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Foreword

In the past, many students have become acquainted with optimization through a course on Linear Pro-
gramming. Until very recently computers were too expensive and optimization software only available to
industrial groups and research centers with powerful machines. Courses on Linear Programming there-
fore were usually restricted to solving problems in two variables graphically and applying the famous
simplex algorithm in tableau form to tiny problems. The size of the problems thus solved by hand rarely
exceeded 6 to 8 variables. The practice of modeling was commonly neglected due to a lack of time and
the unavailability of software to verify the models.

Nowadays Linear Programming is still frequently taught from a very academic perspective. Of course, in
the majority of course programs Linear Programming appears together with other classics of Operations
Research such as the PERT method for project planning. But with the exception of a few students in
applied mathematics who have learned to deal with applications, the others do not retain much: they
have no precise idea of the possible applications, they do not know that now there are readily available
software tools and most importantly, they have not been taught how to model.

The idea of this book was born based on this observation. With PCs becoming ever more powerful and
the rapid progress of the numerical methods for optimization the market of Linear/Mixed Integer Pro-
gramming software is changing. Contrary to the first products (subroutine libraries reserved for specialist
use), the more recent generations of software do not require any programming. These tools are easy
to use thanks to their user-friendly interface and a more and more natural syntax that is close to the
mathematical formulae.

In different study programs (sciences as well as business/economics) a significant increase in the students’
interest and ‘productivity’ has been observed when such tools are used. With such an approach, even
students without any mathematical background are well able to model and solve real problems of con-
siderable size, whilst they would be lost in a purely theory-oriented course about optimization methods.
These students experience the satisfaction of mastering powerful tools and learn to appreciate the field
of Linear/Mixed Integer Programming. Later, at work, they may recall the potential of these tools and
based on the experience they have gained, may use them where it is necessary. What else should one aim
for to spread the use of Mathematical Programming?

This book has been written for students of science and business/economics and also for decision makers,
professionals, and technical personnel who would like to refresh their knowledge of Linear/Mixed Integer
Programming and more importantly, to apply it in their activities.

To focus on modeling and on the application examples, the theoretical aspects of Linear/Mixed Integer
Programming are only briefly mentioned in this book, without giving any detailed explanations. Am-
ple references are provided and commented on to point the interested reader to where to find more
information about the different topics.

To avoid a pre-digested textbook approach, the examples chosen for this book describe real situations.
Although simplified compared to the real world so as to remain accessible for beginners, most examples
are sufficiently complicated not to be solvable by hand on a piece of paper and they all require a non-
trivial modeling phase.

The software used for the implementation and problem solving, Xpress-MP, may be downloaded from

http://www.dashoptimization.com/applications_book.html

free of charge in a version limited in size (but sufficient to solve the problems in this book). So the
reader does not have to worry about how to solve the problems and is free to concentrate his efforts
on the most noble task that nevertheless requires progressive and methodical training: the modeling.
The opportunity to validate a model immediately using a software tool is gratifying: results are obtained
immediately, modeling errors are discovered faster, and it is possible to perform various simulation runs
by interactively modifying the problem parameters.

It is not the aim of this book to turn the reader into an Xpress-MP specialist at the expense of the model-
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ing work. Every problem is therefore first modeled in mathematical form without making any reference
to the implementation with the modeling software. The translation of the model into a program is given
afterwards, accompanied by an explanation of any specific language features used, and followed by the
presentation and discussion of the results. The mathematical model and the results are obviously inde-
pendent of the software. All Xpress-MP model and data files are available from the Dash Optimization
website and can be used to verify the results immediately. It would of course be possible to implement
the models in a different way.

To avoid establishing a heterogeneous catalogue of applications, the collection has been structured stress-
ing the large variety of application areas of Linear/Mixed Integer Programming. The introductory chap-
ters about modeling and the use of Xpress-MP are followed by ten chapters with applications. Every
chapter is dedicated to a different application area and may be read independently of the rest. It always
starts with a general description of the topic, followed by a choice of (on the average) six problems. A
summary section at the end of every chapter provides additional material and references.

Chapter 6 describes blending problems or the separation of components that are usually encountered in
mining and process industries. These problems only rarely use integer variables and are the simplest and
best suited for beginners. The two following chapters are dedicated to two other important groups of
industrial applications, namely scheduling (Chapter 7) and production planning problems (Chapter 8).

In many applications, it is required to fill a limited space (boxes, holds of ships, computer disks) with
objects or, on the contrary, cut material to extract patterns whilst minimizing the trim loss. This type of
problem is the subject of Chapter 9 about loading and cutting.

Flow problems in the widest sense give rise to a large number of interesting optimization problems.
This problem type is discussed across three representative application areas: ground transport (Chapter
10), air transport (Chapter 11), and the burgeoning world of telecommunications (Chapter 12). Some
problems may be shifted between these three chapters, but other applications are more specific, like the
tours driven by a vehicle in ground transport, the problems of flight connections in air transport, and all
that concerns dimensioning and reliability of networks in telecommunications.

Since this book is not aimed exclusively at scientists, industrialists, and logisticians, more recent and less
well known application areas of Mathematical Programming have also been included. Chapter 13 is ded-
icated to problems in economics and finance. The subjects of Chapter 14 are timetabling and personnel
planning problems. Mathematical Programming may equally be of use to local authorities, administra-
tions, and public services in general: Chapter 15 describes six examples.

The classification of the problems has been a subject of discussion: theoreticians usually prefer a classifica-
tion based on the theoretical model type. For instance the so-called flow models are well known classics
that concern several problems in this book (water conveyance, ground transport, telecommunications).
Preference has been given to a classification by application area to allow a professional or a student of
a given subject to identify himself with at least one entire chapter. Nevertheless, the other classification
has not been omitted: the additions at the end of every chapter indicate the applications of the same
theoretical type in other chapters of the book. An overview table at the beginning of the examples part
also lists all models with their theoretical types.

The bibliography entries are all grouped at the end of the book because certain references are cited
in several chapters. However, the section ‘References and further material’ at the end of every chapter
comments on the references that are useful to learn more about a certain topic. The references have
been chosen carefully to provide a blend of basic articles and works, sometimes already quite old, and
very recent articles that illustrate the rapid progress of the discipline.

The Xpress-MP software may be seen as a product of the progress achieved in optimization in recent
years. The first software tools in the 60s and 70s required the user to enter the problem in numerical form
via matrices that are of little intuition, difficult to re-read and to modify. Starting in the 80s, algebraic
modeling languages have been made available that enable users to write linear programs in a form
close to the algebraic notation. An algebraic modeling language allows the user to write generic models
using indexed variables and data arrays. This means that it is possible to separate the model from the
data (stored in separate files) and to make it independent of the size of the problem. Such a high level
language focuses the user’s attention on the modeling, reduces the possible sources of errors, accelerates
model development and facilitates the understanding and modifications to the model at a later time.

The modeling and solving environment Xpress-Mosel [CH02] used in this book belongs to a new gen-
eration of optimization tools: it provides all the functionality of an algebraic modeling language and
it also gives access to the problem solving. Through its programming facilities it becomes possible to
implement solution heuristics and data pre- and post-treatment in the same environment as the model
itself: all application examples (to a different extent) use this facility to formulate and solve problems
and display the results. An interesting feature for more advanced uses is Mosel’s modular design through
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which, for instance, access to other solver or solution algorithm types or different data sources becomes
possible. This feature is not used in this book, since we employ a single solver, the Xpress-Optimizer for
Linear/Mixed Integer and Quadratic Programming.

For working with Mosel models under Microsoft Windows the graphical user interface Xpress-IVE may
be used: it provides debugging support, makes accessible additional information about the problem and
the solution process, and allows the user to display his results graphically. As a default, on all supported
operating systems, Mosel works with a command line interpreter based on standard text files.

Only a few other books have been published with an aim similar to the present one: a book by Williams
provides twenty case studies, in the third edition [Wil93] accompanied by implementations with Xpress-
MP. The case studies are well suited for student project work, requiring several days of work. Unfortu-
nately, this book only covers relatively few application areas. Another example is the book by Schrage
[Sch97] about the software Lindo. This work contains more applications, but classified by theoretical
models. The problems are implemented directly with the software, without using a modeler.

Compared to the previously cited works, the present book contains a larger number of applications (sixty)
structured by application areas. Although all models are implemented with Xpress-MP, every problem
is first modeled with a mathematical syntax which makes it possible to use the models with different
implementations. Finally, many models are re-usable for related problems or large-size instances due to a
generic way of modeling (maximum flow, minimum cost flow, assignment, transport, traveling salesman
problem etc.).

Updates to this book will be made available at

http://www.dashoptimization.com/applications_book.html

and you are encouraged to look there regularly.

The partial funding of the work on this book by the EC Framework 5 project LISCOS (contract G1RD-1999-
00034) is gratefully acknowledged.

We would specially like to thank Yves Colombani for conceiving, designing and implementing Mosel. His
vision has made Mosel the powerful and open software that it is today.
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Preliminaries

What you need to know before reading this book

Before reading this book you should be comfortable with the use of symbols such as x or y to represent
unknown quantities, and the use of this sort of variable in simple linear equations and inequalities, for
example:

x + y ≤ 6

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is not essential.
Similarly some familiarity with the use of computers would be helpful.

For all but the simplest models you should also be familiar with the idea of summing over a range of
variables. For example, if producej is used to represent the number of cars produced on production line j
then the total number of cars produced on all N production lines can be written as:

N∑
j=1

producej

This says ‘sum the output from each production line producej over all production lines j from j = 1 to
j = N’.

If our target is to produce at least 1000 cars in total then we would write the inequality:

N∑
j=1

producej ≥ 1000

We often also use a set notation for the sums. Assuming that LINES is the set of production lines {1, . . , N},
we may write equivalently: ∑

j∈LINES

producej ≥ 1000

This may be read ‘sum the output from each production line producej over all production lines j in the
set LINES’.

Other common mathematical symbols that are used in the text are IN (the set of non-negative integer
numbers {0, 1, 2, . . . }), ∩ and ∪ (intersection and union of sets), ∧ and ∨ (logical ‘and’ and ‘or’), the all-
quantifier ∀ (read ‘for all’), and ∃ (read ‘exists’).

Computer based modeling languages, and in particular the language we use, Mosel, closely mimic the
mathematical notation an analyst uses to describe a problem. So provided you are happy using the above
mathematical notation the step to using a modeling language will be straightforward.

Symbols and conventions

We have used the following conventions within this book:

• Mathematical objects are presented in italics.

• Examples of commands, models and their output are printed in a Courier font . Filenames are
given in lower case Courier.

• Decision variables have lower case names; in the application examples these usually are verbs (such
as buy, make).
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• Constraint names start with an upper case letter, followed by mostly lower case (e.g. Profit,
TotalCost).

• Data (arrays and sets) and constants are written entirely with upper case (e.g. DEM, JOBS, PRICE).

• The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in the
middle, but often confusingly displays on-screen without the small gap. In the UNIX world it is
referred to as the pipe symbol. (Note that this symbol is not the same as the character sometimes
used to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in hexadecimal, 124 in decimal.
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I. Developing Linear and
Integer Programming models



Chapter 1

What is modeling?
Why use models?

Rather than starting with a theoretical overview of what modeling is, and why it is useful, we shall look
at a problem facing a very small manufacturer, and how we might go about solving the problem. When
we have gained some practical modeling experience, we shall come back to see what the benefits of
modeling have been.

Section 1.1 gives a word description of the problem and its translation into a mathematical form. We then
define in Section 1.2 the notion of a Linear Program and show how the example problem fits this form. In
Section 1.3 the problem is implemented with Mosel and solved with the Xpress-Optimizer. The discussion
of the results comprises a graphical representation of the solution information that may be obtained from
the solver. Important issues in modeling and solving linear problems are infeasibility and unboundedness
(Section 1.4). The chapter closes with reflections on the benefits of modeling and optimization (Section
1.5) and the importance of the data (Section 1.6).

1.1 The chess set problem: description

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of ma-
chining on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who
each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of
boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week
can be obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit
of $5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

1.1.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there are thus two
decision variables in our model, one decision variable per product. What we want to do is to find the
best (i.e. optimal) values of these decision variables, where by ’best’ we mean that we get the largest
profit. We shall give these variables abbreviated names:

xs : the number of small chess sets to make
xl : the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution to
profit is determined by the optimization process. In other words, we look to the optimizer to tell us the
best values of xs, and xl.

The values which xs and xl can take will always be constrained by some physical or technological limits.
One of the main tasks in building a model is to write down in a formal manner the exact constraints that
define how the system can behave. In our case we note that the joinery has a maximum of 160 hours of
machine time available per week. Three hours are needed to produce each small chess set, and two hours
are needed to produce each large set. So if in the week we are planning to make xs small chess sets and
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xl large chess sets, then in total the number of hours of machine time we are planning to use is:

3 · xs + 2 · xl

where the 3 · xs comes from the time making small sets, and the 2 · xl from the time machining large sets.

Note that we have already made some assumptions here. Firstly we have assumed that the lathe-hours to
machine xs small sets is exactly xs times the lathe-hours required to machine one small set. This probably
will not be exactly true in practice — one tends to get faster at doing something the more one does it, so
it will probably take a slightly smaller amount of time to machine the 2nd and subsequent sets than the
first set. But it is unlikely that this will be a very important effect in our small joinery.

The second assumption we have made is much more likely to be inaccurate. We have assumed that the
time for making small and large sets is the sum of the times for the sets. We have not allowed for any
changeover time: resetting the lathes, cleaning up, getting different size tools etc. In some situations,
the time that we lose in changeovers can be very large compared with the time we actually spend doing
constructive work and then we have to resort to more complex modeling. But for the moment, we shall
assume that the changeover times are negligible.

Our first constraint is:
3 · xs + 2 · xl ≤ 160 (lathe-hours)

which says ‘the amount of time we are planning to use must be less than or equal to the amount of time
available’, or equivalently ‘we cannot plan to use more of the resource (time) than we have available’.
The allowable combinations of small and large chess sets are restricted to those that do not exceed the
lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every set made,
against 3 kg needed to make a large set, a second constraint is:

1 · xs + 3 · xl ≤ 200 (kg of boxwood)

where the left hand side of the inequality is the amount of boxwood we are planning to use and the
right hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity constraints
are:

xs ≥ 0

xl ≥ 0

In a similar way, we can write down an expression for the total profit. Recall that for each of the large
chess sets we make and sell we get a profit of $20, and one of the small chess set gives us a profit of $5.
Assuming that we can sell all the chess sets we make (and note that this may not always be a reasonable
assumption) the total profit is the sum of the individual profits from making and selling the xs small sets
and the xl large sets, i.e.

Profit = 5 · xs + 20 · xl

Profit is the objective function, a linear function which is to be optimized, that is, maximized. In this case
it involves all of the decision variables but sometimes it involves just a subset of the decision variables.
Note that Profit may be looked at as a dependent variable, since it is a function of the decision variables.
In maximization problems the objective function usually represents profit, turnover, output, sales, mar-
ket share, employment levels or other ‘good things’. In minimization problems the objective function
describes things like total costs, disruption to services due to breakdowns, or other less desirable process
outcomes.

Consider some possible values for xs, and xl (see Table 1.1). The aim of the joinery is to maximize profit,
but we cannot select any combination of xs and xl that uses more of any of the resources than we have
available. If we do plan to use more of a resource than is available, we say that the plan violates the
constraint, and the plan is infeasible if one or more constraints is violated. If no constraints are violated,
the plan is feasible. The column labeled ‘OK?’ in the table tells us if the plan is feasible. Plans C and E are
infeasible.

In terms of profit, plan H looks good. But is it the best plan? Is there a plan that we have not consid-
ered that gives us profit greater than 1320? To answer this question we must move to the notion of
optimization.
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Table 1.1: Values for xs and xl

xs xl Lathe-hours Boxwood OK? Profit Notes

A 0 0 0 0 Yes 0 Unprofitable!

B 10 10 50 40 Yes 250 We won’t get rich doing this.

C -10 10 -10 20 No 150 Planning to make a negative
number of small sets.

D 53 0 159 53 Yes 265 Uses all the lathe-hours. There
is spare boxwood.

E 50 20 190 110 No 650 Uses too many lathe-hours.

F 25 30 135 115 Yes 725 There are spare lathe-hours
and spare boxwood.

G 12 62 160 198 Yes 1300 Uses all the resources

H 0 66 130 198 Yes 1320 Looks good. There are spare
resources.

1.2 Linear Programming

We have just built a model for the decision process that the joinery owner has to make. We have isolated
the decisions he has to make (how many of each type of chess set to manufacture), and taken his objective
of maximizing profit. The constraints acting on the decision variables have been analyzed. We have given
names to his variables and then written down the constraints and the objective function in terms of these
variable names.

At the same time as doing this we have made, explicitly or implicitly, various assumptions. The explicit
assumptions that we noted were:

• For each size of chess set, manufacturing time was proportional to the number of sets made.

• There was no down-time because of changeovers between sizes of sets.

• We could sell all the chess sets we made.

But we made many implicit assumptions too. For instance, we assumed that no lathe will ever break or
get jammed; that all the lathe operators will turn up for work every day; that we never find any flaws in
the boxwood that lead to some being unusable or a chess set being unacceptable; that we never have to
discount the sale price (and hence the per unit profit) to get an order. And so on. We have even avoided
a discussion of what is the worth of a fraction of a chess set — is it a meaningless concept, or can we just
carry the fraction that we have made over into next week’s production?

All mathematical models necessarily contain some degree of simplification of the real world that we are
attempting to describe. Some assumptions and simplifications seem eminently reasonable (for instance,
that we can get the total profit by summing the contributions of the individual profits from the two sizes);
others may in some circumstances be very hopeful (no changeover time lost when we swap between
sizes); whilst others may just be cavalier (all the lathe operators will arrive for work the day after the
World Cup finals).

Modeling is an art, not a precise science. Different modelers will make different assumptions, and come
up with different models of more or less precision, and certainly of different sizes, having different num-
bers of decision variables. And at the same time as doing the modeling, the modeler has to be thinking
about whether he will be able to solve the resulting model, that is find the maximum or minimum value
of the objective function and the values to be given to the decision variables to achieve that value.

It turns out that many models can be cast in the form of Linear Programming models, and it is fortunate
that Linear Programming (LP) models of very large size can be solved in reasonable time on relatively
inexpensive computers. It is not the purpose of this book to discuss the algorithms that are used to solve
LP problems in any depth, but it is safe to assume that problems with tens of thousands of variables and
constraints can be solved with ease. So if you can produce a model of your real-world situation, without
too many wild assumptions, in the form of an LP then you know you can get a solution.

So we next need to see what a Linear Programming problem consists of. To do so, we first introduce the
notion of a linear expression. A linear expression is a sum of the following form

A1 · x1 + A2 · x2 + A3 · x3+. . . +AN · xN
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which in mathematical notation is usually written as

N∑
j=1

Aj · xj

where A1, . . . , AN are constants and x1, . . . , xN are decision variables. So for instance, if we have variables
x, makeP and makeQ

2 · x − 3 ·makeP + 4 ·makeQ

is a linear expression, but
2 · x ·makeP − 3 ·makeP + 4 ·makeQ

is not, as the first term contains the product of two variables.

Next, we introduce the notion of linear inequalities and linear equations. For any linear expression∑N
j=1 Aj · xj and any constant B, the inequalities

N∑
j=1

Aj · xj ≤ B and
N∑

j=1

Aj · xj ≥ B

are linear inequalities, and the equation
N∑

j=1

Aj · xj = B

is a linear equation. So for example our lathe-hours constraint

3 · xs + 2 · xl ≤ 160

is a linear inequality, but
2 · xs · xl + 3 · xs = 200

is not a linear equation because of the first term, which is a product of two decision variables.

Now, if we have decision variables
x1, x2, x3, . . . , xN,

a linear expression
C1 · x1 + C2 · x2 + C3 · x3+. . . +CN · xN

and a number of linear inequalities and linear equations

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN ≤ Bi for i = 1, . . . , M1

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN = Bi for i = M1 + 1, . . . , M2

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN ≥ Bi for i = M2 + 1, . . . , M3,

then a Linear Programming problem is to

maximize or minimize
N∑
i=j

Cj · xj (the objective function)

subject to the constraints
N∑

j=1

Aij · xj ≤ Bi for i = 1, . . . , M1

N∑
j=1

Aij · xj = Bi for i = M1 + 1, . . . , M2

N∑
j=1

Aij · xj ≥ Bi for i = M2 + 1, . . . , M3

and xj ≥ 0 for each j = 1, . . . , N (non-negativity constraints)

The Bi are often called the right hand sides (RHS).

So, for instance, the chess set model is a linear program as it has variables xs and xl and is to

maximize 5 · xs + 20 · xl

subject to 1 · xs + 3 · xl ≤ 200 (kg of boxwood)

3 · xs + 2 · xl ≤ 160 (lathe-hours)

xs ≥ 0

xl ≥ 0
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We have stressed the linearity condition, where the objective function and all of the constraints must be
linear in the decision variables. But there are two further properties that we must have, Divisibility and
Determinism.

Divisibility means that in an acceptable solution any values of the decision variables are allowed within
the restrictions imposed by the linear constraints. In particular, we are not constrained to accept only
whole number (integer) values for some or all of the decision variables. We have already alluded to this,
when we remarked on the debate as to whether a fraction of a chess set is worth something (or, more
precisely, whether a fraction f of a chess set is worth exactly f times the worth of a whole chess set).

The final requirement we have of an LP problem is that it is deterministic — all the coefficients in the
constraints and the objective function are known exactly. Determinism is sometimes a very strong as-
sumption, particularly if we are building planning models which extend some way into the future. Is it
reasonable, for example, to assume that it will always take 7.5 days for the oil tanker to reach our refinery
from the Gulf? Or that all of the lathe operators will arrive for work every day next week?

Problems where we must consider the variability in objective function coefficients, right hand sides or
coefficients in the constraints are Stochastic Programming problems. We do not consider them in this
book, because they are difficult to deal with, not because they are of little practical interest. In fact, it
can be argued that all planning models have stochastic elements, and we will later demonstrate some
methods for dealing with uncertainty in an LP framework.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. We will discus Mosel much more in the next
chapter, and then throughout the book, but give the Mosel model here so you can see the solution to
the problem we have modeled.

The first stage is to get the model we have just developed into Mosel. Here it is.

Table 1.2: Chess Set Model

Notes

model Chess 1

uses "mmxprs" ! We use the Xpress-MP Optimizer 2

declarations

xs, xl: mpvar ! These are the decision variables 3

end-declarations

Profit:= 5*xs + 20*xl 4

Boxwood:= 1*xs + 3*xl <= 200 ! kg of boxwood

Lathe:= 3*xs + 2*xl <= 160 ! Lathehours

maximize(Profit) 5

writeln("LP Solution:") 6

writeln(" Objective: ", getobjval)

writeln("Make ", getsol(xs), " small sets")

writeln("Make ", getsol(xl), " large sets")

end-model 7

When we were building our mathematical model we used the notation that items in italics (for example,
xs) were the mathematical variables. The corresponding Mosel decision variables have the same name in
non-italic courier font (for example, xs ).

Once the model has been defined, the objective function can be optimized and the optimal number of
chess sets to make is obtained.

Notice that the character ‘* ’ is used to denote multiplication of a decision variable by the constant as-
sociated with it in the constraint. Blanks are not significant and the modeling language distinguishes
between upper and lower case, so X1 would be recognized as different from x1 .

By default, Mosel assumes that all variables are constrained to be non-negative unless it is informed
otherwise. There is therefore no need to specify non-negativity constraints on variables. It is possible to
tell Mosel that variables are not non-negative: we shall see how to do this later.
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Here are some notes on the perhaps non-obvious parts of the model. They follow the numbering in the
model listing 1.2. All of the points will be elaborated later, so do not be overly concerned if you do not
understand some point now.

1 and 7. We give the model a name. The end-model statement terminates the model.
2. We tell Mosel we shall be using the Xpress-MP Optimizer to maximize the problem.
3. We declare the ‘make’ variables to be decision variables, Mosel’s mpvar variables.
4. The objective function and constraints are given here.
5. Here we tell Mosel to maximize the objective function Profit . 6. This part writes out the solution
values. getobjval returns the optimal value of the objective function, while getsol(x) returns the
optimal value of x .

1.3.2 The results

We shall see later how to run the Mosel model. Here is the output.

LP Solution:
Objective: 1333.33
Make 0 small sets
Make 66.6667 large sets

Considering the original model:

maximize 5 · xs + 20 · xl

subject to 1 · xs + 3 · xl ≤ 200 (kg of boxwood)

3 · xs + 2 · xl ≤ 160 (lathe-hours)

xs ≥ 0

xl ≥ 0

we can check the answer. Mosel tells us that xl is the only non-zero variable, with value 66.6667. The
profit is indeed 20 · 66. 6667 = 1333. 33. We can easily see that the amount of boxwood we use is 3 ·
66. 6667 = 200, exactly what we have available; and the lathe-hours we use are 2 · 66. 6667 = 133. 3333,
66.6667 fewer than are available; and we satisfy the non-negativity constraints. Note that we do not use
all the lathe-hours, but we do use all the boxwood.

We may represent the solution to this problem graphically as in Figure 1.1. The grey shaded area is the
feasible region. The values of the objective function Profit are marked with dotted lines.

optimal solution

xl

xs

120

80

40

40 80 200 240

Lathe

120 160

Profit=1600
Profit=1200

Profit=2000

Profit=400
Profit=800 Boxwood

Figure 1.1: Solution of the Chess Set problem

If we want to analyze the solution to this problem further, we may wish to obtain the constraint activities
and their dual values (shadow prices), and also the reduced costs of the decision variables. We might add
some more writing as follows to the Mosel model:
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writeln("Activities/Dual Values")
writeln(" Lathe: ", getact(Lathe)," / ", getdual(Lathe))
writeln(" Boxwood: ", getact(Boxwood)," / ", getdual(Boxwood))

writeln("Reduced Costs")
writeln(" xs: ", getrcost(xs))
writeln(" xl: ", getrcost(xl))

The output then becomes

LP Solution:
Objective: 1333.33

Make 0 small sets
Make 66.6667 large sets

Activities/Dual Values
Lathe: 133.333 / 0
Boxwood: 200 / 6.66667

Reduced Costs
xs: -1.66667
xl: 0

The activity of a constraint is the evaluation of its left hand side (that is, the sum of all terms involving
decision variables). The optimal solution only uses 133.333 lathe-hours, but all 200 kg of boxwood that
are available. As the 160 available lathe-hours come from 4 machines that operate 40 hours per week,
we could reduce the weekly working time to 35 hours (resulting in a total of 4 · 35 = 140 hours) without
changing anything in the solution (Figure 1.2).

40

80

optimal solution

Profit=2000

Profit=1600

Profit=1200

xs

xl

120

Lathe
Profit=400

Profit=800

120 160 200 2408040

Boxwood

Figure 1.2: Reduction of lathe-hours

If we modify the limit on the availability of boxwood, this will have an immediate effect on the solution:
the dual value (also called shadow price) of 6.66667 for the boxwood constraint tells us that one addi-
tional unit (i.e. 1 kg) of boxwood will lead to an increase of the objective function by 6.66667, giving a
total profit of $1340. Graphically, this may be represented as follows (Figure 1.3).

The reduced cost values of the variables indicate the cost of producing one (additional) unit of every type
of chess set: if we decided to produce one small chess set this would cost us 1.66667 more (in terms of
resource usage) than what its sale contributes to the total profit. Or put otherwise, we need to increase
the sales price of xs by 1.66667 to make small chess sets as profitable as large ones. Figure 1.4 shows the
effect on the solution when we increase the price of xs to 6.66667 (its break-even point): any point on
the highlighted edge of the feasible region now leads to the same objective value of $1333.33, so we
might choose to produce a small number of small chess sets with the same total profit.

1.3.3 Divisibility again

In the present example we are faced with the Divisibility problem mentioned earlier. In reality accepting
fractional answers may be practical since a chess set that is not completed in one week’s production sched-
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Figure 1.3: Additional unit of wood
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Figure 1.4: Increasing the price of xs to its break-even point
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ule may be completed the following week. However, some optimization problems have variables that
cannot be fractional in this way. Such problems require the techniques of Mixed Integer Programming,
which we cover later (Chapter 3).

1.3.4 Unboundedness and infeasibility

Although we have found an optimal solution to the problem given, this may not always be possible. If
the constraints were insufficient it might be possible to improve the objective function indefinitely. In
this case, the problem is said to be unbounded. This usually means that a relevant constraint has been
omitted from the problem or that the data are in error, rather than indicating an infinite source of profit.
Conversely, if the constraints are too restrictive it may not be possible to find any values for the decision
variables that satisfy all constraints. In this case, the problem is said to be infeasible. This would be the
case in the chess set problem if an order of 100 large chess sets had to be made each week.

1.4 Diagnosing infeasibility and unboundedness

One of the most common, and unwelcome, things that happens when one is building LP models is when
the solver says that the solution is unbounded or infeasible, both of which mean that we have done
something wrong in our modeling or that the data we are feeding to the model are wrong in some way.

Let us deal with unboundedness first. Unboundedness in a maximization problem means that we can
increase the profit without limit, thereby ultimately getting infinite profit. Rather than immediately
retiring, buying a yacht and going off to the sunshine, we should pause for a moment and consider
that infinite profits do not arise in practice — we have done something wrong. Unboundedness usually
springs from having forgotten some constraint or having put in an item which has a cost associated with
it with a profitable coefficient in the objective function. This mistake should usually be very easy to spot
as the LP solver will tell you which decision variable can be increased indefinitely and so theoretically
gives an infinite profit. All you have to do is to look at that particular variable and see what in the real
world is stopping it from increasing indefinitely. You then have to model the forgotten constraint, and
try solving again. In practice it is usually fairly easy to diagnose unboundedness using this technique.

Unfortunately, it is not usually as easy to diagnose infeasibility, the situation where there is no set of
values for the decision variables that satisfy all the constraints simultaneously. Unlike unboundedness
it is perfectly possible for infeasibility to arise in practice in a planning situation where one is making
assumptions about resource availabilities, market demands etc.

If one is optimizing an existing system, which by observation we know has a feasible solution, then we
have an easier job to diagnose the infeasibility. Take the values of the decision variables that we are
using right now and put them into the linear programming problem. An easy way to do this is to put the
variables in as fixed variables. Then see which of the constraints are being violated. These constraints are
prime candidates for having been wrongly modeled in some way. For example, if we know that today
we can produce certain numbers of 60 watt and 100 watt light bulbs but our model tells us that we have
violated a manufacturing constraint then we have wrongly modeled that constraint and it is in that area
of the model where we need to concentrate our efforts.

If we do not have a set of values that we know we can realize then we are faced with a much tougher
problem. When seeing an infeasible problem, naive users often say ‘which constraint is wrong?’ or
equivalently ‘which constraint is causing the infeasibility?’ There is no answer to this question other
than to tell the naive user that it is the combination of constraints that is causing the infeasibility, or, in
other words, that the combination of the constraints is contradictory. Consider the following contrived
problem:

make1 ≤ 2

make2 ≤ 3

make3 ≤ 4

make1 + make2 + make3 ≥ 10

It is obvious that these constraints are contradictory (add up the first three of them and compare with
the last) but without some knowledge of what the model refers to it is impossible to see which one (or
even all four) of these constraints is ‘wrong’. All we know is that these four constraints taken together
are contradictory.

It turns out to be useful in practice to be able to isolate from a large model sets of constraints that
together are contradictory but such that if you removed any one of them from the set the remainder
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are not contradictory. These are the so called Irreducible Infeasible Sets (IIS) which good LP solvers can
provide for infeasible problems. It is beyond the scope of this chapter to talk about how to apply IISs and
we refer you to the Xpress-MP manuals for a full discussion.

It has to be acknowledged that diagnosing infeasibilities is the hardest job in modeling and even the
most experienced analyst sighs when faced with the ‘Problem is Infeasible’ message from an optimization
system. Since infeasibilities can arise from bad modeling or bad data there is no obvious first place to
look. Experienced modelers of course know that the data are the most likely things to be in error but
even experienced modelers do make mistakes from time to time.

There is one small crumb of comfort — infeasibility has nothing to do with the objective function and is
only influenced by the constraints.

Here are a few things to look for when you are facing an infeasible problem:

• Have I got the right sense of a constraint? (For instance, I may have put in a ≥ constraint when it
should be a ≤ one; or an equality when an inequality would do.)

• Have I got the right flow direction for a flow variable (see Section 2.2)? (It is easy to get the sign
wrong in flow balance constraints.)

• Have I got a non zero value for a resource availability? (Often missing data shows up us a zero
value and if this turns into a zero right hand side for a resource availability we frequently get an
infeasibility.)

1.5 The benefits of modeling and optimization

Having just discussed rather technical points it is now time to reflect on modeling and optimization and
the benefits they bring to an organization. But first we will discuss how the somewhat idealized processes
we have considered so far actually occur in practice.

Building a model, solving it and then implementing the ‘answers’ is not generally a linear process. As
we have hinted above we often make mistakes in our modeling which are usually only detected by
the optimization process, where we could get answers that were patently wrong (e.g. unbounded or
infeasible) or that do not accord with our intuition. If this happens we are forced to reflect further about
the model and go into an iterative process of model refinement, re-solution and further analyses of the
optimum solution. During this process it is quite likely that we will add extra constraints, perhaps remove
constraints that we were mislead into adding, correct erroneous data or even be forced to collect new
data that we had previously not considered necessary.

ModelingDescription Deployment

Analysis

Solving

Figure 1.5: Simplified scheme of a typical optimization project

The problems of data accuracy and reconciliation are frequently the most difficult to tackle. By its very
nature a model that attempts to capture the influence of constraints coming from different parts of the
organization will require the use of data that similarly have come from parts of the organization that
may not normally communicate with each other. These data may have been collected in different ways,
to different standards and indeed assumptions. The severe process of optimization, which by its nature
will seek out extreme solutions if they exist, is very testing of the accuracy of data. Though one will try
to use data that already exist in the organization one is sometimes faced with the problem of collecting
primary data where existing data are just not adequate.

Though we have posed the discussion above as a set of problems, a more reflective view of the process
of modeling and optimization shows that the thoughtful and critical analysis it requires is in fact one of
its major benefits. The integrative nature of a model requires that we have data of a consistent standard
and consistent accuracy, ideals which any organization should strive for anyway.

Of course, the most obvious benefit of modeling and optimization is that we come up with a recom-
mended answer which in some sense that we have defined gives us the best way of running the system
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we are modeling. We may choose to reject the solution proffered and indeed there may be very good
reasons for so doing. For instance a plan we are suggesting for tomorrow may differ radically in the
set of tasks that are suggested but have almost the same objective function value as that we would get
from doing exactly the same as we are doing today. In this case it makes perfect sense to forego a small
amount of profit for the sake of continuity. The important thing, however, about a quantitative model
is that we know how much profit we are foregoing and we can make a rational and informed decision,
not just one based on hunch or intuition. We can get an idea of the sensitivity of our solution to the
inevitable changes and variations in the data, which leads on to the idea of robust solutions, solutions
which will in some sense remain ‘good’ as the input data change.

The final major benefit of modeling is that it enables us to understand the organization or part of the
organization or system that we are studying in a more quantitative and demonstrably rational way, hope-
fully devoid of organizational politics. This understanding may lead us to consider ways of working or
different processes that we have not considered before, which again might lead to considerable increase
in profitability or efficiency. The boundaries of the model may then increase as we consider an enhanced
system or start to consider the system evolving over time.

One thing that is certain about models: as they develop and are worked upon they grow in size. At the
advent of the personal computer, a Linear Programming model with 1000 constraints and perhaps 2000
decision variables was considered big, and in fact would probably not be solved on a PC. Now such a
model would be considered to be small and models of one hundred to a thousand times that size are
regularly solved. Not all of this size increase has come from expansions of the boundary of the typical
model, most of it has come from the ability to solve models that have been disaggregated by considering
subsets of machinery, or products, time periods, customer zones, labor categories etc.

Models will continue to increase in size but it has to be admitted that the benefits of models do not grow
in proportion to the model’s size – smaller models that capture the essence of the decision problem may
give greater insights than bloated models where every factor is disaggregated to the most minute detail.

1.6 Data in models

The primary focus of this book is on the construction of clear, accurate and maintainable models, but we
should pause to discuss the data that go into the model.

One of the important characteristics of models is that they often bring together different aspects of the
organization in an attempt to achieve an overall optimal solution. A consequence of this is that a model
will often require data from many different sources, and there is a need for the accuracy of these data
sources to be approximately comparable. There is little point in having some technological data accurate
to 6 digits when some of the cost data have been derived from arbitrary accounting principles. In fact
one of the major obstacles to successful modeling is the belief in many organizations that accounting
data are accurate, whereas frequently much cost accounting data are derived from very questionable
assumptions.

Experienced modelers tend to be very distrustful of data in the initial stages of a project. By its very
nature, optimization will find extreme solutions, and it is very testing of the accuracy of data. In practice
it often turns out that the original data have to be rejected and minor studies initiated with the objective
of getting data of better quality.

There is however a danger of over-stressing the need for accuracy in data when we should equally be
thinking about the internal consistency of the data. As a perhaps extreme example, it would not affect
our optimal policy (i.e. the values of the optimal decision variables) if all costs in a model were consistently
underestimated by 50%. The value of the objective function of course would be wrong but the actions
we propose would be correct. The problem comes when some sources of data are precise whilst others
are consistently biased in some way.

It is always best, if possible,

• to use data in their original format, rather than in some aggregated or disaggregated form, and
• to obtain data directly from the owner of the data, that is the person who is responsible for col-

lecting the data and maintaining their accuracy.

Such data will almost invariably be kept in a spreadsheet or a database system and so any high quality
modeling system will have links to the popular spreadsheets and databases. That way the data can be
extracted from the primary source, alleviating the danger of using out of date information.

It is hard to make other than sweeping generalizations about the role of data gathering in LP model-
ing. Sometimes one is very fortunate and the data that the modeler requires are immediately available;
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sometimes data of the required accuracy are just not present in the organization and the whole LP project
has to be abandoned as the costs and time involved in gathering the primary data cannot be justified.
Fortunately the latter is a rare event but the authors have found that most modelers consistently under-
estimate the time involved in acquiring good data.

1.7 References and further material

Linear Programming is often dealt with in the form of a few chapters in general books about Operations
Research, such as the one by Winston [Win94]. Other books are entirely dedicated to this topic; let us cite
here the works by Chvàtal [Chv83], Schrijver [Sch86], and Bazaraa and Jarvis [BJ90]. The topic of Linear
Programming is also discussed in general books on optimization such as [Lue84] and [SN96].

The Simplex method that is commonly used for solving linear problems was introduced by Dantzig in
the 1940s; his monograph on Linear Programming [Dan63] is re-edited regularly. A more recent method
for solving linear problems is the so-called Interior Point or Newton-Barrier algorithm (original article in
[Kar84], see [ARVK89] for a conceptually simpler form). The book by Arbel [Arb93] comes with a collection
of software; a textbook on Linear Programming based on the Interior Point method is [Roo97]. Interior
Point algorithms are available as part of commercial software packages such as Xpress-MP.

As mentioned at different places, especially in the following Chapter 2, commercial LP solvers usually do
not work with a problem in the form it is given but transform it using so-called presolving techniques to
simplify the problem and to reduce its size (see for instance [AA95]). At the end of the solution algorithm
the transformation is reversed (postsolving) to provide the user with the solution to his original problem.
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Chapter 2

Typical LP model constructs

We move now to a more disciplined approach to modeling. Though we have noted that modeling is an
art, this does not mean that we should treat each modeling exercise in an ad hoc way. Rather, we need
to learn from our previous modeling experience so as to increase our productivity and skill in the next
modeling work we do.

A natural way to approach any new modeling exercise is to try to understand the constraints in terms of
constraint types that we have seen before and so know how to model. If we can do a disaggregation of
the overall set of constraints into individual constraints that we know how to model, then we can feel
quite confident that we will be able to complete the whole model.

So we shall look at some typical constraint types. We will first give various ‘word descriptions’ of con-
straints, that is, phrases in which the constraint might be articulated by the person responsible for the
system we are modeling. We will then give an algebraic formulation of the constraint, and see how
it might be generalized. The presentation below is given in terms of the following constraint types:
bounds (Section 2.1), flow constraints (Section 2.2), simple resource constraints (Section 2.3), material
balance constraints (Section 2.4), quality requirements (Section 2.5), accounting constraints (Section 2.6),
blending constraints (Section 2.7), modes (Section 2.8), soft constraints (Section 2.9), and as a special form
of non-constrained ‘constraints’, objective functions (Section 2.10),

It should be noted that these constraint types are somewhat arbitrary — another presentation could have
categorized them in different ways.

2.1 Simple upper and lower bounds

A) ‘Marketing tells me that we cannot sell more than 100 units of Product 4 this period.’

B) ‘I’m committed to sending at least 20 tonnes of Blend 6 to Boston tomorrow.’

C) ‘I have to send exactly 30 tonnes of Blend 5 to Paris next period.’

D) ‘Electricity can flow in either direction along the Channel Cable.’

In A, one of the decision variables will be the amount of Product 4 that we sell, and suppose this is
variable sell4. The words say that there is an upper limit or upper bound of 100 on the single variable
sell4, i.e.

sell4 ≤ 100

In case B, we have a restriction in the opposite direction. If the decision variable is, say, sendb6,Boston, then
we have a lower limit or lower bound on the single variable,

sendb6,Boston ≥ 20

Note that this is more restrictive than the normal non-negativity constraint

sendb6,Boston ≥ 0

We can see case C, where the decision variable might be called sendb5,Paris, as an example of a variable
being fixed, or equivalently that its lower and upper bounds are identical, i.e.

sendb5,Paris = 30

or
sendb5,Paris ≥ 30 and sendb5,Paris ≤ 30
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One might ask ‘why have sendb5,Paris as a decision variable at all, as it is fixed and there is no decision to
make about its value?’. If every day we always sent exactly 30 tonnes to Paris then it might be legitimate
to remove this from the decision process, remembering to account for the resources that are used in the
blend, the transport capacity that is used up in moving the blend, etc. But of course there will inevitably
come a day when Paris needs more of Blend 5, and we have to spend time recalculating the resource
availabilities, transport capacity etc., net of the new Parisian demand. We will get things wrong unless
someone remembers to do the recalculation; and of course forgetting to redo the sums is likely when
we are having to rejig our production plan because of the extra demands from other cities in France (it
is Bastille Day tomorrow). What we gain by removing one variable from the model is not worth the risk
arising from later inflexibility.

The last case, D, expresses the fact that sometimes a variable is not bound by the normal non-negativity
constraint, and in this situation it is said to be free. Since, as we have mentioned before, all decision
variables are by default assumed to be non-negative, we have to explicitly tell our modeling software
that the decision variable here (which we shall call eflow), denoting the flow from Britain to France
where a positive value means that electricity is flowing from Britain to France and a negative value
means that it is flowing in the reverse direction is not non-negative

−∞ ≤ eflow ≤ +∞

In Mosel, this is indicated by the notation

eflow is_free

Free variables can be replaced by normal non-negative variables, e.g.

eflow = eflowBF − eflowFB

where eflowBF (eflowFB) is the non-negative flow from Britain to France (respectively, France to Britain),
but since optimization software can handle free variables directly there may be no reason to do this
transformation. If, however, there is some asymmetry in the flows (perhaps a flow from Britain to France
is taxed in some way by the French government, whereas a flow in the other direction is not taxed), the
eflowBF and eflowFB variables may be required anyway by other parts of the model, so the substitution is
harmless, or even necessary.

2.2 Flow constraints

Flow constraints arise where one has some sort of divisible item like electricity, water, chemical fluids,
traffic etc. which can be divided into several different streams, or alternatively streams can come together.
Some word formulations might be

A) ‘I have got a tank with 1000 liters in it and 3 customers C1, C2 and C3 to supply.’

B) ‘I buy in disk drives from 3 suppliers, S1, S2 and S3. Next month I want to have at least 5000 disk drives
arriving in total.’

C) ‘I have 2 water supplies into my factory, S1 and S2. I get charged by the water supplier for the amount
of water that enters my site. I lose 1% of the water coming in from S1 by leakage and 2% of that from
S2. My factory needs 100,000 gallons of water a day.’

Case A is where there is an outflow from a single source, whilst case B is where we want to model a total
inflow. Case C is a little more complicated, as we have to model losses.

In case A we have flow variables supply1, supply2 and supply3, being the amounts we supply to the three
customers. The total amount supplied is the sum of these three decision variables i.e. supply1 + supply2 +
supply3, and this total must be less than or equal to the 1000 liters we have available. Thus we have

supply1 + supply2 + supply3 ≤ 1000

(providing we have defined the units of supply to be liters).

Case B is very similar. The obvious decision variables are buy1, buy2 and buy3, and the total amount we
buy is buy1 + buy2 + buy3. Our requirement is for at least 5000 drives in total, so the constraint is

buy1 + buy2 + buy3 ≥ 5000

If we wanted exactly 5000 drives, then the constraint would be

buy1 + buy2 + buy3 = 5000
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Case C is more challenging. ‘I have 2 water supplies into my factory, S1 and S2. I get charged by the
water supplier for the amount of water that enters my site. I lose 1% of the water coming in from S1 by
leakage and 2% of that from S2. My factory needs 100,000 gallons of water a day.’

There are several different ways we might approach the modeling. One way is to define decision variables
as follows: buy1 and buy2 are the amounts we buy from supplier 1 and 2 respectively, and get1 and get2

are the amounts that we actually get (after the losses). If we measure the decision variables in thousands
of gallons, then we have the requirement constraint

get1 + get2 = 100

and we can model the losses as follows (loss equations):

get1 = 0. 99 · buy1

get2 = 0. 98 · buy2

since, for example, we only receive 98% of the water from supplier 2 that we have to pay for. Then the
objective function would, among other entries, have terms PRICE1 ·buy1 +PRICE2 ·buy2, where PRICE1 and
PRICE2 are the prices per thousand gallons of water from the two suppliers.

We have the option of using the loss equations to substitute for buy1 and buy2 (or, alternatively, get1 and
get2), and doing so would reduce the number of equations and variables by 2. But as we have discussed
before, it almost certainly is not worth the effort, and the LP solver should be clever enough to do the
work for us automatically anyway if it thinks it will reduce the solution time.

2.3 Simple resource constraints

We have already seen examples of this sort of constraint in the chess set problem where, to remind you,
we had limited amounts of lathe-hours and boxwood, and we had to create a production plan that used
neither too many lathe-hours nor too much boxwood.

If we generalize what we mean by a resource, all linear programs can be formulated as maximizing some
objective function subject to not using any more of any resource than we have available. But it is not
particularly helpful to think of everything as a resource, so we will give more word formulations here
which involve real resources.

A) ‘I can only get hold of 10,000 connectors a month. Each Industry PC I make needs 8 connectors and
each Home PC I make requires 5 connectors.’

B) ‘Each tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine chemical, whereas
each tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine chemical. I can only
afford to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the fine chemical each
month.’

C) ‘If I do one unit of activity i it takes up COSTi of my disposable income. My disposable income next
week is $150.’

If we consider just one scarce resource then a resource constraint can be characterized by the activities
that potentially use up some of that resource, the level at which we are planning to conduct those
activities, the availability of the resource and, finally, the amount of the resource that is used per unit of
each activity.

These latter numbers, the resources used per unit of activity, are called technological coefficients. because
they are determined by the technology that we are using. Typically, when we have several products which
are each made from several resources, we will have a technological coefficient matrix which gives the
number of units of each resource required to make one unit of the product. It would be presented in
the form of Table 2.1, where, for example, the entry 0.8528 means that to make 1 unit of Product 3 we
require 0.8528 units of Resource 3. We have to be careful to use consistent and sensible units for how we
measure products and resources.

Case A where we stated that ‘I can only get hold of 10,000 connectors a month. Each Industry PC I make
needs 8 connectors and each Home PC I make requires 5 connectors’ has a simple technological matrix:

If we have decision variables makeI and makeH, being the number of Industrial and Home computers
we plan to make, then the number of connectors we plan to use is the number used making industrial
computers plus the number used making Home computers. If we make 1 Industrial computer then we
use 8 connectors, so if we make makeI Industrial computers we use 8 ·makeI connectors; and if we make
1 Home computer then we use 5 connectors, so if we make makeH Home computers we use 5 · makeH
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Table 2.1: Technological coefficient matrix

Resource 1 Resource 2 Resource 3 ... Resource R

Product 1 1.28235 0.24

Product 2 0.95474 1.8361

Product 3 12.33312 6.128 0.8528

... etc.

Product P 11.2322 5.208

Table 2.2: Simple technological coefficient matrix

Connector

Industry PC 8

Home PC 5

connectors. So in total if we make makeI Industrial computers and makeH Home computers we will use
8 ·makeI + 5 ·makeH connectors. This total must not be greater than the number available i.e.

8 ·makeI + 5 ·makeH ≤ 10000

In case B we said ‘Each tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine
chemical, whereas each tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine
chemical. I can only afford to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the
fine chemical each month.’ So we have two products and two resources.

Table 2.3: Resource use

Catalyst Fine Chemical

C1 50 1.0

C2 130 1.5

We measure the catalyst in grams, and the fine chemical in kg. Defining decision variable make1 and
make2 to be the number of tonnes of the two chemicals (C1 and C2) we plan to make, and using an
argument similar to the one in case A), we get two constraints, one for the catalyst and one for the fine
chemical.

50 ·make1 + 130 ·make2 ≤ 1000 (catalyst)

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 (fine chemical)

We have been careful to keep the units of measurement consistent.

In general, we have one constraint for each resource, relating the amount we are planning to use to the
amount available.

Case C is now hardly challenging. ‘If I do one unit of activity i it takes up COSTi of my disposable income.
My disposable income next week is $150.’ The decision variables are doacti, the amount of activity i that
I plan to do. Making the linearity assumption that if I do doacti units of activity i it costs me COSTi ·
doacti, my total planned expenditure is

∑
i COSTi · doacti and this can be no more than the money I have

(assuming credit is not an option for me!). Then the constraint is∑
i

COSTi · doacti ≤ 150

2.4 Material balance constraints

Many systems have constraints which can be expressed in words as ‘what goes out must in total equal
what comes in’. In other words, there can be no loss of mass when some particular process takes place. If
the process is some sort of material flow and the thing that is flowing is incompressible, then sometimes
the constraint is expressed in terms of conservation of volume.

Pictorially if we have a process with inflow variables flowini where i ranges from 1 to NIN and outflows
flowoutj where j ranges from 1 to NOUT , and an inflow L from the outside world, we might have
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Figure 2.1: Material flow balance in a node

If the flow variables are measured in terms of mass or weight then we will have

L +
MIN∑
i=1

flowini =
NOUT∑

j=1

flowoutj

A particular form of material balance constraint occurs when we are accounting for the flow of materials
between time periods in a multi-time period model, that is, a model where we represent time as a
series of intervals, not concerning ourselves with the details of when during an interval events happen.
Suppose that we have a simple factory that only makes one product and that we are trying to decide the
manufacturing levels (maket) for the next NT periods, i.e. t ranges from 1 to NT . Another set of decision
variables are sellt, the amount of the product that we decide to sell in time period t. If we have the
possibility of storing product from one time period to the next time period we can introduce a further
set of decision variables storet which are the amounts of product to have in stock (inventory) at the end
of time period t.

Let us consider the material balance in time period t. In words we can say ‘the stock at the end of time
period t is equal to the stock at the beginning of time period t, plus what we make, minus what we sell.’

We are faced with a slight problem now — we do not know the decision variable for the stock at the
beginning of time period t but we can see that, assuming there is no loss of stock, the stock at the
beginning of time period t is the same at the end of time period t -1. So in different words, the previous
statement can be phrased as ‘the stock at the end of time period t is equal to the stock at the end of time
period t − 1, plus what we make in period t, minus what we sell in period t’. In algebraic form this can
be written

stockt = stockt−1 + maket − sellt

This is deceptively simple but it contains one flaw: there is no time period preceding time period 1, so
there is no stock0 variable. We need a special constraint that relates to time period 1 only, and says in
words ‘the stock at the end of time period 1 is equal to the opening inventory SINIT , plus what we make
in time period 1, minus what we sell in time period 1’, or in algebra

stock1 = SINIT + make1 − sell1

Other material balance constraints arise when we are talking about raw materials that we buy in from
an outside supplier and use in our production process. A word description might be, ‘for a particular raw
material, the stock of the raw material at the end of time period t is equal to the stock at the end of
time period t − 1, plus the amount of the raw material that we buy in time period t, minus the amount
of raw material that we use in making the products during time period t’. Then considering one raw
material we might have decision variables rbuyt, rstockt and ruset, so the constraints for all but the first
time period are

rstockt = rstockt−1 + rbuyt − ruset

We have to remember again that there is a special constraint for time period 1 as we already know the
opening stock level in that period: it is what we have in stock right now.

It is also likely that the ruset variables will be related to the decision variables in another part of the model
which represent how much product we are going to make. If we have products indexed by p = 1, . . . , NP
with technological coefficients REQpr, the number of units of raw material r required by 1 unit of product
p, and decision variables makept denoting the amount of product p that we make in time period t, we
can immediately write down an expression for the amount of raw material we use in time period t (ruset)
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as

ruset =
NP∑
p=1

REQpr ·makept

(see Section 2.3 ‘Simple resource constraints’ above for an explanation of this).

Since we have just written down an equation for ruset we might consider substituting for it in the con-
straint in which it occurs. This would generally not be a particularly good thing to do, but not particularly
bad either. It would reduce the number of variables a little but we are probably going to have to use
these variables somewhere else in the model anyway and so the substitution would have to take place ev-
erywhere the ruset variables appeared in the model. The model would certainly be less comprehensible,
and consequently harder to maintain.

A new form of material balance equations of the multi-period type occurs where we have fixed demands
for our product or products in the NT time periods. In other words, the selling decision variables (sellt in
the example above) are fixed. We have the choice of expressing this as a set of simple equality constraints
with sellt variables e.g.

sellt = MUSTSELLt

or by substituting the sellt variables by MUSTSELLt everywhere they occur. This time the decision as to
whether to substitute for the sellt variables is probably a matter of choice — some modelers will eliminate
variables while others might put in the simple equality constraint arguing that the sellt variables will
probably at some stage in the future be of interest in themselves.

2.5 Quality requirements

Here are some word statements

A) ‘I cannot have more than 0.02% of sulphur in this gasoline.’

B) ‘There must be at least 3% of protein in this dried apricot mixture.’

C) ‘This foodstuff must have no less than 5% fat but no more than 10%.’

These sorts of quality requirements frequently occur when we are blending together various raw ma-
terials with differing properties to create a final product. Typically each of the raw materials will come
with a set of properties, for instance in foodstuffs it might be the fat content or the percentage of car-
bohydrates; in the petrochemical industry it might be sulphur content or the octane number. For some
characteristics of the final product we require that quality specifications are adhered to. For ‘bad’ things
these are usually expressed as a maximum percentages; for desirable properties they will be expressed as
a minimum percentage and other properties may have to lie between specified lower and upper bounds
(perhaps so that the product has stability or other characteristics that we desire). An extreme form of
the latter case is where we have to have an exact percentage of a particular characteristic in the final
product.

Consider a number NR of raw materials and just one characteristic that we are concerned about in the
final product. Suppose that one unit of raw material r contains CONTr units of the characteristic (for
instance CONT3 might be 0.1 if raw material number 3 is 10% fat and the characteristic we are considering
is fat). As usual with LP we assume that we know the CONT data precisely.

In many manufacturing processes it is reasonable to assume that the characteristic in the resulting end
product comes from blending the raw materials linearly. For example if we blend together one kg of a
gasoline with 0.01% sulphur and 1 kg of gasoline with 0.03% sulphur, then we will get 2 kg of the mixture
with 0.02% sulphur. Whether this assumption of linearity is correct very much depends upon the physics
or chemistry of the blending process and in some industries it certainly does not hold. However, making
the assumption of linearity, we can see that the proportion of the characteristic in the final product is
given by

p = proportion =
total mass of constituents

total mass of blend

If the decision variables are ruser for the amount of raw material r to use, then we have

p =

∑NR
r=1 Cr · ruser∑NR

r=1 ruser

and we can apply the desired inequality (or equality) to this proportion. For instance, p ≤ 0. 1 (i.e. 10%)
becomes ∑NR

r=1 Cr · ruser∑NR
r=1 ruser

≤ 0. 1
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At first sight this does not seem like a linear inequality and indeed it is not as it is a constraint applying
to the ratio of two linear expressions. However, by cross multiplying we can get the constraint into the
form

NR∑
r=1

Cr · ruser ≤ 0. 1
NR∑
r=1

ruser

Note: we have to be careful when multiplying inequalities. The direction of the inequality is preserved
if we multiply by a non-negative amount, but is reversed if we multiply by a negative amount. Here, we
are multiplying both sides of the inequality by the sum of a set of non-negative variables, so the direction
of the inequality is maintained.

If we collect together two terms for each decision variable ruser we get the linear inequality

NR∑
r=1

(Cr − 0. 1) · ruser ≤ 0

2.6 Accounting constraints, non-constraining ‘constraints’

A typical way of building up a model is to construct it in quasi-independent pieces. So, for instance, we
might have a constraint expressed as ‘the total cost of operating region 1 plus the cost of operating region
2,... plus the cost of operating region 16 must be less than $10M’, and then later on in the model we
have 16 different equations which capture the cost of operating each of the regions. If we had decision
variables totalcost and rcosti this would be expressed as

totalcost =
16∑
i=1

rcosti

where rcosti = some_expressioni for i = 1 to 16.

Obviously it is possible to eliminate the rcosti variables (the cost of operating region i) by substituting
some_expressioni into the equation defining totalcost but it is very likely that we will want the costs of
operating different regions to appear in some report, so we might as well let the LP system calculate the
values of these variables for us. We call the rcosti variables accounting variables and the constraints that
define them accounting constraints.

Whether you choose to use the LP system to do the accounting for you, or do them afterwards when
producing reports, is a matter of taste. In the past, when LP systems were limited and one had to squeeze
the problem into as few constraints as possible, it was obviously a good idea to eliminate accounting
variables and then to calculate their values from the optimum values of the variables contributing to
them. Now, where a few hundred extra constraints are of no consequence it is better to leave accounting
variables and constraints in the model.

There is however one subtlety that we must be aware of: it is possible that an accounting variable does
not necessarily have to be non-negative. Suppose we had variables revenuei and expenditurei which were
the revenue and expenditure of plant i. If we were to define accounting variables profiti and accounting
constraints

profiti = revenuei − expendi

to pick up the values of the profiti variables then we must remember that it is possible for a plant to
have negative profitability and so the profiti variables must be declared as free variables (unless for some
reason we have to run each plant in a profitable mode).

Forgetting that decision variables are by default non-negative is a common cause of error with account-
ing variables. However, if one just wants the LP system to do accounting for you, it is possible to add
extra unconstrained linear expressions to a model, letting the LP system work out the value of the linear
expression for you. It used to be the case that adding lots of these expressions could slow down the
LP solution process, but modern solvers recognize such constraints and discard them during the solution
process, only reinstating them when the rest of the LP has been solved.

2.7 Blending constraints

A very common use of LP modeling is to deal with the situation where we have a set of inputs each with
certain percentages of different characteristics and we want to blend these inputs together to get a final
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product with certain desired characteristics. Blending typically falls into one of two major categories:
either we use fixed recipes where the proportion of different inputs is determined in advance (rather like
the recipes you see in cookery books which specify the exact weights of the constitutes required to make
a certain weight of cake) or we have variable recipes where it is up to us to decide, perhaps within limits,
the proportions of the inputs that we are going to blend together.

An example of a variable recipe might be in the manufacture of animal feed stuffs which can be made
from a wide variety of different raw materials, not necessarily always mixed in the same proportions. An
interesting example of recipes which pretend to be fixed but in fact are variable are those found in books
that tell you how to mix cocktails. They usually pretend that the proportions of gin, tequila, vermouth
etc are fixed, but of course anyone who has been in the position of having restricted stocks of any of
these raw materials knows that within limits the recipes are very variable.

Suppose we have 3 raw materials and the constraint in words is ‘the ratios of raw material 1, raw material
2 and raw material 3 are 6:3:1’. If we have decision variables raw1, raw2 and raw3 representing the weight
of the materials in the blend, then the total weight in the blend is raw1 + raw2 + raw3 and we have the
constraints

raw1

raw1 + raw2 + raw3
=

6
10

raw2

raw1 + raw2 + raw3
=

3
10

raw3

raw1 + raw2 + raw3
=

1
10

These are ratio constraints, not linear equations, but as before we can convert them into linear equations
by cross multiplying to get

(1− 0. 6) · raw1 = 0. 6 · raw2 + 0. 6 · raw3, i. e.

0. 4 · raw1 = 0. 6 · raw2 + 0. 6 · raw3

The cross multiplication preserves the direction of the inequality since the denominator is always non-
negative.

Similarly we get

0. 7 · raw2 = 0. 3 · raw1 + 0. 3 · raw3, and

0. 9 · raw3 = 0. 1 · raw1 + 0. 1 · raw2

One of these equations is redundant as it is implied by the other two but it does no harm to put all three
equations into the model. In fact it is probably a good idea to put all three equations down as inevitably
at some time in the future we will have a fourth raw material and if we try to be too clever in eliminating
redundant constraints we will forget that we have omitted a previously redundant equation, and make
a mistake that will be hard to detect.

2.8 Modes

A generalization of blending constraints is where we have M inputs and N outputs which must be in strict
proportions. As an example, this might be expressed as ‘My 3 inputs have to be used in the ratio of 2 :
1.6 : 2.2 and they produce outputs of 1.6 of output 1 and 1.7 of output 2’. So, for example we might put
in 1 kg of input 1, 0.8 kg of input 2, and 1.1 kg of input 3, and get out 0.8 kg of output 1 and 0.85 kg of
output 2.

It is easy to see that if we have just one output then this is a simple fixed ratio blending example.

Such M-input/N-output constraints often arise where we have a plant that we can operate in different
ways (modes), and the ratios differ for different modes. At any point in time, the plant can only be in
one mode.

Consider a very simple example, where we have 3 inputs, 2 outputs and 3 possible operating modes. We
present the operating characteristics in the tables below, where we have defined a unit of a mode as 1
hour i.e. we have shown the kg of each input used, and output produced, by the plant.

The decision variables are the number of hours the plant spends in each mode m, say usemodem. Then
the usage of Input 1, for instance, is 20 · usemode1 + 22 · usemode2 + 24 · usemode3 and the production of
output 2 is 17 · usemode1 + 20 · usemode2 + 24 · usemode3.
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Table 2.4: Fixed ratio blending example

Quantities used/produced
Mode 1 Mode 2 Mode 3

Input 1 20 22 24

Input 2 16 14 13

Input 3 22 21 18

Output 1 16 15 14

Output 2 17 20 24

In any given planning period we will also have a constraint on the total number of hours the plant spends
in all the modes. For instance, if we are doing a weekly plan (168 hours), then we will have the constraint
that

usemode1 + usemode2 + usemode3 ≤ 168

We are assuming that we can work at most 168 hours in the week, and that we do not lose any time
changing from one mode to another. The latter assumption may be totally unrealistic for some plants,
and if we cannot assume that change-over times are negligible then we have to use an Integer Program-
ming formulation.

2.9 Soft constraints and ‘panic variables’

The constraint that we have just modeled, that we can run a plant for at most 168 hours, is an example
of a hard constraint. It is impossible to get more than 168 hours into a week. Other examples of hard
constraints are ones that relate to physical, chemical or engineering properties, such as a boiler’s capacity,
or a reaction rate. Other hard constraints come from accounting or definitional constraints (for instance,
profit = revenue-cost is a hard constraint, as it is just a definition really).

But there are other, more ‘economic’ constraints where in reality if we have to violate a constraint we
can do so at a cost. If there is a scarce resource, the economic environment invariably sets up a market in
that resource, and we can go to the market if we really do need to acquire more of that resource. (This
is somewhat of a generalization as a particular resource may actually be so specific to us that we are the
only people who can make it to the standards or in the locality or to the timescale we require.)

Consider again the statement of case B of Section 2.3 ‘Simple resource constraints’ above: We said ‘Each
tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine chemical, whereas each
tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine chemical. I can only afford
to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the fine chemical each month.’
The key part of this phrasing is the last sentence, where we say we can only afford so much of the catalyst,
and we can only acquire 200 kg of the fine chemical. We expressed the fine chemical constraint as

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 (fine chemical)

i.e. as a hard constraint. But suppose that if we were willing to pay P per kg we could get more of the
fine chemical. Then we could introduce an extra decision variable buyFC to represent the number of
kg of fine chemical we bought at this price. If we were building a profit maximizing LP then we would
have to add a term −P · buyFC to the objective function, accounting for the money we pay for the fine
chemical, but now the constraint becomes

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 + buyFC (fine chemical, with buy-in)

We now have a soft constraint, i.e. we can violate the original constraint but at a penalty to our objective
function. The buyFC variable can be considered a panic variable: it is a variable which is there in case we
cannot manage with our normal resources and have to resort to the market to satisfy our needs.

The way we have introduced panic variables is not the way they are most commonly used in modeling.
We have mentioned before that getting an infeasible solution to an LP is very difficult to diagnose, and
good modelers have learned the art of what we might call ‘defensive modeling’. One of the worst things
that can happen to a model when it has been deployed to end-users is that it gives an infeasible solution
message to the poor end-user, who then does not know what to do. Defensive modelers try to avoid
this by adding panic variables to constraints that might possibly be violated, at the same time trying to
get estimates of how much it will realistically cost to violate the constraint. Often the end-user can help
in this, as they will know what can be done to get extra resources — for instance, if it is a question of
shutting down the plant or renting a plane to fly in the scarce resource, you may well decide to rent the
plane.
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Panic variables do not just apply to resource availability constraints; they can also be added to demand
constraints. For instance, we might have a constraint that a particular customer C has to have a total
supply from our depots of 100 tonnes, modeled as∑

d∈DEPOTS

flowdC ≥ 100

If, however, it is just not possible to supply him then we may undersupply. There may be a contractual
cost to doing this, in which case we know what the direct cost will be, or we might have some measure
of the cost in terms of loss of goodwill (admittedly these costs are hard to estimate, and can be very
subjective).

If a panic variable is non-zero in an optimal solution, then we can infer one of two things: either we have
put in too low a penalty cost, or we are truly being forced to use the panic variable to achieve feasibility.
Rerunning the model with higher penalty costs will enable us to distinguish these cases. But in either case
we have an implementable solution, and we are not left with an end-user staring at a computer screen
wondering what on earth to do.

2.10 Objective functions

An objective function is not a constraint, but since it consists of a linear expression usually involving lots
of variables its construction has many similarities to the process of building constraints. In fact, now we
have so extensively covered modeling constraints there is little new to say about modeling an objective
function.

The objective is usually cost (when we minimize) or profit (when we maximize). Most LP systems minimize
by default and the industry MPS standard for presenting an LP problem to an optimizer does not specify
whether the objective is to be minimized or maximized, so everyone has at one time or another selected
the wrong sense for optimization, and come up with a silly answer. One feels foolish, but it is usually
obvious that a mistake has been made.

Problems do exist where there is no objective function, and the LP optimizer is being used just to obtain
a feasible solution, or to answer the question in a design study as to whether the constraints are too
restrictive. But such problems are rare.

2.10.1 Minimax objective functions

Two apparently non-linear objective functions can be converted into LP forms by tricks. The first is where
we wish to:

minimize max(t1, t2, t3, . . . , tN)

i.e. minimize the maximum of a set of decision variables. We can model this by introducing a new
decision variable, say s, and then

minimize s

subject to s ≥ t1

s ≥ t2

s ≥ t3

. . .

s ≥ tN

You can see that s has to be no less than each of the t’s, and the minimization objective will force it down
to take the value of the largest t. Unfortunately, the same trick cannot be applied where we want to
minimize min(t1, t2, t3, . . . , tN) or maximize max(t1, t2, t3, . . . , tN).

2.10.2 Ratio objective functions

The second trick enables us to deal with a ratio objective function of the form

minimize Obj =

∑
j Nj · xj∑
j Dj · xj

subject to LP constraints
∑

j

Aij · xj ∼ Ri
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where ∼ is one of ≤, ≥ or =.

Define new variables d = 1∑
j
Dj·xj

and yj = xj · d (i.e. xj = yj / d). Then the objective becomes

Obj = d ·
∑

j Nj · xj

=
∑

j Nj · d · xj

=
∑

j Nj · yj

The definition of d can be linearized by cross multiplying:

1 =
∑

j

Dj · d · xj =
∑

j

Dj · yj

and into the normal LP constraints we can substitute for xj thus:∑
j

Aij · xj ∼ Ri

or (multiplied by d)
d ·

∑
j

Aij · xj ∼ d · Ri

or ∑
j

Aij · d · xj ∼ d · Ri

i.e. or ∑
j

Aij · yj ∼ d · Ri

The resulting LP has variables d and yj. When it has been solved, the optimal values of the original xj

variables can be recovered from the definition xj = yj / d.

Note that we are in trouble if variable d can become 0. We also have to taken care if d is always negative,
as the signs of the inequalities must be reversed when we multiply by d above.
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Chapter 3

Integer Programming models

Though many systems can accurately be modeled as Linear Programs, there are situations where disconti-
nuities are at the very core of the decision making problem. There are three major areas where non-linear
facilities are required

• where entities must inherently be selected from a discrete set of possibilities;

• in modeling logical conditions; and

• in finding the global optimum over functions.

Modeling languages let you model these non-linearities and discontinuities using a range of discrete
entities and then a Mixed Integer Programming (MIP) optimizer can be used to find the overall (global)
optimum of the problem. Usually the underlying structure is that of a Linear Program, but optimization
may be used successfully when the non-linearities are separable into functions of just a few variables.

Note that in this book we use the terms Integer Programming (IP) and Mixed Integer Programming inter-
changeably. Strictly speaking MIP models have both discrete entities and the continuous variables, and
pure IP models only have discrete entities. But it seems pedantic to distinguish these two cases unless the
distinction is important to our modeling or optimization; and it is not.

The first Section 3.1 of this chapter introduces the different types of IP modeling objects (also referred to
as ‘global entities’). The following Section 3.2 describes the branch and bound method for solving MIP
problems. Binary variables merit special attention: they may be used to formulate do/don’t do decisions,
implications and other logical expressions, and even products between several binary variables (Section
3.3). As shown in Section 3.4, it would indeed be possible to reduce the whole set of IP modeling objects
to binary variables — but this at the expense of efficiency. In combination with real variables, binary
variables can be used, among others, to express discontinuities (Section 3.5).

3.1 IP modeling objects: ‘global entities’

In principle, all you need in building MIP models are continuous variables and binary variables, where
binary variables are decision variables that can take either the value 0 or the value 1. They are often
called ‘0/1 variables’ or ‘do/don’t do’ variables. But it is convenient to extend the set of modeling entities
to embrace objects that frequently occur in practice.

• Integer variables: an integer variable is a variable that must take only an integer (whole number)
value.

• Partial integer variables: a partial integer variable is a variable that must take an integer value if it
is less than a certain user-specified limit L, or any value above that limit.

• Semi-continuous (SC) variables: an SC variable is a decision variable that can take either the value
0, or a value between some user specified lower limit L and upper limit U. SCs help model situations
where if a variable is to be used at all, it has to be used at some minimum level.

• Semi-continuous integer variables (SI): decision variables that can take either the value 0, or an
integer value between some lower limit and upper limit. SIs help model situations where if a
variable is to be used at all, it has to be used at some minimum level, and has to be integer.

• Special Ordered Sets of type 1 (SOS1 or S1): an ordered set of non-negative variables at most one
of which can take a non-zero value.
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• Special Ordered Sets of type 2 (SOS2 or S2): an ordered set of non-negative variables, of which at
most two can be non-zero, and if two are non-zero these must be consecutive in their ordering.

Why might some of these variables and sets, which collectively we call global entities, be used? We shall
give a brief overview, and later we shall expand on these examples.

Integer variables occur naturally, being most frequently found where the underlying decision variable
really has to take on a whole number value for the optimal solution to make sense. If we are modeling
the number of trains that leave a railway station in a half-hour interval, then the variable representing
this number must take on an integer value — it makes no sense to say that 11.23 trains are to leave.

The idea of partial integers arose from a study where car engines in short supply were being allocated
to different regions. Some of the regions were large, and took many engines, so it was permissible to
round a solution saying the region should take 1654.19 engines to the integer value 1654. But for a
regions taking only a few engines, it was not acceptable to round 6.32 engines to 6 engines. It is up to
the decision maker to decide the limit L below which it is not acceptable to round a fractional answer to
a nearby integer. The modeling system allows the decision maker to specify a different L for each partial
integer variable, if so desired. So partial integers provide some computational advantages in problems
where it is acceptable to round the LP solution to an integer if the optimal value of a decision variable is
quite large, but unacceptable if it is small.

Semi-continuous variables are useful where, if some variable is to be used at all, its value must be no less
than some minimum amount. For example, in a blending problem we might be constrained by practical
reasons either to use none of a component or at least 20 kg of it. This type of constraint occurs very
frequently in practical problems.

Semi-continuous integer variables often arise in shift planning modeling. If we are going to set up a
machine, then we have to run it for a whole number of shifts, and in any case for at least some minimum
number of shifts. For example, it might be possible only to run the machine for 0, or 12, 13, 14, ... shifts,
with the case of running it for 1, 2, ..., 11 shifts making no economic sense.

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select at
most one thing from a set of items. The choice may be from such sets as: the time period in which to start
a job; one of a finite set of possible sizes for building a factory; which machine type to process a part on,
etc.

Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable. They are
the natural extension of the concepts of Separable Programming, but when embedded in a Branch and
Bound code (see below Section 3.2) enable truly global optima to be found, and not just local optima.
(A local optimum is a point where all the nearest neighbors are worse than it, but where we have no
guarantee that there is not a better point some way away. A global optimum is a point which we know
to be the best. In the Himalayas the summit of K2 is a local maximum height, whereas the summit of
Everest is the global maximum height.)

Theoretically, models that can be built with any of the entities we have listed above can equally well be
modeled solely with binary variables. The reason why modern IP systems have some or all of the extra
entities is that they often provide significant computational savings in computer time and storage when
trying to solve the resulting model. Most books and courses on Integer Programming do not emphasize
this point adequately. We have found that careful use of the non-binary global entities often yields very
considerable reductions in solution times over ones that just use binary variables.

3.2 IP solving: the ideas behind Branch and Bound

Most commercial Integer Programming optimizers, including that in Xpress-MP, use a Branch and Bound
(B&B) search as the basis of the algorithm which locates and proves the optimal solution. It is not the
purpose of this book to go into great detail about the ideas behind the solution algorithms, but to
understand why the modeling entities we have introduced are useful it is necessary to give here a short
explanation of the ideas behind Branch and Bound. The presentation is intended to give you the flavor
of what a B&B search does, and is not supposed to be an exact description.

The first idea underpinning B&B is relaxation. If we have global entities in the problem, we temporarily
forget about their discreteness and solve the resulting problem (the relaxed problem) as an LP. We may
be lucky, and the solution values that should be discrete happen by accident to take allowable values.
The binaries are all 0 or 1, the integer variables take integer values etc. If this fortuitous event occurs,
then we have got the integer solution, and the B&B search is over.

If not, we have at least one global entity which is not satisfied, and the solution is said to be integer
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infeasible. A binary or integer variable is taking a fractional value, a partial integer is below its critical
limit and is fractional, or a Special Ordered Set condition is not satisfied. So we have to do something
to move towards integrality. We introduce the notion of separation, which is most easily described in
the case of an integer variable. Suppose one particular integer variable’s (say, variable v) optimal value
in the LP solution is 12.3. Then the obvious remark that in a solution either v ≤ 12 or v ≥ 13 leads
us to separate the initial problem into two sub-problems, one with the added constraint v ≤ 12 (call
this the down branch) and the other with the added constraint v ≥ 13 (call this the up branch). If we
can solve both sub-problems, then the better of the two solutions gives us the solution to the original
problem. In other words, we have separated the original problem into two subproblems. We note that
since each sub-problem is more constrained than the original problem, the solutions to the sub-problems
will certainly be no better than the solution to the original problem.

What do we do now? We have replaced solving the original problem by the task of solving two sub-
problems. So for both of the sub-problems we again apply the idea of relaxation, i.e. drop the discrete-
ness conditions and solve as LP problems.

At first sight, this seems like nonsense — we have replaced solving one problem by having to solve two
sub-problems. However, there is a good argument why the two sub-problems should naturally be more
‘integer’ than the original problem, where by ‘integer’ we mean ‘more likely to have an integer solution
to the LP relaxation’. In the LP solution to the original problem variable v wants to take the value 12.3,
but in the two sub-problems we force it away from that value. So in the LP solution of the down branch
sub-problem we will have v = 12 and in the LP solution of the up branch we will have v = 13. In both
cases one of the previously fractional variables is taking an integer solution, so in some very vague way
we can see that the sub-problems are naturally more ‘integer’ than the original problem.

However, the LP relaxation solutions to the sub-problems may still be integer infeasible, but now we
know what to do. We apply the idea of separation again, selecting an integer infeasible variable.

So the B&B process consists of successively separating on (branching on) variables which are not satisfying
their discreteness condition, thereby creating two new sub-problems every time we separate. We can
represent this as a tree, drawn upside-down in the usual computer science manner.
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Figure 3.1: Branch and Bound tree

The nodes of the tree represent the solution of the LP relaxation. Beside each node we have written the
value of the objective function of the LP relaxation at the node. Note that we assume we have been
solving a minimization problem, so the values of the objective functions get worse (bigger) as we go
down a branch of the tree, as we are continuously adding new constraints. If the LP solution at a node is
integer feasible, we stop exploring down from that node, otherwise we separate on one of the integer
infeasible variables, creating two descendant nodes. If the LP at a node is infeasible, we cannot continue
from that node as adding constraints to an already infeasible problem will only make it more infeasible,
and no descendant can possible give us a feasible integer solution.

If in the course of the search we find an integer solution, we may be able to exploit this fact through the
notion of fathoming. In the figure above, we find an integer solution with value 120 at node 6. Looking
at node 3 we observe that adding constraints will only make its descendants have objective function
values worse than 128, but we already have a solution with value 120. So we do not need to look at any
descendants of node 3: it has been fathomed or cut-off. Similarly, node 5 is fathomed. And node 7 is
fathomed by the fact that it is infeasible.
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If we are fortunate and find an integer solution early in the search, then you can see that a very large
fraction of the possible nodes may be fathomed, and we will not have to search the entire tree. But if
there are N discrete variables, in theory we might have to generate nearly 2N nodes, and thus have to
solve that many LP problems, a formidable task.

As you can see, there are three main decisions to make when doing a B&B search

1. which of the outstanding nodes to select for solving by LP (the node selection strategy)

2. which of the fractional integer variables to select for separation (the variable selection strategy)

3. which direction to branch on first when you have separated (the branching direction strategy)

Though any way of making these decisions will work in theory, since B&B is guaranteed to find the op-
timal integer solution, given long enough time, the practical effectiveness of a B&B algorithm depends
crucially on making the decisions correctly. In many cases it is best to leave the choice to the IP solver;
however there is some opportunity for the modeler to influence the solution process by passing knowl-
edge of the semantics of the model to the ‘out-of-the-box’ solver: often it is helpful to assign branching
priorities to decision variables if the values of certain (sets of) variables have a strong impact on the rest
of the solution (for instance, if we need to decide whether to open a factory and how much to produce
there in different time periods, the decision on the opening should usually be made first). The modeler
may also indicate preferred branching directions for single variables (‘up’ or ‘down’ branch first) if he has
some intuition of the value a variable is likely to take in the solution.

Like other solvers, Xpress-MP has a set of default strategies which have been found to work well on most
problems. However, the user should note carefully that sophistication in modeling is important in large
scale MIP work. Theoretical developments in the last two decades have lead to insights as to how best
to model IP problems, and how to choose between alternative formulations. We cannot over-stress the
point that a good formulation can often speed an IP search by orders of magnitude.

3.3 Modeling with binary variables

We have seen that a rich modeling environment supplies more than just binary variables, and we shall
later see examples of using these extended entities, but we start the discussion of IP modeling by showing
the use of binary variables.

3.3.1 Do/don’t do decisions

The most common use of binary variables is when we are modeling activities that either have to be done
in their entirety or not done at all. For instance, we might want to model whether we drive a particular
truck between city A and city B on a particular day. In this case we either do drive the truck or we do not
drive the truck at all: there are just two options. Typically we model the option of doing something by
having a binary variable being equal to 1, and the option of not doing the thing with the binary variable
being equal to 0. Thus we just have two choices, of which we must select one.

Associated with the activity and with its binary variable, there may be some other properties. Suppose
for instance we are considering what we do with the three trucks that we own. Truck 1 has a capacity of
20 tonnes, truck 2 has a capacity of 25 tonnes and truck 3 has a capacity of 30 tonnes. If on a particular
day we decide to send truck 1 to a customer then we either send the entire truck or we do not send the
entire truck. So we might have a decision variable (a binary variable) send1 taking the value 1 if we send
truck 1 out or 0 if we do not send truck 1. Similarly we will have another binary variable send2 which is
1 if truck 2 goes out and 0 otherwise; and variable send3 taking on the value 1 if truck 3 goes out, and 0
otherwise.

Elsewhere in the model we will probably be interested in the total tonnage that goes out on that partic-
ular day and we can see that this is

20 · send1 + 25 · send2 + 30 · send3

because if truck 1 goes out (send1 = 1) it takes 20 tonnes, if truck 2 goes out it independently takes 25
tonnes, and if truck 3 goes out it carries 30 tonnes, so the total is 20 · send1 + 25 · send2 + 30 · send3.
Suppose that we have a decision variable called out which gives the total tonnage leaving our depot on
that particular day. Then we have the equation

out = 20 · send1 + 25 · send2 + 30 · send3
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3.3.2 Logical conditions

To show many uses of binary variables we will take as an example a set of projects that we may or may
not decide to do. We shall call the projects rather unimaginatively A, B, C, D, E, F, G and H and with each
of these projects we will associate a decision variable (a binary variable) which is 1 if we decide to do the
project and 0 if we decide not to do the project. We call the corresponding variables a, b, c, d, e, f , g and
h. So decision variable a taking on the value 1 means that we do project A, whilst a taking on the value
of 0 means that we do not do project A. We are now going to express some constraints in words and see
how they can be modeled using these binary variables.

3.3.2.1 Choice among several possibilities

The first constraint that we might impose is ‘we must choose no more than one project to do’. We can
easily see that this can be expressed by the constraint

a + b + c + d + e + f + g + h ≤ 1

Why is this true? Think of selecting one project, for instance project C. If c is 1 then the constraint
immediately says that a, b, d, e, f , g and h must be 0 because there is no other setting for the values of
these variables that will satisfy that constraint. So if c is 1 then all the others are 0 and, as there is nothing
special about C, we can see immediately that the constraint means that we can only do one project.

If the constraint was that we could do no more than three projects then obviously all we have to do in
the constraint above is to replace the 1 by 3 and then we can easily see that in fact we can have no more
than three of the 0-1 variables being equal to 1. It is possible to have just two of them or one of them or
even none of them being equal to 1 but we can certainly not have four or more being 1 and satisfy the
constraint at the same time.

Now suppose that the constraint is that we must choose exactly two of the projects. Then the constraint
we can use to model this is

a + b + c + d + e + f + g + h = 2

Since the binary variables can take only the values 0 or 1, we must have exactly two of them being 1 and
all the rest of them being 0, and that is the only way that we can satisfy that constraint.

3.3.2.2 Simple implications

Now consider an entirely different sort of constraint. Suppose that ‘if we do project A then we must do
project B’. How do we model this? Like a lot of mathematics, it is a question of learning a trick that has
been discovered. Consider the following constraint

b ≥ a

To show that this formulation is correct, we consider all the possible combinations of settings (there are
four of them) of a and b. First, what happens if we do not do project A. If we also do not do project B
then the constraint is satisfied (0 = b ≥ a = 0) and our word constraint is satisfied. If, on the other hand,
we do do project B, then 1 = b ≥ a = 0, and the constraint is again satisfied. Now consider what happens
if we actually do project A, i.e. a = 1. Then the constraint is violated if b = 0 and is satisfied (0 is not ≥ 1)
if b = 1, in other words we do project B. The last case to consider is if we do not do project A, i.e. a = 0
and we do project B, i.e. b = 1. Then the constraint is satisfied (1 ≥ 0) and the word constraint is indeed
satisfied. We can lay these constraints out in a table. There are only four possible conditions: {do A, do
B}, {do A, do not do B}, {do not do A, do not do B}, {do not do A, do B}, and we can see that the illegal
one is ruled out by the algebraic constraint.

Table 3.1: Evaluation of a binary implication constraint

b ≥ a a=0 a=1

b=0 Yes No

b=1 Yes Yes

The next word constraint we consider is ‘if we do project A then we must not do project B’. How might
we set about modeling this? The way to think of it is to notice that the property of notdoing B can be
modeled very easily when we already have a binary variable b representing doing B. We invent a new
variable

b = 1− b
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where b represents the doing of project B i.e., the project ‘not doing B’. If b = 1 then b = 0 (in other
words, if we do project B then we do not do ‘not B’) whereas if b = 0 then b = 1 (if we do not do project
B then we do project B). This is very convenient and b is called the complement of b. We can use this trick
frequently. Just above we learned how to model ‘if we do A then we must do B’ and now we are trying
to model ‘if we do A then we must not do B’, i.e. ‘if we do A then we must do B’. As ‘if we do A then we
must do B’ was modeled by b ≥ a we can immediately see that the constraint ‘if we do A then we must
do B’ can be obtained by replacing b by b in the constraint, in other words b ≥ a. Replacing b by 1 − b
we get

1− b ≥ a

or
1 ≥ a + b

or alternatively
a + b ≤ 1

Now that we have obtained this constraint, it is quite obvious. What it says is that if we do project A (a =
1) then b must be 0. This is exactly what we wanted to model. The point of the somewhat long-winded
argument we showed above, however, is that we have used the result from the first logical constraint
that we wanted to model, plus the fact that we have now introduced the notion of the complement of
the project, to build up a newer and more complicated constraint from these two primitive concepts. This
is what we will do frequently in what follows.

We see an example of this by trying to model the word constraint ‘if we do not do A then we must do
B’, in other word, ‘if not A then B’. We can go back immediately to our first logical constraint ‘if we do A
then we must do B’ which was modeled as b ≥ a. Now we are actually replacing A by not A, so we can
see immediately that our constraint is

b ≥ 1− a

which is
a + b ≥ 1

Again this constraint is obvious now that we have got to it. If we do not do A then a = 0, so b ≥ 1 and
since the maximum value of b is 1 then this immediately means that b = 1. Again we have just taken our
knowledge of how to model ‘if A then B’ and the notion of the complement of a variable to be able to
build up a more complex constraint.

The next constraint to consider is ‘if we do project A we must do project B, and if we do project B we
must do project A’. We have seen that the first is modeled as b ≥ a and the second as a ≥ b. Combining
these two constraints we get

a = b

in other words projects A and B are selected or rejected together, which is exactly what we expressed in
our word constraint.

3.3.2.3 Implications with three variables

The next constraint we consider is ‘if we do project A then we must do project B and project C’. The first
thing to note is that this is in fact two constraints. One, the first, is ‘if we do A then we must do project
B’ and the second constraint is ‘if we do A then we must do project C’. With this observation we can see
that the word constraint can be modeled by the two inequalities

b ≥ a and c ≥ a

so that if a = 1, then both b = 1 and c = 1.

Another constraint might be ‘if we do project A then we must do project B or project C’. It is like the
previous constraint, except we now have an ‘or’ in place of the ‘and’. The constraint

b + c ≥ a

models this correctly. To see this, consider the following situation. If a is 0 then b + c can be anything, and
so b and c are not constrained. If a = 1, then one or both of b and c must be 1.

We may also try to model the inverse situation: ‘if we do Project B or project C then we must do A’. This
is again a case that may be formulated as two separate constraints: ‘if we do B then we must do A’ and
‘if we do C then we must do A’, giving rise to the following two inequalities

a ≥ b and a ≥ c
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so that if either b = 1 or c = 1, then we necessarily have a = 1.

A harder constraint to model is the following ‘if we do both B and C then we must do A’. How might we
model this? One way to think about it is to express it in the following way: ‘if we do both B and C then
we must not do not-A’, or, ‘we can do at most two of B, C or not-A’ which we would model as

b + c + (1− a) ≤ 2

or in other words
b + c − a ≤ 1

or perhaps more conventionally
a ≥ b + c − 1

Looking at this last inequality, we can see that there is no effect on a when b and c are 0, or when just
one of b and c is 1, but a does have to be ≥ 1 when both b and c are 1. A binary variable having to be
greater than or equal to 1 means that the binary variable has to be precisely 1.

3.3.2.4 Generalized implications

Generalizing the previous we now might try to model ‘if we do two or more of B, C, D or E then we must
do A’, and our first guess to this might be the constraint

a ≥ b + c + d + e− 1

Certainly if, say, b and c are both equal to 1 then we have a ≥ 1 and so a must equal 1, but the problem
comes when three of the variables are equal to 1, say b, c and d. Then the constraint says that a ≥ 3− 1,
i.e. a ≥ 2, which is impossible as a is a binary variable. So we have to modify the constraint as follows

a ≥ 1
3
· (b + c + d + e− 1)

The biggest value that the expression inside the parentheses can take is 3, if b = c = d = e = 1. The 1
3

in front of the parenthesis means that in the worst case a must be ≥ 1 (so a is equal to 1). But we must
verify that the constraint is true if, say, just b = c = 1 (and d and e are equal to 0). In this case we have
that a ≥ 1

3 · (1 + 1 + 0 + 0− 1) i.e. a ≥ 1
3 . But since a can only take on the values 0 or 1 then the constraint

a ≥ 1
3 means that a must be 1. This is exactly what we want.

We can generalize this to modeling the statement ‘if we do M or more of N projects (B, C, D, ...) then we
must do project A’ by the constraint

a ≥ b + c + d+. . .−M + 1
N −M + 1

So far we have only given one way of modeling each of these constraints. We return to the constraint ‘if
we do B or C then we must do A’ which we modeled as two constraints a ≥ b and a ≥ c. It is possible to
model this with just one constraint if we take this as a special case of the ‘M or more from N’ constraint
we have just modeled. ‘If we do B or C then we must do A’ is the same as ‘if we do M or more of N
projects (B, C, D, ...) then we must do project A’ with M = 1 and N = 2. So the constraint is

a ≥ b + c −M + 1
N −M + 1

i.e.

a ≥ b + c − 1 + 1
2− 1 + 1

i.e.

a ≥ 1
2
· (b + c)

So this single constraint is exactly the same in terms of binary variables as the two constraints which we
produced before. Which of these two representations is better? In fact the representation in terms of
two constraints is better. But both of the two are correct and both will give a correct answer if put into
an Integer Programming system. It is just that the first pair of constraints will in general give a solution
more rapidly.

More and more complicated constraints can be built up from the primitive ideas we have explored so far.
Since these more complicated constraints do not occur very frequently in actual practical modeling we
shall not explore them further. Table 3.2 summarizes the formulations of logical conditions we have seen
in the different paragraphs of Section 3.3.2.
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Table 3.2: Formulation of logical conditions using binary variables

At most one of A, B,...,H a + b + c + d + e + f + g + h ≤ 1

Exactly two of A, B,...,H a + b + c + d + e + f + g + h = 2

If A then B b ≥ a

Not B b = 1− b

If A then not B a + b ≤ 1

If not A then B a + b ≥ 1

If A then B, and if B then A a = b

If A then B and C b ≥ a and c ≥ a

If A then B or C b + c ≥ a

If B or C then A a ≥ b and a ≥ c

or alternatively: a ≥ 1
2 · (b + c)

If B and C then A a ≥ b + c − 1

If two or more of B, C, D or E then A a ≥ 1
3 · (b + c + d + e− 1)

If M or more of N projects (B, C, D, ...) then A a ≥ b+c+d+...−M+1
N−M+1

3.3.3 Products of binary variables

We move on to modeling the product of binary variables. Suppose we have three binary variables b1, b2

and b3 and we want to model the equation

b3 = b1 · b2

This is not a linear equation since it involves the product of two variables, so we have to express it in
some linear form. There is a trick and it is another one of these tricks that one just has to learn. Consider
the following set of three inequalities

b3 ≤ b1

b3 ≤ b2

b3 ≥ b1 + b2 − 1

Then we claim that this represents the product expression that we wish to model. To see we construct
the following Table 3.3.

Table 3.3: Product of two binaries

b1 b2 b3 b3 = b1 · b2? b3 ≤ b1? b3 ≤ b2? b3 ≥ b1 + b2 − 1?

0 0 0 Yes Yes Yes Yes

0 0 1 No No No Yes

0 1 0 Yes Yes Yes Yes

0 1 1 No No Yes Yes

1 0 0 Yes Yes Yes Yes

1 0 1 No Yes No Yes

1 1 0 No Yes Yes No

1 1 1 Yes Yes Yes Yes

We can see that the column headed b3 = b1 ·b2? is true if and only if we have a ‘Yes’ in the three columns
b3 ≤ b1?, b3 ≤ b2? and b3 ≥ b1 + b2 − 1?, so the three linear equations do exactly represent and are true
at exactly the same time as the product is true.

This is a particularly long winded way of demonstrating the equivalence of the product term and the
three linear equations and in fact now we have got it it is actually quite easy to see why these three
inequalities are correct. Since b3 is b1 multiplied by something that is less than or equal to 1, b3 will
always be less than or equal to b1 and by a similar argument b3 will always be less than or equal to b2.
The only further case we have to consider is when both b1 and b2 are equal to 1 and then we have to
force b3 to be equal to 1. This is done by the constraint b3 ≥ b1 + b2 − 1 which is non restrictive if only
one or none of b1 and b2 are 1 but forces b3 to be 1 when b1 = b2 = 1.

Looking at the constraint this way immediately enables us to model for instance

b4 = b1 · b2 · b3,

in other words the product of three variables, as the four constraints

b4 ≤ b1
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b4 ≤ b2

b4 ≤ b3

b4 ≥ b1 + b2 + b3 − 2

If any of b1, b2 and b3 are 0 then b4 must be 0 but if b1, b2 and b3 are 1 then b4 must be greater than or
equal to 3− 2, i.e. b4 must be greater than or equal to 1 so b4 must be 1.

3.3.4 Dichotomies: either/or constraints

All the constraints we have seen so far have had to be satisfied simultaneously, but sometimes we need to
model that either Constraint 1 or Constraint 2 has to be satisfied, not necessarily both of them. Consider
the problem:

minimize Z = x1 + x2

subject to x1 ≥ 0, x2 ≥ 0 and

Either 2 · x1 + x2 ≥ 6 (Constraint 1) or x1 + 2 · x2 ≥ 7 (Constraint 2)

Since we have just two variables, we can graph the feasible region, and we have done this in the figure
below where the grey shaded area is the feasible region.

2x

c2

c1

2 4 6

2

4

6

1x

Z=3

Z=1

Z=5

Z=7L

G

8

Figure 3.2: Example of either/or constraints

Point L (x1 = 0, x2 = 3. 5, Z = 3. 5) is a local optimum. Point G (x1 = 3, x2 = 3, Z = 3) is the global minimum.

We can model this with one additional binary variable b.

2 · x1 + x2 ≥ 6 · b
x1 + 2 · x2 ≥ 7 · (1− b)

To show that this is true, we just have to consider the two cases:

b = 0 : 2 · x1 + x2 + x3 ≥ 0 x1 + 2 · x2 + 3 · x3 ≥ 7 Constraint 2 is satisfied
b = 1 : 2 · x1 + x2 + x3 ≥ 6 x1 + 2 · x2 + 3 · x3 ≥ 0 Constraint 1 is satisfied

3.4 Binary variables ‘do everything’

All global entities (general integers, partial integers, semi-continuous variables, and both sorts of Special
Ordered Sets) can be expressed in terms of binary variables. However, as shown by the examples in this
section, it is usually preferable to use the specific global entities.
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3.4.1 General integers

Consider an integer variable v which must take a value between 0 and 10. We could replace this integer
variable with four binary variables b1, b2, b3, and b4 everywhere in the model using the expression

v = b1 + 2 · b2 + 4 · b3 + 8 · b4

remembering that we also have to have the constraint

b1 + 2 · b2 + 4 · b3 + 8 · b4 ≤ 10

This is the binary expansion of v. It has the major disadvantage that we now have four global entities
rather than just one global entity. Furthermore, a particular integer value of v, for example 6, can be
achieved by many fractional settings of the binary variables. For instance, v = 6 can be achieved by
{b1 = b2 = b3 = 0, b4 = 0. 75} or {b1 = 0, b2 = 1, b3 = 1, b4 = 0}, and there are a host of other possibilities.
Thus even though v is integer it can be achieved by fractional values of the binary variables and these
fractional values would force our integer programming code to do more branching.

Since all commercial integer programming codes allow one to use general integer variables, and with the
disadvantage of expanding integers in terms of binary variables, it is usually silly to use binary variables
where we really have an underlying integer.

3.4.2 Partial integers

We will postpone the demonstration of how to model partial integer variables in terms of binaries until
later (Section 3.5.3), when we have discussed linking binary variables and real variables.

3.4.3 Semi-continuous variables

Suppose we have a semi-continuous variable s which can take on either the value 0 or any value between
some lower limit L and some upper limit U. If we introduce a binary variable b then we can represent the
semi-continuity of s by the following pair of constraints

L · b ≤ s

s ≤ U · b

We shall see why this is true. There are two cases to consider. Either b = 0, in which case s is constrained to
be 0, or b = 1, in which case s is constrained to lie between L and U. These are exactly the two conditions
that we want to impose.

Why are semi-continuous variables useful? It seems a very small penalty just to have to replace a semi-
continuous variable by one extra binary variable. The answer is that the semi-continuous property may
be satisfied by the variable s, but if we introduce a binary variable the integrality of that binary variable
may not be satisfied. Consider the case where s either has to take on the value 0 or it has to take on a
real value in the range between 5 and 10. Suppose that we solve the LP relaxation and we get a value
for s of 7.5 and we get a value of b of 0.75. This certainly satisfies the two inequalities but the branch
and bound search would note that the binary variable was not satisfied (it is not either 0 or 1) and so we
would have to go on branching and bounding. But the underlying semi-continuity of s is satisfied; s does
indeed lie between its lower bound 5 and its upper bound 10 and so we would not have to branch any
further on the s. Thus not having semi-continuous variables in the modeling language or in the optimizer
can lead to more branching and bounding in the branch and bound search, and indeed if you need to
use semi-continuous variables you should look for an optimizer that has these built into it.

3.4.4 Special Ordered Sets of type 1 (SOS1)

SOS1s are a set of variables, at most one of which can take a strictly positive value, all others being at 0.
They most frequently apply where a set of variables are actually 0-1 variables: in other words, we have
to choose one from a set of possibilities. These might arise for instance where we are deciding on what
size of factory to build, when we have a set of options, perhaps small, medium, large or no factory at all,
and we have to chose one and only one size.

To take a small concrete example, suppose that we are considering building a factory and we have options
S for a small factory, M for a medium sized factory, B for a big factory and N which is no factory at all.
We can model this by introducing four binary variables bS, bM, bB and bN and model the fact that we can
only choose one of these options by the constraint

bN + bS + bM + bB = 1
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Clearly since these are binary variables adding up to 1, only one of them can be 1 and one of them must
be 1. So the SOS1 property applies.

If that was all there was to special ordered sets then it would not be much of an invention. But in
fact there is rather more that can be said because we have forgotten about the word ordered; in the
definition. Suppose that the capacity of the various options for the factories are Small 10,000 tonnes,
Medium 20,000 tonnes, Big 38,000 tonnes and of course the ‘No factory’ has 0 tonnes capacity. One of
the things we will be interested in is the selected capacity of the factory that we will be building, and
somewhere in the model we would have a decision variable size and an equation

size = 0 · bN + 10000 · bS + 20000 · bM + 38000 · bB.

We can use the coefficients in this equation (which we call the reference row) to order the variables. The
order emerging is bN, bS, bM, bB where we have ordered them by their coefficients in the Reference Row.
Now suppose that we have solved the linear programming relaxation and got the following solution:

bN = 0. 5, bS = 0, bM = 0, bB = 0. 5

indicating that we are going to build half of the 0 sized factory and half of the big factory (remember
these are the values of the LP relaxation where we have relaxed the integrality of the binary variables).

0 and bN 0bS

20,000) size( 10,000) size(

0bM bB0 and 

2

1

n

bN = 0.5, = 0.5Bb

Figure 3.3: Possible SOS branching tree

The branch and bound search will look at that solution and say that there are only two fractional variables
bN and bB and so it will branch on one or other of those variables. But there is a lot more information in
the variables than the fact that they are fractional or not fractional. We are being told by the LP solution
that the tonnage that we require from that factory is a half of the biggest one: in other words 19,000
tonnes. Now consider branching on, say, bN. Either we are forcing the factory to have zero capacity
if we branched on bN up to 1, or we are forcing the factory to be open. It would be much better to
have some branching scheme that understood and tried to exploit the fact that the indicated capacity is
about 19,000 tonnes. This is precisely what the special ordered set property indicates to the branch and
bound tree, and the branching occurs on sets of variables rather than on the individual variables which
form the Special Ordered Set. The details of precisely how to branch on sets of variables rather than
individual variables are outside the scope of this chapter. It is, however, an observed fact that modeling
these selection constraints in terms of Special Ordered Sets generally gives a faster branch and bound
search. Again as with the case of general integer variables, the solution we get will be exactly the same
whichever way we model. The ‘only’ benefit of using Special Ordered Sets is that the search procedure
will generally be noticeably faster.

3.4.5 Special Ordered Sets of type 2 (SOS2)

SOS2s are generally used for modeling piecewise approximations of functions of a single variable. As an
example look at the figure below

We wish to represent f as a function of x and we are prepared to consider four line segments be-
tween five points. The five points are (R1, F1), (R2, F2), (R3, F3), (R4, F4) and (R5, F5) and associated with
each point i is a weight variable yi. We have a binary variable bi associated with each of the intervals
(R1, R2), (R2, R3), (R3, R4) and (R4, R5). bi is 1 if the value of x lies between Ri and Ri+1.

Then

x =
5∑

i=1

Ri · yi (reference row)
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Figure 3.4: Function approximation with SOS2

f =
5∑

i=1

Fi · yi

5∑
i=1

yi = 1 (convexity row)

The SOS2 property of having at most two non-zero yi, and if there are two non-zero then they must be
adjacent, means that we are always on the piece-wise linear function. If we did not have the adjacency
condition, then by having, say, y1 = y3 = 0. 5 (all the others 0) we could ‘cheat’ at x = R2 as the function
value is not F2 but (F1 + F3) / 2, considerably lower (see Figure 3.5).
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Figure 3.5: Function approximation with SOS2: adjacency condition

Consider the constraints

y1 ≤ b1

y2 ≤ b1 + b2

y3 ≤ b2 + b3

y4 ≤ b3 + b4

y5 ≤ b4

b1 + b2 + b3 + b4 = 1

The last constraint ensures that one and only one bi is 1 in an acceptable solution. For instance, if b3 is 1,
the constraints on the yi ensure that y1 = y2 = y5 = 0, leaving only the adjacent y3 and y4 to be (possibly)
non-zero. The other case to consider is when one of the ‘end’ bi is 1, say b1. Then y3 = y4 = y5 = 0, and y1

and y2, which are adjacent, can be non-zero. So the constraints ensure the SOS2 property, at the expense
of introducing N − 1 additional binary variables if there are N points.
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The same remarks that applied to a reduction in the search times with SOS1 applies to SOS2. It is found
in practice that branching on subsets of the variables within a SOS2, rather than on the individual binary
variables, is generally beneficial.

3.5 Connecting real variables to binary variables

3.5.1 Modeling fixed costs

The first case we look at is where we want to model fixed costs, that is, where we incur a fixed cost K if a
particular real variable x is strictly greater than 0. This fixed cost K might represent the cost of setting up
a piece of machinery — we do not incur the fixed cost if we do not set up the piece of machinery but if
the output level x of the machine is anything different from zero then we have to incur the fixed cost.

The graph of the cost against the output level x might be represented in the figure below.

K

Cost

XMAX x

C

Figure 3.6: Combining fixed and variable cost

Here x represents the throughput of the piece of equipment and the cost consists of two parts. If the
throughput is zero then the cost is zero, whereas if the throughput takes a value which is different from
0 then the cost is Cost = K + C · x, where C is the per unit cost of output x.

We introduce a binary variable b which is equal to zero if x is equal to zero and equal to 1 if x is strictly
greater than zero. Then the cost equals b · K + C · x, but we have to ensure that if b is zero then x is zero.
We can do this by introducing the constraint

x ≤ Xmax · b

where Xmax is the largest value that x can take.

We shall see why this is correct. If b = 0 then x is constrained to be less than or equal to zero and so x is
zero, whereas if b = 1 we just have the constraint that x ≤ Xmax, i.e. that x is not more than its maximum
value (which might be for instance the maximum output of that particular piece of equipment).

3.5.2 Counting

A frequent use of binary variables in modeling is where we wish to be able to count whether a real
variable x is different from 0. Often we want to have a constraint that only a certain number of real
variables are strictly greater than 0.

An example might be where we have a whole variety of different ingredients that could go into a blend
and we have a constraint that perhaps at most 10 of these ingredients can actually go into the blend. If
the quantity of item i going into the blend is xi and we require no more than 10 of these to be non zero,
for each item i we introduce a binary variable bi and have constraints of the form

xi ≤ VOL · bi

where VOL is the volume of the blend to be made. These constraints ensure that if a particular xi is
greater than zero then the corresponding bi must be equal to 1. Then the constraint that says that no
more than 10 of the ingredients must be non zero could be expressed as

10∑
i=1

bi ≤ 10
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3.5.3 Partial integers again

Earlier we postponed the discussion of how partial integer variables can be expressed in terms of binary
variables. Recall that a partial integer is a variable which has to be integral in any acceptable solution if
the value is less than some bound, and otherwise can be real. The natural way to express a partial integer
p is

p = v + x

where variable v is an integer that must be less than or equal to U (i.e. 0 ≤ v ≤ U) and x is a real variable.
We have already seen that the integer variable v can be expressed in terms of several binary variables
using the binary expansion. Now we have to express the fact that if v is strictly less than U then x must be
zero. Suppose that we know some value Xmax which x is guaranteed not to exceed, i.e. an upper bound
for x. Then we can introduce a new binary variable b and the following constraints

x ≤ Xmax · b
b ≤ v / U (or, equivalently, v ≥ U · b )

To show that this formulation is valid, consider the two possible values of b. First, if b = 0 then x ≤ 0, i.e.
x is equal to 0 and v ≥ 0. If b = 1 then x ≤ Xmax and v ≥ U, which combined with the fact that v ≤ U
means v = U. So if b = 1, v is at its maximum, and we can then start having non-zero amounts of x.

As was the case with general integer variables, it seems profligate to express partial integers in terms of
binary variables. Firstly, we have to express the integer part in terms of binary variables and then we have
to introduce a new binary variable b to model the partial integrality of variable p. Furthermore, as with
semi-continuous variables, introducing the extra binary variable will never make the branch and bound
tree search quicker and may often make the tree search worse.

Consider the following example. Suppose that U = 10 and that the LP solution gives the optimum value
of v to be 3 and x to be 0, but the binary variable b is at 0.3. We can see that this satisfies all the
inequalities we have given but that the binary variable b is fractional and we will have to branch on b
to satisfy integrality. But v is feasible as far as partial integrality is concerned, so we have a case where
partial integer variables enable us to say that we are integer feasible but the introduction of the binary
variable results in it not being integer feasible and we have to branch further. In models with many partial
integer variables this can lead to a great expansion of the branch and bound tree and a lengthening of
the search.

3.5.4 Price breaks and economies of scale

Consider Figure 3.7 which represents the situation where we are buying a certain number of items and
we get discounts on all items that we buy if the quantity we buy lies in certain price bands.

Cost

B1 B2 B3

COST

COST

COST

1

2

3

x

Figure 3.7: All items discount

In the figure we see that if we buy a number of items between 0 and B1 then for each item we pay an
amount COST1, whereas if the quantity we buy lies between B1 and B2 we pay an amount COST2 for each
item. Finally if we buy an amount between B2 and B3 then we pay an amount COST3 for each item. For
the sake of concreteness we assume that if we order exactly B1 items then we get the unit price COST2,
whereas if we order just a little less than B1 then we would get the unit price COST1, and similarly for all
the other price breaks. This sort of pricing is called all item discount pricing.

To model these item price breaks we should use binary variables b1, b2 and b3, where bi is 1 if we have
bought any items at a unit cost of COSTi.

Integer Programming models 43 Applications of optimization with Xpress-MP



Now introduce the real decision variables x1, x2 and x3 which represent the number of items bought at
price COST1, COST2 and COST3 respectively. Note that we cannot buy any items at price COST2 until we
have bought the maximum number of items at the higher price COST1, otherwise the solution would be
easy as we buy all items at the least expensive unit price!

The total amount x that we buy is given by

x = x1 + x2 + x3

We claim that the following set of constraints models the all-item discounts.

B1 · b2 ≤ x1 ≤ B1 · b1 (3.5.1)

(B2 − B1) · b3 ≤ x2 ≤ (B2 − B1) · b2 (3.5.2)

x3 ≤ (B3 − B2) · b3 (3.5.3)

b1 ≥ b2 ≥ b3 (3.5.4)

Equations (3.5.1) say that if we have bought any in the second price range (b1 = b2 = 1) then x1 is fixed to
B1. Equations (3.5.2) ensure that if b2 = 0, then x2 = 0, whereas if b2 = 1 then x2 is only constrained by the
maximum amount that can be bought at the price COST2. Equation (3.5.3) ensures that x3 = 0 if b3 = 0,
and that if b3 = 1 then we cannot buy more than the maximum number at price COST3. Equations (3.5.4)
ensure that we can only buy at a lower price if we have bought at all the higher prices.

Cost

B1 B2 x

COST1

COST2

COST3

B3

Figure 3.8: Incremental price breaks

Now consider Figure 3.8 which represents the situation where we are buying a certain number of items
and we get discounts incrementally. The unit cost for items between 0 and B1 is C1, whereas items
between B1 and B2 cost C2 each, and items between B2 and B3 cost C3 each.

We can model this using Special Ordered Sets of type 2 (SOS2). At the points 0, B1, B2 and B3 we introduce
real valued decision variables wi (i = 0, 1, 2, 3). We also define cost break points CBPi that correspond to
the total cost of buying quantities 0, B1, B2 and B3. So

CBP0 = 0

CBP1 = C1 · B1

CBP2 = CBP1 + C2 · (B2 − B1)

CBP3 = CBP2 + C3 · (B3 − B2)

We then have

w0 + w1 + w2 + w3 = 1

TotalCost = 0 ·w0 + CBP1 ·w1 + CBP2 ·w2 + CBP3 ·w3

x = 0 ·w0 + B1 ·w1 + B2 ·w2 + B3 ·w3

and the wi form a SOS2 with reference row coefficients given by the coefficients in the definition of x.

For a solution to be valid, at most two of the wi can be non-zero, and if there are two non-zero they
must be contiguous, thus defining one of the line segments.

3.5.5 The product of a binary and a real variable

With two real variables, x and y, and a binary variable b, we want to model

y = b · x
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Suppose we have some upper bound U on the value of x. Then consider the following constraints

y ≤ x (3.5.5)

y ≥ x − U · (1− b) (3.5.6)

y ≤ U · b (3.5.7)

If b = 0, then (3.5.7) means that y = 0. If b = 1, then (3.5.7) is harmless, and we have y ≤ x from (3.5.5)
and y ≥ x from (3.5.6), i.e. y = x, which is what is desired.

3.6 References and further material

Most of the books cited in the ‘References’ section of Chapter 1 also contain a part on Integer Pro-
gramming, for instance the one by Schrijver [Sch86]. An excellent text on Integer Programming is the
monograph by Wolsey [Wol98]. The book on combinatorial optimization by Papadimitriou and Steiglitz
[PS98] also deals with this topic. Syslo et al. [SDK83] provide Pascal code for some algorithms.

The idea of Branch and Bound stems from Land and Doig [LD60]. For certain huge problems this algorithm
may be combined with column generation, leading to Branch and Price algorithms, a description of this
technique and its main application areas is given in [BJN+98].

The notion of Special Ordered Sets was introduced by Beale et al. ([BT70] and [BF76]). For semi-continuous
variables see Ashford and Daniel [AD93].

Similarly to presolving for linear problems, commercial MIP software usually performs some work to ob-
tain an improved problem formulation before starting the branch and bound search, and sometimes also
at the nodes of the search tree. The techniques that are used may be summarized as integer preprocess-
ing and cut generation. Integer preprocessing tries to reduce the size of a problem and tighten bounds
based on integrality considerations; an overview on standard techniques is given in [Sav94]. Cut gener-
ation techniques generate additional constraints (valid inequalities, cutting planes, or in general cuts)
that tighten the problem formulation: these cuts do not change the solution of the MIP but draw the
LP relaxation closer to the MIP. Research related to cuts is a very active field (e.g. [GP01] and [MW01]).
Cuts are generated based on the identification of certain mathematical structures, but the user may also
‘help’ by specifying so-called model cuts (see the example in Section 10.4).

As mentioned in Section 3.2, to solve large applications efficiently it may be worthwhile experimenting
with the different search strategy options provided by a solver. A computational study of search strategies
is described in [LS98]. Integer Programming algorithms have made rapid progress in recent years [JNS00]:
problems with several thousand discrete variables may now be solved to optimality. However, certain
classes of problems still remain extremely difficult, like the example given by [CD99] for which instances
with more than forty variables cannot be solved with commercial solvers.

An entirely different method for representing and solving problems with discrete variables is Constraint
Programming (CP) [VH98]. An introduction to CP is given in the textbook by Marriott and Stuckey [MS98].
Many concepts in (M)IP have their correspondence in CP and vice versa; Heipcke [Hei99b] compares and
explains the most common terms of both fields. With CP it is often relatively easy to find feasible solu-
tion(s) to a problem but proving optimality is a much more difficult task (there is no real correspondence
to the bounding information provided by the LP relaxation in MIP). A very active field of research is the
integration of both approaches to exploit their complementarity and also to be able to work with con-
tinuous variables in the context of Constraint Programming (see for instance [BDB95], [RWH99], [BK98],
[Hei99a]).
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Chapter 4

Quadratic Programming

Quadratic Programming (QP) is the name given to the problem of finding the minimum (or maximum)
of a quadratic function of the decision variables subject to linear equality or inequality constraints. Note
that QP problems do not allow quadratic terms in the constraints, only in the objective function. QP
problems occur much less frequently than LP or MIP problems, so we shall not discuss them in much
depth.

Mixed Integer Quadratic Programs (MIQP) are QPs where some or all of the decision variables have to
take on discrete values; in other words, they are MIPs with a quadratic objective function. The discrete
constraints can be any of the global objects that we have seen above (binaries, integers, etc.)

Since QPs are just LPs with quadratic objective functions, the only thing special to note is modeling the
objective function. We now give two typical examples.

4.1 Revenue optimization

If a company wishes to plan the amount q of a product to be sold, and at the same time determine the
unit price p at which it is to be sold, then the objective function will contain a quadratic term p · q, which
is the revenue (price · quantity) from selling the product.

4.2 Portfolio optimization

Portfolio optimization is the classic example of QP. Given various opportunities (assets) in which an in-
vestor can place his money, the problem is to minimize the risk of achieving a given level of return. The
problem explicitly takes into account the fact that overall risk is not just the sum of the riskiness of the
individual assets, as their future performances are highly likely to be correlated: shares tend to go up and
down together, and shares in a particular sector tend to be highly correlated. The past variability of a
share’s price movements can be considered a measure of its risk.

We shall take a small example. Suppose we have BC 1 million to invest in three stocks. Let Ri be the random
variable representing the annual return on BC 1 invested in stock i. Analysis of historical data has lead us
to estimate the returns as E(R1) = 0. 09, E(R2) = 0. 07, and E(R3) = 0. 06 where E(x) denotes the expectation
of x. The variance of the annual returns have been estimated as var(R1) = 0. 20, var(R2) = 0. 07, and
var(R3) = 0. 15, and the covariances as cov(R1, R2) = 0. 03, cov(R1, R3) = 0. 04, cov(R2, R3) = 0. 05.

If xi is the number of (millions of) Euros invested in stock i, then the annual return is

x1 · R1 + x2 · R2 + x3 · R3

and the expected annual return is

x1 · E(R1) + x2 · E(R2) + x3 · E(R3)

If we are seeking a return of at least 7.5%, we must have

0. 09 · x1 + 0. 07 · x2 + 0. 06 · x3 ≥ 0. 075

and the constraint that says we spend all the money

x1 + x2 + x3 = 1
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The variance of the portfolio, which we want to minimize, is

var(x1 · R1 + x2 · R2 + x3 · R3) = var(x1 · R1) + var(x2 · R2) + var(x3 · R3)

+2 · cov(x1 · R1, x2 · R2) + 2 · cov(x1 · R1, x3 · R3)

+2 · cov(x2 · R2, x3 · R3)

= x2
1 · var(R1) + x2

2 · var(R2) + x2
3 · var(R3)

+2 · x1 · x2 · cov(R1, R2) + 2 · x1 · x3 · cov(R1, R3)

+2 · x2 · x3 · cov(R2, R3)

= 0. 20 · x2
1 + 0. 07 · x2

2 + 0. 15 · x2
3

+0. 06 · x1 · x2 + 0. 08 · x1 · x3 + 0. 10 · x2 · x3

The usual non-negativity constraints apply to the xi. So we have a QP: the objective function has quadratic
terms (there are no linear terms, which are allowable in a general QP), and we have linear (in)equalities.

4.3 References and further material

Many standard works on Mathematical Programming or Operations Research also include a section on
Quadratic Programming. A good general reference for Quadratic Programming is Fletcher [Fle87]. Beale
has published a book entirely dedicated to Quadratic Programming [Bea59].

QP problems occur much less frequently in practice than LP or MIP problems, so we shall just give one
application example (Section 13.7).
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II. Application examples



Classification of
the example problems

The application examples in this part are grouped by application area into ten chapters:

• Chapter 6: Mining and process industries

• Chapter 7: Scheduling problems

• Chapter 8: Planning problems

• Chapter 9: Loading and cutting problems

• Chapter 10: Ground transport

• Chapter 11: Air transport

• Chapter 12: Telecommunication problems

• Chapter 13: Economics and finance

• Chapter 14: Timetabling and personnel planning

• Chapter 15: Local authorities and public services

The following tables give an overview of the examples, including their classification (theoretical problem
type), a rating between * (easy) and ***** (difficult), and a list of their modeling specifics and any Mosel
features used in the implementation that go beyond the basics explained in Chapter 5. The entry ‘NN’ in
the classification field means that the problem does not correspond to any standard type: the problem
may be a mixture of standard types, or have application-specific features for which no classification is
available.

The reference numbers of the problems in the tables indicate the names given to the Mosel implemen-
tations of the models. For instance, the Mosel file for problem A-1 Production of alloys is a1alloy.mos
and the data for this example is contained in the file a1alloy.dat . All application examples belonging
to one chapter start with the same letter, the number corresponds to the section number in this chapter.
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Table 4.1: Classification in order of appearance (Chapters 6 and 7)

Problem name and type Difficulty Features

A-1 Production of alloys

Blending problem * formulation of blending constraints; data
with numerical indices, solution printout,
if-then , getsol

A-2 Animal food production

Blending problem * formulation of blending constraints; data
with string indices, as , formatted solution
printout, use of getsol with linear expres-
sions, strfmt

A-3 Refinery

Blending problem ** formulation of blending constraints; sparse
data with string indices, dynamic initializa-
tion, dynamic arrays, finalize , create ,
union of sets

A-4 Cane sugar production

Minimum cost flow (in a bipartite
graph)

* ceil , is_binary

A-5 Opencast mining

Minimum cost flow ** encoding of arcs, solving LP-relaxation only

A-6 Production of electricity

Dispatch problem ** inline if , is_integer

B-1 Construction of a stadium

Project scheduling (Method of Po-
tentials)

*** 2 problems; selection with ‘|’, sparse/dense
format, naming and redefining constraints,
subroutine: procedure for solution printing,
forward declaration

B-2 Flow shop scheduling

Flow shop scheduling **** alternative formulation using SOS1

B-3 Job shop scheduling

Job shop scheduling *** formulating disjunctions (BigM); dynamic
array , range , exists , forall-do

B-4 Sequencing jobs on a bottleneck machine

Single machine scheduling *** 3 different objectives; subroutine: procedure
for solution printing, if-then

B-5 Paint production

Asymmetric Traveling Salesman
Problem (TSP)

*** solution printing, repeat-until , cast to
integer , selection with ‘|’, round

B-6 Assembly line balancing

Assembly line balancing ** encoding of arcs, range
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Table 4.2: Classification in order of appearance (Chapters 8 and 9)

Problem name and type Difficulty Features

C-1 Planning the production of bicycles

Production planning (single prod-
uct)

*** modeling inventory balance; inline if ,
forall-do

C-2 Production of drinking glasses

Multi-item production planning ** modeling stock balance constraints; inline if ,
index value 0

C-3 Material requirement planning

Material requirement planning
(MRP)

** working with index (sub)sets, dynamic initial-
ization, finalize , create , as

C-4 Planning the production of electronic components

Multi-item production planning ** modeling stock balance constraints; inline if

C-5 Planning the production of fiberglass

Production planning with time-
dependent production cost

*** representation of multi-period production as
flow; encoding of arcs, exists , create ,
isodd , getlast , inline if

C-6 Assignment of production batches to machines

Generalized assignment problem *

D-1 Wagon load balancing

Nonpreemptive scheduling on
parallel machines

**** heuristic solution requiring sorting algorithm,
formulation of maximin objective; nested
subroutines: function returning heuris-
tic solution value and sorting procedure,
ceil , getsize , if-then , break , exit ,
all loop types (forall-do , repeat-until ,
while-do ), setparam , cutoff value

D-2 Barge loading

Knapsack problem ** incremental problem definition with 3 differ-
ent objectives, procedure for solution print-
ing

D-3 Tank loading

Loading problem *** 2 objectives; data preprocessing, as , dynamic
creation of variables, procedure for solution
printing, if-then-else

D-4 Backing up files

Bin-packing problem ** 2 versions of mathematical model, symmetry
breaking; data preprocessing, ceil , range

D-5 Cutting sheet metal

Covering problem *

D-6 Cutting steel bars for desk legs

Cutting-stock problem ** set operation(s) on range sets, set of
integer (data as set contents)
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Table 4.3: Classification in order of appearance (Chapters 10 and 11)

Problem name and type Difficulty Features

E-1 Car rental

Transport problem *** data preprocessing, set operations, sqrt and
ˆ2 , if-then-elif

E-2 Choosing the mode of transport

Minimum cost flow ** formulation with extra nodes for modes of
transport; encoding of arcs, finalize , union
of sets, nodes labeled with strings

E-3 Depot location

Facility location problem *** modeling flows as fractions, definition of
model cuts

E-4 Heating oil delivery

Vehicle routing problem (VRP) **** elimination of inadmissible subtours, cuts; se-
lection with ‘|’, definition of model cuts

E-5 Combining different modes of transport

NN *** modeling implications, weak and strong for-
mulation of bounding constraints; triple in-
dices

E-6 Fleet planning for vans

NN *** maxlist , minlist , max, min

F-1 Flight connections at a hub

Assignment problem *

F-2 Composing flight crews

Bipartite matching **** 2 problems, data preprocessing, incremen-
tal definition of data array, encoding of
arcs, logical or (cumulative version) and and ,
procedure for printing solution, forall-do ,
max, finalize

F-3 Scheduling flight landings

Scheduling problem with time
windows

*** generalization of model to arbitrary time
windows; calculation of specific BigM,
forall-do

F-4 Airline hub location

Hub location problem *** quadruple indices; improved (re)formulation
(first model not usable with student version),
union of index (range ) sets

F-5 Planning a flight tour

Symmetric traveling salesman
problem

***** loop over problem solving, TSP subtour elim-
ination algorithm; procedure for generat-
ing additional constraints, recursive subrou-
tine calls, working with sets, forall-do ,
repeat-until , getsize , not
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Table 4.4: Classification in order of appearance (Chapters 12 and 13)

Problem name and type Difficulty Features

G-1 Network reliability

Maximum flow with unitary ca-
pacities

*** encoding of arcs, range , exists , create ,
algorithm for printing paths, forall-do ,
while-do , round

G-2 Dimensioning of a mobile phone network

NN ** if-then , exit

G-3 Routing telephone calls

Multi-commodity network flow
problem

*** encoding of paths, finalize , getsize

G-4 Construction of a cabled network

Minimum weight spanning tree
problem

*** formulation of constraints to exclude subcy-
cles

G-5 Scheduling of telecommunications via satellite

Preemptive open shop scheduling ***** data preprocessing, algorithm for preemptive
scheduling that involves looping over opti-
mization, “Gantt chart” printing

G-6 Location of GSM transmitters

Covering problem * modeling an equivalence; sparse data format

H-1 Choice of loans

NN * calculation of net present value

H-2 Publicity campaign

NN * forall-do

H-3 Portfolio selection

NN ** sets of integers, second formulation with
semi-continuous, parameters

H-4 Financing an early retirement scheme

NN ** inline if , selection with ‘|’

H-5 Family budget

NN ** formulation of monthly balance constraints
including different payment frequencies; as ,
mod, inline if , selection with ‘|’

H-6 Choice of expansion projects

NN ** experiment with solutions: solve LP problem
explicitly, “round” some almost integer vari-
able and re-solve

H-7 Mean variance portfolio selection

Quadratic Programming problem *** parameters, forall-do , min , max, loop over
problem solving
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Table 4.5: Classification in order of appearance (Chapters 14 and 15)

Problem name and type Difficulty Features

I-1 Assigning personnel to machines

Assignment problem **** formulation of maximin objective; heuris-
tic solution + 2 different problems (incre-
mental definition) solved, working with sets,
while-do , forall-do , negative index values

I-2 Scheduling nurses

NN *** 2 problems, using mod to formulate cyclic
schedules; forall-do , set of integer

I-3 Establishing a college timetable

NN *** many specific constraints, tricky (pseudo) ob-
jective function; finalize

I-4 Exam schedule

NN ** symmetry breaking, no objective

I-5 Production planning with personnel assignment

NN *** 2 problems, defined incrementally with par-
tial re-definition of constraints (named con-
straints), exists , create , dynamic array

I-6 Planning the personnel at a construction site

NN ** formulation of balance constraints using in-
line if

J-1 Water conveyance / water supply management

Maximum flow problem ** encoding of arcs, finalize , selection with ‘|’

J-2 CCTV surveillance

Maximum vertex cover problem ** encoding of network, exists

J-3 Rigging elections

Partitioning problem **** algorithm for data preprocessing; file inclu-
sion, 3 nested/recursive procedures, work-
ing with sets, if-then , forall-do , exists ,
finalize

J-4 Gritting roads

Directed Chinese postman prob-
lem

**** algorithm for finding Eulerian path/graph for
printing; encoding of arcs, dynamic array ,
exists , 2 functions implementing Eulerian
circuit algorithm, round , getsize , break ,
while-do , if-then-else

J-5 Location of income tax offices

p-median problem **** modeling an implication, all-pairs shortest
path algorithm (Floyd-Warshall); dynamic
array , exists , procedure for shortest path
algorithm, forall-do , if-then , selection
with ‘|’

J-6 Efficiency of hospitals

Data Envelopment Analysis (DEA) *** description of DEA method; loop over prob-
lem solving with complete re-definition of
problem every time, finalize , naming and
declaring constraints
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Chapter 5

The basics of Xpress-MP

All problems in this book are formulated using the Xpress-Mosel (for short, Mosel) Language. To run these
models, the user has the choice between using the Mosel Command Line Interpreter or the graphical user
interface Xpress-IVE. To solve the optimization problems in this book we use the Xpress-Optimizer linear
and mixed integer solver by accessing it from the Mosel Language.

All software with reference manuals and the complete set of examples discussed in this book can be
downloaded from

http://www.dashoptimization.com/applications_book.html

In the first section of this chapter we show how to execute the small production planning problem from
Chapter 1 using the Mosel Command Line Interpreter or Xpress-IVE. Section 5.2 introduces the basics of
the Mosel Language.

5.1 Introductory example

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of ma-
chining on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who
each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of
boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week
can be obtained. When sold, each of the large chess sets yields a profit of $20, and one of the small chess
set has a profit of $5. The problem is to decide how many sets of each kind should be made each week
to so as to maximize profit.

In Chapter 1 the transformation of this description into a mathematical model was discussed in some
detail and will therefore not be repeated here. An implementation of the model has also already been
given (see Section 1.3). We assume that the following Mosel model has been entered into a text file
named chess.mos (mos is the standard file extension expected by Mosel):

model Chess
uses "mmxprs" ! We shall use Xpress-Optimizer

declarations
xs, xl: mpvar ! Decision variables: produced quantities

end-declarations

Profit:= 5*xs + 20*xl ! Objective function
Boxwood:= 1*xs + 3*xl <= 200 ! kg of boxwood
Lathe:= 3*xs + 2*xl <= 160 ! Lathehours

maximize(Profit) ! Solve the problem

writeln("LP Solution:") ! Solution printing
writeln(" Objective: ", getobjval)
writeln("Make ", getsol(xs), " small sets")
writeln("Make ", getsol(xl), " large sets")

end-model
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5.1.1 Using Xpress-Mosel

Mosel is an advanced modeling and solving language and environment, where optimization problems
can be specified and solved with the utmost precision and clarity. The modeling component of Mosel
provides an easy to use yet powerful language for describing optimization problems. Through its modular
architecture, Mosel provides access to data in different formats (including spreadsheets and databases)
and gives access to a variety of solvers, which can find optimal or near-optimal solutions to a problem.
Mosel is provided either as a standalone program (the Mosel Command Line Interpreter used in this book)
or in the form of libraries that make it possible to embed a model into a larger application written in a
programming language.

To run the model we have entered into the file chess.mos , we start Mosel at the command prompt, and
type the following sequence of commands

mosel

exec chess

quit

which will start Mosel, compile the model and (if no syntax error has been detected) run the model,
and then quit Mosel. We will see output something like that below, where we have highlighted Mosel’s
output in bold face.

mosel

** Xpress-Mosel **

(c) Copyright Dash Associates 1998-2002

> exec chess

LP Solution:

Objective: 1333.33

Make 0 small sets

Make 66.6667 large sets

Returned value: 0

> quit

Exiting.

The same steps may be done immediately from the command line:

mosel -c "exec chess"

The -c option is followed by a list of commands enclosed in double quotes.

If after having started Mosel you type a command that is not recognized by the Mosel Command Line
Interpreter (for instance: h), Mosel displays the full list of commands (or the possible completions to valid
commands) with short explanations.

The different options that may be used from the operating system’s command line can be obtained by
typing mosel -h .

The distribution of Mosel contains several modules that add extra functionality to the language. A full
list of the functionality of a module can be obtained by using the exam command; for instance to see
what is provided by the Xpress-Optimizer module mmxprs:

mosel -c "exam mmxprs"

For a complete description of the Mosel Language and the Mosel Command Line Interpreter, the reader
is referred to the Mosel Reference Manual, available at

http://www.dashoptimization.com/applications_book.html

From the same address, individual manuals for the Mosel modules can also be downloaded.

5.1.2 Using Xpress-IVE

Xpress-IVE, sometimes called just IVE, is the Xpress Interactive Visual Environment, a complete model-
ing and optimization development environment running under Microsoft Windows. It presents Mosel
in an easy-to-use Graphical User Interface (GUI), with a built-in text editor. IVE can be used for the de-
velopment, management and execution of multiple models and is ideal for developing and debugging
prototype models.

To execute the model file chess.mos you need to carry out the following steps.
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• Start up IVE.

• Open the model file by choosing File > Open. The model source is then displayed in the central
window (the IVE Editor).

• Click the Run button (green triangle) or alternatively, choose Build > Run. The resulting screen
display is shown in Figure 5.1.

The Build pane at the bottom of the workspace is automatically displayed when compilation starts. If
syntax errors are found in the model, they are displayed here, with details of the line and character
position where the error was detected and a description of the problem, if available. Clicking on the
error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace window is selected
to display program output. Any output generated by the model is sent to this window. IVE will also pro-
vide graphical representations of how the solution is obtained, which are generated by default whenever
a problem is optimized. The right hand window contains a number of panes for this purpose, dependent
on the type of problem solved and the particular algorithm used. IVE also allows the user to draw graphs
by embedding subroutines in Mosel models (see the documentation on the website for further detail).

IVE makes all information about the solution available through the Entities pane in the left hand window.
By expanding the list of decision variables in this pane and hovering over one with the mouse pointer, its
solution and reduced cost are displayed. Dual and slack values for constraints may also be obtained.

Figure 5.1: Xpress-IVE display after running model chess.mos

5.2 Modeling with Mosel

Let us now consider a second, slightly larger model which represents the problem faced by a burglar. With
the help of this model we shall explain the basic features of the Mosel language that are used repeatedly
in the implementation of the example problems in the following chapters.

5.2.1 The burglar problem

A burglar sees eight items, of different values and weights. He wants to take the items of greatest total
value whose total weight is not more than the maximum WTMAX he can carry.

We introduce binary variables takei for all i in the set of all items (ITEMS) to represent the decision
whether item i is taken or not. takei has the value 1 if item i is taken and 0 otherwise. Furthermore, let
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VALUEi be the value of item i and WEIGHTi its weight. A mathematical formulation of the problem is
then given by:

maximize
∑

i∈ITEMS

VALUEi · takei (maximize the total value)∑
i∈ITEMS

WEIGHTi · takei ≤WTMAX (weight restriction)

∀i ∈ ITEMS : takei ∈ {0, 1}

This problem is an example of a knapsack problem. It may be implemented with Mosel as follows:

model "Burglar 1"
uses "mmxprs"

declarations
ITEMS = 1..8 ! Index range for items
WTMAX = 102 ! Maximum weight allowed

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: 1 2 3 4 5 6 7 8
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

When running this model we get the following output:

Solution:
Objective: 280
take(1): 1
take(2): 1
take(3): 1
take(4): 1
take(5): 0
take(6): 1
take(7): 0
take(8): 0

The structure of this model and Mosel models in general is the following:

• Model: Every Mosel program starts with the keyword model , followed by a name, and terminates
with end-model .

• Declarations: All objects must be declared in a declarations block, unless they are defined un-
ambiguously through an assignment (e.g. i:=1 defines i as an integer and assigns it the value 1;
in our example the objective function MaxVal is defined by assigning it a linear expression).
There may be several such declarations blocks at different places in a model.

• Problem definition: Typically, a model starts with the specification of the data (here: assignment of
values to VALUEand WEIGHT), followed by the statement of the problem (here: definition of the
objective function MaxVal , definition of one inequality constraint, and restricting the variables to
be binaries)
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• Solving: With the procedure maximize , we call Xpress-Optimizer to maximize the objective func-
tion MaxVal . Since there is no ‘default’ solver in Mosel, we specify that Xpress-Optimizer is to be
used with the statement uses "mmxprs" at the beginning of the program.

• Output printing: The last two lines print out the value of the optimal solution and the solution
values for the decision variables.

• Line breaks: It is possible to place several statements on a single line, separating them by semi-
colons (like x1 <= 4; x2 >= 7 ). Conversely, since there are no special ‘line end’ or continuation
characters, every line of a statement that continues over several lines must end with an operator
(+, >= etc.) or characters like , that make it obvious that the statement is not terminated.

• Comments: As shown in the example, the symbol ! signifies the start of a comment, which con-
tinues to the end of the line. Comments over multiple lines start with (! and terminate with
!) .

We shall now explain certain features used in this model in more detail:

• Ranges and sets:
ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used as an index
set for the data arrays (VALUEand WEIGHT) and for the array of decision variables take .
Instead of a using numerical indices, we could, for instance, have defined ITEMS as a set of strings
by replacing the current definition ITEMS = 1..8 with the following definition (without making
any other changes to the model):

ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

• Arrays:
VALUE: array(ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS.
Multi-dimensional arrays are declared in the obvious way e.g.

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar ) are declared likewise,
as shown in our example.
All objects (scalars and arrays) declared in Mosel are always initialized with a default value:
real , integer : 0
boolean : false
string : ’’ (i.e. the empty string)
The values of data arrays may either be assigned in the model as we show in the example or
initialized from file (see Section 5.2.2).

• Summations:
MaxVal:= sum(i in Items) VALUE(i)*x(i)

defines a linear expression called MaxVal as the sum∑
i∈Items

VALUEi · xi

• Simple Looping:
forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1, ..., 8, so
the statement says that take(1) , take(2) , ..., take(8) are all binary variables.
There is another example of the use of forall at the penultimate line of the model when writing
out all the solution values.
Other types of loops are used in some of the application examples (see the classification tables at
the beginning of Part II).

• Integer Programming variable types:
To make an mpvar variable, say variable xbinvar , into a binary (0/1) variable, we just have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a
MIP problem, we would have

xintvar is_integer
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5.2.2 Reading data from text files

The following example illustrates how data may be read into tables from text files. In the Burglar problem
instead of having the item data embedded in the model file we have the data in a file. We might have
the following Mosel model in a file burglar2.mos .

model "Burglar 2"
uses "mmxprs"

declarations
ITEMS: set of string ! Set of items
WTMAX = 102 ! Maximum weight allowed
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

end-declarations

initializations from ’burglar.dat’
VALUE
WEIGHT

end-initializations

declarations
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise

end-declarations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

The file burglar.dat contains

VALUE: [("camera") 15 ("necklace") 100 ("vase") 90 ("picture") 60
("tv") 40 ("video") 15 ("chest") 10 ("brick") 1]

WEIGHT:[("camera") 2 ("necklace") 20 ("vase") 20 ("picture") 30
("tv") 40 ("video") 30 ("chest") 60 ("brick") 10]

The initializations block tells Mosel where to get data from to initialize sets and arrays. The order
of the data items in the file does not have to be the same as that in the initializations block. Note
that the contents of the set ITEMS is defined indirectly through the index values of the arrays VALUEand
WEIGHT. We only declare the variables once the data has been initialized and hence, the set ITEMS is
known.

In the application examples, where appropriate, we show how to work with dynamic arrays of data and
decision variables (see the classification tables at the beginning of Part II).

The data may also be given in the form of a single record, say, KNAPSACK. The initialization then takes
the following form:

initializations from ’burglar2.dat’
[VALUE, WEIGHT] as ’KNAPSACK’

end-initializations

and the data file burglar2.dat has the following contents:

KNAPSACK: [ ("camera") [ 15 2]
("necklace") [100 20]
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("vase") [ 90 20]
("picture") [ 60 30]
("tv") [ 40 40]
("video") [ 15 30]
("chest") [ 10 60]
("brick") [ 1 10] ]

In the examples of this book we always read data from text files. However, with Mosel it is also possible to
read and write data from/to other sources (such as spreadsheets and databases) or input data in memory.
For further information, the reader is referred to the documentation on the website.

5.2.3 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. ANDand and
are keywords but not And). Do not use them in a model except with their built-in meaning.

and , array , as
boolean , break
case
declarations , div , do , dynamic
elif , else , end
false , forall , forward , from , function
if , in , include , initialisations , initializations , integer , inter ,
is_binary , is_continuous , is_free , is_integer , is_partint , is_semcont ,
is_semint , is_sos1 , is_sos2
linctr
max, min , mod, model , mpvar
next , not
of , options , or
parameters , procedure , public , prod
range , real , repeat
set , string , sum
then , to , true
union , until , uses
while
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Chapter 6

Mining and process industries

This chapter is about fairly simple linear programming problems where one tries to mix or extract in-
gredients from raw materials subject to quality constraints with the objective of minimizing the total
cost. These blending or product mix problems are typical for process industries that uses big quantities
of product in an almost continuous manner: refineries, chemical, metallurgical, and farm-produce indus-
tries. These problems are relatively simple because they deal with fractional quantities, so Mixed Integer
Programming is not required.

We are going to study three problems of this type: the production of alloys in the metallurgical industry
(Section 6.1), animal food production (Section 6.2), and refining of petrol (Section 6.3). These problems
concern the primary sector, that is, economical activities related to the production of raw materials like
agriculture or mining. In addition to the blending problems, this chapter also presents some other prob-
lems that belong to this industrial sector: the treatment of cane sugar lots that degrade quickly through
fermentation (Section 6.4), the exploitation of an opencast mine (Section 6.5), and the planning of elec-
tricity production by a set of power generators (Section 6.6).

6.1 Production of alloys

The company Steel has received an order for 500 tonnes of steel to be used in shipbuilding. This steel
must have the following characteristics (‘grades’).

Table 6.1: Characteristics of steel ordered

Chemical element Minimum grade Maximum grade

Carbon (C) 2 3

Copper (Cu) 0.4 0.6

Manganese (Mn) 1.2 1.65

The company has seven different raw materials in stock that may be used for the production of this steel.
Table 6.2 lists the grades, available amounts and prices for all raw materials.

Table 6.2: Raw material grades, availabilities, and prices

Raw material C % Cu % Mn % Availability in t Cost in BC/t

Iron alloy 1 2.5 0 1.3 400 200

Iron alloy 2 3 0 0.8 300 250

Iron alloy 3 0 0.3 0 600 150

Copper alloy 1 0 90 0 500 220

Copper alloy 2 0 96 4 200 240

Aluminum alloy 1 0 0.4 1.2 300 200

Aluminum alloy 2 0 0.6 0 250 165

The objective is to determine the composition of the steel that minimizes the production cost.

6.1.1 Model formulation

We use RAW to represent the set of raw materials and COMP for the set of components (chemical ele-
ments) that are relevant for the grade requirements. We want to determine the quantity user of every
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raw material r that is used to produce the quantity produce of steel to satisfy the given demand DEM.
We denote by Prc the percentage of the chemical element c in raw material r and COSTr the buying price
per kg of r. Furthermore, the minimum and maximum grades PMINc and PMAXc are given for every
component c. We obtain the following mathematical model:

minimize
∑

r∈RAW

COSTr · user (6.1.1)

produce =
∑

r∈RAW

user (6.1.2)

∀c ∈ COMP :
∑

r∈RAW

Prc · user ≥ PMINc · produce (6.1.3)

∀c ∈ COMP :
∑

r∈RAW

Prc · user ≤ PMAXC · produce (6.1.4)

∀r ∈ RAW : user ≤ AVAILr (6.1.5)

produce ≥ DEM (6.1.6)

∀r ∈ RAW : user ≥ 0, produce ≥ 0 (6.1.7)

The objective, given by (6.1.1), is to minimize the total cost that is calculated as the sum of the raw
material prices times the quantity used. The constraint (6.1.2) indicates that the resulting product weight
is equal to the sum of the weights of the raw materials used for its production.
The constraints (6.1.3) and (6.1.4) impose the limits on the grade of the final product. They have been
obtained based on the observation that if the steel contains user tonnes of a raw material that contains
Prc percent of a chemical element c, then the quantity of this element in the steel is given by the sum∑

r∈RAW

Prc · userf

and the percentage of the element c in the final product is given by the ratio∑
r∈RAW Prc · user

produce

Adding the lower bound PMINc to express the constraint on the minimum grade of c results in the fol-
lowing relation: ∑

r∈RAW Prc · userf

produce
≥ PMINc

This relation is non-linear but it can be transformed by multiplying it with produce – and we finally obtain
the linear constraint (6.1.3). The constraint (6.1.4) is derived following the same scheme.

The constraints (6.1.5) make sure that only the available quantities of raw material are used. The con-
straint (6.1.6) guarantees that the produced amount of steel satisfies the demand. The last set of con-
straints (6.1.7) establishes the non-negativity condition for all variables of the problem.

6.1.2 Implementation

The algebraic model translates into the following Mosel program. The correspondence between the two
is easy to see. In this model, just like for most others in this book, we read in all data from a separate file.
Note that whilst we simply number the raw materials in the model formulation, we read in their names
after solving the problem to obtain a more readable solution output.

model "A-1 Production of Alloys"
uses "mmxprs"

declarations
COMP = 1..3 ! Components (chemical elements)
RAW = 1..7 ! Raw materials (alloys)

P: array(RAW,COMP) of real ! Composition of raw materials (in percent)
PMIN,PMAX: array(COMP) of real ! Min. & max. requirements for components
AVAIL: array(RAW) of real ! Raw material availabilities
COST: array(RAW) of real ! Raw material costs per tonne
DEM: real ! Amount of steel to produce

use: array(RAW) of mpvar ! Quantity of raw mat. used
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produce: mpvar ! Quantity of steel produced
end-declarations

initializations from ’a1alloy.dat’
P PMIN PMAX AVAIL COST DEM

end-initializations

! Objective function
Cost:= sum(r in RAW) COST(r)*use(r)

! Quantity of steel produced = sum of raw material used
produce = sum(r in RAW) use(r)

! Guarantee min. and max. percentages of every chemical element
forall(c in COMP) do

sum(r in RAW) P(r,c)*use(r) >= PMIN(c)*produce
sum(r in RAW) P(r,c)*use(r) <= PMAX(c)*produce

end-do

! Use raw materials within their limit of availability
forall(r in RAW) use(r) <= AVAIL(r)

! Satisfy the demand
produce >= DEM

! Solve the problem
minimize(Cost)

! Solution printing
declarations

NAMES: array(RAW) of string
end-declarations

initializations from ’a1alloy.dat’ ! Get the names of the alloys
NAMES

end-initializations

writeln("Total cost: ", getobjval)
writeln("Amount of steel produced: ", getsol(produce))
writeln("Alloys used:")
forall(r in RAW)

if(getsol(use(r))>0) then
write(NAMES(r), ": ", getsol(use(r))," ")

end-if
write("\nPercentages (C, Cu, Mn): ")
forall(c in COMP)

write( getsol(sum(r in RAW) P(r,c)*use(r))/getsol(produce), "% ")
writeln

end-model

The data file a1alloy.dat has the following contents:

P: [2.5 0 1.3 ! Raw material composition
3 0 0.8
0 0.3 0
0 90 0
0 96 4
0 0.4 1.2
0 0.6 0]

PMIN: [2 0.4 1.2]
PMAX: [3 0.6 1.65] ! Min. & max. requirements

AVAIL: [400 300 600 500 200 300 250] ! Raw material availabilities
COST: [200 250 150 220 240 200 165] ! Raw material costs

DEM: 500 ! Amount of steel to produce

NAMES: ["iron 1" "iron 2" "iron 3" "copper 1" "copper 2"
"aluminum 1" "aluminum 2"]

The solution printout introduces the if-then statement of Mosel, it may also be used in its forms
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if-then-else or if-then-elif-then-else . Another observation concerning the solution printout
is that the getsol function may be applied not only to variables but also to linear expressions.

6.1.3 Results

The required 500 tonnes of steel are produced with 400 tonnes of iron alloy 1, 39.776 tonnes of iron alloy
3, 2.761 tonnes of copper alloy 2, and 57.462 tonnes of aluminum alloy 1. The percentages of Carbon,
Copper, and Manganese are 2%, 0.6%, and 1.2% respectively. The total cost of production is BC 98121.60.

6.2 Animal food production

The company CowFood produces food for farm animals that is sold in two forms: powder and granules.
The raw materials used for the production of the food are: oat, maize and molasses. The raw materials
(with the exception of molasses) first need to be ground, and then all raw materials that will form a
product are blended. In the last step of the production process the product mix is either transformed to
granules or sieved to obtain food in the form of powder.

Blending

Sieving

Granulating

Grinding

Powder

Granules

Oat
Maize

Molasses

Figure 6.1: Animal food production process

Every food product needs to fulfill certain nutritional requirements. The percentages of proteins, lipids
and fibers contained in the raw materials and the required percentages in the final products are listed in
Table 6.3.

Table 6.3: Contents of nutritional components in percent

Raw material Proteins Lipids Fiber

Oat 13.6 7.1 7

Maize 4.1 2.4 3.7

Molasses 5 0.3 25

Required contents ≥ 9.5 ≥ 2 ≤ 6

There are limits on the availability of raw materials. Table 6.4 displays the amount of raw material that is
available every day and the respective prices.

Table 6.4: Raw material availabilities and prices

Raw material Available amount in kg Cost in BC/kg

Oat 11900 0.13

Maize 23500 0.17

Molasses 750 0.12

The cost of the different production steps are given in the following table.

Table 6.5: Production costs in BC /kg

Grinding Blending Granulating Sieving

0.25 0.05 0.42 0.17

With a daily demand of nine tonnes of granules and twelve tonnes of powder, which quantities of raw
materials are required and how should they be blended to minimize the total cost?
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6.2.1 Model formulation

This model is very similar to the preceding except that we now want to produce two products and that
instead of the minimum and maximum grades we have to fulfill certain nutritional requirements. Let
FOOD = {1, 2} (1 = granules, 2 = powder) be the set of food product types that are produced, RAW
the set of raw materials, and COMP = {1, 2, 3} the set of nutritional components (with 1 = protein, 2 =
lipids, 3 = fiber). We further use COSTr to denote the price per kg of raw material r, PCOSTp for the cost
of production process p in BC /kg, REQc for the required content of nutritional component c, Prc for the
content of c in raw material r, AVAILr for the maximum available quantity of raw material r, and DEMf

for the daily demand of food product f .
With variable userf representing the quantity of raw material r used for the production of food type f
and producef the amount of food f produced, we obtain the following model:

minimize
∑

r∈RAW

∑
f∈FOOD

COSTr · userf +
∑

r∈RAW

∑
f∈FOOD
r 6=molasses

PCOSTgrinding · userf

+
∑

r∈RAW

∑
f∈FOOD

PCOSTblending · userf +
∑

r∈RAW

PCOSTgranulating · user1

+
∑

r∈RAW

PCOSTsieving · user2 (6.2.1)

∀f ∈ FOOD :
∑

r∈RAW

userf = producef (6.2.2)

∀f ∈ FOOD, c ∈ 1. . 2 :
∑

r∈RAW

Prc · userf ≥ REQc · producef (6.2.3)

∀f ∈ FOOD :
∑

r∈RAW

Pr3 · userf ≤ REQ3 · producef (6.2.4)

∀r ∈ RAW :
∑

f∈FOOD

userf ≤ AVAILr (6.2.5)

∀f ∈ FOOD : producef ≥ DEMf (6.2.6)

∀r ∈ RAW, f ∈ FOOD : userf ≥ 0, ∀f ∈ FOOD : producef ≥ 0 (6.2.7)

The objective function (6.2.1) that is to be minimized is the sum of all costs. The first term is the price paid
for the raw materials, the following terms correspond to the production costs of the different process
steps. Grinding is applied to all raw materials except molasses, blending to all raw material. Granules
(f = 1) are obtained through granulating and powder (f = 2) by sieving the blended product. The
constraint (6.2.2) expresses the fact that the produced quantity of every food type corresponds to the
sum of the raw material used for its production. Through the constraints (6.2.3) and (6.2.4) we obtain the
required content of nutritional components. They are based on the same reasoning that we saw for the
‘grades’ in the previous example. The percentage for the content of a nutritional component c in a food
product f is given by the following ratio: ∑

r∈RAW Prc · userf

producef
(6.2.8)

This percentage must be at least REQc for the first two components (protein, lipid) and at most REQc for
the third one (fiber). For the first two, this results in a relation of type (6.2.9), for the third in the relation
(6.2.10). ∑

r∈RAW Prc · userf

producef
≥ REQc (6.2.9)∑

r∈RAW Prc · userf

producef
≤ REQc (6.2.10)

Both relations are non-linear since the variables producef appear in the denominator, but as before it is
possible to transform them into linear constraints by multiplying them by producef . Doing so, we obtain
the constraints (6.2.3) and (6.2.4).

The constraints (6.2.5) guarantee that the quantities of raw material used remain within their limits of
availability. The constraints (6.2.6) serve to satisfy the demand. And the last set of constraints (6.2.7)
establishes that all variables are non-negative.
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6.2.2 Implementation

Below follows the implementation of this problem with Mosel. Note that in this implementation some of
the indexing sets are of numerical type and others are sets of strings. Any indexing set may be assigned
its contents at its declaration (a constant set), like FOOD and COMP, or it may be created dynamically as
is the case for for the (unnamed) indexing set of PCOST that is filled in when this array is read from file.

model "A-2 Animal Food Production"
uses "mmxprs"

declarations
FOOD = 1..2 ! Food types
COMP = 1..3 ! Nutritional components
RAW = {"oat", "maize", "molasses"} ! Raw materials

P: array(RAW,COMP) of real ! Composition of raw materials (in percent)
REQ: array(COMP) of real ! Nutritional requirements
AVAIL: array(RAW) of real ! Raw material availabilities
COST: array(RAW) of real ! Raw material prices
PCOST: array(set of string) of real ! Cost of processing operations
DEM: array(FOOD) of real ! Demands for food types

use: array(RAW,FOOD) of mpvar ! Quantity of raw mat. used for a food type
produce: array(FOOD) of mpvar ! Quantity of food produced

end-declarations

initializations from ’a2food.dat’
P REQ PCOST DEM
[AVAIL, COST] as ’RAWMAT’

end-initializations

! Objective function
Cost:= sum(r in RAW,f in FOOD) COST(r)*use(r,f) +

sum(r in RAW,f in FOOD|r<>"molasses") PCOST("grinding")*use(r,f) +
sum(r in RAW,f in FOOD) PCOST("blending")*use(r,f) +
sum(r in RAW) PCOST("granulating")*use(r,1) +
sum(r in RAW) PCOST("sieving")*use(r,2)

! Quantity of food produced corresponds to raw material used
forall(f in FOOD) sum(r in RAW) use(r,f) = produce(f)

! Fulfill nutritional requirements
forall(f in FOOD,c in 1..2)

sum(r in RAW) P(r,c)*use(r,f) >= REQ(c)*produce(f)
forall(f in FOOD) sum(r in RAW) P(r,3)*use(r,f) <= REQ(3)*produce(f)

! Use raw materials within their limit of availability
forall(r in RAW) sum(f in FOOD) use(r,f) <= AVAIL(r)

! Satisfy demands
forall(f in FOOD) produce(f) >= DEM(f)

! Solve the problem
minimize(Cost)

! Solution printing
writeln("Total cost: ", getobjval)
write("Food type"); forall(r in RAW) write(strfmt(r,9))
writeln(" protein lipid fiber")
forall(f in FOOD) do

write(strfmt(f,-9))
forall(r in RAW) write(strfmt(getsol(use(r,f)),9,2))
forall(c in COMP) write(" ",

strfmt(getsol(sum(r in RAW) P(r,c)*use(r,f))/getsol(produce(f)),3,2),"%")
writeln

end-do

end-model

The data file a2food.dat has the following contents. Whereas strings in Mosel model files must always
be surrounded by single or double quotes, in data files this is only required if a string contains blanks or
other non-alphanumeric characters, or starts with a numerical value.
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Similarly to the way the raw material availabilities and prices are listed in Table 6.4, the data for the arrays
AVAIL and COSTare given in a single record labeled RAWMAT. In the initializations block, the names
of the data arrays that are to be read from a single record need to be surrounded by [ and ] , followed
by the keyword as and the label (name) of the record.

P: [(oat 1) 13.6 7.1 7 ! Composition of raw materials
(maize 1) 4.1 2.4 3.7
(molasses 1) 5 0.3 25 ]

REQ: [9.5 2 6] ! Nutritional requirements

RAWMAT: [(oat) [11900 0.13] ! Raw material availabilities and prices
(maize) [23500 0.17]
(molasses) [750 0.12]]

! Cost of processing operations
PCOST: [(grinding) 0.25 (blending) 0.05 (granulating) 0.42 (sieving) 0.17]

DEM: [9000 12000] ! Demands for food types

In this example we again show how the solution may be printed after the problem has been solved. The
output is printed in table format with the help of strfmt that for a given string (first parameter) reserves
the indicated space (second parameter) or for a number the total space and the number of digits after
the decimal point (third parameter). If the second parameter has a negative value, the output is printed
left justified.

Since there is only little variation in the solution printing for the large majority of examples, it will be
omitted in the listings from now on.

6.2.3 Results

The minimum cost for producing the demanded nine tonnes of granule and twelve tonnes of powder is
BC 15086.80. The composition of the food products is displayed in Table 6.6.

Table 6.6: Optimal composition of food products

Food type Oat Maize Molasses Protein Lipid Fiber

Granule 5098.56 3719.53 181.91 9.50% 5.02% 6.00%

Powder 6798.07 4959.37 242.55 9.50% 5.02% 6.00%

6.3 Refinery

A refinery produces butane, petrol, diesel oil, and heating oil from two crudes. Four types of operations
are necessary to obtain these products: separation, conversion, upgrading, and blending.

The separation phase consists of distilling the raw product into, among others, butane, naphtha, gasoil,
and a residue. The residue subsequently undergoes a conversion phase (catalytic cracking) to obtain
lighter products. The different products that come out of the distillation are purified (desulfurization
or sweetening) or upgraded by a reforming operation that augments their octane value. Finally, to
obtain the products that will be sold, the refinery blends several of the intermediate products in order to
fulfill the prescribed characteristics of the commercial products. The following drawing gives a simplified
overview on the production processes in this refinery.

After the distillation, crude 1 gives 3% butane, 15% naphtha, 40% gasoil, and 15% residue. Crude 2
results in 5% butane, 20% naphtha, 35% gasoil, and 10% residue. The reforming of the naphtha gives
15% butane and 85% of reformate (reformed naphtha). The catalytic cracking of the residue results in
40% of cracked naphtha and 35% of cracked gasoil (note that these percentages do not add up to 100%
because the process also produces 15% of gas, 5% coke and another type of residue that are not taken
into consideration in our example). The petrol is produced with three ingredients: reformed naphtha
(reformate), butane, and cracked naphtha. The diesel oil is obtained by blending sweetened gasoil,
cracked gasoil, and cracked naphtha. The heating oil may contain gasoil and cracked naphtha without
any restrictions on their proportions.

Certain conditions on the quality of the petrol and diesel oil are imposed by law. There are three im-
portant characteristics for petrol: the octane value, vapor pressure and volatility. The octane value is a
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Figure 6.2: Simplified representation of a refinery

measure of the anti-knock power in the motor. The vapor pressure is a measure of the risk of explosion
during storage, especially with hot weather. The volatility is a measure for how easy the motor is started
during cold weather. Finally, the maximum sulfur content of the diesel oil is imposed by antipollution
specifications. The following table summarizes the required characteristics of the final products and the
composition of the intermediate ones. Fields are left empty if no particular limit applies. We work with
the assumption that all these characteristics blend linearly by weight (in reality, this is only true for the
sulfur contents).

Table 6.7: Characteristics of intermediate and final products

Characteristic Butane Reformate Cracked Cracked Desulfurized Petrol Diesel
naphtha gasoil gasoil oil

Octane value 120 100 74 – – ≥ 94 –

Vapor pressure 60 2.6 4.1 – – ≤ 12.7 –

Volatility 105 3 12 – – ≥ 17 –

Sulfur (in %) – – 0.12 0.76 0.03 – ≤ 0.05

In the next month the refinery needs to produce 20,000 tonnes of butane, 40,000 tonnes of petrol, 30,000
tonnes of diesel oil, and 42,000 tonnes of heating oil. 250,000 tonnes of crude 1 and 500,000 tonnes of
crude 2 are available. The monthly capacity of the reformer are 30,000 tonnes, for the desulfurization
40,000 tonnes and for the cracking 50,000 tonnes. The cost of processing is based on the use of fuel and
catalysts for the different operations: the costs of distillation, reforming, desulfurization, and cracking
are BC 2.10, BC 4.18, BC 2.04 and BC 0.60 per tonne respectively.

6.3.1 Model formulation

Let producebutane, producepetrol, producediesel, and produceheating be the quantities to produce of bu-
tane, petrol, diesel oil, and heating oil. These four products form the set FINAL of final products.
We need to determine the composition of each of these products. We shall use the following vari-
ables for the intermediate products: producepetbutane, producereformate, producepetcrknaphtha for the quan-
tities of butane, reformate and cracked naphtha used in the production of petrol (the three products
are grouped in the set IPETROL); similarly, producedslgasoil, producedslcrknaphtha, and producedslcrkgasoil for
the quantities of sweetened gasoil, cracked naphtha, and cracked gasoil used in the production of
diesel oil (set IDIESEL) and producehogasoil, producehocrknaphtha, and producehocrkgasoil for the quantities of
sweetened gasoil, cracked naphtha, and cracked gasoil blended to heating oil (set IHO). We also de-
fine production variables producep for the quantities of intermediate products resulting from the dif-
ferent production processes, namely for the sets IDIST = {distbutane, naphtha, residue, gasoil} (prod-
ucts resulting from distillation), IREF = {refbutane, reformate} (products resulting from reforming), and
ICRACK = {crknaphtha, crkgasoil} (products resulting from cracking). All final and intermediate products
are regrouped in the set ALLPRODS = FINAL ∪ IDIST ∪ IREF ∪ ICRACK ∪ IPETROL ∪ IHO ∪ IDIESEL.

In addition to the production variables, we define variables usec for the quantity of crude c ∈ CRUDES
used in the production.

Our objective is to minimize the production costs, that is, the cost of distilling the crudes plus the cost of
reforming, desulfurizing or cracking the intermediate products resulting from the distillation. Hence the
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objective function is:
minimize

∑
c∈CRUDES

COSTc · usec +
∑

p∈IDIST

COSTp · producep (6.3.1)

The following constraints (6.3.2) establish restrictions on the maximum quantities of every component of
the raw materials, where DISTcp stands for the contents of the intermediate product p of the crude c.

∀p ∈ IDIST : producep ≤
∑

c∈CRUDES

DISTcp · usec (6.3.2)

For instance, the total quantity of naphtha going into the reformer (producenaphtha) cannot exceed the
maximum quantity of naphtha that is obtained from the distillation of the crudes

(∑
c∈CRUDES DISTc,naphtha · usec

)
.

Similar relations are given for the reforming (6.3.3) and cracking (6.3.4) processes (in both cases, there
is only a single input product) where REFp denotes the percentage composition of naphtha and CRACKp

the percentage composition of the residue:

∀p ∈ IREF : producep ≤ REFp · producenaphtha (6.3.3)

∀p ∈ ICRACK : producep ≤ CRACKp · produceresidue (6.3.4)

The products coming out of the cracking and desulfurization processes may be used for several of the final
products. We therefore have the following three equations. Cracked naphtha is used in the production
of petrol, heating oil, and diesel oil (6.3.5). Cracked gasoil (6.3.6) and sweetened gasoil (6.3.7) are both
used for heating oil and diesel oil.

producecrknaphtha = producepetcrknaphtha + producehocrknaphtha + producedslcrknaphtha (6.3.5)

producecrkgasoil = producehocrkgasoil + producedslcrkgasoil (6.3.6)

producegasoil = producehogasoil + producedslgasoil (6.3.7)

The following four constraints (6.3.8) – (6.3.11) state how the quantities of the final products are obtained
from the intermediate products: butane is produced by distillation and reforming and used in the pro-
duction of petrol (6.3.8). The quantities of the three other final products (petrol, diesel oil, and heating
oil) result from blending as the sum of the intermediate product quantities used in their production.

producebutane = producedistbutane + producerefbutane − producepetbutane (6.3.8)

producepetrol =
∑

p∈IPETROL

producep (6.3.9)

producediesel =
∑

p∈IDIESEL

producep (6.3.10)

produceheating =
∑

p∈IHO

producep (6.3.11)

Furthermore, we have a set of constraints to obey the legal restrictions on the composition of petrol and
diesel oil. For instance, the octane value of petrol must be better than 94. This constraint translates to
the following relation (with OCTp the octane value of the components):∑

p∈IPETROL OCTp · producep

producepetrol
≥ 94 (6.3.12)

This constraint is non-linear since it contains a variable in the denominator. To turn it into a linear
constraints, we simply multiply everything by producepetrol. We then obtain the following constraint
(6.3.13): ∑

p∈IPETROL

OCTp · producep ≥ 94 · producepetrol (6.3.13)

The following constraints (6.3.14) – (6.3.16) establish the corresponding relations for the vapor pressure
and volatility of petrol and the sulfur contents of diesel oil.∑

p∈IPETROL

VAPp · producep ≤ 12. 7 · producepetrol (6.3.14)

∑
p∈IPETROL

VOLp · producep ≥ 17 · producepetrol (6.3.15)

∑
p∈IDIESEL

SULFp · producep ≤ 0. 05 · producediesel (6.3.16)
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We also need constraints that establish the limits on production capacities for reforming (6.3.17), desul-
furization (6.3.18) and cracking (6.3.19). The amount usec of every crude c that is used in production is
limited by the available amount AVAILc. The constraints (6.3.21) guarantee that the demand DEMp for
all final products is satisfied. To this system we add the non-negativity condition for all variables (6.3.22)
and (6.3.23).

producenp ≤ 30000 (6.3.17)

producegd + producegh ≤ 50000 (6.3.18)

producerp + producerd + producerh ≤ 40000 (6.3.19)

∀c ∈ CRUDES : usec ≤ AVAILc (6.3.20)

∀p ∈ FINAL : producep ≥ DEMp (6.3.21)

∀p ∈ ALLPRODS : producep ≥ 0 (6.3.22)

∀c ∈ CRUDES : usec ≥ 0 (6.3.23)

The lines (6.3.1) to (6.3.11), and (6.3.13) to (6.3.23) define the LP model.

Compared to the two other blending problems in Sections 6.1 and 6.2 the formulation of this problem
looks quite ‘messy’: this is typical for production situations where we have a relatively small number of
products going through a large number of stages that are related in complicated ways. There are many
different types of constraints, and often lots of exceptions and special cases.

6.3.2 Implementation

The translation of the model in the previous section into the following formulation with Mosel is straight-
forward.
Contrary to the implementations of the previous examples, this time we do not define the index sets for
the data arrays directly in the model but initialize the contents of the data arrays (and the corresponding
index sets) dynamically from file. The only set defined directly in the model is IHO since it does not ap-
pear as an index set for any data array – its definition could also be read from file. The set of all products
ALLPRODS is defined as the union of all final and intermediate products.

model "A-3 Refinery planning"
uses "mmxprs"

declarations
CRUDES: set of string ! Set of crudes
ALLPRODS: set of string ! Intermediate and final products
FINAL: set of string ! Final products
IDIST: set of string ! Products obtained by distillation
IREF: set of string ! Products obtained by reforming
ICRACK: set of string ! Products obtained by cracking
IPETROL: set of string ! Interm. products for petrol
IDIESEL: set of string ! Interm. products for diesel
IHO={"hogasoil", "hocrknaphtha", "hocrkgasoil"}

! Interm. products for heating oil
DEM: array(FINAL) of real ! Min. production
COST: array(set of string) of real ! Production costs
AVAIL: array(CRUDES) of real ! Crude availability
OCT, VAP, VOL: array(IPETROL) of real ! Octane, vapor pressure, and

! volatility values
SULF: array(IDIESEL) of real ! Sulfur contents
DIST: array(CRUDES,IDIST) of real ! Composition of crudes (in %)
REF: array(IREF) of real ! Results of reforming (in %)
CRACK: array(ICRACK) of real ! Results of cracking (in %)

end-declarations

initializations from ’a3refine.dat’
DEM COST OCT VAP VOL SULF AVAIL DIST REF CRACK

end-initializations

finalize(FINAL); finalize(CRUDES); finalize(IPETROL); finalize(IDIESEL)
finalize(IDIST); finalize(IREF); finalize(ICRACK)
ALLPRODS:= FINAL+IDIST+IREF+ICRACK+IPETROL+IHO+IDIESEL

declarations
use: array(CRUDES) of mpvar ! Quantities used
produce: array(ALLPRODS) of mpvar ! Quantities produced
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end-declarations

! Objective function
Cost:= sum(c in CRUDES) COST(c)*use(c) + sum(p in IDIST) COST(p)*produce(p)

! Relations intermediate products resulting of distillation - raw materials
forall(p in IDIST) produce(p) <= sum(c in CRUDES) DIST(c,p)*use(c)

! Relations between intermediate products
! Reforming:

forall(p in IREF) produce(p) <= REF(p)*produce("naphtha")
! Cracking:

forall(p in ICRACK) produce(p) <= CRACK(p)*produce("residue")
produce("crknaphtha") >= produce("petcrknaphtha") +

produce("hocrknaphtha") + produce("dslcrknaphtha")
produce("crkgasoil") >= produce("hocrkgasoil") + produce("dslcrkgasoil")

! Desulfurization:
produce("gasoil") >= produce("hogasoil") + produce("dslgasoil")

! Relations final products - intermediate products
produce("butane") = produce("distbutane") + produce("refbutane") -

produce("petbutane")
produce("petrol") = sum(p in IPETROL) produce(p)
produce("diesel") = sum(p in IDIESEL) produce(p)
produce("heating") = sum(p in IHO) produce(p)

! Properties of petrol
sum(p in IPETROL) OCT(p)*produce(p) >= 94*produce("petrol")
sum(p in IPETROL) VAP(p)*produce(p) <= 12.7*produce("petrol")
sum(p in IPETROL) VOL(p)*produce(p) >= 17*produce("petrol")

! Limit on sulfur in diesel oil
sum(p in IDIESEL) SULF(p)*produce(p) <= 0.05*produce("diesel")

! Crude availabilities
forall(c in CRUDES) use(c) <= AVAIL(c)

! Production capacities
produce("naphtha") <= 30000 ! Reformer
produce("gasoil") <= 50000 ! Desulfurization
produce("residue") <= 40000 ! Cracker

! Satisfy demands
forall(p in FINAL) produce(p) >= DEM(p)

! Solve the problem
minimize(Cost)

end-model

The dynamic initialization of the index sets necessitates a special treatment of the arrays of variables use
and produce.
If we declared these arrays at the same time as the data arrays, this would result in empty, dynamic arrays
since the index sets are not known before the data has been read from file. Whilst the entries of dynamic
arrays of types other than mpvar are created when the entry is addressed, this is not the case for arrays
of variables. There are two possibilities for handling this situation:

• In the implementation shown above we define the variables in a separate declarations block
after the data has been read from file. This block is preceded by a series of finalize statements.
With the help of the finalize procedure, the (dynamic) index sets are turned into constant sets,
that is, their contents cannot be modified any more. As a consequence, all arrays with these sets as
their indices and that are declared after this point are created as arrays of fixed size.

• Alternatively, we may declare the array of type mpvar together with the data arrays and create the
required variables explicitly by adding the following lines after the data has been read from file
and the two sets ALLPROD and CRUDES have been finalized:

forall(p in ALLPROD) create(produce(p))

forall(c in CRUDES) create(use(c))

In larger applications, typically most data (and the corresponding index sets) are initialized dynamically
so that the variable definition needs to be done with one of the two methods described above.
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To keep the example implementations in this book as easy as possible, we usually define the index sets as
constants directly in the model so that the definition of variables does not require any special care.

6.3.3 Results

The total production cost is BC 1,175,400. We produce 40,000 tonnes of petrol from 6,500 tonnes of butane,
25,500 tonnes of reformate, and 8,000 tonnes of cracked naphtha. With this composition, we obtain an
octane value of 98.05, the vapor pressure is 12.23, and the volatility of the petrol is 21.38. The required
30,000 tonnes of diesel oil are produced with 30,000 tonnes of sweetened gasoil, which gives a sulfur
content of 0.03%. The 42,000 tonnes of heating oil are composed of 20,000 tonnes of sweetened gasoil,
8,000 tonnes of cracked naphtha, and 14,000 tonnes of cracked gasoil. In addition to this production we
also have the required 20,000 tonnes of butane.

6.4 Cane sugar production

The harvest of cane sugar in Australia is highly mechanized. The sugar cane is immediately transported
to a sugar house in wagons that run on a network of small rail tracks. The sugar content of a wagon load
depends on the field it has been harvested from and on the maturity of the sugar cane. Once harvested,
the sugar content decreases rapidly through fermentation and the wagon load will entirely lose its value
after a certain time. At this moment, eleven wagons all loaded with the same quantity have arrived at
the sugar house. They have been examined to find out the hourly loss and the remaining life span (in
hours) of every wagon, these data are summarized in the following table.

Table 6.8: Properties of the lots of cane sugar

Lot 1 2 3 4 5 6 7 8 9 10 11

Loss (kg/h) 43 26 37 28 13 54 62 49 19 28 30

Life span (h) 8 8 2 8 4 8 8 8 8 8 8

Every lot may be processed by any of the three, fully equivalent production lines of the sugar house.
The processing of a lot takes two hours. It must be finished at the latest at the end of the life span of
the wagon load. The manager of the sugar house wishes to determine a production schedule for the
currently available lots that minimizes the total loss of sugar.

6.4.1 Model formulation

This problem also concerns the primary sector but it is different from the blending problems we have
seen so far in this chapter.

Let WAGONS = {1, . . . , NW} be the set of wagons, NL the number of production lines and DUR the
duration of the production process for every lot. The hourly loss for every wagon w is given by LOSSw

and its life span by LIFEw . We observe that in an optimal solution the production lines need to work
without any break – otherwise we could reduce the loss in sugar by advancing the start of the lot that
follows the break. This means that the completion time of every lot is of the form s ·DUR, with s > 0 and
integer. The maximum value of s is the number of time slots (of length DUR) that the sugar house will
work, namely NS = ceil ( NW / NL ), where ceil stands for ‘rounded to the next larger integer’. If NW / NL
is an integer, every line will process exactly NS lots. Otherwise, some lines will process NS − 1 lots, but at
least one line processes NS lots. In all cases, the length of the optimal schedule is NS · DUR hours. We call
SLOTS = {1, . . . , NS} the set of time slots.

Every lot needs to be assigned to a time slot. We define binary variables processws that take the value 1 if
and only if lot w is assigned to slot s (constraints (6.4.1)). Every lot needs to be assigned to a slot (6.4.2),
and any slot may take up to NL lots because there are NL parallel lines (6.4.3).

∀w ∈WAGONS, s ∈ SLOTS : processws ∈ {0, 1} (6.4.1)

∀w ∈WAGONS :
∑

s∈SLOTS

processws = 1 (6.4.2)

∀s ∈ SLOTS :
∑

w∈WAGONS

processws ≤ NL (6.4.3)

The life span of the sugar lots is given in hours and not in periods of DUR hours. The maximum slot
number for a wagon load w is therefore LIFEw / DUR. The constraints (6.4.4) establish this bound for
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every lot w. Note that the number of the time slot is expressed through a sum of decision variables: due
to the constraints (6.4.2) only the index of the slot s for which processws = 1 will be counted for lot w.

∀w ∈WAGONS :
∑

s∈SLOTS

s · processws ≤ LIFEw / DUR (6.4.4)

The loss of sugar per wagon load w and time slot s is s ·DUR · LOSSw . The objective function (total loss of
sugar) is therefore given by the following expression (6.4.5):

minimize
∑

w∈WAGONS

∑
s∈SLOTS

s · DUR · LOSSw · processws (6.4.5)

The lines (6.4.1) to (6.4.5) define the model for our problem. This linear problem is a minimum cost flow
problem of a particular type. It is related to the transportation problems (like the car rental problem
in Chapter 10). For minimum cost flow problems, the optimal LP solution calculated by the simplex
algorithm is integer feasible. We could therefore replace the integrality constraints in our model by
non-negativity constraints.

6.4.2 Implementation

The following model is the Mosel implementation of the linear problem. It uses the function ceil to
calculate the maximum number of time slots.

model "A-4 Cane sugar production"
uses "mmxprs"

declarations
NW = 11 ! Number of wagon loads of sugar
NL = 3 ! Number of production lines
WAGONS = 1..NW
SLOTS = 1..ceil(NW/NL) ! Time slots for production

LOSS: array(WAGONS) of real ! Loss in kg/hour
LIFE: array(WAGONS) of real ! Remaining time per lot
DUR: integer ! Duration of the production

process: array(WAGONS,SLOTS) of mpvar ! 1 if wagon processed in slot,
! 0 otherwise

end-declarations

initializations from ’a4sugar.dat’
LOSS LIFE DUR

end-initializations

! Objective function
TotalLoss:= sum(w in WAGONS, s in SLOTS) s*DUR*LOSS(w)*process(w,s)

! Assignment
forall(w in WAGONS) sum(s in SLOTS) process(w,s) = 1

! Wagon loads per time slot
forall(s in SLOTS) sum(w in WAGONS) process(w,s) <= NL

! Limit on raw product life
forall(w in WAGONS) sum(s in SLOTS) s*process(w,s) <= LIFE(w)/DUR

forall(w in WAGONS, s in SLOTS) process(w,s) is_binary

! Solve the problem
minimize(TotalLoss)

6.4.3 Results

If we solve the problem without the constraints limiting the life span of the wagon loads we obtain a
minimum loss of 1518 kg of sugar. In this case the lots are processed in the order of decreasing loss. With
the complete set of constraints we obtain a total loss of 1620 kg of sugar. The corresponding schedule of
lots is shown in the following table (there are several equivalent solutions).
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Table 6.9: Optimal schedule for the cane sugar lots

Slot 1 Slot 2 Slot 3 Slot 4

lot 3 (74 kg) lot 1 (172 kg) lot 9 (114 kg) lot 2 (208 kg)

lot 6 (108 kg) lot 5 (52 kg) lot 10 (168 kg) lot 4 (224 kg)

lot 7 (124 kg) lot 8 (196 kg) lot 11 (180 kg)

6.5 Opencast mining

An opencast uranium mine is being prospected. Based on the results of some test drillings the mine has
been subdivided into exploitation units called blocks. The pit needs to be terraced to allow the trucks to
drive down to its bottom. The uranium deposit extends from east to west. The pit is limited in the west
by a village and in the east by a group of mountains. Taking into account these constraints, 18 blocks of
10,000 tonnes on three levels have been identified (Figure 6.3). To extract a block, three blocks of the
level above it need to be extracted: the block immediately on top of it, and also, due to the constraints
on the slope, the blocks to the right and to the left.

1Level 1 2 3 4 5 7 8

9 11

Level 3

Level 2

6

12 13 14

15

10

16 17 18

Village

Mountains

Figure 6.3: Length cut through the opencast mine

It costs BC 100 per tonne to extract a block of level 1, BC 200 per tonne for a block of level 2, and BC 300 per
tonne for a block of level 3, with the exception of the hatched blocks that are formed of a very hard rock
rich in quartz and cost BC 1000 per ton. The only blocks that contain uranium are those displayed in a gray
shade (1, 7, 10, 12, 17, 18). Their market value is 200, 300, 500, 200, 1000, and BC 1200/tonne respectively.
Block 18, although rich in ore, is made of the same hard rock as the other hatched blocks. Which blocks
should be extracted to maximize the total benefit?

6.5.1 Model formulation

Let BLOCKS be the set of blocks, VALUEb the value per tonne of a block b, and COSTb the cost per tonne
of extracting it. The benefit of extracting block b per tonne is then given by VALUEb−COSTb. The possible
extraction sequences of blocks can be represented by a directed graph G = (BLOCKS, ARCS), where ARCS
stands for the set of arcs between blocks. An arc (b, a) means that block b can only be extracted if block
a has already been taken. For instance, block 16 gives rise to three arcs in G: (16,10), (16,11), and (16,12)
and blocks 10, 11, and 12 again to three arcs each, as shown in the following graph.

To decide which blocks are extracted we introduce binary variables extractb that take the value 1 if and
only if block b is extracted. We obtain the following, very compact problem with 0-1 variables:

maximize
∑

b∈BLOCKS

(VALUEb − COSTb) · extractb (6.5.1)

∀(b, a) ∈ ARCS : extractb ≤ extracta (6.5.2)

∀b ∈ BLOCKS : extractb ∈ {0, 1} (6.5.3)

The objective function (6.5.1) that is to be maximized is the sum of the benefits from the blocks that
are extracted. The constraints (6.5.2) make sure that the blocks are extracted in the right order: if b is
extracted (extractb = 1) then a also needs to be extracted (extracta = 1). The constraints (6.5.3) define the
binary variables.
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Figure 6.4: Precedence graph for extraction of block 16

It would be possible to replace the constraints (6.5.2) by their aggregate form (6.5.4). In large prob-
lems that also include many other variables and constraints this formulation may help reduce the total
number of constraints. This reformulation provides a weaker, i.e. relaxed, formulation than the original
constraints. In our example this has the disadvantage that whilst for the original formulation the solution
of the linear relaxation is already integer, this is no longer true for the relaxed formulation.

∀b ∈ BLOCKS, ∃(b, a) ∈ ARCS : 3 · extractb ≤
∑

a∈BLOCKS
∃(b,a)∈ARCS

extracta (6.5.4)

6.5.2 Implementation

The following model implements the LP of the previous section with Mosel. The graph is coded as a
two-dimensional array that for every block of levels 2 and 3 contains its three predecessors in the level
above it. For instance for block 16, it contains the line (16 1) 10 11 12 which is the short form of (16
1) 10 (16 2) 11 (16 3) 12 .

model "A-5 Opencast mining"

uses "mmxprs"

declarations
BLOCKS = 1..18 ! Set of blocks
LEVEL23: set of integer ! Blocks in levels 2 and 3
COST: array(BLOCKS) of real ! Exploitation cost of blocks
VALUE: array(BLOCKS) of real ! Value of blocks
ARC: array(LEVEL23,1..3) of integer ! Arcs indicating order of extraction

extract: array(BLOCKS) of mpvar ! 1 if block b is extracted
end-declarations

initializations from ’a5mine.dat’
COST VALUE ARC

end-initializations

! Objective: maximize total profit
Profit:= sum(b in BLOCKS) (VALUE(b)-COST(b))* extract(b)

! Extraction order
forall(b in LEVEL23)

forall(i in 1..3) extract(b) <= extract(ARC(b,i))

forall(b in BLOCKS) extract(b) is_binary

! Solve the problem
maximize(Profit)

end-model

As mentioned earlier, for the model formulation we are using in the implementation the solution to
the linear problem is integer. As a general rule, it may be helpful not to declare any special types of
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variables at the first attempt at solving a problem: the problem studied may have a specific structure
for which the integrality constraints are redundant (this is the case for the present example) or for a
certain data set all variables may be integral in the optimal LP solution. Switching integrality conditions
off without removing them from the model can also be obtained by adding a parameter to the call to
the optimization algorithm. For instance in this example

maximize(XPRS_LIN,Profit)

Another reason not to establish immediately all integrality constraints may be size limitations in the
optimization software that is used (the student version of Xpress-Optimizer is limited to 800 variables +
constraints out of which at most 500 may be MIP variables or SOS sets). A problem that defines too many
integer variables cannot be executed, even if the optimal integer solution could be obtained by solving
the LP.

6.5.3 Results

The maximal profit is BC 4,000,000. Blocks 1 to 7, 10 to 13, and 17 are extracted. Blocks 8, 9, 14 to 16, and
18 remain in the pit.

6.6 Production of electricity

Power generators of four different types are available to satisfy the daily electricity demands (in mega-
watts) summarized in the following table. We consider a sliding time horizon: the period 10pm-12am of
day d is followed by the period 0am-6am of day d + 1.

Table 6.10: Daily electricity demands (in MW)

Period 0am–6am 6am–9am 9am–12pm 12pm–2pm 2pm–6pm 6pm–10pm 10pm–12am

Demand 12000 32000 25000 36000 25000 30000 18000

The power generators of the same type have a maximum capacity and may be connected to the network
starting from a certain minimal power output. They have a start-up cost, a fixed hourly cost for working
at minimal power, and an hourly cost per additional megawatt for anything beyond the minimal output.
These data are given in the following table.

Table 6.11: Description of power generators

Available Min. output Max. capacity Fix cost Add. MW cost Start-up
number in MW in MW BC/h BC/h cost

Type 1 10 750 1750 2250 2.7 5000

Type 2 4 1000 1500 1800 2.2 1600

Type 3 8 1200 2000 3750 1.8 2400

Type 4 3 1800 3500 4800 3.8 1200

A power generator can only be started or stopped at the beginning of a time period. As opposed to the
start, stopping a power plant does not cost anything. At any moment, the working power generators
must be able to cope with an increase by 20% of the demand forecast. Which power generators should
be used in every period in order to minimize the total daily cost?

6.6.1 Model formulation

Let TIME = {1, . . . , NT} be the set of time periods per day and TYPES the set of generator types. For a
given time period t, DEMt denotes the electricity demand in the network and LENt the length (number of
hours) of the period. For any power generator type p, PMINp and PMAXp are the minimum and maximum
capacity respectively, and AVAILp is the available number of generators. The start-up cost is CSTARTp, the
hourly cost for working at minimum level is CMINp, and the cost per additional MW hour is CADDp.

To formulate this model and account for the different types of cost we need three sets of variables. startpt

is the integer number of power generators of type p that start working at the beginning of time period
t (6.6.1). workpt is the number of power generators of type p that are working in time period t. This
integer number is bounded by the available number of generators AVAILp, constraints (6.6.2). paddpt

represents the additional production beyond the minimum output level of generators of type p in time
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period t.

∀p ∈ TYPES, t ∈ TIME : startpt ∈ IN (6.6.1)

∀p ∈ TYPES, t ∈ TIME : workpt ∈ {0, 1, 2, . . . , AVAILp} (6.6.2)

∀p ∈ TYPES, t ∈ TIME : paddpt ≥ 0 (6.6.3)

For a power generator of type p the additional production is limited by PMAXp − PMINp. For every type
and time period we can therefore link the additional output with the number of working generators:

∀p ∈ TYPES, t ∈ TIME : paddpt ≤ (PMAXp − PMINp) ·workpt (6.6.4)

To satisfy the demand in every period we write the constraints (6.6.5). The first sum is the total basis
output by the generators of different types. The second sum is the total additional output beyond the
minimum level by all power generators.

∀t ∈ TIME :
∑

p∈TYPES

(
PMINp ·workpt + paddpt

)
≥ DEMt (6.6.5)

Without starting any new generators, those that are working must be able to produce 20% more than
planned:

∀t ∈ TIME :
∑

p∈TYPES

PMAXp ·workpt ≥ 1. 20 · DEMt (6.6.6)

If no generators were stopped, the number of power generators starting to work in a period t would
correspond to the difference between the numbers of generators working in periods t and t − 1. Since
generators may be stopped (not explicitly counted as there is no impact on the cost), the number of
generators starting to work is at least the value of this difference (6.6.7). The constraints (6.6.8) are for
the particular case of the transition from the last period of a day to the first period of the following day.

∀p ∈ TYPES, t ∈ {2, . . . , NT} : startpt ≥ workpt −workp,t−1 (6.6.7)

∀p ∈ TYPES : startp1 ≥ workp1 −workp,NT (6.6.8)

The daily cost (6.6.9) comprises the start-up cost, the cost for working at the minimum level and the cost
for any additional production. These last two costs are proportional to the length of the time periods.

minimize
∑

p∈TYPES

∑
t∈TIME

(
CSTARTp · startpt + LENt ·

(
CMINp ·workpt + CADDp · paddpt

))
(6.6.9)

The lines (6.6.1) to (6.6.9) form the final mixed integer model.

6.6.2 Implementation

The algebraic model translates into the following Mosel model. The constraints (6.6.7) and (6.6.8) are
obtained with a single line, using the inline if function of Mosel.
Note further that we do not define variables start as integer since they result from a difference of integer
variables work through constraints (6.6.7) and therefore automatically take integer values.

model "A-6 Electricity production"
uses "mmxprs"

declarations
NT = 7
TIME = 1..NT ! Time periods
TYPES = 1..4 ! Power generator types

LEN, DEM: array(TIME) of integer ! Length and demand of time periods
PMIN,PMAX: array(TYPES) of integer ! Min. & max output of a generator type
CSTART: array(TYPES) of integer ! Start-up cost of a generator
CMIN: array(TYPES) of integer ! Hourly cost of gen. at min. output
CADD: array(TYPES) of real ! Cost/hour/MW of prod. above min. level
AVAIL: array(TYPES) of integer ! Number of generators per type

start: array(TYPES,TIME) of mpvar ! No. of gen.s started in a period
work: array(TYPES,TIME) of mpvar ! No. of gen.s working during a period
padd: array(TYPES,TIME) of mpvar ! Production above min. output level
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end-declarations

initializations from ’a6electr.dat’
LEN DEM PMIN PMAX CSTART CMIN CADD AVAIL

end-initializations

! Objective function: total daily cost
Cost:= sum(p in TYPES, t in TIME) (CSTART(p)*start(p,t) +

LEN(t)*(CMIN(p)*work(p,t) + CADD(p)*padd(p,t)))

! Number of generators started per period and per type
forall(p in TYPES, t in TIME)

start(p,t) >= work(p,t) - if(t>1, work(p,t-1), work(p,NT))

! Limit on power production above minimum level
forall(p in TYPES, t in TIME) padd(p,t) <= (PMAX(p)-PMIN(p))*work(p,t)

! Satisfy demands
forall(t in TIME) sum(p in TYPES) (PMIN(p)*work(p,t) + padd(p,t)) >= DEM(t)

! Security reserve of 20%
forall(t in TIME) sum(p in TYPES) PMAX(p)*work(p,t) >= 1.20*DEM(t)

! Limit number of available generators; numbers of generators are integer
forall(p in TYPES, t in TIME) do

work(p,t) <= AVAIL(p)
work(p,t) is_integer

end-do

! Solve the problem
minimize(Cost)

end-model

6.6.3 Results

The optimal LP solution to this problem is a cost of BC 985164.3. The optimal integer solution has a cost of
BC 1,465,810. For every time period and generator type the following table lists the total output and the
part of the production that is above the minimum level.

Table 6.12: Plan of power generator use

Type 0am–6am 6am–9am 9am–12pm 12pm–2pm 2pm–6pm 6pm–10pm 10pm–12am

1 No. used 3 4 4 7 3 3 3

Tot. output 2250 4600 3000 8600 2250 2600 2250

Add. output 0 1600 0 3350 0 350 0

2 No. used 4 4 4 4 4 4 4

Tot. output 5750 6000 4200 6000 4950 6000 5950

Add. output 1750 2000 200 2000 950 2000 1950

3 No. used 2 8 8 8 8 8 4

Tot. output 4800 16000 16000 16000 16000 16000 8000

Add. output 1600 6400 6400 6400 6400 6400 3200

4 No. used 0 3 1 3 1 3 1

Tot. output 0 5400 1800 5400 1800 5400 1800

Add. output 0 0 0 0 0 0 0

By looking at this table we may deduce when power generators are started and stopped: one generator
of type 1 starts at the beginning of period 2, and three at the beginning of period 4, four generators stop
after period 4. The four generators of type 2 work continuously. Six generators of type 3 start working in
period 2, four generators of this type are stopped after period 6 and two more at the end of every day.
All three generators of type 4 start at the beginning of period 2, two of which are switched off in the
next period, then switched on, switched off, and switched on again and at the end of every day all three
are stopped.
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6.7 References and further material

Blending problems are historically the first civil applications of Linear Programming. References for the
first three problems in this chapter: Glen describes a problem of mixing food for cattle [Gle80], Sutton
and Coates deal with blending in the iron and steel industry [SC81], and McColl presents applications of
LP in the petrol industry [McC69].

The problem of the sugar house is a member of the big family of flow problems, dealt with in detail in
the book by Ahuja, Magnanti and Orlin [AMO93] which is a reference for this topic. The opencast mining
problem boils down to calculating the maximum weight closure of a graph, a problem that can equally
be solved by a flow algorithm (Chapter 19 of the book by Ahuja et al.). An example where blocks are
arranged in a three-dimensional way is described by Williams [Wil93].

The electricity generation problem has been studied by Garver [Gar63]. In this family of dispatching
problems, the aim is to satisfy at the least cost the demand of each period, with costs for activating
and deactivating resources (see for example [Gar00]). The main difference from the production planning
problems in Chapter 8 lies in the costs and the fact that the power plants cannot be used below a certain
minimum output level. The variation in power supply may even be very narrow for water barrages which
usually leads to combining them with thermal or nuclear power plants to follow the demand more easily
[SM74].
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Chapter 7

Scheduling problems

Scheduling problems are an important class of problems in Operations Research. They consist of dis-
tributing the execution of a set of tasks over time subject to various constraints (sequence of tasks, due
dates, limited resource availability), with the objective to optimize a criterion like the total duration, the
number of tasks that finish late etc. These problems may come from many different fields: project man-
agement, industrial production, telecommunications, information systems, transport, timetabling. With
the exception of the well known case of project scheduling, these problems are difficult to solve to opti-
mality if they grow large. Nevertheless, instances of smaller size have become solvable by LP, due to the
power of current software.

This chapter only deals with project and production scheduling problems. The Section 7.1 concerns the
construction of a stadium, a typical case of project scheduling in civil engineering. The next three prob-
lems are about the management of workshops: Section 7.2 presents a workshop organized in lines (flow-
shop), that all products are run through in the same order. In the job-shop of Section 7.3 every product
has a different processing order on the machines of the workshop. Section 7.4 deals with the case of a
critical machine, the bottleneck of a workshop. The problem in Section 7.5 consists of distributing the
workload of an amplifier assembly line to maximize the throughput.

This book also discusses scheduling problems in other domains: in air transport (Chapter 11), telecommu-
nications (Chapter 12) and for establishing a timetable (Chapter 14).

7.1 Construction of a stadium

A town council wishes to construct a small stadium in order to improve the services provided to the people
living in the district. After the invitation to tender, a local construction company is awarded the contract
and wishes to complete the task within the shortest possible time. All the major tasks are listed in the
following table. The durations are expressed in weeks. Some tasks can only start after the completion of
certain other tasks. The last two columns of the table refer to question 2 which we shall see later.

Question 1: Which is the earliest possible date of completing the construction?

Question 2: The town council would like the project to terminate earlier than the time announced by the
builder (answer to question 1). To obtain this, the council is prepared to pay a bonus of BC 30K for every
week the work finishes early. The builder needs to employ additional workers and rent more equipment
to cut down on the total time. In the preceding table he has summarized the maximum number of weeks
he can save per task (column "Max. reduct.") and the associated additional cost per week. When will the
project be completed if the builder wishes to maximize his profit?

7.1.1 Model formulation for question 1

This problem is a classical project scheduling problem. We add a fictitious task with 0 duration that
corresponds to the end of the project. We thus consider the set of tasks TASKS = {1, . . . , N} where N is
the fictitious end task. Let DURi be the duration of task i. To establish the precedences between tasks, we
use a precedence graph G = (TASKS, ARCS) where ARCS stands for the set of arcs (an arc (i, j) symbolizes
that task i precedes task j). It is easy to construct such a graph starting from the lists of predecessors in
Table 7.1. The fictitious task follows all tasks that have no successor.

We introduce variables starti to represent the earliest start time of tasks i. The only constraints that are
given are the precedences. A task j may only start if all its predecessors have finished, which translates

81 Applications of optimization with Xpress-MP



Table 7.1: Data for stadium construction

Max. Add. cost per
Task Description Duration Predecessors reduct. week (in 1000 BC)

1 Installing the construction site 2 none 0 –

2 Terracing 16 1 3 30

3 Constructing the foundations 9 2 1 26

4 Access roads and other networks 8 2 2 12

5 Erecting the basement 10 3 2 17

6 Main floor 6 4,5 1 15

7 Dividing up the changing rooms 2 4 1 8

8 Electrifying the terraces 2 6 0 –

9 Constructing the roof 9 4,6 2 42

10 Lighting of the stadium 5 4 1 21

11 Installing the terraces 3 6 1 18

12 Sealing the roof 2 9 0 –

13 Finishing the changing rooms 1 7 0 –

14 Constructing the ticket office 7 2 2 22

15 Secondary access roads 4 4,14 2 12

16 Means of signalling 3 8,11,14 1 6

17 Lawn and sport accessories 9 12 3 16

18 Handing over the building 1 17 0 –

1 2 3 5 6 8

11 16
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10
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Figure 7.1: Precedence graph of construction tasks
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into constraints (7.1.1): if there is an arc between i and j, then the completion time of i (starti + DURi)
must not be larger than the start time of j.

∀(i, j) ∈ ARCS : starti + DURi ≤ startj (7.1.1)

The objective is to minimize the completion time of the project, that is the start time of the last, fictitious
task N. We complete the mathematical model with the following lines:

minimize startN (7.1.2)

∀i ∈ TASKS : starti ≥ 0 (7.1.3)

7.1.2 Implementation of question 1

The translation of the mathematical model into Mosel is straightforward. The set of arcs is implemented
as a two-dimensional binary matrix ARC, an element ARCij = 1 if and only if the arc (i, j) exists. At its
definition, we do not fix the index sets of this array and use the keyword range instead, which results
in the definition of a dynamic array for which only those entries exist that are read in from the data
file. The latter only contains the list of defined arcs (using an array format that is usually referred to as
sparse format as opposed to the dense format where all entries must be defined). Note that the objective
function of this problem is simply a single variable (the fictitious end task).

model "B-1 Stadium construction (First part)"
uses "mmxprs"

declarations
N = 19 ! Number of tasks in the project

! (last = fictitious end task)
TASKS=1..N
ARC: array(range,range) of real ! Matrix of the adjacency graph
DUR: array(TASKS) of real ! Duration of tasks
start: array(TASKS) of mpvar ! Start times of the tasks

end-declarations

initializations from ’b1stadium.dat’
ARC DUR

end-initializations

! Precedence relations between tasks
forall(i,j in TASKS | ARC(i,j)=1) start(i) + DUR(i) <= start(j)

! Solve the first problem: minimize the total duration
minimize(start(N))

end-model

7.1.3 Results for question 1

The execution of the program gives us a duration of 64 weeks to complete the construction of the sta-
dium, which correspond to 1 year and 3 months. A possible solution is represented in Figure 7.2 (there
are several possible plans, since for instance task 10 may start any time in the interval [26,59] without
having any effect on the total completion time). In this bar chart every task is represented by a rectangle
the length of which is proportional to the duration of the task. The vertical position of the tasks has no
signification. The shaded areas in the rectangles representing the tasks correspond to the maximum time
by which the task may be shortened (see question 2).

7.1.4 Model formulation for question 2

This second problem is called scheduling with project crashing. To reduce the total duration of the
project, we need to take into account the result of the preceding optimization run. We define variables
savei that correspond to the number of weeks that we wish to save for every task i. The column ‘Max.
reduct.’ in Table 7.1 gives an upper bound on these variables savei. We call MAXWi this maximum
reduction (in weeks). The constraints (7.1.4) must be satisfied for all tasks i except the last, fictitious task
N.

∀i ∈ TASKS\{N} : savei ≤ MAXWi (7.1.4)
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Figure 7.2: Solution to question 1

For the last task, the variable saveN represents the number of weeks the project finishes earlier than the
solution obj1 calculated in answer to question 1. The new completion time of the project startN must be
equal to the previous completion time minus the advance saveN, which leads to the constraint (7.1.5).

startN = obj1 − saveN (7.1.5)

The constraints (7.1.1) need to be modified to take into account the new variables savei. The new com-
pletion time of a task is equal to its start, plus its duration, minus the savings, or starti + DURi − savei. We
rename these constraints to (7.1.6).

∀(i, j) ∈ ARCS : starti + DURi − savei ≤ startj (7.1.6)

The objective has also been redefined by the second question. We now want to maximize the builder’s
profit. For every week finished early, he receives a bonus of BONUS kBC. In exchange, the savings in time
for a task i costs COSTi kBC (column ‘Add. cost per week’ of Table 7.1). The new objective function will be
labelled (7.1.7).

maximize BONUS · saveN −
∑

i∈TASKS\{N}

COSTi · savei (7.1.7)

The new mathematical model consists of relations (7.1.6), (7.1.7), (7.1.3), (7.1.4), and (7.1.5), and the
non-negativity conditions for variables savei.

7.1.5 Implementation of question 2

It is possible to implement the model for question 2 as an addition to the model for question 1 shown
above, all in a single Mosel program. This makes it possible to retrieve the solution value of the first
problem and use it in the definition of the second problem without the need for any interaction.

Since we need to make some additions to the first model, we repeat the complete example. The additions
to the previous implementation of the first part are the following:

• A solution printing subroutine: we want to print the solution to the problem twice (that is, the
start times assigned to tasks). To avoid having to repeat the same lines of code several times we
define a subroutine that is called whenever we want to print a solution. The third line of the
model now contains the declaration of the procedure print_sol that is defined at the end of the
program. This declaration (using the keyword forward ) is required if a user-defined subroutine is
called before it is defined. A subroutine has a similar structure to a model in Mosel; we shall see
more examples of subroutines in the following chapters.

• The precedence constraints are named: Mosel defines models incrementally. If we simply add the
new definition of the precedence constraints in the second part of the model, we also keep the pre-
vious definition of these constraints. By naming the constraints and re-assigning them we override
the first definition.

• A real number obj1 is used to store the solution value of the first problem.

After solving the second problem, we print the solution value of this problem using the function getsol
(we could equally have used getobjval , this is just to make clear which is the constraint that defines
the current objective function). If it is applied to a constraint, the function getsol returns its evaluation
with the current solution (note that a constraint is stored in the form variableterms − RHSvalue which is
the expression that is evaluated by the function).
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model "B-1 Stadium construction (Complete model)"
uses "mmxprs"

forward procedure print_sol

declarations
N = 19 ! Number of tasks in the project

! (last = fictitious end task)
TASKS=1..N
ARC: array(range,range) of real ! Matrix of the adjacency graph
DUR: array(TASKS) of real ! Duration of tasks
start: array(TASKS) of mpvar ! Start times of tasks
obj1: real ! Solution of the first problem

end-declarations

initializations from ’b1stadium.dat’
ARC DUR

end-initializations

! Precedence relations between tasks
forall(i,j in TASKS | ARC(i,j)=1)

Prec(i,j):= start(i) + DUR(i) <= start(j)

! Solve the first problem: minimize the total duration
minimize(start(N))
obj1:=getobjval

! Solution printing
print_sol

! **** Extend the problem ****

declarations
BONUS: integer ! Bonus per week finished earlier
MAXW: array(TASKS) of real ! Max. reduction of tasks (in weeks)
COST: array(TASKS) of real ! Cost of reducing tasks by a week
save: array(TASKS) of mpvar ! Number of weeks finished early

end-declarations

initializations from ’b1stadium.dat’
MAXW BONUS COST

end-initializations

! Second objective function
Profit:= BONUS*save(N) - sum(i in 1..N-1) COST(i)*save(i)

! Redefine precedence relations between tasks
forall(i,j in TASKS | ARC(i,j)=1)

Prec(i,j):= start(j) - start(i) + save(i) >= DUR(i)

! Total duration
start(N) + save(N) = obj1

! Limit on number of weeks that may be saved
forall(i in 1..N-1) save(i) <= MAXW(i)

! Solve the second problem: maximize the total profit
maximize(Profit)

! Solution printing
writeln("Total profit: ", getsol(Profit))
print_sol

!-----------------------------------------------------------------

procedure print_sol
writeln("Total duration: ", getsol(start(N)), " weeks")
forall(i in 1..N-1)

write(strfmt(i,2), ": ", strfmt(getsol(start(i)),-3),
if(i mod 9 = 0,"\n",""))

writeln
end-procedure

end-model
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7.1.6 Results for question 2

The solution of the complete problem shows that it is possible to complete the project 10 weeks ear-
lier with a total profit of BC 87k for the builder. The new start times are shown in the schedule that is
represented below (note that this is again one of several possible plans).
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Figure 7.3: Solution to question 2

7.2 Flow-shop scheduling

A workshop that produces metal pipes on demand for the automobile industry has three machines for
bending the pipes, soldering the fastenings, and assembling the links. The workshop has to produce
six pieces, for which the durations of the processing steps (in minutes) are given in the following table.
Every workpiece first goes to bending, then to soldering, and finally to assembly of the links. Once
started, any operations must be carried out without interruption, but the workpieces may wait between
the machines.

Table 7.2: Processing durations in minutes

Workpiece 1 2 3 4 5 6

Bending 3 6 3 5 5 7

Soldering 5 4 2 4 4 5

Assembly 5 2 4 6 3 6

Every machine only processes one piece at a time. A workpiece may not overtake any other by passing
onto the following machine. This means that if at the beginning a sequence of the workpieces is estab-
lished, they will be processed on every machine in exactly this order. Which is the sequence of workpieces
that minimizes the total time for completing all pieces?

7.2.1 Model formulation

From now on, we work with MACH = {1, . . . , NM} the set of machines and JOBS = {1, . . . , NJ} the set
of pieces (jobs) to produce. The processing duration of a piece j on a machine m is given by DURm,j.
Every workpiece has to run through the machines 1, . . . , NM in exactly this order, without being able to
overtake other pieces. We can therefore define a schedule by the initial order of the workpieces. The
duration of the schedule is given as the time instant when the machine NM finishes the last job.

The sequence of the jobs can be defined with the help of binary variables rankjk that are 1 if and only
if piece j has the rank (position) k in the starting sequence (7.2.1). The set of starting positions RANKS is
the same as the set of jobs JOBS since every job needs to be assigned a rank (7.2.2), and every rank must
be occupied by one job only (7.2.3). These constraints are typical of assignment problems (see also the
assignment of personnel to workstations in Chapter 14).

∀j ∈ JOBS, k ∈ RANKS : rankjk ∈ {0, 1} (7.2.1)

∀k ∈ RANKS :
∑

j∈JOBS

rankjk = 1 (7.2.2)

∀j ∈ JOBS :
∑

k∈RANKS

rankjk = 1 (7.2.3)
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In this problem it is relatively difficult to calculate the starting or completion times of the operations
from the ranks. To obtain these values, we introduce two additional sets of variables emptymk and waitmk

(7.2.4) – (7.2.5). The variables emptymk (with m in MACH and k in 1, . . . , NJ− 1) denote the time between
the processing of the jobs with rank k and k + 1 on a machine m, i.e. the time that the machine m is
idle after the termination of the workpiece with rank k. A variable waitmk (with m in 1, . . . , NM and k in
RANKS) is the waiting time for the job with rank k between its processing on machines m and m + 1.

The workpieces can be processed without any pause on the first machine that does not have to wait
for any preceding machines, so the variables empty1k are therefore always 0 (7.2.6). Similarly, the first
workpiece in the sequence can pass through all machines without any waiting times, which means the
variables waitm1 can also be fixed to 0 (7.2.7).

∀m ∈ MACH, k = 1, . . . , NJ− 1 : emptymk ≥ 0 (7.2.4)

∀m = 1, . . . , NM− 1, k ∈ RANKS : waitmk ≥ 0 (7.2.5)

∀k = 1, . . . , NJ− 1 : empty1k = 0 (7.2.6)

∀m = 1, . . . , NM− 1 : waitm1 = 0 (7.2.7)

To simplify the formulation of the following constraints, we introduce the notation durmk for the process-
ing duration of the job of rank k on machine m, defined by the relations (7.2.8). Through the constraints
(7.2.3) only a single variable rankjk takes the value 1 in this sum, and only the duration of the correspond-
ing workpiece will be counted. Using this notation and the variables emptymk we are now able to write
down the objective function (7.2.9).

∀m ∈ MACH, k ∈ RANKS : durmk =
∑

j∈JOBS

DURmj · rankjk (7.2.8)

minimize
NM−1∑

m=1

durm1 +
NJ−1∑
k=1

emptyNM,k =
NM−1∑

m=1

∑
j∈JOBS

DURmj · rankj1 +
NJ−1∑
k=1

emptyNM,k (7.2.9)

The first sum results in the point of time when the last machine (machine NM) starts working: this is the
total time required for the first job on all preceding machines (1, . . . , NM − 1). The second sum is the
total duration of idle times between processing operations on the last machine. The following graphic
represents these quantities. Normally, we also needed to count the durations of all operations on the last
machine, but this is a constant and may be omitted.

durNM,2 emptyNM,NJ-1 durNM,NJemptyNM,1durNM,1

dur21

dur11

...

Machine 2

Machine 1

...

Machine NM ...

Figure 7.4: Relation between production and idle time

The tricky bit that is now left is to link the variables waitmk and emptymk to the variables rankjk. To do so,
we introduce dnextmk, the time between the completion of job k on machine m and the start of job k + 1
on machine m + 1.

durmk

emptymk

durm+1,k
emptym+1,k

durm,k+1

durm+1,k+1

waitm,k+1mkwait

Machine m+1

Machine m

Figure 7.5: Calculation of the total duration
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With the help of Figure 7.5, it is easy to see that the equations (7.2.10) hold. These can be developed to
the constraints (7.2.11).

∀m = 1, . . . , NM− 1, k = 1, . . . , NJ− 1 :

dnextmk = emptymk + durm,k+1 + waitm,k+1 = waitmk + durm+1,k + emptym+1,k (7.2.10)

∀m = 1, . . . , NM− 1, k = 1, . . . , NJ− 1 :

emptymk +
∑

j∈JOBS

DURmj · rankj,k+1 + waitm,k+1

= waitmk +
∑

j∈JOBS

DURm+1,j · rankjk + emptym+1,k (7.2.11)

The resulting model is given through the lines (7.2.1) to (7.2.7), (7.2.9), and (7.2.11). This is a mixed-integer
problem since only the variables rankjk are constrained to be integer (more exactly, binary).

7.2.2 Implementation

The following Mosel program implements the mathematical model of the previous section. In order to
extract the resulting schedule more easily, variables startmk have been added that indicate the start of
the job with rank k on machine m. These variables are linked to the rankjk variables via an additional set
of constraints.

model "B-2 Flow shop"
uses "mmxprs"

declarations
NM = 3 ! Number of machines
NJ = 6 ! Number of jobs
MACH = 1..NM
RANKS = 1..NJ
JOBS = 1..NJ

DUR: array(MACH,JOBS) of integer ! Durations of jobs on machines

rank: array(JOBS,RANKS) of mpvar ! 1 if job j has rank k, 0 otherwise
empty: array(MACH,1..NJ-1) of mpvar ! Space between jobs of ranks k and k+1
wait: array(1..NM-1,RANKS) of mpvar ! Waiting time between machines m

! and m+1 for job of rank k
start: array(MACH,RANKS) of mpvar ! Start of job rank k on machine m

! (optional)
end-declarations

initializations from ’b2flowshop.dat’
DUR

end-initializations

! Objective: total waiting time (= time before first job + times between
! jobs) on the last machine

TotWait:= sum(m in 1..NM-1,j in JOBS) (DUR(m,j)*rank(j,1)) +
sum(k in 1..NJ-1) empty(NM,k)

! Every position gets a jobs
forall(k in RANKS) sum(j in JOBS) rank(j,k) = 1

! Every job is assigned a rank
forall(j in JOBS) sum(k in RANKS) rank(j,k) = 1

! Relations between the end of job rank k on machine m and start of job on
! machine m+1

forall(m in 1..NM-1,k in 1..NJ-1)
empty(m,k) + sum(j in JOBS) DUR(m,j)*rank(j,k+1) + wait(m,k+1) =

wait(m,k) + sum(j in JOBS) DUR(m+1,j)*rank(j,k) + empty(m+1,k)

! Calculation of start times (to facilitate the interpretation of results)
forall(m in MACH, k in RANKS)

start(m,k) = sum(u in 1..m-1,j in JOBS) DUR(u,j)*rank(j,1) +
sum(p in 1..k-1,j in JOBS) DUR(m,j)*rank(j,p) +
sum(p in 1..k-1) empty(m,p)

! First machine has no idle times
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forall(k in 1..NJ-1) empty(1,k) = 0

! First job has no waiting times
forall(m in 1..NM-1) wait(m,1) = 0

forall(j in JOBS, k in RANKS) rank(j,k) is_binary

! Solve the problem
minimize(TotWait)

end-model

It may be noted that it is possible to use an alternative formulation with Special Ordered Sets of type 1
(SOS1) instead of constraining variables rankjk to be binary. The corresponding line in the program above
needs to be replaced by one of the following two lines:

forall(j in JOBS) sum(k in RANKS) k*rank(j,k) is_sos1

or

forall(k in RANKS) sum(j in JOBS) j*rank(j,k) is_sos1

In the first case, we define a SOS1 for every job, where the rank number is used as weight coefficient in
the set; in the second case, a SOS1 is established for every rank position using the job numbers as weight
coefficients. Exactly one variable of a SOS1 takes a value greater than 0, and due to the constraints (7.2.2)
and (7.2.3) this value will be 1.

7.2.3 Results

The minimum waiting time calculated for the last machine is 9. With the variables startmk we can deduce
a total duration of 35. A schedule (there are several possibilities) that has this minimum duration is shown
in the following table.

Table 7.3: Optimal schedule of workpieces

Rank number 1 2 3 4 5 6

Workpiece number 3 1 4 6 5 2

Start on machine 1: 0 3 6 11 18 23

Start on machine 2: 3 6 11 18 23 29

Start on machine 3: 5 11 16 23 29 33

7.3 Job Shop Scheduling

A company has received an order for three types of wallpapers: one (paper 1) has a blue background with
yellow patterns, another (paper 2) a green background and blue and yellow patterns, and the last (paper
3) has a yellow background with blue and green patterns. Every paper type is produced as a continuous
roll of paper that passes through several machines, each printing a different color. The order in which
the papers are run through the machines depends on the design of the paper: for paper 1 first the blue
background and then the yellow pattern is printed. After the green background for paper 2, first the
blue and then the yellow patterns are printed. The printing of paper 3 starts with the yellow background,
followed by the blue and then the green patterns.

Paper 3

Green Yellow

Paper 1

Paper 2 Paper 2

Paper 3

Paper 3 Paper 1 Paper 2

Paper 2 Paper 1 Paper 3

Blue

Figure 7.6: Production flows through printing machines

The processing times differ depending on the surface that needs to be printed. The times (in minutes) for
applying every color of the three paper types are given in the following table.
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Table 7.4: Times required for applying every color

Machine Color Paper 1 Paper 2 Paper 3

1 Blue 45 20 12

2 Green - 10 17

3 Yellow 10 34 28

Knowing that every machine can only process one wallpaper at a time and that a paper cannot be pro-
cessed by several machines simultaneously, how should the paper printing be scheduled on the machines
in order to finish the order as early as possible?

7.3.1 Model formulation

Let JOBS be the set of jobs (paper types) and MACH the set of machines. We are going to use the variables
startmj for the start of job j on machine m (supposing the the schedule starts at time 0). We write DURmj

for the processing duration of job j on machine m. The variable finish indicates the completion time of
the entire schedule. Since we want to minimize the completion time, the objective function is simply
(7.3.1).

minimize finish (7.3.1)

The schedule terminates when all paper types are completed, that is, when the last operation for every
types finishes. The completion time of the schedule therefore needs to satisfy the following constraints
(7.3.2) – (7.3.4).

finish ≥ start31 + DUR31 (7.3.2)

finish ≥ start32 + DUR32 (7.3.3)

finish ≥ start23 + DUR23 (7.3.4)

The constraints between processing operations are of two types: the so-called conjunctive constraints
represent the precedences between the operations for a single paper type, and the disjunctive constraints
express the fact that a machine can only execute a single operation at a time.

To start, we consider the conjunctive constraints. Paper 1 first goes onto the machine printing the blue
color (machine 1), and then onto the one printing yellow (machine 3). This means that the processing
of paper 1 on machine 1 needs to be finished when the processing on machine 3 starts, and hence, the
constraint (7.3.5) needs to hold.

start11 + DUR11 ≤ start31 (7.3.5)

Similarly, paper 2 is first processed on machine 2, then on machine 1 and then on machine 3, which leads
to the constraints (7.3.6) and (7.3.7).

start22 + DUR22 ≤ start12 (7.3.6)

start12 + DUR12 ≤ start32 (7.3.7)

For paper 3, that is processed in the order machine 3, machine 1, machine 2, we obtain the following
constraints (7.3.8) and (7.3.9).

start33 + DUR33 ≤ start13 (7.3.8)

start13 + DUR13 ≤ start23 (7.3.9)

We now still need to model the disjunctions. Machine 1 has to process all three wallpaper types. Since
a machine can only perform a single operation at any time, either paper 1 is printed before paper 2 or
paper 2 is printed before paper 1. This is expressed by the following:

start11 + DUR11 ≤ start12 ∨ start12 + DUR12 ≤ start11

These two mutually exclusive constraints can be written as the constraints (7.3.10) and (7.3.11), where M
is a large positive number and y1 is a binary variable that takes the value 1 if paper 1 comes before paper
2 on machine 1, and 0 otherwise.

start11 + DUR11 ≤ start12 + M · (1− y1) (7.3.10)

start12 + DUR12 ≤ start11 + M · y1 (7.3.11)
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Let us see why this claim is correct. If paper 1 comes before paper 2 on machine 1, then y1 has the value
1 and we obtain the constraints start11 + DUR11 ≤ start12 and start12 + DUR12 ≤ start11 + M. The first
constraint requires that the processing of paper 2 on machine 1 takes places after the printing of paper 1
is terminated. Whatever value start11 and start12 may take, the second constraint is automatically fulfilled
due to the large value M. If, on the contrary, paper 2 is processed before paper 1 on machine 1, then y1

has the value 0 and we obtain the constraints start11 + DUR11 ≤ start12 + M and start12 + DUR12 ≤ start11.
This time, the first constraint is automatically fulfilled and the second guarantees that the processing of
wallpaper 2 is terminated before the start of paper 1.

Proceeding in this way, we can translate all pairs of disjunctions between operations on the same machine
by defining a binary variable yd for every disjunction (d = 1, . . . , ND). We thus obtain the following
constraints (7.3.12) – (7.3.23):

start11 + DUR11 ≤ start13 + M · (1− y2) (7.3.12)

start13 + DUR13 ≤ start11 + M · y2 (7.3.13)

start12 + DUR12 ≤ start13 + M · (1− y3) (7.3.14)

start13 + DUR13 ≤ start12 + M · y3 (7.3.15)

start22 + DUR22 ≤ start23 + M · (1− y4) (7.3.16)

start23 + DUR23 ≤ start22 + M · y4 (7.3.17)

start31 + DUR31 ≤ start32 + M · (1− y5) (7.3.18)

start32 + DUR32 ≤ start31 + M · y5 (7.3.19)

start31 + DUR31 ≤ start33 + M · (1− y6) (7.3.20)

start33 + DUR33 ≤ start31 + M · y6 (7.3.21)

start32 + DUR32 ≤ start33 + M · (1− y7) (7.3.22)

start33 + DUR33 ≤ start32 + M · y7 (7.3.23)

The constraints (7.3.12) – (7.3.15) establish the rest of the disjunctions on machine 1, constraints (7.3.16)
and (7.3.17) the disjunction of papers 2 and 3 on machine 2, and the constraints (7.3.18) – (7.3.23) the
disjunctions between the processing of the three papers on machine 3.

To avoid numerical instabilities, the value of M should not be chosen too large. It is, for instance, possible
to use as its value an upper bound UB on the schedule determined through some heuristic. In this case
the following constraint (7.3.24) needs to be added to the mathematical model, which may also help to
reduce the number of nodes explored by the tree search.

finish ≤ UB (7.3.24)

In our small example, we are going to use as the value for M the sum of all processing times as this gives
a rough but safe upper bound.

To complete the formulation of the model, we need to add the non-negativity constraints for the start
time variables (7.3.25) and constrain the yd to be binaries (7.3.26).

∀m ∈ MACH, j ∈ JOBS : startmj ≥ 0 (7.3.25)

∀d ∈ {1, . . . , ND} : yd ∈ {0, 1} (7.3.26)

By renumbering the operations (tasks) using a single subscript (resulting in the set TASKS) we obtain a
more general model formulation. The precedence relations and disjunctions can be represented as a
disjunctive graph G = (TASKS, ARCS, DISJS) where ARCS is the set of arcs (precedences) and DISJS the set
of disjunctions. There is an arc (i, j) between two tasks i and j if i is the immediate predecessor of j. A
disjunction [i, j] indicates that tasks i and j are disjoint. With these conventions we obtain the following
model (7.3.27) – (7.3.32).

minimize finish (7.3.27)

∀j ∈ TASKS : startj + DURj ≤ finish (7.3.28)

∀(i, j) ∈ ARCS : starti + DURi ≤ startj (7.3.29)

∀[i, j] ∈ DISJ : starti + DURi ≤ startj + M · yij ∧ startj + DURj ≤ starti + M · (1− yij) (7.3.30)

∀j ∈ TASKS : startj ≥ 0 (7.3.31)

∀[i, j] ∈ DISJ : yij ∈ {0, 1} (7.3.32)

The objective function remains the same as before. The constraints (7.3.2) – (7.3.4) are generalized by
the constraints (7.3.28): the completion time of the schedule is greater than or equal to the completion
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time of the last operation for every paper time, and hence to the completion times of all operations. The
constraints (7.3.29) state the conjunctions (precedences) and (7.3.30) the disjunctions. The last two sets
of constraints are the non-negativity conditions for the start time variables (7.3.31) and the constraints
turning the disjunction variables yij into binaries.

7.3.2 Implementation

The following Mosel program implements the mathematical model given in lines (7.3.27) – (7.3.32) of the
previous section, that is, it uses a single index set TASKS for numbering the operations instead of a double
machine-paper type index for start time variables and durations. In the set of examples on the book’s
website a second implementation is provided that uses the double subscript of the first mathematical
model (lines (7.3.1) – (7.3.25) of the previous section).

The sequence of operations for every paper type is given in the form of a list of precedences: an entry in
the table ARCij is defined if task i immediately precedes task j. The disjunctions are input in a similar way:
an entry in the table DISJij is defined if and only if tasks i and j are processed on the same machine – and
are therefore in disjunction.

model "B-3 Job shop"
uses "mmxprs"

declarations
TASKS=1..8 ! Set of tasks (operations)

DUR: array(TASKS) of integer ! Durations of jobs on machines
ARC: dynamic array(TASKS,TASKS) of integer ! Precedence graph
DISJ: dynamic array(TASKS,TASKS) of integer ! Disjunctions between jobs

start: array(TASKS) of mpvar ! Start times of tasks
finish: mpvar ! Schedule completion time
y: array(range) of mpvar ! Disjunction variables

end-declarations

initializations from ’b3jobshop.dat’
DUR ARC DISJ

end-initializations

BIGM:= sum(j in TASKS) DUR(j) ! Some (sufficiently) large value

! Precedence constraints
forall(j in TASKS) finish >= start(j)+DUR(j)
forall(i,j in TASKS | exists(ARC(i,j)) ) start(i)+DUR(i) <= start(j)

! Disjunctions
d:=1
forall(i,j in TASKS | i<j and exists(DISJ(i,j)) ) do

create(y(d))
y(d) is_binary
start(i)+DUR(i) <= start(j)+BIGM*y(d)
start(j)+DUR(j) <= start(i)+BIGM*(1-y(d))
d+=1

end-do

! Bound on latest completion time
finish <= BIGM

! Solve the problem: minimize latest completion time
minimize(finish)

end-model

The implementation of this model uses some features of the Mosel language that have not yet been
introduced:

In the declarations block the reader may have noted the keywords dynamic array and range . Both
indicate that the corresponding arrays are defined as dynamic arrays. range indicates an unknown index
set that is a consecutive sequence of integers (which may include 0 or negative values). We do not have
to enumerate the array of variables y so that there is no need to name its index set. We could proceed
in the same way for the arrays ARC and DISJ, but since we know that their index sets are subsets of
TASKS (which is also used later on for enumerating the array entries) we use this name for the index sets.
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However, the set TASKS is defined as a constant set directly at its declaration, which means that any array
with this index will be created with a fixed size. For both arrays, ARC and DISJ only very few entries are
defined, and it is therefore preferable to force them to be initialized dynamically with the data read from
file – this is done with the keyword dynamic .

In the forall loops enumerating the precedence arcs and the disjunctions, we use the function exists
to test whether an array entry is defined. For arrays with few defined entries (sparse arrays) this is a very
efficient way of enumerating these entries. Note that for an efficient use of exists the index sets in the
loop must be the same as those used in the definition of the array that the condition bears on.

Another new feature is the forall-do loop used in the formulation of the disjunctions: so far we have
only seen the inline version that loops over a single statement. The full version needs to be used if the
loop applies to a block of program statements.

7.3.3 Results

After solving this problem we obtain a total completion time of 97. The start and completion times for
all jobs are given in the following table (there are several possible solutions).

Table 7.5: Starting times of operations

Paper 1 Paper 2 Paper 3

Blue 42 – 87 10 – 30 30 – 42

Green – 0 – 10 42 – 59

Yellow 87 – 97 30 – 64 0 – 28

This schedule may be represented as a bar chart, also called a Gantt chart, that has the time as its horizon-
tal axis. Every task (job) is represented by a rectangle, the length of which is proportional to its duration.
All operations on a single machine are placed in the same line.

Yellow
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20 30 40 50 60 70 80 90
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Paper 3 Paper 2 Paper 1

100

Figure 7.7: Gantt chart

7.4 Sequencing jobs on a bottleneck machine

In workshops it frequently happens that a single machine determines the throughput of the entire pro-
duction (for example, a machine of which only one is available, the slowest machine in a production
line, etc.). This machine is called the critical machine or the bottleneck. In such a case it is important to
schedule the tasks that need to be performed by this machine in the best possible way.

The aim of the problem is to provide a simple model for scheduling operations on a single machine
and that may be used with different objective functions. We shall see here how to minimize the total
processing time, the average processing time, and the total tardiness.

A set of tasks (or jobs) is to be processed on a single machine. The execution of tasks is non-preemptive
(that is, an operation may not be interrupted before its completion). For every task i its release date and
duration are given. For the last optimization criterion (total tardiness), a due date (latest completion
time) is also required to measure the tardiness, that is, the amount of time by which the completion of
jobs exceeds their respective due dates. The following table lists the data for our problem.

What is the optimal value for each of the objectives: minimizing the total duration of the schedule (=
makespan), the mean processing time or the total tardiness?
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Table 7.6: Task time windows and durations

Job 1 2 3 4 5 6 7

Release date 2 5 4 0 0 8 9

Duration 5 6 8 4 2 4 2

Due date 10 21 15 10 5 15 22

7.4.1 Model formulation

We are going to deal with the different objective functions in sequence, but the body of the model will
remain the same. For writing a model that corresponds to the three objectives at a time, we are going to
use binary variables rankjk (j, k ∈ JOBS = {1, . . . , NJ}) that have the value 1 if job j has the position (rank)
k and 0 in all other cases. There can be only one job per position k and every job j takes a single position.
This leads to constraints (7.4.1) and (7.4.2).

∀k ∈ JOBS :
∑

j∈JOBS

rankjk = 1 (7.4.1)

∀j ∈ JOBS :
∑

k∈JOBS

rankjk = 1 (7.4.2)

The processing time for the job in position k is given by the sum
∑

j∈JOBS DURj ·rankjk (where DURj denotes
the duration given in the table in the previous section). Only for the job j in position k does the variable
rankjk have the value 1. By multiplying with the duration of job j, we are able to retrieve the duration
of the job at position k. Using this technique we can write the constraints of our problem. If startk is the
start time of the job at position k, this value must be at least as great as the release date (given as RELj)
of the job assigned to this position. This gives the constraints (7.4.3):

∀k ∈ JOBS : startk ≥
∑

j∈JOBS

RELj · rankjk (7.4.3)

Another constraint used by all models specifies that two jobs cannot be processed simultaneously. The
job in position k + 1 must start after the job in position k has finished, hence the constraints (7.4.4).

∀k ∈ {1, . . . , NJ− 1} : startk+1 ≥ startk +
∑

j∈JOBS

DURj · rankjk (7.4.4)

Objective 1: The first objective is to minimize the makespan (completion time of the schedule), or equiv-
alently, to minimize the completion time of the last job (job with rank k). The line (7.4.5) models this
objective. The complete model is then given by the following:

minimize startNJ +
∑

j∈JOBS

DURj · rankj,NJ (7.4.5)

∀k ∈ JOBS :
∑

j∈JOBS

rankjk = 1 (7.4.6)

∀j ∈ JOBS :
∑

k∈JOBS

rankjk = 1 (7.4.7)

∀k ∈ JOBS : startk ≥
∑

j∈JOBS

RELj · rankjk (7.4.8)

∀k ∈ {1, . . . , NJ− 1} : startk+1 ≥ startk +
∑

j∈JOBS

DURj · rankjk (7.4.9)

∀k ∈ JOBS : startk ≥ 0 (7.4.10)

∀j, k ∈ JOBS : rankjk ∈ {0, 1} (7.4.11)

Objective 2: For minimizing the average processing time, we introduce additional variables compk (rep-
resenting the completion times of the job in position k) to simplify the notation. We add the following
two sets of constraints to the problem to obtain these completion times:

∀k ∈ JOBS : compk = startk +
∑

j∈JOBS

DURj · rankjk (7.4.12)

∀k ∈ JOBS : compk ≥ 0 (7.4.13)
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The new objective (7.4.14) consists of minimizing the average processing time, or equivalently, minimizing
the sum of the job completion times.

minimize
∑

k∈JOBS

compk (7.4.14)

The complete model for the second objective consists of lines (7.4.14) and (7.4.6) to (7.4.13).

Objective 3: If we now aim to minimize the total tardiness, we again introduce new variables – this time
to measure the amount of time that jobs finish after their due date. We write latek for the variable that
corresponds to the tardiness of the job with rank k. Its value is the difference between the completion
time of a job j and its due date DUEj. If the job finishes before its due date, the value must be 0. We thus
obtain the constraints (7.4.15) and (7.4.16).

∀k ∈ JOBS : latek = max(0, compk −
∑

j∈JOBS

DUEj · rankjk) (7.4.15)

∀k ∈ JOBS : latek ≥ 0 (7.4.16)

The new objective function (7.4.17) minimizes the total tardiness of all jobs:

minimize
∑

k∈JOBS

latek (7.4.17)

The new model is given by the constraints (7.4.17), (7.4.6) to (7.4.13), and (7.4.15) to (7.4.16).

7.4.2 Implementation

The Mosel implementation below solves the same problem three times, each time with a different ob-
jective, and prints the resulting solutions. To simplify the representation, we use the completion time
variables already in the formulation of the first objective. For the calculation of the tardiness of jobs, this
implementation uses the fact that by default all variables are non-negative. That means that if the con-
straint that calculates the difference between the completion time and the due date results in a negative
lower bound for latek, then the Xpress-Optimizer will set this variable to 0.

model "B-4 Sequencing"
uses "mmxprs"

forward procedure print_sol(obj:integer)

declarations
NJ = 7 ! Number of jobs
JOBS=1..NJ

REL: array(JOBS) of integer ! Release dates of jobs
DUR: array(JOBS) of integer ! Durations of jobs
DUE: array(JOBS) of integer ! Due dates of jobs

rank: array(JOBS,JOBS) of mpvar ! =1 if job j at position k
start: array(JOBS) of mpvar ! Start time of job at position k
comp: array(JOBS) of mpvar ! Completion time of job at position k
late: array(JOBS) of mpvar ! Tardiness of job at position k
finish: mpvar ! Completion time of the entire schedule

end-declarations

initializations from ’b4seq.dat’
DUR REL DUE

end-initializations

! One job per position and one position per job
forall(k in JOBS) sum(j in JOBS) rank(j,k) = 1
forall(j in JOBS) sum(k in JOBS) rank(j,k) = 1

! Sequence of jobs
forall(k in 1..NJ-1)

start(k+1) >= start(k) + sum(j in JOBS) DUR(j)*rank(j,k)

! Start times
forall(k in JOBS) start(k) >= sum(j in JOBS) REL(j)*rank(j,k)

! Completion times
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forall(k in JOBS) comp(k) = start(k) + sum(j in JOBS) DUR(j)*rank(j,k)

forall(j,k in JOBS) rank(j,k) is_binary

! Objective function 1: minimize latest completion time
forall(k in JOBS) finish >= comp(k)
minimize(finish)
print_sol(1)

! Objective function 2: minimize average completion time
minimize(sum(k in JOBS) comp(k))
print_sol(2)

! Objective function 3: minimize total tardiness
forall(k in JOBS) late(k) >= comp(k) - sum(j in JOBS) DUE(j)*rank(j,k)
minimize(sum(k in JOBS) late(k))
print_sol(3)

!-----------------------------------------------------------------

! Solution printing
procedure print_sol(obj:integer)

writeln("Objective ", obj, ": ", getobjval,
if(obj>1, " completion time: " + getsol(finish), "") )

write("\t")
forall(k in JOBS) write(strfmt(getsol(sum(j in JOBS) j*rank(j,k)),4))
write("\nStart\t")
forall(k in JOBS) write(strfmt(getsol(start(k)),4))
write("\nEnd\t")
forall(k in JOBS) write(strfmt(getsol(comp(k)),4))
write("\nDue\t")
forall(k in JOBS) write(strfmt(getsol(sum(j in JOBS) DUE(j)*rank(j,k)),4))
if(obj=3) then

write("\nLate\t")
forall(k in JOBS) write(strfmt(getsol(late(k)),4))

end-if
writeln

end-procedure

end-model

Similarly to the implementation of the first problem in this chapter, we define a procedure for printing
out the solution that is called after every optimization run. In this example, we want to introduce some
variations in the way the solutions are printed depending on the optimization criterion, we therefore
pass the number of the latter as parameter to the subroutine. For selecting the information that is to be
printed we use two different versions of the if statement: the inline if and if-then that includes a
block of statements.

The reader may have been wondering why we did not use the probably more obvious pair start − end
for naming the variables in this example: end is a keyword of the Mosel language (see Section 5.2.3),
which means that neither end nor ENDmay be redefined by a Mosel program. It is possible though, to
use versions combining lower and upper case letters, like End, but to prevent any possible confusion we
do not recommend their use.

7.4.3 Results

The minimum makespan of the schedule is 31, the minimum sum of completion times is 103 (which gives
an average of 103 / 7 = 14. 71). A schedule with this objective value is 4 → 5 → 2 → 6 → 7 → 3 → 1. If
we compare the completion times with the due dates we see that the jobs 1, 2, 3, and 6 finish late (with
a total tardiness of 21). The minimum tardiness is 18. A schedule with this tardiness is 5→ 1→ 4→ 6→
2 → 7 → 3 where jobs 4 and 7 finish one time unit late and job 3 is late by 16, it terminates at time 31
instead of being ready at its due date 15. This schedule has an average completion time of 15.71.

7.5 Paint production

As a part of its weekly production a paint company produces five batches of paints, always the same, for
some big clients who have a stable demand. Every paint batch is produced in a single production process,
all in the same blender that needs to be cleaned between two batches. The durations of blending paint
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batches 1 to 5 are respectively 40, 35, 45, 32, and 50 minutes. The cleaning times depend on the colors
and the paint types. For example, a long cleaning period is required if an oil-based paint is produced
after a water-based paint, or to produce white paint after a dark color. The times are given in minutes in
the following table CLEAN where CLEANij denotes the cleaning time between batch i and batch j.

Table 7.7: Matrix of cleaning times

1 2 3 4 5

1 0 11 7 13 11

2 5 0 13 15 15

3 13 15 0 23 11

4 9 13 5 0 3

5 3 7 7 7 0

Since the company also has other activities, it wishes to deal with this weekly production in the shortest
possible time (blending and cleaning). Which is the corresponding order of paint batches? The order
will be applied every week, so the cleaning time between the last batch of one week and the first of the
following week needs to be counted for the total duration of cleaning.

7.5.1 Model formulation

We may try to model this problem as an assignment problem like the assignment of personnel to work-
posts (Chapter 14) and the problem of flight connections (Chapter 11). Let JOBS = {1, . . . , NJ} be the set
of batches to produce, DURj the processing time for batch j, and CLEANij the cleaning time between the
consecutive batches i and j. We introduce decision variables succij that take the value 1 if and only if
batch j succeeds batch i. This means that we need to decide which successor is assigned to every batch i.
We thus find the classical formulation of an assignment problem.

minimize
∑

i∈JOBS

∑
j∈JOBS,j 6=i

(DURi + CLEANij) · succij (7.5.1)

∀i ∈ JOBS :
∑

j∈JOBS,j 6=i

succij = 1 (7.5.2)

∀j ∈ JOBS :
∑

i∈JOBS,i 6=j

succij = 1 (7.5.3)

∀i, j ∈ JOBS, i 6= j : succij ∈ {0, 1} (7.5.4)

Note that we do not use any variables succij with i = j since a batch may not appear more than once in
the production cycle. It would be possible to include these variables and penalize them through a large
value in the diagonal of CLEAN. The constraints (7.5.2) and (7.5.3) guarantee that every batch has a single
successor and a single predecessor.

The objective function (7.5.1) sums up the processing time of i and the cleaning time between i and j for
every pair of batches (i, j). Due to the constraints (7.5.2) and (7.5.3), for every batch i these durations will
only be counted for the batch j that immediately succeeds i (that is, the j for which succij = 1 holds).

Unfortunately, this model does not guarantee that the solution forms a single cycle. Solving it indeed
results in a total duration of 239 with an invalid solution that contains two sub-cycles 1 → 3 → 2 → 1
and 4 → 5 → 4. In Linear Programming, the constraints that force a set of assignment variables to form
a single cycle are tricky. A first possibility is to add the constraints (7.5.5) to our model.

∀S ⊆ {2, . . . , NJ} :
∑
(i,j)∈S

succij ≤ |S| − 1 (7.5.5)

If a solution contains a sub-cycle with a subset S of batches, the sum of the succij at 1 in S has the same
value as the number of batches in S. For example, there are three batches (1, 2, and 3) in the first sub-cycle
of the previous solution. By imposing a smaller cardinality, the constraints (7.5.5) force the sequence of
batches to ‘enter’ and ‘leave’ the set S. These constraints concern all subsets S that do not contain the first
batch (or any other fixed batch), because otherwise even the single cycle we wish to generate would be
excluded. This formulation generates an exponential number of constraints (2NJ−1). We therefore choose
a weaker formulation with a real variable yj per batch and NJ · (NJ− 1) constraints (7.5.7).

∀j ∈ JOBS : yj ≥ 0 (7.5.6)

∀i ∈ JOBS, ∀j = 2, . . . , NJ, i 6= j : yj ≥ yi + 1− NJ · (1− succij) (7.5.7)
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To understand these constraints, suppose the solution of the assignment problem consists of several sub-
cycles and we choose a sub-cycle that does not contain the batch 1, such as 4 → 5 → 4. The constraints
(7.5.7) with succij = 1 for this sub-cycle are:

y5 ≥ y4 + 1

y4 ≥ y5 + 1

By combining these constraints, we obtain y4 − 1 ≥ y5 ≥ y4 + 1 or −1 ≥ 1, a contradiction. A solution
that is divided into sub-cycles is therefore not feasible for the assignment problem with the additional
constraints (7.5.7). If, on the contrary, the cycle is not subdivided, then values for yj exist that fulfill the
constraints. This is for instance the case if yj denotes the rank of the batch j in the cycle, choosing batch
1 as the starting position (with y1 = 1). For the variables succij at 1, the constraints result in yj ≥ yi + 1
and are therefore satisfied. For the 0-valued variables succij they evaluate to yi − yj ≤ NJ− 1 and are also
satisfied since the yj take values between 1 and NJ, and hence their difference does not exceed NJ− 1.

To summarize, the mathematical model for our paint problem is the assignment problem in lines (7.5.1)
to (7.5.4) with the additional constraints in (7.5.6) and (7.5.7).

7.5.2 Implementation

The transformation of the mathematical model into a Mosel program is fairly straightforward.

model "B-5 Paint production"
uses "mmxprs"

declarations
NJ = 5 ! Number of paint batches (=jobs)
JOBS=1..NJ

DUR: array(JOBS) of integer ! Durations of jobs
CLEAN: array(JOBS,JOBS) of integer ! Cleaning times between jobs

succ: array(JOBS,JOBS) of mpvar ! =1 if batch i is followed by batch j,
! =0 otherwise

y: array(JOBS) of mpvar ! Variables for excluding subtours
end-declarations

initializations from ’b5paint.dat’
DUR CLEAN

end-initializations

! Objective: minimize the duration of a production cycle
CycleTime:= sum(i,j in JOBS | i<>j) (DUR(i)+CLEAN(i,j))*succ(i,j)

! One successor and one predecessor per batch
forall(i in JOBS) sum(j in JOBS | i<>j) succ(i,j) = 1
forall(j in JOBS) sum(i in JOBS | i<>j) succ(i,j) = 1

! Exclude subtours
forall(i in JOBS, j in 2..NJ | i<>j) y(j) >= y(i) + 1 - NJ * (1 - succ(i,j))

forall(i,j in JOBS | i<>j) succ(i,j) is_binary

! Solve the problem
minimize(CycleTime)

! Solution printing
writeln("Minimum cycle time: ", getobjval)
writeln("Sequence of batches:\nBatch Duration Cleaning")
first:=1
repeat

second:= integer(sum(j in JOBS | first<>j) j*getsol(succ(first,j)) )
writeln(" ",first, strfmt(DUR(first),8), strfmt(CLEAN(first,second),9))
first:=second

until (second=1)

end-model

The listing above again includes the solution printing and it makes use of some new features: we use a
repeat-until loop for enumerating the batches in the order that they have been scheduled. For every
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batch (first ) we calculate its successor (second ) that then becomes on its turn the one for which we
search a successor. The loop stops when we are back at the starting point (batch 1). The calculation of the
successor is based on the solution values of the successor variables. This sum is of type real , but has an
integer value, and we need to transform it to the type integer . The function integer that is employed
here truncates the value that it is applied to (in many cases it is preferable to use the function round
instead, which rounds to the nearest integer).

7.5.3 Results

The minimum cycle time for this problem is 243 minutes which is achieved with the following sequence
of batches: 1 → 4 → 3 → 5 → 2 → 1. This time includes 202 minutes of (incompressible) processing
time and 41 minutes of cleaning. This problem is highly combinatorial: for NJ batches, there are (NJ− 1)!
possible cycles. In this simple example, it would be possible to enumerate by hand the 24 possibilities but
already for 10 batches there are 9! = 362,880 different sequences and for 20 batches, 19! ≈ 1. 2 · 1017

sequences.

7.6 Assembly line balancing

An electronics factory produces an amplifier on an assembly line with four workstations. An amplifier is
assembled in twelve operations between which there are certain precedence constraints. The following
table indicates the duration of every task (in minutes) and the list of its immediate predecessors (the
abbreviation PCB used in this table stands for ‘printed circuit board’).

The production manager would like to distribute the tasks among the four workstations, subject to the
precedence constraints, in order to balance the line to obtain the shortest possible cycle time, that is, the
total time required for assembling an amplifier. Every task needs to be assigned to a single workstation
that has to process it without interruption. Every workstation deals with a single operation at a time. We
talk about cycle time because the operations on every workstation will be repeated for every amplifier.
When an amplifier is finished, the amplifiers at stations 1 to 3 advance by one station, and the assembly
of a new amplifier is started at the first workstation.

Table 7.8: List of tasks and predecessors

Task Description Duration Predecessors

1 Preparing the box 3 –

2 PCB with power module 6 1

3 PCB with pre-amplifier 7 1

4 Filter of the amplifier 6 2

5 Push-pull circuit 4 2

6 Connecting the PCBs 8 2,3

7 Integrated circuit of the pre-amplifier 9 3

8 Adjusting the connections 11 6

9 Heat sink of the push-pull 2 4,5,8

10 Protective grid 13 8,11

11 Electrostatic protection 4 7

12 Putting on the cover 3 9,10

7.6.1 Model formulation

Let TASKS be the set of tasks, DURi the duration of task i, MACH the set of workstations (numbered
in the order of the production flow). The precedence relations can be represented as a directed graph
G = (TASKS, ARCS), where ARCS denotes the set of arcs. An arc (i, j) from task i to j symbolizes that i is the
immediate predecessor of j.

To assign the tasks, we define binary variables processim with processim = 1 if and only if task i is as-
signed to workstation m. The constraints (7.6.1) are required to assure that every task goes to a single
workstation.

∀i ∈ TASKS :
∑

m∈MACH

processim = 1 (7.6.1)

An assignment is valid only if it fulfills the precedence constraints, which means that for every arc (i, j)
the workstation processing i must have a number that is smaller or equal to the workstation number for
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Figure 7.8: Graph of tasks with durations

j. This relation is established with the constraints (7.6.2). Note how the numbers of the workstations for
i and j are calculated with sums of the assignment variables: due to constraints (7.6.1) only the index m
for which processim = 1 will be counted.

∀(i, j) ∈ ARCS :
∑

m∈MACH

k · processim ≤
∑

m∈MACH

k · processjm (7.6.2)

We now introduce a real variable cycle ≥ 0 that represents the cycle time. The constraints (7.6.3) indicate
that this variable is an upper bound on the workload assigned to every workstation.

∀m ∈ MACH :
∑

i∈TASKS

DURi · processim ≤ cycle (7.6.3)

We thus obtain the following mathematical model, where all variables with the exception of cycle are
binaries. The objective function (7.6.4) consists of minimizing cycle.

minimize cycle (7.6.4)

∀i ∈ TASKS :
∑

m∈MACH

processim = 1 (7.6.5)

∀(i, j) ∈ ARCS :
∑

m∈MACH

k · processim ≤
∑

m∈MACH

k · processjm (7.6.6)

∀m ∈ MACH :
∑

i∈TASKS

DURi · processim ≤ cycle (7.6.7)

∀i ∈ TASKS, m ∈ MACH : processim ∈ {0, 1} (7.6.8)

cycle ≥ 0 (7.6.9)

In this problem formulation, we assume the the production line already exists with its NM workstations
and that we wish to balance the workload. For (re-)designing production lines, it would possible to work
with a given market demand (number of amplifiers per day) and a given cycle time to minimize the
number of workstations that form the new production line. To be able to generate solutions for this
problem, the maximum duration of tasks obviously must not exceed the given cycle time.

To solve this new version of the problem, we may take the preceding model, delete the objective function
and replace the variable cycle by a constant (the desired cycle time). We then try to solve the system (7.6.5)
to (7.6.9), initializing the number of machines NM with some lower bound, such as the total duration of
all tasks divided by the cycle time and rounding the resulting value to the next larger integer. If this
system has no solution, we increment the value of NM and restart the solution algorithm. This process
converges since a trivial solution exists with one task per workstation.

7.6.2 Implementation

The following Mosel program implements the mathematical model defined by lines (7.6.4) – (7.6.9) in
the previous section. It poses a frequently recurring problem, namely the encoding of the graph G. One
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possibility consists of defining a binary matrix B (called an adjacency matrix), with Bij = 1 if and only if
the arc (i, j) is in G. The second method that is used here lists only the existing arcs and therefore has a
lower memory consumption for sparse graphs like G: the graph is represented by a table ARC with a line
per arc and two columns. The arc represented by the line a has the source ARCa1 and the sink ARCa2. The
first data line contains the number 1 and 2 for the arc (1,2), the second 1 and 3 for (1,3) and so on. Since
we initialize the arc numbers dynamically with the data read from file (the range of arc numbers RA is
not fixed in the program), the index-tuples for the entries of the array ARC need to be given in the data
file b6linebal.dat .

model "B-6 Assembly line balancing"
uses "mmxprs"

declarations
MACH=1..4 ! Set of workstations
TASKS=1..12 ! Set of tasks

DUR: array(TASKS) of integer ! Durations of tasks
ARC: array(RA:range, 1..2) of integer ! Precedence relations between tasks

process: array(TASKS,MACH) of mpvar ! 1 if task on machine, 0 otherwise
cycle: mpvar ! Duration of a production cycle

end-declarations

initializations from ’b6linebal.dat’
DUR ARC

end-initializations

! One workstation per task
forall(i in TASKS) sum(m in MACH) process(i,m) = 1

! Sequence of tasks
forall(a in RA) sum(m in MACH) m*process(ARC(a,1),m) <=

sum(m in MACH) m*process(ARC(a,2),m)

! Cycle time
forall(m in MACH) sum(i in TASKS) DUR(i)*process(i,m) <= cycle

forall(i in TASKS, m in MACH) process(i,m) is_binary

! Minimize the duration of a production cycle
minimize(cycle)

end-model

7.6.3 Results

The mixed integer solver finds a minimum cycle time of 20 minutes. The assignment of tasks to worksta-
tions and the resulting workload per workstation are given in the following table. It is easy to verify that
the precedence constraints hold.

Table 7.9: Assignment with minimum cycle time

Workstation number 1 2 3 4

Assigned tasks 1,2,4,5 3,7,11 6,8 9,10,12

Workload 19 20 19 18

7.7 References and further material

With the exception of the stadium construction all problems in this chapter are very difficult combinato-
rial problems, so-called NP-hard problems (the exact definition of this notion is given in [GJ79]). There is
a large variety of scheduling. The works of Carlier and Chretienne [CC88], Lopez and Roubellat [LR99],
Błazewicz et al. [BESW93], and French [Fre82] are good entry points for this very active domain.

The stadium construction problem (Section 7.1) is a project scheduling problem that is now easily solved
and for which a number of software tools are available, such as Project by Microsoft and PSN by Scitor-
Le Bihan. To answer question 1, there are simple solution methods based on graphs. The graph of a
project may be coded in two different ways. The first consists of representing tasks by arcs and the nodes
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correspond to the stages of the project. This graph, called AOA (activities on arcs) is used by the PERT
method [Eva64]. In the representation that we have used the nodes correspond to the tasks, this is the
AON (activities on nodes) encoding that is used by the Method of Potentials [Pri94a] [GM90].

Historically, the PERT method stems from the USA and the Method of Potentials from France. Besides
the encoding of the graph, the two methods are largely equivalent, to the point that certain software
provides both methods. Nevertheless, the AOA representation becomes quite impractical outside the
context of project scheduling, for instance for workshop planning. In this case, the AON notation is used
systematically.

The question 2 concerns the PERT-cost problem, or scheduling with project crashing, in which the ob-
jective is to minimize the total cost if the tasks have flexible durations and the costs depend on these
durations. Depending on the assumptions, several model formulations are possible: for example, an ad-
ditional cost that is proportional to the number of days saved per task, or a cost inversely proportional to
the duration of a task. The reader may find other practical cases in Wasil [WA88].

The flow shop problem (Section 7.2) is a classical scheduling problem. The mathematical formulation we
have used is due to Wagner [Wag59]. Other solution methods are described by French [Fre82], pages
132-135, and Pinedo [Pin95a], pages 99-101. Curiously, these works forget to mention the constraints
(7.2.6) – (7.2.7) that are absolutely necessary for obtaining correct results.

The flow-shop problem is NP-hard in the general case, and Mathematical Programming only allows solv-
ing problems limited to about thirty operations. For large cases, simple heuristics like NEH (from the
name of the authors Nawaz, Enscore and Ham [NEH83]) or metaheuristics like tabu search [WH89] are
used. The two-machine case is easy and may be solved by an algorithm by Johnson that is described in
the two books just quoted.

The problem in Section 7.3 is a classical scheduling problem called job shop. This problem is NP-hard
in the general case. Modeling as a MIP is often inefficient for large problems. Nevertheless, the generic
model formulation given here is used by Applegate and Cook with cutting plane techniques [AC91] where
the authors obtain interesting results for difficult instances. But the problem is usually solved by list-
based heuristics or with exact methods based on a formulation with disjunctive graphs [CCE+93], [Fre82],
[Pin95b]. Note that the generic model formulation is also valid for the general flow shop problem (whilst
the model of Section 7.2 only applies to the permutation flow shop).

Different solution algorithms are available for one-machine problems (Section 7.4). The aim of this ex-
ercise was to give a common model formulation for the three objectives. Other models using variables
relative to the position of jobs may be found in [LQ92] [Sev98].

The paint production problem (Section 7.5) is a representative of a family of scheduling problems where
the preparation before every task depends on the chosen order (sequence-dependent setup times). We
have in fact used one of the models for the famous traveling salesman problem (TSP). In this problem,
the jobs (batches) become cities and the cleaning times the cost of traveling from one city to the next.
The objective is to find the minimum cost for the journey of a sales representative that starts from his
home in city 1, visits every city once, and finally returns to his starting point.

Here we have considered the asymmetric case, that is, the cleaning time between batch i and batch j is in
general different from the one between j and i. In Chapter 11, we study a symmetric TSP, with distances
between cities as the crow flies. It is solved with a different technique, by progressively adding constraints
of type (5). Since the TSP is NP-hard, the models presented often take too long to be solved for more than
twenty cities. Beyond this limit, specialized tree search methods [HK70] need to be used. Demonstration
versions of such methods are available [Ros85] [EM92], and a Pascal code is given by Syslo [SDK83]. For
cases with hundreds of cities one needs to give up on optimality and use heuristic techniques, some of
which like tabu search (e.g. [GTdW93]) or simulated annealing ([KGV83]) are in practice quite efficient.
Such heuristics are explained with some detail in [Pri94a].

The problem of assembly line balancing (Section 7.6) is NP-hard for the two given versions (minimizing the
cycle time or the number of workstations). Without precedence constraints, the first version is equivalent
to a scheduling problem with parallel machines (see the wagon loading problem in Chapter 9) whilst the
second is reduced to a bin-packing problem (the problem of saving files to disks in Chapter 9). Problems of
about twenty tasks can be dealt with in Mathematical Programming, beyond this limit heuristics may be
used like the one by Dar-El [DE73], described together with another heuristic in the book on production
planning by Buffa and Sarin, pages 660-671 [BS87]. Scholl has recently published a book dedicated to
assembly line balancing problems [Sch99].
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Chapter 8

Planning problems

The term planning is often used with three different meanings in the context of production management:
long-term planning that is used for taking strategic decisions, mid-term planning that corresponds to
the tactical level, and short-term planning for operational decisions. Long-term planning concerns the
direction a company is taking over several years, like the depot location problem in Chapter 10. Short-
term planning takes detailed production decisions for the shop floor, with a time horizon of a few days.
Most importantly it comprises scheduling problems such as those described in Chapter 7. The present
chapter is dedicated to tactical planning, currently referred to as production planning.

This decision level often covers a time horizon of one or several months, working for instance with time
slices of the length of a week. It takes a macroscopic view of the production system: the detailed con-
straints for workshops and machines are ignored, the operations are dealt with in an aggregated fashion.
The objective is to determine the best quantities to produce in every time period whilst, in a majority of
cases, minimizing the cost incurred through production and storage.

Section 8.1 presents a simple case of single product planning, namely bicycles. The following section
(8.2) deals with the production of several products (different types of glasses). In Section 8.3 we plan the
production of toy lorries with all their components. This is a typical case of Material Requirement Planning
(MRP). The two following problems have more complex cost functions: the production of electronic
components in Section 8.4 includes costs for changing the level of production, and for the production of
fiberglass in Section 8.5 the cost depends on the time period. The problem of Section 8.6 stands apart: it
concerns the assignment of product batches to machines of different capacities and speeds.

8.1 Planning the production of bicycles

A company produces bicycles for children. The sales forecast in thousand of units for the coming year are
given in the following table. The company has a capacity of 30,000 bicycles per month. It is possible to
augment the production by up to 50% through overtime working, but this increases the production cost
for a bicycle from the usual BC 32 to BC 40.

Table 8.1: Sales forecasts for the coming year in thousand units

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

30 15 15 25 33 40 45 45 26 14 25 30

Currently there are 2,000 bicycles in stock. The storage costs have been calculated as BC 5 per unit held in
stock at the end of a month. We assume that the storage capacity at the company is virtually unlimited
(in practice this means that the real capacity, that is quite obviously limited, does not impose any limits in
our case). We are at the first of January. Which quantities need to be produced and stored in the course
of the next twelve months in order to satisfy the forecast demand and minimize the total cost?

8.1.1 Model formulation

The variables that we need to determine are the numbers of bicycles pnormt and povert to be produced
respectively in normal working hours and in overtime hours during month t, and the number of bicycles
storet held in stock at the end of the month. Let MONTHS = {1, . . . , 12} be the set of time periods. The
objective is to minimize the total cost, that is, the sum of cost of production (in normal and additional
hours) and the storage cost. We write CNORM and COVER for the production cost of a bicycle in normal
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and overtime hours, and CSTOCK the monthly storage cost per bicycle. With these conventions we obtain
the objective function (8.1.1).

minimize
∑

t∈MONTHS

(CNORM · pnormt + COVER · povert + CSTOCK · storet) (8.1.1)

In every month t, the available quantity of bicycles is given as the sum of bicycles in stock at the end of
month t − 1 and the bicycles produced in normal and overtime hours during this month. This sum must
equal the number of bicycles sold in the course of month t, plus the number of bicycles held in stock at
the end of month t. This key relation is called the inventory balance equation, and forms an important
component of mathematical models for production planning problems.

Let us call the initial stock level ISTOCK and DEMt the forecasted demand for month t. The balance
constraint for the first month is then given by relation (8.1.2)

pnorm1 + pover1 + ISTOCK = DEM1 + store1 (8.1.2)

The constraints (8.1.3) establish this relation for all following months.

∀t ∈ MONTHS, t 6= 1 : pnormt + povert + storet−1 = DEMt + storet (8.1.3)

The production capacity in normal working hours is limited by the given capacity CAP, and the additional
production in overtime hours is limited to 50% of this capacity; hence the constraints (8.1.4) and (8.1.5).

∀t ∈ MONTHS : pnormt ≤ CAP (8.1.4)

∀t ∈ MONTHS : povert ≤ 0. 5 ∗ CAP (8.1.5)

And finally, we note that all variables are non-negative (constraints (8.1.6)).

∀t ∈ MONTHS : pnormt ≥ 0, povert ≥ 0, storet ≥ 0 (8.1.6)

8.1.2 Implementation

The mathematical model may be translated into the following Mosel program.

model "C-1 Bicycle production"
uses "mmxprs"

declarations
TIMES = 1..12 ! Range of time periods

DEM: array(TIMES) of integer ! Demand per months
CNORM,COVER: integer ! Prod. cost in normal / overtime hours
CSTOCK: integer ! Storage cost per bicycle
CAP: integer ! Monthly capacity in normal working hours
ISTOCK: integer ! Initial stock

pnorm:array(TIMES) of mpvar ! No. of bicycles produced in normal hours
pover:array(TIMES) of mpvar ! No. of bicycles produced in overtime hours
store:array(TIMES) of mpvar ! No. of bicycles stored per month

end-declarations

initializations from ’c1bike.dat’
DEM CNORM COVER CSTOCK CAP ISTOCK

end-initializations

! Objective: minimize production cost
Cost:= sum(t in TIMES) (CNORM*pnorm(t) + COVER*pover(t) + CSTOCK*store(t))

! Satisfy the demand for every period
forall(t in TIMES)

pnorm(t) + pover(t) + if(t>1, store(t-1), ISTOCK) = DEM(t) + store(t)

! Capacity limits on normal and overtime working hours per month
forall(t in TIMES) do

pnorm(t) <= CAP
pover(t) <= 0.5*CAP

end-do
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! Solve the problem
minimize(Cost)

end-model

In this implementation we use the inline if function to condense the balance constraints for the first and
all following periods into a single constraint. For t = 1 the expression evaluates to

pnorm(1) + pover(1) + ISTOCK = DEM(1) + store(1)

while for the rest of the periods we have

pnorm(t) + pover(t) + store(t-1) = DEM(t) + store(t)

8.1.3 Results

The minimum cost for production and storage is BC 11,247,000. The following table list the production
plan for the coming year (in thousands) — its first line recalls the forecast monthly demand. In January
to April and September to December the demands can be satisfied with production in normal hours. In
April, 3000 bicycles need to be stored to satisfy the higher demand in May. In June to August overtime
work is required to produce the required quantities.

Table 8.2: Quantities to produce and store in thousand units

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Demand 30 15 15 25 33 40 45 45 26 14 25 30

Normal 28 15 15 28 30 30 30 30 26 14 25 30

Additional – – – – – 10 15 15 – – – –

Store – – – 3 – – – – – – – –

Note that in practice one might not like a solution like this: the inventory at the month end is almost
always 0, so if there were a surge in demand (e.g. unusually good weather) the company would be in
trouble.

8.2 Production of drinking glasses

The main activity of a company in northern France is the production of drinking glasses. It currently
sells six different types (V1 to V6), that are produced in batches of 1000 glasses, and wishes to plan its
production for the next 12 weeks. The batches may be incomplete (fewer than 1000 glasses). The demand
in thousands for the 12 coming weeks and for every glass type is given in the following table.

Table 8.3: Demands for the planning period (batches of 1000 glasses)

Week 1 2 3 4 5 6 7 8 9 10 11 12

V1 20 22 18 35 17 19 23 20 29 30 28 32

V2 17 19 23 20 11 10 12 34 21 23 30 12

V3 18 35 17 10 9 21 23 15 10 0 13 17

V4 31 45 24 38 41 20 19 37 28 12 30 37

V5 23 20 23 15 10 22 18 30 28 7 15 10

V6 22 18 20 19 18 35 0 28 12 30 21 23

For every glass type the initial stock is known, as well as the required final stock level (in thousands). Per
batch of every glass type, the production and storage costs in BC are given, together with the required
working time for workers and machines (in hours), and the required storage space (measured in numbers
of trays).

The number of working hours of the personnel is limited to 390 hours per week, and the machines have
a weekly capacity of 850 hours. Storage space for up to 1000 trays is available. Which quantities of the
different glass types need to be produced in every period to minimize the total cost of production and
storage?
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Table 8.4: Data for the six glass types

Production Storage Initial Final Storage
cost cost stock stock Timeworker Timemachine space

V1 100 25 50 10 3 2 4

V2 80 28 20 10 3 1 5

V3 110 25 0 10 3 4 5

V4 90 27 15 10 2 8 6

V5 200 10 0 10 4 11 4

V6 140 20 10 10 4 9 9

8.2.1 Model formulation

This problem is a generalization of the bicycle problem in Section 8.1: we now have several products,
each using the same resources.

To express the model in a simple way, we need to consider the time periods one after the other. Let
PRODS be the set of products (glass types) and WEEKS = {1, . . . , NT} the set of time periods. We write
DEMpt for the demand for product p in time period t. These demands are given above in Table 8.3. We
also have CPRODp and CSTOCKp the production and storage cost for glass type p. This cost is identical for
all time periods, but it would be easy to model a different cost per time period by adding an index for
the time period.

TIMEWp and TIMEMp denote the worker and machine times respectively required per unit of product p,
and correspondingly, SPACEp the storage area. The initial stock ISTOCKp is given, as is the desired final
stock level FSTOCKp per product. All these data are listed in Table 8.4 above. We write CAPW and CAPM
for the capacities of workers and machines respectively, and CAPS for the capacity of the storage area.

To solve this problem, we need variables producept to represent the production of glass type p in time
period t. The variables corresponding to the stock level of every product p at the end of period t are
called storept. By convention, the initial stock level ISTOCKp may be considered as the stock level at the
end of time period 0 and we use the notation storep0 to simplify the formulation of the stock balance
constraints (8.2.1):

∀p ∈ PRODS, t ∈WEEKS : storept = storep,t−1 + producept − DEMpt (8.2.1)

These stock balance constraints state that the quantity storept of product that is held in stock at the end
of a time period t equals the stock level storep,t−1 at the end of the preceding period plus the production
producept of the time period t minus the demand DEMpt of this time period.

The company wishes to have a certain amount of product in stock at the end of the planning period.
These constraints on the final stock levels are expressed by the constraints (8.2.2):

∀p ∈ PRODS : storep,NT ≥ FSTOCKp (8.2.2)

We now formulate the various capacity constraints for every time period. The following constraints
guarantee that the capacity limits on manpower (8.2.3), machine time (8.2.4), and storage space (8.2.5)
are kept:

∀t ∈WEEKS :
∑

p∈PRODS

TIMEWp · producept ≤ CAPW (8.2.3)

∀t ∈WEEKS :
∑

p∈PRODS

TIMEMp · producept ≤ CAPM (8.2.4)

∀t ∈WEEKS :
∑

p∈PRODS

SPACEp · producept ≤ CAPS (8.2.5)

We may now formulate the cost function that is to be minimized (8.2.6). This function is the sum of
production and storage costs for all products and time periods.

minimize
∑

p∈PRODS

∑
t∈WEEKS

(
CPRODp · producept + CSTOREp · storept

)
(8.2.6)

We obtain the complete mathematical model by combining lines (8.2.1) to (8.2.6), to which we need
to add the non-negativity constraints for the production variables (8.2.13) and for the stored quantities
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(8.2.14).

minimize
∑

p∈PRODS

∑
t∈WEEKS

(
CPRODp · producept + CSTOREp · storept

)
(8.2.7)

∀p ∈ PRODS, t ∈WEEKS : storept = storep,t−1 + producept − DEMpt (8.2.8)

∀p ∈ PRODS : storep,NT ≥ FSTOCKp (8.2.9)

∀t ∈WEEKS :
∑

p∈PRODS

TIMEWp · producept ≤ CAPW (8.2.10)

∀t ∈WEEKS :
∑

p∈PRODS

TIMEMp · producept ≤ CAPM (8.2.11)

∀t ∈WEEKS :
∑

p∈PRODS

SPACEp · producept ≤ CAPS (8.2.12)

∀p ∈ PRODS, t ∈WEEKS : producep,t ≥ 0 (8.2.13)

∀p ∈ PRODS, t ∈WEEKS : storep,t ≥ 0 (8.2.14)

8.2.2 Implementation

The mathematical model may be implemented with Mosel as follows.

model "C-2 Glass production"
uses "mmxprs"

declarations
NT = 12 ! Number of weeks in planning period
WEEKS = 1..NT
PRODS = 1.. 6 ! Set of products

CAPW,CAPM: integer ! Capacity of workers and machines
CAPS: integer ! Storage capacity
DEM: array(PRODS,WEEKS) of integer ! Demand per product and per week
CPROD: array(PRODS) of integer ! Production cost per product
CSTOCK: array(PRODS) of integer ! Storage cost per product
ISTOCK: array(PRODS) of integer ! Initial stock levels
FSTOCK: array(PRODS) of integer ! Min. final stock levels
TIMEW,TIMEM: array(PRODS) of integer ! Worker and machine time per unit
SPACE: array(PRODS) of integer ! Storage space required by products

produce: array(PRODS,WEEKS) of mpvar ! Production of products per week
store: array(PRODS,WEEKS) of mpvar ! Amount stored at end of week

end-declarations

initializations from ’c2glass.dat’
CAPW CAPM CAPS DEM CSTOCK CPROD ISTOCK FSTOCK TIMEW TIMEM SPACE

end-initializations

! Objective: sum of production and storage costs
Cost:=

sum(p in PRODS, t in WEEKS) (CPROD(p)*produce(p,t) + CSTOCK(p)*store(p,t))

! Stock balances
forall(p in PRODS, t in WEEKS)

store(p,t) = if(t>1, store(p,t-1), ISTOCK(p)) + produce(p,t) - DEM(p,t)

! Final stock levels
forall(p in PRODS) store(p,NT) >= FSTOCK(p)

! Capacity constraints
forall(t in WEEKS) do

sum(p in PRODS) TIMEW(p)*produce(p,t) <= CAPW ! Workers
sum(p in PRODS) TIMEM(p)*produce(p,t) <= CAPM ! Machines
sum(p in PRODS) SPACE(p)*store(p,t) <= CAPS ! Storage

end-do

! Solve the problem
minimize(Cost)

end-model
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In the model formulation above as before we use the if function in the formulation of the stock balance
constraints. It is also possible to employ the notation storep0 for the initial stock levels as in the mathe-
matical model. Since store is an array of variables, we still need to use the array ISTOCK for reading in
the data from file and then fix the storage variables for time period 0 to these values (additional set of
bound constraints):

declarations
store: array(PRODS,0..NT) of mpvar ! Amount stored at end of week

end-declarations

! Stock balances
forall(p in PRODS, t in WEEKS)

store(p,t) = store(p,t-1) + produce(p,t) - DEM(p,t)

! Fix the initial stock levels
forall(p in PRODS) store(p,0) = ISTOCK(p)

In this model, it is easy to change the objective function, for instance to take into account only the
production costs (first part of the objective) or the storage costs (second part of the objective)

Remark: in the implementation of this model, it may be tempting to define names like prod for the
production variables or PROD for the set of products, but both these names cannot be used because
prod is a keyword of the Mosel language (see the complete list of reserved words in Section 5.2.3).

8.2.3 Results

The solution of this problem gives us a total cost of BC 185,899.

Table 8.5 displays the quantities of the different glass types to produce in every week of the planning
period and the quantities held in stock at the end of every week. Some production and storage quantities
are fractional but every unit corresponds to 1000 glasses. We may therefore round the results to three
digits after the decimal point to obtain a result with integral numbers of glasses without modifying the
total cost too much.

Taking for example the quantities to be produced in the first period: 8,760 glasses of type 1, 18,000
glasses of type 3, 16,000 glasses of type 4, 47,680 glasses of type 5, 12,000 glasses of type 6 and none
of type 2 (the demand for this type is covered by the initial stock). When looking at the constraints in
more detail, we find that the available manpower is fully used most of the time (in the first week, 351
hours are worked, in all other weeks the limit of 390 hours is reached) and the machines are used to their
full capacity in certain time periods (weeks 1-3 and 5), but the available storage space is in excess of the
actual needs.

Table 8.5: Quantities to produce and store of every glass type (in thousands)

Week 1 2 3 4 5 6 7 8 9 10 11 12

1 Prod. 8.76 5.48 0.56 30.2 27.36 8.64 23 20 29 30 28 42

Store 38.76 22.24 4.8 - 10.36 – – – – – – 10

2 Prod. 0 16 23 20 11 10 12 34 21 23 30 22

Store 3 – – – – – – – – – – 10

3 Prod. 18 35 17 10 9 21 23 15 10 0 13 27

Store – – – – – – – – – – – 10

4 Prod. 16 45 24 38 41 20 19 37 28 12 30 47

Store – – – – – – – – – – – 10

5 Prod. 47.68 14.64 35.08 14.35 23.48 22.77 43.75 0 26.5 2.75 0 0

Store 24.68 19.32 31.4 30.75 44.23 45 70.75 40.75 39.25 35 20 10

6 Prod. 12 18 20 19 18 35 0.75 27.25 12 49 29.25 5.75

Store – – – – – – 0.75 – – 19 27.25 10

As opposed to the bicycle problem in Section 8.1, in this problem final stock levels have been given. The
specification of final stock levels is quite a tricky issue in production planning models. If one does not
specify levels, then models will typically run stocks down to zero at the end of the planning horizon, a
situation which will usually be unacceptable in practice. If the final stock levels are different from the
initial stock levels, as in this example, then care must be taken in interpreting average costs, as some
benefit has accrued if stock levels are being run down, and vice versa if stock is being increased.
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8.3 Material Requirement Planning

The company Minorette produces two types of large toy lorries for children: blue removal vans and red
tank lorries. Each of these lorries is assembled from thirteen items. See Figure 8.1 for the breakdown of
components (also called a Gozinto graph or Parts explosion) and the following Table 8.6 for the prices of
the components.

Table 8.6: Prices of components

Wheel Steel bar Bumper Chassis Cabin Door window

BC 0.30 BC 1 BC 0.20 BC 0.80 BC 2.75 BC 0.10

Windscreen Blue container Red tank Blue motor Red motor Headlight

BC 0.29 BC 2.60 BC 3 BC 1.65 BC 1.65 BC 0.15

Blue lorry
(or red)

Assembled
chassis

Door
window

Cabin

Wheel

Chassis

Blue motor
(or red)

Blue container
(or red tank)

Assembled
cabin

Windscreen

Steel bar

2 1

2 2 1

1 1 1 1 2

121

Headlight

AxleBumper

Figure 8.1: Breakdown of components (Gozinto graph)

The subsets (axles, chassis, blue or red cabin) may be assembled by the company using the components,
or subcontracted. The following table lists the costs for assembling and for subcontracting these subsets,
together with the capacities of the company. The assembly costs do not take into account the buying
prices of their components.

Table 8.7: Subcontracting and assembly costs, assembly capacities

Axle Assembled chassis Assembled cabin Blue lorry Red lorry

Subcontracting BC 12.75 BC 30 BC 3 – –

Assembly BC 6.80 BC 3.55 BC 3.20 BC 2.20 BC 2.60

Capacity 600 4000 3000 4000 5000

For the next month, Minorette has the same demand forecast of 3000 pieces for the two types of lorries.
At present, the company has no stock. Which quantities of the different items should Minorette buy or
subcontract to satisfy the demand while minimizing the production cost?

8.3.1 Model formulation

Let ITEMS be the complete set of all products with the subsets FINAL of final products, ASMBL of products
resulting from assembly, and PREPROD of products used in the assembly of others. We write REQqp for
the requirement of component p in the assembly of q. For instance, for an axle we need two wheels and
one steel bar, that is REQaxle,wheel = 2 and REQaxle,steelbar = 1.

Let CBUYp be the price paid when buying item p. Since subcontracting a product means buying it from
its producer, we consider that this cost is the price for buying a preproduct that is not assembled and is
the cost of subcontracting for the assembled pieces.

We write CPRODp for the cost of assembling a product p. The variables that we need to determine are
the quantities to produce producep of the assembled products p and those to buy (or subcontract) buyp
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of every preproduct p. This gives the following mathematical model:

minimize
∑

p∈PREPROD

CBUYp · buyp +
∑

p∈ASMBL

CPRODp · producep (8.3.1)

∀p ∈ FINAL : producep ≥ DEMp (8.3.2)

∀p ∈ PREPROD : (8.3.3)

p ∈ ASMBL : buyp + producep ≥
∑

q∈ASMBL

REQqp · produceq

p 6∈ ASMBL : buyp ≥
∑

q∈ASMBL

REQqp · produceq

∀p ∈ ASMBL : producep ≤ CAPp (8.3.4)

∀p ∈ ASMBL : producep ∈ IN (8.3.5)

∀p ∈ PREPROD : buyp ∈ IN (8.3.6)

The objective function (8.3.1) minimizes the production cost, that is, the buying price or cost for sub-
contracting and the assembly cost. The constraints (8.3.2) indicate that the produced quantities of the
final products (blue and red lorries) must be greater than or equal to the demand DEMp. The constraints
(8.3.3) guarantee that the total quantity of item p that is bought or produced is sufficient to produce all
articles q that contain p.

The constraints (8.3.4) establish the limits on the assembly capacities CAPp for every assembled product p.
The constraints (8.3.5) and (8.3.6) are the integrality constraints for the variables.

Note that an alternative formulation to the model displayed above consists of defining buying and assem-
bly costs for all items: preproducts that cannot be assembled receive the value ‘infinity’ as their assembly
cost, and this value is also assigned as the buying price to the final products. With these costs, we may
define variables producep and buyp for all products and in the objective function (1) and the constraints
(3) simply sum over all variables — the ‘infinity’ cost values force the corresponding variables to take the
value 0. Whilst easier to write down, this second formulation introduces large coefficient values into the
model that typically lead to numerical instabilities and should therefore be avoided.

8.3.2 Implementation

The following Mosel program implements the mathematical model of lines (8.3.1) to (8.3.6). All data and
index sets are defined in the data file and initialized dynamically when executing the program.

model "C-3 Toy production"
uses "mmxprs"

declarations
ITEMS: set of string ! Set of all products
FINAL: set of string ! Set of final products
ASMBL: set of string ! Set of assembled products
PREPROD: set of string ! Set of preproducts

CAP: array(ASMBL) of integer ! Capacity of assembly lines
DEM: array(FINAL) of integer ! Demand of lorries
CPROD: array(ASMBL) of real ! Assembly costs
CBUY: array(ITEMS) of real ! Purchase costs
REQ: array(ASMBL,PREPROD) of integer ! Items req. for assembling a product

end-declarations

initializations from ’c3toy.dat’
DEM CBUY REQ
[CPROD, CAP] as ’ASSEMBLY’

end-initializations

finalize(ASMBL); finalize(PREPROD); finalize(FINAL); finalize(ITEMS)

declarations
produce: array(ASMBL) of mpvar ! Quantity of items produced
buy: array(PREPROD) of mpvar ! Quantity of items bought

end-declarations

! Objective: total costs
Cost:=sum(p in PREPROD) CBUY(p)*buy(p) + sum(p in ASMBL) CPROD(p)*produce(p)
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! Satisfy demands
forall(p in FINAL) produce(p) >= DEM(p)

! Assembly balance
forall(p in PREPROD) buy(p) + if(p in ASMBL, produce(p), 0) >=

sum(q in ASMBL) REQ(q,p)*produce(q)

! Limits on assembly capacity
forall(p in ASMBL) produce(p) <= CAP(p)

forall(p in PREPROD) buy(p) is_integer
forall(p in ASMBL) produce(p) is_integer

! Solve the problem
minimize(Cost)

end-model

As opposed to most other models presented in this book, in this implementation we do not fix the
index sets directly in the Mosel program but initialize all data dynamically from file. We only define the
variables once the data has been read in and the index sets have been finalized — that is, the arrays of
variables are created with fixed sizes. If we defined the variables in the same declarations block as
the data arrays, this array would be created as a dynamic array, just like the data arrays. But unlike the
data arrays, in a dynamic array of variables every entry needs to be created explicitly, using the function
create . It is therefore also possible to implement the Mosel program as shown below, though it should
be noted that the above version with fixed-size arrays is slightly more efficient:

declarations
ITEMS: set of string ! Set of all products
FINAL: set of string ! Set of final products
ASMBL: set of string ! Set of assembled products
PREPROD: set of string ! Set of pre-products

CAP: array(ASMBL) of integer ! Capacity of assembly lines
DEM: array(FINAL) of integer ! Demand of lorries
CPROD: array(ASMBL) of real ! Assembly costs
CBUY: array(ITEMS) of real ! Purchase costs
REQ: array(ASMBL,PREPROD) of integer ! Items req. for assembling a product

produce: array(ASMBL) of mpvar ! Quantity of items produced
buy: array(PREPROD) of mpvar ! Quantity of items bought

end-declarations

initializations from ’c3toy.dat’
DEM CBUY REQ
[CPROD, CAP] as ’ASSEMBLY’

end-initializations

forall(p in ASMBL) create(produce(p))
forall(p in PREPROD) create(buy(p))

In this example, the data of the arrays CPRODand CAPare contained in a single record ASSEMBLYand
these two arrays are therefore read jointly using the keyword as to indicate the label of the record.

8.3.3 Results

The minimum total cost for satisfying the demand of toy lorries is BC 238,365. The next two tables summa-
rize the quantities of products that are bought, subcontracted, or assembled at the factory.

Table 8.8: Quantities of preproducts bought

Wheel Steel bar Bumper Chassis Cabin Door window

1200 600 600 300 0 0

Windscreen Blue container Red tank Blue motor Red motor Headlight

0 3000 3000 3000 3000 12000
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Table 8.9: Production and subcontracting of assembled products

Axle Assembled chassis Assembled cabin Blue lorry Red lorry

Produce 600 300 0 3000 3000

Subcontract 0 5700 6000 – –

8.4 Planning the production of electronic components

To augment its competitiveness a small business wishes to improve the production of its best selling
products. One of its main activities is the production of cards with microchips and electronic badges. The
company also produces the components for these cards and badges. Good planning of the production
of these components therefore constitutes a decisive success factor for the company. The demand for
components is internal in this case and hence easy to anticipate.

For the next six months the production of four products with references X43-M1, X43-M2, Y54-N1, Y54-N2
is to be planned. The production of these components is sensitive to variations of the level of produc-
tion, and every change leads to a non-negligible cost through controls and readjustments. The company
therefore wishes to minimize the cost associated with these changes whilst also taking into account the
production and storage costs.

The demand data per time period, the production and storage costs, and the initial and desired final
stock levels for every product are listed in the following table. When the production level changes,
readjustments of the machines and controls have to be carried out for the current month. The cost
incurred is proportional to the increase or reduction of the production compared to the preceding month.
The cost for an increase of the production is BC 1 per unit but only BC 0.50 for a decrease of the production
level.

Table 8.10: Data for the four products

Demands Cost Stock levels
Month 1 2 3 4 5 6 Production Storage Initial Final

X43-M1 1500 3000 2000 4000 2000 2500 20 0.4 10 50

X43-M2 1300 800 800 1000 1100 900 25 0.5 0 10

Y54-N1 2200 1500 2900 1800 1200 2100 10 0.3 0 10

Y54-N2 1400 1600 1500 1000 1100 1200 15 0.3 0 10

What is the production plan that minimizes the sum of costs incurred through changes of the production
level, production and storage costs?

8.4.1 Model formulation

The mathematical model developed for the problem in Section 8.2 has many similarities to this model.
We denote the variables and constants in the same way. Let PRODS be the set of components, MONTHS =
{1, . . . , NT} the set of planning periods, DEMpt the demand for product p in time period t, CPRODp and
CSTOCKp respectively the cost of producing and storing one unit of product p, and ISTOCKp and FSTOCKp

the initial and final stock levels of product p.

The variables producept and storept represent respectively the quantity produced and the amount of
product p in stock at the end of period t. With the convention storep0 = ISTOCKp the stock balance
constraints are given by (8.4.1) and the final stock levels are guaranteed by constraints (8.4.2).

∀p ∈ PRODS, t ∈ MONTHS : storept = storep,t−1 + producept − DEMpt (8.4.1)

∀p ∈ PRODS : storep,NT ≥ FSTOCKp (8.4.2)

To measure the changes to the level of production, we need to additional sets of variables, reducet and
addt that represent the reduction or increase of the production in time period t. A change the the level
of production is simply the difference between the total quantity produced in period t and the total
quantity produced in period t − 1. If this difference is positive, we have an increase in the production
level, and a reduction otherwise. The change is expressed through the value of addt − reducet.

Since the level of production cannot increase and reduce at the same time, one of the two variables is
automatically at 0; whilst the other represents either the increase or the reduction of the production.
This leads to the equation (8.4.3).

∀t ∈ {2, . . . , NT} :
∑

p∈PRODS

producept −
∑

p∈PRODS

producep,t−1 = addt − reducet (8.4.3)
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The objective function is like the one of problem 8.2 with, in addition, the cost of changes to the produc-
tion level. We write CADD and CRED for the cost of increasing and reducing the production respectively.
These costs are proportional to the changes. They form the second part of the objective function (8.4.4).

minimize
∑

p∈PRODS

∑
t∈MONTHS

(
CPRODp · producept + CSTOREp · storept

)
+

NT∑
t=2

(
CRED · reducet + CADD · addt

)
(8.4.4)

Note that there are no variables reduce1 or add1 because there is no change at the beginning of the
planning period.

The complete linear program contains the lines (8.4.4) to (8.4.3), to which we need to add the non-
negativity constraints (8.4.9) and (8.4.10) for all variables:

minimize
∑

p∈PRODS

∑
t∈MONTHS

(
CPRODp · producept + CSTOREp · storept

)
+

NT∑
t=2

(
CRED · reducet + CADD · addt

)
(8.4.5)

∀p ∈ PRODS, t ∈ MONTHS : storept = storep,t−1 + producept − DEMpt (8.4.6)

∀p ∈ PRODS : storep,NT ≥ FSTOCKp (8.4.7)

∀t ∈ {2, . . . , NT} :
∑

p∈PRODS

producept −
∑

p∈PRODS

producep,t−1 = addt − reducet (8.4.8)

∀t ∈ {2, . . . , NT} : reducet ≥ 0, addt ≥ 0 (8.4.9)

∀p ∈ PRODS, t ∈ MONTHS : producep,t ≥ 0, storep,t ≥ 0 (8.4.10)

8.4.2 Implementation

As we have noted, the model of this problem is close to the one of the problem in Section 8.2. A similar
likeness can be observed between the two implementations with Mosel.

model "C-4 Electronic components"
uses "mmxprs"

declarations
NT = 6 ! Number of time periods (months)
MONTHS = 1..NT
PRODS = 1..4 ! Set of components

DEM: array(PRODS,MONTHS) of integer ! Demand of components per month
CPROD: array(PRODS) of integer ! Production costs
CSTOCK: array(PRODS) of real ! Storage costs
CADD,CRED: real ! Cost of additional/reduced prod.
ISTOCK,FSTOCK: array(PRODS) of integer ! Initial and final stock levels

produce: array(PRODS,MONTHS) of mpvar ! Quantities produced per month
store: array(PRODS,MONTHS) of mpvar ! Stock levels at end of every month
reduce: array(MONTHS) of mpvar ! Reduction of production per month
add: array(MONTHS) of mpvar ! Increase of production per month

end-declarations

initializations from ’c4compo.dat’
DEM CPROD CSTOCK CADD CRED ISTOCK FSTOCK

end-initializations

! Objective: total cost of production, storage, and change of prod. level
Cost:= sum(p in PRODS, t in MONTHS) (CPROD(p)*produce(p,t) +

CSTOCK(p)*store(p,t)) +
sum(t in 2..NT) (CRED*reduce(t) + CADD*add(t))

! Stock balance constraints (satisfy demands)
forall(p in PRODS, t in MONTHS)

store(p,t) = if(t>1, store(p,t-1), ISTOCK(p)) + produce(p,t) - DEM(p,t)

! Changes to the level of production
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forall(t in 2..NT)
sum(p in PRODS) (produce(p,t) - produce(p,t-1)) = add(t) - reduce(t)

! Guarantee final stock levels
forall(p in PRODS) store(p,NT) >= FSTOCK(p)

! Solve the problem
minimize(Cost)

end-model

8.4.3 Results

When solving the problem we obtain a total cost of BC 683,929. The production level for the first four
periods is 7060 units in total, in period 5 it decreases to 6100 units and remains at this level for the last
period. The following table lists the corresponding production plan (there are several possible plans).

Table 8.11: Optimal production plan

1 2 3 4 5 6

X43-M1 1490 3000 2000 4000 2000 2550

X43-M2 1300 800 800 1000 1100 910

Y54-N1 2150 1500 3640 1060 1200 2130

Y54-N2 2120 1760 620 1000 1800 510

Total 7060 7060 7060 7060 6100 6100

The stock levels are relatively low. With the exception of the last period where a final stock is required,
products X43-M1 and X43-M2 are never held in stock. The product Y54-N1 is held in stock in periods 3
and 6 (740 and 30 units), and the product Y54-N2 is held in stock in the periods 1, 2, 5, and 6 with 720,
880, 700, and 10 units respectively.

8.5 Planning the production of fiberglass

A company produces fiberglass by the cubic meter and wishes to plan its production for the next six
weeks. The production capacity is limited, and this limit takes a different value in every time period.
The weekly demand is known for the entire planning period. The production and storage costs also take
different values depending on the time period. All data are listed in the following table.

Table 8.12: Data per week

Production Demand Production Storage
Week capacity (m3) (m3) cost (BC/m3) cost (BC/m3)

1 140 100 5 0.2

2 100 120 8 0.3

3 110 100 6 0.2

4 100 90 6 0.25

5 120 120 7 0.3

6 100 110 6 0.4

Which is the production plan that minimizes the total cost of production and storage?

8.5.1 Model formulation

This problem is not much different from the previous ones and it would be easy to solve it using one
of the formulations presented earlier in this chapter. To introduce some variation, we are going to
use a transshipment flow formulation. Other models of this family will be discussed in the context of
transport problems in Chapter 10. To start, we draw a network that represents the problem (Figure 8.2).
This network consists of six nodes for the production in every time period, and six more nodes for the
demand in every time period. In the general case, we obtain a network of 2·NT nodes if NT is the number
of time periods.

The production nodes form the upper half of the graph. The have been assigned the odd indices 1 to 11
corresponding to time periods 1 to 6. Every node n has a weight CAPn that corresponds to the production
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Figure 8.2: Representation of the network

capacity of the period. The demand nodes are in the lower half of the graph, with the even indices 2 to 12
equally corresponding to time periods 1 to 6. Every demand node n has a weight DEMn that corresponds
to the demand of the time period. An arc with the cost of the production in a period goes from every
production node to the demand node of the same period. A second set of arcs weighted with the storage
costs connects every demand node to the demand node of the following time period.

A production plan corresponds to a flow in this network. Let flowmn denote the flow on the arc (m, n). The
flow on a vertical arc represents the quantity (in cubic meters) of fiberglass produced in the corresponding
time period. The flow on a horizontal arc represents the quantity of product carried over to the next time
period (stock level). The aim is to compute the minimum cost flow that satisfies the demands and does
not exceed the production capacities. The resulting model is a transshipment problem because there
are no capacities on the arcs. With COSTmn the cost of an arc (m, n), we obtain the following objective
function (total cost of the flow):

minimize
∑

(m,n)∈ARCS

COSTmn · flowmn (8.5.1)

For every time period, the amount carried over to the next period (stock) equals the stock at the begin-
ning of the period plus the production of the period minus the demand of the period. This equation
results in the constraint (8.5.2) for the first period since there is no initial stock. In other words, the quan-
tity stored at the end of the period (flow on arc (2,4)) equals the amount produced in period 1 (flow on
arc (1,2)) minus the demand DEM2.

flow24 = flow12 − DEM2 (8.5.2)

The general stock balance equation (8.5.3) applies to all other periods but the last. For every even index n,
the flow between n−2 and n represents the production in period n / 2, whilst the flow between n−1 and
n represents the stock carried over from the preceding period. The flow between n and n + 2 represents
the stock at the end of the current period. LAST denotes the last node in the graph (= node with the
largest sequence number).

∀n = 4, . . . , LAST − 2, n even : flown,n+2 = flown−2,n + flown−1,n − DEMn (8.5.3)

For the last period, we do not wish to create any final stock, so we obtain the constraint (8.5.4).

flowLAST−2,LAST + flowLAST−1,LAST − DEMLAST = 0 (8.5.4)

We also need to fulfill the constraints on the production capacity (8.5.5).

∀n = 1, . . . , LAST − 1, n odd : flown,n+1 ≤ CAPn (8.5.5)

We obtain the following mathematical model. It is not required to state that the flow variables flowmn

are integer since this property is automatically given in the optimal solution to the linear problem (this
results from LP theory that is not covered in this book).

minimize
∑

(m,n)∈ARCS

COSTmn · flowmn (8.5.6)

flow24 = flow12 − DEM2 (8.5.7)

∀n = 4, . . . , LAST − 2, n even : flown,n+2 = flown−2,n + flown−1,n − DEMn (8.5.8)

flowLAST−2,LAST + flowLAST−1,LAST − DEMLAST = 0 (8.5.9)

∀n = 1, . . . , LAST − 1, n odd : flown,n+1 ≤ CAPn (8.5.10)

∀(m, n) ∈ ARCS : flowmn ≥ 0 (8.5.11)
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8.5.2 Implementation

The mathematical model leads to the following Mosel program. The demand and capacity data (= node
weights) have been grouped into a single array WEIGHT , indexed by the node number. The graph with
the cost of the arcs is encoded as a two-dimensional array ARC, an entry ARCmn of which is defined if the
arc (m, n) is in the network. The value of the entry corresponds to the cost of the arc. The array ARC is
given in sparse format in the data file c5fiber.dat .

model "C-5 Fiberglass"
uses "mmxprs"

declarations
NODES: range ! Production and demand nodes

! odd numbers: production capacities
! even numbers: demands

ARC: array(NODES,NODES) of real ! Cost of flow on arcs
WEIGHT: array(NODES) of integer ! Node weights (capacities/demand)

flow: array(NODES,NODES) of mpvar ! Flow on arcs
end-declarations

initializations from ’c5fiber.dat’
ARC WEIGHT

end-initializations

forall(m,n in NODES | exists(ARC(m,n))) create(flow(m,n))

! Objective: total cost of production and storage
Cost:= sum(m,n in NODES | exists(ARC(m,n))) ARC(m,n)*flow(m,n)

! Satisfy demands (flow balance constraints)
forall(n in NODES | isodd(n)=FALSE)

if(n<getlast(NODES), flow(n,n+2), 0) =
if(n>2, flow(n-2,n), 0) + flow(n-1,n) - WEIGHT(n)

! Production capacities
forall(n in NODES | isodd(n)) flow(n,n+1) <= WEIGHT(n)

! Solve the problem
minimize(Cost)

end-model

In this Mosel program, the variables are defined as a dynamic array and therefore need to be created
once their index range is known, that is, after the data defining the arcs of the network has been read
from file.

We remind the reader that the use of the function exists allows Mosel to enumerate only the defined
entries of a sparse array, provided that the index sets are named and are the same as those used for the
declaration of the array.

The implementation above introduces two new functions: isodd indicates whether the integer value it
is applied to is even or odd. getlast returns the last entry of an array (that is, the entry with the highest
index value).

8.5.3 Results

The optimal solution calculated by the Mosel program is a total cost of BC 3,988 with the quantities of
fiberglass to be produced and stored in every period shown in Table 8.13.

Table 8.13: Production and storage per week

Week 1 2 3 4 5 6

Production 140 80 110 100 110 100

Stock 40 0 10 20 10 0
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8.6 Assignment of production batches to machines

Having determined a set of ten batches to be produced in the next period, a production manager is
looking for the best assignment of these batches to the different machines in his workshop. The five
available machines in the workshop may each process any of these batches, but since they are all models
from different years of manufacture the speed with which they process the batches changes from one
machine to another. Furthermore, due to maintenance periods and readjustments, every machine may
only work a certain number of hours in the planning period. Table 8.14 lists the processing times of the
production batches on all machines and the capacities of the machines.

Table 8.14: Processing durations and capacities (in hours)

Production batches
Machine 1 2 3 4 5 6 7 8 9 10 Capacity

1 8 15 14 23 8 16 8 25 9 17 18

2 15 7 23 22 11 11 12 10 17 16 19

3 21 20 6 22 24 10 24 9 21 14 25

4 20 11 8 14 9 5 6 19 19 7 19

5 8 13 13 13 10 20 25 16 16 17 20

The production cost of a batch depends on the machine that processes it. The hourly usage cost for
every machine depends on its technology, its age, its consumption of consumables (such as electricity,
machine oil) and the personnel required to operate it. These differences are amplified by the variation
in the processing durations of a batch depending on the machine. Table 8.15 lists the production costs
in thousand BC. On which machine should each batch be executed if the production manager wishes to
minimize the total cost of production?

Table 8.15: Production cost depending on the assignment (in kBC )

Production batches
Machine 1 2 3 4 5 6 7 8 9 10

1 17 21 22 18 24 15 20 18 19 18

2 23 16 21 16 17 16 19 25 18 21

3 16 20 16 25 24 16 17 19 19 18

4 19 19 22 22 20 16 19 17 21 19

5 18 19 15 15 21 25 16 16 23 15

8.6.1 Model formulation

In its generic form, this problem is a generalized assignment problem. Let MACH be the set of machines
and PRODS the set of batches to produce. We write DURmp for the processing duration of batch p on
machine m and COSTmp for the cost incurred if batch p is assigned to machine m. CAPm denotes the
maximum capacity (in hours) of the machine m. We introduce binary variables usemp that take the value
1 if and only if the batch p is assigned to the machine m. The objective function (8.6.1) that is to be
minimized is the total production cost.

minimize
∑

m∈MACH

∑
p∈PRODS

COSTmp · usemp (8.6.1)

As a first set of constraints, we need to ensure that every batch is assigned to a single machine. This is
done with constraints (8.6.2). This type of constraint is typical for classical assignment problems, just like
the problem of flight connections in Chapter 11.

∀p ∈ PRODS :
∑

m∈MACH

usemp = 1 (8.6.2)

Every machine may only work within its capacity limits, and this constraint is established by relations
(8.6.3). In these constraints we sum up the durations of the batches assigned to the same machine and
specify that this sum does not exceed the maximum total capacity of the machine. This type of constraint
is a knapsack constraint (see Chapter 9).

∀m ∈ MACH :
∑

p∈PRODS

DURmp · usemp ≤ CAPm (8.6.3)
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This gives the following complete model:

minimize
∑

m∈MACH

∑
p∈PRODS

COSTmp · usemp (8.6.4)

∀p ∈ PRODS :
∑

m∈MACH

usemp = 1 (8.6.5)

∀m ∈ MACH :
∑

p∈PRODS

DURmp · usemp ≤ CAPm (8.6.6)

∀m ∈ MACH, ∀p ∈ PRODS : usemp ∈ {0, 1} (8.6.7)

8.6.2 Implementation

The conversion of such a compact mathematical model into a Mosel program is straightforward.

model "C-6 Machine assignment"
uses "mmxprs"

declarations
MACH = 1..5 ! Set of machines
PRODS = 1..10 ! Set of production batches

CAP: array(MACH) of integer ! Machine capacities
DUR: array(MACH,PRODS) of integer ! Production durations
COST: array(MACH,PRODS) of integer ! Production costs

use: array(MACH,PRODS) of mpvar ! 1 if machine assigned to batch,
! 0 otherwise

end-declarations

initializations from ’c6assign.dat’
DUR CAP COST

end-initializations

! Objective: total production cost
Cost:= sum(m in MACH, p in PRODS) COST(m,p)*use(m,p)

! Assign a single machine to every batch
forall(p in PRODS) sum(m in MACH) use(m,p) = 1

! Limits on machine capacities
forall(m in MACH) sum(p in PRODS) DUR(m,p)*use(m,p) <= CAP(m)

forall(m in MACH, p in PRODS) use(m,p) is_binary

! Solve the problem
minimize(Cost)

end-model

8.6.3 Results

After solving this problem, we obtain a total cost of BC 173k. The following table (there are several
solutions with the same objective value) shows the assignment:

Table 8.16: Optimal assignment

Machine Assigned batches Total duration

1 1, 9 17

2 2, 5 18

3 3, 6, 8 25

4 7, 10 13

5 4 13
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8.7 References and further material

There is plenty of literature about production planning, for instance research articles and monographs,
such as Hax and Candea [HC84] and the one by Buffa and Taubert [BT79]. The recent book by Voß and
Woodruff [VW02] on Supply Chain Management provides implementations of several typical problems
with Mosel and other modeling languages.

Historically, planning problems have first been treated by taking into account the stock management
almost exclusively. They were to answer the two questions: how much to order and when to order, to
maintain the chosen stock level. The first model was the Economic Order Quantity model. It determines
the quantity to produce according to a simple mathematical formula due to Wilson, that takes into
account the cost of the order, the storage cost, and the demand of the period under consideration. The
answer to the second question is based on the economic order quantity, the demand and the duration of
the period. But this type of model is valid, among others, only if the demand is deterministic (known for
the period) and does not change over time, if the parameters used for the calculations are also constant
and do not depend on the quantity ordered, and if the resupply takes place instantaneously. These
drawbacks have lead to multi-period models in which the time horizon is discretized over a sequence
of time periods. By indexing the quantities with the time periods, these models are suitable for Linear
Programming.

The simplest multi-period models have cost that are proportional to the quantities (this are usually pro-
duction and storage costs). In other words, there are no fix costs like adjustments before starting the
production of a batch. Constraints on limited resources (personnel, machine time etc.) are frequent. The
problem of planning the production of bicycles in Section 8.1 is a one-product case that falls under this
category. The production of fiberglass in Section 8.5 has costs that depend on the time period and is well
modeled by flows. The glass production problem of Section 8.2 is a typical multi-product case. All these
basic models work with a fixed personnel level (fixed workforce models). The first model of this type
that appears in the literature is due to Bowman [Bow56].

Let us cite some extensions of multi-product models with proportional costs. Researchers early on studied
variable workforce models, see for instance [HH60]. Later appear costs for additional hours, recruitment,
licensing and training. The problem of electronic components in Section 8.4 also forms an interesting
extension with cost caused by changes of the production level. A different level of generalization is
reached by multi-stage production planning systems [JM74], [Can77].

In production planning, lot sizing problems form a class of their own that has not been mentioned in this
chapter. These very hard problems are characterized by setup costs that apply every time the production
of a product is restarted. These costs that are due to the division of a lot (batch) into several sub-lots are
added to the usual production costs. The only easy case considers a single product and an unlimited pro-
duction capacity. It is solved approximately with the heuristic of Silver and Meal [SPP98], and to optimality
by a dynamic programming method of Wagner and Whitin [WW58]. Among the difficult extensions, let
us cite the uncapacitated multi-product case [Kao79], and the cases with limited production capacities
with the heuristics by Walker [Wal76] and the column generation method of Lasdon and Terjung [LT71].

The 70s have seen the birth of two major concepts that are ‘en vogue’ in production planning: the
MRP method and Just-in-Time. MRP (Material Requirement Planning) was invented by Orlicky at IBM
[Orl75]. This computerized stock management system has the advantage of taking into account the
subsets, components and raw material required by a product. It produces a master production schedule
that answers the two questions (how much and when to order). The use of Linear Programming for MRP
is more recent; the problem of the production of toy lorries in Section 8.3 gives an example for this.

Just-in-Time (JIT) is more of a philosophy or a state of mind that aims at eliminating any waste of time or
resource use. JIT reduces the stock levels and increases the frequency of renewal of the latter by trying
to produce the desired product with the required quantity at the right moment. Establishing this way
of functioning is not easy but often leads to major improvements. The ‘philosophical’ aspect is attractive
and fairly common sense.

A problem that is rarely mentioned are the conflicts between different levels of production planning
and scheduling. The aggregation of operations is required in planning to reduce the complexity but,
most of all, because it is useless to go into too much detail with a planning horizon of several months
for which the orders are not known precisely. Due to this aggregation, planning may unfortunately
result in a production plan that proves to be infeasible for scheduling when the detailed constraints of
the workshops are integrated into the model. Some recent methods allow the planner to avoid these
problems [DPL94].

The generalized assignment problem of Section 8.6 is not really a production planning problem. We have
placed it into this chapter because it appears when the batches calculated by the planning have to be
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assigned to machines or workshops with different capacities and processing times. Instances of large size
have to be treated with specialized techniques, like the tree-based method by Fisher et al. that uses the
Lagrangian relaxation of the linear program [FJVW86].
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Chapter 9

Loading and cutting problems

Loading or packing problems consist of placing objects of different sizes into containers of known ca-
pacities. Depending on the context, the objects and containers may be of a different nature: programs
to store in memory, files to save onto a disk, boxes to be put into containers or onto shelves, etc. The
term packing usually refers to non-fragmentable objects that may cohabitate in a single container (such
as boxes in a lorry), whilst loading applies to fluid products (liquids and gas in tanks, powder in silos),
that are fragmentable but may not be mixed in a single container.

In the closely related cutting stock problem the aim is to cut a set of objects from larger aggregates:
cable segments from a bobbin, orders of glass, sheet metal or photographic film cut from large sheets,
pieces cut from metal blocks, etc. A collective name for loading and cutting stock problems is placement
problems.

In the simplest versions of these problems, the sizes and capacities only have a single dimension (weight
of a box, size of a file in bytes, length of a cable, etc.) and the containers all have the same capacity.
Obviously, problems exist with several types of containers and objects with two, three, or more dimen-
sions. Frequently, these are geometric dimensions (sheets, boxes), or various physical properties (weight,
volume).

Common objectives are to fill as much as possible of a container knowing that it is impossible to take
everything, or to place objects into a minimum number of containers, or to balance the load. When
cutting material, one aims to minimize the trim loss or to produce large offcuts that may be used for
cutting further objects.

The first problem, presented in Section 9.1, is a loading problem in which the load of wagons has to be
balanced. The problem of Section 9.2 concerns loading a barge. The problem of loading tanks in Section
9.3 consists of assigning petrol products to a set of tanks (some of which are partially filled) so as to
maximize the number of tanks that is left empty. The subject of Section 9.4 is the problem of saving files
onto disks. The two last problems deal with cutting rectangular sheets from large metal sheets (Section
9.5) and metal bars for desks (Section 9.6). These two are typical examples of pattern selection problems,
that is, problems where the containers may only be cut according to a limited number of patterns.

9.1 Wagon load balancing

Three railway wagons with a carrying capacity of 100 quintals (1 quintal = 100 kg) have been reserved to
transport sixteen boxes. The weight of the boxes in quintals is given in the following table. How shall the
boxes be assigned to the wagons in order to keep to the limits on the maximum carrying capacity and to
minimize the heaviest wagon load?

Table 9.1: Weight of boxes

Box 1 2 3 4 5 6 7 8

Weight 34 6 8 17 16 5 13 21

Box 9 10 11 12 13 14 15 16

Weight 25 31 14 13 33 9 25 25

Before implementing a Mathematical Programming solution, one may wish to try to see whether it is
possible to solve this problem instance with the following simple heuristic: until all boxes are distributed
to the wagons we choose in turn the heaviest unassigned box and put it onto the wagon with the least
load.
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9.1.1 Model formulation

This packing problem is similar to bin packing problems (see also the tank loading problem in Section 9.3
and the backup of files in Section 9.4). Here the number of containers (wagons) is fixed, and the objective
is to minimize the heaviest load. In bin packing problems, the capacity of the containers (bins) is fixed,
but the objective is to minimize the number of bins used.

Let BOXES be the set of boxes, WAGONS the set of wagons, WEIGHTb the weight of box b and WMAX
the maximum carrying load of a wagon. The assignment of the boxes to the wagons can be defined
through binary variables loadbw that take the value 1 if and only if box b is assigned to wagon w.

In this problem we wish to minimize the maximum load of the wagons. Such an objective is sometimes
referred to as minimax objective. Similarly, there are maximin problems in which the objective is to
maximize a minimum, like the assignment of personnel to workposts in Chapter 11. Minimax or maximin
optimization problems are also called bottleneck problems. The procedure to represent a bottleneck
criterion in a linear model is always the same:

• We define a non-negative variable maxweight to represent the maximum weight over all the
wagon loads.

• Constraints are established to set maxweight as the upper bound on every wagon load.

• The objective function consists of minimizing maxweight.

By proceeding this way, in the optimal solution the minimization will force maxweight to take the value
that corresponds to the weight of the heaviest wagon load. We derive the following 0-1 problem. The
constraints (9.1.2) ensure that every box is assigned to a single wagon. The constraints (9.1.3) establish
maxweight as the upper bound on the wagon loads. The objective (9.1.1) is to minimize maxweight. All
variables are binary (9.1.4) with the exception of maxweight which is simply a non-negative real.

minimize maxweight (9.1.1)

∀b ∈ BOXES :
∑

w∈WAGONS

loadbw = 1 (9.1.2)

∀b ∈ BOXES :
∑

w∈WAGONS

WEIGHTb · loadbw ≤ maxweight (9.1.3)

∀b ∈ BOXES, ∀w ∈WAGONS : loadbw ∈ {0, 1} (9.1.4)

maxweight ≥ 0 (9.1.5)

For two containers (wagons), it would be possible to define a much simpler mathematical model. The
problem then turns into the task of partitioning the boxes into two subsets with weights as close as pos-
sible. In the best case, we obtain subsets of the weight TOTALW / 2 (with TOTALW =

∑
b∈BOXES WEIGHTb

the total weight of all boxes). We may therefore reduce the problem to choosing boxes to place onto
the first wagon in such a way as to obtain a load as close as possible (from below) to TOTALW / 2. For
this purpose, we need to define binary variables loadb with loadb = 1 if box b goes onto wagon 1, and
loadb = 0 (or 1− loadb = 1) if the box is loaded onto wagon 2. The boxes that are not loaded onto wagon
1 go onto wagon 2. Thus, if the first wagon receives a load of weight TOTALW / 2−∆, the second wagon
has the load TOTALW / 2 + ∆.

maximize
∑

b∈BOXES

WEIGHTb · loadb (9.1.6)∑
b∈BOXES

WEIGHTb · loadb ≤ TOTALW / 2 (9.1.7)

∀b ∈ BOXES : loadb ∈ {0, 1} (9.1.8)

This slightly simpler problem where we try to fill as much as possible of a single container (here the first
wagon with a capacity limited by TOTALW / 2) is called a knapsack problem (see also the barge loading
problem in Section 9.2).

9.1.2 Implementation

The mathematical model of lines (9.1.1) – (9.1.4) is easily translated into a Mosel program. The role of
the lower bound on the maximum weight variable that has been added to the model formulation is
explained in the discussion of the results in the next section.
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Before defining and solving the MP problem, we test whether we can find heuristically a distribution of
loads to the wagons that fits the given capacity limit WMAX. The solution heuristic requires the boxes
to be given in decreasing order of their weight. We therefore implement a sorting heuristic using a Shell
sort method:

• First sort, by straight insertion, small groups of numbers.

• Next, combine several small groups and sort them (possibly repeat this step).

• Finally, sort the whole list of numbers.

The spacings between the numbers of groups sorted during each pass through the data are called the
increments. A good choice is the sequence that can be generated by the recurrence i1 = 1, ik+1 = 3·ik+1, k =
1, 2, . . .

Our implementation of the sorting algorithm assumes that the entries of the array to sort are numbered
1, . . . , N.

model "D-1 Wagon load balancing"
uses "mmxprs"

forward function solve_heur:real
forward procedure shell_sort(A:array(range) of integer)

declarations
BOXES = 1..16 ! Set of boxes
WAGONS = 1..3 ! Set of wagons

WEIGHT: array(BOXES) of integer ! Box weights
WMAX: integer ! Weight limit per wagon

load: array(BOXES,WAGONS) of mpvar ! 1 if box loaded on wagon, 0 otherwise
maxweight: mpvar ! Weight of the heaviest wagon load

end-declarations

initializations from ’d1wagon.dat’
WEIGHT WMAX

end-initializations

! Solve the problem heuristically and terminate the program if the
! heuristic solution is good enough

if solveheur<=WMAX then
writeln("Heuristic solution fits capacity limits")
exit(0)

end-if

! Every box into one wagon
forall(b in BOXES) sum(w in WAGONS) load(b,w) = 1

! Limit the weight loaded into every wagon
forall(w in WAGONS) sum(b in BOXES) WEIGHT(b)*load(b,w) <= maxweight

! Bounds on maximum weight
maxweight <= WMAX
maxweight >= ceil((sum(b in BOXES) WEIGHT(b))/3)

forall(b in BOXES,w in WAGONS) load(b,w) is_binary

! Minimize the heaviest load
minimize(maxweight)

!-----------------------------------------------------------------

! Heuristic solution: one at a time place the heaviest unassigned box
! onto the wagon with the least load

function solve_heur:real
declarations

ORDERW: array(BOXES) of integer ! Box weights in decreasing order
Load: array(WAGONS,range) of integer ! Boxes loaded onto the wagons
CurWeight: array(WAGONS) of integer ! Current weight of wagon loads
CurNum: array(WAGONS) of integer ! Current number of boxes per wagon

end-declarations

! Copy the box weights into array ORDERW and sort it in decreasing order
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forall(b in BOXES) ORDERW(b):=WEIGHT(b)
shellsort(ORDERW)

! Distribute the loads to the wagons using the LPT heuristic
forall(b in BOXES) do

v:=1 ! Find wagon with the smallest load
forall(w in WAGONS) v:=if(CurWeight(v)<CurWeight(w), v, w)
CurNum(v)+=1 ! Increase the counter of boxes on v
Load(v,CurNum(v)):=b ! Add box to the wagon
CurWeight(v)+=ORDERW(b) ! Update current weight of the wagon

end-do

returned:= max(w in WAGONS) CurWeight(w) ! Return the solution value
end-function

!-----------------------------------------------------------------

! Sort an array in decreasing order using a Shell sort method
procedure shell_sort(A:array(range) of integer)

N:=getsize(A)
inc:=1 ! Determine the starting increment
repeat

inc:=3*inc+1
until (inc>N)

repeat ! Loop over the partial sorts
inc:=inc div 3
forall(i in inc+1..N) do ! Outer loop of straight insertion

v:=A(i)
j:=i
while (A(j-inc)<v) do ! Inner loop of straight insertion

A(j):=A(j-inc)
j -= inc
if j<=inc then break; end-if

end-do
A(j):= v

end-do
until (inc<=1)

end-procedure

end-model

In this Mosel program for the first time we use a function (all subroutines defined so far were procedures,
that is, they do not have a return value). What changes besides the keyword function instead of
procedure is that the type of the return value (here: real ) is declared in the subroutine prototype
and the actual value is assigned to returned in the body of the function.

In the implementation of the Shell sort algorithm we also encounter some new features:

• The function getsize returns the size (= number of defined elements) of an array or set.

• The main sorting loop uses the three different types of loops available in Mosel: repeat-until ,
forall , and while . Like the forall loop, the while loop has an inline version that applies to a
single statement and the version while-do to loop over a block of statements.

• The break statement can be used to interrupt one or several loops. In our case it stops the inner
while loop. Since we are jumping out of a single loop, we could just as well write break 1 . If we
wrote break 3 , the break would make the algorithm jump 3 loop levels higher, that is outside of
the repeat-until loop.

Another feature introduced by this implementation is the Mosel function exit to terminate the execu-
tion of a model: if the heuristic solves the problem, there is no need to define the mathematical model
and start the optimization algorithm.

9.1.3 Results

The heuristic returns a maximum load of 101 quitals (the two other wagons are loaded with 97 quintals
each). This means that the heuristic solution does not satisfy the capacity limit of the wagons (100 quin-
tals) and we need to use an optimizin algorithm to find out whether it is possible to transport all the
boxes.

Loading and cutting problems 124 Applications of optimization with Xpress-MP



If we try running the mathematical model above without the lower bound constraint on the variable
maxweight, the MIP search is not finished after several hundred thousand nodes (or several minutes of
running time on a Pentium III PC) because the formulation is very weak (there are, for instance, many
equivalent solutions, simply obtained through permuting the numbering of boxes): an optimal MIP solu-
tion is found quickly1 but it takes a long time to prove its optimality.

A lower bound on the maximum weight is given by the ideal case that all wagons take the same load,
that is

∑
b∈BOXES WEIGHTb / 3. Since all box weights are integers and boxes cannot be fragmented, we

can improve this bound by rounding it to the next larger integer (expressed through ceil). We have
ceil

(∑
b∈BOXES WEIGHTb / 3

)
= ceil

(
295 / 3

)
= ceil(98. 33333) = 99. With this bound, the optimal LP

solution has the value 99. Due to this lower bound, the MIP search stops as soon as an integer feasible
solution with the value 99 is found. Since the boxes cannot be divided, it was not obvious that we would
be able to find an integer solution within the carrying capacity of 100 quintals per wagon.

Table 9.2: Wagon loads

Wagon Total weight Boxes

1 99 2, 3, 7, 9, 12, 14, 16

2 98 4, 5, 6, 8, 11, 15

3 98 1, 10, 13

An alternative to the additional lower bound constraint on the maximum weight is to adapt the cutoff
value used by the optimizer: whenever an integer feasible solution is found during the Branch and
Bound search, the optimizer uses this value as the new, upper bound on the objective function. Since in
this problem we can only have integer-valued solutions, we can deduce a value (close to) 1 better than
this bound, to force the optimizer to look for the next integer solution. We add the following line to our
Mosel program before calling the optimization algorithm:

setparam("XPRS_MIPADDCUTOFF",-0.99999)

Once the MIP search has found a solution with value 99, the optimizer sets the new upper bound to
99 − 0. 99999 = 98. 00001. The optimal solution of the root LP (without the lower bound constraint on
maxweight) is 98.33333 which is larger than this bound, and the search therefore terminates.

Table 9.2 displays one of many possible assignments of boxes to wagons with the objective value 99.

9.2 Barge loading

A shipper on the river Rhine owns a barge of carrying capacity 1500 m3. Over time he has specialized
in the transport of wheat. He has seven regular customers who load and unload practically at the same
places. The shipper knows his costs of transport from long experience and according to his personal
preferences has concluded agreements with his clients for the price charged to them for the transport of
their wheat. The following table summarizes the information about the seven clients. Every client wishes
to tranport a certain number of lots, deciding himself the size of his lots in m3. The table lists the price
charged by the shipper for every transported lot. The last column of the table contains the cost incurred
by the shipper per transported m3. This cost differs depending on the distance covered.

Table 9.3: Lots to transport

Available quantity Lot size Price per Transport
Client (no. of lots) (in m3) lot (in BC) cost (in BC/m3)

1 12 10 1000 80

2 31 8 600 70

3 20 6 600 85

4 25 9 800 80

5 50 15 1200 73

6 40 10 800 70

7 60 12 1100 80

The objective of the shipper is to maximize his profit from transporting the wheat with lots that may be
divided.

1The reader is reminded that it is possible to visualize the output of the optimizer by adding the line
setparam("XPRS_VERBOSE",true) before the optimization statement. In Xpress-IVE, the tree search can be vi-
sualized directly.
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Question 1: As a first step, assuming that every client has an unlimited quantity of wheat, which clients’
wheat should be transported?

Question 2: If in addition the actual availability of wheat lots from the customers is taken into account,
which strategy should the shipper adopt?

Question 3: What happens if the lots cannot be divided?

9.2.1 Model formulation

The models for all three questions are given in this subsection. In each case, the objective is to maximize
the shipper’s profit. Let CAP be the total carrying capacity of the barge. We write CLIENTS for the set of
clients, AVAILc for the number of lots available from a client c, SIZEc the corresponding lot size, PRICEc

the price charged to this customer, and COSTc the transport cost per m3 incurred by the shipper. With the
given data, we calculate the shipper’s profit PROFc per transported lot of client c. This profit is obtained
easily via equation (9.2.1): from the price charged to a customer we need to deduct the transport cost for
a lot stemming from this customer.

∀c ∈ CLIENTS : PROFc = PRICEc − COSTc · SIZEc (9.2.1)

The shipper’s profit per transported lot of every client calculated through this equation is summarized in
the following table.

Table 9.4: Profit per lot

Client 1 2 3 4 5 6 7

Profit/lot (in BC) 200 40 90 80 105 100 140

Profit/m3 (in BC) 20 5 15 8.8889 7 10 11.6667

We introduce the decision variables loadc whose value is the number of lots transported for client c.
Since the lots may be divided, these variables may take fractional values. The model only has a single
constraint, namely to limit the volume of wheat transported by the barge (constraints (9.2.3)). Using the
profit data calculated above, we may now easily express the objective function (9.2.2).

maximize
∑

c∈CLIENTS

PROFc · loadc (9.2.2)∑
c∈CLIENTS

SIZEc · loadc ≤ CAP (9.2.3)

∀c ∈ CLIENTS : loadc ≥ 0 (9.2.4)

If we have to take into account the number of lots available from each client, we simply have to add
the bound constraints (9.2.5) that state that the transported number of lots loadc is within the limit of
availability.

∀c ∈ CLIENTS : loadc ≤ AVAILc (9.2.5)

In the last case, the lots may not be fragmented, that is, the variables loadc may only take integer values.
We therefore have to add the following constraints (9.2.6) to the model.

∀c ∈ CLIENTS : loadc ∈ IN (9.2.6)

9.2.2 Implementation

To simplify the statement of the objective function, in the following Mosel implementation of the mathe-
matical model the profit per client is calculated separately, as is done in the previous section. The resulting
model is very simple because it contains only a single constraint. The additional constraints are progres-
sively added to the problem definition. After every optimization run we call the procedure print_sol
to display the results.

model "D-2 Ship loading"
uses "mmxprs"

forward procedure print_sol(num:integer)

declarations
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CLIENTS = 1..7 ! Set of clients

AVAIL: array(CLIENTS) of integer ! Number of lots per client
SIZE: array(CLIENTS) of integer ! Lot sizes
PRICE: array(CLIENTS) of integer ! Prices charged to clients
COST: array(CLIENTS) of integer ! Cost per client
PROF: array(CLIENTS) of integer ! Profit per client
CAP: integer ! Capacity of the ship

load: array(CLIENTS) of mpvar ! Lots taken from clients
end-declarations

initializations from ’d2ship.dat’
AVAIL SIZE PRICE COST CAP

end-initializations

forall(c in CLIENTS) PROF(c):= PRICE(c) - COST(c)*SIZE(c)

Profit:= sum(c in CLIENTS) PROF(c)*load(c)

! Limit on the capacity of the ship
sum(c in CLIENTS) SIZE(c)*load(c) <= CAP

! Problem 1: unlimited availability of lots at clients
maximize(Profit)
print_sol(1)

! Problem 2: limits on availability of lots at clients
forall(c in CLIENTS) load(c) <= AVAIL(c)

maximize(Profit)
print_sol(2)

! Problem 3: lots must be integer
forall(c in CLIENTS) load(c) is_integer

maximize(Profit)
print_sol(3)

!-----------------------------------------------------------------

! Solution printing
procedure print_sol(num:integer)

writeln("Problem ", num, ": profit: ", getobjval)
forall(c in CLIENTS)

write( if(getsol(load(c))>0 , " " + c + ":" + getsol(load(c)), ""))
writeln

end-procedure

end-model

9.2.3 Results

We examine the results obtained for the three questions in turn. In the first case, the optimizer returns a
total profit of BC 30,000 and the only load taken are 150 lots from client 1. The other clients have to look
for a different transport opportunity. This answer is quite obvious: the barge should be filled with the
wheat from the client that provides the highest profit for the space it occupies (ratio PROFc / SIZEc, values
displayed in the second line of Table 9.4).

But in reality, the available quantities of wheat are limited. When we solve this second, more constrained
problem, the value of the objective function decreases to BC 17,844.44. The transported quantities belong
to five clients as shown in the table below. In this case, we are also able to deduce the solution through
logic. It suffices to load the hold starting with the client who provides the best profit-per-volume ratio
(PROFc / SIZEc). We continue to load the hold with the wheat from the second best client (in the order of
decreasing profit-per-volume ratio) and so on, until the hold is full. The process stops when the hold is
full, so the last lot is likely to be incomplete.

In our example, the order of clients according to the decreasing profit-per-volume ratio is 1, 3, 7, 6, 4, 5,
and 2. All wheat of clients 1,3,7, and 6 is taken, filling 1360 m3 of the hold. The remaining 140 m3 are
filled with wheat from client 4, that is 15.5556 of his lots.

If the lots are forced to take integer values only (question 3), the solution is similar to the previous one,
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Table 9.5: Transported lots

Client 1 2 3 4 5 6 7

Question 1 150 0 0 0 0 0 0

Question 2 12 0 20 15.5556 0 40 60

Question 3 12 0 20 15 1 39 60

with a few small changes. The transported quantities for clients 1, 3, and 7 remain the same. Only 15 lots
of client 4 and 39 of client 6 are taken and in addition 1 lot of client 5. The value of the objective function
correspondingly decreases to BC 17,805. Note that in the general case, there may be large differences
between the lots chosen in the cases of fragmentable or integer lots. This type of problem is called a
knapsack problem.

9.3 Tank loading

Five tanker ships have arrived at a chemical factory. They are carrying loads of liquid products that must
not be mixed: 1200 tonnes of Benzol, 700 tonnes of Butanol, 1000 tonnes of Propanol, 450 tonnes of
Styrene, and 1200 tonnes of THF. Nine tanks of different capacities are available on site. Some of them
are already partially filled with a liquid. The following table lists the characteristics of the tanks (in
tonnes). Into which tanks should the ships be unloaded (question 1) to maximize the capacity of the
tanks that remain unused, or (question 2) to maximize the number of tanks that remain free?

Table 9.6: Characteristics of tanks

Tank 1 2 3 4 5 6 7 8 9

Capacity 500 400 400 600 600 900 800 800 800

Current product – Benzol – – – – THF – –

Quantity 0 100 0 0 0 0 300 0 0

9.3.1 Model formulation

Let TANKS be the set of tanks and LIQ the set of liquid products. We write ARRl for the quantity of liquid
l that is about to arrive at the factory. CAPt is the capacity of tank t, which initially contains a quantity
QINITt of liquid type TINITt (this type is only defined if QINITt > 0). All quantities are in tonnes. The model
formulation relies on the following property: it is possible to fill the tanks optimally by giving priority to
the tanks that already contain a liquid l for unloading the corresponding liquid before it is filled into any
empty tanks.

To understand why this correct, assume that a quantity x of liquid l is filled into an empty tank a, and
another tank b already contains liquid l with a remaining capacity of y > 0. If x > y, we do not make
any changes to the empty tanks (concerning their number or total capacity) if we first fill b before filling
x − y into a. If x ≤ y, we save tank a by filling x into tank b. We therefore obtain a solution that is at
least as good by giving priority to b until this tank is full or all of liquid l has been unloaded.

After the prioritized filling of the partially filled tanks, our problem remains to fill the empty tanks with
quantities RESTl defined by the relations (9.3.1): these are the quantities of product that remain once
the capacities of the partially filled tanks are exhausted. As for the rest of the data, we suppose that the
values RESTl are larger than zero, otherwise it suffices to remove from the problem the tanks that are
completely filled and the liquids that have been entirely unloaded.

∀l ∈ LIQ : RESTl = ARRl −
∑

t∈TANKS
TINITt=l

(CAPt −QINITt) (9.3.1)

The model can then be formulated in a straightforward manner using binary variables loadlt that are
defined only for tanks t that are empty after the prioritized filling (9.3.5). A variable loadlt is 1 if the
liquid l is unloaded into the tank t. The constraints (9.3.4) guarantee that every empty tank is filled with
at most one liquid. The constraints (9.3.3) ensure that the set of tanks that are filled with the liquid l
have a sufficiently large total capacity. The objective function (9.3.2) minimizes the total capacity of the
tanks that are used and so answers the first question, namely maximize the total capacity of the tanks
remaining empty. To maximize the number of unused tanks, it suffices to remove the coefficients CAPt
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from the sum in (9.3.2).

minimize
∑
l∈LIQ

∑
t∈TANKS
QINITt=0

CAPt · loadlt (9.3.2)

∀l ∈ LIQ :
∑

t∈TANKS
QINITt=0

CAPt · loadlt ≥ RESTl (9.3.3)

∀t ∈ TANKS, QINITt = 0 :
∑
l∈LIQ

loadlt ≤ 1 (9.3.4)

∀l ∈ LIQ, t ∈ TANKS, QINITt = 0 : loadlt ∈ {0, 1} (9.3.5)

9.3.2 Implementation

The following Mosel program implements the mathematical model developed in the previous section.
Since the loadlt variables are only created for the tanks that are entirely empty at the beginning, there is
no need to test the condition QINITt = 0 in the sums over these variables.

model "D-3 Tank loading"
uses "mmxprs"

forward procedure print_sol

declarations
TANKS: range ! Set of tanks
LIQ: set of string ! Set of liquids

CAP: array(TANKS) of integer ! Tank capacities
TINIT: array(TANKS) of string ! Initial tank contents type
QINIT: array(TANKS) of integer ! Quantity of initial contents
ARR: array(LIQ) of integer ! Arriving quantities of chemicals
REST: array(LIQ) of integer ! Rest after filling part. filled tanks

load: array(LIQ,TANKS) of mpvar ! 1 if liquid loaded into tank,
! 0 otherwise

end-declarations

initializations from ’d3tanks.dat’
CAP ARR
[TINIT, QINIT] as ’FILLED’

end-initializations

finalize(LIQ)

forall(t in TANKS | QINIT(t)=0, l in LIQ) do
create(load(l,t))
load(l,t) is_binary

end-do

! Complete the initially partially filled tanks and calculate the remaining
! quantities of liquids

forall(l in LIQ)
REST(l):= ARR(l) - sum(t in TANKS | TINIT(t)=l) (CAP(t)-QINIT(t))

! Objective 1: total tank capacity used
TankUse:= sum(l in LIQ, t in TANKS) CAP(t)*load(l,t)

! Objective 2: number of tanks used
TankNum:= sum(l in LIQ, t in TANKS) load(l,t)

! Do not mix different liquids
forall(t in TANKS) sum(l in LIQ) load(l,t) <= 1

! Load the empty tanks within their capacity limits
forall(l in LIQ) sum(t in TANKS) CAP(t)*load(l,t) >= REST(l)

! Solve the problem with objective 1
minimize(TankUse)
print_sol
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! Solve the problem with objective 2
minimize(TankNum)
print_sol

!-----------------------------------------------------------------

! Solution printing
procedure print_sol

writeln("Used capacity: ", getsol(TankUse) +
sum(t in TANKS | QINIT(t)>0) CAP(t),

" Capacity of empty tanks: ", sum(t in TANKS) CAP(t) -
getsol(TankUse) -
sum(t in TANKS | QINIT(t)>0) CAP(t))

writeln("Number of tanks used: ", getsol(TankNum) +
sum(t in TANKS | QINIT(t)>0) 1)

forall(t in TANKS)
if(QINIT(t)=0) then

write(t, ": ")
forall(l in LIQ) write( if(getsol(load(l,t))>0 , l, ""))
writeln

else
writeln(t, ": ", TINIT(t))

end-if
end-procedure

end-model

9.3.3 Results

When evaluating the results, we need to take into account that our model only works with the tanks
that are completely empty initially: the capacities (or for objective 2 the number) of the tanks that are
partially filled in the beginning need to be added to the objective values calculated by the program.

For the first objective, we obtain a total capacity used of 5200 tonnes, tank 4 with a capacity of 600 tonnes
remains empty (there are several equivalent solutions). Table 9.7 shows the distribution of chemicals to
the other tanks and the unused capacity possibly remaining if these tanks are not completely filled.

Table 9.7: Optimal tank filling

Product Tanks Remaining capacity

Benzol 2, 6 0

Butanol 9 100

Propanol 3, 5 0

Styrene 1 50

THF 7, 8 100

In the graphical representation of the solution in Figure 9.1 the unused tank capacities are represented
by grey-shaded areas and the initial fill heights are indicated with dashed lines.

1 2 7

THF THF Butan.Styr. Benzol Prop. Prop. Benzol

3 5 6 8 94

Figure 9.1: Optimal tank filling

In total, 8 tanks are used in the optimal solution for the first objective. After solving the problem with the
second objective, we find that 8 is indeed the smallest number of tanks that may be used for unloading
all liquids.
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9.4 Backing up files

Before leaving on holiday, you wish to backup your most important files onto floppy disks. You have got
empty disks of 1.44Mb capacity. The sixteen files you would like to save have the following sizes: 46kb,
55kb, 62kb, 87kb, 108kb, 114kb, 137kb, 164kb, 253kb, 364kb, 372kb, 388kb, 406kb, 432kb, 461kb, and
851kb.

Assuming that you do not have any program at hand to compress the files and that you have got a
sufficient number of floppy disks to save everything, how should the files be distributed in order to
minimize the number of floppy disks used?

9.4.1 Model formulation

Let FILES be the set of files to backup and DISKS = {1, . . . , ND} the set of floppy disks. Let CAP be the
capacity of a disk and SIZEf the size of file f in kbyte. We use variables savefd that take the value 1 if file
f is saved to disk d, and 0 in all other cases. We also define a variable used for every disk d that takes the
value 1 if any files are saved to this disk and 0 otherwise.

The objective is to minimize the number of disks that are used, which corresponds to minimizing the sum
of variables used, subject to the constraints:

a) A file must be saved onto a single disk. This constraint corresponds to the relation (9.4.1).

∀f ∈ FILES :
∑

d∈DISKS

savefd = 1 (9.4.1)

b) The capacity of disks is limited, which translates into the constraints (9.4.2).

∀d ∈ DISKS :
∑

f∈FILES

SIZEf · savefd ≤ CAP · used (9.4.2)

The variable used on the right side of this constraint links the variables savefd and used: if savefd has the
value 1, then the file f is saved onto the disk d and hence, the disk d is used and variable used needs
to take the value 1. The relation (9.4.2) forces used to take the value 1 if at least one variable savefd

(f ∈ FILES) has the value 1. We obtain the following MIP model:

minimize
∑

d∈DISKS

used (9.4.3)

∀f ∈ FILES :
∑

d∈DISKS

savefd = 1 (9.4.4)

∀d ∈ DISKS :
∑

f∈FILES

SIZEf · savefd ≤ CAP · used (9.4.5)

∀d ∈ DISKS, f ∈ FILES : savefd ∈ {0, 1} (9.4.6)

∀d ∈ DISKS : used ∈ {0, 1} (9.4.7)

It is possible to model this problem with fewer variables: we keep the Boolean variables savefd from the
preceding model (but not the variables used) and introduce an additional variable diskuse that corre-
sponds to the number of disks that are used. We obtain a second model formulation as follows:

minimize diskuse (9.4.8)

∀f ∈ FILES : diskuse ≥
∑

d∈DISKS

d · savefd (9.4.9)

∀f ∈ FILES :
∑

d∈DISKS

savefd = 1 (9.4.10)

∀d ∈ DISKS :
∑

f∈FILES

SIZEf · savefd ≤ CAP (9.4.11)

∀d ∈ DISKS, f ∈ FILES : savefd ∈ {0, 1} (9.4.12)

diskuse ≥ 0 (9.4.13)

The objective function is very simple in this case (9.4.8). We suppose that the disks are filled starting with
the disk numbered d = 1, then disk number 2, and so on. Due to the constraints (9.4.1) or (9.4.10), the
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disk that contains the file f has the index k that may be calculated through the relation (9.4.14).

k =
∑

d∈DISKS

d · savefd (9.4.14)

The value of diskuse must be at least as large as the highest index number of the disks that are used, hence
the constraints (9.4.9). The constraints (9.4.10), that indicate that a file must be stored onto a single disk,
are identical to the constraints (9.4.1) of the previous model. The capacity limits are established through
the constraints (9.4.11).

Finally, all variables savefd must be binaries and diskuse non-negative (it is not necessary to define this
variable explicitly as integer because this constraints will automatically be satisfied in the optimal solu-
tion). In this model, the minimization will reduce the value of diskuse as much as possible and backup
the files in such a way that the index value of the largest disk becomes as small as possible. This model
has ND Boolean variables fewer than the previous one.

9.4.2 Implementation

The following Mosel program implements the second mathematical model (lines (9.4.8) to (9.4.13)). Note
that based on the given file sizes we calculate heuristically an upper bound on the number of disks that
we may need for backing up all the files: we divide the sum of all file sizes by the capacity of a floppy
disk, round this value to the next larger integer. The resulting value may be used as an upper bound
in cases like the given data set where most of the files that need to be saved are very small compared
to the capacity of a disk. The only bound value for the number of disks that is save in the general case
is the number of files that need to be saved. (Consider, for instance, the case of 5 files of size 0.75Mb:
5 · 0. 75 = 3. 75, dividing this by 1.44 and rounding the result to the next larger integer we obtain 3, but
we actually need 5 disks since only a single file fits onto every disk.)

model "D-4 Bin packing"
uses "mmxprs"

declarations
ND: integer ! Number of floppy disks
FILES = 1..16 ! Set of files
DISKS: range ! Set of disks

CAP: integer ! Floppy disk size
SIZE: array(FILES) of integer ! Size of files to be saved

end-declarations

initializations from ’d4backup.dat’
CAP SIZE

end-initializations

! Provide a sufficiently large number of disks
ND:= ceil((sum(f in FILES) SIZE(f))/CAP)
DISKS:= 1..ND

declarations
save: array(FILES,DISKS) of mpvar ! 1 if file saved on disk, 0 otherwise
diskuse: mpvar ! Number of disks used

end-declarations

! Limit the number of disks used
forall(f in FILES) diskuse >= sum(d in DISKS) d*save(f,d)

! Every file onto a single disk
forall(f in FILES) sum(d in DISKS) save(f,d) = 1

! Capacity limit of disks
forall(d in DISKS) sum(f in FILES) SIZE(f)*save(f,d) <= CAP

forall(d in DISKS,f in FILES) save(f,d) is_binary

! Minimize the total number of disks used
minimize(diskuse)

end-model
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9.4.3 Results

In the optimal solution, three disks are used. The files may be distributed to the disks as shown in the
following table (there are several possible solutions).

Table 9.8: Distribution of files to disks

Disk File sizes (in kb) Used space (in Mb)

1 46 87 137 164 253 364 388 1.439

2 55 62 108 372 406 432 1.435

3 114 461 851 1.426

In problems like this, where the objective function is very weak and we have essentially a feasibility
problem, it may speed the Branch and Bound search to break the symmetry of the problem. The files
have been numbered in an arbitrary way, as have the disks, so there is no loss of generality if we fix
one assignment, for example assigning the biggest file to the first disk. Such symmetry breaking devices
can be quite useful in combinatorial problems, as they sometimes prevent the LP relaxation from taking
fractional combinations of solutions that would otherwise be integer feasible.

9.5 Cutting sheet metal

A sheet metal workshop cuts pieces of sheet metal from large rectangular sheets of 48 decimeters × 96
decimeters (dm). It has received an order for 8 rectangular pieces of 36 dm × 50 dm, 13 sheets of 24 dm
× 36 dm, 5 sheets of 20 dm × 60 dm, and 15 sheets of 18 dm × 30 dm. Theses pieces of sheet metal need
to be cut from the available large pieces. How can this order by satisfied by using the least number of
large sheets?

9.5.1 Model formulation

In this type of highly combinatorial problem, one exploits the fact that only a relatively small number
of combinations of rectangles can be cut from the large sheets. These cutting patterns can easily be
enumerated; Figure 9.2 represents the sixteen subsets that can be found. The sets shown are maximal
subsets, that is, no further small rectangle of the order may be added to them. The Figure only displays
one of several possible arrangements of every pattern.

Let SIZES be the set of rectangles of different sizes of the order, and PATTERNS the set of cutting patterns
represented in the graphic. For every size, the demand DEMs is given. Every pattern has an associated
cost COSTp (COSTp = 1 if we simply wish to minimize the number of large sheets used). The composition
of the cutting patterns is given by the matrix CUTsp defined by Table 9.9.

Table 9.9: Summary of cutting patterns

Pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

36 x 50 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

24 x 36 2 1 0 2 1 0 3 2 1 0 5 4 3 2 1 0

20 x 60 0 0 0 2 2 2 1 1 1 1 0 0 0 0 0 0

18 x 30 0 1 3 0 1 3 0 2 3 5 0 1 3 5 6 8

Once having finished the tedious work of enumerating the cutting patterns, writing the mathematical
model is easy. We need to calculate the number of sheets to cut with every pattern in order to produce
all ordered rectangular pieces whilst minimizing the total number of sheets used.

We introduce integer variables usep (9.5.3) that denote the number of times a cutting pattern p is used.
The constraints (9.5.2) indicate that the number of rectangles of every type needs to satisfy the demand.
The objective function (9.5.1) is the total cost (or simply the number) of large sheets used in cutting.

minimize
∑

p∈PATTERNS

COSTp · usep (9.5.1)

∀s ∈ SIZES :
∑

p∈PATTERNS

CUTsp · usep ≥ DEMs (9.5.2)

∀p ∈ PATTERNS : usep ∈ IN (9.5.3)
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Figure 9.2: Graphical representation of the 16 cutting patterns
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9.5.2 Implementation

The following Mosel program implements the mathematical model described in the previous section.

model "D-5 Sheet metal cutting"
uses "mmxprs"

declarations
PATTERNS = 1..16 ! Set of cutting patterns
SIZES = 1..4 ! Set of sheet sizes

DEM: array(SIZES) of integer ! Demands for the different sizes
CUT: array(SIZES,PATTERNS) of integer ! Cutting patterns

use: array(PATTERNS) of mpvar ! Use of cutting patterns
end-declarations

initializations from ’d5cutsh.dat’
DEM CUT

end-initializations

! Objective: total number of sheets used
Sheets:= sum(p in PATTERNS) use(p)

! Satisfy demands
forall(s in SIZES) sum(p in PATTERNS) CUT(s,p)*use(p) >= DEM(s)

forall(p in PATTERNS) use(p) is_integer

! Solve the problem
minimize(Sheets)

end-model

9.5.3 Results

The solver finds an optimal integer solution that uses 11 large sheets out of which the pattern 1 is cut 6
times, patterns 2 and 3 once, pattern 6 twice and pattern 10 once (note that there are several equivalent
solutions). From this distribution come exactly the numbers of small sheets required to satisfy the order.
We have thus minimized the total number of large sheets and produced exactly the required quantity,
which is not necessarily the case in larger examples.

The mathematical model is very compact in its generic form after the cutting patterns have been enumer-
ated. In practical applications it may be too difficult to carry out this task by hand and some specialized
program will have to be employed to generate these patterns in order to prevent the omission of admis-
sible combinations.

9.6 Cutting steel bars for desk legs

The company SchoolDesk produces desks of different sizes for kindergartens, primary and secondary
schools, and colleges. The legs of the desks all have the same diameter, with different lengths: 40 cm for
the smallest ones, 60 cm for medium height, and 70 cm for the largest ones. These legs are cut from steel
bars of 1.5 or 2 meters. The company has received an order for 108 small, 125 medium and 100 large
desks. How should this order be produced if the company wishes to minimize the trim loss?

9.6.1 Model formulation

This problem is similar to the previous problem of cutting sheet metal. The model formulation exploits
the fact that only a small number of cutting patterns exist for the steel bars. The shorter bars of 1.5 m
may, for instance, be cut into two pieces of 70 cm which leaves an offcut of 10 cm that cannot be used
for any other type of leg. The same bar could alternatively be cut into one piece of 60cm and one of 70
cm, a loss of 20 cm. The following table summarizes the different possibilities.

Let SIZES be the set of leg/desk heights and DEMs the demand for desks of a size s. Since every desk has
four legs, we need to multiply the demand by 4 to obtain the required number of desk legs. The sets
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Table 9.10: Possible cutting patterns for every bar type

Pattern Leg types Loss
number 40cm 60cm 70cm (in cm)

Bar type 1 1 0 0 2 10

(1.5m) 2 0 1 1 20

3 2 0 1 0

4 0 2 0 30

5 2 1 0 10

6 3 0 0 30

Bar type 2 7 0 1 2 0

(2m) 8 0 2 1 10

9 1 0 2 20

10 3 0 1 10

11 0 3 0 20

12 5 0 0 0

PAT1 and PAT2 of cutting patterns for bars of type 1 and 2 respectively are combined to form the set of
all patterns PATTERNS = PAT1 ∪ PAT2. We write LENb for the length of bar type b.

The objective is to minimize the trim loss, that is, the difference between the total length of the original
steel bars used for cutting and the total length of the desk legs ordered. With variables usep denoting the
number of times a cutting pattern p is used, the first two terms of the objective function (9.6.1) represent
the total length of the bars that are used and the last term the total length of the ordered desk legs.

minimize
∑

p∈PAT1

LEN1 · usep +
∑

p∈PAT2

LEN2 · usep −
∑

s∈SIZES

4 · DEMs · s (9.6.1)

∀s ∈ SIZES :
∑

p∈PATTERNS

CUTps · usep ≥ 4 · DEMs (9.6.2)

∀p ∈ PATTERNS : usep ∈ IN (9.6.3)

In the objective function, the term corresponding to the length of the ordered desk legs may be omitted
because it is a constant value that has no influence on the minimization process. The constraints (9.6.2), in
which CUTps indicates the number of legs of length s contained in the cutting pattern p, guarantee that
the demands are satisfied. The constraints (9.6.3) force the variables usep to take non-negative integer
values only.

9.6.2 Implementation

A translation of the mathematical model to a Mosel is given by the following program. Note that the set
operator + is used to build the union of two sets (PAT1 and PAT2).

model "D-6 Cutting steel bars"
uses "mmxprs"

declarations
PAT1 = 1..6; PAT2 = 7..12 ! Sets of cutting patterns
PATTERNS = PAT1 + PAT2 ! Set of all cutting patterns
SIZES: set of integer ! Desk heights

DEM: array(SIZES) of integer ! Demands for the different heights
CUT: array(PATTERNS,SIZES) of integer ! Cutting patterns
LEN: array(range) of integer ! Lengths of original steel bars

use: array(PATTERNS) of mpvar ! Use of cutting patterns
end-declarations

initializations from ’d6cutbar.dat’
DEM CUT LEN

end-initializations

! Objective: total loss
Loss:= sum(p in PAT1) LEN(1)*use(p) + sum(p in PAT2) LEN(2)*use(p) -

sum(s in SIZES) 4*DEM(s)*s

! Satisfy demands
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forall(s in SIZES) sum(p in PATTERNS) CUT(p,s)*use(p) >= 4*DEM(s)

forall(p in PATTERNS) use(p) is_integer

! Solve the problem
minimize(Loss)

end-model

In this model we not only use ranges of integers as index sets (PAT1, PAT2, PATTERNS, and the unnamed
index set of LEN) as in most other examples but also a set of integers, SIZES . The form set of integer
is more general than a range set that always contains consecutive integer numbers. In the present case,
we want SIZES to contain only the three different leg heights (and not in addition all the integer values
between the smallest and the largest height). This is a nice way of using data directly as index values.

9.6.3 Results

The minimal loss calculated by the optimization is 2020cm. The ordered desk legs are cut from 2 bars of
1.5m (using cutting patterns 1 and 3 once) and 385 bars of 2m (using 195 times pattern 7, 7 times pattern
8, 97 times pattern 11, and 86 times pattern 12). With this combination of cutting patterns, exactly the
quantity of legs is produced that is needed to satisfy the order of desks.

9.7 References and further material

All problems in this chapter are NP-hard and Mathematical Programming is only able to deal with prob-
lems of moderate size. The wagon loading problem in Section 9.1 is also known as the problem of
scheduling n nonpreemptive tasks on m identical machines, also called the m processor problem. Mini-
mizing the maximum load of the wagons corresponds to minimizing the total duration of the schedule.
Using a formulation as a linear program it is hardly possible to deal with more than three machines and
thirty tasks. For two machines, a dynamic programming method (a kind of recursive optimization) of
complexity O(nB) (with B the total duration of all items) solves problems with up to one hundred objects
[MT90].

Certain specialized tree search methods are able to cope with up to a hundred tasks [HW95]. When the
optimal methods take too long, it is possible to find good solutions with the LPT (Longest Processing
Time) heuristic that at every iteration places the unassigned object with the longest processing time onto
the machine with the least load. The ratio of the LPT solution compared to the optimal solution is only
4
3 −

1
3m [Gra69]. As we have seen in Section 9.1 the LPT heuristic can easily be implemented with Mosel:

the heuristic solution is close to the optimum, but not sufficiently good for the given capacity limits
(which demonstrates the usefulness of optimization!). Sorting algorithms like the Shell sort used in our
implementation of the LPT heuristic are described with some detail in [PFTVed].

The barge loading problems in Section 9.2 are knapsack problems; they are recognizable by their single
capacity constraint. The knapsack problem with fractional variables is easy: the container must simply be
filled in the order of decreasing cost per size unit. Integer knapsack problems are NP-hard, but cases of
considerable size can be solved with dynamic programming or tree search methods [SDK83], [MT79].

The tank loading problem is described in a book by Christofides et al. [CMT79a]. There a tree search
method is described for large instances (35 liquids, 70 tanks), and also algorithms for the dynamic case
that take into account sequences of loading and unloading operations.

The problem of backing up files onto disks in Section 9.4 is a so-called bin-packing problem in which
one searches to distribute n objects i of weight Wi into a minimum number of boxes among m available,
every one with the same capacity. This problem is NP-hard. It is usually solved heuristically. The interested
reader may be recommended the work by Coffman et al. [CGJ96] that contains a summary of over a
hundred references, and the one by Martello and Toth [MT90].

Cutting stock problems like those in Sections 9.5 and 9.6 are highly combinatorial and usually contain
large numbers of variables. The constraints are quite varied, like the one that cuts must go from border
to border (guillotine cuts).

Among the optimal methods, there are tree-based methods, see for instance [HZ96]. Another exact
method, called column generation, was introduced by Gilmore and Gomory ([GG61] and [GG63]) to solve
one-dimensional problems. This method consists of firstly solving a problem that contains a very reduced
subset of the columns of the complete mathematical program, the latter possibly being too large to be
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generated in its entirety. The promising columns are then added progressively. When the method works
well, the optimum is found after generating only a small fraction of the columns of the complete model.

For large-sized instances one needs to use metaheuristics like tabu search [LMV99] or genetic algorithms
[Jak96]. Patterns that are equivalent in terms of trim loss may have different cutting costs. See Chu
for methods that minimize the cost [CA99]. The formulation in 9.5 is a set covering problem like the
placement of mobile phone transmitters in Chapter 12. This formulation is relatively efficient and works
with up to a hundred patterns, but this limit is small compared to the enormous number of patterns
that arise if the rectangles that need to be cut are small compared to the original sheets. Sweeney et
al. provide a comprehensive bibliography with over 400 references for loading and cutting problems
[SRP92].
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Chapter 10

Ground transport

As with air transport in Chapter 11, transport by road and rail is rich in optimization problems. The main
difference between the two types of networks is the high density of the network and the multiplicity
of players in ground transport. The opening of frontiers and strong competition between transport
providers has made the use of optimization methods a vital means of reducing transport costs and thus
being able to stand out from competitors.

Section 10.1 presents a vehicle rental problem in which the cars have to be returned to the agencies at the
least cost in order to establish the ideal fleet strengths. In Section 10.2 a problem of distributing among
different modes of transport is described: a given quantity of goods has to be transported between
two points in a network which provides different modes of transport with a known cost and limited
capacities. Section 10.3 deals with a classical problem at the strategic level, the choice of depot locations
that minimizes the cost of opening depots and of delivering to clients. In Section 10.4 we solve a problem
optimizing the routes for the delivery of heating oil. Section 10.5 describes a combined (intermodal)
transport problem that differs from the problem in 10.2 through costs for changing the mode. The
problem of planning a fleet of vans terminates this chapter.

10.1 Car rental

A small car rental company has a fleet of 94 vehicles distributed among its 10 agencies. The location of
every agency is given by its geographical coordinates X and Y in a grid based on kilometers. We assume
that the road distance between agencies is approximately 1.3 times the Euclidean distance (as the crow
flies). The following table indicates the coordinates of all agencies, the number of cars required the next
morning, and the stock of cars in the evening preceding this day.

Table 10.1: Description of the vehical rental agencies

Agency 1 2 3 4 5 6 7 8 9 10

X coordinate 0 20 18 30 35 33 5 5 11 2

Y coordinate 0 20 10 12 0 25 27 10 0 15

Required cars 10 6 8 11 9 7 15 7 9 12

Cars present 8 13 4 8 12 2 14 11 15 7

Supposing the cost for transporting a car is BC 0.50 per km, determine the movements of cars that allow the
company to re-establish the required numbers of cars at all agencies, minimizing the total cost incurred
for transport.

10.1.1 Model formulation

For every agency a in the given set AGENTS, we write Xa and Ya for its geographic coordinates. REQa is
the number of cars required at an agency a and STOCKa the present number of cars for each agency. The
difference between these two values indicates whether there is an excess number (positive value) or a
need for additional vehicles (negative value). The problem consists of finding the minimum cost flow of
vehicles from the set EXCESS of agencies with an excess of cars to the set NEED of agencies that have a
deficit of cars. A flow that re-establishes the required numbers of cars necessarily exists because the sum
of excesses is equal to the sum of deficits. As a first step, we define variables moveab to represent the
flow between two agencies:

∀a ∈ EXCESS, b ∈ NEED : moveab ∈ IN (10.1.1)
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Every agency with an excess number of cars needs to get rid of these (10.1.2), and every agency in need
of cars has to complete its fleet by receiving the missing number (10.1.3).

∀a ∈ EXCESS :
∑

b∈NEED

moveab = STOCKa − REQa (10.1.2)

∀b ∈ NEED :
∑

a∈EXCESS

moveab = STOCKb − REQb (10.1.3)

The objective function to be minimized is the total cost of transporting cars (10.1.4), where COST denotes
the transport cost per car per kilometer and DISTab is the distance between two agencies a and b.

minimize
∑

a∈EXCESS

∑
b∈NEED

COST · DISTab ·moveab (10.1.4)

This minimum cost flow problem is a transportation problem recognizable by a set of sources with avail-
abilities and a set of sinks (destinations) with demands. For minimum cost flow problems, the simplex
algorithm always finds an integer solution when solving the LP. The constraints (10.1.1) may therefore be
replaced by simple non-negativity constraints.

10.1.2 Implementation

The following Mosel program implements the mathematical model above. After reading in the data, we
test whether the number of cars in stock and the required number of cars are the same and stop the
program if this is not the case. Otherwise, the two subsets of agencies with an excess or in need of cars
are calculated. These sets are used subsequently in the declaration of the array of decision variables and
the distance matrix.

model "E-1 Car rental"
uses "mmxprs"

declarations
AGENTS = 1..10 ! Car rental agencies

REQ: array(AGENTS) of integer ! Required number of cars
STOCK: array(AGENTS) of integer ! Number of cars in stock
X,Y: array(AGENTS) of integer ! Coordinates of rental agencies
COST: real ! Cost per km of moving a car
NEED: set of integer ! Agencies needing more cars
EXCESS: set of integer ! Agencies with too many cars

end-declarations

initializations from ’e1carrent.dat’
REQ STOCK X Y COST

end-initializations

if sum(a in AGENTS) (STOCK(a)-REQ(a)) <> 0 then
writeln("Problem is infeasible")
exit(0)

end-if

! Calculate sets of agencies with excess or deficit of cars
forall(a in AGENTS)

if STOCK(a) - REQ(a) < 0 then
NEED += {a}

elif STOCK(a) - REQ(a) > 0 then
EXCESS += {a}

end-if

finalize(NEED); finalize(EXCESS)

declarations
DIST: array(EXCESS,NEED) of real ! Distance between agencies
move: array(EXCESS,NEED) of mpvar ! Cars exchanged between agencies

end-declarations

! Calculate distances between agencies
forall(a in EXCESS,b in NEED)

DIST(a,b):= 1.3*sqrt((X(a)-X(b))^2 + (Y(a)-Y(b))^2)
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! Objective: total transport cost
Cost:= sum(a in EXCESS,b in NEED) COST*DIST(a,b)*move(a,b)

! Agencies with excess availability
forall(a in EXCESS) sum(b in NEED) move(a,b) = STOCK(a) - REQ(a)

! Agencies in need of cars
forall(b in NEED) sum(a in EXCESS) move(a,b) = REQ(b) - STOCK(b)

forall(a in EXCESS,b in NEED) move(a,b) is_integer

! Solve the problem
minimize(Cost)

end-model

This implementation introduces the exponential operator ˆ . Note that instead of using the predefined
Mosel function sqrt(r) we could also write rˆ0.5 for the square root

√
r.

10.1.3 Results

The optimizer calculates a total transport cost of BC 152.64. The following table displays the required
movements of cars between agencies to obtain the desired distribution of the fleet with this minimum
cost.

Table 10.2: Optimal plan for transporting vehicles

→ 1 3 4 6 7 10 Excess

2 0 1 0 5 1 0 7

5 0 0 3 0 0 0 3

8 0 0 0 0 0 4 4

9 2 3 0 0 0 1 6

Need 2 4 3 5 1 5

10.2 Choosing the mode of transport

A company in the south-west of France needs to transport 180 tonnes of chemical products stored in
depots D1 to D4 to the three recycling centers C1, C2, and C3. The depots D1 to D4 contain respectively
50, 40, 35, and 65 tonnes, that is 190 tonnes in total. Two modes of transport are available: road and rail.
Depot D1 only delivers to centers C1 and C2 and that by road at a cost of BC 12k/t and BC 11k/t. Depot D2
only delivers to C2, by rail or road at BC 12k/t and BC 14k/t respectively. Depot D3 delivers to center C2 by
road (BC 9k/t) and to C3 by rail or road for BC 4k/t and BC 5k/t respectively. The depot D4 delivers to center C2
by rail or road at a cost of BC 11k/t and BC 14k/t, and to C3 by rail or road at BC 10k/t and BC 14k/t respectively.

Its contract with the railway company for the transport of chemical products requires the company to
transport at least 10 tonnes and at most 50 tonnes for any single delivery. Besides the standard security
regulations, there are no specific limitations that apply to road transport. How should the company
transport the 180 tonnes of chemicals to minimize the total cost of transport?

10.2.1 Model formulation

We are going to model this problem as a minimum cost flow problem with a fixed total throughput.
We first construct a graph G = (NODES, ARCS). To start, we put into the set of nodes NODES a layer of
nodes for the depots and a second one for the recycling centers (follow the construction with the help
of Figure 10.1). The set of arcs ARCS contains the possible connections between depots and recycling
centers. A transport plan corresponds to a flow in G, that is a flow flowij on every arc (i, j). An arc (i, j)
is characterized by a minimum flow MINCAPij (0 except for rail transport), a capacity or maximum flow
MAXCAPij (infinity except for rail transport), and a transport cost COSTij per tonne.

The two modes of transport from a depot to a center require two different arcs. Such a graph, with at
most p arcs in the same sense between two nodes is called a p-graph. Such a graph cannot be coded as a
(two-dimensional) matrix: for instance the element COSTij of a cost matrix can only define a single cost.
To obtain a graph with at most one arc between any pair of nodes, it is sufficient to create a fictitious
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node per mode of transport, for every connection between a depot i and a center j. For instance, there
is one connection by road and one by rail between depot D2 (node 3) and the center C1 (node 12). To
avoid generating a 2-graph with two arcs (3,12), we create a node 6 for the rail transport and node 7
for road transport. The railway connection becomes the path (3,6,12), the road connection (3,7,12). The
capacities and costs are only established for the arcs (3,6) and (3,7).
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Figure 10.1: Graph of the network

The graph does not take into account the stock levels at the depots. To include these, we create a source
node (fictitious node 1) that is connected to every depot d by an arc (1, d) with a capacity MAXCAP1d that
corresponds to the stock level at d. Therefore, the flow leaving the depot d cannot exceed this value.
To facilitate the formulation of the mathematical model we also create a sink node (fictitious node 15)
to which every center is connected. The resulting graph is represented in Figure 10.1, with the triple
(MINCAPij, MAXCAPij, COSTij) for every arc (i, j). A ‘–’ stands for infinite capacity.

The mathematical model contains the flow conservation constraints (10.2.2), also called Kirchhoff’s law:
the sum of the incoming flows at every node (except for source and sink) equals the sum of outgoing
flows. The flow on every arc has at least the minimum value MINCAPij (constraints (10.2.3)), without
exceeding the maximum capacity MAXCAPij (constraints (10.2.4)). The constraint (10.2.5) imposes a total
flow quantity MINQ = 180 tonnes. It stipulates that the total flow leaving the source (node 1) equals
MINQ. It would equally be possible to establish the equivalent constraint that the total flow into the sink
is equal to MINQ, since the flow is conserved through the network. In this constraint we could replace
the equality sign by ≥, since the total quantity transported will be forced to its lower bound when the
cost, and hence the sum of flows, is minimized.

We are left with the explanation of the objective function in line (10.2.1). Since COSTij is the cost per
tonne, the cost of a quantity flowij transported via the arc (i, j) is COSTij · flowij. And hence the total cost
of transport to be minimized is the sum of the flow quantities in the entire set of arcs.

Finally, due to the way we have defined the graph, we obtain a fairly compact mathematical model. Note
that the non-negativity constraints are implicitly given through the constraints (10.2.3).

minimize
∑

(i,j)∈ARCS

COSTij · flowij (10.2.1)

∀i ∈ NODES, i 6= SOURCE, SINK :
∑

(j,i)∈ARCS

flowji =
∑

(i,j)∈ARCS

flowij (10.2.2)

∀(i, j) ∈ ARCS : flowij ≥ MINCAPij (10.2.3)
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∀(i, j) ∈ ARCS : flowij ≤ MAXCAPij (10.2.4)∑
(SOURCE,i)∈ARCS

flowSOURCE,i = MINQ (10.2.5)

An alternative to this graph-based formulation of the problem would be to represent the quantity of
product transported from a depot d to a client c using mode m as a decision variable transportdcm for ev-
ery admissible triple (d, c, m). The total transported quantity is then given by the sum of all defined vari-
ables transportdcm, and the objective function is the sum of COSTdcm · transportdcm for all admissible triples
(d, c, m). The minimum and maximum capacities of certain modes of transport are given as bound con-
straints on the corresponding variables transportdcm, similarly to constraints (10.2.3) and (10.2.4) above.
For our specific problem, this formulation may be easier than the graph-based formulation. However, for
the implementation and further discussion of this problem we use the generic minimum cost flow model
given by lines (10.2.1) and (10.2.5).

10.2.2 Implementation

This problem raises a classical problem, namely the coding of a graph. It is possible to represent a graph
through an N × N matrix (where N is the total number of nodes), and define the flow variables for the
pairs of nodes (i, j) that are connected by an arc. However, for sparse graphs like the present one, it is
often preferable (and more efficient) to represent the graph as a list of arcs. This representation is used
in the following Mosel implementation, as opposed to the representation in the mathematical model
above. An arc a = (i, j) is referred to by its counter a and not via the node pair (i, j). The list of arcs is given
in the form of a two-dimensional array A with Aa1 = i and Aa2 = j. The flow variables are defined once
the data has been read (and hence, the set of arcs is known). Note that the nodes in this implementation
are not numbered but labeled ‘SOURCE’, ‘D2’, ‘C4’ etc. to ease the interpretation of the results.

model "E-2 Minimum cost flow"
uses "mmxprs"

declarations
NODES: set of string ! Set of nodes
MINQ : integer ! Total quantity to transport
A: array(ARCS:range,1..2) of string ! Arcs
COST: array(ARCS) of integer ! Transport cost on arcs
MINCAP,MAXCAP: array(ARCS) of integer ! Minimum and maximum arc capacities

end-declarations

initializations from ’e2minflow.dat’
A MINQ MINCAP MAXCAP COST

end-initializations

finalize(ARCS)

! Calculate the set of nodes
NODES:= union(a in ARCS) {A(a,1),A(a,2)}

declarations
flow: array(ARCS) of mpvar ! Flow on arcs

end-declarations

! Objective: total transport cost
Cost:= sum(a in ARCS) COST(a)*flow(a)

! Flow balance: inflow equals outflow
forall(n in NODES | n<>"SOURCE" and n<>"SINK")

sum(a in ARCS | A(a,2)=n) flow(a) = sum(a in ARCS | A(a,1)=n) flow(a)

! Min and max flow capacities
forall(a in ARCS | MAXCAP(a) > 0) do

flow(a) >= MINCAP(a)
flow(a) <= MAXCAP(a)

end-do

! Minimum quantity to transport
sum(a in ARCS | A(a,1)="SOURCE" ) flow(a) >= MINQ

! Solve the problem
minimize(Cost)
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end-model

This model introduces another aggregate operator of Mosel: the set of nodes NODESis constructed as the
union of all nodes connected by arcs in the set ARCS.

10.2.3 Results

The minimum cost is BC 1,715k. Figure 10.2 displays the solution: arcs that are used for transporting goods
are labeled with the transported quantities, unused arcs and nodes are printed with dotted lines. For
example, the entire stock of 50 tonnes at depot D1 is transported by road to the recycling center C2.
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Figure 10.2: Optimal transport plan

It may be noted that such a problem with minimum flows on its arcs may well have no solution. This is
the case, for instance, if MINQ = 10 because the four arcs of rail transport leaving the depots each require
at least a minimum flow of 10 tonnes.

10.2.4 Extension

This model may be used to solve any type of minimum cost flow problem. For example, it would be
possible to add demands for the centers. For a center c, it is sufficient to place the demand as a minimum
value for the flow on the arc (c, sink) to guarantee the satisfaction of the demand. However, a necessary
condition for the existence of a solution needs to be fulfilled: the sum of product availabilities at the
depots must be greater than or equal to the sum of the demands at the centers.

10.3 Depot location

A large company wishes to open new depots to deliver to its sales centers. Every new set-up of a depot
has a fixed cost. Goods are delivered from a depot to the sales centers close to the site. Every delivery has
a cost that depends on the distance covered. The two sorts of cost are quite different: set-up costs are
capital costs which may usually be written off over several years, and transport costs are operating costs.
A detailed discussion of how to combine these two costs is beyond the scope of this book — we assume
here that they have been put on some comparable basis, perhaps by taking the costs over a year.
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There are 12 sites available for the construction of new depots and 12 sales centers need to receive
deliveries from these depots.

The following Table 10.3 gives the costs (in thousand BC) of satisfying the entire demand of each customer
(sales center) from a depot (not the unit costs). So, for instance, the cost per unit of supplying customer 9
(who has a total demand of 30 tonnes according to Table 10.5) from depot 1 is BC 60000/30t, i.e. BC 2000/t.
Certain deliveries that are impossible are marked with the infinity symbol∞.

Table 10.3: Delivery costs for satisfying entire demand of customers

Customer
Depot 1 2 3 4 5 6 7 8 9 10 11 12

1 100 80 50 50 60 100 120 90 60 70 65 110

2 120 90 60 70 65 110 140 110 80 80 75 130

3 140 110 80 80 75 130 160 125 100 100 80 150

4 160 125 100 100 80 150 190 150 130 ∞ ∞ ∞
5 190 150 130 ∞ ∞ ∞ 200 180 150 ∞ ∞ ∞
6 200 180 150 ∞ ∞ ∞ 100 80 50 50 60 100

7 100 80 50 50 60 100 120 90 60 70 65 110

8 120 90 60 70 65 110 140 110 80 80 75 130

9 140 110 80 80 75 130 160 125 100 100 80 150

10 160 125 100 100 80 150 190 150 130 ∞ ∞ ∞
11 190 150 130 ∞ ∞ ∞ 200 180 150 ∞ ∞ ∞
12 200 180 150 ∞ ∞ ∞ 100 80 50 50 60 100

In addition, for every depot we have the following information: the fixed cost for constructing the depot
that needs to be included into the objective function and its capacity limit, all listed in Table 10.4.

Table 10.4: Fix costs and capacity limits of the depot locations

Depot 1 2 3 4 5 6 7 8 9 10 11 12

Cost (kBC) 3500 9000 10000 4000 3000 9000 9000 3000 4000 10000 9000 3500

Capacity (t) 300 250 100 180 275 300 200 220 270 250 230 180

The quantities demanded by the sales centers (customers), are summarized in the following table.

Table 10.5: Demand data

Customer 1 2 3 4 5 6 7 8 9 10 11 12

Demand (t) 120 80 75 100 110 100 90 60 30 150 95 120

In every case, the demand of a customer needs to be satisfied but a sales center may be delivered to
from several depots. Which depots should be opened to minimize the total cost of construction and of
delivery, whilst satisfying all demands?

10.3.1 Model formulation

To formulate the mathematical model, we write DEMc for the demand by customer (sales center) c, and
CAPd for the maximum capacity of depot d. The fixed cost of constructing depot d is given by CFIXd, the
cost of delivery from depot d to customer c as COSTcd. Furthermore, let DEPOTS be the set of all possible
depot locations and CUST the set of customers to be delivered to from these depots.

To solve the problem, we need to know which depots will be opened. So we define binary variables
buildd that take the value 1 if site d is chosen, and otherwise 0. In addition, we also need to know which
depot(s) deliver(s) goods to a customer. We introduce variables fflowdc for the fraction of the demand
of customer c that is satisfied from depot d. These variables take their values in the interval [0, 1]; we
therefore have the constraints (10.3.1).

∀d ∈ DEPOTS, c ∈ CUST : fflowdc ≤ 1 (10.3.1)

The demand of every customer needs to be entirely satisfied:

∀c ∈ CUST :
∑

d∈DEPOTS

fflowdc = 1 (10.3.2)
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We now have to model the fact that the total amount leaving depot d must be no more than its capacity
CAPd, but that the flow is zero if the depot is not built. The constraints (10.3.3) capture this.

∀d ∈ DEPOTS :
∑

c∈CUST

DEMc · fflowdc ≤ CAPd · buildd (10.3.3)

Let us now see why. Since fflowdc is the fraction of customer c’s satisfied demand, fflowdc · DEMc is the
amount going from d to c. The total outflow from d must be no more than CAPd if d is built (buildd = 1),
and must be 0 if buildd = 0.

The total cost to be minimized consists of the costs for constructing the depots and the delivery costs.
These are the two sums comprising the objective function (10.3.4). The complete mathematical model is
given by the following.

minimize
∑

d∈DEPOTS

CFIXd · buildd +
∑

d∈DEPOTS

∑
c∈CUST

COSTdc · fflowdc (10.3.4)

∀d ∈ DEPOTS, c ∈ CUST : fflowdc ≤ 1 (10.3.5)

∀c ∈ CUST :
∑

d∈DEPOTS

fflowdc = 1 (10.3.6)

∀d ∈ DEPOTS :
∑

c∈CUST

DEMc · fflowdc ≤ CAPd · buildd (10.3.7)

∀d ∈ DEPOTS, c ∈ CUST : fflowdc ≥ 0 (10.3.8)

∀d ∈ DEPOTS : buildd ∈ IN (10.3.9)

10.3.2 Implementation

The following Mosel program is a straightforward translation of the mathematical model.

model "E-3 Depot location"
uses "mmxprs"

declarations
DEPOTS = 1..12 ! Set of depots
CUST = 1..12 ! Set of customers

COST: array(DEPOTS,CUST) of integer ! Delivery cost
CFIX: array(DEPOTS) of integer ! Fix cost of depot construction
CAP: array(DEPOTS) of integer ! Depot capacity
DEM: array(CUST) of integer ! Demand by customers

fflow: array(DEPOTS,CUST) of mpvar ! Perc. of demand supplied from depot
build: array(DEPOTS) of mpvar ! 1 if depot built, 0 otherwise

end-declarations

initializations from ’e3depot.dat’
COST CFIX CAP DEM

end-initializations

! Objective: total cost
TotCost:= sum(d in DEPOTS, c in CUST) COST(d,c)*fflow(d,c) +

sum(d in DEPOTS) CFIX(d)*build(d)

! Satisfy demands
forall(c in CUST) sum(d in DEPOTS) fflow(d,c) = 1

! Capacity limits at depots
forall(d in DEPOTS) sum(c in CUST) DEM(c)*fflow(d,c) <= CAP(d)*build(d)

forall(d in DEPOTS) build(d) is_binary
forall(d in DEPOTS, c in CUST) fflow(d,c) <= 1

! Solve the problem
minimize(TotCost)

end-model

We could add an additional set of constraints stating the relation ‘if there is any delivery from depot d,
then this depot must be built’ (and its inverse ‘if a depot is not built, then there is no delivery from this
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depot’). This relation is implied by the constraints (10.3.3) but the additional (disaggregated) constraints
provide a tighter formulation. That is, if these constraints are added to the model they draw the solution
value of the LP relaxation closer to the MIP solution. The additional constraints may be added directly
to the model, but since the model is fully stated through the version printed above, we could turn them
into model cuts as shown below. By defining these constraints as model cuts we leave the choice to the
optimizer whether to use these additional constraints or not. Note that any constraint that is to become
a model cut needs to be named and declared globally in the Mosel program as shown in the following
program extract (linear constraints in Mosel have the type linctr ).

declarations
modcut: array(DEPOTS,CUST) of linctr

end-declarations

forall(d in DEPOTS, c in CUST) do
modcut(d,c):= fflow(d,c) <= build(d)
setmodcut(modcut(d,c))

end-do

10.3.3 Results

The optimization algorithm calculates a minimum total cost of BC 18,103k. The five depots 1, 5, 8, 9, and
12 are built. The following table details how the customers are delivered to from these depots. All depots
built, except depot 5 are used to their maximum capacity.

Table 10.6: Delivery plan

Customer
Depot 1 2 3 4 5 6 7 8 9 10 11 12

1 – 5 75 100 – – – – – – – 120

5 120 40 – – – – – – – – – –

8 – 35 – – – 100 – – – 85 – –

9 – – – – 110 – – – – 65 95 –

12 – – – – – – 90 60 30 – – –

10.4 Heating oil delivery

A transporter has to deliver heating oil from the refinery at Donges to a certain number of clients in the
west of France. His clients are located at Brain-sur-l’Authion, Craquefou, Guérande, la Haie Fouassière,
Mésanger and les Ponts-de-Cé. The following table lists the demands in liters for the different sites.

Table 10.7: Demands by clients (in liters)

Brain-sur-l’Authion Craquefou Guérande Haie Fouassière Mésanger Ponts-de-Cé

14000 3000 6000 16000 15000 5000

The next table contains the distance matrix between the clients and the refinery.

Table 10.8: Distance matrix (in km)

Brain-sur- Haie Ponts-
Donges l’Authion Craquefou Guérande Fouassière Mésanger de-Cé

Donges 0 148 55 32 70 140 73

Brain-s.-l’Authion 148 0 93 180 99 12 72

Craquefou 55 93 0 85 20 83 28

Guérande 32 180 85 0 100 174 99

Haie Fouassière 70 99 20 100 0 85 49

Mésanger 140 12 83 174 85 0 73

Ponts-de-Cé 73 72 28 99 49 73 0

The transport company uses tankers with a capacity of 39000 liters for the deliveries. Determine the tours
for delivering to all clients that minimize the total number of kilometers driven.
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10.4.1 Model formulation

This problem may be seen as a generalization of the famous Traveling Salesman Problem (TSP), an exam-
ple of which we see in Section 11.5. In this case there are several ‘salesmen’, who each have to have a
tour starting and finishing at Donges. We have to determine not only the cities in the tours, but also how
many tours there are to be, and the order the cities in each tour are visited.

We introduce variables precij that take the value 1 if town i immediately precedes town j in a tour, and
0 otherwise. Let SITES = {1, . . . , NS} be the number of sites. Site 1 is the refinery, so that we have
the subset CLIENTS = {2, . . . , NS} of sites to which we deliver. Let DISTij be the distance between two
towns i and j, DEMi the quantity ordered by client i, and CAP the maximum capacity of the tankers.
We also use variables quanti for the total amount of oil delivered on the route that includes client i up
to and including client i. For example, if the route including 10 is 1,3,11,10,6,1, then quant10 would be
DEM3 + DEM11 + DEM10. With these notations, we may formulate the following mathematical model:

minimize
∑

i∈SITES

∑
j∈SITES,i 6=j

DISTij · precij (10.4.1)

∀j ∈ CLIENTS :
∑

i∈SITES,i 6=j

precij = 1 (10.4.2)

∀i ∈ CLIENTS :
∑

j∈SITES,j 6=i

precij = 1 (10.4.3)

∀i ∈ CLIENTS : DEMi ≤ quanti ≤ CAP (10.4.4)

∀i ∈ CLIENTS : quanti ≤ CAP + (DEMi − CAP) · prec1i (10.4.5)

∀i, j ∈ CLIENTS, i 6= j :

quantj ≥ quanti + DEMj − CAP + CAP · precij + (CAP − DEMj − DEMi) · precji (10.4.6)

∀i ∈ CLIENTS : quanti ≥ 0 (10.4.7)

∀i, j ∈ SITES, i 6= j : precij ∈ {0, 1} (10.4.8)

The objective (10.4.1) of this problem is to minimize the total number of kilometers driven. Every cus-
tomer site has to be delivered to once. This is expressed through the two sets of constraints (10.4.2) and
(10.4.3) that make the delivery enter and leave every town (except the depot) exactly once.

The quantity quanti must be at least as large as the quantity ordered by client i and within the capacity
limit CAP of the tankers (10.4.4).

Furthermore, if client i is the first of a tour, then quanti is equal to the quantity ordered by this client.
This constraint is expressed through the two sets of constraints (10.4.4) and (10.4.5). Indeed, if i is the
first client of a tour, then prec1i is 1 and, after simplification, the constraint (10.4.5) is equivalent to the
constraint (10.4.9).

quanti ≤ DEMi (10.4.9)

From (10.4.9) and (10.4.4) it follows that quanti is equal to the demand of client i. If i is not the first of
a tour, prec1i is 0 and the constraint (10.4.5) is equivalent to the constraint (10.4.10), which is redundant
since it is already expressed in constraint (10.4.4).

quanti ≤ CAP (10.4.10)

Let us now consider the case where i is not the first customer of the tour. Then quanti must equal the
sum of quantities delivered between the refinery and i inclusively. This means that if client j comes after
client i in a tour, we can write that quantj must be equal to the quantity delivered on the tour from the
refinery to i, plus the quantity ordered by j. This relation is stated by the constraint (10.4.6). If indeed
j is the immediate successor of i in a tour, then precij is 1 and precji is 0, and the constraint (10.4.6) is
equivalent to the constraint (10.4.11).

quantj ≥ quanti + DEMj (10.4.11)

When j does not come immediately after i, constraint (10.4.6) still remains valid. If j is the immediate
predecessor of i, the constraint (10.4.6) becomes (10.4.12).

quantj ≥ quanti − DEMi (10.4.12)

This constraint means that the quantity delivered from the refinery up to j is no less than the quantity
delivered between the depot and the successor i of j on the tour, a quantity that needs to be reduced by
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the delivery at i. If j is the immediate predecessor of i, then i is the immediate successor of j. We therefore
obtain in addition to (10.4.12) the constraint (10.4.13) by swapping the indices in (10.4.11).

quanti ≥ quantj + DEMi (10.4.13)

The combination of constraints (10.4.12) and (10.4.13) is equivalent to the equation (10.4.14).

quanti = quantj + DEMi (10.4.14)

If i and j are not next to each other on a tour, we obtain the constraint (10.4.15). Since the terms on the
right hand side of the inequality sign are less than or equal to DEMj, this constraint is redundant since it
is subsumed by the constraint (10.4.4).

quantj ≥ quanti + DEMj − CAP (10.4.15)

And finally, constraints (10.4.7) and (10.4.8) indicate that the variables quanti are non-negative and that
the precij are binary variables.

4

3

2

1

Refinery

Figure 10.3: Example of an infeasible solution

To close we would like to remark that the assignment of variables quanti to every node i guarantees
that the capacity limits of the tankers are not exceeded, whilst making any tour impossible that does
not include the depot. Without these variables, it would be possible to obtain solutions like the one
represented in Figure 10.3.

This solution satisfies the constraints (10.4.2) and (10.4.3) because every node is entered and left exactly
once, but it is infeasible because the tour does not pass through the refinery. Assigning the strictly
increasing values quanti all along a tour excludes this type of solution.

10.4.2 Implementation

The following Mosel program implements the mathematical model of lines (10.4.1) – (10.4.8).

model "E-4 Oil delivery"
uses "mmxprs"

declarations
NS = 7
SITES = 1..NS ! Set of locations, 1=refinery
CLIENTS = 2..NS

DEM: array(SITES) of integer ! Demands
DIST: array(SITES,SITES) of integer ! Distances between locations
CAP: integer ! Lorry capacity

prec: array(SITES,SITES) of mpvar ! 1 if i immediately precedes j,
! 0 otherwise

quant: array(CLIENTS) of mpvar ! Quantity delivered up to i
end-declarations

initializations from ’e4deliver.dat’
DEM DIST CAP

end-initializations

! Objective: total distance driven
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Length:= sum(i,j in SITES | i<>j) DIST(i,j)*prec(i,j)

! Enter and leave every city only once (except the depot)
forall(j in CLIENTS) sum(i in SITES| i<>j) prec(i,j) = 1
forall(i in CLIENTS) sum(j in SITES| i<>j) prec(i,j) = 1

! If i is the first client of a tour, then quant(i)=DEM(i)
forall(i in CLIENTS) quant(i) <= CAP + (DEM(i)-CAP)*prec(1,i)

! If j comes just after i in a tour, then quant(j) is greater than the
! quantity delivered during the tour up to i plus the quantity to be
! delivered at j (to avoid loops and keep capacity limit of the tanker)

forall(i,j in CLIENTS| i<>j) quant(j) >= quant(i) + DEM(j) - CAP +
CAP*prec(i,j) + (CAP-DEM(j)-DEM(i))*prec(j,i)

forall(i in CLIENTS) do
quant(i) <= CAP
quant(i) >= DEM(i)

end-do

forall(i,j in SITES | i<>j) prec(i,j) is_binary

! Solve the problem
minimize(Length)

end-model

It is possible to define an additional set of constraints stating that quanti is greater than or equal to the
sum of the quantities to deliver to client i and to his predecessor on the tour. These constraints may help
improve the lower bound on the variables quanti for sites i that are not visited first in a tour. Since the
model is fully stated through the version printed above we turn them into model cuts, leaving the choice
to the optimizer whether to use these additional constraints or not. The reader is reminded that any
constraint that is to become a model cut needs to be named and declared globally in the Mosel program.

declarations
modcut: array(CLIENTS) of linctr

end-declarations

forall(i in CLIENTS) do
modcut(i):= quant(i) >= DEM(i) + sum(j in SITES| i<>j) DEM(j)*prec(j,i)
setmodcut(modcut(i))

end-do

10.4.3 Results

The optimal solution involves making two delivery tours. One tour delivers a total of 22000 liters of
heating oil, visiting first Guérande and then Haie Fouassière. The other tour goes from the refinery to
Mésanger, then Brain-sur-l’Authion, Les Ponts-de-Cé, and Craquefou, delivering a total of 37000 liters. A
total distance of 497 km needs to be driven for these tours.

10.5 Combining different modes of transport

A load of 20 tonnes needs to be transported on a route passing through five cities, with a choice of three
different modes of transport: rail, road, and air. In any of the three intermediate cities it is possible to
change the mode of transport but the load uses a single mode of transport between two consecutive
cities. Table 10.9 lists the cost of transport in $ per tonne between the pairs of cities.

Table 10.9: Transport costs with different modes

Pairs of cities
1–2 2–3 3–4 4–5

Rail 30 25 40 60

Road 25 40 45 50

Air 40 20 50 45

The next table (10.10) summarizes the costs for changing the mode of transport in $ per tonne. The cost
is independent of location.
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Table 10.10: Cost for changing the mode of transport

from \ to Rail Road Air

Rail 0 5 12

Road 8 0 10

Air 15 10 0

How should we organize the transport of the load at the least cost?

10.5.1 Model formulation

Let MODES be the set of modes of transport. The connection between a pair of consecutive cities is
referred to as a leg of the route, the complete transport trajectory being given by the set LEGS of all legs.
Let CTRANSml be the transport cost using mode m on leg l, and CCHGmn the cost for changing from mode
m to mode n which is independent of the site where it takes place in our example. We need two types
of binary variables to handle the two types of costs: a first group (10.5.1) of variables useml that have
the value 1 if mode m is used for leg l of the total trajectory, and a second group (10.5.2) of variables
changemnl with value 1 if there is a change from mode m to mode n between legs l and l + 1.

∀m ∈ MODES, l ∈ LEGS : useml ∈ {0, 1} (10.5.1)

∀m, n ∈ MODES, l ∈ {1, . . . , NL− 1} : changemnl ∈ {0, 1} (10.5.2)

A single mode of transport has to be used on each leg (10.5.3).

∀l ∈ LEGS :
∑

m∈MODES

useml = 1 (10.5.3)

A single change of the mode of transport may take place at every intermediate city (10.5.4). In this case,
the change from a mode to the same mode does not cost anything since the load stays on board the same
vehicle. It would of course be possible to have a non-zero cost if the load changed to a different vehicle
of the same type.

∀l ∈ {1, . . . , NL− 1} :
∑

m,n∈MODES

changemnl = 1 (10.5.4)

In the city between the legs l and l + 1, we have a change of the mode from m to n (proposition A) if
and only if the mode m is used for leg l and mode n is used on leg l + 1 (proposition B). The constraints
(10.5.5) provide a linear formulation of the implication A ⇒ B: if changemnl = 1, then useml = 1 and
usen,l+1 = 1. Theoretically, taking these constraints isolated from the rest, it would be possible to have
useml = usen,l+1 = 1 with changemnl = 0, but this case is excluded through the constraints (10.5.4).

∀m, n ∈ MODES, l ∈ {1, . . . , NL− 1} : useml + usen,l+1 ≥ 2 · changemnl (10.5.5)

An alternative formulation of these constraints are the two sets of constraints (10.5.6) and (10.5.7).

∀m, n ∈ MODES, l ∈ {1, . . . , NL− 1} : useml ≥ changemnl (10.5.6)

∀m, n ∈ MODES, l ∈ {1, . . . , NL− 1} : usen,l+1 ≥ changemnl (10.5.7)

These alternative constraints are stronger: they exclude more fractional solutions than the constraints
(10.5.5), at the cost of defining twice as many constraints.

The objective function (10.5.8), in $ per tonne, comprises the transport cost for every leg of the trajectory
(depending on the mode of transport used) and the sum of the costs for changing the mode in the
intermediate cities.

minimize
∑

m∈MODES

∑
l∈LEGS

CTRANSml · useml +
∑

m∈MODES

∑
n∈MODES

NL−1∑
l=1

CCHGmn · changemnl (10.5.8)

10.5.2 Implementation

The mathematical model translates into the following Mosel program. The implementation uses the
‘weak’ constraints (10.5.5).
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model "E-5 Combined transport"
uses "mmxprs"

declarations
NL = 4
LEGS = 1..NL ! Legs of the transport
MODES: set of string ! Modes of transport

CTRANS: array(MODES,LEGS) of integer ! Transport cost
CCHG: array(MODES,MODES) of integer ! Cost of changing mode of transport

end-declarations

initializations from ’e5combine.dat’
CTRANS CCHG

end-initializations

finalize(MODES)

declarations
use: array(MODES,LEGS) of mpvar ! 1 if a mode is used, 0 otherwise
change: array(MODES,MODES,1..NL-1) of mpvar ! 1 if change from mode m to n

! at end of leg, 0 otherwise
end-declarations

! Objective: total cost
Cost:= sum(m in MODES, l in LEGS) CTRANS(m,l)*use(m,l) +

sum(m,n in MODES,l in 1..NL-1) CCHG(m,n)*change(m,n,l)

! One mode of transport per leg
forall(l in LEGS) sum(m in MODES) use(m,l) = 1

! Change or maintain mode of transport between every pair of legs
forall(l in 1..NL-1) sum(m,n in MODES) change(m,n,l) = 1

! Relation between modes used and changes
forall(m,n in MODES,l in 1..NL-1) use(m,l) + use(n,l+1) >= 2*change(m,n,l)

forall(m in MODES, l in LEGS) use(m,l) is_binary
forall(m,n in MODES,l in 1..NL-1) change(m,n,l) is_binary

! Solve the problem
minimize(Cost)

end-model

10.5.3 Results

The minimum total cost calculated by the optimizer is $104/t. This value is obtained from $100/t of
transport costs and $4/t for changing the mode of transport. The following table displays the results in
detail.

Table 10.11: Modes of transport used and respective costs

1–2 Change at 2 2–3 Change at 3 3–4 Change at 4 4–5

Mode of transport rail rail rail road

Cost (in $/t) 30 0 25 0 40 5 50

10.6 Fleet planning for vans

A chain of department stores uses a fleet of vans rented from different rental agencies. For the next six
months period it has forecast the following needs for vans (Table 10.12):

Table 10.12: Requirements for vans for six months

January February March April May June

430 410 440 390 425 450

At the 1st January, the chain has 200 vans, for which the rental period terminates at the end of February.

Ground transport 152 Applications of optimization with Xpress-MP



To satisfy its needs, the chain has a choice among three types of contracts that may start the first day
of every month: 3-months contracts for a total cost of $1700 per van, 4-months contracts at $2200 per
van, and 5-months contracts at $2600 per van. How many contracts of the different types need to be
started every month in order to satisfy the company’s needs at the least cost and to have no remaining
vans rented after the end of June?

rent43

rent42

rent52

1 2 3 4 5 6

rent51

rent33

rent34

Month

Figure 10.4: Running contracts in month 5 (May)

10.6.1 Model formulation

Let NINIT be the number of vans already rented at the beginning of the planning period. We define
integer variables rentcm to denote the number of contracts of type c (c ∈ CONTR = {3, 4, 5}) to start at the
beginning of month m (m ∈ MONTHS = {1, . . . , 6}). To clarify the constraint formulation we are using, let
us first look at a specific formulation. Take for example the constraint for month 5 (May) represented in
Figure 10.4: the running contracts may be 5-months contracts signed in January, 4 or 5-months contracts
signed in February, 3 or 4-months contracts signed in March, or 3-months contracts signed in April. These
contracts must satisfy the requirement of 425 vans for the month of May. Note that for instance a 5-
month contract cannot be signed in March because it does not terminate at the end of June, nor can any
contract be signed in May.

m = 1 : NINT + rent31 + rent41 + rent51 ≥ 430

m = 2 : NINT + rent31 + rent41 + rent51 + rent32 + rent42 + rent52 ≥ 410

m = 3 : rent31 + rent41 + rent51 + rent32 + rent42 + rent52 + rent33 + rent43 ≥ 440

m = 4 : rent41 + rent51 + rent32 + rent42 + rent52 + rent33 + rent43 + rent34 ≥ 390

m = 5 : rent51 + rent42 + rent52 + rent33 + rent43 + rent34 ≥ 425

m = 6 : rent52 + rent43 + rent34 ≥ 450

It is possible to write these constraints in a generic way. Let NM denote the number of months, COSTc

the cost per van of contracts of duration c, and REQm the requirement of vans in month m.

minimize
∑

c∈CONTR

∑
m∈MONTHS

COSTc · rentcm (10.6.1)

∀m = 1, 2 : NINIT +
∑

c∈CONTR

min(m,NM−c+1)∑
n=max(1,m−c+1)

rentcn ≥ REQm (10.6.2)

∀m = 3, . . . , NM :
∑

c∈CONTR

min(m,NM−c+1)∑
n=max(1,m−c+1)

rentcn ≥ REQm (10.6.3)

∀c ∈ CONTR, m ∈ MONTHS : rentcm ∈ IN (10.6.4)

The objective function is to minimize the total cost for all contracts that are signed (10.6.1). A contract
lasts c months, therefore the requirement of vans in any month m is covered by the contracts of type c
signed in the months max(1, m−c+1) and min(m, NM−c+1). The constraints (10.6.3) specify that starting
from March the signed contracts have to cover the need for vans of the month. For January and February,
the constraints (10.6.2) also include the number of vans initially available NINIT .

The constraints (10.6.4) establish the integrality constraints for the variables. From LP theory it is possible
to show that this mathematical program is equivalent to a minimum cost flow problem that is known to
have integer values at the (linear) optimum. It is therefore possible to replace the constraints (10.6.4) by
simple non-negativity conditions.

Ground transport 153 Applications of optimization with Xpress-MP



10.6.2 Implementation

The constraints (10.6.2) and (10.6.3) of the mathematical model are combined into a single statement in
the following Mosel program.

model "E-6 van rental"
uses "mmxprs"

declarations
NM = 6
MONTHS = 1..NM ! Months
CONTR = 3..5 ! Contract types

REQ: array(MONTHS) of integer ! Monthly requirements
COST: array(CONTR) of integer ! Cost of contract types
NINIT: integer ! Vans rented at beginning of plan

rent: array(CONTR,MONTHS) of mpvar ! New rentals every month
end-declarations

initializations from ’e6vanrent.dat’
REQ COST NINIT

end-initializations

! Objective: total cost
Cost:= sum(c in CONTR, m in MONTHS) COST(c)*rent(c,m)

! Fulfill the monthly requirements
forall(m in MONTHS)

if(m<=2, NINIT, 0) +
sum(c in CONTR, n in maxlist(1,m-c+1)..minlist(m,NM-c+1)) rent(c,n) >=

REQ(m)

! Solve the problem
minimize(Cost)

end-model

In this implementation, we use the Mosel functions maxlist and minlist to calculate respectively the
maximum and minimum value of a list of numbers. In this example, each time only two numbers are
given as arguments to these functions, but in the general case the lists may have any finite number of
entries, such as maxlist(2,-10,A(3),B(7,-5)) (where A and B are assumed to be arrays of integers
or reals). These two functions should not be confused with the aggregate operators max and min that
provide a similar functionality, but are used with set expressions, such as max(i in ISET) A(i) (where
A is an array of integers or reals indexed by ISET ).

10.6.3 Results

The optimization algorithm finds a minimum total cost of $1,261,000. The table shows the new contracts
signed every month and the resulting totals.

Table 10.13: Plan of van rentals

New contracts January February March April May June

3 months 230 0 0 240 0 0

4 months 0 0 210 0 0 0

5 months 0 0 0 0 0 0

Total 430 430 440 450 450 450

Note that the requirement to have no vehicles on contract at the start of July is very distorting.

10.7 References and further material

In our transport example of Section 10.1 (car rental), the availability is equal to the total demand. When
dealing with an unbalanced case like an offer that is larger than the demand, the constraints (10.1.2)
must be changed into inequalities ensuring that no origin delivers more than it has available. Before
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Linear Programming was invented, transport problems had already been studied in the 1930s and 40s, in
the USA by Hitchcock [Hit41], in the USSR by Kantorovitch. There are efficient specialized algorithms like
the stepping stone algorithm [BJ90].

The choice of modes of transport in Section 10.2 is a minimum cost flow problem in a graph. Fast al-
gorithms for this problem that work directly on the graph are available. An algorithm with a good
simplicity/performance ratio is the one by Busacker and Gowen; a Pascal source is provided in [Pri94a].
Other algorithms are given by Ahuja et al [AMO93].

The problem of depot location (facility location problem) in Section 10.3 is a mixed-integer problem with
continuous variables for the transported quantities and binary variables for the construction decisions.
This problem is NP-hard, even with depots of infinite capacity. Tree-based methods like the one by
Erlenkotter [Erl78] are able to solve problems of a certain size (100 customers). A book by Daskin describes
a large number of other location problems [Das95].

The heating oil delivery problem in Section 10.4 is a typical case of a vehicle routing problem (VRP). The
formulation given here is only suitable for small instances (20-30 customers). Some specialized tree search
methods are able to solve to optimality instances with up to 100 customers [LDN84] [BMR94], even for the
case that the delivery to clients needs to take place in certain time windows [DDS92]. Beyond this limit
of 100 customers, it is recommended to use heuristic methods like the one by Clarke and Wright [CW64].
An overview on classical heuristics is given by Christofides [CMT79b]. Metaheuristics like tabu search find
good solutions for large sized instances [GHL94].

The mathematical program for the intermodal transport problem in Section 10.5 uses an excessively large
number of variables when the number of cities and especially the number of modes of transport grow
larger. Luckily, it may be solved efficiently with a Dynamic Programming method (a kind of recursive
optimization) [Kas98]. The case studied here is relatively simple because the cities form a unique path.
The problem gets very hard for an arbitrary graph.

Like the problem of personnel planning for a construction site in Chapter 14, the van fleet planning
problem in Section 10.6 belongs to a category of optimization problems in which the requirements for
a period are satisfied by resources that are used during more than one period. Another problem of
this type consists of assigning shifts or other tasks to persons that are available for a certain number of
hours. The associated mathematical programs have a series of consecutive coefficients of value 1 in their
columns. It is possible to show that they are equivalent to minimum cost flow problems [AMO93].
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Chapter 11

Air transport

The domain of air transport is a fertile ground for original and difficult optimization problems. The
fierce competition between airlines has led to the development of Operations Research departments at
the largest ones (such as American Airlines, Delta Airlines, British Airways, and more recently, the renais-
sance of such a department at Air France). This chapter illustrates the diversity of applications, involving
passenger flows, flight crews, aircraft movements, location of hubs (flight connection platforms), and
flight trajectories.

In the first problem (Section 11.1), the incoming planes at an airport need to be assigned to the flights
leaving from the airport in order to minimize the number of passengers (and hence the luggage) who
have to change planes. The problem in Section 11.2 consists of forming flight crews according to vari-
ous compatibility and performance criteria. Section 11.3 describes an interesting and original problem,
namely scheduling the landing sequence of planes on a runway. The choice of the architecture of a net-
work (location of hubs) is dealt with in Section 11.4. The subject of Section 11.5 is a case of emergency
logistics (the provision of a disaster-stricken country with fresh supplies).

11.1 Flight connections at a hub

The airline SafeFlight uses the airport Roissy-Charles-de-Gaulle as a hub to minimize the number of flight
connections to European destinations. Six Fokker 100 airplanes of this airline from Bordeaux, Clermont-
Ferrand, Marseille, Nantes, Nice, and Toulouse are landing between 11am and 12:30pm. These aircraft
leave for Berlin, Bern, Brussels, London, Rome, and Vienna between 12:30 pm and 13:30 pm. The numbers
of passengers transferring from the incoming flights to one of the outgoing flights are listed in Table 11.1.

Table 11.1: Numbers of passengers transferring between the different flights

Destinations
Berlin Bern Brussels London Rome Vienna

Origins Bordeaux 35 12 16 38 5 2

Clermont-Ferrand 25 8 9 24 6 8

Marseille 12 8 11 27 3 2

Nantes 38 15 14 30 2 9

Nice – 9 8 25 10 5

Toulouse – – – 14 6 7

For example, if the flight incoming from Bordeaux continues on to Berlin, 35 passengers and their lug-
gage may stay on board during the stop at Paris. The flight from Nice arrives too late to be re-used
on the connection to Berlin, the same is true for the flight from Toulouse that cannot be used for the
destinations Berlin, Bern and Brussels (the corresponding entries in the table are marked with ‘–’).

How should the arriving planes be re-used for the departing flights to minimize the number of passengers
who have to change planes at Roissy?

11.1.1 Model formulation

Let PLANES be the set of aircraft (the number of which also corresponds the numbers of flight origins
and flight destinations) and PASSij the number of passengers transferring at the hub from origin i to the
flight with destination j. We introduce binary variables contij that take the value 1 if and only if the plane
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coming from i continues its journey to destination j. The following LP represents the problem:

maximize
∑

i∈PLANES

∑
j∈PLANES

PASSij · contij (11.1.1)

∀j ∈ PLANES :
∑

i∈PLANES

contij = 1 (11.1.2)

∀i ∈ PLANES :
∑

j∈PLANES

contij = 1 (11.1.3)

∀i, j ∈ PLANES : contij ∈ {0, 1} (11.1.4)

The initial objective was to minimize the number of passengers that change planes, but this objective
is equivalent to the objective (11.1.1) that maximizes the number of passengers staying on board their
plane at the hub. The constraints (11.1.2) indicate that every destination is served by exactly one flight,
and the constraints (11.1.3) that one and only one flight leaves every origin. The constraints (11.1.4)
specify that the variables are binaries. Note that since this problem is an instance of the well known
assignment problem the optimal LP solution calculated by the simplex algorithm always takes integer
values. It is therefore sufficient simply to define non-negativity constraints for these variables. The upper
bound of 1 on the variables results from the constraints (11.1.2) and (11.1.3).

11.1.2 Implementation

In the data array PASS, that is read in from the file f1connect.dat by the following Mosel implementa-
tion of the mathematical model, the ‘–’ of the table are replaced by large negative coefficients (–1000).
This negative cost prevents the choice of inadmissible flight connections. Another possibility would be to
leave the corresponding entries of the array PASSundefined and to test in the definition of the variables
whether a connection may be used. This formulation has the advantage of using fewer variables if not
all flight connections are feasible, but it cannot be used if there are admissible flight connections that
are not taken by any passengers.

model "F-1 Flight connections"
uses "mmxprs"

declarations
PLANES = 1..6 ! Set of airplanes

PASS: array(PLANES,PLANES) of integer ! Passengers with flight connections

cont: array(PLANES,PLANES) of mpvar ! 1 if flight i continues to j
end-declarations

initializations from ’f1connect.dat’
PASS

end-initializations

! Objective: number of passengers on connecting flights
Transfer:= sum(i,j in PLANES) PASS(i,j)*cont(i,j)

! One incoming and one outgoing flight per plane
forall(i in PLANES) sum(j in PLANES) cont(i,j) = 1
forall(j in PLANES) sum(i in PLANES) cont(i,j) = 1

! Solve the problem: maximize the number of passengers staying on board
maximize(Transfer)

end-model

11.1.3 Results

In the optimal solution, 112 passengers stay on board their original plane. The following table lists the
corresponding flight connections
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Table 11.2: Optimal flight connections

Plane arriving continues to Number of
from destination passengers

Bordeaux London 38

Clermont-Ferrand Bern 8

Marseille Brussels 11

Nantes Berlin 38

Nice Rome 10

Toulouse Vienna 7

11.2 Composing flight crews

During the Second World War the Royal Air Force (RAF) had many foreign pilots speaking different
languages and more or less trained on the different types of aircraft. The RAF had to form pilot/co-pilot
pairs (‘crews’) for every plane with a compatible language and a sufficiently good knowledge of the
aircraft type. In our example there are eight pilots. In the following table every pilot is characterized by
a mark between 0 (worst) and 20 (best) for his language skills (in English, French, Dutch, and Norwegian),
and for his experience with different two-seater aircraft (reconnaissance, transport, bomber, fighter-
bomber, and supply planes).

Table 11.3: Ratings of pilots

Pilot 1 2 3 4 5 6 7 8

Language English 20 14 0 13 0 0 8 8

French 12 0 0 10 15 20 8 9

Dutch 0 20 12 0 8 11 14 12

Norwegian 0 0 0 0 17 0 0 16

Plane type Reconnaissance 18 12 15 0 0 0 8 0

Transport 10 0 9 14 15 8 12 13

Bomber 0 17 0 11 13 10 0 0

Fighter-bomber 0 0 14 0 0 12 16 0

Supply plane 0 0 0 0 12 18 0 18

A valid flight crew consists of two pilots that both have each at least 10/20 for the same language and
10/20 on the same aircraft type.

Question 1: Is it possible to have all pilots fly?

Subsequently, we calculate for every valid flight crew the sum of their scores for every aircraft type for
which both pilots are rated at least 10/20. This allows us to define for every crew the maximum score
among these marks. For example, pilots 5 and 6 have marks 13 and 10 on bombers and 12 and 18 on
supply planes. The score for this crew is therefore max(13 + 10, 12 + 18) = 30.

Question 2: Which is the set of crews with maximum total score?

11.2.1 Model formulation

Let PILOTS be the set of pilots. This type of problem is easily modeled through an undirected compati-
bility graph G = (PILOTS, ARCS). Every node represents a pilot, two nodes p and q are connected by an
undirected arc (or edge) a = [p, q] if and only if pilots p and q are compatible, that is, they have a lan-
guage and a plane type in common for which both are rated at least 10/20. The arcs are assigned weights
corresponding to the maximum score SCOREa of the flight crew. Figure 11.1 shows the resulting graph
with the scores for question 2.

A valid set of crews corresponds in G to a subset of arcs such that any two among them have no node
in common. In Graph Theory, such a set is called a matching. For question 1 we are looking for the
maximum cardinality matching, for question 2 for the matching with maximum total weight. The graph
suggests we formulate the model as follows.

maximize
∑

a∈ARCS

CREWa · flya (11.2.1)
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Figure 11.1: Compatibility graph for pilots

∀r ∈ PILOTS :
∑

a=[p,q]∈ARCS
p=r∨q=r

flya ≤ 1 (11.2.2)

∀a ∈ ARCS : flya ∈ {0, 1} (11.2.3)

For every edge a = [p, q] in the graph, a binary variable flya indicates whether this edge is used or not
(11.2.3). Through constraints (11.2.2) every node r is contained in at most one edge. The objective func-
tion (11.2.1) accumulates the weight of the chosen edges for question 2. For question 1, we maximize the
number of flight crews to see whether all pilots are taken: the coefficients SCOREa need to be removed
from the objective function. Note that the matching of maximum cardinality is a special case of matching
with maximum weight, with all weights equal to 1.

11.2.2 Implementation

The Mosel program below first calculates the set of admissible crews based on the language skills and
flight experience of the pilots: for every pair of pilots p and q the algorithm first checks whether they
have compatible language skills, and if this is the case then their flight experience is compared. The two
pilots are retained as an admissible crew if they both have sufficient experience on the same aircraft type.

The crews are saved in a two-dimensional array CREWindexed by the set of arcs, that is, the two pilots p
and q of an arc a = [p, q] are represented by CREW(a,1) and CREW(a,2) . With the convention p < q,
every pair of pilots is listed only once. The following program solves the problem twice, once with the
objective function for question 1 and once for question 2.

model "F-2 Flight crews"
uses "mmxprs"

forward procedure print_sol

declarations
PILOTS = 1..8 ! Set of pilots
ARCS: range ! Set of arcs representing crews
RL, RT: set of string ! Sets of languages and plane types

LANG: array(RL,PILOTS) of integer ! Language skills of pilots
PTYPE: array(RT,PILOTS) of integer ! Flying skills of pilots
CREW: array(ARCS,1..2) of integer ! Possible crews

end-declarations

initializations from ’f2crew.dat’
LANG PTYPE

end-initializations

! Calculate the possible crews
ct:=1
forall(p,q in PILOTS| p<q and

(or(l in RL) (LANG(l,p)>=10 and LANG(l,q)>=10)) and
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(or(t in RT) (PTYPE(t,p)>=10 and PTYPE(t,q)>=10)) ) do
CREW(ct,1):=p
CREW(ct,2):=q
ct+=1

end-do

finalize(ARCS)

declarations
fly: array(ARCS) of mpvar ! 1 if crew is flying, 0 otherwise

end-declarations

! First objective: number of pilots flying
NFlying:= sum(a in ARCS) fly(a)

! Every pilot is member of at most a single crew
forall(r in PILOTS) sum(a in ARCS | CREW(a,1)=r or CREW(a,2)=r) fly(a) <= 1

forall(a in ARCS) fly(a) is_binary

! Solve the problem
maximize(NFlying)

! Solution printing
writeln("Number of crews: ", getobjval)
print_sol

! **** Extend the problem ****
declarations

SCORE: array(ARCS) of integer ! Maximum scores of crews
end-declarations

forall(a in ARCS)
SCORE(a):= max(t in RT | PTYPE(t,CREW(a,1))>=10 and PTYPE(t,CREW(a,2))>=10)

(PTYPE(t,CREW(a,1)) + PTYPE(t,CREW(a,2)))

! Second objective: sum of scores
TotalScore:= sum(a in ARCS) SCORE(a)*fly(a)

! Solve the problem
maximize(TotalScore)

writeln("Maximum total score: ", getobjval)
print_sol

!-----------------------------------------------------------------

! Solution printing
procedure print_sol

forall(a in ARCS)
if(getsol(fly(a))>0) then

writeln(CREW(a,1), " - ", CREW(a,2))
end-if

end-procedure

end-model

A feature of Mosel shown by the above implementation is the incremental definition of the array CREW
that stores the list of crews (and hence of its index set ARCS). After the calculation of the crews is com-
pleted the (dynamic) index set ARCSis finalized so that the array of variables fly is defined as a static
array on this index set.

Another feature that is new in this model is the cumulative or used for testing the pilots’ compatibility.
The expression

or(l in RL) (LANG(l,p)>=10 and LANG(l,q)>=10)

evaluates to true if for at least one l the values of LANG(l,p) and LANG(l,q) are both greater than or
equal to 10.
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11.2.3 Results

In answer to the first question, the program finds that four crews are flying, that is, all eight pilots. For
the second question, the optimization calculates a maximum total score of 125 for the four crews [1,2],
[3,7], [4,5], and [6,8].

11.3 Scheduling flight landings

The plane movements in large airports are subject to numerous security constraints. The problem pre-
sented in this section consist of calculating a schedule for flight landings on a single runway. More general
problems have been studied but they are fairly complicated (dynamic cases, for instance through planes
arriving late, instances with several runways, etc.).

Ten planes are due to arrive. Every plane has an earliest arrival time (time when the plane arrives above
the zone if traveling at maximum speed) and a latest arrival time (influenced among other things by its
fuel supplies). Within this time window the airlines choose a target time, communicated to the public
as the flight arrival time. The early or late arrival of an aircraft with respect to its target time leads to
disruption of the airport and causes costs. To take into account these cost and to compare them more
easily, a penalty per minute of early arrival and a second penalty per minute of late arrival are associated
with every plane. The time windows (in minutes from the start of the day) and the penalties per plane
are given in the following table.

Table 11.4: Characteristics of flight time windows

Plane 1 2 3 4 5 6 7 8 9 10

Earliest arrival 129 195 89 96 110 120 124 126 135 160

Target time 155 258 98 106 123 135 138 140 150 180

Latest Arrival 559 744 510 521 555 576 577 573 591 657

Earliness penalty 10 10 30 30 30 30 30 30 30 30

Lateness penalty 10 10 30 30 30 30 30 30 30 30

Due to turbulence and the duration of the time during which a plane is on the runway, a security interval
has to separate any two landings. An entry in line p of column q in the following Table 11.5 denotes the
minimum time interval (in minutes) that has to lie between the landings of planes p and q, even if they
are not consecutive. Which landing schedule minimizes the total penalty subject to arrivals within the
given time windows and the required intervals separating any two landings?

Table 11.5: Matrix of minimum intervals separating landings

1 2 3 4 5 6 7 8 9 10

1 – 3 15 15 15 15 15 15 15 15

2 3 – 15 15 15 15 15 15 15 15

3 15 15 – 8 8 8 8 8 8 8

4 15 15 8 – 8 8 8 8 8 8

5 15 15 8 8 – 8 8 8 8 8

6 15 15 8 8 8 – 8 8 8 8

7 15 15 8 8 8 8 – 8 8 8

8 15 15 8 8 8 8 8 – 8 8

9 15 15 8 8 8 8 8 8 – 8

10 15 15 8 8 8 8 8 8 8 –

11.3.1 Model formulation

Let PLANES be the set of planes due to arrive at the airport. A plane p has an arrival time window
[STARTp, STOPp] with the target arrival time TARGETp. The penalty CEARLYp applies per minute of early
arrival, and CLATEp per minute of late arrival. The minimum interval between the landings of two planes
p and q is denoted by DISTpq. In the given data instance any two time windows are overlapping. We
therefore formulate a model for this overlapping situation and describe later how to generalize it for
any type of time windows.

We need to define variables landp for the landing time of every plane p. They are bounded by the earliest
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and latest arrival times (11.3.1).

∀p ∈ PLANES : STARTp ≤ landp ≤ STOPp (11.3.1)

To account for the interval separating the landing times of any two planes p and q, binary variables precpq

are required with precpq = 1 if the landing of aircraft p precedes the landing of q.

∀p, q ∈ PLANES, p 6= q : precpq ∈ {0, 1} (11.3.2)

The constraints (11.3.3) specify that p arrives before q or q arrives before p. The constraints (11.3.4)
guarantee the separation of the landings; these are classical disjunctive (exclusion) constraints that are
used for instance in scheduling to prevent the overlapping of two tasks on the same machine. M denotes
some large positive constant.

∀p, q ∈ PLANES, p 6= q : precpq + precqp = 1 (11.3.3)

∀p, q ∈ PLANES, p 6= q : landp + DISTpq −Mpq · precqp ≤ landq (11.3.4)

If the plane p arrives before q, we have precpq = 1, and hence precqp = 0 through (11.3.3). The constraint
(11.3.4) for p and q results in landp + DISTpq ≤ landq ensuring the required separation of the two flights.
If precpq = 0, then precqp = 1 and the constraint (11.3.4) is trivially satisfied because the left side of the
inequality is a large negative value. To avoid problems with numerical stability, the value of Mpq should
not be chosen too large, Mpq = STOPp + DISTpq − STARTq is sufficient for every constraint (11.3.4).

To halve the number of variables, we define the binary variables precpq with p < q to take the value 1
if p lands before q and 0 otherwise. The constraints (11.3.2) are replaced by (11.3.5) and the constraints
(11.3.3) become redundant.

∀p, q ∈ PLANES, p < q : precpq ∈ {0, 1} (11.3.5)

The constraints (11.3.4) are rewritten to (11.3.6) and (11.3.7). (11.3.6) are the disjunctive constraints
for the pairs of planes (p, q) with p > q and (11.3.7) the disjunctions for p < q. If for instance, p < q
(constraints (11.3.7)) and p arrives before q, then precpq = 1 and hence 1−precpq = 0, and landp +DISTpq ≤
landq. If p < q but q arrives before p, then precpq = 0 and (11.3.7) is trivially satisfied.

∀p, q ∈ PLANES, q < p : landp + DISTpq ≤ landq + M · precqp (11.3.6)

∀p, q ∈ PLANES, p < q : landp + DISTpq ≤ landq + M · (1− precpq) (11.3.7)

Taking into account the early or late arrival of a plane p with respect to its targeted arrival time TARGETp

is a delicate matter. We introduce a variable earlyp for the earliness and a variable latep for the lateness.
We may then write the objective function (11.3.8) with the penalties per minute of early or late arrival,
CEARLYp and CLATEp.

minimize
∑

p∈PLANES

(CEARLYp · earlyp + CLATEp · latep) (11.3.8)

The variables earlyp and latep are bounded from above (constraints (11.3.9) and (11.3.10)) so that the
arrival is scheduled within the time window [STARTp, STOPp].

∀p ∈ PLANES : 0 ≤ earlyp ≤ TARGETp − STARTp (11.3.9)

∀p ∈ PLANES : 0 ≤ latep ≤ STOPp − TARGETp (11.3.10)

The landing time is linked to the earliness or lateness by the constraints (11.3.11).

∀p ∈ PLANES : landp = TARGETp − earlyp + latep (11.3.11)

The fact that we are minimizing prevents earlyp and latep from both being non-zero simultaneously in
(11.3.11).

We finally obtain a MIP model consisting of the lines (11.3.1), and (11.3.5) – (11.3.11).

11.3.2 Generalization to arbitrary types of time windows

In the general case, there are three sets OVERLAP, SEP, and NONSEP of plane pairs (p, q) with p < q.
OVERLAP contains all plane pairs with overlapping time windows. The variables precpq are used to decide
whether p arrives before q. As a simplification, the preceding model deals with the case that all pairs of
time windows are in the set OVERLAP.
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There may also be a set SEP of pairs (p, q) with disjoint time windows and guaranteed separation: for
instance the time windows [10,50], [70,110] and a separation time of 15 that will obviously be satisfied.
More formally, the relation defining such a pair of time windows is (STOPp + DISTpq < STARTq) ∨ (STOPq +
DISTqp < STARTp). The third set NONSEP of plane pairs that may be defined contains all pairs with disjoint
time windows without guaranteed separation, such as [10,50], [70,110] with a separation interval of 30.

To obtain a general model, we need to add the following sets of constraints (11.3.12) to (11.3.15) to the
constraints (11.3.6) – (11.3.7) that only concern the plane pairs in OVERLAP. The constraints (11.3.12) and
(11.3.13) force the variables to be 0 or 1 in the case of disjoint time windows. The constraints (11.3.14)
and (11.3.15) are simple precedence constraints as in the stadium construction problem of Chapter 7.

∀(p, q) ∈ SEP ∪ NONSEP, STOPp < STARTq : precpq = 1 (11.3.12)

∀(p, q) ∈ SEP ∪ NONSEP, STOPq < STARTp : precpq = 0 (11.3.13)

∀(p, q) ∈ NONSEP, STOPp < STARTq : landp + DISTpq ≤ landq (11.3.14)

∀(p, q) ∈ NONSEP, STOPq < STARTp : landq + DISTqp ≤ landp (11.3.15)

11.3.3 Implementation

The following Mosel program implements the mathematical model of Section 11.3.1. The variables precpq

are defined for all pairs p and q, but only those precpq with p < q are used in the constraints so that the
remainder of these variables (all pairs with p ≥ q) do not appear in the problem.

model "F-3 Landing schedule"
uses "mmxprs"

declarations
PLANES = 1..10 ! Set of airplanes

START, STOP: array(PLANES) of integer ! Start, end of arrival time windows
TARGET: array(PLANES) of integer ! Planned arrival times
CEARLY, CLATE: array(PLANES) of integer ! Cost of earliness/lateness
DIST: array(PLANES,PLANES) of integer ! Minimum interval between planes
M: array(PLANES,PLANES) of integer ! Sufficiently large positive values

prec: array(PLANES,PLANES) of mpvar ! 1 if plane i precedes j
land: array(PLANES) of mpvar ! Arrival time
early,late: array(PLANES) of mpvar ! Earliness/lateness

end-declarations

initializations from ’f3landing.dat’
START STOP TARGET CEARLY CLATE DIST

end-initializations

forall(p,q in PLANES) M(p,q):= STOP(p) + DIST(p,q) - START(q)

! Objective: total penalty for deviations from planned arrival times
Cost:= sum(p in PLANES) (CEARLY(p)*early(p) + CLATE(p)*late(p))

! Keep required intervals between plan arrivals
forall(p,q in PLANES | p>q)

land(p) + DIST(p,q) <= land(q) + M(p,q)*prec(q,p)
forall(p,q in PLANES | p<q)

land(p) + DIST(p,q) <= land(q) + M(p,q)*(1-prec(p,q))

! Relations between earliness, lateness, and effective arrival time
forall(p in PLANES) do

early(p) >= TARGET(p) - land(p)
late(p) >= land(p) - TARGET(p)
land(p) = TARGET(p) - early(p) + late(p)

end-do

forall(p in PLANES) do
START(p) <= land(p); land(p) <= STOP(p)
early(p) <= TARGET(p)-START(p)
late(p) <= STOP(p)-TARGET(p)

end-do

forall(p,q in PLANES | p<q) prec(p,q) is_binary

! Solve the problem
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minimize(Cost)

end-model

As mentioned earlier in this book, the obvious pair START– ENDfor naming the beginning and end of the
time windows cannot be used because ENDis a reserved word in Mosel (see Section 5.2.3 for the complete
list of reserved words).

11.3.4 Results

The program calculates a total deviation cost of 700. The following table lists the scheduled arrivals
together with the targeted arrival times and the resulting deviations (planes arriving earlier or later than
the announced target time). It may be worth mentioning that the LP solution to this problem has an
objective value of 0, with many fractional variables precpq.

Table 11.6: Arrival times and deviations

Plane 1 2 3 4 5 6 7 8 9 10

Scheduled arrival 165 258 89 106 118 126 134 142 150 180

Target time 155 258 98 106 123 135 138 140 150 180

Deviation 10 0 0 0 -5 -9 -4 2 0 0

11.4 Airline hub location

The airline FAL (French Air Lines) specializes in freight transport. The company links the major French
cities with cities in the United States, namely: Atlanta, Boston, Chicago, Marseille, Nice, and Paris. The
average quantities in tonnes transported every day by this company between these cities are given in the
following table.

Table 11.7: Average quantity of freight transported between every pair of cities

Atlanta Boston Chicago Marseille Nice Paris

Atlanta 0 500 1000 300 400 1500

Boston 1500 0 250 630 360 1140

Chicago 400 510 0 460 320 490

Marseille 300 600 810 0 820 310

Nice 400 100 420 730 0 970

Paris 350 1020 260 580 380 0

We shall assume that the transport cost between two cities i and j is proportional to the distance that
separates them. The distances in miles are given in the next table.

Table 11.8: Distances between pairs of cities

Boston Chicago Marseille Nice Paris

Atlanta 945 605 4667 4749 4394

Boston 866 3726 3806 3448

Chicago 4471 4541 4152

Marseille 109 415

Nice 431

The airline is planning to use two cities as connection platforms (hubs) to reduce the transport costs. Every
city is then assigned to a single hub. The traffic between cities assigned to a given hub H1 to the cities
assigned to the other hub H2 is all routed through the single connection from H1 to H2 which allows the
airline to reduce the transport cost. We consider that the transport cost between the two hubs decreases
by 20%. Determine the two cities to be chosen as hubs in order to minimize the transport cost.

11.4.1 Model formulation

We write CITIES for the set of cities and NHUBS for the number of hubs. Let DISTij be the distance between
two cities i and j and QUANTij the quantity to be transported from i to j. The transport cost per tonne of
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freight depends on the cities that are chosen as hubs. The freight to be transported from any city i to any
city j transits through two (not necessarily distinct) hubs k and l. Let COSTijkl be the transport cost from i
to j through the hubs k and l. This cost is equal to the transport cost from i to k, plus the cost from k to l,
plus the transport cost from l to j. The cost from k to l corresponds to 80% of the normal cost from k to l
displayed in Table 11.8 since this is an inter-hub transport.

Let the binary variable flowijkl be 1 if the freight from i to j is transported via the hubs k and l in this
order, and 0 otherwise. We also introduce variables hubi that are 1 if city i is a hub and 0 otherwise.

The objective function (11.4.1) minimizes the total transport cost. The constraint (11.4.2) indicates that
we wish to create exactly NHUBS hubs. Through the constraints (11.4.3) every pair of cities (i, j) is assigned
to a single pair of hubs. The constraints (11.4.4) and (11.4.5) imply that if a variable flowijkl is at 1, then
the variables hubk and hubl are 1. In other words, any freight to be transported from i to j may only
transit through k and l if both, k and l, are hubs. To complete the model, the constraints (11.4.6) and
(11.4.7) define the variables as binaries.

Remark: in the constraints (11.4.3) k may be equal to l which this means that freight may transit via a
single hub. This is the case if two origin/destination cities are assigned to the same hub. The inter-hub
transport cost is 0 in this case.

minimize
∑

i∈CITIES

∑
j∈CITIES

∑
k∈CITIES

∑
l∈CITIES

COSTijkl ·QUANTij · flowijkl (11.4.1)

∑
i∈CITIES

hubi = NHUBS (11.4.2)

∀i, j ∈ CITIES :
∑

k∈CITIES

∑
l∈CITIES

flowijkl = 1 (11.4.3)

∀i, j, k, l ∈ CITIES : flowijkl ≤ hubk (11.4.4)

∀i, j, k, l ∈ CITIES : flowijkl ≤ hubl (11.4.5)

∀i ∈ CITIES : hubi ∈ {0, 1} (11.4.6)

∀i, j, k, l ∈ CITIES : flowijkl ∈ {0, 1} (11.4.7)

11.4.2 Implementation

In the following Mosel program implementation of the mathematical model, first the cost COSTijkl for
freight transport from i to j via the hubs k and l is calculated, using the inter-hub transport reduction
factor FACTOR that is defined in the data file.

model "F-4 Hubs"
uses "mmxprs"

declarations
CITIES = 1..6 ! Cities
NHUBS = 2 ! Number of hubs

COST: array(CITIES,CITIES,CITIES,CITIES) of real ! (i,j,k,l) Transport cost
! from i to j via hubs k and l

QUANT: array(CITIES,CITIES) of integer ! Quantity to transport
DIST: array(CITIES,CITIES) of integer ! Distance between cities
FACTOR: real ! Reduction of costs between hubs

flow: array(CITIES,CITIES,CITIES,CITIES) of mpvar ! flow(i,j,k,l)=1 if
! freight from i to j goes via k & l

hub: array(CITIES) of mpvar ! 1 if city is a hub, 0 otherwise
end-declarations

initializations from ’f4hub.dat’
QUANT DIST FACTOR

end-initializations

! Calculate costs
forall(i,j,k,l in CITIES)

COST(i,j,k,l):= DIST(i,k)+FACTOR*DIST(k,l)+DIST(l,j)

! Objective: total transport cost
Cost:= sum(i,j,k,l in CITIES) QUANT(i,j)*COST(i,j,k,l)*flow(i,j,k,l)

! Number of hubs
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sum(i in CITIES) hub(i) = NHUBS

! One hub-to-hub connection per freight transport
forall(i,j in CITIES) sum(k,l in CITIES) flow(i,j,k,l) = 1

! Relation between flows and hubs
forall(i,j,k,l in CITIES) do

flow(i,j,k,l) <= hub(k)
flow(i,j,k,l) <= hub(l)

end-do

forall(i in CITIES) hub(i) is_binary
forall(i,j,k,l in CITIES) flow(i,j,k,l) is_binary

! Solve the problem
minimize(Cost)

end-model

11.4.3 Revised formulation

The formulation of the mathematical model in lines (11.4.1) to 11.4.7), and as a consequence its imple-
mentation with Mosel, uses a large number of variables for this relatively small problem (more than 1300
binaries). Looking at the distance data more carefully, one can see that the six airports are clustered
geographically: the American airports are relatively close to each other and far from the European ones,
that are again close to each other. We may therefore reasonably assume that one hub will be located in
the US and one in Europe. The American airports will be connected via the US hub and the European
airports will use the European hub. This implies that we are able to exclude a large number of index-
combinations (e.g. EU airports connected to a US hub). We define the sets EU of European airports and
US of US airports, the union of which is the set CITIES of our previous model formulation.

In addition to the geographical considerations, we may reduce even further the number of variables by
accumulating the quantities to be transported between any pair of destinations to a single value and
only working with destination pairs i and j where i < j.

The index tuples for variables flow that remain after these operations are: ∀i, j, k ∈ US, i < j : (i, j, k, k)
(intra-American flights) ∀i, j, k ∈ EU, i < j : (i, j, k, k) (intra-European flights), and ∀i, k ∈ US, j, l ∈ EU :
(i, j, k, l) (inter-continental flights). For our problem there are just more than 100 variables.

All constraints of the previous problem remain the same except that we only sum over the variables that
have been defined. We may even add two additional sets of constraints based on the observation that
the intra-American (11.4.8) and intra-European (11.4.9) flights will use only a single hub:

∀i, j ∈ US, i < j :
∑
k∈US

flowijkk = 1 (11.4.8)

∀i, j ∈ EU, i < j :
∑
k∈EU

flowijkk = 1 (11.4.9)

The Mosel implementation of the revised formulation is given below. Note that the array of decision
variables flow is defined as a dynamic array so that we only create the entries that are required.
Another change from the previous model is the replacement of the COSTarray by a function to reduce
the storage space required by the data (for larger problem sizes than ours this may be a significant
advantage).

model "F-4 Hubs (2)"
uses "mmxprs"

forward function calc_cost(i,j,k,l:integer):real

declarations
US = 1..3; EU = 4..6
CITIES = US + EU ! Cities
NHUBS = 2 ! Number of hubs

QUANT: array(CITIES,CITIES) of integer ! Quantity to transport
DIST: array(CITIES,CITIES) of integer ! Distance between cities
FACTOR: real ! Reduction of costs between hubs

flow: dynamic array(CITIES,CITIES,CITIES,CITIES) of mpvar
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! flow(i,j,k,l)=1 if freight
! from i to j goes via k and l

hub: array(CITIES) of mpvar ! 1 if city is a hub, 0 otherwise
end-declarations

initializations from ’f4hub.dat’
QUANT DIST FACTOR

end-initializations

forall(i,j in CITIES | i<j) QUANT(i,j):=QUANT(i,j)+QUANT(j,i)

forall(i,j,k in US | i<j) create(flow(i,j,k,k))
forall(i,j,k in EU | i<j) create(flow(i,j,k,k))
forall(i,k in US, j,l in EU) create(flow(i,j,k,l))

! Objective: total transport cost
Cost:= sum(i,j,k,l in CITIES | exists(flow(i,j,k,l)))

QUANT(i,j)*calc_cost(i,j,k,l)*flow(i,j,k,l)

! Number of hubs
sum(i in CITIES) hub(i) = NHUBS

! One hub-to-hub connection per freight transport
forall(i,j in CITIES | i<j) sum(k,l in CITIES) flow(i,j,k,l) = 1
forall(i,j in US | i<j) sum(k in US) flow(i,j,k,k) = 1
forall(i,j in EU | i<j) sum(k in EU) flow(i,j,k,k) = 1

! Relation between flows and hubs
forall(i,j,k,l in CITIES | exists(flow(i,j,k,l))) do

flow(i,j,k,l) <= hub(k)
flow(i,j,k,l) <= hub(l)

end-do

forall(i in CITIES) hub(i) is_binary
forall(i,j,k,l in CITIES | exists(flow(i,j,k,l))) flow(i,j,k,l) is_binary

! Solve the problem
minimize(Cost)

!-----------------------------------------------------------------

! Transport cost from i to j via hubs k and l
function calc_cost(i,j,k,l:integer):real

returned:=DIST(i,k)+FACTOR*DIST(k,l)+DIST(l,j)
end-function

end-model

11.4.4 Results

Paris

Marseille
Nice

Chicago

Atlanta

Boston

Figure 11.2: Choice of hubs

Both models have the same solution. To minimize the total cost of transport the cities Boston and Paris
have to be used as hubs. Not surprisingly, Atlanta and Chicago are assigned to the hub Boston, Nice
and Marseille to Paris. This means, the freight from Atlanta, Boston, and Chicago is gathered at the hub
Boston. There, any freight destined for any of the American cities is directly sent to its destination. All
merchandise for European destinations is first shipped to the hub at Paris and from there distributed to
the European cities. The freight originating from Europe and with destination USA first transits through
the hub at Paris and then through Boston before arriving at its destination. The total cost of transport is
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BC 42,153,794.

11.5 Planning a flight tour

A country in south-east Asia is experiencing widespread flooding. The government, with international
help, decides to establish a system of supply by air. Unfortunately, only seven runways are still in a usable
state, among which is the one in the capital.

The government decides to make the planes leave from the capital, have them visit all the other six
airports and then come back to the capital. The following table lists the distances between the airports.
Airport A1 is the one in the capital. In which order should the airports be visited to minimize the total
distance covered?

Table 11.9: Distance matrix between airports (in km)

A2 A3 A4 A5 A6 A7

A1 786 549 657 331 559 250

A2 668 979 593 224 905

A3 316 607 472 467

A4 890 769 400

A5 386 559

A6 681

11.5.1 Model formulation

To model this problem, we denote by CITIES = {1, . . . , 7} the set of airports to be served and DISTij the
distance between the airports Ai and Aj. Since the journey is carried out by plane, the distance matrix is
symmetric. We use binary variables flyij that take the value 1 if the plane flies from i to j. The tour we
are looking for is a cycle that visits every airport once and once only. At every airport i, the cycle comes
from a single predecessor and continues to a single successor airport. The constraints (11.5.1) and (11.5.2)
express these conditions.

∀j ∈ CITIES :
∑

i∈CITIES,i 6=j

flyij = 1 (11.5.1)

∀i ∈ CITIES :
∑

j∈CITIES,i 6=j

flyij = 1 (11.5.2)

If we only use the constraints (11.5.1) and (11.5.2), the cycle may be fragmented into several sub-cycles,
for instance going from airport 1 to airport 2 and from there back to 1. This sub-cycle satisfies these
two constraints but does not lead to a valid solution. It is therefore necessary to prevent the forming
of sub-cycles from occurring. This is the aim of the constraints (11.5.3): every sub-cycle that appears in
a subset S of airports is ‘broken’ by requiring that the number of arcs in S must be strictly less than the
cardinality of S.

If N is the number of cities, for even a relatively small N it is simply impossible to test all sub-cycles that
may be formed (their number is in the order of 2N). To start with, we are therefore going to solve the
problem without the constraints (11.5.3), which usually leads to a solution comprising sub-cycles, and
then one by one add constraints that render the forming of the sub-cycles impossible. This procedure will
be described in more detail in the next section.

∀S :
∑
(i,j)∈S

flyij ≤ |S| − 1 (11.5.3)

The objective function (11.5.4) is the total length of the cycle passing through all cities, that is the length
of all arcs that are used.

minimize
∑

i∈CITIES

∑
j∈CITIES

DISTij · flyij (11.5.4)

∀j ∈ CITIES :
∑

i∈CITIES,i 6=j

flyij = 1 (11.5.5)

∀i ∈ CITIES :
∑

j∈CITIES,i 6=j

flyij = 1 (11.5.6)
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∀S :
∑
(i,j)∈S

flyij ≤ |S| − 1 (11.5.7)

∀i, j ∈ CITIES : flyij ∈ {0, 1} (11.5.8)

11.5.2 Implementation and results

The following Mosel program corresponds to the mathematical model without the constraints (11.5.3).
Since the distance matrix is symmetric, the data file only contains the upper triangle (distance from i to j
for which i < j); the other half is completed after reading in the data.

model "F-5 Tour planning"
uses "mmxprs"

declarations
NCITIES = 7
CITIES = 1..NCITIES ! Cities

DIST: array(CITIES,CITIES) of integer ! Distance between cities
NEXTC: array(CITIES) of integer ! Next city after i in the solution

fly: array(CITIES,CITIES) of mpvar ! 1 if flight from i to j
end-declarations

initializations from ’f5tour.dat’
DIST

end-initializations

forall(i,j in CITIES | i<j) DIST(j,i):=DIST(i,j)

! Objective: total distance
TotalDist:= sum(i,j in CITIES | i<>j) DIST(i,j)*fly(i,j)

! Visit every city once
forall(i in CITIES) sum(j in CITIES | i<>j) fly(i,j) = 1
forall(j in CITIES) sum(i in CITIES | i<>j) fly(i,j) = 1

forall(i,j in CITIES | i<>j) fly(i,j) is_binary

! Solve the problem
minimize(TotalDist)

end-model

The solution to this problem is represented in Figure 11.3. It contains three subcycles that we need to
exclude. The strategy to adopt suppresses one sub-cycle at a time, starting with the smallest one.

We have implemented the following procedure break_subtour that is added to the Mosel program
above and called after the solution of the initial problem. The procedure first saves the successor of every
city into the array NEXTC. It then calculates the set of cities that are on the tour starting from city 1: if the
size of the set corresponds to the total number of cities NCITIES , we have found the optimal solution
and the algorithm stops, otherwise there are subtours.

The algorithm then enumerates all subtours to find the smallest one: if a subtour with two cities is found
we can stop (there are no subtours of length 1), otherwise the tour starting from the next city that has
not yet been enumerated as part of a tour (set ALLCITIES ) is calculated. When the smallest subtour has
been found, we add a constraint of type (11.5.3) for this set and re-solve the problem.

procedure break_subtour
declarations

TOUR,SMALLEST,ALLCITIES: set of integer
end-declarations

forall(i in CITIES)
NEXTC(i):= integer(round(getsol(sum(j in CITIES) j*fly(i,j) )))

! Get (sub)tour containing city 1
TOUR:={}
first:=1
repeat
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Figure 11.3: Initial solution with three sub-cycles

TOUR+={first}
first:=NEXTC(first)

until first=1
size:=getsize(TOUR)

! Find smallest subtour
if size < NCITIES then

SMALLEST:=TOUR
if size>2 then

ALLCITIES:=TOUR
forall(i in CITIES) do

if(i not in ALLCITIES) then
TOUR:={}
first:=i
repeat

TOUR+={first}
first:=NEXTC(first)

until first=i
ALLCITIES+=TOUR
if getsize(TOUR)<size then

SMALLEST:=TOUR
size:=getsize(SMALLEST)

end-if
if size=2 then

break
end-if

end-if
end-do

end-if

! Add a subtour breaking constraint
sum(i in SMALLEST) fly(i,NEXTC(i)) <= getsize(SMALLEST) - 1

! Re-solve the problem
minimize(TotalDist)

! New round of subtour elimination
break_subtour

end-if
end-procedure

During its first execution the subtour elimination procedure adds the following constraint to the model
to eliminate the subtour (2,6,2):

fly(2,6) + fly(6,2) <= 1
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With this additional constraint we obtain the solution represented in the following figure: it still consists
of three (different) subtours.

A4

A3

A6

A5

A1

A7

A2

Figure 11.4: Second solution

When the subtour elimination procedure is called again, it adds a constraint to exclude the subcycle
(1,7,1):

fly(1,7) + fly(7,1) <= 1

After this second execution, we finally obtain a single tour with a total length of 2575 km. The arcs that
are directed in the model may be replaced by undirected arcs (edges) without any consequence for the
solution since the distance matrix is symmetric.

A4

A3

A6

A5

A1

A7

A2

Figure 11.5: Optimal solution

The Mosel implementation of the subtour elimination procedure uses a certain number of set operators
and other functionality related to sets: the function getsize returns the size (= number of elements) of
a set or array. {} denotes the empty set. A set may be assigned using the usual assignment operator := ,
e.g. TOUR:={} , and a set is added to another set using the operator +=.

Air transport 171 Applications of optimization with Xpress-MP



11.6 References and further material

The problem of flight connections in Section 11.1 is a classical assignment problem. This problem is well
solved by the Hungarian algorithm described, for instance, by Papadimitriou [PS98] or by techniques
searching for the maximum flow in a transport network [Pri94a].

The composition of flight crews in Section 11.2 is a problem of matching in an arbitrary graph whilst the
assignment of personnel to workposts in Chapter 14 is a matching problem in a bipartite graph: the edges
connect nodes of two types, the persons and the workposts. The matrix of the linear program is totally
unimodular in the bipartite case, which means that the variables automatically take the values 0 or 1 at
the optimum. In the non-bipartite case of the flight crew, the simplex algorithm may find solutions with
variables at 0.5 in the optimum. The problems of maximum cardinality or maximum weight matching
in an arbitrary graph (bipartite or not) are all polynomial. An algorithm in O(n3) (with n the number of
nodes) with a Fortran code is given in Minoux et al. [MB86]. A simpler algorithm for maximum cardinality
matching, but still of complexity O(n3) is given by Syslo [SDK83] with a Pascal source code.

The problem of scheduling flight landings in Section 11.3 represents a class of scheduling problems with
time windows and distance constraints between tasks. It has been studied by Beasley et al. [BKSA00]
for the case of multiple runways. The authors describe a specialized tree search method for large size
instances. They are able to solve realistic instances with 50 planes and four runways to optimality. Beasley
has also published an interesting article [BC96] concerning crew scheduling. Based on a set of flights with
given dates and durations this problem consists of defining the sequence of flights for the crews in order
to cover all the flights but without exceeding a limited duration of work.

With the formulation presented in Section 11.4 for the hub location problem, the number of variables
used may be very large. If it is possible to transform any city into a hub, the number of the variables
flowijkl is in the order of O(n4) (with n the number of cities). And hence, a problem with just over thirty
cities would require a million variables. In Daskin [Das95] and Campbell [Cam96] several heuristics for this
type of problem are given.

The problem in Section 11.5 is the famous Traveling Salesman Problem (TSP). It consists of organizing a
tour that visits every node of a graph once and only once, whilst minimizing the total cost of the arcs
used on the tour. The flight tour planning problem presented here is symmetrical because the cost matrix
is a symmetrical distance matrix. The paint production problem in Chapter 7 is an asymmetrical TSP. It is
solved via a direct formulation, that is, without progressively adding constraints. The TSP is such a well
known NP-hard problem problem that it is used for testing new optimization techniques. The CD that
comes with the book contains a data file with a distance matrix for several French cities and a slightly
modified version of the Mosel program of Section 11.5, adapted to the structure of this file.

The TSP is so hard that the MIP models of this book take a very long time to solve for more than twenty
cities. Beyond this number, it becomes necessary to use specialized tree search methods [HK70]. Ped-
agogical examples of such methods are given by Roseaux [Ros85] and Evans [EM92], and a Pascal code
is given by Syslo [SDK83]. Certain Euclidean problems with hundreds of cities can be dealt with by the
method called Branch and Cut [GH91]. Otherwise, one has to give up trying to find optimal solutions
and use heuristic techniques, some of which, like tabu search or simulated annealing, are very efficient
in practice. Such heuristics are described in detail with listings of Pascal code in the book about graphs
by Prins [Pri94a].
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Chapter 12

Telecommunication problems

In recent years, the domain of telecommunications has experienced an explosive growth. It is extraor-
dinarily rich in original optimization problems, which explains the fact that this book devotes an entire
chapter to this topic. The short term exploitation of telecom networks are problems of on-line control
and problems tackled by the theory of telecommunication protocols. But design problems, the sizing
or location of resources, and planning are well suited to optimization approaches. These are therefore
described here.

The design of a network needs to satisfy the traffic forecasts between nodes, minimize the construction
costs and fulfill conditions on its reliability. It starts with the choice of the location of nodes. Section 12.6
deals with a mobile phone network in which transmitters need to be placed to cover the largest possible
part of the population within given budget limits. Once the nodes are chosen, one needs to select the
pairs of nodes that will be connected with direct lines for the transmission of data. In Section 12.4, a
cable network with a tree structure is constructed with the objective of minimizing the total cost. The
problem in Section 12.2 studies the connection of cells to a main ring in a mobile phone network with
capacity constraints. Reliability considerations demand multiple connections between every cell and the
ring.

Other optimization problems arise in the analysis and the exploitation of existing networks. A natural
question dealt with in the problem of Section 12.3 is to know the maximum traffic that a network with
known capacity limits may support. The problem in Section 12.1 concerns the reliability of the data ex-
change between two nodes of a given network. This reliability is measured by the number k of disjoint
paths (that is, paths without any intermediate node in common) between two nodes. If k > 1, then com-
munication is still possible even if k − 1 nodes break down. The problem in Section 12.5 is an example of
traffic planning: the data packets in the repeater of a telecommunications satellite need to be scheduled.

12.1 Network reliability

We consider the military telecommunications network represented in Figure 12.1. This network consists
of eleven sites connected by bidirectional lines for data transmission.

For reliability reasons in the case of a conflict, the specifications require that the two sites (nodes) 10
and 11 of the network remain able to communicate even if any three other sites of the network are
destroyed. Does the network in Figure 12.1 satisfy this requirement?

12.1.1 Model formulation

This problem can be converted into a maximum flow problem. The latter is dealt with in detail in
Chapter 15 (Problem of water supply), but we recap here briefly. Let a directed graph be given as
G = (NODES, ARCS), where NODES is a set of nodes, ARCS a set of arcs. An arc connecting node n to
node m is written (n, m) and has an integer capacity of CAPnm.

Imagine that a liquid enters the network at a given node SOURCE and leaves it at another node SINK. By
spreading over the network, this liquid creates a flow that can be defined as a flow flownm in every arc
(n, m). This flow is valid if it stays within the capacity limits of the arcs and if it does not incur any loss
when passing through intermediate nodes (that is, nodes other than SOURCE and SINK). The maximum
flow problem consists of finding a flow that maximizes the total throughput injected at SOURCE (or
arriving at SINK since there are no losses). If this problem is formulated as an LP, the simplex algorithm
automatically finds an optimal solution with integer flows.
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Figure 12.1: Telecommunications network

At first sight, our reliability problem does not quite resemble the maximum flow problem. Let us imagine
a modified network H with capacities equal to 1 on all connections: the optimal flows on arcs therefore
will take the values 0 or 1. We also impose a capacity of 1 at every node: through this, two units of flow
leaving S = 10 through two different arcs will follow two paths to T = 11, without passing through any
common node. Such paths are called node-disjunctive.

Since a flow on every arc leaving SOURCE is either 0 or 1, the maximum number of disjunctive paths from
SOURCE to SINK in G is equal to the throughput of a maximum flow in the modified graph H. If we
find k paths, the network is resilient to k − 1 broken nodes: in the worst case, these nodes will be on
k − 1 disjunctive paths, but communication will remain possible via the one remaining path. In the end,
the answer to our reliability problem consists of comparing k − 1 with the maximum number of node
breakdowns allowed by the specifications.

The only minor difficulty is that the flow problem is usually defined in a directed graph. But in our
telecommunications network the bidirectional connections are not directed. To distinguish the flow in
both senses on a single connection between the nodes n and m, we replace the connection by two arcs
(n, m) and (m, n). We therefore obtain a directed graph G = (NODES, ARCS) that allows us to formulate
the problem in a simple manner.

maximize
∑

m succ.of SOURCE

flowSOURCE,m (12.1.1)

∀n 6= SOURCE, SINK :
∑

m succ.of n

flownm =
∑

m pred.of n

flowmn (12.1.2)

∀n 6= SOURCE, SINK :
∑

m succ.of n

flownm ≤ 1 (12.1.3)∑
m pred.of SOURCE

flowm,SOURCE = 0 (12.1.4)

∀(n, m) ∈ ARCS : flownm ∈ {0, 1} (12.1.5)

(12.1.6)

The objective function (12.1.1) is to maximize the total throughput, the sum of all flows on the arcs
leaving SOURCE (we could also sum the flows arriving at SINK). The constraints (12.1.2) model the flow
conservation law at every intermediate node n (also called Kirchhoff’s law): the total flow arriving from
the predecessors must be equal to the total flow leaving to the successors. The constraints (12.1.3) limit
the flow through every intermediate node to 1; we consider here the flow leaving every node.

The constraint (12.1.4) is necessary to avoid the flow injected at SOURCE returning to this node. It is not
required in the water supply problem in Chapter 15 because in this problem the source has no predeces-
sors. And finally, the constraints (12.1.5) specify that all flow variables flownm are binary. Since this is a
maximum flow problem, the LP solution will automatically have integer values. Furthermore, the con-
straints (12.1.3) imply that the variables are upper bounded by 1. The constraints (12.1.5) could therefore
be replaced by the usual non-negativity constraints.
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12.1.2 Implementation

The following Mosel program implements the mathematical model. A graph with N nodes may be en-
coded in two different ways: in the form of a list of arcs or as an adjacency matrix . The first method
is employed in this book, for example, in the line balancing problem in Section 7.6 and the problem
of forming flight crews in Section 11.2. We use here the matrix representation that is also used in the
problem of gritting roads in Section 15.4.

The adjacency matrix is a binary matrix ARC of size N × N, with ARCnm = 1 if and only if the arc (n, m)
exists. This array is read from the data file in sparse format, that is, only the non-zero elements or ARC
are given, in the form (n m) ARC(n,m) . The entries of ARC that are not defined have the default value
0 if they are addressed in the program, but we simply test for existing entries of ARC using the Mosel
function exists that enumerates the array in a very efficient way, especially if only relatively few of the
N2 possible entries are indeed defined.

To obtain a more compact model and hence a smaller LP that solves faster, only the variables flownm that
correspond to existing arcs are defined. Note that it is not necessary to repeat this condition in every sum
over these variables.

The data file contains the representation of the graph in an undirected form: the bidirectional connection
between n and m only appears in one sense in the file (with the convention n < m). We therefore
construct the oriented version of the graph that is required for the maximum flow formulation: for every
defined arc (n, m) we define its opposite (m, n). The rest of the model is a straight translation from the
mathematical formulation. This model is valid for any choice of SOURCE and SINK among the nodes of
the network.

model "G-1 Network reliability"
uses "mmxprs"

declarations
NODES: range ! Set of nodes
SOURCE = 10; SINK = 11 ! Source and sink nodes

ARC: array(NODES,NODES) of integer ! 1 if arc defined, 0 otherwise

flow: array(NODES,NODES) of mpvar ! 1 if flow on arc, 0 otherwise
end-declarations

initializations from ’g1rely.dat’
ARC

end-initializations

forall(n,m in NODES | exists(ARC(n,m)) and n<m ) ARC(m,n):= ARC(n,m)
forall(n,m in NODES | exists(ARC(n,m)) ) create(flow(n,m))

! Objective: number of disjunctive paths
Paths:= sum(n in NODES) flow(SOURCE,n)

! Flow conservation and capacities
forall(n in NODES | n<>SOURCE and n<>SINK) do

sum(m in NODES) flow(m,n) = sum(m in NODES) flow(n,m)
sum(m in NODES) flow(n,m) <= 1

end-do

! No return to SOURCE node
sum(n in NODES) flow(n,SOURCE) = 0

forall(n,m in NODES | exists(ARC(n,m)) ) flow(n,m) is_binary

! Solve the problem
maximize(Paths)

! Solution printing
writeln("Total number of paths: ", getobjval)

forall(n in NODES | n<>SOURCE and n<>SINK)
if(getsol(flow(SOURCE,n))>0) then

write(SOURCE, " - ",n)
nnext:=n
while (nnext<>SINK) do

nnext:=round(getsol(sum(m in NODES) m*flow(nnext,m)))
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write(" - ", nnext)
end-do
writeln

end-if

end-model

The solution display for this example uses a small algorithm to print all paths between the SOURCE and
SINK nodes: for every node to which there is a flow from the SOURCE node, we calculate the chain of its
successors until we arrive at the SINK node. To obtain the successor of a node n, we exploit the fact that
every intermediate node only appears in a single path and hence only has a single successor. We calculate
the index number of this successor as the sum of flows leaving node n multiplied by the node index. The
result of getsol is type real and needs to be transformed to an integer using the function round .

1 2 8

3 10

11 5 9

6 74

Figure 12.2: Disjunctive paths

12.1.3 Results

The solution algorithm calculates a maximum throughput of 4, which means there are 4 disjunctive paths
between nodes 10 and 11 and hence, the two nodes may continue to communicate in spite of the de-
struction of three intermediate sites. The specifications are satisfied. The four disjunctive paths between
10 and 11 are represented in Figure 12.2.

12.2 Dimensioning of a mobile phone network

Figure 12.3 represents the typical architecture of a mobile phone network. Every elementary geograph-
ical zone or cell is served by a transmitter-receiver called a relay. The calls originating from a mobile
phone first pass through these relays. Every relay is connected by cable or electro-magnetic waves to a
transit node (hub). One of the hubs controls the network, this is the MTSO (Mobile Telephone Switching
Office). A very reliable ring of fiber optic cable connects the hubs and the MTSO with high capacity links.
It is capable of re-establishing itself in the case of a breakdown (self-healing ring) and there is no need
to replicate it.

At the present state of technology, there are no dynamic connections between the relays and the MTSO.
The connections are fixed during the design phase, so it is necessary to choose the nodes of the ring that
a relay should be connected to. The number of links between a cell c and the ring is called the diversity
of the cell c, denoted by CNCTc. A diversity larger than 1 is recommended for making the system more
reliable.

The traffic in this kind of system is entirely digitized, expressed in values equivalent to bidirectional
circuits at 64kbps (kilobit per second). This capacity corresponds to the number of simultaneous calls
during peak periods. The ring has edges of known capacity CAP. The traffic TRAFc from a cell c is divided
into equal parts (TRAFc / CNCTc) among the connections to the ring. This traffic is transmitted via the ring
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Figure 12.3: Structure of a mobile phone network

to the MTSO, that then routes it to another cell or to a hub that serves as the interface to the fixed-line
telephone network. A relay may be connected directly to the MTSO that also has the functions of an
ordinary hub.

We consider a network of 10 cells and a ring of 5 nodes with a capacity of CAP = 48 circuits. The MTSO is
at node 5. The following table indicates the traffic, the required number of connections and the cost per
connection in thousand $ per cell. For example, cell 1 is connectable with node 1 for a cost of $15,000.
Its diversity is 2, which means it must be connected to at least two nodes of the ring. Its traffic capacity
is of 22 simultaneous circuits. The objective is to define the connections of the cells to the ring that
minimize the connection costs whilst remaining within the capacity limits and satisfying the constraints
on the number of connections.

Table 12.1: Connection costs, traffic and number of connections per cell

Cell 1 2 3 4 5 6 7 8 9 10

Hub 1 15 9 12 17 8 7 19 20 21 25

Hub 2 8 11 6 5 22 25 25 9 22 24

Hub 3 7 8 7 9 21 15 21 15 14 13

Hub 4 11 5 15 18 19 9 20 18 16 4

Hub 5 (MTSO) 10 14 15 24 6 17 22 25 20 11

Traffic 22 12 20 12 15 25 15 14 8 22

Connections 2 2 2 2 3 1 3 2 2 2

12.2.1 Model formulation

We write CELLS for the set of cells to be connected, NODES = HUBS ∪ {MTSO} the set of nodes, com-
posed of the set of simple hubs and an MTSO, and COSTcn the cost of connecting cell c to node n. The
connections can be defined through binary variables connectcn, that are 1 if and only if cell c is connected
to node n (12.2.4). The objective function (12.2.1) measures the total connection cost. The constraints
(12.2.2) ensure that every cell is connected to the required number of nodes.

minimize
∑

c∈CELLS

∑
n∈NODES

COSTcn · connectcn (12.2.1)

∀c ∈ CELLS :
∑

n∈NODES

connectcn = CNCTc (12.2.2)

∑
c∈CELLS

∑
n∈HUBS

TRAFc

CNCTc
· connectcn ≤ 2 · CAP (12.2.3)

∀c ∈ CELLS, n ∈ NODES : connectcn ∈ {0, 1} (12.2.4)

Constraint (12.2.3) is a necessary condition for keeping within the capacity limits of the ring. It is based
on the fact that all demands of any origin are routed through the MTSO, following the ring in one sense
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or the other. Since every edge of the ring has a capacity CAP, the total traffic on the ring may not exceed
2 · CAP. Note that the traffic of a cell directly connected to the MTSO does not enter the ring.

For the problem to have any solution the ring must have a certain minimum capacity to route all the
traffic. The least possible traffic in the ring is obtained if every cell c has a direct connection with the MTSO
among its CNCTc required connections with the ring. The ring must be able to handle the remaining
traffic, which results in the minimum capacity constraint (12.2.5): for example, a cell with diversity 2
routes at least 1 − 1

2 = 1
2 of its traffic through the ring; the traffic of a cell with diversity 1 in the best

case (i.e. if it is connected to the MTSO) does not enter the ring at all. This relation does not contain any
variable, it is therefore not included in the mathematical model. It is however necessary to check whether
the given data fulfill this condition, which is the case here.∑

c∈CELLS

TRAFc ·
(

1− 1
CNCTc

)
≤ 2 · CAP (12.2.5)

The non-specialist in telecommunications might raise the question of what has happened to the return
traffic. The traffic from a cell c is expressed in bidirectional circuits. If someone in cell c calls someone
in cell d, then the call traces its path from c to the MTSO, reserving a path for the answer. The MTSO
then transmits the call to cell d, still reserving a return path. When the called person in d picks up the
phone, an access path in both directions is established, consuming one circuit from the capacity of c and
one circuit from the capacity of d.

12.2.2 Implementation

The mathematical model is easily translated into a Mosel program. The cost data array from table 12.1 is
given in transposed form in the data file to match the format of the array COSTcn.

Before defining the model we check whether the ring has a sufficiently large capacity to satisfy all traffic
demands (inequality (12.2.5)). If this condition does not hold then the program is stopped using the
function exit .

model "G-2 Mobile network dimensioning"
uses "mmxprs"

declarations
HUBS = 1..4 ! Set of hubs
MTSO = 5 ! Node number of MTSO
NODES = HUBS+{MTSO} ! Set of nodes (simple hubs + MTSO)
CELLS = 1..10 ! Cells to connect

CAP: integer ! Capacity of ring segments
COST: array(CELLS,NODES) of integer ! Connection cost
TRAF: array(CELLS) of integer ! Traffic from every cell
CNCT: array(CELLS) of integer ! Connections of a cell to the ring

connect: array(CELLS,NODES) of mpvar ! 1 if cell connected to node,
! 0 otherwise

end-declarations

initializations from ’g2dimens.dat’
CAP COST TRAF CNCT

end-initializations

! Check ring capacity
if not (sum(c in CELLS) TRAF(c)*(1-1/CNCT(c)) <= 2*CAP) then

writeln("Ring capacity not sufficient")
exit(0)

end-if

! Objective: total cost
TotCost:= sum(c in CELLS, n in NODES) COST(c,n)*connect(c,n)

! Number of connections per cell
forall(c in CELLS) sum(n in NODES) connect(c,n) = CNCT(c)

! Ring capacity
sum(c in CELLS, n in HUBS) (TRAF(c)/CNCT(c))*connect(c,n) <= 2*CAP

forall(c in CELLS, n in NODES) connect(c,n) is_binary
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! Solve the problem
minimize(TotCost)

end-model

12.2.3 Results

The optimal MIP solution has a total cost of $249,000. The traffic on the ring is 94, compared to a capacity
of 96. The following table lists the details of the connections to be established between cells and nodes
of the ring.

Table 12.2: Connection costs, traffic and number of connections per cell

Cell 1 2 3 4 5 6 7 8 9 10

Host nodes 3,5 3,4 2,5 2,3 1,4,5 5 1,4,5 2,3 3,5 4,5

12.3 Routing telephone calls

A private telephone company exploits a network, represented in Figure 12.4, between five cities: Paris,
Nantes, Nice, Troyes, and Valenciennes.

Nice

Valenciennes

300 70

Troyes

Nantes
Paris

120

300

80

200

Figure 12.4: Structure of the network of the company

The number beside each edge (connection) is the capacity of the link in terms of circuits. This issue
is worth some further explanation. Suppose that a person A at Nantes calls a person B at Nice. The
company needs to find a path formed by non-saturated edges from Nantes to Nice to route the binary
flow corresponding to the digitized voice of A. But the conversation is only possible if a flow from Nice
to Nantes is established so that B may answer A. In digital telephone networks, the binary flows all
have the same throughput standard (often 64 kbps). The associated capacity is called a channel. The
return channel uses the same edges as the first channel, but in the opposite direction. This linked pair of
channels necessary for a telephone conversation is a circuit.

The routing of the return channel through the same edges is due to the fact that the call could fail if
one waited until the callee picked up the phone before searching for a non-saturated return path. This
is why, at the moment of the call, the routing system constructs the path edge by edge and immediately
reserves the edges of the return channel. As a consequence, as the capacity of an edge is consumed in
increments of a bidirectional circuit, we do not consider any directed flows. For example, there may be
10 persons calling from Nantes to Nice and 20 from Nice to Nantes, or the opposite: in both cases, 30
circuits are used.

At a given moment, the company is facing demands for circuits given in the following table. Is it possible
to satisfy the demands entirely? If this is not possible, try to transmit as much as possible. In every case,
indicate the corresponding routing, that is, the access paths used.

12.3.1 Model formulation

In the maximum flow problem in Section 15.1 (water supply management) the task is to maximize the
total throughput of a single product flow that traverses a limited capacity network between an origin
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Table 12.3: Demand of circuits

Names of the cities Circuits

Nantes-Nice 100

Nantes-Troyes 80

Nantes-Valenciennes 75

Nice-Valenciennes 100

Paris-Troyes 70

(source) and a destination (sink). Here, we are dealing with a generalization called the multi-commodity
network flow (MCNF) problem: several flows that may not be mixed and that correspond to different
products use the same network, every flow having its own source and sink. The objective is still to
maximize the total throughput. Here, a ‘product’ corresponds to the totality of calls exchanged between
two given cities. The calls between two different pairs of cities may not be mixed: calls between Nantes
and Nice must not end in Troyes!

The MCNF problem is a difficult combinatorial problem. In the classical maximum flow problem, Linear
Programming uses flow variables flownm for every arc (n, m). The simplex algorithm automatically finds
integer-valued optimal flows if the arc capacities are integers. It is possible to generalize this model to
solve the MCNF problem in a directed graph with variables flowknm for the flow of product k on the arc
(n, m) but the values at the end of the LP are not usually integers. Optimally rounding the fractional
flows is very difficult because there may be several flows that are routed through the same saturated arc.
Furthermore, the model with three-index variables requires certain tricks for dealing with an undirected
network as is the case in the present example. We are therefore going to use a simpler formulation called
arc-paths.

This formulation is based on different elementary paths (without intermediate nodes in common) that
may be used between pairs of cities that are communicating. Instead of using variables flowknm for every
pair of cities k and every arc (n, m), this formulation uses a single variable flowp for the flow all along a
path p, where this path corresponds to a known pair of cities. The flow conservation laws per node are
therefore implicitly fulfilled. This formulation cannot be employed in dense networks with an enormous
number of possible paths. But for telecommunication networks that have a skeleton-like structure it is
better than modeling with three-index flow variables.

For the data, we use ARCS for the set of (undirected) arcs, CALLS for the set of city pairs between which
there are demands for calls, and PATHS the set of paths. Let CAPa denote the capacity of an arc and DEMc

the demand for a city pair c. We also need to know which pair of cities is at the ends of every path,
given by the call index CINDEXp. The arc-paths formulation is then remarkably easy. It is called ‘arc-paths’
because it works with arcs and paths, but not with nodes.

maximize
∑

p∈PATHS

flowp (12.3.1)

∀a ∈ ARCS :
∑

p∈PATHS
a∈p

flowp ≤ CAPa (12.3.2)

∀c ∈ CALLS :
∑

p∈PATHS
CINDEXp=c

flowc ≤ DEMc (12.3.3)

∀p ∈ PATHS : flowp ∈ IN (12.3.4)

The objective function is to maximize (12.3.1), the sum of the flows on all paths that may be used. The
constraints (12.3.2) consider every arc a: the sum of flows on the paths passing through a must not exceed
the capacity of a. The constraints (12.3.3) concern every pair of cities c: the sum of flows exchanged
between them over the various paths must not exceed the demand for circuits. The integrality constraints
(12.3.4) are necessary because the MCNF problem is not automatically integer at its linear optimum.

12.3.2 Implementation

The translation of the mathematical model for Mosel is given in the following program. This is a typical
case where after the formulation of the mathematical model some work still is left to do for the formu-
lation of the model with Mosel since no direct representation of the paths is immediately available. The
pairs of cities are named as represented in Table 12.3. Similarly, the arcs are named with the cities they
connect: Nantes-Paris, Nantes-Nice, Paris-Nice, Paris-Valenciennes, Troyes-Nice and Troyes-Valenciennes.

The paths are coded as a two-dimensional array ROUTEpa, every line of which corresponds to a path and
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contains the list of edges it uses. In the worst case, a path may contain all the arcs since the paths are ele-
mentary and do not visit any city twice. The size of the second dimension of the array ROUTE is therefore
given by the number NARC of arcs in the problem. The following table lists the complete set of paths
and the corresponding city pairs at the ends of every path (array CINDEXp). With this representation, the
model can now be implemented easily.

Table 12.4: Definition of paths

Path City pair List of arcs

1 Nantes-Nice Nantes-Nice

2 Nantes-Nice Nantes-Paris, Paris-Nice

3 Nantes-Nice Nantes-Paris, Paris-Valenciennes, Valenciennes-Troyes, Troyes-Nice

4 Nantes-Troyes Nantes-Paris, Paris-Valenciennes, Valenciennes-Troyes

5 Nantes-Troyes Nantes-Paris, Paris-Nice, Nice-Troyes

6 Nantes-Troyes Nantes-Nice, Nice-Troyes

7 Nantes-Troyes Nantes-Nice, Nice-Paris, Paris-Valenciennes, Valenciennes-Troyes

8 Nantes-Valenciennes Nantes-Paris, Paris-Valenciennes

9 Nantes-Valenciennes Nantes-Nice, Nice-Paris, Paris-Valenciennes

10 Nantes-Valenciennes Nantes-Paris, Paris-Nice, Nice-Troyes, Troyes-Valenciennes

11 Nantes-Valenciennes Nantes-Nice, Nice-Troyes, Troyes-Valenciennes

12 Nice-Valenciennes Nice-Nantes, Nantes-Paris, Paris-Valenciennes

13 Nice-Valenciennes Nice-Paris, Paris-Valenciennes

14 Nice-Valenciennes Nice-Troyes, Troyes-Valenciennes

15 Paris-Troyes Paris-Valenciennes, Valenciennes-Troyes

16 Paris-Troyes Paris-Nantes, Nantes-Nice, Nice-Troyes

17 Paris-Troyes Paris-Nice, Nice-Troyes

Making the path inventory is quite tedious, but the collection of data is usually a major problem in
Mathematical Programming. In industrial applications, the data files must be constructed automatically
by some special purpose software (in the examples of Sections 11.2 or 12.5 we use Mosel for doing
some data preprocessing) or be extracted from databases or spreadsheets. The full distribution of Mosel
includes modules for accessing databases or spreadsheets directly.

model "G-3 Routing telephone calls"
uses "mmxprs"

declarations
CALLS: set of string ! Set of demands
ARCS: set of string ! Set of arcs
PATHS: range ! Set of paths (routes) for demands

CAP: array(ARCS) of integer ! Capacity of arcs
DEM: array(CALLS) of integer ! Demands between pairs of cities
CINDEX: array(PATHS) of string ! Call (demand) index per path index

end-declarations

initializations from ’g3routing.dat’
CAP DEM INDEX

end-initializations

finalize(CALLS); finalize(ARCS); finalize(PATHS)
NARC:=getsize(ARCS)

declarations
ROUTE: array(PATHS,1..NARC) of string ! List of arcs composing the routes
flow: array(PATHS) of mpvar ! Flow on paths

end-declarations

initializations from ’g3routing.dat’
ROUTE

end-initializations

! Objective: total flow on the arcs
TotFlow:= sum(p in PATHS) flow(p)

! Flow within demand limits
forall(d in CALLS) sum(p in PATHS | CINDEX(p) = d) flow(p) <= DEM(d)
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! Arc capacities
forall(a in ARCS)

sum(p in PATHS, b in 1..NARC | ROUTE(p,b)=a) flow(p) <= CAP(a)

forall(p in PATHS) flow(p) is_integer

! Solve the problem
maximize(TotFlow)

end-model

12.3.3 Results

The LP solution to this problem has integer values. 380 out of the required 425 calls are routed, that
is all but 45 Nantes-Troyes calls. The following table lists the corresponding routing of telephone calls
(there are several equivalent solutions). On the connections Nantes-Paris, Nantes-Nice, Paris-Nice, and
Troyes-Valenciennes there is unused capacity; the other arcs are saturated.

Table 12.5: Optimal routing of telephone calls

City pair Demand Routed Path

Nantes-Nice 100 100 Nantes-Paris, Paris-Nice

Nantes-Troyes 80 35 Nantes-Nice, Nice-Paris, Paris-Valenciennes,

Valenciennes-Troyes

Nantes-Valenciennes 75 75 Nantes-Paris, Paris-Valenciennes

Nice-Valenciennes 100 20 Nice-Paris, Paris-Valenciennes

80 Nice-Troyes, Troyes-Valenciennes

Paris-Troyes 70 70 Paris-Valenciennes, Valenciennes-Troyes

12.4 Construction of a cabled network

A university wishes to connect six terminals located in different buildings of its campus. The distances, in
meters, between the different terminals are given in Table 12.6.

Table 12.6: Distances between the different terminals (in meters)

Terminal 1 Terminal 2 Terminal 3 Terminal 4 Terminal 5 Terminal 6

Terminal 1 0 120 92 265 149 194

Terminal 2 120 0 141 170 93 164

Terminal 3 92 141 0 218 103 116

Terminal 4 265 170 218 0 110 126

Terminal 5 149 93 103 110 0 72

Terminal 6 194 164 116 126 72 0

These terminals are to be connected via underground cables. We suppose the cost of connecting two
terminals is proportional to the distance between them. Determine the connections to install to minimize
the total cost.

12.4.1 Model formulation

We define the undirected labeled graph G = (TERMINALS, DIST, CONNECTIONS) where the set of nodes
TERMINALS corresponds to the set of terminals and the set of edges CONNECTIONS contains the possible
connections [s, t] between these terminals which are labeled with the distance DISTst that separates them.
We define binary variables connectst that are 1 if and only if terminals s and t are directly connected. Since
the connections are undirected, it is sufficient to define the variables for s < t. The objective is to connect
all the terminals at the least cost. The objective function is therefore given by (12.4.1).

minimize
∑

s∈TERMINALS

∑
t∈TERMINALS

s<t

DISTst · connectst (12.4.1)

To connect NTERM terminals, the most economical network is a tree of NTERM − 1 connections. A tree
connecting NTERM nodes is a connected graph without any cycles or, equivalently a connected graph
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with NTERM− 1 connections. The constraint (12.4.2) imposes these NTERM− 1 connections.∑
s∈TERMINALS

∑
t∈TERMINALS

s<t

connectst = NTERM− 1 (12.4.2)

Furthermore, every terminal must be connected to at least one other terminal in the tree. A first idea is
to add the constraints (12.4.3).

∀s ∈ TERMINALS :
∑

t∈TERMINALS
s<t

connectst ≥ 1 (12.4.3)

However, these constraints are not sufficient. The constraints (12.4.2) and (12.4.3) may lead to an infeasi-
ble solution as shown in Figure 12.5 in which a cycle is created.

T6

T2

T4

T3
T1

T5

Figure 12.5: An infeasible unconnected solution

To avoid this type of solution, we need to impose the constraint (12.4.4) for any subset S of the set of
terminals. The translation of this constraint into a program is unfortunately a difficult task: on one hand
there is no possibility of enumerating all subsets, and on the other hand the number of constraints of this
type is enormous (2NTERM, that is, about one million for twenty nodes).

∀S ⊆ TERMINALS :
∑
s∈S

∑
t∈S, s<t

connectst ≤ |S| − 1 (12.4.4)

There follows therefore, a different way of preventing cycles. Consider a tree with its edges directed
departing from a root r, that is, a node that is connected to a single other node, like T1 in Figure 12.6
(any root will do). We may now assign every node t a level value levelt that may be interpreted as the
length (in terms of number of edges) of the path connecting t with r (in a tree this path exists and is
unique). For example, we have levelr = 0 and levelt = 1 for any node t directly connected to r. The anti-
cycle constraints (12.4.5) are based on positive level value variables. For this formulation, the connections
must be directed: we have either connectst = 1 or connectts = 1 for two directly connected nodes s and t.
This has no impact on the solution.

∀s, t ∈ TERMINALS, s 6= t : levelt ≥ levels + 1− NTERM + NTERM · connectst (12.4.5)

To understand these constraints, let us suppose that a solution of the mathematical model contains a
cycle, for instance the cycle 1→ 2→ 5→ 1 of Figure 12.5, oriented in this sense. The constraints (12.4.5)
for which connectst = 1 in this cycle result in:

level2 ≥ level1 + 1 (12.4.6)

level5 ≥ level2 + 1 (12.4.7)

level1 ≥ level5 + 1 (12.4.8)

By summing up term by term, we obtain a contradiction: 0 ≥ 3 ! A solution containing a cycle therefore
violates the constraints (12.4.5). On the contrary, if we have a tree, values of levelt exist that satisfy the
constraints, for instance the level numbers obtained by traversing the tree starting from an arbitrary root
r. If s is directly before t on the path from r to t, we have levelt = levels + 1 and connectst = 1. The
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constraint (12.4.5) for s and t is satisfied since it reduces to levelt = levels + 1. If s is not directly connected
to t, we have connectst = 0 and the constraint (12.4.5) reduces to levelt−levels ≥ 1−NTERM, an inequality
that is trivially satisfied since the level numbers range between 0 and NTERM− 1.

The constraints (12.4.5) only detect cycles with connections directed around the cycle. For instance, they
do not exclude the cycle 1→ 2← 5→ 1. Such a cycle cannot occur when we add the following constraints
that direct all connections to the (arbitrarily chosen) root node.

∀s = 2, . . . , NTERM :
∑

t∈TERMINALS
s6=t

connectst = 1 (12.4.9)

In the formulation of the constraints (12.4.9) we have chosen node 1 as the root node. Every node must
be connected to at least one other node. Since a tree does not contain cycles there must be a single path
from every node in the tree to the root node. That means, every node s other than the root node has
exactly one outgoing connection. In other words, for every s 6= 1 exactly one variable connectst must be
at 1.

We thus obtain the following mathematical model.

minimize
∑

s∈TERMINALS

∑
t∈TERMINALS

DISTst · connectst (12.4.10)∑
s∈TERMINALS

∑
t∈TERMINALS

connectst ≤ NTERM− 1 (12.4.11)

∀s, t ∈ TERMINALS, s 6= t : levelt ≥ levels + 1− NTERM + NTERM · connectst (12.4.12)

∀s = 2, . . . , NTERM :
∑

t∈TERMINALS
s 6=t

connectst = 1 (12.4.13)

∀s, t ∈ TERMINALS : connectst ∈ {0, 1} (12.4.14)

∀t ∈ TERMINALS : levelt ≥ 0 (12.4.15)

12.4.2 Implementation

The translation of the mathematical model into a Mosel program is direct.

model "G-4 Cable connections between terminals"
uses "mmxprs"

declarations
NTERM = 6
TERMINALS = 1..NTERM ! Set of terminals to connect

DIST: array(TERMINALS,TERMINALS) of integer ! Distance between terminals

connect: array(TERMINALS,TERMINALS) of mpvar ! 1 if direct connection
! between terminals, 0 otherwise

level: array(TERMINALS) of mpvar ! level value of nodes
end-declarations

initializations from ’g4cable.dat’
DIST

end-initializations

! Objective: length of cable used
Length:= sum(s,t in TERMINALS) DIST(s,t)*connect(s,t)

! Number of connections
sum(s,t in TERMINALS | s<>t) connect(s,t) = NTERM - 1

! Avoid subcycle
forall(s,t in TERMINALS | s<>t)

level(t) >= level(s) + 1 - NTERM + NTERM*connect(s,t)

! Direct all connections towards the root (node 1)
forall(s in 2..NTERM) sum(t in TERMINALS | s<>t) connect(s,t) = 1

forall(s,t in TERMINALS | s<>t) connect(s,t) is_binary
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! Solve the problem
minimize(Length)

end-model

12.4.3 Results

The optimal solution connects the terminals as shown in Figure 12.6. The total length of cable required
is 470 meters.

T6

T2

T4

T3
T1

T5

92

110

93

72

103

Figure 12.6: Optimal network of connections

12.5 Scheduling of telecommunications via satellite

A digital telecommunications system via satellite consists of a satellite and a set of stations on earth which
serve as interfaces with the terrestrial network. With SS-TDMA (Satellite-Switch, Time Division Multiple
Access) access technology, the satellite divides its time among the stations. Consider for example the
transmissions from four transmitter stations in the US to four receiver stations in Europe. The following
table gives a possible 4 × 4 traffic matrix. TRAFtr is the quantity of data transmitted from station t to
station r. It is expressed in seconds of transmission duration, because all lines have the same constant
transmission rate.

Table 12.7: Matrix TRAF with its lower bound LB

TRAF 1 2 3 4 rowt

1 0 7 11 15 33

2 15 8 13 9 45

3 17 12 6 10 45

4 6 13 15 4 38

colr 38 40 45 38 LB = 45

The satellite has a switch that allows any permutation between the four transmitters and the four re-
ceivers. Figure 12.8 gives an example of a permutation connecting the transmitters 1 to 4 to the receivers
3, 4, 1, and 2 respectively. These connections allow routing a part of the traffic matrix, called a mode. A
part of a matrix entry transmitted during a mode is a packet of data. A mode is thus a 4 × 4 matrix M
with at most one non-zero packet per row and column and such that Mtr ≤ TRAFtr for all t, r. To every
mode corresponds a slice of a schedule as shown in Figure 12.8.

Table 12.8: Example of a mode and associated schedule

1 2 3 4 Stations Packets

1 0 0 11 0 1 to 3 11

2 0 0 0 9 2 to 4 9

3 15 0 0 0 3 to 1 15

4 0 13 0 0 4 to 2 13

colr 38 40 45 38 LB = 45
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A valid schedule of transmissions defines a sequence of permutations for the on-board switch that routes
all the traffic of the matrix TRAF. In other words, this boils down to decomposing TRAF into a sum of
mode matrices. An element of TRAF may be fragmented, like TRAF31 that is only partially transmitted in
the mode represented in Figure 12.8. A fragmented element will appear in several packets and several
modes of the final decomposition. The duration of a mode is the length of its longest packet. The
objective is to find a schedule with minimal total duration.

12.5.1 Model formulation

Let TRANSM = {1, . . . , NT} be the set of transmitter stations and RECV = {1, . . . , NT} the set of re-
ceiver stations. We shall first formulate a model for this problem when fragmentations are not al-
lowed. With a square matrix as in the present case, NT modes are sufficient for decomposing TRAF.
We define binary variables flowtrm that are 1 if the element TRAFtr is transmitted in mode number
m ∈ MODES = {1, . . . , NT} (12.5.7). The constraints (12.5.2) indicate that every TRAFtr must be trans-
mitted in a single mode (no preemption). The constraints (12.5.3) and (12.5.4) ensure that every mode is
valid, with a single entry per row and per column.

The continuous variables durm represent the duration of every mode, that is, the duration of its largest
element. The constraints (12.5.5) bound every TRAFtr transmitted in mode m by durm. The objective
function (12.5.1) denotes the total duration of the decomposition to modes, that is, the sum of the
durations of the modes. The mathematical model we obtain is a bottleneck assignment problem with
three indices. It requires NT3 + NT variables and NT3 + 3NT2 constraints.

minimize
∑

m∈MODES

durm (12.5.1)

∀t ∈ TRANSM, r ∈ RECV :
∑

m∈MODES

flowtrm = 1 (12.5.2)

∀t ∈ TRANSM, m ∈ MODES :
∑

r∈RECV

flowtrm = 1 (12.5.3)

∀r ∈ RECV, m ∈ MODES :
∑

t∈TRANSM

flowtrm = 1 (12.5.4)

∀t ∈ TRANSM, r ∈ RECV, m ∈ MODES : TRAFtr · flowtrm ≤ durm (12.5.5)

∀m ∈ MODES : durm ≥ 0 (12.5.6)

∀t ∈ TRANSM, r ∈ RECV, m ∈ MODES : flowtrm ∈ {0, 1} (12.5.7)

The problem described initially in fact allows preemptions. A formulation in the form of a single mathe-
matical model is still possible in this case, but with an even larger number of variables, since theory shows
that of the order of NT2 modes may be required for decomposing TRAF with a minimal total duration.
This is why we are going to use an iterative algorithm due to Gonzalez and Sahni [GS76]. Every iteration
requires us to solve an LP to extract a mode from TRAF.

Given that the on-board switch connects a transmitter with a receiver station, the elements from the
same row or column of TRAF cannot be transmitted in parallel. The sum rowt of the elements of a row
t is therefore a lower bound on the duration of any decomposition. The same remark holds for the sum
colr of every column r of TRAF. The maximum of these sums defines an even better lower bound LB. The
table 12.7 displays these sums: we find LB = 45.

The algorithm is to find a schedule with duration LB. This duration is optimal since it is not possible to find
anything shorter than the lower bound LB. For the algorithm to work correctly, the traffic matrix TRAF
must be converted into a matrix for which the sum of every row and every column is LB. To obtain this
so-called quasi bistochastic (QBS) matrix TQBS, we need to add fictitious traffic to the matrix elements so
that the row and columns add up to LB. This may be done systematically with the following algorithm.

• Calculate the row and column sums rowt and colr of matrix TRAF

• Calculate LB, the maximum of all row and column sums rowt and colr

• ∀t ∈ TRANS, r ∈ RECV :

– Calculate q, the minimum of LB− rowt and LB− colr

– Set TQBStr = TRAFtr + q

– Add q to rowt and to colr
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Table 12.9: Matrix TQBS

TQBS 1 2 3 4

1 7 12 11 15

2 15 8 13 9

3 17 12 6 10

4 6 13 15 11

The following table contains the matrix TQBS for our example. The elements of all rows and columns
sum to 45.

The algorithm of Gonzalez and Sahni has the following general structure:

• Calculate LB, the maximum of the row and column sums of TRAF

• Convert TRAF into a QBS matrix TQBS by adding fictitious traffic

• While TQBS is non-zero do

– Calculate a mode m with NT non-zero elements using Mathematical Programming

– Calculate pmin, the minimum packet length among the elements of m

– Create a slice of the schedule with the packets of m cut at pmin

– Deduce pmin from every element of TQBS contained in mode m

end-do

• Remove the fictitious traffic from the modes that have been obtained

This algorithm converges because at every extraction of a mode at least one element of TQBS becomes 0:
the one that sets the value of pmin. The algorithm is optimal because after the subtraction of pmin, TQBS
remains a QBS matrix with the sums of rows and columns equal to LB− pmin. The decomposition creates
a slice of the schedule of duration pmin and leaves a matrix with the bound LB − pmin. Continuing this
way, we obtain a total duration equal to LB.

Any mode may be extracted at every iteration, but to have the least number of modes in the decomposi-
tion it is desirable to construct modes that are well filled with traffic. A possibility is to calculate maximin
modes in which the size of the smallest element is maximized. This may be done using Mathematical
Programming. The following model formulates a maximin assignment problem analogous to the one in
Chapter 14 for the assignment of personnel to machines.

maximize pmin (12.5.8)

∀t ∈ TRANSM :
∑

r∈RECV
TQBStr>0

flowtr = 1 (12.5.9)

∀r ∈ RECV :
∑

r∈RECV
TQBStr>0

flowtr = 1 (12.5.10)

∀t ∈ TRANSM :
∑

t∈TRANSM

TQBStr · flowtr ≥ pmin (12.5.11)

∀t ∈ TRANSM, r ∈ RECV, TQBStr > 0 : flowtr ∈ {0, 1} (12.5.12)

pmin ≥ 0 (12.5.13)

A binary variable flowtr (12.5.12) has the value 1 if and only if the element TQBStr is taken in the mode.
Right from the beginning the matrix TQBS may contain zero-valued elements and in any case, zeros will
appear during the iterations of the algorithm of Gonzalez and Sahni. This is why the variables flowtr

are only defined for the non-zero TQBStr. The constraints (12.5.9) make it impossible to take more than
one element per row, the constraints (12.5.10) play the same role for the columns. A continuous variable
pmin bounds the chosen entries (12.5.11) from below. This minimum packet length variable is maximized
in the objective function (12.5.8).

To apply the algorithm of Gonzalez and Sahni, the preceding mathematical model must be solved for the
quasi bistochastic matrix TQBS. The flowtr at 1 indicate the elements TQBStr chosen for the mode. The
solution value of pmin is then subtracted from the chosen TQBStr and the MIP problem is solved again
with the remaining traffic of TQBS. The process stops when TQBS is completely 0.
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12.5.2 Implementation

The following Mosel program implements the algorithm of Gonzalez and Sahni described in the previous
section. After every solution of the MIP problem, the corresponding elements of TQBSare updated, and
at the next loop the problem is redefined correspondingly. Since the entire MIP problem is redefined
in every iteration of the while loop, all constraints are named in this problem so that their previous
definition may be replaced by the new one. Proceeding in such a way is necessary because the problem
definition in Mosel is incremental: constraints may only be removed by explicitly resetting them. Once
defined, the variables flow(t,r) cannot be removed, but through the tests TQBS(t,r)>0 in the def-
inition of the constraints only the variables actually required are used in the definition of the current
problem.

In this program, we save all the solutions found (elements and durations of the modes) for printing out
the complete solution in the form of a diagram at the end of the program. During the solution printout,
the scheduled packets are compared with the original traffic matrix TRAF so that the additional fictitious
traffic in TQBS is not shown, but only the original traffic demands.

model "G-5 Satellite scheduling"
uses "mmxprs"

declarations
TRANSM = 1..4 ! Set of transmitters
RECV = 1..4 ! Set of receivers

TRAF: array(TRANSM,RECV) of integer ! Traffic betw. terrestrial stations
TQBS: array(TRANSM,RECV) of integer ! Quasi bistochastic traffic matrix
row: array(TRANSM) of integer ! Row sums
col: array(RECV) of integer ! Column sums
LB: integer ! Maximum of row and column sums

end-declarations

initializations from ’g5satell.dat’
TRAF

end-initializations

! Row and column sums
forall(t in TRANSM) row(t):= sum(r in RECV) TRAF(t,r)
forall(r in RECV) col(r):= sum(t in TRANSM) TRAF(t,r)
LB:=maxlist(max(r in RECV) col(r), max(t in TRANSM) row(t))

! Calculate TQBS
forall(t in TRANSM,r in RECV) do

q:= minlist(LB-row(t),LB-col(r))
TQBS(t,r):= TRAF(t,r)+q
row(t)+=q
col(r)+=q

end-do

declarations
MODES: range

flow: array(TRANSM,RECV) of mpvar ! 1 if transmission from t to r,
! 0 otherwise

pmin: mpvar ! Minimum exchange
onerec, minexchg: array(TRANSM) of linctr ! Constraints on transmitters

! and min exchange
onerec: array(RECV) of linctr ! Constraints on receivers

solflowt: array(TRANSM,MODES) of integer ! Solutions of every iteration
solflowr: array(RECV,MODES) of integer ! Solutions of every iteration
solpmin: array(MODES) of integer ! Objective value per iteration

end-declarations

forall(t in TRANSM,r in RECV) flow(t,r) is_binary

ct:= 0
while(sum(t in TRANSM,r in RECV) TQBS(t,r) > 0) do

ct+=1

! One receiver per transmitter
forall(t in TRANSM) onerec(t):= sum(r in RECV | TQBS(t,r)>0) flow(t,r) =1
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! One transmitter per receiver
forall(r in RECV) onetrans(r):= sum(t in TRANSM | TQBS(t,r)>0) flow(t,r) =1

! Minimum exchange
forall(t in TRANSM)

minexchg(t):= sum(r in RECV | TQBS(t,r)>0) TQBS(t,r)*flow(t,r) >= pmin

! Solve the problem: maximize the minimum exchange
maximize(pmin)

! Solution printing
writeln("Round ", ct, " objective: ", getobjval)

! Save the solution
solpmin(ct):= round(getobjval)
forall(t in TRANSM,r in RECV | TQBS(t,r)>0)

if(getsol(flow(t,r))>0) then
solflowt(t,ct):= t
solflowr(t,ct):= r

end-if

! Update TQBS
forall(t in TRANSM)

TQBS(solflowt(t,ct),solflowr(t,ct)) -= solpmin(ct)

end-do

! Solution printing
writeln("\nTotal duration: ", sum(m in MODES) solpmin(m))

write(" ")
forall(i in 0..ceil(LB/5)) write(strfmt(i*5,5))
writeln
forall(t in TRANSM) do

write("From ", t, " to: ")
forall(m in MODES)

forall(i in 1..solpmin(m)) do
write(if(TRAF(solflowt(t,m),solflowr(t,m))>0, string(solflowr(t,m)),"-"))
TRAF(solflowt(t,m),solflowr(t,m))-=1

end-do
writeln

end-do

end-model

12.5.3 Results

The following tables show the successive contents of TQBS during the repeated solution of the MIP. The
boxed elements are the elements chosen for the mode. The duration of every mode pmin is given above
the corresponding table.

The decomposition terminates after eight iterations and the resulting schedule has the expected length
LB = 45. The upper half of Figure 12.7 shows the schedule obtained with the fictitious traffic of the
matrix TQBS, the lower half displays the result for the original traffic data without any fictitious traffic
(matrix TRAF).

12.6 Location of GSM transmitters

A mobile phone operator decides to equip a currently uncovered geographical zone. The management
allocates a budget of BC 10 million to equip this region. A study shows that only 7 locations are possible
for the construction of the transmitters and it is also known that every transmitter only covers a certain
number of communities. Figure 12.8 represents a schematic map of the region with the division into
communities and the possible locations for transmitters. Every potential site is indicated by a black dot
with a number, every community is represented by a polygon. The number in the center of a polygon is
the number of the community.

Certain geographical and topological constraints add to the construction cost and reduce the reach of
the GSM transmitters. Table 12.11 lists the communities covered and the cost for every site.
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Table 12.10: Decomposition of TQBS into modes

Mode 1, pmin = 13 Mode 2, pmin = 11 Mode 3, pmin = 7

7 12 11 15 7 12 11 2 7 12 0 2

15 8 13 9 15 8 0 9 4 8 0 9

17 12 6 10 4 12 6 10 4 1 6 10

6 13 15 11 6 0 15 11 6 0 15 0

Mode 4, pmin = 6 Mode 5, pmin = 3 Mode 6, pmin = 3

0 12 0 2 0 6 0 2 0 3 0 2

4 1 0 9 4 1 0 3 4 1 0 0

4 1 6 3 4 1 0 3 1 1 0 3

6 0 8 0 0 0 8 0 0 0 5 0

Mode 7, pmin = 1 Mode 8, pmin = 1

0 0 0 2 0 0 0 1

1 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0

0 0 2 0 0 0 1 0
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Figure 12.7: Schedule with and without fictitious traffic

Table 12.11: Cost and communities covered for every site

Site 1 2 3 4 5 6 7

Cost (in million BC) 1.8 1.3 4.0 3.5 3.8 2.6 2.1

Communities covered 1,2,4 2,3,5 4,7,8,10 5,6,8,9 8,9,12 7,10,11,12,15 12,13,14,15
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Figure 12.8: Map of the region to cover

For every community the number of inhabitants is known (see Table 12.12). Where should the transmit-
ters be built to cover the largest population with the given budget limit of BC 10M?

Table 12.12: Inhabitants of the communities

Community 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Population (in 1000) 2 4 13 6 9 4 8 12 10 11 6 14 9 3 6

12.6.1 Model formulation

Let COMMS be the set of communities, PLACES the potential sites for constructing transmitters and
BUDGET the budget allocated by the management. We further write COSTp for the cost of building
a transmitter a site p, POPc the number of inhabitants of the community c and COVERpc a binary constant
that indicates whether a transmitter placed at p covers community c (COVERpc = 1) or not (COVERpc = 0).
Two types of binary variables are required: variables coveredc that are 1 if and only if a community c is
covered by a transmitter, and variables buildp that are 1 if and only if a transmitter is built at site p.

We formulate the constraints for the coverage of the communities first . We need to translate the equiv-
alence ‘community c receives a GSM signal⇔ at least at one site covering this community is a transmitter
is built’, or ‘coveredc = 1 ⇔ there is at least one p with COVERpc · buildp = 1’. This type of equivalence
cannot be translated directly into a linear form. Since a community may be covered by more than one
transmitter, the constraints (12.6.1) express one direction of the equivalence by specifying that the sum
COVERpc · buildp is greater than or equal to coveredc.

∀c ∈ COMMS :
∑

p∈PLACES

COVERpc · buildp ≥ coveredc (12.6.1)

The other direction of the equivalence is ensured through the maximization of the population covered
(12.6.2). The optimization algorithm will not leave any coveredc at 0 if any transmitter that covers this
community is built.

It is also necessary to remain within the budgetary limits. The constraint (12.6.4) bounds the total con-
struction cost for transmitters with the given maximum budget. And finally, the constraints (12.6.5) and
(12.6.6) define all variables to be binaries.

maximize
∑

c∈COMMS

POPc · coveredc (12.6.2)

∀c ∈ COMMS :
∑

p∈PLACES

COVERpc · buildp ≥ coveredc (12.6.3)

∑
p∈PLACES

COSTp · buildp ≤ BUDGET (12.6.4)

∀c ∈ COMMS : coveredc ∈ {0, 1} (12.6.5)

∀p ∈ PLACES : buildp ∈ {0, 1} (12.6.6)

Telecommunication problems 191 Applications of optimization with Xpress-MP



12.6.2 Implementation

The translation of the mathematical model into a Mosel program is straightforward. The matrix COVER
is stored in sparse format in the data file (that is, only the entries with value 1 are given).

model "G-6 Transmitter placement"
uses "mmxprs"

declarations
COMMS = 1..15 ! Set of communities
PLACES = 1..7 ! Set of possible transm. locations

COST: array(PLACES) of real ! Cost of constructing transmitters
COVER: array(PLACES,COMMS) of integer ! Coverage by transmitter locations
POP: array(COMMS) of integer ! Number of inhabitants (in 1000)
BUDGET: integer ! Budget limit

build: array(PLACES) of mpvar ! 1 if transmitter built, 0 otherwise
covered: array(COMMS) of mpvar ! 1 if community covered, 0 otherwise

end-declarations

initializations from ’g6transmit.dat’
COST COVER POP BUDGET

end-initializations

! Objective: total population covered
Coverage:= sum(c in COMMS) POP(c)*covered(c)

! Towns covered
forall(c in COMMS) sum(p in PLACES) COVER(p,c)*build(p) >= covered(c)

! Budget limit
sum(p in PLACES) COST(p)*build(p) <= BUDGET

forall(p in PLACES) build(p) is_binary
forall(c in COMMS) covered(c) is_binary

! Solve the problem
maximize(Coverage)

end-model

12.6.3 Results

When solving this problem, we find that 109,000 persons can be covered by the transmitters. Four trans-
mitters are built, at the sites 2, 4, 6, and 7. Communities 1 and 4 are not covered by these transmitter
locations. This operation requires a total budget of BC 9.5 million which remains under the limit set by the
management of the GSM operator.

In practice, for the choice of transmitter locations other factors also have to be taken into account. The
areas covered by neighboring transmitters typically overlap each other: these overlappings should neither
be too large (cost inefficient) nor too small (some overlapping is required to pass on calls). Another typical
issue is that the transmitters must be placed and dimensioned in such a way that they may be allocated
frequencies (out of a set attributed to the operator) that do not cause any interference problems.

12.7 References and further material

The recent work by Sansò et al. [SS98] is dedicated to optimization problems in the design of telecommu-
nication networks. The problem of independent routings in Section 12.1 is a problem of connectivity in a
graph. An undirected graph is k-connected regarding its nodes if at least k disjoint chains exist between
any pair of nodes. Efficient graph algorithms for simple connectivity and 2-connectivity are given in the
books by Baase [Baa88] and Prins [Pri94a]. The general case is dealt with for instance by Papadimitriou et
al. [PS98] and Ahuja et al. [AMO93].

The problem from Section 12.2 of connecting mobile phone relays to a central network in ring form is
dealt with in an article by Dutta et al. [DK99]. The maximization of the throughput of a network in Sec-
tion 12.3 is a multi-commodity network flow (MCNF) problem. The main MCNF problems and solution
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methods are given by Gondran [GM90] and Ahuja et al. [AMO93]. For large telecommunications net-
works, a compatible MCNF algorithm is described by Minoux [Min75], and an algorithm for the minimum
cost MCNF problem by Gersht et al. [GS87]. A column generation method for MCNF in telecommunica-
tions is described in [BHJS95].

The problem of the cable network in Section 12.4 is a classical minimum weight spanning tree problem.
Its model formulation by mathematical LP/MIP is heavy and only valid for small problem (n ≤ 20 nodes). It
is in fact easily solved by graph algorithms like the one by Prim in O(n2) or the one by Kruskal in O(m log n)
where m denotes the number of edges. These two algorithms are described by Ahuja et al. [AMO93].

The problem of telecommunications via satellite in Section 12.5 is also known as a workshop scheduling
problem (open shop). The transmitter stations become the machines, the receiver stations the products
to produce. TRAFtr indicates the processing duration of a product r on a machine t. A machine may only
produce a single product at a time, and a product may only be processed on a single machine at any time.
As opposed to the flow shop and job shop problems in Chapter 7, the sequence of processing a product
on the different machines is free. The objective is to find the schedule that minimizes the total duration.

The open shop problem is NP-hard if preemptions are not allowed. Heuristics have to be used beyond the
limit of ten machines/ten products. See for instance Guéret and Prins [GP98]. The major variants of open
shop to be found in telecommunications by satellite are presented in an overview article by Prins [Pri94b].
An example of planning traffic for a longer term, solved by Mathematical Programming, is given by Scott
et al. [SSR00]. The bottleneck assignment model with three indices presented at the beginning of Section
12.5.1 for the nonpreemptive case stems from Balas and Landweer [BL83].

The choice of locations for GSM transmitters in Section 12.6 is a covering problem. The closely related
problems of covering and partitioning are classics in 0-1 (M)IP, summarized in the section ‘References and
further material’ to Chapter 15. We introduce a partitioning problem (electoral districts) in Chapter 15
and another type of covering problem (cutting sheet metal) in Chapter 9.

The covering problem, although NP-hard, is relatively well solved since the simplex algorithms finds an
optimal LP solution where the majority of the binary variables have integer values, which renders the
tree search on the remaining fractional variables easier. See for instance Beasley [Bea87]. It is possible
to solve problems with several hundred variables to optimality. Very efficient heuristics based on LP/MIP
have recently been described for covering problems of very large size [CFT99]. Syslo describes heuristics
and exact tree search methods for two types of problems, with source code in Pascal [SDK83].
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Chapter 13

Economics and finance

Economists often work with uncertain data and naturally turn towards statistical tools but frequently
a simple mathematical model can solve a problem with many variables very quickly to optimality. It is
then possible to restart the optimization by varying certain parameters (those that are uncertain). In
this case Mathematical Programming becomes an efficient simulation tool. The problems in this chapter
concern applications in finance and marketing, aimed at financial decision makers in companies but also
for individuals.

Section 13.1 describes a problem of choosing loans to finance expansion projects. Sections 13.2 and 13.5
deal with the optimal use of a given budget, in the first case for organizing an efficient publicity cam-
paign, in the second case to maximize the amount of money a family may spend on leisure. The selection
of the most profitable expansion projects over several time periods subject to limited annual budgets is
the topic of Section 13.6. The problems in Sections 13.3 and 13.7 concern the optimal composition of
investment portfolios according to different criteria (maximum total return and minimum variance). The
problem in Section 13.7 differs from all other examples in this book in that it has a quadratic objective
function. For both portfolio problems it is shown how the models may be used for repeated (simulation)
runs by varying certain parameters. Section 13.4 also deals with the choice of investments by looking at
a multi-period time horizon and with a different objective: every time period a certain amount of money
needs to be available to finance an early retirement scheme.

13.1 Choice of loans

Mr Chic, director of a chain of shops selling clothes, wishes to open three new shops: one in London, one
in Munich, and one in Rome. To open a new shop costs respectively BC 2.5 million, BC 1 million and BC 1.7
million. To finance his project, he calls at three different banks.

Table 13.1: Rates offered by the banks for the different projects

Shop in London Shop in Munich Shop in Rome

Bank 1 5% 6.5% 6.1%

Bank 2 5.2% 6.2% 6.2%

Bank 3 5.5% 5.8% 6.5%

Depending on the location of the shops and the evaluation of the related risks, each bank decides to
finance at most BC 3 million over 8 years with different interest rates for the shops (Table 13.1). Determine
the amount to borrow from each bank for financing each shop in order to minimize the total expenses
of Mr Chic.

13.1.1 Model formulation

Let borrowbs be the amount borrowed from bank b to finance shop s. Let BANKS and SHOPS respectively
be the sets of banks willing to finance and of new shops. Let DUR be the number of years over which
the repayment of the credits stretches, VMAX the maximum amount that every bank is prepared to
finance, RATEbs the interest rate offered by bank b for shop s, and PRICEs the cost of opening shop s. The
mathematical model is the following:

minimize
∑

b∈BANKS

∑
s∈SHOPS

borrowbs ·
RATEbs

1− (1 + RATEbs)−DUR (13.1.1)
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∀s ∈ SHOPS :
∑

b∈BANKS

borrowbs = PRICEs (13.1.2)

∀b ∈ BANKS :
∑

s∈SHOPS

borrowbs ≤ VMAX (13.1.3)

∀b ∈ BANKS, s ∈ SHOPS : borrowbs ≥ 0 (13.1.4)

The objective is to minimize Mr. Chic’s expenses, that is, to minimize the sum of annual payments he has
to make. If the amount borrowbs is borrowed from a bank b to finance the shop s at the rate RATEbs over
DUR years, then the annual payment paybs to be made by Mr Chic for this shop to the bank b is calculated
as follows: the net present value of all DUR annual payments paybs for shop s to the bank b must equal
the value of the loan borrowbs:

borrowbs =
DUR∑
t=1

paybs

(1 + RATEb)t = paybs ·
1− (1 + RATEb)−DUR

RATEb
(13.1.5)

By dividing the equation by the fraction on the right hand side we obtain the following equation for the
annuities paybs:

borrowbs ·
RATEbs

1− (1 + RATEbs)−DUR = paybs (13.1.6)

The annual payments paybs have to be made for all shops s to all banks b during DUR years. But since the
annual payments are the same every year, it is sufficient to minimize the sum of the payments for one
year. We thus obtain the objective function as the sum of paybs over all b and s. By replacing paybs with
the left hand side of equation (13.1.6) we obtain the objective function in the form (13.1.1).

Every shop has to be completely financed, which means that the amounts borrowed for financing every
shop s must correspond to its cost PRICEs. This constraint is expressed through (13.1.2). The constraint
(13.1.3) indicates that every bank must not finance more than VMAX and the constraints (13.1.4) state
the non-negativity of the variables.

13.1.2 Implementation

The following Mosel program gives the translation of the mathematical model above.

model "H-1 Loan choice"
uses "mmxprs"

declarations
BANKS = 1..3 ! Set of banks
SHOPS = {"London", "Munich", "Rome"} ! Set of shops
DUR: integer ! Duration of credits

PRICE: array(SHOPS) of integer ! Price of shops
RATE: array(BANKS,SHOPS) of real ! Interest rates offered by banks
VMAX: integer ! Maximum loan volume per bank

borrow: array(BANKS,SHOPS) of mpvar ! Loan taken from banks per project
end-declarations

initializations from ’h1loan.dat’
PRICE RATE VMAX DUR

end-initializations

! Objective: interest payments
Interest:=

sum(b in BANKS, s in SHOPS) borrow(b,s)*RATE(b,s)/(1-(1+RATE(b,s))^(-DUR))

! Finance all projects
forall(s in SHOPS) sum(b in BANKS) borrow(b,s) = PRICE(s)

! Keep within maximum credit volume per bank
forall(b in BANKS) sum(s in SHOPS) borrow(b,s) <= VMAX

! Solve the problem
minimize(Interest)

end-model
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13.1.3 Results

To minimize his expenses, Mr. Chic finances the shop in London (shop 1) entirely through a credit from
bank 1 and the shop in Munich (shop 2) through a credit from bank 3. For the shop in Rome (shop 3) he
borrows BC 0.5 million from bank 1 and BC 1.2 million from bank 2. The sum of the annual payments to be
made by Mr. Chic is then BC 822,181.

13.2 Publicity campaign

The small company, Pronuevo, launches a new product into a regional market and wishes to have a
publicity campaign using different media. It therefore contacts a regional publicity agency, PRCo, that
specializes in this type of regional campaign and completely hands over this task for a total budget of
BC 250,000. The agency knows the market well, that is, the impact of publicity in a local magazine or over
the radio, or as a TV spot on the regional channel. It suggests addressing the market for two months
through six different media. For each medium, it knows the cost and the number of people on which this
medium has an impact. An index of the quality of perception of the campaign is also known for every
medium.

The publicity agency establishes a maximum number of uses of every medium (for instance, not more
than eight transmissions of a TV spot). The following Table 13.2 lists all this information. Pronuevo wants
the impact of the publicity campaign to reach at least 100,000 people. Which media should be chosen
and in which proportions to obtain a maximum index of perception quality?

Table 13.2: Data for the publicity campaign

People Unit Maximum Perception
Number Media type potentially reached cost use quality

1 Free weekly newspaper 12,000 1,500 4 weeks 3

2 Monthly magazine 1,500 8,000 2 months 7

3 Weekly magazine 2,000 12,000 8 weeks 8

4 Radio spot 6,000 9,000 60 broadcasts 2

5 Billboard 4x3 m 3,000 24,000 4 boards 6

6 TV spot 9,000 51,000 8 broadcasts 9

13.2.1 Model formulation

We write MEDIA for the set of media that may be used in this campaign. The constants REACHm, COSTm,
MAXUSEm, and SCOREm denote respectively the number of people potentially reached, the unit cost of
using a medium, the maximum number of uses and the quality index for every medium used. The decision
variables usem that we choose are the number of uses made of every medium m during this campaign.

To start with, the budgetary constraint needs to be fulfilled: the constraint (13.2.2) indicates that the sum
of the costs for every medium must not exceed the total allocated budget BUDGET . Every medium may
be used only up to its maximum authorized number of uses (constraints (13.2.3)). The targeted number
of people TARGET needs to be reached, that means, that the sum of the numbers of people potentially
reached through every medium must be at least as large as the targeted 100,000 persons (constraint
(13.2.4)). The objective function (13.2.1) has to maximize the sum of the quality indices of every media
used. The decision variables usem must be integer, constraints (13.2.5).

maximize
∑

m∈MEDIA

SCOREm · usem (13.2.1)∑
m∈MEDIA

COSTm · usem ≤ BUDGET (13.2.2)

∀m ∈ MEDIA : usem ≤ MAXUSEm (13.2.3)∑
m∈MEDIA

REACHm · usem ≥ TARGET (13.2.4)

∀m ∈ MEDIA : usem ∈ IN (13.2.5)
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13.2.2 Implementation

This model could be implemented quite simply in a non-generic way but we have given preference to a
generic form (using data arrays read from file) that is easier to modify for future extensions.

model "H-2 Publicity"
uses "mmxprs"

declarations
MEDIA = 1..6 ! Set of media types

REACH: array(MEDIA) of integer ! Number of people reached
COST: array(MEDIA) of integer ! Unitary cost
MAXUSE: array(MEDIA) of integer ! Maximum use
SCORE: array(MEDIA) of integer ! Quality rating (best=highest value)
BUDGET: integer ! Available publicity budget
TARGET: integer ! Number of people to be reached

use: array(MEDIA) of mpvar ! Use made of different media
end-declarations

initializations from ’h2publ.dat’
REACH COST MAXUSE SCORE BUDGET TARGET

end-initializations

! Objective: quality of perception of the campaign
Perceive:= sum(m in MEDIA) SCORE(m)*use(m)

! Budgetary limit
sum(m in MEDIA) COST(m)*use(m) <= BUDGET

! Outreach of campaign
sum(m in MEDIA) REACH(m)*use(m) >= TARGET

forall(m in MEDIA) do
use(m) is_integer
use(m) <= MAXUSE(m)

end-do

! Solve the problem
maximize(Perceive)

end-model

13.2.3 Results

With the program above we find a quality index of 122 units. The budget is fully used and 103,000 people
are reached. As detailed in the following table, all media types except the TV spot are used. Given that
the problem is of very moderate size, the LP directly calculates an integer solution.

Table 13.3: Use made of different media types

Media type Number of uses

Free weekly newspaper 4

Monthly magazine 2

Weekly magazine 8

Radio spot 4

Billboard 4x3 m 4

TV spot 0

We should note that the problem described in this section is a much simplified version of reality. For
instance, it is unlikely that the effectiveness of radio advertising is proportional to the number of broad-
casts of a particular advert. Nor are adverts in different media independent of each other. In practice,
much more sophisticated models will be used.
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13.3 Portfolio selection

A consultant in finance has to choose for one of his wealthy female clients a certain number of shares in
which to invest. She wishes to invest BC 100,000 in 6 different shares. The consultant estimates for her the
return on investment that she may expect for a period of six months. The following table gives for each
share its country of origin, the category (T: technology, N: non-technology) and the expected return on
investment (ROI). The client specifies certain constraints. She wishes to invest at least BC 5,000 and at most
BC 40,000 into any share. She further wishes to invest half of her capital in European shares and at most
30% in technology. How should the capital be divided among the shares to obtain the highest expected
return on investment?

Table 13.4: List of shares

Number Origin Category Expected ROI

1 Japan T 5.3%

2 UK T 6.2%

3 France T 5.1%

4 USA N 4.9%

5 Germany N 6.5%

6 France N 3.4%

13.3.1 Model formulation

In the mathematical formulation, we write SHARES for the set of shares chosen for the investment,
CAPITAL the total capital that is to be invested, RETs the expected ROI. EU denotes the subset of the
shares that are of European origin and TECHNOLOGY the set of technology values. The decision variables
buys denote the amount of money invested in share s. Every variable is bounded, at least VMIN = 5000
and at most VMAX = 40000 have to be invested into every share. The constraint (13.3.1) establishes these
bounds on the variables buys.

∀s ∈ SHARES : VMIN ≤ buys ≤ VMAX (13.3.1)

At most 30% of the values may be technology values, i.e. the sum invested into this category must
not exceed BC 30,000, constraint (13.3.2). The investor also insists on spending at least 50% on European
shares, that is, at least BC 50,000, constraint (13.3.3).∑

s∈TECHNOLOGY

buys ≤ 0. 3 · CAPITAL (13.3.2)∑
s∈EU

buys ≥ 0. 5 · CAPITAL (13.3.3)

The constraint (13.3.8) specifies the the total invested sum must correspond to the initial capital CAPITAL.
The constraints (13.3.9) are the usual non-negativity constraints. The objective function (13.3.4) maxi-
mizes the return on investment of all shares.

maximize
∑

s∈SHARES

RETs

100
· buys (13.3.4)

∀s ∈ SHARES : VMIN ≤ buys ≤ VMAX (13.3.5)∑
s∈TECHNOLOGY

buys ≤ 0. 3 · CAPITAL (13.3.6)∑
s∈EU

buys ≥ 0. 5 · CAPITAL (13.3.7)∑
s∈SHARES

buys = CAPITAL (13.3.8)

∀s ∈ SHARES : buys ≥ 0 (13.3.9)

After some further discussion, it turns out that the client actually does not wish to invest VMIN into every
share the consultant has chosen for her. She is unwilling to have small share holdings. If she buys any
shares in a company she wants to invest at least BC 5,000. The model therefore needs to be modified:
instead of constraining every variable buys to take a value between VMIN and VMAX, it must either lie in
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this interval or take the value 0. This type of variable is known as semi-continuous variable. In this new
model, we replace (13.3.5) by the following constraint (13.3.10):

∀s ∈ SHARES : buys = 0 ∨ VMIN ≤ buys ≤ VMAX (13.3.10)

13.3.2 Implementation

The translation of the mathematical model into the following Mosel program is straightforward. In the
implementation, we have turned the limits on technology values and European shares into parameters
of the model (MAXTECHand MINEU). Similarly, the bounds VMIN and VMAXare defined as parameters.

model "H-3 Portfolio"
uses "mmxprs"

parameters
MAXTECH = 0.3 ! Maximum investment into tech. values
MINEU = 0.5 ! Minimum investment into European shares
VMIN = 5000 ! Minimum amount for a single value
VMAX = 40000 ! Maximum amount for a single value

end-parameters

declarations
SHARES = 1..6 ! Set of shares

RET: array(SHARES) of real ! Estimated return in investment
CAPITAL: integer ! Capital to invest
EU: set of integer ! European values among the shares
TECHNOLOGY: set of integer ! Technology values among shares

buy: array(SHARES) of mpvar ! Amount of values taken into portfolio
end-declarations

initializations from ’h3portf.dat’
RET CAPITAL EU TECHNOLOGY

end-initializations

! Objective: total return
Return:= sum(s in SHARES) RET(s)/100*buy(s)

! Requirements concerning portfolio composition
sum(s in TECHNOLOGY) buy(s) <= MAXTECH*CAPITAL
sum(s in EU) buy(s) >= MINEU*CAPITAL

! Total capital to invest
sum(s in SHARES) buy(s) = CAPITAL

forall(s in SHARES) do
VMIN <= buy(s)
buy(s) <= VMAX

end-do

! Solve the problem
maximize(Return)

end-model

To define the variables buy(s) as semi-continuous variables, we need to replace the lower bound con-
straints

VMIN <= buy(s)

by the line

buy(s) is_semcont(VMIN)

13.3.3 Results

The solution to the problem indicates the sums that should be invested into the different shares. The
total expected ROI with the initial problem formulation is BC 5,755 for six months, for the problem with
semi-continuous variables it is BC 5,930. The funds are divided among the shares as shown in the following
table.
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Table 13.5: Optimal portfolio

Share Invested amount (in BC)
number buys ≥ VMIN buys semi-cont.

1 5,000 0

2 20,000 30,000

3 5,000 0

4 25,000 30,000

5 40,000 40,000

6 5,000 0

As mentioned in the introduction to this chapter, Mathematical Programming may be used as a simulation
tool in financial applications. In our case, what would happen if we allowed investing up to 40% into
technology values? Since the corresponding limit MAXTECHhas been defined as a parameter, there is no
need to modify the Mosel program to test the result for this value. It is sufficient to set the new value of
the parameter when calling Mosel. With the Mosel Command Line Interpreter this may be done with the
following command to execute the model:

mosel -c "exec h3portf ’MAXTECH=0.4’"

With this increased limit on technology values, the expected return becomes BC 5,885 for the first model
(and BC 6,060 for the second). Compared to the previous plan, BC 10,000 are transfered from share 4 to share
2, and the amounts invested in the other shares remain the same. By varying the different parameters
(it is possible to set new values for several parameters at the same time), the consultant may be able to
satisfy his client.

13.4 Financing an early retirement scheme

The National Agricultural Bank (NAB) decides to establish an early retirement scheme for fifteen employ-
ees who are taking early retirement. These employees will retire over a period of seven years starting
from the next year. To finance this early retirement scheme, the bank decides to invest in bonds for this
seven-year period. The necessary amounts to cover the pre-retirement leavers are given in the following
Table 13.6; they have to be paid at the beginning of every year.

Table 13.6: Amounts required every year

Year 1 2 3 4 5 6 7

Amount (in 1000 BC) 1000 600 640 480 760 1020 950

For the investments, the bank decides to take three different types of bonds, SNCF bonds, Fujitsu bonds,
and Treasury bonds. The money that is not invested in these bonds is placed as savings with a guaranteed
yield of 3.2%. Table 13.7 lists all information concerning the yield and the durations of the bonds and
also the value of a bond. In this type of bond, it is only possible to buy an integer number of bonds, and
the invested capital remains locked in for the total duration of the bond. Every year, only the interest
on the capital is distributed. The person in charge of the retirement plan decides to buy bonds at the
beginning of the first year, but not in the following years. How should he organize the investments in
order to spend the least amount of money to cover the projected retirement plan?

Table 13.7: Information about loans

Loan Value of bonds (in 1000 BC) Interest Duration

SNCF 1.0 7.0% 5 years

Fujitsu 0.8 7.0% 4 years

Treasury 0.5 6.5% 6 years

13.4.1 Model formulation

Let YEARS = {1, . . . , NT} be the time period over which the early retirement scheme stretches, and BONDS
the set of loans. capital denotes the total capital that needs to be invested in the first year in order to
be able to finance the scheme over all seven years. Let VALUEb be the unit price for a bond b, DURb its
duration, and RATEb the annual interest on bond b. The variable buyb represents the number of bonds
of type b bought in the first year, the variable investt the sum invested (into forms of savings other than
the bonds) in year t. The funds required by the early retirement plan per year t are denoted by DEMt.
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The general principle of the constraints is the following: every year, the set of interest payments has
to cover the investments of this year and the amount required by the retirement plan. The constraint
(13.4.1) represents the investment in the first year, the year during which the bonds are bought. The total
invested capital minus the price paid for the bonds and minus the investment of the first year must be
equal to the funds required in the first year.

capital −
∑

b∈BONDS

VALUEb · buyl − invest1 = DEM1 (13.4.1)

While no bond has come to term, that is during the three years following the first, no more money is
invested into bonds, but we receive the interest (first sum of constraint (13.4.2)). We also receive the
interest and the amount invested into other forms of savings than bonds in the preceding year. From
these benefits we have to subtract the investments (other than loans) and the funds required for the
current year to obtain an equilibrium, constraints (13.4.2).

∀t = 2, . . . , 4 :
∑

b∈BONDS

VALUEb · buyb ·
RATEb

100
+

(
1 +

3. 2
100

)
· investt−1 − investt = DEMt (13.4.2)

At the beginning of year 5, the Fujitsu bond falls due and similarly at the beginning of year 6, the EDF
bond falls due. The capital invested into the corresponding bond is recovered and available for a new
investment. We also receive the interest for the preceding year for all bonds. The rest of constraint
(13.4.3) is identical to the constraints (13.4.2).

∀t = 5, 6 :
∑

b∈BONDS
DURb=t−1

VALUEb · buyl ·
(

1 +
RATEb

100

)
+

∑
b∈BONDS
DURb≥t

VALUEb · buyb ·
RATEb

100

+

(
1 +

3. 2
100

)
· investt−1 − investt = DEMt (13.4.3)

In the last year, only the Treasury bond that ran over 6 years remains. We recover the capital initially
invested into this bond and the investments from the preceding year. In this year, there is no new invest-
ment (constraint 13.4.4)∑

b∈BONDS
DURb=6

VALUEb · buyb ·
(

1 +
RATEb

100

)
+

(
1 +

3. 2
100

)
· invest6 = DEM7 (13.4.4)

To the constraints (13.4.1) – (13.4.4) we still need to add the objective function (13.4.5) that minimizes
the initially invested capital, and to declare the definition spaces of the variables (constraints (13.4.6) –
(13.4.8))

minimize capital (13.4.5)

cap ≥ 0 (13.4.6)

∀t ∈ YEARS : investt ≥ 0 (13.4.7)

∀b ∈ BONDS : buyb ∈ IN (13.4.8)

13.4.2 Implementation

In the following Mosel program, the constraints for the annual balances of years 2-7 are combined into a
single constraint expression selecting the corresponding constraint terms through the inline if function.
To simplify the notation of the constraints, we define an auxiliary array RET representing the annual
interest per bond.

model "H-4 Retirement"
uses "mmxprs"

declarations
BONDS = {"SNCF","Fujitsu","Treasury"} ! Set of bonds
NT = 7 ! Length of planning period
YEARS = 1..NT

DEM: array(YEARS) of integer ! Annual payments for retirement
VALUE: array(BONDS) of real ! Unit price of bonds
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RATE: array(BONDS) of real ! Remuneration rates paid by bonds
RET: array(BONDS) of real ! Unit annual interest of bonds
DUR: array(BONDS) of real ! Duration of loans
INTEREST: real ! Interest for other secure investment

buy: array(BONDS) of mpvar ! Number of bonds acquired
invest: array(YEARS) of mpvar ! Other annual investment
capital: mpvar ! Total capital required

end-declarations

initializations from ’h4retire.dat’
DEM VALUE RATE DUR INTEREST

end-initializations

forall(b in BONDS) RET(b):= VALUE(b)*RATE(b)/100

! Annual balances
capital - sum(b in BONDS) VALUE(b)*buy(b) - invest(1) = DEM(1)

forall(t in 2..NT)
sum(b in BONDS | DUR(b)+1>=t) (RET(b)*buy(b) +

if(DUR(b)+1=t, VALUE(b)*buy(b), 0)) +
(1+INTEREST/100)*invest(t-1) - if(t<NT, invest(t), 0) = DEM(t)

forall(b in BONDS) buy(b) is_integer

! Solve the problem: minimize invested capital
minimize(capital)

end-model

13.4.3 Results

The initially required capital is BC 4548.92k. The optimal solution consists of investing BC 911k in SNCF bonds
(911 bonds), BC 597.6k in Fujitsu bonds (747 bonds), and BC 880k in Treasury coupons (1760 coupons). The
following table lists the investments into forms of savings other than loans for the first six years.

Table 13.8: Investments (other than loans)

Year 1 2 3 4 5 6

Amount (in 1000 BC) 1160.317 760.249 307.379 0.017 0.420 12.403

13.5 Family budget

The mother of a family wishes to use her son’s computer. On the internet she has found optimization
software and would now like to formulate a mathematical model to help plan their annual budget. She
has prepared a list of the monthly expenses and receipts of money. Every month the expenses for living
are BC 550. The monthly rent for the apartment is BC 630. She also budgets BC 135 for telephone every two
months, BC 850 for gas and electricity bills every six months, BC 340 per month for the car and BC 100 of tax
every four months. Her receipts of money are a monthly payment of BC 150 of state allowance for families
with dependent children and a net salary of BC 1900 per month. She knows that she pays at least BC 165
for leisure every month (subscription to the swimming pool for the older children, football club for the
youngest, gym for herself) but she would like to spend more (restaurant, cinema, holidays). How should
the budget be balanced all through the year to maximize the money available for leisure?

13.5.1 Model formulation

Let MONTHS be the set of twelve month representing the year to plan and ITEMS the set of expense
types. We write EXPENSEi for the amount of an expense and FREQi for its periodicity (e.g. FREQi = 6
means that i is a 6-monthly expense). The salary is denoted by INCOME, and the allowance by ALLOW .
We use two types of variables: hobbym, the amount that may be spent for leisure in month m, and savem,
the savings of month m. Every month, the family wishes to spend at least HMIN = BC 165 for leisure. This
is expressed by the constraints (13.5.1).

∀m ∈ MONTHS : hobbym ≥ HMIN (13.5.1)
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For the system to work, the budget must be balanced. The expenses in every month must not exceed the
receipts of money of this month, but it is possible to put aside some money to save it for a month with
higher expenses. The constraints (13.5.2) express the fact that the expenses of the current month plus the
savings of this month and the money spent for leisure must be less than or equal to the perceived salary,
plus the allowance, plus the savings from the preceding month. Since no information about savings at
the beginning of the planning period (variable save0) is given, we assume them to be 0. The operator
mod denotes the remainder of integer division (e.g. 7 mod 6 = 1, that is, 6-monthly payments are only
taken into account in months 6 and 12).

∀m ∈ MONTHS :
∑

i∈ITEMS
m mod FREQi=0

EXPENSEi + savem + hobbym ≤ INCOME + ALLOW + savem−1 (13.5.2)

The objective function is to maximize the total amount available for leisure in the entire year (13.5.3).
The non-negativity constraints for the variables hobbym are superseded by the constraints (13.5.1).

maximize
∑

m∈MONTHS

hobbym (13.5.3)

∀m ∈ MONTHS : hobbym ≥ HMIN (13.5.4)

∀m ∈ MONTHS :∑
i∈ITEMS

m mod FREQi=0

EXPENSEi + savem + hobbym ≤ INCOME + ALLOW + savem−1 (13.5.5)

∀m ∈ MONTHS : savem ≥ 0 (13.5.6)

13.5.2 Implementation

This model is very similar to a production planning model with transfer of stocks from one time period to
the next. To deal with the different periodicities of the expenses, we use the Mosel operator mod.

For the savings at the beginning of the first time period, we may either define a variable save0 and fix its
value to 0 or, as shown below, directly employ the value 0 in the corresponding constraint.

model "H-5 Family budget"
uses "mmxprs"

declarations
MONTHS = 1..12 ! Time period
ITEMS: set of string ! Set of shops

INCOME, ALLOW: integer ! Monthly income and allowance
HMIN: integer ! Min. amount required for hobbies
EXPENSE: array(ITEMS) of integer ! Expenses
FREQ: array(ITEMS) of integer ! Frequency (periodicity) of expenses

hobby: array(MONTHS) of mpvar ! Money to spend for leisure/hobbies
save: array(MONTHS) of mpvar ! Savings

end-declarations

initializations from ’h5budget.dat’
INCOME ALLOW HMIN
[EXPENSE, FREQ] as ’PAYMENT’

end-initializations

! Objective: money for hobby
Leisure:= sum(m in MONTHS) hobby(m)

! Monthly balances
forall(m in MONTHS)

sum(i in ITEMS | m mod FREQ(i) = 0) EXPENSE(i) + hobby(m) +
save(m) <= INCOME + ALLOW + if(m>1, save(m-1), 0)

forall(m in MONTHS) hobby(m) >= HMIN

! Solve the problem
maximize(Leisure)

end-model
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13.5.3 Results

In the course of the year, the family may spend up to BC 3,550 for leisure. The following table shows a
possible plan of their monthly leisure budget (there are other equivalent solutions).

Table 13.9: Monthly leisure budget and savings

Month 1 2 3 4 5 6 7 8 9 10 11 12

Hobby 530 395 405 165 165 165 530 295 405 165 165 165

Savings 0 0 125 255 620 0 0 0 125 355 720 0

13.6 Choice of expansion projects

The large company Tatayo in the north of Italy has specialized in the construction of cars for more than ten
years. The company wishes to expand and has issued internally a call for proposals for expansion projects
for a planning period of five years. Among the many, often cranky, propositions the management has
retained five projects. Every project has an annual cost and is designed to produce a benefit after five
years. Table 13.10 gives a list of the projects with short descriptions and the expected benefit after
five years. The forecast annual costs of the projects for the next five years are detailed in Table 13.11,
together with the funds available. Which project(s) should the management choose now to maximize
the total benefit after five years?

Table 13.10: Estimated benefits of the projects (in million BC)

Project Description Expected benefit

1 Expand assembly line 10.8

2 Reorganize the main shop 4.8

3 New painting facilities 3.2

4 Research for a new concept car 4.44

5 Reorganize the logistics chain 12.25

Table 13.11: Annual costs of projects and available funds (in million BC)

Project Year 1 Year 2 Year 3 Year 4 Year 5

1 1.8 2.4 2.4 1.8 1.5

2 1.2 1.8 2.4 0.6 0.5

3 1.2 1.0 0 0.48 0

4 1.4 1.4 1.2 1.2 1.2

5 1.6 2.1 2.5 2.0 1.8

Funds 4.8 6.0 4.8 4.2 3.5

13.6.1 Model formulation

We write PROJECTS for the set of projects retained by the management, and TIME for the set of time
periods (years) within the planning horizon. The benefit from every project p is RETp and COSTpt the
cost of project p in year t. CAPt denotes the capital available for funding projects in year t. The binary
variable choosep has the value 1 if project p is chosen and 0 otherwise. The only constraints given in
this problem are the limits on the capital that the management is prepared to invest every year. The
constraints (13.6.2) ensure that the sum of the costs COSTpt of the chosen projects (choosep = 1) does not
exceed the available capital CAPt in year t. The objective function (13.6.1) maximizes the total profit, that
is, the sum of the benefits RETp from the chosen projects. The variables choosep are binary (13.6.3).

maximize
∑

p∈PROJECTS

RETp · choosep (13.6.1)

∀t ∈ TIME :
∑

p∈PROJECTS

COSTpt · choosep ≤ CAPt (13.6.2)

∀p ∈ PROJECTS : choosep ∈ {0, 1} (13.6.3)
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13.6.2 Implementation

The following Mosel program implements the mathematical model above.

model "H-6 Expansion"
uses "mmxprs"

declarations
PROJECTS = 1..5 ! Set of possible projects
TIME = 1..5 ! Planning period

COST: array(PROJECTS,TIME) of real ! Annual costs of projects
CAP: array(TIME) of real ! Annually available capital
RET: array(PROJECTS) of real ! Estimated profits
DESCR: array(PROJECTS) of string ! Description of projects

choose: array(PROJECTS) of mpvar ! 1 if project is chosen, 0 otherwise
end-declarations

initializations from ’h6expand.dat’
COST CAP RET DESCR

end-initializations

! Objective: Total profit
Profit:= sum(p in PROJECTS) RET(p)*choose(p)

! Limit on capital availability
forall(t in TIME) sum(p in PROJECTS) COST(p,t)*choose(p) <= CAP(t)

forall(p in PROJECTS) choose(p) is_binary

! Solve the problem
maximize(Profit)

end-model

13.6.3 Results

When solving the above program as is, we obtain a solution with a total profit of BC 19.89 million: the
projects ‘New painting facility’, ‘Concept car’, and ‘Reorganize logistics’ are chosen.

We may try to experiment a little with this problem. If we solve the model again after modifying the call
to the optimization as follows:

maximize(XPRS_LIN, Profit)

the linear relaxation of the problem is solved (that is, neglecting the integrality condition for the variables
choosep). Looking at the solution of this relaxed problem, we find that the variables for choosing projects
‘New paint facility’ and ‘Reorganize logistics’ are at 1, the variable for ‘Expand assembly line’ is almost
1, more precisely 0.9542, and the value of ‘Reorganize shop’ is almost 0 (0.0042). The total profit of the
linear solution is BC 25.775M. One might wonder what would happen if we ‘rounded’ the variable for
‘Expand assembly line’ to 1, thus forcing the acceptance of project 1. This may be done by adding the
following line to the Mosel program before calling the optimization algorithm:

choose(1)=1

With this additional constraint, the solution consists of choosing the projects ‘Expand assembly line’ (the
project that was forced to be accepted) and ‘New painting facility’, with a total profit of BC 14M. This
solution demonstrates that rounding fractional variables to the closest integer value is not always a good
heuristic for creating integer feasible solutions from the solution to the LP relaxation.

13.7 Mean variance portfolio selection

An investor wishes to invest a certain amount of money. He is evaluating four different securities (as-
sets) for his investment. The securities are US Treasury Bills (‘T-bills’), a computer hardware company, a
computer software company, and a high-risk investment in a theater production. He estimates the mean
yield on each dollar he invests in each of the securities, and also adopts the Markowitz idea of getting es-
timates of the variance/covariance matrix of estimated returns on the securities. (For example, hardware
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and software company worths tend to move together, but are oppositely correlated with the success of
theatrical production, as people go to the theater more when they have become bored with playing with
their new computers and computer games.) The return on theatrical productions are highly variable,
whereas the T-bill yield is certain. The estimated returns and the variance/covariance matrix are given in
Table 13.12

Table 13.12: Estimated returns and variance/covariance matrix

Hardware Software Show-biz T-bills

Estimated return 8 9 12 7

Hardware 4 3 -1 0

Software 3 6 1 0

Show-biz -1 1 10 0

T-bills 0 0 0 0

Question 1: Which investment strategy should the investor adopt to minimize the variance subject to
getting some specified minimum target yield?

Question 2: Which is the least variance investment strategy if the investor wants to choose at most two
different securities (again subject to getting some specified minimum target yield)?

13.7.1 Model formulation for question 1

The objective of this problem is to minimize the variance subject to getting some specified minimum
target yield, say TARGET . Let RETs be the expected return of a security s and VARst the variance/covariance
matrix of estimated returns on the securities. If we introduce decision variables fracs to be the fraction of
the total capital that is invested in security s, then we obtain the following Quadratic Program:

minimize
∑

s∈SECS

∑
t∈SECS

VARst · fracs · fract (13.7.1)∑
s∈SECS

fracs = 1 (13.7.2)∑
s∈SECS

RETs · fracs ≥ TARGET (13.7.3)

∀s ∈ SECS : fracs ≥ 0 (13.7.4)

The objective function (13.7.1) is the variance of the estimated returns. Constraint (13.7.2) says that the
investor wishes to spend all the money. The desired target yield is enforced through constraint (13.7.3).
The constraints (13.7.4) are the usual non-negativity constraints.

Note that this is not a Linear Programming problem as we have product terms in the objective function.

13.7.2 Implementation for question 1

The Mosel implementation of this problem is straightforward. Notice that in addition to the Xpress-
Optimizer (module mmxprs) we are using the Mosel module mmquadwhich contains all that is required
to handle QP problems.

model "H-7 QP Portfolio"
uses "mmxprs", "mmquad"

parameters
TARGET = 7.0 ! Minimum target yield

end-parameters

declarations
SECS = 1..4 ! Set of securities

RET: array(SECS) of real ! Expected yield of securities
VAR: array(SECS,SECS) of real ! Variance/covariance matrix of

! estimated returns

frac: array(SECS) of mpvar ! Fraction of capital used per security
buy: array(SECS) of mpvar ! 1 if asset is in portfolio, 0 otherwise

end-declarations
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initializations from ’h7qportf.dat’
RET VAR

end-initializations

! Objective: mean variance
Variance:= sum(s,t in SECS) VAR(s,t)*frac(s)*frac(t)

! Spend all the capital
sum(s in SECS) frac(s) = 1

! Target yield
sum(s in SECS) RET(s)*frac(s) >= TARGET

! Solve the problem
minimize(Variance)

end-model

13.7.3 Results for question 1

Running the model thus, so as to specify a target yield of 8.5%

mosel -s -c "exec h7qportf ’TARGET=8.5’"

we get a minimum variance of 0.72476. We should invest 15.14% into hardware, 4.32% into software,
25.24% into show-biz, and 55.29% into T-bills.

13.7.4 Model formulation for question 2

For the second problem we need to express the fact that no more than a certain number MAXASSETS of
different securities may be bought. The previous model may be extended by adding binary variables buys

to represent whether we do (buys = 1) or do not (buys = 0) buy any of the asset for our portfolio. If we
add to the model above the constraints ∑

s∈SECS

buys ≤ MAXASSETS (13.7.5)

∀s ∈ SECS : fracs ≤ buys (13.7.6)

∀s ∈ SECS : buys ∈ {0, 1} (13.7.7)

then we can see that for a fracs to be bigger than 0, buys must be bigger than 0 (constraints (13.7.6)) and
so must be 1 as it is binary (13.7.7). The constraint (13.7.5) establishes the limit on the number of different
securities bought.

This problem is actually a Mixed Integer Quadratic Program (MIQP) as it has elements of Quadratic Pro-
gramming and also Integer Programming.

13.7.5 Implementation for question 2

The Mosel implementation of the second problem is similar to the first, but since there are changes at
several places in the model, we show the entire program again.

model "H-7 QP Portfolio (2)"
uses "mmxprs", "mmquad"

parameters
TARGET = 7.0 ! Minimum target yield
MAXASSETS = 4 ! Maximum number of assets in portfolio

end-parameters

declarations
SECS = 1..4 ! Set of securities

RET: array(SECS) of real ! Expected yield of securities
VAR: array(SECS,SECS) of real ! Variance/covariance matrix of

! estimated returns

frac: array(SECS) of mpvar ! Fraction of capital used per security
buy: array(SECS) of mpvar ! 1 if asset is in portfolio, 0 otherwise

end-declarations
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initializations from ’h7qportf.dat’
RET VAR

end-initializations

! Objective: mean variance
Variance:= sum(s,t in SECS) VAR(s,t)*frac(s)*frac(t)

! Spend all the capital
sum(s in SECS) frac(s) = 1

! Target yield
sum(s in SECS) RET(s)*frac(s) >= TARGET

! Limit the total number of assets
sum(s in SECS) buy(s) <= MAXASSETS

forall(s in SECS) do
buy(s) is_binary
frac(s) <= buy(s)

end-do

! Solve the problem
minimize(Variance)

end-model

13.7.6 Results for question 2

Running the model with the following parameter settings,

mosel -s -c "exec h7qportf ’TARGET=8.5, MAXASSETS=2’"

that is, a target yield of 8.5% and at most two assets in the portfolio, we get a minimum variance of
0.9. We need to invest 30% into show-biz and 70% into T-bills. The results for questions 1 and 2 are
summarized in Table 13.13.

Table 13.13: Results with TARGET = 8. 5

Percentage of total investment
Question 1 Question 2

Hardware 15.14% 0%

Software 4.33% 0%

Show-biz 25.24% 30%

T-bills 55.29% 70%

Variance 0.72 0.9

Notice that because we are restricting ourselves to holding at most two securities, the variance for a given
yield has gone up compared with the case where we can hold any number of securities.

The second model is probably the more realistic one: in practical applications, there are many thousands
of possible securities, and constraints that specify that no more than a certain number of different se-
curities may be bought stop us having the managerial problem of being forced to look after too many
securities.

13.7.7 Extension

Finally, we should note that in practice deciding on a reasonable value for an acceptable TARGET / Variance
pair is not easy, and the decision maker might want to study a large range of possible combinations. In
the implementation we may simply add a loop around the optimization (and solution output). TARGETis
no longer a parameter and is therefore now declared in the declarations block. The possible values of
TARGETrange between the smallest and the largest value of the mean returns of all securities, enumer-
ated in steps of 0.1. Note that in this case the constraint on the target yield must be named (Rmean), so
it gets replaced each time through the loop.

declarations
TARGET: real

end-declarations

TARGET:=min(s in SECS) RET(s)
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repeat
Rmean:= sum(s in SECS) RET(s)*frac(s) >= TARGET
minimize(Variance)
writeln("Target: ", TARGET, " minimum variance: ", getobjval)
TARGET+=0.1

until(TARGET>max(s in SECS) RET(s) )

The results of such a study may be plotted as a graph, for instance using the graphing capabilities of
Xpress-IVE.

13.8 References and further material

The problems presented here are relatively simple, but they bring into play uncertainity in the data. Being
able to solve a model quickly to optimality allows us to use the model in simulations.

Often the players in the world of finance (mainly bankers) do not worry much about optimization prob-
lems. They use the software and procedures established by their management. The programs developed
internally usually do not perform any optimization, but more likely a simple simulation based on priority
rules. These rules are based on the principle that one needs to invest into the product(s) with the best
ratio of benefit to cost. The problem hence resides in the reliability of the data and in the interpretation
of the results that is made afterwards. The events on the stock markets over the last few years, especially
for technology values, are an additional proof of the need to consider data subject to changes.

The Quadratic Programming (QP) problem in Section 13.7 stems from Manne [Man86]. In general, QP
problems occur much less frequently than LP or MIP problems, but many of these occurrences are prob-
lems related to finance.

Operations Research techniques have become widespread in the financial sector. For an overview, see the
excellent book by Winston [Win98] and the one by Zenios [Zen96].
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Chapter 14

Timetabling and personnel planning

Personnel management is a very sensitive subject in the life of a company. It is determined by a large
number of qualitative and psychological factors that, a priori, do not make this field well suited for quan-
titative modeling through Mathematical Programming. One may even put forward two major reasons
that put Operations Research on hold in the 70s, until its renewed flowering in the 90s: serious mistakes
were committed by treating humans as a resource just like others in the models, and furthermore, the
researchers at that time did not have the computational means to satisfy their ambitions.

Optimization is currently considered as providing useful help for timetabling of personnel, which can be
a real headache, and also for staffing, that is, the planning of the requirements for human resources.
The key to preventing negative reactions/rejections is never to impose a solution found by the computer
by force. Indeed, many subtle sociological and psychological constraints are very difficult to take into
account. This makes interactive decision making tools a preferred choice, where the mathematical model
makes suggestions and the human being plans by interactively adjusting the solution to his exact needs.

The first problem consists of assigning persons to machines to maximize the productivity of a workshop.
We shall then see three timetabling problems: for nurses in a hospital (Section 14.2), for college courses
(Section 14.3), and for exams in a technical university (Section 14.4). The problem in Section 14.5 shows
how the benefit from a production unit may be optimized by moving personnel from one line to another.
The chapter ends with the planning of recruitment and leaving personnel at a construction site.

14.1 Assigning personnel to machines

An operator needs to be assigned to each of the six machines in a workshop. Six workers have been
pre-selected. Everyone has undergone a test of her productivity on every machine. Table 14.1 lists the
productivities in pieces per hour. The machines run in parallel, that is, the total productivity of the
workshop is the sum of the productivities of the people assigned to the machines.

Table 14.1: Productivity in pieces per hour

Machines
Workers 1 2 3 4 5 6

1 13 24 31 19 40 29

2 18 25 30 15 43 22

3 20 20 27 25 34 33

4 23 26 28 18 37 30

5 28 33 34 17 38 20

6 19 36 25 27 45 24

The objective is to determine an assignment of workers to machines that maximizes the total productivity.
We may start by calculating a (non-optimal) heuristic solution using the following fairly natural method:
choose the assignment p→ m with the highest productivity, cross out the line p and the column m (since
the person has been placed and the machine has an operator), and restart this process until we have
assigned all persons. The problem should then be solved to optimality using Mathematical Programming.
And finally, solve the same problem to optimality, but for machines working in series.
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14.1.1 Model formulation

14.1.1.1 Parallel machines

This problem type is well known under the name of the assignment problem. It also occurs in Chapter 11
(flight connections). Let PERS be the set of workers, MACH the set of machines (both of the same size N),
and OUTPpm the productivity of worker p on machine m. A first idea for encoding an assignment would
be to define N integer variables assignp taking values in the set of machines, where assignp denotes the
number of the machine to which the person p is assigned. With these variables it is unfortunately not
possible to formulate in a linear form the constraints that a person has to be on a single machine and a
machine only takes one operator. These constraints become easy to express if we instead use N2 binary
variables assignpm that are 1 if and only if person p is assigned to machine m (14.1.1).

∀p ∈ PERS, m ∈ MACH : assignpm ∈ {0, 1} (14.1.1)

The fact that a person p is assigned to a single machine m is by (14.1.2). Similarly, to express that a
machine m is operated by a single person p, we have constraints (14.1.3).

∀p ∈ PERS :
∑

m∈MACH

assignpm = 1 (14.1.2)

∀m ∈ MACH :
∑

p∈PERS

assignpm = 1 (14.1.3)

The objective function to be maximized sums the OUTPpm for the variables assignpm that are at 1 (14.1.4).
The resulting mathematical model is formed by the lines (14.1.1) to (14.1.4).

maximize
∑

p∈PERS

∑
m∈MACH

OUTPpm · assignpm (14.1.4)

The assignment problem may be looked at as a flow problem. It is sufficient to define a bipartite labeled
graph G = (PERS, MACH, ARCS, OUTP), where PERS is a set of nodes representing the personnel, MACH a
set of nodes for the machines, and ARCS the set of arcs describing the possible assignments of workers to
machines. In our case, there are N2 arcs, but it would be possible to prohibit certain assignments in the
general case. Every arc (p, m) has infinite capacity and is labeled with the cost (productivity) OUTPpm. We
create a source node SOURCE that is connected to every person-node p by an arc (SOURCE, p) of capacity
1. We then also create a sink node SINK to which are connected all machine-nodes m by arcs (m, SINK),
also of capacity 1. An optimal assignment corresponds to a flow in G of throughput N with maximum
total cost. Due to the unit capacities, the flow will trace N disjunctive paths from SOURCE to SINK that
indicate the assignments.

The linear solution to the assignment problem is automatically integer. The constraints (14.1.1) may
therefore be replaced by simple non-negativity conditions. It is not necessary to specify that the vari-
ables assignpm must not be larger than 1 because this is guaranteed through the constraints (14.1.2) and
(14.1.3). The model can be modified to deal with sets of personnel and machines of different size. If, for
instance, we have more workers than machines, we keep the constraints (14.1.3) so that every machine
receives an operator, but we replace the constraints (14.1.2) by (14.1.5).

∀p ∈ PERS :
∑

m∈MACH

assignpm ≤ 1 (14.1.5)

Certain assignments may be infeasible. In such a case the value of the corresponding variable assignpm

will be forced to 0, or a highly negative number (that is, with a very large absolute value) is used for
OUTPpm. If the graph of possible assignments is given instead of the productivity matrix, it is also possible
to generate the variables assignpm merely for the arcs (p, m) that are part of the graph.

14.1.1.2 Machines working in series

If the machines work in series, the least productive worker on the machine she has been assigned to
determines the total productivity of the workshop. An assignment will still be described by N2 variables
assignpm (14.1.1) and the constraints (14.1.2) and (14.1.3). To this we add a non-negative variable pmin for
the minimum productivity. The objective is to maximize pmin. This type of optimization problem where
one wants to maximize a minimum is called maximin, or bottleneck. To obtain a linear formulation of
such problem, the procedure is always the same:
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• A variable bounding the productivities on every machine from below is defined (here pmin).

• Constraints are added that bound every productivity by pmin.

• We maximize pmin which implies that in the optimum at least one productivity is equal to pmin
and hence defines the bottleneck.

Two groups of constraints are possible to bound the productivities by pmin: the N2 constraints (14.1.6) or
the N constraints (14.1.7). In the latter, a single variable assignpm has the value 1 due to the constraints
(14.1.2). The resulting mathematical model is given by the lines (14.1.1) to (14.1.3), the constraints (14.1.6)
or (14.1.7), the non-negativity condition for pmin and the new objective function: maximize pmin. Due
to the constraints (14.1.6) or (14.1.7), the mathematical model is no longer a classical assignment prob-
lem and integrality of the LP solution values is no longer guaranteed. We therefore have to keep the
constraints (14.1.1).

∀p ∈ PERS, m ∈ MACH : OUTPpm · assignpm ≥ pmin (14.1.6)

∀p ∈ PERS :
∑

m∈MACH

OUTPpm · assignpm ≥ pmin (14.1.7)

14.1.2 Implementation

The following Mosel program first implements and solves the model for the case of parallel machines.
Afterwards, we define the variable pmin that is required for solving the problem for the case that the
machines work in series. We also add the necessary bounding constraints (choosing constraints 14.1.7)
for the variables assignpm and turn these variables into binaries.

model "I-1 Personnel assignment"
uses "mmxprs"

declarations
PERS = 1..6 ! Personnel
MACH = 1..6 ! Machines

OUTP: array(PERS,MACH) of integer ! Productivity
end-declarations

initializations from ’i1assign.dat’
OUTP

end-initializations

! **** Exact solution for parallel assignment ****

declarations
assign: array(PERS,MACH) of mpvar ! 1 if person assigned to machine,

! 0 otherwise
end-declarations

! Objective: total productivity
TotalProd:= sum(p in PERS, m in MACH) OUTP(p,m)*assign(p,m)

! One machine per person
forall(p in PERS) sum(m in MACH) assign(p,m) = 1

! One person per machine
forall(m in MACH) sum(p in PERS) assign(p,m) = 1

! Solve the problem
maximize(TotalProd)
writeln("Parallel machines: ", getobjval)

! **** Exact solution for serial machines ****

declarations
pmin: mpvar ! Minimum productivity

end-declarations

! Calculate minimum productivity
forall(p in PERS) sum(m in MACH) OUTP(p,m)*assign(p,m) >= pmin

forall(p in PERS, m in MACH) assign(p,m) is_binary
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! Solve the problem
maximize(pmin)
writeln("Serial machines: ", getobjval)

end-model

The following procedure parallel_heur may be added to the above program. If called after the data
has been initialized, it heuristically calculates a (non-optimal) solution to the parallel assignment problem
using the intuitive procedure described in the introduction to Section 14.1.

procedure parallel_heur
declarations

ALLP, ALLM: set of integer ! Copies of sets PERS and MACH
HProd: integer ! Total productivity value
pmax,omax,mmax: integer

end-declarations

! Copy the sets of workers and machines
forall(p in PERS) ALLP+={p}
forall(m in MACH) ALLM+={m}

! Assign workers to machines as long as there are unassigned persons
while (ALLP<>{}) do

pmax:=0; mmax:=0; omax:=0

! Find the highest productivity among the remaining workers and machines
forall(p in ALLP, m in ALLM)

if OUTP(p,m) > omax then
omax:=OUTP(p,m)
pmax:=p; mmax:=m

end-if

HProd+=omax ! Add to total productivity
ALLP-={pmax}; ALLM-={mmax} ! Remove person and machine from sets

writeln(" ",pmax, " operates machine ", mmax, " (", omax, ")")
end-do

writeln(" Total productivity: ", HProd)
end-procedure

14.1.3 Results

The following table summarizes the results found with the different solution methods for the two prob-
lems of parallel and serial machines. The very intuitive heuristic method is likely to be employed by people
who do not know of Mathematical Programming. However, there is a notable difference between the
heuristic and the exact solution to the problem with parallel machines.

Table 14.2: Optimal assignment found

Person
Algorithm 1 2 3 4 5 6 Productivity

Parallel Machines Heuristic 4 (19) 1 (18) 6 (33) 2 (26) 3 (34) 5 (45) 175

Exact 3 (31) 5 (43) 4 (25) 6 (30) 1 (28) 2 (36) 193

Serial Machines Exact 6 (29) 3 (30) 5 (34) 2 (26) 1 (28) 4 (27) 26

14.2 Scheduling nurses

Mr. Schedule has been asked to organize the schedule of nurses for the Cardiology service at St. Joseph’s
hospital. A working day in this service is subdivided into twelve periods of two hours. The personnel
requirement changes from period to period: for instance, only a few nurses are required during the
night, but the total number must be relatively high during the morning to provide specific care to the
patients. The following table lists the personnel requirement for every time period.

Question 1: Determine the minimum number of nurses required to cover all the requirements, knowing
that a nurse works eight hours per day and that she is entitled to a break of two hours after she has
worked for four hours.
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Table 14.3: Personnel requirement per time period

Number Time interval Minimum number of nurses

0 00am – 02am 15

1 02am – 04am 15

2 04am – 06am 15

3 06am – 08am 35

4 08am – 10am 40

5 10am – 12pm 40

6 12pm – 02pm 40

7 02pm – 04pm 30

8 04pm – 06pm 31

9 06pm – 08pm 35

10 08pm – 10pm 30

11 10pm – 12am 20

Question 2: The service only has 80 nurses, which is not sufficient with the given requirements. Mr.
Schedule therefore proposes that part of the personnel works two additional hours per day. These two
additional hours follow immediately after the last four hours, without any break. Determine the schedule
of the nurses in this service that minimizes the number of nurses working overtime.

14.2.1 Model formulation for question 1

Let startt be the number of nurses starting work in time period t (first period = time period from 0am–
2am, second period = time period from 2am–4am etc.), NT be the number of time periods, and TIME =
{0, . . . , NT − 1} the set of time periods. The objective function is given by (14.2.1).

minimize
∑

t∈TIME

startt (14.2.1)

We need to make sure that a sufficiently large number of nurses is available during every time period.
For instance, in the period t = 6 (12pm–2pm) of the day 40 nurses are required. The number of nurses
working during this time period is equal to the total of the number of nurses starting work in this period,
the immediately preceding time period, and in the two periods 3 and 4 intervals earlier. That is, during
time period 6, the nurses starting in the intervals 2, 3, 5, and 6 are working. For instance, a nurse starting
in interval 3 will work in the intervals 3 and 4, have her break in interval 5, and work again in the intervals
6 to 7. If we write REQt for the personnel requirement in interval t, we obtain the following constraint
for the time period 6:

start2 + start3 + start5 + start6 ≥ REQ6 (14.2.2)

Similarly, we can formulate the personnel requirement constraints for all other time periods. If WORK
denotes the set of intervals that have an impact on the time period under consideration (that is WORK =
{0,−1,−3,−4}), we may write these constraints in the generic form (14.2.3).

∀t ∈ TIME :
∑

i∈WORK

start(t+i+NT) mod NT ≥ REQt (14.2.3)

For the first four time periods every day, we need to take into account the nurses who started working in
the last four time intervals of the previous day. The expression (t + 1 + NT) mod NT transposes the indices
correctly, so that for instance for the first interval of a day, the periods 8, 9, 11, and 0 are taken into
account by the corresponding constraint (t = 0).

The constraints (14.2.4) indicate that all variables startt must be integer.

∀t ∈ TIME : startt ∈ IN (14.2.4)

14.2.2 Implementation of question 1

The following Mosel program is a straightforward implementation of the mathematical model. WORKis
an example of sets in Mosel that contain negative values and also the value 0.

model "I-2 Scheduling nurses 1"
uses "mmxprs"
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declarations
NT = 12 ! Number of time periods
TIME = 0..NT-1
WORK: set of integer ! Nurses started in other time periods

! that are working during a period
REQ: array(TIME) of integer ! Required number of nurses per time period

start: array(TIME) of mpvar ! Nurses starting work in a period
end-declarations

initializations from ’i2nurse.dat’
REQ

end-initializations

WORK:= {0, -1, -3, -4}

! Objective: total personnel required
Total:= sum(t in TIME) start(t)

! Nurses working per time period
forall(t in TIME) sum(i in WORK) start((t+i+NT) mod NT) >= REQ(t)

forall(t in TIME) start(t) is_integer

! Solve the problem
minimize(Total)

end-model

14.2.3 Results for question 1

100 nurses are required in total for the Cardiology service. Their working periods may be scheduled as
shown in Table 14.4 (there are several equivalent solutions).

Table 14.4: Nurse schedule covering all requirements

Time interval Starting work Total

00am – 02am 6 30

02am – 04am 17 40

04am – 06am 12 29

06am – 08am 17 35

08am – 10am 0 40

10am – 12pm 11 40

12pm – 02pm 0 40

02pm – 04pm 13 30

04pm – 06pm 7 31

06pm – 08pm 17 35

08pm – 10pm 0 30

10pm – 12am 0 20

14.2.4 Model formulation for question 2

The optimal solution involves employing 100 nurses. Unfortunately, the service currently only has 80
nurses. They will therefore have to work extra hours.

We retain the variables startt introduced for the answer to Question 1. In addition, we introduce variables
overtt corresponding to the number of nurses starting to work in interval t and working two overtime
hours at the end of their normal period of duty.

Our objective now is to minimize the number of nurses that have to work overtime. We thus obtain the
objective function (14.2.5).

minimize
∑

t∈TIME

overtt (14.2.5)

The number of nurses may not exceed the available total staff of NUM = 80. This constraint is expressed
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by the relation (14.2.6). ∑
t∈TIME

startt ≤ NUM (14.2.6)

For every time interval t, the number of nurses overtt starting in this period who work overtime may at
most be as large as the total number of nurses startt starting their work during this time period. We
therefore obtain the constraints (14.2.7)

∀t ∈ TIME : overtt ≤ startt (14.2.7)

As before, the personnel requirement of every time slice needs to be covered. We obtain the constraints
(14.2.8) that are similar to the constraints (14.2.3) of Question 1, but in which we also take into account
the nurses working extra hours. For example, the nurses on duty in interval 6 started work either in the
intervals 2, 3, 5, or 6 as in the first question, or in the interval 1 if they are working overtime.

∀t ∈ TIME : overt(t−5+NT) mod NT +
∑

i∈WORK

start(t+i+NT)modNT ≥ REQt (14.2.8)

To complete the model for Question 2, the constraints (14.2.9) and (14.2.10) specify that all variables startt

and overtt must be integer.

∀t ∈ TIME : startt ∈ IN (14.2.9)

∀t ∈ TIME : overtt ∈ IN (14.2.10)

14.2.5 Implementation of question 2

The translation of the mathematical model to Mosel is again immediate.

model "I-2 Scheduling nurses 2"
uses "mmxprs"

declarations
NT = 12 ! Number of time periods
TIME = 0..NT-1
WORK: set of integer ! Nurses started in other time periods

! that are working during a period

REQ: array(TIME) of integer ! Required number of nurses per time period
NUM: integer ! Available total staff

start: array(TIME) of mpvar ! Nurses starting work in a period
overt: array(TIME) of mpvar ! Nurses working overtime

end-declarations

initializations from ’i2nurse.dat’
REQ NUM

end-initializations

WORK:= {0, -1, -3, -4}

! Objective: total overtime worked
TotalOvert:= sum(t in TIME) overt(t)

! Nurses working per time period
forall(t in TIME)

overt((t-5+NT) mod NT) + sum(i in WORK) start((t+i+NT) mod NT) >= REQ(t)

! Limit on total number of nurses
Total <= NUM

forall(t in TIME) do
start(t) is_integer
overt(t) is_integer
overt(t) <= start(t)

end-do

! Solve the problem
minimize(TotalOvert)

end-model
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14.2.6 Results for question 2

Forty of the eighty available nurses will have to work overtime to satisfy the personnel requirements of
the service. Table 14.5 lists a detailed schedule (there are several equivalent solutions).

Table 14.5: Nurse schedule with overtime work

Time interval Starting work Total Overtime

00am – 02am 13 15 0

02am – 04am 1 17 0

04am – 06am 10 16 0

06am – 08am 7 35 3

08am – 10am 17 40 2

10am – 12pm 4 40 8

12pm – 02pm 14 35 0

02pm – 04pm 9 47 0

04pm – 06pm 0 30 0

06pm – 08pm 0 35 17

08pm – 10pm 3 30 4

10pm – 12am 2 20 6

14.3 Establishing a college timetable

Mr. Miller is in charge of establishing the weekly timetable for two classes of the last year in a college.
The two classes have the same teachers, except for mathematics and sport. In the college all lessons have
a duration of two hours. Furthermore, all students of the same class attend exactly the same courses.
From Monday to Friday, the slots for courses are the following: 8:00–10:00, 10:15–12:15, 14:00–16:00, and
16:15–18:15. The following table lists the number of two-hour lessons that every teacher has to teach the
students of the two classes per week.

Table 14.6: Number of 2-hour lessons per teacher and class

Teacher Subject Lessons for class 1 Lessons for class 2

Mr Cheese English 1 1

Mrs Insulin Biology 3 3

Mr Map History-Geography 2 2

Mr Effofecks Mathematics 0 4

Mrs Derivate Mathematics 4 0

Mrs Electron Physics 3 3

Mr Wise Philosophy 1 1

Mr Muscle Sport 1 0

Mrs Biceps Sport 0 1

The sport lessons have to take place on Thursday afternoon from 14:00 to 16:00. Furthermore, the first
time slot on Monday morning is reserved for supervised homework. Mr Effofecks is absent every Monday
morning because he teaches some courses at another college. Mrs Insulin does not work on Wednesday.
And finally, to prevent students from getting bored, every class may only have one two-hour lesson per
subject on a single day. Write a mathematical program that allows Mr Miller to determine the weekly
timetable for the two classes.

14.3.1 Model formulation

Let TEACHERS, and CLASS respectively be the sets of teachers and classes. Let SLOTS denote the set of
time slots per week, numbered consecutively from 1 to NP · ND, where NP denotes the number of time
slots per day and ND the number of days per week. COURSEtc denotes the number of two-hour lessons
that the teacher t has to teach class c every week.

We define variables teachtcl that are 1 if the teacher t gives a lesson to class c in time slot l. We obtain
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the following mathematical model:

minimize
∑

t∈TEACHERS

∑
c∈CLASS

ND−1∑
d=0

(teacht,c,d·NP+1 + teacht,c,(d+1)·NP) (14.3.1)

∀t ∈ TEACHERS, c ∈ CLASS :
∑

l∈SLOTS

teachtcl = COURSEtc (14.3.2)

∀c ∈ CLASS, l ∈ SLOTS :
∑

t∈TEACHERS

teachtcl ≤ 1 (14.3.3)

∀t ∈ TEACHERS, l ∈ SLOTS :
∑

c∈CLASS

teachtcl ≤ 1 (14.3.4)

∀t ∈ TEACHERS, c ∈ CLASS, d = 0, . . . , ND− 1 :
(d+1)·NP∑
l=d·NP+1

teachtcl ≤ 1 (14.3.5)

teachMrMuscle,1,15 = 1 (14.3.6)

teachMrsBiceps,2,15 = 1 (14.3.7)

∀t ∈ TEACHERS, c ∈ CLASS : teachtc1 = 0 (14.3.8)

∀l = 1, 2 : teachMrEffofecks,2,l = 0 (14.3.9)

∀c ∈ CLASS, l = 2 · NP + 1, . . . , 3 · NP : teachMrsInsuline,c,l = 0 (14.3.10)

∀t ∈ TEACHERS, c ∈ CLASS, l ∈ SLOTS : teachtcl ∈ {0, 1} (14.3.11)

The aim of this problem is simply to find a timetable that fulfills all constraints. We may however give
ourselves the objective to minimize the holes in the timetable. With this aim, the courses should prefer-
ably be placed in the time slots from 10:15–12:15 and 14:00–16:00. If these time slices remain unused but
lessons are placed either at the beginning or at the end of the day, there will necessarily be holes in the
middle of the day. We therefore penalize lessons placed at the beginning or the end of the day, which
means we minimize the sum of courses taught during slots 1 and 4 of every day; hence the objective
function (14.3.1).

The constraints (14.3.2) indicate that all lessons taught by the teacher t to class c must be scheduled. The
constraints (14.3.3) specify that a class has at most one course at any time, and similarly the constraints
(14.3.4) that a teacher must not teach more than one course at a time. The constraints (14.3.5) say that
at most one two-hour lesson per subject is taught on the same day.

The constraints (14.3.6) to (14.3.10) translate the specific conditions of this problem: the constraints
(14.3.6) and (14.3.7) indicate that the sport lessons by Mr Muscle and Mrs Biceps have to take place in
the beginning of Thursday afternoon (time slice 15). The first time interval of the week being reserved
for supervised homework, the constraints (14.3.8) specify that no course may be scheduled during this
period. The constraints (14.3.9) and (14.3.10) respectively prohibit Mr Effofecks teaching on Monday
morning and Mrs Insulin teaching on Wednesday (time slices 9-12). The last set of constraints specifies
that all variables are binaries.

14.3.2 Implementation

The mathematical model of the previous section is implemented by the following Mosel program.

model "I-3 School timetable"
uses "mmxprs"

declarations
TEACHERS: set of string ! Set of teachers
CLASS = 1..2 ! Set of classes
NP = 4 ! Number of time periods for courses
ND = 5 ! Days per week
SLOTS=1..NP*ND ! Set of time slots for the entire week

COURSE: array(TEACHERS,CLASS) of integer ! Lessons per teacher and class
end-declarations

initializations from ’i3school.dat’
COURSE

end-initializations

finalize(TEACHERS)
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declarations
teach: array(TEACHERS,CLASS,SLOTS) of mpvar

! teach(t,c,l) = 1 if teacher t gives a
! lesson to class c during time period l

end-declarations

! Objective: number of "holes" in the class timetables
Hole:=

sum(t in TEACHERS, c in CLASS, d in 0..ND-1) (teach(t,c,d*NP+1) +
teach(t,c,(d+1)*NP))

! Plan all courses
forall(t in TEACHERS, c in CLASS) sum(l in SLOTS) teach(t,c,l) = COURSE(t,c)

! For every class, one course at a time
forall(c in CLASS, l in SLOTS) sum(t in TEACHERS) teach(t,c,l) <= 1

! Teacher teaches one course at a time
forall(t in TEACHERS, l in SLOTS) sum(c in CLASS) teach(t,c,l) <= 1

! Every subject only once per day
forall(t in TEACHERS, c in CLASS, d in 0..ND-1)

sum(l in d*NP+1..(d+1)*NP) teach(t,c,l) <= 1

! Sport Thursday afternoon (slot 15)
teach("Mr Muscle",1,15) = 1
teach("Mrs Biceps",2,15) = 1

! No course during first period of Monday morning
forall(t in TEACHERS, c in CLASS) teach(t,c,1) = 0

! No course by Mr Effofecks Monday morning
forall(l in 1..2) teach("Mr Effofecks",2,l) = 0

! No Biology on Wednesday
forall(c in CLASS, l in 2*NP+1..3*NP) teach("Mrs Insulin",c,l) = 0

forall(t in TEACHERS, c in CLASS, l in SLOTS) teach(t,c,l) is_binary

! Solve the problem
minimize(Hole)

end-model

14.3.3 Results

The optimal solution found has the value 10, indicating that 10 courses are scheduled in the slots at the
beginning or the end of a day. The resulting timetables for the two classes displayed in Tables 14.7 and
14.8 have no holes. Note that there are many equivalent solutions to this problem.

Table 14.7: Timetable for class 1

8:00–10:00 10:15–12:15 14:00–16:00 16:15–18:15

Mon Homework Maths (Mrs Derivate) Biology (Mrs Insulin) Physics (Mrs Electron)

Tue English (Mr Cheese) Maths (Mrs Derivate) Biology (Mrs Insulin) Physics (Mrs Electron)

Wed — Maths (Mrs Derivate) Hist.-Geogr. (Mr Map) —

Thu — Hist.-Geogr. (Mr Map) Sport (Mr Muscle) Physics (Mrs Electron)

Fri — Biology (Mrs Insulin) Maths (Mrs Derivate) Philosophy (Mr Wise)

Table 14.8: Timetable for class 2

8:00–10:00 10:15–12:15 14:00–16:00 16:15–18:15

Mon Homework Hist.-Geogr. (Mr Map) Maths (Mr Effofecks) Biology (Mrs Insulin)

Tue — Maths (Mr Effofecks) Hist.-Geogr. (Mr Map) Biology (Mrs Insulin)

Wed — Physics (Mrs Electron) Maths (Mr Effofecks) —

Thu Physics (Mrs Electron) English (Mr Cheese) Sport (Mrs Biceps) Biology (Mrs Insulin)

Fri Physics (Mrs Electron) Philosophy (Mr Wise) Maths (Mr Effofecks) —
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14.4 Exam scheduling

At a technical university every term the third-year students choose eight modules from the eleven mod-
ules that are taught, depending on the option they wish to choose in the fourth year (there are two
possible choices: ‘Production planning’ and ‘Quality and security management’). In the current term,
certain modules are obligatory for students who wish to continue with one of these options. The oblig-
atory courses are Statistics (S), Graph models and algorithms (GMA), Production management (PM), and
Discrete systems and events (DSE). The optional modules are: Data analysis (DA), Numerical analysis (NA),
Mathematical programming (MP), C++, Java (J), Logic programming (LP), and Software engineering (SE).

Table 14.9: Incompatibilities between different exams

DA NA C++ SE PM J GMA LP MP S DSE

DA – X – – X – X – – X X

NA X – – – X – X – – X X

C++ – – – X X X X – X X X

SE – – X – X X X – – X X

PM X X X X – X X X X X X

J – – X X X – X – X X X

GMA X X X X X X – X X X X

LP – – – – X – X – – X X

MP – – X – X X X – – X X

S X X X X X X X X X – X

DSE X X X X X X X X X X –

Mrs Edeetee needs to schedule the exams at the end of the term. Every exam lasts two hours. Two days
have been reserved for the exams with the following time slices: 8:00–10:00, 10:15–12:15, 14:00–16:00,
and 16:15–18:15. For every exam she knows the set of incompatible exams that may not take place at the
same time because they have to be taken by the same students. These incompatibilities are summarized
in Table 14.4.1.

Help Mrs Edeetee construct a timetable so that no student has more than one exam at a time.

14.4.1 Model formulation

Let planet be binary variables that are 1 if the exam e is scheduled in time slice t and 0 otherwise. We shall
write EXAM for the set of exams and TIME for the set of time slices. The mathematical model associated
with the problem is the following:

∀e ∈ EXAM :
∑

t∈TIME

planet = 1 (14.4.1)

∀d, e ∈ EXAM, d < e ∧ INCOMPde = 1,∀t ∈ TIME : planet + plandt ≤ 1 (14.4.2)

∀e ∈ EXAM, t ∈ TIME : planet ∈ {0, 1} (14.4.3)

This mathematical model does not contain any objective function since we simply wish to find a solution
that satisfies all incompatibility constraints. This does not cause any problem for the solution algorithm
that will generate an arbitrary feasible solution (if one exists). We might however add an objective
function, for instance by associating costs or preferences with the assignment of certain exams to certain
time slices.

The constraints (14.4.1) indicate that every exam needs to be scheduled exactly once. The constraints
(14.4.2) require that two incompatible exams may not be scheduled at the same time. The incompatibili-
ties are stored in a Boolean matrix INCOMP. An element INCOMPde of this matrix is 1 if the exams d and e
are incompatible and 0 otherwise. Since the incompatibility matrix is symmetric for this problem, we only
need to define the constraints (14.4.2) for pairs of exams d and e with d < e. The last set of constraints
(14.4.3) specifies that all variables are binaries.

The problem is completely stated by the constraints (14.4.1) to (14.4.3). However, if this problem has
a solution then it has an enormous number of equivalent (symmetric) solutions that are obtained by
permutating the time slots assigned to compatible sets of exams. We may try to ‘help’ the solution
algorithm by adding constraints breaking some of these symmetries and hence reducing the size of the
search space. For instance, we can assign DA to slot 1, and NA to slot 2 (since it is incompatible with DA).
In fact, we can go further as PM is incompatible with DA and NA, so it can be assigned to slot 3. Similarly,
GMA, S, and DSE must be given unique slots (4, 5, and 6) since they are incompatible with everything.
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How useful these observations are in general is debatable, but breaking symmetry, if possible, is always
a good idea.

14.4.2 Implementation

The mathematical model may be implemented with Mosel as shown below. The problem has no objective
function but we wish to invoke the optimization algorithm for finding a feasible solution. We therefore
simply indicate a constant (dummy) objective in the call to the optimizer — instead of minimize we
may also use maximize since we want to solve the problem without optimizing anything. We have not
introduced the symmetry-breaking ideas discussed above.

model "I-4 Scheduling exams"
uses "mmxprs"

declarations
EXAM = {"DA","NA","C++","SE","PM","J","GMA","LP","MP","S","DSE"}

! Set of exams
TIME = 1..8 ! Set of time slots

INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams

plan: array(EXAM,TIME) of mpvar ! 1 if exam in a time slot, 0 otherwise
end-declarations

initializations from ’i4exam.dat’
INCOMP

end-initializations

! Schedule all exams
forall(e in EXAM) sum(t in TIME) plan(e,t) = 1

! Respect incompatibilities
forall(d,e in EXAM, t in TIME | d<e and INCOMP(d,e)=1)

plan(e,t) + plan(d,t) <= 1

forall(e in EXAM, t in TIME) plan(e,t) is_binary

! Solve the problem (no objective)
minimize(0)

end-model

14.4.3 Results

The linear relaxation of this problem gives an integer solution (this is not true in general). In the schedule
displayed below only seven out of the eight available time intervals are used. This problem has a large
number of different feasible solutions.

Table 14.10: Exam schedule

8:00–10:00 10:15–12:15 14:00–16:00 16:15–18:15

Day 1 NA, SE, LP, MP PM GMA DA, C++

Day 2 — S J DSE

14.5 Production planning with personnel assignment

The company Line Production decides to plan the production of four of its products (P1, P2, P3, P4) on its
five production lines (L1 to L5). The company gains net profits of BC 7 for the products P1 and P4, BC 8 for
P2, and BC 9 for P3. The maximum times during which the five production lines may operate are different
during the planning period. The maximum capacities for L1 to L5 are 4500 hours, 5000 hours, 4500 hours,
1500 hours, and 2500 hours respectively. Table 14.12 lists the processing time in hours necessary for the
production of one unit of every product on every production line. Which quantities of P1 to P4 should be
produced to maximize the total profit?

If subsequently a transfer of personnel (and hence of working hours) is authorized between production
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Table 14.11: Unitary processing times

Lines
Products L1 L2 L3 L4 L5

P1 1.3 0.9 2.0 0.3 0.9

P2 1.8 1.7 1.4 0.6 1.1

P3 1.3 1.2 1.3 1.0 1.4

P4 0.9 1.1 1.0 0.9 1.0

Table 14.12: Possible transfers of personnel

Destination Maximum number of
Origin L1 L2 L3 L4 L5 transferable hours

L1 – yes yes yes no 400

L2 no – yes no yes 800

L3 yes yes – yes no 500

L4 no no no – yes 200

L5 yes yes yes no – 300

lines during the planning period as shown in Table 14.12, which is the maximum profit? How many hours
are transfered and under what conditions?

14.5.1 Model formulation

Let PRODS be the set of products and LINES the set of production lines. The per unit profit of product
p is given as PROFITp and the processing duration of product p on line l as DURpl. The capacity of every
production line l in working hours is CAPl. As usual in production planning problems, a variables producep

indicates the quantity of product p that is produced. The model corresponding to the first question is
fairly simple. The objective is to maximize the total profit (14.5.1) whilst remaining within the capacity
limits of every production line (constraints (14.5.2)). We obtain the following model:

maximize
∑

p∈PRODS

PROFITp · producep (14.5.1)

∀l ∈ LINES :
∑

p∈PRODS

DURpl · producep ≤ CAPl (14.5.2)

∀p ∈ PRODS : producep ≥ 0 (14.5.3)

If it is now possible to transfer personnel from one line to another, variables hoursl are required that
correspond to the working hours used on production line l. We also introduce variables transferlk that
represent the number of hours transfered from line l to line k. The constraints (14.5.5) that replace
the constraints (14.5.2) of the previous model specify that the number of hours worked is equal to the
production multiplied by the per unit duration of the work.

The constraints (14.5.7) establish the balance between the working hours carried out on a line, the hours
transfered and the maximum number of working hours on this line. On one line, hoursl hours are worked
that correspond to the available number of hours for this line, increased by the hours that are transfered
to this line from other and decreased by the hours transfered to other lines (TRANSFlk is 1 if it is possible
to transfer hours from line l to line k, 0 otherwise). The constraints (14.5.8) establish the limits TMAXl on
the number of hours that may be transfered from a line to the others. The last two sets of constraints
(14.5.9) and (14.5.10) are the non-negativity conditions for variables transferkl and hoursl.

maximize
∑

p∈PRODS

PROFITp · producep (14.5.4)

∀l ∈ LINES :
∑

p∈PRODS

DURpl · producep ≤ hoursl (14.5.5)

∀p ∈ PRODS : producep ≥ 0 (14.5.6)

∀l ∈ LINES : hoursl = CAPl +
∑

k∈LINES
TRANSFkl=1

transferkl −
∑

k∈LINES
TRANSFlk=1

transferlk (14.5.7)

∀l ∈ LINES :
∑

k∈LINES
TRANSFlk=1

transferlk ≤ TMAXl (14.5.8)

Timetabling and personnel planning 222 Applications of optimization with Xpress-MP



∀l, k ∈ LINES : transferlk ≥ 0 (14.5.9)

∀l ∈ LINES : hoursl ≥ 0 (14.5.10)

14.5.2 Implementation

The following Mosel program implements and solves the models for both questions. First the model for
question 1 is defined and solved. Then follow the additional declarations of data and variables required
by the second model. For the second model, the capacity constraints Load of the first model (14.5.2) are
re-defined with the modified version required by the second model (14.5.5).

model "I-5 Production planning with personnel"
uses "mmxprs"

declarations
PRODS = 1..4 ! Set of products
LINES = 1..5 ! Set of production lines

PROFIT: array(PRODS) of integer ! Profit per product
DUR: array(PRODS,LINES) of real ! Duration of production per line
CAP: array(LINES) of integer ! Working hours available per line

Load: array(LINES) of linctr ! Workload constraints
produce: array(PRODS) of mpvar ! Quantity produced

end-declarations

initializations from ’i5pplan.dat’
PROFIT DUR CAP

end-initializations

! Objective: Total profit
Profit:= sum(p in PRODS) PROFIT(p)*produce(p)

! Capacity constraints on lines
forall(l in LINES) Load(l):=sum(p in PRODS) DUR(p,l)*produce(p) <= CAP(l)

! Solve the problem
maximize(Profit)
writeln("Total profit: ", getobjval)

! **** Allow transfer of working hours between lines ****

declarations
TRANSF: dynamic array(LINES,LINES) of integer ! 1 if transfer is allowed,

! 0 otherwise
TMAX: array(LINES) of integer ! Maximum no. of hours to transfer

hours: array(LINES) of mpvar ! Initial working hours per line
transfer: dynamic array(LINES,LINES) of mpvar ! Hours transferred

end-declarations

initializations from ’i5pplan.dat’
TRANSF TMAX

end-initializations

forall(k,l in LINES | exists(TRANSF(k,l))) create(transfer(k,l))

! Re-define capacity constraints on lines
forall(l in LINES) Load(l):=sum(p in PRODS) DUR(p,l)*produce(p) <= hours(l)

! Balance constraints
forall(l in LINES)

hours(l) = CAP(l) + sum(k in LINES) transfer(k,l) -
sum(k in LINES) transfer(l,k)

! Limit on transfer
forall(l in LINES) sum(k in LINES) transfer(l,k) <= TMAX(l)

! Solve the problem
maximize(Profit)
writeln("Total profit allowing transfer: ", getobjval)

end-model
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Note that the variables transfer in the second model are defined as a dynamic array, and only after the
data indicating the allowable transfers (array TRANSF) is known do we create the transfer variables
actually required. By proceeding in this way, we may remove the tests for the values of the entries of
TRANSFfrom the various constraints since Mosel will automatically sum only those transfer variables
that have been created.

14.5.3 Results

If no transfer of personnel (that is, working hours) between production lines is possible, the maximum
profit is BC 18,883. 1542.55 units of product P1 and 1010.64 units of P2 are produced, and nothing of the
other two products. When examining the capacity constraints for the production lines, we find that only
line 3 and 5 work at their maximum capacity. This indicates that a transfer of working hours may be
profitable.

When the transfer of working hours between lines is allowed, the total profit increases to BC 23,431.10.
The quantities to produce are now 702.35 units of P1, 942.82 of P2, 554.83 of P3, and 854.84 of P4. On
production line 1 a total of 4100 hours are used and 400 hours are transfered to line 4. Production line
2 works for 3840.3 hours and 800 hours are transfered to line 5. Line 3 works during 4300 hours and 200
hours are transfered to line 4. On line 4, 600 hours are added to the original capacity of 1500 hours and
for L5 the 800 hours transfered from line 2 result in a total working time of 3300 hours.

14.6 Planning the personnel at a construction site

Construction workers who erect the metal skeleton of skyscrapers are called steel erectors. The following
table lists the requirements for steel erectors at a construction site during a period of six months. Transfers
from other sites to this one are possible on the first day of every month and cost $100 per person. At the
end of every month workers may leave to other sites at a transfer cost of $160 per person. It is estimated
that understaffing as well as overstaffing cost $200 per month per post (in the case of unoccupied posts
the missing hours have to be filled through overtime work).

Table 14.13: Monthly requirement for steel erectors

March April May June July August

4 6 7 4 6 2

Overtime work is limited to 25% of the hours worked normally. Every month, at most three workers may
arrive at the site. The departure to other sites is limited by agreements with labor unions to 1/3 of the
total personnel of the month. We suppose that three steel erectors are already present on site at the end
of February, that nobody leaves at the end of February and that three workers need to remain on-site at
the end of August. Which are the number of arrivals and departures every month to minimize the total
cost?

14.6.1 Model formulation

Let MONTHS be the set of months in the time period, numbered consecutively from FIRST to LAST . The
different basic costs are denoted as follows: CARR and CLEAVE the cost of a person arriving and leaving
respectively, COVER and CUNDER the cost of over- and understaffing per person. NSTART and NFINAL
respectively are the number of workers on-site at the beginning and end of the planning period. For
every month m the personnel requirement REQm is given.

Although it would be possible to formulate this model with fewer variables, we describe a formulation
that uses five types of variables indexed by the months to facilitate the modeling and provide all the
details for the recruitment plan. In every month m, onsitem steel erectors are present (between the
arrivals at the beginning of the month and the departures at its end). There are arrivem arrivals, leavem

workers leaving, overm persons more than the required personnel and underm persons missing (14.6.1).

∀m ∈ MONTHS : onsitem, arrivem, leavem, overm, underm ∈ IN (14.6.1)

For the first month FIRST the total staff equals the initial staff plus the arrivals at the beginning of the
month (14.6.2). After the last month LAST , the remaining personnel onsite equals the personnel present
in the last month minus the departures at the end of this month (14.6.3).

onsiteFIRST = NSTART + arriveFIRST (14.6.2)

NFINAL = onsiteLAST − leaveLAST (14.6.3)
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For the intermediate months, the personnel on-site, the arrivals and departures are linked by a relation
comparable to the stock balance constraints used for the production planning problems in Chapter 8
(14.6.4).

∀m ∈ {FIRST + 1, . . . , LAST − 1} : onsitem = onsitem−1 − leavem−1 + arrivem (14.6.4)

The number of workers present on-site may be different from the number of personnel actually required.
But it becomes equal to the requirement if one deducts the overstaffing and adds the missing persons
(14.6.5).

∀m ∈ MONTHS : onsitem − overm + underm = REQm (14.6.5)

For every month m, the constraints (14.6.6) formulate the limit on the hours worked overtime, the con-
straints (14.6.7) limit the number of arrivals and the constraints (14.6.8) the number of persons leaving
the construction site.

∀m ∈ MONTHS : overm ≤ onsitem / 4 (14.6.6)

∀m ∈ MONTHS : arrivem ≤ 3 (14.6.7)

∀m ∈ MONTHS : leavem ≤ onsitem / 3 (14.6.8)

The objective function (14.6.9) accumulates the costs of arrivals, departures, over- and understaffing.
Due to the minimization of the cost, there will never be over- and understaffing at the same time in any
month.

minimize
∑

m∈MONTHS

(CARR · arrivem + CLEAVE · leavem + COVER · overm + CUNDER · underm) (14.6.9)

14.6.2 Implementation

In the following Mosel implementation of the mathematical model, the balance constraints (14.6.2) –
(14.6.4) are grouped into a single constraint expression using the inline if . Note further the index set
MONTHScorresponding to the order numbers of the months (and not starting with 1) used for all arrays.

model "I-6 Construction site personnel"
uses "mmxprs"

declarations
FIRST = 3; LAST = 8
MONTHS = FIRST..LAST ! Set of time periods (months)

CARR, CLEAVE: integer ! Cost per arrival/departure
COVER, CUNDER: integer ! Cost of over-/understaffing
NSTART, NFINAL: integer ! No. of workers at begin/end of plan
REQ: array(MONTHS) of integer ! Requirement of workers per month

onsite: array(MONTHS) of mpvar ! Workers on site
arrive,leave: array(MONTHS) of mpvar ! Workers arriving/leaving
over,under: array(MONTHS) of mpvar ! Over-/understaffing

end-declarations

initializations from ’i6build.dat’
CARR CLEAVE COVER CUNDER NSTART NFINAL REQ

end-initializations

! Objective: total cost
Cost:= sum(m in MONTHS) (CARR*arrive(m) + CLEAVE*leave(m) +

COVER*over(m) + CUNDER*under(m))

! Satisfy monthly need of workers
forall(m in MONTHS) onsite(m) - over(m) + under(m) = REQ(m)

! Balances
forall(m in MONTHS)

onsite(m) = if(m>FIRST, onsite(m-1) - leave(m-1), NSTART) + arrive(m)
NFINAL = onsite(LAST) - leave(LAST)

! Limits on departures, understaffing, arrivals; integrality constraints
forall(m in MONTHS) do

leave(m) <= 1/3*onsite(m)
under(m) <= 1/4*onsite(m)
arrive(m) <= 3
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arrive(m) is_integer; leave(m) is_integer; onsite(m) is_integer
under(m) is_integer; over(m) is_integer

end-do

! Solve the problem
minimize(Cost)

end-model

14.6.3 Results

The optimal solution to this problem has a cost of $1,780. The following table contains the detailed
recruitment plan (there are several equivalent solutions).

Table 14.14: Optimal plan for the construction site personnel

Month Initial March April May June July August Final

Requirement – 4 6 7 4 6 2 –

On site 3 4 6 6 6 6 4 3

Arrive 0 1 2 0 0 0 0 0

Leave 0 0 0 0 0 2 1 0

Overstaffing 0 0 0 0 2 0 2 0

Understaffing 0 0 0 1 0 0 0 0

14.7 References and further material

The assignment problem seen for the allocation of personnel to machines applies to other situations, as
for example the recruitment of candidates for jobs according to their preferences and the perhaps more
surprising problem of flight connections in Chapter 11. Since the simplex algorithm automatically finds
integer-valued solutions, cases of considerable size (100 × 100 matrices for example) are easily dealt with.

However, even faster specialized algorithms exist, like the Hungarian algorithm in O(n3) described by
Papadimitriou [PS98] or the techniques for finding the maximum flow presented by Ahuja et al. [AMO93]
and Prins [Pri94a]. For serial workstations, the Mathematical Programming approach works less well, but
fast algorithms based on graphs also exist for this case [DZ78].

The nurse scheduling problem in Section 14.2 is a simplified version of personnel planning problems in
the hospital environment. A more complex problem for determining an individual plan for every nurse
and taking into account the rules imposed by law and the preferences of the nurses, whilst minimizing
the cost of the personnel is studied by Jaumard et al. [JSV98]. The authors suggest a column generation
technique as the solution method. Personnel scheduling problems of this and similar types are among
the most successful application areas of Constraint Programming (for instance the application described
in [HC99]). Typically the aim is ‘simply’ to generate a feasible plan, without any optimization. For nurse
scheduling, specialized CP software is available ([CHW98]).

The problems in Section 14.3 and 14.4 are classical timetabling problems frequently encountered in sec-
ondary schools, colleges and universities. They have in general many, sometimes difficult, constraints
that have not been taken into account here (assignment of class rooms, courses or exams of different
durations, balanced distribution of courses or exams over the days of the week). These problems are
NP-hard and usually solved by heuristics, metaheuristics or Constraint Programming techniques. Carter
and Laporte [CL96] give an overview of the approaches used to solve this type of problem. In [Tri84]
the author suggests a model formulation with Mathematical Programming. Graph coloring models are
used by de Werra [DW97]. Boufflet and Nègre describe in [BN96] a tabu search method for planning
the exams at the Technical University of Compiègne. In Boizumault [BDGP95] a Constraint Programming
approach for solving a timetabling problem and the problem of scheduling exams at the Institute of
Applied Mathematics of Angers may be found.

Section 14.5 presents a particular application of personnel management. In the production planning
problems studied in Chapter 8, certain aspects of resource management are often ignored or deliberately
not taken into account. The notion of personnel/human resource management in the form of working
hours transfered between production lines is nevertheless important and must not be forgotten.

The personnel planning problem in Section 14.6 has been studied by Clark and Hastings [CH77] who solve
it with a dynamic programming method. It resembles the production planning problems in Chapter 8. It
may be adapted to problems that consist of filling time slices by periods of work like contracts of limited
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duration, shift planning, etc. It also has certain similarities with the problem of planning a fleet of vans
in Chapter 10.
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Chapter 15

Local authorities and public services

The military was the first to be interested in Operations Research, followed by industry. In the most
developed countries, the public sector uses these techniques more and more to provide the best possible
service to consumers for a given budget.

The provision of drinking water will be a major problem for humanity in the 21st century. It will become
necessary to find new sources of water and to enlarge the old sewage systems and networks of pipes that
might create unforeseen bottlenecks. In the classical maximum flow problem of Section 15.1 we show
how to calculate the maximum throughput of a water transport network. The methods may be applied
to other liquids, and also to road or telecommunications networks.

Section 15.2 is a study of closed circuit TV surveillance of streets. The problem consist of covering all the
streets with a minimum number of pivoting cameras. A political application, still quite relevant in certain
countries, is presented in Section 15.3: a party wishes to re-organize the electoral districts to maximize
its number of seats at the next elections. More seriously, this type of problem occurs when one tries to
establish a fair subdivision into geographical sectors.

The problem in Section 15.4 is gritting the streets of a village in case of ice, with a truck that drives a
tour of minimum total length. As opposed to the delivery of heating oil in Section 10.4, the tasks to be
executed are not placed on the nodes of the network but on its arcs. Section 15.5 deals with a location
problem for public services, in this case of income tax offices. The optimization criterion employed is the
average distance that an inhabitant of the area has to travel to the closest income tax office. The chapter
terminates with the evaluation of the performances of four hospitals using the DEA method.

15.1 Water conveyance / water supply management

The graph in Figure 15.1 shows a water transport network. The nodes, numbered from 1 to 10, represent
the cities, the reservoirs, and the pumping stations connected by a network of pipes. The three cities
Gotham City, Metropolis, and Spider Ville are supplied from two reservoirs. The availabilities of water
from these reservoirs in thousands of m3/h are 35 for reservoir 1 and 25 for reservoir 2. The capacity of
each pipe connection is indicated in thousands of m3/h in the graph.
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Figure 15.1: Water transport network

A study is undertaken to find out whether the existing network will be able to satisfy the demands of the
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cities in ten years time, that is 18, 15, and 20 thousand m3/h. Determine the maximum flow in the current
network. Will it be sufficient in ten years from now?

15.1.1 Model formulation

The problem consists of finding a flow through the given graph that best satisfies the needs of the three
cities (nodes 8, 9, and 10) taking into account the availabilities at the reservoirs 1 and 2. This problem is
a classical maximum flow problem.

We start by transforming the graph by creating:

• a first fictitious node called SOURCE (node 11 in Figure 15.2) connected to the reservoirs by two arcs
(11,1) and (11,2) with capacities corresponding to the availability of water from the two reservoirs
(35 and 25 thousand m3/h);

• a second fictitious node called SINK (node 12 in Figure 15.2) to which the three cities are connected
by three arcs (8,12), (9,12), and (10,12) with capacities corresponding to the cities’ requirement for
water (18, 15, and 20 thousand m3/h).

The resulting graph (Figure 15.2) is a transport network G = (NODES, ARCS, CAP, SOURCE, SINK) in which:

• NODES is the set of nodes;

• ARCS is the set of arcs;

• CAPnm denotes the capacity of the arc a = (n, m);

• SOURCE is the source (node 11);

• SINK is the sink (node 12).
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Figure 15.2: Water transport network after addition of source and sink

SUCCn denotes the set of immediate successors of a node n and PREDn the set of its immediate predeces-
sors. A flow of a total throughput TotalFlow in this transport network fulfills the following constraints.

∀(n, m) ∈ ARCS : flownm ≤ CAPnm (15.1.1)

∀n 6= SOURCE, SINK :
∑

m∈SUCCn

flownm =
∑

m∈PREDn

flowmn (15.1.2)

TotalFlow =
∑

n∈PREDSINK

flown,SINK (15.1.3)

∀(n, m) ∈ ARCS : flownm ≥ 0 (15.1.4)

The constraints (15.1.1) indicate that the flow flownm on every arc (n, m) must not exceed the capacity
CAPnm of this arc. The constraints (15.1.2) specify that the total flow arriving at any node n also has to
leave this node (with the exception of the source and sink nodes). This condition is called Kirchhoff’s law.
The constraint (15.1.3) indicates that the total flow TotalFlow in the network equals the flow arriving
at the sink (it is also equal to the flow leaving the source). Finally, the non-negativity constraints for
the variables are given in (15.1.4). The problem that we need to solve corresponds to searching for the
maximum flow between the nodes SOURCE and SINK, that is, a flow maximizing TotalFlow. Hence the
very simple objective function (15.1.5):

maximize TotalFlow (15.1.5)
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It is quite obviously possible to let non-integer flows pass through the arcs. However, in this type of
problem, the simplex algorithm automatically finds integer solution values in the optimal solution to the
linear problem if all capacities are integer.

15.1.2 Implementation

In the Mosel implementation of this problem we represent the set of arcs as a list PIPE that defines every
arc a ∈ ARCS in the form a = (PIPEa1, PIPEa2). For efficiency reasons, the arrays CAP and flow are indexed
by the sequence number a of the arc, and not with the double index (n, m) indicating the two nodes
connected by the arc a as in the mathematical formulation. This indexation allows us to define these
arrays exactly with the required size.

model "J-1 Water supply"
uses "mmxprs"

declarations
ARCS: range ! Set of arcs
NODES=1..12

PIPE: array(ARCS,1..2) of integer ! Definition of arcs (= pipes)
CAP: array(ARCS) of integer ! Capacity of arcs
SOURCE,SINK: integer ! Number of source and sink nodes

end-declarations

initializations from ’j1water.dat’
PIPE CAP SOURCE SINK

end-initializations

finalize(ARCS)

declarations
flow: array(ARCS) of mpvar ! Flow on arcs

end-declarations

! Objective: total flow
TotalFlow:= sum(a in ARCS | PIPE(a,2)=SINK) flow(a)

! Flow balances in nodes
forall(n in NODES | n<>SOURCE and n<>SINK)

sum(a in ARCS | PIPE(a,1)=n) flow(a) = sum(a in ARCS | PIPE(a,2)=n) flow(a)

! Capacity limits
forall(a in ARCS) flow(a) <= CAP(a)

! Solve the problem
maximize(TotalFlow)

end-model

15.1.3 Results

511
9

Metropolis

8
Gotham City4

10
Spider Ville7

12

17/18

20/20

1

2
Reservoir 2

Reservoir 1

3

6

0/12
5/15

15/22 5/10

15/15

7/77/15

15/22

17/20

10/10

10/10

0/10

21/25

31/35 14/15

6/6

10/10

15/15

Figure 15.3: Maximum flow

The maximum flow that may pass through the network is 52,000 m3 per hour. Figure 15.3 shows an
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example how this flow may spread through the network (there are other equivalent solutions). In this
figure, every arc is labeled with the flow passing through the arc followed by its capacity (both in m3/h).
for instance, the flow on the arc (1,3) is 17 and its capacity is 20.

The total flow is not sufficient to satisfy all the demands in ten years time: with the given network layout
and capacities, Gotham City will only receive 17,000 m3 of the required 18,000 m3.

15.2 CCTV surveillance

In the course of the last few months, the industrial zone of Billston has suffered from a series of break-ins
and thefts during the night. The zone is watched by security men but there are too few of them. The
town council in charge of security in this zone decides to install surveillance cameras to aid the security
men with their task. These cameras can be directed and pivot through 360◦. By installing a camera at the
intersection of several streets, it is possible to survey all adjoining streets. The map in Figure 15.4 shows
the industrial zone with the limits of the zone to be covered by closed circuit TV (CCTV) surveillance and
the 49 possible locations where to install the cameras. What is the minimum number of cameras that
have to be installed to survey all the streets of this zone and where should they be placed?
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Figure 15.4: Industrial zone in Billston

15.2.1 Model formulation

The most fastidious task in this problem is the encoding of the map of the zone, but this step is necessary
for any computerized solving of this problem. The set of possible locations of cameras (mostly street in-
tersections) is denoted by NODES. The street network is modeled through a graph G = (NODES, STREETS),
where the set STREETS corresponds to the links (streets) between the possible locations NODES of the
cameras.

We define binary variables placen that are 1 if a camera is put up at location n and 0 otherwise. The
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unique set of constraints (15.2.2) indicates that every street needs to be surveyed by at least one camera.
Therefore, if a street exists between the two locations n and m, we need to have a camera in n (placen = 1)
or m (placem = 1) or in both places. It is possible to cover a street by two cameras and this may pay in
certain cases: in Figure 15.4 two cameras in locations 4 and 6 seem to be too much for the street but
they also cover the three cul-de-sacs leading to 5, 7, and 8. The objective function (15.2.1) minimizes the
total number of cameras to install. Once the graph is defined, we obtain a remarkably simple 0-1 integer
program.

minimize
∑

n∈NODES

placen (15.2.1)

∀(n, m) ∈ STREETS : placen + placem ≥ 1 (15.2.2)

∀n ∈ NODES : placen ∈ {0, 1} (15.2.3)

15.2.2 Implementation

The undirected graph is encoded by a symmetric adjacency matrix STREET . STREETnm = 1 if the street
(n, m) exists and 0 otherwise. This matrix is read from the data file in sparse format, that is, only the
entries that are 1 are defined. To reduce the amount of data in the file, only the arcs (n, m) with n < m
are given. The other half of the adjacency matrix is calculated in the Mosel program.

model "J-2 Surveillance"
uses "mmxprs"

declarations
NODES=1..49
STREET: dynamic array(NODES,NODES) of integer ! 1 if a street connects

! two nodes, 0 otherwise

place: array(NODES) of mpvar ! 1 if camera at node, 0 otherwise
end-declarations

initializations from ’j2bigbro.dat’
STREET

end-initializations

forall(n,m in NODES | exists(STREET(n,m)) and n<m )
STREET(m,n):= STREET(n,m)

! Objective: number of cameras to install
Total:= sum(n in NODES) place(n)

! Flow balances in nodes
forall(n,m in NODES | exists(STREET(n,m)) ) place(n)+place(m) >= 1

forall(n in NODES) place(n) is_binary

! Solve the problem
minimize(Total)

end-model

15.2.3 Results

The optimization algorithm finds an integer solution with 24 cameras, the locations of which are marked
with circles in Figure 15.5 (there are several equivalent solutions to this problem).
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Figure 15.5: Location of cameras
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15.3 Rigging elections

In a country far away, the party of the duke Sark Mevo has finally beaten the ruling coalition headed by
the princess Reguel Tekris. Mevo wishes to consolidate his position in the capital, the fourteen quarters
of which need to be grouped to electoral districts. A schematic map of the capital is given in Figure 15.6.
The quarters are numbered from 1 to 14 (bold print). The two other numbers are the forecast number
of favorable votes for Mevo and the total number of electors per quarter. All electors must vote and
the winner needs to have the absolute majority. A valid electoral district is formed by several adjacent
quarters and must have between 30,000 and 100,000 voters. Two quarters that touch each other just at
a point like 12 and 13 are not considered adjacent. Electoral districts consisting of a single quarter are
permitted if it has at least 50,000 voters. Nevertheless, Mevo may not decently define an electoral district
solely with quarter 10, since this contains his residence.

Determine a partitioning into five electoral districts that maximizes the number of seats for Mevo. Should
this cause any difficulties, try a partitioning into six districts. Snirp, the mathematical jester, suggests Mevo
uses Mathematical Programming...
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Figure 15.6: Map of the capital and its quarters. Legend: quarter number, supporters/electorate

15.3.1 Model formulation

The problem we are concerned with here is a partitioning problem: given the set of all possible electoral
districts, we have to choose a subset such that every quarter appears in a single chosen electoral district.

Let QUARTERS be the set of all quarters of the capital, MINSINGLE the minimum size for an electoral
district consisting of a single quarter and MINPOP and MAXPOP respectively the minimum and maximum
sizes for districts formed from several quarters. The number of electors per quarter is given in POP. We
may then calculate the complete set of electoral districts using the following algorithm:

• forall q in QUARTERS:

– if (electorate of q ≥ MINSINGLE and q 6= 10): add q to the list of districts

– forall neighbors p of q:
if electorate of (p + q) ≤ MAXPOP: call add_neighbor(p, {q})

• procedure add_neighbor(toadd, set)

– add toadd to set

– if electorate of set ≥ MINPOP: add set to the list of districts

– forall neighbors p of toadd:
if electorate of (set ∪ {q}) ≤ MAXPOP: call add_neighbor(p, set)

If the set of neighbors of every quarter is defined in such a way that it only contains those adjacent
quarters with sequence numbers larger than the quarter itself, the algorithm calculates every possible
electoral district exactly once.

In the following we shall assume that the set RDIST of possible districts (there are 48 different ones in
this example) has been saved in the form of an array DISTR. An entry DISTRdq of this array has the value

Local authorities and public services 234 Applications of optimization with Xpress-MP



1 if quarter q is contained in district d and 0 otherwise. Based on the given forecasts of favorable votes
per quarter, we can calculate the majority indicator MAJd for every district d. MAJd is 1 if the sum of
favorable votes is at least 50% of the electorate of all quarters in this district (that is, Mevo has the
absolute majority), and 0 otherwise.

The formulation of this problem requires a binary variable choosed per possible district d that takes the
value 1 if the district is chosen for the partitioning (15.3.3). The constraint (15.3.2) means that exactly
REQD districts are formed, where REQD indicates the required number of districts. The objective function
(15.3.1) consists of maximizing the number of seats in the chosen partitioning.

maximize
∑

d∈RDIST

MAJd · choosed (15.3.1)∑
d∈RDIST

choosed = REQD (15.3.2)

∀d ∈ RDIST : choosed ∈ {0, 1} (15.3.3)

Every quarter has to appear in exactly one district of the chosen partitioning. This constraint is expressed
by (15.3.4).

∀q ∈ QUARTERS :
∑

d∈RDIST

DISTRdq · choosed = 1 (15.3.4)

After the corresponding data preprocessing, the mathematical model thus has a very simple form. It has
the particularity of an entirely binary coefficient matrix and right hand side (constant terms).

15.3.2 Implementation

For clarity’s sake, the Mosel implementation of this problem is split into two files separating the data
preprocessing from the model itself. In the following, we first list the code implementing the mathe-
matical model. At the beginning of this model, after the declaration of the data arrays, we include the
file j3elect_calc.mos that generates the data in the form required for the model. Any code included
into a Mosel program using the include statement is treated as if it were printed at this place in the
program itself. In particular, the included code must not contain model "..." and end-model . The
required number of districts REQD is defined as a parameter so as to enable the user to run this model
for different values of REQD without having to modify the code.

model "J-3 Election districts"
uses "mmxprs"

parameters
REQD = 5 ! Required number of districts

end-parameters

declarations
QUARTERS = 1..14 ! Number of quarters
RDIST: range ! Set of election districts

MAJ: array(RDIST) of integer ! 1 if majority of votes, 0 otherwise
DISTR: array(RDIST,QUARTERS) of integer ! 1 if quarter is in district,

! 0 otherwise
end-declarations

include "j3elect_calc.mos"

declarations
choose: array(RDIST) of mpvar ! 1 if district chosen, 0 otherwise

end-declarations

! Objective: number of votes
Votes:= sum(d in RDIST) MAJ(d)*choose(d)

! Partitioning
forall(q in QUARTERS) sum(d in RDIST) DISTR(d,q)*choose(d) = 1

! Desired number of districts
sum(d in RDIST) choose(d) = REQD

forall(d in RDIST) choose(d) is_binary
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! Solve the problem
maximize(Votes)

! Solution printing
if(getprobstat<>XPRS_OPT) then

writeln("Problem is infeasible")
else

writeln("Total number of votes: ", getobjval)
end-if

end-model

In this model, we test the status of the optimizer (using function getprobstat ) to decide whether to try
printing a solution or not. If no optimal solution is available (XPRS_OPT), the problem may be infeasible
(XPRS_INF), unbounded (XPRS_UNB) or the algorithm has not terminated (XPRS_UNF), for instance due
to a time limit.

The following Mosel procedures implement the algorithm described in Section 15.3.1. For every quarter
of the capital, the data file contains the numbers of the voters POPand of the expected favorable votes
VOTES, and the set of neighboring quarters with order numbers greater than the quarter itself. From
this input, the procedure calculate_distr calculates the list DISTR of possible electoral districts. This
procedure is called at the end of this piece of code to start the whole data preprocessing algorithm. After
the list of possible electoral districts DISTR has been established, the majority indicator MAJ(d) for every
entry d in this list is calculated.

declarations
NUMD: integer ! Number of possible districts
RN: range ! Neighboring quarters

NEIGHB: array(QUARTERS,RN) of integer ! Set of neighboring quarters
POP: array(QUARTERS) of integer ! Number of electors (in 1000)
VOTES: array(QUARTERS) of real ! Number of favorable votes (in 1000)
MINPOP,MAXPOP,MINSINGLE: integer ! Limits on electors per district

end-declarations

initializations from ’j3elect_rev.dat’
NEIGHB POP VOTES MINPOP MAXPOP MINSINGLE

end-initializations

!**** Save a new entry in the list of districts ****
procedure save_distr(sQ: set of integer)

NUMD+=1
forall(q in sQ) DISTR(NUMD,q):=1

end-procedure

!**** Add a neighboring quarter to the current set of quarters ****
procedure add_neighb(toadd:integer, sQ:set of integer)

declarations
nQ: set of integer

end-declarations

nQ:=sQ+{toadd}
if(sum(q in nQ) POP(q) >= MINPOP) then ! Large enough to form distr.

save_distr(nQ)
end-if
forall(p in RN | exists(NEIGHB(toadd,p))) ! Try adding every neighbor

if(sum(q in nQ) POP(q)+POP(NEIGHB(toadd,p))<=MAXPOP) then
add_neighb(NEIGHB(toadd,p), nQ)

end-if
end-procedure

!**** Calculate the list of possible districts ****
procedure calculate_distr

NUMD:=0
forall(q in QUARTERS) do

if (POP(q) >= MINSINGLE and q<>10) then ! Single quarter districts
save_distr({q})

end-if
forall(p in RN | exists(NEIGHB(q,p))) ! Try adding every neighbor

if(POP(q)+POP(NEIGHB(q,p))<=MAXPOP) then
add_neighb(NEIGHB(q,p),{q})

end-if
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end-do

forall(d in 1..NUMD) ! Calculate majorities
MAJ(d):= if(((sum(q in QUARTERS | DISTR(d,q)>0) VOTES(q)) /

(sum(q in QUARTERS | DISTR(d,q)>0) POP(q)) >= 0.5), 1, 0)
finalize(RDIST)

end-procedure

!**** Start the calculation of the list of possible districts ****
calculate_distr

15.3.3 Results

The problem has no solution for REQD = 5. Snirp should have noticed this, as the total population is
540,000, and no district may have more than 100,000 electors; so obviously we need at least 6 districts.
Mevo executes Snirp, and appoints Che Pike as Court Mathematician.

We run the Mosel program a second time with REQD = 6. For this value we find the partitioning repre-
sented in Figure 15.7: all but one district (grey shaded area) is favorable to Mevo.
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Figure 15.7: Electoral districts for REQD = 6

15.4 Gritting roads

In the case of ice, all the streets of a village need to be gritted. A schematic map of the streets is given in
Figure 15.8. The nodes correspond to street intersections, the arcs to the streets that need to be gritted.
The arcs are labeled with the length of the street in meters.
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Figure 15.8: Graph of the village streets
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The highway maintenance depot with the gritting truck is located at intersection number 1. The truck
has a sufficiently large capacity to grit all the streets during a single tour. Due to the one-way streets, it
may be forced to pass several times through the same street that has already been gritted. Determine
a tour for the gritting truck of minimum total length that passes through all streets. For bidirectional
streets, both directions need to be gritted separately.

15.4.1 Model formulation

Let G = (ISEC, ARCS, LEN) be the directed graph of the street network. ISEC denotes the set of street
intersections, ARCS the set of arcs, and LENij the length LENij of arc (i, j) in meters. The tour we are
searching for corresponds to a circuit that starts and finishes at the depot node 1, passes at least once
over every arc and has a minimum total length. This classical problem is called the Chinese postman
problem because it was first solved by a Chinese mathematician, Mei-Ko Kuan [Kua62].

A Eulerian circuit in a directed graph is a circuit that visits every arc exactly once. If a Eulerian circuit
exists, then this is an optimal tour since it is equal to the sum of all arc lengths. A simple test exists to find
out whether G may contain a Eulerian circuit: every node i needs to be equilibrated, that is the number
of arcs arriving at i and leaving i must be equal, see for instance Gibbons [Gib85]. This test must not be
confused with the better known case of undirected graphs in which a Eulerian circuit exists if and only if
either 0 or 2 nodes are of odd degree.

The graph G of this problem does not have a Eulerian circuit because among others the node 1 is not
equilibrated. The circuit will thus re-use streets that are already gritted. The objective is to minimize the
total length of such unproductive stretches. Formulating a mathematical model that directly deals with
this problem is possible, but difficult. We are going to overcome this difficulty by dealing with a simpler
problem, namely the problem of transforming G into a Eulerian graph G′ by adding copies of arcs to
equilibrate the nodes, whilst minimizing the total length of these copies. It then suffices to extract a
Eulerian circuit from G′, a task for which simple algorithms exist.

The problem of equilibrating the graph at minimum cost is modeled by a fairly simple mathematical
model. For every arc (i, j) in ARCS, an integer variable useij is defined that indicates the number of times
the tour uses this arc (15.4.3). This number includes one pass for gritting the arc, plus possible other
unproductive passages (copies of arcs). Since the gritting of the arc is obligatory, the useij are at least
1. The constraints (15.4.2) imply that the transformed graph G′ must have equilibrated nodes. These
constraints are similar to Kirchhoff’s law used in flow problems, such as water conveyance in Section 15.2.
The objective function (15.4.1) is to minimize the total length driven.

minimize
∑

(i,j)∈ARCS

LENij · useij (15.4.1)

∀i ∈ ISEC :
∑

(j,i)∈ARCS

useji =
∑

(i,j)∈ARCS

useij (15.4.2)

∀(i, j) ∈ ARCS : useij ≥ 1 ∧ usei,j ∈ IN (15.4.3)

It is in fact not necessary to specify that the variables are integer because the matrix of this model is
a node-arc incidence matrix. The simplex algorithm will automatically find an integer solution. The
optimization provides the optimal length and the number of times useij an arc is used. We could stop
there if the exact composition of the tour was not part of the question to answer. We obtain the Eulerian
graph G′ by adding useij − 1 copies to every arc (i, j). The first pass for gritting the street is already
represented by the existing example of the arc.

To obtain a Eulerian circuit, a procedure add_path(i,tour) is used. Starting from a node i, it consists
of using arcs that have not yet been used as far as possible. An arc that has been visited is marked to
avoid re-using it. At the end, the procedure returns the obtained tour tour. It is possible to show that
tour always stops at the end in i and forms a circuit. The procedure add_path is first applied at the depot
node 1. If tour visits all the arcs of G′, this is a Eulerian circuit. Otherwise, we increase tour by executing
add_path from a node in tour that still has free arcs to visit. The implementation of this algorithm is
given after the Mosel implementation of the mathematical model in the following section. The following
is pseudo-code for the algorithm implemented with Mosel:

• Call add_path(1,tour)

• As long as the tour does not visit all arcs:

– Search the first node i in tour from which non-visited arcs leave

– Call add_path(i,tour)
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• procedure add_path(node,tour)

– Determine the insertion position pos

– Find an unused path subtour starting from and returning to node

– Add the new path subtour to the main tour tour at position pos

15.4.2 Implementation

The mathematical model translates into the following Mosel program. As we have seen, a graph may
be encoded in two different ways: in the form of a list of arcs or as an adjacency matrix. The first
method is used in this book, for instance, for the opencast mining problem in Section 6.5, the assembly
line balancing problem in Section 7.6, and the composition of flight crews in Section 11.2. The second
matrix-based representation that is employed here also finds use in the network reliability problem in
Section 12.1 and the CCTV surveillance problem of Section 15.2.

The graph is defined by the matrix of arc lengths LEN, with LENij = 0 if arc (i, j) does not exist. The graph
is given in sparse format in the data file (that is, it contains only the values of non-zero entries with the
corresponding index tuples). By defining LEN as a dynamic array, only the entries that are listed in the
data file will actually be created so that we can use the function exists on this array to test the existence
of a street (and at the same time, to enumerate the defined entries of LEN efficiently). The variables use
are created after reading the data, only for the existing entries of LEN. It is not required to repeat the
filter exists(LEN(i,j))) every time we define sums with these variables: Mosel automatically skips
the undefined entries.

model "J-4 Gritting circuit"
uses "mmxprs"

declarations
ISEC = 1..12 ! Set of street intersections
LEN: dynamic array(ISEC,ISEC) of integer ! Length of streets

use: dynamic array(ISEC,ISEC) of mpvar ! Frequency of use of streets
end-declarations

initializations from ’j4grit.dat’
LEN

end-initializations

forall(i,j in ISEC | exists(LEN(i,j))) create(use(i,j))

! Objective: length of circuit
Length:= sum(i,j in ISEC | exists(LEN(i,j))) LEN(i,j)*use(i,j)

! Balance traffic flow through intersections
forall(i in ISEC) sum(j in ISEC) use(i,j) = sum(j in ISEC) use(j,i)

! Grit every street
forall(i,j in ISEC) use(i,j) >= 1

! Solve the problem
minimize(Length)

end-model

The variables useij indicate the number of times the truck passes through a street, but what we really
want to know is the complete tour it has to drive to grit all streets. To print the result for this problem
in a useful form, we need to calculate a Eulerian circuit. This may be done by adding the following lines
to the program above. This code fragment implements the algorithm outlined in the previous section.
The procedure add_path has been turned into a function that returns the number of arcs in the new
(sub)tour. We define a counter ct to control when all arcs of the Eulerian graph G′ calculated by the
optimization have been used. Its value is initially set to the result of the optimization and decreased by
the number of arcs added as subtours to the main tour. The algorithm stops when the counter is at 0.

forward function find_unused(J: array(range) of integer):integer
forward function add_path(node:integer, J: array(range) of integer):integer

ct:=round(getsol(sum(i,j in ISEC) use(i,j)))
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declarations
TOUR: array(1..ct+1) of integer
COUNT: array(ISEC,ISEC) of integer

end-declarations

! Main loop of the Eulerian circuit algorithm
forall(i,j in ISEC | exists(LEN(i,j))) COUNT(i,j):=round(getsol(use(i,j)))
TOUR(1):=1
ct-=add_path(1,TOUR)
while(ct>0)

ct-=add_path(find_unused(TOUR),TOUR)
writeln("Tour: ", TOUR)

!-----------------------------------------------------------------

! Find first node in list with free path(s)
function find_unused(J: array(range) of integer):integer

i:=1
returned:=1
while(J(i)>0 and i<getsize(J))

if (sum(j in ISEC) COUNT(J(i),j) > 0) then
returned:=J(i)
break

else
i+=1

end-if
end-function

!-----------------------------------------------------------------

! Add a subtour to the current tour
function add_path(node:integer, J: array(range) of integer):integer

declarations
NEWJ: array(1..getsize(J)) of integer

end-declarations

! Insertion position
pos:=1
while(J(pos)<>node and pos<getsize(J)) pos+=1

! Find a new path
cur:=node; newct:=0
while(sum(j in ISEC) COUNT(cur,j) > 0) do

forall(j in ISEC) if(COUNT(cur,j) > 0) then
COUNT(cur,j)-=1
newct+=1; NEWJ(newct):=j
cur:=j
break

end-if
end-do

! Add the new path to main journey
i:=getsize(J)-newct
while(i>pos) do

J(i+newct):=J(i)
i-=1

end-do
forall(j in 1..newct) J(pos+j):=NEWJ(j)
returned:=newct

end-function

15.4.3 Results

The optimization finds a tour of length 5990 meters. All arcs are used once except for the following that
are used twice: (3,4), (4,8), (5,1), (5,6), (6,9), (10,6), (11,7).

Figure 15.9 shows the resulting Eulerian graph G′; arcs that are doubled (used twice) are printed with
thick lines. A Eulerian circuit in this graph is the tour 1 → 2 → 6 → 5 → 6 → 7 → 8 → 12 → 11 → 7 →
11 → 10 → 7 → 3 → 4 → 3 → 4 → 8 → 4 → 8 → 11 → 7 → 6 → 9 → 5 → 6 → 9 → 10 → 6 → 10 → 6 →
2→ 3→ 2→ 5→ 1→ 5→ 1 (there are several equivalent tours).
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Figure 15.9: Eulerian graph for the extraction of the circuit

15.5 Location of income tax offices

The income tax administration is planning to restructure the network of income tax offices in a region.
The graph in Figure 15.10 shows the cities in the region and the major roads. The bold numbers printed
close to the cities indicate the population in thousands of inhabitants. The arcs are labeled with the
distances in kilometers (printed in italics). The income tax administration has determined that offices
should be established in three cities to provide sufficient coverage. Where should these offices be located
to minimize the average distance per inhabitant to the closest income tax office?
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Figure 15.10: Graph of towns and roads of the region

15.5.1 Model formulation

We are dealing here with a classical problem called the p-median problem. Let CITIES denote the set of
cities in the region and NUMLOC the number of offices to install. We write POPc for the population of
city c. The lengths of the shortest paths between cities are given by a distance matrix DIST shown in the
following table.

The distance matrix can be calculated from the graph in Figure 15.10 by an all-pairs shortest path algo-
rithm like the Floyd-Warshall algorithm [AMO93]:

• For all node pairs (c, d): initialize the distance label DISTcd with plus infinity (a sufficiently large
positive value)

• For all nodes c: set DISTcc := 0

• For all arcs a = (c, d): set DISTcd to the length of the arc
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Table 15.1: Distance Matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 0 15 37 55 24 60 18 33 48 40 58 67

2 15 0 22 40 38 52 33 48 42 55 61 61

3 37 22 0 18 16 30 43 28 20 58 39 39

4 55 40 18 0 34 12 61 46 24 62 43 34

5 24 38 16 34 0 36 27 12 24 49 37 43

6 60 52 30 12 36 0 57 42 12 50 31 22

7 18 33 43 61 27 57 0 15 45 22 40 61

8 33 48 28 46 12 42 15 0 30 37 25 46

9 48 42 20 24 24 12 45 30 0 38 19 19

10 40 55 58 62 49 50 22 37 38 0 19 40

11 58 61 39 43 37 31 40 25 19 19 0 21

12 67 61 39 34 43 22 61 46 19 40 21 0

• For all nodes b, c, d:
if DISTcd > DISTcb + DISTbd: set DISTcd := DISTcb + DISTbd

For the formulation of the problem two groups of binary variables are necessary: a variable buildc that is
1 if and only if a tax office is established in city c (15.5.1), and a variable dependcd that equals 1 if the city
c depends on the office in city d (15.5.2). The variables dependcd are required for calculating the average
distance per inhabitant and to find out which city depends on which office.

∀c ∈ CITIES : buildc ∈ {0, 1} (15.5.1)

∀c, d ∈ CITIES : dependcd ∈ {0, 1} (15.5.2)

NUMLOC offices should be opened, which is expressed by the constraint (15.5.3). The constraints (15.5.4)
indicate that every city depends on a single office.∑

c∈CITIES

buildc = NUMLOC (15.5.3)

∀c ∈ CITIES :
∑

d∈CITIES

dependcd = 1 (15.5.4)

The objective function (15.5.5) to be minimized is the total distance weighted by the number of inhabi-
tants of the cities. We need to divide the resulting value by the total population of the region to obtain
the average distance per inhabitant to the closest income tax office.

minimize
∑

c∈CITIES

∑
d∈CITIES

POPc · DISTcd · dependcd (15.5.5)

If we stop here, we risk assigning cities to tax offices that do not exist! We make this impossible by
translating the implication buildc = 0 ⇒ dependcd = 0 into a linear constraint. From this result the
constraints (15.5.6): buildc at 0 forces dependcd to be 0.

∀c, d ∈ CITIES : dependcd ≤ buildd (15.5.6)

15.5.2 Implementation

The following Mosel program implements the mathematical model of the previous section. In theory it is
necessary to define all the variables as binaries, but one may try to solve the problem by omitting these
constraints for the dependcd variables to reduce the total number of integer variables.

model "J-5 Tax office location"
uses "mmxprs"

forward procedure calculate_dist

declarations
CITIES = 1..12 ! Set of cities

DIST: array(CITIES,CITIES) of integer ! Distance matrix
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POP: array(CITIES) of integer ! Population of cities
LEN: dynamic array(CITIES,CITIES) of integer ! Road network
NUMLOC: integer ! Desired number of tax offices

build: array(CITIES) of mpvar ! 1 if office in city, 0 otherwise
depend: array(CITIES,CITIES) of mpvar ! (c,d) 1 if city c depends on office

! in city d, 0 otherwise
end-declarations

initializations from ’j5tax.dat’
LEN POP NUMLOC

end-initializations

! Calculate the distance matrix
calculate_dist

! Objective: weighted total distance
TotDist:= sum(c,d in CITIES) POP(c)*DIST(c,d)*depend(c,d)

! Assign cities to offices
forall(c in CITIES) sum(d in CITIES) depend(c,d) = 1

! Limit total number of offices
sum(c in CITIES) build(c) <= NUMLOC

! Relations between dependencies and offices built
forall(c,d in CITIES) depend(c,d) <= build(d)

forall(c in CITIES) build(c) is_binary

! Solve the problem
minimize(TotDist)

end-model

The Floyd-Warshall algorithm for finding the shortest distance between every pair of nodes is imple-
mented with procedure calculate_dist .

procedure calculate_dist
! Initialize all distance labels with a sufficiently large value

BIGM:=sum(c,d in CITIES | exists(LEN(c,d))) LEN(c,d)
forall(c,d in CITIES) DIST(c,d):=BIGM

! Set values on the diagonal to 0
forall(c in CITIES) DIST(c,c):=0

! Length of existing road connections
forall(c,d in CITIES | exists(LEN(c,d))) do

DIST(c,d):=LEN(c,d)
DIST(d,c):=LEN(c,d)

end-do

! Update shortest distance for every node triple
forall(b,c,d in CITIES | c<d )

if DIST(c,d) > DIST(c,b)+DIST(b,d) then
DIST(c,d):= DIST(c,b)+DIST(b,d)
DIST(d,c):= DIST(c,b)+DIST(b,d)

end-if
end-procedure

15.5.3 Results

Without specifying that the variables dependcd are binary, luckily the optimizer finds a solution with all
variables taking integer values and a total weighted distance of 2438. Since the region has a total of
185,000 inhabitants, the average distance per inhabitant is 2438/185 ≈ 13.178 km. The three offices are
established at nodes 1, 6, and 11. The first serves cities 1,2,5,7, the office in 6 cities 3,4,6,9, and the office
in 11 cities 8,10,11,12.
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15.6 Efficiency of hospitals

The administration of the hospitals in Paris decides to measure the efficiency of the surgery departments
in four major hospitals with a desire to improve the service to the public. To keep this study anonymous,
the hospitals are named H1 to H4. The method suggested to measure the efficiency is DEA (Data Envel-
opment Analysis). This method compares the performance of a fictitious hospital with the performances
of the four hospitals.

Three initial indicators (resources) are taken into account: the number of non-medical personnel, the
general expenses, and the available number of beds. In addition, four final indicators (services) are
analyzed: the number of hospital admissions per day, the number of consultations in the outpatients’
clinic, the number of nurses on duty every day, and the number of interns and doctors on duty every day.
The corresponding data have been analyzed over a period of two years and the numbers representing a
day of average activity in every hospital are given in the following two tables.

Table 15.2: Resource indicators

H1 H2 H3 H4

Non-medical personnel 90 87 51 66

General expenses (in kBC) 38.89 109.48 40.43 48.41

Number of beds 34 33 20 33

Table 15.3: Service indicators

H1 H2 H3 H4

Admissions 30.12 18.54 20.88 10.42

Consultations 13.54 14.45 8.52 17.74

Interns and doctors 13 7 8 26

Nurses on duty 79 55 47 50

Justify through the DEA method how hospital H2 is performing compared to the others.

15.6.1 Model formulation

15.6.1.1 General idea of the DEA method

To use the DEA method and measure the efficiency of a hospital, we need to develop a mathematical
model for every hospital that is to be evaluated. Hospital H2 is used here as an example, but the proce-
dure for measuring the performance of the other hospitals would be similar.

By using Mathematical Programming we are going to construct a fictitious hospital based on the data
from the four hospitals. The service indicators of the fictitious hospital will be weighted sums of the
service indicators of the hospitals H1 to H4. Similarly, the resource indicators will be weighted sums of
the resource indicators of the four hospitals, always using the same coefficients.

The service indicators of the fictitious hospital must be larger than those of the hospital H2. If they are
smaller, then the fictitious hospital requires less resources than H2 for a service that is at least equivalent.
In other words, hospital H2 is less performing than the fictitious hospital and hence less performing than
the other hospitals.

15.6.1.2 Modeling our problem

Let HOSP be the set of hospitals in this study and h′ the hospital the performance of which we wish to
measure. Let coefh be the DEA coefficient (decision variable) associated with hospital h. The DEA method
imposes a requirement that the sum of these coefficients is equal to 1 (15.6.1).∑

h∈HOSP

coeffh = 1 (15.6.1)

The constants INDSERVsh represent the service indicator s of every hospital h (given in Table 15.3). The
index s takes its value in the set SERV of service indicator types. Similarly, INDRESrh represents the indi-
cator for resource r of hospital h (data given in Table 15.2), where r ranges over the set RES of resource
indicator types. To simplify the model formulation, we introduce variables fservs and fresr for the sums
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weighted by the coefficients coefh for every service and resource indicator type, constraints (15.6.2) and
(15.6.3).

∀s ∈ SERV :
∑

h∈HOSP

INDSERVsh · coefh = fservs (15.6.2)

∀r ∈ RES :
∑

h∈HOSP

INDRESrh · coefh = fresr (15.6.3)

The variables fservs (service indicators of the fictitious hospital) must be larger than the service indicators
of the hospital h′ for which we wish to evaluate the performance. The constraints (15.6.4) establish these
relations for all service types in SERV .

∀s ∈ SERV : fservs ≥ INDSERVsh′ (15.6.4)

The weighted sum of the resource indicators fresr (that is, the resource indicators of the fictitious hospital)
will not be compared directly with the value of the resource indicators of hospital h′, but with a fraction
eff of these indicators. The constraints (15.6.5) link the coefficients coefh and this new variable eff . The
sense of the inequality has to be “less than or equal to” since we are trying to show that the hospital
h′ uses less resources than the fictitious hospital. To give a numerical example, the number of beds in
hospital h′ is 33. In this case 33 ·eff corresponds to the number of beds in the fictitious hospital. If eff = 1
then the number of beds available in the fictitious hospital is identical to that of hospital h′. If eff is
larger than 1, then the fictitious hospital uses more beds than the hospital h′ and in the opposite case,
the hospital h′ is performing worse than the fictitious hospital for this resource.

∀r ∈ RES : fresr ≤ INDRESrh′ · eff (15.6.5)

If a solution exists with eff < 1, this means that the fictitious hospital needs less resources than the
hospital h. The objective function (15.6.6) for the DEA method minimizes the value of eff , that is, the
resources required by the fictitious hospital. To complete the mathematical model, we need to add the
non-negativity constraints (15.6.7) to (15.6.10) for all variables.

minimize eff (15.6.6)

∀h ∈ HOSP : coefh ≥ 0 (15.6.7)

eff ≥ 0 (15.6.8)

∀s ∈ SERV : fservs ≥ 0 (15.6.9)

∀r ∈ RES : fresr ≥ 0 (15.6.10)

15.6.2 Implementation

The following Mosel implementation of the mathematical model solves the problem for every hospital
in the set HOSP. The constraint on the sum of the DEA coefficients (15.6.1) and the relations defining
the service and resource indicators of the fictitious hospital (constraints (15.6.2) and (15.6.3)) are stated
only once. The definition of all constraints referring to a specific hospital (namely constraints (15.6.4) and
15.6.5) is replaced in every new execution of the loop by the corresponding constraints for the hospital
that is to be evaluated. To be able to replace (and hence delete) a constraint in the problem held in Mosel,
it needs to be named as shown in the following program for LimServ and LimRes . (The declaration of
constraints is optional, but it is recommended for efficiency reasons if the array sizes are known like in
this example).

model "J-6 Hospital efficiency"
uses "mmxprs"

declarations
HOSP = 1..4 ! Set of hospitals
SERV: set of string ! Service indicators
RES: set of string ! Resource indicators

INDSERV: array(SERV,HOSP) of real ! Service indicator values
INDRES: array(RES,HOSP) of real ! Resource indicator values

end-declarations

initializations from ’j6hospit.dat’
INDSERV INDRES

end-initializations
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finalize(SERV); finalize(RES)

declarations
eff: mpvar ! Efficiency value
coef: array(HOSP) of mpvar ! Coefficients for DEA method
fserv: array(SERV) of mpvar ! Service indicator of fict. hospital
fres: array(RES) of mpvar ! Resource indicator of fict. hospit.
LimServ: array(SERV) of linctr ! Hospital-specific service constr.
LimRes: array(RES) of linctr ! Hospital-specific resource constr.

end-declarations

! DEA coefficients
sum(h in HOSP) coef(h) = 1

! Relations between service and resource indicators
forall(s in SERV) fserv(s) = sum(h in HOSP) INDSERV(s,h)*coef(h)
forall(r in RES) fres(r) = sum(h in HOSP) INDRES(r,h)*coef(h)

! Solve the problem for every hospital
forall(h in HOSP) do
! Limits on services and resources for the hospital currently looked at

forall(s in SERV) LimServ(s):= fserv(s) >= INDSERV(s,h)
forall(r in RES) LimRes(r):= fres(r) <= INDRES(r,h)*eff

! Minimize efficiency index
minimize(eff)
writeln("Evaluation of hospital ", h, ": ", getobjval)

end-do

end-model

15.6.3 Results

The program finds efficiency values 1 for the hospitals 1, 3, and 4, so these hospitals have the same
performance as the fictitious hospital. For hospital 2, the algorithm returns a value of 0.921. This means
that the fictitious hospital reaches the same level of services with only approximately 92% of the resources
used by hospital 2. In other words, hospital 2 performs less well than the other hospitals in the study. For
every evaluation run, the coefficients coefh represent the proportions of the four hospitals that form the
fictitious hospital.

15.7 References and further material

The mathematical model in Section 15.1 allows us to deal with large maximum flow problems. However,
even more efficient graph algorithms exist. Historically the first one was suggested by Ford and Fulkerson
[FF67]. Its complexity is O(nm2), where n denotes the number of nodes in the graph and m the number
of arcs. An even faster algorithm in O(n2m) is due to Ahuja and Orlin [AMO93]. In the latter reference
an improved version in O(mn · log U) is also described, where U denotes the maximum value of the arc
capacities.

The problem in Section 15.2 is a problem of covering the edges by the nodes, node cover or vertex cover
in graph theory. This problem is NP-hard [CLR90]. Heuristics are described by Papadimitriou and Steiglitz
[PS98].

Partitioning problems are defined over a set S of m elements and a set U of n pre-selected subsets of S.
They consist of choosing in U the subsets forming a partitioning of S to optimize the total cost of the
selection. Every subset may be encoded as a binary vector and from these vectors results a binary matrix
A (m × n). The partitioning constraints may then be written as A · x = s, s denoting a vector formed by
m entries of 1. Covering problems are quite similar, but an element of S may belong to several chosen
subsets: the constraints are therefore written as A·x ≥ s. These problems frequently occur for subdividing
geographical regions or for the coverage of zones by services.

Besides the partitioning problem in Section 15.3, this book contains two other covering problems: the
cutting of sheet metal in Chapter 9 and the location of telephone transmitters in Chapter 12. Cover-
ing problems are easier, since they always have a trivial solution, namely the one using all the available
subsets. Partitioning problems may be infeasible like the subdivision into five electoral districts. In both
problem types, the simplex algorithm finds a majority of the variables with integer values in the opti-
mum which facilitates the subsequent tree search for the remaining fractional variables, see for instance
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Beasley for the covering problem [Bea87] and Fisher [FK90] for both types of problem.

The book by Syslo describes heuristics and exact tree search methods for both problem types, with Pascal
source code [SDK83]. Very efficient heuristics guided by the Linear Programming relaxations have recently
been suggested for very large size covering problems [CFT99].

The Chinese Postman problem seen in Section 15.4 for gritting the streets of a village also exists for
undirected graphs. Edmonds and Johnson give efficient polynomial algorithms for the directed and
undirected case [EJ73]. Pascal source code for the extraction of Eulerian circuits and the directed Chinese
Postman are provided in the book by Prins [Pri94a]. The Chinese Postman problem becomes a Rural
Postman problem if only a subset of the arcs needs to be visited.

If quantities are added that need to be distributed over the arcs and if trucks of limited capacity are
available and several tours are necessary we obtain a Capacitated Arc Routing Problem (CARP). The rural
postman and the CARP are NP-hard problems. Numerical examples and heuristics are given in the book by
Evans and Minieka [EM92]. Hertz et al. describe local search procedures for the rural postman [HLNH99]
and a tabu search methods for the CARP [HLM00].

Location problems like the placement of income tax offices (Section 15.5) form a rich class of combina-
torial problems to which the book by Daskin is entirely dedicated [Das95]. The problem of p-centers is
another classical one that differs from the p-median problem in its objective that consists of minimizing
the maximum distance between an office and a city. This book contains other problems of this type,
like the depot location one in Chapter 10 and the choice of locations for mobile phone transmitters in
Chapter 12.

The DEA (Data Envelopment Analysis) method from Section 15.6 is widely used for comparing the perfor-
mances related to several almost identical environments. The first applications were indeed to measure
the efficiency of a hospital. Other applications and examples for this methods may be found in Sherman
[She84] and Lewin et al. [LM81]. A recent book by Cooper et al. gives a very complete overview of the
DEA method and its numerous applications [CST99].

Local authorities and public services 247 Applications of optimization with Xpress-MP



Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in Linear Programming. Mathematical Programming,
71(2):221–245, 1995.

[AC91] D. Applegate and W. Cook. A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal on
Computing, 3(2):149–156, 1991.

[AD93] R. W. Ashford and R. C. Daniel. Mixed-Integer Programming in Production Scheduling: A Case Study. In
T. Ciriani and R. C. Leachman, editors, Optimization in Industry, pages 231–239, New York, 1993. John Wiley
& Sons.

[AMO93] R. K.. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Theory, Algorithms and Applications. Prentice
Hall, Englewood Cliffs, NJ, 1993.

[Arb93] A. Arbel. Exploring Interior-Point Linear Programming: Algorithms and Software. The MIT Press, 1993.

[ARVK89] I. Adler, M. Resende, G. Veiga, and N. Karmarkar. An Implementation of Karmarkar’s Algorithm for Linear
Programming. Mathematical Programming, 44:297–335, 1989.

[Baa88] S. Baase. Computer Algorithms. Addison-Wesley, 1988.

[BC96] J. E. Beasley and B. Cao. A Tree Search Algorithm for the Crew cheduling Problem. European Journal of
Operational Research, 94:517–526, 1996.

[BDB95] H. Beringer and B. De Backer. Combinatorial Problem Solving in Constraint Logic Programming with Co-
operating Solvers. In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and Practical
Applications, pages 245–272, Amsterdam, 1995. Elsevier Science B. V./North-Holland.

[BDGP95] P. Boizumault, Y Delon, C. Guéret, and L. Péridy. Résolution de problèmes en Programmation Logique avec
Contraintes. Revue d’Intelligence Artificielle, 9(3):383–406, 1995.

[Bea59] E. M. L. Beale. On Quadratic Programming. Naval. Res. logist. Q., 6:227–243, 1959.

[Bea87] J. E. Beasley. An Algorithm for Set Covering Problems. European Journal of Operational Research, 31:85–93,
1987.
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B&B, see Branch and Bound
bin packing, 122
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forall-do , 50–54, 93
forward , 50, 61, 84
free variable, 20, 25
from , 61
function, 124
function , 51, 61, 124

Gantt chart, 93
generalized assignment problem, 117
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getlast , 51, 116
getobjval , 84
getprobstat , 236
getsize , 51–54, 124, 171
getsol , 50, 65, 84, 176
global optimum, 31
Gozinto graph, 109

hard constraint, 27

if , 50, 51, 53, 54, 61, 78, 96, 105, 108, 201, 225
if-then , 50, 51, 53, 54, 64, 96
if-then-elif , 52
if-then-elif-then-else , 65
if-then-else , 51, 54, 65
in , 61
include , 61, 235
index set, 59, 214
infeasible, 8, 15, 236
initialisations , 61
initializations , 60, 61, 68
integer , 50, 61, 99
Integer Programming, 30
integer variable, 30
inter , 61
Interior Point algorithm, 18
inventory balance equation, 104
IP, see Integer Programming
is_binary , 50, 61
is_continuous , 61
is_free , 61
is_integer , 50, 61
is_partint , 61
is_semcont , 61
is_semint , 61
is_sos1 , 61
is_sos2 , 61
isodd , 51, 116

JIT, see Just-in-Time
job shop, 102
Just-in-Time, 119

Kirchhoff’s law, 142, 174, 229
knapsack constraints, 117
knapsack problem, 58, 122, 128

linctr , 61, 147
line break, 59
linear equation, 10
linear expression, 9
linear inequality, 10
Linear Programming, 9
Linear Programming problem, 10
loading, 121
local optimum, 31
long-term planning, 103
loss equations, 21
lot sizing, 119
lower bound, 19
lower limit, 19
LP, see Linear Programming
LP solution, 77, 205

makespan, 93

matching, 158
matching with maximum total weight, 158
Material Requirement Planning, 119
max, 52, 53, 61, 154
maximin, 122, 211
maximin assignment problem, 187
maximize , 59, 221
maximum cardinality matching, 158
maxlist , 52, 154
MCNF, see multi-commodity network flow
Method of Potentials, 102
mid-term planning, 103
min , 52, 53, 61, 154
minimax, 122
minimize , 221
minimum cost flow problem, 74, 141, 155
minlist , 52, 154
MIP, see Mixed Integer Programming
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Programming, 30
Mixed Integer Quadratic Program, 207
Mixed Integer Quadratic Programming, 46
mmquad, 206
mmxprs, 206
mod, 53, 54, 61, 203
model, 58

parameter, 199
model , 58, 61, 84
model cuts, 147, 150
modules, 56
mpvar , 59, 61, 72
MRP, see Material Requirement Planning
MRP method, 119
multi-commodity network flow, 192
multi-stage production planning, 119
multi-time period model, 23, 119

Newton-Barrier algorithm, 18
next , 61
node cover, 246
node selection strategy, 33
non-negativity constraint, 8, 10
not , 52, 61
NP-hard, 101

objective function, 8, 10
dummy, 221

of , 61
optimization, 8
options , 61
or , 52, 61, 160
output

visualize, 125
output printing, 59

p-median problem, 241
packing, 121, 122
panic variable, 27
parameter, 96, 199
parameters , 61
partial integer variable, 30
partitioning problem, 234, 246
Parts explosion, 109
path
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node-disjunctive, 174
pattern selection, 121
PERT method, 102
placement, 121
planning, 103
portfolio optimization, 46
presolving, 18
procedure , 50–52, 54, 61, 124
prod , 61, 108
product mix, 62
production planning, 103
public , 61

QP, see Quadratic Programming
Quadratic Program, 206
Quadratic Programming, 46

range , 50–53, 61, 83, 92, 137
range set, 59
ratio objective function, 28
real , 61, 99, 124, 176
reduced cost, 12
reference row, 40
relaxation, 31
repeat , 61
repeat-until , 50–52, 98, 124
returned , 124
RHS, see right hand side
right hand side, 10
round , 50, 53, 54, 99, 176
Rural Postman problem, 247

SC, see semi-continuous variable
scheduling

flow shop, 102
job shop, 102
open shop, 193

scheduling with project crashing, 83
semi-continuous integer variable, 30
semi-continuous variable, 30, 199
separation, 32
sequence-dependent setup times, 102
set , 61
set of integer , 51, 54, 137
setparam , 51
setup costs, 119
shadow price, 12, 13
short-term planning, 103
Simplex method, 18
soft constraint, 27
solving, 59
SOS1, see Special Ordered Set of type 1
SOS2, see Special Ordered Set of type 2
sparse arrays, 93
sparse format, 83
Special Ordered Set of type 1, 30
Special Ordered Set of type 2, 31
sqrt , 52, 141
Stochastic Programming, 11
strfmt , 50, 68
string , 61
sub-cycles, 168
subroutine, 84
sum, 61

symmetry breaking, 133, 221

technological coefficients, 21
then , 61
to , 61
transport network, 229
transportation problem, 140
transshipment flow formulation, 114
traveling salesman problem, 102
trim loss, 121
true , 61, 160
TSP, see traveling salesman problem

unbounded, 15, 236
union , 61, 144
until , 61
upper bound, 19
upper limit, 19
uses , 61

variable, 7
0/1, 30
binary, 30
fixed, 19
free, 20
integer, 30
partial integer, 30
semi-continuous, 30
semi-continuous integer, 30

variable selection strategy, 33
vehicle routing problem, 155
vertex cover, 246
visualize output, 125
VRP, see vehicle routing problem

while , 61, 124, 188
while-do , 51, 53, 54, 124

XPRS_INF, 236
XPRS_LIN, 77, 205
XPRS_MIPADDCUTOFF, 125
XPRS_OPT, 236
XPRS_UNB, 236
XPRS_UNF, 236
XPRS_VERBOSE, 125
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