose
Returns the last error encountered during a call to the given branch object.

Synopsis
int XPRS_CC XPRS_bo_getlasterror(XPRSbranchobject bo, int⁎ p_msgcode, char⁎

msg, int _iStringBufferBytes, int⁎ p_nbytes);

Arguments
bo The branch object.
p_msgcode Location where the error code will be returned. Can be NULL if not required.
msg A character buffer of size maxbytes in which the last error message relating to the given

branching object will be returned.
maxbytes The size of the character buffer msg.
p_nbytes The size of the required character buffer to fully return the error string.

Example
The following shows how this function might be used in error checking:

XPRSbranchobject bo;
...
char⁎ cbuf;
int cbuflen;
if (XPRS_bo_setpreferredbranch(bo,3)) {

XPRS_bo_getlasterror(bo,NULL,NULL,0,&cbuflen);
cbuf = malloc(cbuflen);
XPRS_bo_getlasterror(bo,NULL, cbuf, cbuflen, NULL);
printf("ERROR when setting preferred branch: %s\n", cbuf);

}

Related topics
XPRS_ge_addcbmsghandler.

Fair Isaac Corporation Proprietary Information 66

Chapter 7: Console and Library Functions

XPRS_bo_getrows

Purpose
Returns the constraints for a branch of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_getrows(XPRSbranchobject bo, int branch, int⁎ p_nrows,

int maxrows, int⁎ p_ncoefs, int maxcoefs, char rowtype[], double
rhs[], int start[], int colind[], double rowcoef[]);

Arguments
bo The user branching object to inspect.
branch The number of the branch to get the constraints from.
p_nrows Memory location where the number of rows should be returned.
maxrows Maximum number of rows to return.
p_ncoefs Memory location where the number of non zero coefficients in the constraints should be

returned.
maxcoefs Maximum number of non zero coefficients to return.
rowtype Character array of length maxrows where the types of the rows will be returned:

L Less than type.
G Greater than type.
E Equality type.

rhs Double array of length maxrows where the right hand side values will be returned.
start Integer array of length maxrows which will be filled with the offsets of the colind and

rowcoef arrays of the start of the non zero coefficients in the returned constraints.
colind Integer array of length maxcoefs which will be filled with the column indices for the non

zero coefficients.
rowcoef Double array of length maxcoefs which will be filled with the non zero coefficient values.

Related topics
XPRS_bo_create, XPRS_bo_addrows.

Fair Isaac Corporation Proprietary Information 67

Chapter 7: Console and Library Functions

XPRS_bo_setpreferredbranch

Purpose
Specifies which of the child nodes corresponding to the branches of the object should be explored first.

Synopsis
int XPRS_CC XPRS_bo_setpreferredbranch(XPRSbranchobject bo, int branch);

Arguments
bo The user branching object.
branch The number of the branch to mark as preferred.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 68

Chapter 7: Console and Library Functions

XPRS_bo_setpriority

Purpose
Sets the priority value of a user branching object.

Synopsis
int XPRS_CC XPRS_bo_setpriority(XPRSbranchobject bo, int priority);

Arguments
bo The user branching object.
priority The new priority value to assign to the branching object, which must be a number from 0

to 1000. User branching objects are created with a default priority value of 500.

Further information

1. A candidate branching object with lowest priority number will always be selected for branching before an
object with a higher number.

2. Priority values must be an integer from 0 to 1000. User branching objects and global entities are by
default assigned a priority value of 500. Special branching objects, such as those arising from structural
branches or split disjunctions are assigned a priority value of 400.

Related topics
XPRS_bo_create, Section A.5.

Fair Isaac Corporation Proprietary Information 69

Chapter 7: Console and Library Functions

XPRS_bo_store

Purpose
Adds a new user branching object to the Optimizer’s list of candidates for branching. This function is
available only through the callback function set by XPRSaddcboptnode.

Synopsis
int XPRS_CC XPRS_bo_store(XPRSbranchobject bo, int⁎ p_status);

Arguments
bo The new user branching object to store. After this call the bo object is no longer valid and

should not be referred to again.
p_status The returned status from checking the provided branching object:

0 The object was accepted successfully.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.
The object was not added to the candidate list if a non zero status is returned.

Further information

1. To ensure that a user branching object expressed in terms of the original matrix columns can be applied
to the presolved problem, it might be necessary to turn off certain presolve operations.

2. If any of the original matrix columns referred to in the object are unbounded, dual reductions might
prevent the corresponding bound or constraint from being presolved. To avoid this, dual reductions
should be turned off in presolve, by clearing bit 3 of the integer control PRESOLVEOPS.

3. If one or more of the original matrix columns of the object are duplicates in the original matrix, but not in
the branching object, it might not be possible to presolve the object due to duplicate column eliminations
in presolve. To avoid this, duplicate column eliminations should be turned off in presolve, by clearing bit 5
of PRESOLVEOPS.

4. As an alternative to turning off the above mentioned presolve features, it is possible to protect individual
columns of a the problem from being modified by presolve. Use the XPRSloadsecurevecs function to
mark any columns that might be branched on using branching objects.

Related topics
XPRS_bo_create, XPRS_bo_validate.

Fair Isaac Corporation Proprietary Information 70

Chapter 7: Console and Library Functions

XPRS_bo_validate

Purpose
Verifies that a given branching object is valid for branching on the current branch-and-bound node of a
MIP solve. The function will check that all branches are non-empty, and if required, verify that the
branching object can be presolved.

Synopsis
int XPRS_CC XPRS_bo_validate(XPRSbranchobject bo, int⁎ p_status);

Arguments
bo A branching object.
p_status The returned status from checking the provided branching object:

0 The object is acceptable.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.

Related topics
XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 71

Chapter 7: Console and Library Functions

XPRS_ge_addcbmsghandler

Purpose
Declares an output callback function in the global environment, called every time a line of message text is
output by any data in the library. This callback function will be called in addition to any output callbacks
already added by XPRS_ge_addcbmsghandler.

Synopsis
int XPRS_CC XPRS_ge_addcbmsghandler(int (XPRS_CC ⁎msghandler)(XPRSobject

object, void ⁎ cbdata, void ⁎ thread, const char ⁎ msg, int msgtype,
int msgcode), void ⁎data, int priority);

Arguments
msghandler The callback function which takes six arguments, object, cbdata, thread, msg,

msgtype and msgcode. Use a NULL value to cancel a callback function.
object The data sending the message. Use XPRSgetobjecttypename to get the name of the

data type.
cbdata The user-defined data passed to the callback function.
thread The system id of the thread sending the message cast to a void ⁎.
msg A null terminated character array (string) containing the message, which may simply be a

new line. When the callback is called for the first time msg will be a NULL pointer.
msgtype Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.
When the callback is called for the first time msgtype will be a negative value.

msgcode The number associated with the message. If the message is an error or a warning then
you can look up the number in the section Optimizer Error and Warning Messages for
advice on what it means and how to resolve the associated issue.

data A user-defined data to be passed to the callback function.
priority An integer that determines the order in which multiple message handler callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
To send all messages to a log file the built in message handler XPRSlogfilehandler can be used.
This can be done with:

XPRS_ge_addcbmsghandler(XPRSlogfilehandler, "log.txt", 0);

Related topics
XPRS_ge_removecbmsghandler, XPRSgetobjecttypename.

Fair Isaac Corporation Proprietary Information 72

Chapter 7: Console and Library Functions

XPRS_ge_getcomputeallowed

Purpose
Query whether the current application is allowed to use the Insight Compute interface.

Synopsis
int XPRS_CC XPRS_ge_getcomputeallowed(int⁎ p_allow);

Argument
p_allow Memory location in which the value will be returned. Value will equal one of the following

constants.
XPRS_ALLOW_COMPUTE_ALWAYS Always allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_NEVER Never allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_DEFAULT Allow solves to be sent to Compute only from

non-OEM applications.

Example
The following shows how this function might be used:

int isComputeAllowed;
if (XPRS_ge_getcomputeallowed(&isComputeAllowed)!=0) {

switch (isComputeAllowed) {
case XPRS_ALLOW_COMPUTE_ALWAYS:

printf("Compute integration is always allowed.\n");
break;

case XPRS_ALLOW_COMPUTE_NEVER:
printf("Compute integration is never allowed.\n");
break;

case XPRS_ALLOW_COMPUTE_DEFAULT:
printf("Compute integration is allowed if "

"this is not an OEM application.\n");
break;

}
}

Further information
This value supplied by this function describes whether this process would be allowed to use Insight 5
Compute Interface - this is not affected by whether or not the user has tried to enable use of the Insight 5
Compute interface.

Related topics
XPRS_ge_setcomputeallowed.

Fair Isaac Corporation Proprietary Information 73

Chapter 7: Console and Library Functions

XPRS_ge_getlasterror

Purpose
Returns the last error encountered during a call to the Xpress global environment.

Synopsis
int XPRS_CC XPRS_ge_getlasterror(int⁎ p_msgcode, char⁎ msg, int

_iStringBufferBytes, int⁎ p_nbytes);

Arguments
p_msgcode Memory location in which the error code will be returned. Can be NULL if not required.
msg A character buffer of size maxbytes in which the last error message relating to the global

environment will be returned. If the message is longer than maxbytes then it will be
truncated. The message will always be terminated by a NUL character (provided
maxbytes is bigger than 0.

maxbytes The size of the character buffer msg.
p_nbytes Memory location in which the minimum required size of the buffer to hold the full error

string will be returned. Can be NULL if not required.

Example
The following shows how this function might be used in error checking:

char⁎ cbuf;
int cbuflen;
if (XPRS_ge_addcbmsghandler(myfunc,NULL,0)!=0) {

XPRS_ge_getlasterror(NULL,NULL,0,&cbuflen);
cbuf = malloc(cbuflen);
XPRS_ge_getlasterror(NULL, cbuf, cbuflen, NULL);
printf("ERROR from Xpress global environment: %s\n", cbuf);

}

Related topics
XPRS_ge_addcbmsghandler.

Fair Isaac Corporation Proprietary Information 74

Chapter 7: Console and Library Functions

XPRS_ge_removecbmsghandler

Purpose
Removes a message callback function previously added by XPRS_ge_addcbmsghandler. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRS_ge_removecbmsghandler(int (XPRS_CC ⁎msghandler)

(XPRSobject object, void ⁎ cbdata, void ⁎ thread, const char ⁎ msg,
int msgtype, int msgcode), void ⁎ data);

Arguments
msghandler The callback function to remove. If NULL then all message callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all message callbacks with the function pointer msghandler will be
removed.

Related topics
XPRS_ge_addcbmsghandler

Fair Isaac Corporation Proprietary Information 75

Chapter 7: Console and Library Functions

XPRS_ge_setarchconsistency SETARCHCONSISTENCY

Purpose
Sets whether to force the same execution path on various CPU architecture extensions, in particular
(pre-)AVX and AVX2.

Synopsis
int XPRS_CC XPRS_ge_setarchconsistency(int consistent);
SETARCHCONSISTENCY consistent

Argument
consistent Whether to force the same execution path:

0 Do not force the same execution path (default behavior);
1 Force the same execution path.

Further information
Note that, using this general environment API function is different from setting the CPUPLATFORM
control. Setting CPUPLATFORM selects a vectorization instruction set for the barrier method.

Fair Isaac Corporation Proprietary Information 76

Chapter 7: Console and Library Functions

XPRS_ge_setcomputeallowed

Purpose
Set whether the current application is allowed to use the Insight Compute interface.

Synopsis
int XPRS_CC XPRS_ge_setcomputeallowed(int allow);

Argument
allow Whether the Insight Compute interface may be used; must be one of the following

constants:
XPRS_ALLOW_COMPUTE_ALWAYS Always allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_NEVER Never allow solves to be sent to Compute.
XPRS_ALLOW_COMPUTE_DEFAULT Allow solves to be sent to Compute only from

non-OEM applications.

Example
The following shows how this function might be used:

XPRS_ge_setcomputeallowed(XPRS_ALLOW_COMPUTE_NEVER);

Further information

1. This function controls whether this process would be allowed to use the Insight Compute Interface if the
user tries to enable it.

2. If the user enables the Insight Compute Interface but the value specified through this function does not
allow the Insight Compute Interface to be used, any solves will terminate with an immediate error. This
function can be used to prevent solves being sent to Insight Compute but cannot be used to force solves
to be performed locally. The purpose of this function is to allow an application to prevent the optimization
model being sent to the Insight Compute Interface.

Related topics
XPRS_ge_getcomputeallowed.

Fair Isaac Corporation Proprietary Information 77

Chapter 7: Console and Library Functions

XPRS_nml_addnames

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user. Use the
XPRS_nml_addnames to add names to a name list, or modify existing names on a namelist.

Synopsis
int XPRS_CC XPRS_nml_addnames(XPRSnamelist nml, const char buf[], int

firstIndex, int lastIndex);

Arguments
nml The name list to which you want to add names. Must be an object previously returned by

XPRS_nml_create, as XPRSnamelist objects returned by other functions are
immutable and cannot be changed.

names Character buffer containing the null-terminated string names.
first The index of the first name to add/replace. Name indices in a namelist always start from

0.
last The index of the last name to add/replace.

Example

char mynames[0] = "fred\0jim\0sheila"
...
XPRS_nml_addnames(nml,mynames,0,2);

Related topics
XPRS_nml_create, XPRS_nml_removenames, XPRS_nml_copynames, XPRSaddnames.

Fair Isaac Corporation Proprietary Information 78

Chapter 7: Console and Library Functions

XPRS_nml_copynames

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_copynames allows you to copy all the names from one name list to another. As name lists
representing row/column names cannot be modified, XPRS_nml_copynames will be most often used to
copy such names to a namelist where they can be modified, for some later use.

Synopsis
int XPRS_CC XPRS_nml_copynames(XPRSnamelist dest, XPRSnamelist src);

Arguments
dest The namelist object to copy names to. Any names already in this name list will be

removed. Must be an object previously returned by XPRS_nml_create.
src The namelist object from which all the names should be copied.

Example

XPRSprob prob;
XPRSnamelist rnames, rnames_on_prob;
...
/⁎ Create a namelist ⁎/
XPRS_nml_create(&rnames);
/⁎ Get a namelist through which we can access the row names ⁎/
XPRSgetnamelistobject(prob,1,&rnames_on_prob);
/⁎ Now copy these names from the immutable 'XPRSprob' namelist

to another one ⁎/
XPRS_nml_copynames(rnames,rnames_on_prob);
/⁎ The names in the list can now be modified then put to some

other use ⁎/

Related topics
XPRS_nml_create, XPRS_nml_addnames, XPRSgetnamelistobject.

Fair Isaac Corporation Proprietary Information 79

Chapter 7: Console and Library Functions

XPRS_nml_create

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user. XPRS_nml_create
will create a new namelist to which the user can add, remove and otherwise modify names.

Synopsis
int XPRS_CC XPRS_nml_create(XPRSnamelist⁎ p_nml);

Argument
p_nml Pointer to location where the new namelist will be returned.

Example

XPRSnamelist mylist;
XPRS_nml_create(&mylist);

Related topics
XPRSgetnamelistobject, XPRS_nml_destroy.

Fair Isaac Corporation Proprietary Information 80

Chapter 7: Console and Library Functions

XPRS_nml_destroy

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
Destroys a namelist and frees any memory associated with it. Note you need only destroy namelists
created by XPRS_nml_destroy - those returned by XPRSgetnamelistobject are automatically
destroyed when you destroy the problem object.

Synopsis
int XPRS_CC XPRS_nml_destroy(XPRSnamelist nml);

Argument
nml The namelist to be destroyed.

Example

XPRSnamelist mylist;
XPRS_nml_create(&mylist);
...
XPRS_nml_destroy(&mylist);

Related topics
XPRS_nml_create, XPRSgetnamelistobject, XPRSdestroyprob.

Fair Isaac Corporation Proprietary Information 81

Chapter 7: Console and Library Functions

XPRS_nml_findname

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_findname returns the index of the given name in the given name list.

Synopsis
int XPRS_CC XPRS_nml_findname(XPRSnamelist nml, const char⁎ name, int⁎

p_index);

Arguments
nml The namelist in which to look for the name.
name Null-terminated string containing the name for which to search.
p_index Pointer to variable in which the index of the name is returned, or in which is returned -1 if

the name is not found in the namelist.

Example

XPRSnamelist mylist;
int idx;
...
XPRS_nml_findname(mylist, "profit_after_work", &idx);
if (idx==-1)

printf("'profit_after_work' was not found in the namelist");
else

printf("'profit_after_work' was found at position %d", idx);

Related topics
XPRS_nml_addnames, XPRS_nml_getnames.

Fair Isaac Corporation Proprietary Information 82

Chapter 7: Console and Library Functions

XPRS_nml_getlasterror

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
Returns the last error encountered during a call to a namelist object.

Synopsis
int XPRS_CC XPRS_nml_getlasterror(XPRSnamelist nml, int⁎ p_msgcode, char⁎

msg, int maxbytes, int⁎ p_nbytes);

Arguments
nml The namelist object.
p_msgcode Variable in which the error code will be returned. Can be NULL if not required.
msg A character buffer of size iStringBufferBytes in which the last error message

relating to this namelist will be returned.
maxbytes The size of the character buffer msg.
p_nbytes Memory location in which the minimum required size of the buffer to hold the full error

string will be returned. Can be NULL if not required.

Example

XPRSnamelist nml;
char⁎ cbuf;
int cbuflen;
...
if (XPRS_nml_removenames(nml,2,35)) {

XPRS_nml_getlasterror(nml, NULL, NULL, 0, &cbuflen);
cbuf = malloc(cbuflen);
XPRS_nml_getlasterror(nml, NULL, cbuf, cbuflen, NULL);
printf("ERROR removing names: %s\n", cbuf);

}

Related topics
None.

Fair Isaac Corporation Proprietary Information 83

Chapter 7: Console and Library Functions

XPRS_nml_getmaxnamelen

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_getmaxnamelen returns the length of the longest name in the namelist.

Synopsis
int XPRS_CC XPRS_nml_getmaxnamelen(XPRSnamelist nml, int⁎ namlen);

Arguments
nml The namelist object.
p_namelen Pointer to a variable into which shall be written the length of the longest name.

Related topics
None.

Fair Isaac Corporation Proprietary Information 84

Chapter 7: Console and Library Functions

XPRS_nml_getnamecount

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nlm_getnamecount returns the number of names in the namelist.

Synopsis
int XPRS_CC XPRS_nml_getnamecount(XPRSnamelist nml, int⁎ p_count);

Arguments
nml The namelist object.
p_count Pointer to a variable into which shall be written the number of names.

Example

XPRSnamelist mylist;
int count;
...
XPRS_nml_getnamecount(mylist,&count);
printf("There are %d names", count);

Related topics
None.

Fair Isaac Corporation Proprietary Information 85

Chapter 7: Console and Library Functions

XPRS_nml_getnames

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user. The
XPRS_nml_getnames function returns some of the names held in the name list. The names shall be
returned in a character buffer, and with each name being separated by a NULL character.

Synopsis
int XPRS_CC XPRS_nml_getnames(XPRSnamelist nml, int pad, char buffer[], int

maxbytes, int⁎ p_nbytes, int first, int last);

Arguments
nml The namelist object.
pad The minimum length of each name. If > 0 then names shorter than pad will be

concatenated with whitespace to make them this length.
buffer Buffer of length maxbytes into which the names shall be returned.
maxbytes The maximum number of bytes that may be written to the character buffer buffer.
p_nbytes A pointer to a variable into which will be written the number of bytes required to contain

the names. May be NULL if not required.
first The index of the first name in the namelist to return. Note name list indexes always start

from 0.
last The index of the last name in the namelist to return.

Example

XPRSnamelist mylist;
char⁎ cbuf;
int o, i, cbuflen;
...
/⁎ Find out how much space we'll require for these names ⁎/
XPRS_nml_getnames(mylist, 0, NULL, 0, &cbuflen, 0, 5);
/⁎ Allocate a buffer large enough to hold the names ⁎/
cbuf = malloc(cbuflen);
/⁎ Retrieve the names ⁎/
XPRS_nml_getnames(mylist, 0, cbuf, cbuflen, NULL, 0, 5);
/⁎ Display the names ⁎/
o=0;
for (i=0;i<6;i++) {

printf("Name #%d = %s\n", i, cbuf+o);
o += strlen(cbuf)+1;

}

Related topics
None.

Fair Isaac Corporation Proprietary Information 86

Chapter 7: Console and Library Functions

XPRS_nml_removenames

Purpose
This subroutine is deprecated and will be removed in a future release. The names list API is scheduled for
removal.
The XPRS_nml_⁎ functions provide a simple, generic interface to lists of names, which may be names of
rows/columns on a problem or may be a list of arbitrary names provided by the user.
XPRS_nml_removenames will remove the specified names from the name list. Any subsequent names
will be moved down to replace the removed names.

Synopsis
int XPRS_CC XPRS_nml_removenames(XPRSnamelist nml, int first, int last);

Arguments
nml The name list from which you want to remove names. Must be an object previously

returned by XPRS_nml_create, as XPRSnamelist objects returned by other functions
are immutable and cannot be changed.

first The index of the first name to remove. Note that indices for names in a name list always
start from 0.

last The index of the last name to remove.

Example

XPRS_nml_removenames(mylist, 3, 5);

Related topics
XPRS_nml_addnames.

Fair Isaac Corporation Proprietary Information 87

Chapter 7: Console and Library Functions

XPRSaddcbbariteration

Purpose
Declares a barrier iteration callback function, called after each iteration during the interior point algorithm,
with the ability to access the current barrier solution/slack/duals or reduced cost values, and to ask
barrier to stop. This callback function will be called in addition to any callbacks already added by
XPRSaddcbbariteration.

Synopsis
int XPRS_CC XPRSaddcbbariteration (XPRSprob prob, void (XPRS_CC

⁎bariteration)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_action), void
⁎data, int priority);

Arguments
prob The current problem.
bariteration The callback function itself. This takes three arguments, cbprob, cbdata, and

p_action serving as an integer return value. This function is called at every barrier
iteration.

cbprob The problem passed to the callback function, bariteration.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbbariteration.
p_action Defines a return value controlling barrier:

<0 continue with the next iteration;
=0 let barrier decide (use default stopping criteria);
1 barrier stops with status not defined;
2 barrier stops with optimal status;
3 barrier stops with dual infeasible status;
4 barrier stops wih primal infeasible status;

data A user-defined data to be passed to the callback function, bariteration.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Example
This simple example demonstrates how the solution might be retrieved for each barrier iteration.

// Barrier iteration callback
void XPRS_CC BarrierIterCallback(XPRSprob cbprob,

void ⁎cbdata, int ⁎p_action) {
int current_iteration;
double PrimalObj, DualObj, Gap, PrimalInf, DualInf,

ComplementaryGap;

my_object_s ⁎my = (my_object_s ⁎) cbdata;

XPRSgetintattrib(cbprob, XPRS_BARITER, ¤t_iteration);

// try to get all the solution values
XPRSgetlpsol(cbprob, my->x, my->slacks, my->y, my->dj);

XPRSgetdblattrib(cbprob, XPRS_BARPRIMALOBJ, &PrimalObj);
XPRSgetdblattrib(cbprob, XPRS_BARDUALOBJ, &DualObj);
Gap = DualObj - PrimalObj;
XPRSgetdblattrib(cbprob, XPRS_BARPRIMALINF, &PrimalInf);

Fair Isaac Corporation Proprietary Information 88

Chapter 7: Console and Library Functions

XPRSgetdblattrib(cbprob, XPRS_BARDUALINF, &DualInf);
XPRSgetdblattrib(cbprob, XPRS_BARCGAP, &ComplementaryGap);

// decide if stop or continue
⁎p_action = BARRIER_CHECKSTOPPING;
if (current_iteration >= 50

|| Gap <= 0.1⁎max(fabs(PrimalObj),fabs(DualObj))) {
⁎p_action = BARRIER_OPTIMAL;

}
}

// To set callback:
XPRSaddcbbariteration(xprob, BarrierIterCallback, (void ⁎) &my, 0);

Further information

1. Only the following functions are expected to be called from the callback: XPRSgetlpsol and the
attribute/control value retrieving and setting routines.

2. General barrier iteration values are available by using XPRSgetdblattrib to retrieve:

■ BARPRIMALOBJ - current primal objective
■ BARDUALOBJ - current dual objective
■ BARPRIMALINF - current primal infeasibility
■ BARDUALINF - current dual infeasibility
■ BARCGAP - current complementary gap

3. Please note that these values refer to the scaled and presolved problem used by barrier, and may differ
from the ones calculated from the postsolved solution returned by XPRSgetlpsol.

Related topics
XPRSremovecbbariteration.

Fair Isaac Corporation Proprietary Information 89

Chapter 7: Console and Library Functions

XPRSaddcbbarlog

Purpose
Declares a barrier log callback function, called at each iteration during the interior point algorithm. This
callback function will be called in addition to any barrier log callbacks already added by
XPRSaddcbbarlog.

Synopsis
int XPRS_CC XPRSaddcbbarlog (XPRSprob prob, int (XPRS_CC ⁎barlog)(XPRSprob

cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem.
barlog The callback function itself. This takes two arguments, cbprob and cbdata, and has an

integer return value. If the value returned by barlog is nonzero, the solution process will
be interrupted. This function is called at every barrier iteration.

cbprob The problem passed to the callback function, barlog.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbbarlog.
data A user-defined data to be passed to the callback function, barlog.
priority An integer that determines the order in which multiple barrier log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Example
This simple example prints a line to the screen for each iteration of the algorithm.

XPRSaddcbbarlog(prob,barLog,NULL,0);
XPRSlpoptimize(prob,"b");

The callback function might resemble:

int XPRS_CC barLog(XPRSprob prob, void ⁎data)
{

printf("Next barrier iteration\n");
}

Further information
If the callback function returns a nonzero value, the Optimizer run will be interrupted.

Related topics
XPRSremovecbbarlog, XPRSaddcbgloballog, XPRSaddcblplog, XPRSaddcbmessage.

Fair Isaac Corporation Proprietary Information 90

Chapter 7: Console and Library Functions

XPRSaddcbcomputerestart

Purpose
Declares a callback to be called when a solve executed in compute mode needs to be restarted.

Synopsis
int XPRS_CC XPRSaddcbcomputerestart (XPRSprob prob, void (XPRS_CC

⁎f_computerestart)(XPRSprob cbprob, void ⁎cbdata), void ⁎data, int
priority);

Arguments
prob The current problem.
computerestart The callback function itself. This takes two arguments, cbprob and cbdata, and

has an integer return value. This function is called when a solve had to be restarted in
compute mode.

cbprob The problem passed to the callback function, f_computerestart.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbcomputerestart.
data A user-defined data to be passed to the callback function, f_computerestart.
priority An integer that determines the order in which multiple computerestart callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Related topics
XPRSremovecbcomputerestart

Fair Isaac Corporation Proprietary Information 91

Chapter 7: Console and Library Functions

XPRSaddcbpresolve

Purpose
Declares a callback to be called after presolve has been performed.

Synopsis
int XPRS_CC XPRSaddcbpresolve (XPRSprob prob, void (XPRS_CC

⁎presolve)(XPRSprob cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem.
presolve The callback function itself. This takes two arguments, cbprob and cbdata, and has an

integer return value. This function is called after presolve is complete.
cbprob The problem passed to the callback function, f_barlog.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbpresolve.
data A user-defined data to be passed to the callback function, presolve.
priority An integer that determines the order in which multiple presolve callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Related topics
XPRSremovecbpresolve

Fair Isaac Corporation Proprietary Information 92

Chapter 7: Console and Library Functions

XPRSaddcbchecktime

Purpose
Declares a callback function which is called every time the Optimizer checks if the time limit has been
reached. This callback function will be called in addition to any callbacks already added by
XPRSaddcbchecktime.

Synopsis
int XPRS_CC XPRSaddcbchecktime(XPRSprob prob, int (XPRS_CC

⁎checktime)(XPRSprob cbprob, void⁎ cbdata), void⁎ data, int
priority);

Arguments
prob The current problem.
checktime The callback function which takes two arguments, cbprob and cbdata, and has an

integer return value. This function is called every time the Optimizer checks against the
time limit.

cbprob The problem passed to the callback function, checktime.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbchecktime.
data A user-defined data to be passed to the callback function, checktime.
priority An integer that determines the order in which multiple checktime callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
If the callback function returns a nonzero value the solution process will be interrupted.

Related topics
XPRSremovecbchecktime MAXTIME CHECKSONMAXTIME MAXCHECKSONMAXTIME

Fair Isaac Corporation Proprietary Information 93

Chapter 7: Console and Library Functions

XPRSaddcbchgbranch

Purpose
This subroutine is deprecated and will be removed in a future release. Please use
XPRSaddcbchgbranchobject instead.
Declares a branching variable callback function, called every time a new branching variable is set or
selected during the branch and bound search. This callback function will be called in addition to any
change branch callbacks already added by XPRSaddcbchgbranch.

Synopsis
int XPRS_CC XPRSaddcbchgbranch(XPRSprob prob, void (XPRS_CC

⁎chgbranch)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_entity, int ⁎p_up,
double ⁎p_estdeg), void ⁎data, int priority);

Arguments
prob The current problem.
chgbranch The callback function, which takes five arguments, cbprob, cbdata, p_entity, p_up

and p_estdeg, and has no return value. This function is called every time a new
branching variable or set is selected.

cbprob The problem passed to the callback function, chgbranch.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbchgbranch.
p_entity A pointer to the variable or set on which to branch. Ordinary global variables are identified

by their column index, i.e. 0, 1,...(COLS- 1) and by their set index, i.e. 0, 1,...,(SETS- 1).
p_up If p_entity is a variable, this is 1 if the upward branch is to be made first, or 0 otherwise.

If p_entity is a set, this is 3 if the upward branch is to be made first, or 2 otherwise.
p_estdeg This value is obsolete. It will be set to zero and any returned value is ignored.
data A user-defined data to be passed to the callback function, chgbranch.
priority An integer that determines the order in which multiple branching variable callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
The arguments initially contain the default values of the branching variable, branching variable, branching
direction and estimated degradation. If they are changed then the Optimizer will use the new values, if
they are not changed then the default values will be used.

Related topics
XPRSremovecbchgbranch, XPRSaddcbchgnode, XPRSaddcboptnode, XPRSaddcbinfnode,
XPRSaddcbintsol, XPRSaddcbnodecutoff, XPRSaddcbprenode.

Fair Isaac Corporation Proprietary Information 94

Chapter 7: Console and Library Functions

XPRSaddcbchgbranchobject

Purpose
Declares a callback function that will be called after the selection of a global entity to branch on. This
callback allows the user to inspect and replace the Optimizer’s choice of how to branch the current node.
This callback will also be called in the case when there are no candidates to branch on, that is, when all
global entities are already satisfied. This callback function will be called in addition to any callbacks
already added by XPRSaddcbchgbranchobject.

Synopsis
int XPRS_CC XPRSaddcbchgbranchobject(XPRSprob prob, void (XPRS_CC

⁎chgbranchobject)(XPRSprob cbprob, void⁎ cbdata, XPRSbranchobject
branch, XPRSbranchobject⁎ p_newbranch), void⁎ data, int priority);

Arguments
prob The current problem.
chgbranchobject The callback function, which takes four arguments: cbprob, cbdata, branch

and p_newbranch. This function is called every time the Optimizer has selected a
candidate entity for branching.

cbprob The problem passed to the callback function, chgbranchobject.
cbdata The user defined data passed as data when setting up the callback with

XPRSaddcbchgbranchobject.
branch The candidate branching data selected by the Optimizer. Will be NULL if no candidates

exist.
p_newbranch Optional new branching data to replace the Optimizer’s selection. If branch or NULL is

passed back, no change will be applied.
data A user-defined data to be passed to the callback function, chgbranchobject.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information

1. The branching data given by the Optimizer provides a linear description of how the Optimizer intends to
branch on the selected candidate. This will often be one of standard global entities of the current
problem, but can also be e.g. a split disjunction or a structural branch, if those features are turned on.

2. The functions XPRS_bo_getbranches, XPRS_bo_getbounds and XPRS_bo_getrows can be used
to inspect the given branching data.

3. Refer to XPRS_bo_create on how to create a new branching data to replace the Optimizer’s selection.
Note that the new branching data should be created with a priority value no higher than the current data
to guarantee it will be used for branching.

Related topics
XPRSremovecbchgbranchobject, XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 95

Chapter 7: Console and Library Functions

XPRSaddcbchgnode

Purpose
This subroutine is deprecated and will be removed in a future release.
Declares a callback that is fired every time the code performs a global backtrack to select a node to start
a dive on. Note that it is no longer possible to change the selected node but the callback may still be used
to keep track of dives. This callback function will be called in addition to any callbacks already added by
XPRSaddcbchgnode.

Synopsis
int XPRS_CC XPRSaddcbchgnode(XPRSprob prob, void (XPRS_CC

⁎chgnode)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_node), void ⁎data,
int priority);

Arguments
prob The current problem.
chgnode The callback function which takes three arguments, cbprob, cbdata and p_node, and

has no return value. This function is called every time a new node is selected.
cbprob The problem passed to the callback function, chgnode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbchgnode.
p_node A pointer to the number of the node selected by the Optimizer. This value cannot be

changed.
data A user-defined data to be passed to the callback function, chgnode.
priority An integer that determines the order in which multiple node selection callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Related topics
XPRSremovecbchgnode

Fair Isaac Corporation Proprietary Information 96

Chapter 7: Console and Library Functions

XPRSaddcbcutlog

Purpose
Declares a cut log callback function, called each time the cut log is printed. This callback function will be
called in addition to any callbacks already added by XPRSaddcbcutlog.

Synopsis
int XPRS_CC XPRSaddcbcutlog(XPRSprob prob, int (XPRS_CC ⁎cutlog)(XPRSprob

cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem.
cutlog The callback function which takes two arguments, cbprob and cbdata, and has an

integer return value.
cbprob The problem passed to the callback function, cutlog.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbcutlog.
data A user-defined data to be passed to the callback function, cutlog.
priority An integer that determines the order in which multiple cut log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Further information
Return a non-zero value from cutlog to stop cutting on the current node.

Related topics
XPRSremovecbcutlog, XPRSaddcbcutmgr.

Fair Isaac Corporation Proprietary Information 97

Chapter 7: Console and Library Functions

XPRSaddcbcutmgr

Purpose
This subroutine is deprecated and will be removed in a future release. Please use XPRSaddcboptnode
instead.
Declares a user-defined cut manager routine, called at each node of the branch and bound search. This
callback function will be called in addition to any callbacks already added by XPRSaddcbcutmgr.

Synopsis
int XPRS_CC XPRSaddcbcutmgr(XPRSprob prob, int (XPRS_CC ⁎cutmgr)(XPRSprob

cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem
cutmgr The callback function which takes two arguments, cbprob and cbdata, and has an

integer return value. This function is called at each node in the Branch and Bound search.
cbprob The problem passed to the callback function, cutmgr.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbcutmgr.
data A user-defined data to be passed to the callback function, cutmgr.
priority An integer that determines the order in which multiple global log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Further information

1. When returning from the user function f_cutlog, the Optimizer will automatically reoptimize the LP
relaxation of the node problem. If a non-zero value is returned from f_cutlog, the function will be called
again afterwards, unless the LP relaxation has become infeasible or was cut off due to the objective
function value. Return 0 from f_cutlog to prevent the function from being called again for the same
branch and bound node.

2. f_cutlog is called for a branch-and-bound node problem after the Optimizer has already applied any
internal cuts and heuristics, but before determining if the node problem should be branched or if the node
LP relaxation solution is MIP feasible.

3. The Optimizer ensures that cuts added to a node are automatically restored at descendant nodes. To do
this, all cuts are stored in a cut pool and the Optimizer keeps track of which cuts from the cut pool must
be restored at each node.

Related topics
XPRSremovecbcutmgr, XPRSaddcbcutlog, CALLBACKCOUNT_CUTMGR.

Fair Isaac Corporation Proprietary Information 98

Chapter 7: Console and Library Functions

XPRSaddcbdestroymt

Purpose
Declares a destroy MIP thread callback function, called every time a MIP thread is destroyed by the
parallel MIP code. This callback function will be called in addition to any callbacks already added by
XPRSaddcbdestroymt.

Synopsis
int XPRS_CC XPRSaddcbdestroymt(XPRSprob prob, void (XPRS_CC

⁎destroymt)(XPRSprob cbprob, void ⁎cbdata), void ⁎data, int
priority);

Arguments
prob The current thread problem.
destroymt The callback function which takes two arguments, cbprob and cbdata, and has no

return value.
cbprob The thread problem passed to the callback function.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbdestroymt.
data A user-defined data to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Related controls
Integer

MIPTHREADS Number of MIP threads to create.

Further information
This callback is useful for freeing up any user data created in the MIP thread callback.

Related topics
XPRSremovecbdestroymt,XPRSaddcbmipthread.

Fair Isaac Corporation Proprietary Information 99

Chapter 7: Console and Library Functions

XPRSaddcbestimate

Purpose
This subroutine is deprecated and will be removed in a future release. Please use branching objects
instead, see XPRSaddcbchgbranchobject.
Declares an estimate callback function. If defined, it will be called at each node of the branch and bound
tree to determine the estimated degradation from branching the user’s global entities. This callback
function will be called in addition to any callbacks already added by XPRSaddcbestimate.

Synopsis
int XPRS_CC XPRSaddcbestimate(XPRSprob prob, int (XPRS_CC

⁎estimate)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_entity, int ⁎p_prio,
double ⁎p_degbest, double ⁎p_degworst, double ⁎p_current, int
⁎p_preferred, int ⁎p_ninf, double ⁎p_degsum, int ⁎p_nbranches), void
⁎data, int priority);

Arguments
prob The current problem.
estimate The callback function which takes eleven arguments, cbprob, cbdata, p_entity,

p_prio, p_degbest, p_degworst, p_current, p_preferred, p_ninf, p_degsum
and p_nbranches, and has an integer return value. This function is called at each node
of the branch and bound search.

cbprob The problem passed to the callback function, estimate.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbestimate.
p_entity Selected user global entity. Must be non-negative or -1 to indicate that there is no user

global entity candidate for branching. If set to -1, all other arguments, except for p_ninf
and p_degsum are ignored. This argument is initialized to -1.

p_prio Priority of selected user global entity. This argument is initialized to a value larger (i.e.,
lower priority) than the default priority for global entities (see Section 4.3.3 in Section 4.3).

p_degbest Estimated degradation from branching on selected user entity in preferred direction.
p_degworst Estimated degradation from branching on selected user entity in worst direction.
p_current Current value of user global entities.
p_preferred Preferred branch on user global entity (0,...,p_nbranches-1).
p_ninf Number of infeasible user global entities.
p_degsum Sum of estimated degradations of satisfying all user entities.
p_nbranches Number of branches. The user separate routine (set up with XPRSaddcbsepnode) will

be called p_nbranches times in order to create the actual branches.
data A user-defined data to be passed to the callback function, estimate.
priority An integer that determines the order in which multiple estimate callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Further information
Consider using the more flexible branching objects, as described for the XPRS_bo_create function.

Related topics
XPRSremovecbestimate, XPRSsetbranchcuts, XPRSaddcbsepnode, XPRS_bo_create.

Fair Isaac Corporation Proprietary Information 100

Chapter 7: Console and Library Functions

XPRSaddcbgapnotify

Purpose
Declares a gap notification callback, to be called when a MIP solve reaches a predefined target, set using
the MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ and/or
MIPABSGAPNOTIFYBOUND controls.

Synopsis
int XPRS_CC XPRSaddcbgapnotify(XPRSprob prob, void (XPRS_CC

⁎gapnotify)(XPRSprob cbprob, void⁎ cbdata, double⁎
p_relgapnotifytarget, double⁎ p_absgapnotifytarget, double⁎
p_absgapnotifyobjtarget, double⁎ p_absgapnotifyboundtarget), void⁎
data, int priority);

Arguments
prob The current problem.
gapnotify The callback function.
cbprob The current problem.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbgapnotify.
p_relgapnotifytarget The value the MIPRELGAPNOTIFY control will be set to after this callback.

May be modified within the callback in order to set a new notification target.
p_absgapnotifytarget The value the MIPABSGAPNOTIFY control will be set to after this callback.

May be modified within the callback in order to set a new notification target.
p_absgapnotifyobjtarget The value the MIPABSGAPNOTIFYOBJ control will be set to after this

callback. May be modified within the callback in order to set a new notification target.
p_absgapnotifyboundtarget The value the MIPABSGAPNOTIFYBOUND control will be set to after

this callback. May be modified within the callback in order to set a new notification target.
data A user-defined data to be passed to the callback function, gapnotify.
priority An integer that determines the order in which multiple estimate callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Example
The following example prints a message when the gap reaches 10% and 1%

void XPRS_CC gapnotify(XPRSprob prob, void⁎ data,
double⁎ p_relgapnotifytarget, double⁎ p_absgapnotifytarget,
double⁎ p_absgapnotifyobjtarget, double⁎ p_absgapnotifyboundtarget)

{
double obj, bound, relgap;
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &obj);
XPRSgetdblattrib(prob, XPRS_BESTBOUND, &bound);
if (obj != 0.0 || bound != 0.0)

relgap = fabs((obj - bound)/ max(fabs(obj), fabs(bound)));
else

relgap = 0.0;
if (relgap<=0.10) {

printf("Gap reached 10%");
⁎p_relgapnotifytarget = 0.1;

}
if (relgap<=0.01) {

printf("Gap reached 1%");
⁎p_relgapnotifytarget = -1; /⁎ Don't call gapnotify again ⁎/

Fair Isaac Corporation Proprietary Information 101

Chapter 7: Console and Library Functions

}
}

XPRSsetdblcontrol(prob, XPRS_MIPRELGAPNOTIFY, 0.10);
XPRSaddcbgapnotify(prob, gapnotify, NULL, 0);
XPRSmipoptimize(prob, "");

Further information
The target values that caused the callback to be triggered will automatically be reset to prevent the same
callback from being fired again.

Related topics
MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND,
XPRSremovecbgapnotify.

Fair Isaac Corporation Proprietary Information 102

Chapter 7: Console and Library Functions

XPRSaddcbgloballog

Purpose
Declares a global log callback function, called each time the global log is printed. This callback function
will be called in addition to any callbacks already added by XPRSaddcbgloballog.

Synopsis
int XPRS_CC XPRSaddcbgloballog(XPRSprob prob, int (XPRS_CC

⁎globallog)(XPRSprob cbprob, void ⁎cbdata), void ⁎data, int
priority);

Arguments
prob The current problem.
globallog The callback function which takes two arguments, cbprob and cbdata, and has an

integer return value. This function is called whenever the global log is printed as
determined by the MIPLOG control.

cbprob The problem passed to the callback function, globallog.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbgloballog.
data A user-defined data to be passed to the callback function, globallog.
priority An integer that determines the order in which multiple global log callbacks will be invoked.

The callback added with a higher priority will be called before a callback with a lower
priority. Set to 0 if not required.

Related controls
Integer

MIPLOG Global print flag.

Example
The following example prints at each node of the global search the node number and its depth:

XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSaddcbgloballog(prob, globalLog, NULL, 0);
XPRSmipoptimize(prob,"");

The callback function may resemble:

int XPRS_CC globalLog(XPRSprob prob, void ⁎data)
{

int node, nodedepth;

XPRSgetintattrib(prob, XPRS_NODEDEPTH, &nodedepth);
XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("Node %d with depth %d has just been processed\n",

node, nodedepth);

return 0;
}

See the example depthfirst.c in the examples/optimizer/c folder.

Further information
If the callback function returns a nonzero value, the global search will be interrupted.

Related topics
XPRSremovecbgloballog, XPRSaddcbbarlog, XPRSaddcblplog, XPRSaddcbmessage.

Fair Isaac Corporation Proprietary Information 103

Chapter 7: Console and Library Functions

XPRSaddcbinfnode

Purpose
Declares a user infeasible node callback function, called after the current node has been found to be
infeasible during the Branch and Bound search. This callback function will be called in addition to any
callbacks already added by XPRSaddcbinfnode.

Synopsis
int XPRS_CC XPRSaddcbinfnode(XPRSprob prob, void (XPRS_CC

⁎infnode)(XPRSprob cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem
infnode The callback function which takes two arguments, cbprob and cbdata, and has no

return value. This function is called after the current node has been found to be infeasible.
cbprob The problem passed to the callback function, infnode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbinfnode.
data A user-defined data to be passed to the callback function, infnode.
priority An integer that determines the order in which multiple user infeasible node callbacks will

be invoked. The callback added with a higher priority will be called before a callback with
a lower priority. Set to 0 if not required.

Example
The following notifies the user whenever an infeasible node is found during the global search:

XPRSaddcbinfnode(prob,nodeInfeasible,NULL,0);
XPRSmipoptimize(prob,"");

The callback function may resemble:

void XPRS_CC nodeInfeasible(XPRSprob prob, void ⁎data)
{

int node;
XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("Node %d infeasible\n", node);

}

See the example depthfirst.c in the examples/optimizer/c folder.

Related topics
XPRSremovecbinfnode, XPRSaddcboptnode, XPRSaddcbintsol, XPRSaddcbnodecutoff.

Fair Isaac Corporation Proprietary Information 104

Chapter 7: Console and Library Functions

XPRSaddcbintsol

Purpose
Declares a user integer solution callback function, called every time an integer solution is found by
heuristics or during the Branch and Bound search. This callback function will be called in addition to any
callbacks already added by XPRSaddcbintsol.

Synopsis
int XPRS_CC XPRSaddcbintsol(XPRSprob prob, void (XPRS_CC ⁎intsol)(XPRSprob

cbprob, void ⁎cbdata), void ⁎data, int priority);

Arguments
prob The current problem.
intsol The callback function which takes two arguments, cbprob and cbdata, and has no

return value. This function is called if the current node is found to have an integer feasible
solution, i.e. every time an integer feasible solution is found.

cbprob The problem passed to the callback function, intsol.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbintsol.
data A user-defined data to be passed to the callback function, intsol.
priority An integer that determines the order in which multiple integer solution callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following example prints integer solutions as they are discovered in the global search:

XPRSaddcbintsol(prob,printsol,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:

void XPRS_CC printsol(XPRSprob cbprob, void ⁎data)
{

int i, cols;
double objval, ⁎x;

XPRSgetintattrib(cbprob, XPRS_ORIGINALCOLS, &cols);
XPRSgetdblattrib(cbprob, XPRS_LPOBJVAL, &objval);
x = malloc(cols ⁎ sizeof(double));
if (!x) return;
XPRSgetlpsol(cbprob, x, NULL, NULL, NULL);

printf("\nInteger solution found: %f\n", objval);
for(i=0;i<cols;i++) printf(" x[%d] = %d\n", i, x[i]);
free(x);

}

Fair Isaac Corporation Proprietary Information 105

Chapter 7: Console and Library Functions

Further information

1. This callback is useful if the user wants to retrieve the integer solution when it is found.

2. To retrieve the integer solution, use either XPRSgetlpsol or XPRSgetpresolvesol.
XPRSgetmipsol always returns the last integer solution found and, if called from the intsol callback,
it will not necessarily return the solution that caused the invocation of the callback (for example, it is
possible that when solving with multiple MP threads, another thread finds a new integer solution before
the user calls XPRSgetmipsol).

3. This callback is called after a new integer solution was found by the Optimizer. Use a callback set by
XPRSaddcbpreintsol in order to be notified before a new integer solution is accepted by the
Optimizer, which allows for the new solution to be rejected.

Related topics
XPRSremovecbintsol, XPRSaddcbpreintsol.

Fair Isaac Corporation Proprietary Information 106

Chapter 7: Console and Library Functions

XPRSaddcblplog

Purpose
Declares a simplex log callback function which is called after every LPLOG iterations of the simplex
algorithm. This callback function will be called in addition to any callbacks already added by
XPRSaddcblplog.

Synopsis
int XPRS_CC XPRSaddcblplog(XPRSprob prob, int (XPRS_CC ⁎lplog)(XPRSprob

cbprob, void⁎ cbdata), void⁎ data, int priority);

Arguments
prob The current problem.
lplog The callback function which takes two arguments, cbprob and cbdata, and has an

integer return value. This function is called every LPLOG simplex iterations including
iteration 0 and the final iteration.

cbprob The problem passed to the callback function, lplog.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcblplog.
data A user-defined data to be passed to the callback function, lplog.
priority An integer that determines the order in which multiple lplog callbacks will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Related controls
Integer

LPLOG Frequency and type of simplex algorithm log.

Example
The following code sets a callback function, lpLog, to be called every 10 iterations of the optimization:

XPRSsetintcontrol(prob,XPRS_LPLOG,10);
XPRSaddcblplog(prob,lpLog,NULL,0);
XPRSreadprob(prob,"problem","");
XPRSmipoptimize(prob,"");

The callback function may resemble:

int XPRS_CC lpLog(XPRSprob cbprob, void ⁎data)
{

int iter; double obj;

XPRSgetintattrib(cbprob, XPRS_SIMPLEXITER, &iter);
XPRSgetdblattrib(cbprob, XPRS_LPOBJVAL, &obj);
printf("At iteration %d objval is %g\n", iter, obj);
return 0;

}

Further information
If the callback function returns a nonzero value the solution process will be interrupted.

Related topics
XPRSremovecblplog, XPRSaddcbbarlog, XPRSaddcbgloballog, XPRSaddcbmessage.

Fair Isaac Corporation Proprietary Information 107

Chapter 7: Console and Library Functions

XPRSaddcbmessage

Purpose
Declares an output callback function, called every time a text line relating to the given XPRSprob is output
by the Optimizer. This callback function will be called in addition to any callbacks already added by
XPRSaddcbmessage. Note that Optimizer messages passed to the callback do not end with a newline
character; the user callback is expected to append such required newline characters itself.

Synopsis
int XPRS_CC XPRSaddcbmessage(XPRSprob prob, void (XPRS_CC

⁎message)(XPRSprob cbprob, void ⁎cbdata, const char ⁎msg, int msglen,
int msgtype), void ⁎data, int priority);

Arguments
prob The current problem.
message The callback function which takes five arguments, cbprob, cbdata, msg, msglen and

msgtype, and has no return value. Use a NULL value to cancel a callback function.
cbprob The problem passed to the callback function.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbmessage.
msg A null terminated character array (string) containing the message, which may simply be a

new line.
msglen The length of the message string, excluding the null terminator.
msgtype Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value indicates that the Optimizer is about to finish and the buffers should be
flushed at this time if the output is being redirected to a file.

data A user-defined data to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Related controls
Integer

OUTPUTLOG All messages are disabled if set to zero.

Example
The following example simply sends all output to the screen (stdout):

XPRSaddcbmessage(prob,Message,NULL,0);

The callback function might resemble:

void XPRS_CC Message(XPRSprob cbprob, void⁎ data,
const char ⁎msg, int msglen, int msgtype)

{
switch(msgtype)
{

case 4: /⁎ error ⁎/
case 3: /⁎ warning ⁎/
case 2: /⁎ not used ⁎/
case 1: /⁎ information ⁎/

Fair Isaac Corporation Proprietary Information 108

Chapter 7: Console and Library Functions

printf("%s\n", msg);
break;

default: /⁎ exiting - buffers need flushing ⁎/
fflush(stdout);
break;

}
}

Further information

1. Screen output is automatically created by the Optimizer Console only. To produce output when using the
Optimizer library, it is necessary to define this callback function and use it to print the messages to the
screen (stdout).

2. This function offers one method of handling the messages which describe any warnings and errors that
may occur during execution. Other methods are to check the return values of functions and then get the
error code using the ERRORCODE attribute, obtain the last error message directly using
XPRSgetlasterror, or send messages direct to a log file using XPRSsetlogfile.

3. Visual Basic users must use the alternative function XPRSaddcbmessageVB to define the callback; this
is required because of the different way VB handles strings.

Related topics
XPRSremovecbmessage, XPRSaddcbbarlog, XPRSaddcbgloballog, XPRSaddcblplog,
XPRSsetlogfile.

Fair Isaac Corporation Proprietary Information 109

Chapter 7: Console and Library Functions

XPRSaddcbmipthread

Purpose
Declares a MIP thread callback function, called every time a MIP worker problem is created by the parallel
MIP code. This callback function will be called in addition to any callbacks already added by
XPRSaddcbmipthread.

Synopsis
int XPRS_CC XPRSaddcbmipthread(XPRSprob prob, void (XPRS_CC

⁎mipthread)(XPRSprob cbprob, void ⁎cbdata, XPRSprob threadprob), void
⁎data, int priority);

Arguments
prob The current problem.
mipthread The callback function which takes three arguments, cbprob, cbdata and

threadprob, and has no return value.
cbprob The problem passed to the callback function.
cbdata The user-defined data passed to the callback function.
threadprob The problem pointer for the MIP thread
data A user-defined data to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Related controls
Integer

MIPTHREADS Number of MIP threads to create.

Example
The following example clears the message callback for each of the MIP threads:

XPRSaddcbmipthread(prob,mipthread,NULL, 0);

void XPRS_CC mipthread(XPRSprob cbprob, void⁎ cbdata,
XPRSprob mipthread)

{
/⁎ clear the message callback⁎/
XPRSremovecbmessage(cbprob, mipthread, NULL);

}

Further information
This function will be called when a new MIP worker problem is created. Each worker problem receives a
unique identifier that can be obtained through the MIPTHREADID attribute. Worker problems can be
matched with different system threads at different points of a solve, so the system thread that is
responsible for executing the callback is not necessarily the same thread used for all subsequent
callbacks for the same worker problem. On the other hand, worker problems are always assigned to a
single thread at a time and the same nodes are always solved on the same worker problem in repeated
runs of a deterministic MIP solve. A worker problem therefore acts as a virtual thread through the node
solves.

Related topics
XPRSremovecbmipthread,XPRSaddcbdestroymt, MIPTHREADS, MAXMIPTASKS.

Fair Isaac Corporation Proprietary Information 110

Chapter 7: Console and Library Functions

XPRSaddcbnewnode

Purpose
Declares a callback function that will be called every time a new node is created during the branch and
bound search. This callback function will be called in addition to any callbacks already added by
XPRSaddcbnewnode.

Synopsis
int XPRS_CC XPRSaddcbnewnode(XPRSprob prob, void (XPRS_CC

⁎newnode)(XPRSprob cbprob, void⁎ cbdata, int parentnode, int newnode,
int branch), void⁎ data, int priority);

Arguments
prob The current problem.
newnode The callback function, which takes five arguments: myprob, cbdata, parentnode,

newnode and branch. This function is called every time a new node is created through
branching.

cbprob The problem passed to the callback function, newnode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbnewnode.
parentnode Unique identifier for the parent of the new node.
newnode Unique identifier assigned to the new node.
branch The sequence number of the new node amongst the child nodes of parentnode. For

regular branches on a global entity this will be either 0 or 1.
data A user-defined data to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Further information

1. For regular branches on a global entity, branch will be either zero or one, depending on whether the new
node corresponds to branching the global entity up or down.

2. When branching on an XPRSbranchobject, branch refers to the given branch index of the data.

3. For new nodes created using the XPRSaddcbestimate/XPRSaddcbsepnode callback functions,
branch is identical to the ifup argument of the XPRSaddcbsepnode callback function.

Related topics
XPRSremovecbnewnode, XPRSaddcbchgnode.

Fair Isaac Corporation Proprietary Information 111

Chapter 7: Console and Library Functions

XPRSaddcbnodecutoff

Purpose
Declares a user node cutoff callback function, called every time a node is cut off as a result of an
improved integer solution being found during the branch and bound search. This callback function will be
called in addition to any callbacks already added by XPRSaddcbnodecutoff.

Synopsis
int XPRS_CC XPRSaddcbnodecutoff(XPRSprob prob, void (XPRS_CC

⁎nodecutoff)(XPRSprob cbprob, void ⁎cbdata, int node), void ⁎data,
int priority);

Arguments
prob The current problem.
nodecutoff The callback function, which takes three arguments, cbprob, cbdata and node, and

has no return value. This function is called every time a node is cut off as the result of an
improved integer solution being found.

cbprob The problem passed to the callback function, nodecutoff.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbnodecutoff.
node The number of the node that is cut off.
data A user-defined data to be passed to the callback function, nodecutoff.
priority An integer that determines the order in which multiple node-optimal callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following notifies the user whenever a node is cutoff during the global search:

XPRSaddcbnodecutoff(prob,Cutoff,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:

void XPRS_CC Cutoff(XPRSprob prob, void ⁎data, int node)
{

printf("Node %d cutoff\n", node);
}

See the example depthfirst.c in the examples/optimizer/c folder.

Further information
This function allows the user to keep track of the eligible nodes. Note that the LP solution will not be
available from this callback.

Related topics
XPRSremovecbnodecutoff, XPRSaddcboptnode, XPRSaddcbinfnode, XPRSaddcbintsol.

Fair Isaac Corporation Proprietary Information 112

Chapter 7: Console and Library Functions

XPRSaddcboptnode

Purpose
Declares an optimal node callback function, called during the branch and bound search, after the LP
relaxation has been solved for the current node, and after any internal cuts and heuristics have been
applied, but before the Optimizer checks if the current node should be branched. This callback function
will be called in addition to any callbacks already added by XPRSaddcboptnode.

Synopsis
int XPRS_CC XPRSaddcboptnode(XPRSprob prob, void (XPRS_CC

⁎optnode)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_infeasible), void
⁎data, int priority);

Arguments
prob The current problem.
optnode The callback function which takes three arguments, cbprob, cbdata and

p_infeasible, and has no return value.
cbprob The problem passed to the callback function, optnode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcboptnode.
p_infeasible The feasibility status. If set to a nonzero value by the user, the current node will be

declared infeasible.
data A user-defined data to be passed to the callback function, optnode.
priority An integer that determines the order in which multiple node-optimal callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following prints the optimal objective value of the node LP relaxations:

XPRSaddcboptnode(prob,nodeOptimal,NULL,0);
XPRSmipoptimize(prob,"");

The callback function might resemble:

void XPRS_CC nodeOptimal(XPRSprob prob, void ⁎data, int ⁎p_infeasible)
{

int node;
double objval;

XPRSgetintattrib(prob, XPRS_CURRENTNODE, &node);
printf("NodeOptimal: node number %d\n", node);
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval);
printf("\tObjective function value = %f\n", objval);

}

See the example depthfirst.c in the examples/optimizer/c folder.

Related topics
XPRSremovecboptnode, XPRSaddcbinfnode, XPRSaddcbintsol, XPRSaddcbnodecutoff,
CALLBACKCOUNT_OPTNODE.

Fair Isaac Corporation Proprietary Information 113

Chapter 7: Console and Library Functions

XPRSaddcbpreintsol

Purpose
Declares a user integer solution callback function, called when an integer solution is found by heuristics
or during the branch and bound search, but before it is accepted by the Optimizer. This callback function
will be called in addition to any integer solution callbacks already added by XPRSaddcbpreintsol.

Synopsis
int XPRS_CC XPRSaddcbpreintsol(XPRSprob prob, void (XPRS_CC

⁎preintsol)(XPRSprob cbprob, void ⁎cbdata, int soltype, int ⁎p_reject,
double ⁎p_cutoff), void ⁎data, int priority);

Arguments
prob The current problem.
preintsol The callback function which takes five arguments, cbprob, cbdata,

soltype, p_reject and p_cutoff, and has no return value. This function is called
when an integer solution is found, but before the solution is accepted by the Optimizer,
allowing the user to reject the solution.

cbprob The problem passed to the callback function, preintsol.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbpreintsol.
soltype The type of MIP solution that has been found: Set to 1 if the solution was found using a

heuristic. Otherwise, it will be the global feasible solution to the current node of the global
search.
0 The continuous relaxation solution to the current node of the global search,

which has been found to be global feasible.
1 A MIP solution found by a heuristic.
2 A MIP solution provided by the user.
3 A solution resulting from refinement of primal or dual violations of a previous

MIP solution.
p_reject Set this to 1 if the solution should be rejected.
p_cutoff The new cutoff value that the Optimizer will use if the solution is accepted. If the user

changes p_cutoff, the new value will be used instead. The cutoff value will not be
updated if the solution is rejected.

data A user-defined data to be passed to the callback function, preintsol.
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Related controls
Integer

MIPABSCUTOFF Branch and Bound: If the user knows that they are interested only in values of the
objective function which are better than some value, this can be assigned to
MIPABSCUTOFF. This allows the Optimizer to ignore solving any nodes which may
yield worse objective values, saving solution time. When a MIP solution is found a
new cut off value is calculated and the value can be obtained from the
CURRMIPCUTOFF attribute. The value of CURRMIPCUTOFF is calculated using the
MIPRELCUTOFF and MIPADDCUTOFF controls.

Fair Isaac Corporation Proprietary Information 114

Chapter 7: Console and Library Functions

Further information

1. If a solution is rejected, the Optimizer will drop the found solution without updating any attributes,
including the cutoff value. To change the cutoff value when rejecting a solution, the control
MIPABSCUTOFF should be set instead.

2. When a node solution (soltype = 0) is rejected, the node itself will be dropped without further
branching.

3. To retrieve the integer solution, use either XPRSgetlpsol or XPRSgetpresolvesol.
XPRSgetmipsol will not return the newly found solution because it has not been saved at this point.

Related topics
XPRSremovecbpreintsol, XPRSaddcbintsol.

Fair Isaac Corporation Proprietary Information 115

Chapter 7: Console and Library Functions

XPRSaddcbprenode

Purpose
Declares a preprocess node callback function, called before the LP relaxation of a node has been
optimized, so the solution at the node will not be available. This callback function will be called in
addition to any callbacks already added by XPRSaddcbprenode.

Synopsis
int XPRS_CC XPRSaddcbprenode(XPRSprob prob, void (XPRS_CC

⁎prenode)(XPRSprob cbprob, void ⁎cbdata, int ⁎p_infeasible), void
⁎data, int priority);

Arguments
prob The current problem.
prenode The callback function, which takes three arguments, cbprob, cbdata and

p_infeasible, and has no return value. This function is called before a node is
reoptimized and the node may be made infeasible by setting ⁎p_infeasible to 1.

cbprob The problem passed to the callback function, prenode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbprenode.
p_infeasible The feasibility status. If set to a nonzero value by the user, the current node will be

declared infeasible by the Optimizer.
data A user-defined data to be passed to the callback function, prenode.
priority An integer that determines the order in which multiple preprocess node callbacks will be

invoked. The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Example
The following example notifies the user before each node is processed:

XPRSaddcbprenode(prob, preNode, NULL, 0);
XPRSmipoptimize(prob,"");

The callback function might resemble:

void XPRS_CC preNode(XPRSprob prob, void⁎ data, int ⁎p_infeasible)
{
⁎p_infeasible = 0; /⁎ set to 1 if node is infeasible ⁎/

}

Related topics
XPRSremovecbprenode, XPRSaddcbchgnode, XPRSaddcbinfnode, XPRSaddcbintsol,
XPRSaddcbnodecutoff, XPRSaddcboptnode.

Fair Isaac Corporation Proprietary Information 116

Chapter 7: Console and Library Functions

XPRSaddcbsepnode

Purpose
This subroutine is deprecated and will be removed in a future release. Please use branching objects
instead, see XPRSaddcbchgbranchobject.
Declares a separate callback function to specify how to branch on a node in the branch and bound tree
using a global data. A node can be branched by applying either cuts or bounds to each node. These are
stored in the cut pool. This callback function will be called in addition to any callbacks already added by
XPRSaddcbsepnode.

Synopsis
int XPRS_CC XPRSaddcbsepnode(XPRSprob prob, int (XPRS_CC ⁎sepnode)(XPRSprob

cbprob, void ⁎cbdata, int branch, int entity, int up, double
current), void ⁎data, int priority);

Arguments
prob The current problem.
sepnode The callback function, which takes six arguments, cbprob, cbdata, branch, entity,

up and current, and has an integer return value.
cbprob The problem passed to the callback function, sepnode.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbsepnode.
branch The branch number.
entity The global entity number.
up The direction of branch on the global entity (same as branch).
current Current value of the global entity.
data A user-defined data to be passed to the callback function, sepnode .
priority An integer that determines the order in which callbacks of this type will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Example
This example solves a MIP, using a separation callback function to branch on fractional integer variables.
It assumes the presence of an estimation callback function (not shown), defined by
XPRSaddcbestimate, to identify a fractional integer variable.

XPRSaddcbsepnode(prob,nodeSep,NULL,0);
XPRSmipoptimize(prob,"");

where the function nodeSepmay be defined as follows:

int nodeSep(XPRSprob cbprob, void ⁎cbdata, int branch,
int entity, int up, double current)

{
XPRScut index;
double dbd;

if(up)
{

dbd = floor(xval);
XPRSstorebounds(cbprob, 1, &entity, "U", &dbd, &index);

}
else
{

Fair Isaac Corporation Proprietary Information 117

Chapter 7: Console and Library Functions

dbd = ceil(xval);
XPRSstorebounds(cbprob, 1, &entity, "L", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Further information

1. The return value of the sepnode callback function is currently ignored.

2. Consider using the more flexible branching objects, as described for the XPRS_bo_create function.

3. The user separate routine is called nbr times where nbr is returned by the estimate callback function,
XPRSaddcbestimate. This allows multi-way branching to be performed.

4. The bounds and/or cuts to be applied at a node must be specified in the user separate routine by calling
XPRSsetbranchbounds and/or XPRSsetbranchcuts.

Related topics
XPRSremovecbsepnode, XPRSsetbranchbounds, XPRSsetbranchcuts, XPRSaddcbestimate,
XPRSstorebounds, XPRSstorecuts.

Fair Isaac Corporation Proprietary Information 118

Chapter 7: Console and Library Functions

XPRSaddcbusersolnotify

Purpose
Declares a callback function to be called each time a solution added by XPRSaddmipsol has been
processed. This callback function will be called in addition to any callbacks already added by
XPRSaddcbusersolnotify.

Synopsis
int XPRS_CC XPRSaddcbusersolnotify(XPRSprob prob, void (XPRS_CC

⁎usersolnotify)(XPRSprob cbprob, void⁎ cbdata, const char⁎ solname,
int status), void⁎ data, int priority);

Arguments
prob The current problem.
usersolnotify The callback function which takes four arguments, cbprob, cbdata, solname and

status and has no return value.
cbprob The problem passed to the callback function, usersolnotify.
cbdata The user-defined data passed as data when setting up the callback with

XPRSaddcbusersolnotify.
solname The string name assigned to the solution when it was loaded into the Optimizer using

XPRSaddmipsol.
status One of the following status values:

0 An error occurred while processing the solution.
1 Solution is feasible.
2 Solution is feasible after reoptimizing with fixed globals.
3 A local search heuristic was applied and a feasible solution discovered.
4 A local search heuristic was applied but a feasible solution was not found.
5 Solution is infeasible and a local search could not be applied.
6 Solution is partial and a local search could not be applied.
7 Failed to reoptimize the problem with globals fixed to the provided solution.

Likely because a time or iteration limit was reached.
8 Solution is dropped. This can happen if the MIP problem is changed or solved to

completion before the solution could be processed.
data A user-defined data to be passed to the callback function, usersolnotify.
priority An integer that determines the order in which multiple callbacks will be invoked. The

callback added with a higher priority will be called before a callback with a lower priority.
Set to 0 if not required.

Further information
If presolve is turned on, any solution added with XPRSaddmipsol will first be presolved before it can be
checked. The value returned in status refers to the presolved solution, which might have had values
adjusted due to bound changes, fixing of variables, etc.

Related topics
XPRSremovecbusersolnotify, XPRSaddmipsol.

Fair Isaac Corporation Proprietary Information 119

Chapter 7: Console and Library Functions

XPRSaddcols, XPRSaddcols64

Purpose
Allows columns to be added to the matrix after passing it to the Optimizer using the input routines.

Synopsis
int XPRS_CC XPRSaddcols(XPRSprob prob, int ncols, int ncoefs, const double

objcoef[], const int start[], const int rowind[], const double
rowcoef[], const double lb[], const double ub[]);

int XPRS_CC XPRSaddcols64(XPRSprob prob, int ncols, XPRSint64 ncoefs, const
double objcoef[], const XPRSint64 start[], const int rowind[], const
double rowcoef[], const double lb[], const double ub[]);

Arguments
prob The current problem.
ncols Number of new columns.
ncoefs Number of new nonzeros in the added columns.
objcoef Double array of length ncols containing the objective function coefficients of the new

columns.
start Integer array of length ncols containing the offsets in the rowind and rowcoef arrays

of the start of the elements for each column.
rowind Integer array of length ncoefs containing the row indices for the elements in each

column.
rowcoef Double array of length ncoefs containing the element values.
lb Double array of length ncols containing the lower bounds on the added columns.
ub Double array of length ncols containing the upper bounds on the added columns.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.

Double
MATRIXTOL Tolerance on matrix elements.

Example
In this example, we consider the two problems:

(a) maximize: 2x + y (b) maximize: 2x + y + 3z
subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24

y ≤ 5 y + z ≤ 5
3x + y ≤ 20 3x + y ≤ 20
x + y ≤ 9 x + y + 3z ≤ 9

z ≤ 12

Using XPRSaddcols, the following transforms (a) into (b) and then names the new variable using
XPRSaddnames:

obj[0] = 3;
start[] = {0};
rowind[] = {0, 1, 3};

Fair Isaac Corporation Proprietary Information 120

Chapter 7: Console and Library Functions

matval[] = {2.0, 1.0, 3.0};
lb[0] = XPRS_MINUSINFINITY; ub[0] = 12.0;
...
XPRSaddcols(prob,1,3,obj,start,rowind,matval,lb,ub);
XPRSaddnames(prob,2,"z",2,2);

Further information

1. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library header
file can be used to represent plus and minus infinity respectively in the bound arrays.

2. If the columns are added to a MIP problem then they will be continuous variables. Use
XPRSchgcoltype to impose integrality conditions on such new columns.

Related topics
XPRSaddnames, XPRSaddrows, XPRSdelcols, XPRSchgcoltype.

Fair Isaac Corporation Proprietary Information 121

Chapter 7: Console and Library Functions

XPRSaddcuts, XPRSaddcuts64

Purpose
Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the current node and
not deleted at the current node will be automatically added to the cut pool. The cuts added to the cut pool
will be automatically restored at descendant nodes.

Synopsis
int XPRS_CC XPRSaddcuts(XPRSprob prob, int ncuts, const int cuttype[],

const char rowtype[], const double rhs[], const int start[], const
int colind[], const double cutcoef[]);

int XPRS_CC XPRSaddcuts64(XPRSprob prob, int ncuts, const int cuttype[],
const char rowtype[], const double rhs[], const XPRSint64 start[],
const int colind[], const double cutcoef[]);

Arguments
prob The current problem.
ncuts Number of cuts to add.
cuttype Integer array of length ncuts containing the user assigned cut types. The cut types can

be any integer chosen by the user, and are used to identify the cuts in other cut manager
routines using user supplied parameters. The cut type can be interpreted as an integer or
a bitmap - see XPRSdelcuts.

rowtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
G indicates a ≥ row;
E indicates an = row.

rhs Double array of length ncuts containing the right hand side elements for the cuts.
start Integer array containing offset into the colind and cutcoef arrays indicating the start

of each cut. This array is of length ncuts+1 with the last element, start[ncuts], being
where cut ncuts+1 would start.

colind Integer array of length start[ncuts] containing the column indices in the cuts.
cutcoef Double array of length start[ncuts] containing the matrix values for the cuts.

Further information

1. The columns and elements of the cuts must be stored contiguously in the colind and cutcoef arrays
passed to XPRSaddcuts. The starting point of each cut must be stored in the start array. To
determine the length of the final cut, the start array must be of length ncuts+1 with the last element of
this array containing the position in colind and cutcoef where the cut ncuts+1 would start.
start[ncuts] denotes the number of nonzeros in the added cuts.

2. The cuts added to the matrix are always added at the end of the matrix and the number of rows is always
set to the original number of cuts added. If ncuts have been added, then the rows 0,...,ROWS-ncuts-1
are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the added cuts. The number of cuts can
be found by consulting the CUTS problem attribute.

3. This function should be called only from within callback functions set by either XPRSaddcboptnode or
XPRSaddcbcutmgr.

Related topics
XPRSaddrows, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcpcutlist, XPRSgetcutlist,
XPRSloadcuts, XPRSstorecuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 122

Chapter 7: Console and Library Functions

XPRSaddgencons, XPRSaddgencons64

Purpose
Adds one or more general constraints to the problem. Each general constraint y = f(x1, ..., xn,
c1, ..., cn) consists of one or more (input) columns xi, zero or more constant values ci and a
resultant (output column) y, different from all xi. General constraints include maximum and minimum
(arbitrary number of input columns of any type and arbitrary number of input values, at least one total),
and and or (at least one binary input column, no constant values, binary resultant) and absolute
value (exactly one input column of arbitrary type, no constant values).

Synopsis
int XPRS_CC XPRSaddgencons(XPRSprob prob, int ncons, int ncols, int nvals,

const int contype[], const int resultant[], const int colstart[],
const int colind[], const int valstart[], const double val[]);

int XPRS_CC XPRSaddgencons64(XPRSprob prob, int ncons, XPRSint64 ncols,
XPRSint64 nvals, const int contype[], const int resultant[], const
XPRSint64 colstart[], const int colind[], const XPRSint64 valstart[],
const double val[]);

Arguments
prob The current problem.
ncons The number of general constraints to add.
ncols The total number of input variables in general constraints that should be added.
nvals The total number of constant values in general constraints that should be added.
contype Integer array of length ncons containing the types of the general constraints:

XPRS_GENCONS_MAX (0) indicates a maximum constraint;
XPRS_GENCONS_MIN (1) indicates a minimum constraint;
XPRS_GENCONS_AND (2) indicates an and constraint.
XPRS_GENCONS_OR (3) indicates an or constraint;
XPRS_GENCONS_ABS (4) indicates an absolute value constraint.

resultant Integer array of length ncons containing the indices of the output variables of the
general constraints.

colstart Integer array of length ncons containing the start index of each general constraint
in the colind array.

colind Integer array of length ncols containing the input variables in all general
constraints.

valstart Integer array of length ncons containing the start index of each general constraint
in the val array (may be NULL if ncoefs = 0).

val Double array of length nvals containing the constant values in all general
constraints (may be NULL if ncoefs = 0).

Example
This adds two new general constraints x2 = max(x0, x1, 5) and x3 = |x1|:

int contype[] = {XPRS_GENCONS_MAX, XPRS_GENCONS_ABS};
int resultant[] = {2, 3};
int colstart[] = {0, 2};
int colind[] = {0, 1, 1};
int valstart[] = {0, 1};
double val[] = {5.0};

...
XPRSaddgencons(prob, 2, 3, 1, contype, resultant, colstart, colind, valstart, val);

Fair Isaac Corporation Proprietary Information 123

Chapter 7: Console and Library Functions

XPRSmipoptimize(prob,"");

Further information
General constraints must be set up before solving the problem. They are converted to additional binary
variables, indicator and linear constraints with the exact formulation and number of added entities
depending on the performed presolving.
Note that using non-binary variables in and/or constraints or adding constant values to them or
absolute value constraints will give an error at solve time.

Related controls
Integer

GENCONSDUALREDUCTIONS Controls whether dual reductions may be applied to reduce the number of
added variables and constraints.

Related topics
XPRSgetgencons, XPRSdelgencons.

Fair Isaac Corporation Proprietary Information 124

Chapter 7: Console and Library Functions

XPRSaddmipsol

Purpose
Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.

Synopsis
int XPRS_CC XPRSaddmipsol(XPRSprob prob, int length, const double solval[],

const int colind[], const char⁎ name);

Arguments
prob The current problem.
length Number of columns for which a value is provided.
solval Double array of length length containing solution values.
colind Optional integer array of length length containing the column indices for the solution

values provided in solval. Should be NULL when length is equal to COLS, in which
case it is assumed that solval provides a complete solution vector.

name An optional name to associate with the solution. Can be NULL.

Further information

1. The function returns immediately after passing the solution to the Optimizer. The solution is placed in a
pool until the Optimizer is able to analyze the solution during a MIP solve.

2. If the provided solution is found to be infeasible, a limited local search heuristic will be run in an attempt
to find a close feasible integer solution.

3. If a partial solution is provided, global columns will be fixed to any provided values and a limited local
search will be run in an attempt to find integer feasible values for the remaining unspecified columns.
Values provided for continuous column in partial solutions are currently ignored.

4. The XPRSaddcbusersolnotify callback function can be used to discover the outcome of a loaded
solution. The optional name provided as name will be returned in the callback function.

5. If one or more solutions are loaded during the XPRSaddcboptnode callback, the Optimizer will process
all loaded solutions and fire the callback again. This will be repeated as long as new solutions are loaded
during the callback. You can check the CALLBACKCOUNT_OPTNODE attribute if you only want to run once.

Related controls
Integer

CALLBACKCOUNT_OPTNODE Counts the number of times the XPRSaddcboptnode callback has been
called, in particular after rerunning due to XPRSaddmipsol.

USERSOLHEURISTIC Controls the local search heuristic for an infeasible or partial solution.

Related topics
XPRSaddcbusersolnotify, XPRSaddcboptnode.

Fair Isaac Corporation Proprietary Information 125

Chapter 7: Console and Library Functions

XPRSaddnames

Purpose
When a model is loaded, the rows, columns, sets, piecewise linear and general constraints of the model
may not have names associated with them. This may not be important as the rows, columns, sets,
piecewise linear and general constraints can be referred to by their sequence numbers. However, if you
wish row, column, set, piecewise linear and general constraint names to appear in the ASCII solutions
files, the names for a range of rows/columns/... can be added with XPRSaddnames.

Synopsis
int XPRS_CC XPRSaddnames(XPRSprob prob, int type, const char names[], int

first, int last);

Arguments
prob The current problem.
type 1 for row names;

2 for column names.
3 for set names.
4 for piecewise linear constraint names.
5 for general constraint names.

names Character buffer containing the null-terminated string names.
first Start of the range of rows, columns, sets, piecewise linear or general constraints.
last End of the range of rows, columns, sets, piecewise linear of general constraints.

Example
Add variable names (a and b), and constraint names (first, second, and third) to a problem:

char rnames[] = "first\0second\0third"
char cnames[] = "a\0b";
...
XPRSaddnames(prob,1,rnames,0,nrow-1);
XPRSaddnames(prob,2,cnames,0,ncol-1);

Related topics
XPRSaddcols, XPRSaddrows, XPRSgetnames.

Fair Isaac Corporation Proprietary Information 126

Chapter 7: Console and Library Functions

XPRSaddpwlcons, XPRSaddpwlcons64

Purpose
Adds one or more piecewise linear constraints to the problem. Each piecewise linear constraint y =
f(x) consists of an (input) column x, a (different) resultant (output column) y and a piecewise linear
function f. The piecewise linear function f is described by at least two breakpoints, which are given as
combinations of x- and y-values. Discontinuous piecewise linear functions are supported, in this case
both the left and right limit at a given point need to be entered as breakpoints. To differentiate between
left and right limit, the breakpoints need to be given as a list with non-decreasing x-values.

Synopsis
int XPRS_CC XPRSaddpwlcons(XPRSprob prob, int npwls, int npoints, const int

colind[], const int resultant[], const int start[], const double
xval[], const double yval[]);

int XPRS_CC XPRSaddpwlcons64(XPRSprob prob, int npwls, XPRSint64 npoints,
const int colind[], const int resultant[], const XPRSint64 start[],
const double xval[], const double yval[]);

Arguments
prob The current problem.
npwls The number of piecewise linear constraints to add.
npoints The total number of breakpoints of all piecewise linear constraints that should be added.
colind Integer array of length npwls containing the indices of the input variables x of the

piecewise linear functions.
resultant Integer array of length npwls containing the indices of the output variables y of the

piecewise linear functions.
start Integer array of length npwls containing the start index of each piecewise linear

constraint in the xval and yval arrays.
xval Double array of length npoints containing the x-values of the breakpoints.
yval Double array of length npoints containing the y-values of the breakpoints.

Example
The following example adds a new piecewise linear constraint y = f(x), where

f(x) = -x if x < 0
f(x) = 1 if 0 <= x <= 2
f(x) = 2x-3 if x > 2

This function can be defined using the breakpoints (x = -1, y = 1), (0,0), (0,1), (2,1),
(3,3) (note that the first breakpoint could also be replaced, e.g., by (x = -2, y = 2), similarly for
the last):

int colind[] = {0};
int resultant[] = {1};
int start[] = {0};
double xval[] = {-1,0,0,2,3};
double yval[] = {1,0,1,1,3};
...
XPRSaddpwlcons(prob,1,5,colind,resultant,start,xval,yval);
XPRSmipoptimize(prob,"");

Further information
Piecewise linear constraints must be set up before solving the problem. They are converted to additional
linear constraints, continuous variables and SOS2 constraints, with the exact formulation and number of

Fair Isaac Corporation Proprietary Information 127

Chapter 7: Console and Library Functions

added entities depending on the convexity of the piecewise linear function and some presolving steps
that are applied.

Related controls
Integer

PWLDUALREDUCTIONS Controls whether dual reductions may be applied to reduce the number of
added variables and constraints.

Related topics
XPRSgetpwlcons, XPRSdelpwlcons.

Fair Isaac Corporation Proprietary Information 128

Chapter 7: Console and Library Functions

XPRSaddqmatrix, XPRSaddqmatrix64

Purpose
Adds a new quadratic matrix into a row defined by triplets.

Synopsis
int XPRS_CC XPRSaddqmatrix(XPRSprob prob, int row, int ncoefs, const int

rowqcol1[], const int rowqcol2[], const double rowqcoef[]);

int XPRS_CC XPRSaddqmatrix64(XPRSprob prob, int row, XPRSint64 ncoefs,
const int rowqcol1[], const int rowqcol2[], const double rowqcoef[]);

Arguments
prob The current problem.
row Index of the row where the quadratic matrix is to be added.
ncoefs Number of triplets used to define the quadratic matrix. This may be less than the number

of coefficients in the quadratic matrix, since off diagonals and their transposed pairs are
defined by one triplet.

rowqcol1 First index in the triplets.
rowqcol2 Second index in the triplets.
rowqcoef Coefficients in the triplets.

Further information

1. The triplets should be filled to define the upper-triangular part of the quadratic expression. This means
that to add [x2 + 6 xy] the rowqcoef array shall contain the coefficients 1 and 3, respectively.

2. The matrix defined by rowqcol1, rowqcol2 and rowqcoef should be positive semi-definite for <= and
negative semi-definite for >= rows.

3. The row must not be an equality or a ranged row.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSchgqrowcoeff, XPRSgetqrowqmatrix,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 129

Chapter 7: Console and Library Functions

XPRSaddrows, XPRSaddrows64

Purpose
Allows rows to be added to the matrix after passing it to the Optimizer using the input routines.

Synopsis
int XPRS_CC XPRSaddrows(XPRSprob prob, int nrows, int ncoefs, const char

rowtype[], const double rhs[], const double rng[], const int start[],
const int colind[], const double rowcoef[]);

int XPRS_CC XPRSaddrows64(XPRSprob prob, int nrows, XPRSint64 ncoefs, const
char rowtype[], const double rhs[], const double rng[], const
XPRSint64 start[], const int colind[], const double rowcoef[]);

Arguments
prob The current problem.
nrows Number of new rows.
ncoefs Number of new nonzeros in the added rows.
rowtype Character array of length nrows containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side elements.
rng Double array of length nrows containing the row range elements. This may be NULL if

there are no ranged constraints. The values in the rng array will only be read for R type
rows. The entries for other type rows will be ignored.

start Integer array of length nrows containing the offsets in the colind and rowcoef arrays
of the start of the elements for each row.

colind Integer array of length ncoefs containing the (contiguous) column indices for the
elements in each row.

rowcoef Double array of length ncoefs containing the (contiguous) element values.

Related controls
Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.

Double
MATRIXTOL Tolerance on matrix elements.

Example
Suppose the current problem is:

maximize: 2x + y + 3z
subject to: x + 4y + 2z ≤ 24

y + z ≤ 5
3x + y ≤ 20

x + y + 3z ≤ 9

Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

rowtype[0] = 'L';

Fair Isaac Corporation Proprietary Information 130

Chapter 7: Console and Library Functions

rhs[0] = 25.0;
start[] = {0};
colind[] = {0, 1, 2};
rowcoef[] = {8.0, 9.0, 10.0};
...
XPRSaddrows(prob,1,3,rowtype,rhs,NULL,start,colind, rowcoef);
XPRSaddnames(prob,1,"NewRow",4,4);

Further information
Range rows are automatically converted to type L, with an upper bound in the slack. This must be taken
into consideration, when retrieving row type, right–hand side values or range information for rows.

Related topics
XPRSaddcols, XPRSaddcuts, XPRSaddnames, XPRSdelrows.

Fair Isaac Corporation Proprietary Information 131

Chapter 7: Console and Library Functions

XPRSaddsets, XPRSaddsets64

Purpose
Allows sets to be added to the problem after passing it to the Optimizer using the input routines.

Synopsis
int XPRS_CC XPRSaddsets(XPRSprob prob, int nsets, int nelems, const char

settype[], const int start[], const int colind[], const double
refval[]);

int XPRS_CC XPRSaddsets64(XPRSprob prob, int nsets, XPRSint64 nelems, const
char settype[], const XPRSint64 start[], const int colind[], const
double refval[]);

Arguments
prob The current problem.
nsets Number of new sets.
nelems Number of new nonzeros in the added sets.
settype Character array of length nsets containing the set types:

1 indicates a SOS1;
2 indicates a SOS2;

start Integer array of length nsets containing the offsets in the colind and refval arrays of
the start of the elements for each set.

colind Integer array of length nelems containing the (contiguous) column indices for the
elements in each set.

refval Double array of length nelems containing the (contiguous) reference values. These
define the order for SOS2 constraints and may be used in branching for both types.

Related topics
XPRSdelsets.

Fair Isaac Corporation Proprietary Information 132

Chapter 7: Console and Library Functions

XPRSaddsetnames

Purpose
When a model with global entities is loaded, any special ordered sets may not have names associated
with them. If you wish names to appear in the ASCII solutions files, the names for a range of sets can be
added with this function.

Synopsis
int XPRS_CC XPRSaddsetnames(XPRSprob prob, const char names[], int first,

int last);

Arguments
prob The current problem.
names Character buffer containing the null-terminated string names.
first Start of the range of sets.
last End of the range of sets.

Example
Add set names (set1 and set2) to a problem:

char snames[] = "set1\0set2"
...
XPRSaddsetnames(prob,snames,0,1);

Related topics
XPRSaddnames, XPRSloadglobal, XPRSloadqglobal.

Fair Isaac Corporation Proprietary Information 133

Chapter 7: Console and Library Functions

XPRSalter ALTER

Purpose
Alters or changes matrix elements, right hand sides and constraint senses in the current problem.

Synopsis
int XPRS_CC XPRSalter(XPRSprob prob, const char ⁎filename);
ALTER [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters specifying the file to be read. If

omitted, the default problem_name is used with a .alt extension.

Related controls
Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.
Double

MATRIXTOL Tolerance on matrix elements.

Example 1 (Library)
Since the following call does not specify a filename, the file problem_name.alt is read in, from which
commands are taken to alter the current matrix.

XPRSalter(prob,"");

Example 2 (Console)
The following example reads in the file fred.alt, from which instructions are taken to alter the current
matrix:

ALTER fred

Further information

1. The file filename.alt is read. It is an ASCII file containing matrix revision statements in the format
described in Section A.7. The MODIFY format of the MPS REVISE data is also supported.

2. It is not possible to alter a problem that is in a presolved state. Call XPRSpostsolve to bring the
problem back to its original state.

3. If the problem was read from an .lp file, the name to use for the right-hand side is the one given by the
attribute RHSNAME which by default is set to RHS00001.

Related topics
Section A.7.

Fair Isaac Corporation Proprietary Information 134

Chapter 7: Console and Library Functions

XPRSbasiscondition BASISCONDITION

Purpose
This subroutine is deprecated and will be removed in a future release. Please use the
XPRSbasisstability function instead.
Calculates the condition number of the current basis after solving the LP relaxation.

Synopsis
int XPRS_CC XPRSbasiscondition(XPRSprob prob, double ⁎p_cond, double

⁎p_scaledcond);
BASISCONDITION

Arguments
prob The current problem.
p_cond The returned condition number of the current basis.
p_scaledcond The returned condition number of the current basis for the scaled problem.

Example 1 (Library)
Get the condition number after optimizing a problem.

XPRSlpoptimize(prob," ");
XPRSbasiscondition(prob,&cond,&scaledcond);
printf("Condition no's are %g %g\n",cond,scaledcond);

Example 2 (Console)
Print the condition number after optimizing a problem.

READPROB problem.mps
LPOPTIMIZE
BASISCONDITION

Further information

1. The condition number of an invertible matrix is the norm of the matrix multiplied with the norm of its
inverse. This number is an indication of how accurate the solution can be calculated and how sensitive it
is to small changes in the data. The larger the condition number is, the less accurate the solution is likely
to become.

2. When using the BASISCONDITION command in the Console Optimizer, the condition number is shown
both for the scaled problem and in parenthesis for the original problem.

Fair Isaac Corporation Proprietary Information 135

Chapter 7: Console and Library Functions

XPRSbasisstability BASISSTABILITY

Purpose
Calculates various measures for the stability of the current basis, including the basis condition number.

Synopsis
int XPRS_CC XPRSbasisstability(XPRSprob prob, int type, int norm, int

scaled, double ⁎p_value);
BASISSTABILITY [-flags]

Arguments
prob The current problem.
type 0 Condition number of the basis.

1 Stability measure for the solution relative to the current basis.
2 Stability measure for the duals relative to the current basis.
3 Stability measure for the right hand side relative to the current basis.
4 Stability measure for the basic part of the objective relative to the current basis.

norm 0 Use the infinity norm.
1 Use the 1 norm.
2 Use the Euclidian norm for vectors, and the Frobenius norm for matrices.

scaled If the stability values are to be calculated in the scaled, or the unscaled matrix.
p_value Pointer to a double, where the calculated value is to be returned.
flags x Stability measure for the solution and right–hand side values relative to the

current basis.
d Stability measure for the duals and the basic part of the objective relative to the

current basis.
c Condition number of the basis (default).
i Use the infinity norm (default).
o Use the one norm.
e Use the Euclidian norm for vectors, and the Frobenius norm for matrices.
u Calculate values in the unscaled matrix.

Further information

1. The Console Optimizer command BASISSTABILITY uses 0 as the default value for type and norm, and
calculates the values in the scaled matrix.

2. The condition number (type = 0) of an invertible matrix is the norm of the matrix multiplied with the
norm of its inverse. This number is an indication of how accurate the solution can be calculated and how
sensitive it is to small changes in the data. The larger the condition number is, the less accurate the
solution is likely to become.

3. The stability measures (type = 1...4) are using the original matrix and the basis to recalculate the
various vectors related to the solution and the duals. The returned stability measure is the norm of the
difference of the recalculated vector to the original one.

Fair Isaac Corporation Proprietary Information 136

Chapter 7: Console and Library Functions

XPRSbndsa

Purpose
Returns upper and lower sensitivity ranges for specified variables’ lower and upper bounds. If the bounds
are varied within these ranges the current basis remains optimal and feasible.

Synopsis
int XPRS_CC XPRSbndsa(XPRSprob prob, int ncols, const int colind[], double

lblower[], double lbupper[], double ublower[], double ubupper[]);

Arguments
prob The current problem.
ncols Number of variables whose sensitivity is sought.
colind Integer array of length ncols containing the indices of the columns whose bounds’

ranges are required.
lblower Double array of length ncols where the variable lower bound lower range values are to be

returned.
lbupper Double array of length ncols where the variable lower bound upper range values are to

be returned.
ublower Double array of length ncols where the variable upper bound lower range values are to

be returned.
ubupper Double array of length ncols where the variable upper bound upper range values are to

be returned.

Further information
XPRSbndsa can only be called when an optimal solution to the current LP has been found. It cannot be
used when the problem is MIP presolved.

Related topics
XPRSrhssa, XPRSobjsa.

Fair Isaac Corporation Proprietary Information 137

Chapter 7: Console and Library Functions

XPRSbtran

Purpose
Post-multiplies a (row) vector provided by the user by the inverse of the current basis.

Synopsis
int XPRS_CC XPRSbtran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.
vec Double array of length ROWS containing the values by which the basis inverse is to be

multiplied. The transformed values will also be returned in this array.

Related controls
Double

ETATOL Tolerance on eta elements.

Example
Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have been
dimensioned.

/⁎ Minimum size of arrays:
⁎ y: nrow + ncol;
⁎ mstart: 2;
⁎ mrowind, dmatval: nrow.
⁎/

/⁎ set up the unit vector y to pick out row irow ⁎/
for(i = 0; i < nrow; i++) y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSbtran(prob,y); /⁎ y = e⁎B^{-1} ⁎/

/⁎ Form z = y ⁎ A ⁎/
for(j = 0; j < ncol, j++) {

rc = XPRSgetcols(prob, mstart, mrowind, dmatval,
nrow, &nelt, j, j);

for(d = 0.0, ielt = 0, ielt < nelt; ielt++)
d += y[mrowind[ielt]] ⁎ dmatval[ielt];

y[nrow + j] = d;
}

Further information
If the matrix is in a presolved state, XPRSbtran works with the basis for the presolved problem.

Related topics
XPRSftran.

Fair Isaac Corporation Proprietary Information 138

Chapter 7: Console and Library Functions

XPRScalcobjective

Purpose
Calculates the objective value of a given solution.

Synopsis
int XPRS_CC XPRScalcobjective(XPRSprob prob, const double solution[],

double⁎ p_objval);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution.
p_objval Pointer to a double in which the calculated objective value is returned.

Further information
The calculations are always carried out in the original problem, even if the problem is currently presolved.

Related topics
XPRScalcslacks, XPRScalcsolinfo, XPRScalcreducedcosts.

Fair Isaac Corporation Proprietary Information 139

Chapter 7: Console and Library Functions

XPRScalcreducedcosts

Purpose
Calculates the reduced cost values for a given (row) dual solution.

Synopsis
int XPRS_CC XPRScalcreducedcosts(XPRSprob prob, const double duals[], const

double solution[], double djs[]);

Arguments
prob The current problem.
duals Double array of length ROWS that holds the dual solution to calculate the reduced costs

for.
solution Optional double array of length COLS that holds the primal solution. This is necessary for

quadratic problems.
djs Double array of length COLS in which the calculated reduced costs are returned.

Further information

1. The calculations are always carried out in the original problem, even if the problem is currently presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS to
retrieve the non-presolved dimensions of the problem.

Related topics
XPRScalcslacks, XPRScalcsolinfo, XPRScalcobjective.

Fair Isaac Corporation Proprietary Information 140

Chapter 7: Console and Library Functions

XPRScalcslacks

Purpose
Calculates the row slack values for a given solution.

Synopsis
int XPRS_CC XPRScalcslacks(XPRSprob prob, const double solution[], double

slacks[]);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution to calculate the slacks for.
slacks Double array of length ROWS in which the calculated row slacks are returned.

Further information

1. The calculations are always carried out in the original problem, even if the problem is currently presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS to
retrieve the non-presolved dimensions of the problem.

Related topics
XPRScalcreducedcosts, XPRScalcsolinfo, XPRScalcobjective.

Fair Isaac Corporation Proprietary Information 141

Chapter 7: Console and Library Functions

XPRScalcsolinfo

Purpose
Calculates the required property of a solution, like maximum infeasibility of a given primal and dual
solution.

Synopsis
int XPRS_CC XPRScalcsolinfo(XPRSprob prob, const double solution[], const

double duals[], int property, double⁎ p_value);

Arguments
prob The current problem.
solution Double array of length COLS that holds the solution. May be NULL when asking for dual

infeasibility.
duals Double array of length ROWS that holds the dual solution. May be NULL when asking for

primal/MIP infeasibility.
property Defined the property to be calculated.

XPRS_SOLINFO_ABSPRIMALINFEAS the calculated maximum absolute primal
infeasibility is returned.

XPRS_SOLINFO_RELPRIMALINFEAS the calculated maximum relative primal
infeasibility is returned.

XPRS_SOLINFO_ABSDUALINFEAS the calculated maximum absolute dual
infeasibility is returned.

XPRS_SOLINFO_RELDUALINFEAS the calculated maximum relative dual
infeasibility is returned.

XPRS_SOLINFO_MAXMIPFRACTIONAL the calculated maximum absolute MIP
fractionality or SOS infeasibility.

XPRS_SOLINFO_ABSMIPINFEAS the calculated maximum absolute MIP
infeasibility (including delayed rows,
indicators, general and piecewise linear
constraints) is returned.

XPRS_SOLINFO_RELMIPINFEAS the calculated maximum relative MIP
infeasibility (including delayed rows,
indicators, general and piecewise linear
constraints) is returned.

p_value Pointer to a double where the calculated value is returned.

Further information
The calculations are always carried out in the original problem, even if the problem is currently presolved.

Related topics
XPRScalcslacks, XPRScalcobjective, XPRScalcreducedcosts.

Fair Isaac Corporation Proprietary Information 142

Chapter 7: Console and Library Functions

CHECKCONVEXITY

Purpose
Checks if the loaded problem is convex. Applies to quadratic, mixed integer quadratic and quadratically
constrained problems. Checking convexity takes some time, thus for problems that are known to be
convex it might be reasonable to switch the checking off. Returns an error if the problem is not convex.

Synopsis
CHECKCONVEXITY

Further information
This console function checks the positive semi-definiteness of all quadratic matrices in the problem.
Note, that when optimizing a problem, for quadratic programming and mixed integer quadratic problems,
the checking of the objective function is performed after presolve, thus it is possible that an otherwise
indefinite quadratic matrix will be found positive semi-definite (the indefinite part might have been fixed
and dropped by presolve).

Related topics
XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), IFCHECKCONVEXITY,
EIGENVALUETOL.

Fair Isaac Corporation Proprietary Information 143

Chapter 7: Console and Library Functions

XPRSchgbounds

Purpose
Used to change the bounds on columns in the matrix.

Synopsis
int XPRS_CC XPRSchgbounds(XPRSprob prob, int nbounds, const int colind[],

const char bndtype[], const double bndval[]);

Arguments
prob The current problem.
nbounds Number of bounds to change.
colind Integer array of size nbounds containing the indices of the columns on which the bounds

will change.
bndtype Character array of length nbounds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Double array of length nbounds giving the new bound values.

Example
The following changes column 0 of the current problem to have an upper bound of 0.5:

colind[0] = 0;
bndtype[0] = 'U';
bndval[0] = 0.5;
XPRSchgbounds(prob,1,colind,bndtype,bndval);

Further information

1. A column index may appear twice in the colind array so it is possible to change both the upper and
lower bounds on a variable in one go.

2. XPRSchgboundsmay be applied to the problem in a presolved state, in which case it expects references
to the presolved problem.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library header
file can be used to represent plus and minus infinity respectively in the bound (bndval) array.

4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is changed to
be less than 0 then the variable will become an integer variable.

Related topics
XPRSgetlb, XPRSgetub, XPRSstorebounds.

Fair Isaac Corporation Proprietary Information 144

Chapter 7: Console and Library Functions

XPRSchgcoef

Purpose
Used to change a single coefficient in the matrix. If the coefficient does not already exist, a new
coefficient will be added to the matrix. If many coefficients are being added to a row of the matrix, it may
be more efficient to delete the old row of the matrix and add a new row.

Synopsis
int XPRS_CC XPRSchgcoef(XPRSprob prob, int row, int col, double coef);

Arguments
prob The current problem.
row Row index for the coefficient.
col Column index for the coefficient.
coef New value for the coefficient. If coef is zero, any existing coefficient will be deleted.

Related controls
Double

MATRIXTOL Tolerance on matrix elements.

Example
In the following, the element in row 2, column 1 of the matrix is changed to 0.33:

XPRSchgcoef(prob,2,1,0.33);

Further information
XPRSchgmcoef is more efficient than multiple calls to XPRSchgcoef and should be used in its place in
such circumstances.

Related topics
XPRSaddcols, XPRSaddrows, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj,
XPRSchgrhs, XPRSgetcols, XPRSgetrows.

Fair Isaac Corporation Proprietary Information 145

Chapter 7: Console and Library Functions

XPRSchgcoltype

Purpose
Used to change the type of a column in the matrix.

Synopsis
int XPRS_CC XPRSchgcoltype(XPRSprob prob, int ncols, const int colind[],

const char coltype[]);

Arguments
prob The current problem.
ncols Number of columns to change.
colind Integer array of length ncols containing the indices of the columns.
coltype Character array of length ncols giving the new column types:

C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.
S indicates a semi–continuous column. The semi–continuous lower bound will be

set to 1.0.
R indicates a semi–integer column. The semi–integer lower bound will be set to

1.0.
P indicates a partial integer column. The partial integer bound will be set to 1.0.

Example
The following changes columns 3 and 5 of the matrix to be integer and binary respectively:

colind[0] = 3; colind[1] = 5;
coltype[0] = 'I'; coltype[1] = 'B';
XPRSchgcoltype(prob,2,colind,coltype);

Further information

1. The column types can only be changed before the global search is started.

2. Calling XPRSchgcoltype to change any variable into a binary variable causes the bounds previously
defined for the variable to be deleted and replaced by bounds of 0 and 1.

3. Calling XPRSchgcoltype to change a continuous variable into an integer variable cause its lower bound
to be rounded up to the nearest integer value and its upper bound to be rounded down to the nearest
integer value.

Related topics
XPRSaddcols, XPRSchgrowtype, XPRSdelcols, XPRSgetcoltype.

Fair Isaac Corporation Proprietary Information 146

Chapter 7: Console and Library Functions

XPRSchgglblimit

Purpose
Used to change semi-continuous or semi-integer lower bounds, or upper limits on partial integers.

Synopsis
int XPRS_CC XPRSchgglblimit(XPRSprob prob, int ncols, const int colind[],

const double limit[]);

Arguments
prob The current problem.
ncols Number of column limits to change.
colind Integer array of size ncols containing the indices of the semi-continuous, semi-integer or

partial integer columns that should have their limits changed.
limit Double array of length ncols giving the new limit values.

Further information

1. The new limits are not allowed to be negative.

2. Partial integer limits can be at most 2̂28.

Related topics
XPRSchgcoltype, XPRSgetglobal.

Fair Isaac Corporation Proprietary Information 147

Chapter 7: Console and Library Functions

XPRSchgmcoef, XPRSchgmcoef64

Purpose
Used to change multiple coefficients in the matrix. If any coefficient does not already exist, it will be
added to the matrix. If many coefficients are being added to a row of the matrix, it may be more efficient
to delete the old row of the matrix and add a new one.

Synopsis
int XPRS_CC XPRSchgmcoef(XPRSprob prob, int ncoefs, const int rowind[],

const int colind[], const double rowcoef[]);

int XPRS_CC XPRSchgmcoef64(XPRSprob prob, XPRSint64 ncoefs, const int
rowind[], const int colind[], const double rowcoef[]);

Arguments
prob The current problem.
ncoefs Number of new coefficients.
rowind Integer array of length ncoefs containing the row indices of the coefficients to be

changed.
colind Integer array of length ncoefs containing the column indices of the coefficients to be

changed.
rowcoef Double array of length ncoefs containing the new coefficient values. If an element of

rowcoef is zero, the coefficient will be deleted.

Related controls
Double

MATRIXTOL Tolerance on matrix elements.

Example

rowind[0] = 0; rowind[1] = 3;
colind[0] = 1; colind[1] = 5;
rowcoef[0] = 2.0; rowcoef[1] = 0.0;
XPRSchgmcoef(prob,2,rowind,colind,rowcoef);

This changes two elements to values 2.0 and 0.0.

Further information
XPRSchgmcoef is more efficient than repeated calls to XPRSchgcoef and should be used in its place if
many coefficients are to be changed.

Related topics
XPRSchgcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj, XPRSchgrhs, XPRSgetcols,
XPRSgetrhs.

Fair Isaac Corporation Proprietary Information 148

Chapter 7: Console and Library Functions

XPRSchgmqobj, XPRSchgmqobj64

Purpose
Used to change multiple quadratic coefficients in the objective function. If any of the coefficients does
not exist already, new coefficients will be added to the objective function.

Synopsis
int XPRS_CC XPRSchgmqobj(XPRSprob prob, int ncoefs, const int objqcol1[],

const int objqcol2[], const double objqcoef[]);

int XPRS_CC XPRSchgmqobj64(XPRSprob prob, XPRSint64 ncoefs, const int
objqcol1[], const int objqcol2[], const double objqcoef[]);

Arguments
prob The current problem.
ncoefs The number of coefficients to change.
objqcol1 Integer array of size ncol containing the column index of the first variable in each

quadratic term.
objqcol2 Integer array of size ncol containing the column index of the second variable in each

quadratic term.
objqcoef New values for the coefficients. If an entry in objqcoef is 0, the corresponding entry will

be deleted. These are the coefficients of the quadratic Hessian matrix.

Example
The following code results in an objective function with terms: [6x21 + 3x1x2 + 3x2x1]/2

objqcol1[0] = 0; objqcol2[0] = 0; objqcoef[0] = 6.0;
objqcol1[1] = 1; objqcol2[1] = 0; objqcoef[1] = 3.0;
XPRSchgmqobj(prob,2,objqcol1,objqcol2,objqcoef);

Further information

1. The columns in the arrays objqcol1 and objqcol2must already exist in the matrix. If the columns do
not exist, they must be added with XPRSaddcols.

2. XPRSchgmqobj is more efficient than repeated calls to XPRSchgqobj and should be used in its place
when several coefficients are to be changed.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgobj, XPRSchgqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 149

Chapter 7: Console and Library Functions

XPRSchgobj

Purpose
Used to change the objective function coefficients.

Synopsis
int XPRS_CC XPRSchgobj(XPRSprob prob, int ncols, const int colind[], const

double objcoef[]);

Arguments
prob The current problem.
ncols Number of objective function coefficient elements to change.
colind Integer array of length ncols containing the indices of the columns on which the range

elements will change. An index of -1 indicates that the fixed part of the objective function
on the right hand side should change.

objcoef Double array of length ncols giving the new objective function coefficients.

Example
Changing three coefficients of the objective function with XPRSchgobj :

colind[0] = 0; colind[1] = 2; colind[2] = 5;
objcoef[0] = 25.0; objcoef[1] = 5.3; objcoef[2] = 0.0;
XPRSchgobj(prob,3,colind,objcoef);

Further information
The value of the fixed part of the objective function can be obtained using the OBJRHS problem attribute.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgqobj, XPRSgetobj.

Fair Isaac Corporation Proprietary Information 150

Chapter 7: Console and Library Functions

XPRSchgobjsense CHGOBJSENSE

Purpose
Changes the problem’s objective function sense to minimize or maximize.

Synopsis
int XPRS_CC XPRSchgobjsense(XPRSprob prob, int objsense);
CHGOBJSENSE [min | max]

Arguments
prob The current problem.
objsense XPRS_OBJ_MINIMIZE to change into a minimization, or XPRS_OBJ_MAXIMIZE to

change into maximization problem.

Related topics
XPRSlpoptimize, XPRSmipoptimize.

Fair Isaac Corporation Proprietary Information 151

Chapter 7: Console and Library Functions

XPRSchgqobj

Purpose
Used to change a single quadratic coefficient in the objective function corresponding to the variable pair
(objqcol1,objqcol2) of the Hessian matrix.

Synopsis
int XPRS_CC XPRSchgqobj(XPRSprob prob, int objqcol1, int objqcol2, double

objqcoef);

Arguments
prob The current problem.
objqcol1 Column index for the first variable in the quadratic term.
objqcol2 Column index for the second variable in the quadratic term.
objqcoef New value for the coefficient in the quadratic Hessian matrix. If an entry in objqcoef is

0, the corresponding entry will be deleted.

Example
The following code adds the terms [15x21 + 7x1x2]/2 to the objective function:

XPRSchgqobj(prob, 0, 0, 15);
XPRSchgqobj(prob, 0, 1, 3.5);

Further information

1. The columns objqcol1 and objqcol2must already exist in the matrix. If the columns do not exist,
they must be added with the routine XPRSaddcols.

2. If objqcol1 is not equal to objqcol2, then both the matrix elements (objqcol1, objqcol2) and
(objqcol2, objqcol1) are changed to leave the Hessian symmetric.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 152

Chapter 7: Console and Library Functions

XPRSchgqrowcoeff

Purpose
Changes a single quadratic coefficient in a row.

Synopsis
int XPRS_CC XPRSchgqrowcoeff(XPRSprob prob, int row, int rowqol1, int

rowqcol2, double rowqcoef);

Arguments
prob The current problem.
row Index of the row where the quadratic matrix is to be changed.
rowqcol1 First index of the coefficient to be changed.
rowqcol2 Second index of the coefficient to be changed.
rowqcoef The new coefficient.

Further information

1. This function may be used to add new nonzero coefficients, or even to define the whole quadratic
expression with it. Doing that, however, is significantly less efficient than adding the whole expression
with XPRSaddqmatrix.

2. The row must not be an equality or a ranged row.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj,
XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 153

Chapter 7: Console and Library Functions

XPRSchgrhs

Purpose
Used to change right–hand side values of the problem.

Synopsis
int XPRS_CC XPRSchgrhs(XPRSprob prob, int nrows, const int rowind[], const

double rhs[]);

Arguments
prob The current problem.
nrows Number of right hand side values to change.
rowind Integer array of length nrows containing the indices of the rows on which the right hand

side values will change.
rhs Double array of length nrows giving the right hand side values.

Example
Here we change the three right hand sides in rows 2, 6, and 8 to new values:

rowind[0] = 2; rowind[1] = 8; rowind[2] = 6;
rhs[0] = 5.0; rhs[1] = 3.8; rhs[2] = 5.7;
XPRSchgrhs(prob,3,rowind,rhs);

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhsrange, XPRSgetrhs, XPRSgetrhsrange.

Fair Isaac Corporation Proprietary Information 154

Chapter 7: Console and Library Functions

XPRSchgrhsrange

Purpose
Used to change the range for a row of the problem matrix.

Synopsis
int XPRS_CC XPRSchgrhsrange(XPRSprob prob, int nrows, const int rowind[],

const double rng[]);

Arguments
prob The current problem.
nrows Number of range elements to change.
rowind Integer array of length nrows containing the indices of the rows on which the range

elements will change.
rng Double array of length nrows giving the range values.

Example
Here, the constraint x + y ≤ 10 (with row index 5) in the problem is changed to 8 ≤ x + y ≤ 10:

rowind[0] = 5; rng[0] = 2.0;
XPRSchgrhsrange(prob,1,rowind,rng);

Further information
If the range specified on the row is r, what happens depends on the row type and value of r. It is possible
to convert non-range rows using this routine.

Value of r Row type Effect
r ≥ 0 = b, ≤ b b – r ≤

∑
ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r
r < 0 = b, ≤ b b ≤

∑
ajxj ≤ b – r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhs, XPRSgetrhsrange.

Fair Isaac Corporation Proprietary Information 155

Chapter 7: Console and Library Functions

XPRSchgrowtype

Purpose
Used to change the type of a row in the matrix.

Synopsis
int XPRS_CC XPRSchgrowtype(XPRSprob prob, int nrows, const int rowind[],

const char rowtype[]);

Arguments
prob The current problem.
nrows Number of rows to change.
rowind Integer array of length nrows containing the indices of the rows.
rowtype Character array of length nrows giving the new row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example
Here row 4 is changed to an equality row:

rowind[0] = 4; rowtype[0] = 'E';
XPRSchgrowtype(prob,1,rowind,rowtype);

Further information
A row can be changed to a range type row by first changing the row to an R or L type row and then
changing the range on the row using XPRSchgrhsrange.

Related topics
XPRSaddrows, XPRSchgcoltype, XPRSchgrhs, XPRSchgrhsrange, XPRSdelrows,
XPRSgetrowtype.

Fair Isaac Corporation Proprietary Information 156

Chapter 7: Console and Library Functions

XPRScopycallbacks

Purpose
Copies callback functions defined for one problem to another.

Synopsis
int XPRS_CC XPRScopycallbacks(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the callbacks are copied.
src The problem from which the callbacks are copied.

Example
The following sets up a message callback function callback for problem prob1 and then copies this to
the problem prob2.

XPRScreateprob(&prob1);
XPRSaddcbmessage(prob1,callback,NULL,0);
XPRScreateprob(&prob2);
XPRScopycallbacks(prob2,prob1);

Related topics
XPRScopycontrols, XPRScopyprob.

Fair Isaac Corporation Proprietary Information 157

Chapter 7: Console and Library Functions

XPRSclearrowflags

Purpose
Clears extra information attached to a range of rows.

Synopsis
int XPRS_CC XPRSclearrowflags(XPRSprob prob, const int flags[], int first,

int last);

Arguments
prob The current problem
flags Int array of length last-first+1 including type of extra information to remove (see

below)
first First row index to be checked
last Last row index to be checked

Further information
The flags array consists of a bitvector for each row defining types of information to remove:

XPRS_ROWFLAG_QUADRATIC Remove all quadratic coefficients.
XPRS_ROWFLAG_DELAYED The row will not be a delayed row.
XPRS_ROWFLAG_MODELCUT The row will not be a model cut.
XPRS_ROWFLAG_INDICATOR Remove indicators associated to the row.
XPRS_ROWFLAG_NONLINEAR Remove any nonlinear coefficients.

Example
The following makes sure that the second and third rows are not indicators and removes any quadratic
matrix from the second row.

int flags[2];
int flags[2];
flags[0] = XPRS_ROWFLAG_QUADRATIC+XPRS_ROWFLAG_INDICATOR;
flags[1] = XPRS_ROWFLAG_INDICATOR;
XPRSclearrowflags(prob,1,2,flags);

Related topics
XPRSgetrowflags

Fair Isaac Corporation Proprietary Information 158

Chapter 7: Console and Library Functions

XPRScopycontrols

Purpose
Copies controls defined for one problem to another.

Synopsis
int XPRS_CC XPRScopycontrols(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the controls are copied.
src The problem from which the controls are copied.

Example
The following turns off Presolve for problem prob1 and then copies this and other control values to the
problem prob2 :

XPRScreateprob(&prob1);
XPRSsetintcontrol(prob1,XPRS_PRESOLVE,0);
XPRScreateprob(&prob2);
XPRScopycontrols(prob2,prob1);

Related topics
XPRScopycallbacks, XPRScopyprob.

Fair Isaac Corporation Proprietary Information 159

Chapter 7: Console and Library Functions

XPRScopyprob

Purpose
Copies information defined for one problem to another.

Synopsis
int XPRS_CC XPRScopyprob(XPRSprob dest, XPRSprob src, const char ⁎name);

Arguments
dest The new problem pointer to which information is copied.
src The old problem pointer from which information is copied.
name A string of up to 1024 characters (including NULL terminator) containing the name for the

problem copy. This must be unique when file writing is to be expected, and particularly for
global problems.

Example
The following copies the problem, its controls and it callbacks from prob1 to prob2:

XPRSprob prob1, prob2;
...
XPRScreateprob(&prob2);
XPRScopyprob(prob2,prob1,"MyProb");
XPRScopycontrols(prob2,prob1);
XPRScopycallbacks(prob2,prob1);

Further information
XPRScopyprob copies only the problem and does not copy the callbacks or controls associated to a
problem. These must be copied separately using XPRScopycallbacks and XPRScopycontrols,
respectively.

Related topics
XPRScopycallbacks, XPRScopycontrols, XPRScreateprob.

Fair Isaac Corporation Proprietary Information 160

Chapter 7: Console and Library Functions

XPRScreateprob

Purpose
Sets up a new problem within the Optimizer.

Synopsis
int XPRS_CC XPRScreateprob(XPRSprob ⁎p_prob);

Argument
p_prob Pointer to a variable holding the new problem.

Example
The following creates a problem which will contain myprob:

XPRSprob prob;
XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");

Further information

1. XPRScreateprobmust be called after XPRSinit and before using the other Optimizer routines.

2. Any number of problems may be created in this way, depending on your license details. All problems
should be removed using XPRSdestroyprob once you have finished working with them.

3. If XPRScreateprob cannot complete successfully, a nonzero value is returned and ⁎p_prob is set to
NULL (as a consequence, it is not possible to retrieve further error information using e.g.
XPRSgetlasterror).

Related topics
XPRSdestroyprob, XPRScopyprob, XPRSinit.

Fair Isaac Corporation Proprietary Information 161

Chapter 7: Console and Library Functions

XPRScrossoverlpsol

Purpose
Provides a basic optimal solution for a given solution of an LP problem. This function behaves like the
crossover after the barrier algorithm.

Synopsis
int XPRS_CC XPRScrossoverlpsol(XPRSprob prob, int ⁎p_status);

Arguments
prob The current problem.
p_status Pointer to an int where the status will be returned. The status is one of:

0 The crossover is successful.
1 The crossover is not performed because the problem has no solution.

Related controls
Integer

ALGAFTERCROSSOVER Specifies which algorithm to use for cleaning up the solution.
PREPROTECTDUAL Whether or not to protect the given dual solution during presolve.

Example
This example loads a problem, loads a solution for the problem and then uses XPRScrossoverlpsol
to find a basic optimal solution.

XPRSreadprob(prob, "problem", "");
XPRSloadlpsol(prob, x, NULL, dual, NULL, &status);
XPRScrossoverlpsol(prob, &status);

A solution can also be loaded from an ASCII solution file using XPRSreadslxsol.

Further information

1. The crossover contains two phases: a crossover phase for finding a basic solution and a clean-up phase
for finding a basic optimal solution. Setting ALGAFTERCROSSOVER to 0 will allow the crossover to skip
the clean-up phase.

2. The given solution is expected to be feasible or nearly feasible, otherwise the crossover may take a long
time to find a basic feasible solution. More importantly, the given solution is expected to have a small
duality gap. A small duality gap indicates that the given solution is close to the optimal solution. If the
given solution is far away from the optimal solution, the clean-up phase may need many simplex
iterations to move to a basic optimal solution.

Related topics
XPRSloadlpsol, XPRSreadslxsol, Section 4.2.1.

Fair Isaac Corporation Proprietary Information 162

Chapter 7: Console and Library Functions

XPRSdelcols

Purpose
Delete columns from a matrix.

Synopsis
int XPRS_CC XPRSdelcols(XPRSprob prob, int ncols, const int colind[]);

Arguments
prob The current problem.
ncols Number of columns to delete.
colind Integer array of length ncols containing the columns to delete.

Example
In this example, column 3 is deleted from the matrix:

colind[0] = 3;
XPRSdelcols(prob,1,colind);

Further information

1. After columns have been deleted from a problem, the numbers of the remaining columns are moved
down so that the columns are always numbered from 0 to COLS-1 where COLS is the problem attribute
containing the number of non-deleted columns in the matrix.

2. If the problem has already been optimized, or an advanced basis has been loaded, and you delete a basis
column the current basis will no longer be valid - the basis is "lost".
If you go on to re-optimize the problem, a warning message is displayed (140) and the Optimizer
automatically generates a corrected basis.
You can avoid losing the basis by only deleting non-basic columns (see XPRSgetbasis), taking a basic
column out of the basis first if necessary (see XPRSgetpivots and XPRSpivot).

Related topics
XPRSaddcols, XPRSdelrows.

Fair Isaac Corporation Proprietary Information 163

Chapter 7: Console and Library Functions

XPRSdelcpcuts

Purpose
During the branch and bound search, cuts are stored in the cut pool to be applied at descendant nodes.
These cuts may be removed from a given node using XPRSdelcuts, but if this is to be applied in a large
number of cases, it may be preferable to remove the cut completely from the cut pool. This is achieved
using XPRSdelcpcuts.

Synopsis
int XPRS_CC XPRSdelcpcuts(XPRSprob prob, int cuttype, int interp, int ncuts,

const XPRScut cutind[]);

Arguments
prob The current problem.
cuttype User defined cut type to match against.
interp Way in which the cut cuttype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in cuttype;
3 treat cut types as bit maps - delete if all bits match those set in cuttype.

ncuts The number of cuts to delete. A value of -1 indicates delete all cuts.
cutind Array containing pointers to the cuts which are to be deleted. This array may be NULL if

ncuts is -1, otherwise it has length ncuts.

Related topics
XPRSaddcuts, XPRSdelcuts, XPRSloadcuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 164

Chapter 7: Console and Library Functions

XPRSdelcuts

Purpose
Deletes cuts from the matrix at the current node. Cuts from the parent node which have been
automatically restored may be deleted as well as cuts added to the current node using XPRSaddcuts or
XPRSloadcuts. The cuts to be deleted can be specified in a number of ways. If a cut is ruled out by any
one of the criteria it will not be deleted.

Synopsis
int XPRS_CC XPRSdelcuts(XPRSprob prob, int basis, int cuttype, int interp,

double delta, int ncuts, const XPRScut cutind[]);

Arguments
prob The current problem.
basis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may be

deleted.
cuttype User defined type of the cut to be deleted.
interp Way in which the cut cuttype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in cuttype;
3 treat cut types as bit maps - delete if all bits match those set in cuttype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the cuts,
this argument should be set to XPRS_MINUSINFINITY.

ncuts Number of cuts to drop if a list of cuts is provided. A value of -1 indicates all cuts.
cutind Array containing pointers to the cuts which are to be deleted. This array may be NULL if

ncuts is set to -1 otherwise it has length ncuts.

Further information

1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be valid and
it may take many iterations to recover an optimal basis. If the basis parameter is set to 1, this will
ensure that cuts with non-basic slacks will not be deleted even if the other parameters specify that these
cuts should be deleted. It is highly recommended that the basis parameter is always set to 1.

2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only those cuts
with a slack value greater than the delta parameter will be deleted.

3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node can be
obtained with the XPRSgetcutlist command.

4. This function should be called only from within callback functions set by either XPRSaddcboptnode or
XPRSaddcbcutmgr.

Related topics
XPRSaddcuts, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 165

Chapter 7: Console and Library Functions

XPRSdelgencons

Purpose
Delete general constraints from a problem.

Synopsis
int XPRS_CC XPRSdelgencons(XPRSprob prob, int ncons, const int conind[]);

Arguments
prob The current problem.
ncons Number of general constraints to delete.
conind An integer array of length ncons containing the general constraints to delete.

Example
In this example, general constraints 0 and 2 are deleted from the problem:

conind[0] = 0; conind[1] = 2;
XPRSdelgencons(prob,2,conind);

Further information
After general constraints have been deleted from a problem, the indices of the remaining constraints are
reduced down so that the general constraints are always numbered from 0 to GENCONS-1 where
GENCONS is the problem attribute containing the number of non-deleted general constraints in the
problem.

Related topics
XPRSaddgencons, XPRSgetgencons.

Fair Isaac Corporation Proprietary Information 166

Chapter 7: Console and Library Functions

XPRSdelindicators

Purpose
Delete indicator constraints. This turns the specified rows into normal rows (not controlled by indicator
variables).

Synopsis
int XPRS_CC XPRSdelindicators(XPRSprob prob, int first, int last);

Arguments
prob The current problem.
first First row in the range.
last Last row in the range (inclusive).

Example
In this example, if any of the first two rows of the matrix is an indicator constraint, they are turned into
normal rows:

XPRSdelindicators(prob,0,1);

Further information
This function has no effect on rows that are not indicator constraints.

Related topics
XPRSgetindicators, XPRSsetindicators.

Fair Isaac Corporation Proprietary Information 167

Chapter 7: Console and Library Functions

XPRSdelpwlcons

Purpose
Delete piecewise linear constraints from a problem.

Synopsis
int XPRS_CC XPRSdelpwlcons(XPRSprob prob, int npwls, const int pwlind[]);

Arguments
prob The current problem.
npwls Number of piecewise linear constraints to delete.
pwlind An integer array of length npwls containing the piecewise linear constraints to delete.

Example
In this example, piecewise linear constraints 0 and 2 are deleted from the problem:

pwlind[0] = 0; pwlind[1] = 2;
XPRSdelpwlcons(prob,2,pwlind);

Further information
After piecewise linear constraints have been deleted from a problem, the indices of the remaining
constraints are reduced so that the piecewise linear constraints are always numbered from 0 to
PWLCONS-1 where PWLCONS is the problem attribute containing the number of non-deleted piecewise
linear constraints in the problem.

Related topics
XPRSaddpwlcons, XPRSgetpwlcons.

Fair Isaac Corporation Proprietary Information 168

Chapter 7: Console and Library Functions

XPRSdelqmatrix

Purpose
Deletes the quadratic part of a row or of the objective function.

Synopsis
int XPRS_CC XPRSdelqmatrix(XPRSprob prob, int row);

Arguments
prob The current problem.
row Index of row from which the quadratic part is to be deleted.

Further information
If a row index of -1 is used, the function deletes the quadratic coefficients from the objective function.

Related topics
XPRSaddrows, XPRSdelcols, XPRSdelrows.

Fair Isaac Corporation Proprietary Information 169

Chapter 7: Console and Library Functions

XPRSdelrows

Purpose
Delete rows from a matrix.

Synopsis
int XPRS_CC XPRSdelrows(XPRSprob prob, int nrows, const int rowind[]);

Arguments
prob The current problem.
nrows Number of rows to delete.
rowind An integer array of length nrows containing the rows to delete.

Example
In this example, rows 0 and 10 are deleted from the matrix:

rowind[0] = 0; rowind[1] = 10;
XPRSdelrows(prob,2,rowind);

Further information

1. After rows have been deleted from a problem, the numbers of the remaining rows are moved down so
that the rows are always numbered from 0 to ROWS-1 where ROWS is the problem attribute containing the
number of non-deleted rows in the matrix.

2. If the problem has already been optimized, or an advanced basis has been loaded, and you delete a row
for which the slack column is non-basic, the current basis will no longer be valid - the basis is "lost".
If you go on to re-optimize the problem, a warning message is displayed (140) and the Optimizer
automatically generates a corrected basis.
You can avoid losing the basis by only deleting basic rows (see XPRSgetbasis), bringing a non-basic
row into the basis first if necessary (see XPRSgetpivots and XPRSpivot).

Related topics
XPRSaddrows, XPRSdelcols, XPRSgetbasis, XPRSgetpivots, XPRSpivot.

Fair Isaac Corporation Proprietary Information 170

Chapter 7: Console and Library Functions

XPRSdelsets

Purpose
Delete sets from a problem.

Synopsis
int XPRS_CC XPRSdelsets(XPRSprob prob, int nsets, const int setind[]);

Arguments
prob The current problem.
nsets Number of sets to delete.
setind An integer array of length nsets containing the sets to delete.

Example
In this example, sets 0 and 2 are deleted from the problem:

setind[0] = 0; setind[1] = 2;
XPRSdelsets(prob,2,setind);

Further information
After sets have been deleted from a problem, the numbers of the remaining sets are moved down so that
the sets are always numbered from 0 to SETS-1 where SETS is the problem attribute containing the
number of non-deleted sets in the problem.

Related topics
XPRSaddsets.

Fair Isaac Corporation Proprietary Information 171

Chapter 7: Console and Library Functions

XPRSdestroyprob

Purpose
Removes a given problem and frees any memory associated with it following manipulation and
optimization.

Synopsis
int XPRS_CC XPRSdestroyprob(XPRSprob prob);

Argument
prob The problem to be destroyed.

Example
The following creates, loads and solves a problem called myprob, before subsequently freeing any
resources allocated to it:

XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");
XPRSlpoptimize(prob,"");
XPRSdestroyprob(prob);

Further information
After work is finished, all problems must be destroyed. If a NULL problem pointer is passed to
XPRSdestroyprob, no error will result.

Related topics
XPRScreateprob, XPRSfree, XPRSinit.

Fair Isaac Corporation Proprietary Information 172

Chapter 7: Console and Library Functions

XPRSdumpcontrols DUMPCONTROLS

Purpose
Displays the list of controls and their current value for those controls that have been set to a non default
value.

Synopsis
int XPRS_CC XPRSdumpcontrols(XPRSprob prob);
DUMPCONTROLS

Argument
prob The problem for which controls are dumped.

Related topics
SETDEFAULTS, SETDEFAULTCONTROL

Fair Isaac Corporation Proprietary Information 173

Chapter 7: Console and Library Functions

EXIT

Purpose
Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias of QUIT.

Synopsis
EXIT

Example
The command is called simply as:

EXIT

Further information

1. Fatal error conditions return nonzero exit values which may be of use to the host operating system.
These are described in Chapter 10.

2. If you wish to return an exit code reflecting the final solution status, then use the STOP command instead.

Related topics
STOP, QUIT, XPRSsave (SAVE).

Fair Isaac Corporation Proprietary Information 174

Chapter 7: Console and Library Functions

XPRSestimaterowdualranges

Purpose
Performs a dual side range sensitivity analysis, i.e. calculates estimates for the possible ranges for dual
values.

Synopsis
int XPRS_CC XPRSestimaterowdualranges(XPRSprob prob, const int nrows, const

int rowind[], const int iterlim, double mindual[], double maxdual[]);

Arguments
prob The current problem.
nrows The number of rows to analyze.
rowind Row indices to analyze.
iterlim Effort limit expressed as simplex iterations per row.
mindual Estimated lower bounds on the possible dual ranges.
maxdual Estimated upper bounds on the possible dual ranges.

Further information
This function may provide better results for individual row dual ranges when called for a larger number of
rows.

Related topics
XPRSlpoptimize, XPRSstrongbranch

Fair Isaac Corporation Proprietary Information 175

Chapter 7: Console and Library Functions

XPRSfeaturequery

Purpose
Checks if the provided feature is available in the current license used by the optimizer.

Synopsis
int XPRS_CC XPRSfeaturequery(const char ⁎feature, int ⁎p_status);

Arguments
feature The feature string to be checked in the license.
p_status Return status of the check, a value of 1 indicates the feature is available.

Fair Isaac Corporation Proprietary Information 176

Chapter 7: Console and Library Functions

XPRSfixglobals FIXGLOBALS

Purpose
Fixes all the global entities to the values of the last found MIP solution. This is useful for finding the
reduced costs for the continuous variables after the global variables have been fixed to their optimal
values.

Synopsis
int XPRS_CC XPRSfixglobals(XPRSprob prob, int options);
FIXGLOBALS [-flags]

Arguments
prob The current problem.
options Options how to fix the globals.

Bit Meaning
0 If all global entities should be rounded to the nearest discrete value in the solution

before being fixed.
1 If piecewise linear and general constraints should be kept in the problem with only the

non-convex decisions (i.e. which part of a non-convex piecewise linear function or
which variable attains a maximum) fixed. Otherwise all variables appearing in
piecewise linear or general constraints will be fixed.

flags Flags to pass to FIXGLOBALS:
r round all global entities to the nearest feasible value in the solution before being

fixed;
t keep piecewise linear and general constraints and only fix their non-convex

decisions;

Example 1 (Library)
This example performs a global search on problem myprob and then uses XPRSfixglobals before
solving the remaining linear problem:

XPRSreadprob(prob,"myprob","");
XPRSmipoptimize(prob," ");
XPRSfixglobals(prob, 1);
XPRSlpoptimize(prob," ");
XPRSwriteprtsol(prob);

Example 2 (Console)
A similar set of commands at the console would be as follows:

READPROB
MIPOPTIMIZE
FIXGLOBALS -r
LPOPTIMIZE
PRINTSOL

Further information

1. Because of tolerances, it is possible for e.g. a binary variable to be slightly fractional in the MIP solution,
where it might have the value 0.999999 instead of being at exactly 1.0. With ifround = 0, such a
binary will be fixed at 0.999999, but with ifround = 1, it will be fixed at 1.0.

2. This command is useful for inspecting the reduced costs of the continuous variables in a matrix after the
global entities have been fixed. Sensitivity analysis can also be performed on the continuous variables in
a MIP problem using XPRSrhssa, XPRSobjsa or XPRSbndsa after calling XPRSfixglobals
(FIXGLOBALS).

Fair Isaac Corporation Proprietary Information 177

Chapter 7: Console and Library Functions

Related topics
XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 178

Chapter 7: Console and Library Functions

XPRSfree

Purpose
Frees any allocated memory and closes all open files.

Synopsis
int XPRS_CC XPRSfree(void);

Example
The following frees resources allocated to the problem prob and then tidies up before exiting:

XPRSdestroyprob(prob);
XPRSfree();
return 0;

Further information
After a call to XPRSfree no library functions may be used without first calling XPRSinit again.

Related topics
XPRSdestroyprob, XPRSinit.

Fair Isaac Corporation Proprietary Information 179

Chapter 7: Console and Library Functions

XPRSftran

Purpose
Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.

Synopsis
int XPRS_CC XPRSftran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.
vec Double array of length ROWS containing the values which are to be multiplied by the basis

inverse. The transformed values appear in the array.

Related controls
Double

ETATOL Tolerance on eta elements.

Example
To get the (unscaled) tableau column of structural variable number jcol, assuming that all arrays have
been dimensioned, do the following:

/⁎ Min size of arrays: mstart: 2; mrowind, dmatval & y: nrow. ⁎/
/⁎ Get column as loaded originally, in sparse format ⁎/
rc = XPRSgetcols(prob, mstart, mrowind, dmatval, nrow, &nelt,

jcol, jcol);

/⁎ Unpack into the zeroed array ⁎/
for(i = 0; i < nrow; i++)
y[i] = 0.0;
for(ielt = 0; ielt < nelt; ielt++)
y[mrowind[ielt]] = dmatval[ielt];

rc = XPRSftran(prob,y);

Get the (unscaled) tableau column of the slack variable for row number irow, assuming that all arrays
have been dimensioned.

/⁎ Min size of arrays: y: nrow ⁎/
/⁎ Set up the original slack column in full format ⁎/
for(i = 0; i < nrow; i++)
y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSftran(prob,y);

Further information
If the matrix is in a presolved state, the function will work with the basis for the presolved problem.

Related topics
XPRSbtran.

Fair Isaac Corporation Proprietary Information 180

Chapter 7: Console and Library Functions

XPRSgetattribinfo

Purpose
Accesses the id number and the type information of an attribute given its name. An attribute name may
be for example XPRS_ROWS. Names are case-insensitive and may or may not have the XPRS_ prefix. The
id number is the constant used to identify the attribute for calls to functions such as
XPRSgetintattrib. The type information returned will be one of the below integer constants defined
in the xprs.h header file.
The function will return an id number of 0 and a type value of XPRS_TYPE_NOTDEFINED if the name is
not recognized as an attribute name. Note that this will occur if the name is a control name and not an
attribute name.

Synopsis
int XPRS_CC XPRSgetattribinfo(XPRSprob prob, const char⁎ name, int⁎ p_id,

int⁎ iTypeinfo);

Arguments
prob The current problem.
name The name of the attribute to be queried. Names are case-insensitive and may or may not

have the XPRS_ prefix. A full list of all attributes may be found in Chapter 8, or from the
list in the xprs.h header file.

p_id Pointer to an integer where the id number will be returned.
p_type Pointer to an integer where the type id will be returned. The value will be one of the

following constants from xprs.h:
XPRS_TYPE_NOTDEFINED The name was not recognized.
XPRS_TYPE_INT 32 bit integer.
XPRS_TYPE_INT64 64 bit integer.
XPRS_TYPE_DOUBLE Double precision floating point.
XPRS_TYPE_STRING String.

Example
The following code example obtains the id number and the type id of the control or attribute with name
given by name. Note that the name happens to be a control name in this example:

const char ⁎name = "presolve";
int id, type;
...
if(XPRSgetattribinfo(prob, name, &id,

&type) || id==0) {
if(XPRSgetcontrolinfo(prob, name, &id,

&type) || id==0) {
printf("Unrecognized name: %s\n", name);

}
}

Related topics
XPRSgetcontrolinfo.

Fair Isaac Corporation Proprietary Information 181

Chapter 7: Console and Library Functions

XPRSgetbanner

Purpose
Returns the banner and copyright message.

Synopsis
int XPRS_CC XPRSgetbanner(char ⁎banner);

Argument
banner A buffer of at least XPRS_MAXBUFFERLENGTH characters in which the null terminated

banner string will be returned.

Example
The following calls XPRSgetbanner to return banner information at the start of the program:

char banner[XPRS_MAXBUFFERLENGTH];
...
if(XPRSinit(NULL))
{

/⁎ The error message when XPRSinit fails is written to the banner. ⁎/
XPRSgetbanner(banner);
printf("%s\n", banner);
return 1;

}
XPRSgetbanner(banner);
printf("%s\n", banner);

Further information
This function can most usefully be employed to return extra information if a problem occurs with
XPRSinit.

Related topics
XPRSinit.

Fair Isaac Corporation Proprietary Information 182

Chapter 7: Console and Library Functions

XPRSgetbasis

Purpose
Returns the current basis into the user’s data arrays.

Synopsis
int XPRS_CC XPRSgetbasis(XPRSprob prob, int rowstat[], int colstat[]);

Arguments
prob The current problem.
rowstat Integer array of length ROWS to the basis status of the slack, surplus or artificial variable

associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.
May be NULL if not required.

colstat Integer array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.
May be NULL if not required.

Example
The following example minimizes a problem before saving the basis for later:

int rows, cols, ⁎rowstat, ⁎colstat;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rowstat = (int ⁎) malloc(sizeof(int)⁎rows);
colstat = (int ⁎) malloc(sizeof(int)⁎cols);
XPRSlpoptimize(prob,"");
XPRSgetbasis(prob,rowstat,colstat);

Related topics
XPRSgetpresolvebasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Proprietary Information 183

Chapter 7: Console and Library Functions

XPRSgetbasisval

Purpose
Returns the current basis status for a specific column or row.

Synopsis
int XPRS_CC XPRSgetbasisval(XPRSprob prob, int row, int col, int ⁎p_rowstat,

int ⁎p_colstat);

Arguments
prob The current problem.
row Row index to get the row basis status for.
col Column index to get the column basis status for.
p_rowstat Integer pointer where the value of the row basis status will be returned. May be NULL if

not required.
p_colstat Integer pointer where the value of the column basis status will be returned. May be NULL

if not required.

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Proprietary Information 184

Chapter 7: Console and Library Functions

XPRSgetcheckedmode

Purpose
You can use this function to interrogate whether checking and validation of all Optimizer function calls is
enabled for the current process. Checking and validation is enabled by default but can be disabled by
XPRSsetcheckedmode.

Synopsis
int XPRS_CC XPRSgetcheckedmode(int⁎ p_checkedmode);

Argument
p_checkedmode Variable that is set to 0 if checking and validation of Optimizer function calls is

disabled for the current process, non-zero otherwise.

Related topics
XPRSsetcheckedmode.

Fair Isaac Corporation Proprietary Information 185

Chapter 7: Console and Library Functions

XPRSgetcoef

Purpose
Returns a single coefficient in the constraint matrix.

Synopsis
int XPRS_CC XPRSgetcoef(XPRSprob prob, int row, int col, double ⁎p_coef);

Arguments
prob The current problem.
row Row of the constraint matrix.
col Column of the constraint matrix.
p_coef Pointer to a double where the coefficient will be returned.

Further information
It is quite inefficient to get several coefficients with the XPRSgetcoef function. It is better to use
XPRSgetcols or XPRSgetrows.

Related topics
XPRSgetcols, XPRSgetrows.

Fair Isaac Corporation Proprietary Information 186

Chapter 7: Console and Library Functions

XPRSgetcols, XPRSgetcols64

Purpose
Returns the nonzeros in the constraint matrix for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetcols(XPRSprob prob, int start[], int rowind[], double

rowcoef[], int maxcoefs, int ⁎p_ncoefs, int first, int last);

int XPRS_CC XPRSgetcols64(XPRSprob prob, XPRSint64 start[], int rowind[],
double rowcoef[], XPRSint64 maxcoefs, XPRSint64 ⁎p_ncoefs, int first,
int last);

Arguments
prob The current problem.
start Integer array which will be filled with the indices indicating the starting offsets in the

rowind and rowcoef arrays for each requested column. It must be of length at least
last-first+2. Column i starts at position start[i] in the rowind and rowcoef
arrays, and has start[i+1]-start[i] elements in it. May be NULL if not required.

rowind Integer array of length maxcoefs which will be filled with the row indices of the nonzero
coefficents for each column. May be NULL if not required.

rowcoef Double array of length maxcoefs which will be filled with the nonzero coefficient values.
May be NULL if not required.

maxcoefs The size of the rowind and rowcoef arrays. This is the maximum number of nonzero
coefficients that the Optimizer is allowed to return.

p_ncoefs Pointer to an integer where the number of nonzero coefficients in the selected columns
will be returned. If p_ncoefs exceeds maxcoefs, only the maxcoefs first nonzero
coefficients will be returned.

first First column in the range.
last Last column in the range.

Example
The following examples retrieves the number of nonzero coefficients in all columns of the problem:

int ncoefs, cols, first = 0, last;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
last = cols-1;
XPRSgetcols(prob,NULL,NULL,NULL,0,&ncoefs,first,last);

Further information
It is possible to obtain just the number of elements in the range of columns by replacing start, rowind
and rowcoef by NULL, as in the example. In this case, maxcoefsmust be set to 0 to indicate that the
length of arrays passed is zero. This is demonstrated in the example above.

Related topics
XPRSgetrows.

Fair Isaac Corporation Proprietary Information 187

Chapter 7: Console and Library Functions

XPRSgetcoltype

Purpose
Returns the column types for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetcoltype(XPRSprob prob, char coltype[], int first, int

last);

Arguments
prob The current problem.
coltype Character array of length last-first+1 where the column types will be returned:

C indicates a continuous variable;
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.
last Last column in the range.

Example
This example finds the types for all columns in the matrix and prints them to the console:

int cols, i;
char ⁎types;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
types = (char ⁎)malloc(sizeof(char)⁎cols);
XPRSgetcoltype(prob,types,0,cols-1);

for(i=0;i<cols;i++) printf("%c\n",types[i]);

Related topics
XPRSchgcoltype, XPRSgetrowtype.

Fair Isaac Corporation Proprietary Information 188

Chapter 7: Console and Library Functions

XPRSgetcontrolinfo

Purpose
Accesses the id number and the type information of a control given its name. A control name may be for
example XPRS_PRESOLVE. Names are case-insensitive and may or may not have the XPRS_ prefix. The
id number is the constant used to identify the control for calls to functions such as
XPRSgetintcontrol.
The function will return an id number of 0 and a type value of XPRS_TYPE_NOTDEFINED if the name is
not recognized as a control name. Note that this will occur if the name is an attribute name and not a
control name.

Synopsis
int XPRS_CC XPRSgetcontrolinfo(XPRSprob prob, const char⁎ name, int⁎ p_id,

int⁎ iTypeinfo);

Arguments
prob The current problem.
name The name of the control to be queried. Names are case-insensitive and may or may not

have the XPRS_ prefix. A full list of all controls may be found in 8, or from the list in the
xprs.h header file.

p_id Pointer to an integer where the id number will be returned.
p_type Pointer to an integer where the type information will be returned. The returned value will

be one of the following constants from xprs.h:
XPRS_TYPE_NOTDEFINED The name was not recognized.
XPRS_TYPE_INT 32 bit integer.
XPRS_TYPE_INT64 64 bit integer.
XPRS_TYPE_DOUBLE Double precision floating point.
XPRS_TYPE_STRING String.

Example
The following code example obtains the id number and the type information of the control or attribute
with name given by name. Note that the name happens to be a control name in this example:

const char ⁎name = "presolve";
int id, type;
...
if(XPRSgetattribinfo(prob, name, &id,

&type) || id==0) {
if(XPRSgetcontrolinfo(prob, name, &id,

&type) || id==0) {
printf("Unrecognized name: %s\n", name);

}
}

Related topics
XPRSgetattribinfo.

Fair Isaac Corporation Proprietary Information 189

Chapter 7: Console and Library Functions

XPRSgetcpcutlist

Purpose
Returns a list of cut indices from the cut pool.

Synopsis
int XPRS_CC XPRSgetcpcutlist(XPRSprob prob, int cuttype, int interp, double

delta, int ⁎p_ncuts, int maxcuts, XPRScut cutind[], double viol[]);

Arguments
prob The current problem.
cuttype The user defined type of the cuts to be returned.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

cuttype;
3 treat cut types as bit maps - get cut if all bits match those set in cuttype.

delta Only those cuts with a signed violation greater than delta will be returned.
p_ncuts Pointer to the integer where the number of cuts of type cuttype in the cut pool will be

returned.
maxcuts Maximum number of cuts to be returned.
cutind Array of length maxcuts where the pointers to the cuts will be returned.
viol Double array of length maxcuts where the values of the signed violations of the cuts will

be returned.

Further information

1. The violated cuts can be obtained by setting the delta parameter to the size of the (signed) violation
required. If unviolated cuts are required as well, deltamay be set to XPRS_MINUSINFINITY which is
defined in the library header file.

2. If the number of active cuts is greater than maxcuts, only maxcuts cuts will be returned and p_ncuts
will be set to the number of active cuts. If p_ncuts is less than maxcuts, then only p_ncuts positions
will be filled in cutind.

3. In case of a cut of type ’L’, the violation equals the negative of the slack associated with the row of the
cut. In case of a cut of type ’G’, the violation equals the slack associated with the row of the cut. For cuts
of type ’E’, the violation equals the absolute value of the slack.

4. Please note that the violations returned are absolute violations, while feasibility is checked by the
Optimizer in the scaled problem.

Related topics
XPRSdelcpcuts, XPRSgetcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutmap,
XPRSgetcutslack, Section 5.9.

Fair Isaac Corporation Proprietary Information 190

Chapter 7: Console and Library Functions

XPRSgetcpcuts, XPRSgetcpcuts64

Purpose
Returns cuts from the cut pool. A list of cut pointers in the array rowindmust be passed to the routine.
The columns and elements of the cut will be returned in the regions pointed to by the colind and
cutcoef parameters. The columns and elements will be stored contiguously and the starting point of
each cut will be returned in the region pointed to by the start parameter.

Synopsis
int XPRS_CC XPRSgetcpcuts(XPRSprob prob, const XPRScut rowind[], int ncuts,

int maxcoefs, int cuttype[], char rowtype[], int start[], int
colind[], double cutcoef[], double rhs[]);

int XPRS_CC XPRSgetcpcuts64(XPRSprob prob, const XPRScut rowind[], int
ncuts, XPRSint64 maxcoefs, int cuttype[], char rowtype[], XPRSint64
start[], int colind[], double cutcoef[], double rhs[]);

Arguments
prob The current problem.
rowind Array of length ncuts containing the pointers to the cuts.
ncuts Number of cuts to be returned.
maxcoefs Maximum number of column indices of the cuts to be returned.
cuttype Integer array of length at least ncuts where the cut types will be returned. May be NULL if

not required.
rowtype Character array of length at least ncuts where the sense of the cuts (L, G, or E) will be

returned. May be NULL if not required.
start Integer array of length at least ncuts+1 containing the offsets into the colind and

cutcoef arrays. The last element indicates where cut ncuts+1 would start. May be
NULL if not required.

colind Integer array of length maxcoefs where the column indices of the cuts will be returned.
May be NULL if not required.

cutcoef Double array of length maxcoefs where the matrix values will be returned. May be NULL
if not required.

rhs Double array of length at least ncuts where the right hand side elements for the cuts will
be returned. May be NULL if not required.

Example
The following example gets the first two cuts:

int cuttype[2], start[3];
int ⁎colind;
int rowind[] = { 0, 1 };
double rhs[2];
double ⁎cutcoef;
char ⁎ rowtype;
...
XPRSgetcpcuts(prob,rowind,2,0,NULL,NULL,start,NULL,NULL,NULL);
colind = (int⁎) malloc(start[2]⁎sizeof(int));
cutcoef = (double⁎) malloc(start[2]⁎sizeof(double));
XPRSgetcpcuts(prob,rowind,2,0,cuttype,rowtype,start,colind,cutcoef,rhs);

Further information
It is possible to obtain just the number of nonzeros in the range of queried cuts by calling the functions
with all output arays except for start equaling NULL and checking the value of start[ncuts]. In this

Fair Isaac Corporation Proprietary Information 191

Chapter 7: Console and Library Functions

case, maxcoefsmust be set to 0 to indicate that the length of arrays passed is 0.

Related topics
XPRSgetcpcutlist, XPRSgetcutlist, 5.9.

Fair Isaac Corporation Proprietary Information 192

Chapter 7: Console and Library Functions

XPRSgetcutlist

Purpose
Retrieves a list of cut pointers for the cuts active at the current node.

Synopsis
int XPRS_CC XPRSgetcutlist(XPRSprob prob, int cuttype, int interp, int

⁎p_ncuts, int maxcuts, XPRScut cutind[]);

Arguments
prob The current problem.
cuttype User defined type of the cuts to be returned. A value of -1 indicates return all active cuts.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

cuttype;
3 treat cut types as bit maps - get cut if all bits match those set in cuttype.

p_ncuts Pointer to the integer where the number of active cuts of type cuttype will be returned.
maxcuts Maximum number of cuts to be retrieved.
cutind Array of length maxcuts where the pointers to the cuts will be returned.

Further information
If the number of active cuts is greater than maxcuts, then maxcuts cuts will be returned and p_ncuts
will be set to the number of active cuts. If p_ncuts is less than maxcuts, then only p_ncuts positions
will be filled in cutind.

Related topics
XPRSgetcpcutlist, XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 193

Chapter 7: Console and Library Functions

XPRSgetcutmap

Purpose
Used to return in which rows a list of cuts are currently loaded into the Optimizer. This is useful for
example to retrieve the duals associated with active cuts.

Synopsis
int XPRS_CC XPRSgetcutmap(XPRSprob prob, int ncuts, const XPRScut cutind[],

int cutmap[]);

Arguments
prob The current problem.
ncuts Number of cuts in the cutind array.
cutind Pointer array to the cuts for which the row index is requested.
cutmap Integer array of length ncuts, where the row indices are returned.

Further information
For cuts currently not loaded into the problem, a row index of -1 is returned.

Related topics
XPRSgetcpcutlist, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutslack,
XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 194

Chapter 7: Console and Library Functions

XPRSgetcutslack

Purpose
Used to calculate the slack value of a cut with respect to the current LP relaxation solution. The slack is
calculated from the cut itself, and might be requested for any cut (even if it is not currently loaded into the
problem).

Synopsis
int XPRS_CC XPRSgetcutslack(XPRSprob prob, XPRScut cut, double⁎ p_slack);

Arguments
prob The current problem.
cutind Pointer of the cut for which the slack is to be calculated.
p_slack Double pointer where the value of the slack is returned.

Related topics
XPRSgetcpcutlist, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, XPRSgetcutmap,
XPRSgetcpcuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 195

Chapter 7: Console and Library Functions

XPRSgetdaysleft

Purpose
Returns the number of days left until the license expires.

Synopsis
int XPRS_CC XPRSgetdaysleft(int ⁎p_daysleft);

Argument
p_daysleft Pointer to an integer where the number of days is to be returned. For a permanent

license, the return value will be XPRS_MAXINT

Example
The following calls XPRSgetdaysleft to print information about the license:

int daysleft;
...
XPRSinit(NULL);
if(XPRSgetdaysleft(&daysleft) != 0) {

printf("An error occurred\n");
} else if (daysleft==XPRS_MAXINT) {

printf("License will never expire\n");
} else {

printf("License expires in %d days\n", daysleft);
}

Related topics
XPRSgetbanner.

Fair Isaac Corporation Proprietary Information 196

Chapter 7: Console and Library Functions

XPRSgetdblattrib

Purpose
Enables users to retrieve the values of various double problem attributes. Problem attributes are set
during loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetdblattrib(XPRSprob prob, int attrib, double ⁎p_value);

Arguments
prob The current problem.
attrib Problem attribute whose value is to be returned. A full list of all available problem

attributes may be found in Chapter 9, or from the list in the xprs.h header file.
p_value Pointer to a double where the value of the problem attribute will be returned.

Example
The following obtains the optimal value of the objective function and displays it to the console:

double lpobjval;
...
XPRSlpoptimize(prob,"");
XPRSgetdblattrib(prob,XPRS_LPOBJVAL,&lpobjval);
printf("The maximum profit is %f\n",lpobjval);

Related topics
XPRSgetintattrib, XPRSgetstrattrib.

Fair Isaac Corporation Proprietary Information 197

Chapter 7: Console and Library Functions

XPRSgetdblcontrol

Purpose
Retrieves the value of a given double control parameter.

Synopsis
int XPRS_CC XPRSgetdblcontrol(XPRSprob prob, int control, double ⁎p_value);

Arguments
prob The current problem.
control Control parameter whose value is to be returned. A full list of all controls may be found in

Chapter 8, or from the list in the xprs.h header file.
p_value Pointer to the location where the control value will be returned.

Example
The following returns the integer feasibility tolerance:

XPRSgetdblcontrol(prob,XPRS_MIPTOL,&miptol);

Related topics
XPRSsetdblcontrol, XPRSgetintcontrol, XPRSgetstrcontrol.

Fair Isaac Corporation Proprietary Information 198

Chapter 7: Console and Library Functions

XPRSgetdirs

Purpose
Used to return the directives that have been loaded into a matrix. Priorities, forced branching directions
and pseudo costs can be returned. If called after presolve, XPRSgetdirs will get the directives for the
presolved problem.

Synopsis
int XPRS_CC XPRSgetdirs(XPRSprob prob, int ⁎p_ndir, int indices[], int

prios[], char branchdirs[], double uppseudo[], double downpseudo[]);

Arguments
prob The current problem.
p_ndir Pointer to an integer where the number of directives will be returned.
indices Integer array of length p_ndir containing the column numbers (0, 1, 2,...) or negative

values corresponding to special ordered sets (the first set numbered -1, the second
numbered -2,...). May be NULL if not required.

prios Integer array of length p_ndir containing the priorities for the columns and sets, where
columns/sets with smallest priority will be branched on first. May be NULL if not required.

branchdirs Character array of length p_ndir specifying the branching direction for each column or
set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be NULL if not required.

uppseudo Double array of length p_ndir containing the up pseudo costs for the columns and sets.
May be NULL if not required.

downpseudo Double array of length p_ndir containing the down pseudo costs for the columns and
sets. May be NULL if not required.

Further information
The value p_ndir denotes the number of directives, at most MIPENTS, obtainable with
XPRSgetintattrib(prob,XPRS_MIPENTS,& mipents);.

Related topics
XPRSloaddirs, XPRSloadpresolvedirs.

Fair Isaac Corporation Proprietary Information 199

Chapter 7: Console and Library Functions

XPRSgetdualray

Purpose
Retrieves a dual ray (dual unbounded direction) for the current problem, if the problem is found to be
infeasible.

Synopsis
int XPRS_CC XPRSgetdualray(XPRSprob prob, double ray[], int ⁎p_hasray);

Arguments
prob The current problem.
ray Double array of length ROWS to hold the ray. May be NULL if not required.
p_hasray This variable will be set to 1 if the Optimizer is able to return a dual ray, 0 otherwise.

Example
The following code tries to retrieve a dual ray:

int rows;
double ⁎dualRay;
int hasray;
...
XPRSgetintattrib(prob, XPRS_ROWS, &rows);
dualRay = malloc(rows⁎sizeof(double));
XPRSgetdualray(prob, dualRay, &hasray);
if(!hasray) printf("Could not retrieve a dual ray\n");

Further information

1. It is possible to retrieve a dual ray only when, after solving an LP problem, the final status (LPSTATUS) is
XPRS_LP_INFEAS.

2. Dual rays are not post-solved. If the problem is in a presolved state, the dual ray that is returned will be for
the presolved problem. If the problem was solved with presolve on and has been restored to the original
state (the default behavior), this function will not be able to return a ray. To ensure that a dual ray can be
obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
XPRSgetprimalray.

Fair Isaac Corporation Proprietary Information 200

Chapter 7: Console and Library Functions

XPRSgetgencons, XPRSgetgencons64

Purpose
Returns the general constraints y = f(x1, ..., xn, c1, ..., cm) in a given range.

Synopsis
int XPRS_CC XPRSgetgencons(XPRSprob prob, int contype[], int resultant[],

int colstart[], int colind[], int maxcols, int ⁎p_ncols, int
valstart[], double val[], int maxvals, int ⁎p_nvals, int first, int
last);

int XPRS_CC XPRSgetgencons64(XPRSprob prob, int contype[], int resultant[],
XPRSint64 colstart[], int colind[], XPRSint64 maxcols, XPRSint64
⁎p_ncols, XPRSint64 valstart[], double val[], XPRSint64 maxvals,
XPRSint64 ⁎p_nvals, int first, int last);

Arguments
prob The current problem.
contype NULL if not required or an integer array of length at least last-first+1 which

will be filled with the types of the general constraints:
XPRS_GENCONS_MAX (0) indicates a maximum constraint;
XPRS_GENCONS_MIN (1) indicates a minimum constraint;
XPRS_GENCONS_AND (2) indicates an and constraint.
XPRS_GENCONS_OR (3) indicates an or constraint;
XPRS_GENCONS_ABS (4) indicates an absolute value constraint.

resultant Integer array which will be filled with the indices of the output variables y. It must
be of length at least last-first+1. May be NULL if not required.

colstart Integer array of length at least last-first+2 which will be filled with the start
index of each general constraint in the colind array. May be NULL if not required.

colind Integer array which will be filled with the indices of the input variables xi. May be
NULL if not required.

maxcols Maximum number of input columns to be retrieved.
p_ncols Pointer to return the number of input columns in the colind array. If the number

of input columns is greater than maxcols, then only maxcols elements will be
returned. May be NULL if not required.

valstart Integer array of length at least last-first+2 which will be filled with the start
index of each general constraint in the val array. May be NULL if not required.

val Integer array which will be filled with the constant values ci. May be NULL if not
required.

maxvals Maximum number of constant values to be retrieved.
p_nvals Pointer to return the number of constant values in the val array. If the number of

constant values is greater than maxvals, then only maxvals elements will be
returned.May be NULL if not required.

first First general constraint in the range.
last Last general constraint in the range.

Example
The following example retrieves all general constraints:

int ngencons;
int ⁎contype;
int ⁎resultant;
int ⁎colstart;

Fair Isaac Corporation Proprietary Information 201

Chapter 7: Console and Library Functions

int ⁎colind;
int maxcols;
int ncols;
int ⁎valstart;
int ⁎val;
int maxvals;
int nvals;
...
XPRSgetdblattrib(prob, XPRS_GENCONS, &ngencons);
XPRSgetgencons(prob, NULL, NULL, NULL, NULL, 0, &maxcols, NULL, NULL, 0, &maxvals, 0, ngencons - 1);
contype = (int⁎) malloc(ngencons⁎sizeof(int));
resultant = (int⁎) malloc(ngencons⁎sizeof(int));
colstart = (int⁎) malloc((ngencons+1)⁎sizeof(int));
colind = (int⁎) malloc(maxcols⁎sizeof(int));
valstart = (int⁎) malloc((ngencons+1)⁎sizeof(int));
val = (double⁎) malloc(maxvals⁎sizeof(double));
XPRSgetgencons(prob, contype, resultant, colstart, colind, maxcols, &ncols, valstart, val, maxvals, &nvals, 0, ngencons - 1);
...

Further information

1. It is possible to obtain just the number of input columns and/or constant values in the range of general
constraints by calling this function with maxcols and maxvals set to 0, in which case the required size
for the arrays will be returned in p_ncols and p_nvals (one of them may be NULL if only the other is
required).

2. Since general constraints get transformed and replaced during presolve, this should not be called on the
presolved problem.

Related topics
XPRSaddgencons, XPRSdelgencons.

Fair Isaac Corporation Proprietary Information 202

Chapter 7: Console and Library Functions

XPRSgetglobal, XPRSgetglobal64

Purpose
Retrieves global information about a problem. It must be called before XPRSmipoptimize if the
presolve option is used.

Synopsis
int XPRS_CC XPRSgetglobal(XPRSprob prob, int ⁎p_nentities, int ⁎p_nsets,

char coltype[], int colind[], double limit[], char settype[], int
start[], int setcols[], double refval[]);

int XPRS_CC XPRSgetglobal64(XPRSprob prob, int ⁎p_nentities, int ⁎p_nsets,
char coltype[], int colind[], double limit[], char settype[],
XPRSint64 start[], int setcols[], double refval[]);

Arguments
prob The current problem.
p_nentities Pointer to the integer where the number of binary, integer, semi-continuous,

semi-continuous integer and partial integer entities will be returned. This is equal to the
problem attribute MIPENTS.

p_nsets Pointer to the integer where the number of SOS1 and SOS2 sets will be returned. It can be
retrieved from the problem attribute SETS.

coltype Character array of length p_nentities where the entity types will be returned. The
types will be one of:
B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

colind Integer array of length p_nentities where the column indices of the global entities will
be returned.

limit Double array of length p_nentities where the limits for the partial integer variables and
lower bounds for the semi-continuous and semi-continuous integer variables will be
returned (any entries in the positions corresponding to binary and integer variables will be
meaningless).

settype Character array of length p_nsets where the set types will be returned. The set types will
be one of:
1 SOS1 type sets;
2 SOS2 type sets.

start Integer array where the offsets into the setcols and refval arrays indicating the start
of the sets will be returned. This array must be of length p_nsets+1, the final element
will contain the offset where set p_nsets+1 would start and equals the length of the
setcols and refval arrays, SETMEMBERS.

setcols Integer array of length SETMEMBERS where the columns in each set will be returned.
refval Double array of length SETMEMBERS where the reference row entries for each member of

the sets will be returned. These define the order for SOS2 constraints and may be used in
branching for both types.

Example
The following obtains the global variables and their types in the arrays colind and qrtype:

int nentities, nsets, ⁎colind;
char ⁎coltype;
...

Fair Isaac Corporation Proprietary Information 203

Chapter 7: Console and Library Functions

XPRSgetglobal(prob,&nentities,&nsets,NULL,NULL,NULL,NULL,
NULL,NULL,NULL);

colind = malloc(nentities⁎sizeof(int));
coltype = malloc(nentities⁎sizeof(char));
XPRSgetglobal(prob,&nentities,&nsets,coltype,ngcols,NULL,

NULL,NULL,NULL,NULL);

Further information
Any of the arguments except prob, p_nentities and p_nsetsmay be NULL if not required.

Related topics
XPRSloadglobal, XPRSloadqglobal.

Fair Isaac Corporation Proprietary Information 204

Chapter 7: Console and Library Functions

XPRSgetiisdata

Purpose
Returns information for an Irreducible Infeasible Set: size, variables (row and column vectors) and
conflicting sides of the variables, duals and reduced costs.

Synopsis
int XPRS_CC XPRSgetiisdata(XPRSprob prob, int iis, int ⁎p_nrows, int

⁎p_ncols, int rowind[], int colind[], char contype[], char bndtype[],
double duals[], double djs[], char isolationrows[], char
isolationcols[]);

Arguments
prob The current problem.
iis The ordinal number of the IIS to get data for.
p_nrows Pointer to an integer where the number of rows in the IIS will be returned.
p_ncols Pointer to an integer where the number of bounds in the IIS will be returned.
rowind Indices of rows in the IIS. Can be NULL if not required.
colind Indices of bounds (columns) in the IIS. Can be NULL if not required.
contype Sense of rows in the IIS:

L for less or equal row;
G for greater or equal row.
E for an equality row (for a non LP IIS);
1 for a SOS1 row;
2 for a SOS2 row;
W for a piecewise linear constraint;
X for a general constraint;
I for an indicator row.
Can be NULL if not required.

bndtype Sense of bound in the IIS:
U for upper bound;
L for lower bound.
F for fixed columns (for a non LP IIS);
B for a binary column;
I for an integer column;
P for a partial integer columns;
S for a semi-continuous column;
R for a semi-continuous integer column.
Can be NULL if not required.

duals The dual multipliers associated with the rows. Can be NULL if not required.
djs The dual multipliers (reduced costs) associated with the bounds. Can be NULL if not

required.
isolationrows The isolation status of the rows:

-1 if isolation information is not available for row (run iis isolations);
0 if row is not in isolation;
1 if row is in isolation.
Can be NULL if not required.

isolationcols The isolation status of the bounds:
-1 if isolation information is not available for column (run iis isolations);
0 if column is not in isolation;
1 if column is in isolation.
Can be NULL if not required.

Fair Isaac Corporation Proprietary Information 205

Chapter 7: Console and Library Functions

Example
This example first retrieves the size of IIS 1, then gets the detailed information for the IIS.

XPRSgetiisdata(myprob, 1, &nrow, &ncol, NULL, NULL, NULL, NULL,
NULL,NULL,NULL,NULL);

rows = malloc(nrow⁎sizeof(int));
cols = malloc(ncol⁎sizeof(int));
contype = malloc(nrow);
bndtype = malloc(ncol);
duals = malloc(nrow⁎sizeof(double));
djs = malloc(ncol⁎sizeof(double));
isolationrows = malloc(nrow);
isolationcols = malloc(ncol);
XPRSgetiisdata(myprob, 1, &nrow, &ncol, rows, cols, contype,

bndtype, duals, djs, isolationrows, isolationcols);

Further information

1. Calling IIS from the console automatically prints most of the above IIS information to the screen. Extra
information can be printed with the IIS -p command.

2. IISs are numbered from 1 to NUMIIS. Index number 0 refers to the IIS approximation.

3. If rowind and colind both are NULL, only the p_nrows and p_ncols are returned.

4. The arrays may be NULL if not required. However, arrays contype, duals and isolationrows are
only returned if rowind is not NULL. Similarly, arrays bndtype, djs and isolationcols are only
returned if colind is not NULL.

5. All the non NULL arrays should be of length p_nrows or p_ncols, respectively.

6. For the initial IIS approximation (iis = 0) the number of rows and columns with a nonzero Lagrange
multiplier (dual/reduced cost respectively) are returned. Please note that, in such cases, it might be
necessary to call XPRSiisstatus to retrieve the necessary size of the return arrays.

7. If there are Special Ordered Sets in the IIS, their number is included in the rowind array.

8. For non LP IISs, some column indices may appear more than once in the colind array, for example an
integrality and a bound restriction for the same column.

9. Duals, reduced cost and isolation information is not available for nonlinear IIS problems, and for those
the arrays are filled with zero values in case they are provided.

Related topics
XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS, Section A.6.

Fair Isaac Corporation Proprietary Information 206

Chapter 7: Console and Library Functions

XPRSgetindex

Purpose
Returns the index for a specified row or column name.

Synopsis
int XPRS_CC XPRSgetindex(XPRSprob prob, int type, const char ⁎name, int

⁎p_index);

Arguments
prob The current problem.
type 1 if a row index is required;

2 if a column index is required.
name Null terminated string.
p_index Pointer of the integer where the row or column index number will be returned. A value of

-1 will be returned if the row or column does not exist.

Example
The following example loads problem and checks to see if "n 0203" is the name of a row or column:

int seqr, seqc;
...
XPRSreadprob(prob,"problem","");

XPRSgetindex(prob,1,"n 0203", &seqr);
XPRSgetindex(prob,2,"n 0203", &seqc);
if(seqr==-1 && seqc ==-1) printf("n 0203 not there\n");
if(seqr!= -1) printf("n 0203 is row %d\n",seqr);
if(seqc!= -1) printf"n 0203 is column %d\n",seqc);

Related topics
XPRSaddnames.

Fair Isaac Corporation Proprietary Information 207

Chapter 7: Console and Library Functions

XPRSgetindicators

Purpose
Returns the indicator constraint condition (indicator variable and complement flag) associated to the
rows in a given range.

Synopsis
int XPRS_CC XPRSgetindicators(XPRSprob prob, int colind[], int complement[],

int first, int last);

Arguments
prob The current problem.
colind Integer array of length last-first+1 where the column indices of the indicator

variables are to be placed.
complement Integer array of length last-first+1 where the indicator complement flags will be

returned:
0 not an indicator constraint (in this case the corresponding entry in the colind

array is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

first First row in the range.
last Last row in the range (inclusive).

Example
The following example retrieves information about all indicator constraints in the matrix and prints a list
of their indices.

int i, rows;
double ⁎colind, ⁎complement;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
colind = malloc(rows⁎(sizeof(int)));
complement = malloc(rows⁎(sizeof(int)));
XPRSgetindicators(prob,colind,complement,0,rows-1);

printf("Indicator rows:");
for(i=0; i<rows; i++) if(complement[i]!=0) printf(" %d", i);
printf("\n");

Related topics
XPRSsetindicators, XPRSdelindicators.

Fair Isaac Corporation Proprietary Information 208

Chapter 7: Console and Library Functions

XPRSgetinfeas

Purpose
Returns a list of infeasible primal and dual variables.

Synopsis
int XPRS_CC XPRSgetinfeas(XPRSprob prob, int ⁎p_nprimalcols, int

⁎p_nprimalrows, int ⁎p_ndualrows, int ⁎p_ndualcols, int x[], int
slack[], int duals[], int djs[]);

Arguments
prob The current problem.
p_nprimalcols Pointer to an integer where the number of primal infeasible variables is returned.
p_nprimalrows Pointer to an integer where the number of primal infeasible rows is returned.
p_ndualrows Pointer to an integer where the number of dual infeasible rows is returned.
p_ndualcols Pointer to an integer where the number of dual infeasible variables is returned.
x Integer array of length p_nprimalcols where the primal infeasible variables will be

returned. May be NULL if not required.
slack Integer array of length p_nprimalrows where the primal infeasible rows will be returned.

May be NULL if not required.
duals Integer array of length p_ndualrows where the dual infeasible rows will be returned.

May be NULL if not required.
djs Integer array of length p_ndualcols where the dual infeasible variables will be returned.

May be NULL if not required.

Error values
91 A current problem is not available.
422 A solution is not available.

Related controls
Double

FEASTOL Tolerance on RHS.
OPTIMALITYTOL Reduced cost tolerance.

Example
In this example, XPRSgetinfeas is first called with nulled integer arrays to get the number of infeasible
entries. Then space is allocated for the arrays and the function is again called to fill them in:

int nprimalcols, nprimalrows, ndualrows, ndualcols, ⁎x, ⁎slack, ⁎duals, ⁎djs;
...
XPRSgetinfeas(prob, &nprimalcols, &nprimalrows, &ndualrows, &ndualcols,

NULL, NULL, NULL, NULL);
x = malloc(nprimalcols ⁎ sizeof(⁎x));
slack = malloc(nprimalrows ⁎ sizeof(⁎slack));
duals = malloc(ndualrows ⁎ sizeof(⁎duals));
djs = malloc(ndualcols ⁎ sizeof(⁎djs));
XPRSgetinfeas(prob, &nprimalcols, &nprimalrows, &ndualrows, &ndualcols,

x, slack, duals, djs);

Further information

1. To find the infeasibilities in a previously saved solution, the solution must first be loaded into memory
with the XPRSreadbinsol (READBINSOL) function.

2. If any of the last four arguments are set to NULL, the corresponding number of infeasibilities is still
returned.

Fair Isaac Corporation Proprietary Information 209

Chapter 7: Console and Library Functions

Related topics
XPRSgetscaledinfeas, XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst,
XPRSiisisolations, XPRSiisnext, XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 210

Chapter 7: Console and Library Functions

XPRSgetintattrib, XPRSgetintattrib64

Purpose
Enables users to recover the values of various integer problem attributes. Problem attributes are set
during loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetintattrib(XPRSprob prob, int attrib, int ⁎p_value);

int XPRS_CC XPRSgetintattrib64(XPRSprob prob, int attrib, XPRSint64
⁎p_value);

Arguments
prob The current problem.
attrib Problem attribute whose value is to be returned. A full list of all problem attributes may be

found in Chapter 9, or from the list in the xprs.h header file.
p_value Pointer to an integer where the value of the problem attribute will be returned.

Example
The following obtains the number of columns in the matrix and allocates space to obtain lower bounds
for each column:

int cols;
double ⁎lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetlb(prob,lb,0,cols-1);

Related topics
XPRSgetdblattrib, XPRSgetstrattrib.

Fair Isaac Corporation Proprietary Information 211

Chapter 7: Console and Library Functions

XPRSgetintcontrol, XPRSgetintcontrol64

Purpose
Enables users to recover the values of various integer control parameters

Synopsis
int XPRS_CC XPRSgetintcontrol(XPRSprob prob, int control, int ⁎p_value);

int XPRS_CC XPRSgetintcontrol64(XPRSprob prob, int control, XPRSint64
⁎p_value);

Arguments
prob The current problem.
control Control parameter whose value is to be returned. A full list of all controls may be found in

Chapter 8, or from the list in the xprs.h header file.
p_value Pointer to an integer where the value of the control will be returned.

Example
The following obtains the value of DEFAULTALG and outputs it to screen:

int defaultalg;
...
XPRSlpoptimize(prob,"");
XPRSgetintcontrol(prob,XPRS_DEFAULTALG,&defaultalg);
printf("DEFAULTALG is %d\n",defaultalg);

Further information
Some control parameters, such as SCALING, are bitmaps. Each bit controls a different behavior. If set, bit
0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.

Related topics
XPRSsetintcontrol, XPRSgetdblcontrol, XPRSgetstrcontrol.

Fair Isaac Corporation Proprietary Information 212

Chapter 7: Console and Library Functions

XPRSgetlastbarsol

Purpose
Used to obtain the last barrier solution values following optimization that used the barrier solver.

Synopsis
int XPRS_CC XPRSgetastbarsol(XPRSprob prob, double x[], double slack[],

double duals[], double djs[], int ⁎p_status);

Arguments
prob The current problem.
x Double array of length ORIGINALCOLS where the values of the primal variables will be

returned. May be NULL if not required.
slack Double array of length ORIGINALROWS where the values of the slack variables will be

returned. May be NULL if not required.
duals Double array of length ORIGINALROWS where the values of the dual variables (cTBB

–1) will
be returned. May be NULL if not required.

djs Double array of length ORIGINALCOLS where the reduced cost for each variable
(cT – cTBB

–1A) will be returned. May be NULL if not required.
p_status Status of the last barrier solve. Value matches that of XPRS_LPSTATUS should the solve

have been stopped immediately after the barrier.

Further information

1. If the barrier solver has not been used, p_status will return XPRS_LP_UNSOLVED.

2. The barrier solution or the solution candidate is always available if the status is not
XPRS_LP_UNSOLVED.

3. The last barrier solution is available until the next solve, and is not invalidated by otherwise working with
the problem.

Related topics
XPRSgetlpsol

Fair Isaac Corporation Proprietary Information 213

Chapter 7: Console and Library Functions

XPRSgetlasterror

Purpose
Returns the error message corresponding to the last error encountered by a library function.

Synopsis
int XPRS_CC XPRSgetlasterror(XPRSprob prob, char ⁎errmsg);

Arguments
prob The current problem.
errmsg A 512 character buffer where the last error message will be returned. If the message is

longer than 512 characters then it will be truncated. The message will always be
terminated by a NUL character.

Example
The following shows how this function might be used in error-checking:

void error(XPRSprob myprob, char ⁎function)
{

char errmsg[512];
XPRSgetlasterror(myprob,errmsg);
printf("Function %s did not execute correctly: %s\n",

function, errmsg);
XPRSdestroyprob(myprob);
XPRSfree();
exit(1);

}

where the main function might contain lines such as:

XPRSprob prob;
...
if(XPRSreadprob(prob,"myprob",""))

error(prob,"XPRSreadprob");

Related topics
ERRORCODE, XPRSaddcbmessage, XPRSsetlogfile, Chapter 10.

Fair Isaac Corporation Proprietary Information 214

Chapter 7: Console and Library Functions

XPRSgetlb

Purpose
Returns the lower bounds for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetlb(XPRSprob prob, double lb[], int first, int last);

Arguments
prob The current problem.
lb Double array of length last-first+1 where the lower bounds are to be placed.
first First column in the range.
last Last column in the range.

Example
The following example retrieves the lower bounds for the columns of the current problem:

int cols;
double ⁎lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetlb(prob,lb,0,cols-1);

Further information
Values greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values less than
or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.

Related topics
XPRSchgbounds, XPRSgetub.

Fair Isaac Corporation Proprietary Information 215

Chapter 7: Console and Library Functions

XPRSgetlicerrmsg

Purpose
Retrieves an error message describing the last licensing error, if any occurred.

Synopsis
int XPRS_CC XPRSgetlicerrmsg(char ⁎buffer, int maxbytes);

Arguments
buffer Buffer long enough to hold the error message (including a null terminator).
maxbytes Length of the buffer.

Example
The following calls XPRSgetlicerrmsg to find out why XPRSinit failed:

char message[512];
...
if(XPRSinit(NULL))
{

XPRSgetlicerrmsg(message,512);
printf("%s\n", message);

}

Further information

1. The error message includes an error code, which in case the user wishes to use it is also returned by the
function. If there was no licensing error the function returns 0.

2. It’s recommended that you pass a buffer of at least 2048 bytes as licensing errors can be qute long. If the
error message is too large to fit in the buffer, the first maxbytes-1 characters will be returned.

Related topics
XPRSinit.

Fair Isaac Corporation Proprietary Information 216

Chapter 7: Console and Library Functions

XPRSgetlpsol

Purpose
Used to obtain the LP solution values following optimization.

Synopsis
int XPRS_CC XPRSgetlpsol(XPRSprob prob, double x[], double slack[], double

duals[], double djs[]);

Arguments
prob The current problem.
x Double array of length ORIGINALCOLS where the values of the primal variables will be

returned. May be NULL if not required.
slack Double array of length ORIGINALROWS where the values of the slack variables will be

returned. May be NULL if not required.
duals Double array of length ORIGINALROWS where the values of the dual variables (cTBB

–1) will
be returned. May be NULL if not required.

djs Double array of length ORIGINALCOLS where the reduced cost for each variable
(cT – cTBB

–1A) will be returned. May be NULL if not required.

Example
The following sequence of commands will get the LP solution (x) at the top node of a MIP and the
optimal MIP solution (y):

int cols;
double ⁎x, ⁎y;
...
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetlpsol(prob,x,NULL,NULL,NULL);
XPRSmipoptimize(prob,"");
y = malloc(cols⁎sizeof(double));
XPRSgetmipsol(prob,y,NULL);

Further information

1. The function always returns data in the original space, even if the problem is currently in presolved state.
Use XPRSgetpresolvesol if you need the solution in terms of the presolved model.

2. If called during a global callback the solution of the current node will be returned.

3. When an integer solution is found during a global search, it is always set up as a solution to the current
node; therefore the integer solution is available as the current node solution and can be retrieved with
XPRSgetlpsol and XPRSgetpresolvesol.

4. If the matrix is modified after calling XPRSlpoptimize, then the solution will no longer be available.

5. If the problem has been presolved, then XPRSgetlpsol returns the solution to the original problem. The
only way to obtain the presolved solution is to call the related function, XPRSgetpresolvesol.

Related topics
XPRSgetlpsolval, XPRSgetpresolvesol, XPRSgetmipsol, XPRSwriteprtsol,
XPRSwritesol.

Fair Isaac Corporation Proprietary Information 217

Chapter 7: Console and Library Functions

XPRSgetlpsolval

Purpose
Used to obtain a single LP solution value following optimization.

Synopsis
int XPRS_CC XPRSgetlpsolval(XPRSprob prob, int col, int row, double ⁎p_x,

double ⁎p_slack, double ⁎p_dual, double ⁎p_dj);

Arguments
prob The current problem.
col Column index of the variable for which to return the solution value.
row Row index of the constraint for which to return the solution value.
p_x Double pointer where the value of the primal variable will be returned. May be NULL if not

required.
p_slack Double pointer where the value of the slack variable will be returned. May be NULL if not

required.
p_dual Double pointer where the value of the dual variable (cTBB

–1) will be returned. May be NULL
if not required.

p_dj Double pointer where the reduced cost for the variable (cT – cTBB
–1A) will be returned. May

be NULL if not required.

Further information
This function is currently not supported if the problem is in a presolved state.

Related topics
XPRSgetlpsol, XPRSgetpresolvesol, XPRSgetmipsol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Proprietary Information 218

Chapter 7: Console and Library Functions

XPRSgetmessagestatus

Purpose
Retrieves the current suppression status of a message.

Synopsis
int XPRS_CC XPRSgetmessagestatus(XPRSprob prob, int msgcode, int

⁎p_status);

Arguments
prob The problem to check for the suppression status of the message error code. Use NULL to

check for the global suppression status of the message msgcode.
msgcode The id number of the message. Refer to Chapter 10 for a list of possible message

numbers.
p_status Non-zero if the message is not suppressed; 0 otherwise.

Further information
If a message is suppressed globally then the message will always have p_status return zero from
XPRSgetmessagestatus when prob is non-NULL.

Related topics
XPRSsetmessagestatus.

Fair Isaac Corporation Proprietary Information 219

Chapter 7: Console and Library Functions

XPRSgetmipsol

Purpose
Used to obtain the solution values of the last MIP solution that was found.

Synopsis
int XPRS_CC XPRSgetmipsol(XPRSprob prob, double x[], double slack[]);

Arguments
prob The current problem.
x Double array of length ORIGINALCOLS where the values of the primal variables will be

returned. May be NULL if not required.
slack Double array of length ORIGINALROWS where the values of the slack variables will be

returned. May be NULL if not required.

Example
The following sequence of commands will get the solution (x) of the last MIP solution for a problem:

int cols;
double ⁎x;
...
XPRSmipoptimize(prob,"");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetmipsol(prob,x,NULL);

Further information

1. Warning: If allocating space for the MIP solution the row and column sizes must be obtained for the
original problem and not for the presolve problem. They can be obtained before optimizing or after calling
XPRSpostsolve for the case where the global search has not completed.

2. During a global intsol or preintsol callback, in order to retrieve the corresponding integer solution,
use either XPRSgetlpsol or XPRSgetpresolvesol, not XPRSgetmipsol (see the documentation of
these callbacks for an explanation).

Related topics
XPRSgetmipsolval, XPRSgetpresolvesol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Proprietary Information 220

Chapter 7: Console and Library Functions

XPRSgetmipsolval

Purpose
Used to obtain a single solution value of the last MIP solution that was found.

Synopsis
int XPRS_CC XPRSgetmipsolval(XPRSprob prob, int col, int row, double ⁎p_x,

double ⁎p_slack);

Arguments
prob The current problem.
col Column index of the variable for which to return the solution value.
row Row index of the constraint for which to return the solution value.
p_x Double pointer where the value of the primal variable will be returned. May be NULL if not

required.
p_slack Double pointer where the value of the slack variable will be returned. May be NULL if not

required.

Related topics
XPRSgetmipsol, XPRSgetpresolvesol, XPRSwriteprtsol, XPRSwritesol.

Fair Isaac Corporation Proprietary Information 221

Chapter 7: Console and Library Functions

XPRSgetmqobj, XPRSgetmqobj64

Purpose
Returns the nonzeros in the quadratic objective coefficients matrix for the columns in a given range. To
achieve maximum efficiency, XPRSgetmqobj returns the lower triangular part of this matrix only.

Synopsis
int XPRS_CC XPRSgetmqobj (XPRSprob prob, int start[], int colind[], double

objqcoef[], int maxcoefs, int ⁎p_ncoefs, int first, int last);

int XPRS_CC XPRSgetmqobj64 (XPRSprob prob, XPRSint64 start[], int colind[],
double objqcoef[], XPRSint64 maxcoefs, XPRSint64 ⁎p_ncoefs, int
first, int last);

Arguments
prob The current problem.
start Integer array which will be filled with indices indicating the starting offsets in the colind

and objqcoef arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position start[i] in the mrwind and dmatval
arrays, and has start[i+1]-start[i] elements in it. May be NULL if maxcoefs is 0.

colind Integer array of length maxcoefs which will be filled with the column indices of the
nonzero elements in the lower triangular part of Q. May be NULL if maxcoefs is 0.

objqcoef Double array of length maxcoefs which will be filled with the nonzero element values.
May be NULL if maxcoefs is 0.

maxcoefs The maximum number of elements to be returned (size of the arrays).
p_ncoefs Pointer to an integer where the number of nonzero quadratic objective coefficients will be

returned. If the number of nonzero coefficients is greater than maxcoefs, then only
maxcoefs elements will be returned. If p_ncoefs is smaller than maxcoefs, then only
p_ncoefs will be returned.

first First column in the range.
last Last column in the range.

Further information
The objective function is of the form cTx+0.5xTQx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is returned.

Related topics
XPRSchgmqobj, XPRSchgqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 222

Chapter 7: Console and Library Functions

XPRSgetnamelist

Purpose
Returns the names for the rows, columns, sets, piecewise linear of general constraints in a given range.
The names will be returned in a character buffer, with no trailing whitespace and with each name being
separated by a NULL character.

Synopsis
int XPRS_CC XPRSgetnamelist(XPRSprob prob, int type, char names[], int

maxbytes, int ⁎ p_nbytes, int first, int last);

Arguments
prob The current problem.
type 1 if row names are required;

2 if column names are required.
3 if set names are required.
4 if piecewise linear constraint names are required.
5 if general constraint names are required.

names A buffer into which the names will be returned as a sequence of null-terminated strings.
The buffer should be of length maxbytes bytes. May be NULL if maxbytes is 0.

maxbytes The maximum number of bytes that may be written to the buffer names.
p_nbytes A pointer to a variable into which will be written the number of bytes required to contain

the names in the specified range. May be NULL if not required.
first First row, column, set, piecewise linear or general constraint in the range.
last Last row, column, set, piecewise linear or general constraint in the range.

Example
The following example retrieves and outputs the row and column names for the current problem.

int i, o, cols, rows, cnames_len, rnames_len;
char ⁎cnames, ⁎rnames;
...
/⁎ Get problem size ⁎/
XPRSgetintattrib(prob,XPRS_COLS,&cols);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
/⁎ Request number of bytes required to retrieve the names ⁎/
XPRSgetnamelist(prob,1,NULL,0,&rnames_len,0,rows-1);
XPRSgetnamelist(prob,2,NULL,0,&cnames_len,0,cols-1);

/⁎ Now allocate buffers big enough then fetch the names ⁎/
cnames = (char ⁎) malloc(sizeof(char)⁎cnames_len);
rnames = (char ⁎) malloc(sizeof(char)⁎rnames_len);
XPRSgetnamelist(prob,1,rnames,rnames_len,NULL,0,rows-1);
XPRSgetnamelist(prob,2,cnames,cnames_len,NULL,0,cols-1);

/⁎ Output row names ⁎/
o=0;
for (i=0;i<rows;i++) {

printf("Row #%d: %s\n", i, rnames+o);
o += strlen(rnames+o)+1;

}
/⁎ Output column names ⁎/
o=0;
for (i=0;i<cols;i++) {

printf("Column #%d: %s\n", i, cnames+o);

Fair Isaac Corporation Proprietary Information 223

Chapter 7: Console and Library Functions

o += strlen(cnames+o)+1;
}

Related topics
XPRSaddnames.

Fair Isaac Corporation Proprietary Information 224

Chapter 7: Console and Library Functions

XPRSgetnamelistobject

Purpose
Returns the XPRSnamelist object for the rows, columns or sets of a problem. The names stored in this
object can be queried using the XPRS_nml_ functions.

Synopsis
int XPRS_CC XPRSgetnamelistobject(XPRSprob prob, int type, XPRSnamelist

⁎p_nml);

Arguments
prob The current problem.
type 1 if the row name list is required;

2 if the column name list is required;
3 if the set name list is required.
4 if piecewise linear constraint name list is required.
5 if general constraint name list is required.

p_nml Pointer to a variable holding the name list contained by the problem.

Further information
The XPRSnamelist object is a map of names to and from indices.

Related topics
None.

Fair Isaac Corporation Proprietary Information 225

Chapter 7: Console and Library Functions

XPRSgetnames

Purpose
Returns the names for the rows, columns, sets, piecewise linear or general constraints in a given range.
The names will be returned in a character buffer, each name being separated by a null character.

Synopsis
int XPRS_CC XPRSgetnames(XPRSprob prob, int type, char names[], int first,

int last);

Arguments
prob The current problem.
type 1 if row names are required;

2 if column names are required.
3 if set names are required.
4 if piecewise linear constraint names are required.
5 if general constraint names are required.

names Buffer long enough to hold the names. Since each name is 8⁎NAMELENGTH characters
long (plus a null terminator), the array, names, would be required to be at least as long as
(first-last+1)*(8⁎NAMELENGTH+1) characters. The names of the row/column/set
first+i will be written into the names buffer starting at position i⁎8⁎NAMELENGTH+i.

first First row, column, set, piecewise linear or general constraint in the range.
last Last row, column, set, piecewise linear or general constraint in the range.

Example
The following example retrieves the row and column names of the current problem:

int cols, rows, nl;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_NAMELENGTH,&nl);

cnames = (char ⁎) malloc(sizeof(char)⁎(8⁎nl+1)⁎cols);
rnames = (char ⁎) malloc(sizeof(char)⁎(8⁎nl+1)⁎rows);
XPRSgetnames(prob,1,rnames,0,rows-1);
XPRSgetnames(prob,2,cnames,0,cols-1);

To display names[i], use

int namelength;
...

XPRSgetintattrib(prob,XPRS_NAMELENGTH,&namelength);
printf("%s",names + i⁎(8⁎namelength+1));

Related topics
XPRSaddnames, XPRSgetnamelist.

Fair Isaac Corporation Proprietary Information 226

Chapter 7: Console and Library Functions

XPRSgetobj

Purpose
Returns the objective function coefficients for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetobj(XPRSprob prob, double objcoef[], int first, int

last);

Arguments
prob The current problem.
objcoef Double array of length last-first+1 where the objective function coefficients are to be

placed.
first First column in the range.
last Last column in the range.

Example
The following example retrieves the objective function coefficients of the current problem:

int cols;
double ⁎objcoef;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
objcoef = (double ⁎) malloc(sizeof(double)⁎cols);
XPRSgetobj(prob, objcoef, 0, cols-1);

Related topics
XPRSchgobj.

Fair Isaac Corporation Proprietary Information 227

Chapter 7: Console and Library Functions

XPRSgetobjecttypename

Purpose
Function to access the type name of an object referenced using the generic Optimizer object pointer
XPRSobject.

Synopsis
int XPRS_CC XPRSgetobjecttypename(XPRSobject object, const char ⁎⁎p_name);

Arguments
xprsobj The object for which the type name will be retrieved.
p_name Pointer to a char pointer returning a reference to the null terminated string containing the

object’s type name. For example, if the object is of type XPRSprob then the returned
pointer points to the string "XPRSprob".

Further information
This function is intended to be used typically from within the message callback function registered with
the XPRS_ge_addcbmsghandler function. In such cases the user will need to identify the type of
object sending the message since the message callback is passed only a generic pointer to the Optimizer
object (XPRSobject) sending the message.

Related topics
XPRS_ge_addcbmsghandler.

Fair Isaac Corporation Proprietary Information 228

Chapter 7: Console and Library Functions

XPRSgetpivotorder

Purpose
Returns the pivot order of the basic variables.

Synopsis
int XPRS_CC XPRSgetpivotorder(XPRSprob prob, int pivotorder[]);

Arguments
prob The current problem.
pivotorder Integer array of length ROWS where the pivot order will be returned.

Example
The following returns the pivot order of the variables into an array pPivot :

XPRSgetintattrib(prob,XPRS_ROWS,&rows);
pPivot = malloc(rows⁎(sizeof(int)));
XPRSgetpivotorder(prob,pPivot);

Further information
Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivots, XPRSpivot.

Fair Isaac Corporation Proprietary Information 229

Chapter 7: Console and Library Functions

XPRSgetpivots

Purpose
Returns a list of potential leaving variables if a specified variable enters the basis.

Synopsis
int XPRS_CC XPRSgetpivots(XPRSprob prob, int enter, int outlist[], double

x[], double ⁎p_objval, int ⁎p_npivots, int maxpivots);

Arguments
prob The current problem.
enter Index of the specified row or column to enter basis.
outlist Integer array of length at least maxpivots to hold list of potential leaving variables. May

be NULL if not required.
x Double array of length ROWS+SPAREROWS+COLS to hold the values of all the variables

that would result if enter entered the basis. May be NULL if not required.
p_objval Pointer to a double where the objective function value that would result if enter entered

the basis will be returned.
p_npivots Pointer to an integer where the actual number of potential leaving variables will be

returned.
maxpivots Maximum number of potential leaving variables to return.

Error value
425 Indicates enter is invalid (out of range or already basic).

Example
The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the basis:

int npivots, outlist[5];
double objective;
...
XPRSgetpivots(prob,6,outlist,NULL,&objective,&npivots,5);

Further information

1. If the variable enter enters the basis and the problem is degenerate then several basic variables are
candidates for leaving the basis, and the number of potential candidates is returned enter p_npivots. A
list of at most maxpivots of these candidates is returned enter outlist which must be at least
maxpivots long. If variable enter were to be pivoted enter, then because the problem is degenerate,
the resulting values of the objective function and all the variables do not depend on which of the
candidates from outlist is chosen to leave the basis. The value of the objective is returned in
p_objval and the values of the variables into x.

2. Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivotorder, XPRSpivot.

Fair Isaac Corporation Proprietary Information 230

Chapter 7: Console and Library Functions

XPRSgetpresolvebasis

Purpose
Returns the current basis from memory into the user’s data areas. If the problem is presolved, the
presolved basis will be returned. Otherwise the original basis will be returned.

Synopsis
int XPRS_CC XPRSgetpresolvebasis(XPRSprob prob, int rowstat[], int

colstat[]);

Arguments
prob The current problem.
rowstat Integer array of length ROWS to the basis status of the stack, surplus or artificial variable

associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
May be NULL if not required.

colstat Integer array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.
May be NULL if not required.

Example
The following obtains and outputs basis information on a presolved problem prior to the global search:

XPRSprob prob;
int i, cols, ⁎colstat;
...
XPRSreadprob(prob,"myglobalprob","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
colstat = malloc(cols⁎sizeof(int));
XPRSgetpresolvebasis(prob,NULL,colstat);
for(i=0;i<cols;i++)
printf("Column %d: %d\n", i, colstat[i]);

XPRSmipoptimize(prob);

Related topics
XPRSgetbasis, XPRSloadbasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Proprietary Information 231

Chapter 7: Console and Library Functions

XPRSgetpresolvemap

Purpose
Returns the mapping of the row and column numbers from the presolve problem back to the original
problem.

Synopsis
int XPRS_CC XPRSgetpresolvemap(XPRSprob prob, int rowmap[], int colmap[]);

Arguments
prob The current problem.
rowmap Integer array of length ROWS where the row maps will be returned.
colmap Integer array of length COLS where the column maps will be returned.

Example
The following reads in a (Mixed) Integer Programming problem and gets the mapping for the rows and
columns back to the original problem following optimization of the linear relaxation. The elimination
operations of the presolve are turned off so that a one-to-one mapping between the presolve problem and
the original problem.

XPRSreadprob(prob,"MyProb","");
XPRSsetintcontrol(prob,XPRS_PRESOLVEOPS,255);
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
colmap = malloc(cols⁎sizeof(int));
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rowmap = malloc(rows⁎sizeof(int));
XPRSgetpresolvemap(prob,rowmap,colmap);

Further information
The presolved problem can contain rows or columns that do not map to anything in the original problem.
An example of this are cuts created during the MIP solve and temporarily added to the presolved problem.
It is also possible that the presolver will introduce new rows or columns. For any row or column that does
not have a mapping to a row or column in the original problem, the corresponding entry in the returned
rowmap and colmap arrays will be -1.

Related topics
5.3.

Fair Isaac Corporation Proprietary Information 232

Chapter 7: Console and Library Functions

XPRSgetpresolvesol

Purpose
Returns the solution for the presolved problem from memory.

Synopsis
int XPRS_CC XPRSgetpresolvesol(XPRSprob prob, double x[], double slack[],

double duals[], double djs[]);

Arguments
prob The current problem.
x Double array of length COLS where the values of the primal variables will be returned. May

be NULL if not required.
slack Double array of length ROWS where the values of the slack variables will be returned. May

be NULL if not required.
duals Double array of length ROWS where the values of the dual variables will be returned. May

be NULL if not required.
djs Double array of length COLS where the reduced cost for each variable will be returned.

May be NULL if not required.

Example
The following reads in a (Mixed) Integer Programming problem and displays the solution to the presolved
problem following optimization of the linear relaxation:

XPRSreadprob(prob,"MyProb","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
x = malloc(cols⁎sizeof(double));
XPRSgetpresolvesol(prob,x,NULL,NULL,NULL);
for(i=0;i<cols;i++)
printf("Presolved x(%d) = %g\n",i,x[i]);
XPRSmipoptimize(prob,"");

Further information

1. If the problem has not been presolved, the solution in memory will be returned.

2. The solution to the original problem should be returned using the related function XPRSgetlpsol.

3. If called during a global callback the solution of the current node will be returned.

4. When an integer solution is found during a global search, it is always set up as a solution to the current
node; therefore the integer solution is available as the current node solution and can be retrieved with
XPRSgetlpsol and XPRSgetpresolvesol.

Related topics
XPRSgetlpsol, 5.3.

Fair Isaac Corporation Proprietary Information 233

Chapter 7: Console and Library Functions

XPRSgetprimalray

Purpose
Retrieves a primal ray (primal unbounded direction) for the current problem, if the problem is found to be
unbounded.

Synopsis
int XPRS_CC XPRSgetprimalray(XPRSprob prob, double ray[], int ⁎p_hasray);

Arguments
prob The current problem.
ray Double array of length COLS to hold the ray. May be NULL if not required.
p_hasray This variable will be set to 1 if the Optimizer is able to return a primal ray, 0 otherwise.

Example
The following code tries to retrieve a primal ray:

int cols;
double ⁎primalRay;
int hasray;
...
XPRSgetintattrib(prob, XPRS_COLS, &cols);
primalRay = malloc(cols⁎sizeof(double));
XPRSgetprimalray(prob, primalRay, &hasray);
if(!hasray) printf("Could not retrieve a primal ray\n");

Further information

1. It is possible to retrieve a primal ray only when, after solving an LP problem, the final status (LPSTATUS)
is XPRS_LP_UNBOUNDED.

2. Primal rays are not post-solved. If the problem is in a presolved state, the primal ray that is returned will
be for the presolved problem. If the problem was solved with presolve on and has been restored to the
original state (the default behavior), this function will not be able to return a ray. To ensure that a primal
ray can be obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
XPRSgetdualray.

Fair Isaac Corporation Proprietary Information 234

Chapter 7: Console and Library Functions

XPRSgetprobname

Purpose
Returns the current problem name.

Synopsis
int XPRS_CC XPRSgetprobname(XPRSprob prob, char ⁎name);

Arguments
prob The current problem.
name A string of up to MAXPROBNAMELENGTH characters to contain the current problem name.

Related topics
XPRSsetprobname, MAXPROBNAMELENGTH.

Fair Isaac Corporation Proprietary Information 235

Chapter 7: Console and Library Functions

XPRSgetpwlcons, XPRSgetpwlcons64

Purpose
Returns the piecewise linear constraints y = f(x) in a given range.

Synopsis
int XPRS_CC XPRSgetpwlcons(XPRSprob prob, int colind[], int resultant[],

int start[], double xval[], double yval[], int maxpoints, int
⁎p_npoints, int first, int last);

int XPRS_CC XPRSgetpwlcons64(XPRSprob prob, int colind[], int resultant[],
XPRSint64 start[], double xval[], double yval[], XPRSint64 maxpoints,
XPRSint64 ⁎p_npoints, int first, int last);

Arguments
prob The current problem.
colind Integer array which will be filled with the indices of the input variables x. It must be of

length at least last-first+1. May be NULL if not required.
resultant Integer array which will be filled with the indices of the output variables y. It must be of

length at least last-first+1. May be NULL if not required.
start Integer array which will be filled with the start indices of the different constraints in the

breakpoint arrays. It must be of length at least last-first+2. The x-values of the
breakpoints of piecewise linear constraint i < last will be given in xval[start[i]]
to xval[start[i+1]]. May be NULL if not required.

xval Double array of length maxpoints which will be filled with the x-values of the
breakpoints. May be NULL if not required.

yval Double array of length maxpoints which will be filled with the y-values of the
breakpoints. May be NULL if not required.

maxpoints Maximum number of breakpoints to be retrieved.
p_npoints Pointer to return the number of breakpoints in the selected constraints. If the number of

breakpoints is greater than maxpoints, then only maxpoints elements will be returned
in the xval and yval arrays. May be NULL if not required.

first First piecewise linear constraint in the range.
last Last piecewise linear constraint in the range.

Example
The following example retrieves all variables and breakpoints in the first two piecewise linear constraints:

int ⁎colind;
int ⁎resultant;
int ⁎start;
double ⁎xval;
double ⁎yval;
int maxpoints;
int npoints;
...
XPRSgetpwlcons(prob, NULL, NULL, NULL, NULL, NULL, 0, &maxpoints, 0, 1);
colind = (int⁎) malloc(2⁎sizeof(int));
resultant = (int⁎) malloc(2⁎sizeof(int));
start = (int⁎) malloc(3⁎sizeof(int));
xval = (double⁎) malloc(maxpoints⁎sizeof(double);
yval = (double⁎) malloc(maxpoints⁎sizeof(double);
XPRSgetpwlcons(prob, colind, resultant, start, xval, yval, maxpoints, &npoints, 0, 1);

Fair Isaac Corporation Proprietary Information 236

Chapter 7: Console and Library Functions

...

Further information

1. It is possible to obtain just the number of breakpoints in the range of piecewise linear constraints by
calling this function with maxpoints set to 0, in which case the required size for the breakpoint arrays
will be returned in p_npoints.

2. Since piecewise linear constraints get transformed and replaced during presolve, this should not be
called on the presolved problem.

Related topics
XPRSaddpwlcons, XPRSdelpwlcons.

Fair Isaac Corporation Proprietary Information 237

Chapter 7: Console and Library Functions

XPRSgetqobj

Purpose
Returns a single quadratic objective function coefficient corresponding to the variable pair (objqcol1,
objqcol2) of the Hessian matrix.

Synopsis
int XPRS_CC XPRSgetqobj(XPRSprob prob, int objqcol1, int objqcol2, double

⁎p_objqcoef);

Arguments
prob The current problem.
objqcol1 Column index for the first variable in the quadratic term.
objqcol2 Column index for the second variable in the quadratic term.
p_objqcoef Pointer to a double value where the objective function coefficient is to be placed.

Example
The following returns the coefficient of the x02 term in the objective function, placing it in the variable
value :

double value;
...
XPRSgetqobj(prob,0,0,&value);

Further information
p_objqcoef is the coefficient in the quadratic Hessian matrix. For example, if the objective function has
the term [3x1x2 + 3x2x1]/2 the value retrieved by XPRSgetqobj is 3.0 and if the objective function has
the term [6x12]/2 the value retrieved by XPRSgetqobj is 6.0.

Related topics
XPRSgetmqobj, XPRSchgqobj, XPRSchgmqobj.

Fair Isaac Corporation Proprietary Information 238

Chapter 7: Console and Library Functions

XPRSgetqrowcoeff

Purpose
Returns a single quadratic constraint coefficient corresponding to the variable pair (rowqcol1,
rowqcol2) of the Hessian of a given constraint.

Synopsis
int XPRS_CC XPRSgetqrowcoeff (XPRSprob prob, int row, int rowqcol1, int

rowqcol2, double ⁎p_rowqcoef);

Arguments
prob The current problem.
row The quadratic row where the coefficient is to be looked up.
rowqcol1 Column index for the first variable in the quadratic term.
rowqcol2 Column index for the second variable in the quadratic term.
p_rowqcoef Pointer to a double value where the objective function coefficient is to be placed.

Example
The following returns the coefficient of the x0

2 term in the second row, placing it in the variable value :

double value;
...
XPRSgetqrowcoeff(prob,1,0,0,&value);

Further information
The coefficient returned corresponds to the Hessian of the constraint. That means the for constraint x +
[x̂2 + 6 xy] <= 10 XPRSgetqrowcoeff would return 1 as the coefficient of x̂2 and 3 as the
coefficient of xy.

Related topics
XPRSloadqcqp, XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrix,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 239

Chapter 7: Console and Library Functions

XPRSgetqrowqmatrix

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix for the columns in a given range. To
achieve maximum efficiency, XPRSgetqrowqmatrix returns the lower triangular part of this matrix only.

Synopsis
int XPRS_CC XPRSgetqrowqmatrix(XPRSprob prob, int row, int start[], int

colind[], double rowqcoef[], int maxcoefs, int ⁎ p_ncoefs, int first,
int last);

Arguments
prob The current problem.
row Index of the row for which the quadratic coefficients are to be returned.
start Integer array which will be filled with indices indicating the starting offsets in the colind

and dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position start[i] in the mrwind and dmatval
arrays, and has start[i+1]-start[i] elements in it. May be NULL if maxcoefs is 0.

colind Integer array of length maxcoefs which will be filled with the column indices of the
nonzero elements in the lower triangular part of Q. May be NULL if maxcoefs is 0.

rowqcoef Double array of length maxcoefs which will be filled with the nonzero element values. May
be NULL if maxcoefs is 0.

maxcoefs Number of elements to be saved in colind and rowqcoef. If maxcoefs < ⁎p_ncoefs,
only maxcoefs elements are written.

p_ncoefs Pointer to the integer where the number of nonzero elements in the queried columns will
be returned. If the number of nonzero elements is greater than maxcoefs, then only
maxcoefs elements will be returned. If p_ncoefs is smaller than maxcoefs, then only
p_ncoefs will be returned.

first First column in the range.
last Last column in the range.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrixtriplets, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 240

Chapter 7: Console and Library Functions

XPRSgetqrowqmatrixtriplets

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix as triplets (index pairs with
coefficients). To achieve maximum efficiency, XPRSgetqrowqmatrixtriplets returns the lower
triangular part of this matrix only.

Synopsis
int XPRS_CC XPRSgetqrowqmatrixtriplets(XPRSprob prob, int row, int ⁎

p_ncoefs, int rowqcol1[], int rowqcol2[], double rowqcoef[]);

Arguments
prob The current problem.
row Index of the row for which the quadratic coefficients are to be returned.
p_ncoefs Argument used to return the number of quadratic coefficients in the row.
rowqcol1 First index in the triplets. May be NULL if not required.
rowqcol2 Second index in the triplets. May be NULL if not required.
rowqcoef Coefficients in the triplets. May be NULL if not required.

Further information
If a row index of -1 is used, the function returns the quadratic coefficients for the objective function.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrows, XPRSchgqobj, XPRSchgmqobj, XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 241

Chapter 7: Console and Library Functions

XPRSgetqrows

Purpose
Returns the list indices of the rows that have quadratic coefficients.

Synopsis
int XPRS_CC XPRSgetqrows(XPRSprob prob, int ⁎ p_nrows, int rowind[]);

Arguments
prob The current problem.
p_nrows Used to return the number of quadratic constraints in the matrix.
rowind Array of length ⁎p_nrows used to return the indices of rows with quadratic coefficients in

them. May be NULL if not required.

Related topics
XPRSloadqcqp, XPRSgetqrowcoeff, XPRSaddqmatrix, XPRSchgqrowcoeff,
XPRSgetqrowqmatrix, XPRSgetqrowqmatrixtriplets, XPRSchgqobj, XPRSchgmqobj,
XPRSgetqobj.

Fair Isaac Corporation Proprietary Information 242

Chapter 7: Console and Library Functions

XPRSgetrhs

Purpose
Returns the right hand side elements for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrhs(XPRSprob prob, double rhs[], int first, int last);

Arguments
prob The current problem.
rhs Double array of length last-first+1 where the right hand side elements are to be

placed.
first First row in the range.
last Last row in the range.

Example
The following example retrieves the right hand side values of the problem:

int rows;
double ⁎rhs;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rhs = (double ⁎) malloc(sizeof(double)⁎rows);
XPRSgetrhs(prob,rhs,0,rows-1);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhsrange.

Fair Isaac Corporation Proprietary Information 243

Chapter 7: Console and Library Functions

XPRSgetrhsrange

Purpose
Returns the right hand side range values for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrhsrange(XPRSprob prob, double rng[], int first, int

last);

Arguments
prob The current problem.
rng Double array of length last-first+1 where the right hand side range values are to be

placed.
first First row in the range.
last Last row in the range.

Example
The following returns right hand side range values for all rows in the matrix:

int rows;
double ⁎rng;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rng = malloc(rows⁎sizeof(double));
XPRSgetrhsrange(prob,rng,0,rows);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhs.

Fair Isaac Corporation Proprietary Information 244

Chapter 7: Console and Library Functions

XPRSgetrowflags

Purpose
Retrieve if a range of rows have been set up as special rows.

Synopsis
int XPRS_CC XPRSgetrowflags(XPRSprob prob, int flags[], int first, int

last);

Arguments
prob The current problem
flags Int array of length last-first+1 where type of information (see below) will be returned
first First row index to be checked
last Last row index to be checked

Further information
The flags array returns a bitvector for each row defining all the information that is currently attached to
that row:

XPRS_ROWFLAG_QUADRATIC The row has quadratic coefficients.
XPRS_ROWFLAG_DELAYED The row is marked as a delayed row.
XPRS_ROWFLAG_MODELCUT The row is marked as a model cut.
XPRS_ROWFLAG_INDICATOR The row is used as an indicator.
XPRS_ROWFLAG_NONLINEAR The row has nonlinear coefficients.

Example
The following example will print all three messages if the row at index 1 of the problem is an indicator
constraint involving a quadratic matrix:

int flags[2];
...
XPRSgetrowflags(prob,1,2,flags);
if (flags[0] & (XPRS_ROWFLAG_QUADRATIC)) { printf("the second row is quadratic" }
if (flags[0] & (XPRS_ROWFLAG_INDICATOR)) { printf("the second row is an indicator" }
if (flags[0] & (XPRS_ROWFLAG_QUADRATIC+XPRS_ROWFLAG_INDICATOR)) { printf("the second row is a quadratic indicator" }

Related topics
XPRSclearrowflags

Fair Isaac Corporation Proprietary Information 245

Chapter 7: Console and Library Functions

XPRSgetrows, XPRSgetrows64

Purpose
Returns the nonzeros in the constraint matrix for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrows(XPRSprob prob, int start[], int mclind[], double

colcoef[], int maxcoefs, int ⁎p_ncoefs, int first, int last);

int XPRS_CC XPRSgetrows64(XPRSprob prob, XPRSint64 start[], int mclind[],
double colcoef[], XPRSint64 maxcoefs, XPRSint64 ⁎p_ncoefs, int first,
int last);

Arguments
prob The current problem.
start Integer array which will be filled with the indices indicating the starting offsets in the

colind and colcoef arrays for each requested row. It must be of length at least
last-first+2. Row i starts at position start[i] in the colind and colcoef arrays,
and has start[i+1]-start[i] elements in it. May be NULL if not required.

colind Integer arrays of length maxcoefs which will be filled with the column indices of the
nonzero elements for each row. May be NULL if not required.

colcoef Double array of length maxcoefs which will be filled with the nonzero element values.
May be NULL if not required.

maxcoefs Maximum number of elements to be retrieved.
p_ncoefs Pointer to the integer where the number of nonzero elements in the selected rows will be

returned. If the number of nonzero elements is greater than maxcoefs, then only
maxcoefs elements will be returned. If p_ncoefs is smaller than maxcoefs, then only
p_ncoefs will be returned.

first First row in the range.
last Last row in the range.

Example
The following example returns and displays at most six nonzero matrix entries in the first two rows:

int maxcoefs=6, ncoefs, nreturnedels, start[3], colind[6];
double colcoef[6];
...
XPRSgetrows(prob,start,colind,colcoef,maxcoefs,&ncoefs,0,1);

nreturnedels = ncoefs > maxcoefs ? maxcoefs : ncoefs;
for(i=0;i<nreturnedels;i++) printf("\t%2.1f\n",dmtval[i]);

Further information
It is possible to obtain just the number of elements in the range of columns by replacing start, colind
and colcoef by NULL. In this case, maxcoefsmust be set to 0 to indicate that the length of arrays
passed is 0.

Related topics
XPRSgetcols, XPRSgetrowtype.

Fair Isaac Corporation Proprietary Information 246

Chapter 7: Console and Library Functions

XPRSgetrowtype

Purpose
Returns the row types for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrowtype(XPRSprob prob, char rowtype[], int first, int

last);

Arguments
prob The current problem.
rowtype Character array of length last-first+1 characters where the row types will be returned:

N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.
last Last row in the range.

Example
The following example retrieves row types into an array rowtype :

int rows;
char ⁎rowtype;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rowtype = (char ⁎) malloc(sizeof(char)⁎rows);
XPRSgetrowtype(prob,rowtype,0,rows-1);

Related topics
XPRSchgrowtype, XPRSgetrows.

Fair Isaac Corporation Proprietary Information 247

Chapter 7: Console and Library Functions

XPRSgetscale

Purpose
Returns the the current scaling of the matrix.

Synopsis
int XPRS_CC XPRSgetscale(XPRSprob prob, int rowscale[], int colscale[]);

Arguments
prob The current problem.
rowscale Integer array of size ROWS that will contain the powers of 2 with which the rows are

currently scaled.
colscale Integer array of size COLS that will contain the powers of 2 with which the columns are

currently scaled.

Related topics
XPRSscale (SCALE).

Fair Isaac Corporation Proprietary Information 248

Chapter 7: Console and Library Functions

XPRSgetscaledinfeas

Purpose
Returns a list of scaled infeasible primal and dual variables for the original problem. If the problem is
currently presolved, it is postsolved before the function returns.

Synopsis
int XPRS_CC XPRSgetscaledinfeas(XPRSprob prob, int ⁎p_nprimalcols, int

⁎p_nprimalrows, int ⁎p_ndualrows, int ⁎p_ndualcols, int x[], int
slack[], int duals[], int djs[]);

Arguments
prob The current problem.
p_nprimalcols Number of primal infeasible variables.
p_nprimalrows Number of primal infeasible rows.
p_ndualrows Number of dual infeasible rows.
p_ndualcols Number of dual infeasible variables.
x Integer array of length p_nprimalcols where the primal infeasible variables will be

returned. May be NULL if not required.
slack Integer array of length p_nprimalrows where the primal infeasible rows will be returned.

May be NULL if not required.
duals Integer array of length p_ndualrows where the dual infeasible rows will be returned.

May be NULL if not required.
djs Integer array of length p_ndualcols where the dual infeasible variables will be returned.

May be NULL if not required.

Error value
422 A solution is not available.

Related controls
Double

FEASTOL Tolerance on RHS.
OPTIMALITYTOL Reduced cost tolerance.

Example
In this example, XPRSgetscaledinfeas is first called with nulled integer arrays to get the number of
infeasible entries. Then space is allocated for the arrays and the function is again called to fill them in.

int ⁎x, ⁎slack, ⁎duals, ⁎djs, nprimalcols, nprimalrows, ndualrows, ndualcols;
...
XPRSgetscaledinfeas(prob, &nprimalcols, &nprimalrows, &ndualrows, &ndualcols,

NULL, NULL, NULL, NULL);

x = malloc(nprimalcols ⁎ sizeof(int));
slack = malloc(nprimalrows ⁎ sizeof(int));
duals = malloc(ndualrows ⁎ sizeof(int));
djs = malloc(ndualcols ⁎ sizeof(int));
XPRSgetscaledinfeas(prob, &nprimalcols, &nprimalrows, &ndualrows, &ndualcols,

x, slack, duals, djs);

Further information
If any of the last four arguments are set to NULL, the corresponding number of infeasibilities is still
returned.

Fair Isaac Corporation Proprietary Information 249

Chapter 7: Console and Library Functions

Related topics
XPRSgetinfeas, XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst,
XPRSiisisolations, XPRSiisnext, XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 250

Chapter 7: Console and Library Functions

XPRSgetstrattrib, XPRSgetstringattrib

Purpose
Enables users to recover the values of various string problem attributes. Problem attributes are set during
loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetstrattrib(XPRSprob prob, int attrib, char ⁎value);

int XPRS_CC XPRSgetstringattrib(XPRSprob prob, int attrib, char ⁎cgval, int
maxbytes, int⁎ p_nbytes);

Arguments
prob The current problem.
attrib Problem attribute whose value is to be returned. A full list of all problem attributes may be

found in 9, or from the list in the xprs.h header file.
value Pointer to a string where the value of the attribute (plus null terminator) will be returned.
maxbytes Maximum number of bytes to be written into the cgval argument.
p_nbytes Returns the length of the string control including the null terminator.

Related topics
XPRSgetdblattrib, XPRSgetintattrib.

Fair Isaac Corporation Proprietary Information 251

Chapter 7: Console and Library Functions

XPRSgetstrcontrol, XPRSgetstringcontrol

Purpose
Returns the value of a given string control parameters.

Synopsis
int XPRS_CC XPRSgetstrcontrol(XPRSprob prob, int control, char ⁎value);

int XPRS_CC XPRSgetstringcontrol(XPRSprob prob, int control, char ⁎value,
int maxbytes, int⁎ p_nbytes);

Arguments
prob The current problem.
control Control parameter whose value is to be returned. A full list of all controls may be found in

8, or from the list in the xprs.h header file.
value Pointer to a string where the value of the control (plus null terminator) will be returned.
maxbytes Maximum number of bytes to be written into the value argument.
p_nbytes Returns the length of the string control including the null terminator.

Related topics
XPRSgetdblcontrol, XPRSgetintcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Proprietary Information 252

Chapter 7: Console and Library Functions

XPRSgetub

Purpose
Returns the upper bounds for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetub(XPRSprob prob, double ub[], int first, int last);

Arguments
prob The current problem.
ub Double array of length last-first+1 where the upper bounds are to be placed.
first First column in the range.
last Last column in the range.

Example
The following example retrieves the upper bounds for the columns of the current problem:

int cols;
double ⁎ub;
...
XPRSgetintattrib(prob, XPRS_COLS, &cols);
ub = (double ⁎) malloc(sizeof(double)⁎ncol);
XPRSgetub(prob, ub, 0, ncol-1);

Further information
Values greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values less than
or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.

Related topics
XPRSchgbounds, XPRSgetlb.

Fair Isaac Corporation Proprietary Information 253

Chapter 7: Console and Library Functions

XPRSgetunbvec

Purpose
Returns the index vector which causes the primal simplex or dual simplex algorithm to determine that a
matrix is primal or dual unbounded respectively.

Synopsis
int XPRS_CC XPRSgetunbvec(XPRSprob prob, int ⁎p_seq);

Arguments
prob The current problem.
p_seq Pointer to an integer where the vector causing the problem to be detected as being primal

or dual unbounded will be returned. In the dual simplex case, the vector is the leaving row
for which the dual simplex detected dual unboundedness. In the primal simplex case, the
vector is the entering row p_seq (if p_seq is in the range 0 to ROWS-1) or column
(variable) p_seq-ROWS-SPAREROWS (if p_seq is between ROWS+SPAREROWS and
ROWS+SPAREROWS+COLS-1) for which the primal simplex detected primal
unboundedness.

Error value
91 A current problem is not available.

Further information
When solving using the dual simplex method, if the problem is primal infeasible then
XPRSgetunbvec returns the pivot row where dual unboundedness was detected. Also note that when
solving using the dual simplex method, if the problem is primal unbounded then XPRSgetunbvec
returns -1 since the problem is dual infeasible and not dual unbounded.

Related topics
XPRSgetinfeas, XPRSlpoptimize.

Fair Isaac Corporation Proprietary Information 254

Chapter 7: Console and Library Functions

XPRSgetversion

Purpose
Returns the full Optimizer version number in the form 15.10.03, where 15 is the major release, 10 is the
minor release, and 03 is the build number.

Synopsis
int XPRS_CC XPRSgetversion(char ⁎version);

Argument
version Buffer long enough to hold the version string (plus a null terminator). This should be at

least 16 characters.

Related controls
Integer

VERSION The Optimizer version number

Example
The following calls XPRSgetversion to return version information at the start of the program:

char version[16];
XPRSgetversion(version);
printf("Xpress Optimizer version %s\n",version);
XPRSinit(NULL);

Further information
This function supersedes the VERSION control, which only returns the first two parts of the version
number. Release 2004 versions of the Optimizer have a three-part version number.

Related topics
XPRSinit.

Fair Isaac Corporation Proprietary Information 255

Chapter 7: Console and Library Functions

XPRSglobal GLOBAL

Purpose
This subroutine is deprecated and will be removed in a future release. XPRSmipoptimize should be used
instead.
Starts the global search for an integer solution after solving the LP relaxation with XPRSmaxim (MAXIM)
or XPRSminim (MINIM) or continues a global search if it has been interrupted.

Synopsis
int XPRS_CC XPRSglobal(XPRSprob prob);
GLOBAL

Argument
prob The current problem.

Related controls
Integer

BACKTRACK Node selection criterion.
BRANCHCHOICE Once a global entity has been selected for branching, this control determines

whether the branch with the minimum or maximum estimate is followed first.
BREADTHFIRST Limit for node selection criterion.
COVERCUTS Number of rounds of lifted cover inequalities at top node.
CPUTIME 1 for CPU time; 0 for elapsed time.
CUTDEPTH Maximum depth in the tree at which cuts are generated.
CUTFREQ Frequency at which cuts are generated in the tree search.
CUTSTRATEGY Specifies the cut strategy.
DEFAULTALG Algorithm to use with the tree search.
GOMCUTS Number of rounds of Gomory cuts at the top node.
MAXMIPSOL Maximum number of MIP solutions to find.
MAXNODE Maximum number of nodes in Branch and Bound search.
MAXTIME Maximum time allowed.
MIPLOG Global print flag.
MIPPRESOLVE Type of integer preprocessing to be performed.
MIPTHREADS Number of threads used for parallel MIP search.
NODESELECTION Node selection control.
REFACTOR Indicates whether to re-factorize the optimal basis.
SBBEST Number of infeasible global entities on which to perform strong branching.
SBITERLIMIT Number of dual iterations to perform strong branching.
SBSELECT The size of the candidate list of global entities for strong branching.
TREECOVERCUTS Number of rounds of lifted cover inequalities in the tree.
TREEGOMCUTS Number of rounds of Gomory cuts in the tree.
VARSELECTION Node selection degradator estimate control.

Double
MIPABSCUTOFF Cutoff set after an LP Optimizer command.
MIPABSSTOP Absolute optimality stopping criterion.
MIPADDCUTOFF Amount added to objective function to give new cutoff.
MIPRELCUTOFF Percentage cutoff.
MIPRELSTOP Relative optimality stopping criterion.
MIPTOL Integer feasibility tolerance.

Fair Isaac Corporation Proprietary Information 256

Chapter 7: Console and Library Functions

PSEUDOCOST Default pseudo cost in node degradation estimation.

Example 1 (Library)
The following example inputs a problem fred.mat, solves the LP and the global problem before printing
the solution to file.

XPRSreadprob(prob,"fred","");
XPRSmaxim(prob,"");
XPRSglobal(prob);
XPRSwriteprtsol(prob);

Example 2 (Console)
The equivalent set of commands for the Console Optimizer are:

READPROB fred
MAXIM
GLOBAL
WRITEPRTSOL

Further information

1. When an optimal LP solution has been found with XPRSmaxim (MAXIM) or XPRSminim (MINIM), the
search for an integer solution is started using XPRSglobal (GLOBAL). In many cases XPRSglobal
(GLOBAL) is to be called directly after XPRSmaxim (MAXIM)/XPRSminim (MINIM). In such
circumstances this can be achieved slightly more efficiently using the g flag to XPRSmaxim
(MAXIM)/XPRSminim (MINIM).

2. If a global search is interrupted and XPRSglobal (GLOBAL) is subsequently called again, the search will
continue where it left off. To restart the search at the top node you need to call either XPRSinitglobal
or XPRSpostsolve (POSTSOLVE).

3. The controls described for XPRSmaxim (MAXIM) and XPRSminim (MINIM) can also be used to control
the XPRSglobal (GLOBAL) algorithm.

4. (Console) The global search may be interrupted by typing CTRL-C as long as the user has not already
typed ahead.

5. A summary log of six columns of information is output every n nodes, where -n is the value of MIPLOG
(see A.9).

6. Optimizer library users can check the final status of the global search using the MIPSTATUS problem
attribute.

7. The Optimizer may create global files (used for storing parts of the tree when there is insufficient
available memory) in excess of 2 GigaBytes. If your filing system does not support files this large, you can
instruct the Optimizer to spread the data over multiple files by setting the MAXGLOBALFILESIZE control.

Related topics
XPRSfixglobals (FIXGLOBALS), XPRSinitglobal, XPRSmaxim (MAXIM)/XPRSminim (MINIM),
A.9.

Fair Isaac Corporation Proprietary Information 257

Chapter 7: Console and Library Functions

HELP

Purpose
Provides quick reference help for console users of the Optimizer.

Synopsis
HELP
HELP commands
HELP controls
HELP attributes
HELP [command-name]
HELP [control-name]
HELP [attribute-name]

Example
This command is used by calling it at the Console Optimizer command line:

HELP MAXTIME

Related topics
None.

Fair Isaac Corporation Proprietary Information 258

Chapter 7: Console and Library Functions

IIS

Purpose
Provides the Irreducible Infeasible Set (IIS) functionality for the console.

Synopsis
IIS [-flags]

Arguments
IIS Finds an IIS.
IIS -a Performs an automated search for a set of independent IISs.
IIS -c Resets the search for IISs (deletes already found ones).
IIS -e [num fn] Writes a CSV file named fn containing the IIS data of IIS num.
IIS -f Generate an approximation of an IIS only.
IIS -i num Performs the isolation identification for IIS with ordinal number num.
IIS -n Finds another (independent) IIS if any.
IIS -p [num] Prints the IIS with ordinal number num to the screen.
IIS -s Returns statistics on the IISs found.
IIS -w [num fn type] Writes an LP or MPS file named fn containing the IIS subproblem of IIS

num depending on the type flags.

Example 1 (Console)
This example reads in an infeasible problem, executes an automated search for the IISs, prints the IIS to
the screen and then displays a summary on the results.

READPROB PROB.LP
IIS -a -s

Example 2 (Console)
This example reads in an infeasible problem, identifies an IIS and its isolations, then writes the IIS as an
LP for easier viewing and as a CSV file to contain the supplementary information.

READPROB PROB.LP
IIS
IIS -i -p 1
IIS -w 1 "IIS.LP" lp
IIS -e 1 "IIS.CSV"

Fair Isaac Corporation Proprietary Information 259

Chapter 7: Console and Library Functions

Further information

1. The IISs are numbered from 1 to NUMIIS. If no IIS number is provided, the functions take the last IIS
identified as default. When applicable, IIS 0 refers to the initial infeasible IIS (the IIS approximation).

2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this
reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. You may call the
IIS -n function repeatedly, or use the IIS -a function to retrieve all IIS at once.

3. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or bound
will remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outside
the IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independent
infeasibility and give an indication of which constraint or bound to drop or modify. It is not always
possible to find IIS isolations. IIS isolations are only available for linear problems.

4. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have a high
dual multiplier relative to the others.

5. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initial
infeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all the
infeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed the
problem becomes feasible

6. IIS -f performs the initial sensitivity analysis on rows and columns to reduce the problem size, and sets
up the initial infeasible subproblem. This subproblem significantly speeds up the generation of IISs,
however in itself it may serve as an approximation of an IIS, since its identification typically takes only a
fraction of time compared to the identification of an IIS.

7. The num parameter cannot be zero for IIS -i: the concept of isolations is meaningless for the initial
infeasible subproblem.

8. If IIS -n [num] is called, the return status is 1 if less than num IISs have been found and zero
otherwise. The total number of IISs found is stored in NUMIIS.

9. The type flags passed to IIS -w are directly passed to the WRITEPROB command.

10. The LP or MPS files created by IIS -w corresponding to an IIS contain no objective function, since
infeasibility is independent from the objective.

11. Please note that there are problems on the boundary of being infeasible or not. For such problems,
feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes it
possible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a first
check it is advised to consider the following options:

(a) Turn presolve off (e.g. in console presolve = 0) since the nature of an IIS makes it necessary
that during their identification the presolve is turned off.

(b) Use the primal simplex method to solve the problem (e.g. in console lpoptimize -p).

12. Note that the original sense of the original objective function plays no role in an IIS.

13. The supplementary information provided in the CSV file created by IIS -e is identical to that returned by
the XPRSgetiisdata function.

14. The IIS approximation and the IISs generated so far are always available.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiisstatus, XPRSiiswrite.

Fair Isaac Corporation Proprietary Information 260

Chapter 7: Console and Library Functions

XPRSiisall

Purpose
Performs an automated search for independent Irreducible Infeasible Sets (IIS) in an infeasible problem.

Synopsis
int XPRS_CC XPRSiisall(XPRSprob prob);

Argument
prob The current problem.

Related controls
Integer

MAXIIS Number of Irreducible Infeasible Sets to be found.

Example
This example searches for IISs and then questions the problem attribute NUMIIS to determine how many
were found:

int iis;
...
XPRSiisall(prob);
XPRSgetintattrib(prob, XPRS_NUMIIS, &iis);
printf("number of IISs = %d\n", iis);

Further information

1. Calling IIS -a from the console has the same effect as this function.

2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this
reason the Optimizer can find an IIS for each of the infeasibilities in a model. If the control MAXIIS is set
to a positive integer value then the XPRSiisall command will stop if MAXIIS IISs have been found. By
default the control MAXIIS is set to -1, in which case an IIS is found for each of the infeasibilities in the
model.

3. The problem attribute NUMIIS allows the user to recover the number of IISs found in a particular search.
Alternatively, the XPRSiisstatus function may be used to retrieve the number of IISs found by
XPRSiisfirst (IIS), XPRSiisnext (IIS -n) or XPRSiisall (IIS -a) functions.

Related topics
XPRSgetiisdata, XPRSiisclear, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 261

Chapter 7: Console and Library Functions

XPRSiisclear

Purpose
Resets the search for Irreducible Infeasible Sets (IIS).

Synopsis
int XPRS_CC XPRSiisclear(XPRSprob prob);

Argument
prob The current problem.

Example

XPRSiisclear(prob);

Further information

1. Calling IIS -c from the console has the same effect as this function.

2. The information stored internally about the IISs identified by XPRSiisfirst, XPRSiisnext or
XPRSiisall are cleared. Functions XPRSgetiisdata, XPRSiisstatus, XPRSiiswrite and
XPRSiisisolations cannot be called until the IIS identification procedure is started again.

3. This function is automatically called by XPRSiisfirst and XPRSiisall

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisfirst, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 262

Chapter 7: Console and Library Functions

XPRSiisfirst

Purpose
Initiates a search for an Irreducible Infeasible Set (IIS) in an infeasible problem.

Synopsis
int XPRS_CC XPRSiisfirst(XPRSprob prob, int mode, int ⁎p_status);

Arguments
prob The current problem.
mode The IIS search mode:

0 stops after finding the initial infeasible subproblem;
1 find an IIS, emphasizing simplicity of the IIS;
2 find an IIS, emphasizing a quick result.

p_status The status after the search:
0 success;
1 if problem is feasible;
2 error;
3 timeout.

Example
This looks for the first IIS.

XPRSiisfirst(myprob,1,&status);

Further information

1. Calling IIS from the console has the same effect as this function.

2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this
reason the Optimizer can find an IIS for each of the infeasibilities in a model. For the generation of
several independent IISs use functions XPRSiisnext (IIS -n) or XPRSiisall (IIS -a).

3. IIS sensitivity filter: after an optimal but infeasible first phase primal simplex, it is possible to identify a
subproblem containing all the infeasibilities (corresponding to the given basis) to reduce the size of the
IIS working problem dramatically, i.e., rows with zero duals (thus with artificials of zero reduced cost) and
columns that have zero reduced costs may be deleted. Moreover, for rows and columns with nonzero
costs, the sign of the cost is used to relax equality rows either to less than or greater than equal rows, and
to drop either possible upper or lower bounds on columns.

4. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initial
infeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all the
infeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed the
problem becomes feasible.

5. XPRSiisfirst performs the initial sensitivity analysis on rows and columns to reduce the problem size,
and sets up the initial infeasible subproblem. This subproblem significantly speeds up the generation of
IISs, however in itself it may serve as an approximation of an IIS, since its identification typically takes
only a fraction of time compared to the identification of an IIS.

6. The IIS approximation and the IISs generated so far are always available.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisisolations, XPRSiisnext,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 263

Chapter 7: Console and Library Functions

XPRSiisisolations

Purpose
Performs the isolation identification procedure for an Irreducible Infeasible Set (IIS).

Synopsis
int XPRS_CC XPRSiisisolations(XPRSprob prob, int iis);

Arguments
prob The current problem.
iis The number of the IIS identified by either XPRSiisfirst (IIS), XPRSiisnext (IIS -n)

or XPRSiisall (IIS -a) in which the isolations should be identified.

Example
This example finds the first IIS and searches for the isolations in that IIS.

XPRSiisfirst(prob,1,&status);
XPRSiisisolations (prob,1);

Further information

1. Calling IIS -i [iis] from the console has the same effect as this function.

2. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or bound
will remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outside
the IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independent
infeasibility and give an indication of which constraint or bound to drop or modify. It is not always
possible to find IIS isolations.

3. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have a high
dual multiplier relative to the others.

4. The iis parameter cannot be zero: the concept of isolations is meaningless for the initial infeasible
subproblem.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisnext, XPRSiisstatus,
XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 264

Chapter 7: Console and Library Functions

XPRSiisnext

Purpose
Continues the search for further Irreducible Infeasible Sets (IIS), or calls XPRSiisfirst (IIS) if no IIS
has been identified yet.

Synopsis
int XPRS_CC XPRSiisnext(XPRSprob prob, int ⁎p_status);

Arguments
prob The current problem.
p_status The status after the search:

0 success;
1 no more IIS could be found, or problem is feasible if no XPRSiisfirst call

preceded;
2 on error (when the function returns nonzero).

Example
This looks for a further IIS.

XPRSiisnext(prob,&status);

Further information

1. Calling IIS -n from the console has the same effect as this function.

2. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. For this
reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. You may call the
XPRSiisnext function repeatedly, or use the XPRSiisall (IIS -a) function to retrieve all IIS at once.

3. This function is not affected by the control MAXIIS.

4. If the problem has been modified since the last call to XPRSiisfirst or XPRSiisnext, the generation
process has to be started from scratch.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisstatus, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 265

Chapter 7: Console and Library Functions

XPRSiisstatus

Purpose
Returns statistics on the Irreducible Infeasible Sets (IIS) found so far by XPRSiisfirst (IIS),
XPRSiisnext (IIS -n) or XPRSiisall (IIS -a).

Synopsis
int XPRS_CC XPRSiisstatus(XPRSprob prob, int ⁎p_niis, int nrows[], int

ncols[], double suminfeas[], int numinfeas[]);

Arguments
prob The current problem.
p_niis The number of IISs found so far.
nrows Number of rows in the IISs.
ncols Number of bounds in the IISs.
suminfeas The sum of infeasibilities in the IISs after the first phase simplex.
numinfeas The number of infeasible variables in the IISs after the first phase simplex.

Example
This example first retrieves the number of IISs found so far, and then retrieves their main properties. Note
that the arrays have size count+1, since the first index is reserved for the initial infeasible subset.

XPRSiisstatus(myprob,&count,NULL,NULL,NULL,NULL);
nrows = malloc((count+1)⁎sizeof(int));
ncols = malloc((count+1)⁎sizeof(int));
suminfeas = malloc((count+1)⁎sizeof(double));
numinfeas = malloc((count+1)⁎sizeof(int));
XPRSiisstatus(myprob,&count,nrows,ncols,suminfeas,numinfeas);

Further information

1. Calling IIS -s from the console has the same effect as this function.

2. All arrays should be of dimension p_niis+1. The arrays are 0 based, index 0 corresponding to the initial
infeasible subproblem.

3. The arrays may be NULL if not required.

4. For the initial infeasible problem (at position 0) the subproblem size is returned (which may be different
from the number of bounds), while for the IISs the number of bounds is returned (usually much smaller
than the number of columns in the IIS).

5. Note that the values in suminfeas and numinfeas heavily depend on the actual basis where the
simplex has stopped.

6. p_niis is set to -1 if the search for IISs has not yet started.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiiswrite, IIS.

Fair Isaac Corporation Proprietary Information 266

Chapter 7: Console and Library Functions

XPRSiiswrite

Purpose
Writes an LP/MPS/CSV file containing a given Irreducible Infeasible Set (IIS). If 0 is passed as the IIS
number parameter, the initial infeasible subproblem is written.

Synopsis
int XPRS_CC XPRSiiswrite(XPRSprob prob, int iis, const char ⁎filename, int

filetype, const char ⁎flags);

Arguments
prob The current problem.
iis The ordinal number of the IIS to be written.
filename The name of the file to be created.
filetype Type of file to be created:

0 creates an lp/mps file containing the IIS as a linear programming problem;
1 creates a comma separated (csv) file containing the description and

supplementary information on the given IIS.
flags Flags passed to the XPRSwriteprob function.

Example
This writes the first IIS (if one exists and is already found) as an lp file.

XPRSiiswrite(prob,1,"iis.lp",0,"l")

Further information

1. Calling IIS -w [iis] filename and IIS -e [iis] filename from the console have the same
effect as this function.

2. Please note that there are problems on the boundary of being infeasible or not. For such problems,
feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes it
possible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a first
check it is advised to consider the following options:

1. turn presolve off (e.g. in console presolve = 0) since the nature of an IIS makes it necessary that
during their identification the presolve is turned off.

2. use the primal simplex method to solve the problem (e.g. in console LPOPTIMIZE -p).

3. Note that the original sense of the original objective function plays no role in an IIS.

4. Even though an attempt is made to identify the most infeasible IISs first by the XPRSiisfirst (IIS),
XPRSiisnext (IIS -n) and XPRSiisall (IIS -a) functions, it is also possible that an IIS becomes
just infeasible in problems that are otherwise highly infeasible. In such cases, you may try to deal with the
more stable IISs first, and consider to use the infeasibility breaker tool if only slight infeasibilities remain.

5. The LP or MPS files created by XPRSiiswrite corresponding to an IIS contain no objective function,
since infeasibility is independent from the objective.

Related topics
XPRSgetiisdata, XPRSiisall, XPRSiisclear, XPRSiisfirst, XPRSiisisolations,
XPRSiisnext, XPRSiisstatus, IIS.

Fair Isaac Corporation Proprietary Information 267

Chapter 7: Console and Library Functions

XPRSinit

Purpose
Initializes the Optimizer library. This must be called before any other library routines.

Synopsis
int XPRS_CC XPRSinit(const char ⁎path);

Argument
path The directory where the FICO Xpress license file is located. Users should employ a value

of NULL unless otherwise advised, allowing the standard initialization directories to be
checked.

Example
The following is the usual way of calling XPRSinit :

if(XPRSinit(NULL)) printf("Problem with XPRSinit\n");

Further information

1. Whilst error checking should always be used on all library function calls, it is especially important to do so
with the initialization functions, since a majority of errors encountered by users are caused at the
initialization stage. Any nonzero return code indicates that no license could be found. In such
circumstances the application should be made to exit. It is possible to retrieve a message describing the
error by calling XPRSgetlicerrmsg.

2. In multi-threaded applications where all threads are equal, XPRSinitmay be called by each thread prior
to using the library. Whilst the process of initialization will be carried out only once, this guarantees that
the library functions will be available to each thread as necessary. In applications with a clear master
thread, spawning other Optimizer threads, initialization need only be called by the master thread.

Related topics
XPRScreateprob, XPRSfree, XPRSgetlicerrmsg.

Fair Isaac Corporation Proprietary Information 268

Chapter 7: Console and Library Functions

XPRSinitglobal

Purpose
This subroutine is deprecated and will be removed in a future release. XPRSpostsolve should be used
instead.
Reinitializes the global tree search. By default if a global search is interrupted and called again the global
search will continue from where it left off. If XPRSinitglobal is called after the first call to
XPRSmipoptimize, the global search will start from the top node when XPRSmipoptimize is called
again.

Synopsis
int XPRS_CC XPRSinitglobal(XPRSprob prob);

Argument
prob The current problem.

Example
The following initializes the global search before attempting to solve the problem again:

XPRSinitglobal(prob);
XPRSmipoptimize(prob,"");

Related topics
XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 269

Chapter 7: Console and Library Functions

XPRSinterrupt

Purpose
Interrupts the Optimizer algorithms.

Synopsis
int XPRS_CC XPRSinterrupt(XPRSprob prob, int reason);

Arguments
prob The current problem.
reason The reason for stopping. Possible reasons are:

XPRS_STOP_NONE do not stop;
XPRS_STOP_TIMELIMIT time limit hit;
XPRS_STOP_CTRLC control C hit;
XPRS_STOP_NODELIMIT node limit hit;
XPRS_STOP_ITERLIMIT iteration limit hit;
XPRS_STOP_MIPGAP MIP gap is sufficiently small;
XPRS_STOP_SOLLIMIT solution limit hit;
XPRS_STOP_USER user interrupt;
>= 1000 user defined value.

Further information

1. The XPRSinterrupt command can be called from any callback.

2. The range of values below 1000 is reserved for future extension. The behavior of the function is
undefined if reason is smaller than 1000 and not one of the values listed above.

Related topics
None.

Fair Isaac Corporation Proprietary Information 270

Chapter 7: Console and Library Functions

XPRSloadbasis

Purpose
Loads a basis from the user’s areas.

Synopsis
int XPRS_CC XPRSloadbasis(XPRSprob prob, const int rowstat[], const int

colstat[]);

Arguments
prob The current problem.
rowstat Integer array of length ROWS containing the basis status of the slack, surplus or artificial

variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

colstat Integer array of length COLS containing the basis status of each of the columns in the
constraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
This example loads a problem and then reloads a (previously optimized) basis from a similar problem to
speed up the optimization:

XPRSreadprob(prob,"problem","");
XPRSloadbasis(prob,rowstat,colstat);
XPRSlpoptimize(prob,"");

Further information
If the problem has been altered since saving an advanced basis, you may want to alter the basis as
follows before loading it:

■ Make new variables non-basic at their lower bound (colstat[icol]=0), unless a variable has an
infinite lower bound and a finite upper bound, in which case make the variable non-basic at its upper
bound (colstat[icol]=2);

■ Make new constraints basic (rowstat[jrow]=1);
■ Try not to delete basic variables, or non-basic constraints.

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadpresolvebasis.

Fair Isaac Corporation Proprietary Information 271

Chapter 7: Console and Library Functions

XPRSloadbranchdirs

Purpose
Loads directives into the current problem to specify which global entities the Optimizer should continue
to branch on when a node solution is global feasible.

Synopsis
int XPRS_CC XPRSloadbranchdirs(XPRSprob prob, int ncols, const int colind[],

const int dir[]);

Arguments
prob The current problem.
ncols Number of directives.
colind Integer array of length ncols containing the column numbers. A negative value indicates

a set number (the first set being -1, the second -2, and so on).
dir Integer array of length ncols containing either 0 or 1 for the entities given in colind.

Entities for which dir is set to 1 will be branched on until fixed before a global feasible
solution is returned. If dir is NULL, the branching directive will be set for all entities in
colind.

Related topics
XPRSloaddirs, XPRSreaddirs, A.5.

Fair Isaac Corporation Proprietary Information 272

Chapter 7: Console and Library Functions

XPRSloadcuts

Purpose
Loads cuts from the cut pool into the matrix. Without calling XPRSloadcuts the cuts will remain in the
cut pool but will not be active at the node. Cuts loaded at a node remain active at all descendant nodes
unless they are deleted using XPRSdelcuts.

Synopsis
int XPRS_CC XPRSloadcuts(XPRSprob prob, int coltype, int interp, int ncuts,

const XPRScut cutind[]);

Arguments
prob The current problem.
coltype Cut type.
interp The way in which the cut type is interpreted:

-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

coltype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in

coltype.
ncuts Number of cuts to load.
cutind Array of length ncuts containing pointers to the cuts to be loaded into the matrix. These

are pointers returned by either XPRSstorecuts or XPRSgetcpcutlist.

Further information
This function should be called only from within callback functions set by either XPRSaddcboptnode or
XPRSaddcbcutmgr.

Related topics
XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcpcutlist, 5.9.

Fair Isaac Corporation Proprietary Information 273

Chapter 7: Console and Library Functions

XPRSloaddelayedrows

Purpose
Specifies that a set of rows in the matrix will be treated as delayed rows during a global search. These are
rows that must be satisfied for any integer solution, but will not be loaded into the active set of
constraints until required.

Synopsis
int XPRS_CC XPRSloaddelayedrows(XPRSprob prob, int nrows, const int

rowind[]);

Arguments
prob The current problem.
nrows The number of delayed rows.
rowind An array of row indices to treat as delayed rows.

Example
This sets the first six matrix rows as delayed rows in the global problem prob.

int rowind[] = {0,1,2,3,4,5}
...
XPRSloaddelayedrows(prob,6,rowind);
XPRSmipoptimize(prob,"");

Further information
Delayed rows must be set up before solving the problem. Any delayed rows will be removed from the
matrix after presolve and added to a special pool. A delayed row will be added back into the active matrix
only when such a row is violated by an integer solution found by the Optimizer.

Related topics
XPRSloadmodelcuts.

Fair Isaac Corporation Proprietary Information 274

Chapter 7: Console and Library Functions

XPRSloaddirs

Purpose
Loads directives into the matrix.

Synopsis
int XPRS_CC XPRSloaddirs(XPRSprob prob, int ndirs, const int colind[],

const int priority[], const char dir[], const double uppseudo[],
const double downpseudo[]);

Arguments
prob The current problem.
ndirs Number of directives.
colind Integer array of length ndirs containing the column numbers. A negative value indicates

a set number (the first set being -1, the second -2, and so on).
priority Integer array of length ndirs containing the priorities for the columns or sets. Priorities

must be between 0 and 1000, where columns/sets with smallest priority will be branched
on first. May be NULL if not required.

dir Character array of length ndirs specifying the branching direction for each column or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be NULL if not required.

uppseudo Double array of length ndirs containing the up pseudo costs for the columns or sets.
May be NULL if not required.

downpseudo Double array of length ndirs containing the down pseudo costs for the columns or sets.
May be NULL if not required.

Related topics
XPRSgetdirs, XPRSloadpresolvedirs, XPRSreaddirs.

Fair Isaac Corporation Proprietary Information 275

Chapter 7: Console and Library Functions

XPRSloadglobal, XPRSloadglobal64

Purpose
Used to load a global problem in to the Optimizer data structures. Integer, binary, partial integer,
semi-continuous and semi-continuous integer variables can be defined, together with sets of type 1 and 2.
The reference row values for the set members are passed as an array rather than specifying a reference
row.

Synopsis
int XPRS_CC XPRSloadglobal(XPRSprob prob, const char ⁎probname, int ncols,

int nrows, const char rowtype[], const double rhs[], const double
rng[], const double objcoef[], const int start[], const int collen[],
const int rowind[], const double rowcoef[], const double lb[], const
double ub[], int nentities, int nsets, const char coltype[], const
int entind[], const double limit[], const char settype[], const int
setstart[], const int setind[], const double refval[]);

int XPRS_CC XPRSloadglobal64(XPRSprob prob, const char ⁎probname, int ncols,
int nrows, const char rowtype[], const double rhs[], const double
rng[], const double objcoef[], const XPRSint64 start[], const int
collen[], const int rowind[], const double rowcoef[], const double
lb[], const double ub[], int nentities, int nsets, const char
coltype[], const int entind[], const double limit[], const char
settype[], const XPRSint64 setstart[], const int setind[], const
double refval[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix not (including the objective row). Objective coefficients

must be supplied in the objcoef array, and the objective function should not be included
in any of the other arrays.

rowtype Character array of length nrows containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients. The right hand
side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. Values for all
other rows will be ignored. May be NULL if not required. The lower bound on a range row
is the right hand side value minus the range value. The sign of the range value is ignored -
the absolute value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.
start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1. If collen is NULL, the extra entry of start, start[ncols], contains the
position in the rowind and rowcoef arrays at which an extra column would start, if it
were present. In C, this value is also the length of the rowind and rowcoef arrays.

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if not required. This array is not required if the non-zero coefficients in the

Fair Isaac Corporation Proprietary Information 276

Chapter 7: Console and Library Functions

rowind and rowcoef arrays are continuous, and the start array has ncols+1 entries
as described above. It may be NULL if not required.

rowind Integer arrays containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, then the length of
rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values length as for rowind.
lb Double array of length ncols containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
ub Double array of length ncols containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nentities Number of binary, integer, semi-continuous, semi-continuous integer and partial integer

entities.
nsets Number of SOS1 and SOS2 sets.
coltype Character array of length nentities containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

entind Integer array of length nentities containing the column indices of the global entities.
limit Double array of length nentities containing the integer limits for the partial integer

variables and lower bounds for semi-continuous and semi-continuous integer variables
(any entries in the positions corresponding to binary and integer variables will be ignored).
May be NULL if not required.

settype Character array of length nsets containing the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

setstart Integer array containing the offsets in the setind and refval arrays indicating the start
of the sets. This array is of length nsets+1, the last member containing the offset where
set nsets+1 would start. May be NULL if not required.

setind Integer array of length setstart[nsets]-1 containing the columns in each set. May
be NULL if not required.

refval Double array of length setstart[nsets]-1 containing the reference row entries for
each member of the sets. These define the order for SOS2 constraints and may be used
in branching for both types. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

Fair Isaac Corporation Proprietary Information 277

Chapter 7: Console and Library Functions

Example
The following specifies an integer problem, globalEx, corresponding to:

minimize: x + 2y
subject to: 3x + 2y ≤ 400

x + 3y ≤ 200

with both x and y integral:

char probname[] = "globalEx";
int ncols = 2, nrows = 2;
char rowtype[] = {'L','L'};
double rhs[] = {400.0, 200.0};
int start[] = {0, 2, 4};
int rowind[] = {0, 1, 0, 1};
double rowcoef[] = {3.0, 1.0, 2.0, 3.0};
double objcoefs[] = {1.0, 2.0};
double lb[] = {0.0, 0.0};
double ub[] = {200.0, 200.0};

int nentities = 2;
int nsets = 0;
char coltype[] = {"I","I"};
int entind[] = {0,1};
...
XPRSloadglobal(prob, probname, ncols, nrows, rowtype, rhs, NULL,

objcoefs, start, NULL, rowind,
rowcoef, lb, ub, nentities, nsets, coltype, entind,
NULL, NULL, NULL, NULL, NULL);

Further information

1. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

3. Semi-continuous lower bounds are taken from the limit array. If this is NULL then they are given a
default value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used as
the semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
XPRSaddsetnames, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 278

Chapter 7: Console and Library Functions

XPRSloadlp, XPRSloadlp64

Purpose
Enables the user to pass a matrix directly to the Optimizer, rather than reading the matrix from a file.

Synopsis
int XPRS_CC XPRSloadlp(XPRSprob prob, const char ⁎probname, int ncols, int

nrows, const char rowtype[], const double rhs[], const double rng[],
const double objcoef[], const int start[], const int collen[], const
int rowind[], const double rowcoef[], const double lb[], const double
ub[]);

int XPRS_CC XPRSloadlp64(XPRSprob prob, const char ⁎probname, int ncols,
int nrows, const char rowtype[], const double rhs[], const double
rng[], const double objcoef[], const XPRSint64 start[], const int
collen[], const int rowind[], const double rowcoef[], const double
lb[], const double ub[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a names for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix (not including the objective). Objective coefficients must be

supplied in the objcoef array, and the objective function should not be included in any of
the other arrays.

rowtype Character array of length nrows containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients of the rows. The
right hand side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. Values for all
other rows will be ignored. May be NULL if not required. The lower bound on a range row
is the right hand side value minus the range value. The sign of the range value is ignored -
the absolute value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.
start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1. If collen is NULL, the extra entry of start, start[ncols], contains the
position in the rowind and rowcoef arrays at which an extra column would start, if it
were present. In C, this value is also the length of the rowind and rowcoef arrays.

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if not required. This array is not required if the non-zero coefficients in the
rowind and rowcoef arrays are continuous, and the start array has ncols+1 entries
as described above.

rowind Integer array containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, the length of the
rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values; length as for rowind.

Fair Isaac Corporation Proprietary Information 279

Chapter 7: Console and Library Functions

lb Double array of length ncols containing the lower bounds on the columns. Use
XPRS_MINUSINFINITY to represent a lower bound of minus infinity.

ub Double array of length ncols containing the upper bounds on the columns. Use
XPRS_PLUSINFINITY to represent an upper bound of plus infinity.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example
Given an LP problem:

minimize: x + y
subject to: 2x ≥ 3

x + 2y ≥ 3
x + y ≥ 1

the following shows how this may be loaded into the Optimizer using XPRSloadlp:

char probname[] = "small";
int ncols = 2, nrows = 3;
char rowtype[] = {'G','G','G'};
double rhs[] = { 3 , 3 , 1 };
double objcoef[] = { 1 , 1 };
int start[] = { 0 , 3 , 5 };
int rowind[] = { 0 , 1 , 2 , 1 , 2 };
double rowcoef[] = { 2 , 1 , 1 , 2 , 1 };
double lb[] = { 0 , 0 };
double ub[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

XPRSloadlp(prob, probname, ncols, nrows, rowtype, rhs, NULL,
objcoef, start, NULL, rowind, rowcoef, lb, ub)

Further information

1. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

3. For a range constraint, the value in the rhs array specifies the upper bound on the constraint, while the
value in the rng array specifies the range on the constraint. So a range constraint j is interpreted as:

rhsj – |rngj| ≤
∑
i

aijxi ≤ rhsj

Related topics
XPRSloadglobal, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 280

Chapter 7: Console and Library Functions

XPRSloadlpsol

Purpose
Loads an LP solution for the problem into the Optimizer.

Synopsis
int XPRS_CC XPRSloadlpsol(XPRSprob prob, const double x[], const double

slack[], const double duals[], const double djs[], int ⁎p_status);

Arguments
prob The current problem.
x Optional: Double array of length COLS (for the original problem and not the presolve

problem) containing the values of the variables.
slack Optional: double array of length ROWS containing the values of slack variables.
duals Optional: double array of length ROWS containing the values of dual variables.
djs Optional: double array of length COLS containing the values of reduced costs.
p_status Pointer to an int where the status will be returned. The status is one of:

0 Solution is loaded.
1 Solution is not loaded because the problem is in presolved status.

Example
This example loads a problem, loads a solution for the problem and then uses XPRScrossoverlpsol
to find a basic optimal solution.

XPRSreadprob(prob, "problem", "");
XPRSloadlpsol(prob, x, NULL, duals, NULL, &status);
XPRScrossoverlpsol(prob, &status);

Further information

1. At least one of variables x and dual variables dualsmust be provided.

2. When variables x is NULL, the variables will be set to their bounds.

3. When slack variables slack is NULL, it will be computed from variables x. If slacks are provided,
variables cannot be omitted.

4. When dual variables duals is NULL, both dual variables and reduced costs will be set to zero.

5. When reduced costs djs is NULL, it will be computed from dual variables duals. If reduced costs are
provided, dual variables cannot be omitted.

Related topics
XPRSgetlpsol, XPRScrossoverlpsol.

Fair Isaac Corporation Proprietary Information 281

Chapter 7: Console and Library Functions

XPRSloadmipsol

Purpose
Loads a starting MIP solution for the problem into the Optimizer.

Synopsis
int XPRS_CC XPRSloadmipsol(XPRSprob prob, const double x[], int ⁎p_status);

Arguments
prob The current problem.
x Double array of length COLS (for the original problem and not the presolve problem)

containing the values of the variables.
p_status Pointer to an int where the status will be returned. The status is one of:

-1 Solution rejected because an error occurred;
0 Solution accepted. When loading a solution before a MIP solve, the solution

is always accepted. See Further Information below.
1 Solution rejected because it is infeasible;
2 Solution rejected because it is cut off;
3 Solution rejected because the LP reoptimization was interrupted.

Example
This example loads a problem and then loads a solution found previously for the problem to help speed
up the MIP search:

XPRSreadprob(prob,"problem","");
XPRSloadmipsol(prob,x,&status);
XPRSmipoptimize(prob,"");

Further information

1. When a solution is loaded before a MIP solve, the solution is placed in temporary storage until the MIP
solve is started. Only after the MIP solve has commenced and any presolve has been applied, will the
loaded solution be checked and possibly accepted as a new incumbent integer solution. There are no
checks performed on the solution before the MIP solve and the returned status in XPRSloadmipsol will
always be 0 for accepted.

2. Loaded solution values will automatically be adjusted to fit within the current problem bounds.

3. It is recommended to use XPRSaddmipsol instead of XPRSloadmipsol. XPRSaddmipsol can be
called both before a solve, to load a starting solution, and during a MIP solve, to load new solutions within
callbacks. XPRSaddmipsol also allows for loading of infeasible or partial solutions and comes with a
callback to check the status of loaded solutions.

Related topics
XPRSaddmipsol, XPRSgetmipsol.

Fair Isaac Corporation Proprietary Information 282

Chapter 7: Console and Library Functions

XPRSloadmodelcuts

Purpose
Specifies that a set of rows in the matrix will be treated as model cuts.

Synopsis
int XPRS_CC XPRSloadmodelcuts(XPRSprob prob, int nrows, const int

rowind[]);

Arguments
prob The current problem.
nrows The number of model cuts.
rowind An array of row indices to be treated as cuts.

Error value
268 Cannot perform operation on presolved matrix.

Example
This sets the first six matrix rows as model cuts in the global problem myprob.

int rowind[] = {0,1,2,3,4,5}
...
XPRSloadmodelcuts(prob,6,rowind);
XPRSmipoptimize(prob,"");

Further information

1. During presolve the model cuts are removed from the matrix and added to an internal cut pool. During the
global search, the Optimizer will regularly check this cut pool for any violated model cuts and add those
that cuts off a node LP solution.

2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal MIP
solution. The Optimizer does not guarantee to add all violated model cuts, so they must not be required
to define the optimal MIP solution.

Related topics
5.9.

Fair Isaac Corporation Proprietary Information 283

Chapter 7: Console and Library Functions

XPRSloadpresolvebasis

Purpose
Loads a presolved basis from the user’s areas.

Synopsis
int XPRS_CC XPRSloadpresolvebasis(XPRSprob prob, const int rowstat[], const

int colstat[]);

Arguments
prob The current problem.
rowstat Integer array of length ROWS containing the basis status of the slack, surplus or artificial

variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

colstat Integer array of length COLS containing the basis status of each of the columns in the
matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has no

lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
The following example saves the presolved basis for one problem, loading it into another:

int rows, cols, ⁎rowstat, ⁎colstat;
...
XPRSreadprob(prob,"myprob","");
XPRSmipoptimize(prob,"l");
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rowstat = malloc(rows⁎sizeof(int));
colstat = malloc(cols⁎sizeof(int));
XPRSgetpresolvebasis(prob,rowstat,colstat);
XPRSreadprob(prob2,"myotherprob","");
XPRSmipoptimize(prob2,"l");
XPRSloadpresolvebasis(prob2,rowstat,colstat);

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadbasis.

Fair Isaac Corporation Proprietary Information 284

Chapter 7: Console and Library Functions

XPRSloadpresolvedirs

Purpose
Loads directives into the presolved matrix.

Synopsis
int XPRS_CC XPRSloadpresolvedirs(XPRSprob prob, int ndirs, const int

colind[], const int priority[], const char dir[], const double
uppseudo[], const double downpseudo[]);

Arguments
prob The current problem.
ndirs Number of directives.
colind Integer array of length ndirs containing the column numbers. A negative value indicates

a set number (-1 being the first set, -2 the second, and so on).
priority Integer array of length ndirs containing the priorities for the columns or sets. May be

NULL if not required.
dir Character array of length ndirs specifying the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be NULL if not required.

uppseudo Double array of length ndirs containing the up pseudo costs for the columns or sets.
May be NULL if not required.

downpseudo Double array of length ndirs containing the down pseudo costs for the columns or sets.
May be NULL if not required.

Example
The following loads priority directives for column 0 in the matrix:

int colind[] = {0}, priority[] = {1};
...
XPRSmipoptimize(prob,"l");
XPRSloadpresolvedirs(prob,1,colind,priority,NULL,NULL,NULL);
XPRSmipoptimize(prob,"");

Related topics
XPRSgetdirs, XPRSloaddirs.

Fair Isaac Corporation Proprietary Information 285

Chapter 7: Console and Library Functions

XPRSloadqcqp, XPRSloadqcqp64

Purpose
Used to load a quadratic problem with quadratic side constraints into the Optimizer data structure. Such
a problem may have quadratic terms in its objective function as well as in its constraints.

Synopsis
int XPRS_CC XPRSloadqcqp(XPRSprob prob, const char ⁎ probname, int ncols,

int nrows, const char qrtypes[], const double rhs[], const double
rng[], const double objcoef[], const int start[], const int collen[],
const int rowind[], const double rowcoef[], const double lb[], const
double ub[], int nobjqcoefs, const int mqcol1[], const int mqcol2[],
const double objqcoef[], int nqrows, const int qrowind[], const int
nrowqcoef[], const int rowqcol1[], const int rowqcol2[], const double
rowqcoef[]);

int XPRS_CC XPRSloadqcqp64(XPRSprob prob, const char ⁎ probname, int ncols,
int nrows, const char qrtypes[], const double rhs[], const double
rng[], const double objcoef[], const XPRSint64 start[], const int
collen[], const int rowind[], const double rowcoef[], const double
lb[], const double ub[], XPRSint64 nobjqcoefs, const int mqcol1[],
const int mqcol2[], const double objqcoef[], int nqrows, const int
qrowind[], const XPRSint64 nrowqcoef[], const int rowqcol1[], const
int rowqcol2[], const double rowqcoef[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix (not including the objective row). Objective coefficients

must be supplied in the objcoef array, and the objective function should not be included
in any of the other arrays.

rowtype Character array of length nrows containing the row types:
L indicates a <= constraint (use this one for quadratic constraints as well);
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients of the rows. The
right hand side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. Values for all
other rows will be ignored. May be NULL if there are no ranged constraints. The lower
bound on a range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.
start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1. If collen is NULL the extra entry of start, start[ncols], contains the
position in the rowind and rowcoef arrays at which an extra column would start, if it
were present. In C, this value is also the length of the rowind and rowcoef arrays.

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if all elements are contiguous and start[ncols] contains the offset
where the elements for column ncols+1 would start. This array is not required if the

Fair Isaac Corporation Proprietary Information 286

Chapter 7: Console and Library Functions

non-zero coefficients in the rowind and rowcoef arrays are continuous, and the start
array has ncols+1 entries as described above. It may be NULL if not required.

rowind Integer array containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, the length of the
rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values; length as for rowind.
lb Double array of length ncols containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
ub Double array of length ncols containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nobjqcoefs Number of quadratic terms.
objqcol1 Integer array of size nobjqcoefs containing the column index of the first variable in

each quadratic term.
objqcol2 Integer array of size nobjqcoefs containing the column index of the second variable in

each quadratic term.
objqcoef Double array of size nobjqcoefs containing the quadratic coefficients.
nqrows Number of rows containing quadratic matrices.
qrowind Integer array of size nqrows, containing the indices of rows with quadratic matrices in

them. Note that the rows are expected to be defined in rowtype as type L.
nrowqcoef Integer array of size nqrows, containing the number of nonzeros in each quadratic

constraint matrix.
rowqcol1 Integer array of size nqcelem, where nqcelem equals the sum of the elements in

nrowqcoef (i.e. the total number of quadratic matrix elements in all the constraints). It
contains the first column indices of the quadratic matrices. Indices for the first matrix are
listed from 0 to nrowqcoef[0]-1, for the second matrix from nrowqcoef[0] to
nrowqcoef[0]+ nrowqcoef[1]-1, etc.

rowqcol2 Integer array of size nqcelem, containing the second index for the quadratic constraint
matrices.

rowqcoef Integer array of size nqcelem, containing the coefficients for the quadratic constraint
matrices.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAQCELEMENTS Number of extra qcqp elements to be allowed for.
EXTRAQCROWS Number of extra qcqpmatrices to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example
To load the following problem presented in LP format:

minimize [x^2]
s.t.

Fair Isaac Corporation Proprietary Information 287

Chapter 7: Console and Library Functions

4 x + y <= 4
x + y + [z^2] <= 5
[x^2 + 2 x⁎y + y^2 + 4 y⁎z + z^2] <= 10

x + 2 y >= 8
[3 y^2] <= 20
end

the following code may be used:

{
int ncols = 3;
int nrows = 5;
char rowtypes[] = {'L','L','L','G','L'};
double rhs[] = {4,5,10,8,20};
double rng[] = {0,0,0,0,0};
double objcoef[] = {0,0,0,0,0};
int start[] = {0,3,6,6};
int⁎ collen = NULL;
int mrind[] = {0,1,3,0,1,3};
double rowcoef[] = {4,1,1,1,1,2};
double lb[] = {0,0,0};
double ub[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY,
XPRS_PLUSINFINITY};

int nobjqcoefs = 1;
int objqcol1[] = {0};
int objqcol2[] = {0};
double objqcoef[] = {1};

int nqrows = 3;
int qrowind[] = {1,2,4};
int nrowqcoef[] = {1,5,1};
int qcmcol1[] = {2,0,0,1,1,2,1};
int qcmcol2[] = {2,0,1,1,2,2,1};
// ! to have 2xy define 1xy (1yx will be assumed to be implicitly present)
double rowqcoef[] = {1,9,1,8,2,7,3};

}

XPRSloadqcqp(xprob,"qcqp",ncols,nrows,rowtypes,rhs,rng,objcoef,start,
collen,mrind,rowcoef,lb,ub,nobjqcoefs,objqcol1,objqcol2,objqcoef,nqrows,qrowind,nrowqcoef,
qcmcol1,qcmcol2,rowqcoef);

}

Fair Isaac Corporation Proprietary Information 288

Chapter 7: Console and Library Functions

Further information

1. The objective function is of the form cTx+ 0.5 xTQx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is specified.

2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lower
triangular part of the Qmatrix is specified for constraints as well.

3. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

4. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 289

Chapter 7: Console and Library Functions

XPRSloadqcqpglobal, XPRSloadqcqpglobal64

Purpose
Used to load a global, quadratic problem with quadratic side constraints into the Optimizer data structure.
Such a problem may have quadratic terms in its objective function as well as in its constraints. Integer,
binary, partial integer, semi-continuous and semi-continuous integer variables can be defined, together
with sets of type 1 and 2. The reference row values for the set members are passed as an array rather
than specifying a reference row.

Synopsis
int XPRS_CC XPRSloadqcqpglobal(XPRSprob prob, const char ⁎ probname, int

ncols, int nrows, const char qrtypes[], const double rhs[], const
double rng[], const double objcoef[], const int start[], const int
collen[], const int rowind[], const double rowcoef[], const double
lb[], const double ub[], int nobjqcoefs, const int mqcol1[], const
int mqcol2[], const double objqcoef[], int nqrows, const int
qrowind[], const int nrowqcoefs[], const int rowqcol1[], const int
rowqcol2[], const double rowqcoef[], const int nentities, const int
nsets, const char coltype[], const int entind[], const double
limit[], const char settype[], const int setstart[], const int
setind[], const double refval[]);

int XPRS_CC XPRSloadqcqpglobal64(XPRSprob prob, const char ⁎ probname, int
ncols, int nrows, const char qrtypes[], const double rhs[], const
double rng[], const double objcoef[], const XPRSint64 start[], const
int collen[], const int rowind[], const double rowcoef[], const
double lb[], const double ub[], XPRSint64 nobjqcoefs, const int
mqcol1[], const int mqcol2[], const double objqcoef[], int nqrows,
const int qrowind[], const XPRSint64 nrowqcoefs[], const int
rowqcol1[], const int rowqcol2[], const double rowqcoef[], const int
nentities, const int nsets, const char coltype[], const int entind[],
const double limit[], const char settype[], const XPRSint64
setstart[], const int setind[], const double refval[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix (not including the objective row). Objective coefficients

must be supplied in the objcoef array, and the objective function should not be included
in any of the other arrays.

rowtype Character array of length nrows containing the row types:
L indicates a <= constraint (use this one for quadratic constraints as well);
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients of the rows. The
right hand side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. Values for all
other rows will be ignored. May be NULL if there are no ranged constraints. The lower
bound on a range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.

Fair Isaac Corporation Proprietary Information 290

Chapter 7: Console and Library Functions

start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the
elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1. If collen is NULL the extra entry of start, start[ncols], contains the
position in the rowind and rowcoef arrays at which an extra column would start, if it
were present. In C, this value is also the length of the rowind and rowcoef arrays.

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if all elements are contiguous and start[ncols] contains the offset
where the elements for column ncols+1 would start. This array is not required if the
non-zero coefficients in the rowind and rowcoef arrays are continuous, and the start
array has ncols+1 entries as described above. It may be NULL if not required.

rowind Integer array containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, the length of the
rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values; length as for rowind.
lb Double array of length ncols containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
ub Double array of length ncols containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nobjqcoefs Number of quadratic terms.
objqcol1 Integer array of size nobjqcoefs containing the column index of the first variable in

each quadratic term.
objqcol2 Integer array of size nobjqcoefs containing the column index of the second variable in

each quadratic term.
objqcoef Double array of size nobjqcoefs containing the quadratic coefficients.
nqrows Number of rows containing quadratic matrices.
qrowind Integer array of size nqrows, containing the indices of rows with quadratic matrices in

them. Note that the rows are expected to be defined in rowtype as type L.
nrowqcoefs Integer array of size nqrows, containing the number of nonzeros in each quadratic

constraint matrix.
rowqcol1 Integer array of size nqcelem, where nqcelem equals the sum of the elements in

nrowqcoefs (i.e. the total number of quadratic matrix elements in all the constraints). It
contains the first column indices of the quadratic matrices. Indices for the first matrix are
listed from 0 to nrowqcoefs[0]-1, for the second matrix from nrowqcoefs[0] to
nrowqcoefs[0]+ nrowqcoefs[1]-1, etc.

rowqcol2 Integer array of size nqcelem, containing the second index for the quadratic constraint
matrices.

rowqcoef Integer array of size nqcelem, containing the coefficients for the quadratic constraint
matrices.

nentities Number of binary, integer, semi-continuous, semi-continuous integer and partial integer
entities.

nsets Number of SOS1 and SOS2 sets.
coltype Character array of length nentities containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

entind Integer array of length nentities containing the column indices of the global entities.
limit Double array of length nentities containing the integer limits for the partial integer

Fair Isaac Corporation Proprietary Information 291

Chapter 7: Console and Library Functions

variables and lower bounds for semi-continuous and semi-continuous integer variables
(any entries in the positions corresponding to binary and integer variables will be ignored).
May be NULL if not required.

settype Character array of length nsets containing the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

setstart Integer array containing the offsets in the setind and refval arrays indicating the start
of the sets. This array is of length nsets+1, the last member containing the offset where
set nsets+1 would start. May be NULL if not required.

setind Integer array of length setstart[nsets]-1 containing the columns in each set. May
be NULL if not required.

refval Double array of length setstart[nsets]-1 containing the reference row entries for
each member of the sets. These define the order for SOS2 constraints and may be used
in branching for both types. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAQCELEMENTS Number of extra qcqp elements to be allowed for.
EXTRAQCROWS Number of extra qcqpmatrices to be allowed for.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Further information

1. The objective function is of the form cTx+ 0.5 xTQx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is specified.

2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lower
triangular part of the Qmatrix is specified for constraints as well.

3. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

4. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

5. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

6. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

7. Semi-continuous lower bounds are taken from the limit array. If this is NULL then they are given a default
value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used as the
semi-continuous lower bound and the lower bound on the variable will be set to zero.

Fair Isaac Corporation Proprietary Information 292

Chapter 7: Console and Library Functions

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqcqp, XPRSloadqglobal, XPRSloadqp,
XPRSreadprob.

Fair Isaac Corporation Proprietary Information 293

Chapter 7: Console and Library Functions

XPRSloadqglobal, XPRSloadqglobal64

Purpose
Used to load a global problem with quadratic objective coefficients in to the Optimizer data structures.
Integer, binary, partial integer, semi-continuous and semi-continuous integer variables can be defined,
together with sets of type 1 and 2. The reference row values for the set members are passed as an array
rather than specifying a reference row.

Synopsis
int XPRS_CC XPRSloadqglobal(XPRSprob prob, const char ⁎probname, int ncols,

int nrows, const char rowtype[], const double rhs[], const double
rng[], const double objcoef[], const int start[], const int collen[],
const int rowind[], const double rowcoef[], const double lb[], const
double ub[], int nobjqcoefs, const int objqcol1[], const int
objqcol2[], const double objqcoef[], const int nentities, const int
nsets, const char coltype[], const int entind[], const double
limit[], const char settype[], const int setstart[], const int
setind[], const double refval[]);

int XPRS_CC XPRSloadqglobal64(XPRSprob prob, const char ⁎probname, int
ncols, int nrows, const char rowtype[], const double rhs[], const
double rng[], const double objcoef[], const XPRSint64 start[], const
int collen[], const int rowind[], const double rowcoef[], const
double lb[], const double ub[], XPRSint64 nobjqcoefs, const int
objqcol1[], const int objqcol2[], const double objqcoef[], const int
nentities, const int nsets, const char coltype[], const int entind[],
const double limit[], const char settype[], const XPRSint64
setstart[], const int setind[], const double refval[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a name for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix (not including the objective). Objective coefficients must be

supplied in the objcoef array, and the objective function should not be included in any of
the other arrays.

rowtype Character array of length nrows containing the row type:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients. The right hand
side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. The values in
the range array will only be read for R type rows. The entries for other type rows will be
ignored. May be NULL if not required. The lower bound on a range row is the right hand
side value minus the range value. The sign of the range value is ignored - the absolute
value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.
start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1.

Fair Isaac Corporation Proprietary Information 294

Chapter 7: Console and Library Functions

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if not required. This array is not required if the non-zero coefficients in the
rowind and rowcoef arrays are continuous, and the start array has ncols+1 entries
as described above. It may be NULL if not required.

rowind Integer arrays containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, then the length of
rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values length as for rowind.
lb Double array of length ncols containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
ub Double array of length ncols containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nobjqcoefs Number of quadratic terms.
objqcol1 Integer array of size nobjqcoefs containing the column index of the first variable in

each quadratic term.
objqcol2 Integer array of size nobjqcoefs containing the column index of the second variable in

each quadratic term.
objqcoef Double array of size nobjqcoefs containing the quadratic coefficients.
nentities Number of binary, integer, semi-continuous, semi-continuous integer and partial integer

entities.
nsets Number of SOS1 and SOS2 sets.
coltype Character array of length nentities containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integers.

entind Integer array of length nentities containing the column indices of the global entities.
limit Double array of length nentities containing the integer limits for the partial integer

variables and lower bounds for semi-continuous and semi-continuous integer variables
(any entries in the positions corresponding to binary and integer variables will be ignored).
May be NULL if not required.

settype Character array of length nsets containing:
1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

setstart Integer array containing the offsets in the setind and refval arrays indicating the start
of the sets. This array is of length nsets+1, the last member containing the offset where
set nsets+1 would start. May be NULL if not required.

setind Integer array of length setstart[nsets]-1 containing the columns in each set. May
be NULL if not required.

refval Double array of length setstart[nsets]-1 containing the reference row entries for
each member of the sets. These define the order for SOS2 constraints and may be used
in branching for both types. May be NULL if not required.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.

Fair Isaac Corporation Proprietary Information 295

Chapter 7: Console and Library Functions

EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

Example
Minimize -6x1 + 2x12 - 2x1x2 + 2x22 subject to x1 + x2 ≤ 1.9, where x1 must be an integer:

int nrows = 1, ncols = 2, nquad = 3;
int start[] = {0, 1, 2};
int rowind[] = {0, 0};
double rowcoef[] = {1, 1};
double rhs[] = {1.9};
char rowtype[] = {'L'};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY, XPRS_PLUSINFINITY};

double objcoef[] = {-6, 0};
int objqcol1[] = {0, 0, 1};
int objqcol2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

int nentities = 1, nsets = 0;
int entind[] = {0};
char coltype[]={'I'};

double ⁎primal, ⁎dual;

primal = malloc(ncols⁎sizeof(double));
dual = malloc(nrows⁎sizeof(double));
...
XPRSloadqglobal(prob, "myprob", ncols, nrows, rowtype, rhs,

NULL, objcoef, start, NULL, rowind,
rowcoef, lbound, ubound, nquad, objqcol1, objqcol2,
dquad, nentities, nsets, coltype, entind, NULL,
NULL, NULL, NULL, NULL)

Further information

1. The objective function is of the form c’x+ 0.5 x’Qx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Qmatrix is specified.

2. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

Related topics
XPRSaddsetnames, XPRSloadglobal, XPRSloadlp, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 296

Chapter 7: Console and Library Functions

XPRSloadqp, XPRSloadqp64

Purpose
Used to load a quadratic problem into the Optimizer data structure. Such a problem may have quadratic
terms in its objective function, although not in its constraints.

Synopsis
int XPRS_CC XPRSloadqp(XPRSprob prob, const char ⁎probname, int ncols, int

nrows, const char rowtype[], const double rhs[], const double rng[],
const double objcoef[], const int start[], const int collen[], const
int rowind[], const double rowcoef[], const double lb[], const double
ub[], int nobjqcoefs, const int objqcol1[], const int objqcol2[],
const double objqcoef[]);

int XPRS_CC XPRSloadqp64(XPRSprob prob, const char ⁎probname, int ncols,
int nrows, const char rowtype[], const double rhs[], const double
rng[], const double objcoef[], const XPRSint64 start[], const int
collen[], const int rowind[], const double rowcoef[], const double
lb[], const double ub[], XPRSint64 nobjqcoefs, const int objqcol1[],
const int objqcol2[], const double objqcoef[]);

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing a names for the problem.
ncols Number of structural columns in the matrix.
nrows Number of rows in the matrix (not including the objective row). Objective coefficients

must be supplied in the objcoef array, and the objective function should not be included
in any of the other arrays.

rowtype Character array of length nrows containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrows containing the right hand side coefficients of the rows. The
right hand side value for a range row gives the upper bound on the row.

rng Double array of length nrows containing the range values for range rows. Values for all
other rows will be ignored. May be NULL if there are no ranged constraints. The lower
bound on a range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

objcoef Double array of length ncols containing the objective function coefficients.
start Integer array containing the offsets in the rowind and rowcoef arrays of the start of the

elements for each column. This array is of length ncols or, if collen is NULL, length
ncols+1. If collen is NULL the extra entry of start, start[ncols], contains the
position in the rowind and rowcoef arrays at which an extra column would start, if it
were present. In C, this value is also the length of the rowind and rowcoef arrays.

collen Integer array of length ncols containing the number of nonzero elements in each column.
May be NULL if all elements are contiguous and start[ncols] contains the offset
where the elements for column ncols+1 would start. This array is not required if the
non-zero coefficients in the rowind and rowcoef arrays are continuous, and the start
array has ncols+1 entries as described above. It may be NULL if not required.

rowind Integer array containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, the length of the

Fair Isaac Corporation Proprietary Information 297

Chapter 7: Console and Library Functions

rowind is start[ncols-1]+collen[ncols-1] or, if collen is NULL,
start[ncols].

rowcoef Double array containing the nonzero element values; length as for rowind.
lb Double array of length ncols containing the lower bounds on the columns. Use

XPRS_MINUSINFINITY to represent a lower bound of minus infinity.
ub Double array of length ncols containing the upper bounds on the columns. Use

XPRS_PLUSINFINITY to represent an upper bound of plus infinity.
nobjqcoefs Number of quadratic terms.
objqcol1 Integer array of size nobjqcoefs containing the column index of the first variable in

each quadratic term.
objqcol2 Integer array of size nobjqcoefs containing the column index of the second variable in

each quadratic term.
objqcoef Double array of size nobjqcoefs containing the quadratic coefficients.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.

Example
Minimize -6x1 + 2x12 - 2x1x2 + 2x22 subject to x1 + x2 ≤ 1.9:

int nrows = 1, ncols = 2, nquad = 3;
int start[] = {0, 1, 2};
int rowind[] = {0, 0};
double rowcoef[] = {1, 1};
double rhs[] = {1.9};
char rowtype[] = {'L'};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

double objcoef[] = {-6, 0};
int objqcol1[] = {0, 0, 1};
int objqcol2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

double ⁎primal, ⁎dual;

primal = malloc(ncols⁎sizeof(double));
dual = malloc(nrows⁎sizeof(double));
...
XPRSloadqp(prob, "example", ncols, nrows, rowtype, rhs,

NULL, objcoef, start, NULL, rowind, rowcoef,
lbound, ubound, nquad, objqcol1, objqcol2, dquad)

Fair Isaac Corporation Proprietary Information 298

Chapter 7: Console and Library Functions

Further information

1. The objective function is of the form c’x+ 0.5 x’Qx where Q is positive semi-definite for minimization
problems and negative semi-definite for maximization problems. If this is not the case the optimization
algorithms may converge to a local optimum or may not converge at all. Note that only the upper or lower
triangular part of the Q matrix is specified.

2. The row and column indices follow the usual C convention of going from 0 to nrows-1 and 0 to
ncols-1 respectively.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Optimizer
library header file.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 299

Chapter 7: Console and Library Functions

XPRSloadsecurevecs

Purpose
Allows the user to mark rows and columns in order to prevent the presolve removing these rows and
columns from the matrix.

Synopsis
int XPRS_CC XPRSloadsecurevecs(XPRSprob prob, int nrows, int ncols, const

int rowind[], const int colind[]);

Arguments
prob The current problem.
nrows Number of rows to be marked.
ncols Number of columns to be marked.
rowind Integer array of length nrows containing the rows to be marked. May be NULL if not

required.
colind Integer array of length ncols containing the columns to be marked. May be NULL if not

required.

Example
This sets the first six rows and the first four columns to not be removed during presolve.

int rowind[] = {0,1,2,3,4,5};
int colind[] = {0,1,2,3};
...
XPRSreadprob(prob,"myprob","");
XPRSloadsecurevecs(prob,6,4,rowind,colind);
XPRSmipoptimize(prob,"");

Related topics
5.3.

Fair Isaac Corporation Proprietary Information 300

Chapter 7: Console and Library Functions

XPRSlpoptimize LPOPTIMIZE

Purpose
This function begins a search for the optimal continuous (LP) solution. The direction of optimization is
given by OBJSENSE. The status of the problem when the function completes can be checked using
LPSTATUS. Any global entities in the problem will be ignored.

Synopsis
int XPRS_CC XPRSlpoptimize(XPRSprob prob, const char ⁎flags);
LPOPTIMIZE [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSlpoptimize (LPOPTIMIZE). The default is "" or NULL, in which

case the algorithm used is determined by the DEFAULTALG control. If the argument
includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
n (lower case N), the network part of the model will be identified and solved using

the network simplex algorithm;

Further information

1. The algorithm used to optimize is determined by the DEFAULTALG control if no flags are provided. By
default, the dual simplex is used for linear problems and the barrier is used for non-linear problems.

2. The d and p flags can be used with the n flag to complete the solution of the model with either the dual or
primal algorithms once the network algorithm has solved the network part of the model.

3. The b flag cannot be used with the n flag.

Related topics
XPRSmipoptimize (MIPOPTIMIZE), 4.

Fair Isaac Corporation Proprietary Information 301

Chapter 7: Console and Library Functions

XPRSmaxim, XPRSminim MAXIM, MINIM

Purpose
This subroutine is deprecated and will be removed in a future release. XPRSlpoptimize or
XPRSmipoptimize should be used instead.
Begins a search for the optimal LP solution.

Synopsis
int XPRS_CC XPRSmaxim(XPRSprob prob, const char ⁎flags);
int XPRS_CC XPRSminim(XPRSprob prob, const char ⁎flags);
MAXIM [-flags]
MINIM [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSmaxim (MAXIM) or XPRSminim (MINIM). The default is "" or NULL,

in which case the algorithm used is determined by the DEFAULTALG control. If the
argument includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
l (lower case L), the model will be solved as a linear model ignoring the

discreteness of global variables;
n (lower case N), the network part of the model will be identified and solved using

the network simplex algorithm;
g the global model will be solved, calling XPRSglobal (GLOBAL).
Certain combinations of options may be used where this makes sense so, for example, pg
will solve the LP with the primal algorithm and then go on to perform the global search.

Related controls
Integer

AUTOPERTURB Whether automatic perturbation is performed.
BARITERLIMIT Maximum number of Newton Barrier iterations.
BARORDER Ordering algorithm for the Cholesky factorization.
BARORDERTHREADS Maximum number of theads for the ordering algorithm.
BAROUTPUT Newton barrier: level of solution output.
BARTHREADS Max number of threads to run.
BIGMMETHOD Specifies "Big M" method, or phaseI/phaseII.
CACHESIZE Cache size in Kbytes for the Newton barrier.
CPUTIME 1 for CPU time; 0 for elapsed time.
CRASH Type of crash.
CROSSOVER Newton barrier crossover control.
DEFAULTALG Algorithm to use with the tree search.
DENSECOLLIMIT Columns with this many elements are considered dense.
DUALGRADIENT Pricing method for the dual algorithm.
INVERTFREQ Invert frequency.
INVERTMIN Minimum number of iterations between inverts.
KEEPBASIS Whether to use previously loaded basis.
LPITERLIMIT Iteration limit for the simplex algorithm.
LPLOG Frequency and type of simplex algorithm log.
MAXTIME Maximum time allowed.

Fair Isaac Corporation Proprietary Information 302

Chapter 7: Console and Library Functions

PRESOLVE Degree of presolving to perform.
PRESOLVEOPS Specifies the operations performed during presolve.
PRICINGALG Type of pricing to be used.
REFACTOR Indicates whether to re-factorize the optimal basis.
TRACE Control of the infeasibility diagnosis during presolve.

Double
BARDUALSTOP Newton barrier tolerance for dual infeasibilities.
BARGAPSTOP Newton barrier tolerance for relative duality gap.
BARPRIMALSTOP Newton barrier tolerance for primal infeasibilities.
BARSTEPSTOP Newton barrier minimal step size.
BIGM Infeasibility penalty.
CHOLESKYTOL Tolerance in the Cholesky decomposition.
ELIMTOL Markowitz tolerance for elimination phase of presolve.
ETATOL Tolerance on eta elements.
FEASTOL Tolerance on RHS.
MARKOWITZTOL Markowitz tolerance for the factorization.
MIPABSCUTOFF Cutoff set after an LP Optimizer command. (Dual only)
OPTIMALITYTOL Reduced cost tolerance.
PENALTY Maximum absolute penalty variable coefficient.
PERTURB Perturbation value.
PIVOTTOL Pivot tolerance.
PPFACTOR Partial pricing candidate list sizing parameter.
RELPIVOTTOL Relative pivot tolerance.

Example 1 (Library)

XPRSmaxim(prob,"b");

This maximizes the current problem using the Newton barrier method.

Example 2 (Console)

MINIM -g

This minimizes the current problem and commences the global search.

Further information

1. The algorithm used to optimize is determined by the DEFAULTALG control. By default, the dual simplex is
used for LP and MIP problems and the barrier is used for QP problems.

2. The d and p flags can be used with the n flag to complete the solution of the model with either the dual or
primal algorithms once the network algorithm has solved the network part of the model.

3. The b flag cannot be used with the n flag.

4. The dual simplex algorithm is a two phase algorithm which can remove dual infeasibilities.

5. (Console) If the user prematurely terminates the solution process by typing CTRL-C, the iterative
procedure will terminate at the first "safe" point.

Related topics
XPRSglobal (GLOBAL), XPRSreadbasis (READBASIS), 4, A.7.

Fair Isaac Corporation Proprietary Information 303

Chapter 7: Console and Library Functions

XPRSmipoptimize MIPOPTIMIZE

Purpose
This function begins a global search for the optimal MIP solution. The direction of optimization is given by
OBJSENSE. The status of the problem when the function completes can be checked using MIPSTATUS.

Synopsis
int XPRS_CC XPRSmipoptimize(XPRSprob prob, const char ⁎flags);
MIPOPTIMIZE [-flags]

Arguments
prob The current problem.
flags Flags to pass to XPRSmipoptimize (MIPOPTIMIZE), which specifies how to solve the

initial continuous problem where the global entities are relaxed. If the argument includes:
b the initial continuous relaxation will be solved using the Newton barrier method;
p the initial continuous relaxation will be solved using the primal simplex

algorithm;
d the initial continuous relaxation will be solved using the dual simplex algorithm;
n the network part of the initial continuous relaxation will be identified and solved

using the network simplex algorithm;
l stop after having solved the initial continous relaxation.

Further information

1. If the l flag is used, the Optimizer will stop immediately after solving the initial continuous relaxation. The
status of the continuous solve can be checked with LPSTATUS and standard LP results are available,
such as the objective value (LPOBJVAL) and solution (use XPRSgetlpsol), depending on LPSTATUS.

2. It is possible for the Optimizer to find integer solutions before solving the initial continuous relaxation,
either through heuristics or by having the user load an initial integer solution. This can potentially result in
the global search finishing before solving the continuous relaxation to optimality.

3. If the function returns without having completed the search for an optimal solution, the search can be
resumed from where it stopped by calling XPRSmipoptimize again.

4. The algorithm used to reoptimize the continuous relaxations during the global search is given by
DEFAULTALG. The default is to use the dual simplex algorithm.

Related topics
XPRSlpoptimize (LPOPTIMIZE), 4.

Fair Isaac Corporation Proprietary Information 304

Chapter 7: Console and Library Functions

XPRSobjsa

Purpose
Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objective
coefficients are varied within these ranges the current basis remains optimal and the reduced costs
remain valid.

Synopsis
int XPRS_CC XPRSobjsa(XPRSprob prob, int ncols, const int colind[], double

lower[], double upper[]);

Arguments
prob The current problem.
ncols Number of objective function coefficients whose sensitivity is sought.
colind Integer array of length ncols containing the indices of the columns whose objective

function coefficients sensitivity ranges are required.
lower Double array of length ncols where the objective function lower range values are to be

returned.
upper Double array of length ncols where the objective function upper range values are to be

returned.

Example
Here we obtain the objective function ranges for the three columns: 2, 6 and 8:

colind[0] = 2; colind[1] = 8; colind[2] = 6;
XPRSobjsa(prob,3,colind,lower,upper);

After which lower and upper contain:

lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5.0 ≤ C2 ≤ 7.0, 3.8 ≤ C8 ≤ 5.2 and 5.7 ≤ C6, Ci
being the objective coefficient of column i.

Further information
XPRSobjsa can only be called when an optimal solution to the current LP has been found. It cannot be
used when the problem is MIP presolved.

Related topics
XPRSrhssa, XPRSbndsa.

Fair Isaac Corporation Proprietary Information 305

Chapter 7: Console and Library Functions

XPRSpivot

Purpose
Performs a simplex pivot by bringing variable enter into the basis and removing leave.

Synopsis
int XPRS_CC XPRSpivot(XPRSprob prob, int enter, int leave);

Arguments
prob The current problem.
enter Index of row or column to enter basis.
leave Index of row or column to leave basis.

Error values
425 enter is invalid (leave of range or already basic).
426 leave is invalid (leave of range or not eligible, e.g. nonbasic, zero pivot, etc.).

Related controls
Double

PIVOTTOL Pivot tolerance.
RELPIVOTTOL Relative pivot tolerance.

Example
The following brings the 7th variable into the basis and removes the 5th:

XPRSpivot(prob,6,4)

Further information
Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivotorder, XPRSgetpivots.

Fair Isaac Corporation Proprietary Information 306

Chapter 7: Console and Library Functions

XPRSpostsolve POSTSOLVE

Purpose
Postsolve the current matrix when it is in a presolved state.

Synopsis
int XPRS_CC XPRSpostsolve(XPRSprob prob);
POSTSOLVE

Argument
prob The current problem.

Further information
A problem is left in a presolved state whenever a LP or MIP optimization does not complete. In these
cases XPRSpostsolve (POSTSOLVE) can be called to get the problem back into its original state.

Related topics
XPRSlpoptimize, XPRSmipoptimize

Fair Isaac Corporation Proprietary Information 307

Chapter 7: Console and Library Functions

XPRSpresolverow

Purpose
Presolves a row formulated in terms of the original variables such that it can be added to a presolved
matrix.

Synopsis
int XPRS_CC XPRSpresolverow(XPRSprob prob, char rowtype, int norigcoefs,

const int origcolind[], const double origrowcoef[], double origrhs,
int maxcoefs, int ⁎ p_ncoefs, int colind[], double rowcoef[], double
⁎ p_rhs, int ⁎ p_status);

Arguments
prob The current problem.
rowtype The type of the row:

L indicates a ≤ row;
G indicates a ≥ row.

norigcoefs Number of elements in the origcolind and origrowcoef arrays.
origcolind Integer array of length norigcoefs containing the column indices of the row to

presolve.
origrowcoef Double array of length norigcoefs containing the non-zero coefficients of the row to

presolve.
origrhs The right-hand side constant of the row to presolve.
maxcoefs Maximum number of elements to return in the colind and rowcoef arrays.
p_ncoefs Pointer to the integer where the number of elements in the colind and rowcoef arrays

will be returned.
colind Integer array which will be filled with the column indices of the presolved row. It must be

allocated to hold at least COLS elements.
rowcoef Double array which will be filled with the coefficients of the presolved row. It must be

allocated to hold at least COLS elements.
p_rhs Pointer to the double where the presolved right-hand side will be returned.
p_status Status of the presolved row:

-3 Failed to presolve the row due to presolve dual reductions;
-2 Failed to presolve the row due to presolve duplicate column reductions;
-1 Failed to presolve the row due to an error. Check the Optimizer error code for the

cause;
0 The row was successfully presolved;
1 The row was presolved, but may be relaxed.

Related controls
Integer

PRESOLVE Turns presolve on or off.
PRESOLVEOPS Selects the presolve operations.

Example
Suppose we want to add the row 2x1 + x2 ≤ 1 to our presolved matrix. This could be done in the following
way:

int mindo[] = { 1, 2 };
int origrowcoef[] = { 2.0, 1.0 };
char rowtype = 'L';
double origrhs = 1.0;
int ncoefs, status, mtype, mstart[2], ⁎mindp;
double rhs, ⁎rowcoef;

Fair Isaac Corporation Proprietary Information 308

Chapter 7: Console and Library Functions

...
XPRSgetintattrib(prob, XPRS_COLS, &ncols);
mindp = (int⁎) malloc(ncols⁎sizeof(int));
rowcoef = (double⁎) malloc(ncols⁎sizeof(double));
XPRSpresolverow(prob, rowtype, 2, mindo, origrowcoef, origrhs, ncols,

&ncoefs, mindp, rowcoef, &rhs, &status);
if (status >= 0) {

mtype = 0;
mstart[0] = 0; mstart[1] = ncoefs;
XPRSaddcuts(prob, 1, &mtype, &rowtype, &rhs, mstart, mindp,

rowcoef);
}

Further information

1. There are certain presolve operations that can prevent a row from being presolved exactly. If the row
contains a coefficient for a column that was eliminated due to duplicate column reductions or singleton
column reductions, the row might have to be relaxed to remain valid for the presolved problem. The
relaxation will be done automatically by the XPRSpresolverow function, but a return status of +1 will
be returned. If it is not possible to relax the row, a status of -2 will be returned instead. Likewise, it is
possible that certain dual reductions prevents the row from being presolved. In such a case a status of
-3 will be returned instead.

2. If XPRSpresolverow will be used for presolving e.g. branching bounds or constraints, then dual
reductions and duplicate column reductions should be disabled, by clearing the corresponding bits of
PRESOLVEOPS. By clearing these bits, the default value for PRESOLVEOPS changes to 471.

3. If the user knows in advance which columns will have non-zero coefficients in rows that will be presolved,
it is possible to protect these individual columns through the XPRSloadsecurevecs function. This way
the Optimizer is left free to apply all possible reductions to the remaining columns.

Related topics
XPRSaddcuts, XPRSloadsecurevecs, XPRSsetbranchcuts, XPRSstorecuts.

Fair Isaac Corporation Proprietary Information 309

Chapter 7: Console and Library Functions

PRINTSOL

Purpose
Writes the current solution to the screen.

Synopsis
PRINTSOL [-flags]

Argument
flags Flags to pass to PRINTSOL:

s include classical sensitivity analysis.

Related controls
Integer

MAXPAGELINES Number of lines between page breaks.
Double

OUTPUTTOL Tolerance on print values.

Further information
See WRITEPRTSOL for more information.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtsol.

Fair Isaac Corporation Proprietary Information 310

Chapter 7: Console and Library Functions

QUIT

Purpose
Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias for EXIT.

Synopsis
QUIT

Example
The command is called simply as:

QUIT

Further information

1. Fatal error conditions return nonzero exit values which may be of use to the host operating system.
These are described in 10.

2. If you wish to return an exit code reflecting the final solution status, then use the STOP command instead.

Related topics
STOP, XPRSsave (SAVE).

Fair Isaac Corporation Proprietary Information 311

Chapter 7: Console and Library Functions

XPRSreadbasis READBASIS

Purpose
Instructs the Optimizer to read in a previously saved basis from a file.

Synopsis
int XPRS_CC XPRSreadbasis(XPRSprob prob, const char ⁎filename, const char

⁎flags);
READBASIS [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from which

the basis is to be read. If omitted, the default problem_name is used with a .bss
extension.

flags Flags to pass to XPRSreadbasis (READBASIS):
t input a compact advanced form of the basis;
v use the provided filename verbatim, without appending the .bss extension;
z read a compressed input file.

Example 1 (Library)
If an advanced basis is available for the current problem the Optimizer input might be:

XPRSreadprob(prob,"filename","");
XPRSreadbasis(prob,"","");
XPRSmipoptimize(prob,"");

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.

Example 2 (Console)
An equivalent set of commands for the Console user may look like:

READPROB
READBASIS
MIPOPTIMIZE

Further information

1. The only check done when reading compact basis is that the number of rows and columns in the basis
agrees with the current number of rows and columns.

2. XPRSreadbasis (READBASIS) will read the basis for the original problem even if the matrix has been
presolved. The Optimizer will read the basis, checking that it is valid, and will display error messages if it
detects inconsistencies.

Related topics
XPRSloadbasis, XPRSwritebasis (WRITEBASIS).

Fair Isaac Corporation Proprietary Information 312

Chapter 7: Console and Library Functions

XPRSreadbinsol READBINSOL

Purpose
Reads a solution from a binary solution file.

Synopsis
int XPRS_CC XPRSreadbinsol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
READBINSOL [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from which

the solution is to be read. If omitted, the default problem_name is used with a .sol
extension.

flags Flags to pass to XPRSreadbinsol (READBINSOL):
m load the solution as a solution for the MIP;
x load the solution as a solution for the LP;
v use the provided filename verbatim, without appending the .sol extension;
z read a compressed input file.

Example 1 (Library)
A previously saved solution can be loaded into memory and a print file created from it with the following
commands:

XPRSreadprob(prob, "myprob", "");
XPRSreadbinsol(prob, "", "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
READBINSOL
WRITEPRTSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwritebinsol (WRITEBINSOL), XPRSwritesol
(WRITESOL), XPRSwriteprtsol (WRITEPRTSOL).

Fair Isaac Corporation Proprietary Information 313

Chapter 7: Console and Library Functions

XPRSreaddirs READDIRS

Purpose
Reads a directives file to help direct the global search.

Synopsis
int XPRS_CC XPRSreaddirs(XPRSprob prob, const char ⁎filename);
READDIRS [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from which

the directives are to be read. If omitted (or NULL), the default problem_name is used with
a .dir extension.

Related controls
Double

PSEUDOCOST Default pseudo cost in node degradation estimation.

Example 1 (Library)
The following example reads in directives from the file sue.dir for use with the problem, steve:

XPRSreadprob(prob,"steve","");
XPRSreaddirs(prob,"sue");
XPRSmipoptimize(prob,"");

Example 2 (Console)

READPROB
READDIRS
MIPOPTIMIZE

This is the most usual form at the console. It will attempt to read in a directives file with the current
problem name and an extension of .dir.

Fair Isaac Corporation Proprietary Information 314

Chapter 7: Console and Library Functions

Further information

1. Directives cannot be read in after a model has been presolved, so unless presolve has been disabled by
setting PRESOLVE to 0, this command must be issued before XPRSmipoptimize (MIPOPTIMIZE).

2. Directives can be given relating to priorities, forced branching directions, pseudo costs and model cuts.
There is a priority value associated with each global entity. The lower the number, the more likely the
entity is to be selected for branching; the higher, the less likely. By default, all global entities have a priority
value of 500 which can be altered with a priority entry in the directives file. In general, it is advantageous
for the entity’s priority to reflect its relative importance in the model. Priority entries with values in excess
of 1000 are illegal and are ignored. A full description of the directives file format may be found in A.5.

3. By default, XPRSmipoptimize (MIPOPTIMIZE) will explore the branch expected to yield the best
integer solution from each node, irrespective of whether this forces the global entity up or down. This can
be overridden with an UP or DN entry in the directives file, which forces XPRSmipoptimize
(MIPOPTIMIZE) to branch up first or down first on the specified entity.

4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default
XPRSmipoptimize (MIPOPTIMIZE) uses dual information to calculate estimates of the unit up and
down costs and these are added to the default pseudo costs which are set to the PSEUDOCOST control.
The default pseudo costs can be overridden by a PU or PD entry in the directives file.

5. If model cuts are used, then the specified constraints are removed from the matrix and added to the
Optimizer cut pool, and only put back in the matrix when they are violated by an LP solution at one of the
nodes in the global search.

6. If creating a directives file by hand, wild cards can be used to specify several vectors at once, for example
PR x1⁎ 2 will give all global entities whose names start with x1 a priority of 2.

Related topics
XPRSloaddirs, A.5.

Fair Isaac Corporation Proprietary Information 315

Chapter 7: Console and Library Functions

XPRSreadprob READPROB

Purpose
Reads an (X)MPS or LP format matrix from file.

Synopsis
int XPRS_CC XPRSreadprob(XPRSprob prob, const char ⁎filename, const char

⁎flags);
READPROB [-flags] [filename]

Arguments
prob The current problem.
filename The path and file name from which the problem is to be read. Limited to

MAXPROBNAMELENGTH characters. If omitted (console users only), the default
problem_name is used with various extensions - see below.

flags Flags to be passed:
l only filename.lp is searched for;
v use the provided filename verbatim, without appending the .mps, .mat or .lp

extension;
z read a compressed input file.

Related controls
Integer

EXTRACOLS Number of extra columns to be allowed for.
EXTRAELEMS Number of extra matrix elements to be allowed for.
EXTRAMIPENTS Number of extra global entities to be allowed for.
EXTRAPRESOLVE Number of extra elements to allow for in presolve.
EXTRAROWS Number of extra rows to be allowed for.
KEEPNROWS Status for nonbinding rows.
MPSECHO Whether MPS comments are to be echoed.
MPSFORMAT Specifies format of MPS files.
SCALING Type of scaling.

Double
MATRIXTOL Tolerance on matrix elements.
SOSREFTOL Minimum gap between reference row entries.

String
MPSBOUNDNAME The active bound name.
MPSOBJNAME Name of objective function row.
MPSRANGENAME Name of range.
MPSRHSNAME Name of right hand side.

Example 1 (Library)

XPRSreadprob(prob,"myprob","");

This instructs the Optimizer to read an MPS format matrix from the first file found out of myprob.mat,
myprob.mps or (in LP format) myprob.lp.

Example 2 (Console)

READPROB -l

This instructs the Optimizer to read an LP format matrix from the file problem_name .lp.

Fair Isaac Corporation Proprietary Information 316

Chapter 7: Console and Library Functions

Further information

1. If no flags are given, file types are searched for in the order: .mps, .mat, .lp. Matrix files are assumed
to be in XMPS or MPS format unless their file extension is .lp in which case they must be LP files. Files
with compressed extensions are also searched for, e.g., .mps.gz.

2. The Optimizer can read matrix files that have been compressed using one of the following formats, as
long as the command-line tool necessary to decompress the file can be located in the path: bzip2, xz,
lzma, Z, zip, tar, tgz. The Optimizer has built-in support for the gz format: no external tools are
necessary to read gzipped matrix files.

3. If filename has been specified, the problem name is changed to filename, ignoring any extension.

4. XPRSreadprob (READPROB) will take as the objective function the first N type row in the matrix, unless
the string parameter MPSOBJNAME has been set, in which case the objective row sought will be the one
named by MPSOBJNAME. Similarly, if non-blank, the string parameters MPSRHSNAME, MPSBOUNDNAME
and MPSRANGENAME specify the right hand side, bound and range sets to be taken. For example:
MPSOBJNAME="Cost"
MPSRHSNAME="RHS 1"
READPROB
The treatment of N type rows other than the objective function depends on the KEEPNROWS control. If
KEEPNROWS is 1 the rows and their elements are kept in memory; if it is 0 the rows are retained, but their
elements are removed; and if it is -1 the rows are deleted entirely. The performance impact of retaining
such N type rows will be small unless the presolve has been disabled by setting PRESOLVE to 0 prior to
optimization.

5. The Optimizer checks that the matrix file is in a legal format and displays error messages if it detects
errors. When the Optimizer has read and verified the problem, it will display summary problem statistics.

6. By default, the MPSFORMAT control is set to -1 and XPRSreadprob (READPROB) determines
automatically whether the MPS files are in free or fixed format. If MPSFORMAT is set to 0, fixed format is
assumed and if it is set to 1, free format is assumed. Fields in free format MPS files are delimited by one
or more blank characters. The keywords NAME, ROWS, COLUMNS, QUADOBJ / QMATRIX, QCMATRIX,
DELAYEDROWS, MODELCUTS, SETS, RHS, RANGES, BOUNDS and ENDATAmust start in column one and
no vector name may contain blanks. If a special ordered set is specified with a reference row, its name
may not be the same as that of a column. Note that numeric values which contain embedded spaces (for
example after unary minus sign) will not be read correctly unless MPSFORMAT is set to 0.

7. If the problem is not to be scaled automatically, set the parameter SCALING to 0 before issuing the
XPRSreadprob (READPROB) command.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSwriteprob.

Fair Isaac Corporation Proprietary Information 317

Chapter 7: Console and Library Functions

XPRSreadslxsol READSLXSOL

Purpose
Reads an ASCII solution file (.slx) created by the XPRSwriteslxsol function.

Synopsis
int XPRS_CC XPRSreadslxsol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
READSLXSOL -[flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

solution is to be read. If omitted, the default problem_name is used with a .slx extension.
flags Flags to pass to XPRSwriteslxsol (WRITESLXSOL):

l read the solution as an LP solution in case of a MIP problem;
m read the solution as a solution for the MIP problem;
a read multiple MIP solutions from the .slx file and add them to the MIP problem;
v use the provided filename verbatim, without appending the .slx extension;
z read a compressed input file.

Example 1 (Library)

XPRSreadslxsol(prob,"lpsolution","");

This loads the solution to the MIP problem if the problem contains global entities, or otherwise loads it as
an LP (barrier in case of quadratic problems) solution into the problem.

Example 2 (Console)

READSLXSOL lpsolution

Which is equivalent to the library example above.

Further information

1. When XPRSreadslxsol is called before a MIP solve, the loaded solutions will not be checked before
calling XPRSmipoptimize. By default, only the last MIP solution read from the .slx file will be stored.
Use the a flag to store all MIP solutions read from the file.

2. When using the a flag, read solutions will be queued similarly to the user of the XPRSaddmipsol
function. Each name string given by the NAME field in the .slx file will be associated with the
corresponding solution. Any registered usersolnotify callback will be fired when the solution has
been checked, and will include the read name string as one of its arguments.

3. Refer to the Appendix on Log and File Formats for a description of the ASCII Solution (.slx) File format
A.4.4.

Related topics
XPRSreadbinsol (READBINSOL), XPRSwriteslxsol (WRITESLXSOL), XPRSwritebinsol
WRITEBINSOL, XPRSreadbinsol (READBINSOL), XPRSaddmipsol, XPRSaddcbusersolnotify.

Fair Isaac Corporation Proprietary Information 318

Chapter 7: Console and Library Functions

XPRSrefinemipsol REFINEMIPSOL

Purpose
This subroutine is deprecated and will be removed in a future release. Please use REFINEOPS instead.
Executes the MIP solution refiner.

Synopsis
int XPRS_CC XPRSrefinemipsol(XPRSprob prob, int options, const char⁎ flags,

const double solution[], double refined[], int⁎ p_status);
REFINEMIPSOL

Arguments
prob The current problem.
options Refinement options:

0 Reducing MIP fractionality is priority (If bit 10 of REFINEOPS is set, will switch to
other mode if unsuccessful).

1 Reducing LP infeasibility is priority.
flags Flags passed to any optimization calls during refinement.
solution The MIP solution to refine. Must be a valid MIP solution.
refined The refined MIP solution in case of success
p_status Refinement results:

0 An error has occurred
1 The solution has been refined
2 Current solution meets target criteria
3 Solution cannot be refined
5 The solution has been refined, but MIP fractionality could not be reduced.

Further information
The function provides a mechanism to refine the MIP solution by attempting to round any fractional
global entity and by attempting to reduce LP infeasibility.

Related topics
REFINEOPS.

Fair Isaac Corporation Proprietary Information 319

Chapter 7: Console and Library Functions

XPRSremovecbbariteration

Purpose
Removes a barrier iteration callback function previously added by XPRSaddcbbariteration. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbbariteration(XPRSprob prob, void (XPRS_CC

⁎bariteration)(XPRSprob prob, void⁎ vContext, int⁎ barrier_action),
void⁎ data);

Arguments
prob The current problem.
bariteration The callback function to remove. If NULL then all bariteration callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all barrier iteration callbacks with the function pointer bariteration will
be removed.

Related topics
XPRSaddcbbariteration.

Fair Isaac Corporation Proprietary Information 320

Chapter 7: Console and Library Functions

XPRSremovecbcomputerestart

Purpose
Removes a computerestart callback function previously added by XPRSaddcbcomputerestart. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbpcomputerestart(XPRSprob prob, void (XPRS_CC

⁎f_computerestart)(XPRSprob prob, void⁎ vContext), void⁎ data);

Arguments
prob The current problem.
computerestart The callback function to remove. If NULL then all computerestart callback

functions added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all computerestart callbacks with the function pointer f_computerestart
will be removed.

Related topics
XPRSaddcbcomputerestart.

Fair Isaac Corporation Proprietary Information 321

Chapter 7: Console and Library Functions

XPRSremovecbpresolve

Purpose
Removes a presolve callback function previously added by XPRSaddcbpresolve. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbpresolve(XPRSprob prob, void (XPRS_CC

⁎presolve)(XPRSprob prob, void⁎ vContext), void⁎ data);

Arguments
prob The current problem.
presolve The callback function to remove. If NULL then all presolve callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and presolve callbacks with the function pointer presolve will be removed.

Related topics
XPRSaddcbpresolve.

Fair Isaac Corporation Proprietary Information 322

Chapter 7: Console and Library Functions

XPRSremovecbbarlog

Purpose
Removes a Newton barrier log callback function previously added by XPRSaddcbbarlog. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbbarlog(XPRSprob prob, int (XPRS_CC

⁎barlog)(XPRSprob prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
barlog The callback function to remove. If NULL then all barrier log callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all barrier log callbacks with the function pointer barlog will be removed.

Related topics
XPRSaddcbbarlog.

Fair Isaac Corporation Proprietary Information 323

Chapter 7: Console and Library Functions

XPRSremovecbchgbranch

Purpose
This subroutine is deprecated and will be removed in a future release. Please use
XPRSremovecbchgbranchobject instead.
Removes a variable branching callback function previously added by XPRSaddcbchgbranch. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbchgbranch(XPRSprob prob, void (XPRS_CC

⁎chgbranch)(XPRSprob prob, void⁎ vContext, int⁎ entity, int⁎ up,
double⁎ estdeg), void⁎ data);

Arguments
prob The current problem.
chgbranch The callback function to remove. If NULL then all variable branching callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all variable branching callbacks with the function pointer chgbranch will be
removed.

Related topics
XPRSaddcbchgbranch.

Fair Isaac Corporation Proprietary Information 324

Chapter 7: Console and Library Functions

XPRSremovecbchgbranchobject

Purpose
Removes a callback function previously added by XPRSaddcbchgbranchobject. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbchgbranchobject(XPRSprob prob, void (XPRS_CC

⁎chgbranchobject)(XPRSprob my_prob, void⁎ my_object, XPRSbranchobject
obranch, XPRSbranchobject⁎ p_newobject), void⁎ data);

Arguments
prob The current problem.
chgbranchobject The callback function to remove. If NULL then all branch data callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all branch data callbacks with the function pointer chgbranchobject will
be removed.

Related topics
XPRSaddcbchgbranchobject

Fair Isaac Corporation Proprietary Information 325

Chapter 7: Console and Library Functions

XPRSremovecbchecktime

Purpose
Removes a callback function previously added by XPRSaddcbchecktime. The specified callback
function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbchecktime(XPRSprob prob, int (XPRS_CC

⁎checktime)(XPRSprob prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
checktime The callback function to remove. If NULL then all checktime callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all checktime callbacks with the function pointer checktime will be
removed.

Related topics
XPRSaddcbchecktime

Fair Isaac Corporation Proprietary Information 326

Chapter 7: Console and Library Functions

XPRSremovecbchgnode

Purpose
This subroutine is deprecated and will be removed in a future release. Please use branching objects instead.
Removes a node selection callback function previously added by XPRSaddcbchgnode. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbchgnode(XPRSprob prob, void (XPRS_CC

⁎chgnode)(XPRSprob prob, void⁎ data, int⁎ nodnum), void⁎ data);

Arguments
prob The current problem.
chgnode The callback function to remove. If NULL then all node selection callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all node selection callbacks with the function pointer chgnode will be
removed.

Related topics
XPRSaddcbchgnode

Fair Isaac Corporation Proprietary Information 327

Chapter 7: Console and Library Functions

XPRSremovecbcutlog

Purpose
Removes a cut log callback function previously added by XPRSaddcbcutlog. The specified callback
function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbcutlog(XPRSprob prob, int (XPRS_CC

⁎cutlog)(XPRSprob prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
cutlog The callback function to remove. If NULL then all cut log callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all cut log callbacks with the function pointer cutlog will be removed.

Related topics
XPRSaddcbcutlog

Fair Isaac Corporation Proprietary Information 328

Chapter 7: Console and Library Functions

XPRSremovecbcutmgr

Purpose
This subroutine is deprecated and will be removed in a future release. Please use
XPRSremovecboptnode instead.
Removes a cut manager callback function previously added by XPRSaddcbcutmgr. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbcutmgr(XPRSprob prob, int (XPRS_CC

⁎cutmgr)(XPRSprob prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
cutmgr The callback function to remove. If NULL then all cut manager callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all cut manager callbacks with the function pointer cutmgr will be removed.

Related topics
XPRSaddcbcutmgr

Fair Isaac Corporation Proprietary Information 329

Chapter 7: Console and Library Functions

XPRSremovecbdestroymt

Purpose
Removes a slave thread destruction callback function previously added by XPRSaddcbdestroymt. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbdestroymt(XPRSprob prob, void (XPRS_CC

⁎destroymt)(XPRSprob prob, void⁎ vContext), void⁎ data);

Arguments
prob The current problem.
destroymt The callback function to remove. If NULL then all thread destruction callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all thread destruction callbacks with the function pointer destroymt will be
removed.

Related topics
XPRSaddcbdestroymt

Fair Isaac Corporation Proprietary Information 330

Chapter 7: Console and Library Functions

XPRSremovecbestimate

Purpose
This subroutine is deprecated and will be removed in a future release. Please use branching objects
instead, see XPRSaddcbchgbranchobject.
Removes an estimate callback function previously added by XPRSaddcbestimate. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbestimate(XPRSprob prob, int (XPRS_CC

⁎estimate)(XPRSprob prob, void⁎ vContext, int⁎ iglsel, int⁎ iprio,
double⁎ degbest, double⁎ degworst, double⁎ curval, int⁎ ifupx, int⁎
nglinf, double⁎ degsum, int⁎ nbr), void⁎ data);

Arguments
prob The current problem.
estimate The callback function to remove. If NULL then all integer solution callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all estimate callbacks with the function pointer estimate will be removed.

Related topics
XPRSaddcbestimate

Fair Isaac Corporation Proprietary Information 331

Chapter 7: Console and Library Functions

XPRSremovecbgapnotify

Purpose
Removes a callback function previously added by XPRSaddcbgapnotify. The specified callback
function will no longer be removed after it has been returned.

Synopsis
int XPRS_CC XPRSremovecbgapnotify(XPRSprob prob, void (XPRS_CC

⁎gapnotify)(XPRSprob prob, void⁎ vContext, double⁎
newRelGapNotifyTarget, double⁎ newAbsGapNotifyTarget, double⁎
newAbsGapNotifyObjTarget, double⁎ newAbsGapNotifyBoundTarget), void⁎
data);

Arguments
prob The current problem.
gapnotify The callback function to remove. If NULL then all gapnotify callback functions added

with the given user-defined pointer value will be removed.
data The user-defined pointer value that the callback was added with. If NULL then the pointer

value will not be checked and all the gapnotify callbacks with the function pointer
gapnotify will be removed.

Related topics
XPRSaddcbgapnotify.

Fair Isaac Corporation Proprietary Information 332

Chapter 7: Console and Library Functions

XPRSremovecbgloballog

Purpose
Removes a global log callback function previously added by XPRSaddcbgloballog. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbgloballog(XPRSprob prob, int (XPRS_CC

⁎globallog)(XPRSprob prob, void⁎ vContext), void⁎ data);

Arguments
prob The current problem.
globallog The callback function to remove. If NULL then all global log callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all global log callbacks with the function pointer globallog will be
removed.

Example
The following code sets and removes a callback function:

XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSaddcbgloballog(prob, globalLog, NULL, 0);
XPRSmipoptimize(prob,"");
XPRSremovecbgloballog(prob,globalLog,NULL);
}

Related topics
XPRSaddcbgloballog

Fair Isaac Corporation Proprietary Information 333

Chapter 7: Console and Library Functions

XPRSremovecbinfnode

Purpose
Removes a user infeasible node callback function previously added by XPRSaddcbinfnode. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbinfnode(XPRSprob prob, void (XPRS_CC

⁎infnode)(XPRSprob prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
infnode The callback function to remove. If NULL then all user infeasible node callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all user infeasible node callbacks with the function pointer infnode will be
removed.

Related topics
XPRSaddcbinfnode

Fair Isaac Corporation Proprietary Information 334

Chapter 7: Console and Library Functions

XPRSremovecbintsol

Purpose
Removes an integer solution callback function previously added by XPRSaddcbintsol. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbintsol(XPRSprob prob, void (XPRS_CC

⁎intsol)(XPRSprob prob, void⁎ my_object), void⁎ data);

Arguments
prob The current problem.
intsol The callback function to remove. If NULL then all integer solution callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all integer solution callbacks with the function pointer intsol will be
removed.

Related topics
XPRSaddcbintsol

Fair Isaac Corporation Proprietary Information 335

Chapter 7: Console and Library Functions

XPRSremovecblplog

Purpose
Removes a simplex log callback function previously added by XPRSaddcblplog. The specified callback
function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecblplog(XPRSprob prob, int (XPRS_CC ⁎lplog)(XPRSprob

prob, void⁎ data), void⁎ data);

Arguments
prob The current problem.
lplog The callback function to remove. If NULL then all lplog callback functions added with the

given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all lplog callbacks with the function pointer lplog will be removed.

Example
The following code sets and removes a callback function:

XPRSsetintcontrol(prob,XPRS_LPLOG,10);
XPRSaddcblplog(prob,lpLog,NULL,0);
XPRSreadprob(prob,"problem","");
XPRSlpoptimize(prob,"");
XPRSremovecblplog(prob,lpLog,NULL);
}

Related topics
XPRSaddcblplog

Fair Isaac Corporation Proprietary Information 336

Chapter 7: Console and Library Functions

XPRSremovecbmessage

Purpose
Removes a message callback function previously added by XPRSaddcbmessage. The specified callback
function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbmessage(XPRSprob prob, void (XPRS_CC

⁎message)(XPRSprob prob, void⁎ vContext, const char⁎ msg, int len,
int msgtype), void⁎ data);

Arguments
prob The current problem.
message The callback function to remove. If NULL then all message callback functions added with

the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all message callbacks with the function pointer message will be removed.

Related topics
XPRSaddcbmessage

Fair Isaac Corporation Proprietary Information 337

Chapter 7: Console and Library Functions

XPRSremovecbmipthread

Purpose
Removes a callback function previously added by XPRSaddcbmipthread. The specified callback
function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbmipthread(XPRSprob prob, void (XPRS_CC

⁎mipthread)(XPRSprob master_prob, void⁎ vContext, XPRSprob prob),
void⁎ data);

Arguments
prob The current problem.
mipthread The callback function to remove. If NULL then all variable branching callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all variable branching callbacks with the function pointer mipthread will be
removed.

Related topics
XPRSaddcbmipthread

Fair Isaac Corporation Proprietary Information 338

Chapter 7: Console and Library Functions

XPRSremovecbnewnode

Purpose
Removes a new-node callback function previously added by XPRSaddcbnewnode. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbnewnode(XPRSprob prob, void (XPRS_CC

⁎newnode)(XPRSprob my_prob, void⁎ my_object, int parentnode, int
newnode, int branch), void⁎ data);

Arguments
prob The current problem.
newnode The callback function to remove. If NULL then all separation callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all separation callbacks with the function pointer newnode will be removed.

Related topics
XPRSaddcbnewnode

Fair Isaac Corporation Proprietary Information 339

Chapter 7: Console and Library Functions

XPRSremovecbnodecutoff

Purpose
Removes a node-cutoff callback function previously added by XPRSaddcbnodecutoff. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbnodecutoff(XPRSprob prob, void (XPRS_CC

⁎nodecutoff)(XPRSprob my_prob, void ⁎my_object, int nodnum), void⁎
data);

Arguments
prob The current problem.
nodecutoff The callback function to remove. If NULL then all node-cutoff callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all node-cutoff callbacks with the function pointer nodecutoff will be
removed.

Related topics
XPRSaddcbnodecutoff

Fair Isaac Corporation Proprietary Information 340

Chapter 7: Console and Library Functions

XPRSremovecboptnode

Purpose
Removes a node-optimal callback function previously added by XPRSaddcboptnode. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecboptnode(XPRSprob prob, void (XPRS_CC

⁎optnode)(XPRSprob my_prob, void ⁎my_object, int ⁎feas), void⁎ data);

Arguments
prob The current problem.
optnode The callback function to remove. If NULL then all node-optimal callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all node-optimal callbacks with the function pointer optnode will be
removed.

Related topics
XPRSaddcboptnode

Fair Isaac Corporation Proprietary Information 341

Chapter 7: Console and Library Functions

XPRSremovecbpreintsol

Purpose
Removes a pre-integer solution callback function previously added by XPRSaddcbpreintsol. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbpreintsol(XPRSprob prob, void (XPRS_CC

⁎preintsol)(XPRSprob my_prob, void ⁎my_object, int soltype, int
⁎ifreject, double ⁎cutoff), void⁎ data);

Arguments
prob The current problem.
preintsol The callback function to remove. If NULL then all user infeasible node callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all user infeasible node callbacks with the function pointer preintsol will
be removed.

Related topics
XPRSaddcbpreintsol

Fair Isaac Corporation Proprietary Information 342

Chapter 7: Console and Library Functions

XPRSremovecbprenode

Purpose
Removes a preprocess node callback function previously added by XPRSaddcbprenode. The specified
callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbprenode(XPRSprob prob, void (XPRS_CC

⁎prenode)(XPRSprob prob, void⁎ my_object, int⁎ nodinfeas), void⁎
data);

Arguments
prob The current problem.
prenode The callback function to remove. If NULL then all preprocess node callback functions

added with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all preprocess node callbacks with the function pointer prenode will be
removed.

Related topics
XPRSaddcbprenode

Fair Isaac Corporation Proprietary Information 343

Chapter 7: Console and Library Functions

XPRSremovecbsepnode

Purpose
This subroutine is deprecated and will be removed in a future release. Please use branching objects
instead, see XPRSaddcbchgbranchobject
Removes a pre-integer solution callback function previously added by XPRSaddcbsepnode. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbsepnode(XPRSprob prob, int (XPRS_CC

⁎sepnode)(XPRSprob prob, void⁎ vContext, int ibr, int iglsel, int
ifup, double curval), void⁎ data);

Arguments
prob The current problem.
sepnode The callback function to remove. If NULL then all separation callback functions added

with the given user-defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all separation callbacks with the function pointer sepnode will be removed.

Related topics
XPRSaddcbsepnode

Fair Isaac Corporation Proprietary Information 344

Chapter 7: Console and Library Functions

XPRSremovecbusersolnotify

Purpose
Removes a user solution notification callback previously added by XPRSaddcbusersolnotify. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRSremovecbusersolnotify(XPRSprob prob, void (XPRS_CC

⁎usersolnotify)(XPRSprob my_prob, void⁎ my_object, const char⁎
solname, int status), void⁎ data);

Arguments
prob The current problem.
usersolnotify The callback function to remove. If NULL then all user solution notification callback

functions added with the given user defined data value will be removed.
data The data value that the callback was added with. If NULL, then the data value will not be

checked and all integer solution callbacks with the function pointer usersolnotify will
be removed.

Related topics
XPRSaddcbusersolnotify.

Fair Isaac Corporation Proprietary Information 345

Chapter 7: Console and Library Functions

XPRSrepairinfeas

Purpose
Provides a simplified interface for XPRSrepairweightedinfeas.

Synopsis
int XPRS_CC XPRSrepairinfeas (XPRSprob prob, int ⁎p_status, char penalty,

char phase2, char flags, double lepref, double gepref, double lbpref,
double ubpref, double delta);

Arguments
prob The current problem.
p_status The status after the relaxation:

0 relaxed optimum found;
1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation is feasible.

penalty The type of penalties created from the preferences:
c each penalty is the reciprocal of the preference (default);
s the penalties are placed in the scaled problem.

phase2 Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
flags Specifies if the global search should be done:

g do the global search (default);
l solve as a linear model ignoring the discreteness of variables.

lepref Preference for relaxing the less or equal side of row.
gepref Preference for relaxing the greater or equal side of a row.
lbpref Preferences for relaxing lower bounds.
ubpref Preferences for relaxing upper bounds.
delta The relaxation multiplier in the second phase -1. For console use -d value. A positive

value means a relative relaxation by multiplying the first phase objective with (delta-1),
while a negative value means an absolute relaxation, by adding abs(delta) to the first
phase objective.

Related controls
Integer

DEFAULTALG Forced algorithm selection (default for repairinfeas is primal).

Example

READPROB MYPROB.LP
REPAIRINFEAS -a -d 0.002

This example reads in an infeasible problem and identifies a solution which violates the rows and bounds
the least. It then fixes the measure of violations to this value multiplied by 1.002 to slightly increase the

Fair Isaac Corporation Proprietary Information 346

Chapter 7: Console and Library Functions

freedom in the problem and optimizes the relaxed problem using the original objective function.

Further information

1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of
the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(infeasibility breaker) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

2. A preference of 0 results in the row or bound not being relaxed.

3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on a
per constraint side or bound basis.

4. Note that the set of preferences are scaling independent.

5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

6. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

7. The default value for delta in the console is 0.001.

8. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

9. The default algorithm for the first phase is the simplex algorithm, since the primal problem can be
efficiently warm started in case of the extended problem. These may be altered by setting the value of
control DEFAULTALG.

10. If penalty is set such that each penalty is the reciprocal of the preference, the following rules are
applied while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lepref = rows aTx - aux_var = b 1/lepref⁎aux_var 1/lepref⁎aux_var2

lepref <= rows aTx - aux_var <= b 1/lepref⁎aux_var 1/lepref⁎aux_var2

gepref = rows aTx + aux_var = b 1/gepref⁎aux_var 1/gepref⁎aux_var2

gepref >= rows aTx + aux_var >= b 1/gepref⁎aux_var 1/gepref⁎aux_var2

ubpref upper bounds xi - aux_var <= u 1/ubpref⁎aux_var 1/ubpref⁎aux_var2

lbpref lower bounds xi + aux_var >= l 1/lbpref⁎aux_var 1/lbpref⁎aux_var2

11. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through the IIS
retrieval functions, see NUMIIS and XPRSgetiisdata.

Related topics
XPRSrepairweightedinfeas, 6.1.4.

Fair Isaac Corporation Proprietary Information 347

Chapter 7: Console and Library Functions

XPRSrepairweightedinfeas

Purpose
By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to identify a
’solution’ that violates the selected set of constraints and bounds minimally, while satisfying all other
constraints and bounds. Among such solution candidates, it selects one that is optimal regarding to the
original objective function. For the console version, see REPAIRINFEAS.

Synopsis
int XPRS_CC XPRSrepairweightedinfeas(XPRSprob prob, int ⁎ p_status, const

double lepref[], const double gepref[], const double lbpref[], const
double ubpref[], char phase2, double delta, const char ⁎flags);

Arguments
prob The current problem.
p_status The status after the relaxation:

1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation is feasible.

lepref Array of size ROWS containing the preferences for relaxing the less or equal side of row.
gepref Array of size ROWS containing the preferences for relaxing the greater or equal side of a

row.
lbpref Array of size COLS containing the preferences for relaxing lower bounds.
ubpref Array of size COLS containing preferences for relaxing upper bounds.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
delta The relaxation multiplier in the second phase -1.
flags Specifies flags to be passed to the Optimizer.

Related controls
Double

PENALTYVALUE The weighted sum of violations if a solution is identified to the relaxed problem.

Fair Isaac Corporation Proprietary Information 348

Chapter 7: Console and Library Functions

Further information

1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of
the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(’infeasibility breaker’) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the more
willing the modeller is to relax a given row or bound.

3. The weight of each infeasibility breaker in the objective minimizing the violations is 1/p, where p is the
preference associated with the infeasibility breaker. Thus the higher the preference is, the lower a penalty
is associated with the infeasibility breaker while minimizing the violations.

4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

5. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

6. The default value for delta in the console is 0.001.

7. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

8. If pflags is set such that each penalty is the reciprocal of the preference, the following rules are applied
while introducing the auxiliary variables:

Pref. array Affects Relaxation Cost if pref.>0 Cost if pref.<0
lepref = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2

lepref <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2

gepref = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2

gepref >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2

ubpref upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2

lbpref lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

9. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through the IIS
retrieval functions, see NUMIIS and XPRSgetiisdata.

Related topics
XPRSrepairinfeas (REPAIRINFEAS), XPRSrepairweightedinfeasbounds, 6.1.4.

Fair Isaac Corporation Proprietary Information 349

Chapter 7: Console and Library Functions

XPRSrepairweightedinfeasbounds REPAIRINFEAS

Purpose
An extended version of XPRSrepairweightedinfeas that allows for bounding the level of relaxation
allowed.

Synopsis
int XPRS_CC XPRSrepairweightedinfeasbounds(XPRSprob prob, int ⁎ p_status,

const double lepref[], const double gepref[], const double lbpref[],
const double ubpref[], const double lerelax[], const double
gerelax[], const double lbrelax[], const double ubrelax[], char
phase2, double delta, const char ⁎flags);

REPAIRINFEAS -[pflags] -[oflags] -[gflags] -[lrp value] -[grp value] -[lbp
value] -[ubp value] -[lrb value] -[grb value] -[lbb value] -[ubb
value] -[d value] -[r]

Arguments
prob The current problem.
p_status The status after the relaxation:

1 relaxed problem is infeasible;
2 relaxed problem is unbounded;
3 solution of the relaxed problem regarding the original objective is nonoptimal;
4 error (when return code is nonzero);
5 numerical instability;
6 analysis of an infeasible relaxation was performed, but the relaxation is feasible.

lepref Array of size ROWS containing the preferences for relaxing the less or equal side of row.
For the console use -lrp value.

gepref Array of size ROWS containing the preferences for relaxing the greater or equal side of a
row. For the console use -grp value.

lbpref Array of size COLS containing the preferences for relaxing lower bounds. For the console
use -lbp value.

ubpref Array of size COLS containing preferences for relaxing upper bounds. For the console use
-ubp value.

lerelax Array of size ROWS containing the upper bounds on the amount the less or equal side of a
row can be relaxed. For the console use -lrb value.

gerelax Array of size ROWS containing the upper bounds on the amount the greater or equal side
of a row can be relaxed. For the console use -grb value.

lbrelax Array of size COLS containing the upper bounds on the amount the lower bounds can be
relaxed. For the console use -lbb value.

ubrelax Array of size COLS containing the upper bounds on the amount the upper bounds can be
relaxed. For the console use -ubb value.

phase2 Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for the

analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for the

analys of the problem.
delta The relaxation multiplier in the second phase -1.
flags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Proprietary Information 350

Chapter 7: Console and Library Functions

r If a summary of the violated variables and constraints should be printed after the relaxed
solution is determined.

Related controls
Double

PENALTYVALUE The weighted sum of violations if a solution is identified to the relaxed problem.

Further information

1. The console command REPAIRINFEAS assumes that all preferences are 1 by default. Use the options
-lrp, -grp, -lbp or -ubp to change them. The default limit on the maximum allowed relaxation per row
or bound in plus infinity.

2. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility of
the row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable
(’infeasibility breaker’) s ≥ 0 is added to the row, which becomes aTx +s = b. Observe that aTx may now
take smaller values than b. To minimize such violations, the weighted sum of these new variables is
minimized.

3. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the more
willing the modeller is to relax a given row or bound.

4. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on a
per constraint side or bound basis.

5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum of
violations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect to
the original objective function. A nonzero delta increases the freedom of the original problem.

6. Note that on some problems, slight modifications of delta may affect the value of the original objective
drastically.

7. The default value for delta in the console is 0.001.

8. Note that because of their special associated modeling properties, binary and semi-continuous variables
are not relaxed.

9. Given any row j with preferences lrp=lepref[j] and grp=gepref[j], or variable i with bound
preferences ubp=ubpref[i] and lbp=lbpref[i], the following rules are applied while introducing
the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2

lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2

grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2

grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2

ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2

lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

10. Only positive bounds are applied; a zero or negative bound is ignored and the amount of relaxation
allowed for the corresponding row or bound is not limited. The effect of a zero bound on a row or bound
would be equivalent with not relaxing it, and can be achieved by setting its preference array value to zero
instead, or not including it in the preference arrays.

11. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accessible through the IIS
retrieval functions, see NUMIIS and XPRSgetiisdata.

Fair Isaac Corporation Proprietary Information 351

Chapter 7: Console and Library Functions

Related topics
XPRSrepairinfeas (REPAIRINFEAS), 6.1.4.

Fair Isaac Corporation Proprietary Information 352

Chapter 7: Console and Library Functions

XPRSrestore RESTORE

Purpose
Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE). Optimization may then
recommence from the point at which the file was created.

Synopsis
int XPRS_CC XPRSrestore(XPRSprob prob, const char ⁎probname, const char

⁎flags);
RESTORE [probname] [flags]

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.
flags Additional flags

h Do not restore hardware information from the file;
v use the provided filename verbatim, without appending the .svf extension.

Example 1 (Library)

XPRSrestore(prob,"","");

Example 2 (Console)

RESTORE

Further information

1. This routine restores the data structures from the file problem_name.svf that was created by a previous
execution of XPRSsave (SAVE). Note that .svf files are particular to the release of the Optimizer used
to create them. They can only be read using the same major release of the Optimizer that was used to
create them.

2. (Console) The main use for XPRSsave (SAVE) and XPRSrestore (RESTORE) is to enable the user to
interrupt a long optimization run using CTRL-C, and save the Optimizer status with the ability to restart it
later from where it left off. It might also be used to save the optimal status of a problem when the user
then intends to implement several uses of XPRSalter (ALTER) on the problem, re-optimizing each time
from the saved status.

Related topics
XPRSalter (ALTER), XPRSsave (SAVE).

Fair Isaac Corporation Proprietary Information 353

Chapter 7: Console and Library Functions

XPRSrhssa

Purpose
Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. If the
RHS coefficients are varied within these ranges the current basis remains optimal and the reduced costs
remain valid.

Synopsis
int XPRS_CC XPRSrhssa(XPRSprob prob, int nrows, const int rowind[], double

lower[], double upper[]);

Arguments
prob The current problem.
nrows The number of RHS coefficients for which sensitivity ranges are required.
rowind Integer array of length nrows containing the indices of the rows whose RHS coefficients

sensitivity ranges are required.
lower Double array of length nrows where the RHS lower range values are to be returned.
upper Double array of length nrows where the RHS upper range values are to be returned.

Example
Here we obtain the RHS ranges for the three columns: 2, 6 and 8:

rowind[0] = 2; rowind[1] = 8; rowind[2] = 6;
XPRSrhssa(prob,3,rowind,lower,upper);

After which lower and upper contain:

lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤ rhs6, rhsi
being the RHS coefficient of row i.

Further information
XPRSrhssa can only be called when an optimal solution to the current LP has been found. It cannot be
used when the problem is MIP presolved.

Related topics
XPRSobjsa, XPRSbndsa.

Fair Isaac Corporation Proprietary Information 354

Chapter 7: Console and Library Functions

XPRSsave, XPRSsaveas SAVE

Purpose
Saves the current data structures, i.e. matrices, control settings and problem attribute settings to file and
terminates the run so that optimization can be resumed later.

Synopsis
int XPRS_CC XPRSsave(XPRSprob prob);
int XPRS_CC XPRSsaveas(XPRSprob prob, const char ⁎filename);
SAVE

Arguments
prob The current problem.
filename The name of the file (without .svf) to save to.

Example 1 (Library)

XPRSsave(prob);

Example 2 (Console)

SAVE

Further information

1. The data structures are written to the file problem_name.svf. Optimization may recommence from the
same point when the data structures are restored by a call to XPRSrestore (RESTORE). Note that the
.svf files created are particular to the release of the Optimizer used to create them. They can only be
read using the same release Optimizer as used to create them.

2. The function XPRSsaveas is equivalent to XPRSsave with the exception of allowing to adjust the name
of the file created. The name of the file must not be greater than MAXPROBNAMELENGTH.

Related topics
XPRSrestore (RESTORE).

Fair Isaac Corporation Proprietary Information 355

Chapter 7: Console and Library Functions

XPRSscale SCALE

Purpose
Re-scales the current matrix.

Synopsis
int XPRS_CC XPRSscale(XPRSprob prob, const int rowscale[], const int

colscale[]);
SCALE

Arguments
prob The current problem.
rowscale Integer array of size ROWS containing the powers of 2 with which to scale the rows, or

NULL if not required.
colscale Integer array of size COLS containing the powers of 2 with which to scale the columns, or

NULL if not required.

Related controls
Integer

SCALING Type of scaling.

Example 1 (Library)

XPRSreadprob(prob,"jovial","");
XPRSalter(prob,"serious");
XPRSscale(prob,NULL,NULL);
XPRSlpoptimize(prob,"");

This reads the MPS file jovial.mat, modifies it according to instructions in the file serious.alt,
rescales the matrix and seeks the minimum objective value.

Example 2 (Console)
The equivalent set of commands for the Console user would be:

READPROB jovial
ALTER serious
SCALE
LPOPTIMIZE

Further information

1. If rowscale and colscale are both non-NULL then they will be used to scale the matrix. Otherwise the
matrix will be scaled according to the control SCALING. This routine may be useful when the current
matrix has been modified by calls to routines such as XPRSalter (ALTER), XPRSchgmcoef and
XPRSaddrows.

2. XPRSscale (SCALE) cannot be called if the current matrix is presolved.

Related topics
XPRSalter (ALTER), XPRSreadprob (READPROB).

Fair Isaac Corporation Proprietary Information 356

Chapter 7: Console and Library Functions

XPRSsetbranchbounds

Purpose
Specifies the bounds previously stored using XPRSstorebounds that are to be applied in order to
branch on a user global entity. This routine can only be called from the user separate callback function,
XPRSaddcbsepnode.

Synopsis
int XPRS_CC XPRSsetbranchbounds(XPRSprob prob, void ⁎bounds);

Arguments
prob The current problem.
bounds Pointer previously defined in a call to XPRSstorebounds that references the stored

bounds to be used to separate the node.

Example
This example defines a user separate callback function for the global search:

XPRSaddcbsepnode(prob,nodeSep,NULL,0);

where the function nodeSep is defined as follows:

int nodeSep(XPRSprob prob, void ⁎obj, int ibr, int iglsel,
int ifup, double curval)

{
void ⁎index;
double dbd;

if(ifup)
{

dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{

dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSloadcuts, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSstorebounds, Section 5.9.

Fair Isaac Corporation Proprietary Information 357

Chapter 7: Console and Library Functions

XPRSsetbranchcuts

Purpose
Specifies the pointers to cuts in the cut pool that are to be applied in order to branch on a user global
entity. This routine can only be called from the user separate callback function, XPRSaddcbsepnode.

Synopsis
int XPRS_CC XPRSsetbranchcuts(XPRSprob prob, int ncuts, const XPRScut

cutind[]);

Arguments
prob The current problem.
ncuts Number of cuts to apply.
cutind Array containing the pointers to the cuts in the cut pool that are to be applied. Typically

obtained from XPRSstorecuts.

Related topics
XPRSgetcpcutlist, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSstorecuts, Section 5.9.

Fair Isaac Corporation Proprietary Information 358

Chapter 7: Console and Library Functions

XPRSsetcheckedmode

Purpose
You can use this function to disable some of the checking and validation of function calls and function
call parameters for calls to the Xpress Optimizer API. This checking is relatively lightweight but disabling
it can improve performance in cases where non-intensive Xpress Optimizer functions are called
repeatedly in a short space of time.
Please note: after disabling function call checking and validation, invalid usage of Xpress Optimizer
functions may not be detected and may cause the Xpress Optimizer process to behave unexpectedly or
crash. It is not recommended that you disable function call checking and validation during application
development.

Synopsis
int XPRS_CC XPRSsetcheckedmode(int checkedmode);

Argument
checkedmode Pass as 0 to disable much of the validation for all Xpress function calls from the current

process. Pass 1 to re-enable validation. By default, validation is enabled.

Related topics
XPRSgetcheckedmode.

Fair Isaac Corporation Proprietary Information 359

Chapter 7: Console and Library Functions

XPRSsetdblcontrol

Purpose
Sets the value of a given double control parameter.

Synopsis
int XPRS_CC XPRSsetdblcontrol(XPRSprob prob, int control, double value);

Arguments
prob The current problem.
control Control parameter whose value is to be set. A full list of all controls may be found in 8, or

from the list in the xprs.h header file.
value Value to which the control parameter is to be set.

Related topics
XPRSgetdblcontrol, XPRSsetintcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Proprietary Information 360

Chapter 7: Console and Library Functions

XPRSsetdefaultcontrol SETDEFAULTCONTROL

Purpose
Sets a single control to its default value.

Synopsis
int XPRS_CC XPRSsetdefaultcontrol(XPRSprob prob, int control);
SETDEFAULTCONTROL controlname

Arguments
prob The current problem.
control Integer, double or string control parameter whose default value is to be set.
controlname Integer, double or string control parameter whose default value is to be set.

Example
The following turns off presolve to solve a problem, before resetting it to its default value and solving it
again:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmipoptimize(prob, "");
XPRSwriteprtsol(prob);
XPRSsetdefaultcontrol(prob, XPRS_PRESOLVE);
XPRSmipoptimize(prob, "");

Further information
A full list of all controls may be found in Chapter 8, or from the list in the xprs.h header file.

Related topics
XPRSsetdefaults, XPRSsetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Proprietary Information 361

Chapter 7: Console and Library Functions

XPRSsetdefaults SETDEFAULTS

Purpose
Sets all controls to their default values. Must be called before the problem is read or loaded by
XPRSreadprob, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp.

Synopsis
int XPRS_CC XPRSsetdefaults(XPRSprob prob);
SETDEFAULTS

Argument
prob The current problem.

Example
The following turns off presolve to solve a problem, before resetting the control defaults, reading it and
solving it again:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmipoptimize(prob, "");
XPRSwriteprtsol(prob);
XPRSsetdefaults(prob);
XPRSreadprob(prob);
XPRSmipoptimize(prob, "");

Further information
Can only be called when not currently solving a problem.

Related topics
XPRSsetdefaultcontrol, XPRSsetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Proprietary Information 362

Chapter 7: Console and Library Functions

XPRSsetindicators

Purpose
Specifies that a set of rows in the matrix will be treated as indicator constraints during a global search.
An indicator constraint is made of a condition and a constraint. The condition is of the type
"bin = value", where bin is a binary variable and value is either 0 or 1. The constraint is any
matrix row (may be linear, quadratic or general nonlinear). During global search, a row configured as an
indicator constraint is enforced only when condition holds, that is only if the indicator variable bin has
the specified value. Note that every row may only get assigned a single indicator variable and term. If a
row needs to be activated by multiple different terms, the row needs to be duplicated so that each term
can be assigned to a distinct row. If the indicator variable should be changed, the old term needs to be
deleted first (by calling XPRSdelindicators or by calling this function with a comps argument of 0)
before assigning a new one.

Synopsis
int XPRS_CC XPRSsetindicators(XPRSprob prob, int nrows, const int rowind[],

const int colind[], const int complement[]);

Arguments
prob The current problem.
nrows The number of indicator constraints.
rowind Integer array of length nrows containing the indices of the rows that define the constraint

part for the indicator constraints.
colind Integer array of length nrows containing the column indices of the indicator variables.
complement Integer array of length nrows with the complement flags:

0 not an indicator constraint (in this case the corresponding entry in the colind
array is ignored);

1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

Example
This sets the first two matrix rows as indicator rows in the global problem prob; the first row controlled by
condition x4=1 and the second row controlled by condition x5=0 (assuming x4 and x5 correspond to
columns indices 4 and 5).

int rowind[] = {0,1};
int colind[] = {4,5};
int complement[] = {1,-1};

...
XPRSsetindicators(prob,2,rowind,colind,complement);
XPRSmipoptimize(prob,"");

Further information
Indicator rows must be set up before solving the problem. Any indicator row will be removed from the
matrix after presolve and added to a special pool. An indicator row will be added back into the active
matrix only when its associated condition holds. An indicator variable can be used in multiple indicator
rows and can also appear in normal rows and in the objective function.

Related topics
XPRSgetindicators, XPRSdelindicators.

Fair Isaac Corporation Proprietary Information 363

Chapter 7: Console and Library Functions

XPRSsetintcontrol, XPRSsetintcontrol64

Purpose
Sets the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRSsetintcontrol(XPRSprob prob, int control, int value);

int XPRS_CC XPRSsetintcontrol64(XPRSprob prob, int control, XPRSint64
value);

Arguments
prob The current problem.
control Control parameter whose value is to be set. A full list of all controls may be found in 8, or

from the list in the xprs.h header file.
value Value to which the control parameter is to be set.

Example
The following sets the control PRESOLVE to 0, turning off the presolve facility prior to optimization:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSlpoptimize(prob, "");

Further information
Some of the integer control parameters, such as SCALING, are bitmaps, with each bit controlling different
behavior. Bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.

Related topics
XPRSgetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Fair Isaac Corporation Proprietary Information 364

Chapter 7: Console and Library Functions

XPRSsetlogfile SETLOGFILE

Purpose
This directs all Optimizer output to a log file.

Synopsis
int XPRS_CC XPRSsetlogfile(XPRSprob prob, const char ⁎filename);
SETLOGFILE filename

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which all

logging output should be written. If set to NULL, redirection of the output will stop and all
screen output will be turned back on (except for library users where screen output is
always turned off).

Example
The following directs output to the file logfile.log:

XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSsetlogfile(prob,"logfile.log");

Further information

1. It is recommended that a log file be set up for each problem being worked on, since it provides a means
for obtaining any errors or warnings output by the Optimizer during the solution process.

2. If output is redirected with XPRSsetlogfile all screen output will be turned off.

3. Alternatively, an output callback can be defined using XPRSaddcbmessage, which will be called every
time a line of text is output. To discard all output messages the OUTPUTLOG integer control can be set to
0.

Related topics
XPRSaddcbmessage.

Fair Isaac Corporation Proprietary Information 365

Chapter 7: Console and Library Functions

XPRSsetmessagestatus

Purpose
Manages suppression of messages.

Synopsis
int XPRS_CC XPRSsetmessagestatus(XPRSprob prob, int msgcode, int status);

Arguments
prob The problem for which message msgcode is to have its suppression status changed;

pass NULL if the message should have the status apply globally to all problems.
msgcode The id number of the message. Refer to the section 10 for a list of possible message

numbers.
status Non-zero if the message is not suppressed; 0 otherwise. If a value for status is not

supplied in the command-line call then the console Optimizer prints the value of the
suppression status to screen i.e., non-zero if the message is not suppressed; 0 otherwise.

Example
Attempting to optimize a problem that has no matrix loaded gives error 91. The following code uses
XPRSsetmessagestatus to suppress the error message:

XPRScreateprob(&prob);
XPRSsetmessagestatus(prob,91,0);
XPRSlpoptimize(prob,"");

Further information
If a message is suppressed globally then the message can only be enabled for any problem once the
global suppression is removed with a call to XPRSsetmessagestatus with prob passed as NULL.

Related topics
XPRSgetmessagestatus.

Fair Isaac Corporation Proprietary Information 366

Chapter 7: Console and Library Functions

XPRSsetprobname SETPROBNAME

Purpose
Sets the current default problem name. This command is rarely used.

Synopsis
int XPRS_CC XPRSsetprobname(XPRSprob prob, const char ⁎probname);
SETPROBNAME probname

Arguments
prob The current problem.
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.

Example

READPROB bob
LPOPTIMIZE
SETPROBNAME jim
READPROB

The above will read the problem bob and then read the problem jim.

Related topics
XPRSreadprob (READPROB), XPRSgetprobname, MAXPROBNAMELENGTH.

Fair Isaac Corporation Proprietary Information 367

Chapter 7: Console and Library Functions

XPRSsetstrcontrol

Purpose
Used to set the value of a given string control parameter.

Synopsis
int XPRS_CC XPRSsetstrcontrol(XPRSprob prob, int control, const char

⁎value);

Arguments
prob The current problem.
control Control parameter whose value is to be set. A full list of all controls may be found in 8, or

from the list in the xprs.h header file.
value A string containing the value to which the control is to be set (plus a null terminator).

Example
The following sets the control MPSOBJNAME to "Profit":

XPRSsetstrcontrol(prob, XPRS_MPSOBJNAME, "Profit");

Related topics
XPRSgetstrcontrol, XPRSsetdblcontrol, XPRSsetintcontrol.

Fair Isaac Corporation Proprietary Information 368

Chapter 7: Console and Library Functions

STOP

Purpose
Terminates the Console Optimizer, returning an exit code to the operating system. This is useful for batch
operations.

Synopsis
STOP

Example
The following example inputs a matrix file, lama.mat, runs a global optimization on it and then exits:

READPROB lama
MIPOPTIMIZE
STOP

Further information
This command may be used to terminate the Optimizer as with the QUIT command. It sets an exit value
which may be inspected by the host operating system or invoking program.

Related topics
QUIT.

Fair Isaac Corporation Proprietary Information 369

Chapter 7: Console and Library Functions

XPRSstorebounds

Purpose
Stores bounds for node separation using user separate callback function.

Synopsis
int XPRS_CC XPRSstorebounds(XPRSprob prob, int nbounds, const int colind[],

const char bndtype[], const double bndval[], void ⁎⁎p_bounds);

Arguments
prob The current problem.
nbounds Number of bounds to store.
colind Array containing the column indices.
bndtype Array containing the bounds types:

U indicates an upper bound;
L indicates a lower bound.

bndval Array containing the bound values.
p_bounds Pointer that the user will use to reference the stored bounds for the Optimizer in

XPRSsetbranchbounds.

Example
This example defines a user separate callback function for the global search:

XPRSaddcbsepnode(prob,nodeSep,void,0);

where the function nodeSep is defined as follows:

int nodeSep(XPRSprob prob, void ⁎obj int ibr, int iglsel,
int ifup, double curval)

{
void ⁎index;
double dbd;

if(ifup)
{

dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{

dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSsetbranchbounds, XPRSaddcbestimate, XPRSaddcbsepnode.

Fair Isaac Corporation Proprietary Information 370

Chapter 7: Console and Library Functions

XPRSstorecuts, XPRSstorecuts64

Purpose
Stores cuts into the cut pool, but does not apply them to the current node. These cuts must be explicitly
loaded into the matrix using XPRSloadcuts or XPRSsetbranchcuts before they become active.

Synopsis
int XPRS_CC XPRSstorecuts(XPRSprob prob, int ncuts, int nodups, const int

cuttype[], const char rowtype[], const double rhs[], const int
start[], XPRScut cutind[], const int colind[], const double
cutcoef[]);

int XPRS_CC XPRSstorecuts64(XPRSprob prob, int ncuts, int nodups, const int
cuttype[], const char rowtype[], const double rhs[], const XPRSint64
start[], XPRScut cutind[], const int colind[], const double
cutcoef[]);

Arguments
prob The current problem.
ncuts Number of cuts to add.
nodups 0 do not exclude duplicates from the cut pool;

1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

cuttype Integer array of length ncuts containing the cut types. The cut types can be any integer
and are used to identify the cuts.

rowtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

rhs Double array of length ncuts containing the right hand side elements for the cuts.
start Integer array containing offsets into the colind and dmtval arrays indicating the start

of each cut. This array is of length ncuts+1 with the last element start[ncuts] being
where cut ncuts+1 would start.

cutind Array of length ncuts where the pointers to the cuts will be returned.
colind Integer array of length start[ncuts] containing the column indices in the cuts.
cutcoef Double array of length start[ncuts] containing the matrix values for the cuts.

Related controls
Double

MATRIXTOL Tolerance on matrix elements.

Fair Isaac Corporation Proprietary Information 371

Chapter 7: Console and Library Functions

Further information

1. XPRSstorecuts can be used to eliminate duplicate cuts. If the nodups parameter is set to 1, the cut
pool will be checked for duplicate cuts with a cut type identical to the cuts being added. If a duplicate cut
is found the new cut will only be added if its right hand side value makes the cut stronger. If the cut in the
pool is weaker than the added cut it will be removed unless it has been applied to an active node of the
tree. If nodups is set to 2 the same test is carried out on all cuts, ignoring the cut type.

2. XPRSstorecuts returns a list of the cuts added to the cut pool in the cutind array. If the cut is not
added to the cut pool because a stronger cut exits a NULL will be returned. The cutind array can be
passed directly to XPRSloadcuts or XPRSsetbranchcuts to load the most recently stored cuts into
the matrix.

3. The columns and elements of the cuts must be stored contiguously in the colind and dmtval arrays
passed to XPRSstorecuts. The starting point of each cut must be stored in the start array. To
determine the length of the final cut the start array must be of length ncuts+1 with the last element of
this array containing where the cut ncuts+1 would start.

Related topics
XPRSloadcuts XPRSsetbranchcuts, XPRSaddcbestimate, XPRSaddcbsepnode, 5.9.

Fair Isaac Corporation Proprietary Information 372

Chapter 7: Console and Library Functions

XPRSstrongbranch

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound change,
XPRSstrongbranch performs dual simplex iterations starting from the current optimal solution of the
base LP, and returns both the status and objective value reached after these iterations.

Synopsis
int XPRS_CC XPRSstrongbranch(XPRSprob prob, const int nbounds, const int

colind[], const char bndtype[], const double bndval[], const int
iterlim, double objval[], int status[]);

Arguments
prob The current problem.
nbounds Number of bound changes to try.
colind Integer array of size nbounds containing the indices of the columns on which the bounds

will change.
bndtype Character array of length nbounds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Double array of length nbounds giving the new bound values.
iterlim Maximum number of LP iterations to perform for each bound change.
objval Objective value of each LP after performing the strong branching iterations.
status Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.

Example
Suppose that the current LP relaxation has two integer columns (columns 0 and 1 which are fractionals
at 0.3 and 1.5, respectively, and we want to perform strong branching in order to choose which to branch
on. This could be done in the following way:

int colind[] = { 0, 0, 1, 1 };
char bndtype[] = "LULU";
double bndval[] = {1, 0, 2, 1};
double objval[4];
int status[4];
...
XPRSstrongbranch(prob, 4, colind, bndtype, bndval, 1000,

objval, status);

Further information
Prior to calling XPRSstrongbranch, the current LP problem must have been solved to optimality and an
optimal basis must be available.

Fair Isaac Corporation Proprietary Information 373

Chapter 7: Console and Library Functions

XPRSstrongbranchcb

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound change,
XPRSstrongbranchcb performs dual simplex iterations starting from the current optimal solution of
the base LP, and returns both the status and objective value reached after these iterations.

Synopsis
int XPRS_CC XPRSstrongbranchcb(XPRSprob prob, const int nbounds, const int

colind[], const char bndtype[], const double bndval[], const int
iterlim, double dsbobjval[], int status[], int (XPRS_CC
⁎callback)(XPRSprob prob, void⁎ data, int bndidx), void⁎ data);

Arguments
prob The current problem.
nbounds Number of bound changes to try.
colind Integer array of size nbounds containing the indices of the columns on which the bounds

will change.
bndtype Character array of length nbounds indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Double array of length nbounds giving the new bound values.
iterlim Maximum number of LP iterations to perform for each bound change.
objval Objective value of each LP after performing the strong branching iterations.
status Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
callback Function to be called after each strong branch has been reoptimized.
data User context to be provided for callback.
bndidx The index of bound for which callback is called.

Further information

Prior to calling XPRSstrongbranchcb, the current LP problem must have been solved to optimality and
an optimal basis must be available.

XPRSstrongbranchcb is an extension to XPRSstrongbranch. If identical input arguments are
provided both will return identical results, the difference being that for the case of
XPRSstrongbranchcb the callback function is called at the end of each LP reoptimization.

For each branch optimized, the LP can be interrogated: the LP status of the branch is available through
checking LPSTATUS, and the objective function value is available through LPOBJVAL. It is possible to
access the full current LP solution by using XPRSgetlpsol.

Fair Isaac Corporation Proprietary Information 374

Chapter 7: Console and Library Functions

TUNE

Purpose
This command can start a tuner session for the current problem. In this case, the tuner will solve the
problem multiple times while evaluating a list of control settings and promising combinations of them.
When finished, the tuner will select and set the best control setting on the problem. Note that the
direction of optimization is given by OBJSENSE. This command can also handle the input and output of
tuner method files.

Synopsis
TUNE [-flags] [subcommand [filename]]

Arguments
flags Flags to pass to TUNE, which specify whether to tune the current problem as an LP or a

MIP problem, and the algorithm for solving the LP problem or the initial LP relaxation of
the MIP. The flags are optional. If the argument includes:
l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

subcommand Subcommand to pass to TUNE for handling tuner method files. It can be one of:
pm / printmethod Print the tuner method on the console.
wm / writemethod Write the tuner method to a file.
rm / readmethod Read the tuner method from a file.
probset Tune a set of problems.
mipset Tune a set of MIP problems.
lpset Tune a set of LP problems.

filename Tuner method file or problem set file. This is an optional argument of the subcommand.

Related controls
Integer

TUNERHISTORY Whether to reuse and append to previous tuner result.
TUNERMAXTIME Maximum total time allowed for the tuner.
TUNERMETHOD Selects a factory tuner method.
TUNERMODE Enable or disable the tuner.
TUNEROUTPUT Whether to write tuner result and logs to file system.
TUNERPERMUTE Number of permutations to solve with each control setting.
TUNERTARGET Defines the criterion by which individual runs are compared.
TUNERTHREADS Number of threads to be used by the tuner.

String
TUNERMETHODFILE A file which contains a user-defined tuner method.
TUNEROUTPUTPATH The root path for all tuner result output.
TUNERSESSIONNAME When defined, will override the problem name within the tuner.

Example 1 (Console)

TUNE -l

This tunes the current problem as an LP problem.

Example 2 (Console)

TUNE pm

Fair Isaac Corporation Proprietary Information 375

Chapter 7: Console and Library Functions

TUNE printmethod

Both commands print the tuner method to the console.

Example 3 (Console)

TUNE rm method

TUNE readmethod method

Both commands read the tuner method from the method.xtm file.

Example 4 (Console)

TUNE wm method

TUNE writemethod method

Both commands write the tuner method to the method.xtm file.

Example 5 (Console)

TUNE probset problem.set

Tune a set of problems defined by the problem.set file.

Example 6 (Console)

TUNE lpset problem.set

Tune a set of LP problems defined by the problem.set file.

Further information

1. When both flags and subcommand are provided with the TUNE command, the subcommand will be
ignored.

2. Please refer to Section 5.12 for a detailed guide of how to use the tuner.

3. Please refer to Section 5.12.8 for more information about tuning a set of problems.

Fair Isaac Corporation Proprietary Information 376

Chapter 7: Console and Library Functions

XPRStune

Purpose
This function begins a tuner session for the current problem. The tuner will solve the problem multiple
times while evaluating a list of control settings and promising combinations of them. When finished, the
tuner will select and set the best control setting on the problem. Note that the direction of optimization is
given by OBJSENSE.

Synopsis
int XPRS_CC XPRStune(XPRSprob prob, const char ⁎flags);

Arguments
prob The current problem.
flags Flags to pass to XPRStune, which specify whether to tune the current problem as an LP

or a MIP problem, and the algorithm for solving the LP problem or the initial LP
relaxation of the MIP. The flags are optional. If the argument includes:
l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

Example

XPRStune(prob, "dp");

This tunes the current problem. The problem type is automatically determined. If it is an LP problem, it
will be solved with a concurrent run of the dual and primal simplex method. If it is a MIP problem, the
initial LP relaxation of the MIP will be solved with a concurrent run of primal and dual simplex.

Further information

1. Please refer to command TUNE for a list of related controls.

2. Please refer to Section 5.12 for a detailed guide of how to use the tuner.

Fair Isaac Corporation Proprietary Information 377

Chapter 7: Console and Library Functions

XPRStunerreadmethod

Purpose
This function loads a user defined tuner method from the given file.

Synopsis
int XPRS_CC XPRStunerreadmethod(XPRSprob prob, const char⁎ methodfile);

Arguments
prob The current problem.
methodfile The method file name, from which the tuner can load a user-defined tuner method.

Example

XPRStunerreadmethod(prob, "method.xtm");

This loads the tuner method from the method.xtm file.

Further information
Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.8 for the
format of the tuner method file.

Fair Isaac Corporation Proprietary Information 378

Chapter 7: Console and Library Functions

XPRStunerwritemethod

Purpose
This function writes the current tuner method to a given file or prints it to the console.

Synopsis
int XPRS_CC XPRStunerwritemethod(XPRSprob prob, const char⁎ methodfile);

Arguments
prob The current problem.
methodfile The method file name, to which the tuner will write the current tuner method. If the input

is stdout or STDOUT, then the tuner will print the method to the console instead.

Example 1 (Library)

XPRStunerwritemethod(prob, "method.xtm");

This writes the tuner method to the method.xtm file.

Example 2 (Library)

XPRStunerwritemethod(prob, "stdout");

This prints the tuner method to the console.

Further information
Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.8 for the
format of the tuner method file.

Fair Isaac Corporation Proprietary Information 379

Chapter 7: Console and Library Functions

XPRSunloadprob

Purpose
Unloads and frees all memory associated with the current problem. It also invalidates the current
problem (as opposed to reading in an empty problem).

Synopsis
int XPRS_CC XPRSunloadprob(XPRSprob prob);

Argument
prob The current problem.

Related topics
XPRSreadprob, XPRSloadlp, XPRSloadglobal, XPRSloadqglobal, XPRSloadqp.

Fair Isaac Corporation Proprietary Information 380

Chapter 7: Console and Library Functions

XPRSwritebasis WRITEBASIS

Purpose
Writes the current basis to a file for later input into the Optimizer.

Synopsis
int XPRS_CC XPRSwritebasis(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITEBASIS [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name from which

the basis is to be written. If omitted, the default problem_name is used with a .bss
extension.

flags Flags to pass to XPRSwritebasis (WRITEBASIS):
i output the internal presolved basis;
t output a compact advanced form of the basis;
n output basis file containing current solution values;
h output values in single precision;
p output values in full precision (obsolete as this is now default behavior);
v use the provided filename verbatim, without appending the .bss extension;
z compress the output file.

Example 1 (Library)
After an LP has been solved it may be desirable to save the basis for future input as an advanced starting
point for other similar problems. This may save significant amounts of time if the LP is complex. The
Optimizer input commands might then be:

XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSwritebasis(prob, "", "");

This reads in a matrix file, maximizes the LP and saves the basis. Loading a basis for a MIP problem can
disable some MIP presolve operations which can result in a large increase in solution times so it is
generally not recommended.

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
LPOPTIMIZE
WRITEBASIS

Further information

1. The t flag is only useful for later input to a similar problem using the t flag with XPRSreadbasis
(READBASIS).

2. If the Newton barrier algorithm has been used for optimization then crossover must have been performed
before there is a valid basis. This basis can then only be used for restarting the simplex (primal or dual)
algorithm.

3. XPRSwritebasis (WRITEBASIS) will output the basis for the original problem even if the matrix has
been presolved.

Related topics
XPRSgetbasis, XPRSreadbasis (READBASIS).

Fair Isaac Corporation Proprietary Information 381

Chapter 7: Console and Library Functions

XPRSwritebinsol WRITEBINSOL

Purpose
Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.

Synopsis
int XPRS_CC XPRSwritebinsol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITEBINSOL [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

solution is to be written. If omitted, the default problem_name is used with a .sol
extension.

flags Flags to pass to XPRSwritebinsol (WRITEBINSOL):
m output the MIP solution;
x output the LP solution;
v use the provided filename verbatim, without appending the .sol extension;
z compress the output file.

Example 1 (Library)
After an LP has been solved or a MIP solution has been found the solution can be saved to file. If a MIP
solution exists it will be written to file unless the -x flag is passed to XPRSwritebinsol (WRITEBINSOL)
in which case the LP solution will be written. The Optimizer input commands might then be:

XPRSreadprob(prob, "myprob", "");
XPRSmipoptimize(prob, "");
XPRSwritebinsol(prob, "", "");

This reads in a matrix file, maximizes the MIP and saves the last found MIP solution.

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
MIPOPTIMIZE
WRITEBINSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol (READBINSOL), XPRSwritesol (WRITESOL),
XPRSwriteprtsol (WRITEPRTSOL).

Fair Isaac Corporation Proprietary Information 382

Chapter 7: Console and Library Functions

XPRSwritedirs WRITEDIRS

Purpose
Writes the global search directives from the current problem to a directives file.

Synopsis
int XPRS_CC XPRSwritedirs(XPRSprob prob, const char ⁎filename);
WRITEDIRS [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

directives should be written. If omitted (or NULL), the default problem_name is used with
a .dir extension.

Further information
If the problem has been presolved, only the directives for columns in the presolved problem will be written
to file.

Related topics
XPRSloaddirs, A.5.

Fair Isaac Corporation Proprietary Information 383

Chapter 7: Console and Library Functions

XPRSwriteprob WRITEPROB

Purpose
Writes the current problem to an MPS or LP file.

Synopsis
int XPRS_CC XPRSwriteprob(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITEPROB [-flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters to contain the file name to which the

problem is to be written. If omitted, the default problem_name is used with a .mps
extension, unless the l flag is used in which case the extension is .lp.

flags Flags, which can be one or more of the following:
o one element per line;
n output the scaled problem;
s scrambled vector names;
l output in LP format;
p output values in full precision (obsolete as this is now default behavior);
t omit the Xpress header in LP format;
v use the provided filename verbatim, without appending the .mps or .lp

extension;
z compress the output file.

Example
The following example outputs the current problem in LP format with scrambled vector names to the file
problem_name.lp.

XPRSwriteprob(prob, "", "ls");

Further information

1. If XPRSloadlp, XPRSloadglobal, XPRSloadqglobal or XPRSloadqp is used to obtain a matrix
then there is no association between the objective function and the N rows in the matrix and so a
separate N row (called __OBJ___) is created when you do an XPRSwriteprob (WRITEPROB). Also if
you do an XPRSreadprob (READPROB) and then change either the objective row or the N row in the
matrix corresponding to the objective row, you lose the association between the two and the __OBJ___
row is created when you do an XPRSwriteprob (WRITEPROB). To remove the objective row from the
matrix when doing an XPRSreadprob (READPROB), set KEEPNROWS to -1 before XPRSreadprob
(READPROB).

2. Warning: If XPRSreadprob (READPROB) is used to input a problem, then the input file will be overwritten
by XPRSwriteprob (WRITEPROB) if a new filename is not specified.

3. The Optimizer can write compressed matrix files in the following formats, as long as the command-line
tool necessary to compress the file can be located in the path: bzip2, xz, lzma, Z, zip, tar, tgz. The
Optimizer has built-in support for the gz format: no external tools are necessary to write gzipped matrix
files.

Related topics
XPRSreadprob (READPROB).

Fair Isaac Corporation Proprietary Information 384

Chapter 7: Console and Library Functions

XPRSwriteprtsol WRITEPRTSOL

Purpose
Writes the current solution to a fixed format ASCII file, problem_name .prt.

Synopsis
int XPRS_CC XPRSwriteprtsol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITEPRTSOL [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

solution is to be written. If omitted, the default problem_name will be used. The extension
.prt will be appended.

flags Flags for XPRSwriteprtsol (WRITEPRTSOL) are:
x write the LP solution instead of the current MIP solution;
v use the provided filename verbatim, without appending the .prt extension;
z write a compressed output file;
s include classical sensitivity analysis.

Related controls
Integer

MAXPAGELINES Number of lines between page breaks.
Double

OUTPUTTOL Tolerance on print values.

Example 1 (Library)
This example shows the standard use of this function, outputting the solution to file immediately
following optimization:

XPRSreadprob(prob, "myprob", "");
XPRSlpoptimize(prob, "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)

READPROB
LPOPTIMIZE
PRINTSOL

are the equivalent set of commands for Console users who wish to view the output directly on screen.

Further information

1. (Console) There is an equivalent command PRINTSOL which outputs the same information to the screen.
The format is the same as that output to file by XPRSwriteprtsol (WRITEPRTSOL), except that the
user is permitted to enter a response after each screen if further output is required.

2. The fixed width ASCII format created by this command is not as readily useful as that produced by
XPRSwritesol (WRITESOL). The main purpose of XPRSwriteprtsol (WRITEPRTSOL) is to create a
file that can be sent directly to a printer. The format of this fixed format ASCII file is described in
Appendix A.

3. To create a prt file for a previously saved solution, the solution must first be loaded with the
XPRSreadbinsol (READBINSOL) function.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol XPRSwritebinsol, XPRSwritesol, A.4.

Fair Isaac Corporation Proprietary Information 385

Chapter 7: Console and Library Functions

XPRSwriteslxsol WRITESLXSOL

Purpose
Creates an ASCII solution file (.slx) using a similar format to MPS files. These files can be read back
into the Optimizer using the XPRSreadslxsol function.

Synopsis
int XPRS_CC XPRSwriteslxsol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITESLXSOL -[flags] [filename]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

solution is to be written. If omitted, the default problem_name is used with a .slx
extension.

flags Flags to pass to XPRSwriteslxsol (WRITESLXSOL):
l write the LP solution in case of a MIP problem;
m write the MIP solution;
p use full precision for numerical values (obsolete as this is now default behavior);
s including slack variables;
d LP solution only: including dual variables;
r LP solution only: including reduced cost;
v use the provided filename verbatim, without appending the .slx extension;
z compress the output file.

Example 1 (Library)

XPRSwriteslxsol(prob,"lpsolution","");

This saves the MIP solution if the problem contains global entities, or otherwise saves the LP (barrier in
case of quadratic problems) solution of the problem.

Example 2 (Console)

WRITESLXSOL lpsolution

Which is equivalent to the library example above.

Related topics
XPRSreadslxsol (READSLXSOL, XPRSwriteprtsol (WRITEPRTSOL), XPRSwritebinsol
(WRITEBINSOL), XPRSreadbinsol (READBINSOL).

Fair Isaac Corporation Proprietary Information 386

Chapter 7: Console and Library Functions

XPRSwritesol WRITESOL

Purpose
Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).

Synopsis
int XPRS_CC XPRSwritesol(XPRSprob prob, const char ⁎filename, const char

⁎flags);
WRITESOL [filename] [-flags]

Arguments
prob The current problem.
filename A string of up to MAXPROBNAMELENGTH characters containing the file name to which the

solution is to be written. If omitted, the default problem_name will be used. The
extensions .hdr and .asc will be appended.

flags Flags to control which optional fields are output:
s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.
Additional flags:
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution;
z compress the output file.

Related controls
Double

OUTPUTTOL Tolerance on print values.
String

OUTPUTMASK Mask to restrict the row and column names output to file.

Example 1 (Library)
In this example the basis status is output (along with the sequence number) following optimization:

XPRSreadprob(prob, "richard", "");
XPRSlpoptimize(prob, "");
XPRSwritesol(prob, "", "sb");

Example 2 (Console)
Suppose we wish to produce files containing

■ the names and values of variables starting with the letter X which are nonzero and
■ the names, values and right hand sides of constraints starting with CO2.

The Optimizer commands necessary to do this are:

OUTPUTMASK = "X???????"
WRITESOL XVALS -naq

Fair Isaac Corporation Proprietary Information 387

Chapter 7: Console and Library Functions

OUTPUTMASK = "CO2?????"
WRITESOL CO2 -nar

Further information

1. The command produces two readable files: filename.hdr (the solution header file) and
filename.asc (the CSV foramt solution file). The header file contains summary information, all in one
line. The ASCII file contains one line of information for each row and column in the problem. Any fields
appearing in the .asc file will be in the order the flags are described above. The order that the flags are
specified by the user is irrelevant.

2. Additionally, the mask control OUTPUTMASKmay be used to control which names are reported to the
ASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set by default to
"????????", so that all vectors are output.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtsol (WRITEPRTSOL).

Fair Isaac Corporation Proprietary Information 388

CHAPTER 8

Control Parameters

Various controls exist within the Optimizer to govern the solution procedure and the form of output. The
majority of these take integer values and act as switches between various types of behavior. The
tolerances on values are double precision, and there are a few controls which are character strings,
setting names to structures. Any of these may be altered by the user to enhance performance of the
Optimizer. However, it should be noted that the default values provided have been found to work well in
practice over a range of problems and caution should be exercised if they are changed.

8.1 Retrieving and Changing Control Values
Console Xpress users may obtain control values by issuing the control name at the Optimizer prompt, >,
and hitting the RETURN key. Controls may be set using the assignment syntax:

control_name = new_value

where new_value is an integer value, double or string as appropriate. For character strings, the name must
be enclosed in single quotes and all eight characters must be given.

Users of the FICO Xpress Libraries are provided with the following set of functions for setting and
obtaining control values:

XPRSgetintcontrol XPRSgetdblcontrol XPRSgetstrcontrol
XPRSsetintcontrol XPRSsetdblcontrol XPRSsetstrcontrol

It is an important point that the controls as listed in this chapter must be prefixed with XPRS_ to be used
with the FICO Xpress Libraries and failure to do so will result in an error. An example of their usage is as
follows:

XPRSgetintcontrol(prob, XPRS_PRESOLVE, &presolve);
printf("The value of PRESOLVE is %d\n", presolve);
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 1-presolve);
printf("The value of PRESOLVE is now %d\n", 1-presolve);

ALGAFTERCROSSOVER

Description The algorithm to be used for the final clean up step after the crossover.

Type Integer

Values 1 Automatically determined.
2 Dual simplex.
3 Primal simplex.
4 Concurrent.

Fair Isaac Corporation Proprietary Information 389

Chapter 8: Control Parameters

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) (when the barrier is
used), XPRScrossoverlpsol.

ALGAFTERNETWORK

Description The algorithm to be used for the clean up step after the network simplex solver.

Type Integer

Values -1 Automatically determined.
2 Dual simplex.
3 Primal simplex.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) (when network
simplex is used).

AUTOCUTTING

Description Should the Optimizer automatically decide whether to generate cutting planes at local nodes in
the tree or not? If the CUTFREQ control is set, no automatic selection will be made and local
cutting will be enabled.

Type Integer

Values -1 Automatic.
0 Disabled.
1 Enabled.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also CUTDEPTH, CUTFREQ.

AUTOSCALING

Description Whether the Optimizer should automatically select between different scaling algorithms. If the
SCALING control is set, no automatic scaling will be applied.

Type Integer

Values -1 Automatic.
0 Disabled.
1 Cautious strategy. Non-standard scaling will only be selected if it appears to be clearly

superior.
2 Moderate strategy.
3 Aggressive strategy. Standard scaling will only be selected if it appears to be clearly

superior.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also SCALING, OBJSCALEFACTOR.

Fair Isaac Corporation Proprietary Information 390

Chapter 8: Control Parameters

AUTOPERTURB

Description Simplex: This indicates whether automatic perturbation is performed. If this is set to 1, the
problem will be perturbed whenever the simplex method encounters an excessive number of
degenerate pivot steps, thus preventing the Optimizer being hindered by degeneracies.

Type Integer

Values 0 No perturbation performed.
1 Automatic perturbation is performed.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BACKTRACK

Description Branch and Bound: Specifies how to select the next node to work on when a full backtrack is
performed.

Type Integer

Values -1 Automatically determined.
1 Unused.
2 Select the node with the best estimated solution.
3 Select the node with the best bound on the solution.
4 Select the deepest node in the search tree (equivalent to depth-first search).
5 Select the highest node in the search tree (equivalent to breadth-first search).
6 Select the earliest node created.
7 Select the latest node created.
8 Select a node randomly.
9 Select the node whose LP relaxation contains the fewest number of infeasible global

entities.
10 Combination of 2 and 9.
11 Combination of 2 and 4.
12 Combination of 3 and 4.

Default value 3

Note Note When two nodes are rated the same according to the BACKTRACK selection, a secondary
rating is performed using the method set by BACKTRACKTIE.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also BACKTRACKTIE.

BACKTRACKTIE

Description Branch and Bound: Specifies how to break ties when selecting the next node to work on when a
full backtrack is performed. The options are the same as for the BACKTRACK control.

Type Integer

Fair Isaac Corporation Proprietary Information 391

Chapter 8: Control Parameters

Values -1 Default selection.
1 Unused.
2 Select the node with the best estimated solution.
3 Select the node with the best bound on the solution.
4 Select the deepest node in the search tree (equivalent to depth-first search).
5 Select the highest node in the search tree (equivalent to breadth-first search).
6 Select the earliest node created.
7 Select the latest node created.
8 Select a node randomly.
9 Select the node whose LP relaxation contains the fewest number of infeasible global

entities.
10 Combination of 2 and 9.
11 Combination of 2 and 4.
12 Combination of 3 and 4.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also BACKTRACK.

BARALG

Description This control determines which barrier algorithm is to be used to solve the problem.

Type Integer

Values -1 Determined automatically.
0 Unused.
1 Use the infeasible-start barrier algorithm.
2 Use the homogeneous self-dual barrier algorithm.
3 Start with 2 and optionally switch to 1 during the execution.

Default value -1

Note The automatic setting uses 1 for LP and QP problems and 3 for QCQP problems. Usually the
detection of primal or dual infeasibility is more robust with settings 2 or 3, therefore, it is
advantageous to use one of these values if the model is presumably infeasible.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim
(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

BARCRASH

Description Newton barrier: This determines the type of crash used for the crossover. During the crash
procedure, an initial basis is determined which attempts to speed up the crossover. A good
choice at this stage will significantly reduce the number of iterations required to crossover to an
optimal solution. The possible values increase proportionally to their time-consumption.

Type Integer

Values 0 Turns off all crash procedures.
1-6 Available strategies with 1 being conservative and 6 being aggressive.

Fair Isaac Corporation Proprietary Information 392

Chapter 8: Control Parameters

Default value 4

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDUALSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for dual
infeasibilities. If the difference between the constraints and their bounds in the dual problem
falls below this tolerance in absolute value, optimization will stop and the current solution will
be returned.

Type Double

Default value 0 (determine automatically)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARFREESCALE

Description Defines how the barrier algorithm scales free variables.

Type Double

Default value 1e-6

Note When using smaller values the barrier algorithm scales free variables more aggressively which
can improve performance but may impact numerical stability.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also SCALING.

BARGAPSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for the relative
duality gap. When the difference between the primal and dual objective function values falls
below this tolerance, the Optimizer determines that the optimal solution has been found.

Type Double

Default value 0 (determine automatically)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARGAPTARGET

Description Newton barrier: The target tolerance for the relative duality gap. The barrier algorithm will keep
iterating until either BARGAPTARGET is satisfied or until no further improvements are possible.
In the latter case, if BARGAPSTOP is satisfied, it will declare the problem optimal.

Type Double

Default value 0 (determine automatically)

Fair Isaac Corporation Proprietary Information 393

Chapter 8: Control Parameters

Note When a solution returned by the barrier algorithm has not converged tightly enough for an
application, for example if the dual solution is not accurate enough or crossover is taking too
long, setter BARGAPTARGET to a small value often resolves the problem, without the risk of the
solve failing due to a complementarity level not being numerically achievable. Typical
suggested values can be between 1–10 and 1–18.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARFAILITERLIMIT

Description Newton barrier: The maximum number of consecutive iterations that fail to improve the
solution in the barrier algorithm.

Type Integer

Values 0 Determined automatically
>0 Maximum number of consecutive barrier iterations allowed without progress.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARINDEFLIMIT

Description Newton Barrier. This limits the number of consecutive indefinite barrier iterations that will be
performed. The optimizer will try to minimize (resp. maximize) a QP problem even if the Q
matrix is not positive (resp. negative) semi-definite. However, the optimizer may detect that the
Q matrix is indefinite and this can result in the optimizer not converging. This control specifies
how many indefinite iterations may occur before the optimizer stops and reports that the
problem is indefinite. It is usual to specify a value greater than one, and only stop after a series
of indefinite matrices, as the problem may be found to be indefinite incorrectly on a few
iterations for numerical reasons.

Type Integer

Default value 15

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARITERLIMIT

Description Newton barrier: The maximum number of iterations. While the simplex method usually
performs a number of iterations which is proportional to the number of constraints (rows) in a
problem, the barrier method standardly finds the optimal solution to a given accuracy after a
number of iterations which is independent of the problem size. The penalty is rather that the
time for each iteration increases with the size of the problem. BARITERLIMIT specifies the
maximum number of iterations which will be carried out by the barrier.

Type Integer

Default value 500

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 394

Chapter 8: Control Parameters

BARKERNEL

Description Newton barrier: Defines how centrality is weighted in the barrier algorithm.

Type Double

Values >=+1.0 Increases the emphasis on centrality when larger value is set.
<=-1.0 Selects a value adaptively in every iteration from [+1, -BARKERNEL].

Default value 0.0

Note Increasing this parameter may increase the number of iterations, therefore the recommended
range is [1,2] and [-2,-1].

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also BARALG.

BAROBJPERTURB

Description Defines how the barrier perturbs the objective.

Type Double

Values >0 Let the optimizer decide if the objective is perturbed or not and use the parameter
value as the scale of the perturbation.

0 Turn off objective perturbation.
<0 Always perturb the objective by the absolute value of the parameter.

Default value 1e-6

Note The perturbation scale should be set carefully with consideration to the optimality tolerance.
The parameter affects only the barrier solve.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also BAROBJSCALE.

BAROBJSCALE

Description Defines how the barrier scales the objective.

Type Double

Values -1 Let the optimizer decide.
0 Scale by geometric mean.
>=0 Scale such that the largest objective coefficient’s largest element does not exceed this

number. In quadratic problems, the quadratic diagonal is used as reference valuses
instead of the linear objective.

Default value -1

Note The scaling perfromed by the barrier is applied on top of any other scaling in the problem and
only affects the barrier solve.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also SCALING.

Fair Isaac Corporation Proprietary Information 395

Chapter 8: Control Parameters

BARORDER

Description Newton barrier: This controls the Cholesky factorization in the Newton-Barrier.

Type Integer

Values 0 Choose automatically.
1 Minimum degree method. This selects diagonal elements with the smallest number of

nonzeros in their rows or columns.
2 Minimum local fill method. This considers the adjacency graph of nonzeros in the

matrix and seeks to eliminate nodes that minimize the creation of new edges.
3 Nested dissection method. This considers the adjacency graph and recursively seeks

to separate it into non-adjacent pieces.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARORDERTHREADS

Description If set to a positive integer it determines the number of concurrent threads for the sparse matrix
ordering algorithm in the Newton-barrier method.

Type Integer

Default value 0 (determine automatically)

Note Larger values than BARCORES will be automatically reduced to the value of BARCORES.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also BARORDER, BARCORES.

BAROUTPUT

Description Newton barrier: This specifies the level of solution output provided. Output is provided either
after each iteration of the algorithm, or else can be turned off completely by this parameter.

Type Integer

Values 0 No output.
1 At each iteration.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPERTURB

Description Newton barrier: In numerically challenging cases it is often advantageous to apply
perturbations on the KKT system to improve its numerical properties. BARPERTURB controlls
how much perturbation is allowed during the barrier iterations. By default no perturbation is
allowed. Set this parameter with care as larger perturbations may lead to less efficient iterates
and the best settings are problem-dependent.

Type Double

Fair Isaac Corporation Proprietary Information 396

Chapter 8: Control Parameters

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARREFITER

Description Newton barrier: After terminating the barrier algorithm, further refinement steps can be
performed. Such refinement steps are especially helpful if the solution is near to the optimum
and can improve primal feasibility and decrease the complementarity gap. It is also often
advantageous for the crossover algorithm. BARREFITER specifies the maximum number of
such refinement iterations.

Type Integer

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRESOLVEOPS

Description Newton barrier: This controls the Newton-Barrier specific presolve operations.

Type Integer

Values 0 Use standard presolve.
1 Extra effort is spent in barrier specific presolve.
2 Do full matrix eliminations (reduce matrix size).

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALSTOP

Description Newton barrier: This is a convergence parameter, indicating the tolerance for primal
infeasibilities. If the difference between the constraints and their bounds in the primal problem
falls below this tolerance in absolute value, the Optimizer will terminate and return the current
solution.

Type Double

Default value 0 (determine automatically)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARREGULARIZE

Description This control determines how the barrier algorithm applies regularization on the KKT system.

Type Integer

Fair Isaac Corporation Proprietary Information 397

Chapter 8: Control Parameters

Values Bit Meaning
0 Standard regularization is turned on/off.
1 Reduced regularization is turned on/off. This option reduces the perturbation effect of

the standard regularization.
2 Forces to keep dependent rows in the KKT system.
3 Forces to preserve degenerate rows in the KKT system.

Default value -1

Note The parameter is a bit set but value -1 (the default value) is treated in a special way: if the
parameter is set to -1 then the solver will automatically select the bits it deems most useful.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim
(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

BARRHSSCALE

Description Defines how the barrier scales the right hand side.

Type Double

Values -1 Let the optimizer decide.
0 Scale by geometric mean.
>=0 Scale such that the largest right hand side coefficient’s largest element does not

exceed this number.
Default value -1

Note The scaling perfromed by the barrier is applied on top of any other scaling in the problem and
only affects the barrier solve.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also SCALING.

BARSOLUTION

Description This determines whether the barrier has to decide which is the best solution found or return the
solution computed by te last barrier iteration.

Type Integer

Values -1 (callback only: do not save current soulution as the best one).
0 return the best solution found (in callback: let the barrier decide the current solution is

the best or not).
1 return the last barrier iteration (in callback: save current solution as the best solution

so far).

Default value 0

Affects routines The barrier algorithm.

Fair Isaac Corporation Proprietary Information 398

Chapter 8: Control Parameters

BARSTART

Description Newton barrier: Controls the computation of the starting point for the barrier algorithm.

Type Integer

Values -1 Uses the available solution for warm-start.
0 Determine automatically.
1 Uses simple heuristics to compute the starting point based on the magnitudes of the

matrix entries.
2 Uses the pseudoinverse of the constraint matrix to determine primal and dual initial

solutions. Less sensitive to scaling and numerically more robust, but in several case
less efficient than 1.

3 Uses the unit starting point for the homogeneous self-dual barrier algorithm.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARSTARTWEIGHT

Description Newton barrier: This sets a weight for the warm-start point when warm-start is set for the
barrier algorithm. Using larger weight gives more emphasis for the supplied starting point.

Type Double

Default value 0.85

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also BARSTART.

BARSTEPSTOP

Description Newton barrier: A convergence parameter, representing the minimal step size. On each iteration
of the barrier algorithm, a step is taken along a computed search direction. If that step size is
smaller than BARSTEPSTOP, the Optimizer will terminate and return the current solution.

Type Double

Default value 1.0E-16

Note If the barrier method is making small improvements on BARGAPSTOP on later iterations, it may
be better to set this value higher, to return a solution after a close approximation to the
optimum has been found.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARTHREADS

Description If set to a positive integer it determines the number of threads implemented to run the
Newton-barrier algorithm. If the value is set to the default value (-1), the THREADS control will
determine the number of threads used.

Type Integer

Fair Isaac Corporation Proprietary Information 399

Chapter 8: Control Parameters

Default value -1(determined by the THREADS control)

Note There is a practical upper limit of 50 on the number of parallel threads the optimizer will create.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also BARCORES, MIPTHREADS, CONCURRENTTHREADS, THREADS.

BARCORES

Description If set to a positive integer it determines the number of physical CPU cores assumed to be
present in the system by the barrier algorithm. If the value is set to the default value (-1),
Xpress will automatically detect the number of cores.

Type Integer

Default value -1(automatically detected)

Note The control is provided for cross-hardware reproducibility purposes. The count does not include
logical cores created by Hyper-Threading.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also BARTHREADS.

BIGM

Description The infeasibility penalty used if the "Big M" method is implemented.

Type Double

Default value Dependent on the matrix characteristics.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BIGMMETHOD

Description Simplex: This specifies whether to use the "Big M" method, or the standard phase I (achieving
feasibility) and phase II (achieving optimality). In the "Big M" method, the objective coefficients
of the variables are considered during the feasibility phase, possibly leading to an initial
feasible basis which is closer to optimal. The side-effects involve possible round-off errors due
to the presence of the "Big M" factor in the problem.

Type Integer

Values 0 For phase I / phase II.
1 If "Big M" method to be used.

Default value 1

Note Reset by XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp,
XPRSloadqglobal and XPRSloadqp.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 400

Chapter 8: Control Parameters

BRANCHCHOICE

Description Once a global entity has been selected for branching, this control determines which of the
branches is solved first.

Type Integer

Values 0 Minimum estimate branch first.
1 Maximum estimate branch first.
2 If an incumbent solution exists, solve the branch satisfied by that solution first.

Otherwise solve the minimum estimate branch first (option 0).
3 Solve first the branch that forces the value of the branching variable to move farther

away from the value it had at the root node. If the branching entity is not a simple
variable, solve the minimum estimate branch first (option 0).

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

BRANCHDISJ

Description Branch and Bound: Determines whether the optimizer should attempt to branch on general split
disjunctions during the branch and bound search.

Type Integer

Values -1 Automatic selection of the strategy.
0 Disabled.
1 Cautious strategy. Disjunctive branches will be created only for general integers with a

wide range.
2 Moderate strategy.
3 Aggressive strategy. Disjunctive branches will be created for both binaries and

integers.

Default value -1

Notes Note Split disjunctions are a special form of disjunctions that can be written as∑
j mjxj ≤ m0 ∨

∑
j mjxj ≥ m0 + 1

The split disjunctions created by the optimizer will use a combination of binary or integer
variables xj, with integer coefficients mj.

Split disjunctions for branching will always be created with a default priority value of 400
instead of the default value of 500 for regular entity branches.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

BRANCHSTRUCTURAL

Description Branch and Bound: Determines whether the optimizer should search for special structure in the
problem to branch on during the branch and bound search.

Type Integer

Fair Isaac Corporation Proprietary Information 401

Chapter 8: Control Parameters

Values -1 Automatically determined.
0 Disabled.
1 Enabled.

Default value -1

Notes Structural branches will often involve branching on more than a single global entity at a time.
As a result of a structural branch, a parent node could therefore end up with more than two
child nodes, unlike the standard single entity branches.

Structural branches will always be created with a default priority value of 400 instead of the
default value of 500 for regular entity branches.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

BREADTHFIRST

Description The number of nodes to include in the best-first search before switching to the local first search
(NODESELECTION = 4).

Type Integer

Default value 11

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CACHESIZE

Description Newton Barrier: L2 or L3 (see notes) cache size in kB (kilobytes) of the CPU. On Intel (or
compatible) platforms a value of -1may be used to determine the cache size automatically. If
the CPU model is new then the cache size may not be correctly detected by an older release of
the software.

Type Integer

Default value -1

Notes 1. Specifying the correct cache size can give a significant performance advantage with the
Newton barrier algorithm. If the size is unknown, it is better to specify a smaller size.

2. If the size cannot be determined automatically, a default size of 128kB is assumed.

3. Where present, the L3 cache size should be chosen rather than the L2 cache size.

4. For multi-core CPUs, the cache is shared between a subset of the cores. The Optimizer will
divide the CACHESIZE value by the number of cores sharing the cache if >1 Barrier threads are
running.

5. Where the CPU is described as having multiple caches ie. 2x6M then the correct cache size to
use is 6M not 12M.

6. Examples:

Intel Core 2 Duo E6400 (2M Cache, 2.13GHz) CACHESIZE=2048
Intel Xeon x5570 (8M Cache, 2.93GHz) CACHESIZE=8192
Intel Core 2 QX6700 (2x4M Cache, 2.93 GHz) CACHESIZE=4096

7. If in doubt, please contact Support for advice.

Fair Isaac Corporation Proprietary Information 402

Chapter 8: Control Parameters

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also L1CACHE.

CALLBACKFROMMASTERTHREAD

Description Branch and Bound: specifies whether the MIP callbacks should only be called on the master
thread.

Type Integer

Values 0 Invoke callbacks on worker threads during parallel MIP;
1 Only ever invoke a callback on the thread that called XPRSmipoptimize.

Default value 0

Affects routines XPRSmipoptimize.

CHOLESKYALG

Description Newton barrier: type of Cholesky factorization used.

Type Integer

Values Bit Meaning
0 matrix blocking:

0: automatic setting;
1: manual setting.

1 if manual selection of matrix blocking:
0: multi-pass;
1: single-pass.

2 nonseparable QP relaxation:
0: off;
1: on.

3 corrector weight:
0: automatic setting;
1: manual setting.

4 if manual selection of corrector weight:
0: off;
1: on.

5 refinement:
0: automatic setting;
1: manual setting.

6 preconditioned conjugate gradient method (PCGM):
0: PCGM off;
1: PCGM on.

7 Preconditioned quasi minimal residual (QMR) to refine solution:
0: QMR off;
1: QMR on.

8 Perform refinement on the augmented system
0: off;
1: on.

9 Force highest accuracy in refinement
0: off;
1: on.

Fair Isaac Corporation Proprietary Information 403

Chapter 8: Control Parameters

Default value -1 (automatic)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CHOLESKYTOL

Description Newton barrier: The tolerance for pivot elements in the Cholesky decomposition of the normal
equations coefficient matrix, computed at each iteration of the barrier algorithm. If the absolute
value of the pivot element is less than or equal to CHOLESKYTOL, it merits special treatment in
the Cholesky decomposition process.

Type Double

Default value 1.0E-15

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CLAMPING

Description This control allows for the adjustment of returned solution values such that they are always
within bounds.

Type Integer

Values Bit Meaning
-1 Determined automatically.
0 Adjust primal solution to always be within primal bounds. Slacks if provided will be

adjusted accordingly.
1 Adjust primal slack values to always be within constraint bounds.
2 Adjust dual solution to always be within the dual bounds implied by the slacks.

Reduced costs, if provided, will be adjusted accordingly.
3 Adjust reduced costs to always be within dual bounds implied by the primal solution.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim
(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

COMPUTE

Description Controls whether the next solve is performed directly or on an Insight Compute Interface.

Type Integer

Values 0 Solve locally.
1 Solve using an Insight Compute Interface.

Default value Depends on environment

Note This control can only be used if Xpress is not in compute mode due to the environment variable
of the same name XPRS_COMPUTE being set before initialising Xpress.
The first time the control is set to 1, Xpress reads the XPRS_COMPUTE_URL environment
variable for the server address.
Once enabled, the same restrictions apply to any solves that normally applies to solves (e.g. a
restricted set of callbacks are supported).
Enabling compute mode this way does not release the license held by Xpress.

Fair Isaac Corporation Proprietary Information 404

Chapter 8: Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE), XPRSiisfirst
(IIS), XPRSrepairinfeas (REPAIRINFEAS).

COMPUTEEXECSERVICE

Description Selects the Insight execution service that will be used for solving remote optimizations.

Type String

Default value Empty string

Note Set to the name of the execution service you want to use.

Note When an empty string, the value from the configuration file will be used, or Insight server’s
default execution service if neither is populated.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

COMPUTEJOBPRIORITY

Description Selects the priority that will be used for remote optimization jobs.

Type Integer

Default value 0

Note Possible values are from -100 to 100.

Note A job of priority N will always get scheduled before a job of priority N-1, provided there is
sufficient capacity.

Note If the value is 0, the value from the configuration file will be used, or priority 0 if neither is
specified.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

COMPUTELOG

Description Controls how the run log is fetched when a solve is performed on an Insight Compute Interface.

Type Integer

Values 0 Run log will not be fetched
1 Run log will be fetched in real-time
2 Run log will be fetched at the end of the solve
3 Run log will be fetched at the end of the solve if the solve fails with an error

Default value 1

Note As run log lines are fetched from the remote solve, they will be sent to the message callback or
be displayed by the solver in the console.
The run log will not be available if the control is assigned any value other than ’1’ (real-time) and
the solve is terminated from outside a callback, such as by calling XPRSinterrupt or hitting
CTRL+C in the solver console.

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE), XPRSiisfirst
(IIS), XPRSrepairinfeas (REPAIRINFEAS), XPRSaddcbmessage.

Fair Isaac Corporation Proprietary Information 405

Chapter 8: Control Parameters

CONFLICTCUTS

Description Branch and Bound: Specifies how cautious or aggressive the optimizer should be when
searching for and applying conflict cuts. Conflict cuts are in-tree cuts derived from nodes found
to be infeasible or cut off, which can be used to cut off other branches of the search tree.

Type Integer

Values -1 Automatic.
0 Disable conflict cuts.
1 Cautious application of conflict cuts.
2 Medium application of conflict cuts.
3 Aggressive application of conflict cuts.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE)

CONCURRENTTHREADS

Description Determines the number of threads used by the concurrent solver.

Type Integer

Values -1 Determined automatically
>0 Number of threads to use.

Default value -1

Note Please refer to section 5.10.1 for a detailed description of the concurrent solver.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also DETERMINISTIC, DUALTHREADS, BARTHREADS, THREADS.

CORESPERCPU

Description Used to override the detected value of the number of cores on a CPU. The cache size (either
detected or specified via the CACHESIZE control) used in Barrier methods will be divided by
this amount, and this scaled-down value will be the amount of cache allocated to each Barrier
thread

Type Integer

Default value -1

Affects routines CACHESIZE

COVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities at the top node. A lifted
cover inequality is an additional constraint that can be particularly effective at reducing the size
of the feasible region without removing potential integral solutions. The process of generating
these can be carried out a number of times, further reducing the feasible region, albeit incurring
a time penalty. There is usually a good payoff from generating these at the top node, since
these inequalities then apply to every subsequent node in the tree search.

Fair Isaac Corporation Proprietary Information 406

Chapter 8: Control Parameters

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CPIALPHA

Description decay term for confined primal integral computation.

Type Double

Note This control represents the exponential decay term for computing the
OBSERVEDPRIMALINTEGRAL. The smaller it is, the more emphasis is put on the early part of
the search. A value of 1 corresponds to computing a regular primal integral without exponential
decay. For details see Berthold and Csizmadia: The confined primal integral, Mathematical
Programming volume 188(2), pp. 523–537, 2021.

Default value 1

See also CPISCALEFACTOR, OBSERVEDPRIMALINTEGRAL.

CPUPLATFORM

Description Newton Barrier: Selects the AMD or Intel x86 vectorization instruction set that Barrier should
run optimized code for.

Type Integer

Values -2 Highest supported [Generic, SSE2, AVX or AVX2].
-1 Highest supported solve path consistent code [Generic, SSE2 or AVX].
0 Use generic code compatible with all CPUs.
1 Use SSE2 optimized code.
2 Use AVX optimized code.
3 Use AVX2 optimized code.

Default value -1

Note Generic code, SSE2 and AVX optimized code will all result in the same solution path. Using
AVX2 might result in a different solution path.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CPUTIME

Description How time should be measured when timings are reported in the log and when checking against
time limits

Type Integer

Values -1 Disable the timer.
0 Use elapsed time.
1 Use process time.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 407

Chapter 8: Control Parameters

CRASH

Description Simplex: This determines the type of crash used when the algorithm begins. During the crash
procedure, an initial basis is determined which is as close to feasibility and triangularity as
possible. A good choice at this stage will significantly reduce the number of iterations required
to find an optimal solution. The possible values increase proportionally to their
time-consumption.

Type Integer

Note For the primal simplex algorithm the following choices are available:

Values 0 Turns off all crash procedures.
1 For singletons only (one pass).
2 For singletons only (multi pass).
3 Multiple passes through the matrix considering slacks.
4 Multiple (≤ 10) passes through the matrix but only doing slacks at the very end.
n>10 As for value 4 but performing at most n - 10 passes.

Default value 2

Note For the dual simplex algorithm, the crash control is interpreted as a bit-vector for adjusting the
behavior of the procedure:

Values Bit Meaning
0 Perform standard crash.
1 Perform additional numerical checks during crash.
2 Extend the set of column candidates for crash.
3 Extend the set of row candidates for crash.
4 Force crash, i.e., consider all suitable columns/rows as candidates for crash.

Default value 2

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CROSSOVER

Description Newton barrier: This control determines whether the barrier method will cross over to the
simplex method when at optimal solution has been found, to provide an end basis (see
XPRSgetbasis, XPRSwritebasis) and advanced sensitivity analysis information (see
XPRSobjsa, XPRSrhssa, XPRSbndsa).

Type Integer

Values -1 Determined automatically.
0 No crossover.
1 Primal crossover first.
2 Dual crossover first.

Default value -1

Note The full primal and dual solution is available whether or not crossover is used. The crossover
must not be disabled if the barrier is used to reoptimize nodes of a MIP.
By default crossover will not be performed on QP and MIQP problems.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 408

Chapter 8: Control Parameters

CROSSOVERACCURACYTOL

Description Newton barrier: This control determines how crossover adjusts the default relative pivot
tolerance. When re-inversion is necessary, crossover will compare the recalculated working
basic solution with the assumed ones just before re-inversion took place. If the error is above
this threshold, crossover will adjust the relative pivot tolerance to address the build-up of
numerical inaccuracies.

Type Double

Default value 1e-6

Note The full primal and dual solution is available whether or not crossover is used. The crossover
must not be disabled if the barrier is used to reoptimize nodes of a MIP.
By default crossover will not be performed on QP and MIQP problems.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

CROSSOVERITERLIMIT

Description Newton barrier: The maximum number of iterations that will be performed in the crossover
procedure before the optimization process terminates.

Type Integer

Default value 2147483647

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also CROSSOVER.

CROSSOVEROPS

Description Newton barrier: a bit vector for adjusting the behavior of the crossover procedure.

Type Integer

Values Bit Meaning
0 Returned solution when the crossover terminates prematurely:

0: Return the last basis from the crossover;
1: Return the barrier solution.

1 Select the crossover stages to be performed:
0: Perform both crossover stages;
1: Skip second crossover stage.

2 Set crossover behaviour:
0: Force to perform all pivots;
1: Skip pivots that are numerically less reliable.

3 Set crossover behaviour:
0: Perform standard crossover;
1: Perform a slower, but numerically more careful crossover.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also CROSSOVER.

Fair Isaac Corporation Proprietary Information 409

Chapter 8: Control Parameters

CROSSOVERTHREADS

Description Determines the maximum number of threads that parallel crossover is allowed to use. If
CROSSOVERTHREADS is set to the default value (-1), the BARTHREADS control will determine
the number of threads used.

Type Integer

Default value -1 (determined by the BARTHREADS control)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also BARTHREADS, CONCURRENTTHREADS, THREADS.

CSTYLE

Description This parameter is deprecated and will be removed in a future release. The control was used for
numbering arrays.

Type Integer

Values 0 Indicates that the FORTRAN convention should be used for arrays (i.e. starting from 1).
1 Indicates that the C convention should be used for arrays (i.e. starting from 0).

Default value 1

Affects routines All library routines which take arrays as arguments.

CUTDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which cuts will be generated.
Generating cuts can take a lot of time, and is often less important at deeper levels of the tree
since tighter bounds on the variables have already reduced the feasible region. A value of 0
signifies that no cuts will be generated.

Type Integer

Default value -1 — determined automatically.

Note Does not affect cutting on the root node.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also AUTOCUTTING, CUTFREQ.

CUTFACTOR

Description Limit on the number of cuts and cut coefficients the optimizer is allowed to add to the matrix
during global search. The cuts and cut coefficients are limited by CUTFACTOR times the
number of rows and coefficients in the initial matrix.

Type Double

Values -1 Let the optimizer decide on the maximum amount of cuts based on CUTSTRATEGY.
>=0 Multiple of number of rows and coefficients to use.

Default value -1

Fair Isaac Corporation Proprietary Information 410

Chapter 8: Control Parameters

Note A value of 0.0 prevents cuts from being added, and a value of e.g. 1.0 will allow the problem to
grow to twice the initial number of rows and coefficients.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also CUTSTRATEGY.

CUTFREQ

Description Branch and Bound: This specifies the frequency at which cuts are generated in the tree search.
If the depth of the node modulo CUTFREQ is zero, then cuts will be generated.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also AUTOCUTTING, CUTDEPTH.

CUTSTRATEGY

Description Branch and Bound: This specifies the cut strategy. A more aggressive cut strategy, generating a
greater number of cuts, will result in fewer nodes to be explored, but with an associated time
cost in generating the cuts. The fewer cuts generated, the less time taken, but the greater
subsequent number of nodes to be explored.

Type Integer

Values -1 Automatic selection of the cut strategy.
0 No cuts.
1 Conservative cut strategy.
2 Moderate cut strategy.
3 Aggressive cut strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

CUTSELECT

Description A bit vector providing detailed control of the cuts created for the root node of a global solve.
Use TREECUTSELECT to control cuts during the tree search.

Type Integer

Fair Isaac Corporation Proprietary Information 411

Chapter 8: Control Parameters

Values Bit Meaning
5 Clique cuts.
6 Mixed Integer Rounding (MIR) cuts.
7 Lifted cover cuts.
8 Turn on row aggregation for MIR cuts.
11 Flow path cuts.
12 Implication cuts.
13 Turn on automatic Lift-and-Project cutting strategy.
14 Disable cutting from cut rows.
15 Lifted GUB cover cuts.
16 Zero-half cuts.
17 Indicator constraint cuts.

Default value -1

Note The default value is -1 which enables all bits. Any bits not listed in the above table should be left
in their default ’on’ state, since the interpretation of such bits might change in future versions of
the optimizer.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also COVERCUTS, GOMCUTS, TREECUTSELECT.

DEFAULTALG

Description This selects the algorithm that will be used to solve the LP if no algorithm flag is passed to the
optimization routines.

Type Integer

Values 1 Automatically determined.
2 Dual simplex.
3 Primal simplex.
4 Newton barrier.

Default value 1

Note Please note that this will affect how the MIP node LP problems are solved during the global
search. To change how the root LP is solved only, please use the appropriate flags to
XPRSlpoptimize or XPRSmipoptimize. In particular, CONCURRENTTHREADS takes
precedence when solving the root node, and only if it is restricted to a single thread, it will use
the chosen default algorithm.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

DENSECOLLIMIT

Description Newton barrier: Columns with more than DENSECOLLIMIT elements are considered to be
dense. Such columns will be handled specially in the Cholesky factorization of this matrix.

Type Integer

Default value 0 — determined automatically.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 412

Chapter 8: Control Parameters

DETERMINISTIC

Description Branch and Bound: Specifies whether the parallel MIP search should be deterministic.

Type Integer

Values 0 Use non-deterministic parallel MIP.
1 Use deterministic parallel MIP.
2 Use deterministic parallel MIP, but allow the concurrent root LP solve to be

opportunistic.

Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPTHREADS.

DUALGRADIENT

Description Simplex: This specifies the dual simplex pricing method.

Type Integer

Values -1 Determine automatically.
0 Devex.
1 Steepest edge.
2 Direct steepest edge.
3 Sparse Devex.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PRICINGALG.

DUALIZE

Description This specifies whether presolve should form the dual of the problem.

Type Integer

Values -1 Determine automatically.
0 Solve the primal problem.
1 Solve the dual problem.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also DUALIZEOPS

Fair Isaac Corporation Proprietary Information 413

Chapter 8: Control Parameters

DUALIZEOPS

Description Bit-vector control for adjusting the behavior when a problem is dualized.

Type Integer

Values Bit Meaning
0 Swap the simplex algorithm to run. If dual simplex is selected for the original problem

then primal simplex will be run on the dualized problem, and simiarly if primal simplex
is selected.

Default value 1 (bit 0 is set)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also DUALIZE

DUALPERTURB

Description The factor by which the problem will be perturbed prior to optimization by dual simplex. A value
of 0.0 results in no perturbation prior to optimization. DUALPERTURB, if set to a non-negative
value, overrules the value of PERTURB. The control PERTURB is deprecated, the use of
PRIMALPERTURB and DUALPERTURB is advised instead.
Note the interconnection to the AUTOPERTURB control. If AUTOPERTURB is set to 1, the
decision whether to perturb or not is left to the Optimizer. When the problem is automatically
perturbed in dual simplex, however, the value of DUALPERTURB will be used for perturbation.

Type Double

Default value -1 — determined automatically.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also AUTOPERTURB, PERTURB, PRIMALPERTURB.

DUALSTRATEGY

Description This bit-vector control specifies the dual simplex strategy.

Type Integer

Values Bit Meaning
0 Switch to primal when re-optimization goes dual infeasible and numerically unstable.
1 When dual intend to switch to primal, stop the solve instead of switching to primal.
2 Use more aggressive cut-off in MIP search.
3 Use dual simplex to remove cost perturbations.
4 Enable more aggressive dual pivoting strategy.
5 Keep using dual simplex even when it’s numerically unstable.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 414

Chapter 8: Control Parameters

DUALTHREADS

Description Determines the maximum number of threads that dual simplex is allowed to use. If
DUALTHREADS is set to the default value (-1), the THREADS control will determine the number
of threads used.

Type Integer

Default value -1 (determined by the THREADS control)

Notes When solving a linear MIP, the dual simplex algorithm will use multiple threads only when
solving the initial LP relaxation or when reoptimizing between rounds of cuts on the root node.

The parallel dual simplex algorithm differs from the sequential dual simplex algorithm and
might follow a different solve path. For DUALTHREADS > 1 the solve path is independent of
the number of threads used, although the practical limit for observing performance benefits is
around DUALTHREADS = 8.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also CONCURRENTTHREADS, THREADS.

EIGENVALUETOL

Description A quadratic matrix is considered not to be positive semi-definite, if its smallest eigenvalue is
smaller than the negative of this value.

Type Double

Default value 1E-6

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),
CHECKCONVEXITY.

See also IFCHECKCONVEXITY.

ELIMFILLIN

Description Amount of fill-in allowed when performing an elimination in presolve .

Type Integer

Default value 10

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

ELIMTOL

Description The Markowitz tolerance for the elimination phase of the presolve.

Type Double

Default value 0.001

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 415

Chapter 8: Control Parameters

ESCAPENAMES

Description If characters illegal to an mps or lp file should be escaped to guarantee readability, and whether
escaped characters should be transformed back when reading such a file.

Type Integer

Values 0 Illegal characters are not escaped.
1 Illegal charactesr are escaped.

Default value 1

Affects routines XPRSreadprob (READPROB), XPRSwriteprob (WRITEPROB) .

ETATOL

Description Tolerance on eta elements. During each iteration, the basis inverse is premultiplied by an
elementary matrix, which is the identity except for one column - the eta vector. Elements of eta
vectors whose absolute value is smaller than ETATOL are taken to be zero in this step.

Type Double

Default value 1.0E-13

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSbtran,
XPRSftran.

EXTRACOLS

Description The initial number of extra columns to allow for in the matrix. If columns are to be added to the
matrix, then, for maximum efficiency, space should be reserved for the columns before the
matrix is input by setting the EXTRACOLS control. If this is not done, resizing will occur
automatically, but more space may be allocated than the user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAROWS, EXTRAELEMS, EXTRAMIPENTS.

EXTRAELEMS

Description The initial number of extra matrix elements to allow for in the matrix, including coefficients for
cuts. If rows or columns are to be added to the matrix, then, for maximum efficiency, space
should be reserved for the extra matrix elements before the matrix is input by setting the
EXTRAELEMS control. If this is not done, resizing will occur automatically, but more space may
be allocated than the user actually requires.

Type Integer

Default value Hardware/platform dependent.

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRACOLS, EXTRAROWS.

Fair Isaac Corporation Proprietary Information 416

Chapter 8: Control Parameters

EXTRAMIPENTS

Description The initial number of extra global entities to allow for.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadqglobal.

EXTRAPRESOLVE

Description This control no longer has any effect and will be removed from future releases. Use
PRESOLVEMAXGROW to limit the number of non-zero coefficients in the presolved problem.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

EXTRAQCELEMENTS

Description This parameter is deprecated and will be removed in a future release. This control no longer has
any effect.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadqcqp.

See also EXTRAELEMS, EXTRAMIPENTS, EXTRAROWS, EXTRAQCROWS.

EXTRAQCROWS

Description This parameter is deprecated and will be removed in a future release. This control no longer has
any effect.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadqcqp.

See also EXTRAELEMS, EXTRAMIPENTS, EXTRAROWS, EXTRAQCELEMENTS.

EXTRAROWS

Description The initial number of extra rows to allow for in the matrix, including cuts. If rows are to be
added to the matrix, then, for maximum efficiency, space should be reserved for the rows
before the matrix is input by setting the EXTRAROWS control. If this is not done, resizing will
occur automatically, but more space may be allocated than the user actually requires.

Fair Isaac Corporation Proprietary Information 417

Chapter 8: Control Parameters

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRACOLS.

EXTRASETELEMS

Description The initial number of extra elements in sets to allow for in the matrix. If sets are to be added to
the matrix, then, for maximum efficiency, space should be reserved for the set elements before
the matrix is input by setting the EXTRASETELEMS control. If this is not done, resizing will
occur automatically, but more space may be allocated than the user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETS.

EXTRASETS

Description The initial number of extra sets to allow for in the matrix. If sets are to be added to the matrix,
then, for maximum efficiency, space should be reserved for the sets before the matrix is input
by setting the EXTRASETS control. If this is not done, resizing will occur automatically, but
more space may be allocated than the user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETELEMS.

FEASIBILITYPUMP

Description Branch and Bound: Decides if the Feasibility Pump heuristic should be run at the top node.

Type Integer

Values -1 Automatic.
0 Turned off.
1 Always try the Feasibility Pump.
2 Try the Feasibility Pump only if other heuristics have failed to find an integer solution.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 418

Chapter 8: Control Parameters

FEASTOL

Description This tolerance determines when a solution is treated as feasible. If the amount by which a
constraint’s activity violates its right-hand side or ranged bound is less in absolute magnitude
than FEASTOL, then the constraint is treated as satisfied. Similarly, if the amount by which a
column violates its bounds is less in absolute magnitude than FEASTOL, those bounds are also
treated as satisfied.

Type Double

Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSgetinfeas.

FEASTOLPERTURB

Description This tolerance determines how much a feasible primal basic solution is allowed to be perturbed
when performing basis changes. The tolerance FEASTOL is always considered as an upper
limit for the perturbations, but in some cases smaller value can be more desirable.

Type Double

Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSgetinfeas.

FEASTOLTARGET

Description This specifies the target feasibility tolerance for the solution refiner.

Type Double

Default value 0 — use the value specified by FEASTOL.

Note Zero and negative values are ignored, and the value of FEASTOL is used.

Note Use very small values like 1e-100 to state the refinement should continue as long as an
improvement is made. Use very large values like 1e+100 to disable only this aspect of the
refiner.

Note Refining solutions to match the feastoltarget can influence and worsen their objective value in
case the previous objective could only be achieved through slight infeasibilities.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also REFINEOPS, LPREFINEITERLIMIT, OPTIMALITYTOLTARGET.

FORCEOUTPUT

Description Certain names in the problem object may be incompatible with different file formats (such as
names containing spaces for LP files). If the optimizer might be unable to read back a problem
because of non-standard names, it will first attempt to write it out using an extended naming
convention. If the names would not be possible to extend so that they would be reproducible
and recognizable, it will give an error message and won’t create the file. If the optimizer might
be unable to read back a problem because of non-standard names, it will give an error message
and won’t create the file. This option may be used to force output anyway.

Fair Isaac Corporation Proprietary Information 419

Chapter 8: Control Parameters

Type Integer

Values 0 Check format compatibility, and in case of failure try to extend names so that they are
reproducible and recognizable.

1 Force output using problem names as is.
2 Always use ’x(’ original name ’)’ in LP files to create a representation that can be read

by Xpress. Default for problem having spaces in names
3 Substitute spaces by the ’_’ character in LP files

Default value 0

Affects routines XPRSwriteprob (WRITEPROB).

FORCEPARALLELDUAL

Description Dual simplex: specifies whether the dual simplex solver should always use the parallel simplex
algorithm. By default, when using a single thread, the dual simplex solver will execute a
dedicated sequential simplex algorithm.

Type Integer

Values 0 Disabled.
1 Enabled. Force the dual simplex solver to use the parallel algorithm.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also THREADS, DUALTHREADS.

GENCONSABSTRANSFORMATION

Description This control specifies the reformulation method for absolute value general constraints at the
beginning of the search.

Type Integer

Values -1 Automatic.
0 Use a formulation based on indicator constraints.
1 Use a formulation based on SOS1-contraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

GENCONSDUALREDUCTIONS

Description This parameter specifies whether dual reductions should be applied to reduce the number of
columns and rows added when transforming general constraints to MIP structs.

Type Integer

Values 0 Disabled. No dual reductions, add columns and rows.
1 Enabled. Only add neccessary columns and rows, drop those implied by the objective

sense.
Default value 1

Fair Isaac Corporation Proprietary Information 420

Chapter 8: Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPDUALREDUCTIONS.

GLOBALFILEBIAS

Description This parameter is deprecated and will be removed in a future release. This control no longer has
any effect. In older versions of Xpress, it could be used to influence how much Xpress would
write tree search data to the global file in preference to using in-memory data compression.

Type Double

Default value 0.5

See also GLOBALFILEUSAGE, TREEMEMORYLIMIT, TREEMEMORYSAVINGTARGET.

GLOBALFILELOGINTERVAL

Description This control sets the interval between progress messages output while writing tree data to the
global file, in seconds. The solve is slowed greatly while data is being written to the global file
and this output allows the user to see how much progress is being made.

Type Integer

Default value 60

See also TREEDIAGNOSTICS.

GOMCUTS

Description Branch and Bound: The number of rounds of Gomory or lift-and-project cuts at the top node.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEGOMCUTS, LNPBEST, LNPITERLIMIT.

HEURBEFORELP

Description Branch and Bound: Determines whether primal heuristics should be run before the initial LP
relaxation has been solved.

Type Integer

Values -1 Automatic - let the optimizer decide if heuristics should be run.
0 Disabled.
1 Enabled.

Default value -1

Fair Isaac Corporation Proprietary Information 421

Chapter 8: Control Parameters

Note It is possible that a heuristic will find an optimal integer solution that will result in the LP
relaxation solution being cut off. If the problem is solved with the "l" flag to
XPRSmipoptimize (i.e., stop after solving the LP relaxation), then LPSTATUSmight be
returned as XPRS_LP_CUTOFF or XPRS_LP_CUTOFF_IN_DUAL.
f dedicated heuristic threads are enabled through the HEURTHREADS control, then the initial
heuristics will be run in parallel with the LP solve, instead of before.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS, HEURTHREADS.

HEURDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which heuristics will be used
to find MIP solutions. It may be worth stopping the heuristic search for solutions after a certain
depth in the tree search. A value of 0 signifies that heuristics will not be used. This control no
longer has any effect and will be removed from future releases.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURDIVEITERLIMIT

Description Branch and Bound: Simplex iteration limit for reoptimizing during the diving heuristic.

Type Double

Values >=1 Fixed iteration limit.
0 No iteration limit.
<0 Automatic selection of the iteration limit based on the problem size. The absolute

value is used as a multiplier on the automatic selection.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS.

HEURDIVERANDOMIZE

Description The level of randomization to apply in the diving heuristic. The diving heuristic uses priority
weights on rows and columns to determine the order in which to e.g. round fractional columns,
or the direction in which to round them. This control determines by how large a random factor
these weights should be changed.

Type Double

Values 0.0-1.0 Amount of randomization (0.0=none, 1.0=full)

Default value 0.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURDIVESTRATEGY, HEURDIVESPEEDUP.

Fair Isaac Corporation Proprietary Information 422

Chapter 8: Control Parameters

HEURDIVESOFTROUNDING

Description Branch and Bound: Enables a more cautious strategy for the diving heuristic, where it tries to
push binaries and integer variables to their bounds using the objective, instead of directly fixing
them. This can be useful when the default diving heuristics fail to find any feasible solutions.

Type Integer

Values -1 Automatic selection.
0 Do not use soft rounding.
1 Cautious use of the soft rounding strategy.
2 More aggressive use of the soft rounding strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURDIVESTRATEGY.

HEURDIVESPEEDUP

Description Branch and Bound: Changes the emphasis of the diving heuristic from solution quality to diving
speed.

Type Integer

Values -2 Automatic selection biased towards quality
-1 Automatic selection biased towards speed.
0-4 manual emphasis bias from emphasis on quality (0) to emphasis on speed (4).

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURDIVESTRATEGY.

HEURDIVESTRATEGY

Description Branch and Bound: Chooses the strategy for the diving heuristic.

Type Integer

Values -1 Automatic selection of strategy.
0 Disables the diving heuristic.
1-18 Available pre-set strategies for rounding infeasible global entities and reoptimizing

during the heuristic dive.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS.

Fair Isaac Corporation Proprietary Information 423

Chapter 8: Control Parameters

HEUREMPHASIS

Description Branch and Bound: This control specifies an emphasis for the search w.r.t. primal heuristics
and other procedures that affect the speed of convergence of the primal-dual gap. For
problems where the goal is to achieve a small gap but not neccessarily solving them to
optimality, it is recommended to set HEUREMPHASIS to 1. This setting triggers many additional
heuristic calls, aiming for reducing the gap at the beginning of the search, typically at the
expense of an increased time for proving optimality.

Type Integer

Values -1 Optimizer default strategy.
0 Disables all heuristics.
1 Focus on reducing the primal-dual gap in the early part of the search.
2 Extremely aggressive search heuristics.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURFORCESPECIALOBJ

Description Branch and Bound: This specifies whether local search heuristics without objective or with an
auxiliary objective should always be used, despite the automatic selection of the Optimiezr.
Deactivated by default.

Type Integer

Values 0 Disabled.
1 Enabled. Run special objective heuristics on large problems and even if incumbent

exists.
Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

HEURFREQ

Description Branch and Bound: This specifies the frequency at which heuristics are used in the tree search.
Heuristics will only be used at a node if the depth of the node is a multiple of HEURFREQ.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURMAXSOL

Description Branch and Bound: This specifies the maximum number of heuristic solutions that will be
found in the tree search. This control no longer has any effect and will be removed from future
releases.

Fair Isaac Corporation Proprietary Information 424

Chapter 8: Control Parameters

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURNODES

Description Branch and Bound: This specifies the maximum number of nodes at which heuristics are used
in the tree search. This control no longer has any effect and will be removed from future
releases.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

HEURSEARCHEFFORT

Description Adjusts the overall level of the local search heuristics.

Type Double

Default value 1.0

Note HEURSEARCHEFFORT is used as a multiplier on the default amount of work the local search
heuristics should do. A higher value means the local search heuristics will be run more often
and that they are allowed to search larger neighborhoods.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS, HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

HEURSEARCHFREQ

Description Branch and Bound: This specifies how often the local search heuristic should be run in the tree.

Type Integer

Values -1 Automatic.
0 Disabled in the tree.
n>0 Number of nodes between each run.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURSEARCHROOTCUTFREQ.

Fair Isaac Corporation Proprietary Information 425

Chapter 8: Control Parameters

HEURSEARCHROOTCUTFREQ

Description How frequently to run the local search heuristic during root cutting. This is given as how many
cut rounds to perform between runs of the heuristic. Set to zero to avoid applying the heuristic
during root cutting.
Branch and Bound: This specifies how often the local search heuristic should be run in the tree.

Type Integer

Values -1 Automatic.
0 Disabled heuristic during cutting.
n>0 Number of cutting rounds between each run.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURSEARCHFREQ.

HEURSEARCHROOTSELECT

Description A bit vector control for selecting which local search heuristics to apply on the root node of a
global solve. Use HEURSEARCHTREESELECT to control local search heuristics during the tree
search.

Type Integer

Values Bit Meaning
0 Local search with a large neighborhood. Potentially slow but is good for finding

solutions that differs significantly from the incumbent.
1 Local search with a small neighborhood centered around a node LP solution.
2 Local search with a small neighborhood centered around an integer solution. This

heuristic will often provide smaller, incremental improvements to an incumbent
solution.

3 Local search with a neighborhood set up through the combination of multiple integer
solutions.

4 Unused
5 Local search without an objective function. Called seldom and only when no feasible

solution is available.
6 Local search with an auxiliary objective function. Called seldom and only when no

feasible solution is available.
Default value 117

Note Some of the local search heuristics will benefit from having an existing incumbent solution, but
it is not required. An initial solution can also be provided by the user through either
XPRSloadmipsol or XPRSreadbinsol.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS, HEURSEARCHTREESELECT, HEURSEARCHEFFORT.

Fair Isaac Corporation Proprietary Information 426

Chapter 8: Control Parameters

HEURSEARCHTREESELECT

Description A bit vector control for selecting which local search heuristics to apply during the tree search of
a global solve. Use HEURSEARCHROOTSELECT to control local search heuristics on the root
node.

Type Integer

Values Bit Meaning
0 Local search with a large neighborhood. Potentially slow but is good for finding

solutions that differs significantly from the incumbent.
1 Local search with a small neighborhood centered around a node LP solution.
2 Local search with a small neighborhood centered around an integer solution. This

heuristic will often provide smaller, incremental improvements to an incumbent
solution.

3 Local search with a neighborhood set up through the combination of multiple integer
solutions.

4 Unused
5 Local search without an objective function. Called seldom and only when no feasible

solution is available.
6 Local search with an auxiliary objective function. Called seldom and only when no

feasible solution is available.
Default value 17

Note Some of the local search heuristics will benefit from having an existing incumbent solution, but
it is not required. An initial solution can also be provided by the user through either
XPRSloadmipsol or XPRSaddmipsol.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEUREMPHASIS, HEURSEARCHROOTSELECT, HEURSEARCHEFFORT.

HEURSTRATEGY

Description This parameter is deprecated and will be removed in a future release. Use HEUREMPHASIS
instead.
Branch and Bound: This specifies the heuristic strategy. On some problems it is worth trying
more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.

Type Integer

Values -1 Automatic selection of heuristic strategy.
0 No heuristics.
1 Basic heuristic strategy.
2 Enhanced heuristic strategy.
3 Extensive heuristic strategy.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 427

Chapter 8: Control Parameters

HEURTHREADS

Description Branch and Bound: The number of threads to dedicate to running heuristics on the root node.

Type Integer

Values -1 Automatically determined from the THREADS control.
0 Disabled. Heuristics will be run sequentially with the root LP solve and cutting.
>=1 Number of root threads to dedicate to parallel heuristics.

Default value 0

Note When heuristic threads are enable, the heuristics will be run in parallel with the initial LP solve, if
possible, and in parallel with the root cutting.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also THREADS.

HISTORYCOSTS

Description Branch and Bound: How to update the pseudo cost for a global entity when a strong branch or a
regular branch is applied.

Type Integer

Values -1 Automatically determined.
0 No update.
1 Initialize using only regular branches from the root to the current node.
2 Same as 1, but initialize with strong branching results as well.
3 Initialize using any regular branching or strong branching information from all nodes

solves before the current node.
Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBBEST, SBESTIMATE, SBSELECT

IFCHECKCONVEXITY

Description Determines if the convexity of the problem is checked before optimization. Applies to quadratic,
mixed integer quadratic and quadratically constrained problems. Checking convexity takes
some time, thus for problems that are known to be convex it might be reasonable to switch the
checking off.

Type Integer

Values 0 Turn off convexity checking.
1 Turn on convexity checking.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also EIGENVALUETOL

Fair Isaac Corporation Proprietary Information 428

Chapter 8: Control Parameters

INDLINBIGM

Description During presolve, indicator constraints will be linearized using a BigM coefficient whenever that
BigM coefficient is small enough. This control defines the largest BigM for which such a
linearized version will be added to the problem in addition to the original constraint. If the BigM
is even smaller than INDPRELINBIGM, then the original indicator constraint will additionally be
dropped from the problem.

Type Double

Default value 1.0E+05

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Note INDLINBIGM should always be at least as large as INDPRELINBIGM. For any value less or
equal to INDPRELINBIGM, indicator constraints will never be duplicated and only
INDPRELINBIGM is taken into account for linearization.

See also INDPRELINBIGM

INDPRELINBIGM

Description During presolve, indicator constraints will be linearized using a BigM coefficient whenever that
BigM coefficient is small enough. This control defines the largest BigM for which the original
constraint will be replaced by the linearized version. If the BigM is larger than INDPRELINBIGM
but smaller than INDLINBIGM, the linearized row will be added but the original indicator
constraint is kept as a numerically stable way to check feasibility.

Type Double

Default value 100.0

Note Replacing an indicator constraint with a BigM row has a side effect on tolerances. In the
indicator constraint form, the constraint part is satisfied with FEASTOL tolerance; while after
changing it to BigM form, the constraint also includes the binary indicator variable (with a
coefficient up to INDPRELINBIGM and an integrality tolerance of MIPTOL), therefore the
constraint part of the indicator contraint is satisfied with tolerance
FEASTOL+MIPTOL*INDPRELINBIGM.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also INDLINBIGM

INPUTTOL

Description The tolerance on input values elements. If any value is less than or equal to INPUTTOL in
absolute value, it is treated as zero. For the internal zero tolerance see MATRIXTOL.

Type Double

Note This control needs to be set before inputting the problem, as it has no effect afterwards.

Default value 0.0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp, XPRSalter (ALTER), XPRSaddcols, XPRSaddcuts, XPRSaddrows,
XPRSchgcoef, XPRSchgmcoef, XPRSstorecuts.

Fair Isaac Corporation Proprietary Information 429

Chapter 8: Control Parameters

INVERTFREQ

Description Simplex: The frequency with which the basis will be inverted. The basis is maintained in a
factorized form and on most simplex iterations it is incrementally updated to reflect the step
just taken. This is considerably faster than computing the full inverted matrix at each iteration,
although after a number of iterations the basis becomes less well-conditioned and it becomes
necessary to compute the full inverted matrix. The value of INVERTFREQ specifies the
maximum number of iterations between full inversions.

Type Integer

Default value -1 — the frequency is determined automatically.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

INVERTMIN

Description Simplex: The minimum number of iterations between full inversions of the basis matrix. See
the description of INVERTFREQ for details.

Type Integer

Default value 3

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

IOTIMEOUT

Description The maximum number of seconds to wait for an I/O operation before it is cancelled.

Type Integer

Default value 30

Affects routines XPRSreadprob (READPROB), XPRSreaddirs (READDIRS), XPRSreadslxsol
(READSLXSOL), XPRSreadbasis (READBASIS), XPRSreadbinsol (READBINSOL),
XPRSwritedirs (WRITEDIRS), XPRSwritebasis (WRITEBASIS), XPRSwritesol
(WRITESOL), XPRSwritebinsol (WRITEBINSOL), XPRSwriteprtsol (WRITEPRTSOL),
XPRSwriteslxsol (WRITESLXSOL), XPRSwriteprob (WRITEPROB), XPRSsave (SAVE),
XPRSsaveas, XPRSrestore (RESTORE), XPRSiiswrite (IIS), XPRSalter (ALTER).

KEEPBASIS

Description Simplex: This determines which basis to use for the next iteration. The choice is between using
that determined by the crash procedure at the first iteration, or using the basis from the last
iteration.

Type Integer

Values 0 Problem optimization starts from the first iteration, i.e. the previous basis is ignored.
1 The previously loaded basis (last in memory) should be used.
2 Use the previous basis only if it is valid for the current problem (the number of basic

variables must match the number of rows).
3 Use the previous basis only if it is valid and numerically stable in the current problem.

Fair Isaac Corporation Proprietary Information 430

Chapter 8: Control Parameters

Default value 1

Note This gets reset to the default value after optimization has started.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

KEEPNROWS

Description How nonbinding rows should be handled by the MPS reader.

Type Integer

Values -1 Delete N type rows from the matrix.
0 Delete elements from N type rows leaving empty N type rows in the matrix.
1 Keep N type rows.

Default value -1

Affects routines XPRSreadprob (READPROB).

L1CACHE

Description Newton barrier: L1 cache size in kB (kilo bytes) of the CPU. On Intel (or compatible) platforms a
value of -1 may be used to determine the cache size automatically.

Type Integer

Default value Hardware/platform dependent.

Notes Specifying the correct L1 cache size can give a significant performance advantage with the
Newton barrier algorithm.

If the size is unknown, it is better to specify a smaller size.

If the size cannot be determined automatically on Intel (or compatible) platforms, a default size
of 8 kB is assumed.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LINELENGTH

Description This parameter is deprecated and will be removed in a future release. This control no longer has
any effect.

Type Integer

LNPBEST

Description Number of infeasible global entities to create lift-and-project cuts for during each round of
Gomory cuts at the top node (see GOMCUTS).

Type Integer

Default value 50

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 431

Chapter 8: Control Parameters

LNPITERLIMIT

Description Number of iterations to perform in improving each lift-and-project cut.

Type Integer

Default value -1 — determined automatically.

Note By setting the number to zero a Gomory cut will be created instead.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LPFLAGS

Description A bit-vector control which defines the algorithm for solving an LP problem or the initial LP
relaxation of a MIP problem.

Type Integer

Values Bit Meaning
0 Use the dual simplex method.
1 Use the primal simplex method.
2 Use the barrier method.
3 Use the network simplex method.

Default value 0

Notes Setting bit 0, 1, 2, 3 of this control will have the same effect of passing flags d, p, b, n to
XPRSmipoptimize or XPRSlpoptimize. When more than one bit are set, then the LP
problem will be solved with the concurrent solver. When this control is set and flags are passed
at the same time, the flags will overrule the value of the control.

This control can be tuned.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LPITERLIMIT

Description The maximum number of iterations that will be performed by primal simplex or dual simplex
before the optimization process terminates. For MIP problems, this is the maximum total
number of iterations over all nodes explored by the Branch and Bound method.

Type Integer

Default value 2147483645

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

LPREFINEITERLIMIT

Description This specifies the simplex iteration limit the solution refiner can spend in attempting to increase
the accuracy of an LP solution.

Type Integer

Default value -1 — determined automatically.

Fair Isaac Corporation Proprietary Information 432

Chapter 8: Control Parameters

Note The solution refiner iteratively attempts to increase the accuracy of the solution until either both
FEASTOLTARGET and OPTIMALITYTOLTARGET is satisfied, or accuracy cannot further be
increased, or the effort limit determined by LPREFINEITERLIMIT is exhausted.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also REFINEOPS, FEASTOLTARGET, OPTIMALITYTOLTARGET.

LOCALCHOICE

Description Controls when to perform a local backtrack between the two child nodes during a dive in the
branch and bound tree.

Type Integer

Values 1 Never backtrack from the first child, unless it is dropped (infeasible or cut off).
2 Always solve both child nodes before deciding which child to continue with.
3 Automatically determined.

Default value 3

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

LPFOLDING

Description Simplex and barrier: whether to fold an LP problem before solving it.

Type Integer

Values -1 Automatic.
0 Disable LP folding.
1 Enable LP folding. Attempt to fold all LP problems and MIP initial relaxations.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE).

LPLOG

Description Simplex: The frequency at which the simplex log is printed.

Type Integer

Values n<0 Detailed output every -n iterations.
0 Log displayed at the end of the optimization only.
n>0 Summary output every n iterations.

Default value 100

Note This control only has an effect if LPLOGSTYLE is set to 0.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

See also A.7.

Fair Isaac Corporation Proprietary Information 433

Chapter 8: Control Parameters

LPLOGDELAY

Description Time interval between two LP log lines.

Type Double

Default value 1.0

Note This control only has an effect if LPLOGSTYLE is set to 1.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

LPLOGSTYLE

Description Simplex: The style of the simplex log.

Type Integer

Values 0 Simplex log is printed based on simplex iteration count, at a fixed frequency as
specified by the LPLOG control.

1 Simplex Log is printed based on an estimation of elapsed time, determined by an
internal deterministic timer.

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSminim
(MINIM), XPRSmaxim (MAXIM), XPRSglobal (GLOBAL).

LPTHREADS

Description This parameter is deprecated and will be removed in a future release. This control is provided for
compatibility purposes. Please use CONCURRENTTHREADS instead.

Type Integer

Default value -1

Note The value of this control is mirrored by the CONCURRENTTHREADS control.

See also CONCURRENTTHREADS

MARKOWITZTOL

Description The Markowitz tolerance used for the factorization of the basis matrix.

Type Double

Default value 0.01

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 434

Chapter 8: Control Parameters

MATRIXTOL

Description The zero tolerance on matrix elements. If the value of a matrix element is less than or equal to
MATRIXTOL in absolute value, it is treated as zero. The control applies when solving a problem,
for an input tolerance see INPUTTOL.

Type Double

Default value 1.0E-09

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) .

MAXCHECKSONMAXCUTTIME

Description This control is intended for use where optimization runs that are terminated using the
MAXCUTTIME control are required to be reproduced exactly. This control is necessary because
of the inherent difficulty in terminating algorithmic software in a consistent way using temporal
criteria. The control value relates to the number of times the optimizer checks the
MAXCUTTIME criterion up to and including the check when the termination of cutting was
activated. To use the control the user first must obtain the value of the
CHECKSONMAXCUTTIME attribute after the run returns. This attribute value is the number of
times the optimizer checked the MAXCUTTIME criterion during the last call to the optimization
routine XPRSmipoptimize. Note that this attribute value will be negative if the optimizer
terminated cutting on the MAXCUTTIME criterion. To ensure accurate reproduction of a run the
user should first ensure that MAXCUTTIME is set to its default value or to a large value so the
run does not terminate again on MAXCUTTIME and then simply set the control
MAXCHECKSONMAXCUTTIME to the absolute value of the CHECKSONMAXCUTTIME value.

Type Integer

Values 0 Not active.
n>0 The number of times the optimizer should check the MAXCUTTIME criterion before

triggering a termination.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXCHECKSONMAXTIME

Description This control is intended for use where optimization runs that are terminated using the MAXTIME
control are required to be reproduced exactly. This control is necessary because of the inherent
difficulty in terminating algorithmic software in a consistent way using temporal criteria. The
control value relates to the number of times the optimizer checks the MAXTIME criterion up to
and including the check when the termination was activated. To use the control the user first
must obtain the value of the CHECKSONMAXTIME attribute after the run returns. This attribute
value is the number of times the optimizer checked the MAXTIME criterion during the last call to
the optimization routine XPRSmipoptimize. Note that this attribute value will be negative if
the optimizer terminated on the MAXTIME criterion. To ensure that a reproduction of a run
terminates in the same way the user should first ensure that MAXTIME is set to its default value
or to a large value so the run does not terminate again on MAXTIME and then simply set the
control MAXCHECKSONMAXTIME to the absolute value of the CHECKSONMAXTIME value.

Type Integer

Fair Isaac Corporation Proprietary Information 435

Chapter 8: Control Parameters

Values 0 Not active.
n>0 The number of times the optimizer should check the MAXTIME criterion before

triggering a termination.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE)

MAXMCOEFFBUFFERELEMS

Description The maximum number of matrix coefficients to buffer before flushing into the internal
representation of the problem. Buffering coefficients can offer a significant performance gain
when you are building a matrix using XPRSchgcoef or XPRSchgmcoef, but can lead to a
significant memory overhead for large matrices, which this control allows you to influence.

Type Integer

Default value 2147483647

Affects routines XPRSchgcoef, XPRSchgmcoef.

MAXCUTTIME

Description The maximum amount of time allowed for generation of cutting planes and reoptimization. The
limit is checked during generation and no further cuts are added once this limit has been
exceeded.

Type Integer

Values 0 No time limit.
n>0 Stop cut generation after n seconds.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXGLOBALFILESIZE

Description The maximum size, in megabytes, to which the global file may grow, or 0 for no limit. When the
global file reaches this limit, a second global file will be created. Useful if you are using a
filesystem that puts a maximum limit on the size of a file.

Type Integer

Default value 0

See also GLOBALFILESIZE.

MAXIIS

Description This function controls the number of Irreducible Infeasible Sets to be found using the
XPRSiisall (IIS -a).

Type Integer

Fair Isaac Corporation Proprietary Information 436

Chapter 8: Control Parameters

Values -1 Search for all IIS.
0 Do not search for IIS.
n>0 Search for the first n IIS.

Default value -1

Note The function XPRSiisnext is not affected.

Affects routines XPRSiisall (IIS-a).

MAXIMPLIEDBOUND

Description Presolve: When tighter bounds are calculated during MIP preprocessing, only bounds whose
absolute value are smaller than MAXIMPLIEDBOUND will be applied to the problem.

Type Double

Default value 1.0E+08

Note For numerically challenging MIP problems, it can sometimes help make the solve more stable
by reducing the value of MAXIMPLIEDBOUND to something smaller - e.g. 1.0E+06. It is not
recommended to increase this parameter beyond the default of 1.0E+08.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXLOCALBACKTRACK

Description Branch-and-Bound: How far back up the current dive path the optimizer is allowed to look for a
local backtrack candidate node.

Type Integer

Values -1 Automatic.
n>0 Local backtrack limit.

Default value -1

Note If this control is set to k, then the candidate set of nodes for a local backtrack will consist of all
active nodes in the subtree rooted at height k above the current node. For example, a setting of
1 will result in only sibling nodes of the current node being considered.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also LOCALCHOICE.

MAXMEMORYHARD

Description This control sets the maximum amount of memory in megabytes the optimizer should allocate.
If this limit is exceeded, the solve will terminate. This control is designed to make the optimizer
stop in a controlled manner, so that the problem object is valid once termination occurs. The
solve state will be set to incomplete. This is different to an out of memory condition in which
case the optimizer returns an error. The optimizer may still allocate memory once the limit is
exceeded to be able to finsish the operations and stop in a controlled manner. When
RESOURCESTRATEGY is enabled, the control also has the same effect as MAXMEMORYSOFT
and will cause the optimizer to try preserving memory when possible.

Type Integer

Fair Isaac Corporation Proprietary Information 437

Chapter 8: Control Parameters

Default value 0 (no limit)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MAXMEMORYSOFT

Description When RESOURCESTRATEGY is enabled, this control sets the maximum amount of memory in
megabytes the optimizer targets to allocate. This may change the solving path, but will not
cause the solve to terminate early. To set a hard version of the same, please set
MAXMEMORYHARD.

Type Integer

Default value 0 (no limit)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MAXMIPTASKS

Description Branch-and-Bound: The maximum number of tasks to run in parallel during a MIP solve.

Type Integer

Values -1 Task limit determined automatically from MIPTHREADS.
>0 Fixed task limit.

Default value -1

Note The MIP solver will create smaller tasks from individual active nodes or based on local search
heuristics. These are tasks that will be executed in parallel by the number of threads set by
MIPTHREADS.

Note If MAXMIPTASKS is set to a fixed, positive value, the branch-and-bound tree nodes will always
be solved in the same deterministic way, independent of the actual number of executing
threads implied by MIPTHREADS.
How a MIP is solved will still depend on the number of threads used for solving the continuous
relaxation and therefore on the settings for the controls BARTHREADS, BARCORES,
DUALTHREADS and CONCURRENTTHREADS).
To obtain a MIP solve that is completely independent of the number of threads, it is sufficient to
set MAXMIPTASKS, FORCEPARALLELDUAL, BARTHREADS and BARCORES. The concurrent LP
solver should be avoided in this case.

Note While you can set this control to large value, the implementation will limit the number of tasks
for performance reasons. This limit is currently 32 on 32bit platforms and 256 on 64 bit
platforms.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPTHREADS, THREADS, DUALTHREADS, BARTHREADS, BARCORES, CONCURRENTTHREADS,
FORCEPARALLELDUAL.

Fair Isaac Corporation Proprietary Information 438

Chapter 8: Control Parameters

MAXMIPSOL

Description Branch and Bound: This specifies a limit on the number of integer solutions to be found by the
Optimizer. It is possible that during optimization the Optimizer will find the same objective
solution from different nodes. However, MAXMIPSOL refers to the total number of integer
solutions found, and not necessarily the number of distinct solutions.

Type Integer

Default value 0

Note Setting MAXMIPSOL=1 can alter the solution path as this will put the emphasis on finding any
feasible solution by triggering additional heuristics.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXNODE

Description Branch and Bound: The maximum number of nodes that will be explored.

Type Integer

Default value 2147483647

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MAXPAGELINES

Description Number of lines between page breaks in printable output.

Type Integer

Default value 23

Affects routines XPRSwriteprtsol (WRITEPRTSOL).

MAXSCALEFACTOR

Description This determines the maximum scaling factor that can be applied during scaling. The maximum
is provided as an exponent of a power of 2.

Type Integer

Values 0-64 The maximum is provided an exponent of a power of 2.

Default value 64

Affects routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob
(READPROB), XPRSscale (SCALE).

See also SCALING.

Fair Isaac Corporation Proprietary Information 439

Chapter 8: Control Parameters

MAXSTALLTIME

Description The maximum time in seconds that the Optimizer will continue to search for improving solution
after finding a new incumbent.

Type Integer

Values 0 No stall time limit.
n>0 If an integer solution has been found, stop MIP search after n seconds without a new

incumbent. No effect as long as no solution was found.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MAXTIME, MAXMIPSOL.

MAXTIME

Description The maximum time in seconds that the Optimizer will run before it terminates, including the
problem setup time and solution time. For MIP problems, this is the total time taken to solve all
the nodes.

Type Integer

Values 0 No time limit.
n>0 If an integer solution has been found, stop MIP search after n seconds, otherwise

continue until an integer solution is finally found.
n<0 Stop in LP or MIP search after n seconds.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

MIPABSCUTOFF

Description Branch and Bound: If the user knows that they are interested only in values of the objective
function which are better than some value, this can be assigned to MIPABSCUTOFF. This
allows the Optimizer to ignore solving any nodes which may yield worse objective values,
saving solution time. When a MIP solution is found a new cut off value is calculated and the
value can be obtained from the CURRMIPCUTOFF attribute. The value of CURRMIPCUTOFF is
calculated using the MIPRELCUTOFF and MIPADDCUTOFF controls.

Type Double

Default value 1.0E+40 (for minimization problems); -1.0E+40 (for maximization problems).

Note MIPABSCUTOFF can also be used to stop the dual algorithm.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELCUTOFF, MIPADDCUTOFF.

Fair Isaac Corporation Proprietary Information 440

Chapter 8: Control Parameters

MIPABSGAPNOTIFY

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,
then this callback will be triggered during the global search when the absolute gap reaches or
passes the value you set of the MIPRELGAPNOTIFY control.

Type Double

Default value -1.0

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND

MIPABSGAPNOTIFYBOUND

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,
then this callback will be triggered during the global search when the best bound reaches or
passes the value you set of the MIPRELGAPNOTIFYBOUND control.

Type Double

Default value 1.0E+20 (for minimization problems); -1.0E+20 (for maximization problems)

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFY

MIPABSGAPNOTIFYOBJ

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,
then this callback will be triggered during the global search when the best solution value
reaches or passes the value you set of the MIPRELGAPNOTIFYOBJ control.

Type Double

Default value -1.0E+20 (for minimization problems); 1.0E+20 (for maximization problems)

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYBOUND

MIPABSSTOP

Description Branch and Bound: The absolute tolerance determining whether the global search will continue
or not. It will terminate if
|MIPOBJVAL - BESTBOUND| ≤ MIPABSSTOP

where MIPOBJVAL is the value of the best solution’s objective function, and BESTBOUND is the
current best solution bound. For example, to stop the global search when a MIP solution has
been found and the Optimizer can guarantee it is within 100 of the optimal solution, set
MIPABSSTOP to 100.

Type Double

Default value 0.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELSTOP, MIPADDCUTOFF.

Fair Isaac Corporation Proprietary Information 441

Chapter 8: Control Parameters

MIPADDCUTOFF

Description Branch and Bound: The amount to add to the objective function of the best integer solution
found to give the new CURRMIPCUTOFF. Once an integer solution has been found whose
objective function is equal to or better than CURRMIPCUTOFF, improvements on this value may
not be interesting unless they are better by at least a certain amount. If MIPADDCUTOFF is
nonzero, it will be added to CURRMIPCUTOFF each time an integer solution is found which is
better than this new value. This cuts off sections of the tree whose solutions would not
represent substantial improvements in the objective function, saving processor time. The
control MIPABSSTOP provides a similar function but works in a different way.

Type Double

Default value -1.0E-05

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRELCUTOFF, MIPABSSTOP, MIPABSCUTOFF.

MIPCOMPONENTS

Description Determines whether disconnected components in a MIP should be solved as separate MIPs.
There can be significant performence benefits from solving disconnected components
individual instead of being part of the main branch-and-bound search.

Type Integer

Values -1 Automatic - let the solver decide.
0 Disable solving disconnected components separately.
1 Solve disconnected components separately.

Default value -1

Note If there are no constraints linking two variables, either directly or indirectly through other
variables, they are said to belong to two separate disconnected components. When a problem
contains disconnected components of signficant size, it can be advantageous to solve each
component as a separate MIP. When significant disconnected components are detected in the
problem, the solver will switch to a different solve mode where each component is solved
separately. This switch will happen after the root node processing has completed and when the
solve is about to enter the branch-and-bound search.

Note Solving disconnected components separately is not compatible with many callbacks that can
be used for modifying the branch-and-bound search. Setting any of the following callbacks will
automatically disable the separate solving of disconnected components:
XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr, XPRSaddcbestimate,
XPRSaddcbsepnode, XPRSaddcbchgbranch, XPRSaddcbchgbranchobject

Note Solving disconnected components separately is not compatible with concurrent MIP solves. If
concurrent MIP solves has been turned off, disconnected components will be solved as part of
the standard branch-and-bound search in each concurrent solve.

Note Disabling MIP dual reductions through MIPDUALREDUCTIONS will also disable the separate
solve of disconnected components.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRECOMPONENTS, MIPCONCURRENTSOLVES, XPRSaddcboptnode, XPRSaddcbprenode,
XPRSaddcbcutmgr, XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

Fair Isaac Corporation Proprietary Information 442

Chapter 8: Control Parameters

MIPCONCURRENTNODES

Description Sets the node limit for when a winning solve is selected when concurrent MIP solves are
enabled. When multiple MIP solves are started, they each run up to the MIPCONCURRENTNODES
node limit and only one winning solve is selected for contuinuing the search with.

Type Integer

Values -1 Automatic - let the solver decide on a node limit.
>0 Number of nodes each concurrent solve should complete before a winner is selected.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPCONCURRENTSOLVES

MIPCONCURRENTSOLVES

Description Selects the number of concurrent solves to start for a MIP. Each solve will use a unique random
seed for its random number generator, but will otherwise apply the same user controls. The first
concurrent solve to complete will have solved the MIP and all the concurrent solves will be
terminated at this point. Using concurrent solves can be advantageous when a MIP displays a
high level of performance variability.

Type Integer

Values -1 Enabled. The number of concurrent solves depends on MIPTHREADS.
0, 1 Disabled
n>1 Enabled. The number of concurrent solves to start is given by n.

Default value 0

Note A node limit is imposed on each concurrent solve, through MIPCONCURRENTNODES. When a
concurrent solve reaches this node limit, it will be suspended until all concurrent solves have
reached the limit. At this point a winner will be declared, based on which solve made the most
progress towards optimality and only the winning solve will continue, using all threading
resources. If a concurrent solve completes its MIP search before reaching the node limit, all
solves will be stopped.

Note Concurrent solves are not compatible with many callbacks that can be used for modifying the
branch-and-bound search. Setting any of the following callbacks will automatically disable
concurrent solves: XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr,
XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPCONCURRENTNODES, XPRSaddcboptnode, XPRSaddcbprenode, XPRSaddcbcutmgr,
XPRSaddcbestimate, XPRSaddcbsepnode, XPRSaddcbchgbranch,
XPRSaddcbchgbranchobject

Fair Isaac Corporation Proprietary Information 443

Chapter 8: Control Parameters

MIPDUALREDUCTIONS

Description Branch and Bound: Limits operations that can reduce the MIP solution space.

Type Integer

Values 2 Allow dual reductions on continuous variables only.
1 Allow all dual reductions.
0 Prevent all dual reductions.

Default value 1

Note The MIPDUALREDUCTIONS control, when set to a value different from 1 will adjust the values
of other controls in order to prevent MIP solver operations that can result in the removal of
dominated solutions. For example, dual reductions during preprocessing attempts to remove
dominated solutions based on objective arguments, assuming that all constraints are known to
the Optimizer. If a problem is detected to have symmetries, the solver might also remove some
symmetrical solutions from the search space. In both cases, the set of feasible MIP solutions
might be reduced. With default settings, it is only guaranteed that at least one optimal solution
remains.

Note When attempting to collect the n-best solutions, it is recommended to set
MIPDUALREDUCTIONS=2. This will ensure that the only solutions missed by the enumeration
are those that only differ from an existing solution in the values of the continuous variables.

Note Advanced users that maintain external constraints, which are applied dynamically to the
problem using callbacks during a branch-and-bound solve, it is recommended to set
MIPDUALREDUCTIONS=0. This ensures that any solution to the original problem that satisfies
all of the user’s external constraints maps to a feasible solution in the presolved space.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPPRESOLVE, PRECOMPONENTS, PRESOLVEOPS, SYMMETRY.

MIPFRACREDUCE

Description Branch and Bound: Specifies how often the optimizer should run a heuristic to reduce the
number of fractional integer variables in the node LP solutions.

Type Integer

Values -1 Automatic.
0 Disabled.
1 Run before and after cutting on the root node.
2 Run also during root cutting.
3 Run also during the tree search.

Default value -1

Note This heuristic is only applicable to problems that are dual degenerate. These are problems that
contain multiple solutions with identical objective function value. The more dual degenerate a
problem is, the more likely it will be for this heuristic to have an improving effect.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 444

Chapter 8: Control Parameters

MIPKAPPAFREQ

Description Branch and Bound: Specifies how frequently the basis condition number (also known as kappa)
should be calculated during the branch-and-bound search.

Type Integer

Values 0 Do not calculate condition numbers.
1 Calculate conditions numbers on every node, including after each round of root cutting.
n>1 Calculate a condition number once per node of every n’th level of the

branch-and-bound tree.
Default value 0

Note The condition number is calculated as the norm of the basis matrix multiplied by the norm of its
inverse. This uses the Froebenius norm.

Note A summary will be printed at the end of the solve, summarizing the collected condition
numbers collected:

Statistic Meaning
Nodes kappa stable No. of stable sampled nodes (kappa < 107)
Nodes kappa suspicius No. of suspicious sampled nodes (107 ≤ kappa < 1010)
Nodes kappa unstable No. of unstable sampled nodes (1010 ≤ kappa < 1013)
Nodes kappa ill-posed No. of ill-posed sampled nodes (1013 ≤ kappa)
Largest kappa seen The largest condition number calculated through all sampled nodes.
Kappa attention level A measure of how ill-posed the problem is (between 0 and 1).

Affects routines ATTENTIONLEVEL, MAXKAPPA, XPRSmipoptimize (MIPOPTIMIZE).

See also .

MIPLOG

Description Global print control.

Type Integer

Values -n Print out summary log at each nth node.
0 No printout in global.
1 Only print out summary statement at the end.
2 Print out detailed log at all solutions found.
3 Print out detailed log at each node.

Default value -100

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also A.9.

Fair Isaac Corporation Proprietary Information 445

Chapter 8: Control Parameters

MIPPRESOLVE

Description Branch and Bound: Type of integer processing to be performed. If set to 0, no processing will
be performed.

Type Integer

Values Bit Meaning
0 Reduced cost fixing will be performed at each node. This can simplify the node before

it is solved, by deducing that certain variables’ values can be fixed based on additional
bounds imposed on other variables at this node.

1 Primal reductions will be performed at each node. Uses constraints of the node to
tighten the range of variables, often resulting in fixing their values. This greatly
simplifies the problem and may even determine optimality or infeasibility of the node
before the simplex method commences.

2 [Unused] This bit is no longer used to control probing. Refer to the integer control
PREPROBING for setting probing level during presolve.

3 If node preprocessing is allowed to change bounds on continuous columns.
4 Dual reductions will be performed at each node.
5 Allow global (non-bound) tightening of the problem during the tree search.
6 The objective function will be used to find reductions at each node.
7 Allow the branch-and-bound tree search to be restarted if it appears to be

advantageous.
8 Allow that symmetry is used to presolve the node problem.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also 5.3, PRESOLVE, PRESOLVEOPS, PREPROBING.

MIPRAMPUP

Description Controls the strategy used by the parallel MIP solver during the ramp-up phase of a
branch-and-bound tree search.

Type Integer

Values -1 Automatically determined.
0 No special treatment during the ramp-up phase. Always run with the maximal number

of tasks.
1 Limit the number of tasks until the initial dives have completed.

Default value -1

Note The branch-and-bound tree search starts from the single root node, and only through branching
on this root node and the resulting child nodes, are enough active nodes created to produce
sufficient tasks to keep all MIP workers busy. This is referred to as the ramp-up phase of a
parallel MIP.
In a typical MIP solve, the solutions found during the initial dives will typically provide a
significant improvement over the root heuristic solutions. It can therefore be advantageous to
let these initial dives run as fast as possible, by limiting resource contention. This can be
accomplished by restricting the number of parallel tasks and thereby reducing the memory bus

Fair Isaac Corporation Proprietary Information 446

Chapter 8: Control Parameters

contention. The MIPRAMPUP control can be used to turn this initial task restriction of a parallel
MIP solve on or off.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPTHREADS, MAXMIPTASKS.

MIPRESTART

Description Branch and Bound: controls strategy for in-tree restarts.

Type Integer

Values -1 Determined automatically (XPRS_MIPRESTART_DEFAULT).
0 Disable in-tree restarts (XPRS_MIPRESTART_OFF).
1 Allow in-tree restarts at normal aggressiveness (XPRS_MIPRESTART_MODERATE).
2 Allow in-tree restarts at higher aggressiveness (more likely to trigger a restart)

(XPRS_MIPRESTART_AGGRESSIVE).

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRESTARTGAPTHRESHOLD, MIPRESTARTFACTOR

MIPRESTARTGAPTHRESHOLD

Description Branch and Bound: Initial gap threshold to delay in-tree restart. The restart is delayed initially if
the gap, given as a fraction between 0 and 1, is below this threshold. The optimizer adjusts the
threshold every time a restart is delayed. Note that there are other criteria that can delay or
prevent a restart.

Type Double

Default value 0.02

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRESTART, MIPRESTARTFACTOR

MIPRESTARTFACTOR

Description Branch and Bound: Fine tune initial conditions to trigger an in-tree restart. Use a value > 1 to
increase the aggressiveness with which the Optimizer restarts. Use a value < 1 to relax the
aggressiveness with which the Optimizer restarts. Note that this control does not affect the
initial condition on the gap, which must be set separately.

Type Double

Default value 1.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPRESTART, MIPRESTARTGAPTHRESHOLD

Fair Isaac Corporation Proprietary Information 447

Chapter 8: Control Parameters

MIQCPALG

Description This control determines which algorithm is to be used to solve mixed integer quadratic
constrained and mixed integer second order cone problems.

Type Integer

Values -1 Determined automatically.
0 Use the barrier algorithm in the branch and bound algorithm.
1 Use outer approximations in the branch and bound algorithm.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSminim (MINIM), XPRSmaxim (MAXIM),
XPRSglobal (GLOBAL).

MIPREFINEITERLIMIT

Description This defines an effort limit expressed as simplex iterations for the MIP solution refiner. The
limit is per reoptimizations in the MIP refiner.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSrefinemipsol (REFINEMIPSOL).

MIPRELCUTOFF

Description Branch and Bound: Percentage of the LP solution value to be added to the value of the objective
function when an integer solution is found, to give the new value of CURRMIPCUTOFF. The
effect is to cut off the search in parts of the tree whose best possible objective function would
not be substantially better than the current solution. The control MIPRELSTOP provides a
similar functionality but works in a different way.

Type Double

Default value 1.0E-04

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPABSCUTOFF, MIPADDCUTOFF, MIPRELSTOP.

MIPRELGAPNOTIFY

Description Branch and bound: if the gapnotify callback has been set using XPRSaddcbgapnotify,
then this callback will be triggered during the global search when the relative gap reaches or
passes the value you set of the MIPRELGAPNOTIFY control.

Type Double

Default value -1.0

Affects routines XPRSaddcbgapnotify, XPRSmipoptimize (MIPOPTIMIZE).

See also MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND

Fair Isaac Corporation Proprietary Information 448

Chapter 8: Control Parameters

MIPRELSTOP

Description Branch and Bound: This determines when the global search will terminate. Global search will
stop if:
|MIPOBJVAL - BESTBOUND| ≤ MIPRELSTOP x max(|BESTBOUND|,|MIPOBJVAL|)

where MIPOBJVAL is the value of the best solution’s objective function and BESTBOUND is the
current best solution bound. For example, to stop the global search when a MIP solution has
been found and the Optimizer can guarantee it is within 5% of the optimal solution, set
MIPRELSTOP to 0.05.

Type Double

Default value 0.0001

Note This control is a stopping criteria only and different values of the control will not affect the
solution path before termination. Unlike other stopping criteria, like time and node count,
termination on MIPRELSTOP will cause the final solution to be declared optimal and the
problem to be returned to its original state.

Note Tolerances, such as MIPRELCUTOFF and MIPABSCUTOFF, determine how much the objective
value of a new MIP solution has to differ from the incumbent for it to be accepted. These
controls therefore also influence the final gap at the end of a MIP solve.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPABSSTOP, MIPRELCUTOFF.

MIPTERMINATIONMETHOD

Description Branch and Bound: How a MIP solve should be stopped on early termination when there are still
active tasks in the system. This can happen when, for example, a time or node limit is reached.

Type Integer

Values 0 Terminate tasks at the earliest opportunity. This can result in some unfinished node
solves being discarded, although never integer solutions.

1 Allow tasks to complete their current work but prevent new tasks from being started.

Default value 0

Note With MIPTERMINATIONMETHOD=0, termination will be quick but the returned state of the MIP
solve will not include any work done by interrupted tasks. In particular, it is possible that some
user callbacks (not intsol or preintsol) will have been fired for nodes that are discarded at
termination. A user program that relies on the firing of callbacks being completely deterministic
should therefore set MIPTERMINATIONMETHOD=1, which will produce a slower termination,
but guaranteed deterministic firing of all user callbacks.

Note Irrespective of the choice of MIPTERMINATIONMETHOD, a MIP solve will always be returned in
a deterministic state when DETERMINISTIC=1.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also DETERMINISTIC, MAXMIPTASKS, MIPTHREADS, THREADS.

Fair Isaac Corporation Proprietary Information 449

Chapter 8: Control Parameters

MIPTHREADS

Description If set to a positive integer it determines the number of threads implemented to run the parallel
MIP code. If MIPTHREADS is set to the default value (-1), the THREADS control will determine
the number of threads used.

Type Integer

Default value -1 (determined by the THREADS control)

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also DETERMINISTIC, MAXMIPTASKS, HEURTHREADS, THREADS.

MIPTOL

Description Branch and Bound: This is the tolerance within which a decision variable’s value is considered
to be integral.

Type Double

Default value 5.0E-06

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MIPTOLTARGET

Description Target MIPTOL value used by the automatic MIP solution refiner as defined by REFINEOPS.
Negative and zero values are ignored.

Type Double

Default value 0.0

Note Refining solutions to match the miptoltarget can influence and worsen their objective value in
case the previous objective could only be achieved through slight infeasibilities.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

MPS18COMPATIBLE

Description Provides compatibility of MPS file output for older MPS readers.

Type Integer

Values Bit 0 Do not write objective sense (OBJSENSE section).
Bit 1 Fixed binaries are written as fixed only (unless used as a base variable for an indicator

constraint).

Default value 0

Affects routines XPRSwriteprob (WRITEPROB)

Fair Isaac Corporation Proprietary Information 450

Chapter 8: Control Parameters

MPSBOUNDNAME

Description The bound name sought in the MPS file. As with all string controls, this is of length 64
characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MPSECHO

Description Determines whether comments in MPS matrix files are to be printed out during matrix input.

Type Integer

Values 0 MPS comments are not to be echoed.
1 MPS comments are to be echoed.

Default value 0

Affects routines XPRSreadprob (READPROB).

MPSFORMAT

Description Specifies the format of MPS files.

Type Integer

Values -1 To determine the file type automatically.
0 For fixed format.
1 If MPS files are assumed to be in free format by input.

Default value 1

Note Setting MPSFORMAT to 0 or -1 disables XSLPreadprob in case Xpress NonLinear is used.

Affects routines XPRSalter (ALTER), XPRSreadbasis (READBASIS), XPRSreadprob (READPROB).

MPSOBJNAME

Description The objective function name sought in the MPS file. If the original MPS objective row is no
longer in the matrix, this control can be set to name the neutral row representing the objective in
the MPS file. As with all string controls, this is of length 64 characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

Fair Isaac Corporation Proprietary Information 451

Chapter 8: Control Parameters

MPSRANGENAME

Description The range name sought in the MPS file. As with all string controls, this is of length 64
characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MPSRHSNAME

Description The right hand side name sought in the MPS file. As with all string controls, this is of length 64
characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MUTEXCALLBACKS

Description Branch and Bound: This determines whether the callback routines are mutexed from within the
optimizer.

Type Integer

Values 0 Callbacks are not mutexed.
1 Callbacks are mutexed.

Default value 1

Note If the users’ callbacks take a significant amount of time it may be preferable not to mutex the
callbacks. In this case the user must ensure that their callbacks are threadsafe.

Affects routines XPRSaddcboptnode, XPRSaddcbinfnode, XPRSaddcbintsol, XPRSaddcbnodecutoff,
XPRSaddcbprenode.

NETCUTS

Description Determines the addition of multi-commodity network cuts to a problem. The parameter is
defined as a bit string, and values 1, 2, 4 can be summed up if the user wants more classes of
cuts to be added.

Type Integer

Values -1 Automatically determined.
0 Do not add these cuts.
1 Add cut-set inequalities.
2 Add node cut-set inequalities, i.e., cut-set inequalities that are based on a network cut

defined on a single network node.
4 Add lifted flow-cover inequalities.

Fair Isaac Corporation Proprietary Information 452

Chapter 8: Control Parameters

Default value 0

Note If the user wants to add both cut-set inequalities and lifted flow-cover inequalities but not node
cut-set inequalities, the value of the control should be set to 1+4=5.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

NETSTALLLIMIT

Description Limit the number of degenerate pivots of the network simplex algorithm, before switching to
either primal or dual simplex, depending on ALGAFTERNETWORK.

Type Integer

Values -1 Automatically determined limit
0 No limit.
n>0 Limit to n network simplex iterations.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) (when network
simplex is used).

See also ALGAFTERNETWORK

NODEPROBINGEFFORT

Description Adjusts the overall level of node probing.

Type Double

Default value 1.0

Note NODEPROBINGEFFORT is used as a multiplier on the default amount of work node probing
should do. Setting the control to zero disables node probing.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

NODESELECTION

Description Branch and Bound: This determines which nodes will be considered for solution once the
current node has been solved.

Type Integer

Values 1 Local first: Choose between descendant and sibling nodes if available; choose from all
outstanding nodes otherwise.

2 Best first: Choose from all outstanding nodes.
3 Local depth first: Choose between descendant and sibling nodes if available; choose

from the deepest nodes otherwise.
4 Best first, then local first: Best first is used for the first BREADTHFIRST nodes, after

which local first is used.
5 Pure depth first: Choose from the deepest outstanding nodes.

Default value Dependent on the matrix characteristics.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 453

Chapter 8: Control Parameters

NUMERICALEMPHASIS

Description How much emphasis to place on numerical stability instead of solve speed.

Type Integer

Values -1 Automatic. The emphasis might be influenced by the setting of other controls.
0 Emphasize speed.
1 Mild emphasis on numerical stability.
2 Medium emphasis on numerical stability.
3 Strong emphasis on numerical stability.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

OBJSCALEFACTOR

Description Custom global objective scaling factor, expressed as a power of 2. When set, it overwrites the
automatic global objective scaling factor. A value of 0 means no objective scaling. This control
is applied for the full solve, and is independent of any extra scaling that may occur specifically
for the barrier or simplex solvers. As it is a power of 2, to scale by 16, set the value of the
control to 4.

Type Double

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

OPTIMALITYTOL

Description Simplex: This is the zero tolerance for reduced costs. On each iteration, the simplex method
searches for a variable to enter the basis which has a negative reduced cost. The candidates
are only those variables which have reduced costs less than the negative value of
OPTIMALITYTOL.

Type Double

Default value 1.0E-06

Affects routines XPRSgetinfeas, XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

OPTIMALITYTOLTARGET

Description This specifies the target optimality tolerance for the solution refiner.

Type Double

Default value 0 — use the value specified by OPTIMALITYTOL.

Note Zero and negative values are ignored, and the value of OPTIMALITYTOL is used.

Note Use very small values like 1e-100 to state the refinement should continue as long as an
improvement is made. Use very large values like 1e+100 to disable only this aspect of the
refiner.

Fair Isaac Corporation Proprietary Information 454

Chapter 8: Control Parameters

Note Refining solutions to match the optimalitytoltarget can influence and increase their infeasibility
in case the previous feasibility could only be achieved through slight dual violations.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also REFINEOPS, LPREFINEITERLIMIT, FEASTOLTARGET.

OUTPUTCONTROLS

Description This control toggles the printing of all control settings at the beginning of the search. This
includes the printing of controls that have been explicitly assigned to their default value. All
unset controls are omitted as they keep their default value.

Type Integer

Values 0 Turn off printing of user-specified control settings.
1 Print controls.

Default value 1

Note Setting OUTPUTCONTROLS to 0 has no effect on the function XPRSdumpcontrols

OUTPUTLOG

Description This controls the level of output produced by the Optimizer during optimization. In the Console
Optimizer, OUTPUTLOG controls which messages are sent to the screen (stdout). When using
the Optimizer library, no output is sent to the screen. If the user wishes output to be displayed,
they must define a callback function and print messages to the screen themselves. In this case,
OUTPUTLOG controls which messages are sent to the user output callback.

Type Integer

Values 0 Turn all output off.
1 Print all messages.
3 Print error and warning messages.
4 Print error messages only.

Default value 1

Affects routines XPRSaddcbmessage, XPRSsetlogfile.

OUTPUTMASK

Description Mask to restrict the row and column names written to file. As with all string controls, this is of
length 64 characters plus a null terminator, \0.

Type String

Default value 64 ’?’s

Affects routines XPRSwritesol (WRITESOL).

Fair Isaac Corporation Proprietary Information 455

Chapter 8: Control Parameters

OUTPUTTOL

Description Zero tolerance on print values.

Type Double

Default value 1.0E-05

Affects routines XPRSwriteprtsol (WRITEPRTSOL), XPRSwritesol (WRITESOL).

PENALTY

Description Minimum absolute penalty variable coefficient. BIGM and PENALTY are set by the input routine
(XPRSreadprob (READPROB)) but may be reset by the user prior to XPRSlpoptimize
(LPOPTIMIZE).

Type Double

Default value Dependent on the matrix characteristics.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PERTURB

Description This parameter is deprecated and will be removed in a future release. The use of
PRIMALPERTURB and DUALPERTURB is advised instead.
The control was used to give a factor by which the problem will be perturbed prior to
optimization by either simplex algorithm.

Type Double

Default value 0.0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also AUTOPERTURB, PERTURB, PRIMALPERTURB.

PIVOTTOL

Description Simplex: The zero tolerance for matrix elements. On each iteration, the simplex method seeks a
nonzero matrix element to pivot on. Any element with absolute value less than PIVOTTOL is
treated as zero for this purpose.

Type Double

Default value 1.0E-09

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSpivot.

PPFACTOR

Description The partial pricing candidate list sizing parameter.

Type Double

Default value 1.0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 456

Chapter 8: Control Parameters

PREANALYTICCENTER

Description Determines if analytic centers should be computed and used for variable fixing and the
generation of alternative reduced costs (-1: Auto 0: Off, 1: Fixing, 2: Redcost, 3: Both)

Type Integer

Values -1 Automatic.
0 Disable analytic center presolving.
1 Use analytic center for variable fixing only.
2 Use analytic center for reduced cost computation only.
3 Use analytic centers for both, variable fixing and reduced cost computation.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

PREBASISRED

Description Determines if a lattice basis reduction algorithm should be attempted as part of presolve

Type Integer

Values -1 Automatic.
0 Disable basis reduction.
1 Enable basis reduction.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

PREBNDREDCONE

Description Determines if second order cone constraints should be used for inferring bound reductions on
variables when solving a MIP.

Type Integer

Values -1 Automatic.
0 Disable bound reductions from second order cone constraints.
1 Enable bound reductions from second order cone constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PREBNDREDQUAD, MIQCPALG.

PREBNDREDQUAD

Description Determines if convex quadratic contraints should be used for inferring bound reductions on
variables when solving a MIP.

Type Integer

Fair Isaac Corporation Proprietary Information 457

Chapter 8: Control Parameters

Values -1 Automatic.
0 Disable bound reductions from quadratic constraints.
1 Enable bound reductions from quadratic constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PREBNDREDCONE, MIQCPALG.

PRECLIQUESTRATEGY

Description Determines how much effort to spend on clique covers in presolve.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

PRECOEFELIM

Description Presolve: Specifies whether the optimizer should attempt to recombine constraints in order to
reduce the number of non zero coefficients when presolving a mixed integer problem.

Type Integer

Values 0 Disabled.
1 Remove as many coefficients as possible.
2 Cautious eliminations. Will not perform a reduction if it might destroy problem

structure useful to e.g. heuristics or cutting.

Default value 2

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PRECOMPONENTS

Description Presolve: determines whether small independent components should be detected and solved
as individual subproblems during root node processing.

Type Integer

Values -1 Automatically determined.
0 Disable detection of independent components.
1 Enable detection of independent components.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

Fair Isaac Corporation Proprietary Information 458

Chapter 8: Control Parameters

PRECOMPONENTSEFFORT

Description Presolve: adjusts the overall effort for the independent component presolver. This control
affects working limits for the subproblem solving as well as thresholds when it is called.
Increase to put more emphasis on component presolving.

Type Double

Default value 1.0

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRECOMPONENTS.

PRECONEDECOMP

Description Presolve: decompose regular and rotated cones with more than two elements and apply Outer
Approximation on the resulting components.

Type Integer

Values -1 Automatically determined.
0 Disable cone decomposition.
1 Enable cone decomposition by replacing large cones with small ones in the presolved

problem.
2 Similar to 1, plus decomposition is enabled even if the cone variable is fixed.
3 Cones are decomposed within the Outer Approximation domain only, i.e., the problem

maintains the original cones.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PRECONVERTSEPARABLE

Description Presolve: reformulate problem with non-diagonal quadratic objective and/or constraints as
diagonal quadratic or second-order conic constraints.

Type Integer

Values -1 Automatically determined.
0 Disable reformulation.
1 Enable reformulation to diagonal quadratic constraints.
2 Similar to 1, plus reduction to second-order cones.
3 Similar to 2, plus the objective function is converted to a constraint and treated as a

quadratic constraint.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE.

Note This control is only used in MIQPs and MIQCQPs, and has no effect when used on continuous
quadratic problems.

Fair Isaac Corporation Proprietary Information 459

Chapter 8: Control Parameters

PREDOMCOL

Description Presolve: Determines the level of dominated column removal reductions to perform when
presolving a mixed integer problem. Only binary columns will be checked.

Type Integer

Values -1 Automatically determined.
0 Disabled.
1 Cautious strategy.
2 All candidate binaries will be checked for domination.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREDOMROW

Description Presolve: Determines the level of dominated row removal reductions to perform when
presolving a problem.

Type Integer

Values -1 Automatically determined.
0 Disabled.
1 Cautious strategy.
2 Medium strategy.
3 Aggressive strategy. All candidate row combinations will be considered.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREDUPROW

Description Presolve: Determines the type of duplicate rows to look for and eliminate when presolving a
problem.

Type Integer

Values -1 Automatically determined.
0 Do not eliminate duplicate rows.
1 Eliminate only rows that are identical in all variables.
2 Same as option 1 plus eliminate duplicate rows with simple penalty variable

expressions. (MIP only).
3 Same as option 2 plus eliminate duplicate rows with more complex penalty variable

expressions. (MIP only).

Default value -1

Fair Isaac Corporation Proprietary Information 460

Chapter 8: Control Parameters

Note Duplicate rows can also be disabled by clearing the corresponding bit of the PRESOLVEOPS
integer control.

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREELIMQUAD

Description Presolve: Allows for elimination of quadratic variables via doubleton rows.

Type Integer

Values -1 Automatically determined.
0 Do not eliminate duplicate rows.
1 Eliminate at least one quadratic variable for each doubleton row.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREFOLDING

Description Presolve: Determines if a folding procedure should be used to aggregate continuous columns
in an equitable partition.

Type Integer

Values -1 Automatically determined.
0 Disabled.
1 Enabled.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE.

PREIMPLICATIONS

Description Presolve: Determines whether to use implication structures to remove redundant rows. If
implication sequences are detected, they might also be used in probing.

Type Integer

Values -1 Automatically determined.
0 Do not use implications for sparsification.
1 Use implications to remove reduandant rows.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS, PREPROBING.

Fair Isaac Corporation Proprietary Information 461

Chapter 8: Control Parameters

PRELINDEP

Description Presolve: Determines whether to check for and remove linearly dependent equality constraints
when presolving a problem.

Type Integer

Values -1 Automatically determined.
0 Do not check for linearly dependent equality constraints.
1 Check for and remove linearly dependent equality constraints.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREOBJCUTDETECT

Description Presolve: Determines whether to check for constraints that are parallel or near parallel to a
linear objective function, and which can safely be removed. This reduction applies to MIPs only.

Type Integer

Values 0 Disable check and reductions.
1 Enable check and reductions.

Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE, PRESOLVEOPS.

PREPERMUTE

Description This bit vector control specifies whether to randomly permute rows, columns and global
information when starting the presolve. With the default value 0, no permutation will take place.

Type Integer

Values Bit Meaning
0 Permute rows.
1 Permute columns.
2 Permute global information. This bit only affects MIP problems.

Default value 0

Note Random permutations enable trying out different solution paths when solving a problem. The
random seed for the permutations can be set using PREPERMUTESEED. When both PRESORT
and PREPERMUTE are enabled, it will sort and then permute the problem.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PREPERMUTESEED, PRESORT, PRESOLVE, MIPPRESOLVE.

Fair Isaac Corporation Proprietary Information 462

Chapter 8: Control Parameters

PREPERMUTESEED

Description This control sets the seed for the pseudo-random number generator for permuting the problem
when starting the presolve. This control only has effects when PREPERMUTE is enabled.

Type Integer

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PREPERMUTE, PRESOLVE, MIPPRESOLVE.

PREPROBING

Description Presolve: Amount of probing to perform on binary variables during presolve. This is done by
fixing a binary to each of its values in turn and analyzing the implications.

Type Integer

Values -1 Let the optimizer decide on the amount of probing.
0 Disabled.
+1 Light probing — only few implications will be examined.
+2 Full probing — all implications for all binaries will be examined.
+3 Full probing and repeat as long as the problem is significantly reduced.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE.

PREPROTECTDUAL

Description Presolve: specifies whether the presolver should protect a given dual solution by maintaining
the same level of dual feasibility. Enabling this control often results in a worse presolved model.
This control only expected to be optionally enabled before calling XPRScrossoverlpsol.

Type Integer

Values 0 Disabled.
1 Enabled. Protect the dual solution during presolve.

Default value 0

Affects routines XPRScrossoverlpsol

PRESOLVE

Description This control determines whether presolving should be performed prior to starting the main
algorithm. Presolve attempts to simplify the problem by detecting and removing redundant
constraints, tightening variable bounds, etc. In some cases, infeasibility may even be
determined at this stage, or the optimal solution found.

Type Integer

Fair Isaac Corporation Proprietary Information 463

Chapter 8: Control Parameters

Values -1 Presolve applied, but a problem will not be declared infeasible if primal infeasibilities
are detected. The problem will be solved by the LP optimization algorithm, returning an
infeasible solution, which can sometimes be helpful.

0 Presolve not applied.
1 Presolve applied.
2 Presolve applied, but redundant bounds are not removed. This can sometimes

increase the efficiency of the barrier algorithm.
3 Presolve is applied, and bounds detected to be redundant are always removed.

Default value 1

Note Memory for presolve is dynamically resized. If the Optimizer runs out of memory for presolve,
an error message (245) is produced.
Presolve settings 2 and 3 can sometimes make the barrier solves more efficient.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also 5.3, PRESOLVEOPS.

PRESOLVEMAXGROW

Description Limit on how much the number of non-zero coefficients is allowed to grow during presolve,
specified as a ratio of the number of non-zero coefficients in the original problem.

Type Double

Default value 0.1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PRESOLVEOPS

Description This bit vector control specifies the operations which are performed during the presolve.

Type Integer

Values Bit Meaning
0 Singleton column removal.
1 Singleton row removal.
2 Forcing row removal.
3 Dual reductions.
4 Redundant row removal.
5 Duplicate column removal.
6 Duplicate row removal.
7 Strong dual reductions.
8 Variable eliminations.
9 No IP reductions.
10 No semi-continuous variable detection.
11 No advanced IP reductions.
12 No eliminations on integers.
14 Linearly dependant row removal.
15 No integer variable and SOS detection.

Fair Isaac Corporation Proprietary Information 464

Chapter 8: Control Parameters

Default value 511 (bits 0 — 8 incl. are set)

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),
XPRSpresolverow.

See also 5.3, PRESOLVE, MIPPRESOLVE.

PRESOLVEPASSES

Description Number of reduction rounds to be performed in presolve

Type Integer

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also 5.3, PRESOLVE.

PRESORT

Description This bit vector control specifies whether to sort rows, columns and global information by their
names when starting the presolve. With the default value 0, no sorting will take place.

Type Integer

Values Bit Meaning
0 Sort rows.
1 Sort columns.
2 Sort global information. This bit only affects MIP problems.

Default value 0

Note Sorting a problem by names can help obtain the same solution path when the rows, columns or
global information of the problem is rearranged. It is recommended to enable all three bits
when sorting a problem. When both PRESORT and PREPERMUTE are enabled, it will sort and
then permute the problem.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PREPERMUTE, PRESOLVE, MIPPRESOLVE.

PRICINGALG

Description Simplex: This determines the primal simplex pricing method. It is used to select which variable
enters the basis on each iteration. In general Devex pricing requires more time on each iteration,
but may reduce the total number of iterations, whereas partial pricing saves time on each
iteration, but may result in more iterations.

Type Integer

Values -1 Partial pricing.
0 Determined automatically.
1 Devex pricing.
2 Steepest edge.
3 Steepest edge with unit initial weights.

Fair Isaac Corporation Proprietary Information 465

Chapter 8: Control Parameters

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also DUALGRADIENT.

PRIMALOPS

Description Primal simplex: allows fine tuning the variable selection in the primal simplex solver.

Type Integer

Values Bit Meaning
0 Use aggressive dj scaling.
1 Conventional dj scaling.
2 Use reluctant switching back to partial pricing.
3 Use dynamic switching between cheap and expensive pricing strategies.
4 Keep solving even after potential cycling is detected.

Default value -1

Note If both bits 0 and 1 are both set or unset then the dj scaling strategy is determined automatically.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PRICINGALG.

PRIMALPERTURB

Description The factor by which the problem will be perturbed prior to optimization by primal simplex. A
value of 0.0 results in no perturbation prior to optimization. PRIMALPERTURB, if set to a
non-negative value, overrules the value of PERTURB. The control PERTURB is deprecated, the
use of PRIMALPERTURB and DUALPERTURB is advised instead.
Note the interconnection to the AUTOPERTURB control. If AUTOPERTURB is set to 1, the
decision whether to perturb or not is left to the Optimizer. When the problem is automatically
perturbed in primal simplex, however, the value of PRIMALPERTURB will be used for
perturbation.

Type Double

Default value -1 — determined automatically.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also AUTOPERTURB, DUALPERTURB, PERTURB.

PRIMALUNSHIFT

Description Determines whether primal is allowed to call dual to unshift.

Type Integer

Values 0 Allow the dual algorithm to be used to unshift.
1 Don’t allow the dual algorithm to be used to unshift.

Default value 0

Fair Isaac Corporation Proprietary Information 466

Chapter 8: Control Parameters

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PRIMALOPS, PRICINGALG, DUALSTRATEGY.

PSEUDOCOST

Description Branch and Bound: The default pseudo cost used in estimation of the degradation associated
with an unexplored node in the tree search. A pseudo cost is associated with each integer
decision variable and is an estimate of the amount by which the objective function will be
worse if that variable is forced to an integral value.

Type Double

Default value 0.01

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSreaddirs (READDIRS).

PWLDUALREDUCTIONS

Description This parameter specifies whether dual reductions should be applied to reduce the number of
columns, rows and SOS-constraints added when transforming piecewise linear objectives and
constraints to MIP structs.

Type Integer

Values 0 Disabled. No dual reductions, add all columns, rows and SOS-constraints.
1 Enabled. Only add neccessary columns, rows and sets, drop those implied by the

objective sense.

Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPDUALREDUCTIONS.

PWLNONCONVEXTRANSFORMATION

Description This control specifies the reformulation method for piecewise linear constraints at the
beginning of the search.
Note that the chosen formulation will only be used if MIP entities are necessary but not if
presolve detected that a convex reformulation is possible. Furthermore, the binary formulation
will only be applied to piecewise linear constraints with bounded input variable, otherwise the
SOS2-formulation will be used.

Type Integer

Values -1 Automatic.
0 Use a formulation based on SOS2-constraints.
1 Use a formulation based on binary variables.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 467

Chapter 8: Control Parameters

QCCUTS

Description Branch and Bound: Limit on the number of rounds of outer approximation cuts generated for
the root node, when solving a mixed integer quadratic constrained or mixed integer second
order conic problem with outer approximation.

Type Integer

Default value -1 — determined automatically.

Note This control only has an effect for problems with quadratic or second order cone constraints,
and only if outer approximation has not been disabled by setting MIQCPALG to 0.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEQCCUTS.

QCROOTALG

Description This control determines which algorithm is to be used to solve the root of a mixed integer
quadratic constrained or mixed integer second order cone problem, when outer approximation
is used.

Type Integer

Values -1 Determined automatically.
0 Use the barrier algorithm.
1 Use the dual simplex on a relaxation of the problem constructed using outer

approximation.

Default value -1

Note This control only has an effect if MIQCPALG is set to 1.

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSminim (MINIM), XPRSmaxim (MAXIM),
XPRSglobal (GLOBAL).

QSIMPLEXOPS

Description Controls the behavior of the quadratic simplex solvers.

Type Integer

Values Bit Meaning
0 Force traditional primal first phase.
1 Force BigM primal first phase.
2 Force traditional dual first phase.
3 Force BigM dual first phase.
4 Always use artificial bounds in dual.
5 Use original problem basis only when warmstarting the KKT.
6 Skip the primal bound flips for ranged primals (might cause more trouble than good if

the bounds are very large).
7 Also do the single pivot crash.
8 Do not apply aggressive perturbation in dual.

Fair Isaac Corporation Proprietary Information 468

Chapter 8: Control Parameters

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

QUADRATICUNSHIFT

Description Determines whether an extra solution purification step is called after a solution found by the
quadratic simplex (either primal or dual).

Type Integer

Values -1 Determined automatically.
0 No purification step.
1 Always do the purification step.

Default value -1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

RANDOMSEED

Description Sets the initial seed to use for the pseudo-random number generator in the Optimizer. The
sequence of random numbers is always reset using the seed when starting a new optimization
run.

Type Integer

Default value 1

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

REFACTOR

Description Indicates whether the optimization should restart using the current representation of the
factorization in memory.

Type Integer

Values -1 Automatic.
0 Do not refactor on reoptimizing.
1 Refactor on reoptimizing.

Default value -1

Note In the tree search, the optimal bases at the nodes are not refactorized by default, but the
optimal basis for an LP problem will be refactorized. If you are repeatedly solving LPs with few
changes then it is more efficient to set REFACTOR to 0.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 469

Chapter 8: Control Parameters

REFINEOPS

Description This specifies when the solution refiner should be executed to reduce solution infeasibilities.
The refiner will attempt to satisfy the target tolerances for all original linear constraints before
presolve or scaling has been applied.

Type Integer

Values Bit Meaning
0 Run the solution refiner on an optimal solution of a non-global problem.
1 Run the solution refiner when a new solution is found during a global search. The

refiner will be applied to the presolved solution before any post-solve operations are
applied.

3 Run the solution refiner on each node of the MIP search.
4 Run the solution refiner on an optimal solution before postsolve on a non-global

problem.
5 Apply the iterative refiner to refine the solution.
6 Use higher precision in the iterative refinement.
7 If set, the iterative refiner will use the primal simplex algorithm.
8 If set, the iterative refiner will use the dual simplex algorithm.
9 Refine MIP solutions such that rounding them keeps the problem feasible when

reoptimized.
10 Attempt to refine MIP solutions such that rounding them keeps the problem feasible

when reoptimized, but accept integers solutions even if refinement fails.

Default value 19 (bits 0, 1 and 4 are set)

Notes If neither the 7th nor 8th bit is set, the refiner will use the primal simplex if the primal violations
are larger than the dual violations, otherwise it will use the dual simplex.

If both the 7th and 8th bit are set then the refiner will split the problem into a primal feasible and
dual feasible part, and solve the first with primal simplex and the second with dual simplex.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also LPREFINEITERLIMIT, FEASTOLTARGET, OPTIMALITYTOLTARGET, MIPTOLTARGET.

RELAXTREEMEMORYLIMIT

Description When the memory used by the branch and bound search tree exceeds the target specified by
the TREEMEMORYLIMIT control, the optimizer will try to reduce this by writing nodes to the
global file. In rare cases, usually where the solve has many millions of very small nodes, the tree
structural data (which cannot be written to the global file) will grow large enough to approach or
exceed the tree’s memory target. When this happens, optimizer performance can degrade
greatly as the solver makes heavy use of the global file in preference to memory. To prevent
this, the solver will automatically relax the tree memory limit when it detects this case; the
RELAXTREEMEMORYLIMIT control specifies the proportion of the previous memory limit by
which to relax it. Set RELAXTREEMEMORYLIMIT to 0.0 to force the Xpress Optimizer to never
relax the tree memory limit in this way.

Type Double

Note While setting higher values of RELAXTREEMEMORYLIMIT can improve performance
significantly for a small number of models in low memory situations, the user is advised to use

Fair Isaac Corporation Proprietary Information 470

Chapter 8: Control Parameters

the TREEMEMORYLIMIT control to tune the memory usage of the branch and bound tree,
according to the solve characteristics of their problem, rather than increasing
RELAXTREEMEMORYLIMIT.

Default value 0.1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEMEMORYLIMIT.

RELPIVOTTOL

Description Simplex: At each iteration a pivot element is chosen within a given column of the matrix. The
relative pivot tolerance, RELPIVOTTOL, is the size of the element chosen relative to the largest
possible pivot element in the same column.

Type Double

Default value 1.0E-06

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSpivot.

REPAIRINDEFINITEQ

Description Controls if the optimizer should make indefinite quadratic matrices positive definite when it is
possible.

Type Integer

Values 0 Repair if possible.
1 Do not repair.

Default value 1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

REPAIRINFEASMAXTIME

Description Overall time limit for the repairinfeas tool

Type Integer

Values 0 No time limit.
n>0 If an integer solution has been found, stop MIP search after n seconds, otherwise

continue until an integer solution is finally found.
n<0 Stop in LP or MIP search after n seconds.

Default value 0

Note This control affects the total runtime of repairinfeas, as opposed to MAXTIME which affects the
individual solves reapirinfeas carries out.

Affects routines XPRSrepairinfeas (REPAIRINFEAS).

Fair Isaac Corporation Proprietary Information 471

Chapter 8: Control Parameters

RESOURCESTRATEGY

Description Controls whether the optimizer is allowed to make nondeterministic decisions if memory is
running low in an effort to preserve memory and finish the solve. Available memory (or
container limits) are automatically detected but can also be changed by MAXMEMORYSOFT and
MAXMEMORYHARD

Type Integer

Values 1 Allow the optimizer to change the solve path if necessary to preserve memory when
getting close to one of the memory limits.

Default value 0

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

ROOTPRESOLVE

Description Determines if presolving should be performed on the problem after the global search has
finished with root cutting and heuristics.

Type Integer

Values -1 Let the optimizer decide if the problem should be presolved again.
0 Disabled.
+1 Always presolve the root problem.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRESOLVE.

SBBEST

Description Number of infeasible global entities to initialize pseudo costs for on each node.

Type Integer

Values -1 determined automatically.
0 disable strong branching.
n>0 perform strong branching on up to n entities at each node.

Default value -1

Notes By default, strong branching will be performed only for infeasible global entities whose pseudo
costs have not otherwise been initialized (see HISTORYCOSTS).

If SBBEST is set to zero, the control HISTORYCOSTS will also be treated as zero and no past
branching or strong branching information will be used in the global entity selection.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBITERLIMIT, SBSELECT, SBEFFORT, HISTORYCOSTS.

Fair Isaac Corporation Proprietary Information 472

Chapter 8: Control Parameters

SBEFFORT

Description Adjusts the overall amount of effort when using strong branching to select an infeasible global
entity to branch on.

Type Double

Default value 1.0

Note SBEFFORT is used as a multiplier on other strong branching related controls, and affects the
values used for SBBEST, SBSELECT and SBITERLIMIT when those are set to automatic.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBBEST, SBITERLIMIT, SBSELECT.

SBESTIMATE

Description Branch and Bound: How to calculate pseudo costs from the local node when selecting an
infeasible global entity to branch on. These pseudo costs are used in combination with local
strong branching and history costs to select the branch candidate.

Type Integer

Values -1 Automatically determined.
1-6 Different variants of local pseudo costs.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBBEST, SBITERLIMIT, SBSELECT, HISTORYCOSTS.

SBITERLIMIT

Description Number of dual iterations to perform the strong branching for each entity.

Type Integer

Default value -1 — determined automatically.

Note This control can be useful to increase or decrease the amount of effort (and thus time) spent
performing strong branching at each node. Setting SBITERLIMIT=0 will disable dual strong
branch iterations. Instead, the entity at the head of the candidate list will be selected for
branching.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBBEST, SBSELECT.

SBSELECT

Description The size of the candidate list of global entities for strong branching.

Type Integer

Fair Isaac Corporation Proprietary Information 473

Chapter 8: Control Parameters

Values -2 Automatic (low effort).
-1 Automatic (high effort).
n>=0 Include n entities in the candidate list (but always at least SBBEST candidates).

Default value -2

Note Before strong branching is applied on a node of the branch and bound tree, a list of candidates
is selected among the infeasible global entities. These entities are then evaluated based on the
local LP solution and prioritized. Strong branching will then be applied to the SBBEST
candidates. The evaluation is potentially expensive and for some problems it might improve
performance if the size of the candidate list is reduced.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SBBEST, SBEFFORT, SBESTIMATE.

SCALING

Description This bit vector control determines how the Optimizer will rescale a model internally before
optimization. If set to 0, no scaling will take place.

Type Integer

Values Bit Meaning
0 Row scaling.
1 Column scaling.
2 Row scaling again.
3 Maximum.
4 Curtis-Reid.
5 0: scale by geometric mean.

1: scale by maximum element.
6 Treat big-M rows as normal rows.
7 Scale objective function for the simplex method.
8 Exclude the quadratic part of constraint when calculating scaling factors.
9 Scale before presolve.
10 Do not scale rows up.
11 Do not scale columns down.
12 Do not apply automatic global objective scaling.
13 RHS scaling.
14 Disable aggressive quadratic scaling.
15 Enable explicit linear slack scaling.

Default value 163

Note Setting SCALING to 0 will preserve the current scaling of the problem. Note that the Optimizer
might automatically select a different scaling strategy, when the control AUTOSCALING is not
disabled. However, if SCALING is set to any value by the user, AUTOSCALING will be ignored.

Affects routines XPRSlpoptimize, XPRSlpoptimize, XPRSmipoptimize, XPRSscale (SCALE).

See also 6.3.1, MAXSCALEFACTOR, OBJSCALEFACTOR, AUTOSCALING.

Fair Isaac Corporation Proprietary Information 474

Chapter 8: Control Parameters

SERIALIZEPREINTSOL

Description Setting SERIALIZEPREINTSOL to 1 will ensure that the preintsol callback will always be
fired in a deterministic order during a parallel MIP solve.

Type Integer

Values 0 The preintsol callbacks will be fired asynchronously from different threads.
1 The preintsol callbacks will be fired in a deterministic order.

Default value 0

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSaddcbpreintsol.

SIFTING

Description Determines whether to enable sifting algorithm with the dual simplex method.

Type Integer

Values -1 Automatically determined.
0 Disable sifting.
1 Enable sifting.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

SIFTPASSES

Description Determines how quickly we allow to grow the worker problems during the sifting algorithm.
Using larger values can increase the number of columns added to the worker problem which
often results in increased solve times for the worker problems but the number of necessary
sifting iterations may be reduced. .

Type Integer

Default value 4

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

SIFTPRESOLVEOPS

Description Determines the presolve operations for solving the subproblems during the sifting algorithm.

Type Integer

Values -1 Use the PRESOLVEOPS setting specified for the original problem.
>=0 Use the value for the PRESOLVEOPS parameter for solving the subproblems during the

sifting algorithm.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

See also PRESOLVEOPS.

Fair Isaac Corporation Proprietary Information 475

Chapter 8: Control Parameters

SIFTSWITCH

Description Determines which algorithm to use for solving the subproblems during sifting.

Type Integer

Values -1 Dual simplex.
0 Barrier.
>0 Use the barrier algorithm while the number of dual infeasibilities is larger than this

value, otherwise use dual simplex.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

SLEEPONTHREADWAIT

Description Determines if the threads should be put into a wait state when waiting for work.

Type Integer

Values Bit Meaning
-1 Automatically determined depending on the CPU the Optimizer is running on.
0 Keep the threads busy when waiting for work.
1 Put the threads into a wait state when waiting for work.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

SOSREFTOL

Description The minimum relative gap between the ordering values of elements in a special ordered set.
The gap divided by the absolute value of the larger of the two adjacent values must be at least
SOSREFTOL.

Type Double

Default value 1.0E-06

Note This tolerance must not be set lower than 1.0E-06.

Affects routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob (READPROB).

SYMMETRY

Description Adjusts the overall amount of effort for symmetry detection.

Type Integer

Values 0 No symmetry detection.
1 Conservative effort.
2 Intensive symmetry search.

Default value 1

Fair Isaac Corporation Proprietary Information 476

Chapter 8: Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SYMSELECT.

SYMSELECT

Description Adjusts the overall amount of effort for symmetry detection.

Type Integer

Values 0 Search the whole matrix (otherwise the 0, 1 and -1 coefficients only).
1 Search all entities (otherwise binaries only).

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also SYMMETRY.

THREADS

Description The default number of threads used during optimization.

Type Integer

Values -1 Determined automatically based on hardware configuration.
>0 Number of threads to use.

Default value -1

Note The value may be changed for specific parts of the optimization by the CONCURRENTTHREADS,
MIPTHREADS and BARTHREADS controls.

Affects routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also DETERMINISTIC, MIPTHREADS, BARTHREADS, CONCURRENTTHREADS.

TRACE

Description Display the infeasibility diagnosis during presolve. If non-zero, an explanation of the logical
deductions made by presolve to deduce infeasibility or unboundedness will be displayed on
screen or sent to the message callback function.

Type Integer

Default value 0

Note Presolve is sometimes able to detect infeasibility and unboundedness in problems. The set of
deductions made by presolve can allow the user to diagnose the cause of infeasibility or
unboundedness in their problem. However, not all infeasibility or unboundedness can be
detected and diagnosed in this way.

Affects routines XPRSlpoptimize (LPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 477

Chapter 8: Control Parameters

TREECOMPRESSION

Description When writing nodes to the gloal file, the optimizer can try to use data-compression techniques
to reduce the size of the global file on disk. The TREECOMPRESSION control determines the
strength of the data-compression algorithm used; higher values give superior
data-compression at the affect of decreasing performance, while lower values compress
quicker but not as effectively. Where TREECOMPRESSION is set to 0, no data compression will
be used on the global file.

Type Integer

Default value 2

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEMEMORYLIMIT.

TREECOVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities generated at nodes other
than the top node in the tree. Compare with the description for COVERCUTS. A value of -1
indicates the number of rounds is determined automatically.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

TREECUTSELECT

Description A bit vector providing detailed control of the cuts created during the tree search of a global
solve. Use CUTSELECT to control cuts on the root node.

Type Integer

Values Bit Meaning
5 Clique cuts.
6 Mixed Integer Rounding (MIR) cuts.
7 Lifted cover cuts.
8 Turn on row aggregation for MIR cuts.
11 Flow path cuts.
12 Implication cuts.
13 Turn on automatic Lift and Project cutting strategy.
14 Disable cutting from cut rows.
15 Lifted GUB cover cuts.
16 Zero-half cuts.
17 Indicator constraint cuts.

Default value -1

Note The default value is -1 which enables all bits. Any bits not listed in the above table should be left
in their default ’on’ state, since the interpretation of such bits might change in future versions of
the optimizer.

Fair Isaac Corporation Proprietary Information 478

Chapter 8: Control Parameters

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also COVERCUTS, GOMCUTS, CUTSELECT.

TREEDIAGNOSTICS

Description A bit vector providing control over how various tree-management-related messages get printed
in the global logfile during the branch-and-bound search.

Type Integer

Values Bit Meaning
0 Output regular summaries of current tree memory usage.
1 Output messages whenever tree data is being written to global file.
1 Output progress messages while tree data is being written to the global flie, at an

interval controlled by the GLOBALFILELOGINTERVAL control.

Default value 7

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPLOG, PEAKTOTALTREEMEMORYUSAGE, GLOBALFILELOGINTERVAL.

TREEGOMCUTS

Description Branch and Bound: The number of rounds of Gomory cuts generated at nodes other than the
first node in the tree. Compare with the description for GOMCUTS. A value of -1 indicates the
number of rounds is determined automatically.

Type Integer

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

TREEMEMORYLIMIT

Description A soft limit, in megabytes, for the amount of memory to use in storing the branch and bound
search tree. This doesn’t include memory used for presolve, heuristics, solving the LP
relaxation, etc. When set to 0 (the default), the optimizer will calculate a limit automatically
based on the amount of free physical memory detected in the machine. When the memory
used by the branch and bound tree exceeds this limit, the optimizer will try to reduce the
memory usage by writing lower-rated sections of the tree to a file called the "global file".
Though the solve can continue if it cannot bring the tree memory usage below the specified
limit, performance will be inhibited and a message will be printed to the log.

Type Integer

Default value 0 (calculate limit automatically)

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEMEMORYSAVINGTARGET, TREECOMPRESSION, TREEDIAGNOSTICS.

Fair Isaac Corporation Proprietary Information 479

Chapter 8: Control Parameters

TREEMEMORYSAVINGTARGET

Description When the memory used by the branch-and-bound search tree exceeds the limit specified by the
TREEMEMORYLIMIT control, the optimizer will try to save memory by writing lower-rated
sections of the tree to the global file. The target amount of memory to save will be enough to
bring memory usage back below the limit, plus enough extra to give the tree room to grow. The
TREEMEMORYSAVINGTARGET control specifies the extra proportion of the tree’s size to try to
save; for example, if the tree memory limit is 1000Mb and TREEMEMORYSAVINGTARGET is 0.1,
when the tree size exceeds 1000Mb the optimizer will try to reduce the tree size to 900Mb.
Reducing the value of TREEMEMORYSAVINGTARGET will cause less extra nodes of the tree to
be written to the global file, but will result in the memory saving routine being triggered more
often (as the tree will have less room in which to grow), which can reduce performance.
Increasing the value of TREEMEMORYSAVINGTARGET will cause additional, more highly-rated
nodes, of the tree to be written to the global file, which can cause performance issues if these
nodes are required later in the solve.

Type Double

Default value 0.4

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEMEMORYLIMIT

TREEQCCUTS

Description Branch and Bound: Limit on the number of rounds of outer approximation cuts generated for
nodes other than the root node, when solving a mixed integer quadratic constrained or mixed
integer second order conic problem with outer approximation.

Type Integer

Default value -1 — determined automatically.

Note This control only has an effect for problems with quadratic or second order cone constraints,
and only if outer approximation has not been disabled by setting MIQCPALG to 0.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also QCCUTS.

TUNERHISTORY

Description Tuner: Whether to reuse and append to previous tuner results of the same problem.

Type Integer

Values 0 Discard any previous tuner results.
1 Append new results to the previous tuner results, but do not reuse them.
2 Reuse the previous results and append new results to it.

Default value 2

Notes Please refer to Section 5.12.5 for more information about reusing tuner results.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

Fair Isaac Corporation Proprietary Information 480

Chapter 8: Control Parameters

TUNERMAXTIME

Description Tuner: The maximum time in seconds that the tuner will run before it terminates.

Type Integer

Values 0 No time limit.
n>0 Stop the tuner after n seconds.

Default value 0

Note This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERMETHOD

Description Tuner: Selects a factory tuner method. A tuner method consists of a list of controls with
different settings that the tuner will evaluate and try to combine.

Type Integer

Values -1 Automatically determined. The tuner will select the default method based on the
problem type.

0 Select the default LP tuner method.
1 Select the default MIP tuner method.
2 Select a more comprehensive MIP tuner method.
3 Select a root-focus MIP tuner method.
4 Select a tree-focus MIP tuner method.
5 Select a simple MIP tuner method.
6 Select the default SLP tuner method.
7 Select the default MISLP tuner method.
8 Select a MIP tuner method focussed on primal heuristics.

Default value -1

Notes If the tuner has already loaded a user-defined tuner method, then it will not load any factory
tuner method.

Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.8
for the format of the tuner method file.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERMETHODFILE

Description Tuner: Defines a file from which the tuner can read user-defined tuner method.

Type String

Default value (empty)

Fair Isaac Corporation Proprietary Information 481

Chapter 8: Control Parameters

Notes If the tuner has already loaded a tuner method via XPRStunerreadmethod, then it will not
check this control. Otherwise, when this control is defined and a tuner method can be
succesfully loaded from this file, then the tuner will not load any factory tuner method.

Please refer to Section 5.12.2 for more information about the tuner method, and Appendix A.8
for the format of the tuner method file.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERMODE

Description Tuner: Whether to always enable the tuner or disable it.

Type Integer

Values -1 No effect.
0 Always disable the tuner. XPRStune (TUNE) will have no effect.
1 Always enable the tuner. XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize

(LPOPTIMIZE), etc. will call the tuner before solving the problem.

Default value -1

Note This control cannot be tuned.

Affects routines XPRStune (TUNE), XPRSmipoptimize (MIPOPTIMIZE), XPRSlpoptimize (LPOPTIMIZE).

TUNEROUTPUT

Description Tuner: Whether to output tuner results and logs to the file system.

Type Integer

Values 0 Don’t output to the file system.
1 Output results and logs to the file system.

Default value 1

Notes Please refer to Section 5.12.3 for more information about the tuner output.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNEROUTPUTPATH

Description Tuner: Defines a root path to which the tuner writes the result file and logs.

Type String

Default value tuneroutput

Notes This control only defines the root path for the tuner output. For each problem, the tuner result
will be output to a subfolder underneath this path. For example, by default, the tuner result for a
problem called prob will be located at tuneroutput/prob/

Please refer to Section 5.12.3 for more information about the tuner output.

This control only has an effect on the tuner. This control cannot be tuned.

Fair Isaac Corporation Proprietary Information 482

Chapter 8: Control Parameters

Affects routines XPRStune (TUNE).

TUNERPERMUTE

Description Tuner: Defines the number of permutations to solve for each control setting.

Type Integer

Values 0 Solve the original problem only for each setting.
n>0 Solve the original problem and n permuted problems for each setting.

Default value 0

Notes Please refer to Section 5.12.7 for more information about tuner problem permutations.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERROOTALG

Description This parameter is deprecated and will be removed in a future release. This control is provided for
compatibility purposes. Please use LPFLAGS instead.
It is a bit-vector control which defines the algorithm for solving an LP problem or the initial LP
relaxation of a MIP problem within the tuner specifically.

Type Integer

Values Bit Meaning
0 Use the dual simplex method.
1 Use the primal simplex method.
2 Use the barrier method.
3 Use the network simplex method.

Default value 0

Notes Setting bit 0, 1, 2, 3 of this control will have the same effect of passing flags d, p, b, n to
XPRSmipoptimize or XPRSlpoptimize. When more than one bit are set, then the LP
problem will be solved with the concurrent solver.

This control only has an effect on the tuner.

This control can be tuned.

Affects routines XPRStune (TUNE).

TUNERSESSIONNAME

Description Tuner: Defines a session name for the tuner.

Type String

Default value (empty)

Fair Isaac Corporation Proprietary Information 483

Chapter 8: Control Parameters

Notes When defined, the session name will override the problem name within the tuner. For example,
if this control is set to session, then the tuner result for a problem will be located at
tuneroutput/session/

This control can be useful when the problem name is randomly generated.

Please refer to Section 5.12.3 for more information about the tuner output.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERTARGET

Description Tuner: Defines the tuner target – what should be evaluated when comparing two runs with
different control settings.

Type Integer

Values -1 Automatically determined. The tuner will choose the default target based on problem
type.

0 Solution time then gap. (MIP/MISLP default)
1 Solution time then best bound.
2 Solution time then best integer solution.
3 The primal dual integral.
4 Time only. (LP/SLP default)
5 SLP objective only. (SLP/MISLP choice)
6 SLP validation number only. (SLP/MISLP choice)
7 Gap only.
8 Best bound only.
9 Best integer solution only.
10 Best primal integral. (Only for individual instances, not for problem sets)

Default value -1

Notes Please refer to Section 5.12.4 for more information about tuner targets.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERTHREADS

Description Tuner: the number of threads used by the tuner.

Type Integer

Values -1 Choose automaticlly.
1 The tuner will run in sequential.
n>1 The tuner will run in parallel with n threads.

Default value 1

Fair Isaac Corporation Proprietary Information 484

Chapter 8: Control Parameters

Notes Setting this control will not affect number of threads used by each individual run. It is
recommended to have the product of TUNERTHREADS and THREADS less or equal to the
number of system threads.

When setting TUNERTHREADS=-1, the tuner will automatically use as many threads as the
number of logical processors detected.

Please refer to Section 5.12.6 for more information about tuner with multiple threads.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

TUNERVERBOSE

Description Tuner: whether the tuner should prints detailed information for each run.

Type Integer

Values 1 Print extra information.
0 Print less information.

Default value 1

Notes Please refer to Section 5.12.6 for more information about tuner with multiple threads.

This control only has an effect on the tuner. This control cannot be tuned.

Affects routines XPRStune (TUNE).

USERSOLHEURISTIC

Description Determines how much effort to put into running a local search heuristic to find a feasible
integer solution from a partial or infeasible user solution.

Type Integer

Values -1 Automatically determined.
0 Search heuristic disabled.
1 Light effort.
2 Moderate effort.
3 High effort.

Default value -1

Note When a partial or infeasible user solution is added with XPRSaddmipsol, a local search
heuristic will be applied to the problem in an attempt to find a feasible, integer solution that
either completes the partial solution or is close to the infeasible solution. Whether to run such a
heuristic, or how much effort to put into the heuristic can be controlled by this
USERSOLHEURISTIC parameter.

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

See also HEURSEARCHROOTSELECT, HEURSEARCHTREESELECT.

Fair Isaac Corporation Proprietary Information 485

Chapter 8: Control Parameters

VARSELECTION

Description Branch and Bound: This determines the formula used to calculate the estimate of each integer
variable, and thus which integer variable is selected to be branched on at a given node. The
variable selected to be branched on is the one with the maximum estimate.

Type Integer

Values -1 Determined automatically.
1 The minimum of the ’up’ and ’down’ pseudo costs.
2 The ’up’ pseudo cost plus the ’down’ pseudo cost.
3 The maximum of the ’up’ and ’down’ pseudo costs, plus twice the minimum of the ’up’

and ’down’ pseudo costs.
4 The maximum of the ’up’ and ’down’ pseudo costs.
5 The ’down’ pseudo cost.
6 The ’up’ pseudo cost.
7 A weighted combination of the ’up’ and ’down’ pseudo costs, where the weights

depend on how fractional the variable is.
8 The product of the ’up’ and ’down’ pseudo costs.

Default value -1

Affects routines XPRSmipoptimize (MIPOPTIMIZE).

VERSION

Description The Optimizer version number, e.g. 1301meaning release 13.01.

Type Integer

Default value Software version dependent

Fair Isaac Corporation Proprietary Information 486

CHAPTER 9

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and made
available to users of the FICO Xpress Libraries in the form of problem attributes. These can be accessed
in much the same manner as for the controls. Examples of problem attributes include the sizes of arrays,
for which library users may need to allocate space before the arrays themselves are retrieved. A full list of
the attributes available and their types may be found in this chapter.

9.1 Retrieving Problem Attributes
Library users are provided with the following three functions for obtaining the values of attributes:

XPRSgetintattrib XPRSgetdblattrib XPRSgetstrattrib

Much as for the controls previously, it should be noted that the attributes as listed in this chapter must be
prefixed with XPRS_ to be used with the FICO Xpress Libraries and failure to do so will result in an error.
An example of their usage is the following which returns and prints the optimal value of the objective
function after the linear problem has been solved:

XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &lpobjval);

printf("The objective value is %2.1f\n", lpobjval);

ACTIVENODES

Description Number of outstanding nodes.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE), XPRSinitglobal.

ALGORITHM

Description The algorithm the optimizer currently is running / was running just before completition.

Type Integer

Values 1 No LP optimization yet.
2 Dual simplex.
3 Primal simplex.
4 Newton barrier.
5 Network simplex.

Fair Isaac Corporation Proprietary Information 487

Chapter 9: Problem Attributes

Note If the barrier with crossover is used, the value of ALGORITHM during the crossover and the final
clean up will reflect the algorithm used, but will be reset to barrier once the optimization is
complete.

ATTENTIONLEVEL

Description A measure between 0 and 1 for how numerically unstable the problem is. The attention level is
based on a weighted combination of the number of basis condition numbers exceeding certain
thresholds. It considers all nodes sampled by MIPKAPPAFREQ, with a setting of 1 being the
most frequent sampling rate. The higher the attention level, the worse conditioned is the
problem.

Type Double

Set by routines XPRSmipoptimize.

See also MAXKAPPA, MIPKAPPAFREQ, PREDICTEDATTLEVEL.

AVAILABLEMEMORY

Description The amount of heap memory detected by Xpress as free.

Type Integer

Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.

See also PEAKMEMORY, CURRENTMEMORY, TOTALMEMORY

BARAASIZE

Description Number of nonzeros in AAT .

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARCGAP

Description Convergence criterion for the Newton barrier algorithm.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARCONDA

Description Absolute condition measure calculated in the last iteration of the barrier algorithm.

Type Double

Set by routines The barrier algorithm.

Fair Isaac Corporation Proprietary Information 488

Chapter 9: Problem Attributes

BARCONDD

Description Condition measure calculated in the last iteration of the barrier algorithm.

Type Double

Set by routines The barrier algorithm.

BARCROSSOVER

Description Indicates whether or not the basis crossover phase has been entered.

Type Integer

Values 0 the crossover phase has not been entered.
1 the crossover phase has been entered.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDENSECOL

Description Number of dense columns found in the matrix.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDUALINF

Description Sum of the dual infeasibilities for the Newton barrier algorithm.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARDUALOBJ

Description Dual objective value calculated by the Newton barrier algorithm.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARITER

Description Number of Newton barrier iterations.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 489

Chapter 9: Problem Attributes

BARLSIZE

Description Number of nonzeros in L resulting from the Cholesky factorization.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALINF

Description Sum of the primal infeasibilities for the Newton barrier algorithm.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARPRIMALOBJ

Description Primal objective value calculated by the Newton barrier algorithm.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

BARSING

Description Number of linearly dependent binding constraints at the optimal barrier solution. These results
in singularities in the Cholesky decomposition during the barrier that may cause numerical
troubles. Larger dependence means more chance for numerical difficulties.

Type Double

Set by routines The barrier algorithm.

BARSINGR

Description Regularized number of linearly dependent binding constraints at the optimal barrier solution.
These results in singularities in the Cholesky decomposition during the barrier that may cause
numerical troubles. Larger dependence means more chance for numerical difficulties.

Type Double

Set by routines The barrier algorithm.

BESTBOUND

Description Value of the best bound determined so far by the global search.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 490

Chapter 9: Problem Attributes

BOUNDNAME

Description Active bound name.

Type String

Set by routines XPRSreadprob.

BRANCHVALUE

Description The value of the branching variable at a node of the Branch and Bound tree.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

BRANCHVAR

Description The branching variable at a node of the Branch and Bound tree.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CALLBACKCOUNT_CUTMGR

Description This attribute counts the number of times the cut manager callback set by XPRSaddcbcutmgr
has been called for the current node, including the current callback call. The value of this
attribute should only be used from within the cut manager callback.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CALLBACKCOUNT_OPTNODE

Description This attribute counts the number of times the optimal node callback set by
XPRSaddcboptnode has been called for the current node, including the current callback call.
The value of this attribute should only be used from within the optimal node callback.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CHECKSONMAXCUTTIME

Description This attribute is used to set the value of the MAXCHECKSONMAXCUTTIME control. Its value is
the number of times the optimizer checked the MAXCUTTIME criterion during the last call to the
optimization routine XPRSmipoptimize. If a run terminates cutting operations on the
MAXCUTTIME criterion then the attribute is the negative of the number of times the optimizer
checked the MAXCUTTIME criterion up to and including the check when the termination was
activated. Note that the attribute is set to zero at the beginning of each call to an optimization
routine.

Fair Isaac Corporation Proprietary Information 491

Chapter 9: Problem Attributes

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

CHECKSONMAXTIME

Description This attribute is used to set the value of the MAXCHECKSONMAXTIME control. Its value is the
number of times the optimizer checked the MAXTIME criterion during the last call to the
optimization routine XPRSmipoptimize. If a run terminates on the MAXTIME criterion then
the attribute is the negative of the number of times the optimizer checked the MAXTIME
criterion up to and including the check when the termination was activated. Note that the
attribute is set to zero at the beginning of each call to an optimization routine.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

COLS

Description Number of columns (i.e. variables) in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of columns in the
presolved matrix. If you require the value for the original matrix then use the ORIGINALCOLS
attribute instead. The PRESOLVESTATE attribute can be used to test if the matrix is presolved
or not. See also 5.3.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSlpoptimize
(LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE) XPRSreadprob.

COMPUTEEXECUTIONS

Description The number of solves executed on a compute server.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRStune,
XPRSrepairinfeas, XPRSiisfirst, XPRSiisnext, XPRSiisall.

CONEELEMS

Description Number of second order cone coefficients in the problem.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of the second order
(including rotated second order) cone coefficients in the presolved matrix. Second order conic
quadratic constraints are automaticly detected at optimization time, and this attribute is not set
before optimizing the problem.

Set by routines Optimizing the problem.

Fair Isaac Corporation Proprietary Information 492

Chapter 9: Problem Attributes

CONES

Description Number of second order and rotated second order cones in the problem.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of second order (including
rotated second order) cones in the presolved matrix. Conic quadratic constraints are
automaticly detected at optimization time, and this attribute is not set before optimizing the
problem.

Set by routines Optimizing the problem.

CORESDETECTED

Description Number of logical cores detected by the optimizer, which is the total number of threads the
hardware can execute across all CPUs.

Type Integer

Values >=1 Detected number of logical cores.

Notes If Xpress is running in a container and the container limits the number of cores then this limit is
applied to the attribute value by default. This clipping can be disabled by setting
IGNORECONTAINERCPULIMIT to 1.

The optimizer will automatically use as many solver threads as the number of logical cores
detected.

If the detection fails, the optimizer will default to using a single thread only.

Set by routines XPRSinit.

See also THREADS, CORESPERCPUDETECTED, CPUSDETECTED, PHYSICALCORESDETECTED,
PHYSICALCORESPERCPUDETECTED.

CORESPERCPUDETECTED

Description Number of logical cores per CPU unit detected by the optimizer, which is the number of threads
each CPU can execute.

Type Integer

Values >=1 Detected number of logical cores per CPU unit.

Set by routines XPRSinit.

See also THREADS, CORESDETECTED, CPUSDETECTED, PHYSICALCORESDETECTED,
PHYSICALCORESPERCPUDETECTED.

CPISCALEFACTOR

Description scale factor from primal integral computation.

Type Double

Fair Isaac Corporation Proprietary Information 493

Chapter 9: Problem Attributes

Note This attribute represents the scaling factor that was used when computing the primal integral.
It can be used to compute an updated (or correlated) primal integral with respect to a new
reference solution. For details see Berthold and Csizmadia: The confined primal integral,
Mathematical Programming volume 188(2), pp. 523–537, 2021.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also OBSERVEDPRIMALINTEGRAL, CPIALPHA.

CPUSDETECTED

Description Number of CPU units detected by the optimizer.

Type Integer

Values >=1 Detected number of CPU units.

Set by routines XPRSinit.

See also THREADS, CORESDETECTED, CORESPERCPUDETECTED, PHYSICALCORESDETECTED,
PHYSICALCORESPERCPUDETECTED.

CURRENTMEMORY

Description The amount of dynamically allocated heap memory by the problem being solved.

Type Integer

Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.

See also PEAKMEMORY, CURRENTMEMORY, TOTALMEMORY

CURRENTNODE

Description The unique identifier of the current node in the tree search.

Type Integer

Note The root node is always identified as node 1.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also PARENTNODE.

CURRMIPCUTOFF

Description The current MIP cut off.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPABSCUTOFF.

Fair Isaac Corporation Proprietary Information 494

Chapter 9: Problem Attributes

CUTS

Description Number of cuts being added to the matrix.

Type Integer

Set by routines XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSloadcuts, XPRSloadmodelcuts.

DUALINFEAS

Description Number of dual infeasibilities.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of dual infeasibilities in the
presolved matrix. If you require the value for the original matrix, make sure you obtain the value
when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if the
matrix is presolved or not. See also 5.3.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also PRIMALINFEAS.

ELEMS

Description Number of matrix nonzeros (elements).

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of matrix nonzeros in the
presolved matrix. If you require the value for the original matrix, make sure you obtain the value
when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if the
matrix is presolved or not. See also 5.3.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSlpoptimize
(LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE), XPRSreadprob.

ERRORCODE

Description The most recent Optimizer error number that occurred. This is useful to determine the precise
error or warning that has occurred, after an Optimizer function has signalled an error by
returning a non-zero value. The return value itself is not the error number. Refer to the section
10.2 for a list of possible error numbers, the errors and warnings that they indicate, and advice
on what they mean and how to resolve them. A short error message may be obtained using
XPRSgetlasterror, and all messages may be intercepted using the user output callback
function; see XPRSaddcbmessage.

Type Integer

Set by routines Any.

Fair Isaac Corporation Proprietary Information 495

Chapter 9: Problem Attributes

GENCONCOLS

Description Number of input variables in general constraints in the problem.

Type Integer

Note The total number of input variables in MIN/MAX/AND/OR/ABS constraints in the problem.

Set by routines XPRSaddgencons

GENCONS

Description Number of general constraints in the problem.

Type Integer

Note The total number of MIN/MAX/AND/OR/ABS constraints in the problem.

Set by routines XPRSaddgencons

GENCONVALS

Description Number of constant values in general constraints in the problem.

Type Integer

Note The total number of constant values in MIN/MAX constraints in the problem.

Set by routines XPRSaddgencons

GLOBALFILESIZE

Description The allocated size of the global file, in megabytes. Because data can be removed from the
global file during the branch and bound search, the size of the global file is usually greater than
the amount of data currently within it (represented by the GLOBALFILEUSAGE attribute).

Type Integer

See also GLOBALFILEUSAGE.

GLOBALFILEUSAGE

Description The number of megabytes of data from the branch-and-bound tree that have been saved to the
global file. Note that the actual allocated size of the global file (represented by the
GLOBALFILESIZE control) may be greater than this value.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also GLOBALFILESIZE, GLOBALFILEBIAS, TREEMEMORYLIMIT.

Fair Isaac Corporation Proprietary Information 496

Chapter 9: Problem Attributes

INDICATORS

Description Number of indicator constrains in the problem.

Type Integer

Note When the matrix is in a presolved state, the indicator constraints are stored in a special pool
and not part of the matrix. Otherwise the indicator constraints are rows of the matrix and their
details can be retrieved with the XPRSgetindicators function. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.3.

Set by routines XPRSsetindicators, XPRSdelindicators, XPRSreadprob.

LPOBJVAL

Description Value of the objective function of the last LP solved.

Type Double

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

See also MIPOBJVAL, OBJRHS.

LPSTATUS

Description LP solution status.

Type Integer

Values 0 Unstarted (XPRS_LP_UNSTARTED).
1 Optimal (XPRS_LP_OPTIMAL).
2 Infeasible (XPRS_LP_INFEAS).
3 Objective worse than cutoff (XPRS_LP_CUTOFF).
4 Unfinished (XPRS_LP_UNFINISHED).
5 Unbounded (XPRS_LP_UNBOUNDED).
6 Cutoff in dual (XPRS_LP_CUTOFF_IN_DUAL).
7 Problem could not be solved due to numerical issues. (XPRS_LP_UNSOLVED).
8 Problem contains quadratic data, which is not convex (XPRS_LP_NONCONVEX).

Note The possible return values are defined as constants in the Optimizer C header file and VB .bas
file.

Set by routines XPRSlpoptimize (LPOPTIMIZE).

See also MIPSTATUS.

MATRIXNAME

Description The matrix name.

Type String

Note This is the name read from the MATRIX field in an MPS matrix, and is not related to the problem
name used in the Optimizer. Use XPRSgetprobname to get the problem name.

Set by routines XPRSreadprob, XPRSsetprobname.

Fair Isaac Corporation Proprietary Information 497

Chapter 9: Problem Attributes

MAXABSDUALINFEAS

Description Maximum calculated absolute dual infeasibility in the unscaled original problem.

Type Double

Set by routines XPRSlpoptimize, XPRSmipoptimize.

MAXABSPRIMALINFEAS

Description Maximum calculated absolute primal infeasibility in the unscaled original problem.

Type Double

Set by routines XPRSlpoptimize, XPRSmipoptimize, XPRSrefinemipsol.

MAXKAPPA

Description Largest basis condition number (also known as kappa) calculated through all nodes sampled
by MIPKAPPAFREQ.

Type Double

Set by routines XPRSmipoptimize.

See also MIPKAPPAFREQ.

MAXMIPINFEAS

Description Maximum integer fractionality in the solution.

Type Double

Set by routines XPRSmipoptimize.

MAXPROBNAMELENGTH

Description Maximum size of the problem name and also the maximum allowed length of the file or path
string for any function that accepts such an argument.

Type Integer

Set by routines XPRSgetprobname, XPRSsetprobname.

MAXRELDUALINFEAS

Description Maximum calculated relative dual infeasibility in the unscaled original problem.

Type Double

Set by routines XPRSlpoptimize, XPRSmipoptimize.

Fair Isaac Corporation Proprietary Information 498

Chapter 9: Problem Attributes

MAXRELPRIMALINFEAS

Description Maximum calculated relative primal infeasibility in the unscaled original problem.

Type Double

Set by routines XPRSlpoptimize, XPRSmipoptimize.

MEMORYLIMITDETECTED

Description The detected amount of memory accessible to the solver process, in megabytes. This is the
minimum of physical memory, virtual memory limitations, and detected container limitations
(Linux only).

Type Integer

Set by routines XPRSinit.

See also CORESDETECTED, CORESPERCPUDETECTED, CPUSDETECTED, PHYSICALCORESDETECTED,
PHYSICALCORESPERCPUDETECTED, PEAKMEMORY, CURRENTMEMORY, TOTALMEMORY.

MIPBESTOBJVAL

Description Objective function value of the best integer solution found.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPOBJVAL.

MIPENTS

Description Number of global entities (i.e. binary, integer, semi-continuous, partial integer, and
semi-continuous integer variables) but excluding the number of special ordered sets.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of global entities in the
presolved matrix. If you require the value for the original matrix, make sure you obtain the value
when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if the
matrix is presolved or not. See also 5.3.

Set by routines XPRSaddcols, XPRSchgcoltype, XPRSdelcols, XPRSloadglobal, XPRSloadqglobal,
XPRSreadprob.

See also SETS.

MIPINFEAS

Description Number of integer infeasibilities, including violations of special ordered sets, at the current
node.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRIMALINFEAS.

Fair Isaac Corporation Proprietary Information 499

Chapter 9: Problem Attributes

MIPOBJVAL

Description Objective function value of the last integer solution found.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPBESTOBJVAL.

MIPSOLNODE

Description Node at which the last integer feasible solution was found.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPSOLTIME.

MIPSOLS

Description Number of integer solutions that have been found.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

MIPSOLTIME

Description Time at which the last integer feasible solution was found.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPSOLNODE, MAXSTALLTIME.

MIPSTATUS

Description Global (MIP) solution status.

Type Integer

Fair Isaac Corporation Proprietary Information 500

Chapter 9: Problem Attributes

Values 0 Problem has not been loaded (XPRS_MIP_NOT_LOADED).
1 Global search incomplete - the initial continuous relaxation has not been solved and no

integer solution has been found (XPRS_MIP_LP_NOT_OPTIMAL).
2 Global search incomplete - the initial continuous relaxation has been solved and no

integer solution has been found (XPRS_MIP_LP_OPTIMAL).
3 Global search incomplete - no integer solution found (XPRS_MIP_NO_SOL_FOUND).
4 Global search incomplete - an integer solution has been found

(XPRS_MIP_SOLUTION).
5 Global search complete - no integer solution found (XPRS_MIP_INFEAS).
6 Global search complete - integer solution found (XPRS_MIP_OPTIMAL).
7 Global search incomplete - the initial continuous relaxation was found to be

unbounded. A solution may have been found (XPRS_MIP_UNBOUNDED).

Note The possible return values are defined as constants in the Optimizer C header file and VB .bas
file.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also LPSTATUS.

MIPTHREADID

Description The ID for the MIP thread.

Type Integer

Note The first MIP thread has ID 0 and is the same as the main thread. All other threads are new
threads and are destroyed when the global search is halted.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also MIPTHREADS.

NAMELENGTH

Description The length (in 8 character units) of row and column names in the matrix. To allocate a
character array to store names, you must allow 8⁎NAMELENGTH+1 characters per name (the
+1 allows for the string terminator character).

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

NODEDEPTH

Description Depth of the current node.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 501

Chapter 9: Problem Attributes

NODES

Description Number of nodes solved so far in the global search. A node is counted as solved when it is
either dropped or branched on.

Type Integer

Note The root node has depth 1.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

NUMIIS

Description Number of IISs found.

Type Integer

Set by routines IIS, XPRSiisfirst, XPRSiisnext, XPRSiisall.

OBJNAME

Description Active objective function row name.

Type String

Set by routines XPRSreadprob.

OBJRHS

Description Fixed part of the objective function.

Type Double

Note If the matrix is in a presolved state, this attribute returns the fixed part of the objective in the
presolved matrix. If you require the value for the original matrix, make sure you obtain the value
when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if the
matrix is presolved or not. See also 5.3. If an MPS file contains an objective function coefficient
in the RHS then the negative of this will become OBJRHS.

Set by routines XPRSchgobj.

See also LPOBJVAL.

OBSERVEDPRIMALINTEGRAL

Description Value of the (observed) primal integral.

Type Double

Note This attribute represents the integral of the primal gap over time. It measures the convergence
of the primal bound MIPBESTOBJVAL over the whole solving time. The observed primal
integral uses the best MIP solution found in a solve as a reference value. Consequently,
different solves might use different reference values, and the observed primal integral values
might not be readily comparable. If they do finish with the same MIPBESTOBJVAL (e.g.,
because both solved to optimality), the primal integrals are comparable, and the lower value

Fair Isaac Corporation Proprietary Information 502

Chapter 9: Problem Attributes

indicates a better convergence of the best solution value. For details on the primal integral see
Berthold: Measuring the impact of primal heuristics, OR Letters 41(6), pp. 611-614, 2013 as well
as Berthold and Csizmadia: The confined primal integral, Mathematical Programming volume
188(2), pp. 523–537, 2021.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also PRIMALDUALINTEGRAL, CPIALPHA, CPISCALEFACTOR, MIPBESTOBJVAL.

OBJSENSE

Description Sense of the optimization being performed.

Type Double

Values -1.0 For maximization problems.
1.0 For minimization problems.

Note The objective sense of a problem can be changed using XPRSchgobjsense.

Set by routines XPRSchgobjsense (CHGOBJSENSE).

ORIGINALCOLS

Description Number of columns (i.e. variables) in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the COLS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALGENCONS

Description Number of general constraints in the original problem before presolving.

Type Integer

Note If you require the value for the presolved problem then use the GENCONS attribute.

Set by routines XPRSaddgencons.

ORIGINALGENCONCOLS

Description Number of input variables in general constraints in the original problem before presolving.

Type Integer

Note If you require the value for the presolved problem then use the GENCONCOLS attribute.

Set by routines XPRSaddgencons.

Fair Isaac Corporation Proprietary Information 503

Chapter 9: Problem Attributes

ORIGINALGENCONVALS

Description Number of constant values in general constraints in the original problem before presolving.

Type Integer

Note If you require the value for the presolved problem then use the GENCONVALS attribute.

Set by routines XPRSaddgencons.

ORIGINALINDICATORS

Description Number of indicator constraints in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the INDICATORS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALMIPENTS

Description Number of global entities (i.e. binary, integer, semi-continuous, partial integer, and
semi-continuous integer variables) but excluding the number of special ordered sets in the
original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the MIPENTS attribute. .

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALPWLS

Description Number of piecewise linear constraints in the original problem before presolving.

Type Integer

Note If you require the value for the presolved problem then use the PWLCONS attribute.

Set by routines XPRSaddpwlcons.

ORIGINALPWLPOINTS

Description Number of breakpoints of piecewise linear constraints in the original problem before presolving.

Type Integer

Note If you require the value for the presolved problem then use the PWLPOINTS attribute.

Set by routines XPRSaddpwlcons.

Fair Isaac Corporation Proprietary Information 504

Chapter 9: Problem Attributes

ORIGINALQCONSTRAINTS

Description Number of rows with quadratic coefficients in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the QCONSTRAINTS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALQCELEMS

Description Number of quadratic row coefficients in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the QCELEMS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALQELEMS

Description Number of quadratic elements in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the QELEMS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALSETMEMBERS

Description Number of variables within special ordered sets (set members) in the original matrix before
presolving.

Type Integer

Note If you require the value for the presolved matrix then use the SETMEMBERS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALSETS

Description Number of special ordered sets in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the SETS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 505

Chapter 9: Problem Attributes

ORIGINALROWS

Description Number of rows (i.e. constraints) in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the ROWS attribute.

Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadlp, XPRSreadprob.

PARENTNODE

Description The parent node of the current node in the tree search.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

PEAKMEMORY

Description An estimate of the peak amount of dynamically allocated heap memory by the problem.

Type Integer

Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.

See also CURRENTMEMORY,SYSTEMMEMORY

PEAKTOTALTREEMEMORYUSAGE

Description The peak size, in megabytes, that the branch-and-bound search tree reached during the solve.
Note that this value will include the uncompressed size of any compressed data and the size of
any data saved to the global file.

Type Integer

Set by routines XPRSmipoptimize.

See also TREEMEMORYUSAGE.

PENALTYVALUE

Description The weighted sum of violations in the solution to the relaxed problem identified by the
infeasibility repair function.

Type Double

Set by routines XPRSrepairinfeas (REPAIRINFEAS), XPRSrepairweightedinfeas.

Fair Isaac Corporation Proprietary Information 506

Chapter 9: Problem Attributes

PHYSICALCORESDETECTED

Description The total number of physical cores across all CPUs detected by the optimizer.

Type Integer

Values >=1 Detected number of physical cores.

Set by routines XPRSinit.

See also CORESDETECTED, CORESPERCPUDETECTED, CPUSDETECTED,
PHYSICALCORESPERCPUDETECTED.

PHYSICALCORESPERCPUDETECTED

Description The number of physical cores per CPU detected by the optimizer.

Type Integer

Values >=1 Detected number of physical cores per CPU.

Set by routines XPRSinit.

See also CORESDETECTED, CORESPERCPUDETECTED, CPUSDETECTED,
PHYSICALCORESPERCPUDETECTED.

PREDICTEDATTLEVEL

Description A measure between 0 and 1 to predict how numerically unstable the current MIP solve can be
expected to be. After the root LP solve, a machine learning model is used to predict the actual
ATTENTIONLEVEL which will only be computed if MIPKAPPAFREQ is set to a nonzero value. If
the predicted attention level exceeds a value of 0.1, a message will be printed to the log.

Type Double

Set by routines XPRSmipoptimize.

See also ATTENTIONLEVEL, MAXKAPPA.

PRESOLVEINDEX

Description Presolve: The row or column index on which presolve detected a problem to be infeasible or
unbounded.

Type Integer

Note Row indices are in the range 0 to ROWS-1, and column indices are in the range
ROWS+SPAREROWS to ROWS+SPAREROWS+COLS-1.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

Fair Isaac Corporation Proprietary Information 507

Chapter 9: Problem Attributes

PRESOLVESTATE

Description Problem status as a bit map.

Type Integer

Values Bit Meaning
0 Problem has been loaded.
1 Problem has been LP presolved.
2 Problem has been MIP presolved.
7 Solution in memory is valid.

Note Other bits are reserved.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

PRIMALDUALINTEGRAL

Description Value of the primal-dual integral.

Type Double

Note This attribute represents the integral of the primal-dual gap over time. It measures the
convergence of the best (dual) bound BESTBOUND and the primal bound MIPBESTOBJVAL
over the whole solving time. Lower values are better. For details on the primal(-dual) integral
see Berthold: Measuring the impact of primal heuristics, OR Letters 41(6), pp. 611-614, 2013.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also BESTBOUND, MIPBESTOBJVAL.

PRIMALINFEAS

Description Number of primal infeasibilities.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of primal infeasibilities in
the presolved matrix. If you require the value for the original matrix, make sure you obtain the
value when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if
the matrix is presolved or not. See also 5.3.

Set by routines XPRSlpoptimize (LPOPTIMIZE).

See also SUMPRIMALINF, DUALINFEAS, MIPINFEAS.

PWLCONS

Description Number of piecewise linear constraints in the problem.

Type Integer

Set by routines XPRSaddpwlcons

Fair Isaac Corporation Proprietary Information 508

Chapter 9: Problem Attributes

PWLPOINTS

Description Number of breakpoints of piecewise linear constraints in the problem.

Type Integer

Note The total number of breakpoints over all piecewise linear constraints.

Set by routines XPRSaddpwlcons

QCELEMS

Description Number of quadratic row coefficients in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of quadratic row
coefficients in the presolved matrix.

Set by routines XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrixtriplets,
XPRSloadqcqp.

QCONSTRAINTS

Description Number of rows with quadratic coefficients in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of rows with quadratic
coefficients in the presolved matrix.

Set by routines XPRSaddqmatrix, XPRSchgqrowcoeff, XPRSgetqrowqmatrixtriplets,
XPRSloadqcqp.

QELEMS

Description Number of quadratic elements in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of quadratic elements in
the presolved matrix. If you require the value for the original matrix, make sure you obtain the
value when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if
the matrix is presolved or not. See also 5.3.

Set by routines XPRSchgmqobj, XPRSchgqobj, XPRSloadqglobal, XPRSloadqp.

RANGENAME

Description Active range name.

Type String

Set by routines XPRSreadprob.

Fair Isaac Corporation Proprietary Information 509

Chapter 9: Problem Attributes

RESTARTS

Description Total number of restarts performed.

Type Integer

Note As opposed to TREERESTARTS this not only includes the number of times the
branch-and-bound tree is reset to the root node, but also includes the number of times presolve
is repeated at the root node. If your application caches information about the presolved model
then it has to refresh this information whenever the value of this attribute changed.

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREERESTARTS

RHSNAME

Description Active right hand side name.

Type String

Set by routines XPRSreadprob.

ROWS

Description Number of rows (i.e. constraints) in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of rows in the presolved
matrix. If you require the value for the original matrix then use the ORIGINALROWS attribute
instead. The PRESOLVESTATE attribute can be used to test if the matrix is presolved or not.
See also 5.3.

Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadlp, XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE),
XPRSreadprob.

SIMPLEXITER

Description Number of simplex iterations performed.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

SETMEMBERS

Description Number of variables within special ordered sets (set members) in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of variables within special
ordered sets in the presolved matrix. If you require the value for the original matrix, make sure
you obtain the value when the matrix is not presolved. The PRESOLVESTATE attribute can be
used to test if the matrix is presolved or not. See also 5.3.

Fair Isaac Corporation Proprietary Information 510

Chapter 9: Problem Attributes

Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.

See also SETS.

SETS

Description Number of special ordered sets in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of special ordered sets in
the presolved matrix. If you require the value for the original matrix, make sure you obtain the
value when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if
the matrix is presolved or not. See also 5.3.

Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.

See also SETMEMBERS, MIPENTS.

SPARECOLS

Description Number of spare columns in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREELEMS

Description Number of spare matrix elements in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREMIPENTS

Description Number of spare global entities in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREROWS

Description Number of spare rows in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Fair Isaac Corporation Proprietary Information 511

Chapter 9: Problem Attributes

SPARESETELEMS

Description Number of spare set elements in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPARESETS

Description Number of spare sets in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

STOPSTATUS

Description Status of the optimization process.

Type Integer

Note Possible values are:

Value Description
XPRS_STOP_NONE no interruption - the solve completed normally
XPRS_STOP_TIMELIMIT time limit hit
XPRS_STOP_CTRLC control C hit
XPRS_STOP_NODELIMIT node limit hit
XPRS_STOP_ITERLIMIT iteration limit hit
XPRS_STOP_MIPGAP MIP gap is sufficiently small
XPRS_STOP_SOLLIMIT solution limit hit
XPRS_STOP_USER user interrupt.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

SUMPRIMALINF

Description Scaled sum of primal infeasibilities.

Type Double

Note If the matrix is in a presolved state, this attribute returns the scaled sum of primal infeasibilities
in the presolved matrix. If you require the value for the original matrix, make sure you obtain the
value when the matrix is not presolved. The PRESOLVESTATE attribute can be used to test if
the matrix is presolved or not. See also 5.3.

Set by routines XPRSlpoptimize (LPOPTIMIZE).

See also PRIMALINFEAS.

Fair Isaac Corporation Proprietary Information 512

Chapter 9: Problem Attributes

SYSTEMMEMORY

Description The amount of non problem specific memory used by the solver.

Type Integer

Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.

See also CURRENTMEMORY, PEAKMEMORY

TIME

Description Time spent solving the problem as measured by the optimizer.

Type Integer

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

TOTALMEMORY

Description The amount of dynamically allocated heap memory by the optimizer, including all problems
currently exsisting.

Type Integer

Note On 64bit systems this is a 64bit integer, use XPRSgetintattrib64 to retrieve its value.

See also PEAKMEMORY, CURRENTMEMORY

TREECOMPLETION

Description Estimation of the relative completion of the search tree as fraction between 0 and 1. Its
accuracy mainly depends on the level of degeneracy of a problem and the balancedness of the
search tree.

Type Double

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

TREEMEMORYUSAGE

Description The amount of physical memory, in megabytes, currently being used to store the
branch-and-bound search tree.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also TREEMEMORYLIMIT, GLOBALFILEUSAGE.

Fair Isaac Corporation Proprietary Information 513

Chapter 9: Problem Attributes

TREERESTARTS

Description Number of in-tree restarts performed.

Type Integer

Set by routines XPRSmipoptimize (MIPOPTIMIZE).

See also RESTARTS

UUID

Description Universally Unique Identifier for the problem instance.

Type String

XPRESSVERSION

Description The Xpress version number.

Type String

Note The version number of Xpress.

Fair Isaac Corporation Proprietary Information 514

CHAPTER 10

Return Codes and Error Messages

10.1 Optimizer Return Codes
The table below shows the possible return codes from the subroutine library functions. See also the
MIP Solution Pool Reference Manual for MIP Solution Pool Errors.

Return Code Description
0 Subroutine completed successfully.
1a Bad input encountered.
2a Bad or corrupt file - unrecoverable.
4a Memory error.
8a Corrupt use.
16a Program error.
32 Subroutine not completed successfully, possibly due to invalid argument.
128 Too many users.
a - Unrecoverable error.

When the Optimizer terminates after the STOP command, it may set an exit code that can be tested by
the operating system or by the calling program. The exit code is set as follows:

Return Code Description
0 Program terminated normally (with STOP).
63 LP optimization unfinished.
64 LP feasible and optimal.
65 LP infeasible.
66 LP unbounded.
67 IP optimal solution found.
68 IP search incomplete but an IP solution has been found.
69 IP search incomplete, no IP solution found.
70 IP infeasible.
99 LP optimization not started.
255 Xpress Optimizer has not been initialized.

10.2 Optimizer Error and Warning Messages
Following a premature exit, the Optimizer can be interrogated as necessary to obtain more information
about the specific error or warning which occurred. Library users may return a description of errors or

Fair Isaac Corporation Proprietary Information 515

Chapter 10: Return Codes and Error Messages

warnings as they are encountered using the function XPRSgetlasterror. This function returns
information related to the error code, held in the problem attribute ERRORCODE. For Console users the
value of this attribute is output to the screen as errors or warnings are encountered. For Library users it
must be retrieved using:

XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

The following list contains values of ERRORCODE and a possible resolution of the error or warning.

3 Extension not allowed - ignored.
The specified extension is not allowed. The Optimizer ignores the extension and truncates the
filename.

4 Column <col> has no upper bound.
Column <col> cannot be at its upper bound in the supplied basis since it does not have one. A new
basis will be created internally where column <col> will be at its lower bound while the rest of the
columns and rows maintain their basic/non-basic status.

5 Error on .<ext> file.
An error has occurred on the . <ext> file. Please make sure that there is adequate disk space for
the file and that it has not become corrupted.

6 No match for column <col> in matrix.
Column <col> has not been defined in the COLUMNS section of the matrix and cannot be used in
subsequent sections. Please check that the spelling of <col> is correct and that it is not written
outside the field reserved for column names.

7 Empty matrix. Please increase EXTRAROWS.
There are too few rows or columns. Please increase EXTRAROWS before input, or make sure there
is at least one row in your matrix and try to read it again.

9 Error on read of basis file.
The basis file .BSS is corrupt. Please make sure that there is adequate disk space for the file and
that it has not been corrupted.

11 Not allowed - solution not optimal.
The operation you are trying to perform is not allowed unless the solution is optimal. Please call
XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the problem and make sure the process
is completed. If the control LPITERLIMIT has been set, make sure that the optimal solution can
be found within the maximum number of iterations allowed.

18 Bound conflict for column <col>.
Specified upper bound for column <col> is smaller that the specified lower bound. Please change
one or both bounds to solve the conflict and try again.

19 Eta overflow straight after invert - unrecoverable.
There is not enough memory for eta arrays. Either increase the virtual paging space or the physical
memory.

20 Insufficient memory for array <array>.
There is not enough memory for an internal data structure. Either increase the virtual paging space
or the physical memory.

21 Unidentified section The command is not recognized by the Optimizer.
Please check the spelling and try again. Please refer to the Reference Manual for a list of valid
commands.

Fair Isaac Corporation Proprietary Information 516

Chapter 10: Return Codes and Error Messages

29 Input aborted.
Input has encountered too many problems in reading your matrix and it has been aborted. This
message will be preceded by other error messages whose error numbers will give information
about the nature of each of the problems. Please correct all errors and try again.

36 Linear Optimizer only
You are only authorized to use the Linear Optimizer. Please contact your local sales office to
discuss upgrading to the IP Optimizer if you wish to use this command.

38 Invalid option.
One of the options you have specified is incorrect. Please check the input option and retype the
command. A list of valid options for each command can be found in 7.

41 Global error - contact the Xpress support team.
Internal error. Please contact your local support office.

45 Failure to open global file - aborting. (Perhaps disk is full).
The Optimizer cannot open the .GLB file. This usually occurs when your disk is full. If this is not
the case it means that the .GLB file has been corrupted.

50 Inconsistent basis.
Internal basis held in memory has been corrupted. Please contact your local support office.

52 Too many nonzero elements.
The number of matrix elements exceeds the maximum allowed. If you have the Hyper version then
increase your virtual page space or physical memory. If you have purchased any other version of
the software please contact your local sales office to discuss upgrading if you wish to read
matrices with this number of elements.

56 Reference row entries too close for set <set> member <col>.
The coefficient of column <col> in the constraint being used as reference row for set <set> is too
close to the coefficient of some other column in the reference row. Please make sure the
coefficients in the reference row differ enough from one another. One way of doing this is to
create a non computational constraint (N type) that contains all the variables members of the set
<set> and then assign coefficients whose distance from each other is of at least 1 unit.

58 Duplicate element for column <col> row <row>.
The coefficient for column <col> appears more than once in row <row>. The elements are added
together but please make sure column <col> only has one coefficient in <row> to avoid this
warning message.

61 Unexpected EOF on workfile.
An internal workfile has been corrupted. Please make sure that there is adequate disk space and
try again. If the problem persists please contact your local support office.

64 Error closing file <file>.
The Optimizer could not close file <file>. Please make sure that the file exists and that it is not
being used by another application.

65 Fatal error on read from workfile <file> - program aborted.
An internal workfile has been corrupted. Please make sure that your disk has enough space and
try again. If the problem persists please contact your local support office.

66 Unable to open file <file>.
The Optimizer has failed to open the file <file>. Please make sure that the file exists and there is
adequate disk space.

Fair Isaac Corporation Proprietary Information 517

Chapter 10: Return Codes and Error Messages

67 Error on read of file <file>.
The Optimizer has failed to read the file <file>. Please make sure that the file exists and that it has
not been corrupted.

68 Error on write of file <file>.
The Optimizer has failed to write the file <file>. Please make sure that there is adequate disk
space, that the volume is not corrupt, and that the directory is not write-protected.

69 Path is too long: <path>.
The path <path> cannot be opened in the filesystem because it is too long.

71 Not a basic vector: <vector>.
Dual value of row or column <vector> cannot be analyzed because the vector is not basic.

72 Not a non-basic vector: <vector>.
Activity of row or column <vector> cannot be analyzed because the vector is basic.

73 Problem has too many rows. The maximum is <num>.
The Optimizer cannot input your problem since the number of rows exceeds <num>, the maximum
allowed. If you have purchased any other than the Hyper version of the software please contact
your local sales office to discuss upgrading it to solve larger problems.

76 Illegal priority: entity <ent> value <num>.
Entity <ent> has been assigned an invalid priority value of <num> in the directives files and this
priority will be ignored. Please make sure that the priority value lies between 0 and 1000 and that it
is written inside the corresponding field in the .DIR file.

77 Illegal set card <line>.
The set definition in line <line> of the .MAT or .MPS file creates a conflict. Please make sure that
the set has a correct type and has not been already defined. Please refer to the Reference Manual
for a list of valid set types.

80 File creation error.
The Optimizer cannot create a file. Please make sure that these is adequate disk space and that
the volume is not corrupt.

81 Fatal error on write to workfile <file> - program aborted.
The Optimizer cannot write to the file <file>. Please make sure that there is adequate disk space
and that the volume is not corrupt.

83 Fatal error on write to file - program aborted.
The Optimizer cannot write to an internal file. Please make sure that there is adequate disk space
and that the volume is not corrupt.

84 Input line too long. Maximum line length is <num>
A line in the .MAT or .MPS file has been found to be too long. Please reduce the length to be less
or equal than <num> and input again.

85 File not found: <file>.
The Optimizer cannot find the file <file>. Please check the spelling and that the file exists. If this
file has to be created by the Optimizer, make sure that the process which creates the file has been
performed.

Fair Isaac Corporation Proprietary Information 518

Chapter 10: Return Codes and Error Messages

89 No optimization has been attempted.
The operation you are trying to perform is not allowed unless the solution is optimal. Please call
XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the problem and make sure the process
is completed. If you have set the control
LPITERLIMITmake sure that the optimal solution can be found within the maximum number of
iterations allowed.

91 No problem has been input.
An operation has been attempted that requires a problem to have been input. Please make sure
that XPRSreadprob (READPROB) is called and that the problem has been loaded successfully
before trying again.

97 Split vector <vector>.
The declaration of column <vector> in the COLUMN section of the .MAT or .MPS file must be done
in contiguous line. It is not possible to interrupt the declaration of a column with lines
corresponding to a different vector.

98 At line <num> no match for row <row>.
A non existing row <row> is being used at line number <num> of the .MAT or .MPS file. Please
check spelling and make sure that <row> is defined in the ROWS section.

102 Eta file space exceeded - optimization aborted.
The Optimizer requires more memory. Please increase your virtual paging space or physical
memory and try to optimize again.

107 Too many global entities at column <col>.
The Optimizer cannot input your problem since the number of global entities exceeds the
maximum allowed. If you have the Hyper version then increase your virtual page space or physical
memory. If you have purchased any other version of the software please contact your local sales
office to discuss upgrading it to solve larger problems.

111 Duplicate row <row> - ignored.
Row <row> is used more than once in the same section. Only the first use is kept and subsequent
ones are ignored.

112 Postoptimal analysis not permitted on presolved problems.
Re-optimize with PRESOLVE = 0. An operation has been attempted on the presolved problem.
Please optimize again calling XPRSmaxim (MAXIM), XPRSminim (MINIM) with the l flag or
turning presolve off by setting PRESOLVE to 0.

113 Unable to restore version <ver> save files.
The svf file was created by a different version of the Optimizer and cannot be restored with this
version.

114 Fatal error - pool hash table full at vector <vector>.
Internal error. Please contact your local support office.

120 Problem has too many rows and columns. The maximum is <num>
The Optimizer cannot input your problem since the number of rows plus columns exceeds the
maximum allowed. If you have purchased any other than the Hyper version of the software please
contact your local sales office to discuss upgrading it to solver larger problems.

122 Corrupt solution file.
Solution file .SOL could not be accessed. Please make sure that there is adequate disk space and
that the file is not being used by another process.

Fair Isaac Corporation Proprietary Information 519

Chapter 10: Return Codes and Error Messages

124 Invalid parameter value passed to <function>. Parameter value <param_name> is not allowed
A parameter lookup by name has failed. The provided parameter name does not match any
parameters in Xpress.

127 Not found: <vector>.
An attempt has been made to use a row or column <vector> that cannot be found in the problem.
Please check spelling and try again.

128 Cannot load directives for problem with no global entities.
The problem does not have global entities and so directives cannot be loaded.

129 Access denied to problem state : ’<name>’ (<routine>).
The user is not licensed to have set or get access to problem control (or attribute) <name>. The
routine used for access was <routine>.

130 Bound type illegal <type>.
Illegal bound type <type> has been used in the basis file .BSS. A new basis will be created
internally where the column with the illegal bound type will be at its lower bound and the rest of the
columns and rows will maintain their basic/non-basic status. Please check that you are using
XPRSreadbasis (READBASIS) with the t flag to read compact format basis.

131 No column: <col>.
Column <col> used in basis file .BSS does not exist in the problem. A new basis will be created
internally from where column <col> will have been removed and the rest of columns and rows will
maintain their basic/non-basic status.

132 No row: <row>.
Row <row> used in basis file .BSS does not exist in the problem. A new basis will be created
internally from where row <row> will have been removed and the rest of columns and rows will
maintain their basic/non-basic status.

136 Cannot access control <control_name> via attribute routine <function>
When accessing controls and attributes, the API function called must be matched appropriately to
the type (double, int, string) and access type (control / attribute) of the parameter.

137 Bad internal state found in ‘Struct’ lookup : <parameter_table> (<parameter_name>)
A parameter provided could not be found in the parameters table. This is an internal error, please
contact FICO support.

140 Basis lost - recovering.
The number of rows in the problem is not equal to the number of basic rows + columns in the
problem, which means that the existing basis is no longer valid. This will be detected when
re-optimizing a problem that has been altered in some way since it was last optimized (see below).
A correct basis is generated automatically and no action needs to be taken. The basis can be lost
in two ways: (1) if a row is deleted for which the slack is non-basic: the number of rows will
decrease by one, but the number of basic rows + columns will be unchanged. (2) if a basic column
is deleted: the number of basic rows + columns will decrease by one, but the number of rows will
be unchanged. You can avoid losing the basis by only deleting rows for which the slack is basic,
and columns which are non-basic. (The XPRSgetbasis function can be used to determine the
basis status.) To delete a non-basic row without losing the basis, bring it into the basis first, and to
delete a basic column without losing the basis, take it out of the basis first - the functions
XPRSgetpivots and XPRSpivotmay be useful here. However, remember that the message is
only a warning and the Optimizer will generate a new basis automatically if necessary.

Fair Isaac Corporation Proprietary Information 520

Chapter 10: Return Codes and Error Messages

142 Type illegal <type>.
An illegal priority type <type> has been found in the directives file .DIR and will be ignored. Please
refer to Appendix A for a description of valid priority types.

143 No entity <ent>.
Entity <ent> used in directives file .DIR cannot be found in the problem and its corresponding
priority will be ignored. Please check spelling and that the column <ent> is actually declared as an
entity in the BOUNDS section or is a set member.

151 Illegal MARKER.
The line marking the start of a set of integer columns or a set of columns belonging to a Special
Ordered Set in the .MPS file is incorrect.

152 Unexpected EOF.
The Optimizer has found an unexpected EOF marker character. Please check that the input file is
correct and input again.

153 Illegal card at line <line>.
Line <line> of the .MPS file could not be interpreted. Please refer to the Reference Manual for
information about the valid MPS format.

155 Cannot access control ’<id>’ via attribute routine <routine>.
Controls cannot be accessed from attribute access routines.

156 Cannot access attribute ’<id>’ via control routine <routine>.
Attributes cannot be accessed from control access routines.

157 Cannot access attribute <attribute_name> via control routine <routine>.
Attributes cannot be accessed from control access routines.

158 Unrecognized callback name <callback> (<function>)
The callback name provided to the API function is not recognized.

159 Failed to set default controls.
Attempt failed to set controls to their defaults.

160 Cannot access <typename> type ’<id>’ via routine <routine>.
Accessing an attribute or control requires using a routine with matching type.

161 Cannot access <typename> type ’<name>’ via routine <routine>.
Accessing an attribute or control requires using a routine with matching type.

162 Recording and playback error : <info>.
An error occurred in the recording and playback tool.

163 Failed to copy controls.
Attempt failed to copy controls defined for one problem to another.

164 Problem is not presolved.
Action requires problem to be presolved and the problem is not presolved.

167 Failed to allocate memory of size <bytes> bytes.
The Optimizer failed to allocate required memory of size <bytes>.

168 Required resource not currently available : ’<name>’.
The resource <name> is required by an action but is unavailable.

Fair Isaac Corporation Proprietary Information 521

Chapter 10: Return Codes and Error Messages

169 Failed to create resource : ’<name>’.
The resource <name> failed to create.

170 Corrupt global file.
Global file .GLB cannot be accessed. Please make sure that there is adequate disk space and that
the file is not being used by another process.

171 Invalid row type for row <row>.
XPRSalter (ALTER) cannot change the row type of <row> because the new type is invalid.
Please correct and try again.

173 Name not recognized : <name>.
The control name cannot be recognized.

178 Not enough spare rows to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough space. Please
increase EXTRAROWS before input to improve performance.

179 Load MIP solution failed : ’<status description>’.
Attempt failed to load MIP solution into the Optimizer. See <status description» for details of the
failure.

180 No change to this control allowed.
The Optimizer does not allow changes to this control.

181 Cannot alter bound on BV, SC, UI, PI, or set member.
XPRSalter (ALTER) cannot be used to change the upper or lower bound of a variable if its
variable type is binary, semi-continuous, integer, partial integer, semi-continuous integer, or if it is a
set member.

186 Inconsistent number of variables in problem.
A compact format basis is being read into a problem with a different number of variables than the
one for which the basis was created.

187 Unable to restore alternative system <system> save files.
The svf file was created on a different operating system and cannot be restored on the current
system.

188 Unable to restore - save file is invalid.
The svf file was not in the expected format. It may have been corrupted.

191 Solution in file ’<file>’ (rows:<nrow>, cols:<ncol>) not compatible with problem.
The size of the loaded problem is not compatible with problem size from the solution file.

192 Bad flags <flag string>.
A flag string passed into a command line call is invalid.

193 Possible unexpected results from XPRSreadbinsol (READBINSOL) : <message>.
A call to the XPRSreadbinsol (READBINSOL) may produce unexpected results. See <message>
for details.

195 Cannot read LP solution into presolved problem.
An LP solution cannot be read into a problem in a presolved state.

197 Failed to register callback for event : ’<event>’.
Registering callback for an event failed.

Fair Isaac Corporation Proprietary Information 522

Chapter 10: Return Codes and Error Messages

199 Network simplex not authorized
The Optimizer cannot use the network algorithm. Please contact your local sales office to upgrade
your authorization if you wish to use it.

202 Control parser: <error>.
A generic control parser error, for example a memory allocation failure.

243 The Optimizer requires a newer version of the XPRL library.
You are using the XPRS library from one Xpress distribution and the XPRS library from a previous
Xpress distribution. You should remove all other Xpress distributions from your system library
path environment variable.

245 Not enough memory to presolve matrix.
The Optimizer required more memory to presolve the matrix. Please increase your virtual paging
space or physical memory. If this is not possible try setting PRESOLVE to 0 before optimizing, so
that the presolve procedure is not performed.

247 Directive on non-global entity not allowed: <col>.
Column <col> used in directives file .DIR is not a global entity and its corresponding priority will
be ignored. A variable is a ’global entity’ it is type is not continuous or if it is a set member. Please
refer to Appendix A for details about valid entities and set types.

249 Insufficient improvement found.
Insufficient improvement was found between barrier iterations which has caused the barrier
algorithm to terminate.

250 Too many numerical errors.
Too many numerical errors have been encountered by the barrier algorithm and this has caused
the barrier algorithm to terminate.

251 Out of memory.
There is not enough memory for the barrier algorithm to continue.

256 Simplex Optimizer only
The Optimizer can only use the simplex algorithm. Please contact your local sales office to
upgrade your authorization if you wish to use this command.

257 Simplex Optimizer only
The Optimizer can only use the simplex algorithm. Please contact your local sales office to
upgrade your authorization if you wish to use this command.

259 Warning: The Q matrix may not be semi-definite.
The Q matrix must be positive (negative) semi-definite for a minimization (maximization) problem
in order for the problem to be convex. The barrier algorithm has encountered numerical problems
which indicate that the problem is not convex.

261 <ent> already declared as a global entity - old declaration ignored.
Entity <ent> has already been declared as global entity. The new declaration prevails and the old
declaration prevails and the old declaration will be disregarded.

262 Unable to remove shift infeasibilities of &.
Perturbations to the right hand side of the constraints which have been applied to enable problem
to be solved cannot be removed. It may be due to round off errors in the input data or to the
problem being badly scaled.

Fair Isaac Corporation Proprietary Information 523

Chapter 10: Return Codes and Error Messages

263 The problem has been presolved.
The problem in memory is the presolved one. An operation has been attempted on the presolved
problem. Please optimize again calling XPRSmaxim (MAXIM),
XPRSminim (MINIM) with the l flag or tuning presolve off by setting PRESOLVE to 0. If the
operation does not need to be performed on an optimized problem just load the problem again.

264 Not enough spare matrix elements to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough space. Please
increase EXTRAELEMS before input to improve performance.

266 Cannot read basis for presolved problem. Re-input matrix.
The basis cannot be read because the problem in memory is the presolved one. Please reload the
problem with XPRSreadprob (READPROB) and try to read the basis again.

268 Cannot perform operation on presolved matrix. Please postsolve or re-input matrix.
The problem in memory is the presolved one. Please postsolve or reload the problem and try the
operation again.

279 The Optimizer has not been initialized.
The Optimizer could not be initialized successfully. Please initialize it before attempting any
operation and try again.

287 Cannot read in directives after the problem has been presolved.
Directives cannot be read if the problem in memory is the presolved one. Please reload the
problem and read the directives file .DIR before optimizing. Alternatively, re-optimize using the -l
flag or set PRESOLVE to 0 and try again.

293 This license file does not specify the permitted problem size. Contact your vendor to obtain a valid
license.
The license file is invalid as it doesn’t specify the permitted problem size. Please contact your
local sales office.

314 Invalid number.
The input is not a number. Please check spelling and try again.

319 No Optimizer license found. Please contact your vendor to obtain a license.
Your license does not authorize the direct use of the Optimizer. You probably have a license that
authorizes other Xpress products, for example Mosel or BCL.

320 An internal error has occured. Please report to " SUPPORT_CONTACT_NAME " the circumstances
under which this happened.
An internal error has occured. Please report to " SUPPORT_CONTACT_NAME " the circumstances
under which this happened.

324 Not enough extra matrix elements to complete elimination phase.
Increase EXTRAPRESOLVE before input to improve performance. The elimination phase
performed by the presolve procedure created extra matrix elements. If the number of such
elements is larger than allowed by the EXTRAPRESOLVE parameter, the elimination phase will
stop. Please increase EXTRAPRESOLVE before loading the problem to improve performance.

326 Linear Optimizer only
You are not authorized to use the Quadratic Programming Optimizer. Please contact your local
sales office to discuss upgrading to the QP Optimizer if you wish to use this command.

Fair Isaac Corporation Proprietary Information 524

Chapter 10: Return Codes and Error Messages

352 Command not authorized in this version.
There has been an attempt to use a command for which your Optimizer is not authorized. Please
contact your local sales office to upgrade your authorization if you wish to use this command.

361 QMATRIX or QUADOBJ section must be after COLUMN section.
Error in matrix file. Please make sure that the QMATRIX or QUADOBJ sections are after the
COLUMNS section and try again.

362 Duplicate elements not allowed in QUADOBJ section.
The coefficient of a column appears more than once in the QUADOBJ section. Please make sure
all columns have only one coefficient in this section.

363 Quadratic matrix must be symmetric in QMATRIX section.
Only symmetric matrices can be input in the QMATRIX section of the .MAT or .MPS file. Please
correct and try again.

368 QSECTION second element in line ignored: <line>.
The second element in line <line> will be ignored.

381 Bug in lifting of cover inequalities.
Internal error. Please contact you local support office.

392 This version is not authorized to be called from BCL.
This version of the Optimizer cannot be called from the subroutine library BCL. Please contact your
local sales office to upgrade your authorization if you wish to run the Optimizer from BCL.

394 Fatal communications error.
There has been a communication error between the master and the slave processes. Please check
the network and try again.

395 This version is not authorized to be called from the Optimizer library.
This version of the Optimizer cannot be called from the Optimizer library. Please contact your local
sales office to upgrade your authorization if you wish to run the Optimizer using the libraries.

401 Invalid row type passed to <function>.
Elements <num> of your array has invalid row type <type>. There has been an error in one of the
arguments of function <function>. The row type corresponding to element <num> of the array is
invalid. Please refer to the section corresponding to function <function> in 7 for further
information about the row types that can be used.

402 Invalid row number passed to <function>.
Row number <num> is invalid. There has been an error in one of the arguments of function
<function>. The row number corresponding to element <num> of the array is invalid. Please make
sure that the row numbers are not smaller than 0 and not larger than the total number of rows in
the problem.

403 Invalid global entity passed to <function>.
Element <num> of your array has invalid entity type <type>. There has been an error in one of the
arguments of function <function>. The column type <type> corresponding to element <num> of
the array is invalid for a global entity.

404 Invalid set type passed to <function>.
Element <num> of your array has invalid set type <type>. There has been an error in one of the
arguments of function <function>. The set type <type> corresponding to element <num> of the
array is invalid for a set entity.

Fair Isaac Corporation Proprietary Information 525

Chapter 10: Return Codes and Error Messages

405 Invalid column number passed to <function>.
Column number <num> is invalid. There has been an error in one of the arguments of function
<function>. The column number corresponding to element <num> of the array is invalid. Please
make sure that the column numbers are not smaller than 0 and not larger than the total number of
columns in the problem, COLS, minus 1. If the function being called is XPRSgetobj or
XPRSchgobj a column number of -1 is valid and refers to the constant in the objective function.

406 Invalid row range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of function <function>.
The row numbers lie between 0 and the total number of rows of the problem. Limit <lim> is outside
this range and therefore is not valid.

407 Invalid column range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of function <function>.
The column numbers lie between 0 and the total number of columns of the problem. Limit <lim> is
outside this range and therefore is not valid.

409 Invalid directive passed to <function>.
Element <num> of your array has invalid directive <type>. There has been an error in one of the
arguments of function <function>. The directive type <type> corresponding to element <num> of
the array is invalid. Please refer to the Reference Manual for a list of valid directive types.

410 Invalid row basis type passed to <function>.
Element <num> of your array has invalid row basis type <type>. There has been an error in one of
the arguments of function <function>. The row basis type corresponding to element <num> of the
array is invalid.

411 Invalid column basis type passed to <function>.
Element <num> of your array has invalid column basis type <type>. There has been an error in one
of the arguments of function <function>. The column basis type corresponding to element <num>
of the array is invalid.

412 Invalid parameter number passed to <function>.
Parameter number <num> is out of range. LP or MIP parameters and controls can be used in
functions by passing the parameter or control name as the first argument or by passing an
associated number. In this case number <num> is an invalid argument for function <function>
because it does not correspond to an existing parameter or control. If you are passing a number
as the first argument, please substitute it with the name of the parameter or control whose value
you wish to set or get. If you are already passing the parameter or control name, please check 7 to
make sure that is valid for function <function>.

413 Not enough spare rows in <function>.
Increase EXTRAROWS before input. There are not enough spare rows to complete function
<function> successfully. Please increase EXTRAROWS before XPRSreadprob (READPROB) and try
again.

414 Not enough spare columns in <function>.
Increase EXTRACOLS before input. There are not enough spare columns to complete function
<function> successfully. Please increase EXTRACOLS before
XPRSreadprob (READPROB) and try again.

415 Not enough spare matrix elements in <function>.
Increase EXTRAELEMS before input. There are not enough spare matrix elements to complete
function <function> successfully. Please increase EXTRAELEMS before XPRSreadprob
(READPROB) and try again.

Fair Isaac Corporation Proprietary Information 526

Chapter 10: Return Codes and Error Messages

416 Invalid bound type passed to <function>.
Element <elem> of your array has invalid bound type <type>. There has been an error in one of the
arguments of function <function>. The bound type <type> of element number <num> of the array
is invalid.

417 Invalid complement flag passed to <function>. Element <elem> of your array has invalid
complement flag <flag>.
Element <elem> of your array has an invalid complement flag <flag>. There has been an error in
one of the arguments of function <function>. The complement flag corresponding to indicator
constraint <num> of the array is invalid.

418 Invalid cut number passed to <function>.
Element <num1> of your array has invalid cut number <num2>. Element number <num1> of your
array contains a cut which is not stored in the cut pool. Please check that <num2> is a valid cut
number.

419 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

420 Too many saved matrices in savmat
Version 12 compatibility interface only. There is a hard limit of at most 64 matrices that can be
saved with savmat or cpymat

421 Matrix no. <mat> has not been saved. Cannot restore in resmat
Version 12 compatibility interface only. No matrix with number <mat> has been saved with
savmat or cpymat.

422 Solution is not available.
There is no solution available. This could be because the problem in memory has been changed or
optimization has not been performed. Please optimize and try again.

423 Duplicate rows/columns passed to <function>.
Element <elem> of your array has duplicate row/col number <num>. There has been an error in
one of the arguments of function <function>. The element number <elem> of the argument array is
a row or column whose sequence number <num> is repeated.

424 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

425 Column already basic.
The column cannot be pivoted into the basis since it is already basic. Please make sure the
variable is non-basic before pivoting it into the basis.

426 Column not eligible to leave basis.
The column cannot be chosen to leave the basis since it is already non-basic. Please make sure
the variable is basic before forcing it to leave the basis.

427 Invalid column type passed to <function>.
Element <num> of your array has invalid column type <type>. There has been an error in one of the
arguments of function <function>. The column type <type> corresponding to element <num> of
the array is invalid.

429 No basis is available.
No basis is available.

Fair Isaac Corporation Proprietary Information 527

Chapter 10: Return Codes and Error Messages

430 Column types cannot be changed during the global search.
The Optimizer does not allow changes to the column type while the global search is in progress.
Please call this function before starting the global search or after the global search has been
completed. You can call XPRSmaxim (MAXIM) or XPRSminim (MINIM) with the l flag if you do
not want to start the global search automatically after finding the LP solution of a problem with
global entities.

434 Invalid name passed to XPRSgetindex.
A name has been passed to XPRSgetindex which is not the name of a row or column in the
matrix.

436 Cannot trace infeasibilities when integer presolve is turned on.
Try XPRSmaxim (XPRSmaxim) / XPRSminim (MINIM) with the l flag. Integer presolve can set
upper or lower bounds imposed by the column type as well as those created by the interaction of
the problem constraints. The infeasibility tracing facility can only explain infeasibilities due to
problem constraints.

459 Not enough memory for branch and bound tree
Not enough resources for branch and bound tree (<type>)
Failure locking branch and bound tree (probably out of memory)
Failure in handling of branch and bound tree (<type>)
Functions to signal that an unexpected error happened during the management of the
branch-and-bound tree for storing information from a global solve. The string <type> will provide
more information about the particular failure. These errors are typical of running out of memory.

473 Row classification not available.

474 Column passed to <routine> has inconsistent bounds. See column <index> of <count>.
The bounds are inconsistent for column <index> of the <count> columns passed into routine
<routine>.

475 Inconsistent bounds [<lb>,<ub>] for column <column name> in call to <routine>.
The lower bound <lb> is greater than the upper bound <ub> in the bound pair given for column
<column name> passed into routine <routine>.

476 Unable to round bounds [<lb>,<ub>] for integral column <column name> in call to <routine>.
Either the lower bound <lb> is greater than the upper bound <ub> in the bound pair given for the
integer column <column name> passed into routine <routine> or the interval defined by <lb> and
<ub> does not contain an integer value.

501 Error at <line> Empty file.
Read aborted. The Optimizer cannot read the problem because the file is empty.

502 Warning: ’min’ or ’max’ not found at <line.col>. No objective assumed.
An objective function specifier has not been found at column <col>, line <line> of the LP file. If you
wish to specify an objective function please make sure that ’max’, ’maximize’, ’maximum’, ’min’,
’minimize’ or ’minimum’ appear.

503 Objective not correctly formed at <line.col>. Aborting.
The Optimizer has aborted the reading of the problem because the objective specified at line <line>
of the LP file is incorrect.

504 No keyword or empty problem at <line.col>.
There is an error in column <col> at line <line> of the LP file. Neither ’Subject to’, ’subject to:’,
’subject to’, ’such that’ ’s.t.’, or ’st’ can be found. Please correct and try again.

Fair Isaac Corporation Proprietary Information 528

Chapter 10: Return Codes and Error Messages

505 A keyword was expected at <line.col>.
A keyword was expected in column <col> at line <line> pf the LP file. Please correct and try again.

506 The constraint at <line.col> has no term.
A variable name is expected at line <line> column <col>: either an invalid character (like ’+’ or a
digit) was encountered or the identifier provided is unknown (new variable names are declared in
constraint section only).

507 RHS at <line.col> is not a constant number.
Line <line> of the LP file will be ignored since the right hand side is not a constant.

508 The constraint at <line> has no term.
The LP file contains a constraint with no terms.

509 The type of the constraint at <line.col> has not been specified.
The constraint defined in column <col> at line <line> of the LP file is not a constant and will be
ignored.

510 Upper bound at <line.col> is not a numeric constant.
The upper bound declared in column <col> at line <line> of the LP file is not a constant and will be
ignored.

511 Bound at <line.col> is not a numeric constant.
The bound declared in column <col> at line <line> of the LP file is not a constant and will be
ignored.

512 Unknown word starting with an ’f’ at <line.col>. Treated as ’free’.
A word starting with an ’f’ and not known to the Optimizer has been found in column <col> at line
<line> of the LP file. The word will be read into the Optimizer as ’free’.

513 Wrong bound statement at <line.col>.
The bound statement in column <col> at line <line> is invalid and will be ignored.

514 Lower bound at <line.col> is not a numeric constant. Treated as -inf.
The lower bound declared in column <col> at line <line> of the LP file is not a constant. It will be
translated into the Optimizer as the lowest possible bound.

515 Sign ’<’ expected at <line.col>.
A character other than the expected sign ’<’ has been found in column <col> at line <line> of the LP
file. This line will be ignored.

516 Problem has not been loaded.
The problem could not be loaded into the Optimizer. Please check the other error messages
appearing with this message for more information.

517 Row names have not been loaded.
The name of the rows could not be loaded into the Optimizer. Please check the other error
messages appearing with this message for more information.

518 Column names have not been loaded.
The name of the columns could not be loaded into the Optimizer. Please check the other error
messages appearing with this message for more information.

Fair Isaac Corporation Proprietary Information 529

Chapter 10: Return Codes and Error Messages

519 Not enough memory at <line.col>.
The information in column <col> at line <line> of the LP file cannot be read because all the
allocated memory has already been used. Please increase your virtual page space or physical
memory and try again.

520 Unexpected EOF at <line.col>.
An unexpected EOF marker character has been found at line <line> of the LP file and the loading of
the problem into the Optimizer has been aborted. Please correct and try again.

521 Number expected for exponent at <line.col>.
The entry in column <col> at line <line> of the LP file is not a properly expressed real number and
will be ignored.

522 Line <line> too long (length>255).
Line <line> of the LP file is too long and the loading of the problem into the Optimizer has been
aborted. Please check that the length of the lines is less than 255 and try again.

523 The Optimizer cannot reach line <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact your local support
office.

524 Constraints could not be read into the Optimizer. Error found at <line.col>.
The reading of the LP constraints has failed due to an internal problem. Please contact your local
support office.

525 Bounds could not be set into the Optimizer. Error found at <line.col>.
The setting of the LP bounds has failed due to an internal problem. Please contact your local
support office.

526 LP problem could not be loaded into the Optimizer. Error found at <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact your local support
office.

527 Copying of rows unsuccessful.
The copying of the LP rows has failed due to an internal problem. Please contact your local
support office.

528 Copying of columns unsuccessful.
The copying of the LP columns has failed due to an internal problem. Please contact your local
support office.

529 Redefinition of constraint at <line.col>.
A constraint is redefined in column <col> at line <line> of the LP file. This repeated definition is
ignored.

530 Name too long. Truncating it.
The LP file contains an identifier longer than 64 characters: it will be truncated to respect the
maximum size.

531 Sign ’>’ expected here <line>.
A greater than sign was expected in the LP file.

532 Quadratic term expected here <pos>
The LP file reader expected to read a quadratic term at position <pos>: a variable name and ’̂2’ or
the product of two variables. Please check the quadratic part of the objective in the LP file.

Fair Isaac Corporation Proprietary Information 530

Chapter 10: Return Codes and Error Messages

533 Wrong exponent value. Treated as 2 <pos>
The LP file reader encountered an exponent different than 2 at position <pos>. Such exponents are
automatically replaced by 2.

535 A constraint name was expected here.
The LP file reader expected to read a row name in the ranges section.

536 Wrong range statement at <pos>.
The LP file reader expected to read a range type in the ranges section.

538 Error when loading the SOS names
The LP format file reader failed to create the SOS names. The previous error should explain why
this failed.

539 Invalid indicator constraint condition at <line.col>
The condition part in column <col> of the indicator constraint at line <line> is invalid.

545 A variable name was found but ignored at <pos> due to not appearing before.
The LP file reader read a variable in bounds or integer type sections that does not appear in the
matrix.

552 ’S1|2:’ expected here. Skipping <pos>
Unknown set type read while reading the LP file at position <pos>. Please use set type ’S1’ or ’S2’.

553 This set has no member. Ignoring it <pos>
An empty set encountered while reading the LP file at position <pos>. The set has been ignored.

554 Weight expected here. Skipping <pos>
A missing weight encountered while reading sets in the LP file at position <pos>. Please check
definitions of the sets in the file.

555 Cannot presolve cut with PRESOLVEOPS bits 0, 5 or 8 set or bit 11 cleared.
Can not presolve cut with PRESOLVEOPS bits 0, 5 or 8 set or bit 11 cleared.
No cuts can be presolved if the following presolve options are turned on:
bit 0: singleton column removal,
bit 5: duplicate column removal,
bit 8: variable eliminations
or if the option
bit 11: No advanced IP reductions is turned off. Please check the presolve settings.

557 Integer solution is not available
Failed to retrieve an integer solution because no integer solution has been identified yet.

558 Column <col> duplicated in basis file - new entry ignored.
Column <col> is defined in the basis file more than once. Any repeated definitions are ignored.

559 The old feature <feature> is no longer supported
The feature <feature> is no longer supported and has been removed. Please contact Xpress
support for help about replacement functionality.

602 Values must be specified for all columns when column indices are not provided.
In a call to XPRSaddmipsol the column index array is optional. When this argument is omitted
(given as NULL), the length of the solution value array must match ORIGINALCOLS.

604 String passed as parameter is too long
The file name passed to XPRSsetlogfile can be at most 200 characters long.

Fair Isaac Corporation Proprietary Information 531

Chapter 10: Return Codes and Error Messages

606 Failed to parse list of diving heuristic strategies at position <pos>
Invalid diving heuristic strategy number provided in position <pos> of the string controls
HEURDIVEUSE or HEURDIVETEST. Please check control HEURDIVESTRATEGY for valid strategy
numbers.

706 Not enough memory to add sets.
Insufficient memory while allocating memory for the new sets. Please free up some memory, and
try again.

707 Function can not be called during the global search
The function being called cannot be used during the global search. Please call the function before
starting the global search.

708 Invalid input passed to <function>
Must specify mstart or mnel when creating matrix with columns
No column information is available when calling function <function>. If no columns were meant to
be passed to the function, then please set the column number to zero. Note, that mstart and
mnel should be set up for empty columns as well.

710 MIPTOL (FEASTOL) <val1> must not be less than FEASTOL (MATRIXTOL) <val2>
The integer tolerance MIPTOL, feasibility tolerance FEASTOL, and zero tolerance MATRIXTOL
should be ordered as MIPTOL >= FEASTOL >= MATRIXTOL. Please increase MIPTOL or decrease
MATRIXTOL before setting FEASTOL.

711 MIPTOL (FEASTOL) <val1> must not be less than FEASTOL (MATRIXTOL) <val2>. Adjusting
MIPTOL (FEASTOL)
The integer tolerance MIPTOL, feasibility tolerance FEASTOL, and zero tolerance MATRIXTOL
should be ordered as MIPTOL >= FEASTOL >= MATRIXTOL. The value of MIPTOL or FEASTOL has
been increased to (val2) for the search.

712 Function not permitted when problem is presolved: <func>
The problem is currently in a presolved state and the function <func> can only be called when the
problem is in its original state. XPRSpostsolve can be called to return the problem to its original
state.

713 <row/column> index out of bounds calling <function>. <index1> is ’<’ or ’>’ <bound>
An index is out of its bounds when calling function <function>. Please check the indices.

715 Invalid objective sense passed to <function>. Must be XPRS_OBJ_MINIMIZE or
XPRS_OBJ_MAXIMIZE.
Invalid objective sense was passed to function <function>. Please use either
XPRS_OBJ_MINIMIZE or XPRS_OBJ_MAXIMIZE.

716 Invalid names type passed to XPRSgetnamelist.
Type code <num> is unrecognized.
An invalid name type was passed to XPRSgetnamelist.

717 Generic error.
Used to promote license manager errors.

721 No IIS has been identified yet
No irreducible infeasible set (IIS) has been found yet. Before running the function, please use IIS
-f, IIS -n or IIS -a to identify an IIS.

Fair Isaac Corporation Proprietary Information 532

Chapter 10: Return Codes and Error Messages

722 IIS number <num> is not yet identified
Irreducible infeasible set (IIS) with number <num> is not available. The number <num> stands for
the ordinal number of the IIS. The value of <num> should not be larger than NUMIIS.

723 Unable to create an IIS sub-problem
The irreducible infeasible set (IIS) procedure is unable to create the IIS approximation. Please
check that there is enough free memory.

724 Error while optimizing the IIS sub-problem
An error occurred while minimizing an irreducible infeasible set (IIS) sub-problem. Please check
the return code set by the Optimizer.

725 Problems with variables for which shift infeasibilities cannot be removed are considered infeasible
in the IIS
The irreducible infeasible set (IIS) sub-problem being solved by the IIS procedure is on the
boundary of being feasible or infeasible. For problems that are only very slightly infeasible, the
Optimizer applies a technique called infeasibility shifting to produce a solution. Such solutions are
considered feasible, although if solved as a separate problem, a warning message is given. For
consistency reasons however, in the case of the IIS procedure such problems are treated as being
infeasible.

726 This function is not valid for the IIS approximation. Please specify an IIS with count number > 0
Irreducible infeasible set (IIS) number 0 (the ordinal number of the IIS) refers to the IIS
approximation, but the functionality called is not available for the IIS approximation. Please use an
IIS number between 1 and NUMIIS.

727 Bound conflict on column <col>; IIS will not continue
There is a bound conflict on column <col>. Please check the bounds on the column, and remove
any conflicts before running the irreducible infeasible set (IIS) procedure again (bound conflicts
are trivial IISs by themselves).

728 Unknown file type specification <type>
Unknown file type was passed to the irreducible infeasible set (IIS) sub-problem writer. Please
refer to XPRSiiswrite for the valid file types.

729 Writing the IIS failed
Failed to write the irreducible infeasible set (IIS) sub-problem or the comma separated file (.csv)
containing the IIS information to disk. Please check access permissions.

730 Failed to retrieve data for IIS <num>
The irreducible infeasible set (IIS) procedure failed to retrieve the internal description for IIS
number <num>. This may be an internal error, please contact your local support office.

731 IIS stability error: reduced or modified problem appears feasible
Some problems are on the boundary of being feasible or infeasible. For such problems, it may
happen that the irreducible infeasible set (IIS) working problem becomes feasible unexpectedly. If
the problem persists, please contact your local support office.

732 Unknown parameter or wrong parameter combination
The wrong parameter or parameter combination was used when calling the irreducible infeasible
set (IIS) console command. Please refer to the IIS command documentation for possible
combinations.

733 Filename parameter missing
No filename is provided for the IIS -w or IIS -e console command. Please provide a file name
that should contain the irreducible infeasible set (IIS) information.

Fair Isaac Corporation Proprietary Information 533

Chapter 10: Return Codes and Error Messages

734 Problem data relevant to IISs is changed
This failure is due to the problem being changed between iterative calls to IIS functions. Please
start the IIS analysis from the beginning.

735 IIS function aborted
The irreducible infeasible set (IIS) procedure was aborted by either hitting CTRL-C or by reaching a
time limit.

736 Initial infeasible subproblem is not available. Run IIS -f to set it up
The initial infeasible subproblem requested is not available. Please use the IIS -f function to
generate it.

738 The approximation may be inaccurate. Please use IIS or IIS -n instead.
The irreducible infeasible set (IIS) procedure was run with the option of generating the
approximation of an IIS only. However, ambiguous duals or reduces costs are present in the initial
infeasible subproblem. This message is always preceded by warning 737. Please continue with
generating IISs to resolve the ambiguities.

739 Bound conflict on column <col>; Repairinfeas will not continue
There is a bound conflict on column <col>. Please check the bounds on the column, and remove
any conflicts before running the XPRSrepairinfeas procedure again (bound conflicts are trivial
causes of infeasibility).

740 Unable to create relaxed problem
The Optimizer is unable to create the relaxed problem. The relaxed problem may require
significantly more memory than the base problem if many of the preferences are set to a positive
value. Please check that there is enough free memory.

741 Relaxed problem is infeasible. Please increase freedom by introducing new nonzero preferences
The relaxed problem remains infeasible. Zero preference values indicate constraints (or bounds)
that will not be relaxed. Try introducing new nonzero preferences to allow the problem to become
feasible.

742 Repairinfeas stability error: relaxed problem is infeasible. You may want to increase the value of
delta
The relaxed problem is reported to be infeasible by the Optimizer in the second phase of the
repairinfeas procedure. Try increasing the value of the parameter delta to improve stability.

743 Optimization aborted, repairinfeas unfinished
The optimization was aborted by CTRL-C or by hitting a time limit. The relaxed solution is not
available.

744 Optimization aborted, MIP solution may be sub-optimal
The MIP optimization was aborted by either CTRL-C or by hitting a time limit. The relaxed solution
may not be optimal.

745 Optimization of the relaxed problem is sub-optimal
The relaxed solution may not be optimal due to early termination.

746 All preferences are zero, repairinfeas will not continue
Use options -a -b -r -lbp -ubp -lrp or -grp to add nonzero preferences
Zero preference values indicate constraints (or bounds) that will not be relaxed. In case when all
preferences are zero, the problem cannot be relaxed at all. Try introducing nonzero preferences
and run XPRSrepairinfeas again.

Fair Isaac Corporation Proprietary Information 534

Chapter 10: Return Codes and Error Messages

748 Negative preference given for a <sense> bound on <row/column> <name>
A negative preference value is set for constraint or bound <name>. Preference values should be
non-negative. The preferences describe the modeler’s willingness to relax a given constraint or
bound, with zero preferences interpreted as the corresponding constraints or bounds not being
allowed to be relaxed. Please provide a zero preference if the constraint or bound is not meant to
be relaxed. Also note, that very small preferences lead to very large penalty values, and thus may
increase the numerical difficulty of the problem.

749 Relaxed problem is infeasible due to cutoff
A user defined cutoff value makes the relaxed problem infeasible. Please check the cutoff value
CURRMIPCUTOFF.

750 Empty matrix file : <name>
The MPS file <name> is empty. Please check the name of the file and the file itself.

751 Invalid column marker type found : <text>
The marker type <text> is not supported by the MPS reader. Please refer to the Appendix A.2 for
supported marker types.

752 Invalid floating point value : <text>
The reader is unable to interpret the string <text> as a numerical value.

753 <num> lines ignored
The MPS reader has ignored <num> number of lines. This may happen for example if an
unidentified section was found (in which case warning 785 is also invoked).

754 Insufficient memory
Insufficient memory was available while reading in an MPS file.

755 Column name is missing
A column name field was expected while reading an mps file. Please add a column name to the
row. If the MPSFORMAT control is set to 0 (fixed format) then please check that the name field
contains a column name, and is positioned correctly.

756 Row name is missing in section OBJNAME
No row name is provided in the OBJNAME section. If no user defined objective name is provided,
the reader uses the first neutral row (if any) as the objective row. However, to avoid ambiguity, if no
user defined objective row was meant to be supplied, then please exclude the OBJNAME section
from the MPS file.

757 Missing objective sense in section OBJSENSE
No objective sense is provided in section OBJSENSE. If no user defined objective sense is
provided, the reader sets the objective sense to minimization by default. However, to avoid
ambiguity, if no user defined objective sense was meant to be supplied, then please exclude the
OBJSENSE section from the MPS file.

758 No SETS and SOS sections are allowed in the same file
The Optimizer expects special order sets to be defined in the SETS section. However, for
compatibility considerations, the Optimizer can also interpret the SOS section. The two formats
differ only in syntax, and feature the same expressive power. Both a SETS and a SOS section are
not expected to be present in the same matrix file.

759 File not in fixed format : <file>
The Optimizer control MPSFORMAT was set to 0 to indicate that the mps file <file> being read is in
fixed format, but it violates the MPS field specifications.

Fair Isaac Corporation Proprietary Information 535

Chapter 10: Return Codes and Error Messages

760 Objective row <row> defined in section OBJNAME or in MPSOBJNAME was not found
The user supplied objective row <row> is not found in the MPS file. If the MPS file contains an
OBJNAME section please check the row name provided, otherwise please check the value of the
control MPSOBJNAME.

761 Problem name is not provided
The NAME section is present in the MPS file, but contains no problem name (not even blanks), and
the MPSFORMAT control is set to 0 (fixed format) preventing the reader to look for the problem
name in the next line. Please make sure that a problem name is present, or if it’s positioned in the
next line (in which case the first column in the line should be a whitespace) then please set
MPSFORMAT to 1 (free format) or -1 (autodetect format).

762 Missing problem name in section NAME
Unexpected end of file while looking for the problem name in section NAME. The file is likely to be
corrupted. Please check the file.

763 Ignoring range value for free row : <row>
A range value is defined for free row <row>. Range values have no effect on free rows. Please
make sure that the type of the row in the ROWS section and the row name in the RANGE section are
both correct.

764 <sec> section is not yet supported in an MPS file, skipping section
The section <sec> is not allowed in an MPS file. Sections like "SOLUTION" and "BASIS" must
appear in separate ".slx" and ".bas" files.

765 Ignoring repeated specification for column : <col>
Column <col> is defined more than once in the MPS file. Any repeated definitions are ignored.
Please make sure to use unique column names. If the column names are unique, then please
make sure that the COLUMNS section is organized in a contiguous order.

766 Ignoring repeated coefficients for row <row> found in RANGE <range>
The range value for row <row> in range vector <range> in the RANGE section is defined more than
once. Any repeated definitions are ignored. Please make sure that the row names in the RANGE
section are correct.

767 Ignoring repeated coefficients for row <row> found in RHS <rhs>
The value for row <row> in right hand side vector <rhs> is defined more than once in the RHS
section. Any repeated definitions are ignored. Please make sure that the row names in the RHS
section are correct.

768 Ignoring repeated specification for row : lt;rowgt;
Row <row> is defined more than once in the MPS file. Any repeated definitions are ignored. Please
make sure to use unique row names.

769 Unexpected bound type : <type>
The BOUNDS section contains the unknown bound type <type>. If the MPSFORMAT control is set to
0 (fixed format) then please make sure that the type of the bound is correct and positioned
properly.

770 Missing prerequisite section <sec1> for section <sec2>
Section <sec2> must be defined before section <sec1> in the MPS file being read. Please check
the order of the sections.

771 Unable to open file : <file>
Please make sure that file <file> exists and is not locked.

Fair Isaac Corporation Proprietary Information 536

Chapter 10: Return Codes and Error Messages

772 Unexpected column type : <type> : <column>
The COLUMNS section contains the unknown column type <type>. If the MPSFORMAT control is set
to 0 (fixed format) then please make sure that the type of the column is correct and positioned
properly.

773 Unexpected number of fields in section : <sec>
Unexpected number of fields was read by the reader in section <sec>. Please check the format of
the line. If the MPSFORMAT control is set to 0 (fixed format) then please make sure that the fields
are positioned correctly. This error is often caused by names containing spaces in free format, or
by name containing spaces in fixed format but positioned incorrectly.

774 Unexpected row type : <type>
The ROWS section contains the unknown row type <type>. If the MPSFORMAT control is set to 0
(fixed format) then please make sure that the type of the row is correct and positioned properly.

775 Unexpected set type : <type>
The SETS or SOS section contains the unknown set type <type>. If the MPSFORMAT control is set to
0 (fixed format) then please make sure that the type of the row is correct and positioned properly.

776 Ignoring unknown column name <col> found in BOUNDS
Column <col> found in the BOUNDS section is not defined in the COLUMNS section. Please check
the name of the column.

777 Ignoring quadratic coefficient for unknown column : <col>
Column <col> found in the QUADOBJ section is not defined in the COLUMNS section. Please check
the name of the column.

778 Ignoring unknown column name <col> found in set <set>
Column <col> found in the definition of set <set> in the SETS or SOS section is not defined in the
COLUMNS section. Please check the name of the column.

779 Wrong objective sense: <sense>
The reader is unable to interpret the string <sense> in the OBJSENSE section as a valid objective
sense. The objective sense should be either MAXIMIZE or MINIMIZE. The reader accepts
sub-strings of these if they uniquely define the objective sense and are at least 3 characters long.
Note that if no OBJSENSE section is present, the sense of the objective is set to minimization by
default. Please provide a valid objective sense.

780 Ignoring unknown row name <row> found in column <column>
Row <row> found in the column <column> in the COLUMNS section is not defined in the ROWS
section. Please check the name of the row.

781 Ignoring unknown row name <row> found in RANGE
Row <row> found in the RANGE section is not defined in the ROWS section. Please check the name
of the row.

782 Ignoring unknown row name <row> found in RHS
Row <row> found in the RHS section is not defined in the ROWS section. Please check the name of
the row.

783 Expecting numerical value
A numerical value field was expected while reading an MPS file. Please add the missing numerical
entry. If the MPSFORMAT control is set to 0 (fixed format) then please check that the value field
contains a numerical value and is positioned correctly.

Fair Isaac Corporation Proprietary Information 537

Chapter 10: Return Codes and Error Messages

784 Null char in text file
A null char (’\0’) encountered in the MPS file. An MPS file is designed to be a text file and a null
char indicates possible errors. Null chars are treated as spaces ’ ’ by the reader, but please check
the origin of the null char.

785 Unrecognized section <sec> skipped
The section <sec> is not recognized as an MPS section. Please check the section identifier string
in the MPS file. In such cases, the reader stops reading to avoid unexpected results after reading.

787 Empty set: <set>
No set members are defined for set <set> in the MPS file. Please check if the set is empty by
intention.

788 Repeated definition of section <sec> ignored
Section <sec> is defined more than once in the mps file. Any repeated definitions are ignored.
Many sections may include various versions of the described part if the problem (like different
RHS values, BOUNDS or RANGES), but please include those in the same section.

790 Wrong section in the basis file: <section>
Unrecognized section <section> found in the basis file. Please check the format of the file.

791 ENDATA is missing. File is possibly corrupted
The ENDATA section is missing from the end of the file. This possible indicates that part of the file
is missing. Please check the file.

792 Ignoring BS field
BS fields are not supported by the Optimizer, and are ignored. Basis files containing BS fields may
be created by external software. Please convert BS fields to either XU or XL fields.

793 Superbasic variable outside bounds. Value moved to closest bound
A superbasic variable in the basis file are outside its bounds. The value of the variable has been
modified to satisfy its bounds. Please check that the value in the basis file is correct. In case the
variable should be set to the value given by the basis file, please modify the bounds on the variable.

794 Value of fixed binary column <col> changed to <val>
The lower and upper bound for binary variable <col> was to <val>. Binaries may only be fixed at
level 0 or 1.

795 Xpress/Mosel extensions: number of opening and closing brackets mismatch
The LP file appears to be created by Mosel, using the Xpress MPS extensions to include variable
names with whitespaces, however the file seems to be broken due to a mismatch in opening and
closing brackets.

796 Char <c> is not supported in a name by file format. It may not be possible to read such files back
correctly. Please set FORCEOUTPUT to 1 to write the file anyway, or use scrambled names.
Certain names in the problem object may be incompatible with different file formats (like names
containing spaces for LP files). If the Optimizer might be unable to read back a problem because
of non-standard names, it will give an error message and won’t create the file. However, you may
force output using control FORCEOUTPUT or change the names by using scrambled names (-s
option for XPRSwriteprob).

797 Wrong section in the solution file: <sec>
Section <sec> is not supported in .slxMPS solution files.

Fair Isaac Corporation Proprietary Information 538

Chapter 10: Return Codes and Error Messages

798 Empty <type> file : <file>
File <file> of type <type> is empty.

799 Ignoring quadratic coefficients for unknown row name <row>
No row with name <row> was defined in the ROWS sections. All rows having a QCMATRIX section
must be defined as a row with type ’L’ or ’G’ in the ROWS section.

835 Given solution column count does not match given problem
The given solution contains a different column count compared to the loaded problem.

843 Delayed row (lazy constraint) <row> is not allowed to be of type ’N’. Row ignored
Delayed rows cannot be neutral. Please define all neutral rows as ordinary ones in the ROWS
section.

847 Model cut (user cut) <row> is not allowed to be of type ’N’. Row ignored
Model cuts cannot be neutral. Please define all neutral rows as ordinary ones in the ROWS section.

862 Quadratic constraint rows must be of type ’L’ or ’G’. Wrong row type for row <row>
All quadratic rows must be of type ’L’ or ’G’ in the ROWS section of the MPS file (and the
corresponding quadratic matrix be positive semi-definite).

863 The current version of the Optimizer does not yet support MIQCQP problems
The current version of the Optimizer does not yet support mixed integer quadratically constrained
problems.

864 Quadratic constraint rows must be of type ’L’ or ’G’. Wrong row type for row <row>
A library function was trying to define (or change to) a row with type ’L’ having quadratic
coefficients. All quadratic rows are required to be of type ’L’ (and the corresponding quadratic
matrix be positive semi-definite).

865 Row <row> is already quadratic
Cannot add quadratic constraint matrices together. To change an already existing matrix, either
use the XPRSchgqrowcoeff library function, or delete the old matrix first.

866 The divider of the quadratic objective at <pos> must be 2 or omitted
The LP file format expects, tough may be omitted, an "/2" after the each quadratic objective term
defined between square brackets. No other divider is accepted. The role of the "/2" is to notify the
user of the implied division in the quadratic objective (that does not apply to quadratic
constraints).

867 Not enough memory for tree search
There is not enough memory for one of the nodes in the tree search.

884 Fatal user error detected in callback
An error occurred during a user callback.

898 Cannot define range for quadratic rows. Range for row <row> ignored
Quadratic constraints are required to be convex, and thus it is not allowed to set a range on
quadratic rows. Each quadratic row should have a type of ’L’ or ’G’.

899 The quadratic objective is not convex. Set IFCHECKCONVEXITY=0 to disable check
The quadratic objective is not convex. Please check that the proper sense of optimization
(minimization or maximization) is used.

Fair Isaac Corporation Proprietary Information 539

Chapter 10: Return Codes and Error Messages

900 The quadratic part of row <row> defines a non-convex region. Set IFCHECKCONVEXITY=0 to
disable check.
The quadratic in <row> is not convex. Please check that the proper sense of constraint is defined
(less or equal or greater or equal constraint).

901 901 Duplicated QCMATRIX section for row <row> ignored.
The MPS file may contain one Q matrix for each row. In case of duplicates, only the first is loaded
into the matrix

902 Calling function <func> is not supported from the current context.
This XPRS function cannot be called from this callback.

903 Row <row> with right hand side value larger than infinity ignored.
The matrix file being read contains a right hand side that is larger than the predefined infinity
constant XPRS_PLUSINFINITY. Row is made neutral.

904 Function is not allowed outside optnode callback.
The used function of the branching manager is not allowed to call outside optnode.

905 Bad index passed to function.
The index passed to function is not in range of the attribute.

906 Global entity cannot be branched further.
The selected global entity is fixed and cannot be branched further.

907 Column is continuous and cannot be branched.
The given column is of continuous type. The used function does not support branching on
continuous columns.

909 Limit exceeded.
The limit of a certain object is exceeded.

910 Empty branch or branching object.
The given branch or branching object is empty.

911 Invalid information provided for branching object.
The given branching object contains invalid information.

912 Branching object(s) cannot be changed/used at this time.
The branching object is not fix yet. Hence, it cannot be changed/used.

913 Required data missing in function call for branching object.
Data is missing in function call for branching object.

914 Unexpected error triggered for branching object.
Unexpected error happened on a branching object.

915 Branching object (ID=<id>) rejected because it is empty or contains empty branches.
Improper branching object.

918 Module error.
Model can not be modified.

Fair Isaac Corporation Proprietary Information 540

Chapter 10: Return Codes and Error Messages

919 Column must be of type semi-continuous, semi-integer or partial integer to change its global
bound.
The global bound can be modified only for semi-continuous, semi-integer or partial integer column.

920 Semi-continuous lower bound for column <column> must be non-negative.
Only non-negative lower bounds can be specified for semi-continuos columns.

921 Partial integer limit for column <column> is outside the allowed range of 0 to 228 – 1.
The give limit for the column is out of the allowed range.

932 Unknown column name <column> found in piecewise linear term.
One of the columns given in the PWLOBJ or PWLCON section of the MPS file was not defined in
the COLUMNS section.

933 Breakpoints for piecewise linear constraint <index> not sorted and contradicting points (<x>,<y1>)
and (<x>,<y2>) given.
The breakpoints for this piecewise linear function were not given as a sorted list, and due to
contradicting points this cannot be fixed by sorting (since it is unclear what the left- and right-limit
of the discontinuity would be).

934 Breakpoints for piecewise linear constraint <index> not sorted, will be sorted internally.
The breakpoints for the piecewise linear function were not given as a sorted list, these will be
reordered internally.

935 Piecewise linear breakpoints not given consecutively for variable <column>, will reorder them.
The breakpoints for this column were not given consecutively but with breakpoints for another
variable in between, will be fixed internally.

936 Ignoring duplicate piecewise linear breakpoint (<x>,<y>) for piecewise linear constraint <index>.
The same breakpoint was given twice for this piecewise linear constrant, the second one will be
dropped.

937 Piecewise linear section for column <column> contained at most one breakpoint.
The piecewise linear function over this column only contained a single breakpoint or no
breakpoints at all, which is not enough to define the function.

938 Discontinuity at the <beginning/end> of piecewise linear constraint <index> without a matching
bound.
The first or last two breakpoints of the piecewise linear function shared the same value for the
input variable. While this is allowed to model discontinuous functions, it is only allowed for the
first or last points if they match the corresponding bound and do not leave the function undefined
before or after them.

939 Non-convex piecewise linear function with unbounded domain for column <column>, may lead to
unbounded LP relaxation for reformulation even if MIP is bounded.
The piecewise linear function over the unbounded variable was non-convex and the sum of slopes
for the lower and upper limit is negative, potentially leading to an unbounded LP relaxation for the
reformulation even though the MIP might be bounded. Consider giving explicit bounds for this
variable if possible.

940 General constraint type <type> for constraint <name> not supported, should be one of MAX, MIN,
AND, OR, ABS, PWL
The general constraint <name> was assigned the type <type>, which is not supported. The type
should be "MAX", "MIN", "AND", "OR", "ABS", or "PWL".

Fair Isaac Corporation Proprietary Information 541

Chapter 10: Return Codes and Error Messages

941 Entry <entry> of general constraint <name> neither a column nor a constant
One of the lines in general constraints section for constraint <name> consisted of <entry>, which is
neither a column name nor a valid constant (and in case of free-format MPS-format also not a
GENCONS-type).

942 <type> constraint <index> includes non-binary variable <name>. Only binaries allowed in AND/OR
general constraints.
The <index>-th general constraint, which is either an "AND" or an "OR" constraint, includes variable
<name> which is not binary.

943 The absolute value constraint <index> includes <number> variables. ABS-constraints should
consist of exactly 2 variables.
The <index>-th general constraint, which is an "ABS" constraint, includes more than two variables.

944 The general constraint <index> consists of <number> elements. General constraints need to have
at least two elements.
The <index>-th general constraint consists of less than two elements. All general constraints must
include at least two elements ("abs" exactly two).

945 Error when loading the piecewise linear constraint names.
The LP format file reader failed to create the piecewise linear constraint names. The previous error
should explain why this failed.

946 Error when loading the general constraint names.
The LP format file reader failed to create the general constraint names. The previous error should
explain why this failed.

947 PWLCON section refers to piecewise linear constraint <name>, which was not defined in the
PWLNAM section.
In the MPS format, all piecewise linear constraints must first be defined in the PWLNAM section
before adding extreme points in the PWLCON section.

948 Missing bracket or comma in piecewise linear function or general constraint
Piecewise linear functions should be given as (<val1>, <val2>), general constraints as <keyword>
(<col1>, <col2>, ..., <colk>). In this case one of the commas or brackets was missing.

949 Invalid piecewise linear constraint number passed to <function>.Piecewise linear constraint
number <val1> is invalid <val2>
There has been an error in one of the arguments of function <function>. The <val1>th given
piecewise linear constraint number <val2> is invalid. Please make sure that the piecewise linear
constraint numbers are not smaller than 0 and not larger than the total number of piecewise linear
constraints in the current problem, given by attribute PWLCONS.

950 Invalid general constraint number passed to <function>. <val1>-th General constraint number
<val2> is invalid
There has been an error in one of the arguments of function <function>. The <val1>-th given
general constraint number <val2> is invalid. Please make sure that the general constraint numbers
are not smaller than 0 and not larger than the total number of general constraints in the current
problem, given by attribute GENCONS.

951 Input column or resultant of <name> deleted, piecewise linear constraint is also dropped
An <XPRSdelcols> call left the piecewise linear constraint <name> without input column or without
resultant. Thus the piecewise linear constraint is dropped.

Fair Isaac Corporation Proprietary Information 542

Chapter 10: Return Codes and Error Messages

952 Column deletion left <name> with no resultant or no inputs, general constraint is also dropped
An <XPRSdelcols> call left the general constraint <name> without resultant or without any inputs
(either columns or constant values in case of <MIN>/<MAX>). Thus the general constraint is
dropped.

953 Column <index> appears as both resultant and input variable in piecewise linear/general constraint
<index>.
The resultant of the piecewise linear or general constraint is equal to one of the input columns.
These need to be distinct.

954 __pwlobj() appearing outside of objective.
The keyword __pwlobj(<col>) may be used inside the linear objective function to declare that the
objective contribution of this variable will later be defined in the pwlobj section, but it should never
appear in any other section.

955 Adjusting extremal breakpoints of piecewise linear constraint <index> to match bounds of input.
The first/last breakpoint of piecewise linear constraint <index> (and potentially further ones
afterwards) did not match the bound of the input variable and needed to be adjusted, even with
presolve disabled. Note that this change will persist after the solve.

956 Given breakpoint (<val1>, <val2>) for piecewise linear constraint <index> with infinite values and
non-constant slope.
The piecewise linear constraint contained a breakpoint with infinite values. All breakpoints should
have finite value, for piecewise linear constraints with unbounded rays a finite point along that ray
should be given as the first/last breakpoint and the solver will extend that ray in a way that ensures
numerical stability of the formulation.

957 Non-numerical value in problem definition as <name> of <name>.
A non-numerical value (inf/nan) was given as a matrix or objective coefficient, right-hand side or
column bound. The only allowed exceptions are lower bounds or right-hand sides of ’G’
constraints with value -inf and upper bounds or right-hand sides of ’L’ constraints at +inf.

958 Name missing from initial general constraint of type <type>.
The first given general constraint of type <type> is missing a name, which is required in the MPS
format.

1001 Solution value redefined for column: <col>: <val1> -> <val2>
Multiple definition of variable <col> is not allowed. Please use separate SOLUTION sections to
define multiple solutions.

1002 Missing solution values in section <sec>. Only <val1> of <val2> defined
Not all values were defined in the SOLUTIONS section. Variables with undefined values are set to
0.

1003 Please postsolve the problem first with XPRSpostsolve (postsolve).
Not all values were defined in the SOLUTIONS section. Variables with undefined values are set to
0.

1004 Negative semi-continuous lower bound (<val>) for column <col> replaced with zero
Wrong input parameter for the lower bound of a semi-continuous variable was modified to 0.

1005 Unrecognized column name : <col>
No column with name <col> is present in the problem object while loading solution.

1006 Failed to capture solution information.
Solution information is not available.

Fair Isaac Corporation Proprietary Information 543

Chapter 10: Return Codes and Error Messages

1020 Function <function> cannot be called here.
The specified function can not be called.

1022 Error (<error>) while trying to run branching script.
Branching script error.

1028 Unable to keep branch and bound tree memory usage below <val>Gb - currently using <val>Gb;
The Optimizer was unable to keep the tree memory usage below the limit defined by the
TREEMEMORYLIMIT control - the solve will continue but performance will be impaired.

1030 Duplicate names are not allowed - row/column/set/constraint <row1> would have same name as
row/column/set/constraint <row2>.
Each row, column, special ordered set, piecewise linear constraint and general constraint should
have unique name.

1034 Unknown column name <col> found in indicators
Columns <col> found in the INDICATORS section is not defined in the COLUMNS section. Please
check the name of the column.

1035 Unknown row name <row> found in indicators
Row <row> found in the INDICATORS section is not defined in the ROWS section. Please check the
name of the row.

1036 Unexpected indicator type : <type>
Indicator type <type> found in the INDICATORS section is invalid. The type should be ’IF’.

1037 Unexpected indicator active value : <value> for row <row>
The value <value> found in the INDICATORS section is invalid. Values in this section should be
either 0 and 1.

1038 Unsupported row type for indicator constraint <row>
Rows configured as indicator constraints should have a type of ’L’ or ’G’.

1039 Non-binary variable <col> used as an indicator binary
The variable used in the condition part of an indicator constraint should be of type binary.

1054 Please use the FICO-SLP solver for general nonlinear problems. Contact "
LICENSING_CONTACT_NAME " for a license.
To solve general nonlinear problems the FICO-SLP solver can be used.

1055 Can not resume global search - not currently solving a MIP.
The global search can not be resumed, the current problem is not mixed integer optimization.

1059 Unrecognized string identifier <id> passed to function <func>
The string <id> given as input to the function <func> does not match any expected identifiers.
Double-check spelling of <id> and consult documentation of function <func>, if available.

1071 Unable to dualize problems with quadratic coefficients
The current version of the Optimizer only supports dualization of linear problems. Remove
quadratic terms.

1074 Could not write tree to global file.
Branch-and-bound tree memory saving is disabled; re-enable this feature to allow the tree to be
compressed and saved to the global file.

Fair Isaac Corporation Proprietary Information 544

Chapter 10: Return Codes and Error Messages

1075 Message too long: message <mes> must be shorter than <maxlen> characters
Could not write an error/info/warning message, due to a problem, row, column or set name being
too long. Shorten all names s.t. they consist of at most <maxlen> characters.

1081 The Xpress-Optimizer license has been lost; this may be because of a connection failure with the
license server.
The connection to the Xpress license server has been lost and attempts to re-establish the
connection failed. Check for network issues between client and license server.

1082 Tree heap create failed.
Failed to create private heap for branch-and-bound tree; probably due to insufficient memory. If
possible, try to free up memory on your system, reduce the problem size or set appropriate
working limits.

1090 No license capacity.
The FICO Xpress license file does not specify an Optimizer capacity; license has been incorrectly
generated, please contact support@fico.com .

1092 Invalid scale factor
An invalid scale factor was given for a row or a column. Scale factors are provided as the
exponents of powers of two, and must be between 0 and MAXSCALEFACTOR

1093 Column scaling not allowed.
Scaling of binary, integer and partial integer columns is not allowed.

1094 Invalid SOCP constraint detected.
The Optimizer has detected an invalid SOCP constraint: a quadratic row has incorrectly been
identified as a second order cone. Please contact support.

1097 The dependent variable of row (e.g. variable z in z2 ≥ x2 + y2) must be defined non-negative,
otherwise the constraint is non-convex.
The problem is not formulated in a standard second order conic formulation.

1098 Both dependent variables of row (e.g. variables u and v in u ∗ v ≥ x2 + y2) must be defined
non-negative.
The problem is not formulated in a standard second order conic formulation.

1100 Cut limit reached
Failed to create cut, since the limit of storable cuts was reached. Please restart your solve with a
less aggressive cutting strategy.

1101 Cannot call optimization routine recursively
You cannot call XPRSglobal, XPRSminim or XPRSmaxim within a call of XPRSglobal,
XPRSminim or XPRSmaxim on the same problem pointer. Either terminate the running
optimization process or use a separate problem pointer. See also error code 1101.

1102 Presolve detected infeasibility on non-convex quadratic row
All quadratic matrices in the quadratic constraints must be positive semi-definite or a
second-order cone.

1103 Insufficient name buffer
The supplied name buffer is too small. Allocate more memory for the buffer or use shorter names.

1104 No row/column/set names
Tried to access a group of names that do not exist. Provide names to columns/rows/sets before
doing so.

Fair Isaac Corporation Proprietary Information 545

Chapter 10: Return Codes and Error Messages

1105 Cannot create remote server session
Creating the remote compute server session failed. This may have multiple reasons, the error
message will specify the cause.

1106 Corrupt Xpress compute server interface
There appears to be a mismatch between the libraries of Xpress. Please reinstall Xpress.

1107 Connection to remote server lost
Connection to the compute Insight server was lost.

1108 Unable to create remote server job data package (disk full?)
Solves using the compute server rely on creating temporary files.

1109 Remote server returned an error.
. . .

1111 Remote server returned a warning
This warning forwards a warningreported by the compute server.

1112 Remote server temporary directory provided creates a path too long.
Names used during a compute server solve is directed from the probname and a unique identifier.
Please shorten the probname.

1113 Limiting parallel MIP tasks
When control RESOURCESTRATEGY is enabled, this warning notifies that the number of maximum
MIP tasks have been limited to preserve memory.

1114 Error encountered during a sub-MIP solve. Please check the log for the cause.
When the error message from the sub-MIP is available, it will be included. Otherwise, please check
the solve log for details.

1115 Calling <function> is not supported during a solve.
The <function> cannot be called during a solve.

1116 Paranthesis error in <name>.
Names including parantheses are checked to include the same number of opening and closing
parantheses.

1118 Ignoring unexpected flag ’<flag>’.
The flag <flag> passed into a command line call or API function was not understood and was
ignored.

1119 Solves with Xpress compute server interface are not allowed in this application
Integration with the Insight Compute interface has been enabled by setting the XPRESS_COMPUTE
environment variable, but is not permitted for this application.

1120 Cannot disable compute mode when compute is enabled by the XPRS_COMPUTE environment
variable.
When Xpress is in compute mode as the environment variable XPRS_COMPUTE is set, it does not
consume an Xpress license, hence local solves are not allowed.

1121 An error message produced when connecting to a compute server fails.
This error is specific to when a connection fails when attempting to set the XPRS_COMPUTE
control.

Fair Isaac Corporation Proprietary Information 546

Chapter 10: Return Codes and Error Messages

1122 Cannot use compute due to compute incompatible callbacks or controls set: ’reason’.
When compute mode is enabled using the control XPRS_COMPUTE, problem setup compatiblity
with copute mode is checked at the time a solve is initiated (as opposed to when enabled by
environment variables, when the check is immediate).

1123 Cannot change the value of the COMPUTE control in a callback.
It is not allowed to try to enter or leave compute mode while solving a problem, so in particular
from a callback.

1124 An illegal escaped char is found: ’illegal sequence’.
When the ESCAPE_NAMES control is enabled, character illegal to an mps or lp file are secaped,
that is if an escape sequence @HH is encountered, where HH is not a valid hexadecimal number.

1125 Row <name> declared as both delayed row/indicator/model cut and delayed
row/indicator/modelcut.
A row was declared as more than one of delayed row / indicator constraint / model cut. These
three options are mutually exclusive. An indicator constraint will always be part of the problem
(with enforcement depending of the value of the indicator variable) and cannot be declared
delayed or as a model cut. A row can also only be either delayed (in case it needs to be satisfied)
or a model cut (if it is redundant).

1126 Row <name> flagged as indicator twice.
A row was declared an indicator twice (for potentially different columns and values). A single row
can only be implied by a single variable/term, if the same constraint should be implied by different
terms, the row should be duplicated with each different term implying its own copy. If the indicator
variable needs to be changed via the API, the old one first needs to be removed by a call to
XPRSdelindicators before the new one can be added in XPRSsetindicators.

1127 The requested operation requires executing a subprocess, which is forbidden by security
restrictions.
In order to execute the command or function, the Optimizer needed to execute an subprocess, e.g.,
an external compression tool. This is forbidden when security restrictions have been enabled,
which includes all FICO cloud environments.

9999 Generic error message
Please contact support@fico.com.

Fair Isaac Corporation Proprietary Information 547

Appendix

APPENDIX A

Log and File Formats

A.1 File Types
The Optimizer generates or inputs a number of files of various types as part of the solution process. By
default these all take file names governed by the problem name (problem_name), but distinguished by
their three letter extension. The file types associated with the Optimizer are as follows:

Extension Description File
Type

.alt Matrix alteration file, input by XPRSalter (ALTER). ASCII

.asc CSV format solution file, output by XPRSwritesol (WRITESOL). ASCII

.bss Basis file, output by XPRSwritebasis (WRITEBASIS), input by
XPRSreadbasis (READBASIS).

ASCII

.csv Output file, output by XPRSiiswrite. ASCII

.dir Directives file (MIP only), input by XPRSreaddirs (READDIRS). ASCII

.glb Global file (MIP only), used by XPRSglobal (GLOBAL). Binary

.hdr Solution header file, output by XPRSwritesol (WRITESOL). ASCII

.lp LP format matrix file, input by XPRSreadprob (READPROB). ASCII

.mps MPS / XMPS format matrix file, input by XPRSreadprob (READPROB). ASCII

.prt Fixed format solution file, output by XPRSwriteprtsol (WRITEPRTSOL). ASCII

.sol Solution file created by XPRSwritebinsol (WRITEBINSOL). Binary

.slx Solution file created by XPRSwriteslxsol (WRITESLXSOL). ASCII

.xtm Tuner method created by XPRStunerwritemethod. ASCII

.xtr Tuner result created by XPRStune. XML

.json Remote Solving Configuration file JSON

In the following sections we describe the formats for a number of these.

Note that CSV stands for comma-separated-values text file format.

A.1.1 File Compression
Many Optimizer commands support reading and writing compressed files. Support for Gzip compression
is built in, so commands like the following will work as expected:

readprob problem.mat.gz
writeprob problem.gz

Fair Isaac Corporation Proprietary Information 549

Appendix A: Log and File Formats

The Optimizer can also support additional compression formats, as long as the necessary command-line
tools are available in the PATH environment variable. The following table shows the supported
compression formats along with the required tools:

Extension Required Tool
gz Built-in support
zip zip / unzip
tar, tgz tar
bz2, bzip2 bzip2
7z 7z / 7za / 7zr
xz xz
lz4 lz4
Z compress / decompress

In addition, the 7z tool can be used to read and write most of the formats listed above.

NB: compression using external tools is not supported in cloud environments due to security restrictions.

A.2 XMPS Matrix Files
The FICO Xpress Optimizer accepts matrix files in LP or MPS format, and an extension of this, XMPS
format. In that the latter represents a slight modification of the industry-standard, we provide details of it
here.

XMPS format defines the following fields:

Field 1 2 3 4 5 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61

The following sections are defined:

NAME the matrix name;
ROWS introduces the rows;
COLUMNS introduces the columns;
QUADOBJ / QMATRIX introduces a quadratic objective function;
QCMATRIX introduces the quadratic constraints;
DELAYEDROWS introduces the delayed rows;
MODELCUTS introduces the model cuts;
INDICATORS introduces the indicator contraints;
SETS introduces SOS definitions;
RHS introduces the right hand side(s);
RANGES introduces the row ranges;
BOUNDS introduces the bounds;
GENCONS introduces general constraints;
ENDATA signals the end of the matrix.
compatibility additional sections for extensions of the MPS format that can be read but not written.

All section definitions start in column 1.

Fair Isaac Corporation Proprietary Information 550

Appendix A: Log and File Formats

A.2.1 NAME section
Format: Cols 1-4 Field 3

NAME model_name

A.2.2 ROWS section
Format: Cols 1-4

ROWS

followed by row definitions in the format:

Field 1 Field 2
type row_name

The row types (Field 1) are:

N unconstrained (for objective functions);
L less than or equal to;
G greater than or equal to;
E equality.

A.2.3 COLUMNS section
Format: Cols 1-7

COLUMNS

followed by columns in the matrix in column order, i.e. all entries for one column must finish before those
for another column start, where:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank col row1 value1 row2 value2

specifies an entry of value1 in column col and row row1 (and value2 in col and row row2). The Field
5/Field 6 pair is optional.

A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only)
A quadratic objective function can be specified in an MPS file by including a QUADOBJ or QMATRIX
section. For fixed format XMPS files, the section format is as follows:

Format: Cols 1-7
QUADOBJ

or

Format: Cols 1-7
QMATRIX

Fair Isaac Corporation Proprietary Information 551

Appendix A: Log and File Formats

followed by a description of the quadratic terms. For each quadratic term, we have:

Field 1 Field 2 Field 3 Field 4
blank col1 col2 value

where col1 is the first variable in the quadratic term, col2 is the second variable and value is the associated
coefficient from the Qmatrix. In the QMATRIX section all nonzero Q elements must be specified. In the
QUADOBJ section only the nonzero elements in the upper (or lower) triangular part of Q should be
specified. In the QMATRIX section the user must ensure that the Qmatrix is symmetric, whereas in the
QUADOBJ section the symmetry of Q is assumed and the missing part is generated automatically.

Note that the Q matrix has an implicit factors of 0.5 when included in the objective function.
This means, for instance that an objective function of the form

5x2 + 7xy + 9y2

is represented in a QUADOBJ section as:

QUADOBJ
x x 10
x y 7
y y 18

(The additional term ’y x 7’ is assumed which is why the coefficient is not doubled); and in a QMATRIX
section as:

QMATRIX
x x 10
x y 7
y x 7
y y 18

The QUADOBJ and QMATRIX sections must appear somewhere after the COLUMNS section and must only
contain columns previously defined in the columns section. Columns with no elements in the problem
matrix must be defined in the COLUMNS section by specifying a (possibly zero) cost coefficient.

A.2.5 QCMATRIX section (Quadratic Constraint Programming only)
Quadratic constraints may be added using QCMATRIX sections.

Format: Cols 1-8 Field 3
QCMATRIX row_name

Each constraint having quadratic terms should have it’s own QCMATRIX section. The QCMATRIX section
exactly follows the description of the QMATRIX section, i.e. for each quadratic term, we have:

Field 1 Field 2 Field 3 Field 4
blank col1 col2 value

where col1 is the first variable in the quadratic term, col2 is the second variable and value is the
associated coefficient from the Q matrix. All nonzero Q elements must be specified. The user must
ensure that the Q matrix is symmetric. For instance a constraint of the form

Fair Isaac Corporation Proprietary Information 552

Appendix A: Log and File Formats

qc1 : x + 5x2 + 7xy + 9y2 <= 2

is represented as:

NAME example
ROWS
L qc1
COLUMNS

x qc1 1
y qc1 0

QCMATRIX qc1
x x 5
x y 3.5
y x 3.5
y y 9

RHS
RHS1 qc1 2
END

The QCMATRIX sections must appear somewhere after the COLUMNS section and must only contain
columns previously defined in the columns section. Columns with no elements in the problem matrix
must be defined in the COLUMNS section by specifying a (possibly zero) cost coefficient. QCMATRICES
must be defined only for rows of type L or G and must have no range value defined in the RANGE section.

Note that the FICO Xpress Optimizer can only solve convex (MI)QPs. Thus the quadratic matrix should be
positive semi-definite for <= rows and negative semi-definite for >= rows so that the defined region is
convex. Otherwise the problem will need to be solved by the nonlinear solver.

NOTE: technically, there is one exception for the restriction on the row type being L or G. If the row is the
first nonbinding row (type N) then the section is treated as a QMATRIX section instead. Please be aware,
that this also means that the objective specific implied divider of 2 will be assumed (Q matrix has an
implicit factors of 0.5 when included in the objective function, see the QMATRIX section). It’s probably
much better to use the QMATRIX or QUADOBJ sections to define quadratic objectives.

NOTE:

A.2.6 DELAYEDROWS section
This specifies a set of rows in the matrix that will be treated as delayed rows during a global search.
These are rows that must be satisfied for any integer solution, but will not be loaded into the active set of
constraints until required.

This section should be placed between the ROWS and COLUMNS sections. A delayed row may be of type L,
G or E. Each row should appear either in the ROWS or the DELAYEDROWS section, not in both. Otherwise,
the format used is the same as of the ROWS section.

Format: Cols 1-11
DELAYEDROWS

followed by row definitions in the format:

Field 1 Field 2
type row_name

NOTE: For compatibility reasons, section names DELAYEDROWS and LAZYCONS are treated as synonyms.

Fair Isaac Corporation Proprietary Information 553

Appendix A: Log and File Formats

A.2.7 MODELCUTS section
This specifies a set of rows in the matrix that will be treated as model cuts during a global search. During
presolve the model cuts are removed from the matrix. Following optimization, the violated model cuts are
added back into the matrix and the matrix is re-optimized. This continues until no violated cuts remain.
This section should be placed between the ROWS and COLUMNS sections. Model cuts may be of type L, G
or E. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal MIP
solution. The Optimizer does not guarantee to add all violated model cuts, so they must not be required
to define the optimal MIP solution.

Each row should appear either in the ROWS, DELAYEDROWS or in the MODELCUTS section, not in any two
or three of them. Otherwise, the format used is the same as of the ROWS section.

Format: Cols 1-9
MODELCUTS

followed by row definitions in the format:

Field 1 Field 2
type row_name

NOTE: A problem is not allowed to consists solely from model cuts. For compatibility reasons, section
names MODELCUTS and USERCUTS are treated as synonyms.

A.2.8 INDICATORS section
This specifies that a set of rows in the matrix will be treated as indicator constraints during a global
search. These are constraints that must be satisfied only when their associated controlling binary
variables have specified values (either 0 or 1).

This section should be placed after any QUADOBJ, QMATRIX or QCMATRIX sections. The section format
is as follows:

Format: Cols 1-10
INDICATORS

Subsequent records give the associations between rows and the controlling binary columns, with the
following form:

Field 1 Field 2 Field 3 Field 4
type row_name col_name value

which specifies that the row row_namemust be satisfied only when column col_name has value
value. Here type must always be IF and value can be either 0 or 1. Also referenced rows must be of
type L or G only, and referenced columns must be binary.

A.2.9 SETS section (Integer Programming only)
Format: Cols 1-4

SETS

Fair Isaac Corporation Proprietary Information 554

Appendix A: Log and File Formats

This record introduces the section which specifies any Special Ordered Sets. If present it must appear
after the COLUMNS section and before the RHS section. It is followed by a record which specifies the type
and name of each set, as defined below.

Field 1 Field 2
type set

Where type is S1 for a Special Ordered Set of type 1 or S2 for a Special Ordered Set of type 2 and set is
the name of the set.

Subsequent records give the set members for the set and are of the form:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank set col1 value1 col2 value2

which specifies a set member col1 with reference value value1 (and col2 with reference value value2). The
Field 5/Field 6 pair is optional.

A.2.10 RHS section
Format: Col 1-3

RHS

followed by the right hand side as defined below:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank rhs row1 value1 row2 value2

specifies that the right hand side column is called rhs and has a value of value1 in row row1 (and a value
of value2 in row row2). The Field 5/Field 6 pair is optional.

A.2.11 RANGES section
Format: Cols 1-6

RANGES

followed by the right hand side ranges defined as follows:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank rng row1 value1 row2 value2

specifies that the right hand side range column is called rng and has a value of value1 in row row1 (and a
value of value2 in row row2). The Field 5/Field 6 pair is optional.

For any row, if b is the value given in the RHS section and r the value given in the RANGES section, then
the activity limits below are applied:

Fair Isaac Corporation Proprietary Information 555

Appendix A: Log and File Formats

Row Type Sign of r Upper Limit Lower Limit
G + b+r b
L + b b-r
E + b+r b
E - b b+r

A.2.12 BOUNDS section
Format: Cols 1-6

BOUNDS

followed by the bounds acting on the variables:

Field 1 Field 2 Field 3 Field 4
type blank col value

The Linear Programming bound types are:

UP for an upper bound;
LO for a lower bound;
FX for a fixed value of the variable;
FR for a free variable;
MI for a non-positive (’minus’) variable;
PL for a non-negative (’plus’) variable (the default).

There are six additional bound types specific to Integer Programming:

UI for an upper bounded general integer variable;
LI for a lower bounded general integer variable;
BV for a binary variable;
SC for a semi-continuous variable;
SI for a semi-continuous integer variable;
PI for a partial integer variable.

The value specified is an upper bound on the largest value the variable can take for types UP, FR, UI, SC
and SI; a lower bound for types LO and LI; a fixed value for type FX; and ignored for types BV, MI and PL.
For type PI it is the switching value: below which the variable must be integer, and above which the
variable is continuous. If a non-integer value is given with a UI or LI type, only the integer part of the
value is used.

■ Integer variables may only take integer values between 0 and the upper bound. Integer variables
with an upper bound of unity are treated as binary variables.

■ Binary variables may only take the values 0 and 1. Sometimes called 0/1 variables.

■ Partial integer variables must be integral when they lie below the stated value, above that value
they are treated as continuous variables.

Fair Isaac Corporation Proprietary Information 556

Appendix A: Log and File Formats

■ Semi-continuous variables may take the value zero or any value between a lower bound and some
finite upper bound. By default, this lower bound is 1.0. Other positive values can be specified as an
explicit lower bound. For example

BOUNDS
LO x 0.8
SC x 12.3

means that x can take the value zero or any value between 0.8 and 12.3.

■ Semi-continuous integer variables may take the value zero or any integer value between a lower
bound and some finite upper bound.

A.2.13 GENCONS section
Format: Cols 1-7

GENCONS

This record introduces the section which specifies any general constraints, namely min, max, and, or, abs,
pwl constraints. If present it must appear after the COLUMNS section. It is followed by a record which
specifies the type and name of each general constraint, as defined below.

Field 1 Field 2
type name

Where type is MAX for a maximum-constraint, MIN for a minimum-constraint, AND for an and-constraint,
OR for an or-constraint, ABS for an absolute-value-constraint or PWL for a piecewise linear constraint and
name is the name of the general constraint.

Subsequent records for min/max/and/or/abs give the elements for the constraint and are of the form:

Field 1 Field 2
blank col/val

For all general constraints, the first given element (which needs to be the name of a column) will be the
so-called "resultant". For the max- and min-constraints, the resultant is followed by an arbitrary number of
further column names or values, and the resultant should be the maximum/minimum of the remaining
columns and values. For the and- and or-constraints the resultant is followed by an arbitrary number of
further column names, where all the columns (including the resultant) need to be binary, and the resultant
will be one if and only if all (and) or at least one (or) of the remaining variables are one. For the
abs-constraint, the resultant should be followed by exactly one futher column name, and the resultant will
take the absolute value of the other column.

As an example, the constraint z = max x, y, 5.0 could be written as

GENCONS
MAX m1
z
x
y
5.0

For piecewise linear constraints the format is slightly different, consisting of exactly one line of the form:

Fair Isaac Corporation Proprietary Information 557

Appendix A: Log and File Formats

Field 1 Field 2
col1 col2

and at least three lines of the form:

Field 1 Field 2
val1 val2

The first line defines the two variables that should be restricted by a piecewise linear relationship and the
points given in the remaining lines will define the piecewise linear function, which is extended beyond the
first and last point according to the slope of the previous ones. For instance the piecewise linear
constraint

y = 0, if x < 0
y = x, if 0 <= x <= 5
y = 2x - 5, if 5 < x <= 10
y = 15, if x > 10

could be represented as:

GENCONS
PWL p1

x y
-1 0
0 0
5 5
10 15
11 15

A.2.14 ENDATA section
Format: Cols 1-6

ENDATA

is the last record of the file.

A.2.15 Compatibility
The optimizer is also able to read in some further sections defined by extensions of the LP format. This
includes the SOS section, which is a different way of writing down special ordered sets, and the following
sections that offer different ways of formulating piecewise linear constraints and objectives:

A.2.16 PWLOBJ section
Piecewise linear objective functions may be added using PWLOBJ sections.

Format: Cols 1-6
PWLOBJ

The piecewise linear objective function is defined via its extreme points, i.e., the function itself is given by
all convex combinations of neighboring extreme points as well as the infinite rays defined by the first two
and last two points. Each row of the PWLOBJ section defines one extreme point for one column.

Fair Isaac Corporation Proprietary Information 558

Appendix A: Log and File Formats

Field 1 Field 2 Field 3 Field 4
blank col value1 value2

where col is the variable whose objective contribution is defined through the piecewise linear function
and value2 is the objective contribution if the variable takes value1. For instance the piecewise linear
objective function

0, if x < 0
x, if 0 <= x <= 5
2x - 5, if 5 < x <= 10
15, if x > 10

could be represented as:

PWLOBJ
x -1 0
x 0 0
x 5 5
x 10 15
x 11 15

If there are piecewise linear objective functions for multiple variables, these should be given
consecutively (i.e., first all extreme points for x, then all for y). Furthermore, for each variable, the extreme
points should be sorted according to non-decreasing value1. The piecewise linear functions do not
necessarily need to be continuous, in this case two extreme points with identical value1 and different
value2 can be given and the first one will be used as the lefthand-limit and the second one as the
righthand-limit. Note that for value1 itself, both value2 can appear in the solution due to tolerances.

A.2.17 PWLNAM section
PWLNAM is the first of the two sections defining piecewise linear constraints.

Format: Cols 1-6
PWLNAM

Similar to the piecewise linear objective, the piecewise linear constraints will mainly be defined through
its extreme points, which happens in the PWLCON section. In addition to that, however, the two variables
involved in the restriction y = f(x), with piecewise linear function f, need to be specified, and additionally a
pre- and postslope are given, defining the slope of the piecewise linear function before the first and after
the last extreme point. Each piecewise linear function needs to be named, to later refer to it in the
PWLCON section when specifying the extreme points.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank name col1 col2 value1 value2

where col1 is the resulting variable (y above), col2 is the input variable (x above), value1 is the
preslope defining the piecewise linear function up to the first extreme point and value1 is the postslope
defining it after the last extreme point.

A.2.18 PWLCON section
PWLCON is the second of the two sections defining piecewise linear constraints.

Fair Isaac Corporation Proprietary Information 559

Appendix A: Log and File Formats

Format: Cols 1-6
PWLCON

Each piecewise linear constraint introduced in the PWLNAM section needs to be further specified through
its extreme points, defining the behaviour between the pre- and postlope. Each line consists of the name
of a piecewise linear constraint introduced in the PWLNAM followed by a list of extreme points. Similar to
the PWLOBJ section, the functions can be discontinuous, in which case the extreme points have to be
given in the correct order.

Field 1 Field 2 Field 3 Field 4
blank name value1 value2

where name is the name of a piecewise linear function introduced in the PWLNAM section and value1
and value2 define an extreme point, where value1 is the value of the input variable and value1 is the
corresponding output value. For instance the piecewise linear constraint

y = 0, if x < 0
y = x, if 0 <= x <= 5
y = 2x - 5, if 5 < x <= 10
y = 15, if x > 10

could be represented as:

PWLNAM
pwc1 y x1 0 0
PWLCON
pwc1 0 0
pwc1 5 5
pwc1 10 15

A.3 LP File Format
Matrices can be represented in text files using either the MPS file format (.mps or .mat files) or the LP
file format (.lp files). The LP file format represents matrices more intuitively than the MPS format in that
it expresses the constraints in a row-oriented, algebraic way. For this reason, matrices are often written to
LP files to be examined and edited manually in a text editor. Note that because the variables are ’declared’
as they appear in the constraints during file parsing the variables may not be stored in the FICO Xpress
Optimizer memory in the way you would expect from your enumeration of the variable names. For
example, the following file:

Minimize
obj: - 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x1 + x2 + x3 <= 20

Bounds
x1 <= 30

End

after being read and rewritten to file would be:

\Problem name:
Minimize

Fair Isaac Corporation Proprietary Information 560

Appendix A: Log and File Formats

- 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x3 + x2 + x1 <= 20

Bounds
x1 <= 30

End

Note that the last constraint in the output .lp file has the variables in reverse order to those in the input
.lp file. The ordering of variables in the last constraint of the rewritten file is the order that the variables
were encountered during file reading. Also note that although the optimal solution is unique for this
particular problem in other problems with many equal optimal solutions the path taken by the solver may
depend on the variable ordering and therefore by changing the ordering of your constraints in the .lp file
may lead to different solution values for the variables.

A.3.1 Rules for the LP file format
The following rules can be used when you are writing your own .lp files to be read by the FICO Xpress
Optimizer.

A.3.2 Comments and blank lines
Text following a backslash (\) and up to the subsequent carriage return is treated as a comment. Blank
lines are ignored. Blank lines and comments may be inserted anywhere in an .lp file. For example, a
common comment to put in LP files is the name of the problem:

\Problem name: prob01

A.3.3 File lines, white space and identifiers
White space and carriage returns delimit variable names and keywords from other identifiers. Keywords
are case insensitive. Variable names are case sensitive. Although it is not strictly necessary, for clarity of
your LP files it is perhaps best to put your section keywords on their own lines starting at the first
character position on the line. There is no maximum on the length names of on the length of input lines.
Lines may be broken for continuation wherever you may use white space.

A.3.4 Sections
The LP file is broken up into sections separated by section keywords. The following are a list of section
keywords you can use in your LP files. A section started by a keyword is terminated with another section
keyword indicating the start of the subsequent section.

Fair Isaac Corporation Proprietary Information 561

Appendix A: Log and File Formats

Section keywords Synonyms Section contents
maximize or minimize maximum max minimum

min
One linear expression describing the ob-
jective function.

subject to subject to:
such that st s.t. st.
subjectto suchthat
subject such

A list of constraint expressions.

bounds bound A list of bounds expressions for variables.
integers integer ints int A list of variable names of integer vari-

ables. Unless otherwise specified in the
bounds section, the default relaxation in-
terval of the variables is [0, 1].

generals general gens gen A list of variable names of integer vari-
ables. Unless otherwise specified in the
bounds section, the default relaxation
interval of the variables is [0, XPRS_-
PLUSINFINITY].

binaries binary bins bin A list of variable names of binary variables.
semi-continuous semi continuous

semis semi s.c.
A list of variable names of semi-
continuous variables.

semi integers s.i. A list of semi-integer bound expressions
for variables.

partial integer p.i. A list of variable names of partial integer
variables.

general constraints general constraint
gencons g.c.

A list of min/max/and/or/abs and piece-
wise linear constraints.

ranges range A list of constraint ranges.

Variables that do not appear in any of the variable type registration sections (i.e., integers, generals,
binaries, semi-continuous, semi integer, partial integer) are defined to be continuous
variables by default. That is, there is no section defining variables to be continuous variables.

With the exception of the objective function section (maximize or minimize) and the constraints
section (subject to), which must appear as the first and second sections respectively, the sections
may appear in any order in the file. The only mandatory section is the objective function section. Note
that you can define the objective function to be a constant in which case the problem is a so-called
constraint satisfaction problem. The following two examples of LP file contents express empty problems
with constant objective functions and no variables or constraints.

Empty problem 1:

Minimize

End

Empty problem 2:

Minimize

0

End

The end of a matrix description in an LP file can be indicated with the keyword end entered on a line by

Fair Isaac Corporation Proprietary Information 562

Appendix A: Log and File Formats

itself. This can be useful for allowing the remainder of the file for storage of comments, unused matrix
definition information or other data that may be of interest to be kept together with the LP file.

A.3.5 Names
Variable, constraint and other names can use any of the alphanumeric characters (a-z, A-Z, 0-9) and any
of the following symbols:

!"#$%&/,.;?@_`'{}()|~'

A name can not begin with a number or a period and should not be the same as any of the section or
subsection names. Care should be taken using the characters E or e since these may be interpreted as
exponential notation for numbers.

A.3.6 Linear expressions
Linear expressions are used to define the objective function and constraints. Terms in a linear expression
must be separated by either a + or a - indicating addition or subtraction of the following term in the
expression. A term in a linear expression is either a variable name or a numerical coefficient followed by
a variable name. It is not necessary to separate the coefficient and its variable with white space or a
carriage return although it is advisable to do so since this can lead to confusion. For example, the string "
2e3x" in an LP file is interpreted using exponential notation as 2000 multiplied by variable x rather than 2
multiplied by variable e3x. Coefficients must precede their associated variable names. If a coefficient is
omitted it is assumed to be 1.

A.3.7 Objective function
The objective function section can be written in a similar way to the following examples using either of
the keywords maximize or minimize. Note that the keywords maximize and minimize are not used
for anything other than to indicate the following linear expression to be the objective function. Note the
following two examples of an LP file objective definition:

Maximize
- 1 x1 + 2 x2 + 3x + 4y

or

Minimize
- 1 x1 + 2 x2 + 3x + 4y

No line continuation character is required to break the objective function across multiple lines and it can
be broken wherever you may use white space.

The objective function can be named in the same way as for constraints (see later) although this name is
ignored internally by the FICO Xpress Optimizer. Internally the objective function is always named
__OBJ___.

A.3.8 Constraints
The section of the LP file defining the constraints is preceded by the keyword subject to. Each
constraint definition must begin on a new line. A constraint may be named with an identifier followed by a
colon before the constraint expression. Constraint names must follow the same rules as variable names.
If no constraint name is specified for a constraint then a default name is assigned of the form C0000001,
C0000002, C0000003, etc. Constraint names are trimmed of white space before being stored.

Fair Isaac Corporation Proprietary Information 563

Appendix A: Log and File Formats

The constraints are defined as a linear expression in the variables followed by an indicator of the
constraint’s sense and a numerical right-hand side coefficient. The constraint sense is indicated
intuitively using one of the tokens: >=, <=, or =. For example, here is a named constraint:

depot01: - x1 + 1.6 x2 - 1.7 x3 <= 40

Note that tokens > and < can be used, respectively, in place of the tokens >= and <=.

No line continuation character is required when breaking a constraint across multiple lines, and lines may
be broken for continuation wherever you may use white space.

A.3.9 Delayed rows
Delayed rows are defined in the same way as general constraints, but after the delayed rows keyword.
Note that delayed rows shall not include quadratic terms. The definition of constraints, delayed rows and
model cuts should be sequentially after each other.

For example:

Minimize
obj: x1 + x2
subject to
x1 <= 10
x1 + x2 >= 1
delayed rows
x1 >= 2
end

For compatibility reasons, the term lazy constraints is used as a synonym to delayed rows.

A.3.10 Model cuts
Model cuts are defined in the same way as general constraints, but after the model cuts keyword. Note
that model cuts shall not include quadratic terms. The definition of constraints, delayed rows and model
cuts should be sequentially after each other.

For example:

Minimize
obj: x1 + x2
subject to
x1 <= 10
x1 + x2 >= 1
model cuts
x1 >= 2
end

For compatibility reasons, the term user cuts is used as a synonym to model cuts.

A.3.11 Indicator contraints
Indicator constraints are defined in the constraints section together with general constraints (that is,
under the keyword subject to). The syntax is as follows:

constraint_name: col_name = value -> linear_inequality

which means that the constraint linear_inequality should be enforced only when the variable
col_name has value value.

Fair Isaac Corporation Proprietary Information 564

Appendix A: Log and File Formats

As for general constraints, the constraint_name: part is optional; col_name is the name of the
controlling binary variable (it must be declared as binary in the binaries section); and valuemay be
either 0 or 1. Finally the linear_inequality is defined in the same way as for general constraints.

For example:

Minimize
obj: x1 + x2
subject to
x1 + 2 x2 >= 2
x1 = 0 -> x2 >= 2
binary
x1
end

A.3.12 Bounds
The list of bounds in the bounds section are preceded by the keyword bounds. Each bound definition
must begin on a new line. Single or double bounds can be defined for variables. Double bounds can be
defined on the same line as 10 <= x <= 15 or on separate lines in the following ways:

10 <= x
15 >= x

or

x >= 10
x <= 15

If no bounds are defined for a variable the FICO Xpress Optimizer uses default lower and upper bounds.
An important point to note is that the default bounds are different for different types of variables. For
continuous variables and variables declared in the generals section, the interval defined by the default
bounds is [0, XPRS_PLUSINFINITY], while for variables declared in the integers section (see later)
the relaxation interval defined by the default bounds is [0, 1]. Note that the constant
XPRS_PLUSINFINITY is defined in the FICO Xpress Optimizer header files in your FICO Xpress
Optimizer libraries package.

If a single bound is defined for a variable the FICO Xpress Optimizer uses the appropriate default bound
as the second bound. Note that negative upper bounds on variables must be declared together with an
explicit definition of the lower bound for the variable. Also note that variables can not be declared in the
bounds section. That is, a variable appearing in a bounds section that does not appear in the objective
section or in the constraint section is ignored.

Bounds that fix a variable can be entered as simple equalities. For example, x6 = 7.8 is equivalent to 7.8
<= x6 <= 7.8. The bounds +∞ (positive infinity) and –∞ (negative infinity) must be entered as strings
(case insensitive):

+infinity, -infinity, +inf, -inf.

Note that the keywords infinity and infmay not be used as a right-hand side coefficient of a
constraint.

A variable with a negative infinity lower bound and positive infinity upper bound may be entered as free
(case insensitive). For example, x9 free in an LP file bounds section is equivalent to:

- infinity <= x9 <= + infinity

or

Fair Isaac Corporation Proprietary Information 565

Appendix A: Log and File Formats

- infinity <= x9

In the last example here, which uses a single bound is used for x9 (which is positive infinity for
continuous example variable x9).

A.3.13 Generals, Integers and binaries
The generals, integers and binaries sections of an LP file is used to indicate the variables that
must have integer values in a feasible solution. The difference between the variables registered in each
of these sections is in the definition of the default bounds that the variables will have. For variables
registered in the generals section the default bounds are 0 and XPRS_PLUSINFINITY. For variables
registered in the integers section the default bounds are 0 and 1. The bounds for variables registered
in the binaries section are 0 and 1.

The lines in the generals, integers and binaries sections are a list of white space or carriage
return delimited variable names. Note that variables can not be declared in these sections. That is, a
variable appearing in one of these sections that does not appear in the objective section or in a constraint
in the constraint section is ignored.

It is important to note that you will only be able to use these sections if your FICO Xpress Optimizer is
licensed for Mixed Integer Programming.

A.3.14 Semi-continuous and semi-integer
The semi-continuous and semi integers sections of an LP file relate to two similar classes of
variables and so their details are documented here simultaneously.

The semi-continuous (or semi integers) section of an LP file are used to specify variables as
semi-continuous (or semi-integer) variables, that is, as variables that may take either (a) value 0 or (b)
real (or integer) values from specified thresholds and up to the variables’ upper bounds.

The lines in a semi-continuous (or semi integers) section are a list of white space or carriage
return delimited entries that are variable name-number pair. For the semi-continuous secion it is also
possible to provide a variable name only. The following example shows the format of entries in the
semi-continuous section.

Semi-continuous
x7 >= 2.3
x8
x9 > 4.5

The following example shows the format of entries in the semi integer section.

Semi integers
x7 >= 3
x9 > 5

Note that it is possible to use either the >= token or the > token. The resulting threshold will be identical
for both cases. It is not possible to use the <= token.

The threshold of the interval within which a variable may have real (or integer) values is defined in two
ways depending on whether the entry for the variable is (i) a variable name or (ii) a variable name-number
pair. If the entry is just a variable name, then the variable’s threshold is the variable’s lower bound, defined
in the bounds section (see earlier). If the entry for a variable is a variable name-number pair, then the
variable’s threshold is the number value in the pair.

It is important to note that if (a) the threshold of a variable is defined by a variable name-number pair and
(b) a lower bound on the variable is defined in the bounds section, then:

Fair Isaac Corporation Proprietary Information 566

Appendix A: Log and File Formats

Case 1) If the lower bound is less then zero, then the lower bound is zero.

Case 2) If the lower bound is greater than zero but less than the threshold, then the value of zero is
essentially cut off the domain of the semi-continuous (or semi-integer) variable and the variable becomes
a simple bounded continuous (or integer) variable.

Case 3) If the lower bound is greater than the threshold, then the variable becomes a simple lower
bounded continuous (or integer) variable.

If no upper bound is defined in the bounds section for a semi-continuous (or semi-integer) variable, then
the default upper bound that is used is the same as for continuous variables, for semi-continuous
variables, and generals section variables, for semi-integer variables.

It is important to note that you will only be able to use this section if your FICO Xpress Optimizer is
licensed for Mixed Integer Programming.

A.3.15 Partial integers
The partial integers section of an LP file is used to specify variables as partial integer variables,
that is, as variables that can only take integer values from their lower bounds up to specified thresholds
and then take continuous values from the specified thresholds up to the variables’ upper bounds.

The lines in a partial integers section are a list of white space or carriage return delimited variable
name-integer pairs. The integer value in the pair is the threshold below which the variable must have
integer values and above which the variable can have real values. Note that lower bounds and upper
bounds can be defined in the bounds section (see earlier). If only one bound is defined in the bounds
section for a variable or no bounds are defined then the default bounds that are used are the same as for
continuous variables.

The following example shows the format of the variable name-integer pairs in the partial integers
section.

Partial integers
x11 >= 8
x12 >= 9

Note that you can not use the <= token in place of the >= token.

It is important to note that you will only be able to use this section if your FICO Xpress Optimizer is
licensed for Mixed Integer Programming.

A.3.16 Special ordered sets
Special ordered sets are defined as part of the constraints section of the LP file. The definition of
each special ordered set looks the same as a constraint except that the sense is always = and the right
hand side is either S1 or S2 (case sensitive) depending on whether the set is to be of type 1 or 2,
respectively. Special ordered sets of type 1 require that, of the non-negative variables in the set, one at
most may be non-zero. Special ordered sets of type 2 require that at most two variables in the set may be
non-zero, and if there are two non-zeros, they must be adjacent. Adjacency is defined by the weights,
which must be unique within a set given to the variables. The weights are defined as the coefficients on
the variables in the set constraint. The sorted weights define the order of the special ordered set. It is
perhaps best practice to keep the special order sets definitions together in the LP file to indicate (for your
benefit) the start of the special ordered sets definition with the comment line \Special Ordered
Sets as is done when a problem is written to an LP file by the FICO Xpress Optimizer. The following
example shows the definition of a type 1 and type 2 special ordered set.

Sos101: 1.2 x1 + 1.3 x2 + 1.4 x4 = S1
Sos201: 1.2 x5 + 1.3 x6 + 1.4 x7 = S2

Fair Isaac Corporation Proprietary Information 567

Appendix A: Log and File Formats

It is important to note that you will only be able to use special ordered sets if your FICO Xpress Optimizer
is licensed for Mixed Integer Programming.

A.3.17 Quadratic programming problems
Quadratic programming problems (QPs) with quadratic objective functions are defined using a special
format within the objective function description. The algebraic coefficients of the function x’Qx
appearing in the objective for QP problems are specified inside square brackets []. All quadratic
coefficients must appear inside square brackets. Multiple square bracket sections may be used and
quadratic terms in the same variable(s) may appear more than once in quadratic expressions.

Division by two of the QP objective is either implicit, or expressed by a /2 after the square brackets, thus
[...] and [...]/2 are equivalent.

Within a square bracket pair, a quadratic term in two different variables is indicated by the two variable
names separated by an asterisk (*). A squared quadratic term is indicated with the variable name
followed by a carat (̂) and then a 2.

For example, the LP file objective function section:

Minimize
obj: x1 + x2 + [x12 + 4 x1 ⁎ x2 + 3 x22] /2

Note that if in a solution the variables x1 and x2 both have value 1 then value of the objective function is
1 + 1 + (1⁎1 + 4⁎1⁎1 + 3⁎1⁎1) / 2 = 2 + (8) / 2 = 6.

It is important to note that you will only be able to use quadratic objective function components if your
FICO Xpress Optimizer is licensed for Quadratic Programming.

A.3.18 Quadratic Constraints
Quadratic terms in constraints are introduced using the same format and rules as for the quadratic
objective, but without the implied or explicit /2 after the square brackets.

For example:

Minimize
obj: x1 + x2
s.t.
x1 + [x1^2 + 4 x1 ⁎ x2 + 3 x2^2] <= 10
x1 >= 1
end

Please be aware of the differences of the default behaviour of the square brackets in the objective
compared to the constraints. For example problem:

min y + [x^2]
st.
x >= 1
y >= 1
end

Has an optimal objective function value of 1.5, while problem:

min t
s.t.
-t + y + [x^2] <= 0
x >= 1
y >= 1
end

Fair Isaac Corporation Proprietary Information 568

Appendix A: Log and File Formats

has an optimum of 2. The user is suggested to use the explicit /2 in the objective function like:

min y + [x^2] / 2
st.
x >= 1
y >= 1
end

to make sure that the model represents what the modeller meant.

Note that the FICO Xpress Optimizer can only solve convex (MI)QPs. Thus quadratic rows must be of
type <= or >=, and the quadratic matrix should be positive semi-definite for <= rows and negative
semi-definite for >= rows so that the defined region is convex. Otherwise the problem will need to be
solved by the nonlinear solver.

A.3.19 General Constraints
The general constraints section started by the record General Constraints specifies min, max, and,
or, abs and piecewise linear constraints. Each line defines one such constraint, beginning with a name,
followed by a colon, a resultant variable, a sign, a keyword and further variables (or breakpoints for the
piecewise linear constraints) in brackets with spaces and commas. The keywords are MAX for a
maximum-constraint, MIN for a minimum-constraint, AND for an and-constraint, OR for an or-constraint,
ABS for an absolute-value-constraint and PWL for a piecewise linear constraint. For the max- and
min-constraints, the resultant is followed by an arbitrary number of further column names or values, and
the resultant should be the maximum/minimum of the remaining columns and values. For the and- and
or-constraints the resultant is followed by an arbitrary number of further column names, where all the
columns (including the resultant) need to be binary, and the resultant will be one if and only if all (and) or
at least one (or) of the remaining variables are one. For the abs-constraint, the resultant should be
followed by exactly one further column name, and the resultant will take the absolute value of the other
column. For the piecewise linear constraints, there needs to be exactly one input variable, followed by a
colon and a list of breakpoints. Note that general constraints may only introduce new variables if they are
placed immediately after the subject to (or delayed rows, model cuts or pwl) sections. An example for a
max-constraint would be

myCons: m = MAX (x , y , 0.0)

An example for a piecewise linear constraint would be

myPwl: y = PWL (x): (-1,-1) (0,0) (10,20) (10,0) (11,0)

defining that y = f(x), where f is a piecewise linear function with value x if x is negative, y = 2x if 0
<= x <= 10 and y = 0 if x is larger than 10.

A.3.20 Constraint ranges
Constraint ranges may be defined in a section beginning with the keyword ranges. Each range definition
must be on a separate line, and must specify an upper and lower range for a named constraint that has
previously been defined in the constraints section.

For example:

Minimize
x1 + x2
subject to
c1: x + y <= 10
ranges
1 <= c1 <= 10

Fair Isaac Corporation Proprietary Information 569

Appendix A: Log and File Formats

end

A.3.21 Extended naming convention
If the names in the problem do not comply with the LP file format, the optimizer will automatically check
if uniqueness and reproducibility of the names could be preserved by prepending x(and appending) to
all names, i.e. the parenthesis inside the original names are always presented in pairs. In these cases, the
optimizer will create an LP file with the extended naming convention format. Use control FORCEOUTPUT
to force the optimizer to write the names in the problem out as they are.

A.3.22 Compatibility to other extensions
The FICO Xpress Optimizer is also able to read (but not write) further sections defined by extensions of
the LP format. These include the SOS section, as a different way of defining special orderred sets, and
the PWLObj and PWL sections for piecewise linear objective and constraints.

The piecewise linear objective section is started by the PWLObj line. It is followed by lines consisting of
one variable name and a list of extreme points defining the piecewise linear objective function for this
variable. For example the line

x: (-1,-1) (0,0) (10,20) (10,0) (11,0)

defines that if x is negative, the objective contribution is x. If x is between 0 and 10, then the objective
contribution is 2x and if x is larger than 10, then the objective contribution is 0. For each variable, the
extreme points should be sorted according to non-decreasing variable value. The piecewise linear
functions do not necessarily need to be continuous, in this case two extreme points with identical
variable values and different function values can be given and the first one will be used as the
lefthand-limit and the second one as the righthand-limit. Note that for the point where the discontinuity
appears, both function values can appear in the solution due to tolerances.

The piecewise linear constraint section is started by the PWL keyword. Each piecewise linear constraint
defines a restriction y = f(x), where f is a piecewise linear function. The lines in the input format consist of
a name, the input variable, a preslope, the extreme points and a postslope. The preslope defines the
function before the first extreme point and the postslope defines it after the last one. Discontinuities are
possible as for the objective function. Note that pwl sections may only introduce new variables if they are
placed immediately after the subject to (or delayed rows, model cuts or general constraints) sections.
Above example would look as follows, assuming that instead of the objective it now defines the value of
a variable y :

pwlc1: y = x 1 (0,0) (10,20) (10,0) 0

A.4 ASCII Solution Files
Solution information is available from the Optimizer in a number of different file formats depending on
the intended use. The XPRSwritesol (WRITESOL) command produces two files, problem_name.hdr
and problem_name.asc, whose output has comma separated fields and is primarily intended for input
into another program. By contrast, the command
XPRSwriteprtsol (WRITEPRTSOL) produces fixed format output intended to be sent directly to a
printer, the file problem_name.prt. All three of these files are described below.

A.4.1 Solution Header .hdr Files
This file only contains one line of characters comprising header information which may be used for
controlling the reading of the .asc file (which contains data on each row and column in the problem).

Fair Isaac Corporation Proprietary Information 570

Appendix A: Log and File Formats

The single line is divided into fourteen fields, separated by commas, as follows:

Field Type Width Description
1 string 10 matrix name;
2 integer 4 number of rows in problem;
3 integer 6 number of structural columns in problem;
4 integer 4 sequence number of the objective row;
5 string 3 problem status (see notes below);
6 integer 4 direction of optimization (0=none, 1=min, 2=max);
7 integer 6 number of iterations taken;
8 integer 4 final number of infeasibilities;
9 real 12 final object function value;
10 real 12 final sum of infeasibilities;
11 string 10 objective row name;
12 string 10 right hand side row name;
13 integer 1 flag: integer solution found (1), otherwise 0;
14 integer 4 matrix version number.

■ Character fields contain character strings enclosed in double quotes.

■ Integer fields contain right justified decimal digits.

■ Fields of type real contain a decimal character representation of a real number, right justified, with
six digits to the right of the decimal point.

■ The status of the problem (field 5) is a single character as follows:

C optimization interrupted (like ctrl-c);
O optimal;
N infeasible;
S stability problems;
U unbounded;
Z unfinished.

A.4.2 CSV Format Solution .asc Files
The bulk of the solution information is contained in this file. One line of characters is used for each row
and column in the problem, starting with the rows, ordered according to input sequence number. Each
line contains ten fields, separated by commas, as follows:

Fair Isaac Corporation Proprietary Information 571

Appendix A: Log and File Formats

Field Type Width Description
1 integer 6 input sequence number of variable;
2 string 10 variable (row or column) name;
3 string 3 variable type (C=column; N, L, G, E for rows);
4 string 4 variable status (LL, BS, UL, EQ or ⁎⁎);
5 real 12 value of activity;
6 real 12 slack activity (rows) or input cost (columns;)
7 real 12 lower bound (-1000000000 if none);
8 real 12 upper bound (1000000000 if none);
9 real 12 dual activity (rows) or reduced cost (columns);
10 real 12 right hand side value (rows) or blank (columns).

■ The field Type is as for the .hdr file.

■ The variable type (field 3) is defined by:
C structural column;
N N type row;
L L type row;
G G type row;
E E type row;

■ The variable status (field 4) is defined by:
LL non-basic at lower bound;
⁎⁎ basic and infeasible;
BS basic and feasible;
UL non-basic at upper bound;
EQ equality row;
SB variable is super-basic;
?? unknown.

A.4.3 Fixed Format Solution (.prt) Files
This file is the output of the XPRSwriteprtsol (WRITEPRTSOL) command and has the same format
as is displayed to the console by PRINTSOL. The format of the display is described below by way of an
example, for which the simple example of the FICO Xpress Getting Started manual will be used.

The first section contains summary statistics about the solution process and the optimal solution that
has been found. It gives the matrix (problem) name (simple) and the names of the objective function
and right hand sides that have been used. Then follows the number of rows and columns, the fact that it
was a maximization problem, that it took two iterations (simplex pivots) to solve and that the best
solution has a value of 171.428571.

Problem Statistics
Matrix simple
Objective ⁎OBJ⁎
RHS ⁎RHS⁎
Problem has 3 rows and 2 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 3 iterations
Objective function value is 171.428571

Next, the Rows Section presents the solution for the rows, or constraints, of the problem.

Fair Isaac Corporation Proprietary Information 572

Appendix A: Log and File Formats

Rows Section
Number Row At Value Slack Value Dual Value RHS
N 1 ⁎OBJ⁎ BS 171.428571 -171.428571 .000000 .000000
L 2 second UL 200.000000 .000000 .571429 200.000000
L 3 first UL 400.000000 .000000 .142857 400.000000

The first column shows the constraint type: Lmeans a ’less than or equal to’ constrain; E indicates an
’equality’ constraint; G refers to a ’greater than or equal to’ constraint; Nmeans a ’nonbinding’ constraint –
this is the objective function.

The sequence numbers are in the next column, followed by the name of the constraint. The At column
displays the status of the constraint. A UL indicator shows that the row is at its upper limit. In this case a
≤ row is hard up against the right hand side that is constraining it. BSmeans that the constraint is not
active and could be removed from the problem without changing the optimal value. If there were ≥
constraints then we might see LL indicators, meaning that the constraint was at its lower limit. Other
possible values include:

** basic and infeasible;
EQ equality row;
?? unknown.

The RHS column is the right hand side of the original constraint and the Slack Value is the amount by
which the constraint is away from its right hand side. If we are tight up against a constraint (the status is
UL or LL) then the slack will be 0.

The Dual Value is a measure of how tightly a constraint is acting. If a row is hard up against a ≤
constraint then it might be expected that a greater profit would result if the constraint were relaxed a little.
The dual value gives a precise numerical measure to this intuitive feeling. In general terms, if the right
hand side of a ≤ row is increased by 1 then the profit will increase by the dual value of the row. More
specifically, if the right hand side increases by a sufficiently small δ then the profit will increase by δ x dual
value, since the dual value is a marginal concept. Dual values are sometimes known as shadow prices.

Finally, the Columns Section gives the solution for the columns, or variables.

Columns Section
Number Column At Value Input Cost Reduced Cost
C 4 a BS 114.285714 1.000000 .000000
C 5 b BS 28.571429 2.000000 .000000

The first column contains a Cmeaning column (compare with the rows section above). The number is a
sequence number. The name of the decision variable is given under the Column heading. Under At is the
status of the column: BSmeans it is away from its lower or upper bound, LLmeans that it is at its lower
bound and ULmeans that the column is limited by its upper bound. Other possible values include:

** basic and infeasible;
EQ equality row;
SB variable is super-basic;
?? unknown.

The Value column gives the optimal value of the variable. For instance, the best value for the variable a
is 114.285714 and for variable b it is 28.571429. The Input Cost column tells you the coefficient of
the variable in the objective function.

The final column in the solution print gives the Reduced Cost of the variable, which is always zero for
variables that are away from their bounds – in this case, away from zero. For variables which are zero, it
may be assumed that the per unit contribution is not high enough to make production viable. The reduced

Fair Isaac Corporation Proprietary Information 573

Appendix A: Log and File Formats

cost shows how much the per unit profitability of a variable would have to increase before it would
become worthwhile to produce this product. Alternatively, and this is where the name reduced cost
comes from, the cost of production would have to fall by this amount before any production could include
this without reducing the best profit.

In case there is a basis available, sensitivity analysis values may be included in the output by passing the
s flag.

The rows section is extended with two new columns, presenting the range of the RHS in which it can be
changed before it affects the optimality or feasibiltiy of the current basis.

Rows Section
RHS Sensitivity

Number Row At Value Slack Value Dual Value RHS Lower Range Upper Range
G 1 third LL 15.000000 .000000 10.571428 15.000000 10.199999 25.000002

For the columns section, objective ranges are added.

Columns Section
Objective Sensitivity

Number Column At Value Input Cost Reduced Cost Lower Range Upper Range
C 58 c BS 2.742857 5.849999 .000000 .999998 8.350002

A third section presents the sensitivity values for the column bounds.

Bound sensitivity
Lower Bound Sensitivity Upper Bound Sensitivity

Number Column At Lower Range Bound Upper Range Lower Range Bound Upper Range
C 58 d BS -1.00000E+20 .000000 2.742857 2.742857 10.000000 1.00000E+20

A.4.4 ASCII Solution (.slx) Files
These files provide an easy to read format for storing solutions. An .slx file has a header NAME
containing the name of the matrix the solution belongs to. Each line contains three fields as follows:

Field Type Width Description
1 char 1 variable type;
2 string variable name of variable;
3 real variable value of activity.

The variable type (field 1) is defined by:
C structural column;
S LP solution only: slack variables;
D LP solution only: dual variables;
R LP solution only: reduced costs.

The file is closed by ENDATA.

It is possible to store multiple solutions in the same .slx file by repeating the NAME field following by the
additional solution information.

Example

NAME solution 1
C x1 0
C x2 1
NAME solution 2
C x1 1

Fair Isaac Corporation Proprietary Information 574

Appendix A: Log and File Formats

C x2 0
ENDATA

A.5 The Directives (.dir) File
This consists of an unordered sequence of records which specify branching priorities, forced branching
directions and pseudo costs, read into the Optimizer using the XPRSreaddirs (READDIRS) command.
By default its name is of the form problem_name.dir.

Directive file records have the format:

type name value

type is one of:

PR implying a priority entry (the value gives the priority, which must be an integer between 0 and
1000. Values greater than 1000 are rejected, and real values are rounded down to the next
integer. A low value means that the entity is more likely to be selected for branching.)

UP the entity is to be forced up (value is not used)
DN the entity is to be forced down (value is not used)
PU an up pseudo cost entry (the value gives the cost)
PD a down pseudo cost entry (the value gives the cost)
MC a model cut entry (value is not used)
DR a delayed row entry (value is not used)
BR force the optimizer to branch on the entity even if it is satisfied. If a node solution is global

feasible, the optimizer will first branch on any branchable entity flagged with BR before returning
the solution.

name is the name of a global entity (column or special ordered set), a row (for types MC and DR), or a
mask. A mask may comprise ordinary characters which match the given character; a ?, which matches
any single character; or a ⁎, which matches any string or characters. A ⁎ can only appear at the end of a
mask. Note that a whitespace character encountered within the name field will signal the end of the
name field and the start of the value field. To match an entity or row whose name contains whitespace
characters, convert the name into a mask by replacing each whitespace character with by a ?.

value is the value to accompany the type.

For example:

PR x1* 2

gives global entities (integer variables etc.) whose names start with x1 a priority of 2. Note that the use
of a mask: a ⁎matches all possible strings after the initial x1.

A.6 IIS description file in CSV format
This file contains information on a single IIS of an infeasible LP.

Fair Isaac Corporation Proprietary Information 575

Appendix A: Log and File Formats

Field Description
Name Name of a row or column in conflict.
Type Type of conflicting variable (row or column).
Sense Sense of conflicting variable: (LE or GE) to indicate or rows. (LO or UP) to indicate lower or

upper bounds for columns.
Bound Value associated with the variable, i.e. RHS for rows and bound values for columns.
Dual value The dual multipliers corresponding to the contradiction deducible from the IIS. Summing

up all the rows and columns in the IIS multiplied by these values yields a contradicting
constraint. This value is negative for <= rows and upper bounds, and positive for >= rows
and lower bounds.

In iso Indicates if the row or column is in isolation.

Note that each IIS may contain a row or column with only on one of its possible senses. This also means
that equality rows and columns with both lower and upper bounds, only one side of the restriction may be
present. Range constraints in an IIS are converted to greater than or equal constraints.

An IIS often contains other columns than those listed in the IIS. Such columns are free, and have no
associated conflicting bounds.

The information contained in these files is the same as returned by the XPRSgetiisdata function, or
displayed by (IIS -p).

A.7 The Matrix Alteration (.alt) File
The Alter File is an ASCII file containing matrix revision statements, read in by use of the XPRSalter
(ALTER) command, and should be named problem_name.alt by default. Each statement occupies a
separate line of the file and the final line is always empty. The statements consist of identifiers specifying
the object to be altered and actions to be applied to the specified object. Typically the identifier may
specify just a row, for example R2, specifying the second row if that name has been assigned to row 2. If
a coefficient is to be altered, the associated variable must also be specified. For example:

RRRRRRRR
CCRider
2.087

changes the coefficient of CCRider in row RRRRRRRR to 2.087. The action may be one of the following
possibilities.

A.7.1 Changing Upper or Lower Bounds
An upper or lower bound of a column may be altered by specifying the special ’rows’ ⁎⁎LO and ⁎⁎UP for
lower and upper bounds respectively.To change the objective coefficient of a column use the string
⁎⁎OBJ. For example, to change the lower bound (to 1.234), upper bound (to 5.678) and the objective
(to 1234.0) of column x___0305 would look like:-

⁎⁎LO
x___0305
1.234
⁎⁎UP
x___0305
5.678
⁎⁎OBJ
x___0305
1234.0

Fair Isaac Corporation Proprietary Information 576

Appendix A: Log and File Formats

A.7.2 Changing Right Hand Side Coefficients
Right hand side coefficients of a row may be altered by changing values in the ’column’ with the name of
the right hand side.

A.7.3 Changing Constraint Types
The direction of a constraint may be altered. The row name is given first, followed by an action of ⁎⁎NTx,
where x is one of:

N for the new row type to be unconstrained;
L for the new row type to be ’less than or equal to’;
G for the new row type to be ’greater than or equal to’;
E for the new row type to be an equality.
R for the new row type to be a range row.

Note that N type rows will not be present in the matrix in memory if the control KEEPNROWS has been set
to zero before XPRSreadprob (READPROB).

When turning a row to ranged row, a third entry, the range, is expected to be defined following ⁎⁎NTR. The
rules for changing a row to a ranged row follow that of XPRSchgrhsrange.

A.8 The Tuner Method (.xtm) File
The tuner method file is in a straightforward plain text format. For example, when the two controls
MAXTIME and THREADS are set by the user on the current problem and then XPRStunerwritemethod
is called, the generated xtm file will look similar to the following:

FIXED-CONTROLS
MAXTIME = 100
THREADS = 1

TUNABLE-CONTROLS
SBEFFORT = 0.25, 4
HEURSEARCHEFFORT = 0.5, 2
CUTFACTOR = 0.5, 1, 5
SCALING = 0
PRESOLVE = 0
VARSELECTION = 2, 7
CUTFREQ = 2
SYMMETRY = 0, 1, 2
COVERCUTS = 0, 2
GOMCUTS = 0, 2, 10
TREECOVERCUTS = 0
TREEGOMCUTS = 0
HEUREMPHASIS = 0,1
SBESTIMATE = 1, 2, 3, 4, 5, 6
HEURSEARCHROOTCUTFREQ= 2, 5
HEURSEARCHROOTSELECT = 0, 3, 5
HEURSEARCHTREESELECT = 0, 3, 5
ROOTPRESOLVE = 1
PREPROBING = 3
BRANCHDISJ = 0

The tuner method file consists of a section of fixed controls and a section of tunable controls.

Fair Isaac Corporation Proprietary Information 577

Appendix A: Log and File Formats

A.8.1 The fixed controls
The fixed controls section starts with FIXED-CONTROLS, followed by control setting lines in assignment
form. Each control in this section can only be assigned to one value. If the same control appears several
times in this section, its first appearance will be used.

When writting out the tuner method file, all the controls set for the current problem will be included in the
fixed control section. When reading in the tuner method file using XPRStunerreadmethod, these
controls won’t be applied to the current problem immediately, they will only be applied to the worker
problem used in the tuner.

This section can be empty.

A.8.2 The tunable controls
The tunable controls section starts with TUNABLE-CONTROLS, followed by control setting lines in
assignment form. Each control in this section can be assigned to one value, or multiple values seperated
by commas. A control may appear multiple times in this section.

When reading in a tuner method file and writing it out again, the tunable controls may appear in a different
order. If there is a control appearing multiple times in the original tuner method file, when written out, it
will be combined into a single line with multiple values.

For bit vector controls, such as PRESOLVEOPS, SCALING, or HEURSEARCHROOTSELECT, it is possible to
either specify concrete assignments to the control or to specify individual bits that should be used for
tuning. In the latter case, one has to use a colon instead of an equals sign. For example, "SCALING = 24,
675" will tune using the two given concrete values 24 and 675, while "SCALING : 3, 4, 9" will individually
toggle bits 3, 4, and 9 of the default value for SCALING and potentially also try combinations of those
later during tuning.

This section can be empty. When both the fixed and the tunable secitons are empty, the tuner will then
use a pre-defined factory tuner method.

A.9 The Simplex Log
During the simplex optimization, a summary log is displayed at regular time intervals, determined by an
internal deterministic timer. This summary log has the form:

Its The number of iterations or steps taken so far.
Obj Value The objective function value.
S The current solution method (p primal; d dual).
Ninf The number of infeasibilities.
Nneg The number of variables which may improve the current solution if assigned a value away

from their current bounds.
Sum inf The scaled sum of infeasibilities. For the dual algorithm this is the scaled sum of dual

infeasibilities when the number of negative dj’s is non-zero.
Time The number of seconds spent iterating.

A more detailed log can be displayed every n iterations by setting LPLOGSTYLE to 0 and LPLOG to -n.
The detailed log has the form:

Fair Isaac Corporation Proprietary Information 578

Appendix A: Log and File Formats

Its The number of iterations or steps taken so far.
S The current solution method (p primal; d dual).
Ninf The number of infeasibilities.
Obj Value If the solution is infeasible, the scaled sum of infeasibilities, otherwise: the objective value.
In The sequence number of the variable entering the basis (negative if from upper bound).
Out The sequence number of the variable leaving the basis (negative if to upper bound).
Nneg The number of variables which may prove the current solution if assigned a value away

from their current bounds.
Dj The scaled rate at which themost promising variable would improve the solution if assigned

a value away from its current bound (reduced cost).
Neta A measure of the size of the inverse.
Nelem Another measure of the size of the inverse.
Time The number of seconds spent iterating.

If LPLOG is set to 0, no log is displayed until the optimization finishes.

A.10 The Barrier Log
The first line of the barrier log displays statistics about the Cholesky decomposition needed by the barrier
algorithm. This line contains the following values:

Dense
cols

The number of dense columns identified in the factorization.

NZ(L) The number of nonzero elements in the Cholesky factorization.
Flops The number of floating point operations needed to perform one factorization.

During the barrier optimization, a summary log is displayed in every iteration. This summary log has the
form:

Its The number of iterations taken so far.
P.inf Maximal violation of primal constraints.
D.inf Maximal violation of dual constraints.
U.inf Maximal violation of upper bounds.
Primal obj Value of the primal objective function.
Dual obj Value of the dual objective function.
Compl Value of the average complementarity.

After the barrier algorithm a crossover procedure may be applied. This process prints at most 3 log lines
about the different phases of the crossover procedure. The structure of these lines follows The Simplex
Log described in the section above.

If BAROUTPUT is set to 0, no log is displayed until the barrier algorithm finishes.

A.11 The Global Log
During the branch and bound tree search (see XPRSglobal (GLOBAL)), a summary log of nine columns
of information is frequently printed. By default, the printing frequency increases over time. If MIPLOG is
explicitly set to a negative value -n, a log line will be printed every n nodes. The nine columns consist of:

Fair Isaac Corporation Proprietary Information 579

Appendix A: Log and File Formats

Node A sequential node number.
BestSoln The value of the best integer solution found so far.
BestBound A bound on the value of the optimal integer solution.
Sols The number of integer solutions that have been found.
Active The number of active (unsolved) nodes in the branch and bound tree search.
Depth The depth of the current node in the branch and bound tree.
Gap The percentage gap between the best solution and the best bound.
GInf The number of global infeasibilities at the current node.
Time The time taken.

This log is also printed when an integer feasible solution is found. An asterisk (⁎) printed in front of the
node number indicates that a solution has been found by an integral LP relaxation. Single characters
indicate that a heuristic solution has been found. Lower case characters stand for different strategies of
the Optimizer’s diving heuristic: the letter a corresponds to strategy 1, the letter b to strategy 2, and so
forth. Compare control HEURDIVESTRATEGY. By default, several strategies are applied. Upper case
letters stand for special search heuristics. More precisely, R, L, M, C, U, and Z stand for the different
modes of local search that can be selected by controls HEURSEARCHROOTSELECT and
HEURSEARCHTREESELECT. For technical reasons, a Umight also appear after a restart. The letter F
represents the feasibility pump, T stands for a trivial heuristic. S, G, and B are reserved for special purpose
heuristics for problems with set packing/partitioning constraints, GUBs, and branching on constraints,
respectively. An E indicates that a solution has been found during the calculation of branching estimates.

Note that heuristic solutions found before the global search (and thereby the global log) starts, are
reported with a special log line of the form:

⁎⁎⁎ Solution found: <SolVal> Time: <Time> Heuristic: <DispChar> ⁎⁎⁎

Here <SolVal> and <Time> are numeric values indicating the solution value of the found heuristic solution
and the run time after which it was found, respectively. The single <DispChar> character indicates which
heuristic found the solution.

During root node cutting, the column Node is replaced by two columns Its and Type, columns Active and
Depth are replaced by Add and Del, respectively. These have the following meaning:

Its A counter for the number of cutting plane separation loops.
Type The type of cuts that have been generated this round: G – Gomory cuts, M – model cuts, O

– outer approximation cuts (only for nonlinear problems), N – network-based cuts, K – any
other type of cuts

Add Number of cuts added to the LP relaxation in this iteration
Del Number of cuts deleted from the LP relaxation in this iteration

If MIPLOG is set to 3, a detailed log of eight columns of search information is printed for each node:

Fair Isaac Corporation Proprietary Information 580

Appendix A: Log and File Formats

Branch A sequential node number.
Parent The node number of the parent of the current node. A D or a Umarks whether the current

node is the down child or the up child, respectively, of its parent.
Solution The optimal value of the LP relaxation at the current node.
Entity The global entity on which the Optimizer will branch after this node.
Value The current value of the entity chosen for branching.
Active The number of active nodes in the tree search.
GInf The number of global infeasibilities.
Time The time taken.

Not all the information described above is present for all nodes. If the LP relaxation is cut off, only Branch
and Parent (and possibly Solution) are displayed. If the LP relaxation is infeasible, only Branch and Parent
appear. The rest of the line will consist of a text message relaxation exceeds cutoff or
relaxation infeasible. If an integer solution is discovered, this is highlighted before the log line is
printed.

If MIPLOG is set to 2, the detailed log is printed at integer feasible solutions only. When MIPLOG is set to
1, the tree node logs are surpressed, but cutting loop logs will still be displayed. If MIPLOG is set to 0,
neither cut nor node log wil be pritned. In any case, LP logs and intermediate status messages might still
be printed.

A.12 The Tuner Log
While the tuner evaluates various control settings, it prints a summary log for each finished run. When
tuning a MIP problem, the summary log consists of eight columns of information:

RunID A sequential tuner run number.
Stat Status of a finished run: S - Solved, T - Timeout, U - Unsolved and C - Cancelled.
Solution The best integer solution.
Bound The best bound.
Integral The primal dual integral.
Gap The relative MIP gap.
RunTime The time spent for solving with this control setting.
TotTime The total time spent for the tuner.

When tuning an LP problem, the summary log consists of five columns of information:

RunID A sequential tuner run number.
Stat Status of a finished run: S - Solved, T - Timeout, U - Unsolved and C - Cancelled.
Solution The LP objective.
RunTime The time spent for solving with this control setting.
TotTime The total time spent for the tuner.

When the tuner finds an improving control setting, it will highlight the run with an asterisk (*) at the
beginning of the log line. The tuner will also specify the control parameters and the log file name for the
improving run.

If a control setting has been evaluated in previous tuner runs, its result can be reused. In this case, the
tuner will print an extra H in the Stat column.

Fair Isaac Corporation Proprietary Information 581

Appendix A: Log and File Formats

A.13 The Remote Solving Configuration file
This configuration file allows the user to control some of the ways the Xpress solver interacts with the
remote Insight Compute Interface. It contains advanced configuration settings; it is expected that most
users will not need to use these configuration options.

To use the configuration file, set the environment variable XPRESS_COMPUTE_CONFIG to the full path of
the file including the file name itself; you must also set the XPRESS_COMPUTE and
XPRESS_COMPUTE_URL environment variables to activate remote solving in the usual way. Changes to
the configuration are only read when the Optimizer is first initialized with XPRSinit.

The configuration file must be a valid JSON document, containing a single object with key-value pairs. All
keys are optional and Xpress will use sensible defaults for anything you do not specify. For example:

{
"logLevel": 101,
"caCertsPath": "C:/xpressmp/ssl/ca-bundle.crt"

}

The remainder of this section details the individual keys that can be set.

A.13.1 caCertsPath
This field can be set to the absolute path of the certificate bundle file to use for authenticating SSL
certificates when communicating with a remote server using HTTPS. If unspecified, Xpress will look for a
file ca-bundle.crt in the path specified by the MOSEL_SSL environment variable (if set), or the
.mmssl folder of the user’s home directory (if not). If this file does not exist, it can be created in the
default location by executing the command mmssl setup

For example:

{
"caCertsPath": "C:/xpressmp/ssl/ca-bundle.crt"

}

A.13.2 cleanupJobs
This field controls whether Xpress should delete a compute job from the remote server when it
successfully completes or is interrupted. The default is false. Set to true to automatically delete
successfully completed jobs from the Insight Compute Interface.

For example:

{
"cleanupJobs": true

}

A.13.3 executionService
This field contains the name of the Insight execution service that will be used for jobs. If unset, the
Insight server’s default execution service is used. Where the execution service name is set in the
configuration file and the COMPUTEEXECSERVICE control, the value from the control will be used.

For example:

{
"executionService": "SECONDARY"

}

Fair Isaac Corporation Proprietary Information 582

Appendix A: Log and File Formats

A.13.4 logLevel
This field controls additional lines written to the problem’s log that describe communication between the
local Xpress application and the remote Insight Compute Interface. (Note it doesn’t affect lines written by
the remote Insight Compute Interface itself.) Supported levels are:

■ 0 - write no extra log lines

■ 1 - write error and warning messages only

■ 2 - write error, warning and notification messages (the default)

■ 101 - as 2, but also write lines for every HTTP request made and event message received from the
server

■ 102 - as 101, but include extra debugging output. Should be set on the advice of FICO product
support only.

For example:

{
"logLevel": 0

}

A.13.5 maxRetries
This field controls how many times a failed request to the remote server will be retried before we show an
error to the user. There will be an exponentially increasing delay before each retry (0ms, 200ms, 400ms,
800ms, etc) - the default setting of 9means we try each request for about 51 seconds before the user is
informed of an error. Set to a lower value if you want to see errors quicker, or 0 to disable retries entirely.

For example:

{
"maxRetries": 2

}

A.13.6 priority
This field controls the default priority of compute jobs created on the Xpress Insight Compute Interface. It
should be a number between -100 and 100, with priority 0 used if not specified. If the priority is set to a
nonzero value in both the configuration file and the COMPUTEJOBPRIORITY control, the value from the
control will be used.

For example:

{
"priority": 90

}

A.13.7 trustSrv
This field controls whether Xpress should trust the remote server without checking its certificate, when
an HTTPS URL is used. If set to false, the authenticity of the remote server is checked using the list of
trusted certification authorities and the operation will be aborted if the verification fails. Set to true if
you want to use a server that has a known invalid or self-signed certificate, and acknowledge the security
risks this brings. Default is false.

Fair Isaac Corporation Proprietary Information 583

Appendix A: Log and File Formats

For example:

{
"trustSrv": true

}

Fair Isaac Corporation Proprietary Information 584

APPENDIX B

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support
FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ’Xpress’ in the subject line of your support queries.

Product education
FICO Product Education is the principal provider of product training for our clients and partners. Product
Education offers instructor-led classroom courses, web-based training, seminars, and training tools for
both new user enablement and ongoing performance support. For additional information, visit the
Product Education home page at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation
FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let us
know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.

Fair Isaac Corporation Proprietary Information 585

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance
If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

■ Phone: +1 (408) 535-1500 or +44 207 940 8718

■ Web: www.fico.com/optimization and use the available contact forms

Related services
Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time to
assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting time
can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community
The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical support,
build relationships with local and remote professionals, and improve your business practices. For
additional information, visit the FICO Community (community.fico.com/welcome).

About FICO
FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper. Founded
in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics and data
science to improve operational decisions. FICO holds more than 165 US and foreign patents on
technologies that increase profitability, customer satisfaction, and growth for businesses in financial
services, telecommunications, health care, retail, and many other industries. Using FICO solutions,
businesses in more than 100 countries do everything from protecting 2.6 billion payment cards from
fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are in the right
place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Proprietary Information 586

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Numbers
3, 516
4, 516
5, 516
6, 516
7, 516
9, 516
11, 516
18, 516
19, 516
20, 516
21, 516
29, 517
36, 517
38, 517
41, 517
45, 517
50, 517
52, 517
56, 517
58, 517
61, 517
64, 517
65, 517
66, 517
67, 518
68, 518
69, 518
71, 518
72, 518
73, 518
76, 518
77, 518
80, 518
81, 518
83, 518
84, 518
85, 518
89, 519
91, 519
97, 519
98, 519
102, 519
107, 519
111, 519
112, 519
113, 519
114, 519
120, 519
122, 519
124, 520
127, 520

128, 520
129, 520
130, 520
131, 520
132, 520
136, 520
137, 520
140, 520
142, 521
143, 521
151, 521
152, 521
153, 521
155, 521
156, 521
157, 521
158, 521
159, 521
160, 521
161, 521
162, 521
163, 521
164, 521
167, 521
168, 521
169, 522
170, 522
171, 522
173, 522
178, 522
179, 522
180, 522
181, 522
186, 522
187, 522
188, 522
191, 522
192, 522
193, 522
195, 522
197, 522
199, 523
202, 523
243, 523
245, 523
247, 523
249, 523
250, 523
251, 523
256, 523
257, 523
259, 523

Fair Isaac Corporation Proprietary Information 587

Index

261, 523
262, 523
263, 524
264, 524
266, 524
268, 524
279, 524
287, 524
293, 524
314, 524
319, 524
320, 524
324, 524
326, 524
352, 525
361, 525
362, 525
363, 525
368, 525
381, 525
392, 525
394, 525
395, 525
401, 525
402, 525
403, 525
404, 525
405, 526
406, 526
407, 526
409, 526
410, 526
411, 526
412, 526
413, 526
414, 526
415, 526
416, 527
417, 527
418, 527
419, 527
420, 527
421, 527
422, 527
423, 527
424, 527
425, 527
426, 527
427, 527
429, 527
430, 528
434, 528
436, 528
459, 528
473, 528
474, 528
475, 528
476, 528
501, 528
502, 528

503, 528
504, 528
505, 529
506, 529
507, 529
508, 529
509, 529
510, 529
511, 529
512, 529
513, 529
514, 529
515, 529
516, 529
517, 529
518, 529
519, 530
520, 530
521, 530
522, 530
523, 530
524, 530
525, 530
526, 530
527, 530
528, 530
529, 530
530, 530
531, 530
532, 530
533, 531
535, 531
536, 531
538, 531
539, 531
545, 531
552, 531
553, 531
554, 531
555, 531
557, 531
558, 531
559, 531
602, 531
604, 531
606, 532
706, 532
707, 532
708, 532
710, 532
711, 532
712, 532
713, 532
715, 532
716, 532
717, 532
721, 532
722, 533
723, 533
724, 533

Fair Isaac Corporation Proprietary Information 588

Index

725, 533
726, 533
727, 533
728, 533
729, 533
730, 533
731, 533
732, 533
733, 533
734, 534
735, 534
736, 534
738, 534
739, 534
740, 534
741, 534
742, 534
743, 534
744, 534
745, 534
746, 534
748, 535
749, 535
750, 535
751, 535
752, 535
753, 535
754, 535
755, 535
756, 535
757, 535
758, 535
759, 535
760, 536
761, 536
762, 536
763, 536
764, 536
765, 536
766, 536
767, 536
768, 536
769, 536
770, 536
771, 536
772, 537
773, 537
774, 537
775, 537
776, 537
777, 537
778, 537
779, 537
780, 537
781, 537
782, 537
783, 537
784, 538
785, 538
787, 538

788, 538
790, 538
791, 538
792, 538
793, 538
794, 538
795, 538
796, 538
797, 538
798, 539
799, 539
835, 539
843, 539
847, 539
862, 539
863, 539
864, 539
865, 539
866, 539
867, 539
884, 539
898, 539
899, 539
900, 540
901, 540
902, 540
903, 540
904, 540
905, 540
906, 540
907, 540
909, 540
910, 540
911, 540
912, 540
913, 540
914, 540
915, 540
918, 540
919, 541
920, 541
921, 541
932, 541
933, 541
934, 541
935, 541
936, 541
937, 541
938, 541
939, 541
940, 541
941, 542
942, 542
943, 542
944, 542
945, 542
946, 542
947, 542
948, 542
949, 542

Fair Isaac Corporation Proprietary Information 589

Index

950, 542
951, 542
952, 543
953, 543
954, 543
955, 543
956, 543
957, 543
958, 543
1001, 543
1002, 543
1003, 543
1004, 543
1005, 543
1006, 543
1020, 544
1022, 544
1028, 544
1030, 544
1034, 544
1035, 544
1036, 544
1037, 544
1038, 544
1039, 544
1054, 544
1055, 544
1059, 544
1071, 544
1074, 544
1075, 545
1081, 545
1082, 545
1090, 545
1092, 545
1093, 545
1094, 545
1097, 545
1098, 545
1100, 545
1101, 545
1102, 545
1103, 545
1104, 545
1105, 546
1106, 546
1107, 546
1108, 546
1109, 546
1111, 546
1112, 546
1113, 546
1114, 546
1115, 546
1116, 546
1118, 546
1119, 546
1120, 546
1121, 546
1122, 547

1123, 547
1124, 547
1125, 547
1126, 547
1127, 547
9999, 547

A
ACTIVENODES, 487
Advanced Mode, 51
ALGAFTERCROSSOVER, 389
ALGAFTERNETWORK, 390
ALGORITHM, 487
algorithms, 1

default, 18
ALTER, 134, 522, 576
array numbering, 410
ATTENTIONLEVEL, 488
AUTOCUTTING, 390
AUTOPERTURB, 391
AUTOSCALING, 390
AVAILABLEMEMORY, 488

B
BACKTRACK, 391
BACKTRACKTIE, 391
BARAASIZE, 488
BARALG, 392
BARCGAP, 488
BARCONDA, 488
BARCONDD, 489
BARCORES, 400
BARCRASH, 392
BARCROSSOVER, 489
BARDENSECOL, 489
BARDUALINF, 489
BARDUALOBJ, 489
BARDUALSTOP, 393
BARFAILITERLIMIT, 394
BARFREESCALE, 393
BARGAPSTOP, 393, 399
BARGAPTARGET, 393
BARINDEFLIMIT, 394
BARITER, 489
BARITERLIMIT, 9, 394
BARKERNEL, 395
BARLSIZE, 490
BAROBJPERTURB, 395
BAROBJSCALE, 395
BARORDER, 396
BARORDERTHREADS, 396
BAROUTPUT, 20, 34, 396
BARPERTURB, 396
BARPRESOLVEOPS, 397
BARPRIMALINF, 490
BARPRIMALOBJ, 490
BARPRIMALSTOP, 397
BARREFITER, 397
BARREGULARIZE, 397
BARRHSSCALE, 398

Fair Isaac Corporation Proprietary Information 590

Index

BARSING, 490
BARSINGR, 490
BARSOLUTION, 398
BARSTART, 399
BARSTARTWEIGHT, 399
BARSTEPSTOP, 399
BARTHREADS, 399
basis, 52, 381, 430

inversion, 430
loading, 271, 284
reading from file, 52, 312

BASISCONDITION, 135
BASISSTABILITY, 136
batch mode, 369
BCL, 1
BESTBOUND, 490
BIGM, 400, 456
BIGMMETHOD, 400
bitmaps, 212, 364
BOUNDNAME, 491
bounds, 117, 144, 215, 576
Branch and Bound, 20
BRANCHCHOICE, 401
BRANCHDISJ, 401
branching, 20, 100

directions, 199, 315, 575
variable, 94

BRANCHSTRUCTURAL, 401
BRANCHVALUE, 491
BRANCHVAR, 491
BREADTHFIRST, 402

C
CACHESIZE, 402
CALLBACKCOUNT_CUTMGR, 491
CALLBACKCOUNT_OPTNODE, 491
CALLBACKFROMMASTERTHREAD, 403
callbacks, 33

barrier log, 90
branching variable, 94
copying between problems, 157
estimate function, 100
global log, 103, 333
node cutoff, 112
optimal node, 113
preprocess node, 116
separate, 117
simplex log, 107, 336

CHECKCONVEXITY, 143
CHECKSONMAXCUTTIME, 491
CHECKSONMAXTIME, 492
CHGOBJSENSE, 151
Cholesky factorization, 396, 403, 412, 490
CHOLESKYALG, 403
CHOLESKYTOL, 404
CLAMPING, 404
COLS, 492
columns

density, 412, 489
nonzeros, 187

returning bounds, 215, 253
returning indices, 207
returning names, 226
types, 188

comments, 451
COMPUTE, 404
COMPUTEEXECSERVICE, 405
COMPUTEEXECUTIONS, 492
COMPUTEJOBPRIORITY, 405
COMPUTELOG, 405
CONCURRENTTHREADS, 406
CONEELEMS, 492
CONES, 493
CONFLICTCUTS, 406
Console Mode, 1, 51
Console Optimizer

command line options, 2
Console Xpress, 1

termination, 369
controls, 53

changing values, 389
copying between problems, 159
retrieve values, 252
retrieving values, 198, 212
setting values, 360, 364, 368

convex region, 15
CORESDETECTED, 493
CORESPERCPU, 406
CORESPERCPUDETECTED, 493
COVERCUTS, 406, 478
CPIALPHA, 407
CPISCALEFACTOR, 493
CPUPLATFORM, 407
CPUSDETECTED, 494
CPUTIME, 407
CRASH, 408
CROSSOVER, 19, 408
crossover, 408, 489
CROSSOVERACCURACYTOL, 409
CROSSOVERITERLIMIT, 409
CROSSOVEROPS, 409
CROSSOVERTHREADS, 410
CSTYLE, 410
CSV, 549
CURRENTMEMORY, 494
CURRENTNODE, 494
CURRMIPCUTOFF, 494
cut manager, 35

routines, 36, 98
cut pool, 35, 98, 117, 122, 164, 191

cuts, 273, 371
lifted cover inequalities, 406
list of indices, 190
outer approximation cuts, 468, 480

cut strategy, 411
CUTDEPTH, 410
CUTFACTOR, 410
CUTFREQ, 411
cutoff, 21, 112, 114, 440, 448
CUTS, 495

Fair Isaac Corporation Proprietary Information 591

Index

cuts, 35, 117, 122, 522, 524
deleting, 165
generation, 410
Gomory cuts, 421, 479
list of active cuts, 193
model cuts, 283

CUTSELECT, 411
CUTSTRATEGY, 411
cutting planes, see cuts

D
default algorithm, 412
DEFAULTALG, 18, 303, 412
degradation, 100, 467
DENSECOLLIMIT, 412
DETERMINISTIC, 413
directives, 199, 285, 523, 524

loading, 275
read from file, 52, 314

dongles, 2
dual values, 10
DUALGRADIENT, 413
DUALINFEAS, 495
DUALIZE, 413
DUALIZEOPS, 414
DUALPERTURB, 414
DUALSTRATEGY, 414
DUALTHREADS, 415
DUMPCONTROLS, 173

E
early termination, 9
EIGENVALUETOL, 415
ELEMS, 495
ELIMFILLIN, 415
ELIMTOL, 415
ERRORCODE, 495, 516
errors, 109, 365, 495

checking, 268
ESCAPENAMES, 416
ETATOL, 416
EXIT, 174
EXTRACOLS, 416, 526
EXTRAELEMS, 416, 524, 526
EXTRAMIPENTS, 417
EXTRAPRESOLVE, 417, 524
EXTRAQCELEMENTS, 417
EXTRAQCROWS, 417
EXTRAROWS, 417, 522, 526
EXTRASETELEMS, 418
EXTRASETS, 418

F
fathoming, 20
FEASIBILITYPUMP, 418
feasible region, 19
FEASTOL, 419
FEASTOLPERTURB, 419
FEASTOLTARGET, 419
files

. bss, 520

.alt, 134, 549

.asc, 549

.bss, 27, 549

.dir, 22, 549

.glb, 517, 549

.hdr, 549

.iis, 549

.ini, 3

.lp, 1, 316, 549

.lp.gz, 27

.mat, 316

.mat.gz, 27

.mps, 549

.mps.gz, 27

.prt, 52, 385, 549

.slx, 549

.sol, 519, 549

.svf, 353, 355

.xpr, 2

.xtm, 549

.xtr, 549
CSV, 549

FIXGLOBALS, 177
FORCEOUTPUT, 419
FORCEPARALLELDUAL, 420

G
GENCONCOLS, 496
GENCONS, 496
GENCONSABSTRANSFORMATION, 420
GENCONSDUALREDUCTIONS, 420
GENCONVALS, 496
general constraints, 14
GLOBAL, 256
global entities, 499, 511

branching, 357, 358
extra entities, 417
fixing, 51, 177
loading, 276

global log, 103
global search, 20, 502, 528

callbacks, 34
directives, 52, 314
MIP solution status, 500
termination, 441, 449

GLOBALFILEBIAS, 421
GLOBALFILELOGINTERVAL, 421
GLOBALFILESIZE, 496
GLOBALFILEUSAGE, 496
GOMCUTS, 421, 479

H
HELP, 258
Hessian matrix, 152, 238
HEURBEFORELP, 421
HEURDEPTH, 422
HEURDIVEITERLIMIT, 422
HEURDIVERANDOMIZE, 422
HEURDIVESOFTROUNDING, 423

Fair Isaac Corporation Proprietary Information 592

Index

HEURDIVESPEEDUP, 423
HEURDIVESTRATEGY, 423, 580
HEUREMPHASIS, 424
HEURFORCESPECIALOBJ, 424
HEURFREQ, 424
HEURMAXSOL, 424
HEURNODES, 425
HEURSEARCHEFFORT, 425
HEURSEARCHFREQ, 425
HEURSEARCHROOTCUTFREQ, 426
HEURSEARCHROOTSELECT, 426, 580
HEURSEARCHTREESELECT, 427, 580
HEURSTRATEGY, 427
HEURTHREADS, 428
HISTORYCOSTS, 428

I
IFCHECKCONVEXITY, 428
IIS, 259
indicator constraints, 14
INDICATORS, 497
INDLINBIGM, 429
INDPRELINBIGM, 429
infeasibility, 18, 44, 254, 463, 528

diagnosis, 477
integer, 47, 499
node, 104

infeasibility repair, 46
infinity, 121
initialization, 268, 524
INPUTTOL, 429
integer preprocessing, 446
integer presolve, 528
integer programming, 13, 20, 29
integer solutions, 439, 499, 500

begin search, 51, 256
branching variable, 94
callback, 105
cutoff, 112
reinitialize search, 269
retrieving information, 203

interfaces, 1
interior point, see Newton barrier
INVERTFREQ, 430
INVERTMIN, 430
IOTIMEOUT, 430
irreducible infeasible sets, 45, 436, 502
IVE, 1

K
Karush-Kuhn-Tucker conditions, 10
KEEPBASIS, 430
KEEPNROWS, 431, 577

L
L1CACHE, 431
license, 6
lifted cover inequalities, 478
line length, 530
LINELENGTH, 431

LNPBEST, 431
LNPITERLIMIT, 432
LOCALCHOICE, 433
log file, 52, 365
LP relaxation, 581
LPFLAGS, 432
LPFOLDING, 433
LPITERLIMIT, 9, 432, 516
LPLOG, 34, 107, 433
LPLOGDELAY, 434
LPLOGSTYLE, 434
LPOBJVAL, 10, 497
LPOPTIMIZE, 8, 301
LPREFINEITERLIMIT, 432
LPSTATUS, 497
LPTHREADS, 434

M
Markowitz tolerance, 415, 434
MARKOWITZTOL, 434
matrix

adding names, 8
changing coefficients, 51, 134, 145, 148, 154
column bounds, 144
columns, 28, 120, 163, 492, 503
constraint senses, 51, 134
cuts, 495
deleting cuts, 165
elements, 456
extra elements, 416
input, 279
modifying, 28
nonzeros, 187
quadratic elements, 509
range, 155
reading, 27
rows, 28
scaling, 52, 248, 356
size, 29
spare columns, 511
spare elements, 511, 526
spare global entities, 511

MATRIXNAME, 497
MATRIXTOL, 435
MAXABSDUALINFEAS, 498
MAXABSPRIMALINFEAS, 498
MAXCHECKSONMAXCUTTIME, 435
MAXCHECKSONMAXTIME, 435
MAXCUTTIME, 436
MAXGLOBALFILESIZE, 436
MAXIIS, 436
MAXIM, 302
MAXIMPLIEDBOUND, 437
MAXKAPPA, 498
MAXLOCALBACKTRACK, 437
MAXMCOEFFBUFFERELEMS, 436
MAXMEMORYHARD, 437
MAXMEMORYSOFT, 438
MAXMIPINFEAS, 498
MAXMIPSOL, 439

Fair Isaac Corporation Proprietary Information 593

Index

MAXMIPTASKS, 438
MAXNODE, 439
MAXPAGELINES, 439
MAXPROBNAMELENGTH, 498
MAXRELDUALINFEAS, 498
MAXRELPRIMALINFEAS, 499
MAXSCALEFACTOR, 439
MAXSTALLTIME, 440
MAXTIME, 9, 440
memory, 172, 179, 464, 516, 523
MEMORYLIMITDETECTED, 499
MINIM, 302
MIPABSCUTOFF, 440
MIPABSGAPNOTIFY, 441
MIPABSGAPNOTIFYBOUND, 441
MIPABSGAPNOTIFYOBJ, 441
MIPABSSTOP, 441
MIPADDCUTOFF, 24, 442
MIPBESTOBJVAL, 499
MIPCOMPONENTS, 442
MIPCONCURRENTNODES, 443
MIPCONCURRENTSOLVES, 443
MIPDUALREDUCTIONS, 444
MIPENTS, 499
MIPFRACREDUCE, 444
MIPINFEAS, 499
MIPKAPPAFREQ, 445
MIPLOG, 35, 445, 579
MIPOBJVAL, 10, 500
MIPOPTIMIZE, 8, 304
MIPPRESOLVE, 24, 446
MIPRAMPUP, 446
MIPREFINEITERLIMIT, 448
MIPRELCUTOFF, 448
MIPRELGAPNOTIFY, 448
MIPRELSTOP, 449
MIPRESTART, 447
MIPRESTARTFACTOR, 447
MIPRESTARTGAPTHRESHOLD, 447
MIPSOLNODE, 500
MIPSOLS, 500
MIPSOLTIME, 500
MIPSTATUS, 500
MIPTERMINATIONMETHOD, 449
MIPTHREADID, 501
MIPTHREADS, 450
MIPTOL, 450
MIPTOLTARGET, 450
MIQCPALG, 448
model cuts, 315
Mosel, 1
MPS file format, see files
MPS18COMPATIBLE, 450
MPSBOUNDNAME, 451
MPSECHO, 451
MPSFORMAT, 451
MPSOBJNAME, 451
MPSRANGENAME, 452
MPSRHSNAME, 452
MUTEXCALLBACKS, 452

N
NAMELENGTH, 501
NETCUTS, 452
NETSTALLLIMIT, 453
Newton barrier, 19

convergence criterion, 488
crossover, 19
log callback, 90
number of iterations, 9, 19, 394
output, 34

NODEDEPTH, 501
NODEPROBINGEFFORT, 453
NODES, 502
nodes, 21

active cuts, 193, 273
cut routines, 98
deleting cuts, 165
infeasibility, 104
maximum number, 439
number solved, 502
optimal, 113
outstanding, 487
parent node, 165, 506
prior to optimization, 116
selection, 453
separation, 117

NODESELECTION, 402, 453
NUMERICALEMPHASIS, 454
NUMIIS, 502

O
objective function, 19, 28, 451, 502

changing coefficients, 150
dual value, 489
optimum value, 497, 499, 500
primal value, 490
quadratic, 28, 149, 152, 294, 297
retrieving coefficients, 227

OBJNAME, 502
OBJRHS, 502
OBJSCALEFACTOR, 454
OBJSENSE, 503
OBSERVEDPRIMALINTEGRAL, 502
optimal basis, 35
OPTIMALITYTOL, 454
OPTIMALITYTOLTARGET, 454
optimization sense, 503
Optimizer output, 7, 20, 72, 108
ORIGINALCOLS, 503
ORIGINALGENCONCOLS, 503
ORIGINALGENCONS, 503
ORIGINALGENCONVALS, 504
ORIGINALINDICATORS, 504
ORIGINALMIPENTS, 504
ORIGINALPWLPOINTS, 504
ORIGINALPWLS, 504
ORIGINALQCELEMS, 505
ORIGINALQCONSTRAINTS, 505
ORIGINALQELEMS, 505
ORIGINALROWS, 506

Fair Isaac Corporation Proprietary Information 594

Index

ORIGINALSETMEMBERS, 505
ORIGINALSETS, 505
OUTPUTCONTROLS, 455
OUTPUTLOG, 365, 455
OUTPUTMASK, 388, 455
OUTPUTTOL, 456

P
PARENTNODE, 506
PEAKMEMORY, 506
PEAKTOTALTREEMEMORYUSAGE, 506
PENALTY, 456
PENALTYVALUE, 506
performance, 29, 522, 524
PERTURB, 456
PHYSICALCORESDETECTED, 507
PHYSICALCORESPERCPUDETECTED, 507
piecewise linear constraints, 14
pivot, 471, 527

list of variables, 230
order of basic variables, 229

PIVOTTOL, 456
positive semi-definite matrix, 16
POSTSOLVE, 307
postsolve, 29
PPFACTOR, 456
PREANALYTICCENTER, 457
PREBASISRED, 457
PREBNDREDCONE, 457
PREBNDREDQUAD, 457
PRECLIQUESTRATEGY, 458
PRECOEFELIM, 458
PRECOMPONENTS, 458
PRECOMPONENTSEFFORT, 459
PRECONEDECOMP, 459
PRECONVERTSEPARABLE, 459
PREDICTEDATTLEVEL, 507
PREDOMCOL, 460
PREDOMROW, 460
PREDUPROW, 460
PREELIMQUAD, 461
PREFOLDING, 461
PREIMPLICATIONS, 461
PRELINDEP, 462
PREOBJCUTDETECT, 462
PREPERMUTE, 462
PREPERMUTESEED, 463
PREPROBING, 463
PREPROTECTDUAL, 463
PRESOLVE, 29, 463, 519, 523
presolve, 29, 300, 415, 463, 477, 523, 524

diagnosing infeasibility, 44
integer, 24

presolved problem, 249
basis, 231, 284
directives, 199, 285

PRESOLVEINDEX, 507
PRESOLVEMAXGROW, 464
PRESOLVEOPS, 464
PRESOLVEPASSES, 465

PRESOLVESTATE, 508
PRESORT, 465
pricing, 465

Devex, 465
partial, 456, 465

PRICINGALG, 465
primal infeasibilities, 490, 512
PRIMALDUALINTEGRAL, 508
PRIMALINFEAS, 508
PRIMALOPS, 466
PRIMALPERTURB, 466
PRIMALUNSHIFT, 466
PRINTSOL, 310, 385
priorities, 199, 315, 518, 575
problem

file access, 52, 316, 384
input, 8, 279
name, 27, 52, 235, 367
pointers, 7

problem attributes, 10
prefix, 487
retrieving values, 197, 211, 251

problem pointers, 161
copying, 160
deletion, 172

pseudo cost, 199, 315, 467, 575
PSEUDOCOST, 467
PWLCONS, 508
PWLDUALREDUCTIONS, 467
PWLNONCONVEXTRANSFORMATION, 467
PWLPOINTS, 509

Q
QCCUTS, 468
QCELEMS, 509
QCONSTRAINTS, 509
QCROOTALG, 468
QELEMS, 509
QSIMPLEXOPS, 468
quadratic programming, 524

coefficients, 149, 152, 238, 509
loading global problem, 294
loading problem, 297

QUADRATICUNSHIFT, 469
QUIT, 311, 369

R
RANDOMSEED, 469
RANGENAME, 509
ranging, 155, 156, 509

name, 452
READBASIS, 312
READBINSOL, 313
READDIRS, 314, 575
READPROB, 316
READSLXSOL, 318
reduced costs, 10, 51, 177, 454
REFACTOR, 469
REFINEMIPSOL, 319
REFINEOPS, 470

Fair Isaac Corporation Proprietary Information 595

Index

relaxation, see LP relaxation
RELAXTREEMEMORYLIMIT, 470
RELPIVOTTOL, 471
REPAIRINDEFINITEQ, 471
REPAIRINFEAS, 350
REPAIRINFEASMAXTIME, 471
RESOURCESTRATEGY, 472
RESTARTS, 510
RESTORE, 353
return codes, 53, 174, 311, 369
RHSNAME, 510
right hand side, 154, 243

name, 452
retrieve range values, 244

ROOTPRESOLVE, 472
ROWS, 510
rows

addition, 130
deletion, 170
extra rows, 417, 511
indices, 207
model cuts, 283
names, 126, 226
nonzeros, 246
number, 506, 510
types, 156, 247

running time, 440

S
SAVE, 52, 353, 355
SBBEST, 472
SBEFFORT, 473
SBESTIMATE, 473
SBITERLIMIT, 473
SBSELECT, 473
SCALE, 49, 356
SCALING, 48, 356, 474
scaling, 48, 52, 356, 523
security system, 6
sensitivity analysis, 177
SERIALIZEPREINTSOL, 475
set

returning names, 226
SETARCHCONSISTENCY, 76
SETDEFAULTCONTROL, 361
SETDEFAULTS, 362
SETLOGFILE, 365
SETMEMBERS, 510
SETPROBNAME, 367
SETS, 511
sets, 499, 511

addition, 132
deletion, 171
names, 133

SIFTING, 475
SIFTPASSES, 475
SIFTPRESOLVEOPS, 475
SIFTSWITCH, 476
simplex

crossover, 19

log callback, 107, 336
number of iterations, 9, 510
output, 19, 34
perturbation, 391, 414, 456, 466
type of crash, 408

simplex log, 433
simplex pivot, see pivot
SIMPLEXITER, 510
SLEEPONTHREADWAIT, 476
solution, 8, 10, 15, 220

beginning search, 52, 302
output, 52, 310, 385, 387

SOSREFTOL, 476
SPARECOLS, 511
SPAREELEMS, 511
SPAREMIPENTS, 511
SPAREROWS, 511
SPARESETELEMS, 512
SPARESETS, 512
special order sets

branching, 21
special ordered sets, 14, 276, 294
STOP, 174, 311, 369
STOPSTATUS, 512
SUMPRIMALINF, 512
supported APIs, 1
SYMMETRY, 476
SYMSELECT, 477
SYSTEMMEMORY, 513

T
THREADS, 477
tightening

bound, 29
coefficient, 29

TIME, 513
tolerance, 419, 429, 434, 435, 441, 450, 454, 456, 471
TOTALMEMORY, 513
TRACE, 45, 477
tracing, 528
tree, see global search
TREECOMPLETION, 513
TREECOMPRESSION, 478
TREECOVERCUTS, 478
TREECUTSELECT, 478
TREEDIAGNOSTICS, 479
TREEGOMCUTS, 479
TREEMEMORYLIMIT, 479
TREEMEMORYSAVINGTARGET, 480
TREEMEMORYUSAGE, 513
TREEQCCUTS, 480
TREERESTARTS, 514
TUNE, 375
TUNERHISTORY, 480
TUNERMAXTIME, 481
TUNERMETHOD, 481
TUNERMETHODFILE, 481
TUNERMODE, 482
TUNEROUTPUT, 482
TUNEROUTPUTPATH, 482

Fair Isaac Corporation Proprietary Information 596

Index

TUNERPERMUTE, 483
TUNERROOTALG, 483
TUNERSESSIONNAME, 483
TUNERTARGET, 484
TUNERTHREADS, 484
TUNERVERBOSE, 485

U
unboundedness, 21, 47, 254
USERSOLHEURISTIC, 485
UUID, 514

V
variables

binary, 13, 17, 276, 294, 556
continuous, 276, 294, 557
continuous integer, 276, 294
infeasible, 249
integer, 13, 276, 294, 556
partial integer, 14, 276, 294, 556
primal, 209
selection, 22
semi-continuous, 13
semi-continuous integer, 14
slack, 10, 165

VARSELECTION, 486
VERSION, 486
version number, 486

W
warning messages, 34
WRITEBASIS, 381
WRITEBINSOL, 382
WRITEDIRS, 383
WRITEPROB, 384
WRITEPRTSOL, 10, 385
WRITESLXSOL, 386
WRITESOL, 387, 570

X
XPRESSVERSION, 514
XPRS_bo_addbounds, 54
XPRS_bo_addbranches, 55
XPRS_bo_addcuts, 56
XPRS_bo_addrows, 57
XPRS_bo_create, 59
XPRS_bo_destroy, 62
XPRS_bo_getbounds, 63
XPRS_bo_getbranches, 64
XPRS_bo_getid, 65
XPRS_bo_getlasterror, 66
XPRS_bo_getrows, 67
XPRS_bo_setpreferredbranch, 68
XPRS_bo_setpriority, 69
XPRS_bo_store, 70
XPRS_bo_validate, 71
XPRS_ge_addcbmsghandler, 72
XPRS_ge_getcomputeallowed, 73
XPRS_ge_getlasterror, 74
XPRS_ge_removecbmsghandler, 75
XPRS_ge_setarchconsistency, 76

XPRS_ge_setcomputeallowed, 77
XPRS_nml_addnames, 78
XPRS_nml_copynames, 79
XPRS_nml_create, 80
XPRS_nml_destroy, 81
XPRS_nml_findname, 82
XPRS_nml_getlasterror, 83
XPRS_nml_getmaxnamelen, 84
XPRS_nml_getnamecount, 85
XPRS_nml_getnames, 86
XPRS_nml_removenames, 87
XPRS_MINUSINFINITY, 121, 190
XPRS_PLUSINFINITY, 121
XPRSaddcbbariteration, 88
XPRSaddcbbarlog, 20, 34, 90
XPRSaddcbchecktime, 93
XPRSaddcbchgbranch, 35, 94
XPRSaddcbchgbranchobject, 95
XPRSaddcbchgnode, 34, 96
XPRSaddcbcomputerestart, 91
XPRSaddcbcutlog, 97
XPRSaddcbcutmgr, 98
XPRSaddcbdestroymt, 99
XPRSaddcbestimate, 100
XPRSaddcbgapnotify, 101
XPRSaddcbgloballog, 35, 103
XPRSaddcbinfnode, 34, 104
XPRSaddcbintsol, 34, 105
XPRSaddcblplog, 19, 34, 107
XPRSaddcbmessage, 7, 34, 108, 365
XPRSaddcbmessageVB, 109
XPRSaddcbmipthread, 110
XPRSaddcbnewnode, 34, 111
XPRSaddcbnodecutoff, 35, 112
XPRSaddcboptnode, 34, 113
XPRSaddcbpreintsol, 34, 114
XPRSaddcbprenode, 34, 116
XPRSaddcbpresolve, 92
XPRSaddcbsepnode, 117
XPRSaddcbusersolnotify, 119
XPRSaddcols, 28, 120
XPRSaddcols64, 120
XPRSaddcuts, 35, 122
XPRSaddcuts64, 122
XPRSaddgencons, 123
XPRSaddgencons64, 123
XPRSaddmipsol, 125
XPRSaddnames, 8, 120, 126
XPRSaddpwlcons, 127
XPRSaddpwlcons64, 127
XPRSaddqmatrix, 129
XPRSaddqmatrix64, 129
XPRSaddrows, 28, 130
XPRSaddrows64, 130
XPRSaddsetnames, 133
XPRSaddsets, 132
XPRSaddsets64, 132
XPRSalter, 134, 522, 576
XPRSbasiscondition, 135
XPRSbasisstability, 136

Fair Isaac Corporation Proprietary Information 597

Index

XPRSbndsa, 137
XPRSbtran, 138
XPRScalcobjective, 139
XPRScalcreducedcosts, 140
XPRScalcslacks, 141
XPRScalcsolinfo, 142
XPRSchgbounds, 144
XPRSchgcoef, 28, 145
XPRSchgcoltype, 28, 146
XPRSchgglblimit, 147
XPRSchgmcoef, 28, 145, 148
XPRSchgmcoef64, 148
XPRSchgmqobj, 28, 149
XPRSchgmqobj64, 149
XPRSchgobj, 28, 150, 526
XPRSchgobjsense, 151
XPRSchgqobj, 28, 152
XPRSchgqrowcoeff, 28, 153
XPRSchgrhs, 28, 154
XPRSchgrhsrange, 28, 155
XPRSchgrowtype, 28, 156
XPRSclearrowflags, 158
XPRScopycallbacks, 157, 160
XPRScopycontrols, 159, 160
XPRScopyprob, 160
XPRScreateprob, 7, 161
XPRScrossoverlpsol, 162
XPRSdelcols, 28, 163
XPRSdelcpcuts, 36, 164
XPRSdelcuts, 35, 164, 165
XPRSdelgencons, 166
XPRSdelindicators, 167
XPRSdelpwlcons, 168
XPRSdelqmatrix, 169
XPRSdelrows, 28, 170
XPRSdelsets, 171
XPRSdestroyprob, 7, 161, 172
XPRSdumpcontrols, 173
XPRSestimaterowdualranges, 175
XPRSfeaturequery, 176
XPRSfixglobals, 177
XPRSfree, 6, 179
XPRSftran, 180
XPRSgetattribinfo, 181
XPRSgetbanner, 182
XPRSgetbasis, 183
XPRSgetbasisval, 184
XPRSgetcheckedmode, 185
XPRSgetcoef, 186
XPRSgetcols, 28, 187
XPRSgetcols64, 187
XPRSgetcoltype, 28, 188
XPRSgetcontrolinfo, 189
XPRSgetcpcutlist, 36, 190
XPRSgetcpcuts, 36, 191
XPRSgetcpcuts64, 191
XPRSgetcutlist, 36, 193
XPRSgetcutmap, 194
XPRSgetcutslack, 195
XPRSgetdaysleft, 196

XPRSgetdblattrib, 10, 197, 487
XPRSgetdblcontrol, 198
XPRSgetdirs, 199
XPRSgetdualray, 200
XPRSgetgencons, 201
XPRSgetgencons64, 201
XPRSgetglobal, 203
XPRSgetglobal64, 203
XPRSgetiisdata, 205
XPRSgetindex, 207, 528
XPRSgetindicators, 208
XPRSgetinfeas, 209
XPRSgetintattrib, 10, 211, 487
XPRSgetintattrib64, 211
XPRSgetintcontrol, 9, 212, 389
XPRSgetintcontrol64, 212
XPRSgetlastbarsol, 213
XPRSgetlasterror, 214
XPRSgetlb, 28, 215
XPRSgetlicerrmsg, 216
XPRSgetlpsol, 10, 217
XPRSgetlpsolval, 218
XPRSgetmessagestatus, 219
XPRSgetmipsol, 220
XPRSgetmipsolval, 221
XPRSgetmqobj, 222
XPRSgetmqobj64, 222
XPRSgetnamelist, 223
XPRSgetnamelistobject, 225
XPRSgetnames, 28, 226
XPRSgetobj, 28, 227, 526
XPRSgetobjecttypename, 228
XPRSgetpivotorder, 229
XPRSgetpivots, 230
XPRSgetpresolvebasis, 33, 231
XPRSgetpresolvemap, 232
XPRSgetpresolvesol, 33, 233
XPRSgetprimalray, 234
XPRSgetprobname, 235
XPRSgetpwlcons, 236
XPRSgetpwlcons64, 236
XPRSgetqobj, 28, 238
XPRSgetqrowcoeff, 239
XPRSgetqrowqmatrix, 28, 240
XPRSgetqrowqmatrixtriplets, 28, 241
XPRSgetqrows, 242
XPRSgetrhs, 28, 243
XPRSgetrhsrange, 28, 244
XPRSgetrowflags, 245
XPRSgetrows, 28, 246
XPRSgetrows64, 246
XPRSgetrowtype, 28, 247
XPRSgetscale, 248
XPRSgetscaledinfeas, 33, 249
XPRSgetstrattrib, 10, 251, 487
XPRSgetstrcontrol, 252
XPRSgetstringattrib, 251
XPRSgetstringcontrol, 252
XPRSgetub, 28, 253
XPRSgetunbvec, 254

Fair Isaac Corporation Proprietary Information 598

Index

XPRSgetversion, 255
XPRSglobal, 256
XPRSiisall, 261
XPRSiisclear, 262
XPRSiisfirst, 263
XPRSiisisolations, 264
XPRSiisnext, 265
XPRSiisstatus, 266
XPRSiiswrite, 267
XPRSinit, 6, 161, 179, 182, 268
XPRSinitglobal, 257, 269
XPRSinterrupt, 270
XPRSloadbasis, 271
XPRSloadbranchdirs, 272
XPRSloadcuts, 35, 273
XPRSloaddelayedrows, 274
XPRSloaddirs, 275
XPRSloadglobal, 8, 276
XPRSloadglobal64, 276
XPRSloadlp, 8, 279
XPRSloadlp64, 279
XPRSloadlpsol, 281
XPRSloadmipsol, 282
XPRSloadmodelcuts, 283
XPRSloadpresolvebasis, 33, 284
XPRSloadpresolvedirs, 33, 285
XPRSloadqcqp, 8, 286
XPRSloadqcqp64, 286
XPRSloadqcqpglobal, 290
XPRSloadqcqpglobal64, 290
XPRSloadqglobal, 8, 294
XPRSloadqglobal64, 294
XPRSloadqp, 8, 297
XPRSloadqp64, 297
XPRSloadsecurevecs, 300
XPRSlpoptimize, 8, 301
XPRSmaxim, 302
XPRSminim, 302
XPRSmipoptimize, 8, 304
XPRSobjsa, 305
XPRSpivot, 306
XPRSpostsolve, 257, 307
XPRSpresolverow, 308
XPRSreadbasis, 312
XPRSreadbinsol, 313
XPRSreaddirs, 314, 575
XPRSreadprob, 8, 316
XPRSreadslxsol, 318
XPRSrefinemipsol, 319
XPRSremovecbbariteration, 320
XPRSremovecbbarlog, 323
XPRSremovecbchecktime, 326
XPRSremovecbchgbranch, 324
XPRSremovecbchgbranchobject, 325
XPRSremovecbchgnode, 327
XPRSremovecbcomputerestart, 321
XPRSremovecbcutlog, 328
XPRSremovecbcutmgr, 329
XPRSremovecbdestroymt, 330
XPRSremovecbestimate, 331

XPRSremovecbgapnotify, 332
XPRSremovecbgloballog, 333
XPRSremovecbinfnode, 334
XPRSremovecbintsol, 335
XPRSremovecblplog, 336
XPRSremovecbmessage, 337
XPRSremovecbmipthread, 338
XPRSremovecbnewnode, 339
XPRSremovecbnodecutoff, 340
XPRSremovecboptnode, 341
XPRSremovecbpreintsol, 342
XPRSremovecbprenode, 343
XPRSremovecbpresolve, 322
XPRSremovecbsepnode, 344
XPRSremovecbusersolnotify, 345
XPRSrepairinfeas, 346
XPRSrepairweightedinfeas, 348
XPRSrepairweightedinfeasbounds, 350
XPRSrestore, 353
XPRSrhssa, 354
XPRSsave, 52, 353, 355
XPRSsaveas, 355
XPRSscale, 49, 356
XPRSsetbranchbounds, 357
XPRSsetbranchcuts, 358
XPRSsetcheckedmode, 359
XPRSsetdblcontrol, 360
XPRSsetdefaultcontrol, 361
XPRSsetdefaults, 362
XPRSsetindicators, 363
XPRSsetintcontrol, 9, 364, 389
XPRSsetintcontrol64, 364
XPRSsetlogfile, 19, 20, 365
XPRSsetmessagestatus, 366
XPRSsetprobname, 367
XPRSsetstrcontrol, 368
XPRSstorebounds, 370
XPRSstorecuts, 36, 371
XPRSstorecuts64, 371
XPRSstrongbranch, 373
XPRSstrongbranchcb, 374
XPRStune, 377
XPRStunerreadmethod, 378
XPRStunerwritemethod, 379
XPRSunloadprob, 380
XPRSwritebasis, 381
XPRSwritebinsol, 382
XPRSwritedirs, 383
XPRSwriteprob, 384
XPRSwriteprtsol, 10, 385
XPRSwriteslxsol, 10, 386
XPRSwritesol, 10, 387, 570

Fair Isaac Corporation Proprietary Information 599

	Introduction
	The FICO Xpress Optimizer
	Starting the First Time
	Licensing
	Starting Console Optimizer
	Scripting Console Optimizer
	Interrupting Console Optimizer

	Manual Layout

	Basic Usage
	Initialization
	The Problem Pointer
	Logging
	Problem Loading
	Problem Solving
	Interrupting the Solve
	Results Processing
	Function Quick Reference
	Administration
	Problem Loading
	Problem Solving
	Results Processing

	Summary

	Problem Types
	Linear Programs (LPs)
	Mixed Integer Programs (MIPs)
	Quadratic Programs (QPs)
	Quadratically Constrained Quadratic Programs (QCQPs)
	Algebraic and matrix form
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Second Order Cone problems (SOCPs)

	Solution Methods
	Simplex Method
	Output

	Newton Barrier Method
	Crossover
	Output

	Branch and Bound
	Theory
	Variable Selection and Cutting
	Variable Selection for Branching
	Cutting Planes
	Node Selection
	Adjusting the Cutoff Value
	Stopping Criteria
	Integer Preprocessing

	QCQP and SOCP Methods
	Convexity Checking
	Quadratically Constrained and Second Order Cone Problems

	Advanced Usage
	Problem Names
	Manipulating the Matrix
	Reading the Matrix
	Modifying the Matrix

	Working with Presolve
	(Mixed) Integer Programming Problems

	Working with LP Folding
	Working with Heuristics
	Analyzing and Handling Numerical Issues
	Analyzing Models for Numerical Issues
	Scaling
	Solution Refinement
	Other Ways to Handle Numerical Issues

	Common Causes of Confusion
	Using the Callbacks
	Output Callbacks
	LP Callbacks
	Global Search Callbacks

	Working with the Cut Manager
	Cuts and the Cut Pool
	Cut Management Routines
	User Cut Manager Routines

	Solving Problems Using Multiple Threads
	The concurrent solver

	Solving Large Models (the 64 bit Functions)
	Using the Tuner
	Basic Usage
	The Tuner Method
	The Tuner Output
	The Tuner Target
	Restarting the Tuner
	Tuner with Multiple Threads
	Tuner with Problem Permutations
	Tuning a Set of Problems
	Advanced Topics

	Remote Solving with Xpress Insight Compute Interface
	Authentication
	Callbacks
	Licensing
	Advanced Configuration

	Infeasibility, Unboundedness and Instability
	Infeasibility
	Diagnosis in Presolve
	Diagnosis using Primal Simplex
	Irreducible Infeasible Sets
	The Infeasibility Repair Utility
	Integer Infeasibility

	Unboundedness
	Instability
	Scaling
	Accuracy

	Console and Library Functions
	Console Mode Functions
	Layout for Function Descriptions
	Function Name
	Purpose
	Synopsis
	Arguments
	Error Values
	Associated Controls
	Examples
	Further Information
	Related Topics

	XPRS_bo_addbounds
	XPRS_bo_addbranches
	XPRS_bo_addcuts
	XPRS_bo_addrows
	XPRS_bo_create
	XPRS_bo_destroy
	XPRS_bo_getbounds
	XPRS_bo_getbranches
	XPRS_bo_getid
	XPRS_bo_getlasterror
	XPRS_bo_getrows
	XPRS_bo_setpreferredbranch
	XPRS_bo_setpriority
	XPRS_bo_store
	XPRS_bo_validate
	XPRS_ge_addcbmsghandler
	XPRS_ge_getcomputeallowed
	XPRS_ge_getlasterror
	XPRS_ge_removecbmsghandler
	XPRS_ge_setarchconsistency (SETARCHCONSISTENCY)
	XPRS_ge_setcomputeallowed
	XPRS_nml_addnames
	XPRS_nml_copynames
	XPRS_nml_create
	XPRS_nml_destroy
	XPRS_nml_findname
	XPRS_nml_getlasterror
	XPRS_nml_getmaxnamelen
	XPRS_nml_getnamecount
	XPRS_nml_getnames
	XPRS_nml_removenames
	XPRSaddcbbariteration
	XPRSaddcbbarlog
	XPRSaddcbcomputerestart
	XPRSaddcbpresolve
	XPRSaddcbchecktime
	XPRSaddcbchgbranch
	XPRSaddcbchgbranchobject
	XPRSaddcbchgnode
	XPRSaddcbcutlog
	XPRSaddcbcutmgr
	XPRSaddcbdestroymt
	XPRSaddcbestimate
	XPRSaddcbgapnotify
	XPRSaddcbgloballog
	XPRSaddcbinfnode
	XPRSaddcbintsol
	XPRSaddcblplog
	XPRSaddcbmessage
	XPRSaddcbmipthread
	XPRSaddcbnewnode
	XPRSaddcbnodecutoff
	XPRSaddcboptnode
	XPRSaddcbpreintsol
	XPRSaddcbprenode
	XPRSaddcbsepnode
	XPRSaddcbusersolnotify
	XPRSaddcols, XPRSaddcols64
	XPRSaddcuts, XPRSaddcuts64
	XPRSaddgencons, XPRSaddgencons64
	XPRSaddmipsol
	XPRSaddnames
	XPRSaddpwlcons, XPRSaddpwlcons64
	XPRSaddqmatrix, XPRSaddqmatrix64
	XPRSaddrows, XPRSaddrows64
	XPRSaddsets, XPRSaddsets64
	XPRSaddsetnames
	XPRSalter (ALTER)
	XPRSbasiscondition (BASISCONDITION)
	XPRSbasisstability (BASISSTABILITY)
	XPRSbndsa
	XPRSbtran
	XPRScalcobjective
	XPRScalcreducedcosts
	XPRScalcslacks
	XPRScalcsolinfo
	CHECKCONVEXITY
	XPRSchgbounds
	XPRSchgcoef
	XPRSchgcoltype
	XPRSchgglblimit
	XPRSchgmcoef, XPRSchgmcoef64
	XPRSchgmqobj, XPRSchgmqobj64
	XPRSchgobj
	XPRSchgobjsense (CHGOBJSENSE)
	XPRSchgqobj
	XPRSchgqrowcoeff
	XPRSchgrhs
	XPRSchgrhsrange
	XPRSchgrowtype
	XPRScopycallbacks
	XPRSclearrowflags
	XPRScopycontrols
	XPRScopyprob
	XPRScreateprob
	XPRScrossoverlpsol
	XPRSdelcols
	XPRSdelcpcuts
	XPRSdelcuts
	XPRSdelgencons
	XPRSdelindicators
	XPRSdelpwlcons
	XPRSdelqmatrix
	XPRSdelrows
	XPRSdelsets
	XPRSdestroyprob
	XPRSdumpcontrols (DUMPCONTROLS)
	EXIT
	XPRSestimaterowdualranges
	XPRSfeaturequery
	XPRSfixglobals (FIXGLOBALS)
	XPRSfree
	XPRSftran
	XPRSgetattribinfo
	XPRSgetbanner
	XPRSgetbasis
	XPRSgetbasisval
	XPRSgetcheckedmode
	XPRSgetcoef
	XPRSgetcols, XPRSgetcols64
	XPRSgetcoltype
	XPRSgetcontrolinfo
	XPRSgetcpcutlist
	XPRSgetcpcuts, XPRSgetcpcuts64
	XPRSgetcutlist
	XPRSgetcutmap
	XPRSgetcutslack
	XPRSgetdaysleft
	XPRSgetdblattrib
	XPRSgetdblcontrol
	XPRSgetdirs
	XPRSgetdualray
	XPRSgetgencons, XPRSgetgencons64
	XPRSgetglobal, XPRSgetglobal64
	XPRSgetiisdata
	XPRSgetindex
	XPRSgetindicators
	XPRSgetinfeas
	XPRSgetintattrib, XPRSgetintattrib64
	XPRSgetintcontrol, XPRSgetintcontrol64
	XPRSgetlastbarsol
	XPRSgetlasterror
	XPRSgetlb
	XPRSgetlicerrmsg
	XPRSgetlpsol
	XPRSgetlpsolval
	XPRSgetmessagestatus
	XPRSgetmipsol
	XPRSgetmipsolval
	XPRSgetmqobj, XPRSgetmqobj64
	XPRSgetnamelist
	XPRSgetnamelistobject
	XPRSgetnames
	XPRSgetobj
	XPRSgetobjecttypename
	XPRSgetpivotorder
	XPRSgetpivots
	XPRSgetpresolvebasis
	XPRSgetpresolvemap
	XPRSgetpresolvesol
	XPRSgetprimalray
	XPRSgetprobname
	XPRSgetpwlcons, XPRSgetpwlcons64
	XPRSgetqobj
	XPRSgetqrowcoeff
	XPRSgetqrowqmatrix
	XPRSgetqrowqmatrixtriplets
	XPRSgetqrows
	XPRSgetrhs
	XPRSgetrhsrange
	XPRSgetrowflags
	XPRSgetrows, XPRSgetrows64
	XPRSgetrowtype
	XPRSgetscale
	XPRSgetscaledinfeas
	XPRSgetstrattrib, XPRSgetstringattrib
	XPRSgetstrcontrol, XPRSgetstringcontrol
	XPRSgetub
	XPRSgetunbvec
	XPRSgetversion
	XPRSglobal (GLOBAL)
	HELP
	IIS
	XPRSiisall
	XPRSiisclear
	XPRSiisfirst
	XPRSiisisolations
	XPRSiisnext
	XPRSiisstatus
	XPRSiiswrite
	XPRSinit
	XPRSinitglobal
	XPRSinterrupt
	XPRSloadbasis
	XPRSloadbranchdirs
	XPRSloadcuts
	XPRSloaddelayedrows
	XPRSloaddirs
	XPRSloadglobal, XPRSloadglobal64
	XPRSloadlp, XPRSloadlp64
	XPRSloadlpsol
	XPRSloadmipsol
	XPRSloadmodelcuts
	XPRSloadpresolvebasis
	XPRSloadpresolvedirs
	XPRSloadqcqp, XPRSloadqcqp64
	XPRSloadqcqpglobal, XPRSloadqcqpglobal64
	XPRSloadqglobal, XPRSloadqglobal64
	XPRSloadqp, XPRSloadqp64
	XPRSloadsecurevecs
	XPRSlpoptimize (LPOPTIMIZE)
	XPRSmaxim, XPRSminim (MAXIM, MINIM)
	XPRSmipoptimize (MIPOPTIMIZE)
	XPRSobjsa
	XPRSpivot
	XPRSpostsolve (POSTSOLVE)
	XPRSpresolverow
	PRINTSOL
	QUIT
	XPRSreadbasis (READBASIS)
	XPRSreadbinsol (READBINSOL)
	XPRSreaddirs (READDIRS)
	XPRSreadprob (READPROB)
	XPRSreadslxsol (READSLXSOL)
	XPRSrefinemipsol (REFINEMIPSOL)
	XPRSremovecbbariteration
	XPRSremovecbcomputerestart
	XPRSremovecbpresolve
	XPRSremovecbbarlog
	XPRSremovecbchgbranch
	XPRSremovecbchgbranchobject
	XPRSremovecbchecktime
	XPRSremovecbchgnode
	XPRSremovecbcutlog
	XPRSremovecbcutmgr
	XPRSremovecbdestroymt
	XPRSremovecbestimate
	XPRSremovecbgapnotify
	XPRSremovecbgloballog
	XPRSremovecbinfnode
	XPRSremovecbintsol
	XPRSremovecblplog
	XPRSremovecbmessage
	XPRSremovecbmipthread
	XPRSremovecbnewnode
	XPRSremovecbnodecutoff
	XPRSremovecboptnode
	XPRSremovecbpreintsol
	XPRSremovecbprenode
	XPRSremovecbsepnode
	XPRSremovecbusersolnotify
	XPRSrepairinfeas
	XPRSrepairweightedinfeas
	XPRSrepairweightedinfeasbounds (REPAIRINFEAS)
	XPRSrestore (RESTORE)
	XPRSrhssa
	XPRSsave, XPRSsaveas (SAVE)
	XPRSscale (SCALE)
	XPRSsetbranchbounds
	XPRSsetbranchcuts
	XPRSsetcheckedmode
	XPRSsetdblcontrol
	XPRSsetdefaultcontrol (SETDEFAULTCONTROL)
	XPRSsetdefaults (SETDEFAULTS)
	XPRSsetindicators
	XPRSsetintcontrol, XPRSsetintcontrol64
	XPRSsetlogfile (SETLOGFILE)
	XPRSsetmessagestatus
	XPRSsetprobname (SETPROBNAME)
	XPRSsetstrcontrol
	STOP
	XPRSstorebounds
	XPRSstorecuts, XPRSstorecuts64
	XPRSstrongbranch
	XPRSstrongbranchcb
	TUNE
	XPRStune
	XPRStunerreadmethod
	XPRStunerwritemethod
	XPRSunloadprob
	XPRSwritebasis (WRITEBASIS)
	XPRSwritebinsol (WRITEBINSOL)
	XPRSwritedirs (WRITEDIRS)
	XPRSwriteprob (WRITEPROB)
	XPRSwriteprtsol (WRITEPRTSOL)
	XPRSwriteslxsol (WRITESLXSOL)
	XPRSwritesol (WRITESOL)

	Control Parameters
	Retrieving and Changing Control Values
	ALGAFTERCROSSOVER
	ALGAFTERNETWORK
	AUTOCUTTING
	AUTOSCALING
	AUTOPERTURB
	BACKTRACK
	BACKTRACKTIE
	BARALG
	BARCRASH
	BARDUALSTOP
	BARFREESCALE
	BARGAPSTOP
	BARGAPTARGET
	BARFAILITERLIMIT
	BARINDEFLIMIT
	BARITERLIMIT
	BARKERNEL
	BAROBJPERTURB
	BAROBJSCALE
	BARORDER
	BARORDERTHREADS
	BAROUTPUT
	BARPERTURB
	BARREFITER
	BARPRESOLVEOPS
	BARPRIMALSTOP
	BARREGULARIZE
	BARRHSSCALE
	BARSOLUTION
	BARSTART
	BARSTARTWEIGHT
	BARSTEPSTOP
	BARTHREADS
	BARCORES
	BIGM
	BIGMMETHOD
	BRANCHCHOICE
	BRANCHDISJ
	BRANCHSTRUCTURAL
	BREADTHFIRST
	CACHESIZE
	CALLBACKFROMMASTERTHREAD
	CHOLESKYALG
	CHOLESKYTOL
	CLAMPING
	COMPUTE
	COMPUTEEXECSERVICE
	COMPUTEJOBPRIORITY
	COMPUTELOG
	CONFLICTCUTS
	CONCURRENTTHREADS
	CORESPERCPU
	COVERCUTS
	CPIALPHA
	CPUPLATFORM
	CPUTIME
	CRASH
	CROSSOVER
	CROSSOVERACCURACYTOL
	CROSSOVERITERLIMIT
	CROSSOVEROPS
	CROSSOVERTHREADS
	CSTYLE
	CUTDEPTH
	CUTFACTOR
	CUTFREQ
	CUTSTRATEGY
	CUTSELECT
	DEFAULTALG
	DENSECOLLIMIT
	DETERMINISTIC
	DUALGRADIENT
	DUALIZE
	DUALIZEOPS
	DUALPERTURB
	DUALSTRATEGY
	DUALTHREADS
	EIGENVALUETOL
	ELIMFILLIN
	ELIMTOL
	ESCAPENAMES
	ETATOL
	EXTRACOLS
	EXTRAELEMS
	EXTRAMIPENTS
	EXTRAPRESOLVE
	EXTRAQCELEMENTS
	EXTRAQCROWS
	EXTRAROWS
	EXTRASETELEMS
	EXTRASETS
	FEASIBILITYPUMP
	FEASTOL
	FEASTOLPERTURB
	FEASTOLTARGET
	FORCEOUTPUT
	FORCEPARALLELDUAL
	GENCONSABSTRANSFORMATION
	GENCONSDUALREDUCTIONS
	GLOBALFILEBIAS
	GLOBALFILELOGINTERVAL
	GOMCUTS
	HEURBEFORELP
	HEURDEPTH
	HEURDIVEITERLIMIT
	HEURDIVERANDOMIZE
	HEURDIVESOFTROUNDING
	HEURDIVESPEEDUP
	HEURDIVESTRATEGY
	HEUREMPHASIS
	HEURFORCESPECIALOBJ
	HEURFREQ
	HEURMAXSOL
	HEURNODES
	HEURSEARCHEFFORT
	HEURSEARCHFREQ
	HEURSEARCHROOTCUTFREQ
	HEURSEARCHROOTSELECT
	HEURSEARCHTREESELECT
	HEURSTRATEGY
	HEURTHREADS
	HISTORYCOSTS
	IFCHECKCONVEXITY
	INDLINBIGM
	INDPRELINBIGM
	INPUTTOL
	INVERTFREQ
	INVERTMIN
	IOTIMEOUT
	KEEPBASIS
	KEEPNROWS
	L1CACHE
	LINELENGTH
	LNPBEST
	LNPITERLIMIT
	LPFLAGS
	LPITERLIMIT
	LPREFINEITERLIMIT
	LOCALCHOICE
	LPFOLDING
	LPLOG
	LPLOGDELAY
	LPLOGSTYLE
	LPTHREADS
	MARKOWITZTOL
	MATRIXTOL
	MAXCHECKSONMAXCUTTIME
	MAXCHECKSONMAXTIME
	MAXMCOEFFBUFFERELEMS
	MAXCUTTIME
	MAXGLOBALFILESIZE
	MAXIIS
	MAXIMPLIEDBOUND
	MAXLOCALBACKTRACK
	MAXMEMORYHARD
	MAXMEMORYSOFT
	MAXMIPTASKS
	MAXMIPSOL
	MAXNODE
	MAXPAGELINES
	MAXSCALEFACTOR
	MAXSTALLTIME
	MAXTIME
	MIPABSCUTOFF
	MIPABSGAPNOTIFY
	MIPABSGAPNOTIFYBOUND
	MIPABSGAPNOTIFYOBJ
	MIPABSSTOP
	MIPADDCUTOFF
	MIPCOMPONENTS
	MIPCONCURRENTNODES
	MIPCONCURRENTSOLVES
	MIPDUALREDUCTIONS
	MIPFRACREDUCE
	MIPKAPPAFREQ
	MIPLOG
	MIPPRESOLVE
	MIPRAMPUP
	MIPRESTART
	MIPRESTARTGAPTHRESHOLD
	MIPRESTARTFACTOR
	MIQCPALG
	MIPREFINEITERLIMIT
	MIPRELCUTOFF
	MIPRELGAPNOTIFY
	MIPRELSTOP
	MIPTERMINATIONMETHOD
	MIPTHREADS
	MIPTOL
	MIPTOLTARGET
	MPS18COMPATIBLE
	MPSBOUNDNAME
	MPSECHO
	MPSFORMAT
	MPSOBJNAME
	MPSRANGENAME
	MPSRHSNAME
	MUTEXCALLBACKS
	NETCUTS
	NETSTALLLIMIT
	NODEPROBINGEFFORT
	NODESELECTION
	NUMERICALEMPHASIS
	OBJSCALEFACTOR
	OPTIMALITYTOL
	OPTIMALITYTOLTARGET
	OUTPUTCONTROLS
	OUTPUTLOG
	OUTPUTMASK
	OUTPUTTOL
	PENALTY
	PERTURB
	PIVOTTOL
	PPFACTOR
	PREANALYTICCENTER
	PREBASISRED
	PREBNDREDCONE
	PREBNDREDQUAD
	PRECLIQUESTRATEGY
	PRECOEFELIM
	PRECOMPONENTS
	PRECOMPONENTSEFFORT
	PRECONEDECOMP
	PRECONVERTSEPARABLE
	PREDOMCOL
	PREDOMROW
	PREDUPROW
	PREELIMQUAD
	PREFOLDING
	PREIMPLICATIONS
	PRELINDEP
	PREOBJCUTDETECT
	PREPERMUTE
	PREPERMUTESEED
	PREPROBING
	PREPROTECTDUAL
	PRESOLVE
	PRESOLVEMAXGROW
	PRESOLVEOPS
	PRESOLVEPASSES
	PRESORT
	PRICINGALG
	PRIMALOPS
	PRIMALPERTURB
	PRIMALUNSHIFT
	PSEUDOCOST
	PWLDUALREDUCTIONS
	PWLNONCONVEXTRANSFORMATION
	QCCUTS
	QCROOTALG
	QSIMPLEXOPS
	QUADRATICUNSHIFT
	RANDOMSEED
	REFACTOR
	REFINEOPS
	RELAXTREEMEMORYLIMIT
	RELPIVOTTOL
	REPAIRINDEFINITEQ
	REPAIRINFEASMAXTIME
	RESOURCESTRATEGY
	ROOTPRESOLVE
	SBBEST
	SBEFFORT
	SBESTIMATE
	SBITERLIMIT
	SBSELECT
	SCALING
	SERIALIZEPREINTSOL
	SIFTING
	SIFTPASSES
	SIFTPRESOLVEOPS
	SIFTSWITCH
	SLEEPONTHREADWAIT
	SOSREFTOL
	SYMMETRY
	SYMSELECT
	THREADS
	TRACE
	TREECOMPRESSION
	TREECOVERCUTS
	TREECUTSELECT
	TREEDIAGNOSTICS
	TREEGOMCUTS
	TREEMEMORYLIMIT
	TREEMEMORYSAVINGTARGET
	TREEQCCUTS
	TUNERHISTORY
	TUNERMAXTIME
	TUNERMETHOD
	TUNERMETHODFILE
	TUNERMODE
	TUNEROUTPUT
	TUNEROUTPUTPATH
	TUNERPERMUTE
	TUNERROOTALG
	TUNERSESSIONNAME
	TUNERTARGET
	TUNERTHREADS
	TUNERVERBOSE
	USERSOLHEURISTIC
	VARSELECTION
	VERSION

	Problem Attributes
	Retrieving Problem Attributes
	ACTIVENODES
	ALGORITHM
	ATTENTIONLEVEL
	AVAILABLEMEMORY
	BARAASIZE
	BARCGAP
	BARCONDA
	BARCONDD
	BARCROSSOVER
	BARDENSECOL
	BARDUALINF
	BARDUALOBJ
	BARITER
	BARLSIZE
	BARPRIMALINF
	BARPRIMALOBJ
	BARSING
	BARSINGR
	BESTBOUND
	BOUNDNAME
	BRANCHVALUE
	BRANCHVAR
	CALLBACKCOUNT_CUTMGR
	CALLBACKCOUNT_OPTNODE
	CHECKSONMAXCUTTIME
	CHECKSONMAXTIME
	COLS
	COMPUTEEXECUTIONS
	CONEELEMS
	CONES
	CORESDETECTED
	CORESPERCPUDETECTED
	CPISCALEFACTOR
	CPUSDETECTED
	CURRENTMEMORY
	CURRENTNODE
	CURRMIPCUTOFF
	CUTS
	DUALINFEAS
	ELEMS
	ERRORCODE
	GENCONCOLS
	GENCONS
	GENCONVALS
	GLOBALFILESIZE
	GLOBALFILEUSAGE
	INDICATORS
	LPOBJVAL
	LPSTATUS
	MATRIXNAME
	MAXABSDUALINFEAS
	MAXABSPRIMALINFEAS
	MAXKAPPA
	MAXMIPINFEAS
	MAXPROBNAMELENGTH
	MAXRELDUALINFEAS
	MAXRELPRIMALINFEAS
	MEMORYLIMITDETECTED
	MIPBESTOBJVAL
	MIPENTS
	MIPINFEAS
	MIPOBJVAL
	MIPSOLNODE
	MIPSOLS
	MIPSOLTIME
	MIPSTATUS
	MIPTHREADID
	NAMELENGTH
	NODEDEPTH
	NODES
	NUMIIS
	OBJNAME
	OBJRHS
	OBSERVEDPRIMALINTEGRAL
	OBJSENSE
	ORIGINALCOLS
	ORIGINALGENCONS
	ORIGINALGENCONCOLS
	ORIGINALGENCONVALS
	ORIGINALINDICATORS
	ORIGINALMIPENTS
	ORIGINALPWLS
	ORIGINALPWLPOINTS
	ORIGINALQCONSTRAINTS
	ORIGINALQCELEMS
	ORIGINALQELEMS
	ORIGINALSETMEMBERS
	ORIGINALSETS
	ORIGINALROWS
	PARENTNODE
	PEAKMEMORY
	PEAKTOTALTREEMEMORYUSAGE
	PENALTYVALUE
	PHYSICALCORESDETECTED
	PHYSICALCORESPERCPUDETECTED
	PREDICTEDATTLEVEL
	PRESOLVEINDEX
	PRESOLVESTATE
	PRIMALDUALINTEGRAL
	PRIMALINFEAS
	PWLCONS
	PWLPOINTS
	QCELEMS
	QCONSTRAINTS
	QELEMS
	RANGENAME
	RESTARTS
	RHSNAME
	ROWS
	SIMPLEXITER
	SETMEMBERS
	SETS
	SPARECOLS
	SPAREELEMS
	SPAREMIPENTS
	SPAREROWS
	SPARESETELEMS
	SPARESETS
	STOPSTATUS
	SUMPRIMALINF
	SYSTEMMEMORY
	TIME
	TOTALMEMORY
	TREECOMPLETION
	TREEMEMORYUSAGE
	TREERESTARTS
	UUID
	XPRESSVERSION

	Return Codes and Error Messages
	Optimizer Return Codes
	Optimizer Error and Warning Messages

	Appendix
	Log and File Formats
	File Types
	File Compression

	XMPS Matrix Files
	NAME section
	ROWS section
	COLUMNS section
	QUADOBJ / QMATRIX section (Quadratic Programming only)
	QCMATRIX section (Quadratic Constraint Programming only)
	DELAYEDROWS section
	MODELCUTS section
	INDICATORS section
	SETS section (Integer Programming only)
	RHS section
	RANGES section
	BOUNDS section
	GENCONS section
	ENDATA section
	Compatibility
	PWLOBJ section
	PWLNAM section
	PWLCON section

	LP File Format
	Rules for the LP file format
	Comments and blank lines
	File lines, white space and identifiers
	Sections
	Names
	Linear expressions
	Objective function
	Constraints
	Delayed rows
	Model cuts
	Indicator contraints
	Bounds
	Generals, Integers and binaries
	Semi-continuous and semi-integer
	Partial integers
	Special ordered sets
	Quadratic programming problems
	Quadratic Constraints
	General Constraints
	Constraint ranges
	Extended naming convention
	Compatibility to other extensions

	ASCII Solution Files
	Solution Header .hdr Files
	CSV Format Solution .asc Files
	Fixed Format Solution (.prt) Files
	ASCII Solution (.slx) Files

	The Directives (.dir) File
	IIS description file in CSV format
	The Matrix Alteration (.alt) File
	Changing Upper or Lower Bounds
	Changing Right Hand Side Coefficients
	Changing Constraint Types

	The Tuner Method (.xtm) File
	The fixed controls
	The tunable controls

	The Simplex Log
	The Barrier Log
	The Global Log
	The Tuner Log
	The Remote Solving Configuration file
	caCertsPath
	cleanupJobs
	executionService
	logLevel
	maxRetries
	priority
	trustSrv

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

