
FICOFICO R©R©Xpress OptimizationXpress Optimization

5.2
Last update 11 March, 2020

QUICK REFERENCE

Mosel Language
Quick reference

©2009–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation ("FICO").Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allowothers to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software describedin this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use ispermitted.
The information in this documentation is subject to change without notice. If you find any problems in this documentation, pleasereport them to us in writing. Neither FICO nor its affiliates warrant that this documentation is error-free, nor are there any otherwarranties with respect to the documentation except as may be provided in the license agreement. FICO and its affiliates specificallydisclaim any warranties, express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particularpurpose. Portions of this documentation and the software described in it may contain copyright of various authors and may belicensed under certain third-party licenses identified in the software, documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or consequential damages, includinglost profits, arising out of the use of this documentation or the software described in it, even if FICO or its affiliates have been advisedof the possibility of such damage. FICO and its affiliates have no obligation to provide maintenance, support, updates, enhancements,or modifications except as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered trademark of Fair IsaacCorporation in other countries. Other product and company names herein may be trademarks of their respective owners.
FICO R© Xpress MoselLast Revised: 11 March, 2020Version 5.2

How to Contact the Xpress Team
Sales and Maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenance contracts or other sales-relateditems, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Product Support

Customer Self Service Portal (online support): www.fico.com/en/product-support
Email: Support@fico.com (Please include ’Xpress’ in the subject line)

For the latest news and Xpress software and documentation updates, please visit the Xpress website athttp://www.fico.com/xpress or subscribe to our mailing list.

http://www.fico.com/optimization
http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/xpress

Mosel Quick Reference

FICO R© Xpress Optimization

Mosel Language
Quick reference

Release 5.2
11 March, 2020

Contents
1 Mathematical Programming basics . 21.1 Decision variables . 21.2 Constraints . 31.3 Objective function . 31.4 Optimization . 31.5 Viewing the matrix . 31.6 Viewing the solution . 32 Data handling basics . 42.1 Data types . 42.2 Sums and loops . 52.3 Index sets . 62.4 Reading data in from text files . 62.5 Writing data out to text files . 72.6 User defined data formats . 72.7 Using other data sources . 83 Model building style recommendations . 84 Mosel Language overview . 94.1 Structure of a Mosel model . 94.2 Data structures . 104.3 Selection statements . 114.4 Loops . 124.5 Operators . 134.6 Built in functions and procedures . 144.7 Constraint handling . 164.8 Problem handling . 164.9 Reserved words . 164.10 Annotations . 175 Using the Mosel Command Line . 185.1 Debugger commands . 186 Working with Xpress Workbench . 19

Contents Fair Isaac Corporation Confidential and Proprietary Information 1

Mosel Quick Reference

1 Mathematical Programming basics

model "Chess 1"
uses "mmxprs" ! Use Xpress Optimizer for solving

declarations
xs, xl: mpvar ! Decision variables
end-declarations

Time:= 3⁎xs + 2⁎xl <= 160 ! Constraint: limit on working hours
Wood:= xs + 3⁎xl <= 200 ! Constraint: raw mat. availability

xs is_integer; xl is_integer ! Integrality constraints

maximize(5⁎xs + 20⁎xl) ! Objective: maximize total profit

writeln("Solution: ", getobjval) ! Print objective function value

writeln("small: ", getsol(xs)) ! Print solution for xs
writeln("large: ", getsol(xl)) ! and xl

write("Time: ", getact(Time)) ! Constraint activity
writeln(" ", getslack(Time)) ! and slack

end-model

1.1 Decision variables
declarations
x, b, d: mpvar
ifmake: array(1..10, 1..20) of mpvar
y, z: array(1..10) of mpvar

end-declarations

mpvarmeans mathematical programming variable or decision variable, sometimes also just called
variable. Decision variables are unknowns: they have no value until the model is run, and the optimizerfinds values for the decision variables.Variables can take values between 0 and infinity by default, other bounds may be specified:

x <= 10
y(1) = 25.5
y(2) is_free
z(2,3) >= -50
z(2,3) <= 50

Integer programming types are defined as unary constraints on previously declared decision variables
b is_binary ! Single binary variable
forall(p in PRODS,l in LINES)
ifmake(p,l) is_binary ! An array of binaries

d is_integer ! An integer variable
d <= 25 ! Upper bound on the variable
x is_partint 10 ! Partial integer (integers up to 10, continuous beyond)
y(3) is_semcont 5 ! Semi-continuous (0 or greater or equal 5)

Mathematical Programming basics Fair Isaac Corporation Confidential and Proprietary Information 2

Mosel Quick Reference

1.2 Constraints

Constraint are declared just like decision variables, in LP/MIP problems they have type linctr – linearconstraint.
declarations
MaxCap: linctr
Inven: array(1..10) of linctr

end-declarations

The “value” of a constraint entity is a linear expression of decision variables, a constraint type (≤ , ≥ ,=), and a constant term. It is set using an assignment statement:
MaxCap := 10⁎x + 20⁎y + 30⁎z <= 100
Ctr(3) := 4⁎x(1) - 3⁎x(2) >= 10
Inven(2) := stock(2) = stock(1) + buy(2) - sell(2)

1.3 Objective function

An objective function is just a constraint with no constraint type.
declarations
MinCost: linctr

end-declarations

MinCost := 10⁎x(1) + 20⁎x(2) + 30⁎x(3) + 40⁎x(4)

1.4 Optimization
minimize(MinCost)

maximize(MaxProfit)

1.5 Viewing the matrix

After defining the problem the matrix can be output to a file, to examine off line.
Specify LP format for constraint oriented file: exportprob(EP_MIN, "explout", MinCost)

Useful Optimizer control settings: setparam('XPRS_VERBOSE', true)
setparam('XPRS_LOADNAMES', true)

1.6 Viewing the solution

Always check the solution status of the problem before accessing any solution values.
if (getprobstat=XPRS_OPT) then
writeln('optimal!')

else
writeln('not optimal!')
exit(1)

end-if

Alternatively, testing all problem states:
case getprobstat of
XPRS_OPT: writeln('optimal')

Mathematical Programming basics Fair Isaac Corporation Confidential and Proprietary Information 3

Mosel Quick Reference

XPRS_INF: writeln('infeasible')
XPRS_UNB: writeln('unbounded')
XPRS_UNF: writeln('unfinished')

else
writeln('unexpected problem status!')

end-case

Accessing the solution values within the model:
writeln('Maximum revenue: $', getobjval)
writeln('x(1) = ', getsol(x(1)), ' x(2) = ', x(2).sol)

Solution values of constraints: activity value + slack value = RHS
MaxCap := 10⁎x + 20⁎y <= 30

Activity value: getsol(10⁎x + 20⁎y)
getact(MaxCap)

Slack value: getsol(30 - (10⁎x + 20⁎y))
getslack(MaxCap)

Xpress Workbench: assuming that the model runs successfully, the logging pane at the bottom of theworkspace reports that the run is complete. If a model has been run through the debugger, you canbrowse solution values of decision variables and constraints in the Debugger tab on the right side of theworkspace.

2 Data handling basics

model "Chess 3"
uses "mmxprs"

declarations
R = 1..2 ! Index range
DUR, WOOD, PROFIT: array(R) of real ! Coefficients
x: array(R) of mpvar ! Array of variables
end-declarations

DUR :: [3, 2] ! Initialize data arrays
WOOD :: [1, 3]
PROFIT:: [5, 20]

sum(i in R) DUR(i)⁎x(i) <= 160 ! Constraint definition
sum(i in R) WOOD(i)⁎x(i) <= 200
forall(i in R) x(i) is_integer

maximize(sum(i in R) PROFIT(i)⁎x(i))
writeln("Solution: ", getobjval)
end-model

2.1 Data types

Constant data declarations
NWEEKS = 20
NDAYS = 7⁎NWEEKS
CONV_RATE = 1.425
DATA_DIR = 'c:\data'

end-declarations

Variable data

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 4

Mosel Quick Reference

Declaration declarations
NPROD: integer
SCOST: real
MAXREFVEG: real
DIR: string
IF_DEBUG: boolean
HARD: array(1..5) of real
COST: array(1..3,1..4) of real

end-declarations

Initialization NPROD := 20
SCOST := 5
MAXREFVEG := 200.0
DIR := 'c:\data'
IF_DEBUG := true
HARD :: [8.8, 6.1, 2.0, 4.2, 5.0]
COST :: [11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34]

2.2 Sums and loops

Summations Sum up an array of variables in a constraint:
MaxCap := sum(p in 1..10) buy(p) <= 100

MaxCap := sum(p in 1..10) (buy(p) + sum(r in 1..5) make(p,r)) <= 100

MaxCap := sum(p in 1..NP, t in 1..NT)
CAP(p)⁎buy(p,t) <= MAXCAP

MaxCap := sum(p in 1..NP) (2⁎CAP(p)⁎buy(p)/10 +
SCAP(p)⁎sell(p)) <= MAXCAP

Loops Use a loop to assign an array of constraints:
forall(t in 2..NT)
Inven(t) := bal(t) = bal(t-1) + buy(t) - sell(t)

Use do/end-do to group several statements into one loop
forall(t in 1..NT) do
MaxRef(t) := sum(i in 1..NI) use(i,t) <= MAXREF(t)

Inven(t) := store(t) = store(t-1) + buy(t) - use(t)
end-do

Can nest forall statements:
forall(t in 1..NT) do
MaxRef(t) := sum(i in 1..NI) use(i,t) <= MAXREF(t)

forall(i in 1..NI)
Inven(i,t) := store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)

end-do

Similarly for specification of bounds (a bound is just a simple unnamedconstraint):
forall(i in 1..NI) do
forall(t in 1..NT) store(i,t) <= MAXSTORE(t)
store(i,0) = STORE0

end-do

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 5

Mosel Quick Reference

May include conditions in sums or loops:
forall(c in 1..10 | CAP(c)>=100.0)
MaxCap(c) :=
sum(i in 1..10, j in 1..10 | i<>j)

TECH(i,j,c)⁎x(i,j,c) <= MAXTECH(c)

2.3 Index sets

Explicit statement: declarations
MaxCap: array(1..10) of linctr

end-declarations

forall(d in 1..10)
MaxCap(d) :=

sum(p in 1..10, m in 1..10)
TECH(p,m,d)⁎x(p,m,d) <= MAXTECH(d)

Defining named sets: declarations
PRODUCTS = 1..5
MATERIALS = {12,487,163}
DEPOTS = {"Boston","New York","Atlanta"}

MaxCap: array(DEPOTS) of linctr
end-declarations

forall(d in DEPOTS)
MaxCap(d) :=

sum(p in PRODUCTS, m in MATERIALS)
TECH(p,m,d)⁎x(p,m,d) <= MAXTECH(d)

Using named sets � improves the readability of a model
� makes it easier to apply the model to different sized data sets
� makes the model easier to maintain

2.4 Reading data in from text files

Read data into COST from cost.dat initializations from 'cost.dat'
COST

end-initializations

Data file cost.dat (dense data format) COST : [3.9 0 4.8
0 7.5 5.5]

Data file cost2.dat (sparse data format) COST: [("Oil1" 1) 3.9 ("Oil1" 3) 4.8
("Oil2" 2) 7.5 ("Oil2" 3) 5.5]

Mosel data format: � file may include single line comments, marked with ’!’
� format: label, colon, data value(s)
� for an array, use a single list enclosed in []
� list may be comma or space separated
� dense format: the values fill the data table starting at the first positionand varying the last index most rapidly
� sparse format: each data item is preceded by the corresponding indextuple (in brackets)

Specifying the absolute path initializations from 'c:/data/cost.dat'
COST

end-initializations

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 6

Mosel Quick Reference

Path relative to current working directory initializations from '../cost.dat'
COST

end-initializations

Read several data tables from a single file initializations from 'cost.dat'
SCOST
PCOST

end-initializations

Different data label and model object names initializations from 'cost.dat'
COST as 'COST_DETAILS'

end-initializations

Read several data arrays with identical index sets from a single table
initializations from 'chess.dat'

[DUR,WOOD,PROFIT] as 'ChessData'
end-initializations

2.5 Writing data out to text files

You can write out values in an analogous way to reading them in
initializations to 'cost.dat'

COST
end-initializations

To write out the solution values of variables, or other solution values (slack, activity, dual, reduced cost)you must first put the values into a data table
declarations
make_sol: array(ITEMS,TIME) of real
obj_sol: real

end-declarations

forall(i in ITEMS, t in TIME)
make_sol(i,t) := getsol(make(i,t))

obj_sol := getobjval

initializations to 'make.dat'
make_sol
obj_sol

end-initializations

Alternatively, you can use evaluation of directly in the initializations block
initializations to 'make.dat'

evaluation of
array(i in ITEMS, t in TIME) getsol(make(i,t)) as 'make_sol'

evaluation of getobjval as 'obj_sol'
end-initializations

2.6 User defined data formats

Mosel also provides functions which allow you to read data in from and write data out to text files usingany format (see list in Section 4.6).
Reading in free format data declarations

ii, jj: integer ! Don't use normal i,j

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 7

Mosel Quick Reference

end-declarations

fopen('cost.dat', F_INPUT)
while(not iseof)
readln(ii, ',', jj, ',', COST(ii,jj))

fclose(F_INPUT)

Writing out data in user format fopen('xsol.dat', F_OUTPUT)
forall(s in SUP, d in DEP)
writeln(s, ',', d, ',', getsol(x(s,d)))

fclose(F_OUTPUT)

2.7 Using other data sources

The initializations block can work with many different data sources and formats thanks to thenotion of I/O drivers.
I/O drivers for physical data files: � mmodbc.odbc for databases with ODBC connector

� mmsheet.excel for MS Excel spreadsheets
� mmsheet.xls and mmsheet.xlsx for generic spreadsheetaccess, including on non-Windows platforms
� mmsheet.csv for CSV format files
� mmoci.oci for Oracle databases
� mmetc.diskdata for mp-model style data files

Other drivers are available, e.g. for data exchange in memory between models or between a model andthe host application.
Change of the data source = change of the I/O driver, no other modifications to your model

initializations from "mmsheet.xls:mydat.xls"
COST as 'CostData'
end-initializations

initializations to "mmodbc.odbc:mydat.mdb"
SOL as 'SolTable'
end-initializations

3 Model building style recommendations

� Separation of problem logic and data
– Typically, the model logic stays constant once developed, with the data changing each run
– Fix the model and obtain data from their source to avoid editing the model which can createerrors, expose intellectual property, and is impractical for industrial size data

� You should aim to build a model with sections in this order
– constant data: declare, initialize
– all non-constant objects: declare
– variable data: initialize / input / calculate
– decision variables: create, specify bounds
– constraints: declare, specify

Model building style recommendations Fair Isaac Corporation Confidential and Proprietary Information 8

Mosel Quick Reference

– objective: declare, specify, optimize
� Use a naming convention that distinguishes between different model object types, for example

– known values (data) using upper case
– unknown values (variables) using lower case
– constraints using mixed case

� Variables are actions that your model will prescribe
– Use verbs for the names of variables. This emphasizes that variables represent ‘what to do’decisions

� Try to include ‘min’ or ‘max’ in the name of your objective function; an objective function called‘OBJ’ is not very helpful when taken out of context!
� Indices are the objects that the actions are performed on

– Use nouns for the names of indices
� Declare all objects in your model (optional unless using compiler option noimplicit)

– Allows the compiler to detect syntax errors more easily
– Mosel’s guessed declaration doesn’t always work
– A form of rigour and documentation
– An opportunity for a descriptive comment

� Comments are essential for a well written model
– Always use a comment to explain what each parameter, data table, variable, and constraintis for when you declare it
– Add extra comments to explain any complex calculation etc
– Comments in Mosel:

declarations
make: array(1..NP, 1..NT) of mpvar ! Amount of p produced in time t
sell: array(1..NP, 1..NT) of mpvar ! Amount of p sold in time t

end-declarations

(! And here is a multi-line
comment !) forall(t in 1..NT) ...

4 Mosel Language overview

4.1 Structure of a Mosel model

A Mosel model (text file with extension .mos) has the form
model model_name

Compiler directives

Parameters

Body

end-model

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 9

Mosel Quick Reference

Compiler directives � Options are specified as a compiler directive, at the beginning of themodel
� Options include explterm, which means that each statement must endwith a semi-colon, and noimplicit, which forces all objects to bedeclared

options explterm
options noimplicit

� uses statements are also compiler directives
uses "mmxprs", "mmodbc"

� Can define a version number for your model
version 1.0.0

Run-time parameters � Scalars (of type integer, real, boolean, or string) with a specifieddefault value
� Their value may be reset when executing the model
� Use initializations from for inputting structured data (arrays,sets,...)
� At most one parameters block per model

Model body � Model statements other than compiler directives and parameters,including any number of
– declarations
– initializations from / initializations to
– functions and procedures

Implicit declaration � Mosel does not require all objects to be declared
� Simple objects can be used without declaring them, if their type isobvious
� Use the noimplicit option to force all objects to be declared beforeusing them (see item Compiler directives above)

Mosel statements � Can extend over several lines and use spaces
� However, a line break acts as an expression terminator
� To continue an expression, it must be cut after a symbol that impliescontinuation (e.g. + - , ⁎)

4.2 Data structures

array, set, list, record and any combinations thereof, e.g.,
S: set of list of integer
A: array(range) of set of real

Arrays Array: collection of labeled objects of a given type where the label of an array entry isdefined by its index tuple
declarations
A: array(1..5) of real
B: array(range, set of string) of integer

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 10

Mosel Quick Reference

x: array(1..10) of mpvar
C: array(1..5) of real

end-declarations

A:: [4.5, 2.3, 7, 1.5, 10]
A(2):= 1.2
B:: (2..4,["ABC", "DE", "KLM"])[15,100,90,60,40,15,10,1,30]
C:= array(i in 1..5) x(i).sol

Sets Set: collection of objects of the same type without establishing an order amongthem (as opposed to arrays and lists)Set elements are unique: if the same element is added twice the set still onlycontains it once.
declarations
S: set of string
R: range

end-declarations

S:= {"A", "B", "C", "D"}
R:= 1..10

Lists List: collection of objects of the same typeA list may contain the same element several times. The order of the list elements isspecified by construction.
declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[['A','B','C'], ['D','E'], ['F','G','H','I']]

Records Record: finite collection of objects of any typeEach component of a record is called a field and is characterized by its name and itstype.
declarations
ARC: array(ARCSET:range) of record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5

User types User types are treated in the same way as the predefined types of the Mosellanguage. New types are defined in declarations blocks by specifying a typename, followed by =, and the definition of the type.
declarations
myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

4.3 Selection statements

if ... end-if if c=1 then

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 11

Mosel Quick Reference

writeln('c equals 1')
end-if

if ... else ... end-if if c=1 then
writeln('c equals 1')

else
writeln('c does not equal 1')

end-if

if ... elif ... else ... end-if if c=1 then
writeln('c equals 1')

elif c>1 then
writeln('c is bigger than 1')

else
writeln('c is smaller than 1')

end-if

case ... end-case case c of
1,2 : writeln('c equals 1 or 2')
3 : writeln('c equals 3')
4..6: do

writeln('c is in 4..6')
writeln('c is not 1, 2 or 3')
end-do

else
writeln('c is not in 1..6')

end-case

4.4 Loops

forall forall(f in FAC, t in TIME)
make(f,t) <= MAXCAP(f,t)

forall(t in TIME) do
use(t) <= MAXUSE(t)
buy(t) <= MAXBUY(t)

end-do

with equivalent to a forall loop stopped after the first iteration
with f='F1', t=1 do
make(f,t) <= MAXCAP(f,t)

end-do

while i := 1
while (i <= 10) do
write(' ', i)
i += 1

end-do

repeat ... until i := 1
repeat
write(' ', i)
i += 1

until (i > 10)

break, next � break jumps out of the current loop
� break n jumps out of n nested loops (where n is a positive integer)
� next jumps to the beginning of the next iteration of the current loop
� use break ’looplabel’ and next ’looplabel’ with labeledloops:

'L1': repeat
'L2': while (condition1) do
if condition2 then

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 12

Mosel Quick Reference

break 'L1'
end-if

end-do
until condition3

counter � Use the construct as counter to specify a counter variable in abounded loop (i.e., forall or aggregate operators such as sum). Ateach iteration, the counter is incremented
cnt:=0.0
writeln("Average of odd numbers in 1..10: ",

(sum(cnt as counter, i in 1..10 | isodd(i)) i) / cnt)

4.5 Operators

Assignment operators i := 10
i += 20 ! Same as i := i + 20
i -= 5 ! Same as i := i - 5

Assignment operators with linear constraints

C := 5⁎x + 2⁎y <= 20
D := C + 7⁎y

then D is
D := 5⁎x + 9⁎y - 20

The constraint type is dropped with :=
C := 5⁎x + 2⁎y <= 20
C += 7⁎y

then C is
C := 5⁎x + 9⁎y <= 20

The constraint type is retained with +=, -=
Arithmetic operators standard: + - ⁎ /power: ˆint. division/remainder: mod divsum: sum(i in 1..10) ...product: prod(i in 1..10) ...minimum/maximum: min(i in 1..10) ...count: count(i in 1..10 | isodd(i))

Linear and non-linear expressionsDecision variables can be combined into linear or non-linear expressionsusing the arithmetic operators
� module mmxprs only works with linear constraints, so no prod, min,

max, ...
� other solver modules, e.g., mmquad, mmnl, mmxnlp, also accept(certain) non-linear expressions

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 13

Mosel Quick Reference

Logical operators constants: true, falsestandard: and, or, notAND: and(i in 1..10) ...OR: or(i in 1..10) ...comparison: <, >, =, <>, <=, >=

Set operators constants: {’A’, ’B’}union: +union: union(i in 1..10) ...intersection: ⁎intersection: inter(i in 1..10) ...difference: -

Set comparison operators subset: Set1 <= Set2superset: Set1 >= Set2equals: Set1 = Set2not equals: Set1 <>Set2element of: "Oil5" in Set1not element of: "Oil5" not in Set1

List operators constants: [1, 2, 3]concatenation: +, sumtruncation: -equals: L1 = L2not equals: L1 <>L2

4.6 Built in functions and procedures

The following is a list of built in functions and procedures of the Mosel language (excluding modules).Functions return a value; procedures do not.
Dynamic array handling create exists delcell isdynamic

Freeze (finalize) a dynamic set finalize

Rounding functions ceil floor round abs

Mathematical functions exp log ln sqrt
cos sin arctan
isodd

Special real values isfinite isinf isnan

Random number generator random setrandseed

Minimum/maximum of a list of values v := minlist(5, 7, 2, 9)
w := maxlist(CAP(1), CAP(2))

Inline “if” function MAX_INVEN(t) := if(t < MAX_TIME, 1000, 0)

Inven(t) := stock(t) = buy(t) - sell(t) +
if(t > 1, stock(t-1), 0)

Matrix export to file exportprob

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 14

Mosel Quick Reference

File handling fopen fclose fselect
getfid getfname getreadcnt
iseof fflush fskipline
fwrite[_] / fwriteln[_]
read / readln write[_] / writeln[_]

String handling strfmt substr _

Access and modify model objects getcoeff[s] setcoeff getvars
sethidden ishidden setname setrange
gettype settype getsize
makesos1 makesos2
getelt getfirst getlast findfirst
findlast gethead gettail cutelt
cutfirst cutlast cuthead cuttail
reverse getreverse splithead splittail

Access solution values getobjval
getsol getrcost
getslack getact getdual

Exit from a model exit

Mosel controls getparam setparam localsetparam restoreparam

Date/time currentdate currenttime timestamp

Bit value handling bitflip bitneg bitset
bitshift bittest bitval

Miscellaneous asproc assert compare datablock
memoryuse newmuid publish unpublish
reset setioerr setmatherr
versionnum versionstr

� Overloading of subroutines

– Some functions or procedures are overloaded: a single subroutine can be called withdifferent types and numbers of arguments
� Additional subroutines are provided by Mosel library modules, which extend the basic Mosellanguage, e.g.,

– mmxprs: Xpress Optimizer
– mmodbc: ODBC data connection
– mmsystem: system calls; text handling
– mmjobs: handling multiple models and (remote) Mosel instances
– mmsvg: graphics

⇒ See the ‘Mosel Language Reference Manual’ for full details
� User-defined functions and procedures

– You can also write your own functions and procedures within a Mosel model
– Structure of subroutines is similar to a model (may have declarations blocks)
– User subroutines may define overloaded versions of built in subroutines

⇒ See examples in the ‘Mosel User Guide’ (Chapter Functions and procedures)
� Packages

– Additional subroutines may also be provided through packages (Mosel libraries written in theMosel language as opposed to Mosel modules that are implemented in C)
⇒ See the ‘Mosel User Guide’ for further detail (Chapter Packages)

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 15

Mosel Quick Reference

4.7 Constraint handling
Ctr1:= 2⁎x + y <= 10 ! Named constraints
Ctr2:= x is_integer

2⁎x + y <= 10 ! Anonymous constraints
y >= 5

Named constraints can be accessed: val:= getact(Ctr)
getvars(Ctr, vars)hidden: sethidden(Ctr, true)redefined: Ctr:= x+y <= 10
Ctr:= 2⁎x+5⁎y >= 5modified: Ctr += 2⁎x
settype(Ctr, CT_UNB)deleted (reset): Ctr:= 0

Anonymous constraints are constraints that are specified without assigning them to a linctrvariable. Bounds are (to Mosel) just simple constraints without a name. Anonymous constraints areapplied in the optimization problem just like ordinary constraints. The only difference is that it is notpossible to refer to them again, either to modify them, or to examine their solution value.
4.8 Problem handling

� Mosel can handle several problems in a given model file. A default problem is associated withevery model.
� Built in type mpproblem to identify mathematical programming problems

– The same decision variable (type mpvar) may be used in several problems
– Constraints (type linctr) belong to the problem where they are defined

� The statement with allows to open a problem (= select the active problem):
declarations
myprob: mpproblem

end-declarations
...
with myprob do
x+y >= 0

end-do

� Modules can define other specific problem types. New problem types can also be defined bycombining existing ones, for instance:
mypbtyp = mpproblem and somepbtype

� Problem types support assignment: P1:= P2and additive assignment: P1 += P2

4.9 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and
and are keywords but not And). Do not use them in a model except with their built-in meaning.

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 16

Mosel Quick Reference

a: and array as
b: boolean break
c: case constant count counter
d: declarations div do dynamic
e: elif else end evaluation
f: false forall forward from function
h: hashmap
i: if imports in include initialisations initializations

integer inter is_binary is_continuous is_free is_integer
is_partint is_semcont is_semint is_sos1 is_sos2

l: linctr list
m: max min mod model mpvar
n: namespace next not nsgroup nssearch
o: of options or
p: package parameters procedure public prod
r: range real record repeat requirements return
s: set shared string sum
t: then to true
u: union until uses
v: version
w: while with

4.10 Annotations

� Annotations are meta data in a Mosel source file that are stored in the resulting BIM file aftercompilation; no impact on the model itself (treated like comments); either global or associatedwith public globally declared objects (including subroutines).
� Single-line annotations start with ’!@’ and a name; blocks are surrounded by ’(!@’ and ’!)’
� !@doc.descr denotes the annotation marker descr within category doc (predefined categorynames are mc and doc, user-defined names can also be employed)

(!@doc. Enter category 'doc' (this text is ignored)
@ descr This is the value of 'doc.descr'
@. Jump back to root (this text is ignored)
@mynote Contents of 'mynote' (full name: '.mynote')
@.anote Complete form of an annotation in default category
!)

� Declaring annotations (via the mc.def compiler annotation): optional; enables the compiler tocheck the validity of the definitions and reject non-compliant ones
! Defining an alias that redirects onto 2 different annotations:
!@mc.def descr alias doc.descr om.descr

� moseldoc tool: generates an XML model documentation that is processed into HTML pages
1. Compile source model file with option -D

mosel comp -D mymodel.mos

2. Run program moseldoc

moseldoc mymodel Generates HTML and XML
moseldoc -o mydir -html mymodel HTML only, specifying output directory
moseldoc -f -xml mymodel XML only, forcing output overwrite

See ‘Mosel Language Reference’, section Documenting models using annotations for a list of the
doc annotations

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 17

Mosel Quick Reference

5 Using the Mosel Command Line

The Mosel Command Line is supported on all platforms that Mosel can be run on.
Standard sequence for model execution from the command line:

mosel exec mymodel.mos Execute (=compile/load/run) model 'mymodel.mos'
mosel mymodel Short form (works with 'mymodel.mos' or 'mymodel.bim')

Some useful commands (see ‘Mosel Language Reference manual’ for the full list):
Command line help text: mosel -h

Mosel version: mosel -V

Display functionality: mosel exam[ine] [-cspthirvaum]

Execute a model file: mosel exec[ute]

Compile a model file: mosel comp[ile] mymodel.mos

Load and run a BIM file: mosel run mymodel.bim

Start the debugger: mosel debug mymodel.mos

Run the profiler: mosel prof[ile] mymodel.mos

Perfom a code coverage run: mosel cover[age] mymodel.mos

List available modules/packages: mosel lslib

Examples:

mosel comp mymodel.mos -o mybim.bim Compile to a specified BIM file name/location
mosel prof mymodel.mos Perform a profiler run (output in 'mymodel.mos.prof')
mosel exam -h Display Mosel version info and paths
mosel exam -a mybim.bim Display annotations of a model or package
mosel exam -ps mmxprs Display parameters and subroutines of module 'mmxprs'

Setting model runtime parameters:
mosel exec mymodel NT=5 DATAFILE="mynewdata.dat" Source in mymodel.mos
mosel run mymodel NT=5 DATAFILE="mynewdata.dat" Loads mymodel.bim
mosel mymodel NT=5 DATAFILE="mynewdata.dat" With mymodel.mos or mymodel.bim

5.1 Debugger commands

Breakpoints: break delete bcond[ition] breakpoints breaksub

Model execution: cont next step finish model

Output: display undisplay list print info exportprob
lsattr lslibs lslocal lsmods lssymb

Stack access: up down where

Interpreter options: option

Termination: quit

Using the Mosel Command Line Fair Isaac Corporation Confidential and Proprietary Information 18

Mosel Quick Reference

Example: Simple debugging sequence

mosel debug debugexpl.mos Start Mosel debugger
break 20 Set breakpoint at line 20
cont Execute up to the breakpoint
print D Print out symbol 'D'
cont Continue model execution
info Arr Information about model object 'Arr' (e.g. size)
lsmods Display model info (e.g. memory usage)
quit Quit the debugger

Example: Debugging a submodel

mosel debug debugmaster.mos Start Mosel debugger
breaksub 1 Stop at start of submodels
cont Execute up to the breakpoint
break 25 debugsub.mos Set breakpoint in the submodel
display SNumbers Display watch on object 'SNumbers'
cont Execute up to the breakpoint
break 31 debugsub.mos Another submodel breakpoint
bcond 2-2 SNumbers.size < 10 Condition on 2nd submodel breakpoint
cont Execute up to the breakpoint 2-2
quit Quit the debugger

6 Working with Xpress Workbench

Xpress Workbench is a graphical development environment for Mosel models and Xpress Insightapplications.
Workbench panes Model editor (central window), project directory navigation and commandhistory (left), model output and execution log information (bottom),debugging, deployment and collaboration information (right).

Workspace preferences (settings).
Toggle full-screen view for logging pane.

Use menu Window�Presets�Full IDE to restore original window layout.
Editor Code folding and breakpoint markers appear in the grey area immediately leftto the text.

Open a new file/tab
Subdivide and re-arrange panes in the editor window
Code folding for blocks of Mosel statements
Unfold folded code
Line position markers during debugging

Model execution The name of the model is selected in the box next to these buttons, it may bedifferent from the model(s) opened in the editor.
Compile a model.
Execute (compile/load/run) a model.
Execute a model in debug mode.
Open Compiler Options or Run Dialog windows.

Working with Xpress Workbench Fair Isaac Corporation Confidential and Proprietary Information 19

Mosel Quick Reference

Alternatively, use menu Run to compile or run a model.
Debugger Breakpoints are set by clicking onto the gray area (left to the line number if it isdisplayed) preceding each row in the editor window, breakpoint conditions canbe added via the right mouse button menu on the breakpoint icon.

Delete breakpoint/deactivated breakpoint.
Delete a conditional/deactivated conditional breakpoint.

Navigating in the debugger:
Activate/deactivate all breakpoints.
Start/stop the debugger.
Resume/suspend model execution.
Step over an expression.
Step into an expression.
Step out of an expression.
Don’t pause on exceptions.

Deployment to Xpress Insight

Publish selected model to Insight.
Build an Insight app archive.
Debug a scenario.
Edit Tableau workbooks.
Refresh Insight scenario tree.

Working with Xpress Workbench Fair Isaac Corporation Confidential and Proprietary Information 20

	Mathematical Programming basics
	Decision variables
	Constraints
	Objective function
	Optimization
	Viewing the matrix
	Viewing the solution

	Data handling basics
	Data types
	Sums and loops
	Index sets
	Reading data in from text files
	Writing data out to text files
	User defined data formats
	Using other data sources

	Model building style recommendations
	Mosel Language overview
	Structure of a Mosel model
	Data structures
	Selection statements
	Loops
	Operators
	Built in functions and procedures
	Constraint handling
	Problem handling
	Reserved words
	Annotations

	Using the Mosel Command Line
	Debugger commands

	Working with Xpress Workbench

