FICO®Xpress Optimization

Last update 8 April, 2020

USER GUIDE

FICO® Xpress Mosel

©2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICQ"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation
purposes to determine whether to purchase a license to the software described in this documentation, or
as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).
Use of this documentation and the software described in it must conform strictly to the foregoing
permitted uses, and no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except
as may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a
particular purpose. Portions of this documentation and the software described in it may contain copyright
of various authors and may be licensed under certain third-party licenses identified in the software,
documentation, or both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and
its affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

FICO® Xpress Mosel
Deliverable Version: A
Last Revised: 8 April, 2020
Version 5.2

Contents

I Using the Mosel language 1
Introduction 2
Whyyouneed Mosel e 2
What you need to know beforeusingMosel 2
Symbols and conventions L 3
The structure of thisguide 4

1 Getting started with Mosel 5
11 Enteringamodel L 5
1.2 Thechess set problem: description, 5
121 Afirstformulation e 5

1.3 Solvingthechesssetproblem 6
1.3.1 Buildingthemodel 6

1.3.2 Obtaining a solutionusingMosel 7

1.3.3 Running Mosel fromacommandline 8

1.3.4 Using XpressWorkbench 9

2 Some illustrative examples 1
21 Theburglarproblem 1
211 Model formulation e 1

2.1.2 Implementation e e 1

2.1.3 Theburglarproblemrevisited 14

2.2 Ablendingexample 16
2.21 Themodelbackground 16

2.2.2 Model formulation. 16

2.2.3 Implementation e 16

2.2.4 Re-running the model withnewdata. 18

2.2.5 Reading data from spreadsheets and databases 18

2.2.51 Excelspreadsheets 19

2.2.5.2 Databaseexampleo 20

2.2.5.3 Generic spreadsheetexample 21

3 More advanced modeling features 23
3.1 OVerview e e e e 23
3.2 Atransportexample e e 23
3.21 Model formulation. 23

3.2.2 Implementation e e e 24

3.3 Conditional generation —the|operator 26
3.3.1 Conditional variable creationand create 26

3.4 Readingsparsedata. e e 28
3.41 Datainputwithinitializations from. 28

3.42 Datainputwithreadln. e 28

3.4.3 Datainputwithdiskdata it 29

3.5 I/0errorhandling e e e e 30
Fair Isaac Corporation Confidential and Proprietary Information i

Contents

4 Integer Programming 32
4.1 Integer Programming entitiesinMosel 32
4.2 Aprojectplanningmodel e 34

421 Model formulation. 34
4.2.2 Implementation 35
4.3 The project planning model using Special OrderedSets 36

5 Overview of subroutines and reserved words 38
51 Modules e 39
5.2 Reservedwords e 40

6 Correcting errors in Mosel models 1
6.1 Correcting syntax errorsinMosel 41
6.2 CorrectingruntimeerrorsinMosel e 42

Il Advanced language features 44

Overview 45

7 Flow control constructs 46
7.0 Selections e e 46
7.2 LOOPS . o v o e e 48

7.2 forall i e e e e e 48
7.211 Multipleindices e 49
7.21.2 Conditionalloopingo 49
7213 Counters e e e e 49
7.2.2 while e e e 50
7.2.3 repeat untill e e e 51

8 Arrays, sets, lists, and records 53

8.1 AImays e e 53

8.1.1 Arraydeclaration 54
8.1.1.1 Multipleindices e 54

8112 create 55

8.1.2 Array initialization fromfile 55

8.1.3 Automatic arrays: thearrayoperator 56

8.2 Initializingsets 57
8.21 Constantsets 57
8.2.2 Setinitialization from file, finalized and fixedsets 57

8.3 Workingwithsets e e 59
8.3.1 Setoperators. e e e 60

8.4 Initializinglists L 61
8.41 Constantlist e 61
8.4.2 Listinitializationfromfile 61

8.5 Workingwithlists e 62
8.5.1T Enumeration e e e e e 62
8.5.2 Listoperators e e e 62
8.5.3 Listhandlingfunctions 63

8.6 Records e 65
8.6.1 Definingrecords 65
8.6.2 Initialization of records fromfile 66

8.7 USertypes e e e 68

9 Functions and procedures 70
9.1 Subroutine definition 70

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

9.2 Parameters e e e e e e 71
9.3 RECUISION L o e e e e e e 72
9.4 forward e e e e 73
9.5 Overloadingof subroutines 74

10 Output 76
10.1 Producing formatted output 76
10.2 Fileoutput e 78
10.2.1 Data output with initializations to 78

10.2.2 Dataoutputwithwriteln e 79

10.2.3 Dataoutputwithdiskdata it 79

10.2.4 Solution output with initializations to 80

10.3 Realnumberformat e 81

11 More about Integer Programming 83
11T Cutgeneration L . . e 83
1111 Exampleproblem e 83

11.1.2 Model formulation. e 83

11.1.3 Implementation 84

11.1.4 Cut-and-Branch 86

11.1.5 Comparisontolerance i i i e 87

11.1.6 Branch-and-Cut e 87

11.2 Columngeneration e e e 89
11.21 Exampleproblem 89

11.2.2 Model formulation. e 89

11.2.3 Implementation 90

11.2.4 Alternative implementation: Working with multiple problems 93

12 Extensions to Linear Programming 95
T2.1 RECUrSION e e e e e e 95
1211 Example problem e 95

12.1.2 Model formulation e 95

12.1.3 Implementation 96

12.2 Goal Programming e e e e 98
12.2.1 Exampleproblem 98

12.2.2 Implementation e e 98

Il Working with the Mosel libraries 101
Overview 102
13 Cinterface 103
131 Basictasks o o L e e e 103
13.1.1 CompilingamodelinC e 103

13.1.2 ExecutingamodelinC 104

13.1.3 Termination L e e e 104

13.2 Parameters o e e e 105
13.3 Accessing modeling objects and solutionvalues 105
13.3.1 AcCCeSSINg SetS o i e e e 105

13.3.2 Retrieving solutionvalues 106

13.3.3 Sparsearrays oo e e e e e e 107

13.4 Exchanging data between an applicationandamodel 108
13.4.1 DensSearrays o v v i i e e e e e e e e e e 109

T3.4.2 SParS@arrayS v v v e e e e e e e e e e e e 110

13.4.3 Dynamicdata e 112

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

13.4.4 Scalars e e e 115

13.5 Redirectingthe Moseloutput 117
13.6 Problem solving in C with Xpress Optimizer. 118

14 Other programming language interfaces 120
TAT Java e e e e e 120
14.1.1 Compiling and executingamodelindava. 120

14.1.2 Termination e e e e e 120

T14.1.3 Parameters e e e e e 121

T14.1.4 AccessSiNg SetS i i e e e e e e e e e 121

14.1.5 Retrieving solutionvalues 122

T41.6 SParsearrayS o v v i e e e e e e e e e e e e e e e 123

14.1.7 Exchanging data between an applicationandamodel 124

14171 DensearrayS v v it e e e e e e e 124

T41.7.2 SParse arrayS v i e e e e e e e e e e e 125

14.1.7.3 Dynamicdata e 126

T41.7.4 Scalars. e 129

14.1.8 Redirectingthe Moseloutput. 130

T4.2 NET . . o e e 130
14.2.1 Compiling and executingamodel inC# 131

14.2.2 Termination L L e e e e 131

T4.2.3 Parameters o o o e e e e e 131

T4.2.4 AccessSiNg SetS e e e e e 132

14.2.5 Retrieving solutionvalues 133

T4.2.6 Sparse arrays o v i i e e e e e e e e e e e 134

14.2.7 Exchanging data between an applicationandamodel 135

T4.2.7.1 DENSEAITAYS . . v v v e e e e e e e e e e e e e 135

T4.2.7.2 SPArSEaArrayS . . . v v v v v it e e e e e e e e e e e e e e 136

14.2.7.3 Dynamicdata 138

14.2.7.4 Scalars e 140

14.2.8 Redirectingthe Moseloutput. 141

T4.3 VBA . o e e e 143
14.3.1 Compiling and executingamodel inVBA 143

T4.3.2 Parameters o o e e e e e e e e 144

14.3.3 Redirectingthe Moseloutput. L. 145

IV Extensions and tools 147
Overview 148
15 Debugger and Profiler 149
15.1 The Mosel Debugger e e e e 149
15.1.1 Usingthe Mosel Debugger e 149

15.1.1.1 Debugging concurrentmodels 151

15.1.2 Debuggerin Xpress Workbench, 152

15.2 Efficient modeling through the Mosel Profiler 152
15.2.1 Usingthe Mosel Profiler 152

15.2.1.1 Profiling concurrentmodels 154

15.2.2 Other commands formodel analysis 154

15.2.3 Some recommendations for efficient modeling 155

16 Packages 157
16.1 Definitionofconstants e 157
16.2 Definition of subroutines 158
16.3 Definitionof types 160
Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

16.4 Definition of parameterso 161
16.5 NAaMESPACES o i e e e e e e e e e e e 163
16.6 Packagesvs.modules e e e e 165

17 Language extensions 167
17.1 Generalized filehandling e 167
17.1.1 Displaying the available I/Odrivers 167

17.1.2 Listof l/0drivers e 168

17.2 Multiple models and parallel solving withmmjobs 174
17.2.1 Running a model from anothermodel 174

17.2.2 Compilingtomemory e 175

17.2.3 Exchanging databetweenmodels 176

17.2.4 Distributed computing 177

17.3 Graphicsand GUIS e e e e e 178
17.3.1 Drawinguser graphswithmmsvg 179

17.3.2 XMLand HTML e e e e e e 180

17.3.21T mmxml. . . . e e 180

17.3.2.2 Readingand writingXMLdata. 180

17.3.2.3 GeneratingHTML 183

17.3.3 Xpressinsight e 184

T17.4 SOIVErS . . . o e e e e e 187
17.4.1 QCQP solving with Xpress Optimizer 187

17.4.2 Xpress NonLinear e e 189

17.4.3 XpressKalis e 190

17.5 Dateandtimedatatypes e e e e 192
17.5.1 Initializing datesandtimes 192

17.5.2 Datesandtimesasconstants 194

17.5.3 Conversiontoand fromnumbers 194

17.5.4 Operations and access functions 195

17.6 Text handling and regular expressions 196
17.6.1 text VS, string i i i i it e e e e e e e e 196

17.6.2 Parsingtext e e e e e e 197

17.6.3 Regular expressions. i e 198

18 Annotations 200
18.1 Accessingannotations e 201
18.2 moseldoc e 203

V Remote invocation of Mosel 207
Overview 208
19 XPRD C 209
19.1 Exchanging datawiththemodel 210

20 XPRD Java 214
20.1 Exchanging data withthemodel 215
Appendix 219
A Mosel Language overview 220
A1 StructureofaMoselmodel 220
A2 Datastructures e e e e 221
A3 Selectionstatements e 222
Fair Isaac Corporation Confidential and Proprietary Information v

Contents

A LOOPS . o v e e 222
A5 0perators e e e e e e e e 223
A.6 Builtinfunctionsand procedures 224
A7 Constrainthandling e 226
A8 Problemhandling e 226
Good modeling practice with Mosel 228
B.1 Usingconstantsand parameters. e 228
B.2 Naming sets e e e e 228
B.3 Finalizing sets anddynamicarrays. 229
B.4 Orderingindices e 231
B.5 Useofexists @ i i e e 231
B.6 Structuringamodel e 232
B.7 Transforming subroutinesintousermodules 232
B.8 Algorithm choice and parametersettings, 232
Character encoding in Mosel 234
C.1 What is a "character encoding", "character map", "codepage™ 234
C.2 WhatisUnicode? e e 235
C.3 Whatis the meaning of UTF-8,16,32and UCS-2? 235
C.4 WhatisaBOM? 235
C.5 Which character encoding is configured on my computer? 235
C.6 Which files are concerned by character encodinginMosel? 236
C.7 How can | convert the character encodingof atextfile?. 236
Contacting FICO 238
Product support e e e 238
Producteducation e 238
Productdocumentation 238
Salesand maintenance 239
Related services e 239
FICO Community e e e e e e e e 239
AboUt FICO e e e 239
Index 240
Fair Isaac Corporation Confidential and Proprietary Information vi

l. Using the Mosel language

Introduction

Why you need Mosel

‘Mosel’ is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced modeling
and solving language and environment, where optimization problems can be specified and solved with
the utmost precision and clarity.

Here are some of the features of Mosel

m Mosel's easy syntax is regular and described formally in the reference manual.

m Mosel supports dynamic objects, which do not require pre-sizing. For instance, you do not have to
specify the maximum sizes of the indices of a variable x.

m Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be run on
any computer platform, and which hides the intellectual property in the model if so required.

m Mosel is embeddable. There is a runtime library which can be called from your favorite
programming language if required. You can access any of the model’s objects from your
programming language.

m Mosel is easily extended through the concept of modules. It is possible to write a set of functions,
which together stand alone as a module. Several modules are supplied with the Mosel
distribution, including Xpress Optimizer.

m Support for user-written functions and procedures is provided.
m The use of sets of objects is supported.

m Constraints and variables etc. can be added incrementally. For instance, column generation can
depend on the results of previous optimizations, so subproblems are supported.

The modeling component of Mosel provides you with an easy to use yet powerful language for
describing your problem. It enables you to gather the problem data from text files and a range of
popular spreadsheets and databases, and gives you access to a variety of solvers, which can find
optimal or near-optimal solutions to your model.

What you need to know before using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to represent
unknown quantities, and the use of this sort of variable in simple linear equations and inequalities, for
example:

x+y <6

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is not
essential. Similarly some familiarity with the use of computers would be helpful.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

For all but the simplest models you should also be familiar with the idea of summing over a range of
variables. For example, if produce; is used to represent the number of cars produced on production line
j then the total number of cars produced on all N production lines can be written as:

N

> produce;
=

This says ‘sum the output from each production line produce; over all production lines j fromj = 1to
j=N.

If our target is to produce at least 1000 cars in total then we would write the inequality:

N
Zproducej > 1000

=1

We often also use a set notation for the sums. Assuming that LINES is the set of production lines
{1,.., N}, we may write equivalently:
> produce; > 1000
JELINES

This may be read ‘sum the output from each production line produce; over all production lines j in the
set LINES'.

Other common mathematical symbols that are used in the text are N (the set of non-negative integer
numbers {0,1,2,...}), N and U (intersection and union of sets), A and V (logical ‘and’ and ‘or’), the
all-quantifier V (read ‘for all’), and 3 (read ‘exists’).

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. So provided
you are happy using the above mathematical notation the step to using a modeling language will be
straightforward.

Symbols and conventions
We have used the following conventions within this guide:

m Mathematical objects are presented in italics.

m Examples of commands, models and their output are printed in a Courier font. Filenames are
given in lower case Courier.

m Decision variables have lower case names; in most example problems these are verbs (such as
use, take).

m Constraint names start with an upper case letter, followed by mostly lower case (e.g. Profit,
TotalCost).

m Data (arrays, sets, lists) and constants are written entirely with upper case (e.g. DEMAND, COST,
ITEMS).

m The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in the
middle, but often confusingly displays on-screen without the small gap. In the UNIX world it is
referred to as the pipe symbol. (Note that this symbol is not the same as the character sometimes
used to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in hexadecimal, 124 in decimal.

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

The structure of this guide
This user guide is structured into these main parts

m Part | describes the use of Mosel for people who want to build and solve Mathematical
Programming (MP) problems. These will typically be Linear Programming (LP), Mixed Integer
Programming (MIP), or Quadratic Programming (QP) problems. The part has been designed to
show the modeling aspects of Mosel, omitting most of the more advanced programming
constructs.

m Part Il is designed to help those users who want to use the powerful programming language
facilities of Mosel, using Mosel as a modeling, solving and programming environment. ltems
covered include looping (with examples), more about using sets, producing nicely formatted
output, functions and procedures. We also give some advanced MP examples, including
Branch-and-Cut, column generation, Goal Programming and Successive Linear Programming.

m Part Il shows how Mosel models can be embedded into large applications using programming
languages like C, Java, or C#.

m Part IV gives examples of some of the advanced features of Mosel, including the use of the Mosel
Debugger and Profiler for the development and analysis of large-scale Mosel models, an
introduction to the notion of packages, and an overview of the functionality of the modules in the
Mosel distribution.

This user guide is deliberately informal and is not complete. It must be read in conjunction with the
Mosel reference manual, where features are described precisely and completely.

Fair Isaac Corporation Confidential and Proprietary Information 4

CHAPTER 1

Getting started with Mosel

1.1 Entering a model

In this chapter we will take you through a very small manufacturing example to illustrate the basic
building blocks of Mosel.

Models are entered into a Mosel file using a standard text editor (do not use a word processor as an
editor as this may not produce an ASCII file).

If you have access to Windows, Xpress Workbench is the model development environment to use. The
Mosel file is then loaded into Mosel, and compiled. Finally, the compiled file can be run. This chapter
will show the stages in action.

1.2 The chess set problem: description

To illustrate the model development and solving process we shall take a very small example.

A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours of
machining on a lathe and the larger only requires 2 hours, because it is less intricate. There are four
lathes with skilled operators who each work a 40 hour week. The smaller chess set requires 1kg of
boxwood and the larger set requires 3 kg. However boxwood is scarce and only 200 kg per week can be
obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a
profit of $5. The problem is to decide how many sets of each kind should be made each week to
maximize profit.

1.2.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there are thus
two decision variables (or simply variables) in our model, one decision variable per product. We shall
give these variables abbreviated names:

small: the number of small chess sets to make
large: the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution to
profit is determined by the optimization process. In other words, we look to the optimizer to tell us the
best values of small, and large.

The values which small and large can take will always be constrained by some physical or technological
limits: they may be constrained to be equal to, less than or greater than some constant. In our case we
note that the joinery has a maximum of 160 hours of machine time available per week. Three hours are

Fair Isaac Corporation Confidential and Proprietary Information 5

Getting started with Mosel

needed to produce each small chess set and two hours are needed to produce each large set. So the
number of hours of machine time actually used each week is 3 - small + 2 - large. One constraint is thus:

3-.small+2 - large <160 (lathe-hours)

which restricts the allowable combinations of small and large chess sets to those that do not exceed
the lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every set
made, against 3 kg needed to make a large set, a second constraint is:

1-small +3 - large < 200 (kg of boxwood)

where the left hand side of the inequality is the amount of boxwood we are planning to use and the right
hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity constraints
are:

small >0
large > 0

In a similar way, we can write down an expression for the total profit. Recall that for each of the large
chess sets we make and sell we get a profit of $20, and one of the small chess set gives us a profit of
$5. The total profit is the sum of the individual profits from making and selling the small small sets and
the large large sets, i.e.

Profit = 5 - small + 20 - large

Profit is the objective function, a linear function which is to be optimized, that is, maximized. In this case
it involves all of the decision variables but sometimes it involves just a subset of the decision variables.
In maximization problems the objective function usually represents profit, turnover, output, sales,
market share, employment levels or other ‘good things’. In minimization problems the objective
function describes things like total costs, disruption to services due to breakdowns, or other less
desirable process outcomes.

The collection of variables, constraints and objective function that we have defined are our model. It
has the form of a Linear Programming problem: all constraints are linear equations or inequalities, the
objective function also is a linear expression, and the variables may take any non-negative real value.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we have
just developed into the syntax of the Mosel language. Remember that we use the notation that items in
italics (for example, small) are the mathematical variables. The corresponding Mosel variables will be
the same name in non-italic courier (for example, smal1).

We illustrate this simple example by using the command line version of Mosel. The model can be
entered into a file named, perhaps, chess .mos as follows:

model "Chess"

declarations
small: mpvar ! Number of small chess sets to make
large: mpvar ! Number of large chess sets to make

end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 6

Getting started with Mosel

Profit:= 5+*small + 20xlarge ! Objective function
Lathe:= 3xsmall + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3xlarge <= 200 ! kg of boxwood

end-model

Indentations are purely for clarity. The symbol ! signifies the start of a comment, which continues to
the end of the line. Comments over multiple lines start with (! and terminate with !).

Notice that the character ‘' is used to denote multiplication of the decision variables by the units of
machine time and wood that one unit of each uses in the Lathe and Boxwood constraints.

The modeling language distinguishes between upper and lower case, so Small would be recognized
as different from small.

Let's see what this all means.
A model is enclosed in a model / end-model block.

The decision variables are declared as such in the declarations / end-declarations block. Every
decision variable must be declared. LP, MIP and QP variables are of type mpvar. Several decision
variables can be declared on the same line, so

declarations
small, large: mpvar
end-declarations

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables are
constrained to be non-negative unless it is informed otherwise, so there is no need to specify
non-negativity constraints on variables.

Here is an example of a constraint:

Lathe:= 3xsmall + 2*large <= 160

The name of the constraint is Lathe. The actual constraint then follows. If the ‘constraint’ is
unconstrained (for example, it might be an objective function), then there is no <=, >= or = part.

In Mosel you enter the entire model before starting to compile and run it. Any errors will be signaled
when you try to compile the model, or later when you run it (see Chapter 6 on correcting syntax errors).

1.3.2 Obtaining a solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it. The first thing to do is to
specify to Mosel that it is to use Xpress Optimizer to solve the problem. Then, assuming we can solve
the problem, we want to print out the optimum values of the decision variables, small and large, and
the value of the objective function. The model becomes

model "Chess (completed)"

uses "mmxprs" ! We shall use Xpress Optimizer</p>
declarations
small, large: mpvar ! Decision variables: produced quantities

end-declarations

Profit:= 5+*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3xlarge <= 200 ! kg of boxwood
maximize (Profit) ! Solve the problem
writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")

writeln("Best profit is ", getobjval)

Fair Isaac Corporation Confidential and Proprietary Information 7

Getting started with Mosel

end-model

The line

uses "mmxprs"

tells Mosel that Xpress Optimizer will be used to solve the LP. The Mosel modules mmxprs module
provides us with such things as maximization, handling bases etc.

The line

maximize (Profit)

tells Mosel to maximize the objective function called Profit.

More complicated are the writeln statements, though it is actually quite easy to see what they do. If
some text is in quotation marks, then it is written literally. getsol and getobjval are special Mosel
functions that return respectively the optimal value of the argument, and the optimal objective function
value. writeln writes a line terminator after writing all its arguments (to continue writing on the same
ling, use write instead). writeln can take many arguments. The statement

writeln("small: ", getsol(small), " large: ", getsol(large))

will result in the values being printed all on one line.

1.3.3 Running Mosel from a command line

When you have entered the complete model into a file (let us call it chess .mos), we can proceed to get
the solution to our problem. We start Mosel at the command prompt by typing the following command

mosel execute chess.mos

and we will see output something like that below.

Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33

The Mosel command for executing the model can be abbreviated to
mosel exec chess

or simply
mosel chess

The model execution performed by the command execute comprises three stages:

1. Compiling chess.mos
2. Loading the compiled model

3. Running the model we have just loaded.

Instead of using execute, we can choose to explicitly generate the compiled model file chess.bim

mosel compile chess.mos

Fair Isaac Corporation Confidential and Proprietary Information 8

Getting started with Mosel

followed by

mosel run chess.bim

to load and run the compiled model.

1.3.4 Using Xpress Workbench

Under Microsoft Windows you may also use Xpress Workbench, a development studio type
environment for working with your Mosel models. Xpress Workbench is a complete modeling and
optimization development environment that presents Mosel in an easy-to-use Graphical User Interface
(GUI), with a built-in text editor.

To execute the model file chess .mos you need to carry out the following steps.

m Start up Workbench.

m Open the model file by choosing File > Open. The model source is then displayed in the central
window (the Workbench Editor).

m Click the Run button @ at the top of the window, making sure that the desired filename is
selected in the input field to its left, or alternatively, choose Run > Run chess.mos.

The resulting screen display is shown in Figure 1.1.

=) =@ %]
Project File Edt Find View Goto Run Tools Window Help chess.mos - O & - =2 o)
S open FiLes £+ B chessmos o0 x
S)
2 x chessmos + Watch Expressions]
model "Chess™ . Expression Value e 2
B a uses “mmxprs” I We shall use Xpress Optimizer =3
>80 ot .

declarations v Call Stack g
B chess.mos small,large: mpvar I Decision variables: produced quantities g
N Function File Ln Col £
<> chesso.mos end-declarations 8

No call stack to display
profit:= 5*small + 20%large I Objective function e — o
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours ~ &
Boxwood:= small + 3*large <= 200 ! kg of boxwood Venzli VL Type g
No variables to display -

maximize(Profit) I Solve the problem

v Breakpoints

writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")
writeln("Best profit is ", getobjval)
end-model

chess.mos - Sto x
Run Command: [{chessimos ¥ Rumn CWD ENV

Mon Oct 14 2019 12:38:46 GHT+0200 (GT:02:00)

FICO Xpress Mosel 64-bit v5.0.2

(c) Copyright Fair Isaac Corporation 2001-2019. All rights reserved
Compiling chess.mos to out\chess.bim with -g

Running model

Make @ small sets

Make 66.66666667 large sets

Best profit is 1333.333333

Process exited with code:

Output Immediate

Figure 1.1: Xpress Workbench screen after running chess.mos

The logging pane at the bottom of the workspace is automatically displayed when compilation starts. If
syntax errors are found in the model, they are displayed here, with details of the line and character
position where the error was detected and a description of the problem, if available. If the model has
been compiled successfully, this pane displays the output produced by running the model.

If the model is run in debug mode by selecting the Debug button -:.:- Workbench makes all information
about the solution available through the Debugger pane on the right border of the workspace window.
By expanding the Variables entry in this pane, the solution and reduced cost values for decision
variables are displayed. Dual and slack values for constraints may also be obtained.

Fair Isaac Corporation Confidential and Proprietary Information 9

Getting started with Mosel

22 Boxwood:= small + 3*large <= 200 ! kg of boxwood

24 maximize(Profit) Solve the problem
26 writeln("Make ", getsol(small), * small sets")
27 writeln("Make *, getsol(large), " large sets")
28 writeln("Best profit is ", getobjval)
429 end-model
30

chessmos-Ru 3% -

Bow O W comes GRS ¢

Mon Oct 14 2019 12:45:46 GMT+6200 (GMT+62:00)
FICO Xpress Mosel 64-bit v5.0.2

(c) Copyright Fair Isaac Corporation 2001-2019. All rights reserved
Compiling chess.mos to out\chess.bim with -G

Running model

Debug session b371c8e3cac569993cca8ad3384afedc started

Make @ small sets

Make 66.66666667 large sets

Best profit is 1333.333333

The model is suspended after execution

10
*o1

« Project File Edit Find View Goto Run Tools Window Help chess.mos
B orenFes - B chessmos x
£ x chessmos 1z
13 model "Chess”
. . , -
- ﬂ uses “mmxprs ! We shall use Xpress Optimizer
> 09 out 16 declarations
<> chess.mos 17 small,large: mpvar I Decision variables: produced quantities
B st 12 end-declarations
19
20 S*small + 20*large 1 Objective function
21 3*small + 2*large <= 160 ! Lathe-hours

- e
- o
Expression Value

Type your expression here

v Call Stack
Function File
(Model ended) chessmos
v Variables
Variable Value
v @ Globals
v @ Boxwood 200
@ act 200
 dual 6.666667
@ name "Boxwood"
@ slack 0
@ sol 0
@ type 6
v @ large 66.666667
e 0
 name “large”
@ rcost 0
@ sol 66 666667
®uw 100000000
> @ Lathe 133333333
» @ Profit 1333333333
» @ small 0

© Output Immediate

Type

Ln
29

Type
Globals
linctr
real
real
string
real
real
integer
mpvar
real
string
real
real
real
linctr
linctr

mpvar

Col
2

s0tnaeq ssnpon wupisu ssaudy Rk

Figure 1.2: Running chess.mos with Xpress Workbench in debug mode

Fair Isaac Corporation Confidential and Proprietary Information

10

CHAPTER 2
Some illustrative examples

This chapter develops the basics of modeling set out in Chapter 1. It presents some further examples
of the use of Mosel and introduces new features:

m Use of subscripts: Almost all models of any size have subscripted variables. We show how to
define arrays of data and decision variables, introduce the different types of sets that may be
used as index sets for these arrays, and also simple loops over these sets.

m Working with data files: Mosel provides facilities to read from and write to data files in text
format and also from other data sources (databases and spreadsheets).

2.1 The burglar problem

A burglar sees 8 items, of different worths and weights. He wants to take the items of greatest total
value whose total weight is not more than the maximum WTMAX he can carry.

2.1.1 Model formulation

We introduce binary variables take; for all i in the set of all items (ITEMS) to represent the decision
whether item i is taken or not. take; has the value 1if item i is taken and 0 otherwise. Furthermore, let
VALUE; be the value of item i and WEIGHT; its weight. A mathematical formulation of the problem is
then given by:

maximize Y VALUE; - take;

i€ITEMS

Z WEIGHT,; - take; < WTMAX (weight restriction)
icITEMS
Vi € ITEMS : take; € {0,1}

The objective function is to maximize the total value, that is, the sum of the values of all items taken.
The only constraint in this problem is the weight restriction. This problem is an example of a knapsack
problem.

2.1.2 Implementation
It may be implemented with Mosel as follows (model file burglar.mos):

model Burglar
uses "mmxprs"

declarations

Fair Isaac Corporation Confidential and Proprietary Information 1

Some illustrative examples

WIMAX = 102 ! Maximum weight allowed

ITEMS = 1..8 ! Index range for items

VALUE: array (ITEMS) of real ! Value of items

WEIGHT: array (ITEMS) of real ! Weight of items

take: array (ITEMS) of mpvar ! 1 if we take item i; 0 otherwise

end-declarations

! Item: 1 2 3 4 5 6 71 8
VALUE [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:: [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE (i) *take (i)

! Weight restriction
sum(i in ITEMS) WEIGHT (i) *take (i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the MIP-problem

! Print out the solution

writeln("Solution:\n Objective: ", getobjval)

forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

When running this model we get the following output:

Solution:
Objective: 280
take (1) :
take (2) :
take (3) :
take (4) :
take (5) :
take (6) :
take (7) :
take (8) :

cCoRrORREERE

In this model there are a lot of new features, which we shall now explain.

m Constants:

WTMAX=102

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX is an
integer constant. Anything that is given a value in a declarations block is a constant.

m Ranges:

ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1to 8. This range is used as an
index set for the data arrays (VALUE and WEIGHT) and for the array of decision variables take.

m Arrays:

VALUE: array (ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS. Exactly equivalent
would be

Fair Isaac Corporation Confidential and Proprietary Information 12

Some illustrative examples

VALUE: array(l..8) of real ! Value of items

Multi-dimensional arrays are declared in the obvious way e.g.

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar) are declared
likewise, as shown in our example:

x: array (ITEMS) of mpvar

declares an array of decision variables take (1), take (2), .., take (8).
All objects (scalars and arrays) declared in Mosel are always initialized with a default value:

real, integer: 0
boolean: false
string: /"’ (i.e. the empty string)

In Mosel, reals are double precision.

m Assigning values to arrays:

The values of data arrays may either be defined in the model as we show in the example or
initialized from file (see Section 2.2).

VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]

fills the VALUE array as follows:
VALUE (1) gets the value 15; VALUE (2) gets the value 100; ..., VALUE (8) gets the value 1.

For a 2-dimensional array such as

declarations
EE: array(l..2, 1..3) of real
end-declarations

we might write

EE:: [11, 12, 13,
21, 22, 23]

which of course is the same as
EE:: [11, 12, 13, 21, 22, 23]

but much more intuitive. Mosel places the values in the tuple into EE ‘going across the rows’, with
the last subscript varying most rapidly. For higher dimensions, the principle is the same. If the
index sets of an array are other than ranges they must be given when initializing the array with
data, in the case of ranges this is optional. Equivalently to the above we may write

VALUE :: (ITEMS)[15, 100, 90, 60, 40, 15, 10, 1]
EE:: (1..2, 1..3)[11, 12, 13,21, 22, 23]

or even initialize the two-dimensional array EE rowwise:

EE:: (1, 1..3)[11, 12, 13]
EE:: (2, 1..3)[21, 22, 23]

m Summations:

MaxVal:= sum(i in Items) VALUE (i) *x (i)

Fair Isaac Corporation Confidential and Proprietary Information 13

Some illustrative examples

defines a linear expression called Maxval as the sum

> VALUE; - x;

icltems

m Naming constraints:

Optionally, constraints may be named (as in the chess set example). In the remainder of this
manual, we shall name constraints only if we need to refer to them at other places in the model.
In most examples, only the objective function is named (here Maxval) — to be able to refer to it in
the call to the optimization (here maximize (MaxVal)).

m Simple looping:
forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1, ..., 8, soO
the statement says that take (1), take (2), ..., take (8) are all binary variables.

There is another example of the use of forall at the penultimate line of the model when writing
out all the solution values.

m Integer Programming variable types:
To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a
MIP problem, we would have

xintvar is_integer

2.1.3 The burglar problem revisited
Consider this model (burglari.mos):

model "Burglar (index set)"
uses "mmxprs"

declarations
WITMAX = 102 ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"} ! Index set for items
VALUE: array (ITEMS) of real ! Value of items
WEIGHT: array (ITEMS) of real ! Weight of items
take: array (ITEMS) of mpvar ' 1 if we take item i; 0 otherwise

end-declarations

VALUE ("camera") := 15; WEIGHT ("camera") = 2
VALUE ("necklace") :=100; WEIGHT ("necklace"):= 20
VALUE ("vase") := 90; WEIGHT ("vase") := 20
VALUE ("picture") := 60; WEIGHT ("picture") := 30
VALUE ("tv") := 40; WEIGHT("tv") := 40
VALUE ("video") := 15; WEIGHT ("video") = 30
VALUE ("chest") := 10; WEIGHT ("chest") := 60
VALUE ("brick") := 1; WEIGHT ("brick") := 10

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE (i) *take (i)

! Weight restriction

Fair Isaac Corporation Confidential and Proprietary Information 14

Some illustrative examples

sum(i in ITEMS) WEIGHT (i) *take (i) <= WIMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the MIP-problem

! Print out the solution

writeln("Solution:\n Objective: ", getobjval)

forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

What have we changed? The answer is, ‘not very much’.

m String indices:

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

declares that this time ITEMS is a set of strings. The indices now take the string values ‘camera’,
‘necklace’ etc. Since string index sets have no fixed ordering like the range set we have used in the
first version of the model, we now need to initialize every data item separately, or alternatively,
write out the index sets when defining the array values, such as

VALUE :: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[15,100,90,60,40,15,10,1]
WEIGHT:: (["camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"])[2,20,20,30,40,30,60,10]

If we run the model, we get

Solution:
Objective: 280
take (camera): 1
take (necklace): 1
take (vase): 1
take (picture): 1
take(tv): O
take (video): 1
take(chest): 0
take (brick): 0

m Continuation lines:
Notice that the statement

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

was spread over two lines. Mosel is smart enough to recognize that the statement is not
complete, so it automatically tries to continue on the next line. If you wish to extend a single
statement to another line, just cut it after a symbol that implies a continuation, like an operator (+,
-, <=,...) oracomma (,) in order to warn the analyzer that the expression continues in the
following line(s). For example

ObjMax:= sum(i in Irange, j in Jrange) TAB(i,Jj) * x(i,3) +
sum(i in Irange) TIB(i) * delta (i) +
sum(j in Jrange) TUB(Jj) * phi(j)

Conversely, it is possible to place several statements on a single line, separating them by
semicolons (like x1 <= 4; x2 >= 7).

Fair Isaac Corporation Confidential and Proprietary Information 15

Some illustrative examples

2.2 A blending example

2.2.1 The model background

A mining company has two types of ore available: Ore 1 and Ore 2. The ores can be mixed in varying
proportions to produce a final product of varying quality. For the product we are interested in, the ‘grade’
(a measure of quality) of the final product must lie between the specified limits of 4 and 5. It sells for
REV = £125 per ton. The costs of the two ores vary, as do their availabilities. The objective is to
maximize the total net profit.

2.2.2 Model formulation

Denote the amounts of the ores to be used by use; and use,. Maximizing net profit (i.e., sales revenue
less cost COST, of raw material) gives us the objective function:

Z (REV - COST,) - useg
0CORES

We then have to ensure that the grade of the final ore is within certain limits. Assuming the grades of
the ores combine linearly, the grade of the final product is:

> _ocores GRADE, - use,
2 _0cORES US€o

This must be greater than or equal to 4 so, cross-multiplying and collecting terms, we have the
constraint:
> (GRADE, - 4) - useo > 0
0€ORES

Similarly the grade must not exceed 5.

EonRES GRADE, - useg <5
2 _ocORES US€o B

So we have the further constraint:

> (5~ GRADE,) - use; > 0
0€O0ORES

Finally only non-negative quantities of ores can be used and there is a limit to the availability AVAIL, of
each of the ores. We model this with the constraints:

Vo € ORES : 0 < usep; < AVAIL,

2.2.3 Implementation

The above problem description sets out the relationships which exist between variables but contains
few explicit numbers. Focusing on relationships rather than figures makes the model much more
flexible. In this example only the selling price REV and the upper/lower limits on the grade of the final
product (MINGRADE and MAXGRADE) are fixed.

Enter the following model into a file blend . mos.

Fair Isaac Corporation Confidential and Proprietary Information 16

Some illustrative examples

model "Blend"

uses "mmxprs"

declarations
REV = 125
MINGRADE = 4
MAXGRADE = 5
ORES = 1..2

COST: array (ORES) of real
AVAIL: array (ORES) of real
GRADE: array (ORES) of real

use: array (ORES) of mpvar

! Unit revenue of product
! Minimum permitted grade
! Maximum permitted grade
! Range of ores

! Unit cost of ores
! Availability of ores

! Grade of ores (measured

! Quantities of ores used

of product
of product

per unit of mass)

end-declarations

! Read data from file
initializations from

COST

AVAIL

GRADE
end-initializations

! Objective: maximize

Profit:= sum(o in ORES)

blend.dat
'blend.dat’

total profit
(REV-COST (0)) * use(0)

! Lower and upper bounds on ore quality

sum (o in ORES)
sum(o in ORES)

! Set upper bounds on

maximize (Profit)

(GRADE (0) -MINGRADE) *use (0) >=
(MAXGRADE-GRADE (0)) *use (o) >=

0
0

variables (lower bound 0 is implicit)
forall (o in ORES) use (o) <= AVAIL (o)

! Solve the LP-problem

! Print out the solution

writeln("Solution:\n
forall (o in ORES)

end-model

The file blend.dat contains

Objective: ", getobjval)

writeln(" use(" + o + "):

the following:

! Data file for 'blend.mos'

COST: [85 93]
AVAIL: [60 45]
GRADE: [2.1 6.3]

The initializations from/end-initializations block is new here, telling Mosel where to
get data from to initialize named arrays. The order of the data items in the file does not have to be the
same as that in the initializations block; equally acceptable would have been the statements

initializations from
AVAIL GRADE COST
end-initializations

Alternatively, since all data arrays have the same indices, they may be given in the form of a single

'blend.dat’

n
’

getsol (use(0)))

record, such as BLENDDATA in the following data file blendb.dat:

! [COST AVAIL GRADE]

BLENDDATA: [[85 60
[93 45

2.1]
6.3] 1

Inthe initializations block we need to indicate the label of the data record and in which order the
data of the three arrays is given:

Fair Isaac Corporation Confidential and Proprietary Information

17

Some illustrative examples

initializations from 'blendb.dat'
[COST,AVAIL, GRADE] as 'BLENDDATA'
end-initializations

2.2.4 Re-running the model with new data

There is a problem with the model we have just presented — the name of the file containing the costs
date is hard-wired into the model. If we wanted to use a different file, say blend2.dat, then we would
have to edit the model, and recompile it.

Mosel has parameters to help with this situation. A model parameter is a symbol, the value of which
can be set just before running the model, often as an argument of the run command of the command
line interpreter.

model "Blend 2"
uses "mmxprs"

parameters
DATAFILE="blend.dat"
end-parameters

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product

|
]
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array (ORES) of real ! Unit cost of ores

AVAIL: array (ORES) of real ! Availability of ores

GRADE: array (ORES) of real ! Grade of ores (measured per unit of mass)
use: array (ORES) of mpvar ! Quantities of ores used

end-declarations
! Read data from file
initializations from DATAFILE
COST
AVAIL

GRADE
end-initializations

end-model

The parameter DATAFILE is recognized as a string, and its default value is specified. If we have
previously compiled the model into say blend2.bim, then the command

mosel run blend2 DATAFILE="blend2.dat"

will read the cost data from the file we want. Or to compile, load, and run the model using a single
command:

mosel exec blend2 DATAFILE="blend2.dat"

Notice that a model only takes a single parameters block that must follow immediately after the
uses statement(s) at the beginning of the model.

2.2.5 Reading data from spreadsheets and databases

It is quite easy to create and maintain data tables in text files but in many industrial applications data
are provided in the form of spreadsheets or need to be extracted from databases. So there is a facility

Fair Isaac Corporation Confidential and Proprietary Information 18

Some illustrative examples

in Mosel whereby the contents of ranges within spreadsheets may be read into data tables and
databases may be accessed.

In addition to the documentation of the Mosel modules mmodbc and mmsheet in the Mosel language
reference manual, you will find further detail and examples of using the SQL/ODBC and spreadsheet
interfaces in other documents of the Xpress distribution: the whitepaper Using ODBC and other
database interfaces with Mosel explains how to set up an ODBC connection and discusses a large
number of examples showing different SQL/ODBC features; the whitepaper Generalized file handling in
Mosel also contains several examples of the use of ODBC. To give you a flavor of how Mosel's ODBC
and spreadsheet interfaces may be used, we now read the data of the blending problem from a
spreadsheet and then later from a database.

The ODBC technology is a generic means for accessing databases and some spreadsheets such as
certain versions of Microsoft Excel also support (a reduced set of) ODBC functionality. Mosel also
provides a specific interface to Excel spreadsheets, an example of which is shown below (Section
2.2.5.1). This interface that supports all basic tasks of data exchange should be used for working with
Excel data. A generic alternative for working with spreadsheets in .xls, .xIsx, or .csv format, including on
non-Windows platforms, is discussed in Section 2.2.5.3.

2.2.5.1 Excel spreadsheets

Let us suppose that in a Microsoft Excel spreadsheet called blend.x1s you have inserted the
following into the cells indicated:

Table 2.1: Spreadsheet example data

A B C D E F
1
2 ORES | COST | AVAIL | GRADE
3 1 85 60 2.1
4 2 93 45 6.3
5

and called the range B3:E4 MyRange.

The following model reads the data for the arrays cosT, AVAIL, and GRADE from the Excel range
MyRange. Note that we have added "mmsheet" to the uses statement to indicate that we are using
the Mosel spreadsheet module.

model "Blend 3"

uses "mmxprs", "mmsheet"

declarations

REV = 125 ! Unit revenue of product

MINGRADE = 4 ! Minimum permitted grade of product

MAXGRADE = 5 ! Maximum permitted grade of product
!

ORES = 1..2 ! Range of ores

COST: array (ORES) of real ! Unit cost of ores

AVAIL: array(ORES) of real ! Availability of ores

GRADE: array (ORES) of real ! Grade of ores (measured per unit of mass)
use: array (ORES) of mpvar ! Quantities of ores used

end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmsheet.excel:blend.xls"

[COST, AVAIL, GRADE] as "MyRange"
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 19

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/

Some illustrative examples

end-model

Instead of naming the ranges in the spreadsheet it is equally possible to work directly with the cell
references (including the worksheet name, that is, ‘Sheet 1’ in our case):

initializations from "mmsheet.excel:blend.xls"
[COST,AVAIL,GRADE] as "[Sheetl$B3:E4]"
end-initializations

or alternatively, work with row and column counters:

initializations from "mmsheet.excel:blend.xls"
[COST,AVAIL,GRADE] as "[Sheetl$R3C2:R4C5]"
end-initializations

And we can also select specific columns from a range:

initializations from "mmsheet.excel:blend.xls"
GRADE as "MyRange (#1,#4)"
end-initializations

If the range definition contains the header line with column titles (so, MyRangeWithHeader is the area
B2:E4) we can also select specific columns via their titles:

initializations from "mmsheet.excel:blend.xls"
GRADE as "skiph;MyRangeWithHeader (ORES, GRADE) "
end-initializations

2.2.5.2 Database example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess. NB: this is where to
check whether the DSN is set up with Windows 2000 or XP: Start >> Settings >> Control Panel >
Administrative Tools >> Data Sources (ODBC) >>> ODBC drivers.

Suppose we are extracting data from a table called MyTable in the database blend.mdb. There are
just the four columns ORES, COST, AVAIL, and GRADE in MyTable, and the data are the same as in the
Excel example above. We modify the example above to be

model "Blend 4"

uses "mmxprs", "mmodbc"
declarations
REV = 125 Unit revenue of product

MINGRADE = 4
MAXGRADE = 5
ORES = 1..2

Minimum permitted grade of product
Maximum permitted grade of product
Range of ores

COST: array (ORES) of real ! Unit cost of ores

AVAIL: array (ORES) of real ! Availability of ores

GRADE: array (ORES) of real ! Grade of ores (measured per unit of mass)
use: array (ORES) of mpvar ! Quantities of ores used

end-declarations

! Read data from database blend.mdb
initializations from "mmodbc.odbc:blend.mdb"

[COST,AVAIL,GRADE] as "MyTable"
end-initializations

end-model

Fair Isaac Corporation Confidential and Proprietary Information 20

Some illustrative examples

With ODBC, we can use the field names to select specific columns from a table:

initializations from "mmodbc.odbc:blend.mdb"
GRADE as "MyTable (ORES, GRADE) "
end-initializations

Instead of using the initializations block that automatically generates SQL commands for
reading and writing data it is also possible to employ SQL statements in Mosel models. The
initializations block in the model above is equivalent to the following sequence of SQL
statements:

SQLconnect ('DSN=MSAccess; DBQ=blend.mdb')
SQLexecute ("select * from MyTable ", [COST,AVAIL,GRADE])
SQLdisconnect

The SQL statement "select * from MyTable" says ‘select everything from the table called
MyTable'. By using SQL statements directly in the Mosel model it is possible to have much more
complex selection statements than the ones we have used.

To use other databases, for instance a mysq/ database (let us call it blend), we merely need to modify
the connection string — provided that we have given the same names to the data table and its columns:

initializations from "mmodbc.odbc:DSN=mysql; DB=blend"

ODBC, just like Mosel’s text file format, may also be used to output data. The reader is referred to the
ODBC/SQL documentation for more detail.

2.2.5.3 Generic spreadsheet example

We shall work once more with the Microsoft Excel spreadsheet called blend.x1s shown in Table 2.1
where we have defined the range B3:E4 MyRange.

This spreadsheet can be accessed via MS Excel as shown above. However, this access method is only
available on platforms where Excel is installed. The module mmsheet also provides more generic
interfaces for working with .xsl, .xIsx and CSV format files (usable, for example, under Linux or MacOS).
The corresponding Mosel model looks as follows.

model "Blend 3 (spreadsheet)"
uses "mmsheet", "mmxprs"

declarations
REV = 125
MINGRADE = 4
MAXGRADE = 5
ORES = 1..2

Unit revenue of product

Minimum permitted grade of product
Maximum permitted grade of product
Range of ores

COST: array (ORES) of real ! Unit cost of ores

AVAIL: array (ORES) of real ! Availability of ores

GRADE: array (ORES) of real ! Grade of ores (measured per unit of mass)
use: array (ORES) of mpvar ! Quantities of ores used

end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmsheet.xls:blend.xls"

[COST,AVAIL,GRADE] as "MyRange"
end-initializations

end-model

Fair Isaac Corporation Confidential and Proprietary Information 21

Some illustrative examples

The only modification we have made is quite subtle: in the flename we have replaced mmsheet .excel
by mmsheet.x1s.

Variant: Assuming that we have saved the data from our spreadsheet into the CSV format file
blend.csv, we need to switch to the CSV interface for accessing this data file. A CSV file contains a
single worksheet and it is not possible to define named ranges. We therefore now refer directly to the
cells via the cell references (similarly to what has been shown for Excel in Section 2.2.5.1 but without
stating a sheet name):

initializations from "mmsheet.csv:blend.csv"
[COST,AVAIL,GRADE] as "[B3:E4]"
end-initializations

or alternatively, using row and column counters:

initializations from "mmsheet.csv:blend.csv"
[COST,AVAIL,GRADE] as "[R3C2:R4C5]"
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 22

CHAPTER 3
More advanced modeling features

3.1 Overview

This chapter introduces some more advanced features of the modeling language in Mosel. We shall
not attempt to cover all its features or give the detailed specification of their formats. These are
covered in greater depth in the Mosel Reference Manual.

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each variable
appears with a non-zero coefficient in a very small fraction of the total set of constraints. Often this
property is reflected in the data tables used in the model in that many values of the tables are zero.
When this happens, it is more convenient to provide just the non-zero values of the data table rather
than listing all the values, the majority of which are zero. This is also the easiest way to input data into
data tables with more than two dimensions. An added advantage is that less memory is used by Mosel.

The main areas covered in this chapter are related to this property:

m dynamic arrays

m sparse data

m conditional generation
m displaying data

We start again with an example problem. The following sections deal with the different topics in more
detail.

3.2 A transport example

A company produces the same product at different plants in the UK. Every plant has a different
production cost per unit and a limited total capacity. The customers (grouped into customer regions)
may receive the product from different production locations. The transport cost is proportional to the
distance between plants and customers, and the capacity on every delivery route is limited. The
objective is to minimize the total cost, whilst satisfying the demands of all customers.

3.2.1 Model formulation

Let PLANT be the set of plants and REGION the set of customer regions. We define decision variables
flowpr for the quantity transported from plant p to customer region r. The total cost of the amount of

Fair Isaac Corporation Confidential and Proprietary Information 23

More advanced modeling features

product p delivered to region r is given as the sum of the transport cost (the distance between p and r
multiplied by a factor FUELCOST) and the production cost at plant p:

minimize)")" (FUELCOST - DISTANCEp + PLANTCOST}) - flowpy
PEPLANT reREGION

The limits on plant capacity are give through the constraints

Wp e PLANT: Y flowpr < PLANTCAP,
reREGION

We want to meet all customer demands:

Vr € REGION: " flowpr = DEMAND,
pEPLANT

The transport capacities on all routes are limited and there are no negative flows:

Vp € PLANT,r € REGION : 0 < flowpr < TRANSCAPp,

For simplicity’s sake, in this mathematical model we assume that all routes p — r are defined and that
we have TRANSCAPp, = 0 to indicate that a route cannot be used.

3.2.2 Implementation
This problem may be implemented with Mosel as shown in the following (model file transport .mos):

model Transport
uses "mmxprs"

declarations

REGION: set of string ! Set of customer regions

PLANT: set of string ! Set of plants

DEMAND: array (REGION) of real ! Demand at regions

PLANTCAP: array (PLANT) of real ! Production capacity at plants
PLANTCOST: array (PLANT) of real ! Unit production cost at plants

TRANSCAP: dynamic array (PLANT, REGION) of real

! Capacity on each route plant->region
DISTANCE: dynamic array (PLANT,REGION) of real

! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

flow: dynamic array (PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from 'transprt.dat'
DEMAND
[PLANTCAP, PLANTCOST] as 'PLANTDATA'
[DISTANCE, TRANSCAP] as 'ROUTES'
FUELCOST
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists (TRANSCAP (p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))
(FUELCOST * DISTANCE (p,r) + PLANTCOST(p)) * flow(p,r)

! Limits on plant capacity

Fair Isaac Corporation Confidential and Proprietary Information 24

More advanced modeling features

forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP (p)</p>

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND (r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
flow(p,r) <= TRANSCAP (p,r)

minimize (MinCost) ! Solve the problem

end-model

REGION and PLANT are declared to be sets of strings, as yet of unknown size. The data arrays
(DEMAND, PLANTCAP, PLANTCOST, TRANSCAP, and DISTANCE) and the array of variables f1ow are
indexed by members of REGION and PLANT, their size is therefore not known at their declaration. The
model shows two forms of such array declarations: (1) the arrays DEMAND, PLANTCAP, PLANTCOST are
dense arrays that are not fixed (all entries corresponding to their index sets exist, new entries are added
via assignment or if their index sets grow), (2) the arrays TRANSCAP, DISTANCE), and £1ow are marked
as dynamic, that is, only explicitly assigned or created entries exist — we want to make use of this
property in the formulation of the model.

There is a slight difference between dynamic arrays of data and of decision variables (type mpvar): an
entry of a data array is created automatically when it is used in the Mosel program, entries of decision
variable arrays need to be created explicitly (see Section 3.3.1 below).

The data file transprt.dat contains the problem specific data. It might have, for instance,

DEMAND: [(Scotland) 2840 (North) 2800 (SWest) 2600 (SEast) 2820 (Midlands) 2750]

! [CAP COST]
PLANTDATA: [(Corby) [3000 1700]
(Deeside) [2700 1600]
(Glasgow) [4500 2000]
(Oxford) [4000 21007 1]
! [DIST CAP]
ROUTES: [(Corby North) [400 1000]
(Corby SWest) [400 1000]
(Corby SEast) [300 1000]
(Corby Midlands) [100 2000]
(Deeside Scotland) [500 1000]
(Deeside North) [200 2000]
(Deeside SWest) [200 1000]
(Deeside SEast) [200 1000]
(Deeside Midlands) [400 300]

(Glasgow Scotland) [200 3000]

(Glasgow North) [400 2000]
(Glasgow SWest) [500 1000]
(Glasgow SEast) [900 200]
(Oxford Scotland) [800 *]
(Oxford North) [600 2000]
(Oxford SWest) [300 2000]
(Oxford SEast) [200 2000]
(Oxford Midlands) [400 500] 1

FUELCOST: 17

where we give the ROUTES data only for possible plant/region routes, indexed by the plant and region. It
is possible that some data are not specified; for instance, there is no Corby — Scotland route. So the
data are sparse and we just create the flow variables for the routes that exist. (The ‘' for the
(Oxford,Scotland) entry in the capacity column indicates that the entry does not exist; we may write 0’
instead: in this case the corresponding flow variable will be created but bounded to be 0 by the
transport capacity limit).

Fair Isaac Corporation Confidential and Proprietary Information 25

More advanced modeling features

3.3 Conditional generation — the | operator

3.3.1

The condition whether an entry in a data table is defined is tested with the Mosel function exists.
With the help of the ‘|’ operator we add this test to the forall loop creating the variables. It is not
required to add this test to the sums over these variables: only the flowp, variables that have been

created are taken into account. However, if the sums involve exactly the index sets that have been used

in the declaration of the variables (here this is the case for the objective function MinCost), adding the
existence test helps to speed up the enumeration of the existing index-tuples. The following section
introduces the conditional generation in a more systematic way.

Suppose we wish to apply an upper bound to some but not all members of a set of variables x;. There

are MAXI members of the set. The upper bound to be applied to x; is U;, but it is only to be applied if the
entry in the data table TAB; is greater than 20. If the bound did not depend on the value in TAB; then the

statement would read:

forall(i in 1..MAXI) x(i) <= U(1i)

Requiring the condition leads us to write

forall(i in 1..MAXI | TAB(i) > 20) x(i) <=

The symbol ‘' can be read as ‘such that’ or ‘subject to'.

Now suppose that we wish to model the following

In other words, we just want to include in a sum those x; for which A; is greater than 20. This is

accomplished by

CC:= sum((i in 1..MAXI | A(i)>20) =x(1)

Conditional variable creation and create

As we have already seen in the transport example (Section 3.2), with Mosel we can conditionally create

variables. In this section we show a few more examples.

Suppose that we have a set of decision variables x (i) where we do not know the set of i for which
x (i) exist until we have read data into an array WHICH.

model doesx
public declarations
IR = 1..15
WHICH: set of integer
x: dynamic array (IR) of mpvar
Obj,C: linctr
end-declarations

! Read data from file
initializations from 'doesx.dat'
WHICH

end-initializations

! Create the x variables that exist

Fair Isaac Corporation Confidential and Proprietary Information

26

More advanced modeling features

forall (i in WHICH) create(x(i))
! Build a little model to show what esists
Obj:= sum(i in IR) x(1)

C:= sum(i in IR) i * x(i) >= 5

exportprob ("", Obj) ! Display the model
end-model

If the data in doesx.dat are

WHICH: [1 4 7 11 14]

the output from the model is

Minimize
x(1l) + x(4) + x(7) + x(11) + x(14)
Subject To
C: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5
Bounds
End

Note: exportprob("", Obj) is a nice idiom for seeing on-screen the problem that has been
created. The public declaration of decision variables and constraints ensures that the display
employs the entity names from the model, by default it will only show automatically generated names.

The key point is that x has been declared as a dynamic array, and then the variables that exist have
been created explicitly with create. In the transport example in Section 3.2 we have seen a different
way of declaring dynamic arrays: the arrays are implicitly declared as dynamic arrays since the index
sets are unknown at their declaration.

When we later take operations over the index set of x (for instance, summing), we only include those x
that have been created.

Another way to do this, is

model doesx2
public declarations
WHICH: set of integer
Obj,C: linctr
end-declarations

initializations from 'doesx.dat'
WHICH
end-initializations

finalize (WHICH)

public declarations
x: array (WHICH) of mpvar ! Here the array is _not_ dynamic
end-declarations ! because the set has been finalized

Obj:= sum(i in WHICH) x(i)
C:= sum(i in WHICH) i * x(i) >= 5

exportprob (0, "", Obj)
end-model

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either constant
or have been finalized). Finalizing turns a dynamic set into a constant set consisting of the elements
that are currently in the set. All subsequently declared arrays that are indexed by this set will be created
as static (= fixed size). The second method has two advantages: it is more efficient, and it does not
require us to think of the limits of the range IR a priori.

Fair Isaac Corporation Confidential and Proprietary Information 27

More advanced modeling features

Note: The explicit call to finalize has become optional with Mosel 3.0 as the automatic finalization
mechanism of Mosel performs this operation by default.

3.4 Reading sparse data

Suppose we want to read in data of the form

i,], value;;

from an ASCIl file, setting up a dynamic array A (range, range) with justtheA (i, j)= valuej for
the pairs (i,) which exist in the file. Here is an example which shows three different ways of doing
this. We read data from differently formatted files into three different arrays, and using writeln show
that the arrays hold identical data.

3.4.1 Datainput with initializations from

The first method, using the initializations block, has already been introduced (transport problem
in Section 3.2).

model "Trio input (1)"
declarations
Al: dynamic array (range,range) of real
end-declarations

! First method: use an initializations block
initializations from 'data_l.dat'’

Al as 'MYDATA'

end-initializations

! Now let us see what we have
writeln('Al is: ', Al)
end-model

The data file data_1.dat could be set up thus (every data item is preceded by its index-tuple):

MYDATA: [(1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1]
This model produces the following output:

Al is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.2 Data input with readln

The second way of setting up and accessing data demonstrates the immense flexibility of read1n.
The format of the data file may be freely defined by the user. After every call to read or readln the
parameter nbread contains the number of items read. Its value should be tested to check whether the
end of the data file has been reached or an error has occurred (e.g. unrecognized data items due to
incorrect formating of a data line). Notice that read and readlninterpret spaces as separators
between data items; strings containing spaces must therefore be quoted using either single or double
quotes.

model "Trio input (2)"
declarations
A2: dynamic array (range,range) of real
i, Jj: integer
end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 28

More advanced modeling features

! Second method: use the built-in readln function
fopen("data_2.dat",F_INPUT)

repeat

readln('Tut(', i, 'and', 3j, '")=', A2(i,3J))
until getparam("nbread") < 6

fclose (F_INPUT)

! Now let us see what we have
writeln('A2 is: ', A2)
end-model

The data file data_2.dat could be set up thus:
Filedata_2.dat:

Tut (1l and 1)=

Tut (2 and 3)=
Tut (10 and 9)
Tut (3 and 2)=

When running this second model version we get the same output as before:

A2 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.3 Datainput with diskdata

As a third possibility, one may use the diskdata I/0 driver from module mmetc to read in comma
separated value (CSV) files. With this driver the data file may contain single line comments preceded
with !.

model "Trio input (3)"
uses "mmetc" ! Required for diskdata

declarations
A3: dynamic array (range,range) of real
end-declarations

! Third method: use diskdata driver
initializations from 'mmetc.diskdata:'
A3 as 'sparse,data_3.dat'
end-initializations

! Now let us see what we have
writeln('A3 is: ', A3)
end-model

The data file data_3.dat is set up thus (one data item per line, preceded by its indices, all separated
by commas; strings should be quoted using either single or double quotes):

, 12.5
, 5.6
-7.1

~

1

~

(R Ny
o -~
<

N O W
S

We obtain again the same output as before when running this model version:

A3 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

Note: the diskdata format is deprecated, it is provided to enable the use of data sets designed for
mp-model and does not support certain new features introduced by Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 29

More advanced modeling features

3.5

1/0 error handling

Mosel's default behaviour on encountering an error is to output an error message and exit from model
execution. If a model is embedded into an application this behaviour might not always be desirable,
particularly in the case of 1/0 errors. Data filenames (and contents) most often are changed at runtime
and they are therefore relatively more error-prone than invariable parts of the application.

The following modified extract of the "transport’ example from Section 3.2 shows how to implement
custom I/0 error handling in a Mosel model. To override the default error handling, this example uses
getparam and setparam to access and change the settings of several Mosel parameters:

ioctrl Enable/disable user I/0 handling. If disabled (default), the model stops when an I/0

error has occurred.

readcnt Enable/disable counting of entries per label in ‘initializations’ blocks. Needs to be

enabled when using function getreadcnt.

nbread Number of items recognized by the last read procedure or read in by the last

‘initializations’ block.

iostatus Status of the last I/0 operation. A non-zero value indicates an error.

workdir The current working directory of the model. Data files are searched for relative to the

model’s working directory—incorrect paths are quite a common source of |/0 errors.

Furthermore, we use the function getfstat provided by the module mmsystem to check whether the
data file we are about to access exists and is of a suitable type (regular file).

Model file readdataerr .mos:

model "I/O error handling"
uses "mmsystem"

declarations

REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array (REGION) of real ! Demand at regions
TRANSCAP,DISTANCE: dynamic array (PLANT,REGION) of real ! Route data
FUELCOST: real ! Fuel cost per unit distance

end-declarations
DATAFILE:= 'transprt.dat'

! Check whether the file we want to access exists
if bittest(getfstat (DATAFILE), SYS_TYP)<>SYS_REG then

writeln("File '", DATAFILE, "' does not exist or is not a regular file")
exit (1)

end-if

setparam("ioctrl", true) ! Application handles I/O errors
setparam("readcnt", true) ! Enable per label counting

initializations from DATAFILE
DEMAND

[DISTANCE, TRANSCAP] as 'ROUTE'
FUELCOST
end-initializations

if getparam("iostatus") <>0 then ! Something has gone wrong in last I/O
writeln("I/O error reading file '", DATAFILE, "'.")

! Display the working directory
writeln ("Working directory: ", getparam("workdir"))

! Display total entries read

Fair Isaac Corporation Confidential and Proprietary Information 30

More advanced modeling features

writeln("Total number of entries read: ", getparam("nbread"))
! Check no. of entries read per label
forall(s in ["DEMAND", "ROUTE", "FUELCOST"])
if getreadcnt(s)=0 then

writeln("No entries read for label '", s, "'.")
else
writeln (getreadcnt(s), " entries read for label '", s, "'.")
end-if
end-if
setparam("ioctrl", false) ! Revert to default I/O handling

setparam("readcnt", false)

end-model

We have purposely introduced a mistake (the correct label for the route data is 'ROUTES’) and running
this model therefore displays an error message produced by Mosel, and also the following output
produced by our own error reporting.

I/0 error reading file 'transprt.dat':

Mosel: E-33: Initialization from file “transprt.dat' failed for: “ROUTE'.
Working directory: c:/xpress/examples/mosel/UG/A3

Total number of entries read: 6

5 entries read for label 'DEMAND'.

No entries read for label 'ROUTE'.

1 entries read for label 'FUELCOST'.

Given that this model implements its own error handling, we might want to entirely disable the display
of error messages from Mosel by redirecting the error stream to 'null’, that is, surrounding the
‘initializations’ block with these lines:

fopen("null:", F_ERROR) ! Optional: Disable error stream
c.. ! Initialization of data from file
fclose (F_ERROR) ! Stop error redirection

Important: always remember to terminate the error stream redirection by closing the selected output
file, otherwise you will no longer see any error output from Mosel from the rest of the model.

Instead of completely ignoring the error messages produced by Mosel, we might also choose to save
them to a file in order to inspect or display them later on. This may be a physical (text) file, or for
example, a text object directly in the model as shown in this code extract:

public declarations
errtxt: text ! Text used as file to log errors

end-declarations

fopen("text:errtxt", F_ERROR) ! Redirect error stream to a file (text)
. ! Initialization of data from file
fclose (F_ERROR) ! Stop error redirection

if getparam("iostatus") <>0 then ! Something has gone wrong in last I/O
writeln("I/O error reading file '", DATAFILE, "': ", errtxt)

end-if

In the error redirection we have used 'null;’ and 'text:’, these two are I/0 drivers which are explained with
some more detail in Section 17.1.2. Concerning the type 'text’ please see the discussion in Section
17.6.1.

Note: Certain Mosel modules and also the Mosel Libraries have additional functionality for error
handling, such as debug settings for ODBC (see the chapter ‘'mmodbc’ of the Mosel Language
Reference for details), or the redirection of Mosel streams from applications (as in Sections 13.5 or
14.1.8) of other models (see the example of Section 17.2.3).

Fair Isaac Corporation Confidential and Proprietary Information 31

CHAPTER 4
Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations where
discontinuities are at the very core of the decision making problem. There seem to be three major areas
where non-linear facilities are required

m where entities must inherently be selected from a discrete set;

m in modeling logical conditions; and

m in finding the global optimum over functions.
Mosel lets you model these non-linearities using a range of discrete (global) entities and then the
Xpress Mixed Integer Programming (MIP) optimizer can be used to find the overall (global) optimum of

the problem. Usually the underlying structure is that of a Linear Program, but optimization may be used
successfully when the non-linearities are separable into functions of just a few variables.

4.1 Integer Programming entities in Mosel

We shall show how to make variables and sets of variables into global entities by using the following
declarations.

declarations
IR = 1..8 ! Index range
WEIGHT: array(IR) of real ! Weight table

x: array (IR) of mpvar
end-declarations

WEIGHT:: [2, 5, 7, 10, 14, 18, 22, 30]
Xpress handles the following global entities:

m Binary variables: decision variables that can take either the value 0 or the value 1 (do/ don't do
variables).
We make a variable, say x (4), binary by

x(4) is_binary

m Integer variables: decision variables that can take only integer values.
We make a variable, say x (7), integer by

x(7) is_integer

m Partial integer variables: decision variables that can take integer values up to a specified limit and
any value above that limit.

Fair Isaac Corporation Confidential and Proprietary Information 32

Integer Programming

x(l) is_partint 5 ! Integer up to 5, then continuous

m Semi-continuous variables: decision variables that can take either the value 0, or a value between
some lower limit and upper limit. Semi-continuous variables help model situations where if a
variable is to be used at all, it has to be used at some minimum level.

x(2) is_semcont 6 ! A 'hole' between 0 and 6, then continuous

m Semi-continuous integer variables: decision variables that can take either the value 0, or an integer
value between some lower limit and upper limit. Semi-continuous integer variables help model
situations where if a variable is to be used at all, it has to be used at some minimum level, and has
to be integer.

x(3) is_semint 7 ! A 'hole' between 0 and 7, then integer

m Special Ordered Sets of type one (SOS1): an ordered set of non-negative variables at most one of
which can take a non-zero value.

m Special Ordered Sets of type two (SOS2): an ordered set of non-negative variables, of which at
most two can be non-zero, and if two are non-zero these must be consecutive in their ordering. If
the coefficients in the WEIGHT array determine the ordering of the variables, we might form a
SOS1 or SOS2 set MYSOs by

MYSOS:= sum(i in IRng) WEIGHT (i)*x (i) is_sosX

where is_sosX s either is_sos1 for SOS1 sets, or is_sos2 for SOS2 sets.

Alternatively, if the set s holds the members of the set and the linear constraint L contains the set
variables’ coefficients used in ordering the variables (the so-called reference row entries), then we
can do thus:

makesosl (S, L)

with the obvious change for SOS2 sets. This method must be used if the coefficient (here
WEIGHT (i)) of an intended set member is zero. With is_sosX the variable will not appear in the
set since it does not appear in the linear expression.

Another point to note about Special Ordered Sets is that the ordering coefficients must be distinct
(or else they are not doing their job of supplying an order!).

The most commonly used entities are binary variables, which can be employed to model a whole range
of logical conditions. General integers are more frequently found where the underlying decision variable
really has to take on a whole number value for the optimal solution to make sense. For instance, we
might be considering the number of airplanes to charter, where fractions of an airplane are not
meaningful and the optimal answer will probably involve so few planes that rounding to the nearest
integer may not be satisfactory.

Partial integers provide some computational advantages in problems where it is acceptable to round
the LP solution to an integer if the optimal value of a decision variable is quite large, but unacceptable if
it is small. Semi-continuous variables are useful where, if some variable is to be used, its value must be
no less than some minimum amount. If the variable is a semi-continuous integer variable, then it has
the added restriction that it must be integral too.

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select at
most one thing from a set of items. The choice may be from such sets as: the time period in which to
start a job; one of a finite set of possible sizes for building a factory; which machine type to process a
part on. Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable.
They are the natural extension of the concepts of Separable Programming, but when embedded in a
Branch-and-Bound code (see below) enable truly global optima to be found, and not just local optima.
(A local optimum is a point where all the nearest neighbors are worse than it, but where we have no

Fair Isaac Corporation Confidential and Proprietary Information 33

Integer Programming

guarantee that there is not a better point some way away. A global optimum is a point which we know
to be the best. In the Himalayas the summit of K2 is a local maximum height, whereas the summit of
Everest is the global maximum height).

Theoretically, models that can be built with any of the entities we have listed above can be modeled
solely with binary variables. The reason why modern IP systems have some or all of the extra entities is
that they often provide significant computational savings in computer time and storage when trying to
solve the resulting model. Most books and courses on Integer Programming do not emphasize this
point adequately. We have found that careful use of the non-binary global entities often yields very
considerable reductions in solution times over ones that just use binary variables.

To illustrate the use of Mosel in modeling Integer Programming problems, a small example follows. The
first formulation uses binary variables. This formulation is then modified to use Special Ordered Sets.

For the interested reader, an excellent text on Integer Programming is Integer Programming by Laurence
Wolsey, Wiley Interscience, 1998, ISBN 0-471-28366-5.

4.2 A project planning model

A company has several projects that it must undertake in the next few months. Each project lasts for a
given time (its duration) and uses up one resource as soon as it starts. The resource profile is the
amount of the resource that is used in the months following the start of the project. For instance,
project 1 uses up 3 units of resource in the month it starts, 4 units in its second month, and 2 units in its
last month.

The problem is to decide when to start each project, subject to not using more of any resource in a
given month than is available. The benefit from the project only starts to accrue when the project has
been completed, and then it accrues at BEN, per month for project p, up to the end of the time horizon.
Below, we give a mathematical formulation of the above project planning problem, and then display the
Mosel model form.

4.2.1 Model formulation

Let PROJ denote the set of projects and MONTHS = {1, ..., NM} the set of months to plan for. The data
are:

DURp the duration of project p

RESUSE,: the resource usage of project p in its th month
RESMAXm the resource available in month m

BENp the benefit per month when project finishes

We introduce the binary decision variables start,m that are 1if project p starts in month m, and 0
otherwise.

The objective function is obtained by noting that the benefit coming from a project only starts to accrue
when the project has finished. If it starts in month m then it finishes in month m + DURp — 1. So, in total,
we get the benefit of BEN, for NM - (m + DURp — 1) = NM — m — DURp + 1 months. We must consider all
the possible projects, and all the starting months that let the project finish before the end of the
planning period. For the project to complete it must start no later than month NM — DURp,. Thus the

profit is:
NM-DUR,,
> > (BENp-(NM-m=DURy +1)) - startpm
pePROJ m=1

Fair Isaac Corporation Confidential and Proprietary Information 34

Integer Programming

Each project must be done once, so it must start in one of the months 1to NM — DURy:

VpePROJ: > startpm =1

meMONTHS

We next need to consider the implications of the limited resource availability each month. Note that if a
project p starts in month mitisinits (k —m+ 1)"’ month in month k, and so will be using RESUSE, - m+1

units of the resource. Adding this up for all projects and all starting months up to and including the

particular month k under consideration gives:

k

Vk € MONTHS : >~ > RESUSE, j41-m - Startpm < RESMAXj

pEPROJ m=1

Finally we have to specify that the startpm are binary (0 or 1) variables:

Vp € PROJ,m € MONTHS : startpm € {0, 1}

Note that the start month of a project p is given by:

NM-DUR,
Z m - startpm
m=1

since if an startpm is 1the summation picks up the corresponding m.

4.2.2 Implementation
The model as specified to Mosel is as follows (file pplan.mos):

model Pplan
uses "mmxprs"

declarations

PROJ = 1..3 ! Set of projects

NM = 6 ! Time horizon (months)

MONTHS = 1..NM ! Set of time periods (months) to plan for
DUR: array (PROJ) of integer ! Duration of project p

RESUSE: array (PROJ,MONTHS) of integer

! Res. usage of proj. p in its t'th month
RESMAX: array (MONTHS) of integer ! Resource available in month m

BEN: array (PROJ) of real

! Benefit per month once project finished

start: array(PROJ,MONTHS) of mpvar ! 1 if proj p starts in month t, else 0

end-declarations

DUR :: [3, 3, 4]
RESMAX:: [5, 6, 7, 7, 6, 6]
BEN :: [10.2, 12.3, 11.2]
RESUSE:: (1,1..3)[3, 4, 2]

RESUSE:: (2,1..3)[4, 1, 5]
RESUSE:: (3,1..4)[3, 2, 1, 2]

! Objective: Maximize Benefit

! Other RESUSE entries are 0 by default

! If project p starts in month t, it finishes in month t+DUR(p)-1 and
! contributes a benefit of BEN(p) for the remaining NM- (t+DUR(p)-1) months:

MaxBen:=
sum(p in PROJ, m in 1..NM-DUR(p)) (BEN(p)* (NM-m-DUR(p)+1))

! Each project starts once and only once:

* start (p,m)

Fair Isaac Corporation Confidential and Proprietary Information

35

Integer Programming

forall(p in PROJ) One(p):= sum(m in MONTHS) start(p,m) = 1

! Resource availability:
! A project starting in month m is in its k-m+1'st month in month k:
forall(k in MONTHS) ResMax (k) :=

sum(p in PROJ, m in 1..k) RESUSE (p,k+1l-m)*start(p,m) <= RESMAX (k)

! Make all the start variables binary
forall(p in PROJ, m in MONTHS) start(p,m) is_binary

maximize (MaxBen) ! Solve the MIP-problem

writeln("Solution value is: ", getobjval)
forall (p in PROJ) writeln(p, " starts in month ",

getsol(sum(m in 1..NM-DUR(p)) mxstart(p,m)))
end-model

Note that in the solution printout we apply the getsol function not to a single variable but to a linear
expression.

4.3 The project planning model using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The startpm variables for a
given p form a set of variables which are ordered by m, the month. The ordering is induced by the
coefficients of the startym in the specification of the SOS. For example, start,¢'s coefficient, 1, is less
than startpz's, 2, which in turn is less than startp3's coefficient, and so on The fact that the startpm
variables for a given p form a set of variables is specified to Mosel as follows:

(! Define SOS-1 sets that ensure that at most one start(p,m) is non-zero
for each project p. Use month index to order the variables !)

forall (p in PROJ) XSet(p):= sum(m in MONTHS) mxstart(p,m) is_sosl

The is_sos1 specification tells Mosel that Xset (p) is a Special Ordered Set of type 1.

The linear expression specifies both the set members and the coefficients that order the set members.
It says that all the startpm variables for m in the MONTHS index range are members of an SOS1 with
reference row entries m.

The specification of the startpm as binary variables must now be removed. The binary nature of the
startpm is implied by the SOS1 property, since if the start,,m must add up to 1and only one of them can
differ from zero, then just one is 1 and the others are 0.

If the two formulations are equivalent why were Special Ordered Sets invented, and why are they useful?
The answer lies in the way the reference row gives the search procedure in Integer Programming (IP)
good clues as to where the best solution lies. Quite frequently the Linear Programming (LP) problem
that is solved as a first approximation to an Integer Program gives an answer where start, is fractional,
say with a value of 0.5, and start, v takes on the same fractional value. The IP will say:

‘my job is to get variables to 0 or 1. Most of the variables are already there so | will try moving xp1 or
xpT. Since the set members must add up to 1.0, one of them will go to 1, and one to 0. So | think that we
start the project either in the first month or in the last month.

A much better guess is to see that the startpm are ordered and the LP solution is telling us it looks as if
the best month to start is somewhere midway between the first and the last month. When sets are
present, the IP can branch on sets of variables. It might well separate the months into those before the
middle of the period, and those later. It can then try forcing all the early startpm to 0, and restricting the
choice of the one start,m that can be 1to the later startym. It has this option because it now has the
information to ‘know’ what is an early and what is a late startpm, whereas these variables were
unordered in the binary formulation.

Fair Isaac Corporation Confidential and Proprietary Information 36

Integer Programming

The power of the set formulation can only really be judged by its effectiveness in solving large, difficult
problems. When it is incorporated into a good IP system such as Xpress it is often found to be an order
of magnitude better than the equivalent binary formulation for large problems.

Fair Isaac Corporation Confidential and Proprietary Information 37

CHAPTER 5

Overview of subroutines and
reserved words

There is a range of built-in functions and procedures available in Mosel. They are described fully in the
Mosel Language Reference Manual. Here is a summary.
m Accessing solution values: getsol, getact, getdual, getrcost, getslack, getobjval

m Arithmetic functions: abs, arctan, cos, sin, ceil, floor, round, exp, 1n, log, sqrt, isodd,
random, setrandseed

m List functions: maxlist, minlist, cutelt, cutfirst, cutlast, cuthead, cuttail,
findfirst, findlast, getelt,getfirst,getlast, getreverse, reverse, gethead,
gettail, splithead, splittail

m String functions: strfmt, substr, _
m Dynamic array handling: create, exists, finalize,delcell, isdynamic

m File handling: fclose, fflush, fopen, fselect, fskipline, fwrite, fwrite_, fwriteln,
fwriteln_,getfid, getfname, getreadcnt, iseof, read, readln, write, write_,
writeln, writeln_

m Accessing control parameters: getparam, localsetparam, restoreparam, setparam
m Getting information: getcoeff, getcoeffs, getsize, gettype, getvars

m Constraint definition: sethidden, ishidden, makesosl, makesos2, setcoeff, setname,
setrange, settype

m Time and date: currentdate, currenttime, timestamp
m Bitvalues: bitflip,bitneg, bitset, bitshift, bittest,bitval
m Special values: isfinite, isinf, isnan

m Miscellaneous functions: asproc, assert, compare, datablock, exit, exportprob, reset,
setioerr, setmatherr, publish, unpublish, memoryuse, newmuid, versionnum,
versionstr

Fair Isaac Corporation Confidential and Proprietary Information 38

Overview of subroutines and reserved words

5.1 Modules

The distribution of Mosel contains several modules that add extra functionality to the language.

A full list of the functionality of a module can be obtained by using Mosel’'s exam command, for instance

mosel exam mmsystem

In this manual, we always use Xpress Optimizer as solver. Access to the corresponding optimization
functions is provided by the module mmxprs.

In the mmxprs module are the following useful functions.

Optimize: minimize, maximize

MIP directives: setmipdir, clearmipdir

Handling bases: savebasis, loadbasis,delbasis
Force problem loading: 1oadprob

Accessing problem status: getprobstat

Deal with bounds: setlb, setub, getlb, getub

Model cut functions: setmodcut, clearmodcut

For example, here is a nice habit to get into when solving a problem with Xpress Optimizer.

declarations
status:array ({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB, XPRS_OTH}) of string
end-declarations

status:: ([XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB, XPRS_OTH]) [

"Optimum found", "Unfinished", "Infeasible", "Unbounded", "Failed"]
minimize (Obj)
writeln (status (getprobstat))

In the mmsystem module are various useful functions provided by the underlying operating system and
a few programming utilities :

Delete a file/directory: fdelete, removedir

Copy/move a file: f£copy, fmove

Make a directory: makedir

Current working directory: getcwd

Get/set an environment variable’s value: getenv, setenv

File and system status: getfstat, getsysstat

General system call: system

Time and date: gettime, getdate, getweekday, getasnumber, ...
Handling the type text: copytext, cuttext, deltext, readtextline, ...

Sort an array of any type with ‘order’ property: gsort

Other modules mentioned in this manual are mmodbc, mmsheet, mmetc, and mmjobs.

See the module documentation in the Mosel Language Reference Manual or in the individual module
reference manuals for full details.

Fair Isaac Corporation Confidential and Proprietary Information 39

Overview of subroutines and reserved words

5.2 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and
and are keywords but not And). Do not use them in a model except with their built-in meaning.

and, array, as

boolean, break

case, constant, count, counter

declarations, div, do, dynamic

elif,else, end, evaluation

false, forall, forward, from, function

hashmap

if, imports, in, include, initialisations,initializations, integer, inter,
is_binary,is_continuous, is_free,is_integer, is_partint, is_semcont,
is_semint, is_sosl, is_sos2

linctr, list

max, min, mod, model, mpvar

namespace, next, not, nsgroup, nssearch

of, options, or

package, parameters, procedure, public, prod
range, real, record, repeat, requirements, return
set, shared, string, sum

then, to, true

union,until, uses

version

while,with

Fair Isaac Corporation Confidential and Proprietary Information

40

CHAPTER 6
Correcting errors in Mosel models

The parser of Mosel is able to detect a large number of errors that may occur when writing a model. In
this chapter we shall try to analyze and correct some of these. As a next step, we also show how to
obtain information for dealing with run time errors.

Other types of errors that are in general more difficult to detect are mistakes in the data or logical errors
in the formulation of Mosel models—you may use the Mosel Debugger (see Section 15.1) to trace these.

6.1 Correcting syntax errors in Mosel

If we compile the model poerrorl.mos

model ‘Plenty of errors'
declarations
small, large: mpvar
end-declarations

Profit= 5*xsmall + 20xlarge
Boxwood:= small + 3xlarge <= 200
Lathe:= 3*small + 2*large <= 160

maximize (Profit)

writeln("Best profit is ", getobjval
end-model

we get the following output:

Mosel: E-100 at
Parsing failed.

(1,7) of “poerror.mos':

Syntax error before "7'.

The second line of the output informs us that the compilation has not been executed correctly. The first
line tells us exactly the type of the error that has been detected, namely a syntax error with the code
E-100 (where E stands for error) and its location: line 1 character 7. The problem is caused by the
apostrophe * (or something preceding it). Indeed, Mosel expects either single or double quotes around
the name of the model if the name contains blanks. We therefore replace it by * and compile the

corrected model, resulting in the following display:

E-100
w-121
E-100

at
at
at

Mosel:
Mosel:
Mosel:
Mosel: E-123 at
Mosel: E-100 at
Parsing failed.

(6,8)
(6,29)
(10, 16)
(10,17)
(12, 37)

of “poerror.mos':
of ‘poerror.mos':

Syntax error before

of ‘poerror.mos':
of ‘poerror.mos':
of ‘poerror.mos':

e |

Statement with no effect.
‘Profit' is not defined.
‘maximize' is not defined.
Syntax error.

Fair Isaac Corporation Confidential and Proprietary Information

41

Correcting errors in Mosel models

There is a problem with the sign = in the 61" line:

Profit= b5*small + 20*large

In the model body the equality sign = may only be used in the definition of constraints or in logical
expressions. Constraints are linear relations between variables, but profit has not been defined as a
variable, so the parser detects an error. What we really want, is to assign the linear expression
5«small + 20xlarge toProfit. For such an assignment we have to use the sign :=. Using just =
is a very common error.

As a consequence of this error, the linear expression after the equality sign does not have any relevance
to the problem that is stated. The parser informs us about this fact in the second line: it has found a
statement with no effect. This is not an error that would cause the failure of the compilation taken on
its own, but simply a warning (marked by the w in the error code w-121) that there may be something to
look into. Since Profit has not been defined, it cannot be used in the call to the optimization, hence
the third error message.

As we have seen, the second and the third error messages are consequences of the first mistake we
have made. Before looking at the last message that has been displayed we recompile the model with
the corrected line

Profit:= b5+*small + 20*large
to get rid of all side effects of this error. Unfortunately, we still get a few error messages:

Mosel: E-123 at (10,17) of ‘poerror.mos': ‘maximize' is not defined.
Mosel: E-100 at (12,37) of ‘poerror.mos': Syntax error.

There is still a problem in line 10; this time it shows up at the very end of the line. Although everything
appears to be correct, the parser does not seem to know what to do with maximize. The solution to
this enigma is that we have forgotten to load the module mmxprs that provides the optimization
function maximize. To tell Mosel that this module is used we need to add the line

uses "mmxprs"

immediately after the start of the model, before the declarations block. Forgetting to specify mmxprs is
another common error. We now have a closer look at line 12 (which has now become line 13 due to the
addition of the uses statement). All subroutines called in this line (writeln and getobjval) are
provided by Mosel, so there must be yet another problem: we have forgotten to close the parentheses.
After adding the closing parenthesis after getobjval the model finally compiles without displaying
any errors. If we run it we obtain the desired output:

Best profit is 1333.33
Returned value: 0

6.2 Correcting run time errors in Mosel

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors. It
should only be pointed out here that it is possible to add the flag —g to the compile command to obtain
some information about where the error occurred in the program, resulting in a command sequence
such as

mosel compile -g mymodel.mos
mosel mymodel.bim

or short

Fair Isaac Corporation Confidential and Proprietary Information 42

Correcting errors in Mosel models

mosel exec —g mymodel

Also useful is turning on verbose reporting, for instance

setparam ("XPRS_VERBOSE", true)
setparam ("XPRS_LOADNAMES", true)

Fair Isaac Corporation Confidential and Proprietary Information

43

ll. Advanced language features

Overview

This part takes the reader who wants to use Mosel as a modeling, solving and programming
environment through its powerful programming language facilities. The following topics, most of which
have already shortly been mentioned in the first part, are covered in a more detailed way:

m Selections and loops (Chapter 7)

m Working with arrays, sets, lists, and records (Chapter 8)

m Functions and procedures (Chapter 9)

m Output to files and producing formatted output (Chapter 10)
Whilst the first four chapters in this part present pure programming examples, the last two chapters
contain some advanced examples of LP and MIP that make use of the programming facilities in Mosel:

m Cut generation (Section 11.1)

m Column generation (Section 11.2)

m Recursion or Successive Linear Pogramming (Section 12.7)

m Goal Programming (Section 12.2)

Fair Isaac Corporation Confidential and Proprietary Information 45

CHAPTER 7
Flow control constructs

Flow control constructs are mechanisms for controlling the order of the execution of the actions in a
program. In this chapter we are going to have a closer look at two fundamental types of control
constructs in Mosel: selections and loops.

Frequently actions in a program need to be repeated a certain number of times, for instance for all
possible values of some index or depending on whether a condition is fulfilled or not. This is the
purpose of loops. Since in practical applications loops are often interwoven with conditions (selection
statements), these are introduced first.

7.1 Selections

Mosel provides several statements to express a selection between different actions to be taken in a
program. The simplest form of a selection is the i f-then statement:

m if-then: ‘If a condition holds do something’. For example:

if A >= 20 then
x <=1
end-if

For an integer number A and a variable x of type mpvar, x is constrained to be less or equal to 7 if A is
greater or equal 20.

Note that there may be any number of expressions between then and end-if, not just a single one.

In other cases, it may be necessary to express choices with alternatives.

m if-then-else: ‘If a condition holds, do this, otherwise do something else’. For example:

if A >= 20 then
x <=7

else x >= 35

end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20,
otherwise the lower bound 35 is applied to it.

m if-then-elif-then-else: ‘If a condition holds do this, otherwise, if a second condition holds do
something else etc.’

if A >= 20 then

x <=7

elif A <= 10 then
x >= 35

Fair Isaac Corporation Confidential and Proprietary Information 46

Flow control constructs

else
x =0
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20, and if
the value of A is less or equal 10 then the lower bound 35 is applied to x. In all other cases (that is,
A is greater than 10 and smaller than 20), x is fixed to 0.

Note that this could also be written using two separate i f-then statements but it is more
efficienttouse if-then-elif-then[-else] if the cases that are tested are mutually
exclusive.

m case: ‘Depending on the value of an expression do something’.

case A of

—-MAX_INT..10 x >= 35
20..MAX_INT : x <=7
12, 15 x =1
else x =0
end-case

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20, and the
lower bound 35 is applied if the value of A is less or equal 10. In addition, x is fixed to 1if A has
value 12 or 15, and fixed to 0 for all remaining values.

An example for the use of the case statement is given in Section 12.2.

The following example (model minmax .mos) uses the if-then-elif-then statement to compute
the minimum and the maximum of a set of randomly generated numbers:

model Minmax

declarations
SNumbers: set of integer
LB=-1000 ! Elements of SNumbers must be between LB
UB=1000 ! and UB

end-declarations

! Generate a set of 50 randomly chosen numbers
forall(i in 1..50)
SNumbers += {round (random*200)-100}

writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

minval:=UB
maxval:=LB
forall (p in SNumbers)
if p<minval then
minval:=p
elif p>maxval then
maxval:=p
end-if

writeln("Min: ", minval, ", Max: ", maxval)

end-model

Instead of writing the loop above, it would of course be possible to use the corresponding operators
min and max provided by Mosel:

writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)

It is good programming practice to indent the block of statements in loops or selections as in the
preceding example so that it becomes easy to get an overview where the loop or the selection ends. —
At the same time this may serve as a control whether the loop or selection has been terminated
correctly (i.e. no end-if or similar key words terminating loops have been left out).

Fair Isaac Corporation Confidential and Proprietary Information 47

Flow control constructs

7.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values of some
index or counter (forall) or depending on whether a condition is fulfilled or not (while,
repeat-until).

This section presents the complete set of loops available in Mosel, namely forall, forall-do,
while,while-do, and repeat-until.

7.21 forall

The forall loop repeats a statement or block of statements for all values of an index or counter. If the
set of values is given as an interval of integers (range), the enumeration starts with the smallest value.
For any other type of sets the order of enumeration depends on the current (internal) order of the
elements in the set.

The forall loop exists in two different versions in Mosel. The inline version of the forall loop (i.e.
looping over a single statement) has already been used repeatedly, for example as in the following loop
that constrains variables x (i) (i=1,...,10) to be binary.

forall(i in 1..10) x(i) is_binary
The second version of this loop, forall-do, may enclose a block of statements, the end of which is

marked by end-do.

Note that the indices of a foral1l loop can not be modified inside the loop. Furthermore, they must be
new objects: a symbol that has been declared cannot be used as index of a forall loop.

The following example (model perfect .mos) that calculates all perfect numbers between 1and a
given upper limit combines both types of the forall loop. (A number is called perfect if the sum of its
divisors is equal to the number itself.)

model Perfect
parameters
LIMIT=100
end-parameters

writeln("Perfect numbers between 1 and ", LIMIT, ":")

forall(p in 1..LIMIT) do

sumd:=1
forall(d in 2..p-1)
if p mod d = 0 then ! Mosel's built-in mod operator
sumd+=d ! The same as sum:= sum + d
end-if

if p=sumd then
writeln (p)
end-if
end-do

end-model
The outer loop encloses several statements, we therefore need to use forall-do. The inner loop only
applies to a single statement (i f statement) so that we may use the inline version forall.

If run with the default parameter settings, this program computes the solution 1, 6, 28.

Fair Isaac Corporation Confidential and Proprietary Information 48

Flow control constructs

7.2.1.1 Multiple indices

The forall statement (just like the sum operator and any other statement in Mosel that requires index
set(s)) may take any number of indices, with values in sets of any basic type or ranges of integer
values. If two or more indices have the same set of values as in

forall(i in 1..10, j in 1..10) y(i,]j) is_binary

(where y (i, §) are variables of type mpvar) the following equivalent short form may be used:

forall(i,j in 1..10) y(i,Jj) is_binary

7.2.1.2 Conditional looping

The possibility of adding conditions to a forall loop via the ‘|' symbol has already been mentioned in
Chapter 3. Conditions may be applied to one or several indices and the selection statement(s) can be

placed accordingly. Take a look at the following example where A and U are one- and two-dimensional
arrays of integers or reals respectively, and y a two-dimensional array of decision variables (mpvar):

forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,3) <= U(i,3)
For all i from -10 to 10, the upper bound U (i, j) is applied to the variable y (i, j) if the value of A (i)
is greater than 20.

The same conditional loop may be reformulated (in an equivalent but usually less efficient way) using

the if statement:

forall(i in -10..10, j in 0..5)
if A(i) > 20

y(i,3) <= U(4i,3J)
end-if

If we have a second selection statement on both indices with B a two-dimensional array of integers or
reals, we may either write

forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0) y(i,3) <= U(4,)

or, more efficiently, since the second condition on both indices is only tested if the condition on index i
holds:

forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,3) <> 0) y(i,3) <= U(i,J)

7.2.1.3 Counters

A recurring programming task when working with loops, and in particular with conditional loops, is to
determine the number of times that the loop has been executed (or that the loop condition is veryfied).
To this aim, Mosel provides the construct as counter, to be added to the indices of forall loops or
other statements involving indices, such as sum, max, or union statements.

The following example (see file count1 .mos) counts and displays all strings in a list that contain the
substring ' b’ :

L:= ['a', 'ab', 'abc', 'da', 'bc', 'db']

scnt:=0
forall (scnt as counter, s in L | findtext(s, 'b', 1)>0)
writeln(scnt, ": ", s)

Fair Isaac Corporation Confidential and Proprietary Information 49

Flow control constructs

The position of as counter among the loop indices is entirely up to the programmer and takes no
effect on its value. However notice that loop conditions must succeed an index. So for instance,
instead of the above we might equally have written:

forall(s in L | findtext(s, 'b', 1)>0, scnt as counter)
writeln(scnt, ": ", s)

And here is an elegant formulation how to calculate the average value of set elements with a given
property (odd numbers):

S:= {1, 5, 8, -1, 4, 7, 2}
cnt:=0.0
writeln ("Average of odd numbers: ",
(sum(cnt as counter, i in S | isodd(i)) i) / cnt)

As an alternative to adding a counter on a loop, Mosel also defines the aggregate operator count that
is used as follows.

writeln ("Number of odd numbers in S: ", count(i in S | isodd(i)))

writeln ("Occurences of 'b' in L: ", count(s in L | findtext(s, 'b', 1)>0))

Both types of counters may be used jointly in a single statement as shown in the following example
(model count2.mos) that creates an entry for the array NODE if there are at least two incoming or
outgoing arcs for the corresponding index 5.

declarations

I: set of integer

ARC: dynamic array(I,I) of boolean

NODE: dynamic array(set of integer) of integer
end-declarations

initializations from "count2.dat"
ARC
end-initializations

ctnode:=0
forall (ctnode as counter, j in I |
count (i in I | exists(ARC(i,3))) +
count (i in I | exists(ARC(j,1))) >= 2) create(NODE(]j))

writeln ("Number of nodes created: ", ctnode)

7.2.2 while

A while loop is typically employed if the number of times that the loop needs to be executed is not
know beforehand but depends on the evaluation of some condition: a set of statements is repeated
while a condition holds. As with forall, the while statement exists in two versions, an inline version
(while) and a version (while-do) that is to be used with a block of program statements.

The following example (model 1cdiv1.mos) computes the largest common divisor of two integer
numbers A and B (that is, the largest number by which both A and B, can be divided without remainder).
Since there is only a single i f-then-else statement in the while loop we could use the inline
version of the loop but, for clarity’s sake, we have given preference to the while—do version that marks
where the loop terminates clearly.

model Lcdivl

declarations
A,B: integer

Fair Isaac Corporation Confidential and Proprietary Information 50

Flow control constructs

end-declarations

write ("Enter two integer numbers:\n A:
readln (A)
write(" B:
readln (B)

"

while (A <> B) do
if (A>B) then
A:=A-B

else B:=B-A
end-if

end-do

writeln("Largest common divisor: ", A)

end-model

7.2.3 repeat until

The repeat—until structure is similar to the while statement with the difference that the actions in
the loop are executed once before the termination condition is tested for the first time.

The following example (model shsort .mos) combines the three types of loops (forall, while,
repeat-until) that are available in Mosel. It implements a Shell sort algorithm for sorting an array of
numbers into numerical order. The idea of this algorithm is to first sort, by straight insertion, small
groups of numbers. Then several small groups are combined and sorted. This step is repeated until the

whole list of numbers is sorted.

The spacings between the numbers of groups sorted on each pass through the data are called the
increments. A good choice is the sequence which can be generated by the recurrence

incy =1, inCyyq =3-inc +1, k=1,2,...

model "Shell sort"

declarations

N: integer !
ANum: array (range) of real
end-declarations

Size of array

N:=50
forall(i in 1..N)
ANum (i) :=round (random*100)

writeln("Given list of numbers
forall(i in 1..N) write(ANum(i), "
writeln

(size: ", N,

"

inc:=1 ! Determine the
repeat
inc:=3*inc+1

until (inc>N)

repeat !
inc:=inc div 3
forall(i in inc+1l..N)
v:=ANum (i)
Ji=1i
while (ANum(j-inc)>v) do !
ANum (Jj) :=ANum (j-inc)
j —-= inc
if j<=inc then break;
end-do
ANum (j) := v
end-do
until (inc<=1)

Loop over the

do ! Outer loop of

Inner loop of

end-if

"o

ANum

! Unsorted array of numbers

")

starting increment

partial sorts

straight insertion

straight insertion

Fair Isaac Corporation Confidential and Proprietary Information

51

Flow control constructs

writeln("Ordered list: ")
forall(i in 1..N) write(ANum(i), " ")
writeln

end-model

The example introduces a new statement: break. It can be used to interrupt one or several loops. In
our case it stops the inner while loop. Since we are jumping out of a single loop, we could as well
write break 1. If we wrote break 3, the break would make the algorithm jump 3 loop levels higher,
that is outside of the repeat-until loop.

Note that there is no limit to the number of nested levels of loops and/or selections in Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 52

CHAPTER 8
Arrays, sets, lists, and records

The Mosel language defines the structured types set, array, list, and record. So far we have worked with
arrays and sets relying on an intuitive understanding of what is an ‘array’ or a ‘set’. More formally, we
may define an array as a collection of labeled objects of a given type where the label of an array entry is
defined by its index tuple.

A set collects objects of the same type without establishing an order among them (as opposed to
arrays and lists). Set elements are unique: if the same element is added twice the set still only contains
it once.

A list groups objects of the same type. Unlike sets, a list may contain the same element several times.
The order of the list elements is specified by construction.

Mosel arrays, sets and lists may be defined for any type, that is the elementary types (including the
basic types integer, real, string, boolean and the MP types mpvar and 1linctr), structured
types (array, set, 1ist, record), and external types (contributed to the language by a module).

A record is a finite collection of objects of any type. Each component of a record is called a field and is
characterized by its name and its type.

This chapter first presents in a more systematic way the different possibilities of how arrays and sets
may be initialized (all of which the reader has already encountered in the examples in the first part), and
also shows more advanced ways of working with sets. We then introduce lists, showing how to
initialize and access them, and finally give some examples of the use of records.

8.1 Arrays

In the first part of this manual we have already encountered many examples that make use of arrays.
The most important points are summarized in this section and here is an overview of the topics
explained with other examples:

m The initialization operator : : and value assignment: Section 2.1

m Multidimensional arrays: Section 2.1

String indices: Section 2.1.3

Initialization from file:

- dense format text file (Section 2.2),
- ODBC connection (Section 2.2.5),

- Excel spreadsheets (Section 2.2.5.1),
- sparse format text file (Section 3.2),
- alternative text formats (Section 3.4)

Dynamic variable creation and finalization: Section 3.3.1

Fair Isaac Corporation Confidential and Proprietary Information 53

Arrays, sets, lists, and records

8.1.1 Array declaration

Here are some examples of array definition:

declarations

Al: array(l..3) of integer ! Fixed size array

F = (lla","bll,"C"}

A2: array(F) of real ! Fixed size array

A3: array(R:range) of integer ! Dense array with unknown index set
A4: dynamic array(F) of real ! Dynamic array

end-declarations
writeln("Al:", Al, " A2:", A2, " A3:", A3, " A4:", A4, " A5:", A5)

! Using the array initialization operator

Al::[10,20,30] ! Range indices are known
A2::(["a","b","c"])[1.1, 2.5, 3.9] ! String indices must be stated
A3::(1..3)[10,20,30] ! Indices are not known upfront
A2("a"):=5.1 ! Redefine an entry

setrandseed (3)

forall(f in F) A4(f):= l1lO0*random ! Value assignment
delcell (A4 ("a")) ! Deleting an array entry
writeln("Al:", Al, " A2:", A2, " A3:", A3, " Ad:", A4)

The output produced by this model (file arraydef .mos) is the following.

Al:[0,0,0] A2:[0,0,0] A3:[] A4d:[]
Al:[10,20,30] A2:[5.1,2.5,3.9] A3:[(1,10),(2,20),(3,30)] A4:[('b',7.6693), ('c',5.89101)]

Arrays A1 and A2 are fixed size arrays: their size (i.e. the total number of objects/cells they contain) is
known at their declaration because all their indexing sets are of fixed size (i.e. either constant or
finalized). All the cells of fixed size arrays are created and initialized immediately, using default
initialization values that depend on the array type. For Mosel's basic types these are the following
values.

real, integer: 0

boolean: false

string: *’ (i.e. the empty string)

Array A4 is explicitly marked as dynamic array using the qualifier dynamic. Dynamic arrays along with
hashmap arrays are the two forms of sparse arrays in Mosel, a hashmap array is obtained by applying
the qualifier hashmap in place of dynamic—both types are used in the same way, but their
performance differs (dynamic arrays are generally faster for linear enumeration and require less
memory whereas hashmap arrays are faster for random access). Sparse arrays are created empty.
Their cells are created explicitly (see Paragraph 8.1.1.2 below) or when they are assigned a value, that
is, the array size will grow ‘on demand'. It is also possible to delete some or all cells of a sparse array
using the procedure delcell on an entry or the whole array (same as reset). The value of a cell that
has not been created is the default initial value of the type of the array.

Array A3 is created empty since its indexing set is empty at the time of its declaration, but this array is
not the same as a dynamic array. It is a dense array that will grow if elements are added to its index set.
Please refer to Appendix B.3 for further detail.

8.1.1.1 Multiple indices
Arrays with multiple indices are defined and accessed as follows:

declarations

Fair Isaac Corporation Confidential and Proprietary Information 54

Arrays, sets, lists, and records

C: array(range, set of string, set of real) of integer
D: array(l..5) of array(l..10) of real
end-declarations

c(5,"a",1.5):= 10
D(1,7):= 2.8

As shown in the example, in order to access (or ‘dereference’) the cell of an array of arrays, the list of
indices for the second array has to be appended to the list of indices of the first array.

The declaration of the arrays in the code snippet above shows several different types of index sets: the
most common index set types probably are range sets, and sets of types integer or string. Mosel
accepts any type of set as array index (including sets of structured types), however, for most pratical
purposes it is recommended to employ only constant types as array indices (that is, the four basic
types integer, string, boolean, real, or external types such as date/time/datetime that
support the ‘constant’ property: see the example in Section 17.5.2). Note that while it is possible to use
index sets of type real for Mosel arrays this is not a generally encouraged practice: due to the
underlying floating point representation it is not always guaranteed that two index values that look the
same are indeed identical.

8.1.1.2 create

Special care needs to be taken in the case of sparse arrays of decision variables (and indeed with any
types that do not have an assignment operator). Writing x: =1 is a syntax error if x is of type mpvar. If
an array of such a type is defined as dynamic or hashmap array, then the corresponding cells are not
created. The entries of the array must be created explicitly by using the procedure create since they
cannot be defined by assignment. Let us simply recall here the example from Section 3.2.

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

TRANSCAP: dynamic array (PLANT,REGION) of real
! Capacity on each route plant->region
flow: dynamic array (PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from 'transprt.dat'
TRANSCAP
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP (p,r))) create(flow(p,r))

For a more detailed discussion of decision variable creation please see Section 3.3.1.

8.1.2 Array initialization from file

When working with arrays, we distinguish between dense and sparse data formats. Dense data format
means that only the data values are represented (see also Section 2.2); in sparse format each data
entry is accompanied by its index tuple. Dense format data uses less storage space but this format can
only be used if all indices are defined in the model and if no ambiguity results from the omission of the
indices when transferring data. In all other cases sparse data format must be used and it is particularly
recommended to use this representation if only few entries of a multidimensional array are actually

defined.
declarations
A: array(l..2,1..3) of real ! Can use dense format
B: array(R:range, T:range) of real ! Requires sparse format
D: dynamic array(set of string, range) of real ! Requires sparse format

Fair Isaac Corporation Confidential and Proprietary Information 55

Arrays, sets, lists, and records

S: set of string
M: dynamic array(S)
N: dynamic array(S)
end-declarations

initializations from
A B

D as "SomeName"

D as "SomeName2"
[M,N] as "MNData"

of integer
of string

"arrayinit.dat"

! Requires sparse format
! Requires sparse format

! Data label different from model name
! Add some more data to 'D'
! 2 arrays read from the same table

end-initializations

writeln("A:", A, " B:", B, "\nD:", D, "\nM:", M, "\nN:", N)

With this contents of the data file arrayinit.dat

A: [2 4 6 8 10 12]
B: [(1L 1) 2 (1 2) 4 (13) 6 (21) 8 (2 2) 10 (2 3) 12]
SomeName: [("a" 1) 2 ("a" 2) 4 ("b" 3) 6 ("c" 4) 8 ("b" 5) 10]
SomeName2: [("a" 3) 12 ("b" 2) 14 ("b" 5) 16]
MNData: [("A") [2 "a"] ("B") [* "b"]

("C") [6 =] ("D") [8 "c"]

(llEll) [10 llb"]]

we see the following output display when executing the model arrayinit.mos shown above:

A:[2,4,6,8,10,12] B:[2,4,6,8,10,12]
p:[(a',1,2),(a',2,4),(a',3,12), ('b',2,14), ('b',3,6), (‘b',5,16), (‘c',4,8)]
M:[(*A',2),(C',6), ('D',8), ("E',10)]
N:[(*A',a), ('B',b), (‘D',¢c), ("E',b)]

By default, Mosel expects that data labels are the same as the model names. For array D we show how
to read data using different labels. The contents of the second set of data labeled SomeName?2 is added
to what is read from SomeName. Note that the entry (b,5) is contained in both sets, and the
corresponding array entry takes its value from the last label that is read.

Arrays such as M and N, that share the same index sets (but not necessarily the same entries) can be
read from a single label/data table. The ‘+’ in certain entries of MNData indicates that the entry does
not exist in one of the arrays.

The syntax of initializations blocks remains the same when switching to other data sources.
Sections 2.2.5 and 2.2.5.1 discuss examples of using databases or spreadsheets instead of text files
for array initialization. For further detail on data 1/0 using different data sources the reader is refered to
the Xpress whitepaper Using ODBC and other database interfaces with Mosel.

8.1.3 Automatic arrays: the array operator

The keyword array can be used as an aggregate operator in order to create an array that will exist only
for the duration of the expression. This automatic array may be used wherever a reference to an array is
expected, for instance, in function calls or in initializations blocks.

In the following example we use the array operator to extract the (1-dimensional) rows and column
arrays from a 2-dimensional array, we further generate a subarray with a selection of entries and the
transposed (inversed indices) array.

model "Automatic arrays"

declarations
B: array(S:set of string, I:set of real) of integer
end-declarations

B::(["a","b"], [3,1.5,7])I1,2,3,4,5,6]

Fair Isaac Corporation Confidential and Proprietary Information 56

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Arrays, sets, lists, and records

writeln("B: ", B)

forall(s in S) writeln("Row ", s, ": ", array(i in I) B(s,1i))
forall(i in I) writeln("Column ", i, ": ", array(s in S) B(s,1i))

writeln ("B filtered: ", array(s in S,i in I | s<>"a" and i<5) B(s,1i))

writeln("Transpose: ", array(i in I, s in S) B(s,1i))
end-model

And this is the output generated by the model autoarray.mos.

B: [1,2,3,4,5,6]

Row a: [1,2,3]

Row b: [4,5,6]

Column 3: [1,4]

Column 1.5: [2,5]

Column 7: [3,6]

B filtered: [('b',3,4),('b',1.5,5)]
Transpose: [1,4,2,5,3,6]

As it has been mentioned in Section 8.1.1.1 the use index sets of type real for Mosel arrays is not a
generally encouraged practice: due to the underlying floating point representation it is not always
guaranteed that two index values that look the same are indeed identical.

On the topic of output to file using initializations to, see Chapter 10, and particularly the note on
solution output using arrays generated ‘on the fly’ in combination with evaluation of in Section
10.2.4.

8.2 Initializing sets

In the revised formulation of the burglar problem in Chapter 2 and also in the models in Chapter 3 we
have already seen different examples for the use of index sets. We recall here the relevant parts of the
respective models.

8.2.1 Constant sets
In the Burglar example the index set is assigned directly in the model:

declarations
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}
end-declarations

Since in this example the set contents is set in the declarations section, the index set ITEMS is a
constant set (its contents cannot be changed). To declare it as a dynamic set, the contents needs to be
assigned after its declaration:

declarations
ITEMS: set of string
end-declarations

ITEMS:={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

8.2.2 Set initialization from file, finalized and fixed sets

In Chapter 4 the reader has encountered several examples how the contents of sets may be initialized
from data files.

Fair Isaac Corporation Confidential and Proprietary Information 57

Arrays, sets, lists, and records

The contents of the set may be read in directly as in the following case:

declarations
WHICH: set of integer
end-declarations

initializations from 'idata.dat'
WHICH
end-initializations

Where idata.dat contains data in the following format:

WHICH: [1 4 7 11 14]

Unless a set is constant (or finalized), arrays that are indexed by this set (and that are not explicitly
marked as sparse arrays) are created as non-fixed dense arrays. Since in many cases the contents of a
set does not change any more after its initialization, Mosel's automatic finalization mechanism finalizes
the setwHICH inthe initializations from block. Consider the continuation of the example
above:

declarations
x: array (WHICH) of mpvar
end-declarations

The array of variables x will be created as a static array since its index set is finalized. Declaring arrays
in the form of static arrays is preferable if the indexing set is known before because this allows Mosel
to handle them in a more efficient way.

Index sets may also be initialized indirectly during the initialization of non-fixed or sparse arrays:

declarations

REGION: set of string

DEMAND: array (REGION) of real
end-declarations

initializations from 'transprt.dat'
DEMAND
end-initilizations

If file transprt.dat contains the data:

DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750]

then printing the set REGION after the initialization will give the following output:

{*Scotland', "North', ‘West', ‘SEast', "Midlands'}

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its elements
can no longer be removed, but it may still grow in size.

The indirect initialization of (index) sets is not restricted to the case that data is input from file. In the
following example (model chess2.mos) we add an array of variable descriptions to the chess problem
introduced in Chapter 1. These descriptions may, for instance, be used for generating a nice output.
Since the indexing set Al1vars of array DescrV is not known at declaration time the resulting array is
not fixed and both grow with each new variable description that is added to DescrV.

model "Chess 2"
uses "mmxprs"

declarations
Allvars: set of mpvar
DescrV: array(Allvars) of string

Fair Isaac Corporation Confidential and Proprietary Information 58

Arrays, sets, lists, and records

small, large: mpvar
end-declarations

DescrV(small) := "Number of small chess sets"
DescrV(large) := "Number of large chess sets"

Profit:=
Lathe:=
Boxwood:=

5*small + 20*large
3xsmall + 2xlarge <= 160
small + 3xlarge <= 200

maximize (Profit)

writeln("Solution:\n Objective: ", getobjval)
writeln(DescrV(small), ": ", getsol(small))
writeln (DescrV (large), ": ", getsol(large))

end-model

The reader may have already remarked another feature that is illustrated by this example: the indexing
setAllvars is of type mpvar. So far only basic types have occurred as index set types but as

mentioned earlier, sets in Mosel may be of any elementary type, including the MP types mpvar and

linctr.

8.3 Working with sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they may

also be used for different purposes.

The following example (model setops .mos) demonstrates the use of basic set operations in Mosel:

union (+), intersection (=), and difference (-):

model "Set example"

declarations
Cities={"rome", "bristol", "london", "paris", "liverpool"}
Ports={"plymouth", "bristol", "glasgow", "london", "calais",
"liverpool"}
Capitals={"rome", "london", "paris", "madrid", "berlin"}

end-declarations

Places:= Cities+Ports+Capitals
In_all_three:= CitiesxPortsx*Capitals
Cities_not_cap:= Cities-Capitals

Create the union of all 3 sets

Create the intersection of all 3 sets
Create the set of all cities that are
not capitals

writeln("Union of all places: ", Places)
writeln("Intersection of all three: ", In_all_three)
writeln("Cities that are not capitals: ", Cities_not_cap)

end-model

The output of this example will look as follows:

Union of all places:{ ‘rome', ‘bristol', “london', ‘paris', "liverpool',
‘plymouth', "bristol', “glasgow', ‘calais', "liverpool', ‘rome', "paris’',
‘madrid', “berlin'}

Intersection of all three: { london'}

Cities that are not capitals: { bristol', "liverpool}

Sets in Mosel are indeed a powerful facility for programming as in the following example (model
prime.mos) that calculates all prime numbers between 2 and some given limit.

Starting with the smallest one, the algorithm takes every element of a set of numbers SNumbers

Fair Isaac Corporation Confidential and Proprietary Information

59

Arrays, sets, lists, and records

(positive numbers between 2 and some upper limit that may be specified when running the model),
adds it to the set of prime numbers SPrime and removes the number and all its multiples from the set
SNumbers.

model Prime

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations
SNumbers:={2..LIMIT}
writeln ("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers—-= {i}
i+=n
end-do
until SNumbers={}

writeln (SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

This example uses a new function, getsize, that if applied to a set returns the number of elements of
the set. The condition in the while loop is the logical negation of an expression, marked with not: the
loop is repeated as long as the conditionn in SNumbers is not satisfied.

8.3.1 Set operators

The preceding example introduces the operator += to add sets to a set (there is also an operator —= to
remove subsets from a set). Another set operator used in the example is in denoting that a single
object is contained in a set. We have already encountered this operator in the enumeration of indices
for the forall loop.

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), difference
(<>), end equality (=). Their use is illustrated by the following example (model setcomp.mos):

model "Set comparisons”

declarations

RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
BRIGHT = {"yellow", "orange"}

DARK = {"blue", "brown", "black"}

end-declarations

writeln ("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
writeln ("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
writeln ("BRIGHT is different from DARK: ", BRIGHT <> DARK)
writeln ("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)

end-model

Fair Isaac Corporation Confidential and Proprietary Information 60

Arrays, sets, lists, and records

As one might have expected, this example produces the following output:

BRIGHT is included in RAINBOW: true
RAINBOW is a superset of DARK: false
BRIGHT is different from DARK: true
BRIGHT is the same as RAINBOW: false

8.4 Initializing lists

Lists are not commonly used in the standard formulation of Mathematical Programming problems.
However, this data structure may be useful for the Mosel implementation of some more advanced
solving and programming tasks.

8.4.1 Constant list

If the contents of a list are specified at the declaration of the list, such as

declarations
L =1[1,2,3,4,5,6,7,8,9,10]
end-declarations

we have defined a constant list (its contents cannot be changed). If we want to be able to modify the
list contents subsequently we need to separate the definition of the list contents from the declaration,
resulting in a dynamic list:

declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5,6,7,8,9,10]
A two-dimensional array of lists may be defined thus (and higher dimensional arrays by analogy):

declarations
M: array(range,set of integer) of list of string
end-declarations

M:: (2..4,1)[['A','B','C'], ['D','E'], ['F','G','H','I']]

8.4.2 List initialization from file

Similarly to what we have already seen for other data structures, the contents of lists may be initialized
from file through initializations blocks. For example,

declarations

K: list of integer

N: array(range,set of integer) of list of string
end-declarations

initializations from "listinit.dat"
K N

end-initializations

writeln("K: ", K)

writeln("An entry of N: ", N(5,3))

Assuming the datafile 1istinit.dat contains these lines

Fair Isaac Corporation Confidential and Proprietary Information 61

Arrays, sets, lists, and records

K: [5432112345]
N: [(3 1) ['B' 'C' 'A']

(5 3) ['D' 'E']
(6 1) ['H' 'I' '"F' 'G']]

we obtain the following output from the model fragment above:

K: [5,4,3,2,1,1,2,3,4,5]
An entry of N: ['D', E']

8.5 Working with lists

8.5.1 Enumeration

Similarly to the way we have used sets so far, lists may be used as loop indices for enumeration. The
following enumerates a given list 1. from beginning to end:

declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5]

forall(i in L) writeln (i)

Since lists have an ordering we may choose, for instance, to reverse the order of list elements for the
enumeration. The model 1istenum.mos below shows several possibilities for enumerating lists in
inverse order: (1) reversing a copy of the list to enumerate, (2) reversing the list to enumerate. In the
first case we obtain the reversed copy of the list with function getreverse, in the second case we
modify the original list by applying to it the procedure reverse.

model "Reversing lists”

declarations
K,L: list of integer
end-declarations

L:= [1,2,3,4,5]

! Enumeration in inverse order:

! 1. Reversed copy of the list (i.e., no change to 'L')
K:=getreverse (L)

forall(i in K) writeln(i)

! 2. Reversing the list itself
reverse (L)
forall(i in L) writeln(i)

end-model

8.5.2 List operators

Lists are composed by concatenating several lists or by truncating their extremities (refered to as head
and tail). The operators += and + serve for concatenating lists. Their inverses (-= and -) may be used
to remove the tail of a list—they will not remove the given sublist if it is not positioned at the end.

The following model 1istops.mos shows some examples of the use of list operators. Besides the
concatenation operators + and += we also use the aggregate form sum. Another list operator used in
this example is the comparison operator <> (the comparison operator = may also be used with lists).

Fair Isaac Corporation Confidential and Proprietary Information 62

Arrays, sets, lists, and records

model "List operators"

declarations
L,M: list of integer
end-declarations

L:= [1,2,3] + [4,5]; writeln("L (1): ", L)
L+= [6,7,8]; writeln("L (2): ", L)

L-= [1,2,3]; writeln("L (3): ", L)

M:= sum(l in L) [1%2]; writeln("M: ", M)
writeln("L and M are different: ", L<>M)

end-model

As can be seen in the output, the list [1, 2, 3] is not removed from L since it is not located at its tail:

(1): [1,2,3,4,5
(2): [1,2,3,4,5
(3): [1,2,3,4,5
[2,4,6,8,10,12,14,16]
and M are different: true

HR e

8.5.3 List handling functions

The Mosel subroutines for list handling form two groups, namely

m Operations preserving the list they are applied to: retrieving a list element (getelt, getfirst,
getlast), occurrence of an element (findfirst, findlast), retrieving a copy of the head or
tail (gethead, gettail), reversed copy of a list (getreverse)

m Operations modifying the list they are applied to: cutting off (=discard) individual elements or the
head or tail (cutelt, cutfirst, cutlast, cuthead, cuttail), splitting off (=retrieve) the head
ortail (splithead, splittail), reverse the list (reverse)

The following example 1istmerge .mos merges two lists of integers K and 1, the elements of which
are ordered in increasing order of their values into a new list M that is ordered in the same way. The
elements of the two original lists are added one-by-one to the new list using the concatenation operator
+=. Whilst the elements of the list K are simply enumerated, we iteratively split off the first element
from list L (using splithead with second argument 1 to take away just the first list element) so that

this list will be empty at the end of the forall loop. If this is not desired, we need to work with a copy
of this list.

model "Merging lists"

declarations
K,L,M: list of integer
end-declarations

K:= [1,4,5,8,9,10,13]
L:= [-1,0,4,6,7,8,9,9,11,11]

forall(k in K) do

while (L<>[] and k >= getfirst(L)) M += splithead(L,1)
M+= [k]

end-do

writeln (M)

end-model

Fair Isaac Corporation Confidential and Proprietary Information 63

Arrays, sets, lists, and records

The resulting list M is:

[_1101 11414751 617/8, 8, 9, 9, 9,10,11,11,13]

List handling routines provide a powerful means of programming, illustrated by the following example
euler .mos that constructs a Eulerian circuit for the network shown in Figure 8.1 (thick arrows indicate
that the corresponding arc is to be used twice). This example is an alternative implementation of the
Eulerian circuit algorithm described in Section 15.4 ‘Gritting roads’ (problem j4grit) of the book
‘Applications of optimization with Xpress-MP’.

Figure 8.1: Network forming a Eulerian circuit

A Eulerian circuit is a tour through a network that uses every given arc exactly once. To construct such
a circuit for a given set of arcs we may employ the following algorithm

m Choose a start node and add it to the tour.

m while there are unused arcs:
- Find the first node in the tour with unused outgoing arcs.
- Construct a closed subtour starting from this node.
- Insert the new subtour into the main tour.

model "Eulerian circuit"

declarations

NODES = 1..12 ! Set of nodes
UNUSED: array (NODES) of list of integer

TOUR: list of integer

NEWT, TAIL: list of integer

end-declarations

initializations from 'euler.dat'
UNUSED

end-initializations

ct:=sum(i in NODES) getsize (UNUSED(i))

TOUR:=[1] ! Choose node 1 as start point
while (ct>0) do ! While there are unused arcs:
! Find first node in TOUR with unused outgoing arc(s)
node:=0

forall (i in TOUR)

if UNUSED (i) <> [] then
node:=i
break

end-if

Fair Isaac Corporation Confidential and Proprietary Information 64

http://examples.xpress.fico.com/example.pl#mosel_app

Arrays, sets, lists, and records

! Insertion position (first occurrence of 'node' in TOUR)
pos:= findfirst (TOUR, node)

! Construct a new subtour starting from 'node'

cur :=node ! Start with current node
NEWT:=[]
while (UNUSED (cur) <> []) do

NEWT+=splithead (UNUSED (cur), 1) ! Take first unused arc

cur:=getlast (NEWT) ! End point of arc is new current node
end-do

! Stop if the subtour is not a closed loop (=> no Eulerian circuit)
if cur<>node then ! Compare start and end of subtour
writeln ("Tour cannot be closed")
exit (1)
end-if

! Add the new subtour to the main journey

TAIL:=splittail (TOUR, -pos) ! Split off the tail from main tour
TOUR += NEWT + TAIL ! Attach subtour and tail to main tour
ct —-= getsize (NEWT)

end-do

writeln("Tour: ", TOUR) ! Print the result

end-model

The data file euler.dat corresponding to the graph in Figure 8.1 has the following contents:

UNUSED: [(1) [2 5] (2) [3 5 6] (3) [2 4 4] (4) [3 8 8]
(5) [1166] (6) [257 99 10] (7) [3 6 8 11]
(8) [4 11 121 (9) [5 101 (10) [6 6 7]
(11) [7 7 10] (12) [11] 1

A Eulerian circuit for this data set is the tour

1-2-6-+5-6—-+7-8-12-1M1T-7-1-10—-7—-3-4-53-54—-8—-4—-8->11->7
—-+6—+49-+5-6—-+-9-10—-6—-10—-6—-2—-3—-2—-5—-1-5—>1

8.6 Records

Records group Mosel objects of different types. They may be used, for instance, to structure the data of
a large-scale model by collecting all information relating to the same object.

8.6.1 Defining records

The definition of a record has some similarities with the declarations block: it starts with the
keyword record, followed by a list of field names and types, and the keyword end-record marks the
end of the definition. The definition of records must be placed in a declarations block. The
following code extract defines a record with two fields (‘name’ and ‘values’).

declarations
R=1..10
D: record
name: string
values: array(R) of real
end-record
end-declarations

We need to define a name (e.g., ‘mydata’) for the record if we want to be able to refer to it elsewhere in
the model—note that we declare this record as public in order to make all its fields public (so in

Fair Isaac Corporation Confidential and Proprietary Information 65

Arrays, sets, lists, and records

particular, visible in output display), alternatively, individual fields can be declared as public. For
example:

declarations
R=1..10
mydata = public record
name: string
values: array(R) of real
end-record
D: mydata
A: array(range) of mydata
end-declarations

The fields of a record are accessed by appending . fieldname to the record, for instance:

D.name:= "D"
forall(i in R) D.values(i):= i
writeln("Values of ", D.name, ": ", D.values)

writeln("An entry of A: ", A(1l))

writeln (" 'name' of an entry of A: ", A(4).name)
writeln("'values' of an entry of A: ", A(3).values)
writeln ("First entry of 'values': ", A(3).values(l))

Note: if a record field is an array, the index set(s) of the array must be either constant or be declared
outside of the record definition. So, these are valid record definitions:

declarations

R: range

P: record
values: array(R) of real
end-record

Q: record

values: array(l..10) of real
end-record
end-declarations

whereas this form can not be used:

Q: record
values: array(range) of real
end-record

8.6.2 |Initialization of records from file

The contents of a record may be assigned fieldwise within a model as shown above or else be read in

from file using initializations. The data file must contain the data entries for the different record
fields in their order of occurrence in the record definition. An array A of the record type mydata defined
in the previous section is initialized with data from file in the obvious way (model recorddef .mos):

declarations
A: dynamic array(T:range) of mydata
end-declarations

initializations from "recorddef.dat"
A
end-initializations

writeln(A(1l))
forall(i in T | exists(A(i))) writeln (A (i) .name)

Fair Isaac Corporation Confidential and Proprietary Information

Arrays, sets, lists, and records

If the data file recorddef .dat has these contents:

A: [(1) ['ALl' [(2) 2 (3) 3 (4) 41 1]
(3) ['A3' [(3) 6 (6) 91 1
(4) ['A4" [5 6 7 8] 1]
(7) ['A7'] ! Define just the first field
(6) [+ [(6) 6] 1 ! Skip the first field

]

we obtain the following output (the entry with index 6 is defined but has no name, which accounts for
the empty line between ‘A4’ and 'A7’):

[name="Al"' values=[0,2,3,4,0,0,0,0,0,0]]
Al
A3
A4

A7

An example of the use of records is the encoding of arcs and associated information such as for
representing the network in Figure 8.2.

Figure 8.2: Network with costs on arcs

A data file with the network data may look as follows (file arcs.dat):

ARC: [(1) ["A" "B" 2]
(2) ["A" "D" 4]
(3) ["A" "C" 7]
(4) ["B" IIF" 4]
(5) ["B" "D" 3]
(6) ["C" "B" 5]
(7) ["C" "D" 1]
(8) ["C" "E" 1]
(9) ["D" "F" 2]
(lo) ["D" "E" 5]
(11) ["E" "F" 8]]

We may then write our model arcs .mos thus

model "Arcs"

declarations

NODES: set of string

ARC: array (ARCSET:range) of record
Source, Sink: string
Cost: real

end-record

end-declarations

Set of nodes

Arcs:
Source and sink of arc
Cost coefficient

Fair Isaac Corporation Confidential and Proprietary Information

Arrays, sets, lists, and records

initializations from 'arcs.dat'
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln (NODES)
writeln ("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize (ARCSET))
end-model
The record definition may contain additional fields (e.g., decision variables) that are not to be initialized

from file. In this case we need to specify inthe initializations block which record fields are to be
filled with data.

declarations
NODES: set of string ! Set of nodes
ARC: array (ARCSET:range) of record ! Arcs:

flow: mpvar ! Flow quantity

Source, Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record

end-declarations

initializations from 'arcs.dat'
ARC (Source, Sink, Cost)
end-initializations

This functionality can also be used to read separately, and possibly from different sources, the contents
of the record fields. For instance, the ‘Cost’ field of our record ARC could be initialized as follows:

initializations from 'arcs.dat'
ARC (Cost) as "COST"
end-initializations

where the data array 'COST is given as

COST: [(1) 2 (2) 4 (3) 7 (4) 4 (5) 3 (6) 5
(7) 1 (8) 1 (9) 2 (10) 5 (11) 8]

8.7 User types

In a Mosel model, the user may define new types that will be treated in the same way as the predefined
types of the Mosel language. New types are defined in declarations blocks by specifying a type
name, followed by =, and the definition of the type. The simplest form of a type definition is to introduce
a new name for an existing type, such as:

declarations
myint = integer
myreal = real
end-declarations

In the section on records above we have already seen an example of a user type definition for records
(where we have named the record ‘mydata’). Another possible use of a user type is as a kind of
‘shorthand’ where several (data) arrays have the same structure, such as in the model blend.mos from
Chapter 2, where, instead of

declarations

Fair Isaac Corporation Confidential and Proprietary Information 68

Arrays, sets, lists, and records

ORES = 1..2

COST: array (ORES) of real
AVAIL: array (ORES) of real
GRADE: array (ORES) of real
end-declarations

we could have written

declarations
ORES = 1..2

myarray = array (ORES) of real

COST: myarray

AVAIL: myarray
GRADE: myarray
end-declarations

Range of ores
Unit cost of ores

Availability of ores
Grade of ores (measured per unit of mass)

Range of ores
Define a user type
Unit cost of ores

Availability of ores
Grade of ores (measured per unit of mass)

without making any other modifications to the model.

Fair Isaac Corporation Confidential and Proprietary Information

69

CHAPTER 9
Functions and procedures

When programs grow larger than the small examples presented so far, it becomes necessary to
introduce some structure that makes them easier to read and to maintain. Usually, this is done by
dividing the tasks that have to be executed into subtasks which may again be subdivided, and
indicating the order in which these subtasks have to be executed and which are their activation
conditions. To facilitate this structured approach, Mosel provides the concept of subroutines. Using
subroutines, longer and more complex programs can be broken down into smaller subtasks that are
easier to understand and to work with. Subroutines may be employed in the form of procedures or
functions. Procedures are called as a program statement, they have no return value, functions must be
called in an expression that uses their return value.

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader is
referred to the Mosel Reference Manual), and it is possible to define new functions and procedures
according to the needs of a specific program. A procedure that has occured repeatedly in this document
is writeln. Typical examples of functions are mathematical functions like abs, floor, 1n, sin etc.

9.1 Subroutine definition

User defined subroutines in Mosel have to be marked with procedure / end-procedure and
function / end-function respectively. The return value of a function has to be assigned to
returned as shown in the following example (model subrout .mos).

model "Simple subroutines"

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

procedure print_start

writeln("The program starts here.")
end-procedure

print_start

a:=three

writeln("a = ", a)

end-model

This program will produce the following output:

The program starts here.
a =3

Fair Isaac Corporation Confidential and Proprietary Information 70

Functions and procedures

9.2 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from a function
depend on the current value of one or several objects in the calling program. It is therefore possible to
pass parameters into a subroutine. The (list of) parameter(s) is added in parantheses behind the name
of the subroutine:

function times_two (b:integer) :integer
returned := 2*b
end-function

The structure of subroutines being very similar to the one of mode1, they may also include
declarations sections for declaring local parameters that are only valid in the corresponding
subroutine. It should be noted that such local parameters may mask global parameters within the
scope of a subroutine, but they have no effect on the definition of the global parameter outside of the
subroutine as is shown below in the extension of the example ‘Simple subroutines’. As in other
programming languages, it is not possible to redefine function/procedure parameters in the
corresponding subroutine (the declaration of local parameters must not hide these parameters). Mosel
considers this as a mistake and prints an error message during compilation.

model "Simple subroutines”

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

function times_two (b:integer) :integer
returned := 2xb
end-function

procedure print_start
writeln ("The program starts here.")
end-procedure

procedure hide_a_1
declarations
a: integer
end-declarations

a:=7
writeln ("Procedure hide_a_1l: a = ", a)
end-procedure

procedure hide_a_2 (a:integer)
writeln ("Procedure hide_a _2: a = ", a)
end-procedure

procedure hide_a_3 (a:integer)
declarations
a: integer
end-declarations

a := 15
writeln ("Procedure hide_a_3: a =", a)
end-procedure

print_start
a:=three
writeln("a = ", a)
a:=times_two (a)

Fair Isaac Corporation Confidential and Proprietary Information 71

Functions and procedures

writeln("a = ", a)
hide_a_1
writeln("a = ", a)
hide_a_2(-10)
writeln("a = ", a)
hide_a_3(a)
writeln("a = ", a)

end-model

During the compilation we get the error

Mosel: E-165 at (34,4) of “subrout.mos': Declaration of “a' hides a parameter.

This is due to the redefinition of a that is passed as an argument into procedure hide_a_3 and also
appears in the declarations of this subroutine. We need to modify the definition of this procedure to
correct this error, for example by renaming the subroutine argument:

procedure hide_a_3 (aa:integer)
The program then results in the following output:

The program starts here.

a=3

a==6

Procedure hide_a_1: a = 7
a==6

Procedure hide_a_2: a = -10
a==6

Procedure hide_a_3: a = 15
a==6

9.3 Recursion

The following example (model 1cdiv2.mos) returns the largest common divisor of two numbers, just
like the example ‘Lediv’ in the previous chapter. This time we implement this task using recursive
function calls, that is, from within function 1cdiv we call again function 1cdiv.

model Lcdiv2

function lcdiv (A,B:integer) :integer
if (A=B) then
returned:=A
elif (A>B) then
returned:=lcdiv (B, A-B)
else
returned:=lcdiv (A,B-A)
end-if
end-function

declarations
A,B: integer
end-declarations

write ("Enter two integer numbers:\n A: ")
readln (A)

write(" B: ")

readln (B)

writeln("Largest common divisor: ", lcdiv(A,B))

end-model

Fair Isaac Corporation Confidential and Proprietary Information 72

Functions and procedures

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible to use
cross-recursion, that is, subroutine A calls subroutine B which again calls A. The only pre-requisite is
that any subroutine that is called prior to its definition must be declared before it is called by using the
forward statement (see below).

9.4 forward

A subroutine has to be ‘known'’ at the place where it is called in a program. In the preceding examples
we have defined all subroutines at the start of the programs but this may not always be feasible or
desirable. Mosel therefore enables the user to declare a subroutine separately from its definition by
using the keyword forward. The declaration of of a subroutine states its name, the parameters (type
and name) and, in the case of a function, the type of the return value. The definition that must follow
later in the program contains the body of the subroutine, that is, the actions to be executed by the
subroutine.

The following example (model gsort1.mos) implements a quick sort algorithm for sorting a randomly
generated array of numbers into ascending order—please note that the implementation discussed here
is merely provided as a programming example, we would generally recommend that you use the gsort
routine of the Mosel module mmsystem in your Mosel programs. The procedure gsort that starts the
sorting algorithm is defined at the very end of the program, it therefore needs to be declared at the
beginning, before it is called. Procedure gsort_start calls the main sorting routine, gsort. Since the
definition of this procedure precedes the place where it is called there is no need to declare it (but it still
could be done). Procedure gsort calls yet again another subroutine, swap.

The idea of the quick sort algorithm is to partition the array that is to be sorted into two parts. The ‘left’
part containing all values smaller than the partitioning value and the ‘right’ part all the values that are
larger than this value. The partitioning is then applied to the two subarrays, and so on, until all values
are sorted.

model "Quick sort 1"

parameters
LIM=50
end-parameters

forward procedure gsort_start (L:array(range) of integer)

declarations
T:array(l..LIM) of integer
end-declarations

forall(i in 1..LIM) T (i) :=round(.5+random*LIM)
writeln (T)

gsort_start (T)

writeln (T)

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer,i, j:integer)

k:=L (i)
L(i):=L(Jj)
L(J):=k

end-procedure

! Main sorting routine
procedure gsort (L:array(range) of integer,s,e:integer)

v:=L((s+e) div 2) ! Determine the partitioning value
i:=s; Jj:=e
repeat ! Partition into two subarrays

while(L(1)<v) i+=1
while(L(j)>v) j—=1
if i<j then

Fair Isaac Corporation Confidential and Proprietary Information 73

Functions and procedures

swap (L, i, J)

i+=1; j-=1

end-if
until i>=j

! Recursively sort the two subarrays

if j<e and s<j then gsort(L,s, j); end-if
if i>s and i<e then gsort(L,i,e); end-if
end-procedure

! Start of the sorting process

procedure gsort_start(L:array(r:range) of integer)
gsort (L,getfirst (r),getlast (r))

end-procedure

end-model

The quick sort example above demonstrates typical uses of subroutines, namely grouping actions that
are executed repeatedly (gsort) and isolating subtasks (swap) in order to structure a program and
increase its readability.

The calls to the procedures in this example are nested (procedure swap is called from gsort which is
called from gsort_start): in Mosel there is no limit as to the number of nested calls to subroutines
(it is not possible, though, to define subroutines within a subroutine).

9.5 Overloading of subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a different
number and/or types of parameters. This functionality is commonly referred to as overloading.

An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter it
returns its solution value, if the parameter is a constraint the function returns the evaluation of the
corresponding linear expression using the current solution.

Function abs (for obtaining the absolute value of a number) has different return types depending on
the type of the input parameter: if an integer is input it returns an integer value, if it is called with a real
value as input parameter it returns a real.

Function getcoeff is an example of a function that takes different numbers of parameters: if called
with a single parameter (of type 1inctr) it returns the constant term of the input constraint, if a
constraint and a variable are passed as parameters it returns the coefficient of the variable in the given
constraint.

The user may define (additional) overloaded versions of any subroutines defined by Mosel as well as
for his own functions and procedures. Note that it is not possible to overload a function with a
procedure and vice versa.

Using the possibility to overload subroutines, we may rewrite the preceding example ‘Quick sort’ as
follows (model gsort2.mos).
model "Quick sort 2"
parameters
LIM=50
end-parameters
forward procedure gsort (L:array(range) of integer)
declarations
T:array(l..LIM) of integer

end-declarations

forall(i in 1..LIM) T (i) :=round(.5+random*LIM)

Fair Isaac Corporation Confidential and Proprietary Information 74

Functions and procedures

writeln (T)
gsort (T)
writeln (T)

procedure swap(L:array(range) of integer,i, j:integer)
(...) (same procedure body as in the preceding example)
end-procedure

procedure gsort (L:array(range) of integer,s,e:integer)
(...) (same procedure body as in the preceding example)
end-procedure

! Start of the sorting process

procedure gsort (L:array(r:range) of integer)
gsort (L,getfirst (r),getlast (r))
end-procedure

end-model

The procedure gsort_start is now also called gsort. The procedure bearing this name in the first
implementation keeps its name too; it has got two additional parameters which suffice to ensure that
the right version of the procedure is called. To the contrary, it is not possible to give procedure swap the
same name gsort because it takes exactly the same parameters as the original procedure gsort and
hence it would not be possible to differentiate between these two procedures any more.

Fair Isaac Corporation Confidential and Proprietary Information 75

CHAPTER 10

Output

10.1

Producing formatted output

In some of the previous examples the procedures write and writeln have been used for displaying
data, solution values and some accompanying text. To produce better formatted output, these
procedures can be combined with the formatting procedure strfmt. In its simplest form, strfmt’s
second argument indicates the (minimum) space reserved for writing the first argument and its
placement within this space (negative values mean left justified printing, positive right justified). When
writing a real, a third argument may be used to specify the maximum number of digits after the
decimal point.

For example, if file fo.mos contains

model FO
parameters
r=1.0 ! A real
i=0 ! An integer

end-parameters

writeln("i is ", i)

writeln("i is ", strfmt(i,6))
writeln("i is ", strfmt(i,-6))
writeln("r is ", r)

writeln("r is ", strfmt(r,6))
writeln("r is ",strfmt(r,10,4))
end-model

and we run Mosel thus:

mosel exec fo 'i=123, r=1.234567"
we get output

is 123

is 123

is 123

is 1.23457

is 1.23457

is 1.2346

KK R b b e

The following example (model transport2.mos) prints out the solution of model ‘Transport’ (Section
3.2) in table format. The reader may be reminded that the objective of this problem is to compute the
product flows from a set of plants (PLANT) to a set of sales regions (REGION) so as to minimize the
total cost. The solution needs to comply with the capacity limits of the plants (PLANTCAP) and satisfy
the demand DEMAND of all regions.

procedure print_table

Fair Isaac Corporation Confidential and Proprietary Information 76

Output

declarations
rsum: array (REGION) of integer ! Auxiliary data table for printing
psum,ct,iflow: integer ! Counters

end-declarations

! Print heading and the first line of the table
writeln ("\nProduct Distribution\n", "="%20)
writeln(strfmt ("Sales Region", 48))
write(strfmt("",15), "| ")
forall(r in REGION) write(strfmt(r,9))
writeln(" |", strfmt("TOTAL",6), " Capacity")
writeln("-"%80)

! Print the solution values of the flow variables and
! calculate totals per region and per plant
ct:=0
forall(p in PLANT, ct as counter) do
if ct=2 then

write(" Plant ", strfmt(p,-8), "|")
else

write (" ", strfmt(p,-8), "I")
end-if
psum:=0

forall (r in REGION) do
iflow:=integer (getsol (flow(p,r)))
psum += iflow
rsum(r) += iflow
if iflow<>0 then
write (strfmt (iflow, 9))

else
write (" - ")
end-if
end-do
writeln (" |", strfmt(psum,6), strfmt(integer (PLANTCAP (p)),8))
end-do

! Print the column totals
writeln("-"%80)
write(strfmt (" TOTAL",-15), "|")

prsum:=0
forall(r in REGION) write(strfmt (rsum(r), 9))
writeln (" |", strfmt(sum(r in REGION) rsum(r),6))

! Print demand of every region
write (strfmt (" Demand",-15), "|")
forall (r in REGION) write(strfmt (integer (DEMAND(r)),9))

! Print objective function value

writeln("\n\nTotal cost of distribution = ", strfmt(getobjval/le6,0,3),

" million.")

end-procedure

Notice the shorthand "-"*80 meaning that the string -’ is repeated 80 times. This functionality is
provided by the module mmsystem, however, it is generally more efficient to work with the type text

for such string operations (see Section 17.6).

With the data from Chapter 3 the procedure print_table produces the following output:

Product Distribution

Sales Region

| Scotland North SWest SEast Midlands | TOTAL Capacity
Corby | - 80 - 920 2000 | 3000 3000
Plant Deeside | - 1450 1000 - 250 | 2700 2700
Glasgow | 2840 1270 - - - | 4110 4500
Oxford | - - 1600 1900 500 | 4000 4000

Fair Isaac Corporation Confidential and Proprietary Information

77

Output

10.2

10.2.1

TOTAL | 2840 2800 2600 2820 2750 | 13810
Demand | 2840 2800 2600 2820 2750

Total cost of distribution = 81.018 million.

File output

If we do not want the output of procedure print_tab in the previous section to be displayed on screen
but to be saved in the file out . txt, we simply open the file for writing at the beginning of the procedure
by adding

fopen ("out.txt",F_OUTPUT)

before the first writeln statement, and close it at the end of the procedure, after the last writeln
statement with

fclose (F_OUTPUT)

If we do not want any existing contents of the file out . txt to be deleted, so that the result table is
appended to the end of the file, we need to write the following for opening the file (closing it the same
way as before):

fopen ("out.txt",F_OUTPUT+F_APPEND)

As with input of data from file, there are several ways of outputting data to a file in Mosel. The following
example demonstrates three different ways of writing the contents of an array A to a file. The last
section (10.2.4) shows how to proceed if the data is not readily available in the form of an array but
results from the evaluation of an expression (e.g., solution values, function calls).

Data output with initializations to

The first method uses the initializations block for creating or updating a file in Mosel's
initializations format.

model "Trio output (1)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 1e,
22, 24, 26]

! First method: use an initializations block
initializations to "out_1l.dat"
A as "MYOUT"
end-initializations
end-model

File out_1.dat will contain the following:

'MYOUT': [2 4 6 12 14 16 22 24 26]

If this file contains already a data entry MYOUT, it is replaced with this output without modifying or
deleting any other contents of this file. Otherwise, the output is appended at the end of it.

Note: For solution output with initializations to please see Section 10.2.4 below.

Fair Isaac Corporation Confidential and Proprietary Information 78

Output

10.2.2 Data output with writeln

As mentioned above, we may create freely formatted output files by redirecting the output of write
and writeln statements to a file:

model "Trio output (2)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 1e,
22, 24, 26]

! Second method: use the built-in writeln function
fopen ("out_2.dat", F_OUTPUT)
forall(i in -1..1, j in 5..7)
writeln('A_out(', i, ' and ', j, ") ="', A(i,]))
fclose (F_OUTPUT)
end-model

The nicely formatted output to out_2.dat results in the following:

A_out (-1 and 5) 2
A_out (-1 and 6) 4
A_out(-1 and 7) = 6
A_out(0 and 5) = 12
A_out (0 and 6) = 14
A_out (0 and 7) = 16
A_out(l and 5) = 22
A_out(l and 6) = 24
A_out(l and 7) = 26

10.2.3 Data output with diskdata

As a third possibility, one may use the diskdata subroutine from module mmetc to write out comma
separated value (CSV) files.

model "Trio output (3)"
uses "mmetc"

declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 1s,
22, 24, 26]

! Third method: use diskdata
diskdata (ETC_OUT+ETC_SPARSE, "out_3.dat", A)
end-model

The output with diskdata simply prints the contents of the array to out_3.dat, with option
ETC_SPARSE each entry is preceded by the corresponding indices:

Fair Isaac Corporation Confidential and Proprietary Information 79

Output

Without option ETC_SPARSE out_3.dat looks as follows:

2,4,6
12,14,16
22,24,26

Instead of using the diskdata subroutine, we may equally use the diskdata I/0 driver that is defined
by the same module, mmetc. In the example above we replace the diskdata statement by the
following initializations to block.

[initializations to 'mmetc.diskdata:'
A as 'sparse,out_3.dat'
end-initializations

10.2.4 Solution output with initializations to

In the previous examples we have seen how to write out to a file the contents of a data array defined in
Mosel. The free format output with write/writeln can be applied to any type of expression.
However, if we wish to use the initializations to functionality for writing out, for instance, the
solution values after an optimization run or the result of a Mosel function we need to proceed in a
slightly different way from what we have seen so far.

There are two options:

1. Save the solution values or results into a new Mosel object and work with this copy for the file
output. For example,

declarations

X: mpvar

x_sol: real

y: array(R) of mpvar

y_sol: array(R) of real

end-declarations

. ! Define and solve an optimization problem
x_sol:= x.sol ! Retrieve the solution values
forall(i in R) y_sol(i):= y(i).sol

initializations to "out.txt"

x_sol

y_sol

end-initializations

2. Use the keyword evaluationinthe initializations block.

declarations

X: mpvar

y: array(R) of mpvar

end-declarations

A ! Define and solve an optimization problem
initializations to "out.txt"

evaluation of x.sol as "x_sol"

evaluation of array(i in R) y(i).sol as "y_sol"
end-initializations

The array construct is used in the model extract above to generate a new array ‘on the fly'. Its use is
similar to aggregate operators such as sum or union.

The use of the marker evaluation of is not restricted to solution values; it allows you to work with
any type of expression directly in the initializations block, including results of Mosel functions or

Fair Isaac Corporation Confidential and Proprietary Information 80

Output

computations as shown in the following example initeval.mos. This model writes out detailed
results for our introductory Chess example (see Section 1.3).

model "Evaluations"
uses "mmxprs"

declarations
small, large: mpvar
end-declarations

Profit:= 5+*small + 20xlarge
Lathe:= 3*small + 2xlarge <= 160
Boxwood:= small + 3*xlarge <= 200

small is_integer; large is_integer

maximize (Profit)

initializations to "chessout.txt"

evaluation of
evaluation of
evaluation of
evaluation of
evaluation of
evaluation of
evaluation of
evaluation of [small.sol,
end-initializations

small.sol as
getsol (large)

Boxwood.act as

end-model

Decision variables: produced quantities

Objective function
Lathe-hours

kg of boxwood
Integrality constraints

Solve the problem

getparam ("XPRS_mipstatus") as "Status"
getobjval as "Objective"

"small_sol"

as "large_sol"
Lathe.slack as "Spare time"

"Used wood"
Boxwood.act-200 as "Spare wood"
large.sol

] as "x_sol"

The resulting output file chessout . txt has the following contents:

'Status': 6
'Objective': 1330
'small_sol': 2
'large_sol': 66
'Spare time': 22
'Used wood': 200

'Spare wood': 0
'x_sol': [2 66]

10.3 Real number format

Whenever output is printed (including matrix export to a file) Mosel uses the standard representation of
floating point numbers of the operating system (C format %g). This format may apply rounding when
printing large numbers or numbers with many decimals. It may therefore sometimes be preferable to
change the output format to a fixed format to see the exact results of an optimization run or to produce
a matrix output file with greater accuracy. Consider the following example (model numformat .mos):

model "Formatting numbers"

parameters

a = 12345000.0
b = 12345048.9
c = 12.000045
d=12.0

end-parameters

writeln(a, " u, b, " n, c, " n’
setparam ("REALFMT", "%1.6f")
writeln(a’ " ", b, n "’ c, " ll,

end-model

Fair Isaac Corporation Confidential and Proprietary Information

81

Output

This model produces the following output.

1.2345e+07 1.2345e+07 12 12
12345000.000000 12345048.900000 12.000045 12.000000

That is, with the default printing format it is not possible to distinguish between a and b or to see that c
is not an integer. After setting a fixed format with 6 decimals all these numbers are output with their
exact values.

Fair Isaac Corporation Confidential and Proprietary Information 82

CHAPTER 11
More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming facilities
in Mosel that have been introduced in the previous chapters.

11.1 Cut generation

11.1.1

11.1.2

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex hull of the
integer solutions, thus drawing the solution of the LP relaxation closer to the integer feasible solutions
and improving the bound provided by the solution of the relaxed problem.

The Xpress Optimizer provides automated cut generation (see the optimizer documentation for
details). To show the effects of the cuts that are generated by our example we switch off the
automated cut generation.

Example problem

The problem we want to solve is the following: a large company is planning to outsource the cleaning
of its offices at the least cost. The NSITES office sites of the company are grouped into areas (set
AREAS = {1, ..., NAREASY}). Several professional cleaning companies (set

CONTR = {1,..., NCONTRACTORS}) have submitted bids for the different sites, a cost of 0 in the data
meaning that a contractor is not bidding for a site.

To avoid being dependent on a single contractor, adjacent areas have to be allocated to different
contractors. Every site s (s in SITES = {1, ..., NSITES}) is to be allocated to a single contractor, but there
may be between LOWCON, and UPPCON,4 contractors per area a.

Model formulation

For the mathematical formulation of the problem we introduce two sets of variables:

cleancs indicates whether contractor c is cleaning site s
allocc, indicates whether contractor c is allocated any site in area a

The objective to minimize the total cost of all contracts is as follows (where PRICE. is the price per
site and contractor):

minimize Z Z PRICE - cleancs
ceCONTR seSITES
We need the following three sets of constraints to formulate the problem:

1. Each site must be cleaned by exactly one contractor.

Vs € SITES : Z cleancs = 1
ceCONTR

Fair Isaac Corporation Confidential and Proprietary Information 83

More about Integer Programming

2. Adjacent areas must not be allocated to the same contractor.

Vc € CONTR,a,b € AREAS, a > b and ADJACENT,, =1: allocca +allocy, <1

3. The lower and upper limits on the number of contractors per area must be respected.

Va € AREAS : Z allocca > LOWCON;,
ceCONTR

Va € AREAS : Z allocca < UPPCON,
ceCONTR

To express the relation between the two sets of variables we need more constraints: a contractor c is
allocated to an area a if and only if he is allocated a site s in this area, that is, yc4 is 1if and only if some
xcs (for a site s in area a) is 1. This equivalence is expressed by the following two sets of constraints,
one for each sense of the implication (AREA; is the area a site s belongs to and NUMSITE, the number
of sites in area a):

Vc € CONTR,a € AREAS : allocgy < Z cleancs

seSITES
AREAs=a
1
Ve € CONTR,a € AREAS : alloccg > ——n— - clean
- © = NUMSITE, seSITES Cs
AREAs=a

11.1.3 Implementation

The resulting Mosel program is the following model clean.mos. The variables cleancs are defined as a
dynamic array and are only created if contractor c bids for site s (that is, PRICEs¢ > 0 or, taking into
account inaccuracies in the data, PRICEs: > 0.01).

Another implementation detail that the reader may notice is the separate initialization of the array
sizes: we are thus able to create all arrays with fixed sizes (with the exception of the previously
mentioned array of variables that is explicitly declared dynamic). This allows Mosel to handle them in a
more efficient way.

model "Office cleaning”

uses "mmxprs", "mmsystem"

declarations
PARAM: array(l..3) of integer
end-declarations

initializations from 'clparam.dat'
PARAM
end-initializations

declarations

NSITES = PARAM(1) ! Number of sites

NAREAS = PARAM(2) ! Number of areas (subsets of sites)

NCONTRACTORS = PARAM(3) ! Number of contractors

AREAS 1. .NAREAS

CONTR 1. .NCONTRACTORS

SITES 1..NSITES

AREA: array (SITES) of integer ! Area site is in

NUMSITE: array (AREAS) of integer ! Number of sites in an area

LOWCON: array (AREAS) of integer ! Lower limit on the number of
|
1
|

contractors per area

Upper limit on the number of

! contractors per area

ADJACENT: array (AREAS,AREAS) of integer ! 1 if areas adjacent, 0 otherwise

UPPCON: array (AREAS) of integer

Fair Isaac Corporation Confidential and Proprietary Information 84

More about Integer Programming

PRICE: array(SITES,CONTR) of real ! Price per contractor per site

clean: dynamic array (CONTR,SITES) of mpvar ! 1 iff contractor c cleans site s

alloc: array (CONTR,AREAS) of mpvar ! 1 iff contractor allocated to a site
!' in area a

end-declarations

initializations from 'cldata.dat'
[NUMSITE, LOWCON, UPPCON] as 'AREA'
ADJACENT

PRICE
end-initializations

ct:=1

forall (a in AREAS) do

forall(s in ct..ct+NUMSITE (a)-1)
AREA (s) :=a

ct+= NUMSITE (a)

end-do

forall(c in CONTR, s in SITES | PRICE(s,c) > 0.01l) create(clean(c,s))

! Objective: Minimize total cost of all cleaning contracts
Cost:= sum(c in CONTR, s in SITES) PRICE(s,c)*clean(c,s)

! Each site must be cleaned by exactly one contractor
forall(s in SITES) sum(c in CONTR) clean(c,s) =1

! Ban same contractor from serving adjacent areas
forall(c in CONTR, a,b in AREAS | a > b and ADJACENT (a,b) = 1)
alloc(c,a) + alloc(c,b) <=1

! Specify lower & upper limits on contracts per area
forall(a in AREAS | LOWCON (a)>0)

sum(c in CONTR) alloc(c,a) >= LOWCON (a)

forall (a in AREAS | UPPCON (a) <NCONTRACTORS)

sum(c in CONTR) alloc(c,a) <= UPPCON (a)

! Define alloc(c,a) to be 1 iff some clean(c,s)=1 for sites s in area a
forall (c in CONTR, a in AREAS) do

alloc(c,a) <= sum(s in SITES| AREA(s)=a) clean(c, s)

alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES| AREA(s)=a) clean(c, s)
end-do

forall (c in CONTR) do

forall(s in SITES) clean(c,s) is_binary
forall(a in AREAS) alloc(c,a) is_binary
end-do

minimize (Cost) ! Solve the MIP problem
end-model

In the preceding model, we have chosen to implement the constraints that force the variables allocc, to
become 1 whenever a variable cleancs is 1 for some site s in area a in an aggregated way (this type of
constraint is usually referred to as Multiple Variable Lower Bound, MVLB, constraints). Instead of

forall(c in CONTR, a in AREAS)
alloc(c,a) >= 1.0/NUMSITE (a) * sum(s in SITES| AREA(s)=a) clean(c,s)

we could also have used the stronger formulation

forall(c in CONTR, s in SITES)
alloc(c,AREA(s)) >= clean(c,s)

but this considerably increases the total number of constraints. The aggregated constraints are
sufficient to express this problem, but this formulation is very loose, with the consequence that the

Fair Isaac Corporation Confidential and Proprietary Information 85

More about Integer Programming

11.1.4

solution of the LP relaxation only provides a very bad approximation of the integer solution that we
want to obtain. For large data sets the Branch-and-Bound search may therefore take a long time.

Cut-and-Branch

To improve this situation without blindly adding many unnecessary constraints, we implement a cut

generation loop at the top node of the search that only adds those constraints that are violated be the

current

LP solution.

The cut generation loop (procedure top_cut_gen) performs the following steps:

m solve the LP and save the basis

m get the solution values

m identify violated constraints and add them to the problem

m load the modified problem and load the previous basis

!

procedure top_cut_gen
declarations
MAXCUTS = 2500
MAXPCUTS = 1000
MAXPASS = 50
ncut, npass,
feastol: real
solc: array (CONTR, SITES) of real
sola: array (CONTR, AREAS) of real
objval,starttime: real
cut: array(range) of linctr
bas: basis
end-declarations

npcut: integer

starttime:=gettime

setparam ("XPRS_CUTSTRATEGY", 0)
setparam ("XPRS_PRESOLVE", 0)
feastol:= getparam("XPRS_FEASTOL")
setparam ("ZEROTOL", feastol * 10)
ncut:=0

npass:=0

while
npass+=1
npcut:= 0
minimize (XPRS_LIN, Cost)
if (npass>1 and objval=getobjval
savebasis (bas)
objval:= getobjval

forall (c in CONTR) do
forall(a in AREAS)
forall (s in SITES)
end-do

solc(c, s)

! Max no.
! Max no.
! Max no.

)

passes

of constraints added in total
of constraints added per pass

! Counters for cuts and passes

Zero tolerance

|
! Sol. values for variables
! Sol. values for variables
! LP basis

Disable automatic cuts
Switch presolve off

(ncut<MAXCUTS and npass<MAXPASS) do

! Solve the LP

then break; end-if

! Save the current basis
! Get the objective value

! Get the solution values

sola(c,a) :=getsol (alloc(c,a))
:=getsol (clean(c, s))

Search for violated constraints and add them to the problem:

forall(c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s))
cut (ncut) := alloc(c,AREA(s))

then

>= clean(c, s)

ncut+=1
npcut+=1
if (npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end-if
end-if
writeln("Pass ", npass, " (", gettime-starttime, " sec),
objval, ", cuts added: ", npcut, " (total ", ncut,")")

‘clean'
‘alloc'

Get the solver zero tolerance
Set the comparison tolerance of Mosel

objective value

Fair Isaac Corporation Confidential and Proprietary Information

86

More about Integer Programming

11.1.5

11.1.6

if npcut=0 then
break
else
loadprob (Cost) ! Reload the problem
loadbasis (bas) ! Load the saved basis
end-if
end-do
! Display cut generation status
write ("Cut phase completed: ")
if (ncut >= MAXCUTS) then writeln("space for cuts exhausted")
elif (npass >= MAXPASS) then writeln("maximum number of passes reached")
else writeln("no more violations or no improvement to objective")
end-if
end-procedure

Assuming we add the definition of procedure top_cut_gen to the end of our model, we need to add
its declaration at the beginning of the model:

forward procedure topcutgen
and the call to this function immediately before the optimization:

top_cut_gen ! Constraint generation at top node
minimize (Cost) ! Solve the MIP problem

Since we wish to use our own cut strategy, we switch off the default cut generation in Xpress Optimizer:

setparam ("XPRS_CUTSTRATEGY", 0)

We also turn the presolve off since we wish to access the solution to the original problem after solving
the LP-relaxations:

setparam ("XPRS_PRESOLVE", 0)

Comparison tolerance

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:
the solver works with tolerance values for integer feasibility and solution feasibility that are typically of
the order of 1070 by default. When evaluating a solution, for instance by performing comparisons, it is
important to take into account these tolerances.

After retrieving the feasibility tolerance of the solver we set the comparison tolerance of Mosel
(zEROTOL) to this value. This means, for example, the test x = 0 evaluates to true if x lies between
-ZEROTOL and ZEROTOL, x < 0 is true if the value of x is at most ZEROTOL, and x > O is fulfilled if x is
greater than ZEROTOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this
parameter to the solver feasibility tolerance Mosel evaluates solution values just like Xpress Optimizer.

Branch-and-Cut

The cut generation loop presented in the previous subsection only generates violated inqualities at the
top node before entering the Branch-and-Bound search and adds them to the problem in the form of
additional constraints. We may do the same using the cut manager of Xpress Optimizer. In this case,
the violated constraints are added to the problem via the cut pool. We may even generate and add cuts
during the Branch-and-Bound search. A cut added at a node using addcuts only applies to this node
and its descendants, so one may use this functionality to define local cuts (however, in our example, all
generated cuts are valid globally).

The cut manager is set up with a call to procedure tree_cut_gen before starting the optimization

Fair Isaac Corporation Confidential and Proprietary Information 87

More about Integer Programming

(preceded by the declaration of the procedure using forward earlier in the program). To avoid
initializing the solution arrays and the feasibility tolerance repeatedly, we now turn these into globally
defined objects:

declarations
feastol: real ! Zero tolerance
solc: array (CONTR, SITES) of real ! Sol. values for variables ‘clean'’
sola: array (CONTR, AREAS) of real ! Sol. values for variables ‘alloc'

end-declarations

tree_cut_gen ! Set up cut generation in B&B tree
minimize (Cost) ! Solve the MIP problem

As we have seen before, procedure tree_cut_gen disables the default cut generation and turns
presolve off. It also indicates the number of extra rows to be reserved in the matrix for the cuts we are
generating:

procedure tree_cut_gen

setparam ("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts

setparam ("XPRS_PRESOLVE", 0) ! Switch presolve off

setparam ("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix
feastol:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
setparam("zerotol", feastol * 10) ! Set the comparison tolerance of Mosel

setcallback (XPRS_CB_CUTMGR, "cb_node")
end-procedure

The last line of this procedure defines the cut manager entry callback function that will be called by the
optimizer from every node of the Branch-and-Bound search tree. This cut generation routine (function
cb_node) performs the following steps:

m get the solution values

m identify violated inequalities and add them to the problem

It is implemented as follows (we restrict the generation of cuts to the first three levels, i.e. depth <4,
of the search tree):

public function cb_node:boolean

declarations

ncut: integer

cut: dynamic array(range) of linctr
cutid: dynamic array(range) of integer
type: dynamic array(range) of integer
end-declarations

Counters for cuts

Cuts

Cut type identification
Cut constraint type

returned:=false ! Call this function once per node

depth:=getparam ("XPRS_NODEDEPTH")
node:=getparam ("XPRS_NODES")

if depth<4 then
ncut:=0

! Get the solution values
forall (c in CONTR) do
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a)
forall(s in SITES) solc(c,s):=getsol(clean(c,s)
end-do

)
)

! Search for violated constraints

Fair Isaac Corporation Confidential and Proprietary Information 88

More about Integer Programming

11.2

11.2.1

11.2.2

forall (c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s)) then

cut (ncut) := alloc(c,AREA(s)) - clean(c, s)
cutid(ncut) := 1

type (ncut) := CT_GEQ

ncut+=1

end-if

! Add cuts to the problem
if ncut>0 then

returned:=true ! Call this function again
addcuts (cutid, type, cut);
writeln("Cuts added : ", ncut, " (depth ", depth, ", node ", node,
", obj. ", getparam("XPRS_LPOBJVAL"), ")")
end-if
end-if

end-function

The prototype of this function is prescribed by the type of the callback (see the Xpress Optimizer
Reference Manual and the chapter on mmxprs in the Mosel Language Reference Manual). We declare
the function as public to make sure that our model continues to work if it is compiled with the -s
(strip) option. At every node this function is called repeatedly, followed by a re-solution of the current
LP, as long as it returns true.

Column generation

The technique of column generation is used for solving linear problems with a huge number of variables
for which it is not possible to generate explicitly all columns of the problem matrix. Starting with a very
restricted set of columns, after each solution of the problem a column generation algorithm adds one
or several columns that improve the current solution. These columns must have a negative reduced
cost (in a minimization problem) and are calculated based on the dual value of the current solution.

For solving large MIP problems, column generation typically has to be combined with a
Branch-and-Bound search, leading to a so-called Branch-and-Price algorithm. The example problem
described below is solved by solving a sequence of LPs without starting a tree search.

Example problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into smaller
rolls according to the customer orders. The rolls can be cut into NWIDTHS different sizes. The orders
are given as demands for each width i (DEMAND);). The objective of the paper mill is to satisfy the
demand with the smallest possible number of paper rolls in order to minimize the losses.

Model formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set of
cutting patterns for the current set of demands. Since it may not be obvious how to calculate all
possible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS;,...,
PATTERNSNwipTH), that consists of cutting small rolls all of the same width as many times as possible
(and at most the demanded quantity) out of the large roll. This type of problem is called a cutting stock
problem.

If we define variables use; to denote the number of times a cutting pattern j
(j € WIDTHS = {1,..., NWIDTH}) is used, then the objective becomes to minimize the sum of these

Fair Isaac Corporation Confidential and Proprietary Information 89

More about Integer Programming

variables, subject to the constraints that the demand for every size has to be met.

minimize Z use;
JEWIDTHS

S PATTERNS; - use; > DEMAND;

JEWIDTHS

Vj € WIDTHS : use;j < ceil(DEMAND;/PATTERNS;), usej € N

Function ceil means rounding to the next larger integer value.

11.2.3 Implementation

The first part of the Mosel model paper . mos implementing this problem looks as follows:

model Papermill
uses "mmxprs"

forward procedure column_gen
forward function knapsack (C:array (range)

B:real, D:array (range)
xbest:array (range)

pass: integer)
forward procedure show_new_pat (dj:real,

declarations

NWIDTHS = 5 !
WIDTHS = 1..NWIDTHS !

RP: range !
MAXWIDTH = 94 !

EPS = le-6 !
WIDTH: array (WIDTHS) of real !
DEMAND: array (WIDTHS) of integer !
PATTERNS: array (WIDTHS,WIDTHS) of integer !
use: dynamic array (RP) of mpvar

|
soluse: dynamic array(RP) of real !
of linctr !

|

Dem: array (WIDTHS)

MinRolls: linctr

KnapCtr, KnapObj: linctr !
x: array (WIDTHS) of mpvar !
end-declarations
WIDTH:: [17, 21, 22.5, 24, 29.5]
DEMAND:: [150, 96, 48, 108, 227]

forall(j in WIDTHS) !
PATTERNS (3§, §) :=

forall(j in WIDTHS) do
create (use(j)) !

VX

of real, A:array(range)
of integer,

of integer,
real

array (range)

of real,

of integer)

Number of different widths
Range of widths

Range of cutting patterns
Maximum roll width

Zero tolerance

Possible widths
Demand per width
(Basic) cutting patterns

Rolls per pattern
Solution values for variables
Demand constraints
Objective function

use'

Knapsack constraint+objective
Knapsack variables

Make basic patterns

minlist (floor (MAXWIDTH/WIDTH (Jj)),DEMAND (J))

Create NWIDTHS variables ‘use'

Variables are integer and bounded

use (j) 1is_integer !
use (j) <= integer (ceil (DEMAND (j) /PATTERNS (3, j)))
end-do

MinRolls:= sum(j in WIDTHS) use (J) !

forall (i in WIDTHS) !
Dem(i) := sum(j in WIDTHS) PATTERNS (i, j)

column_gen !

minimize (MinRolls) !

Objective: minimize no. of rolls

Satisfy all demands
* use(j) >= DEMAND (1)

Column generation at top node

Compute the best integer solution

Fair Isaac Corporation Confidential and Proprietary Information

90

More about Integer Programming

! for the current problem (including
! the new columns)

writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i)),", ")

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is likely to incur
significant losses through wasting more than necessary of every large roll and by cutting more small
rolls than its customers have ordered. We therefore employ a column generation heuristic to find more
suitable cutting patterns.

The following procedure column_gen defines a column generation loop that is executed at the top
node (this heuristic was suggested by M. Savelsbergh for solving a similar cutting stock problem). The
column generation loop performs the following steps:

m solve the LP and save the basis

get the solution values

compute a more profitable cutting pattern based on the current solution

generate a new column (= cutting pattern): add a term to the objective function and to the
corresponding demand constraints

m load the modified problem and load the saved basis

To be able to increase the number of variables use; in this function, these variables have been declared
at the beginning of the program as a dynamic array without specifying any index range.

By setting Mosel's comparison tolerance to EPS, the test zbest = 0 checks whether zbest lies within
EPS of 0 (see explanation in Section 11.1).

Switching off presolve for the column generation problem generally helps to improve performance
when iteratively resolving the problem after adding a new column and warm-starting it with the
previous basis.

procedure column_gen
declarations
dualdem: array (WIDTHS) of real
xbest: array (WIDTHS) of integer
dw, zbest, objval: real
bas: basis
end-declarations

setparam ("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("zerotol", EPS) ! Set comparison tolerance of Mosel
npatt :=NWIDTHS

npass:=1

while (true) do

minimize (XPRS_LIN, MinRolls) ! Solve the LP
savebasis (bas) ! Save the current basis
objval:= getobjval ! Get the objective value

! Get the solution values
forall(j in 1..npatt) soluse(]):=getsol (use(j))
forall(i in WIDTHS) dualdem(i):=getdual (Dem(i))

! Solve a knapsack problem
zbest:= knapsack (dualdem, WIDTH, MAXWIDTH, DEMAND, xbest, npass) - 1.0

write("Pass ", npass, ": ")
if zbest = 0 then

Fair Isaac Corporation Confidential and Proprietary Information 91

More about Integer Programming

writeln("no profitable column found.\n")

break
else
show_new_pat (zbest, xbest) ! Print the new pattern
npatt+=1
create (use (npatt)) ! Create a new var. for this pattern

use (npatt) is_integer

MinRolls+= use (npatt) ! Add new var. to the objective
dw:=0
forall(i in WIDTHS)

if xbest (i) > 0 then

Dem (i) += xbest (i) *use (npatt) ! Add new var. to demand constr.s
dw:= maxlist(dw, ceil (DEMAND (i) /xbest (i)))
end-if
use (npatt) <= dw ! Set upper bound on the new var.
loadprob (MinRolls) ! Reload the problem
loadbasis (bas) ! Load the saved basis
end-if
npass+=1
end-do
writeln("Solution after column generation: ", objval, " rolls, ",
getsize (RP), " patterns")
write (" Rolls per pattern: ")
forall(i in RP) write(soluse(i),", ")
writeln
setparam ("XPRS_PRESOLVE", 1) ! Switch presolve on

end-procedure

The preceding procedure column_gen calls the following auxiliary function knapsack to solve an
integer knapsack problem of the form

maximize z=) C;-X
JEWIDTHS
jg: AA[mﬁ < B
JEWIDTHS
Vj € WIDTHS : x; integer
Wj € WIDTHS : xj < D

The function knapsack solves a second optimization problem that is independent of the main, cutting
stock problem since the two have no variables in common. We thus effectively work with two problems
in a single Mosel model.

For efficiency reasons we have defined the knapsack variables and constraints globally. The integrality
condition on the knapsack variables remains unchanged between several calls to this function, so we
establish it when solving the first knapsack problem. On the other hand, the knapsack constraint and
the objective function have different coefficients at every execution, so we need to replace them every
time the function is called.

We reset the knapsack constraints to 0 at the end of this function so that they do not unnecessarily
increase the size of the main problem. The same is true in the other sense: hiding the demand
constraints while solving the knapsack problem makes life easier for the optimizer, but is not essential
for getting the correct solution.

function knapsack (C:array(range) of real, A:array(range) of real, B:real,
D:array (range) of integer, xbest:array(range) of integer,
pass: integer) :real

Fair Isaac Corporation Confidential and Proprietary Information 92

More about Integer Programming

! Hide the demand constraints
forall(j in WIDTHS) sethidden (Dem(j), true)

! Define the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)*x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)*x(J)

! Integrality condition
if (pass=1) then
forall(j in WIDTHS) x(j) is_integer
forall(j in WIDTHS) x(j) <= D(J)
end-if

maximize (KnapObij)
returned:=getobjval
forall(j in WIDTHS) xbest (j) :=round(getsol(x(]j)))

! Reset knapsack constraint and objective, unhide demand constraints
KnapCtr := 0
KnapObj := 0
forall(j in WIDTHS) sethidden (Dem(j), false)

end-function

To complete the model, we add the following procedure show_new_pat to print every new pattern we
find.

procedure show_new_pat (dj:real, vx: array(range) of integer)
declarations

dw: real

end-declarations

writeln("new pattern found with marginal cost ", dj)
write (" Widths distribution: ")
dw:=0
forall(i in WIDTHS) do
write (WIDTH(i), ":", vx(i), " ")
dw += WIDTH (i) *vx (i)
end-do

writeln("Total width: ", dw)
end-procedure

end-model

11.2.4 Alternative implementation: Working with multiple problems

The implementation of the function knapsack in the previous section uses the sethidden
functionality to blend out parts of the problem definition. The two parts of the problem (the main
cutting stock problem and the problem solved in the knapsack routine) do not have any elements in
common, that is, we really are solving two different problems within a single model.

With Mosel 3.0 it becomes possible to formulate this model as two separate problems within the same
model file.

The implementation as two separate problems in the model file papers .mos requires only few
changes to the previous model formulation:

1. The declaration of a subproblem 'Knapsack’ is added to the global declarations at the start of the
model definition.

declarations
Knapsack: mpproblem ! Knapsack subproblem
end-declarations

2. The implementation of function knapsack now works within the subproblem ‘Knapsack’ instead

Fair Isaac Corporation Confidential and Proprietary Information 93

More about Integer Programming

of hiding and unhiding subsets of the constraints. The scope of the subproblem is marked by the

keywords with mpproblem [do ... end-do].

function knapsack (C:array(range) of real, A:array(range) of real, B:real,
D:array (range) of integer, xbest:array(range) of integer,
pass: integer) :real

with Knapsack do

! Redefine the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)*x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)*x(J)

! Integrality condition
if pass=1 then
forall(j in WIDTHS) x(j) is_integer
forall(j in WIDTHS) x(j) <= D(J)
end-if

maximize (KnapObj)
returned:=getobjval
forall(j in WIDTHS) xbest (j) :=round(getsol(x(j)))

end-do

end-function

Fair Isaac Corporation Confidential and Proprietary Information

94

CHAPTER 12
Extensions to Linear Programming

12.1

12.1.1

12.1.2

The two examples (recursion and Goal Programming) in this chapter show how Mosel can be used to
implement extensions of Linear Programming.

Recursion

Recursion, more properly known as Successive Linear Programming, is a technique whereby LP may be
used to solve certain non-linear problems. Some coefficients in an LP problem are defined to be
functions of the optimal values of LP variables. When an LP problem has been solved, the coefficients
are re-evaluated and the LP re-solved. Under some assumptions this process may converge to a local
(though not necessarily a global) optimum.

Example problem

Consider the following financial planning problem: We wish to determine the yearly interest rate x so
that for a given set of payments we obtain the final balance of 0. Interest is paid quarterly according to
the following formula:

interest; = (92/365) - balance; - interest,ate

The balance at time t (t = 1, ..., T) results from the balance of the previous period t - 1 and the net of
payments and interest:

net; = Payments; — interest;
balance; = balance;—q — net;

Model formulation

This problem cannot be modeled just by LP because we have the T products

balance; - interest ate
which are non-linear. To express an approximation of the original problem by LP we replace the interest
rate variable x by a (constant) guess X of its value and a deviation variable dx

x=X+dx

The formula for the quarterly interest payment i; therefore becomes
92/365 - (balance;—q - x)

92/365 - (balance;_q - (X + dx))
92/365 - (balance;—q - X + balance;_q - dx)

interest;

Fair Isaac Corporation Confidential and Proprietary Information 95

Extensions to Linear Programming

where balance; is the balance at the beginning of period t.

We now also replace the balance balance;_q in the product with dx by a guess B;_; and a deviation db;_4

iinterest; 92/365 - (balance;—q - X + (Bt—1 + dby_q) - dx)

92/365 - (balance;_q - X + By—q - dx + dby—_q - dX)

which can be approximated by dropping the product of the deviation variables

interest; = 92/365 - (balance;_q - X + B;_q - dx)

To ensure feasibility we add penalty variables eplus; and eminus; for positive and negative deviations in
the formulation of the constraint:

interest; = 92/365 - (balance;-q - X + By_q - dx + eplus; — eminust)

The objective of the problem is to get feasible, that is to minimize the deviations:

minimize Z (eplus; + eminusy)
tEQUARTERS

12.1.3 Implementation

The Mosel model (file recurse .mos) then looks as follows (note the balance variables balance; as
well as the deviation dx and the quarterly nets net; are defined as free variables, that is, they may take
any values between minus and plus infinity):

model Recurse
uses "mmxprs"

forward procedure solve_recurse

declarations

T=6

QUARTERS=1..T

P,R,V: array (QUARTERS) of real
B: array (QUARTERS) of real

Time horizon

Range of time periods

Payments

Initial guess as to balances b(t)

X: real Initial guess as to interest rate x
interest: array (QUARTERS) of mpvar ! Interest
net: array (QUARTERS) of mpvar ! Net
balance: array (QUARTERS) of mpvar ! Balance
|
|

X: mpvar Interest rate

dx: mpvar ! Change to x

eplus, eminus: array (QUARTERS) of mpvar ! + and - deviations
end-declarations

X:= 0.00
B:: [1, 1, 1, 1, 1, 1]
p:: [-1000, O, O, O, O, O]
R:: [206.6, 206.6, 206.6, 206.6, 206.6, O]
v:: [-2.95, 0, 0, O, O, O]

! net = payments - interest
forall(t in QUARTERS) net(t) = (P(t)+R(t)+V(t)) - interest (t)

! Money balance across periods
forall(t in QUARTERS) balance(t) = if (t>1, balance(t-1), 0) - net(t)
forall(t in 2..T) Interest(t):= ! Approximation of interest

-(365/92) xinterest (t) + Xx*balance(t-1) + B(t-1)*dx + eplus(t) - eminus(t) = 0

Fair Isaac Corporation Confidential and Proprietary Information 96

Extensions to Linear Programming

Def:= X + dx = x ! Define the interest rate: x = X + dx
Feas:= sum(t in QUARTERS) (eplus(t)+eminus(t)) ! Objective: get feasible
interest(l) =0 ! Initial interest is zero

forall (t in QUARTERS) net(t) is_free

forall (t in 1..T-1) balance(t) is_free

balance(T) = 0 ! Final balance is zero
dx is_free

minimize (Feas) ! Solve the LP-problem

solve_recurse ! Recursion loop

! Print the solution

writeln("\nThe interest rate is ", getsol(x))
write (strfmt ("t",5), strfmt(" ",4))
forall (t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))

write ("\nBalances ")
forall(t in QUARTERS) write(strfmt (getsol(balance(t)),8,2))
write("\nInterest ")
forall(t in QUARTERS) write(strfmt (getsol (interest(t)),8,2))

end-model

In the model above we have declared the procedure solve_recurse that executes the recursion but it
has not yet been defined. The recursion on x and the balance; (t = 1,..., T — 1) is implemented by the
following steps:

(a) The B;—1 in constraints Interest; get the prior solution value of balance;_4
(b) The X in constraints Interest; get the prior solution value of x
(c) The X in constraint Def gets the prior solution value of x

We say we have converged when the change in dx (variation) is less than 0.000001 (TOLERANCE). By
setting Mosel’'s comparison tolerance to this value the test variation > 0 checks whether variation is
greater than TOLERANCE.

procedure solve_recurse

declarations

TOLERANCE=0.000001 ! Convergence tolerance
variation: real ! Variation of x

BC: array (QUARTERS) of real

bas: basis ! LP basis

end-declarations

setparam("zerotol", TOLERANCE) ! Set Mosel comparison tolerance
variation:=1.0
ct:=0

while (variation>0) do

savebasis (bas) ! Save the current basis
ct+=1
forall(t in 2..T)
BC(t-1) := getsol (balance(t-1)) ! Get solution values for balance(t)'s
XC:= getsol (x) ! and x
write("Round ", ct, " x:", getsol(x), " (variation:", variation,"), ")
writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))
forall(t in 2..T) do ! Update coefficients

Interest(t)+= (BC(t-1)-B(t-1))*dx
B(t-1) :=BC(t-1)
Interest (t)+= (XC-X)*balance (t-1)

end-do

Def+= XC-X

X:=XC

oldxval:=XC ! Store solution value of x

Fair Isaac Corporation Confidential and Proprietary Information 97

Extensions to Linear Programming

loadprob (Feas) ! Reload the problem into the optimizer
loadbasis (bas) ! Reload previous basis

minimize (Feas) ! Re-solve the LP-problem

variation:= abs(getsol (x)-oldxval) ! Change in dx

end-do

end-procedure

With the initial guesses 0 for X and 1 for all B; the model converges to an interest rate of 5.94413% (x =
0.0594413).

12.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for a set of
constraints. In Goal Programming there are two basic models: the pre-emptive (lexicographic) model
and the Archimedian model. In the pre-emptive model, goals are ordered according to priorities. The
goals at a certain priority level are considered to be infinitely more important than the goals at the next
level. With the Archimedian model weights or penalties for not achieving targets must be specified, and
we attempt to minimize the sum of the weighted infeasibilities.

If constraints are used to construct the goals, then the goals are to minimize the violation of the
constraints. The goals are met when the constraints are satisfied.

The example in this section demonstrates how Mosel can be used for implementing pre-emptive Goal
Programming with constraints. We try to meet as many goals as possible, taking them in priority order.

12.2.1 Example problem

The objective is to solve a problem with two variables x and y (x,y > 0), the constraint

100 - x +60 - y < 600

and the three goal constraints
Goal;:7 -x+3-y > 40
Goaly,:10-x+5-y =60
Goal3:5-x+4.y > 35

where the order given corresponds to their priorities.

12.2.2 Implementation

To increase readability, the implementation of the Mosel model (file goalctr.mos) is organized into
three blocks: the problem is stated in the main part, procedure preemptive implements the solution
strategy via preemptive Goal Programming, and procedure print_sol produces a nice solution
printout.

model GoalCtr
uses "mmxprs"

forward procedure preemptive
forward procedure print_sol (i:integer)

declarations

NGOALS=3 ! Number of goals

X,y: mpvar ! Decision variables
dev: array(l..2*NGOALS) of mpvar ! Deviation from goals

Fair Isaac Corporation Confidential and Proprietary Information 98

Extensions to Linear Programming

MinDev: linctr ! Objective function
Goal: array(l..NGOALS) of linctr ! Goal constraints
end-declarations

100*x + 60xy <= 600 ! Define a constraint

! Define the goal constraints

Goal(l):= T7*xx + 3*xy >= 40
Goal(2) := 10*x + 5xy = 60
Goal(3):= 5*x + 4xy >= 35
preemptive ! Pre-emptive Goal Programming

At the end of the main part, we call procedure preemptive to solve this problem by pre-emptive Goal
Programming. In this procedure, the goals are at first entirely removed from the problem (‘hidden’). We
then add them successively to the problem and re-solve it until the problem becomes infeasible, that is,
the deviation variables forming the objective function are not all 0. Depending on the constraint type
(obtained with get type) of the goals, we need one (for inequalities) or two (for equalities) deviation
variables.

Let us have a closer look at the first goal (Goal;), a > constraint: the left hand side (all terms with
decision variables) must be at least 40 to satisfy the constraint. To ensure this, we add a dev,. The goal
constraint becomes 7 - x + 3 - y + dev, > 40 and the objective function is to minimize dev,. If this is
feasible (0-valued objective), then we remove the deviation variable from the goal, thus turning it into a
hard constraint. It is not required to remove it from the objective since minimization will always force
this variable to take the value 0.

We then continue with Goal,: since this is an equation, we need variables for positive and negative
deviations, devs and dev,. We add dev, — devs to the constraint, turning it into

10-x+ 5.y +devy — devs = 60 and the objective now is to minimize the absolute deviation dev, + devs.
And so on.

procedure preemptive

! Remove (=hide) goal constraint from the problem
forall(i in 1..NGOALS) sethidden (Goal (i), true)

i:=0
while (i<NGOALS) do
i+=1
sethidden (Goal (i), false) ! Add (=unhide) the next goal
case gettype(Goal(i)) of ! Add deviation variable(s)
CT_GEQ: do
Deviation:= dev (2*i)
MinDev += Deviation
end-do
CT_LEQ: do
Deviation:= —-dev (2xi-1)
MinDev += dev (2*i-1)
end-do
CT_EQ : do
Deviation:= dev(2%i) - dev(2*i-1)
MinDev += dev (2*i) + dev(2*i-1)
end-do
else writeln ("Wrong constraint type")
break
end-case

Goal (i) += Deviation

minimize (MinDev) ! Solve the LP-problem
writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y))

if getobjval>0 then
writeln("Cannot satisfy goal ", 1i)

Fair Isaac Corporation Confidential and Proprietary Information 99

Extensions to Linear Programming

break

end-if

Goal (i) —= Deviation ! Remove deviation variable(s) from goal
end-do
print_sol (1) ! Solution printout

end-procedure

The procedure sethidden (c:linctr, b:boolean) has already been used in the previous chapter
(Section 11.2) without giving any further explanation. With this procedure, constraints can be removed

(‘hidden’) from the problem solved by the optimizer without deleting them in the problem definition. So
effectively, the optimizer solves a subproblem of the problem originally stated in Mosel.

To complete the model, below is the procedure print_sol for printing the results.

procedure print_sol (i:integer)
declarations
STypes={CT_GEQ, CT_LEQ, CT_EQ}
ATypes: array (STypes) of string
end-declarations

ATypes:: ([CT_GEQ, CT_LEQ, CT_EQ])[">=", "<=", "="]

writeln(" Goal", strfmt ("Target",1l), strfmt("Value",7))
forall(g in 1..1)
writeln(strfmt(g,4), strfmt (ATypes (gettype (Goal(qg))),4),
strfmt (—getcoeff (Goal(g)),6),
strfmt (getact (Goal (g))-getsol (dev(2*g)) +getsol (dev (2*xg-1)) ,8))

forall(g in 1..NGOALS)
if (getsol(dev(2xg))>0) then

writeln(" Goal(",g,") deviation from target: -", getsol(dev(2*g)))
elif (getsol(dev(2*g-1))>0) then

writeln(" Goal(",g,") deviation from target: +", getsol(dev(2*g-1)))
end-if

end-procedure

end-model

When running the program, one finds that the first two goals can be satisfied, but not the third.

Fair Isaac Corporation Confidential and Proprietary Information 100

lll. Working with the Mosel libraries

Overview

Whilst the two previous parts have shown how to work with the Mosel Language, this part introduces
the programming language interface of Mosel in the form of the Mosel C libraries. The C interface is
provided in the form of two libraries; it may especially be of interest to users who

m want to integrate models and/or solution algorithms written with Mosel into some larger system
m want to (re)use already existing parts of algorithms written in C

m want to interface Mosel with other software, for instance for graphically displaying results.

Other programming language interfaces available for Mosel are its Java, .NET, C# and VBA interfaces.
They will be introduced with the help of small examples in Chapter 14.

All these programming language interfaces only enable the user to access models, but not to modify
them. The latter is only possible with the Mosel Native Interface. Even more importantly, the Native
Interface makes it possible to add new constants, types, and subroutines to the Mosel Language. For
more detail the reader is referred to the Native Interface user guide that is provided as a separate
document. The Mosel Native Interface requires an additional licence.

Fair Isaac Corporation Confidential and Proprietary Information 102

CHAPTER 13
C interface

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models from C
and how to access modeling objects from C. It is not possible to make changes to Mosel modeling
objects from C using this interface, but the data and parameters used by a model may be modified via
files or run time parameters.

13.1 Basic tasks

To work with a Mosel model, in the C language or with the command line interpreter, it always needs to
be compiled, then loaded into Mosel and executed. In this section we show how to perform these basic
tasks in C.

13.1.1 Compiling a model in C

The following example program shows how Mosel is initialized in C, and how a model file (extension
.mos) is compiled into a binary model (BIM) file (extension .bim). To use the Mosel Model Compiler
Library, we need to include the header file xprm_mc . h at the start of the C program.

For the sake of readability, in this program (file ugcomp. c), as for all others in this chapter, we only
implement a rudimentary testing for errors.

#include <stdlib.h>
#include "xprm_mc.h"

int main ()

{

if (XPRMinit ()) /* Initialize Mosel =/
return 1;

if (XPRMcompmod (NULL, "burglar2.mos", NULL, "Knapsack example"))

return 2; /* Compile the model burglar2.mos,
output the file burglar2.bim x/
XPRMfinish(); /* Finish Mosel, clear everything =/
return O;

}

The model burglar2.mos used here is the same as model burglari.mos in Section 2.1.3, but
reading the data from file.

With version 1.4 of Mosel it becomes possible to redirect the BIM file that is generated by the
compilation. Instead of writing it out to a physical file it may, for instance, be kept in memory or be
written out in compressed format. The interested reader is refered to the whitepaper Generalized file
handling in Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 103

C interface

13.1.2

13.1.3

Executing a model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in C. The BIM
file can of course be generated within the same program where it is executed, but here we leave out this
step. A BIM file is an executable version of a model, but it does not include any data that is read in by
the model from external files. It is portable, that is, it may be executed on a different type of
architecture than the one it has been generated on. A BIM file produced by the Mosel compiler first
needs to be loaded into Mosel (function XPRM1oadmod) and can then be run by a call to function
XPRMrunmod. To use these functions, we need to include the header file xprm_rt . h at the beginning
of our program (named ugrun. c).

#include <stdio.h>
#include "xprm_rt.h"

int main ()

{
XPRMmodel mod;
int result;

if (XPRMinit ()) /* Initialize Mosel =/
return 1;

if ((mod=XPRMloadmod ("burglar2.bim", NULL))==NULL) /* Load a BIM file x/

return 2;

if (XPRMrunmod (mod, &result, NULL)) /* Run the model =*/

return 3;

XPRMfinish(); /* Finish Mosel, clear everything =/
return 0;

}

The compile/load/run sequence may also be performed with a single function call to XPRMexecmod (in
this case we need to include the header file xprm_mc.h):

#include <stdio.h>
#include "xprm_mc.h"

int main ()

{

int result;

if (XPRMinit ()) /* Initialize Mosel */
return 1;
/* Execute = compile/load/run a model */

if (XPRMexecmod (NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

XPRMfinish () ; /* Finish Mosel, clear everything =/

return 0;

}

Termination

All program examples in this manual only serve to execute Mosel models. The corresponding model
and Mosel itself are terminated (unloaded from memory) with the end of the C program. However, for
embedding the execution of a Mosel model into some larger application it may be desirable to free the
space used by the model or the execution of Mosel before the end of the application program. To this
aim Mosel provides the functions XxPRMresetmod, XPRMunloadmod, and XPRMf inish.

The function XxPRMresetmod frees some resources allocated to a model, in particular (solution) data

Fair Isaac Corporation Confidential and Proprietary Information 104

C interface

held in memory or temporary files that may have been created during its execution. The model remains
loaded for later re-use. With a call to XxPRMunloadmod a model is unloaded and all related resources
are freed.

Function XPRMf inish performs the unloading of all models, frees all memory used by Mosel, and also
removes the temporary directory/files that have been created by Mosel.

13.2 Parameters

In Part | the concept of parameters in Mosel has been introduced: when a Mosel model is executed
from the command line, it is possible to pass new values for its parameters into the model. The same
is possible with a model run in C. If, for instance, we want to run model ‘Prime’ from Section 8.3 to
obtain all prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in the
model), we may start a program with the following lines:

XPRMmodel mod;
int result;

if (XPRMinit ()) /* Initialize Mosel x/
return 1;

if ((mod=XPRMloadmod ("prime.bim",NULL))==NULL) /* Load a BIM file x/
return 2;

if (XPRMrunmod (mod, &result, "LIMIT=500")) /* Run the model x/
return 3;

To use function XPRMexecmod instead of the compile/load/run sequence we have:

int result;

if (XPRMinit ()) /* Initialize Mosel =/
return 1;
/* Execute with new parameter settings */
if (XPRMexecmod (NULL, "prime.mos", "LIMIT=500", &result, NULL))
return 2;

13.3 Accessing modeling objects and solution values

Using the Mosel libraries, it is not only possible to compile and run models, but also to access
information on the different modeling objects.

13.3.1 Accessing sets

A complete version of a program (file ugparami . c) for running the model ‘Prime’ mentioned in the
previous section may look as follows (we work with a model prime2 that corresponds to the one
printed in Section 8.3 but with all output printing removed because we are doing this in C, furthermore
all entities accessed from C must be explicitly declared as public):

#include <stdio.h>
#include "xprm mc.h"

int main ()

{
XPRMmodel mod;
XPRMalltypes rvalue, setitem;

Fair Isaac Corporation Confidential and Proprietary Information 105

C interface

XPRMset set;

int result, type, i, size, first,

if (XPRMinit ())
return 1;

if (XPRMexecmod (NULL, "prime2.mos",

return 2;

type=XPRMfindident (mod, "SPrime",
if ((XPRM_TYP (type) !=XPRM_TYP_INT) | |
(XPRM_STR (type) ! =XPRM_STR_SET))

return 3;
set = rvalue.set;

size = XPRMgetsetsize(set);
if (size>0)

{

first = XPRMgetfirstsetndx(set);
last = XPRMgetlastsetndx(set);
printf ("Prime numbers from 2 to %d:\n",

for (i=first;i<=last;i++)

/* Initialize Mosel =/

"LIMIT=500", &result, &mod))

/* Execute the model */

&rvalue); /* Get the object 'SPrime' =*/

/* Check the type: */
/* it must be a set of integers %/

/* Get the size of the set */

/* Get number of the first index =*/
/* Get number of the last index */

LIM);

/* Print all set elements */

printf (" %d,", XPRMgetelsetval (set,i, &setitem)->integer);

printf ("\n");
}

XPRMfinish();

return 0;

}

/* Finish Mosel =*/

To print the contents of set sPrime that contains the desired result (prime numbers between 2 and
500), we first retrieve the Mosel reference to this object using function XxPRMf indident. We are then
able to enumerate the elements of the set (using functions XPRMgetfirstsetndx and
XPRMgetlastsetndx) and obtain their respective values with XPRMgetelsetval.

13.3.2 Retrieving solution values

The following program ugsoll.c executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from
Chapter 2 but with all output printing removed and all model entities declared as public) and prints

out its solution.

#include <stdio.h>
#include "xprm_rt.h"

int main ()

{

XPRMmodel mod;

XPRMalltypes rvalue, itemname;
XPRMarray varr, darr;
XPRMmpvar Xx;

XPRMset set;

int indices[1l], result, type;
double val;

if (XPRMinit ())
return 1;

if ((mod=XPRMloadmod ("burglar3.bim",

return 2;

if (XPRMrunmod (mod, &result, NULL))

return 3;

/* Initialize Mosel */

NULL)) ==NULL) /x Load a BIM file x/

/* Run the model (includes
optimization) =/

if ((XPRMgetprobstat (mod) &XPRM_PBRES) !=XPRM_PBOPT)

Fair Isaac Corporation Confidential and Proprietary Information

106

C interface

13.3.3

return 4; /* Test whether a solution is found */

printf ("Objective value: %g\n", XPRMgetobjval (mod));
/* Print the obj. function value */

type=XPRMfindident (mod, "take", &rvalue); /* Get the model object 'take' */
if ((XPRM_TYP (type) !=XPRM_TYP_MPVAR) | | /* Check the type: =/

(XPRM_STR (type) !=XPRM_STR_ARR)) /* it must be an ‘mpvar' array */
return 5;

varr = rvalue.array;

type=XPRMfindident (mod, "VALUE", &rvalue); /x Get the model object 'VALUE' x/

if ((XPRM_TYP (type) ! =XPRM_TYP_REAL) | | /* Check the type: */
(XPRM_STR (type) !=XPRM_STR_ARR)) /* it must be an array of reals =/
return 6;

darr = rvalue.array;

type=XPRMfindident (mod, "ITEMS", &rvalue); /* Get the model object 'ITEMS' */

if ((XPRM_TYP (type) !=XPRM_TYP_STRING) | | /* Check the type: */
(XPRM_STR (type) !=XPRM_STR_SET)) /* it must be a set of strings */
return 7;

set = rvalue.set;

XPRMgetfirstarrentry(varr, indices); /* Get the first entry of array varr
(we know that the array is dense
and has a single dimension) x/

do

{

XPRMgetarrval (varr, indices, &x); /* Get a variable from varr =/
XPRMgetarrval (darr, indices, &val); /* Get the corresponding value */

printf ("take (%s): %g\t (item value: %g)\n", XPRMgetelsetval (set, indices[0],
&itemname) ->string, XPRMgetvsol (mod,x), val);
/* Print the solution value x*/
} while (!XPRMgetnextarrentry (varr, indices)); /* Get the next index tuple */

XPRMfinish(); /* Finish Mosel, clear everything */

return O;

}

The array of variables varr is enumerated using the array functions XxPRMgetfirstarrentry and
XPRMgetnextarrentry. These functions may be applied to arrays of any type and dimension (for
higher numbers of dimensions, merely the size of the array indices thatis used to store the
index-tuples has to be adapted). With these functions we run systematically through all possible
combinations of index tuples, hence the hint at dense arrays in the example. In the case of sparse
arrays it is preferrable to use different enumeration functions that only enumerate those entries that are
defined (see next section).

Sparse arrays

In Chapter 3 the problem ‘Transport’ has been introduced. The objective of this problem is to calculate
the flows flowpr from a set of plants to a set of sales regions that satisfy all demand and supply
constraints and minimize the total cost. Not all plants may deliver goods to all regions. The flow
variables flow,, are therefore defined as a sparse array. The following example (file ugarrayl.c)
prints out all existing entries of the array of variables.

#include <stdio.h>
#include <stdlib.h>
#include "xprm rt.h"

int main ()

{

XPRMmodel mod;
XPRMalltypes rvalue;

Fair Isaac Corporation Confidential and Proprietary Information 107

C interface

13.4

XPRMarray varr;
XPRMset *sets;
int *indices, dim, result, type, 1i;

if (XPRMinit ()) /* Initialize Mosel */

return 1;

if ((mod=XPRMloadmod ("transport.bim", NULL))==NULL) /% Load a BIM file */
return 2;

if (XPRMrunmod (mod, &result, NULL)) /* Run the model =*/

return 3;

type=XPRMfindident (mod, "flow", &rvalue); /* Get the model object named 'flow' x/
if ((XPRM_TYP (type) !=XPRM_TYP_MPVAR) | | /* Check the type: */
(XPRM_STR (type) !=XPRM_STR_ARR)) /* it must be an array of unknowns x*/
return 4;
varr=rvalue.array;

dim = XPRMgetarrdim(varr); /* Get the number of dimensions of
the array =*/

indices = (int *)malloc(dim*sizeof (int));

sets = (XPRMset *)malloc (dim*sizeof (XPRMset));

XPRMgetarrsets (varr, sets) ; /* Get the indexing sets */

XPRMgetfirstarrtruentry (varr,indices); /x Get the first true index tuple */

do

{
printf ("flow(");
for (i=0; i<dim-1; i++)
printf ("%$s, ", XPRMgetelsetval (sets[i],indices[i], &rvalue)->string);
printf ("%s), ",XPRMgetelsetval (sets[dim-1],indices[dim-1], &rvalue)->string);
} while (!XPRMgetnextarrtruentry (varr,indices)); /* Get next true index tuplex/
printf ("\n");

free(sets);
free (indices) ;
XPRMresetmod (mod) ;

return O;

}

In this example, we first get the number of indices (dimensions) of the array of variables varr (using
function XxPRMgetarrdim). We use this information to allocate space for the arrays sets and
indices that will be used to store the indexing sets and single index tuples for this array respectively.
We then read the indexing sets of the array (function XxPRMgetarrsets) to be able to produce a nice
printout.

The enumeration starts with the first defined index tuple, obtained with function
XPRMgetfirstarrtruentry, and continues with a series of calls to XPRMgetnextarrtruentry
until all defined entries have been enumerated.

At the end of the program example we have reset the model (using function XxPRMresetmod), thus
freeing some resources allocated to it, in particular deleting temporary files that may have been created
during its execution.

Exchanging data between an application and a model

In the previous sections we have seen how to obtain solution information and other data from a Mosel
model after its execution. For the integration of a model into an application a flow of information in the
opposite sense, that is, from the host application to the model, will often also be required, in particular
if data are generated by the application that serve as input to the model. It is possible to write out this
data to a (text) file or a database and read this file in from the model, but it is clearly more efficient to

Fair Isaac Corporation Confidential and Proprietary Information 108

C interface

communicate such data in memory directly from the application to the model.

In this section we show two versions of our Burglar example where all input data is loaded from the
application into the model, using dense and sparse data format respectively. The same communication
mechanism, namely a combination of the two I/0 drivers (see Section 17.1 for further detail) raw and
mem, is also used to write back the solution from the model to the calling application.

An alternative communication mechanism is presented in Section 13.4.3. Instead of working with
blocks of predefined size as in the previous cases, here data is passed through flows, allowing for
dynamic sizing on the application level, a feature that is particularly useful for solution output with
sparse data structures.

A separate example (Section 13.4.4) shows how to input and output scalar data.

13.4.1 Dense arrays

In the first instance we are going to consider a version of the ‘Burglar’ model that corresponds to the
very first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8.Inour C program ugiodense. c below, this corresponds to storing data in standard C arrays

that are communicated to the Mosel model at the start of its execution.

#include <stdio.h>
#include "xprm mc.h"

double vdata[8]={15,100,90,60,40,15,10, 1}; /* Input data: VALUE x/
double wdata[8]={ 2, 20,20,30,40,30,60,10}; /* Input data: WEIGHT */
double solution[8]; /* Array for solution values */

int main ()

{

XPRMmodel mod;
int i,result;

char vdata_name[40]; /* File name of input data 'vdata' =/

char wdata_name[40]; /* File name of input data 'wdata' =*/

char solution_name[40]; /* File name of solution values */

char params[144]; /* Parameter string for model execution */
if (XPRMinit ()) /* Initialize Mosel x/

return 1;

/* Prepare file names for 'initializations' using the 'raw' driver x/
sprintf (vdata_name, "noindex,mem:%p/%d", vdata, (int)sizeof (vdata));
sprintf (wdata_name, "noindex,mem:%p/%d", wdata, (int)sizeof (wdata));
sprintf (solution_name, "noindex,mem:%p/%d", solution, (int)sizeof (solution));

/* Pass file names as execution param.s */
sprintf (params, "VDATA='%$s',K WDATA='%$s',SOL='%s'", vdata_name, wdata_name,
solution_name) ;

if (XPRMexecmod (NULL, "burglar6.mos", params, &result, &mod))
return 2; /* Execute a model file =/

if ((XPRMgetprobstat (mod) §XPRM_PBRES) !=XPRM_PBOPT)
return 3; /* Test whether a solution is found =*/

/* Display solution values obtained from the model x/
printf ("Objective value: %g\n", XPRMgetobjval (mod));
for (i=0;1<8; i++)

printf (" take(%d): %g\n", i+1l, solution[i]);

XPRMresetmod (mod) ; /* Reset the model */

return O;

}

Fair Isaac Corporation Confidential and Proprietary Information 109

C interface

13.4.2

In this example we use the raw I/0 driver for communication between the application and the model it
executes. Employing this driver means that data is saved in binary format. File names used with the
raw driver have the form rawoption(, ...], filename. The option noindex for this driver
indicates that data is to be stored in dense format, that is, just the data entries without any information
about the indices—this format supposes that the index set(s) is known in the Mosel model before data
is read in. The £ilename uses the mem driver, this means that data is stored in memory. The actual
location of the data is specified by giving the address of the corresponding memory block and its size.

The program above works with the following version of the ‘Burglar’ model where the locations of input
and output data are specified by the calling application through model parameters. Instead of printing
out the solution in the model, we copy the solution values of the decision variables take into the array
of reals soltake that is written to memory and will be processed by the host application.

model Burglar6
uses "mmxprs"

parameters

VDATA = ''; WDATA = "' ! Locations of input data

SoL = "' ! Location for solution data output
WIMAX = 102 ! Maximum weight allowed

end-parameters

declarations

ITEMS = 1..8 ! Index range for items

VALUE: array (ITEMS) of real ! Value of items

WEIGHT: array (ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ' 1 if we take item i; 0 otherwise
soltake: array(ITEMS) of real ! Solution values

end-declarations

initializations from 'raw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

! Objective: maximize total wvalue
MaxVal:= sum(i in ITEMS) VALUE (i) *take (i)

! Weight restriction
sum(i in ITEMS) WEIGHT (i)+*take (i) <= WIMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol (take(i))

initializations to 'raw:'
soltake as SOL
end-initializations

end-model

Sparse arrays

Let us now take a look at the case where we use a set of strings instead of a simple range set to index
the various arrays in our model. Storing the indices with the data values makes necessary slightly more
complicated structures in our C program for the input and solution data. In the C program below (file
ugiosparse.c), every input data entry defines both, the value and the weight coefficient for the
corresponding index.

Fair Isaac Corporation Confidential and Proprietary Information 110

C interface

#include <stdio.h>
#include "xprm_mc.h"

const struct

{ /* Initial values for array 'data': */
const char =*ind; /* index name */
double val, wght; /* value and weight data entries x/

} data[]l={{"camera", 15,2}, {"necklace",100,20}, {"vase",90,20},
{"picture",60,30}, {"tv",40,40}, {"video",15,30},
{"chest",10,60}, {"brick",1,10}};

const struct

{ /* Array to receive solution values: */
const char *ind; /* index name */
double val; /* solution value */

} solution[8];

int main ()

{

XPRMmodel mod;
int i,result;

char data_name[40]; /* File name of input data 'data' x/

char solution_name[40]; /* File name of solution values */

char params[96]; /* Parameter string for model execution */
if (XPRMinit ()) /* Initialize Mosel x/

return 1;

/* Prepare file names for 'initializations' using the 'raw' driver x/
sprintf (data_name, "slength=0,mem:%p/%d", data, (int)sizeof (data));
sprintf (solution_name, "slength=0,mem:%p/%d", solution, (int)sizeof (solution));

/* Pass file names as execution param.s */
sprintf (params, "DATA='$%s',SOL='%s'", data_name, solution_name);

if (XPRMexecmod (NULL, "burglar7.mos", params, &result, &mod))
return 2; /* Execute a model file */

if ((XPRMgetprobstat (mod) §XPRM_PBRES) !=XPRM_PBOPT)
return 3; /* Test whether a solution is found */

/* Display solution values obtained from the model x/
printf ("Objective value: %g\n", XPRMgetobjval (mod));
for (i=0; i<8; i++)
printf (" take(%s): %g\n", solution[i].ind, solution[i].val);

XPRMresetmod (mod) ;

return O;

}

The use of the two I/0 drivers is quite similar to what we have seen before. We now pass on data in
sparse format, this means that every data entry is saved together with its index (tuple). Option
slength=0 of the raw driver indicates that strings are represented by pointers to null terminated
arrays of characters (C-string) instead of fixed size arrays.

Similarly to the model of the previous section, the model burglar7.mos executed by the C program
above reads and writes data from/to memory using the raw driver and the locations are specified by
the calling application through the model parameters. Since the contents of the index set ITEMS is not
defined in the model we have moved the declaration of the decision variables after the data input where
the contents of the set is known, thus avoiding the creation of the array of decision variables as a
dynamic array.

model Burglar?7
uses "mmxprs"

Fair Isaac Corporation Confidential and Proprietary Information 11

C interface

parameters

DATA = "' ! Location of input data

SOL = "' ! Location for solution data output
WIMAX = 102 ! Maximum weight allowed

end-parameters

declarations

ITEMS: set of string ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array (ITEMS) of real ! Weight of items

end-declarations

initializations from 'raw:'

[VALUE, WEIGHT] as DATA
end-initializations

declarations
take: array (ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Objective: maximize total wvalue
MaxVal:= sum(i in ITEMS) VALUE (i) *take (i)

! Weight restriction
sum(i in ITEMS) WEIGHT (i) *take (i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol (take(i))

initializations to 'raw:'
soltake as SOL
end-initializations

end-model

13.4.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sections
have in commun that all data structures in the application, and in particular the structures to receive
output data, are of fixed size. We therefore now introduce an alternative communication mechanism
working with flows, that enables dynamic sizing of data structures on the application level, a feature
that is particularly useful for solution output where effective data sizes are not known a priori. This
communication mechanism is based on the callback I/0 driver cb (see also Section 13.5). The main
body of our C program now looks as follows.

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include "xprm_mc.h"

/* Input values for data: =/
char *ind[]={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}; /* Index names *x/
double vdata[]={15,100,90,60,40,15,10, 1}; /* Input data: VALUE x/
double wdatal[l={ 2, 20,20,30,40,30,60,10}; /* Input data: WEIGHT =/
int datasize=8;

struct SolArray

{ /* Array to receive solution values: */
const char *ind; /* index name */
double val; /* solution value */

Fair Isaac Corporation Confidential and Proprietary Information 112

C interface

bi

struct SolArray *solution;
int solsize;

int main()

{

XPRMmodel mod;
int i,result;

char data_name[40]; /* File name of input data 'data' =x/

char solution_name[40]; /* File name of solution values */

char params[96]; /* Parameter string for model execution x/
if (XPRMinit ()) /* Initialize Mosel */

return 1;

/* Prepare file names for 'initializations' using the 'cb' driver =*/
sprintf (data_name, "cb:%p", cbinit_from);
sprintf (solution_name, "cb:%p", cbinit_to);

/* Pass file names as execution param.s x/
sprintf (params, "DATAFILE='%$s',6K SOLFILE='%s'", data_name, solution_name);

if (XPRMexecmod (NULL, "burglarl3.mos", params, &result, &mod))
return 2; /* Execute a model file =/

if ((XPRMgetprobstat (mod) &XPRM_PBRES) !=XPRM_PBOPT)
return 3; /* Test whether a solution is found x/

/* Display solution values obtained from the model x/
printf ("Objective value: %g\n", XPRMgetobjval (mod));
for (i=0;i<solsize;i++)
printf (" take(%s): %g\n", solution[i].ind, solution[i].val);

XPRMresetmod (mod) ;

return 0;

}

The function for dynamic output retrieval employs the Mosel library functions that we have already seen
in Section 13.3 for models after their termination. The prototype of the function cbinit_to needs to
be exactly as shown below.

int XPRM_RTC cbinit_to (XPRMcbinit cb, void *info, const char =xlabel,
int type, XPRMalltypes *ref)

XPRMarray solarr;
XPRMset sets[1l];

int indices[1l];
XPRMalltypes rvalue;
int ct;

if (strcmp (label, "SOL")==0)
{

solarr=ref->array;

solsize=XPRMgetarrsize (solarr);

solution = (struct SolArray *)malloc(solsize * sizeof (struct SolArray));
XPRMgetarrsets (solarr, sets) ; /* Get the indexing sets

(we know array has 1 dimension) x/
ct=0;
XPRMgetfirstarrtruentry (solarr,indices); /* Get the first true index tuple */
do

{

solution[ct].ind=XPRMgetelsetval (sets[0],indices[0], &rvalue)->string;
XPRMgetarrval (solarr, indices, &rvalue) ;

solution[ct].val=rvalue.real;

Fair Isaac Corporation Confidential and Proprietary Information 113

C interface

}

The dynamic data input to a Mosel model uses a new set of dedicated library functions.

ct++;

} while (!XPRMgetnextarrtruentry (solarr,indices));

}

else

{

printf ("Unknown output data item: %s %p\n",

}

return O;

label,

ref);

The format used to represent data is the same as the default text format used by initializations
blocks. For example, the array definition

mydata: [("indl" 3)

[51.2]

("ind2" 7)

[4 6.5]]

is represented by the following sequence of function calls:

XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, O0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENNDX, 0);

XPRMcb_sendstring (cb,

"indl", 0);

XPRMcb_sendint (cb, 3, 0);
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSENDX, O0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, O0);
XPRMcb_sendint (cb, 5, 0);

XPRMcb_sendreal (cb,

1.2,

0);

XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, O0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENNDX, O0);

XPRMcb_sendstring (cb,

"ind2", 0);

XPRMcb_sendint (cb, 7, 0);
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSENDX, 0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, O0);
XPRMcb_sendint (cb, 4, 0);

XPRMcb_sendreal (cb,

6.5,

0);

XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, O0);
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0);

(

"indl"

The last argument ‘0’ in these functions indicates that data is to be processed not immediately but only

once the queue of tokens is full.

For our example, we thus have the following function definition (again, the prototype of the callback

function must be defined exactly to the form expected by Mosel):

int XPRM_RTC cbinit_from (XPRMcbinit cb, wvoid =*info,

{

int i;

int type,

if (strcmp (label, "DATA")==0)

{

void *ref)

XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, 0);
for (i=0; i<datasize; i++)

{

XPRMcb_sendctrl (cb, XPRM_CBC_OPENNDX, 0);

XPRMcb_sendstring (cb,

ind[i],

-1, 0);

XPRMcb_sendctrl (cb, XPRM_CBC_CLOSENDX, 0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, 0);

XPRMcb_sendreal (cb,
XPRMcb_sendreal (cb,

vdatal[i],
wdatal[i],

0);
0);

XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0);

}

XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0);

return O;

}

else

const char =*xlabel,

Fair Isaac Corporation Confidential and Proprietary Information

14

C interface

{
fprintf (stderr, "Label “%s' not found.\n",label);
return 1;
}
}

The model file burglarl3.mos receives through its run-time parameters the callback functions that
are to be used for data input/output in the initializations sections. The definition of the
mathematical model is the same as in the previous model version and left out in the listing below.

model Burglarl3
uses "mmxprs"

parameters

DATAFILE = "' ! Location of input data

SOLFILE = "' ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed

end-parameters

declarations

ITEMS: set of string

VALUE: array (ITEMS) of real
WEIGHT: array (ITEMS) of real
soltake: array (ITEMS) of real
end-declarations

Index set for items
Value of items
Weight of items
Solution values

initializations from DATAFILE
[VALUE,WEIGHT] as "DATA"
end-initializations

initializations to SOLFILE
soltake as "SOL"
end-initializations

end-model

13.4.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and a
Mosel model. One way of passing the value of a scalar to a model is to define it as a model parameter
and pass the new value as an execution parameter of the model (as shown in Section 13.2).
Alternatively, we might read or write scalar values in initializations blocks similarly to what we
have seen in the previous section for arrays.

Consider the following C program: there are three scalars, wmax, numi tem, and objval. The value of
the first should be read in by the Mosel model and the last two receive solution values from the
optimization run in the model.

#include <stdio.h>
#include "xprm_mc.h"

int wmax=100;
int numitem;
double objval;

int main ()

{
XPRMmodel mod;
int result;

char wmax_name[40]; /* File name of input data 'wmax' x/

char num_name[40]; /* File name of output data 'num' x/

char sol_name[40]; /* File name of solution value */

char params[160]; /* Parameter string for model execution x/

Fair Isaac Corporation Confidential and Proprietary Information 115

C interface

if (XPRMinit()) return 1; /* Initialize Mosel x/

/* Prepare file names for 'initializations' using the 'raw' driver x/
sprintf (wmax_name, "mem:%p/%d", &wmax, (int)sizeof (wmax));

sprintf (num_name, "mem:%p/%d", &numitem, (int)sizeof (numitem));
sprintf (solution_name, "mem:%p/%d", &objval, (int)sizeof (objval));

/* Pass file names as execution param.s */
sprintf (params, "WMAX='$%s',NUM='%s',6 SOLVAL='%s'", wmax_name, num_nhame,
sol_name) ;

if (XPRMexecmod (NULL, "burglarl2.mos", params, &result, &mod))
return 2; /* Execute a model file */

if ((XPRMgetprobstat (mod) &XPRM_PBRES) !=XPRM_PBOPT)
return 3; /* Test whether a solution is found */

/* Display solution values obtained from the model =*/
printf ("Objective value: %g\n", objval);
printf ("Total number of items: %d\n", numitem);

XPRMresetmod (mod) ;
return O;

}

The Mosel model takes as execution parameters the filenames (location in memory) of the three
scalars. The value WTMAX is initialized from the data in the application and the two other locations are
writtentointhe initializations to block at the end of the model.

model Burglarl2
uses "mmxprs"

parameters
NUM = "' ! Location for no. of items output
SOLVAL = "' ! Location for objective value output
WMAX = "' ! Maximum weight allowed
end-parameters
declarations
WIMAX: integer ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"} ! Index set for items
VALUE: array (ITEMS) of real ! Value of items
WEIGHT: array (ITEMS) of real ! Weight of items
soltake: array (ITEMS) of real ! Solution values
end-declarations
VALUE :: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[15,100,90,60,40,15,10,1]
WEIGHT:: (["camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"])[2,20,20,30,40,30,60,10]

initializations from 'raw:'
WTMAX as WMAX
end-initializations

declarations

take: array (ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Objective: maximize total wvalue
MaxVal:= sum(i in ITEMS) VALUE (i) *take (1)

! Weight restriction
sum(i in ITEMS) WEIGHT (i) *take (i) <= WIMAX

Fair Isaac Corporation Confidential and Proprietary Information 116

C interface

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln ("Solution:")
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

! Output solution to calling application

initializations to 'raw:'

evaluation of getobjval as SOLVAL

evaluation of round(sum(i in ITEMS) getsol(take(i))) as NUM
end-initializations

end-model

13.5 Redirecting the Mosel output

When integrating a Mosel model into an application it may be desirable to be able to redirect any output
produced by the model to the application. This can be done by the means of a callback function. This
function takes a predefined signature as shown in the following C program. If it is called from outside
of the execution of any Mosel model, its parameter mode1 will be NULL. In our example the callback
function prefixes the printout of every line of Mosel output with Mosel:.

#include <stdio.h>
#include "xprm_mc.h"

/*%%** Callback function to handle output **xx/

long XPRM_RTC cbmsg (XPRMmodel model, void *info, char *buf, unsigned long size)
{

printf ("Mosel: %.xs", (int)size, buf);

return 0;

}

int main ()
{

int result;

char outfile_name[40]; /* File name of output stream */
if (XPRMinit ()) /* Initialize Mosel x/
return 1;

/* Prepare file name for output stream x/
/* using 'cb' driver */
sprintf (outfile_name, "cb:%p", cbmsg);

/* Set default output stream to callback x/
XPRMsetdefstream (NULL, XPRM _F_WRITE, outfile_name);

/* Execute = compile/load/run a model =*/
if (XPRMexecmod (NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

return O;

}

The same procedure that has been presented here for redirecting the Mosel output can also be applied
to redirect any error messages produced by Mosel—the only required modification consists in replacing
the constant XPRM_F_WRITE by XPRM_F_ERROR in the argument of function XxPRMsetdefstream.

Fair Isaac Corporation Confidential and Proprietary Information 17

C interface

13.6 Problem solving in C with Xpress Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written in C for
the Xpress Optimizer, it may be necessary to pass from a problem formulation with Mosel to solving
the problem in C by direct calls to the Optimizer. The following example shows how this may be done
for the Burglar problem. We use a slightly modified version of the original Mosel model:

model Burglar4
uses "mmxprs"

declarations
WTMAX=102 ! Maximum weight allowed
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"} ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array (ITEMS) of real ! Weight of items
take: array (ITEMS) of mpvar ! 1 if we take item i; 0 otherwise

end-declarations

initializations from 'burglar.dat'
VALUE WEIGHT
end-initializations

! Objective: maximize total wvalue
MaxVal:= sum(i in ITEMS) VALUE (i) *take (i)

! Weight restriction
sum(i in ITEMS) WEIGHT (i) *take (i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

setparam ("XPRS_LOADNAMES", true) ! Enable loading of object names
loadprob (MaxVal) ! Load problem into the optimizer

end-model

The procedure maximize to solve the problem has been replaced by 1oadprob. This procedure loads
the problem into the optimizer without solving it. We also enable the loading of names from Mosel into
the optimizer so that we may obtain an easily readable output.

The following C program ugxprs1 . c reads in the Mosel model and solves the problem by direct calls
to Xpress Optimizer. To be able to address the problem loaded into the optimizer, we need to retrieve
the optimizer problem pointer from Mosel. Since this information is a parameter (XPRS_PROBLEM) that
is provided by module mmxprs, we first need to obtain the reference of this library (by using function
XPRMf inddso).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()

{

XPRMmodel mod;

XPRMdsolib dso;
XPRMalltypes rvalue;
XPRSprob prob;

int result, ncol, len, 1i;
double *sol, val;

char *names, *onecol;

Fair Isaac Corporation Confidential and Proprietary Information 118

C interface

if (XPRMinit ()) /* Initialize Mosel */
return 1;

if ((mod=XPRMloadmod ("burglar4.bim", NULL))==NULL) /* Load a BIM file x/
return 2;

if (XPRMrunmod (mod, &result, NULL)) /* Run the model (no optimization) =*/
return 3;

/* Retrieve the pointer to the problem loaded in the Optimizer =*/

if ((dso=XPRMfinddso ("mmxprs"))==NULL)

return 4;

if (XPRMgetdsoparam (mod, dso, "xprs_problem", &result, &rvalue))
return 5;

prob= (XPRSprob) strtoul (rvalue.ref, NULL, 0) ;

XPRSchgobjsense (prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization x*/
if (XPRSmipoptimize (prob, "")) /* Solve the problem x/
return 6;

if (XPRSgetintattrib (prob, XPRS_MIPSTATUS, &result))

return 7;

/* Test whether a solution is found */

if ((result==XPRS_MIP_SOLUTION) || (result==XPRS_MIP_OPTIMAL))
{

if (XPRSgetdblattrib (prob, XPRS_MIPOBJVAL, &val))

return 8;
printf ("Objective value: %g\n", val); /* Print the objective function value */

if (XPRSgetintattrib (prob, XPRS_ORIGINALCOLS, &ncol))
return 9;

if ((sol = (double *)malloc (ncol * sizeof (double)))==NULL)
return 10;

if (XPRSgetmipsol (prob, sol, NULL))

return 11; /* Get the primal solution values x/
if (XPRSgetnamelist (prob, 2, NULL, 0, &len, 0, ncol-1))

return 11; /* Get the name array length */

if ((names = (char *)malloc (len*sizeof (char)))==NULL)

return 12;
if (XPRSgetnamelist (prob, 2, names, len, NULL, 0, ncol-1))

return 13; /* Get the variable names */
onecol = names;
for (i=0; i<ncol; i++) { /* Print out the solution */
printf ("$s: %g\n", onecol, sol[il]);
onecol = onecol+strlen (onecol)+1;

}
free (names) ;
free(sol);

}

return 0;

}

Since the Mosel language provides ample programming facilities, in most applications there will be no
need to switch from the Mosel language to problem solving in C. If nevertheless this type of
implementation is chosen, it should be noted that it is not possible to get back to Mosel, once the
Xpress Optimizer has been called directly from C: the solution information and any possible changes
made to the problem directly in the optimizer are not communicated to Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 119

CHAPTER 14

Other programming language interfaces

In this chapter we show how the examples from Chapter 13 may be written with other programming
languages, namely Java, .NET and VBA.

14.1 Java

To use the Mosel Java classes the line import com.dashoptimization.*; must be added at the
beginning of the program.

14.1.1 Compiling and executing a model in Java

With Java Mosel is initialized by creating a new instance of class XPRM. To execute a Mosel model in
Java we call the three Mosel functions performing the standard compile/load/run sequence as shown
in the following example (file ugcomp . java).

import com.dashoptimization.x*;
public class ugcomp
{

public static void main(String[] args) throws Exception

{

XPRM mosel;

XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling “burglar2'");
mosel.compile ("burglar2.mos");

System.out.println("Loading ‘burglar2'");
mod = mosel.loadModel ("burglar2.bim");

System.out.println ("Executing “burglar2'");
mod.run();

System.out.println (" “burglar2' returned: " + mod.getResult());

14.1.2 Termination

If the model execution is embedded in a larger appplication it may be useful to reset the model after its
execution to free some resources allocated to it:

mod.reset () ; // Reset the model

Fair Isaac Corporation Confidential and Proprietary Information 120

Other programming language interfaces

14.1.3

14.1.4

This will release all intermediate objects created during the execution without deleting the model itself.

It is also possible to explicitly remove the temporary directory/files created by the execution of Mosel:

mosel.removeTmpDir () ; // Delete temporary files

Unloading models or Mosel from memory is ensured through standard finalization + garbage collection
functionalities of Java. The finalizers are public and may be called from the user’s Java program.
Finalization of Mosel only takes effect once all loaded models have been finalized. Finalizing Mosel
also removes the temporary directory/files created by the execution of Mosel.

mod.finalize(); // Finalize a model
mod = null;
mosel.finalize(); // Finalize Mosel

mosel = null;

Parameters

When executing a Mosel model in Java, it is possible to pass new values for its parameters into the
model. If, for instance, we want to run model ‘Prime’ from Section 8.3 to obtain all prime numbers up to
500 (instead of the default value 100 set for the parameter LIMIT in the model), we may write the
following program:

import com.dashoptimization.*;

public class ugparam

{

public static void main(String[] args) throws Exception
{

XPRM mosel;

XPRMModel mod;

int LIM=500;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling ‘prime'");
mosel.compile ("prime.mos");

System.out.println("Loading ‘prime'");
mod = mosel.loadModel ("prime.bim");

System.out.println ("Executing ‘prime'");
mod.execParams = "LIMIT=" + LIM;

mod.run () ;

System.out.println (" prime' returned: " + mod.getResult());

Using the Mosel Java interface, it is not only possible to compile and run models, but also to access
information on the different modeling objects as is shown in the following sections.

Accessing sets

A complete version of a program (file ugparam. java) for running the model ‘Prime’ may look as
follows (we work with a model prime2 that corresponds to the one printed in Section 8.3 but with all
output printing removed because we are doing this in Java, and all entities accessed from Java are
explicitly declared as public):

import com.dashoptimization.*;

public class ugparam

Fair Isaac Corporation Confidential and Proprietary Information 121

Other programming language interfaces

{

public static void main(String[] args) throws Exception
{

XPRM mosel;

XPRMModel mod;

XPRMSet set;

int LIM=500, first, last;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling “prime2'");
mosel.compile ("prime2.mos") ;

System.out.println("Loading ‘prime2'");
mod = mosel.loadModel ("prime2.bim");

System.out.println ("Executing ‘prime2'");

mod.execParams = "LIMIT=" + LIM;
mod.run () ;
System.out.println (" ‘prime2' returned: " + mod.getResult());

set=(XPRMSet)mod.findIdentifier ("SPrime"); // Get the object 'SPrime’
// it must be a set

if (!set.isEmpty())

{

first = set.getFirstIndex(); // Get the number of the first index
last = set.getLastIndex(); // Get the number of the last index
System.out.println ("Prime numbers from 2 to " + LIM);

for (int i=first;i<=last;i++) // Print all set elements
System.out.print (" " + set.getAsInteger(i) + ",");

System.out.println();

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and
500), we retrieve the Mosel object of this name using method findIdentifier. If this set is not
empty, then we enumerate the elements of the set (using methods getFirstIndex and
getLastIndex to obtain the index range).

14.1.5 Retrieving solution values

The following program ugsol. java executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from
Chapter 2 but with all output printing removed and all model entities declared as public) and prints
out its solution.

import com.dashoptimization.*;

public class ugsol
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr, darr;
XPRMMPVar x;
XPRMSet set;
int[] indices;

double val;

mosel = new XPRM(); // Initialize Mosel
mosel.compile ("burglar3.mos"); // Compile, load & run the model
mod = mosel.loadModel ("burglar3.bim");

mod.run();

Fair Isaac Corporation Confidential and Proprietary Information 122

Other programming language interfaces

14.1.6

if (mod.getProblemStatus () !=mod.PB_OPTIMAL)
System.exit (1) ; // Stop if no solution found

System.out.println("Objective value: " + mod.getObjectiveValue());
// Print the objective function value

varr= (XPRMArray)mod.findIdentifier ("take"); // Get model object 'take',
// it must be an array

darr= (XPRMArray)mod.findIdentifier ("VALUE"); // Get model object 'VALUE',
// it must be an array

set=(XPRMSet)mod.findIdentifier ("ITEMS") ; // Get model object 'ITEMS',
// it must be a set

indices = varr.getFirstIndex(); // Get the first entry of array varr
// (we know that the array is dense)

do

{

x = varr.get (indices) .asMPVar(); // Get a variable from varr

val = darr.getAsReal (indices); // Get the corresponding value

System.out.println("take(" + set.get(indices[0]) + "): " +

x.getSolution() + "\t (item value: " + val + ")");

// Print the solution value

} while (varr.nextIndex (indices)); // Get the next index

mod.reset () ; // Reset the model

}
}

The array of variables varr is enumerated using the array functions getFirstIndex and
nextIndex. These methods may be applied to arrays of any type and dimension. With these functions
we run systematically through all possible combinations of index tuples, hence the hint at dense arrays
in the example. In the case of sparse arrays it is preferrable to use different enumeration functions that
only enumerate those entries that are defined (see next section).

Sparse arrays

We now again work with the problem ‘“Transport’ that has been introduced in Chapter 3. The objective
of this problem is to calculate the flows flowp, from a set of plants to a set of sales regions that satisfy
all demand and supply constraints and minimize the total cost. Not all plants may deliver goods to all
regions. The flow variables flow,, are therefore defined as a sparse array. The following example
ugarray. java prints out all existing entries of the array of variables.

import com.dashoptimization. *;

public class ugarray
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr;
XPRMSet[] sets;
int[] indices;

int dim;

mosel = new XPRM(); // Initialize Mosel
mosel.compile ("transport.mos") ; // Compile, load & run the model
mod = mosel.loadModel ("transport.bim");

mod.run();

varr= (XPRMArray)mod.findIdentifier ("flow"); // Get model object 'flow'
// it must be an array

dim = varr.getDimension(); // Get the number of dimensions
// of the array

Fair Isaac Corporation Confidential and Proprietary Information 123

Other programming language interfaces

sets = varr.getIndexSets(); // Get the indexing sets
indices = varr.getFirstTEIndex(); // Get the first true entry index
do

{
System.out.print ("flow(");
for (int i=0;i<dim-1;i++)
System.out.print (sets[i] .get (indices[i]) + ",");
System.out.print (sets[dim-1].get (indices[dim-1]) + "), ");
} while (varr.nextTEIndex (indices)); // Get next true entry index tuple
System.out.println();

mod.reset () ; // Reset the model
}
}

In this example, we first get the number of indices (dimensions) of the array of variables varr (using
method getDimension). We use this information to enumerate the entries of every index tuple for
generating a nicely formatted output. The array sets holds all the index sets of varr and the array
indices corresponds to a single index tuple.

The enumeration starts with the first defined index tuple, obtained with method getFirstTEIndex,
and continues with a series of calls to next TEIndex until all defined entries have been enumerated.

14.1.7 Exchanging data between an application and a model

In the previous examples we have seen how to retrieve information about the model objects from a
Mosel model after its execution. In all cases the input data is defined in the model itself or read in from
an external (text) file. However, when embedding a model into an application frequently the input data
for the model will be stored (or generated by) the application itself. In such a case the user will certainly
wish a more immediate means of communication to the model than having to write the input data to an
external text file or database. In the following two subsections we therefore show how to pass data in
memory from an application to a Mosel model, and with the same mechanism (namely, using the jraw
I/0 driver) from the model back to the calling application.

14.1.7.1 Dense arrays

As a first example we shall look at the case of dense arrays holding the input and solution data. In the
underlying Mosel model this corresponds to arrays indexed by range sets that are known in the model
before the data are read in. In this example, we shall work with a version of the ‘Burglar model based on
the very first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8.

The following Java program ugiodense. java compiles, loads, and runs a Mosel model and then
prints out the solution values. The input data (arrays vdata and wdata) and the array solution that
is to receive the solution values are passed on to the model through model parameters.
Communication of the data between the application and the Mosel model is achieved through the jraw
I/0 driver. File names for this driver have the form

jrawoption[,...], filename, Where filename is an object reference. Since we are working with
dense, one-dimensional arrays we use the option noindex, indicating that only the data and not the
index tuples are to be exchanged.

import com.dashoptimization.*;

public class ugiodense

{ // Input data

static final double[] vdata={15,100,90,60,40,15,10, 1}; // VALUE
static final double[] wdata={ 2, 20,20,30,40,30,60,10}; // WEIGHT

// Array to receive solution values

Fair Isaac Corporation Confidential and Proprietary Information 124

Other programming language interfaces

static double[] solution = new double[8];

public static void main(String[] args) throws Exception
{

XPRM mosel;

XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

mosel.compile ("burglar8.mos") ; // Compile & load the model
mod = mosel.loadModel ("burglar8.bim");

// Associate the Java objects with names in Mosel
mosel.bind ("vdat", wvdata);
mosel.bind ("wdat", wdata);
mosel.bind ("sol", solution);
// File names are passed through execution parameters
mod.execParams =
"VDATA='noindex, vdat', WDATA="'noindex,wdat', SOL="noindex,sol'";

mod.run(); // Run the model

if (mod.getProblemStatus () !=mod.PB_OPTIMAL)
System.exit (1) ; // Stop if no solution found

// Display solution values obtained from the model

System.out.println("Objective value: " + mod.getObjectiveValue());
for (int i=0;i<8;i++)

System.out.println(" take(" + (i+1l) + "): " + solution[i]);
mod.reset () ; // Reset the model

}
}

The model file burglar8.mos is the same as model burglaré.mos from Section 13.4.1 with the only
difference that the name of the I/0 driver in the initializations blocks now is jraw instead of
raw, such as:

initializations from 'jraw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

14.1.7.2 Sparse arrays

Let us now study the probably more frequent case of data stored in sparse format. In the Mosel model
(burglar9.mos) we use a set of strings instead of a simple range set to index the various arrays and
in the Java program (ugiosparse. java) we need to define slightly more complicated structures to
hold the indices and the data entries. To save us writing out the indices twice, we have grouped the two
input data arrays into a single class. When passing the data arrays to the Mosel model we now do not
use any option, meaning that data is transferred in sparse format. Instead, we now need to indicate
which fields of the Java objects are to be selected (in brackets after the object reference).

import com.dashoptimization.x*;

public class ugiosparse
{
// Class to store initial values for array 'data'

public static class MyData

{

public String ind; // index name

public double val,wght; // value and weight data entries

MyData (String i, double v, double w)

{ ind=i; wval=v; wght=w; }

}

Fair Isaac Corporation Confidential and Proprietary Information 125

Other programming language interfaces

// Class to receive solution values
public static class MySol
{
public String ind; // index name
public double val; // solution value

}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyData data[]={new MyData ("camera",15,2), new MyData("necklace",100,20),
new MyData ("vase",90,20), new MyData ("picture", 60,30),
new MyData ("tv",40,40), new MyData ("video",15,30),
new MyData ("chest",10,60), new MyData("brick",1,10)};
MySol[] solution=new MySol[8];

for (int i=0;1<8;i++) solution[i] = new MySol();
mosel = new XPRM(); // Initialize Mosel
mosel.compile ("burglar9.mos"); // Compile & load the model

mod = mosel.loadModel ("burglar9.bim");

// Associate the Java objects with names in Mosel
mosel.bind ("dt", data);

mosel.bind("sol", solution);

// File names are passed through execution parameters
mod.execParams = "DATA='dt (ind,val,wght)',SOL="'sol (ind,val)'";
mod.run () ; // Run the model

if (mod.getProblemStatus () !=mod.PB_OPTIMAL)
System.exit (1) ; // Stop if no solution found

// Display solution values obtained from the model

System.out.println("Objective value: " + mod.getObjectiveValue());

for (int 1=0;i<8;i++)

System.out.println(" take(" + solution[i].ind + "): " + solution[i].val);
mod.reset () ; // Reset the model

}
}

The model burglar9.mos run by this program is the same as the model burglar7.mos displayed in
Section 13.4.2, but using the 1/0 driver jraw instead of raw.

14.1.7.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sections
have in commun that all data structures in the application, and in particular the structures to receive
output data, are of fixed size. We therefore now introduce an alternative communication mechanism
working with streams, that enables dynamic sizing of data structures on the application level, a feature
that is particularly useful for solution output where effective data sizes are not known a priori. This
communication mechanism employs the I/0 driver java (see also Section 14.1.8). The main part of our
Java program (file ugiocb. java) now looks as follows.

public static modelInit cbinit=new modelInit () ;

public static void main(String[] args) throws Exception
{

XPRM mosel;

XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

Fair Isaac Corporation Confidential and Proprietary Information 126

Other programming language interfaces

mosel.compile ("burglarl3.mos"); // Compile & load the model
mod = mosel.loadModel ("burglarl3.bim");

// File names are passed through execution parameters
mod.execParams = "DATAFILE='java:ugiocb.cbinit'," +
"SOLFILE='java:ugiocb.cbinit'";

mod.run () ; // Run the model

if (mod.getProblemStatus () !=mod.PB_OPTIMAL)
System.exit (1); // Stop if no solution found

// Display solution values obtained from the model

System.out.println("Objective value: " + mod.getObjectiveValue());

for (int 1=0;i<solsize;i++)

System.out.println (" take(" + solution[i].ind + "): " + solution[i].val);
mod.reset () ; // Reset the model

}

The information passed to the model in the runtime parameters now is an instance of a class that
implements interfaces for initialization from and to streams as shown below. The functionality for
dynamic output retrieval employs the Mosel library functions that we have already seen in Sections
14.1.4 and 14.1.5 for accessing models after their termination. The dynamic data input to a Mosel model
uses a new set of dedicated functions that are explained with some more detail after the program

extract.

static final double[] vdata={15,100,90,60,40,15,10, 1}; // VALUE
static final double[] wdata={ 2, 20,20,30,40,30,60,10}; // WEIGHT
static final String[] ind={"camera", "necklace", "vase", "picture",

"tv", "video", "chest", "brick"}; // Index names
static final int datasize=S8;

public static class MySol {

public String ind; // index name
public double val; // solution value
}

static MySol[] solution;

static int solsize;

public static class modelInit implements XPRMInitializationFrom, XPRMInitializationTo
{

public boolean initializeTo(String label, XPRMValue value)

{

XPRMArray solarr;

XPRMSet[] sets;

int[] indices;

int ct;

if (label.equals ("SOL"))

{

solarr=(XPRMArray)value;
solsize=solarr.getSize();
solution = new MySol[solsize];

for (int i=0;i<solsize;i++) solution[i] = new MySol();

sets = solarr.getIndexSets(); // Get the indexing sets

ct=0;

indices = solarr.getFirstTEIndex(); // Get the first entry of the array
do

{
solution[ct].ind=sets[0] .getAsString(indices[0]);
solution[ct] .val=solarr.getAsReal (indices);
ct++;

} while(solarr.nextTEIndex (indices)); // Get the next index

}

Fair Isaac Corporation Confidential and Proprietary Information 127

Other programming language interfaces

else System.out.println("Unknown output data item: " + label + "=" + value);
return true;

}

public boolean initializeFrom(XPRMInitializeContext ictx, String label, XPRMTyped type)
{
try
{
if (label.equals ("DATA"))
{
ictx.sendControl (ictx.CONTROL_OPENLST) ;
for (int i=0; i<datasize;i++)
{
ictx.sendControl (ictx.CONTROL_OPENNDX) ;
ictx.send (ind[i]);
ictx.sendControl (ictx.CONTROL_CLOSENDX) ;
ictx.sendControl (ictx.CONTROL_OPENLST) ;
ictx.send(vdata[i]);
ictx.send (wdata[i]);
ictx.sendControl (ictx.CONTROL_CLOSELST) ;
}
ictx.sendControl (ictx.CONTROL_CLOSELST) ;
return true;
}
else
{
System.err.println("Label “"+label+"' not found.");
return false;
}
}
catch(java.io.IOException e)
{
System.err.println (" "+label+"' could not be initialized - "+e);
return false;
}
}
}

The format used to represent data for dynamic data input is the same as the default text format used by
initializations blocks. For example, the array definition

mydata: [("indl" 3) [5 1.2] ("ind2" 7) [4 6.5]]
is represented by the following sequence of function calls:

ictx.sendControl (ictx.CONTROL_OPENLST) ;
ictx.sendControl (ictx.CONTROL_OPENNDX) ;

ictx.sendControl (ictx.CONTROL_CLOSELST) ;
ictx.sendControl (ictx.CONTROL_CLOSELST) ;

1

]
ictx.send ("ind1l"); ! "indl"
ictx.send (3); ! 3
ictx.sendControl (ictx.CONTROL_CLOSENDX) ; !)
ictx.sendControl (ictx.CONTROL_OPENLST) ; ! [
ictx.send (5); ! 5
ictx.send (1.2); ! 1.2
ictx.sendControl (ictx.CONTROL_CLOSELST) ; ! 1
ictx.sendControl (ictx.CONTROL_OPENNDX) ; ! (
ictx.send ("ind2"); ! "ind2"
ictx.send (7); ! 7
ictx.sendControl (ictx.CONTROL_CLOSENDX) ; !)
ictx.sendControl (ictx.CONTROL_OPENLST) ; ! [
ictx.send (4); ! 4
ictx.send(6.5); ! 6.5

1

|

The send and sendControl methods may take an additional last argument indicating whether data is
to be processed immediately or only once the queue of tokens is full (default).

Fair Isaac Corporation Confidential and Proprietary Information 128

Other programming language interfaces

With Java, we use exactly the same model file burglar13.mos as with C (see Section 13.4.3 for the
listing).

14.1.7.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and a
Mosel model. One way of passing the value of a scalar to a model is to define it as a model parameter
and pass the new value as an execution parameter to the model (as shown in Section 14.1.3).
Alternatively, we might read or write scalar values in initializations blocks similarly to what we
have seen in the previous section for arrays.

Consider the following Java program: we wish to exchange the values of the three scalars, wmax,
numitem, and objval with the Mosel model run by this program. The value of the first scalar should
be read in by the Mosel model and the last two receive solution values from the optimization run in the
model. Since it is not possible to address scalars directly from the model we have collected them into a
class MyData the fields of which are then specified in the execution parameters as the locations of the
data.

import com.dashoptimization.;

public class ugioscalar

{
public static class MyData // Scalars for data in/output

{
public int wmax;
public int numitem;
public double objval;
}

public static void main(String[] args) throws Exception
{

XPRM mosel;

XPRMModel mod;

MyData data=new MyData();

data.wmax=100;
mosel = new XPRM(); // Initialize Mosel

mosel.compile ("burglarll.mos"); // Compile & load the model
mod = mosel.loadModel ("burglarll.bim");

// Associate the Java object with a name in Mosel
mosel.bind("data", data);
// File names are passed through execution parameters
mod.execParams =
"WMAX='data (wmax) ',NUM='data (numitem) ', SOLVAL="'data (objval)'";

mod.run () ; // Run the model

if (mod.getProblemStatus () !=mod.PB_OPTIMAL)
System.exit (1) ; // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + data.objval);
System.out.println("Total number of items: " + data.numitem);

mod.reset () ; // Reset the model
}
}

The Mosel model burglarll.mos run by this program is the same as the model burglarl2.mos
displayed in Section 13.4.4, but using the I/0 driver jraw instead of raw. This model takes as execution

Fair Isaac Corporation Confidential and Proprietary Information 129

Other programming language interfaces

14.1.8

14.2

parameters the filenames (location in memory) of the three scalars. The integer WTMAX is initialized
from the value in the Java application and the two other locations are written to in the
initializations to block at the end of the model.

Redirecting the Mosel output

When executing a Mosel model from a Java application it may be desirable to be able to process the
output produced by Mosel directly in the application. The following Java program ugcb. java shows a
callback-style functionality that redirects the Mosel standard output to an OutputStream object which
is used to prefix every line of Mosel output with the string Mosel: before printing it.

To redirect Mosel streams to a Java object (Java streams or ByteBuffer) we need to use the java
I/0 driver. The same mechanism that is used here for redirecting the output stream of Mosel (indicated
by XPRM. F_OUTPUT, with the additional option XPRM.F_LINBUF to enable line buffering) can equally
be used to redirect, for instance, the error stream (denoted by the constant XPRM.F_ERROR).

import java.io.=*;
import com.dashoptimization.*;

public class ugcb
{

// OutputStream class to handle default output
public static class MyOut extends OutputStream
{

public void flush{()

{ System.out.flush(); }

public void write(byte[] b)

{

System.out.print ("Mosel: ");

System.out.write (b, 0,b.length);

}

// These methods are not used by Mosel:
public void write(byte[] b,int off,int len) {}
public void write(int b) {}

public void close() {}
}

public static void main(String[] args) throws Exception

{

XPRM mosel;

XPRMModel mod;

MyOut cbmsg = new MyOut(); // Define output stream as "MyOut"
mosel = new XPRM(); // Initialize Mosel

mosel.bind ("mycb", cbmsg); // Associate Java object with a name in Mosel

// Set default output stream to cbmsg
mosel.setDefaultStream (XPRM.F_OUTPUT | XPRM.F_LINBUF, "java:mycb");

mosel.compile ("burglar2.mos"); // Compile, load & run the model
mod = mosel.loadModel ("burglar2.bim");
mod.run();

.NET

Example code in this guide will be in C#, however one can access the Mosel .NET interface via other
languages that target the .NET Framework, such as VB.NET.

To use the Mosel .NET classes the line using Mosel; must be added at the beginning of the
program, and your project should have a dependency on the Xpress file xprmdn.d11.

Fair Isaac Corporation Confidential and Proprietary Information 130

Other programming language interfaces

14.2.1

Compiling and executing a model in C#

With C# Mosel is initialized by obtaining a new instance of class XPRM via the static method
XPRM.Init (). To execute a Mosel model in C# we call the three Mosel functions performing the
standard compile/load/run sequence as shown in the following example (file ugcomptmp. cs).

using System;
using System.IO;
using Mosel;

namespace ugcomptmp.cs {

public class ugcomptmp {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile the Mosel model, save the BIM file in Mosel's temp. dir.
mosel.Compile("", "burglar2.mos", "tmp:burglar2.bim");

// Load the BIM file
XPRMModel model = mosel.LoadModel ("tmp:burglar2.bim");

// Run the model
model.Run () ;

14.2.2 Termination

If the model execution is embedded in a larger appplication it may be useful to reset the model after its
execution to free some resources allocated to it:

mod.Reset () ; // Reset the model

This will release all intermediate objects created during the execution without deleting the model itself.

It is also possible to explicitly remove the temporary directory/files created by the execution of Mosel:
mosel.RemoveTmpDir () ; // Delete temporary files

Unloading models or Mosel from memory is ensured through standard disposal, finalization + garbage
collection functionalities of the .NET runtime. The disposal methods are public and may be called from
the user's C# program. Finalization of Mosel only takes effect once all loaded models have been
finalized or disposed. Finalizing or diposing Mosel also removes the temporary directory/files created
by the execution of Mosel.

mod.Dispose () ; // Dispose a model
mod = null;

mosel.Dispose(); // Dispose Mosel
mosel = null;

14.2.3 Parameters

When executing a Mosel model in C#, it is possible to pass new values for its parameters into the

Fair Isaac Corporation Confidential and Proprietary Information 131

Other programming language interfaces

model. If, for instance, we want to run model ‘Prime’ from Section 8.3 to obtain all prime numbers up to

500 (instead of the default value 100 set for the parameter LIMIT in the model), we may write the

following program:

using System;
using System.IO;
using Mosel;

namespace ugparam.cs {

public class ugparam {

/// <summary>

/// Main entry point for the application

/// </summary>

[STAThread]

static void Main(string[] args) {
XPRMSet set;
int LIM=500, first, last;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad ("prime.mos");

// Run the model
model .ExecParams = "LIMIT=" + LIM;
model.Run();

Console.WriteLine (" "prime' returned: " + model.Result);

Using the Mosel .NET interface, it is not only possible to compile and run models, but also to access
information on the different modeling objects as is shown in the following sections.

14.2.4 Accessing sets

A complete version of a program (file ugparam. cs) for running the model ‘Prime’ may look as follows

(we work with a model prime2 that corresponds to the one printed in Section 8.3 but with all output
printing removed because we are doing this in C#, and all entities accessed from C# are declared as

public):

using System;
using System.IO;
using Mosel;

namespace ugparam.cs {

public class ugparam {

/// <summary>

/// Main entry point for the application

/// </summary>

[STAThread]

static void Main(string[] args) {
XPRMSet set;
int LIM=500, first, last;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad ("prime.mos");

Fair Isaac Corporation Confidential and Proprietary Information

132

Other programming language interfaces

// Run the model

model .ExecParams = "LIMIT=" + LIM;
model.Run () ;
Console.WriteLine (" "prime' returned: " + model.Result);

// Get model object 'SPrime', it must be a set
set=(XPRMSet)model.FindIdentifier ("SPrime");

// Enumerate the set elements
if (!set.IsEmpty)
{

first = set.FirstIndex; // Get the number of the first index
last = set.LastIndex; // Get the number of the last index

Console.WriteLine ("Prime numbers from 2 to " + LIM);

for (int i=first;i<=last;i++) // Print all set elements

Console.Write(" {0},", set.GetAsInteger(i));
Console.WriteLine();

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and
500), we retrieve the Mosel object of this name using method FindIdentifier. If this setis not

empty, then we enumerate the elements of the set (using properties FirstIndex and LastIndex to

obtain the index range).

14.2.5 Retrieving solution values

The following program ugsol . cs executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from
Chapter 2 but with all output printing removed and all model entities declared as public) and prints

out its solution.

using System;
using System.IO;
using Mosel;

namespace ugsol.cs {

public class ugsol {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static int Main(string[] args) {
XPRMArray varr, darr;
XPRMSet set;
XPRMMPVar x;
double wval;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad ("burglar3.mos");

// Run the model
model.Run () ;

if (model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

Console.WriteLine ("Objective value: " + model.ObjectiveValue);
// Print the objective function value

Fair Isaac Corporation Confidential and Proprietary Information

133

Other programming language interfaces

14.2.6

// Get model object 'take', it must be an array
varr= (XPRMArray)model.FindIdentifier ("take");

// Get model object 'VALUE', it must be an array
darr= (XPRMArray)model.FindIdentifier ("VALUE") ;
// Get model object 'ITEMS', it must be a set
set=(XPRMSet)model.FindIdentifier ("ITEMS") ;

// Enumerate all entries of 'varr' (dense array)
foreach(int[] indices in varr.Indices)

{

x = varr.Get (indices) .AsMPVar () ; // Get a variable from varr
val = darr.GetAsReal (indices); // Get the corresponding value
// Console.WriteLine ("take (" + set.GetAsString(indices[0])

Console.WriteLine ("take" + varr.IndexToString(indices)
x.Solution + "\t (item value: " + val + ")");

}

model .Reset () ; // Reset the model

return 0;

The array of variables varr is enumerated using via the array Indices property. This may be applied
to arrays of any type and dimension. With these functions we run systematically through all possible

combinations of index tuples, hence the hint at dense arrays in the example. In the case of sparse

arrays it is preferrable to use a different enumeration property that only enumerate those entries that

are defined (see next section).

Sparse arrays

We now again work with the problem “Transport’ that has been introduced in Chapter 3. The objective
of this problem is to calculate the flows flow,, from a set of plants to a set of sales regions that satisfy
all demand and supply constraints and minimize the total cost. Not all plants may deliver goods to all

regions. The flow variables flow,, are therefore defined as a sparse array. The following example

ugarray.cs prints out all existing entries of the array of variables.

using System;
using System.IO;
using Mosel;

namespace ugarray.cs {

public class ugarray {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
XPRMArray varr;
XPRMSet[] sets;
XPRMValue[] vindex;
int dim;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad ("transport.mos");

// Run the model
model.Run () ;

// Get model object 'flow', it must be an array

Fair Isaac Corporation Confidential and Proprietary Information

134

Other programming language interfaces

14.2.7

varr= (XPRMArray)model.FindIdentifier ("flow");
dim = varr.Dim; // Get the number of dimensions of the array
sets = varr.IndexSets; // Get the indexing sets

// Enumerate over the true entries
foreach(int[] indices in varr.TEIndices)
{
// Get the values for this index
vindex = varr.Dereferencelndex (indices);
Console.Write("flow (") ;
for(int i=0;i<dim-1;i++)
Console.Write(vindex[i] + ", ");
Console.Write(vindex[dim-1] + "), ");

// Alternative printing method:
// Console.Write("flow" + varr.IndexToString(indices) + ", ");

}

Console.WriteLine();

model .Reset () ; // Reset the model

In this example, we first get the number of indices (dimensions) of the array of variables varr (using
property Dim). We use this information to enumerate the entries of every index tuple for generating a
nicely formatted output. The array sets holds all the index sets of varr and the array indices
corresponds to a single index tuple.

The enumeration runs over all the defined index tuples, obtained with property TEIndices.

Exchanging data between an application and a model

In the previous examples we have seen how to retrieve information about the model objects from a
Mosel model after its execution. In all cases the input data is defined in the model itself or read in from
an external (text) file. However, when embedding a model into an application frequently the input data
for the model will be stored (or generated by) the application itself. In such a case the user will certainly
wish a more immediate means of communication to the model than having to write the input data to an
external text file or database. In the following two subsections we therefore show how to pass data in
memory from an application to a Mosel model, and with the same mechanism (namely, using the
dotnetraw I/0 driver) from the model back to the calling application.

14.2.7.1 Dense arrays

As a first example we shall look at the case of dense arrays holding the input and solution data. In the
underlying Mosel model this corresponds to arrays indexed by range sets that are known in the model
before the data are read in. In this example, we shall work with a version of the Burglar model based on
the very first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8.

The following C# program ugiodense.cs compiles, loads, and runs a Mosel model and then prints
out the solution values. The input data (arrays vdata and wdata) and the array solution that is to
receive the solution values are passed on to the model through model parameters. Communication of
the data between the application and the Mosel model is achieved through the dotnetraw I/0 driver.
File names for this driver have the form

dotnetrawoption/(,...], filename, Where filename is an object reference. Since we are
working with dense, one-dimensional arrays we use the option noindex, indicating that only the data
and not the index tuples are to be exchanged.

using System;

Fair Isaac Corporation Confidential and Proprietary Information 135

Other programming language interfaces

using System.IO;
using Mosel;

namespace ugiodense.cs {
public class ugiodense {

/// <summary>

/// Arrays containing initialization data for the model

/// </summary>

static double[] vdata = new double[] {15,100,90,60,40,15,10, 1}; // VALUE
static double[] wdata = new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglar8d.mos");

// Associate the .NET objects with names in Mosel
model.Bind ("vdat", vdata);
model .Bind ("wdat", wdata);

// Create a new array for solution data and bind that to the name 'SOL'
double[] solution = new double[8];
mosel.Bind ("sol", solution);

// Pass data location as a parameter to the model
model.ExecParams = "VDATA='noindex,vdat',6 WDATA='noindex,wdat', SOL="'noindex,sol'";

// Run the model
model.Run () ;

// Print the solution
Console.WriteLine ("Objective value: {0}", model.ObjectiveValue);
for (int i=0;i<8;i++)

Console.Write (" take({0}): {1}", (i+l), solution[i]);
Console.WriteLine();

The model file burglar8d.mos is the same as model burglar6.mos from Section 13.4.7 with the
only difference that the name of the I/O driver in the initializations blocks now is dotnetraw
instead of raw, such as:

initializations from 'dotnetraw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

14.2.7.2 Sparse arrays

Let us now study the probably more frequent case of data stored in sparse format. In the Mosel model
(burglar9d.mos) we use a set of strings instead of a simple range set to index the various arrays and
in the C# program (ugiosparse.cs) we need to define slightly more complicated structures to hold
the indices and the data entries. To save us writing out the indices twice, we have grouped the two
input data arrays into a single class. When passing the data arrays to the Mosel model we now do not
use any option, meaning that data is transferred in sparse format. Instead, we now need to indicate

Fair Isaac Corporation Confidential and Proprietary Information 136

Other programming language interfaces

which fields of the C# objects are to be selected (in brackets after the object reference).

using System;
using System.IO;
using Mosel;

namespace ugiosparse.cs {
public class ugiosparse {

/// <summary>
/// Arrays containing initialization data for the model
/// </summary>

static double[] vdata
static double[] wdata

new double[] {15,100,90,60,40,15,10, 1}; // VALUE
new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT

/// <summary>
/// Structure to store initial values for the array 'data'
/// </summary>
class MyData {
public string ind;
public double val;
public double wght;

public MyData(string i, double v, double w) {
this.ind = i;
this.val = v;
this.wght = w;

}

/// <summary>
/// Structure to receive solution values
/// </summary>
class MySol {
public string ind;
public double val;
}

/// <summary>

/// The initial values for the array 'data'

/// </summary>

private static MyData[] data = new MyDatal[] {
new MyData ("camera",15,2), new MyData("necklace",100,20),
new MyData ("vase", 90,20), new MyData ("picture", 60,30),

new MyData("tv",40,40), new MyData("video",15,30),

new MyData ("chest",10,60), new MyData("brick",1,10) };

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglar9d.mos");

// Associate the .NET object with a name in Mosel
model.Bind ("dt", data);

// Create a new array for solution data and bind that to the name 'SOL'
MySol[] solution=new MySol[8];

for (int i=0;i<8;i++) solution[i] = new MySol();

mosel.Bind ("sol", solution);

Fair Isaac Corporation Confidential and Proprietary Information

Other programming language interfaces

// Pass data location as a parameter to the model
model.ExecParams = "DATA='dt (ind,val,wght)', SOL='sol (ind,val)'";

// Run the model
model.Run () ;

// Print the solution
Console.WriteLine ("Objective value: {0}", model.ObjectiveValue);
for (int i=0;i<8;i++)
Console.Write (" take({0}): {1}", solution[i].ind, solution[i].val);
Console.WriteLine();

The model burglar9d.mos run by this program is the same as the model burglar7.mos displayed
in Section 13.4.2, but using the I/0 driver dotnetraw instead of raw.

14.2.7.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sections
have in commun that all data structures in the application, and in particular the structures to receive
output data, are of fixed size. We therefore now introduce an alternative communication mechanism
working with streams, that enables dynamic sizing of data structures on the application level, a feature
that is particularly useful for solution output where effective data sizes are not known a priori. This
communication mechanism employs the 1/0 driver dotnet (see also Section 14.2.8). The main part of
our C# program (file ugiocb. cs) now looks as follows.

[STAThread]

static int Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglarl3.mos");

// Set the execution parameters and bind the variables
model.SetExecParam ("DATAFILE", "dotnet:cbinitfrom") ;
model.SetExecParam ("SOLFILE", "dotnet:cbinitto");

model.Bind ("cbinitfrom", new XPRMInitializationFrom(initializeFrom));
model.Bind ("cbinitto", new XPRMInitializationTo(initializeTo));

// Run the model
model.Run () ;

if (model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

// Display solution values obtained from the model
Console.WriteLine ("Objective value: {0}", model.ObjectiveValue);
for (int i1=0;i<solsize;i++)
Console.WriteLine (" take({0}): {1}", solution[i].ind, solution[i].val);

model .Reset () ; // Reset the model
return 0;

}

The information passed to the model in the runtime parameters are now instances of delegates for
initialization from and to streams as shown below. The functionality for dynamic output retrieval
employs the Mosel library functions that we have already seen in Sections 14.2.4 and 14.2.5 for
accessing models after their termination. The dynamic data input to a Mosel model uses a new set of
dedicated functions that are explained with some more detail after the program extract.

Fair Isaac Corporation Confidential and Proprietary Information 138

Other programming language interfaces

static double[] vdata=new double[] {15,100,90,60,40,15,10, 1}; // VALUE
static double[] wdata=new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT
static string[] ind=new string[] {"camera", "necklace", "vase", "picture",

"tv", "video", "chest", "brick"}; // Index names
static int datasize=8;

/// <summary>

/// Structure to receive solution values

/// </summary>

class MySol {
public string ind; // index name
public double val; // solution value

}

static MySol[] solution;

static int solsize;

/// <summary>
/// A function to initialize the Mosel data-structures via callback
/// </summary>
public static bool initializeFrom(XPRMInitializeContext ictx,string label, XPRMTyped type)
{
try {
switch (label) {
case "DATA":
ictx.Send (XPRMInitializeControl.OpenList) ;
for (int i=0;i<datasize;i++) {
ictx.Send (XPRMInitializeControl.OpenIndices);
ictx.Send (ind[i]);
ictx.Send (XPRMInitializeControl.CloseIndices);
ictx.Send (XPRMInitializeControl.OpenList);
ictx.Send (vdata[i]);
ictx.Send (wdata[i]);
ictx.Send (XPRMInitializeControl.CloseList);
}
ictx.Send (XPRMInitializeControl.CloseList);
return true;
default:
Console.WriteLine("Label '{0}' not found", label);
return false;
}
} catch (Exception e) {
Console.WriteLine("Label '{0}' could not be initialized - {1}", label, e.Message);
return false;

/// <summary>

/// A method to retrieve data from Mosel

/// </summary>

public static bool initializeTo(string label, XPRMValue val) {
// Console.WriteLine (".NET: {0} = {1}", label, val);

XPRMArray solarr;
XPRMValue[] vindex;

switch (label) {
case "SOL":
solarr=(XPRMArray)val;
solsize=solarr.Size;
solution = new MySol[solsize];

for (int i=0;i<solsize;i++) solution[i] = new MySol();
int ct=0;

// Enumerate solarr as sparse array

foreach(int [] indices in solarr.TEIndices) {

vindex = solarr.DereferencelIndex (indices);
solution[ct].ind = vindex[0].AsString();
solution[ct].val = solarr.GetAsReal (indices);

Fair Isaac Corporation Confidential and Proprietary Information 139

Other programming language interfaces

ct++;
}

return true;

default:
Console.WriteLine ("Unknown output data item: '{0}'={1l} not found", label, val);
return false;

The format used to represent data for dynamic data input is the same as the default text format used by
initializations blocks. For example, the array definition

mydata: [("indl" 3) [5 1.2] ("ind2" 7) [4 6.5]]

is represented by the following sequence of function calls:

ictx.Send (XPRMInitializeControl.OpenList) ;
ictx.Send (XPRMInitializeControl.OpenIndices) ;

ictx.Send
ictx.Send

XPRMInitializeControl.Closelist);
XPRMInitializeControl.Closelist);

1
1
ictx.Send ("indl"); ! "indl"
ictx.Send (3); ! 3
ictx.Send (XPRMInitializeControl.CloseIndices); !)
ictx.Send (XPRMInitializeControl.OpenList) ; ! [
ictx.Send (5); ! 5
ictx.Send(1.2); ! 1.2
ictx.Send (XPRMInitializeControl.CloseList); !]
ictx.Send (XPRMInitializeControl.OpenIndices); ! (
ictx.Send ("ind2"); ! "ind2"
ictx.Send (7); ! 7
ictx.Send (XPRMInitializeControl.CloseIndices); !)
ictx.Send (XPRMInitializeControl.Openlist) ; ! [
ictx.Send (4); ! 4
ictx.Send (6.5); ! 6.5
(1
(1

The send and sendControl methods may take an additional last argument indicating whether data is
to be processed immediately or only once the queue of tokens is full (default).

With C#, we use exactly the same model file burglarl3.mos as with C (see Section 13.4.3 for the
listing).

14.2.7.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and a
Mosel model. One way of passing the value of a scalar to a model is to define it as a model parameter
and pass the new value as an execution parameter to the model (as shown in Section 14.2.3).
Alternatively, we might read or write scalar values in initializations blocks similarly to what we
have seen in the previous section for arrays.

Consider the following C# program: we wish to exchange the values of the three scalars, wmax,
numitem, and objval with the Mosel model run by this program. The value of the first scalar should
be read in by the Mosel model and the last two receive solution values from the optimization run in the
model. Since it is not possible to address scalars directly from the model we have collected them into a
class MyData the fields of which are then specified in the execution parameters as the locations of the
data.

using System;
using System.IO;
using Mosel;

Fair Isaac Corporation Confidential and Proprietary Information 140

Other programming language interfaces

namespace ugioscalar.cs {

public class ugioscalar {
/// <summary>
/// Structure to receive solution values
/// </summary>
class MyData {
public int wmax;
public int numitem;
public double objval;
}

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static int Main(string[] args) {
MyData data=new MyData() ;
data.wmax=100;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad ("burglarll.mos");

// Associate the .NET object with a name in Mosel
model.Bind ("data", data);

// Run the model, passing data location as parameters
model .ExecParams =
"WMAX='data (wmax) ',NUM="'data (numitem) ', SOLVAL='data (objval) ', " +
"IODRV='dotnetraw:'";
model.Run () ;

if (model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

// Display solution values obtained from the model

Console.WriteLine ("Objective value: " + data.objval);
Console.WriteLine ("Total number of items: " + data.numitem);
model .Reset () ; // Reset the model

return O;

The Mosel model burglarll.mos run by this program is the same as the model burglar12.mos
displayed in Section 13.4.4, but using the I/0 driver dotnetraw instead of raw (which we set through
the TODRV parameter). This model takes as execution parameters the filenames (location in memory)
of the three scalars. The integer WTMAX is initialized from the value in the .NET application and the two
other locations are written to in the initializations to block at the end of the model.

14.2.8 Redirecting the Mosel output

When executing a Mosel model from a .NET application it may be desirable to be able to process the
output produced by Mosel directly in the application. The following C# program ugcb.cs shows a
callback-style functionality that redirects the Mosel standard output to a TextWriter object which is
used to prefix every line of Mosel output with the string Mosel : before printing it.

To redirect Mosel streams to a .NET object (.NET Stream (including MemoryStream for in-memory
buffers), TextReader, or TextWriter) we need to use the dotnet I/0 driver. The same mechanism
that is used here for redirecting the output stream of Mosel (indicated by

XPRMStreamType .F_OUTPUT_LINEBUF which also enables line buffering) can equally be used to

Fair Isaac Corporation Confidential and Proprietary Information 141

Other programming language interfaces

redirect, for instance, the error stream (denoted by the constant XPRMStreamType . F_ERROR).

Note that text read from a TextReader will be encoded into bytes via the UTF-8 character encoding
before being passed to Mosel; conversely, the text to be written to a TextWriter will have been
produced by decoding the Mosel output which is assumed to be in UTF-8. If this is not the desired
result, consider using a Stream instead. If you wish data exchange to be performed in a different
encoding (such as the platform’s default encoding), this can be done Mosel by use of the enc I/0 driver
(see C.7); only Streams, not TextReaders or TextWriters, are suitable for this.

using System;
using System.IO;
using System.Text;
using Mosel;

namespace ugcb.cs {
public class ugcb {

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Associate .NET object with a name in Mosel
mosel.Bind ("mycb", new MyOut());

// Redirect error stream to stdout
mosel.SetDefaultStream (XPRMStreamType.F_ERROR, Console.Out);

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglar2.mos");

// Redirect the model's output to a custom TextWriter
MyOut modelOut = new MyOut ();
model.SetDefaultStream (XPRMStreamType.F_OUTPUT_LINEBUF, modelOut) ;

// Alternative:
// Redirect the model's output to our printing function 'cbmsg'
model.SetDefaultStream (XPRMStreamType.F_OUTPUT_LINEBUF, "dotnet:mycb");

// Run the model
model.Run () ;

}

public class MyOut: TextWriter
{
private bool atStartOfLine = true;
public override void Write (char b)
{
if (atStartOfLine) {
Console.Write ("Mosel: ");
atStartOfLine=false;
}
if (b=='\n'") {
Console.WriteLine();
atStartOfLine=true;
}
else if (b=='\r') {
// ignore
}
else {
Console.Write (b);

Fair Isaac Corporation Confidential and Proprietary Information 142

Other programming language interfaces

}
}
public override Encoding Encoding {
get {
return Encoding.UTF8;
}
}
}

14.3 VBA

VBA typically serves for embedding a Mosel model into an Excel spreadsheet. In this section we shall
only show the parts relevant to the Mosel functions, assuming that the execution of a model is trigged
by the action of clicking on some object such as the buttons shown in Figure 14.1.

A B C D E F G H

1
2 Click on a button to trigger a model run: iz ad [
3 Macro name:

burglar_Click 55
4 Burglar g —
5 bugarcide |
6 XPRMfreelibpath
?
8
: Prime
1
11

Options
1 ;
13
Macrosin: |ugvb.xls
14 2 s []
Description

15

Figure 14.1: Excel spreadsheet embedding VBA macros

14.3.1 Compiling and executing a model in VBA

As with the other programming languages, to execute a Mosel model in VBA we need to perform the
standard compile/load/run sequence as shown in the following example (contained in the file
ugvb.bas). We use a slightly modified version burglar5.mos of the burglar problem where we have
redirected the output printing to the file burglar_out.txt.

Private Sub burglar_Click()
Dim model
Dim ret As Long
Dim result As Long
Dim outfile As String, moselfile As String

'Initialize Mosel
ret = XPRMinit
If ret Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub
End If

'Compile burglar5.mos
XPRMsetdefworkdir GetFullPath ()
moselfile = GetFullPath() & "\" & "burglar5"
outfile = GetFullPath() & "\" & "burglar_out.txt"
ret = XPRMcompmod (vbNullString, moselfile & ".mos", vbNullString, _

Fair Isaac Corporation Confidential and Proprietary Information 143

Other programming language interfaces

"Burglar problem")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"
Exit Sub
End If

'Load burglar5.bim
model = XPRMloadmod (moselfile & ".bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub
End If

'Run the model
ret = XPRMrunmod (model, result, "OUTFILE=""" & Replace (outfile, "\",
M) g
If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
GoTo done
Else
ShowFile outfile
End If
MsgBox vbNewLine & "model Burglar returned: " & result

done:
XPRMfree
End Sub

'Auxiliary routines

Private Sub ShowFile(fn As String)
Dim vs As String
vs = CreateObject ("Scripting.FileSystemObject") .OpenTextFile (fn) .ReadAll
MsgBox vs

End Sub

Private Function GetFullPath() As String
Dim path As String
path = ThisWorkbook.path
If Right(path, 1) = "\" Then path = Left(path, Len(path) - 1)
GetFullPath = path
End Function

This implementation redirects the output into a log file vbout . txt the contents of which is displayed
after a successful model run.

14.3.2 Parameters

When executing a Mosel model in VBA, it is possible to pass new values for its parameters into the
model. The following program (also contained in the file ugvb . frm) extract shows how we may run
model ‘Prime’ from Section 8.3 to obtain all prime numbers up to 500 (instead of the default value 100
set for the parameter LIMIT in the model). We use a slightly modified version prime4 .mos of the
model where we have redirected the output printing to a file denoted by the parameter OUTFILE.

Private Sub prime_Click()
Dim model
Dim ret As Long
Dim result As Long
Dim outfile As String, moselfile As String

'Initialize Mosel
ret = XPRMinit
If ret Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub
End If

Fair Isaac Corporation Confidential and Proprietary Information 144

Other programming language interfaces

'Compile prime4.mos
XPRMsetdefworkdir GetFullPath ()
moselfile = GetFullPath() & "\" & "prime4d"
outfile = GetFullPath() & "\" & "vbout.txt"
ret = XPRMcompmod (vbNullString, moselfile & ".mos", vbNullString, _
"Prime numbers")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"
Exit Sub
End If

'Load prime4d.bim
model = XPRMloadmod ("prime4.bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub
End If

'Run model with new parameter settings
ret = XPRMrunmod (model, result, "LIMIT=500,O0UTFILE=""" & Replace(outfile, _
ll\ll, ll\\ll) & llllllll)

If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
GoTo done
Else
ShowFile outfile
End If
MsgBox vbNewLine & "model Prime returned: " & result

done:
XPRMfree
End Sub

14.3.3 Redirecting the Mosel output

In the previous example we have hardcorded the redirection of the output directly in the model. With
Mosel's VBA interface the user may also redirect all output produced by Mosel to files directly from the
host application, that is, redirect the output stream.

To redirect all output of a model to the file myout . txt add the following function call before the
execution of the Mosel model:

' Redirect all output to the file "myout.txt"
XPRMsetdefstream 0, XPRM_F_OUTPUT, "myout.txt"

Similarly, any possible error messages produced by Mosel can be recovered by replacing in the line
above XPRM_F_OUTPUT by XPRM_F_ERROR. This will redirect the error stream to the file myout . txt.

The following VBA program extract (file ugcb . bas) shows how to use a callback in VBA to receive all
output from a Mosel model (standard output and errors). The output will be displayed in the
spreadsheet from where the model run was started.

Private ROWNUM As Long
Public Sub example ()
Dim ret As Long
Dim result As Long
Dim module

ClearColumn
' Initialize Mosel. Must be called first

ret = XPRMinit
If ret <> 0 Then

Fair Isaac Corporation Confidential and Proprietary Information 145

Other programming language interfaces

PrintLn ("Failed to initialize Mosel")
Exit Sub
End If

' Redirect the output and error streams to the callback

ret = XPRMsetdefstream(0, XPRM_F_OUTPUT, XPRM_IO_CB (AddressOf OutputCB))
ret = XPRMsetdefstream (0, XPRM_F_ERROR, XPRM_IO_CB (AddressOf OutputCB))

PrintLn "Starting model..."

' Run the model

ret = XPRMexecmod ("", GetFullPath() & "\" & "burglarlO.mos",

"FULLPATH='" & GetFullPath() & "'",

If ret <> 0 Then
PrintLn ("Failed to execute model")
GoTo done

Else
PrintLn "Finished model"

End If

done:
XPRMfree
End Sub

#If VBA7 Then
Private Sub OutputCB(ByVal model As LongPtr, ByVal ref

result, module)

As LongPtr,

ByVal msg As String, ByVal size As Long)
' Output to the spreadsheet
Call PrintLn (msg)
End Sub
#Else
Private Sub OutputCB(ByVal model As Long, ByVal ref As Long, _
ByVal msg As String, ByVal size As Long)
' Output to the spreadsheet
Call PrintLn (msg)
End Sub
#End If
Public Sub PrintLn(ByVal msg As String)
' Strip any trailing newlines first
If Right (msg, Len(vbLf)) = vbLf Then msg = Left(msg, Len(msg) - Len(vbLf))
If Right (msg, Len(vbCr)) = vbCr Then msg = Left (msg, Len(msg) - Len(vbCr))
Worksheets ("Run Model") .Cells (ROWNUM, 2) = Trim(msg)
ROWNUM = ROWNUM + 1
End Sub
Sub ClearColumn ()
Worksheets ("Run Model") .Columns (2) .ClearContents
ROWNUM = 1
End Sub
Function GetFullPath() As String
Dim path As String
path = ThisWorkbook.path
If Right(path, 1) = "\" Then path = Left(path, Len(path) - 1)

GetFullPath = path
End Function

Fair Isaac Corporation Confidential and Proprietary Information

146

IV. Extensions and tools

Overview

Beyond what one might call the ‘standard use’ of Mosel, the Mosel environment has an increasing
number of advanced features, some of which you might find helpful for the development or deployment
of larger applications.

The first chapter of this part (Chapter 15) introduces the Mosel Debugger and Profiler, two tools that are
particularly helpful for the development and analysis of large-scale Mosel models. We give some hints
how you might improve the efficiency of your models.

The next chapter (Chapter 16) introduces the notion of packages and shows several examples of their
use. It also discusses the differences between packages and modules and their respective uses.

Chapter 17 gives an overview of other advanced functionality, including generalized file handling,
concurrency in modeling, graphing, and other solver types. In depth introductions to these topics are
given in separate manuals or whitepapers to avoid overloading this user guide.

The last chapter introduces the notion of 'annotations’ and tools of the Mosel distribution that exploit
such metadata, for example in the automated generation of Mosel model documentation.

Fair Isaac Corporation Confidential and Proprietary Information 148

CHAPTER 15

Debugger and Profiler

15.1

15.1.1

The Mosel Debugger

In Chapter 6 we have seen how the Mosel Parser helps detect syntax errors during compilation. Other
types of errors that are in general more difficult to analyze are mistakes in the data or logical errors in
the formulation of Mosel models. The Mosel Debugger may help tracing these.

Using the Mosel Debugger

In this section we shall be working with the model prime2.mos. This is the same model for calculating
prime numbers as the example we have seen in Section 8.3, but with a LTMIT value set to 20,000.

Mosel models that are to be run in the debugger need to be compiled with the option G. The Mosel
debugger is started with the command debug (it will automatically compile with the required settings):

mosel debug prime.mos

and terminated by typing quit. Just as for the run command the user may specify new settings for
the model parameters immediately following the debug command:

mosel debug prime2.mos 'LIMIT=50"'

Once the debugger is started, type in the following sequence of commands (Mosel’s output is
highlighted in bold face):

Fair Isaac Corporation Confidential and Proprietary Information 149

Debugger and Profiler

dbg>break 31

Breakpoint 1-1 set at prime2.mos:31
dbg>bcond 1-1 getsize (SNumbers) <10
dbg>cont

Prime numbers between 2 and 50:
Breakpoint 1-1.

31 while (not(n in SNumbers)) n+=1
dbg>print n

13

dbg>display SNumbers

1(0): SNumbers = [17 19 23 29 31 37 41 43 47]
dbg>display SPrime

2(0): SPrime = [2 3 5 7 11 13]

dbg>cont

Breakpoint 1-1.

31 while (not(n in SNumbers)) n+=1
1(0) : SNumbers = [19 23 29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17]
dbg>cont

Breakpoint 1-1.

31 while (not(n in SNumbers)) n+=1
1(0): SNumbers = [23 29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17 19]
dbg>cont

Breakpoint 1-1.

31 while (not(n in SNumbers)) n+=1
1(0): SNumbers = [29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17 19 23]
dbg>quit

This small example uses many of the standard debugging commands (for a complete list, including
commands for navigating in the Mosel stack that are not shown here, please see the Section 'Running
Mosel — Command line interpreter: debugger’ of the introduction chapter of the Mosel Language
Reference Manual):

break Set a breakpoint in the given line. A breakpoint is deleted with delete followed by the
breakpoint number. The command breakpoints lists all currently defined breakpoints.

bcond Set a condition on a breakpoint (using the number of the breakpoint returned by the
break command). Conditions are logical expressions formed according to the
standard rules in Mosel (use of brackets, connectors and and or). They may contain
any of the functions listed below.

cont Continue the execution up to the next breakpoint (or to the end of the program). A
line-wise evaluation is possible by using next or step (the former jumps over loops
and subroutines, the latter steps into them).

display Show the current value of a model object or an expression at every step of the debugger.
A display is removed by calling undisplay followed by the number of the display.

print Show (once) the current value of a model object.
The following simple Mosel functions may be used with debugger commands (in conditions or with
print /display):

m Arithmetic functions: abs, ceil, floor, round

m Accessing solution values: getsol, getdual, getrcost, getactivity, getslack

m Other: getparam, getsize

Fair Isaac Corporation Confidential and Proprietary Information 150

Debugger and Profiler

15.1.1.1 Debugging concurrent models

The Mosel debugger can be used with concurrent (sub)models. A few temporary edits to the model
files may be necessary in this case (to be removed for production versions!):

m We need to use the compilation flag ‘G’ with all models that are to be debugged: this option is
applied automatically by the Mosel debugger for the master model, but we need to use it explicitly
for the submodels. For instance, if the submodels are compiled from the master model, we need
to modify the compilation statement to include this flag:

if compile("G", "prime2d.mos")<>0 then exit(l); end-if

m Breakpoints on submodels can only be set once the corresponding submodels have been started.
If their execution is too fast to allow for user input in the debugger, we recommend to insert a
'sleep’ at the start of the submodel (this subroutine is provided by the module mmsystem that
needs to be loaded by the model) during the debugging phase. For example adding a 'sleep’ of 5
seconds:

sleep(5000)

We can now start the debugger for the master model with a command like the following:

mosel debug runprime2d.mos 'LIMIT=50'

Once the debugger is started, type in the following sequence of commands (Mosel’s output is
highlighted in bold face):

dbg>break 29

Breakpoint 1-1 set at runprime2d.mos:29
dbg>cont

29 run (modPrime, "LIMIT="+LIMIT)
dbg>next

30 wait

[model #2 starting]

dbg>model 2

* "prime2d.mos":18

18 LIMIT=20000

dbg>break 34

Breakpoint 2-1 set at prime2d.mos:34
dbg>bcond 2-1 getsize (SNumbers) <10
dbg>cont

Prime numbers between 2 and 50:
Breakpoint 2-1.

34 while (not(n in SNumbers)) n+=1
dbg>print n

13

dbg>display SNumbers

1(#1): SNumbers = [17 19 23 29 31 37 41 43 47]
dbg>display SPrime

2(#1): SPrime = [2 3 5 7 11 13]
dbg>cont

Breakpoint 2-1.

34 while (not(n in SNumbers)) n+=1
1(#1): SNumbers = [19 23 29 31 37 41 43 47]
2(#1): SPrime = [2 3 5 7 11 13 17]
dbg>cont

Breakpoint 2-1.

dbg>quit

This sequence sets a breakpoint on the submodel 'run’ command in the master model. After the
submodel is started it switches to using the submodel (‘model 2') as the active model in the debugger;

Fair Isaac Corporation Confidential and Proprietary Information 151

Debugger and Profiler

15.1.2

15.2

15.2.1

we can then enter the debug commands for the submodel. Notice that the command cont applies
globally to all running models, whereas next or step refer to the selected active model.

Debugger in Xpress Workbench

With Xpress Workbench the debugger is started by clicking on the button i Workbench will

automatically recompile the model with the required debugging flag. Breakpoints are set by clicking
onto the gray area (left to the line number if it is displayed) preceding each row in the editor window,
breakpoint conditions can be added via the right mouse button menu on the breakpoint icon. Clicking
on the breakpoint icon deletes the breakpoint.

Delete breakpoint/deactivated breakpoint.
' {:} Delete a conditional breakpoint/deactivated conditional breakpoint.

Navigating in the debugger is possible by clicking on the corresponding buttons:

@ () Activate/deactivate all breakpoints.
i Start/stop the debugger.
Il Resume/suspend model execution.

5 Step over an expression.
34 Step into an expression.
I Step out of an expression.

During a debugging session, the current position is indicated via a green arrow left to the line numbers
(changing to yellow on breakpoints £ 3). Expand the Variables display in the Debugger pane on the
right side of the workspace to observe the values of model entities.

Efficient modeling through the Mosel Profiler

The efficiency of a model may be measured through its execution speed and also its memory
consumption. The execution times can be analyzed in detail with the help of the Mosel Profiler. Several
commands of the Mosel debugger that are also discussed in this section provide the user with further
information, such as memory consumption.

Using the Mosel Profiler

Once a model you are developing is running correctly, you will certainly start testing it with larger data
sets. Doing so, you may find that model execution times become increasingly larger. This may be due
to the solution algorithms, but a more or less significant part of the time will be spent simply in
defining the model itself. The Mosel Profiler lets you analyze the model behavior line-by-line. Solution
algorithms, such as LP or MIP optimization with Xpress Optimizer, may be improved by tuning solver
parameters (please refer to the corresponding software manuals). Here we shall be solely concerned
with improvements that may be made directly to the Mosel model. Even for large scale models, model
execution times can often be reduced to just a few seconds by carefully (re)formulating the model.

Just as for the debugger, Mosel models that are to be run in the profiler need to be compiled with the
option G. The command profile of the Mosel command line performs all required steps:

mosel profile prime2.mos

Fair Isaac Corporation Confidential and Proprietary Information 152

Debugger and Profiler

or, if we wish to generate the BIM file explicitly:

mosel comp -G prime2.mos
mosel run -prof prime2.bim

The profiler generates a file £i lename.prof with the profiling statistics. For the test model
prime2 .mos this file has the following contents (leaving out the header lines and comments):

model Prime

parameters
1 0.00 0.00 LIMIT=20000
end-parameters

declarations
1 0.00 0.00 SNumbers: set of integer
1 0.00 0.00 SPrime: set of integer

end-declarations

1 0.01 0.00 SNumbers:={2..LIMIT}
1 0.00 0.01 writeln("Prime numbers between 2 and ", LIMIT, ":")
1 0.00 0.01 n:=2
1 0.00 0.01 repeat
2262 0.04 3.44 while (not(n in SNumbers)) n+=1
2262 0.00 3.44 SPrime += {n}
2262 0.00 3.44 i:=n
2262 0.04 3.44 while (i<=LIMIT) do
50126 3.31 3.44 SNumbers-= {i}
50126 0.04 3.44 i+=n
end-do
2262 0.00 3.44 until SNumbers={}
1 0.00 3.44 writeln(SPrime)
1 0.00 3.45 writeln(" (", getsize(SPrime), " prime numbers.)")
1 0.00 3.45 end-model

The first column lists the number of times a statement is executed, the second column the total time
spent in a statement, and the third column the time of the last execution; then follows the
corresponding model statement. In our example, we see that most of the model execution time is spent
in a single line, namely the deletion of elements from the set SNumbers. This line is executed more than
50,000 times, but so is the following statement (i+=n) and it only takes a fraction of a second. Indeed,
operations on large (>1000 entries) sets may be relatively expensive in terms of running time. If our
prime number algorithm were to be used in a large, time-critical application we should give preference
to a more suitable data structure that is addressed more easily, that is, an array. For instance, by
modifying the model as follows the total execution time for this model version becomes 0.19 seconds:

model "Prime (array)"

parameters
LIMIT=20000 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
INumbers = 2..LIMIT ! Set of numbers to be checked
SNumbers: array (INumbers) of boolean
SPrime: set of integer ! Set of prime numbers

end-declarations

writeln ("Prime numbers between 2 and ", LIMIT, ":")

n:=2

Fair Isaac Corporation Confidential and Proprietary Information 153

Debugger and Profiler

15.2.2

repeat
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers (i) := true
i+=n
end-do

while (n <= LIMIT and SNumbers (n)) n+=1
until (n>LIMIT)

writeln (SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

To start the Mosel profiler from Xpress Workbench, open the Run Dialog window from the menu Run or
by clicking on the tools button =+ and select the run mode Profile the Model.

15.2.1.1 Profiling concurrent models

The Mosel profiler can be used to profile models that are running concurrently. The profiler run is
started by launching the profiler for the master model. For every model file, an output file
filename.prof is generated. If several instances of the same model file are being run, Mosel creates
unique filenames of the form filename.modelid.prof where modelid is formed from the model
counter per model tree level.

The user is reminded that all (sub)models used in profiler runs need to be compiled with the ‘G’ flag.

Other commands for model analysis

The Mosel debugger provides a few other commands that may be helpful with quickly obtaining
information about models that have been executed in Mosel.

Consider, for example, the following model £1ow.mos.

model "Dynamic arrays"
declarations
Suppliers = 1..150
Customers = 1..10000
COST: dynamic array(Suppliers,Customers) of real
flow: dynamic array(Suppliers,Customers) of mpvar
end-declarations

initializations from "flow.dat"
COST
end-initializations

forall(s in Suppliers, c¢ in Customers | COST(s,c)>0) create(flow(s,c))

end-model

Now execute the following sequence of Mosel commands from the command line (as before, Mosel
output is printed in bold face). The commands we wish to use are part of the Mosel debugger.—Since
we do not wish to launch a debugging session, we use the option —g to compile in debug mode, but
without tracing information. This results in a standard model run without entering an interactive
debugging session.

Fair Isaac Corporation Confidential and Proprietary Information

154

Debugger and Profiler

mosel debug -g flow.mos

dbg>1lsmods

* name: Dynamic arrays (0.0.0) number: 1 size: 47884
sys. com.: ‘flow.mos’,debug,mc5.0.0

user com.:

dbg>info COST
‘COST’ is an array (dynamic, dim: 2, size: 750) of reals
dbg>quit

The command 1smods displays information about all models loaded in Mosel, and in particular their
size (= memory usage in bytes). With the command info followed by a symbol name we obtain
detailed information about the definition of this symbol (without giving a symbol this command will
display release and license information for Mosel). Alternatively, it is also possible to print the complete
list of symbols (with type information and sizes) defined by the current model by using the command
1ssymb.

If we now remove the keyword dynamic from the declaration of the two arrays, COST and £1ow, and
re-run the same command sequence as before, we obtain the following output:

dbg>1smods
* name: Dynamic arrays number: 1 size: 36011152
Sys. com.: ‘flow.mos’,debug,mc5.0.0

User com. :
dbg>info COST
‘COST’ is an array (dim: 2, size: 1500000) of reals

We can run a similar experiment with the model version £ 1owh.mos that defines the two sparse arrays
as hashmap. As shown in the output below, the memory usage is somewhat higher albeit in the same
order of magnitude as the model version with dynamic arrays:

mosel debug -g flowh.mos

dbg>1smods

* name: Hashmap arrays (0.0.0) number: 1 size: 81488
sys. com.: ‘flowh.mos’,debug,mec5.0.0

user com. :

dbg>info COST
‘COST’ is an array (hashmap, dim: 2, size: 750) of reals
dbg>quit

It is easily seen that in this model the use of the keyword dynamic or hashmap makes a huge
difference in terms of memory usage. A model defining several arrays of comparable sizes is likely to
run out of memory (or at the least, it may not leave enough memory for an optimization algorithm to be
executed).

Note: If COST is defined as a sparse (dynamic or hashmap) array, the condition on the forall loop
should really be exists (COST (s, c)) for speedier execution of this loop.

15.2.3 Some recommendations for efficient modeling

The following list summarizes some crucial points to be taken into account, especially when writing
large-scale models. For more details and examples please see Appendix B.

m Use sparse arrays to

— size data tables automatically when the data is read in,
- initialize the index values automatically when the data is read in,
- conserve memory when storing sparse data,

Fair Isaac Corporation Confidential and Proprietary Information 155

Debugger and Profiler

eliminate index combinations without using conditions each time.

m Don't use sparse arrays

when you can use ordinary (dense) arrays instead,

- when storing dense data (if at least 50% of its entries are defined an array should clearly be
considered as dense), and you can size the data table and initialize the indices in some other

way, such as by reading in the size first.

m General procedure for declaring and initializing data:

1. declare all index sets and the minimal collection of data arrays required to initialize the sets,

2.

initialize the data arrays (which also initializes all index sets),

3. finalize the index sets,

4.

declare and initialize all other arrays.

m Efficient use of sparse arrays:

use the keyword exists for enumeration (in sums or loops),

access the elements in ascending order of the indices (particularly with dynamic arrays),
use hashmap when array elements are predominantly accessed in random order,

use ranges, rather than sets, for the index sets.

m Efficient use of exists:

use named index sets in the declarations,

use the same index sets in the loops,

use the index sets in the same order,

use the dynamic/hashmap qualifier if some index sets are constant or finalized,
make sure exists is the first condition,

always use exists, even if no condition or an alternative condition is logically correct,
conditions with or cannot be handled as efficiently as conditions with and.

m Loops (sum, forall, etc.):

where possible, use conditional loops—loop index set followed by a vertical bar and the
condition(s)—instead of a logical test with if within the loop,

make sure exists is the first condition,

always use exists, even if no condition or an alternative condition is logically correct,
enumerate the index sets in the same order as they occur in the arrays within the loop,
broken up, conditional loops are handled less efficiently.

m Do not use any debugging flag for compiling the final deployment version of your models.

Fair Isaac Corporation Confidential and Proprietary Information

156

CHAPTER 16
Packages

16.1

A package is a library written in the Mosel language (this feature is introduced by Mosel 2.0). Its
structure is similar to models, replacing the keyword model by package. Packages are included into
models with the uses statement for dynamic loading (the package BIM needs to be present for model
execution), in the same way as this is the case for modules (DSO). Alternatively, packages can be
loaded statically via imports in which case they get included in the model BIM file (this option is not
available for modules that are always dynamic). Unlike Mosel code that is included into a model with
the include statement, packages are compiled separately, that is, their contents are not visible to the
user.

Typical uses of packages include

m development of your personal ‘tool box’

m model parts (e.g., reformulations) or algorithms written in Mosel that you wish to distribute
without disclosing their contents

m add-ons to modules that are more easily written in the Mosel language
Packages may define new constants, subroutines, types, and parameters for the Mosel language as

shown in the following examples (the first two examples correspond to the first two module examples
of the Mosel Native Interface User Guide).

Definition of constants

The following package myconstants defines one integer, one real, one string, and two boolean
constants.

package myconstants

public declarations

MYCST_BIGM = 10000 ! A large integer value
MYCST_TOL = 0.00001 ! A tolerance value
MYCST_LINE = ! String constant
n "
MYCST_FLAG = true ! Constant with value true
MYCST_NOFLAG = false ! Constant with value false

end-declarations
end-package
The structure of a package is similar to the structure of Mosel models, with the difference that we use
the keyword package instead of model to mark its beginning and end.

After compiling our package with the standard Mosel command (assuming the package is saved in file
myconstants.mos)

Fair Isaac Corporation Confidential and Proprietary Information 157

Packages

mosel comp myconstants

it can be used in a Mosel model (file myconst_test.mos):

model "Test myconstants package"
uses "myconstants"

writeln (MYCST_LINE)

writeln("BigM value: ", MYCST_BIGM, ", tolerance value: ", MYCST_TOL)
writeln ("Boolean flags: ", MYCST_FLAG, " ", MYCST_NOFLAG)

writeln (MYCST_LINE)

end-model
Please note the following:

1. Package name: compiling a package will result in a file packagename.bim. This package is
invoked in a Mosel model by the statement
uses "packagename"
The name of the Mosel package source file (. mos file) may be different from the name given to
the BIM file.

2. Internal package name: the name given in the Mosel file after the keyword package is the
internal name of the package. It must be a valid Mosel identifier (and not a string). This name
may be different from the name given to the BIM file, but it seems convenient to use the same
name for both.

3. Package location: for locating packages Mosel applies the same rules as for locating modules; it
first searches in the directory dso of the Xpress installation, that is, in XPRESSDIR/dso, and then
in the directories pointed to by the environment variable MOSEL_DsSO0. The contents of the latter
can be set freely by the user.

To try out the package examples in this chapter, you may simply include the current working
directory (* .7) in the locations pointed to by MOSEL_DSO, so that packages in the current
working directory will be found, for example:

Windows: set MOSEL_DSO=.

Unix/Linux, C shell: setenv MOSEL_DSO

Unix/Linux, Bourne shell: export MOSEL_DSO; MOSEL_DSO=.
Alternatively, you can use the compilation option -bx to indicate the location of package files (this
option does not apply to DSOs):

mosel exe -bx ./ mymodel.mos
In general, and in particular for the deployment of an application, it is recommended to work with
absolute paths in the definition of environment variables.

Having made sure that Mosel is able to find our package myconstants.bim, executing the test model
above will produce the following output:

BigM value: 10000, tolerance value: le-05
Boolean flags: true false

When comparing with the C implementation of the module example myconstants in the Mosel Native
Interface User Guide we can easily see that the package version is much shorter.

16.2 Definition of subroutines

We now show a package (file solarraypkg.mos) that defines several versions of a subroutine,

Fair Isaac Corporation Confidential and Proprietary Information 158

Packages

solarray, which copies the solution values of an array of decision variables of type mpvar into an
array of real of the same size. For each desired number (1-3) and type (integer or string) of array

indices we need to define a new version of this subroutine.

package solarraypkg

! *xx*x Integer indices (including ranges)
public procedure solarray(x:array(R:set of integer)

s:array (set of integer) of

forall(i in R) s(i) :=getsol(x(i))

end-procedure
public procedure solarray(x:

S:

array (Rl:set
R2:set
array (set of
set of

* kK k

of integer,
of integer)
integer,

integer) of

forall(i in R1l, j in R2) s(i,Jj) :=getsol(x(i, J))

end-procedure

public procedure solarray (x:

forall(i in R1l, j in R2, k
end-procedure

! *xx*String indices **xx*
public procedure solarray (x:
end-procedure

public procedure solarray (x:

S:

array (Rl:set
R2:set
R3:set

rarray (set of

set of
set of

of integer,
of integer,
of integer)
integer,
integer,
integer) of

of mpvar,
real)

of mpvar,

real)

of mpvar,

real)

in R3) s(i, j, k) :=getsol(x(i, j, k))

array (R:set of string) o
s:array (set of string) of
forall(i in R) s(i) :=getsol(x(i))

array (Rl:set
R2:set
array (set of
set of

of string,
of string)
string,

string) of

forall(i in R1, J in R2) s(i,Jj) :=getsol(x (i, J))

end-procedure

public procedure solarray (x:

S:

forall(i in R1, j in R2, k
end-procedure
end-package

array (Rl:set
R2:set
R3:set
array (set of
set of
set of

of string,
of string,

of string)
string,
string,
string) of

f mpvar,
real)

of mpvar,

real)

of mpvar,

real)

in R3) s(i,j, k) :=getsol(x(i,], k))

Using the package in a Mosel model (file solarr_test.mos):

model "Test solarray package"
uses "solarraypkg", "mmxprs"

declarations
R1=1..2
R2={6,7,9}
R3={5,-1}

x: array(R1,R2,R3) of mpvar

sol: array(R1,R2,R3) of real

end-declarations

! Define and solve a small problem
sum(i in R1l, j in R2, k in R3) (i+j+2xk)

forall(i in R1, j in R2, k in R3)

* x(i,3,k)

x(i,Jj, k)<=1

<= 20

Fair Isaac Corporation Confidential and Proprietary Information

159

Packages

16.3

maximize (sum(i in R1, j in R2, k in R3) (i+2*j+k) * x(i,3j, k))

! Get the solution array
solarray (x, sol)

! Print the solution

forall(i in R1, j in R2, k in R3)

writeln(" (", 4, ",", 3, ",", k, ") ", sol(i,3j,k), " ", getsol(x(i,],k)))
writeln(sol)

end-model

Output produced by this model:

(1,6,-1) 1 1
(1,6,5) 0 0

(1,7,-1) 1 1

(1,7,5) 0 0

(1,9,-1) 1 1

(1,9,5) 0 0

(2,6,-1) 0.166667 0.166667
(2,6,5) 00

(2,7,-1) 0 0

(2,7,5) 0 0

(2,9,-1) 0 0

(2,9,5) 0 0
[1,0,1,0,1,0,0.166667,0,0,0,0,0]

This example may be classified as a ‘utility function’ that eases tasks occurring in a similar way in
several of your models. Another example of such a utility function could be a printing function that
simply outputs the solution value of a decision variable with some fixed format (if you apply
write/writeln to a decision variable of type mpvar you obtain the pointer of the variable, and not its
solution value).

If we again make the comparison with the implementation as a module we see that both ways have
their positive and negative points: the implementation as a module is clearly more technical, requiring a
considerable amount of C code not immediately related to the implementation of the function itself.
However, at the C level we simply check that the two arguments have the same index sets, without
having to provide a separate implementation for every case, thus making the definition more general.

Definition of types

In Section 8.6.2 we have seen the example arcs.mos that defines a record to represent arcs of a
network. If we wish to use this data structure in different models we may move its definition into a
package 'arcpkg’ to avoid having to repeat it in every model.

Such a package may look as follows (file arcpkg.mos):

package arcpkg

public declarations

arc = public record ! Arcs:
Source, Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

end-package

which is used thus from the model file:

Fair Isaac Corporation Confidential and Proprietary Information 160

Packages

model "Arcs2"
uses "arcpkg"

declarations
NODES: set of string ! Set of nodes
ARC: array (ARCSET:range) of arc ! Arcs

end-declarations

initializations from 'arcs.dat'
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln (NODES)

writeln ("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize (ARCSET))

end-model

At this place, the use of the keyword public may call for some explanation. Here and also in the
example ‘myconstants’ the whole declarations block is preceded by the public marker, indicating
that all objects declared in the block are public (i.e., usable outside of the package definition file). If only
some declarations are public and others in the same block are private to the package, the public
marker needs to preceed the name of every object within the declarations that is to become public
instead of marking the entire block as public.

The second occurrence of the public marker in the definition of package ‘arcpkg’ is immediately in
front of the keyword record, meaning that all fields of the record are public. Again, it is possible to
select which fields are accessible from external files (for example, you may wish to reserve some fields
for special flags or calculations within your package) by moving the keyword public from the record
definition in front of every field name that is to be marked as public.

A definition of package ‘arcpkg’ equivalent to the one printed above therefore is the following.

package arcpkg2

declarations

public arc = record ! Arcs:
public Source, Sink: string ! Source and sink of arc
public Cost: real ! Cost coefficient

end-record
end-declarations

end-package

16.4 Definition of parameters

Mosel parameters are scalars of one of the four basic types (real/integer/string/boolean). Packages
can define new parameters by declaring their names and type in the parameters section. The
package needs to store the current values of the parameters in separate model entities and will usually
initialize default values for the parameters.

package parpkg

! Specify parameter names and types
parameters

"pl":real

"p2":integer

"p3":string

"p4" :boolean
end-parameters

Fair Isaac Corporation Confidential and Proprietary Information 161

Packages

! Entities for storing current parameter values

declarations
mypl: real
myp2: integer
myp3: string
myp4: boolean
end-declarations

! Set default values for parameters

mypl:=0.25
myp2:=10
myp3:="default"
myp4:=true

!'... Parameter access routines
end-package

! Get value of a real parameter
public function parpkg~getrparam(p:string)
case p of
"pl": returned:=mypl
end-case
end-function

! Get value of an integer parameter
public function parpkg~getiparam(p:string)
case p of
"p2": returned:=myp2
end-case
end-function

! Get value of a string parameter
public function parpkg~getsparam(p:string)
case p of
"p3": returned:=myp3
end-case
end-function

! Get value of a boolean parameter
public function parpkg~getbparam(p:string)
case p of
"p4": returned:=myp4
end-case
end-function

! Set value for real parameters

The access routines for the four parameter types have a fixed format, namely
packagename~get|[r|i|s|b]lparam and packagename~set[r|i|s|b]paramas shown in the
code extract below.

:real

:integer

:string

:boolean

public procedure parpkg~setparam(p:string,v:real)

case p of
"pl": mypl:=v

end-case

end-procedure

! Set value for integer parameters

public procedure parpkg~setparam(p:string,v:integer)

case p of
"p2": myp2:=v

end-case

end-procedure

! Set value for string parameters

public procedure parpkg~setparam(p:string,v:string)

case p of
"p3": myp3:=v

Fair Isaac Corporation Confidential and Proprietary Information

162

Packages

16.5

end-case
end-procedure

! Set value procedure for boolean parameters
public procedure parpkg~setparam(p:string,v:boolean)
case p of
"pd": mypd:=v
end-case
end-procedure

A model using the package ‘parpkg’ will access the package parameters via Mosel’s standard
getparam and setparam routines (the parameter names are not case-sensitive and their names can
be preceded by the package name).

model "Packages with parameters"
uses 'parpkg'

! Display default parameter values

writeln ("Default values:",
" pl=", getparam("parpkg.P1l"), " p2=", getparam("P2"),
" p3=", getparam("parpkg.p3"), " p4=", getparam("p4"))

! Change values

setparam("pl", 133)

setparam ("parpkg.p2",-77)
setparam ("P3", "tluafed")
setparam("parpkg.P4",not getparam("parpkg.P4"))

end-model

Namespaces

A namespace is a group of identifiers in a program that is distinguished by a common name (prefix).
When working with mutiple packages it can be helpful to introduce namespaces in order to structure
the data and to determine which model entities are accessible to other (all or preselected) packages or
models.

A fully qualified entity name in Mosel is of the form
nspc~ident

where nspc is a namespace name and ident an identifier in the namespace. Namespaces and their
access are specified via specific compiler directives at the start of the model or package. The package
example mynspkgl below defines three namespaces ('ns?’, 'ns3’, and 'ns3~ns37’), two of which are
restricted to a namespace group that comprises a second package mynspkg2, and the namespace
'ns3’ is visible to all packages and models. The package further states via the nssearch directive that
any unqualified entity names employed in the package should be searched for in the namespace 'ns7’,
meaning that the names belonging to this namespace can be used without the namespace prefix ns1~.

package mynspkgl

namespace nsl, ns3, ns3~ns31l
nsgroup nsl: "mynspkg2"
nsgroup ns3~ns31l: "mynspkg2"
nssearch nsl

This package defines 3 namespaces:

* nsl + ns3~ns31l restricted to pkg2
* ns3 is visible to all

'nsl' can be used without prefix

declarations
ns3~R = 1..10
nsl~Ar: array(ns3~R) of integer ! Array with index set in another namespace
vi, ns3~vi, ns3~ns31l~vi: integer ! 3 different entities

end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 163

Packages

public declarations

vp: integer ! This entity is visible to all
end-declarations

procedure nsl~procl (val:integer) ! Subroutine in a namespace
ns3~vi:=val; ns3~ns3l~vi:=2%val; vi:=val; vp:=val
Ar (5) :=val ! No prefix: 'nsl' is in search list
writeln(" In nsl~procl: ", vi)

end-procedure

public procedure proc2(val:integer) ! Public subroutine
writeln(" In proc2: ", wval)
end-procedure

procedure proc3(val:integer) ! Private subroutine
writeln(" In proc3: ", val)

end-procedure

end-package

The package mynspkgl shows some examples of entity and subroutine defintions for the three cases:
private (vi, proc3), in a namespace (ns3~R, ns1~Ar, ns3~vi, ns3~ns31~vi, nsl~procl), and
public (vp, proc2).

The second package mynspkg2 that uses functionality from mynspkgl needs to state which
namespaces are used, either via a namespace or a nssearch directive.

package mynspkg2

uses 'mynspkgl'

namespace ns3~ns31l ! Namespace used in this package
nssearch nsl ! 'nsl' can be used without prefix

public procedure frompkg2(val: integer)

procl (val) ! Procedure in namespace 'nsl'
writeln(" frompkg2:",ns3~ns31l~vi) ! Namespace 'ns3~ns31' is not searched
writeln(" vp=", vp) ! Public symbol of pkgl

writeln(" Ar(5)=", Ar(5)) ! Contained in 'nsl' (prefix optional)

end-procedure
end-package

Any model or further package using the previous two packages can access the namespace 'ns3’ and
also define new namespaces of its own, but it is not allowed to access the other two namespaces that
are restricted to this group of packages.

model "mynstest"
uses 'mynspkgl', 'mynspkg2'

namespace ns2 ! A new namespace

nssearch ns3 ! Symbols from 'ns3' can be used without prefix

frompkg2 (5) ! Public routine from package mynspkgl
writeln("n3~vi:", vi, " vp:", vp) ! Display values of n3~vi and vp

proc2 (4) ! Public subroutine from mynspkgl

end-model

An interesting feature of namespaces is that an entire namespace can be saved via
initializations to simply by indicating its name and the stored information can subsequently be
used to initialize entities in some other namespace with matching names and types.

declarations
ns2~vi: integer
I, ns2~R: range

end-declarations

! Store contents of namespace 'ns3'

Fair Isaac Corporation Confidential and Proprietary Information 164

Packages

initializations to "mem:mynsav"
ns3
end-initializations

! Initialize entities with matching names from the saved namespace
initializations from "mem:mynsav"
ns2 as "ns3"
end-initializations
writeln("ns2~vi:", ns2~vi) ! Has received the value of ns3~vi

! Read an individual entity from the saved namespace
initializations from "mem:mynsav"
I as "ns3~R"
end-initializations
writeln("I:", I)

16.6 Packages vs. modules

The possibility of writing packages introduces a second form of libraries for Mosel, the first being
modules (see the ‘Mosel Native Interface User Guide’ for further detail). The following list summarizes
the main differences between packages and modules.

m Definition

— Package
* library written in the Mosel language
- Module

* dynamic library written in C that obeys the conventions of the Mosel Native Interface
m Functionality

— Package

* define
- symbols
- subroutines
- types
- control parameters
- Module

* extend the Mosel language with
- constant symbols
- subroutines

- operators
- types
- control parameters
- 1/0 drivers
m Efficiency
— Package

* like standard Mosel models
- Module

* faster execution speed

Fair Isaac Corporation Confidential and Proprietary Information 165

Packages

* higher development effort
m Use

— Package

* making parts of Mosel models re-usable

* deployment of Mosel code whilst protecting your intellectual property
- Module

* connection to external software

* time-critical tasks
* definition of new I/0 drivers and operators for the Mosel language

As can be seen from the list above, the choice between packages and modules depends largely on the
contents and intended use of the library you wish to write.

Fair Isaac Corporation Confidential and Proprietary Information 166

CHAPTER 17
Language extensions

17.1

17.1.1

It has been said before that the functionality of the Mosel language can be extended by means of
modules, that is, dynamic libraries written in C/C++. All through this manual we have used the module
mmxprs to access Xpress Optimizer. Other modules we have used are mmsheet and mmodbc (access
to spreadsheets and databases, see Section 2.2.5), and mmsystem (Sections 5.1 and 11.7).

The full distribution of Mosel includes other functionality (modules and 1/0 drivers) that has not yet
been mentioned in this document. In the following sections we give an overview with links where to find
additional information.

Generalized file handling

The notion of (data) file encountered repeatedly in this user guide seems to imply a physical file.
However, Mosel language statements (such as initializations from/ to, fopen and fclose,
exportprob) and the Mosel library functions (e.g., XPRMcompmod, XPRM1oadmod, or XPRMrunmod)
actually work with a much more general definition of a file, including (but not limited to)

m a physical file (text or binary)

m a block of memory

m a file descriptor provided by the operating system
m a function (callback)

m adatabase

The type of the file is indicated by adding to its name the name of the I/0 driver that is to be used to
access it. In Section 2.2.5 we have used mmodbc . odbc : blend.mdb to access an MS Access
database via the ODBC driver provided by the module mmodbc. If we want to work with a file held in
memory we may write, for instance, mem: filename. The default driver (no driver prefix) is the
standard Mosel file handling.

More generally, an extended file name has the form driver_name:file_name or
module_name.driver_name:file_name if the driver is provided by the module module_name. The
structure of the file_name part of the extended file name is specific to the driver, it may also consist of
yet another extended file name (e.g. z1ib.gzip:tmp:myfile.txt).

Displaying the available 1/0 drivers

The Mosel core drivers can be displayed from the command line with the following command (the
listing will also include any drivers that are provided by currently loaded modules):

Fair Isaac Corporation Confidential and Proprietary Information 167

Language extensions

17.1.2

mosel exam -i

The drivers provided by modules are displayed by the exam command for the corresponding module (in
this example: mmodbc)

mosel exam -i mmodbc

Library drivers (in particular the Java module mmjava that is embedded in the Mosel core and also the
mmdotnet module on Windows platforms) can be displayed with the help of the corresponding
programmmdispdso. [c|cs | java] in the subdirectory examples/mosel/Library of the Xpress
distribution. The command for running the Java version might look as follows (please refer to the
provided makefile):

java -classpath $XPRESSDIR/xprm.jar:. mmdispdso mmjava

List of 1/0 drivers

The standard distribution of Mosel defines the following I/0 drivers (tee, null, bin, and tmp are
documented in the ‘'Mosel Language Reference Manual’; the drivers sysfd, mem, cb, and raw that
mainly serve when interfacing Mosel with a host application are documented in the ‘Mosel Libraries
Reference Manual’):

bin Write (and read) data files in a platform independent binary format. The bin driver can
only be used for initializations blocks as a replacement of the default driver. Files
in bin format are generally smaller than the ASCII equivalent and preserve accuracy of
floating point numbers.
Example: the following outputs data to a text file in binary format

initializations to "bin:results.txt"

Another likely use of bin is in combination with mem or shmem for exchanging data in
memory (see Section 17.2.3):

initializations to "bin:shmem:results"

cb Use a (callback) function as a file (e.g., for reading and writing dynamically sized data in
initializations blocks, see the examples in Section 13.4.3, or to write your own
output or error stream handling functions when working with the Mosel libraries, see
Section 13.5 for an example).

mem Use memory instead of physical files for reading or writing data (e.g., for exchanging
data between a model and the calling C application as shown in Section 13.4 or for
compiling/loading a model to/from memory when working with the Mosel libraries).
Example: the following lines will compile the Mosel model burglar2.mos to memory
and then load it from memory (full example in file ugcompmem. c).

XPRMmodel mod;

char bimfile[2000]; /* Buffer to store BIM file x*/
char bimfile_name[64]; /* File name of BIM file */
XPRMinit ()) /* Initialize Mosel x/

/* Prepare file name for compilation using 'mem' driver: x*/
/* "mem:base_address/size[/actual_size_of_pointer]" */
sprintf (bimfile_name, "mem:%p/%d", bimfile, (int)sizeof (bimfile));

/* Compile model file to memory */
XPRMcompmod (NULL, "burglar2.mos", bimfile_name, "Knapsack example"))

Fair Isaac Corporation Confidential and Proprietary Information 168

Language extensions

null

raw

sysfd

tee

tmp

/* Load a BIM file from memory */
mod = XPRMloadmod (bimfile_name, NULL);

Disable a stream.
Example: adding the line

fopen("null:", F_OUTPUT)

in a Mosel model will disable all subsequent output by this model (until the output
stream is closed or a new output stream is opened).

Implementation of the initializations block in binary mode, typically used in
combination with mem for data exchange with a C host application (see Section 13.4).

Working with operating system file descriptors (for instance, file descriptors returned by
the C function open).
Example: in a C program, the line

XPRMsetdefstream (NULL, XPRM_F_ERROR, "sysfd:1");

will redirect the Mosel error stream to the default output stream.

Output into up to 6 files simultaneously (e.g., to display a log on screen and write it to a
file at the same time).
Example: adding the line

fopen("tee:result.txt&tmp:log.txt&", F_OUTPUT)

in a Mosel model will redirect all subsequent model output to the files result.txt and
tmp:log.txt, and at the same time display the output on the default output (screen),
the latter is denoted by the & sign at the end of the filename string. The output to both
locations is terminated by the statement

fclose (F_OUTPUT)

after which output will again only go to default output.

Extension to the default driver that locates the specified file in the temporary directory
used by Mosel.
Example: adding the line

fopen ("tmp:log.txt", F_OUTPUT+F_APPEND)

redirects all subsequent output from a models to the file 1og. txt that is located in
Mosel's temporary directory. It is equivalent to

fopen (getparam ("TMPDIR") + "/log.txt", F_OUTPUT+F_APPEND)

Some modules, listed below in alphabetical order, define additional I/0 drivers. The drivers are
documented with the corresponding module in the ‘Mosel Language Reference Manual’:

= mmdotnet

dotnet

Use a C# stream or object in place of a file in Mosel.

Example: The following C# program extract uses the dotnet driver to send data
in standard initializations text format via a stream from the C# host program to a
model (the model file burglarl3.mos is the same as in Section 13.4.3, it uses
the parameter DATAFILE as the filename foran initializations from block
that expects to read data with the label ‘DATA’.)

Fair Isaac Corporation Confidential and Proprietary Information 169

Language extensions

dotnetraw

// String containing initialization data for the model

const string BurglarDat =
"DATA: [(\"camera\") [15 2] (\"necklace\") [100 20] " +
"(\"vase\") [90 20] (\"picture\") [60 30] (\"tv\") [40 40] " +

"(\"video\") [15 30] (\"chest\") [10 60] (\"brick\") [1 10]]\n";

static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglarl3.mos");

// Bind a stream based on the BurglarDat data to the name 'BurglarIni'

// where the model will expect to find its initialization data
model.Bind ("BurglarIni", new StringReader (BurglarDat));

// Pass data location as a parameter to the model
model.SetExecParam ("DATAFILE", "dotnet:BurglarIni");

// Run the model
model.Run () ;

}

Exchange of data between a Mosel model and the C# application running the
model using C# array structures; C# version of raw.

Example: Send the data held in the two arrays vdata and wdata to a Mosel and
retrieve solution data into the array solution. We use the option noindex with the
dotnetraw driver to indicate that all data are saved in dense format (i.e. as arrays

containing just the data values, without any information about the indices).

// Arrays containing initialization data for the model
static double[] vdata = new double[] {15,100,90,60,40,15,10, 1};
static double[] wdata = new double[] { 2, 20,20,30,40,30,60,10};

// Main entry point for the application
static void Main(string[] args) {

// Initialize Mosel

XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad ("burglar8d.mos");

// Associate the .NET objects with names in Mosel
model.Bind ("vdat", wvdata);
model.Bind ("wdat", wdata);

// Create a new array for solution data and bind it to the name 'sol'

double[] solution = new double[8];
mosel.Bind ("sol", solution);

// Pass data location as a parameter to the model
model.ExecParams =

"VDATA='noindex, vdat', WDATA='noindex,wdat', SOL="noindex, sol'";

// Run the model
model.Run () ;

// Print the solution

Console.WriteLine ("Objective value: {0}", model.ObjectiveValue);

for (int i=0;1<8;i++)
Console.Write (" take({O0}): {1}", (i+l1l), solution([i]);
Console.WriteLine();

}

The model file burglar8d.mos uses the driver name as the file name in the
initializations sections:

Fair Isaac Corporation Confidential and Proprietary Information

170

Language extensions

E mmetc
diskdata
= mmhttp

url

E mmjava

java

initializations from 'dotnetraw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

initializations to 'dotnetraw:'
soltake as SOL
end-initializations

Access data in text files in diskdata format (see Sections 3.4.3 and 10.2.3).

Access files that are stored on an HTTP enabled file serverfor reading, writing, or
deletion (via fdelete).

Example 1: the following command downloads and executes the Mosel BIM file
mymodel . bim that is stored on the web server myserver:

mosel run mmhttp.url:http://myserver/mymodel.bim

Example 2: the following lines of Mosel code save data held in the model object
results to an XML format file on the server myserver that needs to be able to
accept HTTP PUT requests.

uses "mmxml"
declarations
results: xmldoc
end-declarations
save (results, "mmhttp.url:http://myserver/myresults.xml")

Use a Java stream or a ByteBuffer in place of a file in Mosel (e.g. for redirecting
default Mosel streams to Java objects, see the example in Section 14.1.8).
Example 1: in a Java program, the line

mosel.setDefaultStream (XPRM.F_ERROR, "java:java.lang.System.out");

(where mosel is an object of class xPRM) will redirect the Mosel error stream to
the default output stream of Java.
Example 2: the following lines will compile the Mosel model burglar2.mos to
memory and then load it from memory (full example in the file
ugcompmem. java).

XPRM mosel;

XPRMModel mod;
ByteBuffer bimfile; // Buffer to store BIM file

mosel = new XPRM(); // Initialize Mosel

// Prepare file names for compilation:
bimfile=ByteBuffer.allocateDirect (2048); // Create 2K byte buffer
mosel.bind ("mybim", bimfile); // Associate Java obj. with a

// Mosel name

// Compile model to memory

mosel.compile("", "burglar2.mos", "java:mybim", "");

bimfile.limit (bimfile.position()); // Mark end of data in buffer
bimfile.rewind () ; // Back to the beginning
mod=mosel.loadModel ("java:mybim") ; // Load BIM file from memory
mosel.unbind ("mybim") ; // Release memory

bimfile=null;

Fair Isaac Corporation Confidential and Proprietary Information 171

Language extensions

jraw

= mmjobs

shmem

mempipe

rcmd

rmt

XsSrv

xssh

®E mmoci

oci

Exchange of data between a Mosel model and the Java application running the
model; Java version of raw. See Section 14.1.7 for examples.

Use shared memory instead of physical files for reading or writing data (e.g., for
exchanging data between several models executed concurrently—one model
writing, several models reading—as shown in Section 17.2.3, or for
compiling/loading a model to/from memory from within another model, see
Section 17.2.2).

Use memory pipes for reading or writing data (e.g., for exchanging data between
several models executed concurrently—one model reading, several models writing;
see Section '‘Dantzig-Wolfe decomposition’ of the

whitepaper 'Multiple models and parallel solving with Mosel’ for an example).

Starts the specified command in a new process and connects its standard input
and output streams to the calling Mosel instance.

Example: The following line starts a Mosel instance on a remote computer with
the name some_other_machine connecting to it via rsh. The command mosel
—r starts Mosel in remote mode.

rcmd:rsh some_other_machine mosel -r

Can be used with any routine expecting a physical file for accessing files on
remote instances. A particular instance can be specified by prefixing the file name
by its node number enclosed in square brackets. See the distributed computing
versions of the models in the whitepaper Multiple models and parallel solving with
Mosel for further examples.

Example: the following loads the BIM file mymodel . bim that is located at the
parent node (-1) of the current instance into the model myMode1 of the Mosel
instance myInst.

load (myInst, myModel, "rmt:[-1]mymodel.bim")

The rmt driver can be combined with cb, sysfd, tmp or java, such as

fopen("rmt:tmp:log.txt", F_OUTPUT)

Connects to the specified host running the Mosel Remote Launcher xprmsrv.
Optionally, the port number, a context name, a password, and environment variable
settings can be specified.

Example: the following starts a new Mosel instance (possibly using a different
Xpress version) on the current machine, redefining Mosel's current working
directory and the environment variable MYDATA.

xsrv:localhost/myxpress |MOSEL_CWD=C: \workdir |MYDATA=${MOSEL_CWD}\data

Secure version of the xsrv driver to connect to the specified host running the
Mosel Remote Launcher xprmsrv through a secure SSH tunnel.

Access an Oracle database for reading and writing in initializations blocks
(see the whitepaper Using ODBC and other database interfaces with Mosel for
further examples).

Example: the OCI driver is used with a connection string that contains the
database name, user name and password in the following format

initializations from "mmoci.oci:myusername/mypassword@dbname

Fair Isaac Corporation Confidential and Proprietary Information 172

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Language extensions

= mmodbc

odbc Access data in external data sources via an ODBC connection (see Section 2.2.5
for an example).

= mmsheet

csv Access spreadsheets in CSV format. In addition to the standard options supported
by other Mosel spreadsheet drivers (such as grow for dynamic sizing of output
ranges and noindex for dense data format), this driver can be configured with
field and decimal separators and also with the values representing 'true’ and false’.
Example: the following Mosel code for reading data from the file mydata.csv
sets the separator sign to ’;, a comma is used as decimal separator, and the
Boolean values true and false are represented by 'y’ and 'n’ respectively:

initializations from "mmsheet.csv:dsep=, ; fsep=;;true=y;false=n;mydata.csv
A as "[B2:D8]"
B as "[E2:Z10] (#3,#1)" ! 3rd and 1lst column from the range
end-initializations

Notice that with CVS format files there is no notion of range or field names and the
cell positions need to be used to specify the data location.

excel Access data in MS Excel spreadsheets directly (see the example in Section
2.2.5.1).

xls Access spreadsheets in Excel’'s XLS format (see Section 2.2.5.3 for an example).

xlsx Access spreadsheets in Excel's XLSX and XLSM formats (usage in analogy to the
XLS example shown in Section 2.2.5.3).

E mmsystem

pipe Open a pipe and start an external program which is used as input or output stream
for a Mosel model.
Example: the following will start gnuplot and draw a 3-dimensional sphere with
data for the radius R and position (X,Y,Z) defined in the Mosel model:

fopen ("mmsystem.pipe:gnuplot -p", F_OUTPUT+F_LINBUF)
writeln('set parametric')

writeln('set urange [0:2*pi]"'")

writeln('set vrange [0:2*pi]"'")

writeln('set pm3d depthorder hidden3d 3'")
writeln("splot cos(u) * cos(v) *", R, "+", X,

", sin(u) * cos(v)*", R, "+", Y,
", sin(v)*", R, "+", Z, " notitle with pm3d")
writeln ("pause mouse keypress,close")

text Use a (multiline) text as a file (see Section 17.6 for further detail on the type ‘text’).
Example: the following will compile the model source held in the text
source_of_model to a BIM file in a temporary directory (file
ugcompfrommem.mos):

public declarations
source_of_model="SUBMODELSOURCE
model Burglar
uses 'mmxprs'

declarations
WIMAX = 102 ! Maximum weight allowed
ITEMS = 1..8 Index range for items

WEIGHT: array (ITEMS) of real ! Weight of items
take: array (ITEMS) of mpvar 1 if we take item i; 0 otherwise
end-declarations

1
!

VALUE: array (ITEMS) of real ! Value of items
1
|

Fair Isaac Corporation Confidential and Proprietary Information 173

Language extensions

VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:: [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE (i) *xtake (i)

! Weight restriction

sum(i in ITEMS) WEIGHT (i)+*take (i) <= WIMAX
! All variables are 0/1

forall(i in ITEMS) take(i) is_binary

maximize (MaxVal) ! Solve the problem
writeln("Solution:\n Objective: ", getobjval)
end-model
SUBMODELSOURCE *
end-declarations

! Compile the model from memory

if compile("", "text:source_of_model", "tmp:burglar.bim")<>0 then
exit (1)
end-if
m zlib
deflate Handles files compressed using the zlib compression format.
Example: decompress the fle myfile.gz tomyfile:
fcopy("zlib.deflate:myfile.gz", "myfile")
gzip Handles files compressed using the gzip compression format.
Example: the following statement creates the compressed file myfile.gz from
myfile.txt:

fcopy ("myfile.txt", "zlib.gzip:myfile.gz")

The reader is referred to the whitepaper Generalized file handling in Mosel that is provided as a part of
the Xpress documentation in the standard distribution and also on the Xpress website under ‘Product
Documentation’ for further explanation of this topic and a documented set of examples, including
some user-written 1/0 drivers.

17.2 Multiple models and parallel solving with mmjobs

The module mmjobs makes it possible to exchange information between models running
concurrently—locally or in a network. Its functionality includes facilities for handling Mosel instances
(e.g. connecting and disconnecting Mosel instances, access to remote files), model management (e.qg.
compiling, running, or interrupting a model from within a second model), synchronization of concurrent
models based on event queues, and a shared memory I/0 driver for an efficient exchange of data
between models that are executed concurrently.

Several complete examples (including examples of Benders decomposition and Dantzig-Wolfe
decomposition) of the use of module mmjobs are described in the whitepaper Multiple models and
parallel solving with Mosel that is provided as a part of the Xpress documentation and also on the
‘Product Documentation’ page of the Xpress website. We show here how to use the basic functionality
for executing a model from a second model.

17.2.1 Running a model from another model

As a test case, we shall once more work with model prime .mos from Section 8.3. In the first instance,
we now show how to compile and run this model from a second model, runprime .mos:

Fair Isaac Corporation Confidential and Proprietary Information 174

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/
http://www.fico.com/xpress
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/xpress

Language extensions

model "Run model prime"
uses "mmjobs"

declarations
modPrime: Model
event: Event
end-declarations
! Compile 'prime.mos'
if compile ("prime.mos")<>0 then exit(l); end-if

load (modPrime, "prime.bim") ! Load bim file
run (modPrime, "LIMIT=50000") ! Start execution and
wait (2) ! wait 2 seconds for an event
if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")

stop (modPrime) ! ... stop the model,

wait ! ... and wait for the termination event
end-if

! An event is available: model finished
event:=getnextevent

writeln ("Exit status: ", getvalue(event))
writeln ("Exit code : ", getexitcode (modPrime))
unload (modPrime) ! Unload the submodel

end-model

The compile command generates the BIM file for the given submodel; the command 1oad loads the
binary file into Mosel; and finally we start the model with the command run. The run command is not
used in its basic version (single argument with the model reference): here its second argument sets a
new value for the parameter LIMIT of the submodel.

In addition to the standard compile—load-run sequence, the model above shows some basic features
of interaction with the submodel: if the submodel has not terminated after 2 seconds (that is, if it has
not sent a termination message) it is stopped by the master model. After termination of the submodel
(either by finishing its calculations within less than 2 seconds or stopped by the master model) its
termination status and the exit value are retrieved (functions getvalue and getexitcode).
Unloading a submodel explicitly as shown here is only really necessary in larger applications that
continue after the termination of the submodel, so as to free the memory used by it.

Note: our example model shows an important property of submodels—they are running in parallel to
the master model and also to any other submodels that may have been started from the master model.
It is therefore essential to insert wait at appropriate places to coordinate the execution of the different
models.

17.2.2 Compiling to memory

The model shown in the previous section compiles and runs a submodel. The default compilation of a
Mosel file £ilename.mos generates a binary model file filename.bim. To avoid the generation of
physical BIM files for submodels we may compile the submodel to memory, making use of the concept
of 1/0 drivers introduced in Section 17.1.

Compiling a submodel to memory is done by replacing the standard compile and 1oad commands by
the following lines (model runprime2 .mos):

if compile("","prime.mos", "shmem:bim")<>0 then

exit (1)

end-if

load (modPrime, "shmem:bim") ! Load bim file from memory...
fdelete ("shmem:bim") ! ... and release the memory block

Fair Isaac Corporation Confidential and Proprietary Information 175

Language extensions

The full version of compi 1e takes three arguments: the compilation flags (e.g., use "g" for debugging),
the model file name, and the output file name (here a label prefixed by the name of the shared memory
driver). Having loaded the model we may free the memory used by the compiled model with a call to
fdelete (this subroutine is provided by the module mmsystem).

17.2.3 Exchanging data between models

When working with submodels we are usually not just interested in executing the submodels, we also
wish to retrieve their results in the master model. This is done most efficiently by exchanging data in
(shared) memory as shown in the model runprimeio.mos below. Besides the retrieval and printout of
the solution we have replaced the call to stop by sending the user event ‘STOPMOD’ to the submodel:
instead of simply terminating the submodel this event will make it interrupt its calculations and write
out the current solution. To make sure that the submodel is actually running at the point where we sent
the ‘'STOPMOD’ event, we have also introduced an event sent from the submodel to the master to
indicate the point of time when it starts the calculations (with heavy operating system loads the actual
submodel start may be delayed). Once the submodel has terminated (after sending the ‘STOPMOD’
event we wait for the model’'s termination message) we may read its solution from memory, using the
initializations block with the drivers raw (binary format) and shmem (read from shared memory).

model "Run model primeio"
uses "mmjobs"

declarations
modPrime: Model
NumP: integer

SetP: set of integer
STOPMOD = 2

MODREADY = 3
end-declarations

Number of prime numbers found
Set of prime numbers

"Stop submodel" user event
"Submodel ready" user event

! Compile 'prime.mos'
if compile("primeio.mos")<>0 then exit(l); end-if

load (modPrime, "primeio.bim") ! Load bim file

! Disable model output

setdefstream(modPrime, "", "null:", "null:")
run (modPrime, "LIMIT=35000") ! Start execution and
wait ! ... wait for an event

if getclass(getnextevent) <> MODREADY then
writeln ("Problem with submodel run")

exit (1)

end-if
wait (2) ! Let the submodel run for 2 seconds
if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")

send (modPrime, STOPMOD, O0) ! ... stop the model, then wait

wait
end-if
dropnextevent ! Discard end events

initializations from "bin:shmem:resdata"
NumP SetP as "SPrime"
end-initializations

writeln (SetP) ! Output the result
writeln(" (", NumP, " prime numbers.)")

unload (modPrime)
end-model

Fair Isaac Corporation Confidential and Proprietary Information 176

Language extensions

17.2.4

We now have to modify the submodel (file primeio.mos) correspondingly: at its start it sends the
‘MODREADY’ event to trigger the start of the time measurement in the master and it further needs to
intercept the ‘STOPMOD’ event interrupting the calculations (via an additional test i squeueempty for
the repeat-until loop) and write out the solution to memory in the end:

model "Prime IO"
uses "mmjobs"

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
OUTPUTFILE = "bin:shmem:resdata" ! Location for output data

end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
MODREADY = 3 ! "Submodel ready" user event

end-declarations

send (MODREADY, 0) ! Send "model ready" event
SNumbers:={2..LIMIT}

writeln ("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers—-= {i}
i+=n
end-do
until (SNumbers={} or not isqueueempty)

NumP:= getsize (SPrime)

initializations to OUTPUTFILE
NumP SPrime
end-initializations

end-model

Note: since the condition i squeueempty is tested only once per iteration of the repeat-until loop,
the termination of the submodel is not immediate for large values of LIMIT. If you wish to run this
model with very large values, please see Section 15.2 for an improved implementation of the prime
number algorithm that considerably reduces its execution time.

Distributed computing

The module mmjobs not only allows the user to start several models in parallel on a given machine, it
also makes it possible to execute models remotely and to coordinate their processing. With only few
additions, the model from Section 17.2.1 is extended to form model version runprimedistr.mos that
launches the submodel prime.mos on another Mosel instance (either on the local machine as in the
present example or on some other machine within a network specified by its name or IP address in the
connect statement): we need to create a new Mosel instance (through a call to connect) and add an
additional argument to the 1oad statement to specify the Mosel instance we wish to use. All else
remains the same as in the single-instance version.

model "Run model prime remotely"
uses "mmjobs"

Fair Isaac Corporation Confidential and Proprietary Information 177

Language extensions

declarations
moselInst: Mosel
modPrime: Model
event: Event
end-declarations
|

if compile("prime.mos")<>0 then

Compile 'prime.mos' locally
exit(l); end-if

Start a remote Mosel instance:
"" means the node running this model

if connect (moselInst, "")<>0 then exit(2); end-if

! Load bim file into remote instance

load (moselInst, modPrime, "rmt:prime.bim")

run (modPrime, "LIMIT=50000") !
wait (2)

if isqueueempty then

Start execution and

! wait 2 seconds for an event

! No event has been sent...

writeln("Model too slow: stopping it!")

stop (modPrime) !

stop the model, then wait

17.3

wait
end-if
! An event is available: model finished
event:=getnextevent
writeln("Exit status: ", getvalue (event))
writeln("Exit code : ", getexitcode (modPrime))

unload (modPrime) ! Unload the submodel

end-model

This model can be extended to include data exchange between the master and the submodel exactly in
the same way as in the example of Section 17.2.3. The main difference (besides the connection to a
remote instance) lies in the use of the driver rmt to denote the Mosel instance where data is to be
saved. In our case, we wish to save data on the instance running the master model, meaning that we
need to use the rmt : prefix when writing output within the submodel. The new output file name is
passed into the submodel via the runtime parameter OUTPUTFILE:

run (modPrime, "LIMIT=35000,O0UTPUTFILE=bin:rmt:shmem:resdata")

The master model then simply reads as before from its own instance:

initializations from "bin:shmem:resdata"
NumP SetP as "SPrime"
end-initializations

The Mosel model for the extended version including data exchange is provided in the file
runprimeiodistr.mos.

Graphics and GUIs

Different components of FICO Xpress Optimization provide graphics and GUI functionality for Mosel
models:

m Users may enrich their Mosel models with graphical output using the module mmsvg.

m Xpress Insight embeds Mosel models into a multi-user application for deploying optimization
models in a distributed client-server architecture. Through the Xpress Insight GUI, business users
interact with Mosel models to evaluate different scenarios and model configurations without
directly accessing to the model itself.

Fair Isaac Corporation Confidential and Proprietary Information 178

Language extensions

m XML is a widely used data format, particularly in the context of web-based applications. The
Mosel module mmxml provides functionality for generating and handling XML documents.
mmxml can also be used to produce HTML format output from Mosel that can be incorporated
into Xpress Insight applications.

The functionality of modules mmxm/ and mmsvg is documented in the Mosel Language Reference
Manual. Xpress Insight has several manuals and guides for developers and GUI users, most importantly
the "Xpress Insight Developer Guide” and "Xpress Insight Web Client User Guide’; the corresponding
examples are located in the subdirectory examples/insight of the Xpress distribution.

17.3.1 Drawing user graphs with mmsvg

The graphic in Figure 17.1 is an example of using mmsvg to produce a graphical representation of the
solution to the transport problem from Section 3.2.

It was obtained by calling the following procedure draw_solution at the end of the model file (that is,
after the calltominimize).

procedure draw_solution

declarations
YP: array (PLANT) of integer ! y-coordinates of plants
YR: array (REGION) of integer ! y-coordinates of sales regions

end-declarations

! Scale the size of the displayed graph
svgsetgraphviewbox (0,0, 4,getsize (REGION) +1)
svgsetgraphscale (100)

! Determine y-coordinates for plants and regions
ct:= 1l+floor ((getsize (REGION)-getsize (PLANT)) /2)
forall(p in PLANT, ct as counter) YP(p):= ct

ct:=1
forall(r in REGION, ct as counter) YR(r):= ct

! Draw the plants
svgaddgroup ("PGr", "Plants", svgcolor (0,63,95))
forall(p in PLANT) svgaddtext (0.55, YP(p)-0.1, p)

! Draw the sales regions
svgaddgroup ("RGr", "Regions", svgcolor(0,157,169))
forall(r in REGION) svgaddtext (3.1, YR(r)-0.1, r)

! Draw all transport routes

svgaddgroup ("TGr", "Routes", SVG_GREY)

forall (p in PLANT, r in REGION | exists (TRANSCAP (p,r)))
svgaddline(l, YP(p), 3, YR(r))

! Draw the routes used by the solution

svgaddgroup ("SGr", "Solution", SVG_ORANGE)

forall(p in PLANT, r in REGION | exists(flow(p,r)) and getsol(flow(p,r)) > 0)
svgaddarrow (1, YP(p), 3, YR(r))

! Save graphic in SVG format
svgsave ("transport.svg")

! Display the graphic
svgrefresh
svgwaitclose
end-procedure

Fair Isaac Corporation Confidential and Proprietary Information 179

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/insight_dev_guide/

Language extensions

17.3.2

Midlands

Cixford SEast

Glasgow i SWest

North

Deeside

Coy ™ Scotlang

Figure 17.1: User graph for the transport problem

XML and HTML

HTML files are simple text files—their contents can be generated as free-format output from Mosel (see
for example Section 10.2). However, more elegantly we can use Mosel's XML module mmxm/ to
generate HTML documents.

17.3.2.1 mmxml

The module mmxml provides an XML parser and generator for the manipulation of XML documents
from Mosel models. An XML document is stored as a list of nodes. mmxml supports the node types
‘element’, ‘text’, ‘comment’, CDATA, ‘processing instruction’ and DATA (see section mmxml of the Mosel
Language Reference Manual for further detail). Each node is characterized by a name and a value.
Element nodes have also an ordered list of child nodes. The root node is a special element node with
no name, no parent and no successor that includes the entire document as its children.

The type xmldoc represents an XML document stored in the form of a tree. Each node of the tree is
identified by a node number (an integer) that is attached to the document (i.e. a node number cannot be
shared by different documents and in two different documents the same number represents two
different nodes). The root node of the document has number 0. Nodes can be retrieved using a path
similar to a directory path used to locate a file (usually called XML path).

17.3.2.2 Reading and writing XML data

Data for the 'Transport’ problem has so far been given as a text datafilein initializations format.
We now wish to read in the same data from the XML file transprt.xml shown here:

<transport fuelcost="17">
<demand>
<region name="Scotland">2840</region>
<region name="North">2800</region>

Fair Isaac Corporation Confidential and Proprietary Information 180

Language extensions

<region name="SWest">2600</region>
<region name="SEast">2820</region>
<region name="Midlands">2750</region>
</demand>
<plantdata>
<plant name="Corby">
<capacity>3000</capacity>
<cost>1700</cost>
</plant>
<plant name="Deeside">
<capacity>2700</capacity>
<cost>1600</cost>
</plant>
<plant name="Glasgow">
<capacity>4500</capacity>
<cost>2000</cost>
</plant>
<plant name="Oxford">
<capacity>4000</capacity>
<cost>2100</cost>
</plant>
</plantdata>
<routes>
<route from="Corby" to="North" capacity="1000" distance="400"/>
<route from="Corby" to="SWest" capacity="1000" distance="400"/>
<route from="Corby" to="SEast" capacity="1000" distance="300"/>
<route from="Corby" to="Midlands" capacity="2000" distance="100"/>
<route from="Deeside" to="Scotland" capacity="1000" distance="500"/>
<route from="Deeside" to="North" capacity="2000" distance="200"/>
<route from="Deeside" to="SWest" capacity="1000" distance="200"/>
<route from="Deeside" to="SEast" capacity="1000" distance="200"/>
<route from="Deeside" to="Midlands" capacity="300" distance="400"/>
<route from="Glasgow" to="Scotland" capacity="3000" distance="200"/>
<route from="Glasgow" to="North" capacity="2000" distance="400"/>
<route from="Glasgow" to="SWest" capacity="1000" distance="500"/>
<route from="Glasgow" to="SEast" capacity="200" distance="900"/>
<route from="Oxford" to="North" capacity="2000" distance="600"/>
<route from="Oxford" to="SWest" capacity="2000" distance="300"/>
<route from="Oxford" to="SEast" capacity="2000" distance="200"/>
<route from="Oxford" to="Midlands" capacity="500" distance="400"/>
</routes>
</transport>

The Mosel code (file transport_xml.mos) for reading this XML file first loads the entire document
(1oad). We then need to retrieve the nodes we are interested in from the XML document tree structure.
This is achieved by selecting lists of nodes that satisfy some specified condition (here: a specific XML
path that describes the location of the desired nodes in the document, such as
transport/demand/region). XML documents are saved as text, we therefore use functions like
getrealvalue Or getstrattr to retrieve data and indices of the desired type into the model data
structures.

uses "mmxml"

declarations

REGION: set of string ! Set of customer regions

PLANT: set of string ! Set of plants

DEMAND: array (REGION) of real ! Demand at regions

PLANTCAP: array (PLANT) of real ! Production capacity at plants
PLANTCOST: array (PLANT) of real ! Unit production cost at plants

TRANSCAP: dynamic array (PLANT, REGION) of real

! Capacity on each route plant->region
DISTANCE: dynamic array (PLANT,REGION) of real

! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

AllData: xmldoc ! XML document

Fair Isaac Corporation Confidential and Proprietary Information 181

Language extensions

NodeList: list of integer ! List of XML nodes
end-declarations

load (AllData, "transprt.xml") ! Load the entire XML document

getnodes (AllData, "transport/demand/region", NodeList)
forall(l in NodeList) ! Read demand data
DEMAND (getstrattr (AllData,l, "name")) := getrealvalue (AllData,

getnodes (AllData, "transport/plantdata/plant", NodelList)
forall(l in NodeList) do ! Read plant data
PLANTCAP (getstrattr (AllData,l, "name")) :=
getrealvalue (AllData, getnode(AllData,l, "capacity"))
PLANTCOST (getstrattr (AllData, 1, "name")) :=
getrealvalue (AllData, getnode (AllData,l, "cost"))
end-do
! Read routes data
getnodes (AllData, "transport/routes/route", NodeList)
forall(l in NodeList) do

DISTANCE (getstrattr (AllData, l, "from"),getstrattr (AllData,l, "to")) :=

getrealattr (AllData,l, "distance")

TRANSCAP (getstrattr (AllData, l, "from"),getstrattr (AllData,1l,"to")):

getrealattr (AllData,l, "capacity")
end-do

! Read 'fuelcost' attribute
"fuelcost")

FUELCOST:= getrealattr (AllData, getnode(AllData, "transport"),

In the model extract above we have used several simple XML path specifications to retrieve lists of
nodes from the XML document. Such queries can take more complicated forms, including tests on

node values (all plants with capacity >3500) or attributes (all routes to 'Scotland’)—see the chapter on

mmxml in the Mosel Language Reference Manual for further detail.

getnodes (AllData, "transport/plantdata/plant/capacity[number ()>3500]/..", NodeList)
getnodes (AllData, "transport/routes/route[@to='Scotland']", NodelList)

We now also want to output the optimization results in XML format. As a first step, we create a root

element 'solution’ in the XML document ResData. In a well-formed XML document, all elements need

to form a tree under the root element. All following nodes (containing the solution information per

plant) are therefore created as element nodes under the 'solution’ node. The objective function solution
value and the execution date of the model are saved as attributes to the 'solution’ tag. And finally, we

use save to write an XML file or display a node with the (sub)tree formed by its children.

declarations
ResData: xmldoc ! XML document
Sol,Plant,Reg, Total: integer ! XML nodes

end-declarations

Sol:=addnode (ResData, 0, XML_ELT, "solution") ! Create root node "solution"
setattr (ResData, Sol, "Objective", MinCost.sol) ! Obj. value as attribute

setattr (ResData, Sol, "RunDate", text(datetime (SYS_NOW)))

forall (p in PLANT) do

Plant:=addnode (ResData, Sol, XML_ELT, "plant") ! Add a node to
setattr (ResData, Plant, "name", p) ' ... with attribute
forall(r in REGION | flow(p,r) .sol>0) do
Reg:=addnode (ResData, Plant, XML_ELT, "region") ! Add a node to "plant"
setattr (ResData, Reg, "name", r) ' ... with attribute "name"
setvalue (ResData, Reg, flow(p,r).sol) ! ... and solution value
end-do
Total:=addnode (ResData, Plant, "total",
sum(r in REGION) flow(p,r) .sol) ! Add node with total flow
end-do
save (ResData, "transportres.xml") ! Save solution to XML format file
save (ResData, Sol, "") ! Display XML format solution on screen

Fair Isaac Corporation Confidential and Proprietary Information

182

Language extensions

The Mosel code printed above will create a file transportres.xml with the following contents:

<?xml version="1.0" encoding="iso-8859-1"7?>
<solution Objective="8.1018e+07" RunDate="2012-10-17T14:00:50,664">
<plant name="Corby">
<region name="North">80</region>
<region name="SEast">920</region>
<region name="Midlands">2000</region>
<total>3000</total>
</plant>
<plant name="Deeside">
<region name="North">1450</region>
<region name="SWest">1000</region>
<region name="Midlands">250</region>
<total>2700</total>
</plant>
<plant name="Glasgow">
<region name="Scotland">2840</region>
<region name="North">1270</region>
<total>4110</total>
</plant>
<plant name="Oxford">
<region name="SWest">1600</region>
<region name="SEast">1900</region>
<region name="Midlands">500</region>
<total>4000</total>
</plant>
</solution>

17.3.2.3 Generating HTML

An HTML file is generated and written out just like XML documents. The name of the root element in
this case usually is 'html’. Below follows an extract of the code (example file transport_html.mos)
that generates the HTML page shown in Figure 17.2. Notice the use of copynode to insert the same
node/subtree at different positions in the XML document. By default, new nodes created with addnode
are appended to the end of the node list of the specified parent node. This corresponds to using the
value xML_LASTCHILD for the (optional) positioning argument of subroutines creating new nodes.

declarations

ResultHTML: xmldoc

Root, Head, Body, Style, Title, Table, Row, Cell, EmptyCell: integer
end-declarations

Root:= addnode (ResultHTML, 0, XML_ELT, "html") ! Root node
Head:= addnode (ResultHTML, Root, XML_ELT, "head") ! Element node
Style:= addnode (ResultHTML, Head, XML_ELT, "style",
"body {font-family: Verdana, Geneva, Helvetica, Arial, sans-serif;" +
" color: 003f5f; background-color: d8e3e9 }\n" +
"table td {background-color: e9e3db; color: 003f5f; text—-align: right }\n" +
"table th {background-color: £7c526; color: 003f5f}")

setattr (ResultHTML, Style, "type", "text/css") ! Set an attribute
Body:= addnode (ResultHTML, Root, XML_ELT, "body") ! Body of HTML page
Title:= addnode (ResultHTML, Body XML_ELT, "h2", "Transportation Plan")
Table:= addnode (ResultHTML, Body, XML_ELT, "table") ! '"table' element
setattr (ResultHTML, Table, "width", '100%'") ! Set some attributes
setattr (ResultHTML, Table, "border", 0)
Row:= addnode (ResultHTML, Table, XML_ELT, "tr") ! Table row element
EmptyCell:= addnode (ResultHTML, Row, XML_ELT, "td") ! Table cell element
setattr (ResultHTML, EmptyCell, "width", '5%"') ! Set an attribute
Cell:= addnode (ResultHTML, Row, "td", "Total cost: " +

textfmt (MinCost.sol, 6,2)) ! Table cell element with contents
Cell:= addnode (ResultHTML, Cell, XML _DATA, "£") ! DATA node

Cell:

addnode (ResultHTML, Row, "td", text(datetime (SYS_NOW)))

Fair Isaac Corporation Confidential and Proprietary Information 183

Language extensions

17.3.3

EmptyCell:= ! Node created by copying a node
copynode (ResultHTML, EmptyCell, ResultHTML, Row, XML_LASTCHILD)

save (ResultHTML, "transportres.html") ! Write the HTML file
save (ResultHTML, Table, "") ! Display table def. on screen

The resulting HTML page might now look as shown in Figure 17.2.

Eile Edit View History Bookmarks Tools Help E@

| filey///C:/Test/transportreshtml % | &
- g

(' file:///C:/Test/transportres.html C Search ﬁ E ‘ ﬁ‘ U @ =

Transportation Plan

Total cost: 81018000.00 £ 01-jun-2017, 17:17:13
from \ to Scotland North SWest SEast Midlands Total
Corby - - - 1000.0 2000.0 3000.0
Deeside - 1530.0 920.0 - 250.0 2700.0
Glasgow 2840.0 1270.0 - - - 4110.0
Oxford - - 1680.0 1820.0 500.0 4000.0
Total 2840.0 2800.0 2600.0 2820.0 2750.0

Figure 17.2: HTML page generated by Mosel

Xpress Insight

For embedding a Mosel model into Xpress Insight, we make a few edits to the model. All functionality
that is needed to establish the connection between Mosel and Xpress Insight is provided by mminsight
that now needs to be loaded. Since Xpress Insight manages the data scenarios, we only need to read in
data from the original sources when loading the so-called baseline scenario into Xpress Insight
(triggered by the test of insightgetmode=INSIGHT_MODE_LOAD in the model below), for model
runs started from Xpress Insight (that is, in the case of insightgetmode=INSIGHT_MODE_RUN) the
scenario data will be input directly from Xpress Insight at the insertion point marked with
insightpopulate. For standalone execution (insightgetmode=INSIGHT_MODE_NONE) the model
defaults to its original behavior, that is, reading the data from file followed by definition and solving of
the optimization problem. Furthermore, the solver call to start the optimization is replaced by
insightminimize / insightmaximize. Please also note that any model entities to be managed by
Xpress Insight need to be declared as public—in the following code example this marker has been
applied to the entire declarations block, alternatively it can be added to individual entity
declarations.

model "Transport (Xpress Insight)"
uses "mmxprs", "mminsight"

public declarations

REGION: set of string ! Set of customer regions

PLANT: set of string ! Set of plants

DEMAND: array (REGION) of real ! Demand at regions

PLANTCAP: array (PLANT) of real ! Production capacity at plants
PLANTCOST: array (PLANT) of real ! Unit production cost at plants

TRANSCAP: dynamic array (PLANT, REGION) of real
! Capacity on each route plant->region
DISTANCE: dynamic array (PLANT,REGION) of real

Fair Isaac Corporation Confidential and Proprietary Information 184

Language extensions

! Distance of each route plant->region

FUELCOST: real ! Fuel cost per unit distance
MaxCap: array (PLANT) of linctr ! Capacity constraints
flow: dynamic array (PLANT,REGION) of mpvar ! Flow on each route

end-declarations

procedure readdata ! Data for baseline
initializations from 'transprt.dat'
DEMAND
[PLANTCAP, PLANTCOST] as 'PLANTDATA'
[DISTANCE, TRANSCAP] as 'ROUTES'
FUELCOST
end-initializations
end-procedure

case insightgetmode of
INSIGHT_MODE_LOAD: do
readdata ! Input baseline data and

exit (0) ! stop the model run here
end-do

INSIGHT_MODE_RUN: insightpopulate ! Inject scenario data and continue
INSIGHT MODE_NONE: readdata ! Input baseline data and continue
else
writeln ("Unknown run mode")
exit (1)
end-case

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists (TRANSCAP(p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))
(FUELCOST * DISTANCE (p,r) + PLANTCOST(p)) * flow(p,r)

! Limits on plant capacity
forall (p in PLANT) MaxCap(p) := sum(r in REGION) flow(p,r) <= PLANTCAP (p)

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND (r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
flow(p,r) <= TRANSCAP (p, r)

insightminimize (MinCost) ! Solve the problem through Xpress Insight

The handling of model entities by Xpress Insight can be configured via annotations (see Chapter 18 for
detail), for example to define aliases to be displayed in the Ul in place of the model entity names, or to
select which data entities are to be treated as inputs or results respectively. The annotations defined by
Xpress Insight form the category insight, the following model extract shows some example
definitions for the 'Transport’ problem, please refer to the Xpress Insight Mosel Interface Manual for a
complete documentation.

!@insight.manage=input
public declarations
!@insight.alias Customer regions

REGION: set of string ! Set of customer regions
!@insight.alias Plants

PLANT: set of string ! Set of plants

!@insight.alias Demand

DEMAND: array (REGION) of real ! Demand at regions
!@insight.alias Production capacity

PLANTCAP: array (PLANT) of real ! Production capacity at plants
!Q@insight.alias Unit production cost

PLANTCOST: array (PLANT) of real ! Unit production cost at plants

!R@insight.alias Capacity on each route

Fair Isaac Corporation Confidential and Proprietary Information 185

Language extensions

TRANSCAP: dynamic array (PLANT, REGION) of real
!'Q@insight.alias Distance per route

DISTANCE: dynamic array (PLANT,REGION) of real
!Q@insight.alias Fuel cost per unit distance

FUELCOST: real ! Fuel cost per unit distance

end-declarations

!'@insight.manage=result
public declarations
!'@insight.alias Production capacity limits
MaxCap: array (PLANT) of linctr
!Q@insight.alias Amount shipped
flow: dynamic array (PLANT,REGION) of mpvar
!Q@insight.hidden=true
MincostSol: real
!Q@insight.alias Total

pltotal: array(PLANT) of real ! Solution: production per plant

end-declarations

! Capacity constraints

! Flow on each route

Xpress Insight expects models to be provided in compiled form, that is, as BIM files. An Xpress Insight

app archive is a ZIP archive that contains the BIM file and the optional subdirectories

model_resources (data files), client_resources (custom view definitions), and source (Mosel
model source files). When developing an Insight app with Xpress Workbench, select the button ¥, to

create the app archive or [=* to publish the app directly to Insight.

Transport
HOME APP JOBS

Click here to select scenarios

MAIN ~ Inputdata Transportation Plan

Transportation data input

DEMOUSER ~ HELP ~

‘ RUN OPTIMIZATION Fuel cost per unit distance 17
PLANT DATA CUSTOMER DEMANDS TRANSPORTATION ROUTES

Plants | Production capacity Unit production cost Customer regions Ik Demand Show| 8 Be"‘”“

Corby 3,000.0 1,700.0 Midlands 2,750.0

Plants |i

Deeside 27000 1,600.0 North 2,800.0

Glasgow 4500.0 2,000.0 Scotland 2,840.0 Corby
Oxford 4,000.0 2100.0 SEast 28200 Corby

SWest 2,600.0 Corby
Corby

Deeside

Deeside

Deeside

Deeside

Customer
regions.

SWest
Midlands
North
SEast
SWest
Scotland
Midlands

North

Distance per
route

400.0
100.0
400.0
300.0
200.0
500.0
400.0
200.0

Figure 17.3: Xpress Insight web view showing a VDL view for the transportation problem

(OR339

Capacity on
each route

1,000.0
2,000.0
1,000.0
1,000.0
1,000.0
1,000.0

300.0
2,000.0

n 2 3 Next

If we wish to deploy an optimization app to the Xpress Insight Web Client we need to take into account
that besides the 'Entity browser’ view that lists all managed model entities there are no default views:
any visualization of input or result data needs to be explicitly implemented as views. The screenshot in
Figure 17.3 shows a VDL (View Definition Language) view for the transportation example with editable
input data and a 'Run’ button that triggers re-solving of the optimization problem with the scenario data
displayed on screen. Such views can be created via a drag-and-drop editor in Xpress Workbench (the
screenshot in Figure 17.4 shows the design view of the VDL file that defines the webview in the previous

figure). The complete set of files is provided in the app archive transport_insight.zip. Please

refer to the Xpress Insight Developer Manual for further detail on view definition using the VDL markup

language or the Xpress Insight Javascript API.

Fair Isaac Corporation Confidential and Proprietary Information

186

http://www.fico.com/fico-xpress-optimization/docs/latest/insight_dev_guide/

Language extensions

17.4

17.4.1

[transportdatavdi - FICO® Xpress Workbench I
Project File Edt Find View Goto Run Tools Window Help transport_insight mos M ENCIE T = Ee]
3 LAYOUT B Welcome transport_insight % transportdata.vc x TABLE x
o @
[View Designer | Code filte: 3
Section Row 5
2 i g
] ectio .
1 H Width'
& | Column || Container Transportation data input =
g
g
Row £
COMPONENTS Scenario 13
Column Column o
Table g
Table o 3
Column @ Form @ Form Add and remove row é
g
Chart RUN OPTIMIZATION Fuel cost per unit -
Chart Series distance Paginatio =
paged §
g
Index Filter Page size
8
Form Field Column Column STHe
PLANT DATA “ CUSTOMER DEMANDS “° Height
Tabl Table px
Button Text = =
Production Unit Demand Distance Capacity on
Logic capacity s;o:ucﬂon per route each route
Oy Wizard
If Repeat If pen Wizar
Visible Open Wizard
isibl

Figure 17.4: VDL view designer in Xpress Workbench

Solvers

In this user guide we have explained the basics of working with Mosel, focussing on the formulation of
Linear and Mixed Integer Programming problems and related solution techniques. However, the Mosel
language is not limited to certain types of Mathematical Programming problems.

The module mmnl extends the Mosel language with functionality for handling general non-linear
constraints. This module (documented in the Mosel Language Reference Manual) does not contain any
solver on its own. In combination with mmxprs you can use it to formulate and solve QCQP
(Quadratically Constrained Quadratic Programming) problems through the QCQP solvers within Xpress
Optimizer.

All other solvers of FICO Xpress Optimization (Xpress NonLinear for solving non-linear problems, and
Xpress Kalis for Constraint Programming, CP) are provided with separate manuals and their own sets
of examples. Please see the Xpress website for an overview of the available products.

With Mosel it is possible to combine several solvers to formulate hybrid solution approaches for
solving difficult application problems. The whitepaper Hybrid MIP/CP solving with Xpress Optimizer and
Xpress Kalis, available for download from the Xpress website, gives several examples of hybrid solving
with LP/MIP and Constraint Programming.

Below follow a few examples for some of the solvers mentioned above.

QCQP solving with Xpress Optimizer

In Section 12.1 we have solved a quadratically constrained problem by a recursion algorithm. One might
be tempted to try solving this problem with a QCQP solver. Unfortunately, it does not meet the
properties required by the definition of QCQP problems: problems solvable by QCQP must not contain
equality constraints with quadratic terms (reformulation as two inequalities will not work either) since
such constraints do not satisfy the convexity condition. We shall see below how to solve this problem
with the general non-linear solver Xpress NonLinear (using SLP).

Let us therefore take a look at a different problem: the task is to distribute a set of points represented
by tuples of x-/y-coordinates on a plane minimizing the total squared distance between all pairs of
points. For each point i we are given a target location (CX;, CY;) and the (square of the) maximum
allowable distance to this location, the (squared) radius R; around this location.

Fair Isaac Corporation Confidential and Proprietary Information 187

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/xpress
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/hypridmpcp/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/hypridmpcp/dhtml/

Language extensions

In mathematical terms, we have two decision variables x; and y; for the coordinates of every pointi. The
objective to minimize the total squared distance between all points is expressed by the following sum.

N-1 N

S (i=x)?+ (-)?)

i=1 j=i+1

For every point i we have the following quadratic inequality.

(i = CX)* + (v - CY)* < R;
The resulting Mosel model (file airport_gp.mos) looks thus.

model "airport"
uses "mmxprs", "mmnl"

declarations

RN: range ! Set of airports

R: array(RN) of real ! Square of max. distance to given location
CX,CY: array(RN) of real ! Target location for each point

x,y: array(RN) of mpvar ! x-/y- coordinates

LimDist: array(RN) of nlctr

end-declarations

initialisations from "airport.dat"
CY CX R
end-initialisations

! Set bounds on variables
forall(i in RN) do
-10<=x(1i); x(i)<=10
-10<=y (i); y(i)<=10
end-do

! Objective: minimise the total squared distance between all points
TotDist:= sum(i,j in RN | i<j) ((x(1)-x(3))"2+(y(i)-y(3))"2)

! Constraints: all points within given distance of their target location
forall (i in RN)
LimDist (i) 1= (x(i)-CX(i))"2+(y(i)-CY(i))"2 <= R(i)

setparam ("XPRS_verbose", true);
minimise (TotDist);

writeln("Solution: ", getobjval);
forall(i in RN) writeln(i, ": ", getsol(x(i)), ", ", getsol(y(i)))

end-model

A QCQP matrix can be exported to a text file (option " " for MPS or "1 " LP format) through the
writeprob function of Xpress Optimizer. That is, you need to add the following lines to your model
after the problem definition:

setparam ("XPRS_loadnames", true)
loadprob (TotDist)
writeprob ("airport.mat","1")

A graphical representation of the result with mmsvg, obtained with the following lines of Mosel code, is

shown in Figure 17.5.

! Set the size of the displayed graph
svgsetgraphviewbox (-10,-10,10,10)

Fair Isaac Corporation Confidential and Proprietary Information

188

Language extensions

svgsetgraphscale (20)

! Draw the target locations

svgaddgroup ("T", "Target area", SVG_SILVER)
svgsetstyle (SVG_FILL, SVG_CURRENT)

forall(i in RN) svgaddcircle(CX (i), CY (i), sqgrt(R(i)))

! Draw the solution points
svgaddgroup ("S", "Solution", SVG_BLUE)
forall(i in RN) svgaddpoint (x(i).sol, y(i).sol)

! Output to file
svgsave ("airport.svg")

! Update the display
svgrefresh
svgwaitclose

Figure 17.5: Result graphic in SVG format

17.4.2 Xpress NonLinear

The following example solves the non-linear financial planning problem from Section 12.1 with Xpress
NonLinear (using the SLP solver). The definition of constraints is straightforward (nonlinear constraints
have the type nlctr with mmxnip). Other functionality contributed by the module mmxnip that appears
in this model are the setinitval subroutine—used for setting start values for the decision variables—
and the overloaded minimize subroutine for loading and solving nonlinear problems. Here, we simply
need to become feasible and therefore use 0 as argument to minimize. Xpress NonLinear
automatically selects a solver among the installed solvers of the Xpress suite (Simplex, Barrier, SLP, or
Knitro) depending on the detected problem type. We know that this problem can be solved by recursion
and therefore preselect the SLP solver by setting the parameter XNLP_SOLVER.

model "Recursion (NLP)"

uses "mmxnlp" ! Use Xpress NonLinear
declarations

NT=6 ! Time horizon
QUARTERS=1..NT ! Range of time periods
M,P,V: array (QUARTERS) of real ! Payments

interest: array (QUARTERS) of mpvar ! Interest
net: array (QUARTERS) of mpvar ! Net

Fair Isaac Corporation Confidential and Proprietary Information 189

Language extensions

17.4.3

balance: array (QUARTERS) of mpvar ! Balance
rate: mpvar ! Interest rate
end-declarations

M:: [-1000, O, O, O, O, O]
P:: [206.6, 206.6, 206.6, 206.6, 206.6, 0]
v:: [-2.95, 0, 0, O, O, O]

setinitval (rate, 0) ! Set initial values for variables
forall (t in QUARTERS) setinitval (balance(t), 1)

! net = payments - interest
forall(t in QUARTERS) net(t) = (M(t)+P(t)+V(t)) - interest(t)

! Money balance across periods
forall (t in QUARTERS) balance(t) = if (t>1, balance(t-1), 0) - net(t)

! Interest rate
forall(t in 2..NT) -(365/92)*interest(t) + balance(t-1) * rate = 0

interest(l) =0 ! Initial interest is zero
forall (t in QUARTERS) net(t) is_free
forall(t in 1..NT-1) balance(t) is_free

balance (NT) = 0 ! Final balance is zero

! setparam ("XNLP_VERBOSE", true) ! Uncomment to see detailed output
setparam ("XNLP_SOLVER", 0) ! Use the SLP solver

minimize (0) ! Solve the problem (get feasible)

! Print the solution

writeln("\nThe interest rate is ", getsol(rate))
write(strfmt ("t",5), strfmt(" ",4))
forall (t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))

write ("\nBalances ")

forall(t in QUARTERS) write(strfmt (getsol (balance(t)),8,2))
write("\nInterest ")

forall(t in QUARTERS) write(strfmt (getsol (interest(t)),8,2))
writeln

end-model

The results displayed by this model are exactly the same as those we have obtained from the recursion
algorithm in Section 12.1.

Xpress Kalis

Constraint Programming is an entirely different method of representing and solving problems
compared to the Mathematical Programming approaches we have employed so far in this manual.
Consequently, the Mosel module kalis defines its own set of types that behave differently from their
Mathematicl Programming counterparts, including cpvar, cpfloatvar and cpctr for decision
variables and constraints, but also cpbranching for search strategies (a standard constituent of CP
models) and aggregate modeling objects such as cptask and cpresource.

Below we show the CP implementation of a binpacking example from the book ‘Applications of
optimization with Xpress-MP’ (Section 9.4 ‘Backing up files’). The problem is to save sixteen files of
different sizes onto empty disks of the same fixed capacity minimizing the total number of disks that
are used.

Our model formulation remains close to the Mixed Integer Programming formulation and yet shows
some specifities of Constraint Programming. Two sets of decision variables are used, savey indicating
the choice of disk for file f and usegy the amount of diskspace used by a file on a particular disk.
Whereas the variables saver simply take integer values in a specified interval, each of the useg,
variables may take only two values, 0 or SIZE;. For every file / disk combination we establish the logical

Fair Isaac Corporation Confidential and Proprietary Information 190

http://examples.xpress.fico.com/example.pl#mosel_app

Language extensions

relation

saver = d < usery = SIZE¢

a constraint that cannot be stated in this form in a Mathematical Programming model. A second,
so-called global constraint relation is used to state the maximum relation for calculating the number of

disks used:

diskuse = maximum(savescpsks)

And finally, the constraint limiting the capacity available per disk is a linear inequality that could occur in
the same form in a Mathematical Programming model.

Vd € DISKS: > userg < CAP
fEFILES

This is the complete Mosel CP model for the binpacking problem.

model "D-4 Bin packing (CP)"
uses "kalis"

declarations

ND: integer ! Number of floppy disks
FILES = 1..16 ! Set of files

DISKS: range ! Set of disks

CAP: integer ! Floppy disk size

SIZE: array (FILES) of integer ! Size of files to be saved

end-declarations

initializations from 'd4backup.dat'
CAP SIZE
end-initializations

! Provide a sufficiently large number of disks
ND:= ceil ((sum(f in FILES) SIZE(f))/CAP)
DISKS:= 1..ND

finalize (DISKS)

setparam("kalis_default_1b", 0)

declarations

save: array (FILES) of cpvar ! Disk a file is saved on
use: array(FILES,DISKS) of cpvar ! Space used by file on disk
diskuse: cpvar ! Number of disks used

end-declarations

! Set variable domains
forall(f in FILES) setdomain(save(f), DISKS)
forall (f in FILES, d in DISKS) setdomain (use(f,d), {0, SIZE(f)})

! Correspondence between disk choice and space used
forall(f in FILES, d in DISKS) equiv(save(f)=d, use(f,d)=SIZE(f))

! Limit the number of disks used
diskuse = maximum (save)

! Capacity limit of disks
forall(d in DISKS) sum(f in FILES) use(f,d) <= CAP

! Minimize the total number of disks used
if not cp_minimize (diskuse) then
writeln("Problem infeasible")

end-if

Fair Isaac Corporation Confidential and Proprietary Information 191

Language extensions

17.5

17.5.1

! Solution printing

writeln ("Number of disks used: ", getsol (diskuse))

forall(d in 1..getsol (diskuse)) do

write(d, ":")

forall(f in FILES) write(if (getsol(save(f))=d , " "+SIZE(f), ""))
writeln(" space used: ", getsol(sum(f in FILES) use(f,d)))

end-do

end-model

This implementation is one of several possible formulations of this problem as a CP model. An
alternative and generally more efficient model being the formulation as a cumulative scheduling
problem, where the disks are represented by a single resource of discrete capacity, the files to save

correspond to tasks of duration 1 with a resource requirement defined by the file size. The objective in
this case is to minimize the duration of the schedule (= number of disks used). The interested reader is

refered to the Xpress Kalis User Guide for a detailed discussion of this problem.

Date and time data types

The module mmsystem of the standard distribution of Mosel defines the types date (calendar day:

day, month, and year), time (time of the day in milliseconds), and datetime (combination of the first

two) for working with date and time related data in Mosel models. We show here some examples of

reading and writing dates and times from/to file,

formatting dates and times,

using sets of constant dates and times for indexing arrays,

transformation from/to the underlying numerical representation,

applying operations (comparison, addition, difference, sorting),

enumerating dates and times.

Initializing dates and times
The following line prints out the current date and time (using the default format):

writeln("Today: ", date(SYS_NOW), ", current local time: ", time (SYS_NOW),
"UTC time: ", gettime (datetime (timestamp)))

When we wish to read data from a file, the formatting of dates and times needs to be adapted to the
format used in the file. For example, consider the following data file (datetime.dat)

Timel: "4pm"
Time2: "16h00"
Time3: "16:00:00"
Datel: "2-20-2002"
Date2: "20/02/02"

Date3: "20-Feb-2002"

A Mosel model reading in this data file may look thus (file dates .mos).

declarations
t: time
d: date

Fair Isaac Corporation Confidential and Proprietary Information

192

http://www.fico.com/fico-xpress-optimization/docs/latest/solver/kalis/kalis_ug/dhtml/

Language extensions

end-declarations

setparam("timefmt", "$h%p") ! h: hours in 1-12, p: am/pm
setparam("datefmt", "$m-%d-%y") ! m: month, d: day, y: year

initializations from "datetime.dat"
t as "Timel"

d as "Datel"

end-initializations

writeln(d, ", ", t)
setparam("timefmt", "$Hh%OM") ! H: hours in 0-23, M: minutes

setparam("datefmt", "%$0d4/%0m/%0Y") ! : year in 0-99
! 0: £ill spaces with '0'

=

initializations from "datetime.dat"
t as "Time2"

d as "Date2"

end-initializations

writeln(d, ", ", t)
setparam("timefmt", "$H:%$0M:%0S") ! S: seconds
setparam("datefmt", "%$d-%N-%y") ! N: use month names

initializations from "datetime.dat"
t as "Time3"

d as "Date3"

end-initializations

writeln(d, ", ", t)

For the encoding of date and time format strings please refer to the documentation of the parameters
datefmt and timefmt in the 'Mosel Language Reference Manual'.

Date3 in this example uses a month name, not a number. The default 3-letter abbreviations of month
names can be changed (e.g., translated) by redefining the parameter monthnames. For instance, a date
written in French, such as

Dated4: "20 fevrier 2002"

is read by the following Mosel code:

setparam("datefmt", "%d %N Sy")

setparam("monthnames", "janvier fevrier mars avril mai juin juillet " +
"aout septembre octobre novembre decembre")

initializations from "datetime.dat"
d as "Date4d"
end-initializations

writeln (d)

In the examples of this section we have used Mosel’s standard text format for reading and writing
dates and times. These data types can also be used when accessing spreadsheets or databases
through Mosel's ODBC connection or the software-specific interfaces for Oracle and MS Excel. The
whitepaper Using ODBC and other database interfaces with Mosel documents some examples of
accessing date and time data in spreadsheets and databases.

Note: When initializing or constructing dates Mosel does not control whether they correspond to an
actual calendar day (e.g., 0-valued or negative day and month counters are accepted). The validity of a
date or time can be tested with the function isvalid. For example, the following code extract

Fair Isaac Corporation Confidential and Proprietary Information 193

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Language extensions

d:= date(2000,0,0)
writeln(d, " is a valid date: ", if(isvalid(d), "true", "false"))

results in this output:

2000-00-00 is a valid date: false

17.5.2 Dates and times as constants

It is possible to use the types 'date’, 'time’, ‘'datetime’ as index sets for arrays if the elements of the set
are flagged as being constant. The effect of such a declaration as constant is illustrated by the
following code snippet (taken from the example file dates.mos). Entities such as someday in the
example below that receive a value directly in the declarations block via '=" also are constants, their
value can not be changed or re-assigned.

declarations
someday=date (2020, 3, 24)
SD: set of date
SDC: set of constant date
AD: dynamic array (SDC) of real
end-declarations

A constant date

Set of date references

Set of constant date references
Array indexed by 'date' type

! Operations on a set of dates
SD:= {date(2020,3,24), date(2020,3,24)+1}

writeln("Is someday in SD? ", someday in SD) ! Output: false
writeln("Next day in SD? ", someday+l in SD) ! Output: false
SD+= {date (2020,3,24), date(2020,3,24)+1}

writeln("SD after addition: ", SD, " size=", SD.size) ! Output: size=4

! Operations on a set of constant dates
SDC:= {date (2020, 3,24),date(2020,3,24)+1}

writeln("Is someday in SDC? ", someday in SDC) ! Output: true
writeln ("Next day in SDC? ", someday+l in SDC) ! Output: true
SDC+= {date (SYS_NOW), date (SYS_NOW)+1}

writeln("SDC after addition: ", SDC, " size=", SDC.size) ! Output: size=2

The example shown here only mentions the type ‘date’, but the constant declaration is also applicable
to the types 'time’ and ‘datetime’.

17.5.3 Conversion to and from numbers

In some cases it might be necessary to use the numerical representation in the place of a date or time.
In the following Mosel extract we wish to define an array YEARS that is indexed by a set of dates. In this
example we show how to use as index values the numerical representation that is obtained by applying
getasnumber to the dates (this function returns an integer, the Julian Day number = number of days
elapsed since 1/1/1970; if the argument is a time getasnumber returns the number of milliseconds
since midnight). By applying date to the numerical representation it is converted back to the original
date.

With this Mosel code

declarations

Dates: set of date

YEAR: array (NDates: set of integer) of integer
end-declarations

setparam("datefmt", "") ! Use the default format
initializations from "datetime.dat"

Dates
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 194

Language extensions

writeln("Dates: ", Dates)

forall(dd in Dates) YEAR (getasnumber (dd)) := getyear (dd)

writeln ("YEAR: ", YEAR)

forall(n in NDates) writeln(date(n)) ! Mapping back to original dates

and the following data

Dates: ["1999-1-21" "2000-2-22" "2002-3-23" "2005-4-24" "2010-5-25"]

we obtain this output:

Dates: {1999-01-21,2000-02-22,2002-03-23,2005-04-24,2010-05-25}
YEAR: [(10612,1999), (11009,2000), (11769,2002), (12897,2005), (14754,2010)]
1999-01-21
2000-02-22
2002-03-23
2005-04-24
2010-05-25

Similarly to what is shown here, function getasnumber can be used with 'time’ and 'datetime’, the
backwards conversion being carried out by time or datetime respectively.

17.5.4 Operations and access functions

The following Mosel model extract (dates .mos) shows some operations on dates and times,
including sorting lists of dates or times, difference between two dates or times, and addition of
constants to obtain an enumeration of dates or times.

declarations
t: time
d: date

nowl, now2: datetime

DNAMES: array(l..7) of string
TList: list of time

DList: list of date
end-declarations

! Difference between dates
writeln ("February 2004 had ", date(2004,3,1)-date(2004,2,1), " days.")

! Retrieve the weekday

DNAMES:: (1..7)["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday"]
writeln("1lst January 2000 was a ", DNAMES (getweekday (date(2000,1,1))))

! Difference between times
nowl:= datetime (SYS_NOW)

wait (1) ! Delay model execution for 1 second
now2:= datetime (SYS_NOW)
writeln("Elapsed time: ", now2-nowl, "ms")

! Enumeration / addition to 'time'
setparam("timefmt", "%.h.%0M%p")
t:= time(11,0)
forall(i in 1..5) do
writeln(t)
t+=30%x60+x1000 ! Add 30 minutes
end-do

! Enumeration / addition to 'date'
setparam("datefmt", "%.d/%0m/%0Y")
d:= date(2005,12, 20)

forall(i in 1..5) do

writeln (d)

Fair Isaac Corporation Confidential and Proprietary Information 195

Language extensions

d+=14 ! Add 14 days
end-do

! Sorting lists of dates and times

setparam("datefmt", "") ! Revert to default date format
DList:= [date(2021,1,1),date(1900,1,2),date(2020,3,24)]

writeln("Orig. DL=", DList)

gsort (SYS_UP, DList)

writeln("Sorted DL=", DList)

setparam("timefmt", "") ! Revert to default time format
TList:= [time (12,0),time(10,30),time(16,15),time (8,45)]

writeln("Orig. TL=", TList)

gsort (SYS_UP, TList)

writeln("Sorted TL=", TList)

Executing this model produces the following output.

February 2004 had 29 days.
1st January 2000 was a Saturday
Elapsed time: 1.006ms
11.00am
11.30am
12.00pm
12.30pm
1.00pm
20/12/05
3/01/06
17/01/06
31/01/06
14/02/06
Orig. DL=
Sorted DL=
Orig. TL
Sorted TL=

2021-1-1,1900-01-02,2020-03-24]
1900-01-02,2020-03-24,2021-1-1]
12:00:00,10:30:00,16:15:00,8:45:00]
8:45:00,10:30:00,12:00:00,16:15:00]

17.6 Text handling and regular expressions
The module mmsystem provides a large set of text handling functionality, including

m the types text, parsectx, and textarea
m text formatting routines (number format, upper/lower case)
m parsing routines
m regular expressions
In the following subsections we show some examples of text handling with Mosel, for a full description

of the available functinoality please refer to the chapter mmsystem of the '"Mosel Language Reference
Manual'.

17.6.1 text vs. string

Although apparently denoting similar concepts, the purpose and usage recommendations for the types
string and text in Mosel models are quite distinct: any string defined in a model is added to the
model's names dictionary and is only freed at termination of the model run, this is not the case for
model objects of the type text. The type string therefore should be used whenever it is a question
of identifying objects, so in particular for index sets.

Fair Isaac Corporation Confidential and Proprietary Information 196

Language extensions

The type text is in general the more appropriate choice for descriptive or editable texts, including
reporting or logging messages, and any texts generated via (partial) copies or concatenation. A text
object can be altered, allowing for a considerably wider set of operations (such as insertion, deletion) in
comparison with strings. Furthermore, with the I/0 driver text : a public text object can be used as
input or output file in a model (see Section 17.1.2).

It is, however, not always possible to draw a clear line between where to use string or text. A
number of module subroutines therefore define multiple versions, accepting both, string or text

arguments. Note further that if required, Mosel automatically converts from the type string to text,

but not the other way round.

17.6.2 Parsing text

In the example below we configure the global parser settings to read real numbers from a text that has

fields separated by commas.

declarations
values: list of real
comma=getchar (", ", 1) !
end-declarations
txt:= text (", , 123.4 , 345.6 ,")
! Parsing without context
setparam("sys_sepchar", comma) !
setparam("sys_trim", true) !
while (nextfield(txt)) do !
values+= [parsereal (txt)] !
writeln("Read up to position ",
end-do

writeln("Values read: ", values) !

ASCII value for ","

Comma as separation character

Trim blanks around separation character
Get next field

Read a real number from the field

getparam("sys_endparse"))

Output: [0,0,123.4,345.6,0]

The same behavior can be achieved with a parser context—here we do not modify any global settings,
which has the advantage of preventing possible interactions with other parser settings that may be

used elsewhere in our model.

declarations
pctx: parsectx
values: list of real
comma=getchar (", ", 1) !
end-declarations
txt:= text(", , 123.4 , 345.6 ,")
! Parsing real numbers with context
setsepchar (pctx, comma) !
settrim(pctx, true)
while (nextfield (txt,pctx)) do !
values+= [parsereal (txt, pctx)] !
writeln("Read up to position ",
end-do

writeln("Values read: ", values) !

ASCII value for

non
14

Comma as separation character

Trim blanks around separation character
Get next field

Read a real number from the field

pctx.endparse)

output: [0,0,123.4,345.6,0]

When implementing data handling for optimization applications, it is good practice to add error
handling to the parsing loop, for example to check whether the fields are formatted as expected:

pctx.endparse:=0 !
pctx.sepchar:=comma !
pctx.trim:=true !
while (nextfield(txt,pctx)) do !
if getchar (txt,

values+=[0.0] !
else

Start at the beginning of text

Comma as separation character

Trim blanks around separation character
Get next field

pctx.endparse)=comma or pctx.endparse>=txt.size then

The field is empty

Fair Isaac Corporation Confidential and Proprietary Information

197

Language extensions

r:=parsereal (txt, pctx) ! Read a real number from the field
if getsysstat=0 then values+= [r]
else

writeln("Malformed field contents at position ", pctx.endparse,
" (", copytext(txt, pctx.endparse,pctx.endparse+2), ")")

end-if
end-if
writeln("Read up to position ", pctx.endparse)
end-do
writeln("Values read: ", values) ! Output: [0,0,123.4,345.6,0]

One might also choose to work with multiple parser contexts (e.g. using an ‘inner’ context pctxi for
reading some part of each field from the original text—here an integer number that is read from a string
containing a real).

declarations

pctx, pctxl: parsectx

ivalues: list of integer

comma=getchar (", ", 1) ! ASCII value for ","
end-declarations

txt:= text(", , 123.4 , 345.6 ,")

setsepchar (pctx, comma) ! Comma as separation character
settrim(pctx, true) ! Trim blanks around separation character
while (nextfield(txt,pctx)) do ! Get next field
tt:=parsetext (txt, pctx) ! Get contents of the field
pctxi.endparse:=1 ! Reset start to beginning of the text
i:=parseint (tt, pctxi) ! Read an integer number from the field
if getsysstat=0 then ivalues+= [i]; end-if

writeln("Read up to position ", pctx.endparse)
end-do
writeln("Values read: ", ivalues) ! Output: [123,345]

17.6.3 Regular expressions

A regular expression (in the following abbreviated to regex) is a sequence of characters that form a
search pattern. Regex are used to describe or match a set of strings according to certain syntax rules.
Mosel supports the Basic Regular Expressions syntax (BRE) and the Extended Regular Expressions
syntax (ERE) of the POSIX standard, the implementation of regular expression matching relies on the
TRE library.

Here are some examples of regular expression matching and replacement with some explanations of
the meaning of the employed regex—for a complete description of the supported regex syntax the
reader is refered to the documentation of the TRE library (see http://laurikari.net/tre), another useful
resource are the examples provided on the page en.wikipedia.org/wiki/Regular_expression.

The following example (regex .mos) displays all strings containing ‘My’ that occur in a text. The first
matching statement uses BRE syntax, it displays all strings starting with ‘'My’ irrespective of
upper/lower case spelling (option REG_ICASE). The second matching statement uses ERE syntax
(option REG_EXTENDED) to retrieve all strings containing ‘'My’ other than at their beginning. We have
chosen to retrieve different individual portions of the matching string (specified via the parantheses in
the regular expression statement) the positions of which are stored in their order of occurrence into the
array m (of type textarea)

declarations
m: array(range) of textarea
t: text
end-declarations
t:="MyValue=10, Sometext Mytext MoretextMytext2, MYVAL=1.5 mYtext3"
m(0) .succ:=1
while (regmatch(t, '\<My\(\w*\)', m(0).succ, REG_ICASE, m))
writeln("Word starting with 'My': ", copytext (t,m(0)))

Fair Isaac Corporation Confidential and Proprietary Information 198

http://laurikari.net/tre
http://laurikari.net/tre
https://en.wikipedia.org/wiki/Regular_expression#Examples

Language extensions

! Output: MyValue Mytext MYVAL mYtext3

m(0) .succ:=1

while (regmatch(t, '\w+((My) (\w*))', m(0).succ, REG_ICASE+REG_EXTENDED, m))
writeln("String containing 'My' (not at beginning): ",
copytext(t,m(0)), " (", copytext(t,m(l)), "=", copytext(t,m(2)) ,
"+", copytext(t,m(3)), ")")

! Output: MoretextMytext2 (Mytext2=My+text2)

The special characters used in the formulation of the regular expressions above have the following
meaning: \< marks the beginning of a word, \w denotes alphanumeric or underscore characters, *
means 0 or more times and + stands for 1 or more times.

The following Mosel code snippet shows how to replace matching expressions in a text that contains
dates with different formats:

t:="datel=20/11/2010,date2=1-0Oct-2013,date3=2014-6-30"

numr:= regreplace(t, '([[:digit:]11{4})-([01]1?[[:digit:1])-([0-3]?[[:digit:]1])",
"\3/\2/\1', 1, REG_EXTENDED)

if numr>0 then

writeln (numr, " replacements: ", t)

end-if

This is the output produced by the code above:

1 replacements: datel=20/11/2010,date2=1-0ct-2013,date3=30/6/2014

There are alternative ways of stating the same regular expression with BRE or ERE syntax, for example:

numr:= regreplace(t, "\(\d\{4\}\)=-\([011\{0,1\}\d\)-\([0-3]1\{0,1\}\d\)",
'"\3/\2/\1")

numr:= regreplace(t, '(\d{4})-([011{0,1}\d)-([0-3]{0,1}\d)",
'"\3/\2/\1', 1, REG_EXTENDED)

In these replacement statements we have used the following special characters for stating regular
expressions: \d or [:digit:] indicates a numerical character, square brackets contain a set of
possible character matches, {M, N} means minimum M and maximum N match count and 2 stands for
0 times or once.

Fair Isaac Corporation Confidential and Proprietary Information 199

CHAPTER 18

Annotations

Annotations are meta data expressed in a Mosel source file (model or package) that are stored in the
resulting BIM file after compilation. This additional information is either global or associated with
public globally declared objects (including subroutines). Annotations do not have any direct impact on
the model itself as they are treated like comments. Typical uses of annotations include model
documentation or application configuration information.

Mosel annotations have the following format:

m a single-line annotation starts with "! @’ and a name

!@doc.name This is my document title

m multi-line annotations are surrounded by " (!@ and '!)’

(!@mynote Some annotation text.
Another line of text.

)
m '!@is followed by the annotation name (identifier)

- no space between ’!" and '@’ characters
— space is allowed between '@’ and the name

m value assignment operators are '’ (space),’:’, or '=’

= NnO space between annotation name and operator

!@mynote contents for 'mynote'
'@ another=contents of 'another'
!'@third: contents of 'third'

m association with symbols:

!'@mynote This annotation is applied to all objects declared below
public declarations

val: integer !Q@doc.descr Explanation of 'val'

!@doc.descr Text associated with 'msg'
msg: string ! A standard comment
!@mynote2 This annotation is ignored

(no associated object)
end-declarations

Annotations are organized in categories. A category groups a set of annotations and other categories
(or sub-categories). For example

doc.name

Fair Isaac Corporation Confidential and Proprietary Information 200

Annotations

18.1

will be used to select the annotation name member of the doc category. Predefined category names
include mc (Mosel compiler) and doc (model documentation). Models can also define/employ new
annotations and categories—these must be valid Mosel identifiers, that is, their names can only use
alpha-numeric symbols and ’ _".

We show some examples of the doc category in Section 18.2 below. The category mc is used to pass
information to the compiler during the compilation, including the (optional) declaration of new
annotations with the mc . def annotation or the definition of aliases, such as

!@mc.def descr alias doc.descr insight.descr

that redirects onto two different annotations (see section ‘Annotations’ of the Mosel Language
Reference Manual for further detail).

Accessing annotations

Annotations can be retrieved from the model itself during its execution or before/after execution from
the calling program (using the Mosel libraries). The following example annottest .mos shows how to
retrieve an annotation that is defined in the same model. The subroutine getannotations is defined
by mmjobs, it takes an additional first argument of type Model if it is to be applied to a submodel and
not the model itself.

model "Using annotations"
uses "mmjobs"

public declarations
(le.
@value.first 5
@value.second 0
@descr A scalar value
)

myint: integer

AnnNames: set of string !Q@descr Set of annotation names
Ann: array(string) of string !@descr Annotation wvalues
mytxt: text !@descr Default input data file

end-declarations

!@descr Annotations test
!@furtherinfo Simply displays all defined global or specific annotations

! Get all global annotations defined in this model:

getannotations("", "", AnnNames, Ann)
writeln ("Global annotations:")
forall (a in AnnNames) writeln(" ", a, " =", Ann(a))

! Get all annotations for "myint":

getannotations ("myint", "", AnnNames, Ann)
writeln ("Annotations defined for 'myint':")
forall (a in AnnNames) writeln(" ", a, " =", Ann(a))

! Retrieve all annotations starting with 'value.' and that are
! associated to 'myint'

getannotations ("myint", "value.", AnnNames, Ann)
writeln("'value' annotations for 'myint':")

forall (a in AnnNames) writeln(" ", a, " =", Ann(a))
end-model

Running this model produces output like the following:

Global annotations:
.descr = Annotations test

Fair Isaac Corporation Confidential and Proprietary Information 201

Annotations

.furtherinfo = Simply displays all defined global or specific annotations
Annotations defined for 'myint':

.descr = A scalar value

value.first = 5

value.second = 0
'value' annotations for 'myint':

value.first = 5

value.second = 0

And here is an example how to retrieve annotations into a C program (file annotdisplay.c):

#define MAXANN 100

int main ()

{

XPRMmodel mod;
void =*ref;

const char *symb; /* A model object name */

const char *ann[MAXANN=x2]; /* List of annotations =*/

int i,n;

if (XPRMinit ()) return 1; /* Initialize Mosel */

if ((mod=XPRMloadmod ("annottest.bim",NULL))==NULL) /% Load a BIM file x/
return 2;

/* Retrieve and display global annotations =/
n=XPRMgetannotations (mod, NULL, NULL, ann, MAXANN=*2) ;
printf ("Global annotations (total: %d):\n", n/2);
for (i=0;i<n && i<MAXANN;i+=2)
printf (" %$s:%s\n",ann[i], (ann[i+1] !=NULL) ?ann[i+1]:"");

/* Retrieve and display all annotations associated with model objects =*/
printf ("Annotations associated with objects:\n");

ref=NULL;

while ((symb=XPRMgetnextanident (mod, &ref)) !=NULL)

{

n=XPRMgetannotations (mod, symb, NULL, ann, MAXANN=*2) ;

printf (" $s->\n", symb);

for (i=0;i<n && 1i<MAXANN; i+=2)

printf (" %$s:%s\n",ann[i], (ann[i+1] !=NULL) 2ann[i+1]:"");
}

/* Retrieve and display annotations for model object 'myint' =/
n=XPRMgetannotations (mod, "myint", NULL, ann, MAXANN=*2) ;

printf ("Annotations defined for 'myint' (total: %d):\n", n/2);
for (i=0;i<n && 1i<MAXANN; i+=2)

printf (" %$s:%s\n",ann[i], (ann[i+1] !=NULL) 2ann[i+1]:"");

return 0;

}

The corresponding Java code looks as follows:

public class annotdisplay
{
public static void main(String[] args) throws Exception

{

XPRM mosel;

XPRMModel mod;

XPRMAnnotation annl[]; // List of annotations
mosel = new XPRM(); // Initialize Mosel
mod = mosel.loadModel ("annottest.bim"); // Load a BIM file

// Retrieve and display global annotations
ann=mod.getAnnotations ("");
System.out.println("Global annotations (total: "+ ann.length +"):");

Fair Isaac Corporation Confidential and Proprietary Information 202

Annotations

for (int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);

// Retrieve and display all annotations associated with model objects
System.out.println ("Annotations associated with objects:");
for (XPRMIdentifiers ids=mod.annotatedIdentifiers(); ids.hasNext();)

{

XPRMIdentifier id=(XPRMIdentifier)ids.next();
ann=mod.getAnnotations (id,"");

System.out.println(" "+id.getName ()+"->");

for (int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);

}

// Retrieve and display annotations for model object 'myint'
ann=mod.getAnnotations ("myint","");
System.out.println("Annotations defined for 'myint' (total: "+ ann.length +"):");
for (int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);
}
}

Notice that the host application only needs to load the BIM file (and not necessarily run a model) in
order to be able to retrieve the annotations.

18.2 moseldoc: Generating model documentation

The Mosel compiler reserves a special treatment to annotations belonging to the doc category. This
annotation category will only be included into the BIM file if the source file is compiled with the optio
-D, such as

mosel comp -D mymodel.mos

To enable the -D compiler option in Xpress Workbench open the Run menu and select the entry

n

Compiler Options, enable the Generate Doc Annotations option, and confirm with Save. When you next

click the Compile button =
annotations.

01

The tool moseldoc can be applied to the resulting BIM file to generate an XML file that is then
processed into a set of HTML pages:

Generates HTML and XML

HTML output only

Specify HTML output directory

XML output only

XML file for inclusion (omitting header+root)
Force output overwrite

moseldoc mymodel

moseldoc —-html mymodel

moseldoc -o mydir —-html mymodel
moseldoc —-xml mymodel

moseldoc —-ixml mymodel

moseldoc —-f mymodel

Here are some examples of how to use the documentation annotations:

m Document structure:

(!@doc.

@title An example of model documentation
@version 0.0.1

@date March 2015

@chapter Introduction

@p

This model needs to be compiled with the <tt>-D</tt> compiler option
to include the documentation annotations into the BIM.

The <tt>moseldoc</tt> program takes the resulting BIM file as input.
)

Yin the Workbench toolbar, the resulting BIM file will contain documentation

Fair Isaac Corporation Confidential and Proprietary Information

203

Annotations

!@doc.chapter The example
!Q@doc.section Parameters

The resulting cover page and table of contents generated by moseldoc look as follows (the
contents listing also refers to the entity and subroutine annotations shown in the following items):

Introduction

The example

Parameters H
WYPAR An example of model documentation
Constants and variables
MYERR
3
rectype
Subroutines
myfunct, myotherfunc

Release 0.0.1

Last modification March 2015

[Next]

m Documenting parameters:

parameters
!@doc.descr Short parameter description
!@doc.value vl possible value
!'Q@doc.value v2 another possible value
!Q@doc.info Some more explanation (longer text)
MYPAR="some text"
end-parameters

m Documenting entity declarations (type definitions, constants, variables):

!@doc.section Constants and variables
public declarations
(!@doc.
Qdescr Short description of the constant set
@info Some additional information
)
S=1..10

!@doc.descr An error code constant
MYERR=11

(!@doc.
Q@descr A record type
@recflddescr fldl field description
Qrecflddescr f1d2 another field description
Qinfo Several Qdoc.info tags can be used for a given entity
Qinfo Entities can be referenced: <entRef>rectype</entRef>
)
rectype=public record
fldl:integer
fld2:string
end-record
end-declarations

This is the HTML page generated by moseldoc from these parameter and entity annotations:

Fair Isaac Corporation Confidential and Proprietary Information 204

Annotations

[Previous chapter]

The example

Parameters

MYPAR : string
short parameter description
Default value 'some text’

values VL possible value
¥2 another possible value

Note Some more explanation (longer text)

Constants and variables

MYERR = 11
An error code constant

S=1..10
Short description of the constant set
Note Some additional information

rectype : record
A record type
fld1 : integer
field description
fld2 : string
another field description

Note 1. Several @doc.info tags can be used for a given entity
2. Entities can be referenced: reciype

m Documenting subroutines:

!'@doc.section Subroutines

(!@doc.
@descr A short description
@param i first parameter
@paramval i valuel description of valuel
@paramval i value2 description of wvalue2
@param r second parameter
@err MYERR reference to an error code constant
@return The return value
@example Some descriptive text for the example
@example [SRC]
the example code is here
@info Some useful information for <tt>myfunct</tt>
@related <fctRef>myotherfunct</fctRef>

)

public function myfunct(i:integer,r:real) :boolean
returned:=i>r

end-function

!@doc.group myfunct
'@doc.info <tt>myotherfunc</tt> is an alternative to <fctRef>myfunct</fctRef>
public function myotherfunc (i:integer) :boolean
returned:=true
end-function

The HTML subroutine documentation page generated by moseldoc from these annotations is
shown here:

Fair Isaac Corporation Confidential and Proprietary Information

205

Annotations

myfunct, myotherfunc

Purpose
A short description

Synopsis
function myfunct (i:integer, r:real):boolean
function myotherfunc(i:integer):boolean

Arguments
i first parameter
waluel description of valuel
wvalueZ description of value2

r second parameter

Error values
MYERRE reference to an error code constant

Return value
The return value

Example
Some descriptive text for the example
the example code is here
Further information
1. Some useful information for myfunct

2. myotherfunc is an alternative to myfunct

Related Topi

m Relocating documentation contents:

!'Q@doc.section A section title
!Q@Qdoc.relocate newlocref
c. ! A1l doc annotations defined here will be inserted at marker 'newlocref'
!'Q@Qdoc.relocate
! All subsequently defined doc annotations remain where they are

!@Qdoc.section Destination location
!'@doc.location newlocref

m Excluding contents from generated documentation:

!@doc.autogen=false
public declarations
! All doc annotations defined here will be ignored
end-declarations
!'@doc.autogen=true
! All subsequently defined doc annotations will get processed

Fair Isaac Corporation Confidential and Proprietary Information 206

V. Remote invocation of Mosel

Overview

All previous sections of this manual assume that you are working with a standard installation of Xpress
on your local computer. However, a local installation of Xpress is not a requirement when working with
Mosel. The examples in this part show how to use the Mosel remote invocation library XPRD for
building applications requiring the Xpress technology that run from environments where Xpress is not
installed—including architectures for which Xpress is not available.

XPROD is a self-contained library (i.e. with no dependency on the usual Xpress libraries) that relies on the
Mosel Distributed Framework (module mmjobs, see Section 17.2). The examples in this part are
introductory examples of some of the most commun programming tasks when working with a remote
installation of Xpress, namely

starting Mosel instances (locally or on remote hosts)

compiling, loading, running, and interrupting Mosel models remotely

redirection of standard streams

sending and receiving events

retrieving data from a Mosel model

Further examples, particularly of more advanced uses, are discussed in the whitepaper Multiple models
and parallel solving with Mosel and also in the Advanced Evaluators’ Guide. Both documents are
provided with their examples as a part of the Xpress distribution. For a complete documentation of the
XPRD library the reader is referred to the XPRD Reference Manual.

The first chapter (Chapter 19) of this part introduces the C version of XPRD. The Java versions of the
same examples are described in Chapter 20.

Fair Isaac Corporation Confidential and Proprietary Information 208

http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest

CHAPTER 19

XPRD C

The program example runprimedistr. c below shows how to run the model prime.mos remotely
using the XPRD C library (NB: this program corresponds to the mmjobs distributed computing example
runprimedistr.mos from Section 17.2.4). At first sight, the reader might be reminded of the Mosel C
libraries presented in Chapter 13. However, there are two major additions besides the change of the
prefixes from XPRM to XPRD:

m We need to connect to a remote machine and create a new Mosel instance (XPRDmosel) prior to
working with any Mosel models. Remote machines are specified by their name or IP address, the
empty string in the present example indicates that we want to use the local machine.

m The submodel is executed in an independent process and we therefore need to wait for its
termination.

In summary, the standard execution sequence for Mosel models of compile load run is augmented to
connect - compile load run wait in the context of distributed computing (this remark equally applies to
submodels launched via mmjobs).

Instead of simply waiting for the submodel to terminate, the program below waits for 2 seconds and if
no termination event message has been received from the Mosel model, it is stopped by the
application. After termination of the submodel (either by finishing its calculations within less than 2
seconds or stopped by the master model) the application reports the full event information and also
displays the termination status and the exit value of the Mosel model. Unloading a model explicitly as
shown here is only really necessary in larger applications that continue after the termination of the
submodel, so as to free the memory used by it.

#include <stdio.h>
#include <stdlib.h>
#include "xprd.h"

int main(int argv,char =*argsl[])
{
XPRDcontext xprd;
XPRDmosel mosellInst;
XPRDmodel modPrime, evsender;
double evvalue;
int evclass;

xprd=XPRDinit () ; /* Create an XPRD context */

/* Open connection to a remote node: "" means the node running this program x*/
moselInst=XPRDconnect (xprd, "", NULL, NULL, NULL, O0);

/* Compile the model file =/
XPRDcompmod (moselInst, "", "rmt:prime.mos", "rmt:prime.bim", "");

/* Load BIM into the remote instance %/
modPrime=XPRDloadmod (moselInst, "rmt:prime.bim");

XPRDrunmod (modPrime, "LIMIT=50000"); /x Start execution and =/

Fair Isaac Corporation Confidential and Proprietary Information 209

XPRD C

19.1

XPRDwaitevent (xprd, 2) ; /* wait 2 seconds for an event x*/

if (XPRDqueueempty (xprd)==1) /* No event has been sent... x/

{

printf ("Model too slow: stopping it!\n");

XPRDstoprunmod (modPrime) ; /* ... stop the model, then wait =*/
XPRDwaitevent (xprd, -1) ;

}

XPRDgetevent (xprd, &evsender, &evclass, &evvalue); /* Get the event */
printf ("Event value: %g sent by model %d\n", evvalue, XPRDgetnum(evsender));
printf ("Exit status: %d\n", XPRDgetstatus (modPrime));

printf ("Exit code : %d\n", XPRDgetexitcode (modPrime)) ;
XPRDunloadmod (modPrime) ; /* Unload the model x/
XPRDdisconnect (moselInst) ; /* Disconnect remote instance */
XPRDfinish (xprd) ; /* Terminate XPRD x/

remove ("prime.bim"); /* Clean up temporary files */
return 0;

In this example, we assume that the model source is saved on the local machine running XPRD, and the
BIM file is written back to this machine (indicated by the 1/0 driver prefix rmt : in the ‘compile’ and
‘load’ functions that are executed on the remote instance). Alternatively, we might choose to save the
BIM file on the remote machine, e.g. in memory (shmem: primebim) or in Mosel's temporary directory
(tmp:prime.bim).

Exchanging data with the model

A typical programming task when working with remote models is the retrieval of results into the calling
application. In this section we show how to use XPRD functionality for retrieving data that is written by
a Mosel model inan initializations block into the XPRD program. The choice of the method for
exchanging data usually depends on the particular system setup (write access rights) and the volume
of data to be communicated (memory usage). Data in Mosel format can be output

1. on the remote machine running Mosel

(@) in memory
(b) as a physical file

2. on the local machine running XPRD

(@) in memory
(b) as a physical file

Case 1a is implemented in the program version runprimeiodistr.c printed below. Case 1b is
obtained by removing the shmem: prefix from the file name, for example, the setting

OUTPUTFILE=bin:tmp:resdata
will create a file resdata in Mosel’s temporary directory. Cases 2a and 2b could use the setting

OUTPUTFILE=bin:rmt:resdata

For the implementation of case 2b we simply replace the calls to the XPRD remote file access
functions by the standard C library functions fopen, fread, and fclose. Somewhat more work is

Fair Isaac Corporation Confidential and Proprietary Information 210

XPRD C

required for the implementation of case 2a: the program needs to define an XPRD file manager to
handle the data in memory—an example implementation is provided in the file runprimeiodistr2.c.

All implementation versions share the use of the bin: I/0 driver and they all define the same function
show_solution that decodes Mosel’s binary format and displays the solution values. Using Mosel’s
binary format is recommended (though not a necessity) in distributed applications—it is
platform-independent and uses less space than the standard text format.

The program example of the previous section stops the Mosel model with a call to XPRDstoprunmod.
We now replace this hard stop by sending the user event ‘'STOPMOD’ to the submodel: instead of
immediately terminating the submodel this event is intercepted by the submodel and makes it interrupt
its calculations and write out the current solution. To make sure that the submodel is actually running
at the point where we sent the ‘STOPMOD’ event, we have also introduced a'MODREADY’ event sent
from the submodel to the master to indicate the point of time when it starts the calculations (with
heavy operating system loads the actual submodel start may be delayed).

The Mosel model primeio.mos remains the same as shown in Section 17.2.3.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xprd.h"

#include "bindrv.h"

#define STOPMOD 2 /* Identifier for "Stop submodel" user event %/
#define MODREADY 3 /* Identifier for "Submodel ready" user event */

int main(int argv,char *args[])
{
XPRDcontext xprd;
XPRDmosel moselInst;
XPRDmodel modPrime, evsender;
double evvalue;
int evclass;

XPRDfile f;
xprd=XPRDinit () ; /* Create an XPRD context x/
/* Open connection to a remote node:
"" means the node running this program */
moselInst=XPRDconnect (xprd, "", NULL, NULL, NULL, O0);
/* Compile the model file =/
XPRDcompmod (moselInst, "", "rmt:primeio.mos", "tmp:primeio.bim", "");

/* Load the bim file into the remote instance */
modPrime=XPRDloadmod (moselInst, "tmp:primeio.bim");

/* Disable submodel output =*/
XPRDsetdefstream (moselInst, modPrime, XPRD_F_WRITE, "null:");

/* Start execution */
XPRDrunmod (modPrime, "LIMIT=50000,OUTPUTFILE=bin:shmem:resdata");

XPRDwaitevent (xprd, 0) ; /* Wait for an event x/
XPRDgetevent (xprd, &evsender, &evclass, &evvalue); /* Get the event */
if (evclass != MODREADY) /* Check the event class */

{
printf ("Problem with submodel run");
return 1;

}
XPRDwaitevent (xprd, 2) ; /* Wait 2 seconds for an event */

if (XPRDqueueempty (xprd)==1) /* No event has been sent */

{

printf ("Model too slow: stopping it!\n");

XPRDsendevent (modPrime, STOPMOD, O0); /* Stop the model, then */
XPRDwaitevent (xprd, -1); /* wait for its termination =%/

}

Fair Isaac Corporation Confidential and Proprietary Information 211

XPRD C

/* Open the output file, retrieve and display the solution data */
f=XPRDfopen (moselInst, "shmem:resdata", XPRD_F_BINARY|XPRD_F_INPUT, NULL,O0);
show_solution (my_read, f);

XPRDfclose (f);

XPRDunloadmod (modPrime) ; /* Unload the model x/
XPRDdisconnect (moselInst) ; /* Disconnect remote instance */
XPRDfinish (xprd) ; /* Terminate XPRD */

return 0;

Once the submodel has terminated we read its solution from the location specified in the model
parameter OUTPUTF ILE and display the results. The subroutine show_solution uses functions from
the bindrv library that is provided with XPRD to decode Mosel’s binary format. The output file read by
this routine has the same structure as the correponding text file in Mosel format, for example:

NumP: 6
SPrime: [2 3 5 7 11 13]

Since XPRD and bindrv expect different signatures for their reading functions, we also define a wrapper
function my_ read.

/*%%*% Wrapper function for 'bindrv' xxxx/
static size_t my_read(void *buf, size_t size, size_t nmemb, void *ctx)
{

size_t s,a;

long t;

s=size*nmemb;
a=0;
while (s>0)
{
t=XPRDfread (ctx, (char*)buf+a, s);
if (t<=0) break;
else
{
a+=t;
s—=t;
}
}
return a/size;

}

/**x*x Using bindrv: Decode the binary file and display its contents x*xx/
void show_solution(size_t (*doread) (void *,size_t,size_t,void*), void *rctx)
{

s_bindrvctx bdrv;

int *solarr;

int size,i,n;

char *str;

bdrv=bindrv_newreader (doread, rctx) ; /* Initialize binreader =*/

i=size=0;
solarr=NULL;
while (bindrv_nexttoken (bdrv) >=0)

{

bindrv_getctrl (bdrv, &n) ; /* 'label' (marker) =x/
bindrv_getstring (bdrv, &str) ; /* Read a string =/
if (strcmp (str, "NumP")==0)
{
free(str);
bindrv_getint (bdrv, &size); /* Read an integer =/
printf (" (%d prime numbers)\n", size);
if (size>0) /* Prepare array to receive values */

Fair Isaac Corporation Confidential and Proprietary Information

212

XPRD C

solarr=malloc (sizeof (int) *size);
else
break;
}
else
if (strcmp(str, "SPrime")==0)
{
free(str);
bindrv_getctrl (bdrv, &n) ; /* [(start marker) =*/
while (bindrv_nexttoken (bdrv)==BINDRV_TYP_INT)
{ /* Read integers =*/
bindrv_getint (bdrv, & (solarr[i++]));
}
bindrv_getctrl (bdrv, &n) ; /%] (end marker) =/
}
else
{
printf ("Unexpected label: %s\n", str);
free(str);
exit (1) ;
}
}

bindrv_delete (bdrv) ; /* Release bin reader */

/* Print the set of prime numbers */
printf ("Prime numbers={");
for (i=0; i<size; i++)
printf (" %d",solarr[i]);
printf ("}\n");

free (solarr); /* Clean up */

}

Fair Isaac Corporation Confidential and Proprietary Information 213

CHAPTER 20

XPRD Java

For the remote execution of Mosel models we need to augment the standard execution sequence for
Mosel models (that we have seen, for example, in Section 14.1) of compile load run to the sequence
connect — compile load run wait (this remark equally applies to submodels launched via mmjobs). The
meaning of these additions is the following:

m We need to connect to a remote machine and create a new Mosel instance (XPRDmosel) prior to
working with any Mosel models. Remote machines are specified by their name or IP address, the
empty string in the example below indicates that we want to use the local machine.

m The submodel is executed in an independent process and we therefore need to wait for its
termination.

The program example runprimedistr. java below shows how to run the model prime.mos using
the XPRD Java library. If the submodel has not terminated after 2 seconds (i.e., not termination
message has been received from this model), then it is stopped by the application. After termination of
the submodel (either by finishing its calculations within less than 2 seconds or stopped by the master
model) the application reports the full event information and also displays the termination status and
the exit value of the Mosel model. Unloading a model explicitly as shown here is only really necessary
in larger applications that continue after the termination of the submodel, so as to free the memory
used by it.

import com.dashoptimization.*;
import java.lang.*;
import java.io.x;

public class runprimedistr
{
public static void main(String[] args) throws Exception
{
XPRD xprd=new XPRD () ;
XPRDMosel mosellInst;
XPRDModel modPrime;
XPRDEvent event;

moselInst=xprd.connect (""); // Open connection to remote nodes
// "" means the node running this program

// Compile the model file on remote instance
moselInst.compile("", "rmt:prime.mos", "rmt:prime.bim");

// Load the bim file into remote instance
modPrime=mosellInst.loadModel ("rmt:prime.bim");

modPrime.execParams = "LIMIT=50000";
modPrime.run() ; // Start execution and
xprd.waitForEvent (2); // wait 2 seconds for an event

Fair Isaac Corporation Confidential and Proprietary Information 214

XPRD Java

20.1

if (xprd.isQueueEmpty ()) // No event has been sent...
{
System.out.println("Model too slow: stopping it!");
modPrime.stop(); // ... stop the model, then wait
xprd.waitForEvent () ;
}
// An event is available: model finished
event=xprd.getNextEvent () ;

System.out.println("Event value: " + event.value +

" sent by model " + event.sender.getNumber());
System.out.println("Exit status: " + modPrime.getExecStatus());
System.out.println("Exit code : " + modPrime.getResult());

moselInst.unloadModel (modPrime) ; // Unload the submodel
moselInst.disconnect(); // Terminate the connection

new File("prime.bim") .delete(); // Clean up temporary files

The model source file prime.mos used by this example is saved on the local machine running XPRD,
and the BIM file is written back to this machine (indicated by the I/0 driver prefix rmt : in the ‘compile
and 'load’ function calls that are executed on the remote instance). Alternatively, we might choose to

save the BIM file on the remote machine, e.g. in memory (shmem: primebim) or in Mosel’'s temporary
directory (tmp: prime.bim).

U

Exchanging data with the model

An application that processes a Mosel model typically needs to retrieve some (result) data from the
model for reporting or further treatment. Besides exchanging data via external sources (e.g.
databases), Mosel offers a number of possibilities for directly retrieving data into an XPRD program.
The choice of the method for exchanging data usually depends on the particular system setup (write
access rights) and the volume of data to be communicated (memory usage). Data in Mosel format
writteninan initializations block can be output

1. on the remote machine running Mosel

(@) in memory
(b) as a physical file

2. on the local machine running XPRD

(@) in memory
(b) as a physical file

Case 1a is implemented in the program version runprimeiodistr. java printed below. Case 1b is
obtained by removing the shmem: prefix from the file name, for example, the setting

OUTPUTFILE=bin:tmp:resdata
will create a file resdata in Mosel's temporary directory. Cases 2a and 2b could use the setting

OUTPUTFILE=bin:rmt:resdata

For the implementation of case 2b we simply replace the XPRD remote file access by standard Java file
access, for example

Fair Isaac Corporation Confidential and Proprietary Information 215

XPRD Java

resdata=new FileInputStream("resdata");

Somewhat more work is required for the implementation of case 2a: the program needs to define an
XPRD file manager to handle the data in memory—an example implementation is provided in the file
runprimeiodistr2. java.

All implementation versions share the use of the bin: I/0O driver and they all define the same function
showSolution that decodes Mosel's binary format and displays the solution values. Using Mosel’s
binary format is recommended (though not a necessity) in distributed applications—it is
platform-independent and uses less space than the standard text format.

The program version printed below introduces two user events to achieve more precise time measures
for the remote process: the hard stop of the Mosel model is replaced by sending the user event
‘STOPMOD’ to the submodel: instead of immediately terminating the submodel this event is intercepted
by the submodel and makes it interrupt its calculations and write out the current solution. To make sure
that the submodel is actually running at the point where we sent the ‘STOPMOD’ event, we have also
introduced a '’MODREADY’ event sent from the submodel to the master to indicate the point of time
when it starts the calculations (with heavy operating system loads the actual submodel start may be
delayed).

We work with the Mosel model primeio.mos from Section 17.2.3.

import com.dashoptimization. *;
import java.lang.*;

import java.util.sx;

import java.io.x;

public class runprimeiodistr

{

static final int STOPMOD = 2; // Identifier for "Stop submodel" user event
static final int MODREADY = 3; // Identifier for "Submodel ready" user event

public static void main(String[] args) throws Exception
{

XPRD xprd=new XPRD () ; // Initialize XPRD
XPRDMosel mosellInst;

XPRDModel modPrime;

XPRDEvent event;

InputStream resdata;

moselInst=xprd.connect (""); // Open connection to remote nodes
// "" means the node running this program

// Compile the model file on remote instance
moselInst.compile("", "rmt:primeio.mos", "tmp:primeio.bim");

// Load the bim file into remote instance
modPrime=moselInst.loadModel ("tmp:primeio.bim");

// Disable submodel output
modPrime.setDefaultStream (modPrime.F_OUTPUT, "null:");

modPrime.execParams = "LIMIT=50000,OUTPUTFILE=bin:shmem:resdata";
modPrime.run(); // Start execution and
xprd.waitForEvent () ; // ...wait for an event
event=xprd.getNextEvent () ; // Retrieve the event

if (event.eventClass != MODREADY) // Check the event class

{
System.out.println("Problem with submodel run");
System.exit (1) ;

}

xprd.waitForEvent (2); // Let the submodel run for 2 seconds

if (xprd.isQueueEmpty()) // No event has been sent...
{

Fair Isaac Corporation Confidential and Proprietary Information 216

XPRD Java

System.out.println("Model too slow: stopping it!");
modPrime.sendEvent (STOPMOD, O0); // ... stop the model, then
xprd.waitForEvent () ; // wait for its termination

}

// Open the output file, retrieve and display the solution data
resdata=moselInst.openForReading ("shmem:resdata", moselInst.F_BINARY);
showSolution (resdata);

resdata.close();

moselInst.unloadModel (modPrime) ; // Unload the submodel
moselInst.disconnect () ; // Terminate the connection

After termination of the model run, the XPRD application reads the solution data from the location
specified in the model parameter OUTPUTFILE and displays the results. Below follows the
implementation of the function showSolution that uses an instance of BinDrvReader to decode
Mosel's binary format (the bindrv library is provided with XPRD). A binary format files has the same
structure as the correponding text file in Mosel format, for example:

NumP: 6
SPrime: [2 3 5 7 11 13]

Each data entry starts with a label (string followed by a colon), followed either by a single, scalar data
value, or a list of data values surrounded by square brackets.

// **xxx Decode the binary stream and display its contents **x*x*
static void showSolution (InputStream inbuf) throws Exception
{
BinDrvReader bdrv=new BinDrvReader (inbuf); // Initialize binreader
String label;
ArraylList<Integer> setP=new ArrayList<Integer>();

while (bdrv.nextToken () >=0)
{

bdrv.getControl () ; // 'label' (marker)
label=bdrv.getString(); // Read a string
if (label.equals ("NumP"))

{ // Read an integer

System.out.println(" (" + bdrv.getInt() + " prime numbers.)");
}

else

if (label.equals ("SPrime"))

{

bdrv.getControl () ; // [(start marker)
while (bdrv.nextToken () ==BinDrvReader.TYP_INT) // or] at end of list
{ // Read integers

setP.add (new Integer (bdrv.getInt()));
}
bdrv.getControl () ; // 1 (end marker)
}
else
{
System.out.println ("Unexpected label: "+label);
System.exit (0);
}
}

// Display the contents of the set 'SPrime'
Iterator<Integer> iprime=setP.iterator();
System.out.print ("Prime numbers={");
while (iprime.hasNext ())

{
Integer p=iprime.next();
System.out.print (" "+p);

Fair Isaac Corporation Confidential and Proprietary Information 217

XPRD Java

}
System.out.println(" }");

}

Fair Isaac Corporation Confidential and Proprietary Information 218

Appendix

APPENDIX A

Mosel Language overview

A.1 Structure of a Mosel model

A Mosel model (text file with extension .mos) has the form

model model_name

Compiler directives

Parameters
Body

end-model

Compiler directives

Run-time parameters

Model body

Options are specified as a compiler directive, at the beginning of the
model

Options include explterm, which means that each statement must end
with a semi-colon, and noimplicit, which forces all objects to be
declared

options explterm
options noimplicit

uses statements are also compiler directives

uses "mmxprs", "mmodbc"

Can define a version number for your model

version 1.0.0

Another set of compiler directives serves for the definition and
configuration of namespaces

namespace mynsp
nssearch myns2

Scalars (of type integer, real, boolean, or string) with a specified
default value

Their value may be reset when executing the model

Use initializations from forinputting structured data (arrays,
sets,...)

At most one parameters block per model

Model statements other than compiler directives and parameters,
including any number of

Fair Isaac Corporation Confidential and Proprietary Information 220

Mosel Language overview

- declarations
- initializations from/initializations to
— functions and procedures

Mosel does not require all objects to be declared

Simple objects can be used without declaring them, if their type is
obvious

m Usethe noimplicit option to force all objects to be declared before
using them (see item Compiler directives above)

Implicit declaration

Mosel statements

Can extend over several lines and use spaces
However, a line break acts as an expression terminator

To continue an expression, it must be cut after a symbol that implies
continuation (e.g. + - , *)

A.2 Data structures

array, set, list, record and any combinations thereof, e.g.,

S: set of list of integer
A: array(range) of set of real

Arrays Array: collection of labeled objects of a given type where the label of an array entry is
defined by its index tuple

declarations
A: array(l..5) of real
B: array(range, set of string) of integer
x: array(l..10) of mpvar

end-declarations

A:: [4.5, 2.3, 7, 1.5, 10]
A(2):=1.2

B:: (2..4,["ABC", "DE", "KLM"])[15,100,90,60,640,15,10,1,30]
Sets Set: collection of objects of the same type without establishing an order among

them (as opposed to arrays and lists)
Set elements are unique: if the same element is added twice the set still only
contains it once.

declarations
S: set of string
R: range
end-declarations

S:= IIA", "Bll, "Cll, "D"
R:= 1..10
Lists List: collection of objects of the same type

A list may contain the same element several times. The order of the list elements is
specified by construction.

declarations

L: list of integer

M: array(range) of list of string
end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[['A','B','C'], ['D','E'], ['F','G','H','I"]]

Fair Isaac Corporation Confidential and Proprietary Information 221

Mosel Language overview

Records Record: finite collection of objects of any type
Each component of a record is called a field and is characterized by its name and its
type.
declarations
ARC: array (ARCSET:range) of record
Source, Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC (1) .Source:= "B"
ARC (3) .Cost:= 1.5

User types User types are treated in the same way as the predefined types of the Mosel
language. New types are defined in declarations blocks by specifying a type
name, followed by =, and the definition of the type.

declarations
myreal = real
myarray = array(l..10) of myreal
COST: myarray

end-declarations

A.3 Selection statements

if ... end-if if c=1 then
writeln('c equals 1'")
end-if

if ... else ... end-if if c=1 then
writeln('c equals 1'")
else
writeln('c does not equal 1')
end-if

if ... elif ... else ... end-if if c=1 then
writeln('c equals 1'")
elif cl then
writeln('c is bigger than 1')

else
writeln('c is smaller than 1')
end-if
case ... end-case case ¢ of
1,2 : writeln('c equals 1 or 2'")
3 : writeln('c equals 3')
4..6: do
writeln('c is in 4..6")
writeln('c is not 1, 2 or 3'")
end-do
else
writeln('c is not in 1..6"'")
end-case
A.4 Loops
forall forall (f in FAC, t in TIME)

make (f,t) = MAXCAP (f,t)

forall(t in TIME) do

use (t) = MAXUSE (t)
buy (t) = MAXBUY (t)
end-do

Fair Isaac Corporation Confidential and Proprietary Information 222

Mosel Language overview

while i:=1
while (i = 10) do
write(' ', i)
i+=1
end-do
repeat ... until i:=1
repeat
write(' ', 1)
i+=1
until (i 10)

break, next

break jumps out of the current loop

break n jumps out of n nested loops (where n is a positive integer)
next jumps to the beginning of the next iteration of the current loop

counter |

Use the construct as counter to specify a counter variable in a

bounded loop (i.e., forall or aggregate operators such as sum). At
each iteration, the counter is incremented

cnt:=0.0

writeln ("Average

of odd numbers in 1..10: ",

(sum(cnt as counter, i in 1..10 | isodd(i)) i) / cnt)
A.5 Operators
Assignment operators i =10
i += 20 ! Same as 1 :=1i + 20
i-= 5 ! Same as 1 :=1 - 5
Assignment operators with linear constraints
C := 5xx + 2*y 20
D := C + T*y
thenD is
D := 5*x + 9*y 20
The constraint type is dropped with : =
C := 5*x + 2+*y 20
C += Tx*y
thencis
C := 5*x + 9*y 20
The constraint type is retained with +=, —=
Arithmetic operators
standard: + - %/
power: B
int. division/remainder: mod div
sum: sum(i in 1..10)
product: prod(i in 1..10)
minimum/maximum: min(i in 1..10) ...
count: count (i in 1..10 | isodd(i))
Fair Isaac Corporation Confidential and Proprietary Information 223

Mosel Language overview

Linear and non-linear expressions

Decision variables can be combined into linear or non-linear expressions
using the arithmetic operators

m module mmxprs only works with linear constraints, so no prod, min,

max, ...

m other solver modules, e.g., mmnl, mmxnlp, also accept (certain)
non-linear expressions

Logical operators
constants:
standard:
AND:
OR:
comparison:

Set operators
constants:
union:
union:
intersection:
intersection:
difference:

Set comparison operators
subset:
superset:
equals:
not equals:
element of:

not element of:

List operators
constants:

concatenation:

truncation:
equals:

not equals:
enumeration:

true, false

and, or, not

and (i in 1..10)
or(i in 1..10)

<, >, =, <>, <=, >=

{IAI, IBI}

+

union(i in 1..10)
*

inter(i in 1..10)

Setl <= Set2

Setl >= Set2

Setl = Set2

Setl <>Set2

"0il5" in Setl
"0il5" not in Setl

(1, 2, 3]

+, sum

Ll = L2

Ll <>L2

i in L (within forall, sum etc.)

A.6 Built in functions and procedures

The following is a list of built in functions and procedures of the Mosel language (excluding modules).

Functions return a value; procedures do not.

Dynamic array handling
Freeze (finalize) a dynamic set
Rounding functions

Mathematical functions

Special real values

Random number generator

create exists delcell isdynamic
finalize

ceil floor round abs

exp log 1n sgrt

cos sin arctan

isodd

isfinite isinf isnan

random setrandseed

Fair Isaac Corporation Confidential and Proprietary Information

224

Mosel Language overview

Minimum/maximum of a list of values

Inline “if” function

Matrix export to file

File handling

String handling

Access and modify model objects

Access solution values

Exit from a model
Mosel controls
Date/time

Bit value handling

Miscellaneous

m Overloading of subroutines

— Some functions or procedures are overloaded: a single subroutine can be called with

v := minlist(5, 7, 2, 9)

w ol

MAX_INVEN (t)

Inven(t) :=

exportprob

fopen
getfid
iseof

maxlist (CAP (1),

CAP (2))

= if (t MAX_TIME, 1000, O0)

stock(t) = buy(t) - sell(t)

if(t 1, stock(t-1), 0)

fclose
getfname
fflush

fwrite[_] / fwriteln[_]

read / readln

strfmt

getcoeff[s]
sethidden
gettype
makesosl
getelt
findlast
cutfirst
reverse

getobjval
getsol
getslack

exit
getparam
currentdate

bitflip
bitshift

asproc
memoryuse
reset
versionnum

different types and numbers of arguments

write[_]
substr

setcoeff
ishidden
settype
makesos2
getfirst
gethead
cutlast
getreverse

getrcost
getact

setparam
currenttime

bitneg
bittest

assert
newnuid
setioerr
versionstr

fselect
getreadcnt
fskipline

/ writeln[_]

getvars
setname
getsize

getlast
gettail
cuthead
splithead

getdual

localsetparam

timestamp

bitset
bitval

compare
publish
setmatherr

setrange

findfirst
cutelt
cuttail
splittail

restoreparam

datablock
unpublish

m Additional subroutines are provided by Mosel library modules, which extend the basic Mosel

language, e.g.,

— mmxprs: Xpress Optimizer

— mmodbc: ODBC data connection
— mmsheet: accessing spreadsheets
- mmsystem: system calls; text handling

- mmjobs: handling multiple models and (remote) Mosel instances

— mmsvg: graphics

= See the ‘Mosel Language Reference Manual’ for full details

m User-defined functions and procedures

- You can also write your own functions and procedures within a Mosel model

Fair Isaac Corporation Confidential and Proprietary Information

225

Mosel Language overview

- Structure of subroutines is similar to a model (may have declarations blocks)
- User subroutines may define overloaded versions of built in subroutines

= See examples in Chapter Functions and procedures

m Packages

- Additional subroutines may also be provided through packages (Mosel libraries written in the
Mosel language as opposed to Mosel modules that are implemented in C)

= See the Chapter Packages for further detail

A.7 Constraint handling

Ctrl:= 2xx + y = 10 ! Named constraints
Ctr2:= x is_integer
2*x + y = 10 ! Anonymous constraints
y =5
Named constraints can be accessed: val:= getact (Ctr)
getvars (Ctr, vars)
hidden: sethidden (Ctr, true)
redefined: Ctr:= x+y = 10
Ctr:= 2%x+5%xy = 5
modified: Ctr += 2#x
settype (Ctr, CT_UNB)
deleted (reset): Ctr:= 0

Anonymous constraints are constraints that are specified without assigning themto a 1inctr
variable. Bounds are (to Mosel) just simple constraints without a name. Anonymous constraints are
applied in the optimization problem just like ordinary constraints. The only difference is that it is not
possible to refer to them again, either to modify them, or to examine their solution value.

A.8 Problem handling

m Mosel can handle several problems in a given model file. A default problem is associated with
every model.

m Built in type mpproblem to identify mathematical programming problems

- The same decision variable (type mpvar) may be used in several problems
- Constraints (type 1inctr) belong to the problem where they are defined

m The statement with allows to open a problem (= select the active problem):

declarations
myprob: mpproblem
end-declarations

with myprob do
xty = 0
end-do

m Modules can define other specific problem types. New problem types can also be defined by
combining existing ones, for instance:

Fair Isaac Corporation Confidential and Proprietary Information 226

Mosel Language overview

mypbtyp = mpproblem and somepbtype

m Problem types support assignment: P1:= P2
and additive assignment: P1 += P2

Fair Isaac Corporation Confidential and Proprietary Information 227

APPENDIX B
Good modeling practice with Mosel

The following recommendations for writing Mosel models establish some guidelines as to how to write
“good” models with Mosel. By “good” we mean re-usability, readability, and perhaps most importantly,
efficiency: when observing these guidelines you can expect to obtain the best possible performance of
Mosel for the compilation and execution of your models.

B.1 Using constants and parameters

Many mathematical models start with a set of definitions like the following:

NT:= 3

Months:= {
MAXP:= 8.4
Filename= "mydata.dat"

'Jan', 'Feb', 'Mar'}

If these values do not change later in the model, they should be defined as constants, allowing Mosel to
handle them more efficiently:

declarations

NT = 3

Months = {'Jan', 'Feb', 'Mar'}
MAXP = 8.4

Filename= "mydata.dat"
end-declarations

If such constants may change with the model instance that is solved, their definition should be moved
into the parameters block (notice that this possibility only applies to simple types, excluding sets or
arrays):

parameters

NT = 3

MAXP = 8.4

Filename = "mydata.dat"
end-parameters

Mosel interprets these parameters as constants, but their value may be changed at every execution of a
model, e.g.

mosel exec mymodel NT=5 MAXP=7.5 Filename="mynewdata.dat"

B.2 Naming sets

It is customary in mathematical models to write index sets as 1,..., N or the like. Instead of translating

Fair Isaac Corporation Confidential and Proprietary Information 228

Good modeling practice with Mosel

this directly into Mosel code like the following:

declarations
x: array(l..N) of mpvar
end-declarations

sum(i in 1..N) x(i) >= 10
it is recommended to name index sets:

declarations

RI = 1..N

x: array(RI) of mpvar
end-declarations

sum(i in RI) x (i) >= 10

The same remark holds if several loops or operators use the same intermediate set(s). Instead of

forall(i in RI | isodd(i)) =x(i) is_integer
forall(i in RI | isodd(i)) x(i) <= 5
sum(i in RI | isodd(i)) x(i) >= 10

which calculates the same intermediate set of odd numbers three times, it is more efficient to define
this set explicitly and calculate it only once:

ODD:= union(i in RI | isodd(i)) {i}

forall(i in ODD) x(i) is_integer
forall(i in ODD) x(i) <= 5
sum(i in ODD) x (i) >= 10

Alternatively, loops of the same type and with the same index set(s) may be regrouped to reduce the
number of times that the sets are calculated:

forall(i in RI | isodd(i)) do

x (1) is_integer

x(1) <=5

end-do

sum(i in RI | isodd(i)) x(i) >= 10

B.3 Finalizing sets and dynamic arrays

The declaration of an array in Mosel has one of these two forms

1. Explicit declaration as sparse array by using one of the keywords dynamic or hashmap.

2. ‘Standard’ declaration, resulting in a dense array that is either static (all index sets are known) or
not fixed (some or all indexing sets are unknown at the point where the declaration takes place).

If an array is used to represent dense data one should avoid defining it as a sparse array as that uses
more memory and is slower than the corresponding dense array.

In many optimization models, dense arrays are created as non-fixed arrays because their contents is
initially unknown—but there is no real need to treat them as dynamic structures throughout the whole
model as they remain unchanged once they have been initialized.

The automatic finalization mechanism of Mosel therefore transforms such initially dynamic
sets/non-fixed arrays as to handle them more efficiently. As an additional advantage, set finalization

Fair Isaac Corporation Confidential and Proprietary Information 229

Good modeling practice with Mosel

allows Mosel to check for ‘out of range’ errors that cannot be detected if the sets are allowed to grow
dynamically.

m By default, initializations blocks finalize the sets they initialize and also the index sets of
initialized dense arrays.

m Data of non-dynamic arrays is read before finalization of the index sets in order to create the
arrays static.

m Arrays that are not explicitly declared as sparse arrays are only allocated when they are first
accessed: this allows these arrays to be static even if their index sets are finalized after the
declaration of the arrays.

So, code like the following example

declarations

S: set of string

A,B: array(S) of real
x: array(S) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations
sum(s in S) B(s)*x(s)
where all arrays are declared as dense arrays that are not fixed (their size is not known at their

declaration) but only A that is initialized using a data file really needs to be non-fixed, will be treated by
Mosel as if you had written the following

declarations

S: set of string

A: array(S) of real
end-declarations

initializations from "mydata.dat"
A

end-initializations

finalize (S)

declarations

B: array(S) of real

x: array(S) of mpvar
end-declarations

That is, B and x are created as static arrays, making the access to the array entries more efficient.

As a general rule, the following sequence of actions gives better results (in terms of memory
consumption and efficiency):

1. Declare data arrays and sets that are to be initialized from external sources.

2. Perform initializations of data.

3. Finalize all related sets.

4. Declare any other arrays indexed by these sets (including decision variable arrays).

Note: there are several possibilities to stop Mosel from applying automatic finalization to model
objects:

Fair Isaac Corporation Confidential and Proprietary Information 230

Good modeling practice with Mosel

B.4

B.5

m Declare arrays explicitly as dynamic or hashmap arrays. (See examples in Sections 3.2 and
3.3.1)

m Declare sets explicitly as dynamic in which case they cannot be finalized.

m Use control parameter autofinal to enable/disable automatic finalization locally:

setparam("autofinal", false)
initializations from "datafile.dat"
end-initializations
setparam("autofinal”, true)

m Use option noautofinal to disable automatic finalization globally for the whole model:

model "modelname"
options noautofinal

Ordering indices

Especially when working with sparse arrays, the sequence of their indices in loops should correspond
as far as possible to the sequence given in their declaration. For example an array of variables declared

by:

declarations

A,B,C: range

x: array(A,B,C) of mpvar
end-initializations

that is mostly used in expressions like sum(b in B, ¢ in C, a in A) x(a,b,c) should
preferrably be declared as

declarations

A,B,C: range

x: array(B,C,A) of mpvar
end-declarations

or alternatively the indices of the loops adapted to the order of indices of the variables.

Use of exists

The Mosel compiler is able to identify sparse loops and optimizes them automatically, such as in the
following example:

declarations
I=1..1000
J=1..500

A: dynamic array(I,J) of real
x: array(I,J) of mpvar
end-declarations

initializations from "mydata.dat"
A

end-initializations

C:= sum(i in I,j in J | exists(A(i,3J))) A(i,J)*x(i,j) =0

Fair Isaac Corporation Confidential and Proprietary Information 231

Good modeling practice with Mosel

Notice that we obtain the same definition for the constraint ¢ with the following variant of the code, but
no loop optimization takes place:

C:= sum(i in I,J in J) A(i,3)*x(i,j) = 0

Here all index tuples are enumerated and the corresponding entries of A are set to 0. Similarly, if not all
entries of x are defined, the missing entries are interpreted as 0 by the sum operator.

The following rules have to be observed for efficient use of the function exists,:

1. The arrays have to be indexed by named sets (here I and J):

A: dynamic array(I,J) of real ! can be optimized
H: hashmap array(I,J) of real ! can be optimized
B: dynamic array(1..1000,1..500) of real ! cannot be optimized

2. The same sets have to be used in the loops:

forall(i in I,j in J | exists(A(i,3))) ! fast
K:=I; forall(i in X,j in 1..500 | exists(A(i,3))) ! slow

3. The order of the sets has to be respected, particularly for dynamic arrays:

forall(i in I,j in J | exists(A(i,3J))) ! fast
forall(j in J,i in I | exists(H(i,3))) ! slower
forall(j in J,i in I | exists(A(i,3))) ! slowest

4. The exists function calls have to be at the beginning of the condition:

forall(i in I,j in I | exists(A(i,Jj)) and i+3j<>10) ! fast
forall(i in J,3j in J | i+3j<>10 and exists (A (i, J))) ! slow

5. The optimization does not apply to or conditions:

forall(i in I,j in J | exists(A(i,J)) and i+3j<>10) ! fast
forall(i in I,j in J | exists(A(i,]j)) or i+j<>10) ! slow

B.6 Structuring a model

Procedures and functions may be introduced to structure a model. For easy readability, the length of a
subroutine should not exceed the length of one page (screen).

Large model files could even be split into several files (and combined using the include statement).

B.7 Transforming subroutines into user modules

The definitions of subroutines that are expensive in terms of execution time and are called very often
(e.g. at every node of the Branch-and-Bound search) may be moved to a user module. Via the Mosel
Native Interface it is possible to access and change all information in a Mosel model during its
execution. See the Mosel Native Interface User Guide for a detailed description of how to define user
modules.

B.8 Algorithm choice and parameter settings

The performance of the underlying solution algorithm has, strictly speaking, nothing to do with the
efficiency of Mosel. But for completeness’ sake the reader may be reminded that the subroutines

Fair Isaac Corporation Confidential and Proprietary Information 232

Good modeling practice with Mosel

getparam and setparam can be used to access and modify the current settings of parameters of
Mosel and also those provided by modules, such as solvers.

The list of parameters defined by a module can be obtained with the Mosel command

exam —-p module_name

With Xpress Optimizer (module mmxprs) you may try re-setting the following control parameters for the
algorithm choice:

m LP: XPRS_PRESOLVE

m MIP: XPRS_PREPROBING, XPRS_MIPPRESOLVE, XPRS_CUTSTRATEGY, XPRS_HEURSTRATEGY,
XPRS_SBEFFORT, XPRS_NODESELECTION

m Other useful parameters are the criteria for stopping the MIP search: XPRS_MAXNODE,
XPRS_MAXMIPSOL, XPRS_MAXTIME, the cutoff value (XPRS_MIPADDCUTOFF,
XPRS_MIPABSCUTOFF), and various tolerance settings (e.g. XPRS_MIPTOL).

Refer to the Xpress Optimizer Reference Manual for more detail.

You may also add priorities or preferred branching directions with the procedure setmipdir
(documented in the chapter on mmxprs in the Mosel Reference Manual).

Fair Isaac Corporation Confidential and Proprietary Information 233

APPENDIX C
Character encoding in Mosel

This chapter addresses a number of questions relating to character encoding, in particular:

m What is a "character encoding", "character map", "code page"?
m What is Unicode?

m What is the meaning of UTF-8,16,32 and UCS-2?

m What is a BOM?

m Which character encoding is configured on my computer?

m Which files are concerned by character encoding in Mosel?

m How can | convert the character encoding of a text file?

C.1 What is a "character encoding", "character map", "code page"?

Although these terms are not strictly equivalent they all relate to the same problematic: how to
represent a symbol (or character) in a computer system. Such a representation is characterized by 2
properties:

1. a character map to associate each symbol to a unique numerical ID (or code point). For instance
US-ASCII defines 128 positions to represent the letters, digits and punctuation commonly used in
English: "exclamation mark" (!) has code point 33, "zero" has code point 48, "Capital Letter A" has
code point 65, etc.

2. an encoding method to actually represent each code point in memory. With ASCII, 7 bits are
sufficient to encode the entire code set: each character is usually encoded on a single byte.

Various character encodings have been invented to satisfy local requirements around the world. For
example, 1SO-8859-1 is an 8-bit extension of ASCII (i.e. the 128 first code points of this encoding are the
same as ASCII) specifically designed for a group of European languages: it adds a set of accented
letters to standard ASCII. Another version, ISO-8859-7 is suitable for Greek but cannot represent
accented letters such as those used in French.

When the number of code points exceeds 256 it is required to switch to a multi-byte encoding. Shift-JIS
(used in Japan) is an example of multi-byte encoding: each character is encoded using either 1 or 2
bytes.

Typically a computer system is set up with some national encoding suitable to handle the symbols
required by the local language. For instance a Windows system installed in Germany uses encoding
CP1252 (where CP stands for Code page) that supports symbols like '’ or ‘&’ but will not be able to
display any Greek (e.g. ' 8 ") or Hebrew characters (e.g. ' N).

Fair Isaac Corporation Confidential and Proprietary Information 234

Character encoding in Mosel

C.2 What is Unicode?

Unicode is a universal encoding aimed at representing all known symbols such that a single encoding
can be used for any country/language. Unicode is widely adopted and most computer systems use it
internally to store character strings: the Windows operating system (and file system) uses this
encoding as well as most Unix/Linux systems. Programming environments like Java or .NET are also
based on Unicode.

Note that in China the GB18030 encoding is preferred to Unicode: this is a universal encoding published
by the Chinese National Standard.

C.3 What is the meaning of UTF-8,16,32 and UCS-2?

Unicode defines the mapping between code points and symbols, the effective encoding is specified by
a Unicode Transformation Format (UTF). The most commonly used UTF encodings are:

UTF-32 a character is represented by a 4-byte integer
UTF-16 a character is represented by 1 or 2 2-byte integers
UTF-8 a character requires between 1 and 4 bytes

Compared to the other UTF encodings UTF-8 has the advantage of being compatible with ASCII: a text
that consists only of ASCII characters has the same representation in UTF-8 and ASCII. As a
consequence UTF-8 is also more compact than the other UTF encodings for English and most
European languages (because the majority of symbols are included in the ASCII set).

UCS-2 (Universal Character Set v2) is a deprecated encoding originally used in Windows and Java: it
encodes each character on a 2-bytes integer and is therefore limited to the first 65536 code points of
Unicode, this is why it has gradually been replaced by plain UTF-16.

C.4 Whatis a BOM?

For UTF-16 and UTF-32 the byte ordering has to be known (in fact we should refer to UTF-16LE,
UTF-16BE, UTF-32LE, UTF-32BE to take into account the endianness of the encoding). In order to avoid
incorrect interpretation of these encodings a Byte Order Mark (BOM) may be put at the beginning of
documents: it consists in a sequence of bytes that identifies both the encoding (UTF-16 or UTF-32) and
the byte ordering used (Little Endian or Big Endian).

Although UTF-8 does not require any byte ordering information, a dedicated BOM can be used with this
encoding: its primary purpose is to differentiate UTF-8 from other byte-oriented encodings. If not
interpreted this marker takes the form of the 3-characters sequence "i>>¢" (in 1ISO-8859-1 or CP1252): a
document starting with this sequence must be read with an UTF-8 enabled software.

C.5 Which character encoding is configured on my computer?

You can use the command 'xprnls info’ of the XPRNLS command tool to identify which encoding is
used on your system. The following example shows the output produced for western European
Windows / 'latin’ encoding with UK English as the selected language (the program output is highlighted
in bold face):

Fair Isaac Corporation Confidential and Proprietary Information 235

Character encoding in Mosel

>xprnls info
Language: en

Default encodings:
System: CP1252
Console: CP437
File names: CP1252
Wide chars: UTF-16LE

Note that Xpress Workbench works with UTF-8 character encoding, independent of the system settings.

C.6 Which files are concerned by character encoding in Mosel?
Starting with version 4.0 Mosel is working in UTF-8. This concerns

m the internal representation of text
m all external APIs (i.e. all Mosel libraries)

m the communication with the system via Unicode (Windows) or system encoding (Posix)

All streams and text files default to UTF-8. There is no impact on applications that only use pure ASCII
(first 127 characters), but text data files and source code using other encodings might require
conversions or tagging. Note that no changes are required for other file types such as spreadsheets or
databases.

Model source and text data files in Mosel format: Specify the encoding with the annotation
!@encoding. For example if you are editing your model with an editor that employs the encoding
CP1252:

!@encoding CP1252
model "my testmodel"

Other text/string input or output: Convert the encoding via the enc: prefix to file names and streams
or by using the conversion routines of the XPRNLS library or command tool (see paragraph 'How can |
convert the character encoding of a text file’ below).

C.7 How can | convert the character encoding of a text file?

Text format data files (other than the Mosel initializations format for which the ! @encoding
marker can be used) such as CSV files or files accessed via fopen that do not use UTF-8 encoding
need to be converted with the " enc: 7 prefix when accessing them from within a Mosel model.
Example:

! Encoding names are operating system dependent, eg CP1252, IS088591
fopen (enc:GB18030, testdata.txt", F_INPUT)

It is usually preferrable to specify the encoding used by a data file as shown above, but Mosel also
implements shorthands for encodings configured on the system running the model.

! Encoding aliases:
! raw, sys, wchar, fname, tty, ttyin, stdin, stdout, stderr
initializations to "enc:sys,mmsheet.csv:testoutput.csv"

end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 236

Character encoding in Mosel

Using the prefix enc: sys means that the default system encoding is employed (which corresponds to
the behaviour of Mosel versions prior to Mosel 4).

On the API level, you can use the XPRNLS library to convert to/from UTF-8 encoding (please see the
reference manual XPRNLS command tool and library for the full documentation of its functionality):

m this library is platform independent and has no external dependency
m it handles encoding conversions between UTF-8 and local encodings
m it implements UTF-8/16/32(LE+BE), ISO-8859-1/15, ASCII, CP1252

m other supported encodings depend on the operating system

// Open a file using the C function 'fopen' with a file name coming from Mosel
f = fopen (XNLSconvstrto (XNLS_ENC_SYS, filename, -1, NULL), "r");

Alternatively, you can use the XPRNLS command tool for converting the character encoding of text files
between any two supported encodings:

xprnls conv —-f CP1252 -t UTF8 -o outfile.txt myfile.txt

Note: you can display the list of the available xprnls commands by entering

xprnls

at the command prompt.

Fair Isaac Corporation Confidential and Proprietary Information 237

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ‘Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and training
tools for both new user enablement and ongoing performance support. For additional information, visit
the Product Education homepage at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let
us know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 238

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

m Phone: +1(408) 535-1500 or +44 207 940 8718

m Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time
to assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting
time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical
support, build relationships with local and remote professionals, and improve your business practices.
For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.
Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics
and data science to improve operational decisions. FICO holds more than 165 US and foreign patents
on technologies that increase profitability, customer satisfaction, and growth for businesses in
financial services, telecommunications, health care, retail, and many other industries. Using FICO
solutions, businesses in more than 100 countries do everything from protecting 2.6 billion payment
cards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are
in the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 239

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
*,7,59
+,15,59,62
+=, 60, 62
;15

-, 15, 59, 62
-=, 60, 62
1, 13,221

abs, 74
addcuts, 87
and, 40
annotation, 200
character encoding, 236
annotation category, 200
annotation name, 200
application
access model, 105
compile model, 103
data exchange, 108, 124, 135
execute model, 104
model parameters, 105
solution access, 105
array, 12, 53
automatic, 56
declaration, 13
dense, 25,107,110, 123, 124, 134, 135, 156, 229
dynamic, 25, 27, 84, 91,155
finalize, 229
index set, 55
initialization, 13, 17
initialization operator, 13
input data format, 25
multi-dimensional, 13, 25
non-fixed, 25
sparse, 107, 111,123,125, 134,136, 155
static, 27,155, 229
array, 40, 53, 56, 80
as, 40
as counter, 49
automatic array, 56
automatic finalization, 28, 58, 229
disable, 231

B

baseline scenario, 184
BIM file, 103

bin, 168

binary format, 168

binary model file, 175
binary variable, 32
blending constraint, 16
BOM, see Byte Order Mark
boolean, 40, 53

bounded variable, 16

BRE, 198

break, 40, 52

Byte Order Mark, 235

(o
C interface, 103
callback, 88
case, 40
cb, 112,168
ceil, 90
character encoding

compatibility, 236

conversion, 236
character map, 234
code page, 234
column, see variable
column generation, 89
combining solvers, 187
comment, 7

multiple lines, 7
comparison

list, 62

set, 60
comparison tolerance, 87
compile, 8,103

to memory, 175
compile, 175
condition, 26, 46, 232
conditional generation, 26
conditional loop, 49
connect, 177
constant, 12
constant, 40, 194
constant list, 61
constant set, 57
constant type, 55
constraint

hide, 100

MVLB, 85

named, 14

non-negativity, 6, 7

type, 99

Constraint Programming, 187

continuation line, 15
count, 40, 50

Fair Isaac Corporation Confidential and Proprietary Information

Index

counter, 40

counters, 49

CP see Constraint Programming
create, 26, 55
cross-recursion, 73

csv, 173

CSV format, 22

cut generation, 83

cut manager, 87

cut manager entry callback, 88
cut pool, 87

cutting plane method, 83
cutting stock problem, 89

D
data
communication, 108, 124, 135
declaration, 156
dense, 156
exchange with application, 108, 124, 135
initialization, 156
input from database, 18
input from file, 17, 25, 28
multi-dimensional array, 25, 28
output, 78
sparse, 156
sparse format, 28
data file, 167
format, 17, 25
data format
dense, 110, 124, 135
sparse, 111,125, 136
database, 18
date, 39
date, 192,194
datefmt, 193
datetime, 192,195
debug, 149
debugger, 149
debugging, 41
decision variable, see variable, 5
array, 13
declaration
array, 13
public, 161
subroutine, 73
declarations, 7,40, 71
decomposition, 174
default 1/0 driver, 167
deflate, 174
delcell, 54
delete temporary files
model, 121, 131
dense, 107,123, 134
dense array, 25, 54
dense data, 55, 156, 229
dense data format, 110
dense format, 124, 135
deviation variable, 99
difference, 59, 60

Dim, 135

diskdata, 29, 79, 80, 171
distributed computing, 177

div, 40

do, 40

doc, 201

dotnet, 138, 141, 169
dotnetraw, 135, 136, 170
dynamic, 25, 40, 54, 155, 229
dynamic array, 25, 27, 54, 84, 155
dynamic data input, 114, 127, 138
dynamic list, 61

dynamic output retrieval, 113, 127, 138
dynamic set, 57

E
efficiency, 152
elif, 40
else, 40
embedding
data exchange, 108, 124, 135
model access, 105
enc:, 236
encoding, 236
encoding method, 234
end, 40
end-declarations,/
end-do, 48
end-function, 70
end-initializations, 17/
end-model, 7
end-procedure, /0
enumeration
dense array, 107,123, 134
inverse order, 62
set, 106, 122,133
sparse array, 108, 124,135
ERE, 198
error
data, 41
logical, 41
redirection, 117, 130, 141, 145
run time, 42
syntax, 41
error handling, 30
error stream, 145
redirecting, 31
ETC_SPARSE, 79, 80
ETC_OUT, 78
ETC_SPARSE, 78
evaluation, 40, 80
exam, 39,168
excel, 173
Excel spreadsheet, 21
execute, 8
execution speed, 152
exists, 26,156,232
exportprob, 27,167
extended file name, 167

Fair Isaac Corporation Confidential and Proprietary Information

241

Index

F
F_APPEND, /8
F_OUTPUT, 78
false, 40
fclose, 31,78,167
fdelete, 176
feasibility tolerance, 87
field, 53
access, 66
file
generalized, 167
file handling, 167
file output, 78
solution, 80
finalize, 28
finalized, 27
FindIdentifier, 133
findIdentifier, 122
finish, 104, 108
FirstIndex, 133
fixed set, 57
fixed size array, 54
flow control, 46
fopen, 31,78, 167
forall, 14, 26, 40, 48, 49, 51
forall-do, 48
format
date, 193
real number output, 81
text output, 76
time, 193
forward, 40,73, 88
free variable, 96
from, 40
fully qualified entity name, 163
function, 70, 232
function, 40,70

G

generalized file, 167
getFirstTEIndex, 124
getannotations, 201
getasnumber, 194, 195
getcoeff, 74
getDimension, 124
getexitcode, 175
getFirstIndex, 122,123
getfstat, 30
getLastIndex, 122
getobijval, 8
getparam, 30, 163
getreadcnt, 30
getreverse, 62
getsize, 60

getsol, 8, 36,74
gettype, 99
getvalue, 175

global annotation, 200
gnuplot, 173

Goal Programming, 98

Archimedian, 98
lexicographic, 98
pre-emptive, 98
graphics, 178
gzip, 174

H
hashmap, 40, 54,155, 229
hashmap array, 54
head, 62
hide
constraint, 100
hybrid solution approaches, 187

|
1/0 driver, 80, 167
bin, 168, 169
cb, 168
csy, 173
default, 167
deflate, 174
diskdata, 171
dotnet, 169
dotnetraw, 170
excel, 173
gzip, 174
java, 171
jraw, 172
mem, 168
mempipe, 172
null, 169
oci, 172
odbc, 173
pipe, 173
raw, 169
recmd, 172
rmt, 172
shmem, 172
sysfd, 169
text, 173
url, 171
xls, 173
xIsx, 173
xsrv, 172
xssh, 172
1/0 error, 30
if, 40, 49
if-then, 46
if-then-else, 50
implicitly dynamic array, 229
imports, 40,157
in, 40, 60
include, 40,157,232
index
multiple, 49
index set, 12, 15
index set type, 55
Indices, 134
info, 155
initialisations, 40

Fair Isaac Corporation Confidential and Proprietary Information

242

Index

initialization

array, 13,17

list, 61

set, 57
initializations, 17,28, 40,78,125,136,167,176,

230

initializations from, 17
initializations to, 164
Insight, see Xpress Insight
integer, 40, 53
integer knapsack problem, 92
Integer Programming, 36
integer variable, 32
inter, 40
interrupt

loop, 52
intersection, 59
ioctrl, 30
iostatus, 30
IP, see Integer Programming
is_binary, 40
is_continuous, 40
is_free, 40
is_integer, 40
is_partint, 40
is_semcont, 40
is_semint, 40
is_sosl, 33, 36,40
is_so0s2,33,40
is_binary, 32
is_integer, 32
is_partint, 32
is_semcont, 33
is_semint, 33
isqueueempty, 177
isvalid, 193

J
java, 126,130, 171
jraw, 124,125,172

K

knapsack problem, 11
integer, 92

L

largest common divisor, 50
LastIndex, 133
limit, see bound
linctr, 40,53
line break, 15
Linear Programming, 4, 36
Linear Programming problem, 6
list, 53
comparison, 62
concatenation, 62
constant, 61
dynamic, 61
enumeration, 62
initialization, 61

merging, 63
operators, 62

list, 40,53

load, 8, 103

load, 175

loadprob, 118

loop, 14, 46, 48
conditional, 49, 156
interrupting, 52
nested, 52
sparse, 231

LP, see Linear Programming

1smods, 155

lssymb, 155

M
match
regular expression, 198
Mathematical Programming, 4
max, 40, 49
maximize, 118
maximum, 47
mc, 201
mem, 110, 168
memory consumption, 152
mempipe, 172
meta data, 200
min, 40
minimum, 47
MIP, see Mixed Integer Programming
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Programming, 4, 32, 83
Mixed Integer Quadratic Programming, 187
mmdotnet, 169
mmetc, 29,79, 171
mmhttp, 171
mminsight, 178
mmijava, 171
mmijobs, 172,174
mmoci, 172
mmodbc, 19, 173
mmsheet, 21
mmsheet, 19,173
mmsvg, 178
mmsystem, 39,173
mmxml, 180
mmxml, 179
mmxprs, 8, 39,42, 118
mod, 40
model, 6
access from application, 105
compile, 103
coordination, 175
data from application, 108, 124, 135
execute, 8, 104
parameters, 105
reset, 104, 108, 120, 131
run, 8
unload, 104
model, 7,40, 157

Fair Isaac Corporation Confidential and Proprietary Information

243

Index

model documentation, 203
model file, 103
model structure, 232
modeling

efficiency, 152
module, 39, 167

1/0 driver, 169
monthnames, 193
Mosel Remote Launcher, 172
MOSEL_DSO, 158
moseldoc, 203
MP, see Mathematical Programming
mpproblem, 93
mpvar, 7,13, 25,40, 53
multiple indices, 49
multiple models, 174
multiple nodes, 177
multiple problems, 92, 93
MVLB constraint, 85

N
name

constraint, 14
namespace, 40,163
namespace group, 163
nbread, 28, 30
negation, 60
nested loops, 52
next, 40
nextTEIndex, 124
nextIndex, 123
NLP, see Non-linear Programming
noautofinal, 231
noindex, 110
Non-linear Programming, 187
non-negative variable, 6, 7
non-negativity constraint, 6, 7
not, 40, 60
nsgroup, 40,163
nssearch, 40,163
null, 31,169
number output format, 81

0
objective function, 6, 7
oci, 172
ODBC, 19
odbc, 173
of, 40
open, 169
operator
counter, 50
set, 60
optimization, 8
options, 40
or, 40, 232
output, 8
disable, 169
file, 78
formatted, 98

formatting, 76
redirection, 117, 130, 141, 145, 169
splitting, 169

output file, 145

overloading, 74

P
package, 157
internal name, 158
location, 158
name, 158
package, 40,157,158
package parameter, 167
parallel solving, 174
parameter, 18
comparison tolerance, 87
global, 71
local, 71
number output format, 81
subroutine, 71
parameters, 105, 110, 124, 135
parameters, 18, 40, 228
parser, 41
partial integer variable, 32
perfect number, 48
pipe, 173
prime number, 59, 105, 121,132
problem
decomposition, 174
multiple, 92, 93
solving, 8
procedure, 70, 232
procedure, 40,70
prod, 40
profile, 152
profiler, 152
project planning problem, 34
public, 40, 65, 89,105,121, 161,184

Q

QCAQP, see Quadratically Constrained Quadratic
Programming

QP see Quadratic Programming

gsort, /73,195

Quadratic Programming, 4, 187

Quadratically Constrained Quadratic Programming,
187

quick sort, 73

quit, 149

R
range, 40, 48
range set, 12
raw, 111,169
rcmd, 172
read, 28
readcnt, 30
readln, 28
real
output format, 81

Fair Isaac Corporation Confidential and Proprietary Information

244

Index

real, 40, 53
REALFMT, 81
record, 53
record, 40, 53, 65
recursion, 72,95
redirecting output, 169
reference row entries, 33
REG_EXTENDED, 198
REG_ICASE, 198
regex, see regular expression
regular expression, 198

matching, 198
relocating documentation, 206
remote execution, 177
repeat, 40
repeat—-until, 48, 51, 52
requirements, 40
reset

model, 104, 108, 120, 131
reset, 54
return, 40
returned, 70
reverse, 62
rmt, 172
row, see constraint
run, 8, 103
run, 175

S
scalar
1/0 in memory, 115, 129, 140
selection statements, 46
semi-continuous integer variable, 33
semi-continuous variable, 33
set, 53, 105,121,132
comparison, 60
constant, 27, 57
dynamic, 57
finalize, 229
finalized, 27
fixed, 57, 58
initialization, 57
maximum, 47
minimum, 47
string indices, 15
type, 53
set, 40, 53
set of constants, 194
set of strings, 15
set operation, 59
set operator, 60
sethidden, 92,100
setparam, 30,163
shared, 40
shell sort, 51
shmem, 172
sleep, 151
SLP, 187
solution output, 80
solution value, 106, 122, 133

solvers
combining, 187
solving, 8
sorting
date, 195
time, 195
sorting algorithm, 39, 51, 73
sparse, 25, 28,79
loop, 231
sparse array, 54, 155
sparse data, 55, 155
sparse format, 107, 111, 123, 125, 134, 136
sparsity, 23
Special Ordered Set of type one, 33, 36
Special Ordered Set of type two, 33
spreadsheet, 18
static array, 155
stop, 176
strfmt, 76
string, 40, 53
submodel, 174
coordination, 175
interaction, 175
status, 175, 209
subproblem, 93, 100
subroutine, 70, 232
declaration, 73
definition, 73
overloading, 74
parameter, 71
subscript, 12
subset, 60
Successive Linear Programming, 95
sum, 40, 49, 62
summation, 14
superset, 60
syntax
regular expression, 198
syntax error, 41
sysfd, 169
system call, 39

T
table, see array
tail, 62
tee, 169
TEIndices, 135
temporary directory, 169
temporary files

delete, 121, 131
termination, 104, 108
text, 31,173,197
textarea, 198
then, 40
time, 192,195
time measurement, 39
timefmt, 193
tmp, 169
to, 40
tolerance

Fair Isaac Corporation Confidential and Proprietary Information

245

comparison, 87

feasibility, 87

real number output, 81
transport problem, 23, 107, 123, 134
true, 40
type

array, 53

basic, 53

constant, 12

constraint, 99

elementary, 53

external, 53

list, 53

MP, 53

record, 53

set, 53

structured, 53

user, 68

U
unbounded variable, 96
Unicode, 235
Unicode Transformation Format, 235
union, 59
union, 40, 49
unload
model, 104
until, 40
url, 171
uses, 19, 40, 157
UTF, see Unicode Transformation Format

\"
variable, 5
binary, 14, 32
bounds, 16
conditional creation, 26
free, 96

integer, 14, 32
lower bound, 7
non-negative, 6, 7
partial integer, 32
semi-continuous, 33
semi-continuous integer, 33
unbounded, 96
VDL, see View Definition Language
version, 40
View Definition Language, 186

w

wait, 175

warning, 42

while, 40, 48, 50-52, 60
while-do, 48, 50

with, 40,94

Workbench, 9

workdir, 30

write, 8,76, 79
writeln, 8,28,76,78,79

X

x1s,173

x1sx, 173

XML document, 180

XML path, 180

xmldoc, 180

XPRDstoprunmod, 211

Xpress Insight, see Xpress Insight, 178
Xpress Kalis, 187

Xpress Optimizer, 118

Xpress Workbench, see Workbench
XPRM, 120, 131

XPRM.Init (), 131
XPRM_F_ERROR, 145
XPRM_F_OUTPUT, 145
XPRMcompmod, 167
XPRMexecmod, 104
XPRMexecmod, 105
XPRMfinddso, 118
XPRMfindident, 106
XPRMfinish, 104,105
XPRMgetfirstarrtruentry, 108
XPRMgetnextarrtruentry, 108
XPRMgetarrdim, 108
XPRMgetarrsets, 108
XPRMgetelsetval, 106
XPRMgetfirstarrentry, 107
XPRMgetfirstsetndx, 106
XPRMgetlastsetndx, 106
XPRMgetnextarrentry, 107
XPRMloadmod, 104, 167
XPRMresetmod, 104, 108
XPRMrunmod, 104, 167
XPRMsetdefstream, 117
xprmsrv, 172

XPRMunloadmod, 104, 105
xprnls, 235, 237

XPRNLS command tool, 235, 237
XPRNLS library, 237
XPRS_PROBLEM, 118
XPRS_LOADNAMES, 43
XPRS_VERBOSE, 43

xsrv, 172

xssh, 172

Z
ZEROTOL, 87
zlib, 174

Fair Isaac Corporation Confidential and Proprietary Information

246

	I Using the Mosel language
	Introduction
	Why you need Mosel
	What you need to know before using Mosel
	Symbols and conventions
	The structure of this guide

	Getting started with Mosel
	Entering a model
	The chess set problem: description
	A first formulation

	Solving the chess set problem
	Building the model
	Obtaining a solution using Mosel
	Running Mosel from a command line
	Using Xpress Workbench

	Some illustrative examples
	The burglar problem
	Model formulation
	Implementation
	The burglar problem revisited

	A blending example
	The model background
	Model formulation
	Implementation
	Re-running the model with new data
	Reading data from spreadsheets and databases
	Excel spreadsheets
	Database example
	Generic spreadsheet example

	More advanced modeling features
	Overview
	A transport example
	Model formulation
	Implementation

	Conditional generation — the | operator
	Conditional variable creation and create

	Reading sparse data
	Data input with initializations from
	Data input with readln
	Data input with diskdata

	I/O error handling

	Integer Programming
	Integer Programming entities in Mosel
	A project planning model
	Model formulation
	Implementation

	The project planning model using Special Ordered Sets

	Overview of subroutines and reserved words
	Modules
	Reserved words

	Correcting errors in Mosel models
	Correcting syntax errors in Mosel
	Correcting run time errors in Mosel

	II Advanced language features
	Overview
	Flow control constructs
	Selections
	Loops
	forall
	Multiple indices
	Conditional looping
	Counters

	while
	repeat until

	Arrays, sets, lists, and records
	Arrays
	Array declaration
	Multiple indices
	create

	Array initialization from file
	Automatic arrays: the array operator

	Initializing sets
	Constant sets
	Set initialization from file, finalized and fixed sets

	Working with sets
	Set operators

	Initializing lists
	Constant list
	List initialization from file

	Working with lists
	Enumeration
	List operators
	List handling functions

	Records
	Defining records
	Initialization of records from file

	User types

	Functions and procedures
	Subroutine definition
	Parameters
	Recursion
	forward
	Overloading of subroutines

	Output
	Producing formatted output
	File output
	Data output with initializations to
	Data output with writeln
	Data output with diskdata
	Solution output with initializations to

	Real number format

	More about Integer Programming
	Cut generation
	Example problem
	Model formulation
	Implementation
	Cut-and-Branch
	Comparison tolerance
	Branch-and-Cut

	Column generation
	Example problem
	Model formulation
	Implementation
	Alternative implementation: Working with multiple problems

	Extensions to Linear Programming
	Recursion
	Example problem
	Model formulation
	Implementation

	Goal Programming
	Example problem
	Implementation

	III Working with the Mosel libraries
	Overview
	C interface
	Basic tasks
	Compiling a model in C
	Executing a model in C
	Termination

	Parameters
	Accessing modeling objects and solution values
	Accessing sets
	Retrieving solution values
	Sparse arrays

	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output
	Problem solving in C with Xpress Optimizer

	Other programming language interfaces
	Java
	Compiling and executing a model in Java
	Termination
	Parameters
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output

	.NET
	Compiling and executing a model in C#
	Termination
	Parameters
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output

	VBA
	Compiling and executing a model in VBA
	Parameters
	Redirecting the Mosel output

	IV Extensions and tools
	Overview
	Debugger and Profiler
	The Mosel Debugger
	Using the Mosel Debugger
	Debugging concurrent models

	Debugger in Xpress Workbench

	Efficient modeling through the Mosel Profiler
	Using the Mosel Profiler
	Profiling concurrent models

	Other commands for model analysis
	Some recommendations for efficient modeling

	Packages
	Definition of constants
	Definition of subroutines
	Definition of types
	Definition of parameters
	Namespaces
	Packages vs. modules

	Language extensions
	Generalized file handling
	Displaying the available I/O drivers
	List of I/O drivers

	Multiple models and parallel solving with mmjobs
	Running a model from another model
	Compiling to memory
	Exchanging data between models
	Distributed computing

	Graphics and GUIs
	Drawing user graphs with mmsvg
	XML and HTML
	mmxml
	Reading and writing XML data
	Generating HTML

	Xpress Insight

	Solvers
	QCQP solving with Xpress Optimizer
	Xpress NonLinear
	Xpress Kalis

	Date and time data types
	Initializing dates and times
	Dates and times as constants
	Conversion to and from numbers
	Operations and access functions

	Text handling and regular expressions
	text vs. string
	Parsing text
	Regular expressions

	Annotations
	Accessing annotations
	moseldoc

	V Remote invocation of Mosel
	Overview
	XPRD C
	Exchanging data with the model

	XPRD Java
	Exchanging data with the model

	Appendix
	Mosel Language overview
	Structure of a Mosel model
	Data structures
	Selection statements
	Loops
	Operators
	Built in functions and procedures
	Constraint handling
	Problem handling

	Good modeling practice with Mosel
	Using constants and parameters
	Naming sets
	Finalizing sets and dynamic arrays
	Ordering indices
	Use of exists
	Structuring a model
	Transforming subroutines into user modules
	Algorithm choice and parameter settings

	Character encoding in Mosel
	What is a "character encoding", "character map", "code page"?
	What is Unicode?
	What is the meaning of UTF-8,16,32 and UCS-2?
	What is a BOM?
	Which character encoding is configured on my computer?
	Which files are concerned by character encoding in Mosel?
	How can I convert the character encoding of a text file?

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

