
FICOFICO R©R©Xpress OptimizationXpress Optimization

5.2
Last update 8 April, 2020

USER GUIDE

FICO R© Xpress Mosel

©2001–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair IsaacCorporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,reproduce, make derivative works, use, or allow others to use it except solely for internal evaluationpurposes to determine whether to purchase a license to the software described in this documentation, oras otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoingpermitted uses, and no other use is permitted.
The information in this documentation is subject to change without notice. If you find any problems in thisdocumentation, please report them to us in writing. Neither FICO nor its affiliates warrant that thisdocumentation is error-free, nor are there any other warranties with respect to the documentation exceptas may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,express or implied, including, but not limited to, non-infringement, merchantability and fitness for aparticular purpose. Portions of this documentation and the software described in it may contain copyrightof various authors and may be licensed under certain third-party licenses identified in the software,documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, orconsequential damages, including lost profits, arising out of the use of this documentation or the softwaredescribed in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO andits affiliates have no obligation to provide maintenance, support, updates, enhancements, or modificationsexcept as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registeredtrademark of Fair Isaac Corporation in other countries. Other product and company names herein may betrademarks of their respective owners.
FICO R© Xpress Mosel
Deliverable Version: A
Last Revised: 8 April, 2020
Version 5.2

Contents

I Using the Mosel language 1

Introduction 2Why you need Mosel . 2What you need to know before using Mosel . 2Symbols and conventions . 3The structure of this guide . 4
1 Getting started with Mosel 51.1 Entering a model . 51.2 The chess set problem: description . 51.2.1 A first formulation . 51.3 Solving the chess set problem . 61.3.1 Building the model . 61.3.2 Obtaining a solution using Mosel . 71.3.3 Running Mosel from a command line . 81.3.4 Using Xpress Workbench . 9
2 Some illustrative examples 112.1 The burglar problem . 112.1.1 Model formulation . 112.1.2 Implementation . 112.1.3 The burglar problem revisited . 142.2 A blending example . 162.2.1 The model background . 162.2.2 Model formulation . 162.2.3 Implementation . 162.2.4 Re-running the model with new data . 182.2.5 Reading data from spreadsheets and databases 182.2.5.1 Excel spreadsheets . 192.2.5.2 Database example . 202.2.5.3 Generic spreadsheet example . 21
3 More advanced modeling features 233.1 Overview . 233.2 A transport example . 233.2.1 Model formulation . 233.2.2 Implementation . 243.3 Conditional generation — the | operator . 263.3.1 Conditional variable creation and create . 263.4 Reading sparse data . 283.4.1 Data input with initializations from . 283.4.2 Data input with readln . 283.4.3 Data input with diskdata . 293.5 I/O error handling . 30

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

4 Integer Programming 324.1 Integer Programming entities in Mosel . 324.2 A project planning model . 344.2.1 Model formulation . 344.2.2 Implementation . 354.3 The project planning model using Special Ordered Sets . 36
5 Overview of subroutines and reserved words 385.1 Modules . 395.2 Reserved words . 40
6 Correcting errors in Mosel models 416.1 Correcting syntax errors in Mosel . 416.2 Correcting run time errors in Mosel . 42

II Advanced language features 44

Overview 45

7 Flow control constructs 467.1 Selections . 467.2 Loops . 487.2.1 forall . 487.2.1.1 Multiple indices . 497.2.1.2 Conditional looping . 497.2.1.3 Counters . 497.2.2 while . 507.2.3 repeat until . 51
8 Arrays, sets, lists, and records 538.1 Arrays . 538.1.1 Array declaration . 548.1.1.1 Multiple indices . 548.1.1.2 create . 558.1.2 Array initialization from file . 558.1.3 Automatic arrays: the array operator . 568.2 Initializing sets . 578.2.1 Constant sets . 578.2.2 Set initialization from file, finalized and fixed sets 578.3 Working with sets . 598.3.1 Set operators . 608.4 Initializing lists . 618.4.1 Constant list . 618.4.2 List initialization from file . 618.5 Working with lists . 628.5.1 Enumeration . 628.5.2 List operators . 628.5.3 List handling functions . 638.6 Records . 658.6.1 Defining records . 658.6.2 Initialization of records from file . 668.7 User types . 68
9 Functions and procedures 709.1 Subroutine definition . 70

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

9.2 Parameters . 719.3 Recursion . 729.4 forward . 739.5 Overloading of subroutines . 74
10 Output 7610.1 Producing formatted output . 7610.2 File output . 7810.2.1 Data output with initializations to . 7810.2.2 Data output with writeln . 7910.2.3 Data output with diskdata . 7910.2.4 Solution output with initializations to . 8010.3 Real number format . 81
11 More about Integer Programming 8311.1 Cut generation . 8311.1.1 Example problem . 8311.1.2 Model formulation . 8311.1.3 Implementation . 8411.1.4 Cut-and-Branch . 8611.1.5 Comparison tolerance . 8711.1.6 Branch-and-Cut . 8711.2 Column generation . 8911.2.1 Example problem . 8911.2.2 Model formulation . 8911.2.3 Implementation . 9011.2.4 Alternative implementation: Working with multiple problems 93
12 Extensions to Linear Programming 9512.1 Recursion . 9512.1.1 Example problem . 9512.1.2 Model formulation . 9512.1.3 Implementation . 9612.2 Goal Programming . 9812.2.1 Example problem . 9812.2.2 Implementation . 98

III Working with the Mosel libraries 101

Overview 102

13 C interface 10313.1 Basic tasks . 10313.1.1 Compiling a model in C . 10313.1.2 Executing a model in C . 10413.1.3 Termination . 10413.2 Parameters . 10513.3 Accessing modeling objects and solution values . 10513.3.1 Accessing sets . 10513.3.2 Retrieving solution values . 10613.3.3 Sparse arrays . 10713.4 Exchanging data between an application and a model . 10813.4.1 Dense arrays . 10913.4.2 Sparse arrays . 11013.4.3 Dynamic data . 112

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

13.4.4 Scalars . 11513.5 Redirecting the Mosel output . 11713.6 Problem solving in C with Xpress Optimizer . 118
14 Other programming language interfaces 12014.1 Java . 12014.1.1 Compiling and executing a model in Java . 12014.1.2 Termination . 12014.1.3 Parameters . 12114.1.4 Accessing sets . 12114.1.5 Retrieving solution values . 12214.1.6 Sparse arrays . 12314.1.7 Exchanging data between an application and a model 12414.1.7.1 Dense arrays . 12414.1.7.2 Sparse arrays . 12514.1.7.3 Dynamic data . 12614.1.7.4 Scalars . 12914.1.8 Redirecting the Mosel output . 13014.2 .NET . 13014.2.1 Compiling and executing a model in C# . 13114.2.2 Termination . 13114.2.3 Parameters . 13114.2.4 Accessing sets . 13214.2.5 Retrieving solution values . 13314.2.6 Sparse arrays . 13414.2.7 Exchanging data between an application and a model 13514.2.7.1 Dense arrays . 13514.2.7.2 Sparse arrays . 13614.2.7.3 Dynamic data . 13814.2.7.4 Scalars . 14014.2.8 Redirecting the Mosel output . 14114.3 VBA . 14314.3.1 Compiling and executing a model in VBA . 14314.3.2 Parameters . 14414.3.3 Redirecting the Mosel output . 145

IV Extensions and tools 147

Overview 148

15 Debugger and Profiler 14915.1 The Mosel Debugger . 14915.1.1 Using the Mosel Debugger . 14915.1.1.1 Debugging concurrent models . 15115.1.2 Debugger in Xpress Workbench . 15215.2 Efficient modeling through the Mosel Profiler . 15215.2.1 Using the Mosel Profiler . 15215.2.1.1 Profiling concurrent models . 15415.2.2 Other commands for model analysis . 15415.2.3 Some recommendations for efficient modeling . 155
16 Packages 15716.1 Definition of constants . 15716.2 Definition of subroutines . 15816.3 Definition of types . 160

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

16.4 Definition of parameters . 16116.5 Namespaces . 16316.6 Packages vs. modules . 165
17 Language extensions 16717.1 Generalized file handling . 16717.1.1 Displaying the available I/O drivers . 16717.1.2 List of I/O drivers . 16817.2 Multiple models and parallel solving with mmjobs . 17417.2.1 Running a model from another model . 17417.2.2 Compiling to memory . 17517.2.3 Exchanging data between models . 17617.2.4 Distributed computing . 17717.3 Graphics and GUIs . 17817.3.1 Drawing user graphs with mmsvg . 17917.3.2 XML and HTML . 18017.3.2.1 mmxml . 18017.3.2.2 Reading and writing XML data . 18017.3.2.3 Generating HTML . 18317.3.3 Xpress Insight . 18417.4 Solvers . 18717.4.1 QCQP solving with Xpress Optimizer . 18717.4.2 Xpress NonLinear . 18917.4.3 Xpress Kalis . 19017.5 Date and time data types . 19217.5.1 Initializing dates and times . 19217.5.2 Dates and times as constants . 19417.5.3 Conversion to and from numbers . 19417.5.4 Operations and access functions . 19517.6 Text handling and regular expressions . 19617.6.1 text vs. string . 19617.6.2 Parsing text . 19717.6.3 Regular expressions . 198
18 Annotations 20018.1 Accessing annotations . 20118.2 moseldoc . 203

V Remote invocation of Mosel 207

Overview 208

19 XPRD C 20919.1 Exchanging data with the model . 210
20 XPRD Java 21420.1 Exchanging data with the model . 215

Appendix 219

A Mosel Language overview 220A.1 Structure of a Mosel model . 220A.2 Data structures . 221A.3 Selection statements . 222

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

A.4 Loops . 222A.5 Operators . 223A.6 Built in functions and procedures . 224A.7 Constraint handling . 226A.8 Problem handling . 226
B Good modeling practice with Mosel 228B.1 Using constants and parameters . 228B.2 Naming sets . 228B.3 Finalizing sets and dynamic arrays . 229B.4 Ordering indices . 231B.5 Use of exists . 231B.6 Structuring a model . 232B.7 Transforming subroutines into user modules . 232B.8 Algorithm choice and parameter settings . 232
C Character encoding in Mosel 234C.1 What is a "character encoding", "character map", "code page"? 234C.2 What is Unicode? . 235C.3 What is the meaning of UTF-8,16,32 and UCS-2? . 235C.4 What is a BOM? . 235C.5 Which character encoding is configured on my computer? 235C.6 Which files are concerned by character encoding in Mosel? 236C.7 How can I convert the character encoding of a text file? . 236
D Contacting FICO 238Product support . 238Product education . 238Product documentation . 238Sales and maintenance . 239Related services . 239FICO Community . 239About FICO . 239

Index 240

Fair Isaac Corporation Confidential and Proprietary Information vi

I. Using the Mosel language

Introduction

Why you need Mosel

‘Mosel’ is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced modelingand solving language and environment, where optimization problems can be specified and solved withthe utmost precision and clarity.
Here are some of the features of Mosel

� Mosel’s easy syntax is regular and described formally in the reference manual.
� Mosel supports dynamic objects, which do not require pre-sizing. For instance, you do not have tospecify the maximum sizes of the indices of a variable x.
� Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be run onany computer platform, and which hides the intellectual property in the model if so required.
� Mosel is embeddable. There is a runtime library which can be called from your favoriteprogramming language if required. You can access any of the model’s objects from yourprogramming language.
� Mosel is easily extended through the concept of modules. It is possible to write a set of functions,which together stand alone as a module. Several modules are supplied with the Moseldistribution, including Xpress Optimizer.
� Support for user-written functions and procedures is provided.
� The use of sets of objects is supported.
� Constraints and variables etc. can be added incrementally. For instance, column generation candepend on the results of previous optimizations, so subproblems are supported.

The modeling component of Mosel provides you with an easy to use yet powerful language fordescribing your problem. It enables you to gather the problem data from text files and a range ofpopular spreadsheets and databases, and gives you access to a variety of solvers, which can findoptimal or near-optimal solutions to your model.

What you need to know before using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to representunknown quantities, and the use of this sort of variable in simple linear equations and inequalities, forexample:
x + y ≤ 6

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is notessential. Similarly some familiarity with the use of computers would be helpful.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

For all but the simplest models you should also be familiar with the idea of summing over a range ofvariables. For example, if producej is used to represent the number of cars produced on production line
j then the total number of cars produced on all N production lines can be written as:

N∑
j=1

producej

This says ‘sum the output from each production line producej over all production lines j from j = 1 to
j = N’.
If our target is to produce at least 1000 cars in total then we would write the inequality:

N∑
j=1

producej ≥ 1000

We often also use a set notation for the sums. Assuming that LINES is the set of production lines{1, ..,N}, we may write equivalently: ∑
j∈LINES

producej ≥ 1000

This may be read ‘sum the output from each production line producej over all production lines j in theset LINES’.
Other common mathematical symbols that are used in the text are IN (the set of non-negative integernumbers {0, 1, 2, ...}), ∩ and ∪ (intersection and union of sets), ∧ and ∨ (logical ‘and’ and ‘or’), theall-quantifier ∀ (read ‘for all’), and ∃ (read ‘exists’).
Mosel closely mimics the mathematical notation an analyst uses to describe a problem. So providedyou are happy using the above mathematical notation the step to using a modeling language will bestraightforward.

Symbols and conventions

We have used the following conventions within this guide:
� Mathematical objects are presented in italics.
� Examples of commands, models and their output are printed in a Courier font. Filenames aregiven in lower case Courier.
� Decision variables have lower case names; in most example problems these are verbs (such as

use, take).
� Constraint names start with an upper case letter, followed by mostly lower case (e.g. Profit,

TotalCost).
� Data (arrays, sets, lists) and constants are written entirely with upper case (e.g. DEMAND, COST,

ITEMS).
� The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in themiddle, but often confusingly displays on-screen without the small gap. In the UNIX world it isreferred to as the pipe symbol. (Note that this symbol is not the same as the character sometimesused to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in hexadecimal, 124 in decimal.

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

The structure of this guide

This user guide is structured into these main parts
� Part I describes the use of Mosel for people who want to build and solve MathematicalProgramming (MP) problems. These will typically be Linear Programming (LP), Mixed IntegerProgramming (MIP), or Quadratic Programming (QP) problems. The part has been designed toshow the modeling aspects of Mosel, omitting most of the more advanced programmingconstructs.
� Part II is designed to help those users who want to use the powerful programming languagefacilities of Mosel, using Mosel as a modeling, solving and programming environment. Itemscovered include looping (with examples), more about using sets, producing nicely formattedoutput, functions and procedures. We also give some advanced MP examples, includingBranch-and-Cut, column generation, Goal Programming and Successive Linear Programming.
� Part III shows how Mosel models can be embedded into large applications using programminglanguages like C, Java, or C#.
� Part IV gives examples of some of the advanced features of Mosel, including the use of the MoselDebugger and Profiler for the development and analysis of large-scale Mosel models, anintroduction to the notion of packages, and an overview of the functionality of the modules in theMosel distribution.

This user guide is deliberately informal and is not complete. It must be read in conjunction with theMosel reference manual, where features are described precisely and completely.

Fair Isaac Corporation Confidential and Proprietary Information 4

CHAPTER 1

Getting started with Mosel

1.1 Entering a model

In this chapter we will take you through a very small manufacturing example to illustrate the basicbuilding blocks of Mosel.
Models are entered into a Mosel file using a standard text editor (do not use a word processor as aneditor as this may not produce an ASCII file).
If you have access to Windows, Xpress Workbench is the model development environment to use. TheMosel file is then loaded into Mosel, and compiled. Finally, the compiled file can be run. This chapterwill show the stages in action.

1.2 The chess set problem: description

To illustrate the model development and solving process we shall take a very small example.
A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours ofmachining on a lathe and the larger only requires 2 hours, because it is less intricate. There are fourlathes with skilled operators who each work a 40 hour week. The smaller chess set requires 1 kg ofboxwood and the larger set requires 3 kg. However boxwood is scarce and only 200 kg per week can beobtained.
When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has aprofit of $5. The problem is to decide how many sets of each kind should be made each week tomaximize profit.

1.2.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there are thustwo decision variables (or simply variables) in our model, one decision variable per product. We shallgive these variables abbreviated names:
small: the number of small chess sets to make
large: the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution toprofit is determined by the optimization process. In other words, we look to the optimizer to tell us thebest values of small, and large.
The values which small and large can take will always be constrained by some physical or technologicallimits: they may be constrained to be equal to, less than or greater than some constant. In our case wenote that the joinery has a maximum of 160 hours of machine time available per week. Three hours are

Fair Isaac Corporation Confidential and Proprietary Information 5

Getting started with Mosel

needed to produce each small chess set and two hours are needed to produce each large set. So thenumber of hours of machine time actually used each week is 3 · small + 2 · large. One constraint is thus:
3 · small + 2 · large ≤ 160 (lathe-hours)

which restricts the allowable combinations of small and large chess sets to those that do not exceedthe lathe-hours available.
In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every setmade, against 3 kg needed to make a large set, a second constraint is:

1 · small + 3 · large ≤ 200 (kg of boxwood)
where the left hand side of the inequality is the amount of boxwood we are planning to use and the righthand side is the amount available.
The joinery cannot produce a negative number of chess sets, so two further non-negativity constraintsare:

small ≥ 0
large ≥ 0

In a similar way, we can write down an expression for the total profit. Recall that for each of the largechess sets we make and sell we get a profit of $20, and one of the small chess set gives us a profit of$5. The total profit is the sum of the individual profits from making and selling the small small sets andthe large large sets, i.e.
Profit = 5 · small + 20 · large

Profit is the objective function, a linear function which is to be optimized, that is, maximized. In this caseit involves all of the decision variables but sometimes it involves just a subset of the decision variables.In maximization problems the objective function usually represents profit, turnover, output, sales,market share, employment levels or other ‘good things’. In minimization problems the objectivefunction describes things like total costs, disruption to services due to breakdowns, or other lessdesirable process outcomes.
The collection of variables, constraints and objective function that we have defined are our model. Ithas the form of a Linear Programming problem: all constraints are linear equations or inequalities, theobjective function also is a linear expression, and the variables may take any non-negative real value.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we havejust developed into the syntax of the Mosel language. Remember that we use the notation that items initalics (for example, small) are the mathematical variables. The corresponding Mosel variables will bethe same name in non-italic courier (for example, small).
We illustrate this simple example by using the command line version of Mosel. The model can beentered into a file named, perhaps, chess.mos as follows:

model "Chess"
declarations
small: mpvar ! Number of small chess sets to make
large: mpvar ! Number of large chess sets to make
end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 6

Getting started with Mosel

Profit:= 5⁎small + 20⁎large ! Objective function
Lathe:= 3⁎small + 2⁎large <= 160 ! Lathe-hours
Boxwood:= small + 3⁎large <= 200 ! kg of boxwood
end-model

Indentations are purely for clarity. The symbol ! signifies the start of a comment, which continues tothe end of the line. Comments over multiple lines start with (! and terminate with !).
Notice that the character ‘⁎’ is used to denote multiplication of the decision variables by the units ofmachine time and wood that one unit of each uses in the Lathe and Boxwood constraints.
The modeling language distinguishes between upper and lower case, so Small would be recognizedas different from small.
Let’s see what this all means.
A model is enclosed in a model / end-model block.
The decision variables are declared as such in the declarations / end-declarations block. Everydecision variable must be declared. LP, MIP and QP variables are of type mpvar. Several decisionvariables can be declared on the same line, so

declarations
small, large: mpvar
end-declarations

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables areconstrained to be non-negative unless it is informed otherwise, so there is no need to specifynon-negativity constraints on variables.
Here is an example of a constraint:

Lathe:= 3⁎small + 2⁎large <= 160

The name of the constraint is Lathe. The actual constraint then follows. If the ‘constraint’ isunconstrained (for example, it might be an objective function), then there is no <=, >= or = part.
In Mosel you enter the entire model before starting to compile and run it. Any errors will be signaledwhen you try to compile the model, or later when you run it (see Chapter 6 on correcting syntax errors).

1.3.2 Obtaining a solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it. The first thing to do is tospecify to Mosel that it is to use Xpress Optimizer to solve the problem. Then, assuming we can solvethe problem, we want to print out the optimum values of the decision variables, small and large, andthe value of the objective function. The model becomes
model "Chess (completed)"
uses "mmxprs" ! We shall use Xpress Optimizer</p>

declarations
small,large: mpvar ! Decision variables: produced quantities
end-declarations

Profit:= 5⁎small + 20⁎large ! Objective function
Lathe:= 3⁎small + 2⁎large <= 160 ! Lathe-hours
Boxwood:= small + 3⁎large <= 200 ! kg of boxwood

maximize(Profit) ! Solve the problem

writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")
writeln("Best profit is ", getobjval)

Fair Isaac Corporation Confidential and Proprietary Information 7

Getting started with Mosel

end-model

The line
uses "mmxprs"

tells Mosel that Xpress Optimizer will be used to solve the LP. The Mosel modules mmxprsmoduleprovides us with such things as maximization, handling bases etc.

The line
maximize(Profit)

tells Mosel to maximize the objective function called Profit.
More complicated are the writeln statements, though it is actually quite easy to see what they do. Ifsome text is in quotation marks, then it is written literally. getsol and getobjval are special Moselfunctions that return respectively the optimal value of the argument, and the optimal objective functionvalue. writeln writes a line terminator after writing all its arguments (to continue writing on the sameline, use write instead). writeln can take many arguments. The statement

writeln("small: ", getsol(small), " large: ", getsol(large))

will result in the values being printed all on one line.
1.3.3 Running Mosel from a command line

When you have entered the complete model into a file (let us call it chess.mos), we can proceed to getthe solution to our problem. We start Mosel at the command prompt by typing the following command
mosel execute chess.mos

and we will see output something like that below.
Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33

The Mosel command for executing the model can be abbreviated to
mosel exec chess

or simply
mosel chess

The model execution performed by the command execute comprises three stages:
1. Compiling chess.mos
2. Loading the compiled model
3. Running the model we have just loaded.

Instead of using execute, we can choose to explicitly generate the compiled model file chess.bim
mosel compile chess.mos

Fair Isaac Corporation Confidential and Proprietary Information 8

Getting started with Mosel

followed by
mosel run chess.bim

to load and run the compiled model.
1.3.4 Using Xpress Workbench

Under Microsoft Windows you may also use Xpress Workbench, a development studio typeenvironment for working with your Mosel models. Xpress Workbench is a complete modeling andoptimization development environment that presents Mosel in an easy-to-use Graphical User Interface(GUI), with a built-in text editor.
To execute the model file chess.mos you need to carry out the following steps.

� Start up Workbench.
� Open the model file by choosing File� Open. The model source is then displayed in the centralwindow (the Workbench Editor).
� Click the Run button at the top of the window, making sure that the desired filename is

selected in the input field to its left, or alternatively, choose Run� Run chess.mos.
The resulting screen display is shown in Figure 1.1.

Figure 1.1: Xpress Workbench screen after running chess.mos

The logging pane at the bottom of the workspace is automatically displayed when compilation starts. Ifsyntax errors are found in the model, they are displayed here, with details of the line and characterposition where the error was detected and a description of the problem, if available. If the model hasbeen compiled successfully, this pane displays the output produced by running the model.
If the model is run in debug mode by selecting the Debug button Workbench makes all information
about the solution available through the Debugger pane on the right border of the workspace window.By expanding the Variables entry in this pane, the solution and reduced cost values for decisionvariables are displayed. Dual and slack values for constraints may also be obtained.

Fair Isaac Corporation Confidential and Proprietary Information 9

Getting started with Mosel

Figure 1.2: Running chess.mos with Xpress Workbench in debug mode

Fair Isaac Corporation Confidential and Proprietary Information 10

CHAPTER 2

Some illustrative examples

This chapter develops the basics of modeling set out in Chapter 1. It presents some further examplesof the use of Mosel and introduces new features:
� Use of subscripts: Almost all models of any size have subscripted variables. We show how todefine arrays of data and decision variables, introduce the different types of sets that may beused as index sets for these arrays, and also simple loops over these sets.
� Working with data files: Mosel provides facilities to read from and write to data files in textformat and also from other data sources (databases and spreadsheets).

2.1 The burglar problem

A burglar sees 8 items, of different worths and weights. He wants to take the items of greatest totalvalue whose total weight is not more than the maximum WTMAX he can carry.
2.1.1 Model formulation

We introduce binary variables takei for all i in the set of all items (ITEMS) to represent the decisionwhether item i is taken or not. takei has the value 1 if item i is taken and 0 otherwise. Furthermore, let
VALUEi be the value of item i and WEIGHTi its weight. A mathematical formulation of the problem isthen given by:

maximize ∑
i∈ITEMS

VALUEi · takei∑
i∈ITEMS

WEIGHTi · takei ≤ WTMAX (weight restriction)
∀i ∈ ITEMS : takei ∈ {0, 1}

The objective function is to maximize the total value, that is, the sum of the values of all items taken.The only constraint in this problem is the weight restriction. This problem is an example of a knapsack
problem.

2.1.2 Implementation

It may be implemented with Mosel as follows (model file burglar.mos):
model Burglar
uses "mmxprs"

declarations

Fair Isaac Corporation Confidential and Proprietary Information 11

Some illustrative examples

WTMAX = 102 ! Maximum weight allowed
ITEMS = 1..8 ! Index range for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: 1 2 3 4 5 6 7 8
VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:: [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

When running this model we get the following output:
Solution:
Objective: 280
take(1): 1
take(2): 1
take(3): 1
take(4): 1
take(5): 0
take(6): 1
take(7): 0
take(8): 0

In this model there are a lot of new features, which we shall now explain.
� Constants:

WTMAX=102

declares a constant called WTMAX, and gives it the value 102. Since 102 is an integer, WTMAX is aninteger constant. Anything that is given a value in a declarations block is a constant.
� Ranges:

ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used as an
index set for the data arrays (VALUE and WEIGHT) and for the array of decision variables take.

� Arrays:

VALUE: array(ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS. Exactly equivalentwould be

Fair Isaac Corporation Confidential and Proprietary Information 12

Some illustrative examples

VALUE: array(1..8) of real ! Value of items

Multi-dimensional arrays are declared in the obvious way e.g.

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar) are declaredlikewise, as shown in our example:
x: array(ITEMS) of mpvar

declares an array of decision variables take(1), take(2), ..., take(8).
All objects (scalars and arrays) declared in Mosel are always initialized with a default value:
real, integer: 0
boolean: false
string: ’’ (i.e. the empty string)
In Mosel, reals are double precision.

� Assigning values to arrays:
The values of data arrays may either be defined in the model as we show in the example orinitialized from file (see Section 2.2).

VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]

fills the VALUE array as follows:
VALUE(1) gets the value 15; VALUE(2) gets the value 100; ..., VALUE(8) gets the value 1.
For a 2-dimensional array such as

declarations
EE: array(1..2, 1..3) of real
end-declarations

we might write
EE:: [11, 12, 13,

21, 22, 23]

which of course is the same as
EE:: [11, 12, 13, 21, 22, 23]

but much more intuitive. Mosel places the values in the tuple into EE ‘going across the rows’, withthe last subscript varying most rapidly. For higher dimensions, the principle is the same. If theindex sets of an array are other than ranges they must be given when initializing the array withdata, in the case of ranges this is optional. Equivalently to the above we may write
VALUE :: (ITEMS)[15, 100, 90, 60, 40, 15, 10, 1]
EE:: (1..2, 1..3)[11, 12, 13,21, 22, 23]

or even initialize the two-dimensional array EE rowwise:
EE:: (1, 1..3)[11, 12, 13]
EE:: (2, 1..3)[21, 22, 23]

� Summations:

MaxVal:= sum(i in Items) VALUE(i)⁎x(i)

Fair Isaac Corporation Confidential and Proprietary Information 13

Some illustrative examples

defines a linear expression called MaxVal as the sum∑
i∈Items

VALUEi · xi

� Naming constraints:
Optionally, constraints may be named (as in the chess set example). In the remainder of thismanual, we shall name constraints only if we need to refer to them at other places in the model.In most examples, only the objective function is named (here MaxVal) — to be able to refer to it inthe call to the optimization (here maximize(MaxVal)).

� Simple looping:

forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1, ..., 8, sothe statement says that take(1), take(2), ..., take(8) are all binary variables.There is another example of the use of forall at the penultimate line of the model when writingout all the solution values.
� Integer Programming variable types:

To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say
xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in aMIP problem, we would have
xintvar is_integer

2.1.3 The burglar problem revisited

Consider this model (burglari.mos):
model "Burglar (index set)"
uses "mmxprs"

declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

VALUE("camera") := 15; WEIGHT("camera") := 2
VALUE("necklace"):=100; WEIGHT("necklace"):= 20
VALUE("vase") := 90; WEIGHT("vase") := 20
VALUE("picture") := 60; WEIGHT("picture") := 30
VALUE("tv") := 40; WEIGHT("tv") := 40
VALUE("video") := 15; WEIGHT("video") := 30
VALUE("chest") := 10; WEIGHT("chest") := 60
VALUE("brick") := 1; WEIGHT("brick") := 10

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction

Fair Isaac Corporation Confidential and Proprietary Information 14

Some illustrative examples

sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

What have we changed? The answer is, ‘not very much’.
� String indices:

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

declares that this time ITEMS is a set of strings. The indices now take the string values ‘camera’,‘necklace’ etc. Since string index sets have no fixed ordering like the range set we have used in thefirst version of the model, we now need to initialize every data item separately, or alternatively,write out the index sets when defining the array values, such as
VALUE :: (["camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"])[15,100,90,60,40,15,10,1]
WEIGHT:: (["camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"])[2,20,20,30,40,30,60,10]

If we run the model, we get
Solution:
Objective: 280
take(camera): 1
take(necklace): 1
take(vase): 1
take(picture): 1
take(tv): 0
take(video): 1
take(chest): 0
take(brick): 0

� Continuation lines:
Notice that the statement

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

was spread over two lines. Mosel is smart enough to recognize that the statement is notcomplete, so it automatically tries to continue on the next line. If you wish to extend a singlestatement to another line, just cut it after a symbol that implies a continuation, like an operator (+,
-, <=, ...) or a comma (,) in order to warn the analyzer that the expression continues in thefollowing line(s). For example

ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) ⁎ x(i,j) +
sum(i in Irange) TIB(i) ⁎ delta(i) +
sum(j in Jrange) TUB(j) ⁎ phi(j)

Conversely, it is possible to place several statements on a single line, separating them bysemicolons (like x1 <= 4; x2 >= 7).

Fair Isaac Corporation Confidential and Proprietary Information 15

Some illustrative examples

2.2 A blending example

2.2.1 The model background

A mining company has two types of ore available: Ore 1 and Ore 2. The ores can be mixed in varyingproportions to produce a final product of varying quality. For the product we are interested in, the ‘grade’(a measure of quality) of the final product must lie between the specified limits of 4 and 5. It sells for
REV = £125 per ton. The costs of the two ores vary, as do their availabilities. The objective is tomaximize the total net profit.

2.2.2 Model formulation

Denote the amounts of the ores to be used by use1 and use2. Maximizing net profit (i.e., sales revenueless cost COSTo of raw material) gives us the objective function:∑
o∈ORES

(REV – COSTo) · useo

We then have to ensure that the grade of the final ore is within certain limits. Assuming the grades ofthe ores combine linearly, the grade of the final product is:∑
o∈ORES GRADEo · useo∑

o∈ORES useo

This must be greater than or equal to 4 so, cross-multiplying and collecting terms, we have theconstraint: ∑
o∈ORES

(GRADEo – 4) · useo ≥ 0

Similarly the grade must not exceed 5.∑
o∈ORES GRADEo · useo∑

o∈ORES useo
≤ 5

So we have the further constraint: ∑
o∈ORES

(5 – GRADEo) · useo ≥ 0

Finally only non-negative quantities of ores can be used and there is a limit to the availability AVAILo ofeach of the ores. We model this with the constraints:
∀o ∈ ORES : 0 ≤ useo ≤ AVAILo

2.2.3 Implementation

The above problem description sets out the relationships which exist between variables but containsfew explicit numbers. Focusing on relationships rather than figures makes the model much moreflexible. In this example only the selling price REV and the upper/lower limits on the grade of the finalproduct (MINGRADE and MAXGRADE) are fixed.
Enter the following model into a file blend.mos.

Fair Isaac Corporation Confidential and Proprietary Information 16

Some illustrative examples

model "Blend"
uses "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file blend.dat
initializations from 'blend.dat'
COST
AVAIL
GRADE
end-initializations

! Objective: maximize total profit
Profit:= sum(o in ORES) (REV-COST(o))⁎ use(o)

! Lower and upper bounds on ore quality
sum(o in ORES) (GRADE(o)-MINGRADE)⁎use(o) >= 0
sum(o in ORES) (MAXGRADE-GRADE(o))⁎use(o) >= 0

! Set upper bounds on variables (lower bound 0 is implicit)
forall(o in ORES) use(o) <= AVAIL(o)

maximize(Profit) ! Solve the LP-problem

! Print out the solution
writeln("Solution:\n Objective: ", getobjval)
forall(o in ORES) writeln(" use(" + o + "): ", getsol(use(o)))

end-model

The file blend.dat contains the following:
! Data file for 'blend.mos'
COST: [85 93]
AVAIL: [60 45]
GRADE: [2.1 6.3]

The initializations from / end-initializations block is new here, telling Mosel where toget data from to initialize named arrays. The order of the data items in the file does not have to be thesame as that in the initializations block; equally acceptable would have been the statements
initializations from 'blend.dat'
AVAIL GRADE COST
end-initializations

Alternatively, since all data arrays have the same indices, they may be given in the form of a singlerecord, such as BLENDDATA in the following data file blendb.dat:
! [COST AVAIL GRADE]

BLENDDATA: [[85 60 2.1]
[93 45 6.3]]

In the initializations block we need to indicate the label of the data record and in which order thedata of the three arrays is given:

Fair Isaac Corporation Confidential and Proprietary Information 17

Some illustrative examples

initializations from 'blendb.dat'
[COST,AVAIL,GRADE] as 'BLENDDATA'
end-initializations

2.2.4 Re-running the model with new data

There is a problem with the model we have just presented — the name of the file containing the costsdate is hard-wired into the model. If we wanted to use a different file, say blend2.dat, then we wouldhave to edit the model, and recompile it.
Mosel has parameters to help with this situation. A model parameter is a symbol, the value of whichcan be set just before running the model, often as an argument of the run command of the commandline interpreter.

model "Blend 2"
uses "mmxprs"

parameters
DATAFILE="blend.dat"
end-parameters

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from file
initializations from DATAFILE
COST
AVAIL
GRADE
end-initializations

...

end-model

The parameter DATAFILE is recognized as a string, and its default value is specified. If we havepreviously compiled the model into say blend2.bim, then the command
mosel run blend2 DATAFILE="blend2.dat"

will read the cost data from the file we want. Or to compile, load, and run the model using a singlecommand:
mosel exec blend2 DATAFILE="blend2.dat"

Notice that a model only takes a single parameters block that must follow immediately after the
uses statement(s) at the beginning of the model.

2.2.5 Reading data from spreadsheets and databases

It is quite easy to create and maintain data tables in text files but in many industrial applications dataare provided in the form of spreadsheets or need to be extracted from databases. So there is a facility

Fair Isaac Corporation Confidential and Proprietary Information 18

Some illustrative examples

in Mosel whereby the contents of ranges within spreadsheets may be read into data tables anddatabases may be accessed.
In addition to the documentation of the Mosel modules mmodbc and mmsheet in the Mosel language
reference manual, you will find further detail and examples of using the SQL/ODBC and spreadsheetinterfaces in other documents of the Xpress distribution: the whitepaper Using ODBC and other
database interfaces with Mosel explains how to set up an ODBC connection and discusses a largenumber of examples showing different SQL/ODBC features; the whitepaper Generalized file handling in
Mosel also contains several examples of the use of ODBC. To give you a flavor of how Mosel’s ODBCand spreadsheet interfaces may be used, we now read the data of the blending problem from aspreadsheet and then later from a database.
The ODBC technology is a generic means for accessing databases and some spreadsheets such ascertain versions of Microsoft Excel also support (a reduced set of) ODBC functionality. Mosel alsoprovides a specific interface to Excel spreadsheets, an example of which is shown below (Section2.2.5.1). This interface that supports all basic tasks of data exchange should be used for working withExcel data. A generic alternative for working with spreadsheets in .xls, .xlsx, or .csv format, including onnon-Windows platforms, is discussed in Section 2.2.5.3.
2.2.5.1 Excel spreadsheets

Let us suppose that in a Microsoft Excel spreadsheet called blend.xls you have inserted thefollowing into the cells indicated:
Table 2.1: Spreadsheet example data

A B C D E F
1
2 ORES COST AVAIL GRADE
3 1 85 60 2.1
4 2 93 45 6.3
5

and called the range B3:E4 MyRange.
The following model reads the data for the arrays COST, AVAIL, and GRADE from the Excel range
MyRange. Note that we have added "mmsheet" to the uses statement to indicate that we are usingthe Mosel spreadsheet module.

model "Blend 3"
uses "mmxprs", "mmsheet"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmsheet.excel:blend.xls"
[COST,AVAIL,GRADE] as "MyRange"
end-initializations

...

Fair Isaac Corporation Confidential and Proprietary Information 19

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/

Some illustrative examples

end-model

Instead of naming the ranges in the spreadsheet it is equally possible to work directly with the cellreferences (including the worksheet name, that is, ‘Sheet1’ in our case):
initializations from "mmsheet.excel:blend.xls"
[COST,AVAIL,GRADE] as "[Sheet1$B3:E4]"
end-initializations

or alternatively, work with row and column counters:
initializations from "mmsheet.excel:blend.xls"
[COST,AVAIL,GRADE] as "[Sheet1$R3C2:R4C5]"
end-initializations

And we can also select specific columns from a range:
initializations from "mmsheet.excel:blend.xls"
GRADE as "MyRange(#1,#4)"
end-initializations

If the range definition contains the header line with column titles (so, MyRangeWithHeader is the areaB2:E4) we can also select specific columns via their titles:
initializations from "mmsheet.excel:blend.xls"
GRADE as "skiph;MyRangeWithHeader(ORES,GRADE)"
end-initializations

2.2.5.2 Database example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess. NB: this is where tocheck whether the DSN is set up with Windows 2000 or XP: Start� Settings� Control Panel�
Administrative Tools� Data Sources (ODBC)� ODBC drivers.Suppose we are extracting data from a table called MyTable in the database blend.mdb. There arejust the four columns ORES, COST, AVAIL, and GRADE in MyTable, and the data are the same as in theExcel example above. We modify the example above to be

model "Blend 4"
uses "mmxprs", "mmodbc"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from database blend.mdb
initializations from "mmodbc.odbc:blend.mdb"
[COST,AVAIL,GRADE] as "MyTable"
end-initializations

...

end-model

Fair Isaac Corporation Confidential and Proprietary Information 20

Some illustrative examples

With ODBC, we can use the field names to select specific columns from a table:
initializations from "mmodbc.odbc:blend.mdb"
GRADE as "MyTable(ORES,GRADE)"
end-initializations

Instead of using the initializations block that automatically generates SQL commands forreading and writing data it is also possible to employ SQL statements in Mosel models. The
initializations block in the model above is equivalent to the following sequence of SQLstatements:

SQLconnect('DSN=MSAccess; DBQ=blend.mdb')
SQLexecute("select ⁎ from MyTable ", [COST,AVAIL,GRADE])
SQLdisconnect

The SQL statement "select ⁎ from MyTable" says ‘select everything from the table called
MyTable’. By using SQL statements directly in the Mosel model it is possible to have much morecomplex selection statements than the ones we have used.
To use other databases, for instance a mysql database (let us call it blend), we merely need to modifythe connection string — provided that we have given the same names to the data table and its columns:

initializations from "mmodbc.odbc:DSN=mysql;DB=blend"

ODBC, just like Mosel’s text file format, may also be used to output data. The reader is referred to theODBC/SQL documentation for more detail.
2.2.5.3 Generic spreadsheet example

We shall work once more with the Microsoft Excel spreadsheet called blend.xls shown in Table 2.1where we have defined the range B3:E4 MyRange.
This spreadsheet can be accessed via MS Excel as shown above. However, this access method is onlyavailable on platforms where Excel is installed. The module mmsheet also provides more genericinterfaces for working with .xsl, .xlsx and CSV format files (usable, for example, under Linux or MacOS).The corresponding Mosel model looks as follows.

model "Blend 3 (spreadsheet)"
uses "mmsheet", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)

use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

! Read data from spreadsheet blend.xls
initializations from "mmsheet.xls:blend.xls"
[COST,AVAIL,GRADE] as "MyRange"
end-initializations

...

end-model

Fair Isaac Corporation Confidential and Proprietary Information 21

Some illustrative examples

The only modification we have made is quite subtle: in the filename we have replaced mmsheet.excelby mmsheet.xls.
Variant: Assuming that we have saved the data from our spreadsheet into the CSV format file
blend.csv, we need to switch to the CSV interface for accessing this data file. A CSV file contains asingle worksheet and it is not possible to define named ranges. We therefore now refer directly to thecells via the cell references (similarly to what has been shown for Excel in Section 2.2.5.1 but withoutstating a sheet name):

initializations from "mmsheet.csv:blend.csv"
[COST,AVAIL,GRADE] as "[B3:E4]"
end-initializations

or alternatively, using row and column counters:
initializations from "mmsheet.csv:blend.csv"
[COST,AVAIL,GRADE] as "[R3C2:R4C5]"
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 22

CHAPTER 3

More advanced modeling features

3.1 Overview

This chapter introduces some more advanced features of the modeling language in Mosel. We shallnot attempt to cover all its features or give the detailed specification of their formats. These arecovered in greater depth in the Mosel Reference Manual.
Almost all large scale LP and MIP problems have a property known as sparsity, that is, each variableappears with a non-zero coefficient in a very small fraction of the total set of constraints. Often thisproperty is reflected in the data tables used in the model in that many values of the tables are zero.When this happens, it is more convenient to provide just the non-zero values of the data table ratherthan listing all the values, the majority of which are zero. This is also the easiest way to input data intodata tables with more than two dimensions. An added advantage is that less memory is used by Mosel.
The main areas covered in this chapter are related to this property:

� dynamic arrays
� sparse data
� conditional generation
� displaying data

We start again with an example problem. The following sections deal with the different topics in moredetail.

3.2 A transport example

A company produces the same product at different plants in the UK. Every plant has a differentproduction cost per unit and a limited total capacity. The customers (grouped into customer regions)may receive the product from different production locations. The transport cost is proportional to thedistance between plants and customers, and the capacity on every delivery route is limited. Theobjective is to minimize the total cost, whilst satisfying the demands of all customers.
3.2.1 Model formulation

Let PLANT be the set of plants and REGION the set of customer regions. We define decision variables
flowpr for the quantity transported from plant p to customer region r. The total cost of the amount of

Fair Isaac Corporation Confidential and Proprietary Information 23

More advanced modeling features

product p delivered to region r is given as the sum of the transport cost (the distance between p and rmultiplied by a factor FUELCOST) and the production cost at plant p:
minimize ∑

p∈PLANT

∑
r∈REGION

(FUELCOST · DISTANCEpr + PLANTCOSTp) · flowpr

The limits on plant capacity are give through the constraints
∀p ∈ PLANT : ∑

r∈REGION
flowpr ≤ PLANTCAPp

We want to meet all customer demands:
∀r ∈ REGION : ∑

p∈PLANT
flowpr = DEMANDr

The transport capacities on all routes are limited and there are no negative flows:
∀p ∈ PLANT, r ∈ REGION : 0 ≤ flowpr ≤ TRANSCAPpr

For simplicity’s sake, in this mathematical model we assume that all routes p→ r are defined and thatwe have TRANSCAPpr = 0 to indicate that a route cannot be used.
3.2.2 Implementation

This problem may be implemented with Mosel as shown in the following (model file transport.mos):
model Transport
uses "mmxprs"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: dynamic array(PLANT,REGION) of real

! Capacity on each route plant->region
DISTANCE: dynamic array(PLANT,REGION) of real

! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

flow: dynamic array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from 'transprt.dat'
DEMAND
[PLANTCAP,PLANTCOST] as 'PLANTDATA'
[DISTANCE,TRANSCAP] as 'ROUTES'
FUELCOST
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))

(FUELCOST ⁎ DISTANCE(p,r) + PLANTCOST(p)) ⁎ flow(p,r)

! Limits on plant capacity

Fair Isaac Corporation Confidential and Proprietary Information 24

More advanced modeling features

forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP(p)</p>

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
flow(p,r) <= TRANSCAP(p,r)

minimize(MinCost) ! Solve the problem

end-model

REGION and PLANT are declared to be sets of strings, as yet of unknown size. The data arrays(DEMAND, PLANTCAP, PLANTCOST, TRANSCAP, and DISTANCE) and the array of variables flow areindexed by members of REGION and PLANT, their size is therefore not known at their declaration. Themodel shows two forms of such array declarations: (1) the arrays DEMAND, PLANTCAP, PLANTCOST are
dense arrays that are not fixed (all entries corresponding to their index sets exist, new entries are addedvia assignment or if their index sets grow), (2) the arrays TRANSCAP, DISTANCE), and flow are markedas dynamic, that is, only explicitly assigned or created entries exist — we want to make use of thisproperty in the formulation of the model.
There is a slight difference between dynamic arrays of data and of decision variables (type mpvar): anentry of a data array is created automatically when it is used in the Mosel program, entries of decisionvariable arrays need to be created explicitly (see Section 3.3.1 below).
The data file transprt.dat contains the problem specific data. It might have, for instance,

DEMAND: [(Scotland) 2840 (North) 2800 (SWest) 2600 (SEast) 2820 (Midlands) 2750]

! [CAP COST]
PLANTDATA: [(Corby) [3000 1700]

(Deeside) [2700 1600]
(Glasgow) [4500 2000]
(Oxford) [4000 2100]]

! [DIST CAP]
ROUTES: [(Corby North) [400 1000]

(Corby SWest) [400 1000]
(Corby SEast) [300 1000]
(Corby Midlands) [100 2000]
(Deeside Scotland) [500 1000]
(Deeside North) [200 2000]
(Deeside SWest) [200 1000]
(Deeside SEast) [200 1000]
(Deeside Midlands) [400 300]
(Glasgow Scotland) [200 3000]
(Glasgow North) [400 2000]
(Glasgow SWest) [500 1000]
(Glasgow SEast) [900 200]
(Oxford Scotland) [800 ⁎]
(Oxford North) [600 2000]
(Oxford SWest) [300 2000]
(Oxford SEast) [200 2000]
(Oxford Midlands) [400 500]]

FUELCOST: 17

where we give the ROUTES data only for possible plant/region routes, indexed by the plant and region. Itis possible that some data are not specified; for instance, there is no Corby – Scotland route. So thedata are sparse and we just create the flow variables for the routes that exist. (The ‘⁎’ for the(Oxford,Scotland) entry in the capacity column indicates that the entry does not exist; we may write ’0’instead: in this case the corresponding flow variable will be created but bounded to be 0 by thetransport capacity limit).

Fair Isaac Corporation Confidential and Proprietary Information 25

More advanced modeling features

The condition whether an entry in a data table is defined is tested with the Mosel function exists.With the help of the ‘|’ operator we add this test to the forall loop creating the variables. It is notrequired to add this test to the sums over these variables: only the flowpr variables that have beencreated are taken into account. However, if the sums involve exactly the index sets that have been usedin the declaration of the variables (here this is the case for the objective function MinCost), adding theexistence test helps to speed up the enumeration of the existing index-tuples. The following sectionintroduces the conditional generation in a more systematic way.

3.3 Conditional generation — the | operator

Suppose we wish to apply an upper bound to some but not all members of a set of variables xi. Thereare MAXI members of the set. The upper bound to be applied to xi is Ui, but it is only to be applied if theentry in the data table TABi is greater than 20. If the bound did not depend on the value in TABi then thestatement would read:
forall(i in 1..MAXI) x(i) <= U(i)

Requiring the condition leads us to write
forall(i in 1..MAXI | TAB(i) > 20) x(i) <= U(i)

The symbol ‘|’ can be read as ‘such that’ or ‘subject to’.
Now suppose that we wish to model the following

MAXI∑
i=1

Ai>20
xi ≤ 15

In other words, we just want to include in a sum those xi for which Ai is greater than 20. This isaccomplished by
CC:= sum((i in 1..MAXI | A(i)>20) x(i) <= 15

3.3.1 Conditional variable creation and create

As we have already seen in the transport example (Section 3.2), with Mosel we can conditionally createvariables. In this section we show a few more examples.
Suppose that we have a set of decision variables x(i) where we do not know the set of i for which
x(i) exist until we have read data into an array WHICH.

model doesx
public declarations
IR = 1..15
WHICH: set of integer
x: dynamic array(IR) of mpvar
Obj,C: linctr
end-declarations

! Read data from file
initializations from 'doesx.dat'
WHICH
end-initializations

! Create the x variables that exist

Fair Isaac Corporation Confidential and Proprietary Information 26

More advanced modeling features

forall(i in WHICH) create(x(i))

! Build a little model to show what esists
Obj:= sum(i in IR) x(i)
C:= sum(i in IR) i ⁎ x(i) >= 5

exportprob("", Obj) ! Display the model
end-model

If the data in doesx.dat are
WHICH: [1 4 7 11 14]

the output from the model is
Minimize
x(1) + x(4) + x(7) + x(11) + x(14)
Subject To
C: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5
Bounds
End

Note: exportprob("", Obj) is a nice idiom for seeing on-screen the problem that has beencreated. The public declaration of decision variables and constraints ensures that the displayemploys the entity names from the model, by default it will only show automatically generated names.
The key point is that x has been declared as a dynamic array, and then the variables that exist havebeen created explicitly with create. In the transport example in Section 3.2 we have seen a differentway of declaring dynamic arrays: the arrays are implicitly declared as dynamic arrays since the indexsets are unknown at their declaration.
When we later take operations over the index set of x (for instance, summing), we only include those xthat have been created.
Another way to do this, is

model doesx2
public declarations
WHICH: set of integer
Obj,C: linctr
end-declarations

initializations from 'doesx.dat'
WHICH
end-initializations

finalize(WHICH)

public declarations
x: array(WHICH) of mpvar ! Here the array is _not_ dynamic
end-declarations ! because the set has been finalized

Obj:= sum(i in WHICH) x(i)
C:= sum(i in WHICH) i ⁎ x(i) >= 5

exportprob(0, "", Obj)
end-model

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either constantor have been finalized). Finalizing turns a dynamic set into a constant set consisting of the elementsthat are currently in the set. All subsequently declared arrays that are indexed by this set will be createdas static (= fixed size). The second method has two advantages: it is more efficient, and it does notrequire us to think of the limits of the range IR a priori.

Fair Isaac Corporation Confidential and Proprietary Information 27

More advanced modeling features

Note: The explicit call to finalize has become optional with Mosel 3.0 as the automatic finalizationmechanism of Mosel performs this operation by default.

3.4 Reading sparse data

Suppose we want to read in data of the form
i, j, valueij

from an ASCII file, setting up a dynamic array A(range, range) with just the A(i,j)= valueij forthe pairs (i,j) which exist in the file. Here is an example which shows three different ways of doingthis. We read data from differently formatted files into three different arrays, and using writeln showthat the arrays hold identical data.
3.4.1 Data input with initializations from

The first method, using the initializations block, has already been introduced (transport problemin Section 3.2).
model "Trio input (1)"
declarations
A1: dynamic array(range,range) of real
end-declarations

! First method: use an initializations block
initializations from 'data_1.dat'
A1 as 'MYDATA'
end-initializations

! Now let us see what we have
writeln('A1 is: ', A1)
end-model

The data file data_1.dat could be set up thus (every data item is preceded by its index-tuple):
MYDATA: [(1 1) 12.5 (2 3) 5.6 (10 9) -7.1 (3 2) 1]

This model produces the following output:
A1 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.2 Data input with readln

The second way of setting up and accessing data demonstrates the immense flexibility of readln.The format of the data file may be freely defined by the user. After every call to read or readln theparameter nbread contains the number of items read. Its value should be tested to check whether theend of the data file has been reached or an error has occurred (e.g. unrecognized data items due toincorrect formating of a data line). Notice that read and readlninterpret spaces as separatorsbetween data items; strings containing spaces must therefore be quoted using either single or doublequotes.
model "Trio input (2)"
declarations
A2: dynamic array(range,range) of real
i, j: integer
end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 28

More advanced modeling features

! Second method: use the built-in readln function
fopen("data_2.dat",F_INPUT)
repeat
readln('Tut(', i, 'and', j, ')=', A2(i,j))
until getparam("nbread") < 6
fclose(F_INPUT)

! Now let us see what we have
writeln('A2 is: ', A2)
end-model

The data file data_2.dat could be set up thus:
File data_2.dat:

Tut(1 and 1)=12.5
Tut(2 and 3)=5.6
Tut(10 and 9)=-7.1
Tut(3 and 2)=1

When running this second model version we get the same output as before:
A2 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

3.4.3 Data input with diskdata

As a third possibility, one may use the diskdata I/O driver from module mmetc to read in commaseparated value (CSV) files. With this driver the data file may contain single line comments precededwith !.
model "Trio input (3)"
uses "mmetc" ! Required for diskdata

declarations
A3: dynamic array(range,range) of real
end-declarations

! Third method: use diskdata driver
initializations from 'mmetc.diskdata:'
A3 as 'sparse,data_3.dat'
end-initializations

! Now let us see what we have
writeln('A3 is: ', A3)
end-model

The data file data_3.dat is set up thus (one data item per line, preceded by its indices, all separatedby commas; strings should be quoted using either single or double quotes):
1, 1, 12.5
2, 3, 5.6
10,9, -7.1
3, 2, 1

We obtain again the same output as before when running this model version:
A3 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

Note: the diskdata format is deprecated, it is provided to enable the use of data sets designed formp-model and does not support certain new features introduced by Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 29

More advanced modeling features

3.5 I/O error handling

Mosel’s default behaviour on encountering an error is to output an error message and exit from modelexecution. If a model is embedded into an application this behaviour might not always be desirable,particularly in the case of I/O errors. Data filenames (and contents) most often are changed at runtimeand they are therefore relatively more error-prone than invariable parts of the application.
The following modified extract of the ’transport’ example from Section 3.2 shows how to implementcustom I/O error handling in a Mosel model. To override the default error handling, this example uses
getparam and setparam to access and change the settings of several Mosel parameters:
ioctrl Enable/disable user I/O handling. If disabled (default), the model stops when an I/Oerror has occurred.
readcnt Enable/disable counting of entries per label in ’initializations’ blocks. Needs to beenabled when using function getreadcnt.
nbread Number of items recognized by the last read procedure or read in by the last’initializations’ block.
iostatus Status of the last I/O operation. A non-zero value indicates an error.
workdir The current working directory of the model. Data files are searched for relative to themodel’s working directory—incorrect paths are quite a common source of I/O errors.
Furthermore, we use the function getfstat provided by the module mmsystem to check whether thedata file we are about to access exists and is of a suitable type (regular file).
Model file readdataerr.mos:

model "I/O error handling"
uses "mmsystem"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants
DEMAND: array(REGION) of real ! Demand at regions
TRANSCAP,DISTANCE: dynamic array(PLANT,REGION) of real ! Route data
FUELCOST: real ! Fuel cost per unit distance
end-declarations

DATAFILE:= 'transprt.dat'

! Check whether the file we want to access exists
if bittest(getfstat(DATAFILE),SYS_TYP)<>SYS_REG then
writeln("File '", DATAFILE, "' does not exist or is not a regular file")
exit(1)
end-if

setparam("ioctrl", true) ! Application handles I/O errors
setparam("readcnt", true) ! Enable per label counting

initializations from DATAFILE
DEMAND
[DISTANCE,TRANSCAP] as 'ROUTE'
FUELCOST
end-initializations

if getparam("iostatus") <>0 then ! Something has gone wrong in last I/O
writeln("I/O error reading file '", DATAFILE, "'.")

! Display the working directory
writeln("Working directory: ", getparam("workdir"))

! Display total entries read

Fair Isaac Corporation Confidential and Proprietary Information 30

More advanced modeling features

writeln("Total number of entries read: ", getparam("nbread"))
! Check no. of entries read per label

forall(s in ["DEMAND","ROUTE","FUELCOST"])
if getreadcnt(s)=0 then
writeln("No entries read for label '", s, "'.")
else
writeln(getreadcnt(s), " entries read for label '", s, "'.")
end-if

end-if

setparam("ioctrl", false) ! Revert to default I/O handling
setparam("readcnt", false)

end-model

We have purposely introduced a mistake (the correct label for the route data is ’ROUTES’) and runningthis model therefore displays an error message produced by Mosel, and also the following outputproduced by our own error reporting.
I/O error reading file 'transprt.dat':
Mosel: E-33: Initialization from file `transprt.dat' failed for: `ROUTE'.
Working directory: c:/xpress/examples/mosel/UG/A3
Total number of entries read: 6
5 entries read for label 'DEMAND'.
No entries read for label 'ROUTE'.
1 entries read for label 'FUELCOST'.

Given that this model implements its own error handling, we might want to entirely disable the displayof error messages from Mosel by redirecting the error stream to ’null:’, that is, surrounding the’initializations’ block with these lines:
fopen("null:", F_ERROR) ! Optional: Disable error stream
... ! Initialization of data from file
fclose(F_ERROR) ! Stop error redirection

Important: always remember to terminate the error stream redirection by closing the selected outputfile, otherwise you will no longer see any error output from Mosel from the rest of the model.
Instead of completely ignoring the error messages produced by Mosel, we might also choose to savethem to a file in order to inspect or display them later on. This may be a physical (text) file, or forexample, a text object directly in the model as shown in this code extract:

public declarations
errtxt: text ! Text used as file to log errors
end-declarations

fopen("text:errtxt", F_ERROR) ! Redirect error stream to a file (text)
... ! Initialization of data from file
fclose(F_ERROR) ! Stop error redirection

if getparam("iostatus") <>0 then ! Something has gone wrong in last I/O
writeln("I/O error reading file '", DATAFILE, "': ", errtxt)
...
end-if

In the error redirection we have used ’null:’ and ’text:’, these two are I/O drivers which are explained withsome more detail in Section 17.1.2. Concerning the type ’text’ please see the discussion in Section17.6.1.
Note: Certain Mosel modules and also the Mosel Libraries have additional functionality for errorhandling, such as debug settings for ODBC (see the chapter ’mmodbc’ of the Mosel LanguageReference for details), or the redirection of Mosel streams from applications (as in Sections 13.5 or14.1.8) of other models (see the example of Section 17.2.3).

Fair Isaac Corporation Confidential and Proprietary Information 31

CHAPTER 4

Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations wherediscontinuities are at the very core of the decision making problem. There seem to be three major areaswhere non-linear facilities are required
� where entities must inherently be selected from a discrete set;
� in modeling logical conditions; and
� in finding the global optimum over functions.

Mosel lets you model these non-linearities using a range of discrete (global) entities and then theXpress Mixed Integer Programming (MIP) optimizer can be used to find the overall (global) optimum ofthe problem. Usually the underlying structure is that of a Linear Program, but optimization may be usedsuccessfully when the non-linearities are separable into functions of just a few variables.

4.1 Integer Programming entities in Mosel

We shall show how to make variables and sets of variables into global entities by using the followingdeclarations.
declarations
IR = 1..8 ! Index range
WEIGHT: array(IR) of real ! Weight table
x: array(IR) of mpvar
end-declarations

WEIGHT:: [2, 5, 7, 10, 14, 18, 22, 30]

Xpress handles the following global entities:
� Binary variables: decision variables that can take either the value 0 or the value 1 (do/ don’t dovariables).We make a variable, say x(4), binary by

x(4) is_binary

� Integer variables: decision variables that can take only integer values.We make a variable, say x(7), integer by
x(7) is_integer

� Partial integer variables: decision variables that can take integer values up to a specified limit andany value above that limit.

Fair Isaac Corporation Confidential and Proprietary Information 32

Integer Programming

x(1) is_partint 5 ! Integer up to 5, then continuous

� Semi-continuous variables: decision variables that can take either the value 0, or a value betweensome lower limit and upper limit. Semi-continuous variables help model situations where if avariable is to be used at all, it has to be used at some minimum level.
x(2) is_semcont 6 ! A 'hole' between 0 and 6, then continuous

� Semi-continuous integer variables: decision variables that can take either the value 0, or an integervalue between some lower limit and upper limit. Semi-continuous integer variables help modelsituations where if a variable is to be used at all, it has to be used at some minimum level, and hasto be integer.
x(3) is_semint 7 ! A 'hole' between 0 and 7, then integer

� Special Ordered Sets of type one (SOS1): an ordered set of non-negative variables at most one ofwhich can take a non-zero value.
� Special Ordered Sets of type two (SOS2): an ordered set of non-negative variables, of which atmost two can be non-zero, and if two are non-zero these must be consecutive in their ordering. Ifthe coefficients in the WEIGHT array determine the ordering of the variables, we might form aSOS1 or SOS2 set MYSOS by

MYSOS:= sum(i in IRng) WEIGHT(i)⁎x(i) is_sosX

where is_sosX is either is_sos1 for SOS1 sets, or is_sos2 for SOS2 sets.Alternatively, if the set S holds the members of the set and the linear constraint L contains the setvariables’ coefficients used in ordering the variables (the so-called reference row entries), then wecan do thus:
makesos1(S,L)

with the obvious change for SOS2 sets. This method must be used if the coefficient (here
WEIGHT(i)) of an intended set member is zero. With is_sosX the variable will not appear in theset since it does not appear in the linear expression.Another point to note about Special Ordered Sets is that the ordering coefficients must be distinct(or else they are not doing their job of supplying an order!).

The most commonly used entities are binary variables, which can be employed to model a whole rangeof logical conditions. General integers are more frequently found where the underlying decision variablereally has to take on a whole number value for the optimal solution to make sense. For instance, wemight be considering the number of airplanes to charter, where fractions of an airplane are notmeaningful and the optimal answer will probably involve so few planes that rounding to the nearestinteger may not be satisfactory.
Partial integers provide some computational advantages in problems where it is acceptable to roundthe LP solution to an integer if the optimal value of a decision variable is quite large, but unacceptable ifit is small. Semi-continuous variables are useful where, if some variable is to be used, its value must beno less than some minimum amount. If the variable is a semi-continuous integer variable, then it hasthe added restriction that it must be integral too.
Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select atmost one thing from a set of items. The choice may be from such sets as: the time period in which tostart a job; one of a finite set of possible sizes for building a factory; which machine type to process apart on. Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable.They are the natural extension of the concepts of Separable Programming, but when embedded in aBranch-and-Bound code (see below) enable truly global optima to be found, and not just local optima.(A local optimum is a point where all the nearest neighbors are worse than it, but where we have no

Fair Isaac Corporation Confidential and Proprietary Information 33

Integer Programming

guarantee that there is not a better point some way away. A global optimum is a point which we knowto be the best. In the Himalayas the summit of K2 is a local maximum height, whereas the summit ofEverest is the global maximum height).
Theoretically, models that can be built with any of the entities we have listed above can be modeledsolely with binary variables. The reason why modern IP systems have some or all of the extra entities isthat they often provide significant computational savings in computer time and storage when trying tosolve the resulting model. Most books and courses on Integer Programming do not emphasize thispoint adequately. We have found that careful use of the non-binary global entities often yields veryconsiderable reductions in solution times over ones that just use binary variables.
To illustrate the use of Mosel in modeling Integer Programming problems, a small example follows. Thefirst formulation uses binary variables. This formulation is then modified to use Special Ordered Sets.
For the interested reader, an excellent text on Integer Programming is Integer Programming by LaurenceWolsey, Wiley Interscience, 1998, ISBN 0-471-28366-5.

4.2 A project planning model

A company has several projects that it must undertake in the next few months. Each project lasts for agiven time (its duration) and uses up one resource as soon as it starts. The resource profile is theamount of the resource that is used in the months following the start of the project. For instance,project 1 uses up 3 units of resource in the month it starts, 4 units in its second month, and 2 units in itslast month.
The problem is to decide when to start each project, subject to not using more of any resource in agiven month than is available. The benefit from the project only starts to accrue when the project hasbeen completed, and then it accrues at BENp per month for project p, up to the end of the time horizon.Below, we give a mathematical formulation of the above project planning problem, and then display theMosel model form.

4.2.1 Model formulation

Let PROJ denote the set of projects and MONTHS = {1, ...,NM} the set of months to plan for. The dataare:
DURp the duration of project p
RESUSEpt the resource usage of project p in its tth month
RESMAXm the resource available in month m
BENp the benefit per month when project finishes

We introduce the binary decision variables startpm that are 1 if project p starts in month m, and 0otherwise.
The objective function is obtained by noting that the benefit coming from a project only starts to accruewhen the project has finished. If it starts in month m then it finishes in month m + DURp – 1. So, in total,we get the benefit of BENp for NM – (m + DURp – 1) = NM –m – DURp + 1 months. We must consider allthe possible projects, and all the starting months that let the project finish before the end of theplanning period. For the project to complete it must start no later than month NM – DURp. Thus theprofit is: ∑

p∈PROJ

NM–DURp∑
m=1

(BENp · (NM –m – DURp + 1)) · startpm

Fair Isaac Corporation Confidential and Proprietary Information 34

Integer Programming

Each project must be done once, so it must start in one of the months 1 to NM – DURp:
∀p ∈ PROJ : ∑

m∈MONTHS
startpm = 1

We next need to consider the implications of the limited resource availability each month. Note that if aproject p starts in month m it is in its (k –m + 1)th month in month k, and so will be using RESUSEp,k–m+1units of the resource. Adding this up for all projects and all starting months up to and including theparticular month k under consideration gives:
∀k ∈ MONTHS : ∑

p∈PROJ

k∑
m=1

RESUSEp,k+1–m · startpm ≤ RESMAXk

Finally we have to specify that the startpm are binary (0 or 1) variables:
∀p ∈ PROJ,m ∈ MONTHS : startpm ∈ {0, 1}

Note that the start month of a project p is given by:
NM–DURp∑

m=1
m · startpm

since if an startpm is 1 the summation picks up the corresponding m.
4.2.2 Implementation

The model as specified to Mosel is as follows (file pplan.mos):
model Pplan
uses "mmxprs"

declarations
PROJ = 1..3 ! Set of projects
NM = 6 ! Time horizon (months)
MONTHS = 1..NM ! Set of time periods (months) to plan for

DUR: array(PROJ) of integer ! Duration of project p
RESUSE: array(PROJ,MONTHS) of integer

! Res. usage of proj. p in its t'th month
RESMAX: array(MONTHS) of integer ! Resource available in month m
BEN: array(PROJ) of real ! Benefit per month once project finished

start: array(PROJ,MONTHS) of mpvar ! 1 if proj p starts in month t, else 0
end-declarations

DUR :: [3, 3, 4]
RESMAX:: [5, 6, 7, 7, 6, 6]
BEN :: [10.2, 12.3, 11.2]
RESUSE:: (1,1..3)[3, 4, 2]
RESUSE:: (2,1..3)[4, 1, 5]
RESUSE:: (3,1..4)[3, 2, 1, 2] ! Other RESUSE entries are 0 by default

! Objective: Maximize Benefit
! If project p starts in month t, it finishes in month t+DUR(p)-1 and
! contributes a benefit of BEN(p) for the remaining NM-(t+DUR(p)-1) months:
MaxBen:=
sum(p in PROJ, m in 1..NM-DUR(p)) (BEN(p)⁎(NM-m-DUR(p)+1)) ⁎ start(p,m)

! Each project starts once and only once:

Fair Isaac Corporation Confidential and Proprietary Information 35

Integer Programming

forall(p in PROJ) One(p):= sum(m in MONTHS) start(p,m) = 1

! Resource availability:
! A project starting in month m is in its k-m+1'st month in month k:
forall(k in MONTHS) ResMax(k):=
sum(p in PROJ, m in 1..k) RESUSE(p,k+1-m)⁎start(p,m) <= RESMAX(k)

! Make all the start variables binary
forall(p in PROJ, m in MONTHS) start(p,m) is_binary

maximize(MaxBen) ! Solve the MIP-problem

writeln("Solution value is: ", getobjval)
forall(p in PROJ) writeln(p, " starts in month ",

getsol(sum(m in 1..NM-DUR(p)) m⁎start(p,m)))
end-model

Note that in the solution printout we apply the getsol function not to a single variable but to a linearexpression.

4.3 The project planning model using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The startpm variables for agiven p form a set of variables which are ordered by m, the month. The ordering is induced by thecoefficients of the startpm in the specification of the SOS. For example, startp1’s coefficient, 1, is lessthan startp2’s, 2, which in turn is less than startp3’s coefficient, and so on The fact that the startpmvariables for a given p form a set of variables is specified to Mosel as follows:
(! Define SOS-1 sets that ensure that at most one start(p,m) is non-zero

for each project p. Use month index to order the variables !)

forall(p in PROJ) XSet(p):= sum(m in MONTHS) m⁎start(p,m) is_sos1

The is_sos1 specification tells Mosel that Xset(p) is a Special Ordered Set of type 1.
The linear expression specifies both the set members and the coefficients that order the set members.It says that all the startpm variables for m in the MONTHS index range are members of an SOS1 withreference row entries m.
The specification of the startpm as binary variables must now be removed. The binary nature of the
startpm is implied by the SOS1 property, since if the startpm must add up to 1 and only one of them candiffer from zero, then just one is 1 and the others are 0.
If the two formulations are equivalent why were Special Ordered Sets invented, and why are they useful?The answer lies in the way the reference row gives the search procedure in Integer Programming (IP)good clues as to where the best solution lies. Quite frequently the Linear Programming (LP) problemthat is solved as a first approximation to an Integer Program gives an answer where startp1 is fractional,say with a value of 0.5, and startp,NM takes on the same fractional value. The IP will say:
‘my job is to get variables to 0 or 1. Most of the variables are already there so I will try moving xp1 orxpT. Since the set members must add up to 1.0, one of them will go to 1, and one to 0. So I think that westart the project either in the first month or in the last month.’
A much better guess is to see that the startpm are ordered and the LP solution is telling us it looks as ifthe best month to start is somewhere midway between the first and the last month. When sets arepresent, the IP can branch on sets of variables. It might well separate the months into those before themiddle of the period, and those later. It can then try forcing all the early startpm to 0, and restricting thechoice of the one startpm that can be 1 to the later startpm. It has this option because it now has theinformation to ‘know’ what is an early and what is a late startpm, whereas these variables wereunordered in the binary formulation.

Fair Isaac Corporation Confidential and Proprietary Information 36

Integer Programming

The power of the set formulation can only really be judged by its effectiveness in solving large, difficultproblems. When it is incorporated into a good IP system such as Xpress it is often found to be an orderof magnitude better than the equivalent binary formulation for large problems.

Fair Isaac Corporation Confidential and Proprietary Information 37

CHAPTER 5

Overview of subroutines and
reserved words

There is a range of built-in functions and procedures available in Mosel. They are described fully in theMosel Language Reference Manual. Here is a summary.
� Accessing solution values: getsol, getact, getdual, getrcost, getslack, getobjval
� Arithmetic functions: abs, arctan, cos, sin, ceil, floor, round, exp, ln, log, sqrt, isodd,
random, setrandseed

� List functions: maxlist, minlist, cutelt, cutfirst, cutlast, cuthead, cuttail,
findfirst, findlast, getelt, getfirst, getlast, getreverse, reverse, gethead,
gettail, splithead, splittail

� String functions: strfmt, substr, _
� Dynamic array handling: create, exists, finalize, delcell, isdynamic
� File handling: fclose, fflush, fopen, fselect, fskipline, fwrite, fwrite_, fwriteln,
fwriteln_, getfid, getfname, getreadcnt, iseof, read, readln, write, write_,
writeln, writeln_

� Accessing control parameters: getparam, localsetparam, restoreparam, setparam
� Getting information: getcoeff, getcoeffs, getsize, gettype, getvars
� Constraint definition: sethidden, ishidden, makesos1, makesos2, setcoeff, setname,
setrange, settype

� Time and date: currentdate, currenttime, timestamp
� Bit values: bitflip, bitneg, bitset, bitshift, bittest, bitval
� Special values: isfinite, isinf, isnan
� Miscellaneous functions: asproc, assert, compare, datablock, exit, exportprob, reset,
setioerr, setmatherr, publish, unpublish, memoryuse, newmuid, versionnum,
versionstr

Fair Isaac Corporation Confidential and Proprietary Information 38

Overview of subroutines and reserved words

5.1 Modules

The distribution of Mosel contains several modules that add extra functionality to the language.
A full list of the functionality of a module can be obtained by using Mosel’s exam command, for instance

mosel exam mmsystem

In this manual, we always use Xpress Optimizer as solver. Access to the corresponding optimizationfunctions is provided by the module mmxprs.
In the mmxprsmodule are the following useful functions.

� Optimize: minimize, maximize
� MIP directives: setmipdir, clearmipdir
� Handling bases: savebasis, loadbasis, delbasis
� Force problem loading: loadprob
� Accessing problem status: getprobstat
� Deal with bounds: setlb, setub, getlb, getub
� Model cut functions: setmodcut, clearmodcut

For example, here is a nice habit to get into when solving a problem with Xpress Optimizer.
declarations
status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string

end-declarations

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])[
"Optimum found","Unfinished","Infeasible","Unbounded","Failed"]

...
minimize(Obj)
writeln(status(getprobstat))

In the mmsystemmodule are various useful functions provided by the underlying operating system anda few programming utilities :
� Delete a file/directory: fdelete, removedir
� Copy/move a file: fcopy, fmove
� Make a directory: makedir
� Current working directory: getcwd
� Get/set an environment variable’s value: getenv, setenv
� File and system status: getfstat, getsysstat
� General system call: system
� Time and date: gettime, getdate, getweekday, getasnumber, ...
� Handling the type text: copytext, cuttext, deltext, readtextline, ...
� Sort an array of any type with ’order’ property: qsort

Other modules mentioned in this manual are mmodbc, mmsheet, mmetc, and mmjobs.
See the module documentation in the Mosel Language Reference Manual or in the individual modulereference manuals for full details.

Fair Isaac Corporation Confidential and Proprietary Information 39

Overview of subroutines and reserved words

5.2 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and
and are keywords but not And). Do not use them in a model except with their built-in meaning.
and, array, as
boolean, break
case, constant, count, counter
declarations, div, do, dynamic
elif, else, end, evaluation
false, forall, forward, from, function
hashmap
if, imports, in, include, initialisations, initializations, integer, inter,
is_binary, is_continuous, is_free, is_integer, is_partint, is_semcont,
is_semint, is_sos1, is_sos2
linctr, list
max, min, mod, model, mpvar
namespace, next, not, nsgroup, nssearch
of, options, or
package, parameters, procedure, public, prod
range, real, record, repeat, requirements, return
set, shared, string, sum
then, to, true
union, until, uses
version
while, with

Fair Isaac Corporation Confidential and Proprietary Information 40

CHAPTER 6

Correcting errors in Mosel models

The parser of Mosel is able to detect a large number of errors that may occur when writing a model. Inthis chapter we shall try to analyze and correct some of these. As a next step, we also show how toobtain information for dealing with run time errors.
Other types of errors that are in general more difficult to detect are mistakes in the data or logical errorsin the formulation of Mosel models—you may use the Mosel Debugger (see Section 15.1) to trace these.

6.1 Correcting syntax errors in Mosel

If we compile the model poerror1.mos
model `Plenty of errors'
declarations
small, large: mpvar
end-declarations

Profit= 5⁎small + 20⁎large
Boxwood:= small + 3⁎large <= 200
Lathe:= 3⁎small + 2⁎large <= 160

maximize(Profit)

writeln("Best profit is ", getobjval
end-model

we get the following output:
Mosel: E-100 at (1,7) of `poerror.mos': Syntax error before ``'.
Parsing failed.

The second line of the output informs us that the compilation has not been executed correctly. The firstline tells us exactly the type of the error that has been detected, namely a syntax error with the code
E-100 (where E stands for error) and its location: line 1 character 7. The problem is caused by theapostrophe ‘ (or something preceding it). Indeed, Mosel expects either single or double quotes aroundthe name of the model if the name contains blanks. We therefore replace it by ’ and compile thecorrected model, resulting in the following display:

Mosel: E-100 at (6,8) of `poerror.mos': Syntax error before `='.
Mosel: W-121 at (6,29) of `poerror.mos': Statement with no effect.
Mosel: E-100 at (10,16) of `poerror.mos': `Profit' is not defined.
Mosel: E-123 at (10,17) of `poerror.mos': `maximize' is not defined.
Mosel: E-100 at (12,37) of `poerror.mos': Syntax error.
Parsing failed.

Fair Isaac Corporation Confidential and Proprietary Information 41

Correcting errors in Mosel models

There is a problem with the sign = in the 6th line:
Profit= 5⁎small + 20⁎large

In the model body the equality sign =may only be used in the definition of constraints or in logicalexpressions. Constraints are linear relations between variables, but profit has not been defined as avariable, so the parser detects an error. What we really want, is to assign the linear expression
5⁎small + 20⁎large to Profit. For such an assignment we have to use the sign :=. Using just =is a very common error.
As a consequence of this error, the linear expression after the equality sign does not have any relevanceto the problem that is stated. The parser informs us about this fact in the second line: it has found astatement with no effect. This is not an error that would cause the failure of the compilation taken onits own, but simply a warning (marked by the W in the error code W-121) that there may be something tolook into. Since Profit has not been defined, it cannot be used in the call to the optimization, hencethe third error message.
As we have seen, the second and the third error messages are consequences of the first mistake wehave made. Before looking at the last message that has been displayed we recompile the model withthe corrected line

Profit:= 5⁎small + 20⁎large

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:
Mosel: E-123 at (10,17) of `poerror.mos': `maximize' is not defined.
Mosel: E-100 at (12,37) of `poerror.mos': Syntax error.

There is still a problem in line 10; this time it shows up at the very end of the line. Although everythingappears to be correct, the parser does not seem to know what to do with maximize. The solution tothis enigma is that we have forgotten to load the module mmxprs that provides the optimizationfunction maximize. To tell Mosel that this module is used we need to add the line
uses "mmxprs"

immediately after the start of the model, before the declarations block. Forgetting to specify mmxprs isanother common error. We now have a closer look at line 12 (which has now become line 13 due to theaddition of the uses statement). All subroutines called in this line (writeln and getobjval) areprovided by Mosel, so there must be yet another problem: we have forgotten to close the parentheses.After adding the closing parenthesis after getobjval the model finally compiles without displayingany errors. If we run it we obtain the desired output:
Best profit is 1333.33
Returned value: 0

6.2 Correcting run time errors in Mosel

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors. Itshould only be pointed out here that it is possible to add the flag -g to the compile command to obtainsome information about where the error occurred in the program, resulting in a command sequencesuch as
mosel compile -g mymodel.mos
mosel mymodel.bim

or short

Fair Isaac Corporation Confidential and Proprietary Information 42

Correcting errors in Mosel models

mosel exec -g mymodel

Also useful is turning on verbose reporting, for instance
setparam("XPRS_VERBOSE",true)
setparam("XPRS_LOADNAMES",true)

Fair Isaac Corporation Confidential and Proprietary Information 43

II. Advanced language features

Overview

This part takes the reader who wants to use Mosel as a modeling, solving and programmingenvironment through its powerful programming language facilities. The following topics, most of whichhave already shortly been mentioned in the first part, are covered in a more detailed way:
� Selections and loops (Chapter 7)
� Working with arrays, sets, lists, and records (Chapter 8)
� Functions and procedures (Chapter 9)
� Output to files and producing formatted output (Chapter 10)

Whilst the first four chapters in this part present pure programming examples, the last two chapterscontain some advanced examples of LP and MIP that make use of the programming facilities in Mosel:
� Cut generation (Section 11.1)
� Column generation (Section 11.2)
� Recursion or Successive Linear Pogramming (Section 12.1)
� Goal Programming (Section 12.2)

Fair Isaac Corporation Confidential and Proprietary Information 45

CHAPTER 7

Flow control constructs

Flow control constructs are mechanisms for controlling the order of the execution of the actions in aprogram. In this chapter we are going to have a closer look at two fundamental types of controlconstructs in Mosel: selections and loops.
Frequently actions in a program need to be repeated a certain number of times, for instance for allpossible values of some index or depending on whether a condition is fulfilled or not. This is thepurpose of loops. Since in practical applications loops are often interwoven with conditions (selection
statements), these are introduced first.

7.1 Selections

Mosel provides several statements to express a selection between different actions to be taken in aprogram. The simplest form of a selection is the if-then statement:
� if-then: ‘If a condition holds do something’. For example:

if A >= 20 then
x <= 7
end-if

For an integer number A and a variable x of type mpvar, x is constrained to be less or equal to 7 if A isgreater or equal 20.
Note that there may be any number of expressions between then and end-if, not just a single one.
In other cases, it may be necessary to express choices with alternatives.

� if-then-else: ‘If a condition holds, do this, otherwise do something else’. For example:
if A >= 20 then
x <= 7
else x >= 35
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20,otherwise the lower bound 35 is applied to it.
� if-then-elif-then-else: ‘If a condition holds do this, otherwise, if a second condition holds dosomething else etc.’

if A >= 20 then
x <= 7
elif A <= 10 then
x >= 35

Fair Isaac Corporation Confidential and Proprietary Information 46

Flow control constructs

else
x = 0
end-if

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20, and ifthe value of A is less or equal 10 then the lower bound 35 is applied to x. In all other cases (that is,
A is greater than 10 and smaller than 20), x is fixed to 0.Note that this could also be written using two separate if-then statements but it is moreefficient to use if-then-elif-then[-else] if the cases that are tested are mutuallyexclusive.

� case: ‘Depending on the value of an expression do something’.
case A of
-MAX_INT..10 : x >= 35
20..MAX_INT : x <= 7
12, 15 : x = 1
else x = 0
end-case

Here the upper bound 7 is applied to the variable x if the value of A is greater or equal 20, and thelower bound 35 is applied if the value of A is less or equal 10. In addition, x is fixed to 1 if A hasvalue 12 or 15, and fixed to 0 for all remaining values.An example for the use of the case statement is given in Section 12.2.
The following example (model minmax.mos) uses the if-then-elif-then statement to computethe minimum and the maximum of a set of randomly generated numbers:

model Minmax

declarations
SNumbers: set of integer
LB=-1000 ! Elements of SNumbers must be between LB
UB=1000 ! and UB
end-declarations

! Generate a set of 50 randomly chosen numbers
forall(i in 1..50)
SNumbers += {round(random⁎200)-100}

writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

minval:=UB
maxval:=LB
forall(p in SNumbers)
if p<minval then
minval:=p

elif p>maxval then
maxval:=p

end-if

writeln("Min: ", minval, ", Max: ", maxval)

end-model

Instead of writing the loop above, it would of course be possible to use the corresponding operators
min and max provided by Mosel:

writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)

It is good programming practice to indent the block of statements in loops or selections as in thepreceding example so that it becomes easy to get an overview where the loop or the selection ends. —At the same time this may serve as a control whether the loop or selection has been terminatedcorrectly (i.e. no end-if or similar key words terminating loops have been left out).

Fair Isaac Corporation Confidential and Proprietary Information 47

Flow control constructs

7.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values of someindex or counter (forall) or depending on whether a condition is fulfilled or not (while,
repeat-until).
This section presents the complete set of loops available in Mosel, namely forall, forall-do,
while, while-do, and repeat-until.

7.2.1 forall

The forall loop repeats a statement or block of statements for all values of an index or counter. If theset of values is given as an interval of integers (range), the enumeration starts with the smallest value.For any other type of sets the order of enumeration depends on the current (internal) order of theelements in the set.
The forall loop exists in two different versions in Mosel. The inline version of the forall loop (i.e.looping over a single statement) has already been used repeatedly, for example as in the following loopthat constrains variables x(i) (i=1,...,10) to be binary.

forall(i in 1..10) x(i) is_binary

The second version of this loop, forall-do, may enclose a block of statements, the end of which ismarked by end-do.
Note that the indices of a forall loop can not be modified inside the loop. Furthermore, they must benew objects: a symbol that has been declared cannot be used as index of a forall loop.
The following example (model perfect.mos) that calculates all perfect numbers between 1 and agiven upper limit combines both types of the forall loop. (A number is called perfect if the sum of itsdivisors is equal to the number itself.)

model Perfect

parameters
LIMIT=100
end-parameters

writeln("Perfect numbers between 1 and ", LIMIT, ":")

forall(p in 1..LIMIT) do
sumd:=1
forall(d in 2..p-1)
if p mod d = 0 then ! Mosel's built-in mod operator

sumd+=d ! The same as sum:= sum + d
end-if

if p=sumd then
writeln(p)

end-if
end-do

end-model

The outer loop encloses several statements, we therefore need to use forall-do. The inner loop onlyapplies to a single statement (if statement) so that we may use the inline version forall.
If run with the default parameter settings, this program computes the solution 1, 6, 28.

Fair Isaac Corporation Confidential and Proprietary Information 48

Flow control constructs

7.2.1.1 Multiple indices

The forall statement (just like the sum operator and any other statement in Mosel that requires indexset(s)) may take any number of indices, with values in sets of any basic type or ranges of integervalues. If two or more indices have the same set of values as in
forall(i in 1..10, j in 1..10) y(i,j) is_binary

(where y(i,j) are variables of type mpvar) the following equivalent short form may be used:
forall(i,j in 1..10) y(i,j) is_binary

7.2.1.2 Conditional looping

The possibility of adding conditions to a forall loop via the ‘|’ symbol has already been mentioned inChapter 3. Conditions may be applied to one or several indices and the selection statement(s) can beplaced accordingly. Take a look at the following example where A and U are one- and two-dimensionalarrays of integers or reals respectively, and y a two-dimensional array of decision variables (mpvar):
forall(i in -10..10, j in 0..5 | A(i) > 20) y(i,j) <= U(i,j)

For all i from -10 to 10, the upper bound U(i,j) is applied to the variable y(i,j) if the value of A(i)is greater than 20.
The same conditional loop may be reformulated (in an equivalent but usually less efficient way) usingthe if statement:

forall(i in -10..10, j in 0..5)
if A(i) > 20
y(i,j) <= U(i,j)

end-if

If we have a second selection statement on both indices with B a two-dimensional array of integers orreals, we may either write
forall(i in -10..10, j in 0..5 | A(i) > 20 and B(i,j) <> 0) y(i,j) <= U(i,j)

or, more efficiently, since the second condition on both indices is only tested if the condition on index iholds:
forall(i in -10..10 | A(i) > 20, j in 0..5 | B(i,j) <> 0) y(i,j) <= U(i,j)

7.2.1.3 Counters

A recurring programming task when working with loops, and in particular with conditional loops, is todetermine the number of times that the loop has been executed (or that the loop condition is veryfied).To this aim, Mosel provides the construct as counter, to be added to the indices of forall loops orother statements involving indices, such as sum, max, or union statements.
The following example (see file count1.mos) counts and displays all strings in a list that contain thesubstring ’b’:

L:= ['a', 'ab', 'abc', 'da', 'bc', 'db']
scnt:=0
forall(scnt as counter, s in L | findtext(s, 'b', 1)>0)
writeln(scnt, ": ", s)

Fair Isaac Corporation Confidential and Proprietary Information 49

Flow control constructs

The position of as counter among the loop indices is entirely up to the programmer and takes noeffect on its value. However notice that loop conditions must succeed an index. So for instance,instead of the above we might equally have written:
forall(s in L | findtext(s, 'b', 1)>0, scnt as counter)
writeln(scnt, ": ", s)

And here is an elegant formulation how to calculate the average value of set elements with a givenproperty (odd numbers):
S:= {1, 5, 8, -1, 4, 7, 2}
cnt:=0.0
writeln("Average of odd numbers: ",

(sum(cnt as counter, i in S | isodd(i)) i) / cnt)

As an alternative to adding a counter on a loop, Mosel also defines the aggregate operator count thatis used as follows.
writeln("Number of odd numbers in S: ", count(i in S | isodd(i)))

writeln("Occurences of 'b' in L: ", count(s in L | findtext(s, 'b', 1)>0))

Both types of counters may be used jointly in a single statement as shown in the following example(model count2.mos) that creates an entry for the array NODE if there are at least two incoming oroutgoing arcs for the corresponding index j.
declarations
I: set of integer
ARC: dynamic array(I,I) of boolean
NODE: dynamic array(set of integer) of integer
end-declarations

initializations from "count2.dat"
ARC
end-initializations

ctnode:=0
forall(ctnode as counter, j in I |

count(i in I | exists(ARC(i,j))) +
count(i in I | exists(ARC(j,i))) >= 2) create(NODE(j))

writeln("Number of nodes created: ", ctnode)

7.2.2 while

A while loop is typically employed if the number of times that the loop needs to be executed is notknow beforehand but depends on the evaluation of some condition: a set of statements is repeatedwhile a condition holds. As with forall, the while statement exists in two versions, an inline version(while) and a version (while-do) that is to be used with a block of program statements.
The following example (model lcdiv1.mos) computes the largest common divisor of two integernumbers A and B (that is, the largest number by which both A and B, can be divided without remainder).Since there is only a single if-then-else statement in the while loop we could use the inlineversion of the loop but, for clarity’s sake, we have given preference to the while-do version that markswhere the loop terminates clearly.

model Lcdiv1

declarations
A,B: integer

Fair Isaac Corporation Confidential and Proprietary Information 50

Flow control constructs

end-declarations

write("Enter two integer numbers:\n A: ")
readln(A)
write(" B: ")
readln(B)

while (A <> B) do
if (A>B) then
A:=A-B
else B:=B-A
end-if
end-do

writeln("Largest common divisor: ", A)

end-model

7.2.3 repeat until

The repeat-until structure is similar to the while statement with the difference that the actions inthe loop are executed once before the termination condition is tested for the first time.
The following example (model shsort.mos) combines the three types of loops (forall, while,
repeat-until) that are available in Mosel. It implements a Shell sort algorithm for sorting an array ofnumbers into numerical order. The idea of this algorithm is to first sort, by straight insertion, smallgroups of numbers. Then several small groups are combined and sorted. This step is repeated until thewhole list of numbers is sorted.
The spacings between the numbers of groups sorted on each pass through the data are called theincrements. A good choice is the sequence which can be generated by the recurrence
inc1 = 1, inck+1 = 3 · inck + 1, k = 1, 2, ...

model "Shell sort"

declarations
N: integer ! Size of array ANum
ANum: array(range) of real ! Unsorted array of numbers
end-declarations

N:=50
forall(i in 1..N)
ANum(i):=round(random⁎100)

writeln("Given list of numbers (size: ", N, "): ")
forall(i in 1..N) write(ANum(i), " ")
writeln

inc:=1 ! Determine the starting increment
repeat
inc:=3⁎inc+1

until (inc>N)

repeat ! Loop over the partial sorts
inc:=inc div 3
forall(i in inc+1..N) do ! Outer loop of straight insertion
v:=ANum(i)
j:=i
while (ANum(j-inc)>v) do ! Inner loop of straight insertion

ANum(j):=ANum(j-inc)
j -= inc
if j<=inc then break; end-if

end-do
ANum(j):= v

end-do
until (inc<=1)

Fair Isaac Corporation Confidential and Proprietary Information 51

Flow control constructs

writeln("Ordered list: ")
forall(i in 1..N) write(ANum(i), " ")
writeln

end-model

The example introduces a new statement: break. It can be used to interrupt one or several loops. Inour case it stops the inner while loop. Since we are jumping out of a single loop, we could as wellwrite break 1. If we wrote break 3, the break would make the algorithm jump 3 loop levels higher,that is outside of the repeat-until loop.
Note that there is no limit to the number of nested levels of loops and/or selections in Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 52

CHAPTER 8

Arrays, sets, lists, and records

The Mosel language defines the structured types set, array, list, and record. So far we have worked witharrays and sets relying on an intuitive understanding of what is an ‘array’ or a ‘set’. More formally, wemay define an array as a collection of labeled objects of a given type where the label of an array entry isdefined by its index tuple.
A set collects objects of the same type without establishing an order among them (as opposed toarrays and lists). Set elements are unique: if the same element is added twice the set still only containsit once.
A list groups objects of the same type. Unlike sets, a list may contain the same element several times.The order of the list elements is specified by construction.
Mosel arrays, sets and lists may be defined for any type, that is the elementary types (including thebasic types integer, real, string, boolean and the MP types mpvar and linctr), structuredtypes (array, set, list, record), and external types (contributed to the language by a module).
A record is a finite collection of objects of any type. Each component of a record is called a field and ischaracterized by its name and its type.
This chapter first presents in a more systematic way the different possibilities of how arrays and setsmay be initialized (all of which the reader has already encountered in the examples in the first part), andalso shows more advanced ways of working with sets. We then introduce lists, showing how toinitialize and access them, and finally give some examples of the use of records.

8.1 Arrays

In the first part of this manual we have already encountered many examples that make use of arrays.The most important points are summarized in this section and here is an overview of the topicsexplained with other examples:
� The initialization operator :: and value assignment: Section 2.1
� Multidimensional arrays: Section 2.1
� String indices: Section 2.1.3
� Initialization from file:– dense format text file (Section 2.2),– ODBC connection (Section 2.2.5),– Excel spreadsheets (Section 2.2.5.1),– sparse format text file (Section 3.2),– alternative text formats (Section 3.4)
� Dynamic variable creation and finalization: Section 3.3.1

Fair Isaac Corporation Confidential and Proprietary Information 53

Arrays, sets, lists, and records

8.1.1 Array declaration

Here are some examples of array definition:
declarations
A1: array(1..3) of integer ! Fixed size array
F = {"a","b","c"}
A2: array(F) of real ! Fixed size array
A3: array(R:range) of integer ! Dense array with unknown index set
A4: dynamic array(F) of real ! Dynamic array
end-declarations

writeln("A1:", A1, " A2:", A2, " A3:", A3, " A4:", A4, " A5:", A5)

! Using the array initialization operator
A1::[10,20,30] ! Range indices are known
A2::(["a","b","c"])[1.1, 2.5, 3.9] ! String indices must be stated
A3::(1..3)[10,20,30] ! Indices are not known upfront

A2("a"):=5.1 ! Redefine an entry

setrandseed(3)
forall(f in F) A4(f):= 10⁎random ! Value assignment
delcell(A4("a")) ! Deleting an array entry

writeln("A1:", A1, " A2:", A2, " A3:", A3, " A4:", A4)

The output produced by this model (file arraydef.mos) is the following.
A1:[0,0,0] A2:[0,0,0] A3:[] A4:[]
A1:[10,20,30] A2:[5.1,2.5,3.9] A3:[(1,10),(2,20),(3,30)] A4:[(`b',7.6693),(`c',5.89101)]

Arrays A1 and A2 are fixed size arrays: their size (i.e. the total number of objects/cells they contain) isknown at their declaration because all their indexing sets are of fixed size (i.e. either constant orfinalized). All the cells of fixed size arrays are created and initialized immediately, using defaultinitialization values that depend on the array type. For Mosel’s basic types these are the followingvalues.
real, integer: 0
boolean: false
string: ’’ (i.e. the empty string)
Array A4 is explicitly marked as dynamic array using the qualifier dynamic. Dynamic arrays along withhashmap arrays are the two forms of sparse arrays in Mosel, a hashmap array is obtained by applyingthe qualifier hashmap in place of dynamic—both types are used in the same way, but theirperformance differs (dynamic arrays are generally faster for linear enumeration and require lessmemory whereas hashmap arrays are faster for random access). Sparse arrays are created empty.Their cells are created explicitly (see Paragraph 8.1.1.2 below) or when they are assigned a value, thatis, the array size will grow ‘on demand’. It is also possible to delete some or all cells of a sparse arrayusing the procedure delcell on an entry or the whole array (same as reset). The value of a cell thathas not been created is the default initial value of the type of the array.
Array A3 is created empty since its indexing set is empty at the time of its declaration, but this array isnot the same as a dynamic array. It is a dense array that will grow if elements are added to its index set.Please refer to Appendix B.3 for further detail.
8.1.1.1 Multiple indices

Arrays with multiple indices are defined and accessed as follows:
declarations

Fair Isaac Corporation Confidential and Proprietary Information 54

Arrays, sets, lists, and records

C: array(range, set of string, set of real) of integer
D: array(1..5) of array(1..10) of real
end-declarations

C(5,"a",1.5):= 10
D(1,7):= 2.8

As shown in the example, in order to access (or ’dereference’) the cell of an array of arrays, the list ofindices for the second array has to be appended to the list of indices of the first array.
The declaration of the arrays in the code snippet above shows several different types of index sets: themost common index set types probably are range sets, and sets of types integer or string. Moselaccepts any type of set as array index (including sets of structured types), however, for most praticalpurposes it is recommended to employ only constant types as array indices (that is, the four basictypes integer, string, boolean, real, or external types such as date/time/datetime thatsupport the ’constant’ property: see the example in Section 17.5.2). Note that while it is possible to useindex sets of type real for Mosel arrays this is not a generally encouraged practice: due to theunderlying floating point representation it is not always guaranteed that two index values that look thesame are indeed identical.
8.1.1.2 create

Special care needs to be taken in the case of sparse arrays of decision variables (and indeed with anytypes that do not have an assignment operator). Writing x:=1 is a syntax error if x is of type mpvar. Ifan array of such a type is defined as dynamic or hashmap array, then the corresponding cells are notcreated. The entries of the array must be created explicitly by using the procedure create since theycannot be defined by assignment. Let us simply recall here the example from Section 3.2.
declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants
TRANSCAP: dynamic array(PLANT,REGION) of real

! Capacity on each route plant->region
flow: dynamic array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from 'transprt.dat'
TRANSCAP
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r))) create(flow(p,r))

For a more detailed discussion of decision variable creation please see Section 3.3.1.
8.1.2 Array initialization from file

When working with arrays, we distinguish between dense and sparse data formats. Dense data formatmeans that only the data values are represented (see also Section 2.2); in sparse format each dataentry is accompanied by its index tuple. Dense format data uses less storage space but this format canonly be used if all indices are defined in the model and if no ambiguity results from the omission of theindices when transferring data. In all other cases sparse data format must be used and it is particularlyrecommended to use this representation if only few entries of a multidimensional array are actuallydefined.
declarations
A: array(1..2,1..3) of real ! Can use dense format
B: array(R:range,T:range) of real ! Requires sparse format
D: dynamic array(set of string, range) of real ! Requires sparse format

Fair Isaac Corporation Confidential and Proprietary Information 55

Arrays, sets, lists, and records

S: set of string
M: dynamic array(S) of integer ! Requires sparse format
N: dynamic array(S) of string ! Requires sparse format
end-declarations

initializations from "arrayinit.dat"
A B
D as "SomeName" ! Data label different from model name
D as "SomeName2" ! Add some more data to 'D'
[M,N] as "MNData" ! 2 arrays read from the same table
end-initializations

writeln("A:", A, " B:", B, "\nD:", D, "\nM:", M, "\nN:", N)

With this contents of the data file arrayinit.dat
A: [2 4 6 8 10 12]
B: [(1 1) 2 (1 2) 4 (1 3) 6 (2 1) 8 (2 2) 10 (2 3) 12]
SomeName: [("a" 1) 2 ("a" 2) 4 ("b" 3) 6 ("c" 4) 8 ("b" 5) 10]
SomeName2: [("a" 3) 12 ("b" 2) 14 ("b" 5) 16]
MNData: [("A") [2 "a"] ("B") [⁎ "b"]

("C") [6 ⁎] ("D") [8 "c"]
("E") [10 "b"]]

we see the following output display when executing the model arrayinit.mos shown above:
A:[2,4,6,8,10,12] B:[2,4,6,8,10,12]
D:[(`a',1,2),(`a',2,4),(`a',3,12),(`b',2,14),(`b',3,6),(`b',5,16),(`c',4,8)]
M:[(`A',2),(`C',6),(`D',8),(`E',10)]
N:[(`A',a),(`B',b),(`D',c),(`E',b)]

By default, Mosel expects that data labels are the same as the model names. For array D we show howto read data using different labels. The contents of the second set of data labeled SomeName2 is addedto what is read from SomeName. Note that the entry (b,5) is contained in both sets, and thecorresponding array entry takes its value from the last label that is read.
Arrays such as M and N, that share the same index sets (but not necessarily the same entries) can beread from a single label/data table. The ‘⁎’ in certain entries of MNData indicates that the entry doesnot exist in one of the arrays.
The syntax of initializations blocks remains the same when switching to other data sources.Sections 2.2.5 and 2.2.5.1 discuss examples of using databases or spreadsheets instead of text filesfor array initialization. For further detail on data I/O using different data sources the reader is refered tothe Xpress whitepaper Using ODBC and other database interfaces with Mosel.

8.1.3 Automatic arrays: the array operator

The keyword array can be used as an aggregate operator in order to create an array that will exist onlyfor the duration of the expression. This automatic array may be used wherever a reference to an array isexpected, for instance, in function calls or in initializations blocks.
In the following example we use the array operator to extract the (1-dimensional) rows and columnarrays from a 2-dimensional array, we further generate a subarray with a selection of entries and thetransposed (inversed indices) array.

model "Automatic arrays"

declarations
B: array(S:set of string, I:set of real) of integer
end-declarations

B::(["a","b"], [3,1.5,7])[1,2,3,4,5,6]

Fair Isaac Corporation Confidential and Proprietary Information 56

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Arrays, sets, lists, and records

writeln("B: ", B)

forall(s in S) writeln("Row ", s, ": ", array(i in I) B(s,i))
forall(i in I) writeln("Column ", i, ": ", array(s in S) B(s,i))

writeln("B filtered: ", array(s in S,i in I | s<>"a" and i<5) B(s,i))

writeln("Transpose: ", array(i in I, s in S) B(s,i))
end-model

And this is the output generated by the model autoarray.mos.
B: [1,2,3,4,5,6]
Row a: [1,2,3]
Row b: [4,5,6]
Column 3: [1,4]
Column 1.5: [2,5]
Column 7: [3,6]
B filtered: [(`b',3,4),(`b',1.5,5)]
Transpose: [1,4,2,5,3,6]

As it has been mentioned in Section 8.1.1.1 the use index sets of type real for Mosel arrays is not agenerally encouraged practice: due to the underlying floating point representation it is not alwaysguaranteed that two index values that look the same are indeed identical.
On the topic of output to file using initializations to, see Chapter 10, and particularly the note onsolution output using arrays generated ’on the fly’ in combination with evaluation of in Section10.2.4.

8.2 Initializing sets

In the revised formulation of the burglar problem in Chapter 2 and also in the models in Chapter 3 wehave already seen different examples for the use of index sets. We recall here the relevant parts of therespective models.
8.2.1 Constant sets

In the Burglar example the index set is assigned directly in the model:
declarations
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"}
end-declarations

Since in this example the set contents is set in the declarations section, the index set ITEMS is a
constant set (its contents cannot be changed). To declare it as a dynamic set, the contents needs to beassigned after its declaration:

declarations
ITEMS: set of string
end-declarations

ITEMS:={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}

8.2.2 Set initialization from file, finalized and fixed sets

In Chapter 4 the reader has encountered several examples how the contents of sets may be initializedfrom data files.

Fair Isaac Corporation Confidential and Proprietary Information 57

Arrays, sets, lists, and records

The contents of the set may be read in directly as in the following case:
declarations
WHICH: set of integer
end-declarations

initializations from 'idata.dat'
WHICH
end-initializations

Where idata.dat contains data in the following format:
WHICH: [1 4 7 11 14]

Unless a set is constant (or finalized), arrays that are indexed by this set (and that are not explicitlymarked as sparse arrays) are created as non-fixed dense arrays. Since in many cases the contents of aset does not change any more after its initialization, Mosel’s automatic finalization mechanism finalizesthe set WHICH in the initializations from block. Consider the continuation of the exampleabove:
declarations
x: array(WHICH) of mpvar
end-declarations

The array of variables x will be created as a static array since its index set is finalized. Declaring arraysin the form of static arrays is preferable if the indexing set is known before because this allows Moselto handle them in a more efficient way.
Index sets may also be initialized indirectly during the initialization of non-fixed or sparse arrays:

declarations
REGION: set of string
DEMAND: array(REGION) of real
end-declarations

initializations from 'transprt.dat'
DEMAND
end-initilizations

If file transprt.dat contains the data:
DEMAND: [(Scotland) 2840 (North) 2800 (West) 2600 (SEast) 2820 (Midlands) 2750]

then printing the set REGION after the initialization will give the following output:
{`Scotland',`North',`West',`SEast',`Midlands'}

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its elementscan no longer be removed, but it may still grow in size.
The indirect initialization of (index) sets is not restricted to the case that data is input from file. In thefollowing example (model chess2.mos) we add an array of variable descriptions to the chess problemintroduced in Chapter 1. These descriptions may, for instance, be used for generating a nice output.Since the indexing set Allvars of array DescrV is not known at declaration time the resulting array isnot fixed and both grow with each new variable description that is added to DescrV.

model "Chess 2"
uses "mmxprs"

declarations
Allvars: set of mpvar
DescrV: array(Allvars) of string

Fair Isaac Corporation Confidential and Proprietary Information 58

Arrays, sets, lists, and records

small, large: mpvar
end-declarations

DescrV(small):= "Number of small chess sets"
DescrV(large):= "Number of large chess sets"

Profit:= 5⁎small + 20⁎large
Lathe:= 3⁎small + 2⁎large <= 160
Boxwood:= small + 3⁎large <= 200

maximize(Profit)

writeln("Solution:\n Objective: ", getobjval)
writeln(DescrV(small), ": ", getsol(small))
writeln(DescrV(large), ": ", getsol(large))

end-model

The reader may have already remarked another feature that is illustrated by this example: the indexingset Allvars is of type mpvar. So far only basic types have occurred as index set types but asmentioned earlier, sets in Mosel may be of any elementary type, including the MP types mpvar and
linctr.

8.3 Working with sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they mayalso be used for different purposes.
The following example (model setops.mos) demonstrates the use of basic set operations in Mosel:
union (+), intersection (⁎), and difference (-):

model "Set example"

declarations
Cities={"rome", "bristol", "london", "paris", "liverpool"}
Ports={"plymouth", "bristol", "glasgow", "london", "calais",

"liverpool"}
Capitals={"rome", "london", "paris", "madrid", "berlin"}
end-declarations

Places:= Cities+Ports+Capitals ! Create the union of all 3 sets
In_all_three:= Cities⁎Ports⁎Capitals ! Create the intersection of all 3 sets
Cities_not_cap:= Cities-Capitals ! Create the set of all cities that are

! not capitals

writeln("Union of all places: ", Places)
writeln("Intersection of all three: ", In_all_three)
writeln("Cities that are not capitals: ", Cities_not_cap)

end-model

The output of this example will look as follows:
Union of all places:{`rome',`bristol',`london',`paris',`liverpool',
`plymouth',`bristol',`glasgow',`calais',`liverpool',`rome',`paris',
`madrid',`berlin'}
Intersection of all three: {`london'}
Cities that are not capitals: {`bristol',`liverpool}

Sets in Mosel are indeed a powerful facility for programming as in the following example (model
prime.mos) that calculates all prime numbers between 2 and some given limit.
Starting with the smallest one, the algorithm takes every element of a set of numbers SNumbers

Fair Isaac Corporation Confidential and Proprietary Information 59

Arrays, sets, lists, and records

(positive numbers between 2 and some upper limit that may be specified when running the model),adds it to the set of prime numbers SPrime and removes the number and all its multiples from the set
SNumbers.

model Prime

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
end-declarations

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

This example uses a new function, getsize, that if applied to a set returns the number of elements ofthe set. The condition in the while loop is the logical negation of an expression, marked with not: theloop is repeated as long as the condition n in SNumbers is not satisfied.
8.3.1 Set operators

The preceding example introduces the operator += to add sets to a set (there is also an operator -= toremove subsets from a set). Another set operator used in the example is in denoting that a singleobject is contained in a set. We have already encountered this operator in the enumeration of indicesfor the forall loop.
Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), difference(<>), end equality (=). Their use is illustrated by the following example (model setcomp.mos):

model "Set comparisons"

declarations
RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
BRIGHT = {"yellow", "orange"}
DARK = {"blue", "brown", "black"}
end-declarations

writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK)
writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)

end-model

Fair Isaac Corporation Confidential and Proprietary Information 60

Arrays, sets, lists, and records

As one might have expected, this example produces the following output:
BRIGHT is included in RAINBOW: true
RAINBOW is a superset of DARK: false
BRIGHT is different from DARK: true
BRIGHT is the same as RAINBOW: false

8.4 Initializing lists

Lists are not commonly used in the standard formulation of Mathematical Programming problems.However, this data structure may be useful for the Mosel implementation of some more advancedsolving and programming tasks.
8.4.1 Constant list

If the contents of a list are specified at the declaration of the list, such as
declarations
L = [1,2,3,4,5,6,7,8,9,10]
end-declarations

we have defined a constant list (its contents cannot be changed). If we want to be able to modify thelist contents subsequently we need to separate the definition of the list contents from the declaration,resulting in a dynamic list:
declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5,6,7,8,9,10]

A two-dimensional array of lists may be defined thus (and higher dimensional arrays by analogy):
declarations
M: array(range,set of integer) of list of string
end-declarations

M:: (2..4,1)[['A','B','C'], ['D','E'], ['F','G','H','I']]

8.4.2 List initialization from file

Similarly to what we have already seen for other data structures, the contents of lists may be initializedfrom file through initializations blocks. For example,
declarations
K: list of integer
N: array(range,set of integer) of list of string
end-declarations

initializations from "listinit.dat"
K N
end-initializations

writeln("K: ", K)
writeln("An entry of N: ", N(5,3))

Assuming the datafile listinit.dat contains these lines

Fair Isaac Corporation Confidential and Proprietary Information 61

Arrays, sets, lists, and records

K: [5 4 3 2 1 1 2 3 4 5]

N: [(3 1) ['B' 'C' 'A']
(5 3) ['D' 'E']
(6 1) ['H' 'I' 'F' 'G']]

we obtain the following output from the model fragment above:
K: [5,4,3,2,1,1,2,3,4,5]
An entry of N: [`D',`E']

8.5 Working with lists

8.5.1 Enumeration

Similarly to the way we have used sets so far, lists may be used as loop indices for enumeration. Thefollowing enumerates a given list L from beginning to end:
declarations
L: list of integer
end-declarations

L:= [1,2,3,4,5]

forall(i in L) writeln(i)

Since lists have an ordering we may choose, for instance, to reverse the order of list elements for theenumeration. The model listenum.mos below shows several possibilities for enumerating lists ininverse order: (1) reversing a copy of the list to enumerate, (2) reversing the list to enumerate. In thefirst case we obtain the reversed copy of the list with function getreverse, in the second case wemodify the original list by applying to it the procedure reverse.
model "Reversing lists"

declarations
K,L: list of integer
end-declarations

L:= [1,2,3,4,5]

! Enumeration in inverse order:
! 1. Reversed copy of the list (i.e., no change to 'L')
K:=getreverse(L)
forall(i in K) writeln(i)

! 2. Reversing the list itself
reverse(L)
forall(i in L) writeln(i)

end-model

8.5.2 List operators

Lists are composed by concatenating several lists or by truncating their extremities (refered to as headand tail). The operators += and + serve for concatenating lists. Their inverses (-= and -) may be usedto remove the tail of a list—they will not remove the given sublist if it is not positioned at the end.
The following model listops.mos shows some examples of the use of list operators. Besides theconcatenation operators + and += we also use the aggregate form sum. Another list operator used inthis example is the comparison operator <> (the comparison operator =may also be used with lists).

Fair Isaac Corporation Confidential and Proprietary Information 62

Arrays, sets, lists, and records

model "List operators"

declarations
L,M: list of integer
end-declarations

L:= [1,2,3] + [4,5]; writeln("L (1): ", L)
L+= [6,7,8]; writeln("L (2): ", L)
L-= [1,2,3]; writeln("L (3): ", L)

M:= sum(l in L) [l⁎2]; writeln("M: ", M)

writeln("L and M are different: ", L<>M)

end-model

As can be seen in the output, the list [1,2,3] is not removed from L since it is not located at its tail:
L (1): [1,2,3,4,5]
L (2): [1,2,3,4,5,6,7,8]
L (3): [1,2,3,4,5,6,7,8]
M: [2,4,6,8,10,12,14,16]
L and M are different: true

8.5.3 List handling functions

The Mosel subroutines for list handling form two groups, namely
� Operations preserving the list they are applied to: retrieving a list element (getelt, getfirst,
getlast), occurrence of an element (findfirst, findlast), retrieving a copy of the head ortail (gethead, gettail), reversed copy of a list (getreverse)

� Operations modifying the list they are applied to: cutting off (=discard) individual elements or thehead or tail (cutelt, cutfirst, cutlast, cuthead, cuttail), splitting off (=retrieve) the heador tail (splithead, splittail), reverse the list (reverse)
The following example listmerge.mosmerges two lists of integers K and L, the elements of whichare ordered in increasing order of their values into a new list M that is ordered in the same way. Theelements of the two original lists are added one-by-one to the new list using the concatenation operator
+=. Whilst the elements of the list K are simply enumerated, we iteratively split off the first elementfrom list L (using splithead with second argument 1 to take away just the first list element) so thatthis list will be empty at the end of the forall loop. If this is not desired, we need to work with a copyof this list.

model "Merging lists"

declarations
K,L,M: list of integer
end-declarations

K:= [1,4,5,8,9,10,13]
L:= [-1,0,4,6,7,8,9,9,11,11]

forall(k in K) do
while (L<>[] and k >= getfirst(L)) M += splithead(L,1)
M+= [k]
end-do

writeln(M)

end-model

Fair Isaac Corporation Confidential and Proprietary Information 63

Arrays, sets, lists, and records

The resulting list M is:
[-1,0,1,4,4,5,6,7,8,8,9,9,9,10,11,11,13]

List handling routines provide a powerful means of programming, illustrated by the following example
euler.mos that constructs a Eulerian circuit for the network shown in Figure 8.1 (thick arrows indicatethat the corresponding arc is to be used twice). This example is an alternative implementation of theEulerian circuit algorithm described in Section 15.4 ‘Gritting roads’ (problem j4grit) of the book’Applications of optimization with Xpress-MP’.

1 2 3 4

8765

9 10 11 12

Figure 8.1: Network forming a Eulerian circuit

A Eulerian circuit is a tour through a network that uses every given arc exactly once. To construct sucha circuit for a given set of arcs we may employ the following algorithm
� Choose a start node and add it to the tour.
� while there are unused arcs:– Find the first node in the tour with unused outgoing arcs.– Construct a closed subtour starting from this node.– Insert the new subtour into the main tour.

model "Eulerian circuit"

declarations
NODES = 1..12 ! Set of nodes
UNUSED: array(NODES) of list of integer
TOUR: list of integer
NEWT, TAIL: list of integer
end-declarations

initializations from 'euler.dat'
UNUSED
end-initializations

ct:=sum(i in NODES) getsize(UNUSED(i))

TOUR:=[1] ! Choose node 1 as start point

while(ct>0) do ! While there are unused arcs:
! Find first node in TOUR with unused outgoing arc(s)

node:=0
forall(i in TOUR)
if UNUSED(i) <> [] then
node:=i
break
end-if

Fair Isaac Corporation Confidential and Proprietary Information 64

http://examples.xpress.fico.com/example.pl#mosel_app

Arrays, sets, lists, and records

! Insertion position (first occurrence of 'node' in TOUR)
pos:= findfirst(TOUR, node)

! Construct a new subtour starting from 'node'
cur:=node ! Start with current node
NEWT:=[]
while(UNUSED(cur) <> []) do
NEWT+=splithead(UNUSED(cur),1) ! Take first unused arc
cur:=getlast(NEWT) ! End point of arc is new current node
end-do

! Stop if the subtour is not a closed loop (=> no Eulerian circuit)
if cur<>node then ! Compare start and end of subtour
writeln("Tour cannot be closed")
exit(1)
end-if

! Add the new subtour to the main journey
TAIL:=splittail(TOUR, -pos) ! Split off the tail from main tour
TOUR += NEWT + TAIL ! Attach subtour and tail to main tour
ct -= getsize(NEWT)
end-do

writeln("Tour: ", TOUR) ! Print the result

end-model

The data file euler.dat corresponding to the graph in Figure 8.1 has the following contents:
UNUSED: [(1) [2 5] (2) [3 5 6] (3) [2 4 4] (4) [3 8 8]

(5) [1 1 6 6] (6) [2 5 7 9 9 10] (7) [3 6 8 11]
(8) [4 11 12] (9) [5 10] (10) [6 6 7]
(11) [7 7 10] (12) [11]]

A Eulerian circuit for this data set is the tour
1→ 2→ 6→ 5→ 6→ 7→ 8→ 12→ 11→ 7→ 11→ 10→ 7→ 3→ 4→ 3→ 4→ 8→ 4→ 8→ 11→ 7
→ 6→ 9→ 5→ 6→ 9→ 10→ 6→ 10→ 6→ 2→ 3→ 2→ 5→ 1→ 5→ 1

8.6 Records

Records group Mosel objects of different types. They may be used, for instance, to structure the data ofa large-scale model by collecting all information relating to the same object.
8.6.1 Defining records

The definition of a record has some similarities with the declarations block: it starts with thekeyword record, followed by a list of field names and types, and the keyword end-recordmarks theend of the definition. The definition of records must be placed in a declarations block. Thefollowing code extract defines a record with two fields (‘name’ and ‘values’).
declarations
R = 1..10
D: record
name: string
values: array(R) of real
end-record
end-declarations

We need to define a name (e.g., ‘mydata’) for the record if we want to be able to refer to it elsewhere inthe model—note that we declare this record as public in order to make all its fields public (so in

Fair Isaac Corporation Confidential and Proprietary Information 65

Arrays, sets, lists, and records

particular, visible in output display), alternatively, individual fields can be declared as public. Forexample:
declarations
R = 1..10
mydata = public record
name: string
values: array(R) of real
end-record
D: mydata
A: array(range) of mydata
end-declarations

The fields of a record are accessed by appending .fieldname to the record, for instance:
D.name:= "D"
forall(i in R) D.values(i):= i
writeln("Values of ", D.name, ": ", D.values)

writeln("An entry of A: ", A(1))
writeln("'name' of an entry of A: ", A(4).name)
writeln("'values' of an entry of A: ", A(3).values)
writeln("First entry of 'values': ", A(3).values(1))

Note: if a record field is an array, the index set(s) of the array must be either constant or be declaredoutside of the record definition. So, these are valid record definitions:
declarations
R: range
P: record
values: array(R) of real
end-record

Q: record
values: array(1..10) of real
end-record
end-declarations

whereas this form can not be used:
Q: record
values: array(range) of real
end-record

8.6.2 Initialization of records from file

The contents of a record may be assigned fieldwise within a model as shown above or else be read infrom file using initializations. The data file must contain the data entries for the different recordfields in their order of occurrence in the record definition. An array A of the record type mydata definedin the previous section is initialized with data from file in the obvious way (model recorddef.mos):
declarations
A: dynamic array(T:range) of mydata
end-declarations

initializations from "recorddef.dat"
A
end-initializations

writeln(A(1))
forall(i in T | exists(A(i))) writeln(A(i).name)

Fair Isaac Corporation Confidential and Proprietary Information 66

Arrays, sets, lists, and records

If the data file recorddef.dat has these contents:
A: [(1) ['A1' [(2) 2 (3) 3 (4) 4]]

(3) ['A3' [(3) 6 (6) 9]]
(4) ['A4' [5 6 7 8]]
(7) ['A7'] ! Define just the first field
(6) [⁎ [(6) 6]] ! Skip the first field
]

we obtain the following output (the entry with index 6 is defined but has no name, which accounts forthe empty line between ’A4’ and ’A7’):
[name=`A1' values=[0,2,3,4,0,0,0,0,0,0]]
A1
A3
A4

A7

An example of the use of records is the encoding of arcs and associated information such as forrepresenting the network in Figure 8.2.

A

B

C

F

D

E

4

3

7

5
1

22

4
8

5

1

Figure 8.2: Network with costs on arcs

A data file with the network data may look as follows (file arcs.dat):
ARC: [(1) ["A" "B" 2]

(2) ["A" "D" 4]
(3) ["A" "C" 7]
(4) ["B" "F" 4]
(5) ["B" "D" 3]
(6) ["C" "B" 5]
(7) ["C" "D" 1]
(8) ["C" "E" 1]
(9) ["D" "F" 2]
(10) ["D" "E" 5]
(11) ["E" "F" 8]]

We may then write our model arcs.mos thus
model "Arcs"

declarations
NODES: set of string ! Set of nodes
ARC: array(ARCSET:range) of record ! Arcs:
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record
end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 67

Arrays, sets, lists, and records

initializations from 'arcs.dat'
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln(NODES)

writeln("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize(ARCSET))

end-model

The record definition may contain additional fields (e.g., decision variables) that are not to be initializedfrom file. In this case we need to specify in the initializations block which record fields are to befilled with data.
declarations
NODES: set of string ! Set of nodes
ARC: array(ARCSET:range) of record ! Arcs:
flow: mpvar ! Flow quantity
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record
end-declarations

initializations from 'arcs.dat'
ARC(Source,Sink,Cost)
end-initializations

This functionality can also be used to read separately, and possibly from different sources, the contentsof the record fields. For instance, the ’Cost’ field of our record ARC could be initialized as follows:
initializations from 'arcs.dat'
ARC(Cost) as "COST"
end-initializations

where the data array ’COST’ is given as
COST: [(1) 2 (2) 4 (3) 7 (4) 4 (5) 3 (6) 5

(7) 1 (8) 1 (9) 2 (10) 5 (11) 8]

8.7 User types

In a Mosel model, the user may define new types that will be treated in the same way as the predefinedtypes of the Mosel language. New types are defined in declarations blocks by specifying a typename, followed by =, and the definition of the type. The simplest form of a type definition is to introducea new name for an existing type, such as:
declarations
myint = integer
myreal = real
end-declarations

In the section on records above we have already seen an example of a user type definition for records(where we have named the record ‘mydata’). Another possible use of a user type is as a kind of‘shorthand’ where several (data) arrays have the same structure, such as in the model blend.mos fromChapter 2, where, instead of
declarations

Fair Isaac Corporation Confidential and Proprietary Information 68

Arrays, sets, lists, and records

ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)
end-declarations

we could have written
declarations
ORES = 1..2 ! Range of ores

myarray = array(ORES) of real ! Define a user type

COST: myarray ! Unit cost of ores
AVAIL: myarray ! Availability of ores
GRADE: myarray ! Grade of ores (measured per unit of mass)
end-declarations

without making any other modifications to the model.

Fair Isaac Corporation Confidential and Proprietary Information 69

CHAPTER 9

Functions and procedures

When programs grow larger than the small examples presented so far, it becomes necessary tointroduce some structure that makes them easier to read and to maintain. Usually, this is done bydividing the tasks that have to be executed into subtasks which may again be subdivided, andindicating the order in which these subtasks have to be executed and which are their activationconditions. To facilitate this structured approach, Mosel provides the concept of subroutines. Usingsubroutines, longer and more complex programs can be broken down into smaller subtasks that areeasier to understand and to work with. Subroutines may be employed in the form of procedures orfunctions. Procedures are called as a program statement, they have no return value, functions must becalled in an expression that uses their return value.
Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader isreferred to the Mosel Reference Manual), and it is possible to define new functions and proceduresaccording to the needs of a specific program. A procedure that has occured repeatedly in this documentis writeln. Typical examples of functions are mathematical functions like abs, floor, ln, sin etc.

9.1 Subroutine definition

User defined subroutines in Mosel have to be marked with procedure / end-procedure and
function / end-function respectively. The return value of a function has to be assigned to
returned as shown in the following example (model subrout.mos).

model "Simple subroutines"

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

procedure print_start
writeln("The program starts here.")
end-procedure

print_start
a:=three
writeln("a = ", a)

end-model

This program will produce the following output:
The program starts here.
a = 3

Fair Isaac Corporation Confidential and Proprietary Information 70

Functions and procedures

9.2 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from a functiondepend on the current value of one or several objects in the calling program. It is therefore possible topass parameters into a subroutine. The (list of) parameter(s) is added in parantheses behind the nameof the subroutine:
function times_two(b:integer):integer
returned := 2⁎b
end-function

The structure of subroutines being very similar to the one of model, they may also include
declarations sections for declaring local parameters that are only valid in the correspondingsubroutine. It should be noted that such local parameters may mask global parameters within thescope of a subroutine, but they have no effect on the definition of the global parameter outside of thesubroutine as is shown below in the extension of the example ‘Simple subroutines’. As in otherprogramming languages, it is not possible to redefine function/procedure parameters in thecorresponding subroutine (the declaration of local parameters must not hide these parameters). Moselconsiders this as a mistake and prints an error message during compilation.

model "Simple subroutines"

declarations
a:integer
end-declarations

function three:integer
returned := 3
end-function

function times_two(b:integer):integer
returned := 2⁎b
end-function

procedure print_start
writeln("The program starts here.")
end-procedure

procedure hide_a_1
declarations
a: integer
end-declarations

a:=7
writeln("Procedure hide_a_1: a = ", a)
end-procedure

procedure hide_a_2(a:integer)
writeln("Procedure hide_a_2: a = ", a)
end-procedure

procedure hide_a_3(a:integer)
declarations
a: integer
end-declarations

a := 15
writeln("Procedure hide_a_3: a = ", a)
end-procedure

print_start
a:=three
writeln("a = ", a)
a:=times_two(a)

Fair Isaac Corporation Confidential and Proprietary Information 71

Functions and procedures

writeln("a = ", a)
hide_a_1
writeln("a = ", a)
hide_a_2(-10)
writeln("a = ", a)
hide_a_3(a)
writeln("a = ", a)

end-model

During the compilation we get the error
Mosel: E-165 at (34,4) of `subrout.mos': Declaration of `a' hides a parameter.

This is due to the redefinition of a that is passed as an argument into procedure hide_a_3 and alsoappears in the declarations of this subroutine. We need to modify the definition of this procedure tocorrect this error, for example by renaming the subroutine argument:
procedure hide_a_3(aa:integer)

The program then results in the following output:
The program starts here.
a = 3
a = 6
Procedure hide_a_1: a = 7
a = 6
Procedure hide_a_2: a = -10
a = 6
Procedure hide_a_3: a = 15
a = 6

9.3 Recursion

The following example (model lcdiv2.mos) returns the largest common divisor of two numbers, justlike the example ‘Lcdiv1’ in the previous chapter. This time we implement this task using recursivefunction calls, that is, from within function lcdiv we call again function lcdiv.
model Lcdiv2

function lcdiv(A,B:integer):integer
if(A=B) then
returned:=A
elif(A>B) then
returned:=lcdiv(B,A-B)
else
returned:=lcdiv(A,B-A)
end-if
end-function

declarations
A,B: integer
end-declarations

write("Enter two integer numbers:\n A: ")
readln(A)
write(" B: ")
readln(B)

writeln("Largest common divisor: ", lcdiv(A,B))

end-model

Fair Isaac Corporation Confidential and Proprietary Information 72

Functions and procedures

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible to use
cross-recursion, that is, subroutine A calls subroutine B which again calls A. The only pre-requisite isthat any subroutine that is called prior to its definition must be declared before it is called by using the
forward statement (see below).

9.4 forward

A subroutine has to be ‘known’ at the place where it is called in a program. In the preceding exampleswe have defined all subroutines at the start of the programs but this may not always be feasible ordesirable. Mosel therefore enables the user to declare a subroutine separately from its definition byusing the keyword forward. The declaration of of a subroutine states its name, the parameters (typeand name) and, in the case of a function, the type of the return value. The definition that must followlater in the program contains the body of the subroutine, that is, the actions to be executed by thesubroutine.
The following example (model qsort1.mos) implements a quick sort algorithm for sorting a randomlygenerated array of numbers into ascending order—please note that the implementation discussed hereis merely provided as a programming example, we would generally recommend that you use the qsortroutine of the Mosel module mmsystem in your Mosel programs. The procedure qsort that starts thesorting algorithm is defined at the very end of the program, it therefore needs to be declared at thebeginning, before it is called. Procedure qsort_start calls the main sorting routine, qsort. Since thedefinition of this procedure precedes the place where it is called there is no need to declare it (but it stillcould be done). Procedure qsort calls yet again another subroutine, swap.
The idea of the quick sort algorithm is to partition the array that is to be sorted into two parts. The ‘left’part containing all values smaller than the partitioning value and the ‘right’ part all the values that arelarger than this value. The partitioning is then applied to the two subarrays, and so on, until all valuesare sorted.

model "Quick sort 1"

parameters
LIM=50
end-parameters

forward procedure qsort_start(L:array(range) of integer)

declarations
T:array(1..LIM) of integer
end-declarations

forall(i in 1..LIM) T(i):=round(.5+random⁎LIM)
writeln(T)
qsort_start(T)
writeln(T)

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer,i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k
end-procedure

! Main sorting routine
procedure qsort(L:array(range) of integer,s,e:integer)
v:=L((s+e) div 2) ! Determine the partitioning value
i:=s; j:=e
repeat ! Partition into two subarrays
while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then

Fair Isaac Corporation Confidential and Proprietary Information 73

Functions and procedures

swap(L,i,j)
i+=1; j-=1
end-if
until i>=j

! Recursively sort the two subarrays
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if
end-procedure

! Start of the sorting process
procedure qsort_start(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The quick sort example above demonstrates typical uses of subroutines, namely grouping actions thatare executed repeatedly (qsort) and isolating subtasks (swap) in order to structure a program andincrease its readability.
The calls to the procedures in this example are nested (procedure swap is called from qsort which iscalled from qsort_start): in Mosel there is no limit as to the number of nested calls to subroutines(it is not possible, though, to define subroutines within a subroutine).

9.5 Overloading of subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a differentnumber and/or types of parameters. This functionality is commonly referred to as overloading.
An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter itreturns its solution value, if the parameter is a constraint the function returns the evaluation of thecorresponding linear expression using the current solution.
Function abs (for obtaining the absolute value of a number) has different return types depending onthe type of the input parameter: if an integer is input it returns an integer value, if it is called with a realvalue as input parameter it returns a real.
Function getcoeff is an example of a function that takes different numbers of parameters: if calledwith a single parameter (of type linctr) it returns the constant term of the input constraint, if aconstraint and a variable are passed as parameters it returns the coefficient of the variable in the givenconstraint.
The user may define (additional) overloaded versions of any subroutines defined by Mosel as well asfor his own functions and procedures. Note that it is not possible to overload a function with aprocedure and vice versa.
Using the possibility to overload subroutines, we may rewrite the preceding example ‘Quick sort’ asfollows (model qsort2.mos).

model "Quick sort 2"

parameters
LIM=50
end-parameters

forward procedure qsort(L:array(range) of integer)

declarations
T:array(1..LIM) of integer
end-declarations

forall(i in 1..LIM) T(i):=round(.5+random⁎LIM)

Fair Isaac Corporation Confidential and Proprietary Information 74

Functions and procedures

writeln(T)
qsort(T)
writeln(T)

procedure swap(L:array(range) of integer,i,j:integer)
(...) (same procedure body as in the preceding example)
end-procedure

procedure qsort(L:array(range) of integer,s,e:integer)
(...) (same procedure body as in the preceding example)
end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure

end-model

The procedure qsort_start is now also called qsort. The procedure bearing this name in the firstimplementation keeps its name too; it has got two additional parameters which suffice to ensure thatthe right version of the procedure is called. To the contrary, it is not possible to give procedure swap thesame name qsort because it takes exactly the same parameters as the original procedure qsort andhence it would not be possible to differentiate between these two procedures any more.

Fair Isaac Corporation Confidential and Proprietary Information 75

CHAPTER 10

Output

10.1 Producing formatted output

In some of the previous examples the procedures write and writeln have been used for displayingdata, solution values and some accompanying text. To produce better formatted output, theseprocedures can be combined with the formatting procedure strfmt. In its simplest form, strfmt’ssecond argument indicates the (minimum) space reserved for writing the first argument and itsplacement within this space (negative values mean left justified printing, positive right justified). Whenwriting a real, a third argument may be used to specify the maximum number of digits after thedecimal point.
For example, if file fo.mos contains

model FO
parameters
r = 1.0 ! A real
i = 0 ! An integer
end-parameters

writeln("i is ", i)
writeln("i is ", strfmt(i,6))
writeln("i is ", strfmt(i,-6))
writeln("r is ", r)
writeln("r is ", strfmt(r,6))
writeln("r is ",strfmt(r,10,4))
end-model

and we run Mosel thus:
mosel exec fo 'i=123, r=1.234567'

we get output
i is 123
i is 123
i is 123
r is 1.23457
r is 1.23457
r is 1.2346

The following example (model transport2.mos) prints out the solution of model ‘Transport’ (Section3.2) in table format. The reader may be reminded that the objective of this problem is to compute theproduct flows from a set of plants (PLANT) to a set of sales regions (REGION) so as to minimize thetotal cost. The solution needs to comply with the capacity limits of the plants (PLANTCAP) and satisfythe demand DEMAND of all regions.
procedure print_table

Fair Isaac Corporation Confidential and Proprietary Information 76

Output

declarations
rsum: array(REGION) of integer ! Auxiliary data table for printing
psum,ct,iflow: integer ! Counters
end-declarations

! Print heading and the first line of the table
writeln("\nProduct Distribution\n", "="⁎20)
writeln(strfmt("Sales Region",48))
write(strfmt("",15), "| ")
forall(r in REGION) write(strfmt(r,9))
writeln(" |", strfmt("TOTAL",6), " Capacity")
writeln("-"⁎80)

! Print the solution values of the flow variables and
! calculate totals per region and per plant

ct:=0
forall(p in PLANT, ct as counter) do
if ct=2 then

write(" Plant ", strfmt(p,-8), "|")
else

write(" ", strfmt(p,-8), "|")
end-if
psum:=0
forall(r in REGION) do

iflow:=integer(getsol(flow(p,r)))
psum += iflow
rsum(r) += iflow
if iflow<>0 then
write(strfmt(iflow,9))

else
write(" -- ")

end-if
end-do
writeln(" |", strfmt(psum,6), strfmt(integer(PLANTCAP(p)),8))

end-do

! Print the column totals
writeln("-"⁎80)
write(strfmt(" TOTAL",-15), "|")
prsum:=0
forall(r in REGION) write(strfmt(rsum(r),9))
writeln(" |", strfmt(sum(r in REGION) rsum(r),6))

! Print demand of every region
write(strfmt(" Demand",-15), "|")
forall(r in REGION) write(strfmt(integer(DEMAND(r)),9))

! Print objective function value
writeln("\n\nTotal cost of distribution = ", strfmt(getobjval/1e6,0,3),

" million.")

end-procedure

Notice the shorthand "-"⁎80meaning that the string ’-’ is repeated 80 times. This functionality isprovided by the module mmsystem, however, it is generally more efficient to work with the type textfor such string operations (see Section 17.6).
With the data from Chapter 3 the procedure print_table produces the following output:

Product Distribution
====================

Sales Region
| Scotland North SWest SEast Midlands | TOTAL Capacity

--
Corby | -- 80 -- 920 2000 | 3000 3000

Plant Deeside | -- 1450 1000 -- 250 | 2700 2700
Glasgow | 2840 1270 -- -- -- | 4110 4500
Oxford | -- -- 1600 1900 500 | 4000 4000

Fair Isaac Corporation Confidential and Proprietary Information 77

Output

--
TOTAL | 2840 2800 2600 2820 2750 | 13810
Demand | 2840 2800 2600 2820 2750

Total cost of distribution = 81.018 million.

10.2 File output

If we do not want the output of procedure print_tab in the previous section to be displayed on screenbut to be saved in the file out.txt, we simply open the file for writing at the beginning of the procedureby adding
fopen("out.txt",F_OUTPUT)

before the first writeln statement, and close it at the end of the procedure, after the last writelnstatement with
fclose(F_OUTPUT)

If we do not want any existing contents of the file out.txt to be deleted, so that the result table isappended to the end of the file, we need to write the following for opening the file (closing it the sameway as before):
fopen("out.txt",F_OUTPUT+F_APPEND)

As with input of data from file, there are several ways of outputting data to a file in Mosel. The followingexample demonstrates three different ways of writing the contents of an array A to a file. The lastsection (10.2.4) shows how to proceed if the data is not readily available in the form of an array butresults from the evaluation of an expression (e.g., solution values, function calls).
10.2.1 Data output with initializations to

The first method uses the initializations block for creating or updating a file in Mosel’s
initializations format.

model "Trio output (1)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! First method: use an initializations block
initializations to "out_1.dat"
A as "MYOUT"
end-initializations
end-model

File out_1.dat will contain the following:
'MYOUT': [2 4 6 12 14 16 22 24 26]

If this file contains already a data entry MYOUT, it is replaced with this output without modifying ordeleting any other contents of this file. Otherwise, the output is appended at the end of it.
Note: For solution output with initializations to please see Section 10.2.4 below.

Fair Isaac Corporation Confidential and Proprietary Information 78

Output

10.2.2 Data output with writeln

As mentioned above, we may create freely formatted output files by redirecting the output of writeand writeln statements to a file:
model "Trio output (2)"
declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Second method: use the built-in writeln function
fopen("out_2.dat", F_OUTPUT)
forall(i in -1..1, j in 5..7)
writeln('A_out(', i, ' and ', j, ') = ', A(i,j))
fclose(F_OUTPUT)
end-model

The nicely formatted output to out_2.dat results in the following:
A_out(-1 and 5) = 2
A_out(-1 and 6) = 4
A_out(-1 and 7) = 6
A_out(0 and 5) = 12
A_out(0 and 6) = 14
A_out(0 and 7) = 16
A_out(1 and 5) = 22
A_out(1 and 6) = 24
A_out(1 and 7) = 26

10.2.3 Data output with diskdata

As a third possibility, one may use the diskdata subroutine from module mmetc to write out commaseparated value (CSV) files.
model "Trio output (3)"
uses "mmetc"

declarations
A: array(-1..1,5..7) of real
end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Third method: use diskdata
diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A)
end-model

The output with diskdata simply prints the contents of the array to out_3.dat, with option
ETC_SPARSE each entry is preceded by the corresponding indices:

-1,5,2
-1,6,4
-1,7,6
0,5,12
0,6,14
0,7,16
1,5,22

Fair Isaac Corporation Confidential and Proprietary Information 79

Output

1,6,24
1,7,26

Without option ETC_SPARSE out_3.dat looks as follows:
2,4,6
12,14,16
22,24,26

Instead of using the diskdata subroutine, we may equally use the diskdata I/O driver that is definedby the same module, mmetc. In the example above we replace the diskdata statement by thefollowing initializations to block.
[initializations to 'mmetc.diskdata:'

A as 'sparse,out_3.dat'
end-initializations

10.2.4 Solution output with initializations to

In the previous examples we have seen how to write out to a file the contents of a data array defined inMosel. The free format output with write/writeln can be applied to any type of expression.However, if we wish to use the initializations to functionality for writing out, for instance, thesolution values after an optimization run or the result of a Mosel function we need to proceed in aslightly different way from what we have seen so far.
There are two options:

1. Save the solution values or results into a new Mosel object and work with this copy for the fileoutput. For example,
declarations
x: mpvar
x_sol: real
y: array(R) of mpvar
y_sol: array(R) of real
end-declarations
... ! Define and solve an optimization problem
x_sol:= x.sol ! Retrieve the solution values
forall(i in R) y_sol(i):= y(i).sol
initializations to "out.txt"
x_sol
y_sol
end-initializations

2. Use the keyword evaluation in the initializations block.
declarations
x: mpvar
y: array(R) of mpvar
end-declarations
... ! Define and solve an optimization problem
initializations to "out.txt"
evaluation of x.sol as "x_sol"
evaluation of array(i in R) y(i).sol as "y_sol"
end-initializations

The array construct is used in the model extract above to generate a new array ’on the fly’. Its use issimilar to aggregate operators such as sum or union.
The use of the marker evaluation of is not restricted to solution values; it allows you to work withany type of expression directly in the initializations block, including results of Mosel functions or

Fair Isaac Corporation Confidential and Proprietary Information 80

Output

computations as shown in the following example initeval.mos. This model writes out detailedresults for our introductory Chess example (see Section 1.3).
model "Evaluations"
uses "mmxprs"

declarations
small,large: mpvar ! Decision variables: produced quantities
end-declarations

Profit:= 5⁎small + 20⁎large ! Objective function
Lathe:= 3⁎small + 2⁎large <= 160 ! Lathe-hours
Boxwood:= small + 3⁎large <= 200 ! kg of boxwood
small is_integer; large is_integer ! Integrality constraints

maximize(Profit) ! Solve the problem

initializations to "chessout.txt"
evaluation of getparam("XPRS_mipstatus") as "Status"
evaluation of getobjval as "Objective"
evaluation of small.sol as "small_sol"
evaluation of getsol(large) as "large_sol"
evaluation of Lathe.slack as "Spare time"
evaluation of Boxwood.act as "Used wood"
evaluation of Boxwood.act-200 as "Spare wood"
evaluation of [small.sol, large.sol] as "x_sol"
end-initializations

end-model

The resulting output file chessout.txt has the following contents:
'Status': 6
'Objective': 1330
'small_sol': 2
'large_sol': 66
'Spare time': 22
'Used wood': 200
'Spare wood': 0
'x_sol': [2 66]

10.3 Real number format

Whenever output is printed (including matrix export to a file) Mosel uses the standard representation offloating point numbers of the operating system (C format %g). This format may apply rounding whenprinting large numbers or numbers with many decimals. It may therefore sometimes be preferable tochange the output format to a fixed format to see the exact results of an optimization run or to producea matrix output file with greater accuracy. Consider the following example (model numformat.mos):
model "Formatting numbers"
parameters
a = 12345000.0
b = 12345048.9
c = 12.000045
d = 12.0
end-parameters

writeln(a, " ", b, " ", c, " ", d)

setparam("REALFMT", "%1.6f")
writeln(a, " ", b, " ", c, " ", d)
end-model

Fair Isaac Corporation Confidential and Proprietary Information 81

Output

This model produces the following output.
1.2345e+07 1.2345e+07 12 12
12345000.000000 12345048.900000 12.000045 12.000000

That is, with the default printing format it is not possible to distinguish between a and b or to see that cis not an integer. After setting a fixed format with 6 decimals all these numbers are output with theirexact values.

Fair Isaac Corporation Confidential and Proprietary Information 82

CHAPTER 11

More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming facilitiesin Mosel that have been introduced in the previous chapters.

11.1 Cut generation

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex hull of theinteger solutions, thus drawing the solution of the LP relaxation closer to the integer feasible solutionsand improving the bound provided by the solution of the relaxed problem.
The Xpress Optimizer provides automated cut generation (see the optimizer documentation fordetails). To show the effects of the cuts that are generated by our example we switch off theautomated cut generation.

11.1.1 Example problem

The problem we want to solve is the following: a large company is planning to outsource the cleaningof its offices at the least cost. The NSITES office sites of the company are grouped into areas (set
AREAS = {1, ...,NAREAS}). Several professional cleaning companies (set
CONTR = {1, ...,NCONTRACTORS}) have submitted bids for the different sites, a cost of 0 in the datameaning that a contractor is not bidding for a site.
To avoid being dependent on a single contractor, adjacent areas have to be allocated to differentcontractors. Every site s (s in SITES = {1, ...,NSITES}) is to be allocated to a single contractor, but theremay be between LOWCONa and UPPCONa contractors per area a.

11.1.2 Model formulation

For the mathematical formulation of the problem we introduce two sets of variables:
cleancs indicates whether contractor c is cleaning site s
allocca indicates whether contractor c is allocated any site in area a

The objective to minimize the total cost of all contracts is as follows (where PRICEsc is the price persite and contractor):
minimize ∑

c∈CONTR

∑
s∈SITES

PRICEsc · cleancs

We need the following three sets of constraints to formulate the problem:
1. Each site must be cleaned by exactly one contractor.

∀s ∈ SITES : ∑
c∈CONTR

cleancs = 1

Fair Isaac Corporation Confidential and Proprietary Information 83

More about Integer Programming

2. Adjacent areas must not be allocated to the same contractor.
∀c ∈ CONTR, a, b ∈ AREAS, a > b and ADJACENTab = 1 : allocca + alloccb ≤ 1

3. The lower and upper limits on the number of contractors per area must be respected.
∀a ∈ AREAS : ∑

c∈CONTR
allocca ≥ LOWCONa

∀a ∈ AREAS : ∑
c∈CONTR

allocca ≤ UPPCONa

To express the relation between the two sets of variables we need more constraints: a contractor c isallocated to an area a if and only if he is allocated a site s in this area, that is, yca is 1 if and only if some
xcs (for a site s in area a) is 1. This equivalence is expressed by the following two sets of constraints,one for each sense of the implication (AREAs is the area a site s belongs to and NUMSITEa the numberof sites in area a):

∀c ∈ CONTR, a ∈ AREAS : allocca ≤ ∑
s∈SITES
AREAs=a

cleancs

∀c ∈ CONTR, a ∈ AREAS : allocca ≥ 1
NUMSITEa

·
∑

s∈SITES
AREAs=a

cleancs

11.1.3 Implementation

The resulting Mosel program is the following model clean.mos. The variables cleancs are defined as a
dynamic array and are only created if contractor c bids for site s (that is, PRICEsc > 0 or, taking intoaccount inaccuracies in the data, PRICEsc > 0.01).
Another implementation detail that the reader may notice is the separate initialization of the arraysizes: we are thus able to create all arrays with fixed sizes (with the exception of the previouslymentioned array of variables that is explicitly declared dynamic). This allows Mosel to handle them in amore efficient way.

model "Office cleaning"
uses "mmxprs","mmsystem"

declarations
PARAM: array(1..3) of integer
end-declarations

initializations from 'clparam.dat'
PARAM
end-initializations

declarations
NSITES = PARAM(1) ! Number of sites
NAREAS = PARAM(2) ! Number of areas (subsets of sites)
NCONTRACTORS = PARAM(3) ! Number of contractors
AREAS = 1..NAREAS
CONTR = 1..NCONTRACTORS
SITES = 1..NSITES
AREA: array(SITES) of integer ! Area site is in
NUMSITE: array(AREAS) of integer ! Number of sites in an area
LOWCON: array(AREAS) of integer ! Lower limit on the number of

! contractors per area
UPPCON: array(AREAS) of integer ! Upper limit on the number of

! contractors per area
ADJACENT: array(AREAS,AREAS) of integer ! 1 if areas adjacent, 0 otherwise

Fair Isaac Corporation Confidential and Proprietary Information 84

More about Integer Programming

PRICE: array(SITES,CONTR) of real ! Price per contractor per site

clean: dynamic array(CONTR,SITES) of mpvar ! 1 iff contractor c cleans site s
alloc: array(CONTR,AREAS) of mpvar ! 1 iff contractor allocated to a site

! in area a
end-declarations

initializations from 'cldata.dat'
[NUMSITE,LOWCON,UPPCON] as 'AREA'
ADJACENT
PRICE
end-initializations

ct:=1
forall(a in AREAS) do
forall(s in ct..ct+NUMSITE(a)-1)
AREA(s):=a
ct+= NUMSITE(a)
end-do

forall(c in CONTR, s in SITES | PRICE(s,c) > 0.01) create(clean(c,s))

! Objective: Minimize total cost of all cleaning contracts
Cost:= sum(c in CONTR, s in SITES) PRICE(s,c)⁎clean(c,s)

! Each site must be cleaned by exactly one contractor
forall(s in SITES) sum(c in CONTR) clean(c,s) = 1

! Ban same contractor from serving adjacent areas
forall(c in CONTR, a,b in AREAS | a > b and ADJACENT(a,b) = 1)
alloc(c,a) + alloc(c,b) <= 1

! Specify lower & upper limits on contracts per area
forall(a in AREAS | LOWCON(a)>0)
sum(c in CONTR) alloc(c,a) >= LOWCON(a)
forall(a in AREAS | UPPCON(a)<NCONTRACTORS)
sum(c in CONTR) alloc(c,a) <= UPPCON(a)

! Define alloc(c,a) to be 1 iff some clean(c,s)=1 for sites s in area a
forall(c in CONTR, a in AREAS) do
alloc(c,a) <= sum(s in SITES| AREA(s)=a) clean(c,s)
alloc(c,a) >= 1.0/NUMSITE(a) ⁎ sum(s in SITES| AREA(s)=a) clean(c,s)
end-do

forall(c in CONTR) do
forall(s in SITES) clean(c,s) is_binary
forall(a in AREAS) alloc(c,a) is_binary
end-do

minimize(Cost) ! Solve the MIP problem
end-model

In the preceding model, we have chosen to implement the constraints that force the variables allocca tobecome 1 whenever a variable cleancs is 1 for some site s in area a in an aggregated way (this type ofconstraint is usually referred to as Multiple Variable Lower Bound, MVLB, constraints). Instead of
forall(c in CONTR, a in AREAS)
alloc(c,a) >= 1.0/NUMSITE(a) ⁎ sum(s in SITES| AREA(s)=a) clean(c,s)

we could also have used the stronger formulation
forall(c in CONTR, s in SITES)
alloc(c,AREA(s)) >= clean(c,s)

but this considerably increases the total number of constraints. The aggregated constraints aresufficient to express this problem, but this formulation is very loose, with the consequence that the

Fair Isaac Corporation Confidential and Proprietary Information 85

More about Integer Programming

solution of the LP relaxation only provides a very bad approximation of the integer solution that wewant to obtain. For large data sets the Branch-and-Bound search may therefore take a long time.
11.1.4 Cut-and-Branch

To improve this situation without blindly adding many unnecessary constraints, we implement a cutgeneration loop at the top node of the search that only adds those constraints that are violated be thecurrent LP solution.
The cut generation loop (procedure top_cut_gen) performs the following steps:

� solve the LP and save the basis
� get the solution values
� identify violated constraints and add them to the problem
� load the modified problem and load the previous basis

procedure top_cut_gen
declarations
MAXCUTS = 2500 ! Max no. of constraints added in total
MAXPCUTS = 1000 ! Max no. of constraints added per pass
MAXPASS = 50 ! Max no. passes
ncut, npass, npcut: integer ! Counters for cuts and passes
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables `clean'
sola: array(CONTR,AREAS) of real ! Sol. values for variables `alloc'
objval,starttime: real
cut: array(range) of linctr
bas: basis ! LP basis
end-declarations

starttime:=gettime
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
feastol:= getparam("XPRS_FEASTOL") ! Get the solver zero tolerance
setparam("ZEROTOL", feastol ⁎ 10) ! Set the comparison tolerance of Mosel
ncut:=0
npass:=0

while (ncut<MAXCUTS and npass<MAXPASS) do
npass+=1
npcut:= 0
minimize(XPRS_LIN, Cost) ! Solve the LP
if (npass>1 and objval=getobjval) then break; end-if
savebasis(bas) ! Save the current basis
objval:= getobjval ! Get the objective value

forall(c in CONTR) do ! Get the solution values
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))

end-do

! Search for violated constraints and add them to the problem:
forall(c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) >= clean(c,s)
ncut+=1
npcut+=1
if (npcut>MAXPCUTS or ncut>MAXCUTS) then break 2; end-if
end-if

writeln("Pass ", npass, " (", gettime-starttime, " sec), objective value ",
objval, ", cuts added: ", npcut, " (total ", ncut,")")

Fair Isaac Corporation Confidential and Proprietary Information 86

More about Integer Programming

if npcut=0 then
break

else
loadprob(Cost) ! Reload the problem
loadbasis(bas) ! Load the saved basis

end-if
end-do

! Display cut generation status
write("Cut phase completed: ")
if (ncut >= MAXCUTS) then writeln("space for cuts exhausted")
elif (npass >= MAXPASS) then writeln("maximum number of passes reached")
else writeln("no more violations or no improvement to objective")
end-if
end-procedure

Assuming we add the definition of procedure top_cut_gen to the end of our model, we need to addits declaration at the beginning of the model:
forward procedure topcutgen

and the call to this function immediately before the optimization:
top_cut_gen ! Constraint generation at top node
minimize(Cost) ! Solve the MIP problem

Since we wish to use our own cut strategy, we switch off the default cut generation in Xpress Optimizer:
setparam("XPRS_CUTSTRATEGY", 0)

We also turn the presolve off since we wish to access the solution to the original problem after solvingthe LP-relaxations:
setparam("XPRS_PRESOLVE", 0)

11.1.5 Comparison tolerance

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:the solver works with tolerance values for integer feasibility and solution feasibility that are typically ofthe order of 10–6 by default. When evaluating a solution, for instance by performing comparisons, it isimportant to take into account these tolerances.
After retrieving the feasibility tolerance of the solver we set the comparison tolerance of Mosel(ZEROTOL) to this value. This means, for example, the test x = 0 evaluates to true if x lies between
-ZEROTOL and ZEROTOL, x ≤ 0 is true if the value of x is at most ZEROTOL, and x > 0 is fulfilled if x isgreater than ZEROTOL.
Comparisons in Mosel always use a tolerance, with a very small default value. By resetting thisparameter to the solver feasibility tolerance Mosel evaluates solution values just like Xpress Optimizer.

11.1.6 Branch-and-Cut

The cut generation loop presented in the previous subsection only generates violated inqualities at thetop node before entering the Branch-and-Bound search and adds them to the problem in the form ofadditional constraints. We may do the same using the cut manager of Xpress Optimizer. In this case,the violated constraints are added to the problem via the cut pool. We may even generate and add cutsduring the Branch-and-Bound search. A cut added at a node using addcuts only applies to this nodeand its descendants, so one may use this functionality to define local cuts (however, in our example, allgenerated cuts are valid globally).
The cut manager is set up with a call to procedure tree_cut_gen before starting the optimization

Fair Isaac Corporation Confidential and Proprietary Information 87

More about Integer Programming

(preceded by the declaration of the procedure using forward earlier in the program). To avoidinitializing the solution arrays and the feasibility tolerance repeatedly, we now turn these into globallydefined objects:
declarations
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables `clean'
sola: array(CONTR,AREAS) of real ! Sol. values for variables `alloc'
end-declarations

tree_cut_gen ! Set up cut generation in B&B tree
minimize(Cost) ! Solve the MIP problem

As we have seen before, procedure tree_cut_gen disables the default cut generation and turnspresolve off. It also indicates the number of extra rows to be reserved in the matrix for the cuts we aregenerating:
procedure tree_cut_gen
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix

feastol:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
setparam("zerotol", feastol ⁎ 10) ! Set the comparison tolerance of Mosel

setcallback(XPRS_CB_CUTMGR, "cb_node")
end-procedure

The last line of this procedure defines the cut manager entry callback function that will be called by theoptimizer from every node of the Branch-and-Bound search tree. This cut generation routine (function
cb_node) performs the following steps:

� get the solution values
� identify violated inequalities and add them to the problem

It is implemented as follows (we restrict the generation of cuts to the first three levels, i.e. depth <4,of the search tree):
public function cb_node:boolean

declarations
ncut: integer ! Counters for cuts
cut: dynamic array(range) of linctr ! Cuts
cutid: dynamic array(range) of integer ! Cut type identification
type: dynamic array(range) of integer ! Cut constraint type
end-declarations

returned:=false ! Call this function once per node

depth:=getparam("XPRS_NODEDEPTH")
node:=getparam("XPRS_NODES")

if depth<4 then
ncut:=0

! Get the solution values
forall(c in CONTR) do
forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
forall(s in SITES) solc(c,s):=getsol(clean(c,s))
end-do

! Search for violated constraints

Fair Isaac Corporation Confidential and Proprietary Information 88

More about Integer Programming

forall(c in CONTR, s in SITES)
if solc(c,s) > sola(c,AREA(s)) then
cut(ncut):= alloc(c,AREA(s)) - clean(c,s)
cutid(ncut):= 1
type(ncut):= CT_GEQ
ncut+=1

end-if

! Add cuts to the problem
if ncut>0 then
returned:=true ! Call this function again
addcuts(cutid, type, cut);
writeln("Cuts added : ", ncut, " (depth ", depth, ", node ", node,

", obj. ", getparam("XPRS_LPOBJVAL"), ")")
end-if
end-if

end-function

The prototype of this function is prescribed by the type of the callback (see the Xpress OptimizerReference Manual and the chapter on mmxprs in the Mosel Language Reference Manual). We declarethe function as public to make sure that our model continues to work if it is compiled with the -s(strip) option. At every node this function is called repeatedly, followed by a re-solution of the currentLP, as long as it returns true.

11.2 Column generation

The technique of column generation is used for solving linear problems with a huge number of variablesfor which it is not possible to generate explicitly all columns of the problem matrix. Starting with a veryrestricted set of columns, after each solution of the problem a column generation algorithm adds oneor several columns that improve the current solution. These columns must have a negative reducedcost (in a minimization problem) and are calculated based on the dual value of the current solution.
For solving large MIP problems, column generation typically has to be combined with aBranch-and-Bound search, leading to a so-called Branch-and-Price algorithm. The example problemdescribed below is solved by solving a sequence of LPs without starting a tree search.

11.2.1 Example problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into smallerrolls according to the customer orders. The rolls can be cut into NWIDTHS different sizes. The ordersare given as demands for each width i (DEMANDi). The objective of the paper mill is to satisfy thedemand with the smallest possible number of paper rolls in order to minimize the losses.
11.2.2 Model formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set ofcutting patterns for the current set of demands. Since it may not be obvious how to calculate allpossible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS1,...,
PATTERNSNWIDTH), that consists of cutting small rolls all of the same width as many times as possible(and at most the demanded quantity) out of the large roll. This type of problem is called a cutting stock
problem.
If we define variables usej to denote the number of times a cutting pattern j(j ∈ WIDTHS = {1, ...,NWIDTH}) is used, then the objective becomes to minimize the sum of these

Fair Isaac Corporation Confidential and Proprietary Information 89

More about Integer Programming

variables, subject to the constraints that the demand for every size has to be met.
minimize ∑

j∈WIDTHS
usej∑

j∈WIDTHS
PATTERNSij · usej ≥ DEMANDi

∀j ∈ WIDTHS : usej ≤ ceil(DEMANDj/PATTERNSjj), usej ∈ IN
Function ceil means rounding to the next larger integer value.

11.2.3 Implementation

The first part of the Mosel model paper.mos implementing this problem looks as follows:
model Papermill
uses "mmxprs"

forward procedure column_gen
forward function knapsack(C:array(range) of real, A:array(range) of real,

B:real, D:array(range) of integer,
xbest:array(range) of integer,
pass: integer): real

forward procedure show_new_pat(dj:real, vx: array(range) of integer)

declarations
NWIDTHS = 5 ! Number of different widths
WIDTHS = 1..NWIDTHS ! Range of widths
RP: range ! Range of cutting patterns
MAXWIDTH = 94 ! Maximum roll width
EPS = 1e-6 ! Zero tolerance

WIDTH: array(WIDTHS) of real ! Possible widths
DEMAND: array(WIDTHS) of integer ! Demand per width
PATTERNS: array(WIDTHS,WIDTHS) of integer ! (Basic) cutting patterns

use: dynamic array(RP) of mpvar ! Rolls per pattern
soluse: dynamic array(RP) of real ! Solution values for variables `use'
Dem: array(WIDTHS) of linctr ! Demand constraints
MinRolls: linctr ! Objective function

KnapCtr, KnapObj: linctr ! Knapsack constraint+objective
x: array(WIDTHS) of mpvar ! Knapsack variables
end-declarations

WIDTH:: [17, 21, 22.5, 24, 29.5]
DEMAND:: [150, 96, 48, 108, 227]

forall(j in WIDTHS) ! Make basic patterns
PATTERNS(j,j) := minlist(floor(MAXWIDTH/WIDTH(j)),DEMAND(j))

forall(j in WIDTHS) do
create(use(j)) ! Create NWIDTHS variables `use'
use(j) is_integer ! Variables are integer and bounded
use(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j)))
end-do

MinRolls:= sum(j in WIDTHS) use(j) ! Objective: minimize no. of rolls

forall(i in WIDTHS) ! Satisfy all demands
Dem(i):= sum(j in WIDTHS) PATTERNS(i,j) ⁎ use(j) >= DEMAND(i)

column_gen ! Column generation at top node

minimize(MinRolls) ! Compute the best integer solution

Fair Isaac Corporation Confidential and Proprietary Information 90

More about Integer Programming

! for the current problem (including
! the new columns)

writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i)),", ")

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is likely to incursignificant losses through wasting more than necessary of every large roll and by cutting more smallrolls than its customers have ordered. We therefore employ a column generation heuristic to find moresuitable cutting patterns.
The following procedure column_gen defines a column generation loop that is executed at the topnode (this heuristic was suggested by M. Savelsbergh for solving a similar cutting stock problem). Thecolumn generation loop performs the following steps:

� solve the LP and save the basis
� get the solution values
� compute a more profitable cutting pattern based on the current solution
� generate a new column (= cutting pattern): add a term to the objective function and to thecorresponding demand constraints
� load the modified problem and load the saved basis

To be able to increase the number of variables usej in this function, these variables have been declaredat the beginning of the program as a dynamic array without specifying any index range.
By setting Mosel’s comparison tolerance to EPS, the test zbest = 0 checks whether zbest lies within
EPS of 0 (see explanation in Section 11.1).
Switching off presolve for the column generation problem generally helps to improve performancewhen iteratively resolving the problem after adding a new column and warm-starting it with theprevious basis.

procedure column_gen
declarations
dualdem: array(WIDTHS) of real
xbest: array(WIDTHS) of integer
dw, zbest, objval: real
bas: basis
end-declarations

setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("zerotol", EPS) ! Set comparison tolerance of Mosel
npatt:=NWIDTHS
npass:=1

while(true) do
minimize(XPRS_LIN, MinRolls) ! Solve the LP

savebasis(bas) ! Save the current basis
objval:= getobjval ! Get the objective value

! Get the solution values
forall(j in 1..npatt) soluse(j):=getsol(use(j))
forall(i in WIDTHS) dualdem(i):=getdual(Dem(i))

! Solve a knapsack problem
zbest:= knapsack(dualdem, WIDTH, MAXWIDTH, DEMAND, xbest, npass) - 1.0

write("Pass ", npass, ": ")
if zbest = 0 then

Fair Isaac Corporation Confidential and Proprietary Information 91

More about Integer Programming

writeln("no profitable column found.\n")
break

else
show_new_pat(zbest, xbest) ! Print the new pattern
npatt+=1
create(use(npatt)) ! Create a new var. for this pattern
use(npatt) is_integer

MinRolls+= use(npatt) ! Add new var. to the objective
dw:=0
forall(i in WIDTHS)
if xbest(i) > 0 then
Dem(i)+= xbest(i)⁎use(npatt) ! Add new var. to demand constr.s
dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i)))
end-if

use(npatt) <= dw ! Set upper bound on the new var.

loadprob(MinRolls) ! Reload the problem
loadbasis(bas) ! Load the saved basis

end-if
npass+=1

end-do

writeln("Solution after column generation: ", objval, " rolls, ",
getsize(RP), " patterns")

write(" Rolls per pattern: ")
forall(i in RP) write(soluse(i),", ")
writeln

setparam("XPRS_PRESOLVE", 1) ! Switch presolve on

end-procedure

The preceding procedure column_gen calls the following auxiliary function knapsack to solve an
integer knapsack problem of the form

maximize z = ∑
j∈WIDTHS

Ci · xj∑
j∈WIDTHS

Aj · xj ≤ B

∀j ∈ WIDTHS : xj integer
∀j ∈ WIDTHS : xj ≤ Dj

The function knapsack solves a second optimization problem that is independent of the main, cuttingstock problem since the two have no variables in common. We thus effectively work with two problemsin a single Mosel model.
For efficiency reasons we have defined the knapsack variables and constraints globally. The integralitycondition on the knapsack variables remains unchanged between several calls to this function, so weestablish it when solving the first knapsack problem. On the other hand, the knapsack constraint andthe objective function have different coefficients at every execution, so we need to replace them everytime the function is called.
We reset the knapsack constraints to 0 at the end of this function so that they do not unnecessarilyincrease the size of the main problem. The same is true in the other sense: hiding the demandconstraints while solving the knapsack problem makes life easier for the optimizer, but is not essentialfor getting the correct solution.

function knapsack(C:array(range) of real, A:array(range) of real, B:real,
D:array(range) of integer, xbest:array(range) of integer,
pass: integer):real

Fair Isaac Corporation Confidential and Proprietary Information 92

More about Integer Programming

! Hide the demand constraints
forall(j in WIDTHS) sethidden(Dem(j), true)

! Define the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)⁎x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)⁎x(j)

! Integrality condition
if(pass=1) then
forall(j in WIDTHS) x(j) is_integer
forall(j in WIDTHS) x(j) <= D(j)
end-if

maximize(KnapObj)
returned:=getobjval
forall(j in WIDTHS) xbest(j):=round(getsol(x(j)))

! Reset knapsack constraint and objective, unhide demand constraints
KnapCtr := 0
KnapObj := 0
forall(j in WIDTHS) sethidden(Dem(j), false)
end-function

To complete the model, we add the following procedure show_new_pat to print every new pattern wefind.
procedure show_new_pat(dj:real, vx: array(range) of integer)
declarations
dw: real
end-declarations

writeln("new pattern found with marginal cost ", dj)
write(" Widths distribution: ")
dw:=0
forall(i in WIDTHS) do
write(WIDTH(i), ":", vx(i), " ")
dw += WIDTH(i)⁎vx(i)

end-do
writeln("Total width: ", dw)
end-procedure

end-model

11.2.4 Alternative implementation: Working with multiple problems

The implementation of the function knapsack in the previous section uses the sethiddenfunctionality to blend out parts of the problem definition. The two parts of the problem (the maincutting stock problem and the problem solved in the knapsack routine) do not have any elements incommon, that is, we really are solving two different problems within a single model.
With Mosel 3.0 it becomes possible to formulate this model as two separate problems within the samemodel file.
The implementation as two separate problems in the model file papers.mos requires only fewchanges to the previous model formulation:

1. The declaration of a subproblem ’Knapsack’ is added to the global declarations at the start of themodel definition.
declarations
Knapsack: mpproblem ! Knapsack subproblem
end-declarations

2. The implementation of function knapsack now works within the subproblem ’Knapsack’ instead

Fair Isaac Corporation Confidential and Proprietary Information 93

More about Integer Programming

of hiding and unhiding subsets of the constraints. The scope of the subproblem is marked by thekeywords with mpproblem [do ... end-do].
function knapsack(C:array(range) of real, A:array(range) of real, B:real,

D:array(range) of integer, xbest:array(range) of integer,
pass: integer):real

with Knapsack do

! Redefine the knapsack problem
KnapCtr := sum(j in WIDTHS) A(j)⁎x(j) <= B
KnapObj := sum(j in WIDTHS) C(j)⁎x(j)

! Integrality condition
if pass=1 then
forall(j in WIDTHS) x(j) is_integer
forall(j in WIDTHS) x(j) <= D(j)
end-if

maximize(KnapObj)
returned:=getobjval
forall(j in WIDTHS) xbest(j):=round(getsol(x(j)))

end-do

end-function

Fair Isaac Corporation Confidential and Proprietary Information 94

CHAPTER 12

Extensions to Linear Programming

The two examples (recursion and Goal Programming) in this chapter show how Mosel can be used toimplement extensions of Linear Programming.

12.1 Recursion

Recursion, more properly known as Successive Linear Programming, is a technique whereby LP may beused to solve certain non-linear problems. Some coefficients in an LP problem are defined to befunctions of the optimal values of LP variables. When an LP problem has been solved, the coefficientsare re-evaluated and the LP re-solved. Under some assumptions this process may converge to a local(though not necessarily a global) optimum.
12.1.1 Example problem

Consider the following financial planning problem: We wish to determine the yearly interest rate x sothat for a given set of payments we obtain the final balance of 0. Interest is paid quarterly according tothe following formula:
interestt = (92/365) · balancet · interestrate

The balance at time t (t = 1, ...,T) results from the balance of the previous period t – 1 and the net ofpayments and interest:
nett = Paymentst – interestt
balancet = balancet–1 – nett

12.1.2 Model formulation

This problem cannot be modeled just by LP because we have the T products
balancet · interestrate

which are non-linear. To express an approximation of the original problem by LP we replace the interestrate variable x by a (constant) guess X of its value and a deviation variable dx

x = X + dx

The formula for the quarterly interest payment it therefore becomes
interestt = 92/365 · (balancet–1 · x)= 92/365 · (balancet–1 · (X + dx))

= 92/365 · (balancet–1 · X + balancet–1 · dx)

Fair Isaac Corporation Confidential and Proprietary Information 95

Extensions to Linear Programming

where balancet is the balance at the beginning of period t.
We now also replace the balance balancet–1 in the product with dx by a guess Bt–1 and a deviation dbt–1

iinterestt = 92/365 · (balancet–1 · X + (Bt–1 + dbt–1) · dx)= 92/365 · (balancet–1 · X + Bt–1 · dx + dbt–1 · dx)
which can be approximated by dropping the product of the deviation variables

interestt = 92/365 · (balancet–1 · X + Bt–1 · dx)

To ensure feasibility we add penalty variables eplust and eminust for positive and negative deviations inthe formulation of the constraint:
interestt = 92/365 · (balancet–1 · X + Bt–1 · dx + eplust – eminust)

The objective of the problem is to get feasible, that is to minimize the deviations:
minimize ∑

t∈QUARTERS
(eplust + eminust)

12.1.3 Implementation

The Mosel model (file recurse.mos) then looks as follows (note the balance variables balancet aswell as the deviation dx and the quarterly nets nett are defined as free variables, that is, they may takeany values between minus and plus infinity):
model Recurse
uses "mmxprs"

forward procedure solve_recurse

declarations
T=6 ! Time horizon
QUARTERS=1..T ! Range of time periods
P,R,V: array(QUARTERS) of real ! Payments
B: array(QUARTERS) of real ! Initial guess as to balances b(t)
X: real ! Initial guess as to interest rate x

interest: array(QUARTERS) of mpvar ! Interest
net: array(QUARTERS) of mpvar ! Net
balance: array(QUARTERS) of mpvar ! Balance
x: mpvar ! Interest rate
dx: mpvar ! Change to x
eplus, eminus: array(QUARTERS) of mpvar ! + and - deviations
end-declarations

X:= 0.00
B:: [1, 1, 1, 1, 1, 1]
P:: [-1000, 0, 0, 0, 0, 0]
R:: [206.6, 206.6, 206.6, 206.6, 206.6, 0]
V:: [-2.95, 0, 0, 0, 0, 0]

! net = payments - interest
forall(t in QUARTERS) net(t) = (P(t)+R(t)+V(t)) - interest(t)

! Money balance across periods
forall(t in QUARTERS) balance(t) = if(t>1, balance(t-1), 0) - net(t)

forall(t in 2..T) Interest(t):= ! Approximation of interest
-(365/92)⁎interest(t) + X⁎balance(t-1) + B(t-1)⁎dx + eplus(t) - eminus(t) = 0

Fair Isaac Corporation Confidential and Proprietary Information 96

Extensions to Linear Programming

Def:= X + dx = x ! Define the interest rate: x = X + dx

Feas:= sum(t in QUARTERS) (eplus(t)+eminus(t)) ! Objective: get feasible

interest(1) = 0 ! Initial interest is zero
forall (t in QUARTERS) net(t) is_free
forall (t in 1..T-1) balance(t) is_free
balance(T) = 0 ! Final balance is zero
dx is_free

minimize(Feas) ! Solve the LP-problem

solve_recurse ! Recursion loop

! Print the solution
writeln("\nThe interest rate is ", getsol(x))
write(strfmt("t",5), strfmt(" ",4))
forall(t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))
write("\nBalances ")
forall(t in QUARTERS) write(strfmt(getsol(balance(t)),8,2))
write("\nInterest ")
forall(t in QUARTERS) write(strfmt(getsol(interest(t)),8,2))

end-model

In the model above we have declared the procedure solve_recurse that executes the recursion but ithas not yet been defined. The recursion on x and the balancet (t = 1, ...,T – 1) is implemented by thefollowing steps:
(a) The Bt–1 in constraints Interestt get the prior solution value of balancet–1(b) The X in constraints Interestt get the prior solution value of x(c) The X in constraint Def gets the prior solution value of x
We say we have converged when the change in dx (variation) is less than 0.000001 (TOLERANCE). Bysetting Mosel’s comparison tolerance to this value the test variation > 0 checks whether variation isgreater than TOLERANCE.

procedure solve_recurse
declarations
TOLERANCE=0.000001 ! Convergence tolerance
variation: real ! Variation of x
BC: array(QUARTERS) of real
bas: basis ! LP basis
end-declarations

setparam("zerotol", TOLERANCE) ! Set Mosel comparison tolerance
variation:=1.0
ct:=0

while(variation>0) do
savebasis(bas) ! Save the current basis
ct+=1
forall(t in 2..T)
BC(t-1):= getsol(balance(t-1)) ! Get solution values for balance(t)'s

XC:= getsol(x) ! and x
write("Round ", ct, " x:", getsol(x), " (variation:", variation,"), ")
writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))

forall(t in 2..T) do ! Update coefficients
Interest(t)+= (BC(t-1)-B(t-1))⁎dx
B(t-1):=BC(t-1)
Interest(t)+= (XC-X)⁎balance(t-1)

end-do
Def+= XC-X
X:=XC
oldxval:=XC ! Store solution value of x

Fair Isaac Corporation Confidential and Proprietary Information 97

Extensions to Linear Programming

loadprob(Feas) ! Reload the problem into the optimizer
loadbasis(bas) ! Reload previous basis
minimize(Feas) ! Re-solve the LP-problem

variation:= abs(getsol(x)-oldxval) ! Change in dx
end-do
end-procedure

With the initial guesses 0 for X and 1 for all Bt the model converges to an interest rate of 5.94413% (x =0.0594413).

12.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for a set ofconstraints. In Goal Programming there are two basic models: the pre-emptive (lexicographic) modeland the Archimedian model. In the pre-emptive model, goals are ordered according to priorities. Thegoals at a certain priority level are considered to be infinitely more important than the goals at the nextlevel. With the Archimedian model weights or penalties for not achieving targets must be specified, andwe attempt to minimize the sum of the weighted infeasibilities.
If constraints are used to construct the goals, then the goals are to minimize the violation of theconstraints. The goals are met when the constraints are satisfied.
The example in this section demonstrates how Mosel can be used for implementing pre-emptive Goal
Programming with constraints. We try to meet as many goals as possible, taking them in priority order.

12.2.1 Example problem

The objective is to solve a problem with two variables x and y (x, y ≥ 0), the constraint
100 · x + 60 · y ≤ 600

and the three goal constraints
Goal1: 7 · x + 3 · y ≥ 40
Goal2: 10 · x + 5 · y = 60
Goal3: 5 · x + 4 · y ≥ 35

where the order given corresponds to their priorities.
12.2.2 Implementation

To increase readability, the implementation of the Mosel model (file goalctr.mos) is organized intothree blocks: the problem is stated in the main part, procedure preemptive implements the solutionstrategy via preemptive Goal Programming, and procedure print_sol produces a nice solutionprintout.
model GoalCtr
uses "mmxprs"

forward procedure preemptive
forward procedure print_sol(i:integer)

declarations
NGOALS=3 ! Number of goals
x,y: mpvar ! Decision variables
dev: array(1..2⁎NGOALS) of mpvar ! Deviation from goals

Fair Isaac Corporation Confidential and Proprietary Information 98

Extensions to Linear Programming

MinDev: linctr ! Objective function
Goal: array(1..NGOALS) of linctr ! Goal constraints
end-declarations

100⁎x + 60⁎y <= 600 ! Define a constraint

! Define the goal constraints
Goal(1):= 7⁎x + 3⁎y >= 40
Goal(2):= 10⁎x + 5⁎y = 60
Goal(3):= 5⁎x + 4⁎y >= 35

preemptive ! Pre-emptive Goal Programming

At the end of the main part, we call procedure preemptive to solve this problem by pre-emptive GoalProgramming. In this procedure, the goals are at first entirely removed from the problem (‘hidden’). Wethen add them successively to the problem and re-solve it until the problem becomes infeasible, that is,the deviation variables forming the objective function are not all 0. Depending on the constraint type(obtained with gettype) of the goals, we need one (for inequalities) or two (for equalities) deviationvariables.
Let us have a closer look at the first goal (Goal1), a ≥ constraint: the left hand side (all terms withdecision variables) must be at least 40 to satisfy the constraint. To ensure this, we add a dev2. The goalconstraint becomes 7 · x + 3 · y + dev2 ≥ 40 and the objective function is to minimize dev2. If this isfeasible (0-valued objective), then we remove the deviation variable from the goal, thus turning it into a
hard constraint. It is not required to remove it from the objective since minimization will always forcethis variable to take the value 0.
We then continue with Goal2: since this is an equation, we need variables for positive and negativedeviations, dev3 and dev4. We add dev4 – dev3 to the constraint, turning it into10 · x + 5 · y + dev4 – dev3 = 60 and the objective now is to minimize the absolute deviation dev4 + dev3.And so on.

procedure preemptive

! Remove (=hide) goal constraint from the problem
forall(i in 1..NGOALS) sethidden(Goal(i), true)

i:=0
while (i<NGOALS) do
i+=1
sethidden(Goal(i), false) ! Add (=unhide) the next goal

case gettype(Goal(i)) of ! Add deviation variable(s)
CT_GEQ: do

Deviation:= dev(2⁎i)
MinDev += Deviation
end-do

CT_LEQ: do
Deviation:= -dev(2⁎i-1)
MinDev += dev(2⁎i-1)
end-do

CT_EQ : do
Deviation:= dev(2⁎i) - dev(2⁎i-1)
MinDev += dev(2⁎i) + dev(2⁎i-1)
end-do

else writeln("Wrong constraint type")
break

end-case
Goal(i)+= Deviation

minimize(MinDev) ! Solve the LP-problem
writeln(" Solution(", i,"): x: ", getsol(x), ", y: ", getsol(y))

if getobjval>0 then
writeln("Cannot satisfy goal ",i)

Fair Isaac Corporation Confidential and Proprietary Information 99

Extensions to Linear Programming

break
end-if
Goal(i)-= Deviation ! Remove deviation variable(s) from goal

end-do

print_sol(i) ! Solution printout
end-procedure

The procedure sethidden(c:linctr, b:boolean) has already been used in the previous chapter(Section 11.2) without giving any further explanation. With this procedure, constraints can be removed(‘hidden’) from the problem solved by the optimizer without deleting them in the problem definition. Soeffectively, the optimizer solves a subproblem of the problem originally stated in Mosel.
To complete the model, below is the procedure print_sol for printing the results.

procedure print_sol(i:integer)
declarations
STypes={CT_GEQ, CT_LEQ, CT_EQ}
ATypes: array(STypes) of string
end-declarations

ATypes::([CT_GEQ, CT_LEQ, CT_EQ])[">=", "<=", "="]

writeln(" Goal", strfmt("Target",11), strfmt("Value",7))
forall(g in 1..i)
writeln(strfmt(g,4), strfmt(ATypes(gettype(Goal(g))),4),

strfmt(-getcoeff(Goal(g)),6),
strfmt(getact(Goal(g))-getsol(dev(2⁎g))+getsol(dev(2⁎g-1)) ,8))

forall(g in 1..NGOALS)
if (getsol(dev(2⁎g))>0) then
writeln(" Goal(",g,") deviation from target: -", getsol(dev(2⁎g)))
elif (getsol(dev(2⁎g-1))>0) then
writeln(" Goal(",g,") deviation from target: +", getsol(dev(2⁎g-1)))
end-if

end-procedure

end-model

When running the program, one finds that the first two goals can be satisfied, but not the third.

Fair Isaac Corporation Confidential and Proprietary Information 100

III. Working with the Mosel libraries

Overview

Whilst the two previous parts have shown how to work with the Mosel Language, this part introducesthe programming language interface of Mosel in the form of the Mosel C libraries. The C interface isprovided in the form of two libraries; it may especially be of interest to users who
� want to integrate models and/or solution algorithms written with Mosel into some larger system
� want to (re)use already existing parts of algorithms written in C
� want to interface Mosel with other software, for instance for graphically displaying results.

Other programming language interfaces available for Mosel are its Java, .NET, C# and VBA interfaces.They will be introduced with the help of small examples in Chapter 14.
All these programming language interfaces only enable the user to access models, but not to modifythem. The latter is only possible with the Mosel Native Interface. Even more importantly, the NativeInterface makes it possible to add new constants, types, and subroutines to the Mosel Language. Formore detail the reader is referred to the Native Interface user guide that is provided as a separatedocument. The Mosel Native Interface requires an additional licence.

Fair Isaac Corporation Confidential and Proprietary Information 102

CHAPTER 13

C interface

This chapter gives an introduction to the C interface of Mosel. It shows how to execute models from Cand how to access modeling objects from C. It is not possible to make changes to Mosel modelingobjects from C using this interface, but the data and parameters used by a model may be modified viafiles or run time parameters.

13.1 Basic tasks

To work with a Mosel model, in the C language or with the command line interpreter, it always needs tobe compiled, then loaded into Mosel and executed. In this section we show how to perform these basictasks in C.
13.1.1 Compiling a model in C

The following example program shows how Mosel is initialized in C, and how a model file (extension
.mos) is compiled into a binary model (BIM) file (extension .bim). To use the Mosel Model CompilerLibrary, we need to include the header file xprm_mc.h at the start of the C program.
For the sake of readability, in this program (file ugcomp.c), as for all others in this chapter, we onlyimplement a rudimentary testing for errors.

#include <stdlib.h>
#include "xprm_mc.h"

int main()
{
if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if(XPRMcompmod(NULL, "burglar2.mos", NULL, "Knapsack example"))
return 2; /⁎ Compile the model burglar2.mos,

output the file burglar2.bim ⁎/
XPRMfinish(); /⁎ Finish Mosel, clear everything ⁎/

return 0;
}

The model burglar2.mos used here is the same as model burglari.mos in Section 2.1.3, butreading the data from file.
With version 1.4 of Mosel it becomes possible to redirect the BIM file that is generated by thecompilation. Instead of writing it out to a physical file it may, for instance, be kept in memory or bewritten out in compressed format. The interested reader is refered to the whitepaper Generalized file
handling in Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 103

C interface

13.1.2 Executing a model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in C. The BIMfile can of course be generated within the same program where it is executed, but here we leave out thisstep. A BIM file is an executable version of a model, but it does not include any data that is read in bythe model from external files. It is portable, that is, it may be executed on a different type ofarchitecture than the one it has been generated on. A BIM file produced by the Mosel compiler firstneeds to be loaded into Mosel (function XPRMloadmod) and can then be run by a call to function
XPRMrunmod. To use these functions, we need to include the header file xprm_rt.h at the beginningof our program (named ugrun.c).

#include <stdio.h>
#include "xprm_rt.h"

int main()
{
XPRMmodel mod;
int result;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if((mod=XPRMloadmod("burglar2.bim", NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

if(XPRMrunmod(mod,&result,NULL)) /⁎ Run the model ⁎/
return 3;

XPRMfinish(); /⁎ Finish Mosel, clear everything ⁎/

return 0;
}

The compile/load/run sequence may also be performed with a single function call to XPRMexecmod (inthis case we need to include the header file xprm_mc.h):
#include <stdio.h>
#include "xprm_mc.h"

int main()
{
int result;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Execute = compile/load/run a model ⁎/
if(XPRMexecmod(NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

XPRMfinish(); /⁎ Finish Mosel, clear everything ⁎/

return 0;
}

13.1.3 Termination

All program examples in this manual only serve to execute Mosel models. The corresponding modeland Mosel itself are terminated (unloaded from memory) with the end of the C program. However, forembedding the execution of a Mosel model into some larger application it may be desirable to free thespace used by the model or the execution of Mosel before the end of the application program. To thisaim Mosel provides the functions XPRMresetmod, XPRMunloadmod, and XPRMfinish.
The function XPRMresetmod frees some resources allocated to a model, in particular (solution) data

Fair Isaac Corporation Confidential and Proprietary Information 104

C interface

held in memory or temporary files that may have been created during its execution. The model remainsloaded for later re-use. With a call to XPRMunloadmod a model is unloaded and all related resourcesare freed.Function XPRMfinish performs the unloading of all models, frees all memory used by Mosel, and alsoremoves the temporary directory/files that have been created by Mosel.

13.2 Parameters

In Part I the concept of parameters in Mosel has been introduced: when a Mosel model is executedfrom the command line, it is possible to pass new values for its parameters into the model. The sameis possible with a model run in C. If, for instance, we want to run model ‘Prime’ from Section 8.3 toobtain all prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in themodel), we may start a program with the following lines:
XPRMmodel mod;
int result;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if((mod=XPRMloadmod("prime.bim",NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

if(XPRMrunmod(mod,&result,"LIMIT=500")) /⁎ Run the model ⁎/
return 3;

To use function XPRMexecmod instead of the compile/load/run sequence we have:
int result;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Execute with new parameter settings ⁎/
if(XPRMexecmod(NULL,"prime.mos","LIMIT=500",&result,NULL))
return 2;

13.3 Accessing modeling objects and solution values

Using the Mosel libraries, it is not only possible to compile and run models, but also to accessinformation on the different modeling objects.
13.3.1 Accessing sets

A complete version of a program (file ugparam1.c) for running the model ‘Prime’ mentioned in theprevious section may look as follows (we work with a model prime2 that corresponds to the oneprinted in Section 8.3 but with all output printing removed because we are doing this in C, furthermoreall entities accessed from C must be explicitly declared as public):
#include <stdio.h>
#include "xprm_mc.h"

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue, setitem;

Fair Isaac Corporation Confidential and Proprietary Information 105

C interface

XPRMset set;
int result, type, i, size, first, last;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if(XPRMexecmod(NULL, "prime2.mos", "LIMIT=500", &result, &mod))
return 2; /⁎ Execute the model ⁎/

type=XPRMfindident(mod, "SPrime", &rvalue); /⁎ Get the object 'SPrime' ⁎/
if((XPRM_TYP(type)!=XPRM_TYP_INT)|| /⁎ Check the type: ⁎/

(XPRM_STR(type)!=XPRM_STR_SET)) /⁎ it must be a set of integers ⁎/
return 3;
set = rvalue.set;

size = XPRMgetsetsize(set); /⁎ Get the size of the set ⁎/
if(size>0)
{
first = XPRMgetfirstsetndx(set); /⁎ Get number of the first index ⁎/
last = XPRMgetlastsetndx(set); /⁎ Get number of the last index ⁎/
printf("Prime numbers from 2 to %d:\n", LIM);
for(i=first;i<=last;i++) /⁎ Print all set elements ⁎/
printf(" %d,", XPRMgetelsetval(set,i,&setitem)->integer);
printf("\n");
}

XPRMfinish(); /⁎ Finish Mosel ⁎/

return 0;
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and500), we first retrieve the Mosel reference to this object using function XPRMfindident. We are thenable to enumerate the elements of the set (using functions XPRMgetfirstsetndx and
XPRMgetlastsetndx) and obtain their respective values with XPRMgetelsetval.

13.3.2 Retrieving solution values

The following program ugsol1.c executes the model ‘Burglar3’ (the same as model ‘Burglar2’ fromChapter 2 but with all output printing removed and all model entities declared as public) and printsout its solution.
#include <stdio.h>
#include "xprm_rt.h"

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue, itemname;
XPRMarray varr, darr;
XPRMmpvar x;
XPRMset set;
int indices[1], result, type;
double val;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if((mod=XPRMloadmod("burglar3.bim", NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

if(XPRMrunmod(mod, &result, NULL)) /⁎ Run the model (includes
optimization) ⁎/

return 3;

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)

Fair Isaac Corporation Confidential and Proprietary Information 106

C interface

return 4; /⁎ Test whether a solution is found ⁎/

printf("Objective value: %g\n", XPRMgetobjval(mod));
/⁎ Print the obj. function value ⁎/

type=XPRMfindident(mod,"take",&rvalue); /⁎ Get the model object 'take' ⁎/
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /⁎ Check the type: ⁎/

(XPRM_STR(type)!=XPRM_STR_ARR)) /⁎ it must be an `mpvar' array ⁎/
return 5;
varr = rvalue.array;

type=XPRMfindident(mod,"VALUE",&rvalue); /⁎ Get the model object 'VALUE' ⁎/
if((XPRM_TYP(type)!=XPRM_TYP_REAL)|| /⁎ Check the type: ⁎/

(XPRM_STR(type)!=XPRM_STR_ARR)) /⁎ it must be an array of reals ⁎/
return 6;
darr = rvalue.array;

type=XPRMfindident(mod,"ITEMS",&rvalue); /⁎ Get the model object 'ITEMS' ⁎/
if((XPRM_TYP(type)!=XPRM_TYP_STRING)|| /⁎ Check the type: ⁎/

(XPRM_STR(type)!=XPRM_STR_SET)) /⁎ it must be a set of strings ⁎/
return 7;
set = rvalue.set;

XPRMgetfirstarrentry(varr, indices); /⁎ Get the first entry of array varr
(we know that the array is dense
and has a single dimension) ⁎/

do
{
XPRMgetarrval(varr, indices, &x); /⁎ Get a variable from varr ⁎/
XPRMgetarrval(darr, indices, &val); /⁎ Get the corresponding value ⁎/
printf("take(%s): %g\t (item value: %g)\n", XPRMgetelsetval(set, indices[0],

&itemname)->string, XPRMgetvsol(mod,x), val);
/⁎ Print the solution value ⁎/

} while(!XPRMgetnextarrentry(varr, indices)); /⁎ Get the next index tuple ⁎/

XPRMfinish(); /⁎ Finish Mosel, clear everything ⁎/

return 0;
}

The array of variables varr is enumerated using the array functions XPRMgetfirstarrentry and
XPRMgetnextarrentry. These functions may be applied to arrays of any type and dimension (forhigher numbers of dimensions, merely the size of the array indices that is used to store theindex-tuples has to be adapted). With these functions we run systematically through all possiblecombinations of index tuples, hence the hint at dense arrays in the example. In the case of sparsearrays it is preferrable to use different enumeration functions that only enumerate those entries that aredefined (see next section).

13.3.3 Sparse arrays

In Chapter 3 the problem ‘Transport’ has been introduced. The objective of this problem is to calculatethe flows flowpr from a set of plants to a set of sales regions that satisfy all demand and supplyconstraints and minimize the total cost. Not all plants may deliver goods to all regions. The flowvariables flowpr are therefore defined as a sparse array. The following example (file ugarray1.c)prints out all existing entries of the array of variables.
#include <stdio.h>
#include <stdlib.h>
#include "xprm_rt.h"

int main()
{
XPRMmodel mod;
XPRMalltypes rvalue;

Fair Isaac Corporation Confidential and Proprietary Information 107

C interface

XPRMarray varr;
XPRMset ⁎sets;
int ⁎indices, dim, result, type, i;

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if((mod=XPRMloadmod("transport.bim", NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

if(XPRMrunmod(mod, &result, NULL)) /⁎ Run the model ⁎/
return 3;

type=XPRMfindident(mod,"flow",&rvalue); /⁎ Get the model object named 'flow' ⁎/
if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)|| /⁎ Check the type: ⁎/

(XPRM_STR(type)!=XPRM_STR_ARR)) /⁎ it must be an array of unknowns ⁎/
return 4;
varr=rvalue.array;

dim = XPRMgetarrdim(varr); /⁎ Get the number of dimensions of
the array ⁎/

indices = (int ⁎)malloc(dim⁎sizeof(int));
sets = (XPRMset ⁎)malloc(dim⁎sizeof(XPRMset));

XPRMgetarrsets(varr,sets); /⁎ Get the indexing sets ⁎/
XPRMgetfirstarrtruentry(varr,indices); /⁎ Get the first true index tuple ⁎/
do
{
printf("flow(");
for(i=0;i<dim-1;i++)
printf("%s,",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string);
printf("%s), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string);
} while(!XPRMgetnextarrtruentry(varr,indices)); /⁎ Get next true index tuple⁎/
printf("\n");

free(sets);
free(indices);
XPRMresetmod(mod);

return 0;
}

In this example, we first get the number of indices (dimensions) of the array of variables varr (usingfunction XPRMgetarrdim). We use this information to allocate space for the arrays sets and
indices that will be used to store the indexing sets and single index tuples for this array respectively.We then read the indexing sets of the array (function XPRMgetarrsets) to be able to produce a niceprintout.
The enumeration starts with the first defined index tuple, obtained with function
XPRMgetfirstarrtruentry, and continues with a series of calls to XPRMgetnextarrtruentryuntil all defined entries have been enumerated.
At the end of the program example we have reset the model (using function XPRMresetmod), thusfreeing some resources allocated to it, in particular deleting temporary files that may have been createdduring its execution.

13.4 Exchanging data between an application and a model

In the previous sections we have seen how to obtain solution information and other data from a Moselmodel after its execution. For the integration of a model into an application a flow of information in theopposite sense, that is, from the host application to the model, will often also be required, in particularif data are generated by the application that serve as input to the model. It is possible to write out thisdata to a (text) file or a database and read this file in from the model, but it is clearly more efficient to

Fair Isaac Corporation Confidential and Proprietary Information 108

C interface

communicate such data in memory directly from the application to the model.
In this section we show two versions of our Burglar example where all input data is loaded from theapplication into the model, using dense and sparse data format respectively. The same communicationmechanism, namely a combination of the two I/O drivers (see Section 17.1 for further detail) raw and
mem, is also used to write back the solution from the model to the calling application.
An alternative communication mechanism is presented in Section 13.4.3. Instead of working withblocks of predefined size as in the previous cases, here data is passed through flows, allowing fordynamic sizing on the application level, a feature that is particularly useful for solution output withsparse data structures.
A separate example (Section 13.4.4) shows how to input and output scalar data.

13.4.1 Dense arrays

In the first instance we are going to consider a version of the ‘Burglar’ model that corresponds to thevery first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8. In our C program ugiodense.c below, this corresponds to storing data in standard C arraysthat are communicated to the Mosel model at the start of its execution.

#include <stdio.h>
#include "xprm_mc.h"

double vdata[8]={15,100,90,60,40,15,10, 1}; /⁎ Input data: VALUE ⁎/
double wdata[8]={ 2, 20,20,30,40,30,60,10}; /⁎ Input data: WEIGHT ⁎/
double solution[8]; /⁎ Array for solution values ⁎/

int main()
{
XPRMmodel mod;
int i,result;
char vdata_name[40]; /⁎ File name of input data 'vdata' ⁎/
char wdata_name[40]; /⁎ File name of input data 'wdata' ⁎/
char solution_name[40]; /⁎ File name of solution values ⁎/
char params[144]; /⁎ Parameter string for model execution ⁎/

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Prepare file names for 'initializations' using the 'raw' driver ⁎/
sprintf(vdata_name, "noindex,mem:%p/%d", vdata, (int)sizeof(vdata));
sprintf(wdata_name, "noindex,mem:%p/%d", wdata, (int)sizeof(wdata));
sprintf(solution_name, "noindex,mem:%p/%d", solution, (int)sizeof(solution));

/⁎ Pass file names as execution param.s ⁎/
sprintf(params, "VDATA='%s',WDATA='%s',SOL='%s'", vdata_name, wdata_name,

solution_name);

if(XPRMexecmod(NULL, "burglar6.mos", params, &result, &mod))
return 2; /⁎ Execute a model file ⁎/

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /⁎ Test whether a solution is found ⁎/

/⁎ Display solution values obtained from the model ⁎/
printf("Objective value: %g\n", XPRMgetobjval(mod));
for(i=0;i<8;i++)
printf(" take(%d): %g\n", i+1, solution[i]);

XPRMresetmod(mod); /⁎ Reset the model ⁎/

return 0;
}

Fair Isaac Corporation Confidential and Proprietary Information 109

C interface

In this example we use the raw I/O driver for communication between the application and the model itexecutes. Employing this driver means that data is saved in binary format. File names used with the
raw driver have the form rawoption[,...],filename. The option noindex for this driverindicates that data is to be stored in dense format, that is, just the data entries without any informationabout the indices—this format supposes that the index set(s) is known in the Mosel model before datais read in. The filename uses the mem driver, this means that data is stored in memory. The actuallocation of the data is specified by giving the address of the corresponding memory block and its size.
The program above works with the following version of the ‘Burglar’ model where the locations of inputand output data are specified by the calling application through model parameters. Instead of printingout the solution in the model, we copy the solution values of the decision variables take into the arrayof reals soltake that is written to memory and will be processed by the host application.

model Burglar6
uses "mmxprs"

parameters
VDATA = ''; WDATA = '' ! Locations of input data
SOL = '' ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed
end-parameters

declarations
ITEMS = 1..8 ! Index range for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
soltake: array(ITEMS) of real ! Solution values
end-declarations

initializations from 'raw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol(take(i))

initializations to 'raw:'
soltake as SOL
end-initializations

end-model

13.4.2 Sparse arrays

Let us now take a look at the case where we use a set of strings instead of a simple range set to indexthe various arrays in our model. Storing the indices with the data values makes necessary slightly morecomplicated structures in our C program for the input and solution data. In the C program below (file
ugiosparse.c), every input data entry defines both, the value and the weight coefficient for thecorresponding index.

Fair Isaac Corporation Confidential and Proprietary Information 110

C interface

#include <stdio.h>
#include "xprm_mc.h"

const struct
{ /⁎ Initial values for array 'data': ⁎/
const char ⁎ind; /⁎ index name ⁎/
double val,wght; /⁎ value and weight data entries ⁎/
} data[]={{"camera",15,2}, {"necklace",100,20}, {"vase",90,20},

{"picture",60,30}, {"tv",40,40}, {"video",15,30},
{"chest",10,60}, {"brick",1,10}};

const struct
{ /⁎ Array to receive solution values: ⁎/
const char ⁎ind; /⁎ index name ⁎/
double val; /⁎ solution value ⁎/
} solution[8];

int main()
{
XPRMmodel mod;
int i,result;
char data_name[40]; /⁎ File name of input data 'data' ⁎/
char solution_name[40]; /⁎ File name of solution values ⁎/
char params[96]; /⁎ Parameter string for model execution ⁎/

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Prepare file names for 'initializations' using the 'raw' driver ⁎/
sprintf(data_name, "slength=0,mem:%p/%d", data, (int)sizeof(data));
sprintf(solution_name, "slength=0,mem:%p/%d", solution, (int)sizeof(solution));

/⁎ Pass file names as execution param.s ⁎/
sprintf(params, "DATA='%s',SOL='%s'", data_name, solution_name);

if(XPRMexecmod(NULL, "burglar7.mos", params, &result, &mod))
return 2; /⁎ Execute a model file ⁎/

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /⁎ Test whether a solution is found ⁎/

/⁎ Display solution values obtained from the model ⁎/
printf("Objective value: %g\n", XPRMgetobjval(mod));
for(i=0;i<8;i++)
printf(" take(%s): %g\n", solution[i].ind, solution[i].val);

XPRMresetmod(mod);

return 0;
}

The use of the two I/O drivers is quite similar to what we have seen before. We now pass on data in
sparse format, this means that every data entry is saved together with its index (tuple). Option
slength=0 of the raw driver indicates that strings are represented by pointers to null terminatedarrays of characters (C-string) instead of fixed size arrays.
Similarly to the model of the previous section, the model burglar7.mos executed by the C programabove reads and writes data from/to memory using the raw driver and the locations are specified bythe calling application through the model parameters. Since the contents of the index set ITEMS is notdefined in the model we have moved the declaration of the decision variables after the data input wherethe contents of the set is known, thus avoiding the creation of the array of decision variables as adynamic array.

model Burglar7
uses "mmxprs"

Fair Isaac Corporation Confidential and Proprietary Information 111

C interface

parameters
DATA = '' ! Location of input data
SOL = '' ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed
end-parameters

declarations
ITEMS: set of string ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
end-declarations

initializations from 'raw:'
[VALUE,WEIGHT] as DATA
end-initializations

declarations
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Output solution to calling application
forall(i in ITEMS) soltake(i):= getsol(take(i))

initializations to 'raw:'
soltake as SOL
end-initializations

end-model

13.4.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sectionshave in commun that all data structures in the application, and in particular the structures to receiveoutput data, are of fixed size. We therefore now introduce an alternative communication mechanismworking with flows, that enables dynamic sizing of data structures on the application level, a featurethat is particularly useful for solution output where effective data sizes are not known a priori. Thiscommunication mechanism is based on the callback I/O driver cb (see also Section 13.5). The mainbody of our C program now looks as follows.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xprm_mc.h"

/⁎ Input values for data: ⁎/
char ⁎ind[]={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"}; /⁎ Index names ⁎/
double vdata[]={15,100,90,60,40,15,10, 1}; /⁎ Input data: VALUE ⁎/
double wdata[]={ 2, 20,20,30,40,30,60,10}; /⁎ Input data: WEIGHT ⁎/
int datasize=8;

struct SolArray
{ /⁎ Array to receive solution values: ⁎/
const char ⁎ind; /⁎ index name ⁎/
double val; /⁎ solution value ⁎/

Fair Isaac Corporation Confidential and Proprietary Information 112

C interface

};

struct SolArray ⁎solution;
int solsize;

int main()
{
XPRMmodel mod;
int i,result;
char data_name[40]; /⁎ File name of input data 'data' ⁎/
char solution_name[40]; /⁎ File name of solution values ⁎/
char params[96]; /⁎ Parameter string for model execution ⁎/

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Prepare file names for 'initializations' using the 'cb' driver ⁎/
sprintf(data_name, "cb:%p", cbinit_from);
sprintf(solution_name, "cb:%p", cbinit_to);

/⁎ Pass file names as execution param.s ⁎/
sprintf(params, "DATAFILE='%s',SOLFILE='%s'", data_name, solution_name);

if(XPRMexecmod(NULL, "burglar13.mos", params, &result, &mod))
return 2; /⁎ Execute a model file ⁎/

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /⁎ Test whether a solution is found ⁎/

/⁎ Display solution values obtained from the model ⁎/
printf("Objective value: %g\n", XPRMgetobjval(mod));
for(i=0;i<solsize;i++)
printf(" take(%s): %g\n", solution[i].ind, solution[i].val);

XPRMresetmod(mod);

return 0;
}

The function for dynamic output retrieval employs the Mosel library functions that we have already seenin Section 13.3 for models after their termination. The prototype of the function cbinit_to needs tobe exactly as shown below.
int XPRM_RTC cbinit_to(XPRMcbinit cb, void ⁎info, const char ⁎label,

int type, XPRMalltypes ⁎ref)
{
XPRMarray solarr;
XPRMset sets[1];
int indices[1];
XPRMalltypes rvalue;
int ct;

if(strcmp(label,"SOL")==0)
{
solarr=ref->array;

solsize=XPRMgetarrsize(solarr);
solution = (struct SolArray ⁎)malloc(solsize ⁎ sizeof(struct SolArray));

XPRMgetarrsets(solarr,sets); /⁎ Get the indexing sets
(we know array has 1 dimension) ⁎/

ct=0;
XPRMgetfirstarrtruentry(solarr,indices); /⁎ Get the first true index tuple ⁎/
do
{
solution[ct].ind=XPRMgetelsetval(sets[0],indices[0],&rvalue)->string;
XPRMgetarrval(solarr,indices,&rvalue);
solution[ct].val=rvalue.real;

Fair Isaac Corporation Confidential and Proprietary Information 113

C interface

ct++;
} while(!XPRMgetnextarrtruentry(solarr,indices));
}
else
{
printf("Unknown output data item: %s %p\n", label, ref);
}
return 0;
}

The dynamic data input to a Mosel model uses a new set of dedicated library functions.
The format used to represent data is the same as the default text format used by initializationsblocks. For example, the array definition

mydata: [("ind1" 3) [5 1.2] ("ind2" 7) [4 6.5]]

is represented by the following sequence of function calls:
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendctrl(cb, XPRM_CBC_OPENNDX, 0); ! (
XPRMcb_sendstring(cb, "ind1", 0); ! "ind1"
XPRMcb_sendint(cb, 3, 0); ! 3
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendint(cb, 5, 0); ! 5
XPRMcb_sendreal(cb, 1.2, 0); ! 1.2
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]
XPRMcb_sendctrl(cb, XPRM_CBC_OPENNDX, 0); ! (
XPRMcb_sendstring(cb, "ind2", 0); ! "ind2"
XPRMcb_sendint(cb, 7, 0); ! 7
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendint(cb, 4, 0); ! 4
XPRMcb_sendreal(cb, 6.5, 0); ! 6.5
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]

The last argument ’0’ in these functions indicates that data is to be processed not immediately but onlyonce the queue of tokens is full.
For our example, we thus have the following function definition (again, the prototype of the callbackfunction must be defined exactly to the form expected by Mosel):

int XPRM_RTC cbinit_from(XPRMcbinit cb, void ⁎info, const char ⁎label,
int type, void ⁎ref)

{
int i;

if(strcmp(label,"DATA")==0)
{
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0);
for(i=0;i<datasize;i++)
{
XPRMcb_sendctrl(cb, XPRM_CBC_OPENNDX, 0);
XPRMcb_sendstring(cb, ind[i], -1, 0);
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSENDX, 0);
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0);
XPRMcb_sendreal(cb, vdata[i], 0);
XPRMcb_sendreal(cb, wdata[i], 0);
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0);
}
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0);
return 0;
}
else

Fair Isaac Corporation Confidential and Proprietary Information 114

C interface

{
fprintf(stderr,"Label `%s' not found.\n",label);
return 1;
}
}

The model file burglar13.mos receives through its run-time parameters the callback functions thatare to be used for data input/output in the initializations sections. The definition of themathematical model is the same as in the previous model version and left out in the listing below.
model Burglar13
uses "mmxprs"

parameters
DATAFILE = '' ! Location of input data
SOLFILE = '' ! Location for solution data output
WTMAX = 102 ! Maximum weight allowed
end-parameters

declarations
ITEMS: set of string ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
soltake: array(ITEMS) of real ! Solution values
end-declarations

initializations from DATAFILE
[VALUE,WEIGHT] as "DATA"
end-initializations

...

initializations to SOLFILE
soltake as "SOL"
end-initializations

end-model

13.4.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and aMosel model. One way of passing the value of a scalar to a model is to define it as a model parameterand pass the new value as an execution parameter of the model (as shown in Section 13.2).Alternatively, we might read or write scalar values in initializations blocks similarly to what wehave seen in the previous section for arrays.
Consider the following C program: there are three scalars, wmax, numitem, and objval. The value ofthe first should be read in by the Mosel model and the last two receive solution values from theoptimization run in the model.

#include <stdio.h>
#include "xprm_mc.h"

int wmax=100;
int numitem;
double objval;

int main()
{
XPRMmodel mod;
int result;
char wmax_name[40]; /⁎ File name of input data 'wmax' ⁎/
char num_name[40]; /⁎ File name of output data 'num' ⁎/
char sol_name[40]; /⁎ File name of solution value ⁎/
char params[160]; /⁎ Parameter string for model execution ⁎/

Fair Isaac Corporation Confidential and Proprietary Information 115

C interface

if(XPRMinit()) return 1; /⁎ Initialize Mosel ⁎/

/⁎ Prepare file names for 'initializations' using the 'raw' driver ⁎/
sprintf(wmax_name, "mem:%p/%d", &wmax, (int)sizeof(wmax));
sprintf(num_name, "mem:%p/%d", &numitem, (int)sizeof(numitem));
sprintf(solution_name, "mem:%p/%d", &objval, (int)sizeof(objval));

/⁎ Pass file names as execution param.s ⁎/
sprintf(params, "WMAX='%s',NUM='%s',SOLVAL='%s'", wmax_name, num_name,

sol_name);

if(XPRMexecmod(NULL, "burglar12.mos", params, &result, &mod))
return 2; /⁎ Execute a model file ⁎/

if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)
return 3; /⁎ Test whether a solution is found ⁎/

/⁎ Display solution values obtained from the model ⁎/
printf("Objective value: %g\n", objval);
printf("Total number of items: %d\n", numitem);

XPRMresetmod(mod);

return 0;
}

The Mosel model takes as execution parameters the filenames (location in memory) of the threescalars. The value WTMAX is initialized from the data in the application and the two other locations arewritten to in the initializations to block at the end of the model.
model Burglar12
uses "mmxprs"

parameters
NUM = '' ! Location for no. of items output
SOLVAL = '' ! Location for objective value output
WMAX = '' ! Maximum weight allowed
end-parameters

declarations
WTMAX: integer ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
soltake: array(ITEMS) of real ! Solution values
end-declarations

VALUE :: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[15,100,90,60,40,15,10,1]

WEIGHT:: (["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"])[2,20,20,30,40,30,60,10]

initializations from 'raw:'
WTMAX as WMAX
end-initializations

declarations
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

Fair Isaac Corporation Confidential and Proprietary Information 116

C interface

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:")
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

! Output solution to calling application
initializations to 'raw:'
evaluation of getobjval as SOLVAL
evaluation of round(sum(i in ITEMS) getsol(take(i))) as NUM
end-initializations

end-model

13.5 Redirecting the Mosel output

When integrating a Mosel model into an application it may be desirable to be able to redirect any outputproduced by the model to the application. This can be done by the means of a callback function. Thisfunction takes a predefined signature as shown in the following C program. If it is called from outsideof the execution of any Mosel model, its parameter model will be NULL. In our example the callbackfunction prefixes the printout of every line of Mosel output with Mosel:.
#include <stdio.h>
#include "xprm_mc.h"

/⁎⁎⁎⁎ Callback function to handle output ⁎⁎⁎⁎/
long XPRM_RTC cbmsg(XPRMmodel model, void ⁎info, char ⁎buf, unsigned long size)
{
printf("Mosel: %.⁎s", (int)size, buf);
return 0;
}

int main()
{
int result;
char outfile_name[40]; /⁎ File name of output stream ⁎/

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

/⁎ Prepare file name for output stream ⁎/
/⁎ using 'cb' driver ⁎/

sprintf(outfile_name, "cb:%p", cbmsg);

/⁎ Set default output stream to callback ⁎/
XPRMsetdefstream(NULL, XPRM_F_WRITE, outfile_name);

/⁎ Execute = compile/load/run a model ⁎/
if(XPRMexecmod(NULL, "burglar2.mos", NULL, &result, NULL))
return 2;

return 0;
}

The same procedure that has been presented here for redirecting the Mosel output can also be appliedto redirect any error messages produced by Mosel—the only required modification consists in replacingthe constant XPRM_F_WRITE by XPRM_F_ERROR in the argument of function XPRMsetdefstream.

Fair Isaac Corporation Confidential and Proprietary Information 117

C interface

13.6 Problem solving in C with Xpress Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written in C forthe Xpress Optimizer, it may be necessary to pass from a problem formulation with Mosel to solvingthe problem in C by direct calls to the Optimizer. The following example shows how this may be donefor the Burglar problem. We use a slightly modified version of the original Mosel model:
model Burglar4
uses "mmxprs"

declarations
WTMAX=102 ! Maximum weight allowed
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

initializations from 'burglar.dat'
VALUE WEIGHT
end-initializations

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

setparam("XPRS_LOADNAMES", true) ! Enable loading of object names
loadprob(MaxVal) ! Load problem into the optimizer

end-model

The procedure maximize to solve the problem has been replaced by loadprob. This procedure loadsthe problem into the optimizer without solving it. We also enable the loading of names from Mosel intothe optimizer so that we may obtain an easily readable output.
The following C program ugxprs1.c reads in the Mosel model and solves the problem by direct callsto Xpress Optimizer. To be able to address the problem loaded into the optimizer, we need to retrievethe optimizer problem pointer from Mosel. Since this information is a parameter (XPRS_PROBLEM) thatis provided by module mmxprs, we first need to obtain the reference of this library (by using function
XPRMfinddso).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()
{
XPRMmodel mod;
XPRMdsolib dso;
XPRMalltypes rvalue;
XPRSprob prob;
int result, ncol, len, i;
double ⁎sol, val;
char ⁎names, ⁎onecol;

Fair Isaac Corporation Confidential and Proprietary Information 118

C interface

if(XPRMinit()) /⁎ Initialize Mosel ⁎/
return 1;

if((mod=XPRMloadmod("burglar4.bim", NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

if(XPRMrunmod(mod, &result, NULL)) /⁎ Run the model (no optimization) ⁎/
return 3;

/⁎ Retrieve the pointer to the problem loaded in the Optimizer ⁎/
if((dso=XPRMfinddso("mmxprs"))==NULL)
return 4;
if(XPRMgetdsoparam(mod, dso, "xprs_problem", &result, &rvalue))
return 5;
prob=(XPRSprob)strtoul(rvalue.ref,NULL,0);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /⁎ Set sense to maximization ⁎/
if(XPRSmipoptimize(prob, "")) /⁎ Solve the problem ⁎/
return 6;

if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result))
return 7;

/⁎ Test whether a solution is found ⁎/
if((result==XPRS_MIP_SOLUTION) || (result==XPRS_MIP_OPTIMAL))
{
if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))
return 8;
printf("Objective value: %g\n", val); /⁎ Print the objective function value ⁎/

if(XPRSgetintattrib(prob, XPRS_ORIGINALCOLS, &ncol))
return 9;
if((sol = (double ⁎)malloc(ncol ⁎ sizeof(double)))==NULL)
return 10;
if(XPRSgetmipsol(prob, sol, NULL))
return 11; /⁎ Get the primal solution values ⁎/
if(XPRSgetnamelist(prob, 2, NULL, 0, &len, 0, ncol-1))
return 11; /⁎ Get the name array length ⁎/
if((names = (char ⁎)malloc(len⁎sizeof(char)))==NULL)
return 12;
if(XPRSgetnamelist(prob, 2, names, len, NULL, 0, ncol-1))
return 13; /⁎ Get the variable names ⁎/
onecol = names;
for(i=0; i<ncol; i++) { /⁎ Print out the solution ⁎/
printf("%s: %g\n", onecol, sol[i]);
onecol = onecol+strlen(onecol)+1;

}
free(names);
free(sol);
}
return 0;
}

Since the Mosel language provides ample programming facilities, in most applications there will be noneed to switch from the Mosel language to problem solving in C. If nevertheless this type ofimplementation is chosen, it should be noted that it is not possible to get back to Mosel, once theXpress Optimizer has been called directly from C: the solution information and any possible changesmade to the problem directly in the optimizer are not communicated to Mosel.

Fair Isaac Corporation Confidential and Proprietary Information 119

CHAPTER 14

Other programming language interfaces

In this chapter we show how the examples from Chapter 13 may be written with other programminglanguages, namely Java, .NET and VBA.

14.1 Java

To use the Mosel Java classes the line import com.dashoptimization.⁎;must be added at thebeginning of the program.
14.1.1 Compiling and executing a model in Java

With Java Mosel is initialized by creating a new instance of class XPRM. To execute a Mosel model inJava we call the three Mosel functions performing the standard compile/load/run sequence as shownin the following example (file ugcomp.java).
import com.dashoptimization.⁎;

public class ugcomp
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling `burglar2'");
mosel.compile("burglar2.mos");

System.out.println("Loading `burglar2'");
mod = mosel.loadModel("burglar2.bim");

System.out.println("Executing `burglar2'");
mod.run();

System.out.println("`burglar2' returned: " + mod.getResult());
}
}

14.1.2 Termination

If the model execution is embedded in a larger appplication it may be useful to reset the model after itsexecution to free some resources allocated to it:
mod.reset(); // Reset the model

Fair Isaac Corporation Confidential and Proprietary Information 120

Other programming language interfaces

This will release all intermediate objects created during the execution without deleting the model itself.
It is also possible to explicitly remove the temporary directory/files created by the execution of Mosel:

mosel.removeTmpDir(); // Delete temporary files

Unloading models or Mosel from memory is ensured through standard finalization + garbage collectionfunctionalities of Java. The finalizers are public and may be called from the user’s Java program.Finalization of Mosel only takes effect once all loaded models have been finalized. Finalizing Moselalso removes the temporary directory/files created by the execution of Mosel.
mod.finalize(); // Finalize a model
mod = null;
mosel.finalize(); // Finalize Mosel
mosel = null;

14.1.3 Parameters

When executing a Mosel model in Java, it is possible to pass new values for its parameters into themodel. If, for instance, we want to run model ‘Prime’ from Section 8.3 to obtain all prime numbers up to500 (instead of the default value 100 set for the parameter LIMIT in the model), we may write thefollowing program:
import com.dashoptimization.⁎;

public class ugparam
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
int LIM=500;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling `prime'");
mosel.compile("prime.mos");

System.out.println("Loading `prime'");
mod = mosel.loadModel("prime.bim");

System.out.println("Executing `prime'");
mod.execParams = "LIMIT=" + LIM;
mod.run();

System.out.println("`prime' returned: " + mod.getResult());
}
}

Using the Mosel Java interface, it is not only possible to compile and run models, but also to accessinformation on the different modeling objects as is shown in the following sections.
14.1.4 Accessing sets

A complete version of a program (file ugparam.java) for running the model ‘Prime’ may look asfollows (we work with a model prime2 that corresponds to the one printed in Section 8.3 but with alloutput printing removed because we are doing this in Java, and all entities accessed from Java areexplicitly declared as public):
import com.dashoptimization.⁎;

public class ugparam

Fair Isaac Corporation Confidential and Proprietary Information 121

Other programming language interfaces

{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMSet set;
int LIM=500, first, last;

mosel = new XPRM(); // Initialize Mosel

System.out.println("Compiling `prime2'");
mosel.compile("prime2.mos");

System.out.println("Loading `prime2'");
mod = mosel.loadModel("prime2.bim");

System.out.println("Executing `prime2'");
mod.execParams = "LIMIT=" + LIM;
mod.run();

System.out.println("`prime2' returned: " + mod.getResult());

set=(XPRMSet)mod.findIdentifier("SPrime"); // Get the object 'SPrime'
// it must be a set

if(!set.isEmpty())
{
first = set.getFirstIndex(); // Get the number of the first index
last = set.getLastIndex(); // Get the number of the last index
System.out.println("Prime numbers from 2 to " + LIM);
for(int i=first;i<=last;i++) // Print all set elements
System.out.print(" " + set.getAsInteger(i) + ",");
System.out.println();
}
}
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and500), we retrieve the Mosel object of this name using method findIdentifier. If this set is notempty, then we enumerate the elements of the set (using methods getFirstIndex and
getLastIndex to obtain the index range).

14.1.5 Retrieving solution values

The following program ugsol.java executes the model ‘Burglar3’ (the same as model ‘Burglar2’ fromChapter 2 but with all output printing removed and all model entities declared as public) and printsout its solution.
import com.dashoptimization.⁎;

public class ugsol
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr, darr;
XPRMMPVar x;
XPRMSet set;
int[] indices;
double val;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar3.mos"); // Compile, load & run the model
mod = mosel.loadModel("burglar3.bim");
mod.run();

Fair Isaac Corporation Confidential and Proprietary Information 122

Other programming language interfaces

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

System.out.println("Objective value: " + mod.getObjectiveValue());
// Print the objective function value

varr=(XPRMArray)mod.findIdentifier("take"); // Get model object 'take',
// it must be an array

darr=(XPRMArray)mod.findIdentifier("VALUE"); // Get model object 'VALUE',
// it must be an array

set=(XPRMSet)mod.findIdentifier("ITEMS"); // Get model object 'ITEMS',
// it must be a set

indices = varr.getFirstIndex(); // Get the first entry of array varr
// (we know that the array is dense)

do
{
x = varr.get(indices).asMPVar(); // Get a variable from varr
val = darr.getAsReal(indices); // Get the corresponding value
System.out.println("take(" + set.get(indices[0]) + "): " +

x.getSolution() + "\t (item value: " + val + ")");
// Print the solution value

} while(varr.nextIndex(indices)); // Get the next index

mod.reset(); // Reset the model
}
}

The array of variables varr is enumerated using the array functions getFirstIndex and
nextIndex. These methods may be applied to arrays of any type and dimension. With these functionswe run systematically through all possible combinations of index tuples, hence the hint at dense arraysin the example. In the case of sparse arrays it is preferrable to use different enumeration functions thatonly enumerate those entries that are defined (see next section).

14.1.6 Sparse arrays

We now again work with the problem ‘Transport’ that has been introduced in Chapter 3. The objectiveof this problem is to calculate the flows flowpr from a set of plants to a set of sales regions that satisfyall demand and supply constraints and minimize the total cost. Not all plants may deliver goods to allregions. The flow variables flowpr are therefore defined as a sparse array. The following example
ugarray.java prints out all existing entries of the array of variables.

import com.dashoptimization.⁎;

public class ugarray
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr;
XPRMSet[] sets;
int[] indices;
int dim;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("transport.mos"); // Compile, load & run the model
mod = mosel.loadModel("transport.bim");
mod.run();

varr=(XPRMArray)mod.findIdentifier("flow"); // Get model object 'flow'
// it must be an array

dim = varr.getDimension(); // Get the number of dimensions
// of the array

Fair Isaac Corporation Confidential and Proprietary Information 123

Other programming language interfaces

sets = varr.getIndexSets(); // Get the indexing sets

indices = varr.getFirstTEIndex(); // Get the first true entry index
do
{
System.out.print("flow(");
for(int i=0;i<dim-1;i++)
System.out.print(sets[i].get(indices[i]) + ",");
System.out.print(sets[dim-1].get(indices[dim-1]) + "), ");
} while(varr.nextTEIndex(indices)); // Get next true entry index tuple
System.out.println();

mod.reset(); // Reset the model
}
}

In this example, we first get the number of indices (dimensions) of the array of variables varr (usingmethod getDimension). We use this information to enumerate the entries of every index tuple forgenerating a nicely formatted output. The array sets holds all the index sets of varr and the array
indices corresponds to a single index tuple.
The enumeration starts with the first defined index tuple, obtained with method getFirstTEIndex,and continues with a series of calls to nextTEIndex until all defined entries have been enumerated.

14.1.7 Exchanging data between an application and a model

In the previous examples we have seen how to retrieve information about the model objects from aMosel model after its execution. In all cases the input data is defined in the model itself or read in froman external (text) file. However, when embedding a model into an application frequently the input datafor the model will be stored (or generated by) the application itself. In such a case the user will certainlywish a more immediate means of communication to the model than having to write the input data to anexternal text file or database. In the following two subsections we therefore show how to pass data inmemory from an application to a Mosel model, and with the same mechanism (namely, using the jrawI/O driver) from the model back to the calling application.
14.1.7.1 Dense arrays

As a first example we shall look at the case of dense arrays holding the input and solution data. In theunderlying Mosel model this corresponds to arrays indexed by range sets that are known in the modelbefore the data are read in. In this example, we shall work with a version of the ‘Burglar model based onthe very first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8.
The following Java program ugiodense.java compiles, loads, and runs a Mosel model and thenprints out the solution values. The input data (arrays vdata and wdata) and the array solution thatis to receive the solution values are passed on to the model through model parameters.Communication of the data between the application and the Mosel model is achieved through the jrawI/O driver. File names for this driver have the form
jrawoption[,...],filename, where filename is an object reference. Since we are working withdense, one-dimensional arrays we use the option noindex, indicating that only the data and not theindex tuples are to be exchanged.

import com.dashoptimization.⁎;

public class ugiodense
{ // Input data
static final double[] vdata={15,100,90,60,40,15,10, 1}; // VALUE
static final double[] wdata={ 2, 20,20,30,40,30,60,10}; // WEIGHT

// Array to receive solution values

Fair Isaac Corporation Confidential and Proprietary Information 124

Other programming language interfaces

static double[] solution = new double[8];

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar8.mos"); // Compile & load the model
mod = mosel.loadModel("burglar8.bim");

// Associate the Java objects with names in Mosel
mosel.bind("vdat", vdata);
mosel.bind("wdat", wdata);
mosel.bind("sol", solution);

// File names are passed through execution parameters
mod.execParams =
"VDATA='noindex,vdat',WDATA='noindex,wdat',SOL='noindex,sol'";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + mod.getObjectiveValue());
for(int i=0;i<8;i++)
System.out.println(" take(" + (i+1) + "): " + solution[i]);

mod.reset(); // Reset the model
}
}

The model file burglar8.mos is the same as model burglar6.mos from Section 13.4.1 with the onlydifference that the name of the I/O driver in the initializations blocks now is jraw instead of
raw, such as:

initializations from 'jraw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

14.1.7.2 Sparse arrays

Let us now study the probably more frequent case of data stored in sparse format. In the Mosel model(burglar9.mos) we use a set of strings instead of a simple range set to index the various arrays andin the Java program (ugiosparse.java) we need to define slightly more complicated structures tohold the indices and the data entries. To save us writing out the indices twice, we have grouped the twoinput data arrays into a single class. When passing the data arrays to the Mosel model we now do notuse any option, meaning that data is transferred in sparse format. Instead, we now need to indicatewhich fields of the Java objects are to be selected (in brackets after the object reference).
import com.dashoptimization.⁎;

public class ugiosparse
{

// Class to store initial values for array 'data'
public static class MyData
{
public String ind; // index name
public double val,wght; // value and weight data entries
MyData(String i, double v, double w)
{ ind=i; val=v; wght=w; }
}

Fair Isaac Corporation Confidential and Proprietary Information 125

Other programming language interfaces

// Class to receive solution values
public static class MySol
{
public String ind; // index name
public double val; // solution value
}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyData data[]={new MyData("camera",15,2), new MyData("necklace",100,20),

new MyData("vase",90,20), new MyData("picture",60,30),
new MyData("tv",40,40), new MyData("video",15,30),

new MyData("chest",10,60), new MyData("brick",1,10)};
MySol[] solution=new MySol[8];

for(int i=0;i<8;i++) solution[i] = new MySol();

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar9.mos"); // Compile & load the model
mod = mosel.loadModel("burglar9.bim");

// Associate the Java objects with names in Mosel
mosel.bind("dt", data);
mosel.bind("sol", solution);

// File names are passed through execution parameters
mod.execParams = "DATA='dt(ind,val,wght)',SOL='sol(ind,val)'";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + mod.getObjectiveValue());
for(int i=0;i<8;i++)
System.out.println(" take(" + solution[i].ind + "): " + solution[i].val);

mod.reset(); // Reset the model
}
}

The model burglar9.mos run by this program is the same as the model burglar7.mos displayed inSection 13.4.2, but using the I/O driver jraw instead of raw.
14.1.7.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sectionshave in commun that all data structures in the application, and in particular the structures to receiveoutput data, are of fixed size. We therefore now introduce an alternative communication mechanismworking with streams, that enables dynamic sizing of data structures on the application level, a featurethat is particularly useful for solution output where effective data sizes are not known a priori. Thiscommunication mechanism employs the I/O driver java (see also Section 14.1.8). The main part of ourJava program (file ugiocb.java) now looks as follows.
public static modelInit cbinit=new modelInit();

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;

mosel = new XPRM(); // Initialize Mosel

Fair Isaac Corporation Confidential and Proprietary Information 126

Other programming language interfaces

mosel.compile("burglar13.mos"); // Compile & load the model
mod = mosel.loadModel("burglar13.bim");

// File names are passed through execution parameters
mod.execParams = "DATAFILE='java:ugiocb.cbinit'," +

"SOLFILE='java:ugiocb.cbinit'";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + mod.getObjectiveValue());
for(int i=0;i<solsize;i++)
System.out.println(" take(" + solution[i].ind + "): " + solution[i].val);

mod.reset(); // Reset the model
}

The information passed to the model in the runtime parameters now is an instance of a class thatimplements interfaces for initialization from and to streams as shown below. The functionality for
dynamic output retrieval employs the Mosel library functions that we have already seen in Sections14.1.4 and 14.1.5 for accessing models after their termination. The dynamic data input to a Mosel modeluses a new set of dedicated functions that are explained with some more detail after the programextract.

static final double[] vdata={15,100,90,60,40,15,10, 1}; // VALUE
static final double[] wdata={ 2, 20,20,30,40,30,60,10}; // WEIGHT
static final String[] ind={"camera", "necklace", "vase", "picture",

"tv", "video", "chest", "brick"}; // Index names
static final int datasize=8;

public static class MySol {
public String ind; // index name
public double val; // solution value
}
static MySol[] solution;
static int solsize;

public static class modelInit implements XPRMInitializationFrom, XPRMInitializationTo
{
public boolean initializeTo(String label, XPRMValue value)
{
XPRMArray solarr;
XPRMSet[] sets;
int[] indices;
int ct;

if(label.equals("SOL"))
{
solarr=(XPRMArray)value;
solsize=solarr.getSize();
solution = new MySol[solsize];
for(int i=0;i<solsize;i++) solution[i] = new MySol();

sets = solarr.getIndexSets(); // Get the indexing sets
ct=0;
indices = solarr.getFirstTEIndex(); // Get the first entry of the array
do
{
solution[ct].ind=sets[0].getAsString(indices[0]);
solution[ct].val=solarr.getAsReal(indices);
ct++;
} while(solarr.nextTEIndex(indices)); // Get the next index
}

Fair Isaac Corporation Confidential and Proprietary Information 127

Other programming language interfaces

else System.out.println("Unknown output data item: " + label + "=" + value);
return true;
}

public boolean initializeFrom(XPRMInitializeContext ictx, String label, XPRMTyped type)
{
try
{
if(label.equals("DATA"))
{
ictx.sendControl(ictx.CONTROL_OPENLST);
for(int i=0;i<datasize;i++)
{
ictx.sendControl(ictx.CONTROL_OPENNDX);
ictx.send(ind[i]);
ictx.sendControl(ictx.CONTROL_CLOSENDX);
ictx.sendControl(ictx.CONTROL_OPENLST);
ictx.send(vdata[i]);
ictx.send(wdata[i]);
ictx.sendControl(ictx.CONTROL_CLOSELST);
}
ictx.sendControl(ictx.CONTROL_CLOSELST);
return true;

}
else
{
System.err.println("Label `"+label+"' not found.");
return false;

}
}
catch(java.io.IOException e)
{
System.err.println("`"+label+"' could not be initialized - "+e);
return false;
}
}
}

The format used to represent data for dynamic data input is the same as the default text format used by
initializations blocks. For example, the array definition

mydata: [("ind1" 3) [5 1.2] ("ind2" 7) [4 6.5]]

is represented by the following sequence of function calls:
ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.sendControl(ictx.CONTROL_OPENNDX); ! (
ictx.send("ind1"); ! "ind1"
ictx.send(3); ! 3
ictx.sendControl(ictx.CONTROL_CLOSENDX); !)
ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.send(5); ! 5
ictx.send(1.2); ! 1.2
ictx.sendControl(ictx.CONTROL_CLOSELST); !]
ictx.sendControl(ictx.CONTROL_OPENNDX); ! (
ictx.send("ind2"); ! "ind2"
ictx.send(7); ! 7
ictx.sendControl(ictx.CONTROL_CLOSENDX); !)
ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.send(4); ! 4
ictx.send(6.5); ! 6.5
ictx.sendControl(ictx.CONTROL_CLOSELST); !]
ictx.sendControl(ictx.CONTROL_CLOSELST); !]

The send and sendControlmethods may take an additional last argument indicating whether data isto be processed immediately or only once the queue of tokens is full (default).

Fair Isaac Corporation Confidential and Proprietary Information 128

Other programming language interfaces

With Java, we use exactly the same model file burglar13.mos as with C (see Section 13.4.3 for thelisting).
14.1.7.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and aMosel model. One way of passing the value of a scalar to a model is to define it as a model parameterand pass the new value as an execution parameter to the model (as shown in Section 14.1.3).Alternatively, we might read or write scalar values in initializations blocks similarly to what wehave seen in the previous section for arrays.
Consider the following Java program: we wish to exchange the values of the three scalars, wmax,
numitem, and objval with the Mosel model run by this program. The value of the first scalar shouldbe read in by the Mosel model and the last two receive solution values from the optimization run in themodel. Since it is not possible to address scalars directly from the model we have collected them into aclass MyData the fields of which are then specified in the execution parameters as the locations of thedata.

import com.dashoptimization.⁎;

public class ugioscalar
{
public static class MyData // Scalars for data in/output
{
public int wmax;
public int numitem;
public double objval;
}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyData data=new MyData();

data.wmax=100;

mosel = new XPRM(); // Initialize Mosel

mosel.compile("burglar11.mos"); // Compile & load the model
mod = mosel.loadModel("burglar11.bim");

// Associate the Java object with a name in Mosel
mosel.bind("data", data);

// File names are passed through execution parameters
mod.execParams =
"WMAX='data(wmax)',NUM='data(numitem)',SOLVAL='data(objval)'";

mod.run(); // Run the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

// Display solution values obtained from the model
System.out.println("Objective value: " + data.objval);
System.out.println("Total number of items: " + data.numitem);

mod.reset(); // Reset the model
}
}

The Mosel model burglar11.mos run by this program is the same as the model burglar12.mosdisplayed in Section 13.4.4, but using the I/O driver jraw instead of raw. This model takes as execution

Fair Isaac Corporation Confidential and Proprietary Information 129

Other programming language interfaces

parameters the filenames (location in memory) of the three scalars. The integer WTMAX is initializedfrom the value in the Java application and the two other locations are written to in the
initializations to block at the end of the model.

14.1.8 Redirecting the Mosel output

When executing a Mosel model from a Java application it may be desirable to be able to process theoutput produced by Mosel directly in the application. The following Java program ugcb.java shows acallback-style functionality that redirects the Mosel standard output to an OutputStream object whichis used to prefix every line of Mosel output with the string Mosel: before printing it.
To redirect Mosel streams to a Java object (Java streams or ByteBuffer) we need to use the javaI/O driver. The same mechanism that is used here for redirecting the output stream of Mosel (indicatedby XPRM.F_OUTPUT, with the additional option XPRM.F_LINBUF to enable line buffering) can equallybe used to redirect, for instance, the error stream (denoted by the constant XPRM.F_ERROR).

import java.io.⁎;
import com.dashoptimization.⁎;

public class ugcb
{

// OutputStream class to handle default output
public static class MyOut extends OutputStream
{
public void flush()
{ System.out.flush(); }
public void write(byte[] b)
{
System.out.print("Mosel: ");
System.out.write(b,0,b.length);
}
// These methods are not used by Mosel:
public void write(byte[] b,int off,int len) {}
public void write(int b) {}
public void close() {}
}

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
MyOut cbmsg = new MyOut(); // Define output stream as "MyOut"

mosel = new XPRM(); // Initialize Mosel

mosel.bind("mycb", cbmsg); // Associate Java object with a name in Mosel
// Set default output stream to cbmsg

mosel.setDefaultStream(XPRM.F_OUTPUT|XPRM.F_LINBUF, "java:mycb");

mosel.compile("burglar2.mos"); // Compile, load & run the model
mod = mosel.loadModel("burglar2.bim");
mod.run();
}
}

14.2 .NET

Example code in this guide will be in C#, however one can access the Mosel .NET interface via otherlanguages that target the .NET Framework, such as VB.NET.
To use the Mosel .NET classes the line using Mosel;must be added at the beginning of theprogram, and your project should have a dependency on the Xpress file xprmdn.dll.

Fair Isaac Corporation Confidential and Proprietary Information 130

Other programming language interfaces

14.2.1 Compiling and executing a model in C#

With C# Mosel is initialized by obtaining a new instance of class XPRM via the static method
XPRM.Init(). To execute a Mosel model in C# we call the three Mosel functions performing thestandard compile/load/run sequence as shown in the following example (file ugcomptmp.cs).

using System;
using System.IO;
using Mosel;

namespace ugcomptmp.cs {

public class ugcomptmp {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile the Mosel model, save the BIM file in Mosel's temp. dir.
mosel.Compile("", "burglar2.mos", "tmp:burglar2.bim");

// Load the BIM file
XPRMModel model = mosel.LoadModel("tmp:burglar2.bim");

// Run the model
model.Run();

}
}

}

14.2.2 Termination

If the model execution is embedded in a larger appplication it may be useful to reset the model after itsexecution to free some resources allocated to it:
mod.Reset(); // Reset the model

This will release all intermediate objects created during the execution without deleting the model itself.
It is also possible to explicitly remove the temporary directory/files created by the execution of Mosel:

mosel.RemoveTmpDir(); // Delete temporary files

Unloading models or Mosel from memory is ensured through standard disposal, finalization + garbagecollection functionalities of the .NET runtime. The disposal methods are public and may be called fromthe user’s C# program. Finalization of Mosel only takes effect once all loaded models have beenfinalized or disposed. Finalizing or diposing Mosel also removes the temporary directory/files createdby the execution of Mosel.
mod.Dispose(); // Dispose a model
mod = null;
mosel.Dispose(); // Dispose Mosel
mosel = null;

14.2.3 Parameters

When executing a Mosel model in C#, it is possible to pass new values for its parameters into the

Fair Isaac Corporation Confidential and Proprietary Information 131

Other programming language interfaces

model. If, for instance, we want to run model ‘Prime’ from Section 8.3 to obtain all prime numbers up to500 (instead of the default value 100 set for the parameter LIMIT in the model), we may write thefollowing program:
using System;
using System.IO;
using Mosel;

namespace ugparam.cs {

public class ugparam {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

XPRMSet set;
int LIM=500, first, last;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad("prime.mos");

// Run the model
model.ExecParams = "LIMIT=" + LIM;
model.Run();
Console.WriteLine("`prime' returned: " + model.Result);

}
}

}

Using the Mosel .NET interface, it is not only possible to compile and run models, but also to accessinformation on the different modeling objects as is shown in the following sections.
14.2.4 Accessing sets

A complete version of a program (file ugparam.cs) for running the model ‘Prime’ may look as follows(we work with a model prime2 that corresponds to the one printed in Section 8.3 but with all outputprinting removed because we are doing this in C#, and all entities accessed from C# are declared as
public):

using System;
using System.IO;
using Mosel;

namespace ugparam.cs {

public class ugparam {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

XPRMSet set;
int LIM=500, first, last;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad("prime.mos");

Fair Isaac Corporation Confidential and Proprietary Information 132

Other programming language interfaces

// Run the model
model.ExecParams = "LIMIT=" + LIM;
model.Run();
Console.WriteLine("`prime' returned: " + model.Result);

// Get model object 'SPrime', it must be a set
set=(XPRMSet)model.FindIdentifier("SPrime");

// Enumerate the set elements
if (!set.IsEmpty)
{
first = set.FirstIndex; // Get the number of the first index
last = set.LastIndex; // Get the number of the last index
Console.WriteLine("Prime numbers from 2 to " + LIM);
for (int i=first;i<=last;i++) // Print all set elements
Console.Write(" {0},", set.GetAsInteger(i));

Console.WriteLine();
}

}
}

}

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and500), we retrieve the Mosel object of this name using method FindIdentifier. If this set is notempty, then we enumerate the elements of the set (using properties FirstIndex and LastIndex toobtain the index range).
14.2.5 Retrieving solution values

The following program ugsol.cs executes the model ‘Burglar3’ (the same as model ‘Burglar2’ fromChapter 2 but with all output printing removed and all model entities declared as public) and printsout its solution.
using System;
using System.IO;
using Mosel;

namespace ugsol.cs {

public class ugsol {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static int Main(string[] args) {

XPRMArray varr, darr;
XPRMSet set;
XPRMMPVar x;
double val;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad("burglar3.mos");

// Run the model
model.Run();

if(model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

Console.WriteLine("Objective value: " + model.ObjectiveValue);
// Print the objective function value

Fair Isaac Corporation Confidential and Proprietary Information 133

Other programming language interfaces

// Get model object 'take', it must be an array
varr=(XPRMArray)model.FindIdentifier("take");
// Get model object 'VALUE', it must be an array
darr=(XPRMArray)model.FindIdentifier("VALUE");
// Get model object 'ITEMS', it must be a set
set=(XPRMSet)model.FindIdentifier("ITEMS");

// Enumerate all entries of 'varr' (dense array)
foreach(int[] indices in varr.Indices)
{
x = varr.Get(indices).AsMPVar(); // Get a variable from varr
val = darr.GetAsReal(indices); // Get the corresponding value

// Console.WriteLine("take(" + set.GetAsString(indices[0]) + "): " +
Console.WriteLine("take" + varr.IndexToString(indices) + ": " +

x.Solution + "\t (item value: " + val + ")");
}

model.Reset(); // Reset the model
return 0;

}
}

}

The array of variables varr is enumerated using via the array Indices property. This may be appliedto arrays of any type and dimension. With these functions we run systematically through all possiblecombinations of index tuples, hence the hint at dense arrays in the example. In the case of sparsearrays it is preferrable to use a different enumeration property that only enumerate those entries thatare defined (see next section).
14.2.6 Sparse arrays

We now again work with the problem ‘Transport’ that has been introduced in Chapter 3. The objectiveof this problem is to calculate the flows flowpr from a set of plants to a set of sales regions that satisfyall demand and supply constraints and minimize the total cost. Not all plants may deliver goods to allregions. The flow variables flowpr are therefore defined as a sparse array. The following example
ugarray.cs prints out all existing entries of the array of variables.

using System;
using System.IO;
using Mosel;

namespace ugarray.cs {

public class ugarray {
/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

XPRMArray varr;
XPRMSet[] sets;
XPRMValue[] vindex;
int dim;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad("transport.mos");

// Run the model
model.Run();

// Get model object 'flow', it must be an array

Fair Isaac Corporation Confidential and Proprietary Information 134

Other programming language interfaces

varr=(XPRMArray)model.FindIdentifier("flow");
dim = varr.Dim; // Get the number of dimensions of the array
sets = varr.IndexSets; // Get the indexing sets

// Enumerate over the true entries
foreach(int[] indices in varr.TEIndices)
{
// Get the values for this index
vindex = varr.DereferenceIndex(indices);
Console.Write("flow(");
for(int i=0;i<dim-1;i++)
Console.Write(vindex[i] + ",");

Console.Write(vindex[dim-1] + "), ");

// Alternative printing method:
// Console.Write("flow" + varr.IndexToString(indices) + ", ");

}
Console.WriteLine();

model.Reset(); // Reset the model
}

}
}

In this example, we first get the number of indices (dimensions) of the array of variables varr (usingproperty Dim). We use this information to enumerate the entries of every index tuple for generating anicely formatted output. The array sets holds all the index sets of varr and the array indicescorresponds to a single index tuple.
The enumeration runs over all the defined index tuples, obtained with property TEIndices.

14.2.7 Exchanging data between an application and a model

In the previous examples we have seen how to retrieve information about the model objects from aMosel model after its execution. In all cases the input data is defined in the model itself or read in froman external (text) file. However, when embedding a model into an application frequently the input datafor the model will be stored (or generated by) the application itself. In such a case the user will certainlywish a more immediate means of communication to the model than having to write the input data to anexternal text file or database. In the following two subsections we therefore show how to pass data inmemory from an application to a Mosel model, and with the same mechanism (namely, using the
dotnetraw I/O driver) from the model back to the calling application.
14.2.7.1 Dense arrays

As a first example we shall look at the case of dense arrays holding the input and solution data. In theunderlying Mosel model this corresponds to arrays indexed by range sets that are known in the modelbefore the data are read in. In this example, we shall work with a version of the Burglar model based onthe very first version we have seen in Section 2.1 where all arrays are indexed by the range set ITEMS =
1..8.
The following C# program ugiodense.cs compiles, loads, and runs a Mosel model and then printsout the solution values. The input data (arrays vdata and wdata) and the array solution that is toreceive the solution values are passed on to the model through model parameters. Communication ofthe data between the application and the Mosel model is achieved through the dotnetraw I/O driver.File names for this driver have the form
dotnetrawoption[,...],filename, where filename is an object reference. Since we areworking with dense, one-dimensional arrays we use the option noindex, indicating that only the dataand not the index tuples are to be exchanged.

using System;

Fair Isaac Corporation Confidential and Proprietary Information 135

Other programming language interfaces

using System.IO;
using Mosel;

namespace ugiodense.cs {

public class ugiodense {

/// <summary>
/// Arrays containing initialization data for the model
/// </summary>
static double[] vdata = new double[] {15,100,90,60,40,15,10, 1}; // VALUE
static double[] wdata = new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar8d.mos");

// Associate the .NET objects with names in Mosel
model.Bind("vdat", vdata);
model.Bind("wdat", wdata);

// Create a new array for solution data and bind that to the name 'SOL'
double[] solution = new double[8];
mosel.Bind("sol", solution);

// Pass data location as a parameter to the model
model.ExecParams = "VDATA='noindex,vdat',WDATA='noindex,wdat',SOL='noindex,sol'";

// Run the model
model.Run();

// Print the solution
Console.WriteLine("Objective value: {0}", model.ObjectiveValue);
for (int i=0;i<8;i++)
Console.Write(" take({0}): {1}", (i+1), solution[i]);

Console.WriteLine();
}

}

}

The model file burglar8d.mos is the same as model burglar6.mos from Section 13.4.1 with theonly difference that the name of the I/O driver in the initializations blocks now is dotnetrawinstead of raw, such as:
initializations from 'dotnetraw:'
VALUE as VDATA WEIGHT as WDATA
end-initializations

14.2.7.2 Sparse arrays

Let us now study the probably more frequent case of data stored in sparse format. In the Mosel model(burglar9d.mos) we use a set of strings instead of a simple range set to index the various arrays andin the C# program (ugiosparse.cs) we need to define slightly more complicated structures to holdthe indices and the data entries. To save us writing out the indices twice, we have grouped the twoinput data arrays into a single class. When passing the data arrays to the Mosel model we now do notuse any option, meaning that data is transferred in sparse format. Instead, we now need to indicate

Fair Isaac Corporation Confidential and Proprietary Information 136

Other programming language interfaces

which fields of the C# objects are to be selected (in brackets after the object reference).
using System;
using System.IO;
using Mosel;

namespace ugiosparse.cs {

public class ugiosparse {

/// <summary>
/// Arrays containing initialization data for the model
/// </summary>
static double[] vdata = new double[] {15,100,90,60,40,15,10, 1}; // VALUE
static double[] wdata = new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT

/// <summary>
/// Structure to store initial values for the array 'data'
/// </summary>
class MyData {

public string ind;
public double val;
public double wght;

public MyData(string i, double v, double w) {
this.ind = i;
this.val = v;
this.wght = w;

}
}

/// <summary>
/// Structure to receive solution values
/// </summary>
class MySol {

public string ind;
public double val;

}

/// <summary>
/// The initial values for the array 'data'
/// </summary>
private static MyData[] data = new MyData[] {

new MyData("camera",15,2), new MyData("necklace",100,20),
new MyData("vase",90,20), new MyData("picture",60,30),

new MyData("tv",40,40), new MyData("video",15,30),
new MyData("chest",10,60), new MyData("brick",1,10) };

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar9d.mos");

// Associate the .NET object with a name in Mosel
model.Bind("dt", data);

// Create a new array for solution data and bind that to the name 'SOL'
MySol[] solution=new MySol[8];
for(int i=0;i<8;i++) solution[i] = new MySol();
mosel.Bind("sol", solution);

Fair Isaac Corporation Confidential and Proprietary Information 137

Other programming language interfaces

// Pass data location as a parameter to the model
model.ExecParams = "DATA='dt(ind,val,wght)',SOL='sol(ind,val)'";

// Run the model
model.Run();

// Print the solution
Console.WriteLine("Objective value: {0}", model.ObjectiveValue);
for (int i=0;i<8;i++)
Console.Write(" take({0}): {1}", solution[i].ind, solution[i].val);

Console.WriteLine();
}

}

}

The model burglar9d.mos run by this program is the same as the model burglar7.mos displayedin Section 13.4.2, but using the I/O driver dotnetraw instead of raw.
14.2.7.3 Dynamic data

The two examples of in-memory communication of dense and sparse data in the preceding sectionshave in commun that all data structures in the application, and in particular the structures to receiveoutput data, are of fixed size. We therefore now introduce an alternative communication mechanismworking with streams, that enables dynamic sizing of data structures on the application level, a featurethat is particularly useful for solution output where effective data sizes are not known a priori. Thiscommunication mechanism employs the I/O driver dotnet (see also Section 14.2.8). The main part ofour C# program (file ugiocb.cs) now looks as follows.
[STAThread]
static int Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar13.mos");

// Set the execution parameters and bind the variables
model.SetExecParam("DATAFILE","dotnet:cbinitfrom");
model.SetExecParam("SOLFILE","dotnet:cbinitto");
model.Bind("cbinitfrom", new XPRMInitializationFrom(initializeFrom));
model.Bind("cbinitto", new XPRMInitializationTo(initializeTo));

// Run the model
model.Run();

if(model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

// Display solution values obtained from the model
Console.WriteLine("Objective value: {0}", model.ObjectiveValue);
for(int i=0;i<solsize;i++)
Console.WriteLine(" take({0}): {1}", solution[i].ind, solution[i].val);

model.Reset(); // Reset the model
return 0;

}

The information passed to the model in the runtime parameters are now instances of delegates forinitialization from and to streams as shown below. The functionality for dynamic output retrievalemploys the Mosel library functions that we have already seen in Sections 14.2.4 and 14.2.5 foraccessing models after their termination. The dynamic data input to a Mosel model uses a new set ofdedicated functions that are explained with some more detail after the program extract.

Fair Isaac Corporation Confidential and Proprietary Information 138

Other programming language interfaces

static double[] vdata=new double[] {15,100,90,60,40,15,10, 1}; // VALUE
static double[] wdata=new double[] { 2, 20,20,30,40,30,60,10}; // WEIGHT
static string[] ind=new string[] {"camera", "necklace", "vase", "picture",

"tv", "video", "chest", "brick"}; // Index names
static int datasize=8;

/// <summary>
/// Structure to receive solution values
/// </summary>
class MySol {

public string ind; // index name
public double val; // solution value

}
static MySol[] solution;
static int solsize;

/// <summary>
/// A function to initialize the Mosel data-structures via callback
/// </summary>
public static bool initializeFrom(XPRMInitializeContext ictx,string label,XPRMTyped type)
{

try {
switch (label) {
case "DATA":
ictx.Send(XPRMInitializeControl.OpenList);
for (int i=0;i<datasize;i++) {
ictx.Send(XPRMInitializeControl.OpenIndices);
ictx.Send(ind[i]);

ictx.Send(XPRMInitializeControl.CloseIndices);
ictx.Send(XPRMInitializeControl.OpenList);
ictx.Send(vdata[i]);
ictx.Send(wdata[i]);

ictx.Send(XPRMInitializeControl.CloseList);
}
ictx.Send(XPRMInitializeControl.CloseList);
return true;

default:
Console.WriteLine("Label '{0}' not found", label);
return false;

}
} catch (Exception e) {
Console.WriteLine("Label '{0}' could not be initialized - {1}", label, e.Message);
return false;

}
}

/// <summary>
/// A method to retrieve data from Mosel
/// </summary>
public static bool initializeTo(string label,XPRMValue val) {

// Console.WriteLine(".NET: {0} = {1}", label, val);

XPRMArray solarr;
XPRMValue[] vindex;

switch (label) {
case "SOL":
solarr=(XPRMArray)val;
solsize=solarr.Size;
solution = new MySol[solsize];
for(int i=0;i<solsize;i++) solution[i] = new MySol();

int ct=0;
// Enumerate solarr as sparse array
foreach(int [] indices in solarr.TEIndices) {
vindex = solarr.DereferenceIndex(indices);
solution[ct].ind = vindex[0].AsString();
solution[ct].val = solarr.GetAsReal(indices);

Fair Isaac Corporation Confidential and Proprietary Information 139

Other programming language interfaces

ct++;
}
return true;

default:
Console.WriteLine("Unknown output data item: '{0}'={1} not found", label, val);
return false;

}
}

The format used to represent data for dynamic data input is the same as the default text format used by
initializations blocks. For example, the array definition

mydata: [("ind1" 3) [5 1.2] ("ind2" 7) [4 6.5]]

is represented by the following sequence of function calls:
ictx.Send(XPRMInitializeControl.OpenList); ! [
ictx.Send(XPRMInitializeControl.OpenIndices); ! (
ictx.Send("ind1"); ! "ind1"
ictx.Send(3); ! 3
ictx.Send(XPRMInitializeControl.CloseIndices); !)
ictx.Send(XPRMInitializeControl.OpenList); ! [
ictx.Send(5); ! 5
ictx.Send(1.2); ! 1.2
ictx.Send(XPRMInitializeControl.CloseList); !]
ictx.Send(XPRMInitializeControl.OpenIndices); ! (
ictx.Send("ind2"); ! "ind2"
ictx.Send(7); ! 7
ictx.Send(XPRMInitializeControl.CloseIndices); !)
ictx.Send(XPRMInitializeControl.OpenList); ! [
ictx.Send(4); ! 4
ictx.Send(6.5); ! 6.5
ictx.Send(XPRMInitializeControl.CloseList); !]
ictx.Send(XPRMInitializeControl.CloseList); !]

The send and sendControlmethods may take an additional last argument indicating whether data isto be processed immediately or only once the queue of tokens is full (default).
With C#, we use exactly the same model file burglar13.mos as with C (see Section 13.4.3 for thelisting).
14.2.7.4 Scalars

Besides arrays one might also wish to simply exchange scalars between the calling application and aMosel model. One way of passing the value of a scalar to a model is to define it as a model parameterand pass the new value as an execution parameter to the model (as shown in Section 14.2.3).Alternatively, we might read or write scalar values in initializations blocks similarly to what wehave seen in the previous section for arrays.
Consider the following C# program: we wish to exchange the values of the three scalars, wmax,
numitem, and objval with the Mosel model run by this program. The value of the first scalar shouldbe read in by the Mosel model and the last two receive solution values from the optimization run in themodel. Since it is not possible to address scalars directly from the model we have collected them into aclass MyData the fields of which are then specified in the execution parameters as the locations of thedata.

using System;
using System.IO;
using Mosel;

Fair Isaac Corporation Confidential and Proprietary Information 140

Other programming language interfaces

namespace ugioscalar.cs {

public class ugioscalar {
/// <summary>
/// Structure to receive solution values
/// </summary>
class MyData {

public int wmax;
public int numitem;
public double objval;

}

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static int Main(string[] args) {

MyData data=new MyData();
data.wmax=100;

// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load a model
XPRMModel model = mosel.CompileAndLoad("burglar11.mos");

// Associate the .NET object with a name in Mosel
model.Bind("data", data);

// Run the model, passing data location as parameters
model.ExecParams =
"WMAX='data(wmax)',NUM='data(numitem)',SOLVAL='data(objval)'," +

"IODRV='dotnetraw:'";
model.Run();

if(model.ProblemStatus!=XPRMProblemStatus.PB_OPTIMAL)
return 1; // Stop if no solution found

// Display solution values obtained from the model
Console.WriteLine("Objective value: " + data.objval);
Console.WriteLine("Total number of items: " + data.numitem);

model.Reset(); // Reset the model
return 0;

}
}

}

The Mosel model burglar11.mos run by this program is the same as the model burglar12.mosdisplayed in Section 13.4.4, but using the I/O driver dotnetraw instead of raw (which we set throughthe IODRV parameter). This model takes as execution parameters the filenames (location in memory)of the three scalars. The integer WTMAX is initialized from the value in the .NET application and the twoother locations are written to in the initializations to block at the end of the model.
14.2.8 Redirecting the Mosel output

When executing a Mosel model from a .NET application it may be desirable to be able to process theoutput produced by Mosel directly in the application. The following C# program ugcb.cs shows acallback-style functionality that redirects the Mosel standard output to a TextWriter object which isused to prefix every line of Mosel output with the string Mosel: before printing it.
To redirect Mosel streams to a .NET object (.NET Stream (including MemoryStream for in-memorybuffers), TextReader, or TextWriter) we need to use the dotnet I/O driver. The same mechanismthat is used here for redirecting the output stream of Mosel (indicated by
XPRMStreamType.F_OUTPUT_LINEBUF which also enables line buffering) can equally be used to

Fair Isaac Corporation Confidential and Proprietary Information 141

Other programming language interfaces

redirect, for instance, the error stream (denoted by the constant XPRMStreamType.F_ERROR).
Note that text read from a TextReader will be encoded into bytes via the UTF-8 character encodingbefore being passed to Mosel; conversely, the text to be written to a TextWriter will have beenproduced by decoding the Mosel output which is assumed to be in UTF-8. If this is not the desiredresult, consider using a Stream instead. If you wish data exchange to be performed in a differentencoding (such as the platform’s default encoding), this can be done Mosel by use of the enc I/O driver(see C.7); only Streams, not TextReaders or TextWriters, are suitable for this.

using System;
using System.IO;
using System.Text;
using Mosel;

namespace ugcb.cs {

public class ugcb {

/// <summary>
/// Main entry point for the application
/// </summary>
[STAThread]
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Associate .NET object with a name in Mosel
mosel.Bind("mycb", new MyOut());

// Redirect error stream to stdout
mosel.SetDefaultStream(XPRMStreamType.F_ERROR, Console.Out);

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar2.mos");

// Redirect the model's output to a custom TextWriter
MyOut modelOut = new MyOut();
model.SetDefaultStream(XPRMStreamType.F_OUTPUT_LINEBUF, modelOut);

// Alternative:
// Redirect the model's output to our printing function 'cbmsg'
model.SetDefaultStream(XPRMStreamType.F_OUTPUT_LINEBUF, "dotnet:mycb");

// Run the model
model.Run();

}
}

public class MyOut: TextWriter
{
private bool atStartOfLine = true;
public override void Write(char b)
{

if (atStartOfLine) {
Console.Write("Mosel: ");
atStartOfLine=false;
}
if (b=='\n') {
Console.WriteLine();
atStartOfLine=true;
}
else if (b=='\r') {
// ignore
}
else {
Console.Write(b);

Fair Isaac Corporation Confidential and Proprietary Information 142

Other programming language interfaces

}
}
public override Encoding Encoding {
get {
return Encoding.UTF8;

}
}
}

}

14.3 VBA

VBA typically serves for embedding a Mosel model into an Excel spreadsheet. In this section we shallonly show the parts relevant to the Mosel functions, assuming that the execution of a model is triggedby the action of clicking on some object such as the buttons shown in Figure 14.1.

Figure 14.1: Excel spreadsheet embedding VBA macros

14.3.1 Compiling and executing a model in VBA

As with the other programming languages, to execute a Mosel model in VBA we need to perform thestandard compile/load/run sequence as shown in the following example (contained in the file
ugvb.bas). We use a slightly modified version burglar5.mos of the burglar problem where we haveredirected the output printing to the file burglar_out.txt.

Private Sub burglar_Click()
Dim model
Dim ret As Long
Dim result As Long
Dim outfile As String, moselfile As String

'Initialize Mosel
ret = XPRMinit
If ret Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

'Compile burglar5.mos
XPRMsetdefworkdir GetFullPath()
moselfile = GetFullPath() & "\" & "burglar5"
outfile = GetFullPath() & "\" & "burglar_out.txt"
ret = XPRMcompmod(vbNullString, moselfile & ".mos", vbNullString, _

Fair Isaac Corporation Confidential and Proprietary Information 143

Other programming language interfaces

"Burglar problem")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"
Exit Sub

End If

'Load burglar5.bim
model = XPRMloadmod(moselfile & ".bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub

End If

'Run the model
ret = XPRMrunmod(model, result, "OUTFILE=""" & Replace(outfile, "\", _

"\\") & """")
If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
GoTo done

Else
ShowFile outfile

End If
MsgBox vbNewLine & "model Burglar returned: " & result

done:
XPRMfree

End Sub

'Auxiliary routines
Private Sub ShowFile(fn As String)
Dim vs As String
vs = CreateObject("Scripting.FileSystemObject").OpenTextFile(fn).ReadAll
MsgBox vs

End Sub

Private Function GetFullPath() As String
Dim path As String
path = ThisWorkbook.path
If Right(path, 1) = "\" Then path = Left(path, Len(path) - 1)
GetFullPath = path

End Function

This implementation redirects the output into a log file vbout.txt the contents of which is displayedafter a successful model run.
14.3.2 Parameters

When executing a Mosel model in VBA, it is possible to pass new values for its parameters into themodel. The following program (also contained in the file ugvb.frm) extract shows how we may runmodel ‘Prime’ from Section 8.3 to obtain all prime numbers up to 500 (instead of the default value 100set for the parameter LIMIT in the model). We use a slightly modified version prime4.mos of themodel where we have redirected the output printing to a file denoted by the parameter OUTFILE.
Private Sub prime_Click()
Dim model
Dim ret As Long
Dim result As Long
Dim outfile As String, moselfile As String

'Initialize Mosel
ret = XPRMinit
If ret Then
MsgBox "Initialization error (" & ret & ")"
Exit Sub

End If

Fair Isaac Corporation Confidential and Proprietary Information 144

Other programming language interfaces

'Compile prime4.mos
XPRMsetdefworkdir GetFullPath()
moselfile = GetFullPath() & "\" & "prime4"
outfile = GetFullPath() & "\" & "vbout.txt"
ret = XPRMcompmod(vbNullString, moselfile & ".mos", vbNullString, _

"Prime numbers")
If ret <> 0 Then
MsgBox "Compile error (" & ret & ")"
Exit Sub

End If

'Load prime4.bim
model = XPRMloadmod("prime4.bim", vbNullString)
If model = 0 Then
MsgBox "Error loading model"
Exit Sub

End If

'Run model with new parameter settings
ret = XPRMrunmod(model, result, "LIMIT=500,OUTFILE=""" & Replace(outfile, _

"\", "\\") & """")

If ret <> 0 Then
MsgBox "Execution error (" & ret & ")"
GoTo done

Else
ShowFile outfile

End If
MsgBox vbNewLine & "model Prime returned: " & result

done:
XPRMfree

End Sub

14.3.3 Redirecting the Mosel output

In the previous example we have hardcorded the redirection of the output directly in the model. WithMosel’s VBA interface the user may also redirect all output produced by Mosel to files directly from thehost application, that is, redirect the output stream.
To redirect all output of a model to the file myout.txt add the following function call before theexecution of the Mosel model:

' Redirect all output to the file "myout.txt"
XPRMsetdefstream 0, XPRM_F_OUTPUT, "myout.txt"

Similarly, any possible error messages produced by Mosel can be recovered by replacing in the lineabove XPRM_F_OUTPUT by XPRM_F_ERROR. This will redirect the error stream to the file myout.txt.
The following VBA program extract (file ugcb.bas) shows how to use a callback in VBA to receive alloutput from a Mosel model (standard output and errors). The output will be displayed in thespreadsheet from where the model run was started.

Private ROWNUM As Long
Public Sub example()
Dim ret As Long
Dim result As Long
Dim module

ClearColumn

' Initialize Mosel. Must be called first
ret = XPRMinit
If ret <> 0 Then

Fair Isaac Corporation Confidential and Proprietary Information 145

Other programming language interfaces

PrintLn ("Failed to initialize Mosel")
Exit Sub

End If

' Redirect the output and error streams to the callback
ret = XPRMsetdefstream(0, XPRM_F_OUTPUT, XPRM_IO_CB(AddressOf OutputCB))
ret = XPRMsetdefstream(0, XPRM_F_ERROR, XPRM_IO_CB(AddressOf OutputCB))

PrintLn "Starting model..."

' Run the model
ret = XPRMexecmod("", GetFullPath() & "\" & "burglar10.mos", _

"FULLPATH='" & GetFullPath() & "'", result, module)
If ret <> 0 Then
PrintLn ("Failed to execute model")
GoTo done

Else
PrintLn "Finished model"

End If

done:
XPRMfree

End Sub

#If VBA7 Then
Private Sub OutputCB(ByVal model As LongPtr, ByVal ref As LongPtr, _

ByVal msg As String, ByVal size As Long)
' Output to the spreadsheet
Call PrintLn(msg)

End Sub
#Else
Private Sub OutputCB(ByVal model As Long, ByVal ref As Long, _

ByVal msg As String, ByVal size As Long)
' Output to the spreadsheet
Call PrintLn(msg)

End Sub
#End If

Public Sub PrintLn(ByVal msg As String)
' Strip any trailing newlines first
If Right(msg, Len(vbLf)) = vbLf Then msg = Left(msg, Len(msg) - Len(vbLf))
If Right(msg, Len(vbCr)) = vbCr Then msg = Left(msg, Len(msg) - Len(vbCr))
Worksheets("Run Model").Cells(ROWNUM, 2) = Trim(msg)
ROWNUM = ROWNUM + 1

End Sub

Sub ClearColumn()
Worksheets("Run Model").Columns(2).ClearContents
ROWNUM = 1

End Sub

Function GetFullPath() As String
Dim path As String
path = ThisWorkbook.path
If Right(path, 1) = "\" Then path = Left(path, Len(path) - 1)
GetFullPath = path

End Function

Fair Isaac Corporation Confidential and Proprietary Information 146

IV. Extensions and tools

Overview

Beyond what one might call the ‘standard use’ of Mosel, the Mosel environment has an increasingnumber of advanced features, some of which you might find helpful for the development or deploymentof larger applications.
The first chapter of this part (Chapter 15) introduces the Mosel Debugger and Profiler, two tools that areparticularly helpful for the development and analysis of large-scale Mosel models. We give some hintshow you might improve the efficiency of your models.
The next chapter (Chapter 16) introduces the notion of packages and shows several examples of theiruse. It also discusses the differences between packages and modules and their respective uses.
Chapter 17 gives an overview of other advanced functionality, including generalized file handling,concurrency in modeling, graphing, and other solver types. In depth introductions to these topics aregiven in separate manuals or whitepapers to avoid overloading this user guide.
The last chapter introduces the notion of ’annotations’ and tools of the Mosel distribution that exploitsuch metadata, for example in the automated generation of Mosel model documentation.

Fair Isaac Corporation Confidential and Proprietary Information 148

CHAPTER 15

Debugger and Profiler

15.1 The Mosel Debugger

In Chapter 6 we have seen how the Mosel Parser helps detect syntax errors during compilation. Othertypes of errors that are in general more difficult to analyze are mistakes in the data or logical errors inthe formulation of Mosel models. The Mosel Debugger may help tracing these.
15.1.1 Using the Mosel Debugger

In this section we shall be working with the model prime2.mos. This is the same model for calculatingprime numbers as the example we have seen in Section 8.3, but with a LIMIT value set to 20,000.
Mosel models that are to be run in the debugger need to be compiled with the option G. The Moseldebugger is started with the command debug (it will automatically compile with the required settings):

mosel debug prime.mos

and terminated by typing quit. Just as for the run command the user may specify new settings forthe model parameters immediately following the debug command:
mosel debug prime2.mos 'LIMIT=50'

Once the debugger is started, type in the following sequence of commands (Mosel’s output ishighlighted in bold face):

Fair Isaac Corporation Confidential and Proprietary Information 149

Debugger and Profiler

dbg>break 31
Breakpoint 1-1 set at prime2.mos:31
dbg>bcond 1-1 getsize(SNumbers) <10
dbg>cont
Prime numbers between 2 and 50:
Breakpoint 1-1.
31 while (not(n in SNumbers)) n+=1
dbg>print n
13
dbg>display SNumbers
1(0): SNumbers = [17 19 23 29 31 37 41 43 47]
dbg>display SPrime
2(0): SPrime = [2 3 5 7 11 13]
dbg>cont
Breakpoint 1-1.
31 while (not(n in SNumbers)) n+=1
1(0): SNumbers = [19 23 29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17]
dbg>cont
Breakpoint 1-1.
31 while (not(n in SNumbers)) n+=1
1(0): SNumbers = [23 29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17 19]
dbg>cont
Breakpoint 1-1.
31 while (not(n in SNumbers)) n+=1
1(0): SNumbers = [29 31 37 41 43 47]
2(0): SPrime = [2 3 5 7 11 13 17 19 23]
dbg>quit

This small example uses many of the standard debugging commands (for a complete list, includingcommands for navigating in the Mosel stack that are not shown here, please see the Section ’RunningMosel – Command line interpreter: debugger’ of the introduction chapter of the Mosel LanguageReference Manual):
break Set a breakpoint in the given line. A breakpoint is deleted with delete followed by thebreakpoint number. The command breakpoints lists all currently defined breakpoints.
bcond Set a condition on a breakpoint (using the number of the breakpoint returned by the

break command). Conditions are logical expressions formed according to thestandard rules in Mosel (use of brackets, connectors and and or). They may containany of the functions listed below.
cont Continue the execution up to the next breakpoint (or to the end of the program). Aline-wise evaluation is possible by using next or step (the former jumps over loopsand subroutines, the latter steps into them).
display Show the current value of a model object or an expression at every step of the debugger.A display is removed by calling undisplay followed by the number of the display.
print Show (once) the current value of a model object.
The following simple Mosel functions may be used with debugger commands (in conditions or with
print / display):

� Arithmetic functions: abs, ceil, floor, round
� Accessing solution values: getsol, getdual, getrcost, getactivity, getslack
� Other: getparam, getsize

Fair Isaac Corporation Confidential and Proprietary Information 150

Debugger and Profiler

15.1.1.1 Debugging concurrent models

The Mosel debugger can be used with concurrent (sub)models. A few temporary edits to the modelfiles may be necessary in this case (to be removed for production versions!):
� We need to use the compilation flag ’G’ with all models that are to be debugged: this option isapplied automatically by the Mosel debugger for the master model, but we need to use it explicitlyfor the submodels. For instance, if the submodels are compiled from the master model, we needto modify the compilation statement to include this flag:

if compile("G","prime2d.mos")<>0 then exit(1); end-if

� Breakpoints on submodels can only be set once the corresponding submodels have been started.If their execution is too fast to allow for user input in the debugger, we recommend to insert a’sleep’ at the start of the submodel (this subroutine is provided by the module mmsystem thatneeds to be loaded by the model) during the debugging phase. For example adding a ’sleep’ of 5seconds:
sleep(5000)

We can now start the debugger for the master model with a command like the following:
mosel debug runprime2d.mos 'LIMIT=50'

Once the debugger is started, type in the following sequence of commands (Mosel’s output ishighlighted in bold face):
dbg>break 29
Breakpoint 1-1 set at runprime2d.mos:29
dbg>cont
29 run(modPrime, "LIMIT="+LIMIT)
dbg>next
30 wait
[model #2 starting]
dbg>model 2
⁎ "prime2d.mos":18
18 LIMIT=20000
dbg>break 34
Breakpoint 2-1 set at prime2d.mos:34
dbg>bcond 2-1 getsize(SNumbers) <10
dbg>cont
Prime numbers between 2 and 50:
Breakpoint 2-1.
34 while (not(n in SNumbers)) n+=1
dbg>print n
13
dbg>display SNumbers
1(#1): SNumbers = [17 19 23 29 31 37 41 43 47]
dbg>display SPrime
2(#1): SPrime = [2 3 5 7 11 13]
dbg>cont
Breakpoint 2-1.
34 while (not(n in SNumbers)) n+=1
1(#1): SNumbers = [19 23 29 31 37 41 43 47]
2(#1): SPrime = [2 3 5 7 11 13 17]
dbg>cont
Breakpoint 2-1.
...
dbg>quit

This sequence sets a breakpoint on the submodel ’run’ command in the master model. After thesubmodel is started it switches to using the submodel (’model 2’) as the active model in the debugger;

Fair Isaac Corporation Confidential and Proprietary Information 151

Debugger and Profiler

we can then enter the debug commands for the submodel. Notice that the command cont appliesglobally to all running models, whereas next or step refer to the selected active model.
15.1.2 Debugger in Xpress Workbench

With Xpress Workbench the debugger is started by clicking on the button . Workbench will
automatically recompile the model with the required debugging flag. Breakpoints are set by clickingonto the gray area (left to the line number if it is displayed) preceding each row in the editor window,breakpoint conditions can be added via the right mouse button menu on the breakpoint icon. Clickingon the breakpoint icon deletes the breakpoint.

Delete breakpoint/deactivated breakpoint.
Delete a conditional breakpoint/deactivated conditional breakpoint.

Navigating in the debugger is possible by clicking on the corresponding buttons:
Activate/deactivate all breakpoints.
Start/stop the debugger.
Resume/suspend model execution.
Step over an expression.
Step into an expression.
Step out of an expression.

During a debugging session, the current position is indicated via a green arrow left to the line numbers(changing to yellow on breakpoints). Expand the Variables display in the Debugger pane on the
right side of the workspace to observe the values of model entities.

15.2 Efficient modeling through the Mosel Profiler

The efficiency of a model may be measured through its execution speed and also its memory
consumption. The execution times can be analyzed in detail with the help of the Mosel Profiler. Severalcommands of the Mosel debugger that are also discussed in this section provide the user with furtherinformation, such as memory consumption.

15.2.1 Using the Mosel Profiler

Once a model you are developing is running correctly, you will certainly start testing it with larger datasets. Doing so, you may find that model execution times become increasingly larger. This may be dueto the solution algorithms, but a more or less significant part of the time will be spent simply indefining the model itself. The Mosel Profiler lets you analyze the model behavior line-by-line. Solutionalgorithms, such as LP or MIP optimization with Xpress Optimizer, may be improved by tuning solverparameters (please refer to the corresponding software manuals). Here we shall be solely concernedwith improvements that may be made directly to the Mosel model. Even for large scale models, modelexecution times can often be reduced to just a few seconds by carefully (re)formulating the model.
Just as for the debugger, Mosel models that are to be run in the profiler need to be compiled with theoption G. The command profile of the Mosel command line performs all required steps:

mosel profile prime2.mos

Fair Isaac Corporation Confidential and Proprietary Information 152

Debugger and Profiler

or, if we wish to generate the BIM file explicitly:
mosel comp -G prime2.mos
mosel run -prof prime2.bim

The profiler generates a file filename.prof with the profiling statistics. For the test model
prime2.mos this file has the following contents (leaving out the header lines and comments):

model Prime

parameters
1 0.00 0.00 LIMIT=20000

end-parameters

declarations
1 0.00 0.00 SNumbers: set of integer
1 0.00 0.00 SPrime: set of integer

end-declarations

1 0.01 0.00 SNumbers:={2..LIMIT}

1 0.00 0.01 writeln("Prime numbers between 2 and ", LIMIT, ":")

1 0.00 0.01 n:=2
1 0.00 0.01 repeat

2262 0.04 3.44 while (not(n in SNumbers)) n+=1
2262 0.00 3.44 SPrime += {n}
2262 0.00 3.44 i:=n
2262 0.04 3.44 while (i<=LIMIT) do
50126 3.31 3.44 SNumbers-= {i}
50126 0.04 3.44 i+=n

end-do
2262 0.00 3.44 until SNumbers={}

1 0.00 3.44 writeln(SPrime)
1 0.00 3.45 writeln(" (", getsize(SPrime), " prime numbers.)")

1 0.00 3.45 end-model

The first column lists the number of times a statement is executed, the second column the total timespent in a statement, and the third column the time of the last execution; then follows thecorresponding model statement. In our example, we see that most of the model execution time is spentin a single line, namely the deletion of elements from the set SNumbers. This line is executed more than50,000 times, but so is the following statement (i+=n) and it only takes a fraction of a second. Indeed,operations on large (>1000 entries) sets may be relatively expensive in terms of running time. If ourprime number algorithm were to be used in a large, time-critical application we should give preferenceto a more suitable data structure that is addressed more easily, that is, an array. For instance, bymodifying the model as follows the total execution time for this model version becomes 0.19 seconds:
model "Prime (array)"

parameters
LIMIT=20000 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
INumbers = 2..LIMIT ! Set of numbers to be checked
SNumbers: array(INumbers) of boolean
SPrime: set of integer ! Set of prime numbers
end-declarations

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2

Fair Isaac Corporation Confidential and Proprietary Information 153

Debugger and Profiler

repeat
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples

SNumbers(i):= true
i+=n

end-do
while (n <= LIMIT and SNumbers(n)) n+=1

until (n>LIMIT)

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

To start the Mosel profiler from Xpress Workbench, open the Run Dialog window from the menu Run orby clicking on the tools button and select the run mode Profile the Model.

15.2.1.1 Profiling concurrent models

The Mosel profiler can be used to profile models that are running concurrently. The profiler run isstarted by launching the profiler for the master model. For every model file, an output file
filename.prof is generated. If several instances of the same model file are being run, Mosel createsunique filenames of the form filename.modelid.prof where modelid is formed from the modelcounter per model tree level.
The user is reminded that all (sub)models used in profiler runs need to be compiled with the ’G’ flag.

15.2.2 Other commands for model analysis

The Mosel debugger provides a few other commands that may be helpful with quickly obtaininginformation about models that have been executed in Mosel.
Consider, for example, the following model flow.mos.

model "Dynamic arrays"
declarations
Suppliers = 1..150
Customers = 1..10000
COST: dynamic array(Suppliers,Customers) of real
flow: dynamic array(Suppliers,Customers) of mpvar
end-declarations

initializations from "flow.dat"
COST
end-initializations

forall(s in Suppliers, c in Customers | COST(s,c)>0) create(flow(s,c))

end-model

Now execute the following sequence of Mosel commands from the command line (as before, Moseloutput is printed in bold face). The commands we wish to use are part of the Mosel debugger.—Sincewe do not wish to launch a debugging session, we use the option -g to compile in debug mode, butwithout tracing information. This results in a standard model run without entering an interactivedebugging session.

Fair Isaac Corporation Confidential and Proprietary Information 154

Debugger and Profiler

mosel debug -g flow.mos
dbg>lsmods
⁎ name: Dynamic arrays (0.0.0) number: 1 size: 47884
sys. com.: ‘flow.mos’,debug,mc5.0.0
user com.:
dbg>info COST
‘COST’ is an array (dynamic, dim: 2, size: 750) of reals
dbg>quit

The command lsmods displays information about all models loaded in Mosel, and in particular theirsize (= memory usage in bytes). With the command info followed by a symbol name we obtaindetailed information about the definition of this symbol (without giving a symbol this command willdisplay release and license information for Mosel). Alternatively, it is also possible to print the completelist of symbols (with type information and sizes) defined by the current model by using the command
lssymb.
If we now remove the keyword dynamic from the declaration of the two arrays, COST and flow, andre-run the same command sequence as before, we obtain the following output:

dbg>lsmods
⁎ name: Dynamic arrays number: 1 size: 36011152
Sys. com.: ‘flow.mos’,debug,mc5.0.0
User com.:
dbg>info COST
‘COST’ is an array (dim: 2, size: 1500000) of reals

We can run a similar experiment with the model version flowh.mos that defines the two sparse arraysas hashmap. As shown in the output below, the memory usage is somewhat higher albeit in the sameorder of magnitude as the model version with dynamic arrays:
mosel debug -g flowh.mos
dbg>lsmods
⁎ name: Hashmap arrays (0.0.0) number: 1 size: 81488
sys. com.: ‘flowh.mos’,debug,mc5.0.0
user com.:
dbg>info COST
‘COST’ is an array (hashmap, dim: 2, size: 750) of reals
dbg>quit

It is easily seen that in this model the use of the keyword dynamic or hashmapmakes a hugedifference in terms of memory usage. A model defining several arrays of comparable sizes is likely torun out of memory (or at the least, it may not leave enough memory for an optimization algorithm to beexecuted).
Note: If COST is defined as a sparse (dynamic or hashmap) array, the condition on the forall loopshould really be exists(COST(s,c)) for speedier execution of this loop.

15.2.3 Some recommendations for efficient modeling

The following list summarizes some crucial points to be taken into account, especially when writinglarge-scale models. For more details and examples please see Appendix B.
� Use sparse arrays to

– size data tables automatically when the data is read in,
– initialize the index values automatically when the data is read in,
– conserve memory when storing sparse data,

Fair Isaac Corporation Confidential and Proprietary Information 155

Debugger and Profiler

– eliminate index combinations without using conditions each time.
� Don’t use sparse arrays

– when you can use ordinary (dense) arrays instead,
– when storing dense data (if at least 50% of its entries are defined an array should clearly beconsidered as dense), and you can size the data table and initialize the indices in some otherway, such as by reading in the size first.

� General procedure for declaring and initializing data:
1. declare all index sets and the minimal collection of data arrays required to initialize the sets,
2. initialize the data arrays (which also initializes all index sets),
3. finalize the index sets,
4. declare and initialize all other arrays.

� Efficient use of sparse arrays:
– use the keyword exists for enumeration (in sums or loops),
– access the elements in ascending order of the indices (particularly with dynamic arrays),
– use hashmap when array elements are predominantly accessed in random order,
– use ranges, rather than sets, for the index sets.

� Efficient use of exists:
– use named index sets in the declarations,
– use the same index sets in the loops,
– use the index sets in the same order,
– use the dynamic/hashmap qualifier if some index sets are constant or finalized,
– make sure exists is the first condition,
– always use exists, even if no condition or an alternative condition is logically correct,
– conditions with or cannot be handled as efficiently as conditions with and.

� Loops (sum, forall, etc.):
– where possible, use conditional loops—loop index set followed by a vertical bar and thecondition(s)—instead of a logical test with if within the loop,
– make sure exists is the first condition,
– always use exists, even if no condition or an alternative condition is logically correct,
– enumerate the index sets in the same order as they occur in the arrays within the loop,
– broken up, conditional loops are handled less efficiently.

� Do not use any debugging flag for compiling the final deployment version of your models.

Fair Isaac Corporation Confidential and Proprietary Information 156

CHAPTER 16

Packages

A package is a library written in the Mosel language (this feature is introduced by Mosel 2.0). Itsstructure is similar to models, replacing the keyword model by package. Packages are included intomodels with the uses statement for dynamic loading (the package BIM needs to be present for modelexecution), in the same way as this is the case for modules (DSO). Alternatively, packages can beloaded statically via imports in which case they get included in the model BIM file (this option is notavailable for modules that are always dynamic). Unlike Mosel code that is included into a model withthe include statement, packages are compiled separately, that is, their contents are not visible to theuser.
Typical uses of packages include

� development of your personal ‘tool box’
� model parts (e.g., reformulations) or algorithms written in Mosel that you wish to distributewithout disclosing their contents
� add-ons to modules that are more easily written in the Mosel language

Packages may define new constants, subroutines, types, and parameters for the Mosel language asshown in the following examples (the first two examples correspond to the first two module examplesof the Mosel Native Interface User Guide).

16.1 Definition of constants

The following package myconstants defines one integer, one real, one string, and two booleanconstants.
package myconstants

public declarations
MYCST_BIGM = 10000 ! A large integer value
MYCST_TOL = 0.00001 ! A tolerance value
MYCST_LINE = ! String constant

"--"
MYCST_FLAG = true ! Constant with value true
MYCST_NOFLAG = false ! Constant with value false
end-declarations

end-package

The structure of a package is similar to the structure of Mosel models, with the difference that we usethe keyword package instead of model to mark its beginning and end.
After compiling our package with the standard Mosel command (assuming the package is saved in file
myconstants.mos)

Fair Isaac Corporation Confidential and Proprietary Information 157

Packages

mosel comp myconstants

it can be used in a Mosel model (file myconst_test.mos):
model "Test myconstants package"
uses "myconstants"

writeln(MYCST_LINE)
writeln("BigM value: ", MYCST_BIGM, ", tolerance value: ", MYCST_TOL)
writeln("Boolean flags: ", MYCST_FLAG, " ", MYCST_NOFLAG)
writeln(MYCST_LINE)

end-model

Please note the following:
1. Package name: compiling a package will result in a file packagename.bim. This package isinvoked in a Mosel model by the statement

uses "packagename"The name of the Mosel package source file (.mos file) may be different from the name given tothe BIM file.
2. Internal package name: the name given in the Mosel file after the keyword package is theinternal name of the package. It must be a valid Mosel identifier (and not a string). This namemay be different from the name given to the BIM file, but it seems convenient to use the samename for both.
3. Package location: for locating packages Mosel applies the same rules as for locating modules; itfirst searches in the directory dso of the Xpress installation, that is, in XPRESSDIR/dso, and thenin the directories pointed to by the environment variable MOSEL_DSO. The contents of the lattercan be set freely by the user.To try out the package examples in this chapter, you may simply include the current workingdirectory (’.’) in the locations pointed to by MOSEL_DSO, so that packages in the currentworking directory will be found, for example:Windows: set MOSEL_DSO=.Unix/Linux, C shell: setenv MOSEL_DSO .Unix/Linux, Bourne shell: export MOSEL_DSO; MOSEL_DSO=.Alternatively, you can use the compilation option -bx to indicate the location of package files (thisoption does not apply to DSOs):

mosel exe -bx ./ mymodel.mosIn general, and in particular for the deployment of an application, it is recommended to work withabsolute paths in the definition of environment variables.
Having made sure that Mosel is able to find our package myconstants.bim, executing the test modelabove will produce the following output:

--
BigM value: 10000, tolerance value: 1e-05
Boolean flags: true false
--

When comparing with the C implementation of the module example myconstants in the Mosel NativeInterface User Guide we can easily see that the package version is much shorter.

16.2 Definition of subroutines

We now show a package (file solarraypkg.mos) that defines several versions of a subroutine,

Fair Isaac Corporation Confidential and Proprietary Information 158

Packages

solarray, which copies the solution values of an array of decision variables of type mpvar into anarray of real of the same size. For each desired number (1–3) and type (integer or string) of arrayindices we need to define a new version of this subroutine.
package solarraypkg

! ⁎⁎⁎⁎ Integer indices (including ranges) ⁎⁎⁎⁎
public procedure solarray(x:array(R:set of integer) of mpvar,

s:array(set of integer) of real)
forall(i in R) s(i):=getsol(x(i))
end-procedure

public procedure solarray(x:array(R1:set of integer,
R2:set of integer) of mpvar,

s:array(set of integer,
set of integer) of real)

forall(i in R1, j in R2) s(i,j):=getsol(x(i,j))
end-procedure

public procedure solarray(x:array(R1:set of integer,
R2:set of integer,
R3:set of integer) of mpvar,

s:array(set of integer,
set of integer,
set of integer) of real)

forall(i in R1, j in R2, k in R3) s(i,j,k):=getsol(x(i,j,k))
end-procedure

! ⁎⁎⁎⁎String indices ⁎⁎⁎⁎
public procedure solarray(x:array(R:set of string) of mpvar,

s:array(set of string) of real)
forall(i in R) s(i):=getsol(x(i))
end-procedure

public procedure solarray(x:array(R1:set of string,
R2:set of string) of mpvar,

s:array(set of string,
set of string) of real)

forall(i in R1, j in R2) s(i,j):=getsol(x(i,j))
end-procedure

public procedure solarray(x:array(R1:set of string,
R2:set of string,
R3:set of string) of mpvar,

s:array(set of string,
set of string,
set of string) of real)

forall(i in R1, j in R2, k in R3) s(i,j,k):=getsol(x(i,j,k))
end-procedure
end-package

Using the package in a Mosel model (file solarr_test.mos):
model "Test solarray package"
uses "solarraypkg", "mmxprs"

declarations
R1=1..2
R2={6,7,9}
R3={5,-1}
x: array(R1,R2,R3) of mpvar
sol: array(R1,R2,R3) of real
end-declarations

! Define and solve a small problem
sum(i in R1, j in R2, k in R3) (i+j+2⁎k) ⁎ x(i,j,k) <= 20
forall(i in R1, j in R2, k in R3) x(i,j,k)<=1

Fair Isaac Corporation Confidential and Proprietary Information 159

Packages

maximize(sum(i in R1, j in R2, k in R3) (i+2⁎j+k) ⁎ x(i,j,k))

! Get the solution array
solarray(x,sol)

! Print the solution
forall(i in R1, j in R2, k in R3)
writeln(" (", i, ",", j, ",", k, ") ", sol(i,j,k), " ", getsol(x(i,j,k)))
writeln(sol)

end-model

Output produced by this model:
(1,6,-1) 1 1
(1,6,5) 0 0
(1,7,-1) 1 1
(1,7,5) 0 0
(1,9,-1) 1 1
(1,9,5) 0 0
(2,6,-1) 0.166667 0.166667
(2,6,5) 0 0
(2,7,-1) 0 0
(2,7,5) 0 0
(2,9,-1) 0 0
(2,9,5) 0 0
[1,0,1,0,1,0,0.166667,0,0,0,0,0]

This example may be classified as a ‘utility function’ that eases tasks occurring in a similar way inseveral of your models. Another example of such a utility function could be a printing function thatsimply outputs the solution value of a decision variable with some fixed format (if you apply
write/writeln to a decision variable of type mpvar you obtain the pointer of the variable, and not itssolution value).
If we again make the comparison with the implementation as a module we see that both ways havetheir positive and negative points: the implementation as a module is clearly more technical, requiring aconsiderable amount of C code not immediately related to the implementation of the function itself.However, at the C level we simply check that the two arguments have the same index sets, withouthaving to provide a separate implementation for every case, thus making the definition more general.

16.3 Definition of types

In Section 8.6.2 we have seen the example arcs.mos that defines a record to represent arcs of anetwork. If we wish to use this data structure in different models we may move its definition into apackage ’arcpkg’ to avoid having to repeat it in every model.
Such a package may look as follows (file arcpkg.mos):

package arcpkg

public declarations
arc = public record ! Arcs:
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient
end-record
end-declarations

end-package

which is used thus from the model file:

Fair Isaac Corporation Confidential and Proprietary Information 160

Packages

model "Arcs2"
uses "arcpkg"

declarations
NODES: set of string ! Set of nodes
ARC: array(ARCSET:range) of arc ! Arcs
end-declarations

initializations from 'arcs.dat'
ARC
end-initializations

! Calculate the set of nodes
NODES:=union(a in ARCSET) {ARC(a).Source, ARC(a).Sink}
writeln(NODES)

writeln("Average arc cost: ", sum(a in ARCSET) ARC(a).Cost / getsize(ARCSET))

end-model

At this place, the use of the keyword publicmay call for some explanation. Here and also in theexample ‘myconstants’ the whole declarations block is preceded by the publicmarker, indicatingthat all objects declared in the block are public (i.e., usable outside of the package definition file). If onlysome declarations are public and others in the same block are private to the package, the publicmarker needs to preceed the name of every object within the declarations that is to become publicinstead of marking the entire block as public.
The second occurrence of the publicmarker in the definition of package ‘arcpkg’ is immediately infront of the keyword record, meaning that all fields of the record are public. Again, it is possible toselect which fields are accessible from external files (for example, you may wish to reserve some fieldsfor special flags or calculations within your package) by moving the keyword public from the recorddefinition in front of every field name that is to be marked as public.
A definition of package ‘arcpkg’ equivalent to the one printed above therefore is the following.

package arcpkg2

declarations
public arc = record ! Arcs:
public Source,Sink: string ! Source and sink of arc
public Cost: real ! Cost coefficient
end-record
end-declarations

end-package

16.4 Definition of parameters

Mosel parameters are scalars of one of the four basic types (real/integer/string/boolean). Packagescan define new parameters by declaring their names and type in the parameters section. Thepackage needs to store the current values of the parameters in separate model entities and will usuallyinitialize default values for the parameters.
package parpkg

! Specify parameter names and types
parameters
"p1":real
"p2":integer
"p3":string
"p4":boolean
end-parameters

Fair Isaac Corporation Confidential and Proprietary Information 161

Packages

! Entities for storing current parameter values
declarations
myp1: real
myp2: integer
myp3: string
myp4: boolean
end-declarations

! Set default values for parameters
myp1:=0.25
myp2:=10
myp3:="default"
myp4:=true

!... Parameter access routines ...
end-package

The access routines for the four parameter types have a fixed format, namely
packagename~get[r|i|s|b]param and packagename~set[r|i|s|b]param as shown in thecode extract below.

! Get value of a real parameter
public function parpkg~getrparam(p:string):real
case p of
"p1": returned:=myp1
end-case
end-function

! Get value of an integer parameter
public function parpkg~getiparam(p:string):integer
case p of
"p2": returned:=myp2
end-case
end-function

! Get value of a string parameter
public function parpkg~getsparam(p:string):string
case p of
"p3": returned:=myp3
end-case
end-function

! Get value of a boolean parameter
public function parpkg~getbparam(p:string):boolean
case p of
"p4": returned:=myp4
end-case
end-function

! Set value for real parameters
public procedure parpkg~setparam(p:string,v:real)
case p of
"p1": myp1:=v
end-case
end-procedure

! Set value for integer parameters
public procedure parpkg~setparam(p:string,v:integer)
case p of
"p2": myp2:=v
end-case
end-procedure

! Set value for string parameters
public procedure parpkg~setparam(p:string,v:string)
case p of
"p3": myp3:=v

Fair Isaac Corporation Confidential and Proprietary Information 162

Packages

end-case
end-procedure

! Set value procedure for boolean parameters
public procedure parpkg~setparam(p:string,v:boolean)
case p of
"p4": myp4:=v
end-case
end-procedure

A model using the package ’parpkg’ will access the package parameters via Mosel’s standard
getparam and setparam routines (the parameter names are not case-sensitive and their names canbe preceded by the package name).

model "Packages with parameters"
uses 'parpkg'

! Display default parameter values
writeln("Default values:",
" p1=", getparam("parpkg.P1"), " p2=", getparam("P2"),
" p3=", getparam("parpkg.p3"), " p4=", getparam("p4"))

! Change values
setparam("p1",133)
setparam("parpkg.p2",-77)
setparam("P3","tluafed")
setparam("parpkg.P4",not getparam("parpkg.P4"))

end-model

16.5 Namespaces

A namespace is a group of identifiers in a program that is distinguished by a common name (prefix).When working with mutiple packages it can be helpful to introduce namespaces in order to structurethe data and to determine which model entities are accessible to other (all or preselected) packages ormodels.
A fully qualified entity name in Mosel is of the form

nspc~ident

where nspc is a namespace name and ident an identifier in the namespace. Namespaces and theiraccess are specified via specific compiler directives at the start of the model or package. The packageexample mynspkg1 below defines three namespaces (’ns1’, ’ns3’, and ’ns3~ns31’), two of which arerestricted to a namespace group that comprises a second package mynspkg2, and the namespace’ns3’ is visible to all packages and models. The package further states via the nssearch directive thatany unqualified entity names employed in the package should be searched for in the namespace ’ns1’,meaning that the names belonging to this namespace can be used without the namespace prefix ns1~.
package mynspkg1
namespace ns1, ns3, ns3~ns31 ! This package defines 3 namespaces:
nsgroup ns1: "mynspkg2" ! ⁎ ns1 + ns3~ns31 restricted to pkg2
nsgroup ns3~ns31: "mynspkg2" ! ⁎ ns3 is visible to all
nssearch ns1 ! 'ns1' can be used without prefix

declarations
ns3~R = 1..10
ns1~Ar: array(ns3~R) of integer ! Array with index set in another namespace
vi, ns3~vi, ns3~ns31~vi: integer ! 3 different entities

end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 163

Packages

public declarations
vp: integer ! This entity is visible to all

end-declarations

procedure ns1~proc1(val:integer) ! Subroutine in a namespace
ns3~vi:=val; ns3~ns31~vi:=2⁎val; vi:=val; vp:=val
Ar(5):=val ! No prefix: 'ns1' is in search list
writeln(" In ns1~proc1: ", vi)

end-procedure

public procedure proc2(val:integer) ! Public subroutine
writeln(" In proc2: ", val)

end-procedure

procedure proc3(val:integer) ! Private subroutine
writeln(" In proc3: ", val)

end-procedure
end-package

The package mynspkg1 shows some examples of entity and subroutine defintions for the three cases:private (vi, proc3), in a namespace (ns3~R, ns1~Ar, ns3~vi, ns3~ns31~vi, ns1~proc1), andpublic (vp, proc2).
The second package mynspkg2 that uses functionality from mynspkg1 needs to state whichnamespaces are used, either via a namespace or a nssearch directive.

package mynspkg2
uses 'mynspkg1'
namespace ns3~ns31 ! Namespace used in this package
nssearch ns1 ! 'ns1' can be used without prefix

public procedure frompkg2(val: integer)
proc1(val) ! Procedure in namespace 'ns1'
writeln(" frompkg2:",ns3~ns31~vi) ! Namespace 'ns3~ns31' is not searched
writeln(" vp=", vp) ! Public symbol of pkg1
writeln(" Ar(5)=", Ar(5)) ! Contained in 'ns1' (prefix optional)

end-procedure
end-package

Any model or further package using the previous two packages can access the namespace ’ns3’ andalso define new namespaces of its own, but it is not allowed to access the other two namespaces thatare restricted to this group of packages.
model "mynstest"
uses 'mynspkg1', 'mynspkg2'
namespace ns2 ! A new namespace
nssearch ns3 ! Symbols from 'ns3' can be used without prefix

frompkg2(5) ! Public routine from package mynspkg1
writeln("n3~vi:", vi, " vp:", vp) ! Display values of n3~vi and vp

proc2(4) ! Public subroutine from mynspkg1

end-model

An interesting feature of namespaces is that an entire namespace can be saved via
initializations to simply by indicating its name and the stored information can subsequently beused to initialize entities in some other namespace with matching names and types.

declarations
ns2~vi: integer
I, ns2~R: range

end-declarations

! Store contents of namespace 'ns3'

Fair Isaac Corporation Confidential and Proprietary Information 164

Packages

initializations to "mem:mynsav"
ns3

end-initializations

! Initialize entities with matching names from the saved namespace
initializations from "mem:mynsav"
ns2 as "ns3"

end-initializations
writeln("ns2~vi:", ns2~vi) ! Has received the value of ns3~vi

! Read an individual entity from the saved namespace
initializations from "mem:mynsav"
I as "ns3~R"

end-initializations
writeln("I:", I)

16.6 Packages vs. modules

The possibility of writing packages introduces a second form of libraries for Mosel, the first being
modules (see the ‘Mosel Native Interface User Guide’ for further detail). The following list summarizesthe main differences between packages and modules.

� Definition

– Package
* library written in the Mosel language

– Module
* dynamic library written in C that obeys the conventions of the Mosel Native Interface

� Functionality

– Package
* define

· symbols
· subroutines
· types
· control parameters

– Module
* extend the Mosel language with

· constant symbols
· subroutines
· operators
· types
· control parameters
· I/O drivers

� Efficiency

– Package
* like standard Mosel models

– Module
* faster execution speed

Fair Isaac Corporation Confidential and Proprietary Information 165

Packages

* higher development effort
� Use

– Package
* making parts of Mosel models re-usable
* deployment of Mosel code whilst protecting your intellectual property

– Module
* connection to external software
* time-critical tasks
* definition of new I/O drivers and operators for the Mosel language

As can be seen from the list above, the choice between packages and modules depends largely on thecontents and intended use of the library you wish to write.

Fair Isaac Corporation Confidential and Proprietary Information 166

CHAPTER 17

Language extensions

It has been said before that the functionality of the Mosel language can be extended by means of
modules, that is, dynamic libraries written in C/C++. All through this manual we have used the module
mmxprs to access Xpress Optimizer. Other modules we have used are mmsheet and mmodbc (accessto spreadsheets and databases, see Section 2.2.5), and mmsystem (Sections 5.1 and 11.1).
The full distribution of Mosel includes other functionality (modules and I/O drivers) that has not yetbeen mentioned in this document. In the following sections we give an overview with links where to findadditional information.

17.1 Generalized file handling

The notion of (data) file encountered repeatedly in this user guide seems to imply a physical file.However, Mosel language statements (such as initializations from / to, fopen and fclose,
exportprob) and the Mosel library functions (e.g., XPRMcompmod, XPRMloadmod, or XPRMrunmod)actually work with a much more general definition of a file, including (but not limited to)

� a physical file (text or binary)
� a block of memory
� a file descriptor provided by the operating system
� a function (callback)
� a database

The type of the file is indicated by adding to its name the name of the I/O driver that is to be used toaccess it. In Section 2.2.5 we have used mmodbc.odbc:blend.mdb to access an MS Accessdatabase via the ODBC driver provided by the module mmodbc. If we want to work with a file held inmemory we may write, for instance, mem:filename. The default driver (no driver prefix) is thestandard Mosel file handling.
More generally, an extended file name has the form driver_name:file_name or
module_name.driver_name:file_name if the driver is provided by the module module_name. Thestructure of the file_name part of the extended file name is specific to the driver, it may also consist ofyet another extended file name (e.g. zlib.gzip:tmp:myfile.txt).

17.1.1 Displaying the available I/O drivers

The Mosel core drivers can be displayed from the command line with the following command (thelisting will also include any drivers that are provided by currently loaded modules):

Fair Isaac Corporation Confidential and Proprietary Information 167

Language extensions

mosel exam -i

The drivers provided by modules are displayed by the exam command for the corresponding module (inthis example: mmodbc)
mosel exam -i mmodbc

Library drivers (in particular the Java module mmjava that is embedded in the Mosel core and also the
mmdotnet module on Windows platforms) can be displayed with the help of the correspondingprogram mmdispdso.[c|cs|java] in the subdirectory examples/mosel/Library of the Xpressdistribution. The command for running the Java version might look as follows (please refer to theprovided makefile):

java -classpath $XPRESSDIR/xprm.jar:. mmdispdso mmjava

17.1.2 List of I/O drivers

The standard distribution of Mosel defines the following I/O drivers (tee, null, bin, and tmp aredocumented in the ’Mosel Language Reference Manual’; the drivers sysfd, mem, cb, and raw thatmainly serve when interfacing Mosel with a host application are documented in the ‘Mosel LibrariesReference Manual’):
bin Write (and read) data files in a platform independent binary format. The bin driver canonly be used for initializations blocks as a replacement of the default driver. Filesin bin format are generally smaller than the ASCII equivalent and preserve accuracy offloating point numbers.

Example: the following outputs data to a text file in binary format
initializations to "bin:results.txt"

Another likely use of bin is in combination with mem or shmem for exchanging data inmemory (see Section 17.2.3):
initializations to "bin:shmem:results"

cb Use a (callback) function as a file (e.g., for reading and writing dynamically sized data in
initializations blocks, see the examples in Section 13.4.3, or to write your ownoutput or error stream handling functions when working with the Mosel libraries, seeSection 13.5 for an example).

mem Use memory instead of physical files for reading or writing data (e.g., for exchangingdata between a model and the calling C application as shown in Section 13.4 or forcompiling/loading a model to/from memory when working with the Mosel libraries).
Example: the following lines will compile the Mosel model burglar2.mos to memoryand then load it from memory (full example in file ugcompmem.c).

XPRMmodel mod;
char bimfile[2000]; /⁎ Buffer to store BIM file ⁎/
char bimfile_name[64]; /⁎ File name of BIM file ⁎/

XPRMinit()) /⁎ Initialize Mosel ⁎/

/⁎ Prepare file name for compilation using 'mem' driver: ⁎/
/⁎ "mem:base_address/size[/actual_size_of_pointer]" ⁎/
sprintf(bimfile_name, "mem:%p/%d", bimfile, (int)sizeof(bimfile));

/⁎ Compile model file to memory ⁎/
XPRMcompmod(NULL, "burglar2.mos", bimfile_name, "Knapsack example"))

Fair Isaac Corporation Confidential and Proprietary Information 168

Language extensions

/⁎ Load a BIM file from memory ⁎/
mod = XPRMloadmod(bimfile_name, NULL);

null Disable a stream.
Example: adding the line

fopen("null:", F_OUTPUT)

in a Mosel model will disable all subsequent output by this model (until the outputstream is closed or a new output stream is opened).
raw Implementation of the initializations block in binary mode, typically used incombination with mem for data exchange with a C host application (see Section 13.4).
sysfd Working with operating system file descriptors (for instance, file descriptors returned bythe C function open).

Example: in a C program, the line
XPRMsetdefstream(NULL, XPRM_F_ERROR, "sysfd:1");

will redirect the Mosel error stream to the default output stream.
tee Output into up to 6 files simultaneously (e.g., to display a log on screen and write it to afile at the same time).

Example: adding the line
fopen("tee:result.txt&tmp:log.txt&", F_OUTPUT)

in a Mosel model will redirect all subsequent model output to the files result.txt and
tmp:log.txt, and at the same time display the output on the default output (screen),the latter is denoted by the & sign at the end of the filename string. The output to bothlocations is terminated by the statement

fclose(F_OUTPUT)

after which output will again only go to default output.
tmp Extension to the default driver that locates the specified file in the temporary directoryused by Mosel.

Example: adding the line
fopen("tmp:log.txt", F_OUTPUT+F_APPEND)

redirects all subsequent output from a models to the file log.txt that is located inMosel’s temporary directory. It is equivalent to
fopen(getparam("TMPDIR") + "/log.txt", F_OUTPUT+F_APPEND)

Some modules, listed below in alphabetical order, define additional I/O drivers. The drivers aredocumented with the corresponding module in the ‘Mosel Language Reference Manual’:
� mmdotnet

dotnet Use a C# stream or object in place of a file in Mosel.
Example: The following C# program extract uses the dotnet driver to send datain standard initializations text format via a stream from the C# host program to amodel (the model file burglar13.mos is the same as in Section 13.4.3, it usesthe parameter DATAFILE as the filename for an initializations from blockthat expects to read data with the label ’DATA’.)

Fair Isaac Corporation Confidential and Proprietary Information 169

Language extensions

// String containing initialization data for the model
const string BurglarDat =
"DATA: [(\"camera\") [15 2] (\"necklace\") [100 20] " +
"(\"vase\") [90 20] (\"picture\") [60 30] (\"tv\") [40 40] " +
"(\"video\") [15 30] (\"chest\") [10 60] (\"brick\") [1 10]]\n";

static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar13.mos");

// Bind a stream based on the BurglarDat data to the name 'BurglarIni'
// where the model will expect to find its initialization data
model.Bind("BurglarIni", new StringReader(BurglarDat));

// Pass data location as a parameter to the model
model.SetExecParam("DATAFILE","dotnet:BurglarIni");

// Run the model
model.Run();

}

dotnetraw Exchange of data between a Mosel model and the C# application running themodel using C# array structures; C# version of raw.
Example: Send the data held in the two arrays vdata and wdata to a Mosel andretrieve solution data into the array solution. We use the option noindex with the
dotnetraw driver to indicate that all data are saved in dense format (i.e. as arrayscontaining just the data values, without any information about the indices).

// Arrays containing initialization data for the model
static double[] vdata = new double[] {15,100,90,60,40,15,10, 1};
static double[] wdata = new double[] { 2, 20,20,30,40,30,60,10};

// Main entry point for the application
static void Main(string[] args) {
// Initialize Mosel
XPRM mosel = XPRM.Init();

// Compile and load the Mosel model
XPRMModel model = mosel.CompileAndLoad("burglar8d.mos");

// Associate the .NET objects with names in Mosel
model.Bind("vdat", vdata);
model.Bind("wdat", wdata);

// Create a new array for solution data and bind it to the name 'sol'
double[] solution = new double[8];
mosel.Bind("sol", solution);

// Pass data location as a parameter to the model
model.ExecParams =

"VDATA='noindex,vdat',WDATA='noindex,wdat',SOL='noindex,sol'";

// Run the model
model.Run();

// Print the solution
Console.WriteLine("Objective value: {0}", model.ObjectiveValue);
for (int i=0;i<8;i++)

Console.Write(" take({0}): {1}", (i+1), solution[i]);
Console.WriteLine();

}

The model file burglar8d.mos uses the driver name as the file name in the
initializations sections:

Fair Isaac Corporation Confidential and Proprietary Information 170

Language extensions

initializations from 'dotnetraw:'
VALUE as VDATA WEIGHT as WDATA

end-initializations
...

initializations to 'dotnetraw:'
soltake as SOL

end-initializations

� mmetc

diskdata Access data in text files in diskdata format (see Sections 3.4.3 and 10.2.3).
� mmhttp

url Access files that are stored on an HTTP enabled file serverfor reading, writing, ordeletion (via fdelete).
Example 1: the following command downloads and executes the Mosel BIM file
mymodel.bim that is stored on the web server myserver:

mosel run mmhttp.url:http://myserver/mymodel.bim

Example 2: the following lines of Mosel code save data held in the model object
results to an XML format file on the server myserver that needs to be able toaccept HTTP PUT requests.

uses "mmxml"
declarations

results: xmldoc
end-declarations
save(results, "mmhttp.url:http://myserver/myresults.xml")

� mmjava

java Use a Java stream or a ByteBuffer in place of a file in Mosel (e.g. for redirectingdefault Mosel streams to Java objects, see the example in Section 14.1.8).
Example 1: in a Java program, the line

mosel.setDefaultStream(XPRM.F_ERROR, "java:java.lang.System.out");

(where mosel is an object of class XPRM) will redirect the Mosel error stream tothe default output stream of Java.
Example 2: the following lines will compile the Mosel model burglar2.mos tomemory and then load it from memory (full example in the file
ugcompmem.java).

XPRM mosel;
XPRMModel mod;
ByteBuffer bimfile; // Buffer to store BIM file

mosel = new XPRM(); // Initialize Mosel

// Prepare file names for compilation:
bimfile=ByteBuffer.allocateDirect(2048); // Create 2K byte buffer
mosel.bind("mybim", bimfile); // Associate Java obj. with a

// Mosel name

// Compile model to memory
mosel.compile("", "burglar2.mos", "java:mybim", "");

bimfile.limit(bimfile.position()); // Mark end of data in buffer
bimfile.rewind(); // Back to the beginning

mod=mosel.loadModel("java:mybim"); // Load BIM file from memory
mosel.unbind("mybim"); // Release memory
bimfile=null;

Fair Isaac Corporation Confidential and Proprietary Information 171

Language extensions

jraw Exchange of data between a Mosel model and the Java application running themodel; Java version of raw. See Section 14.1.7 for examples.
� mmjobs

shmem Use shared memory instead of physical files for reading or writing data (e.g., forexchanging data between several models executed concurrently—one modelwriting, several models reading—as shown in Section 17.2.3, or forcompiling/loading a model to/from memory from within another model, seeSection 17.2.2).
mempipe Use memory pipes for reading or writing data (e.g., for exchanging data betweenseveral models executed concurrently—one model reading, several models writing;see Section ’Dantzig-Wolfe decomposition’ of thewhitepaper ’Multiple models and parallel solving with Mosel’ for an example).
rcmd Starts the specified command in a new process and connects its standard inputand output streams to the calling Mosel instance.

Example: The following line starts a Mosel instance on a remote computer withthe name some_other_machine connecting to it via rsh. The command mosel
-r starts Mosel in remote mode.

rcmd:rsh some_other_machine mosel -r

rmt Can be used with any routine expecting a physical file for accessing files onremote instances. A particular instance can be specified by prefixing the file nameby its node number enclosed in square brackets. See the distributed computingversions of the models in the whitepaper Multiple models and parallel solving with
Mosel for further examples.
Example: the following loads the BIM file mymodel.bim that is located at theparent node (-1) of the current instance into the model myModel of the Moselinstance myInst.

load(myInst, myModel, "rmt:[-1]mymodel.bim")

The rmt driver can be combined with cb, sysfd, tmp or java, such as
fopen("rmt:tmp:log.txt", F_OUTPUT)

xsrv Connects to the specified host running the Mosel Remote Launcher xprmsrv.Optionally, the port number, a context name, a password, and environment variablesettings can be specified.
Example: the following starts a new Mosel instance (possibly using a differentXpress version) on the current machine, redefining Mosel’s current workingdirectory and the environment variable MYDATA.

xsrv:localhost/myxpress|MOSEL_CWD=C:\workdir|MYDATA=${MOSEL_CWD}\data

xssh Secure version of the xsrv driver to connect to the specified host running theMosel Remote Launcher xprmsrv through a secure SSH tunnel.
� mmoci

oci Access an Oracle database for reading and writing in initializations blocks(see the whitepaper Using ODBC and other database interfaces with Mosel forfurther examples).
Example: the OCI driver is used with a connection string that contains thedatabase name, user name and password in the following format

initializations from "mmoci.oci:myusername/mypassword@dbname

Fair Isaac Corporation Confidential and Proprietary Information 172

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Language extensions

� mmodbc

odbc Access data in external data sources via an ODBC connection (see Section 2.2.5for an example).
� mmsheet

csv Access spreadsheets in CSV format. In addition to the standard options supportedby other Mosel spreadsheet drivers (such as grow for dynamic sizing of outputranges and noindex for dense data format), this driver can be configured withfield and decimal separators and also with the values representing ’true’ and ’false’.
Example: the following Mosel code for reading data from the file mydata.csvsets the separator sign to ’;’, a comma is used as decimal separator, and theBoolean values true and false are represented by ’y’ and ’n’ respectively:

initializations from "mmsheet.csv:dsep=,;fsep=;;true=y;false=n;mydata.csv
A as "[B2:D8]"
B as "[E2:Z10](#3,#1)" ! 3rd and 1st column from the range

end-initializations

Notice that with CVS format files there is no notion of range or field names and thecell positions need to be used to specify the data location.
excel Access data in MS Excel spreadsheets directly (see the example in Section2.2.5.1).
xls Access spreadsheets in Excel’s XLS format (see Section 2.2.5.3 for an example).
xlsx Access spreadsheets in Excel’s XLSX and XLSM formats (usage in analogy to theXLS example shown in Section 2.2.5.3).

� mmsystem

pipe Open a pipe and start an external program which is used as input or output streamfor a Mosel model.
Example: the following will start gnuplot and draw a 3-dimensional sphere withdata for the radius R and position (X,Y,Z) defined in the Mosel model:

fopen("mmsystem.pipe:gnuplot -p", F_OUTPUT+F_LINBUF)
writeln('set parametric')
writeln('set urange [0:2⁎pi]')
writeln('set vrange [0:2⁎pi]')
writeln('set pm3d depthorder hidden3d 3')
writeln("splot cos(u) ⁎ cos(v) ⁎", R, "+", X,

", sin(u) ⁎ cos(v)⁎", R, "+", Y,
", sin(v)⁎", R, "+", Z, " notitle with pm3d")

writeln("pause mouse keypress,close")

text Use a (multiline) text as a file (see Section 17.6 for further detail on the type ’text’).
Example: the following will compile the model source held in the text
source_of_model to a BIM file in a temporary directory (file
ugcompfrommem.mos):

public declarations
source_of_model=`SUBMODELSOURCE

model Burglar
uses 'mmxprs'

declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = 1..8 ! Index range for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 173

Language extensions

VALUE :: [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:: [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)⁎take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)⁎take(i) <= WTMAX
! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the problem
writeln("Solution:\n Objective: ", getobjval)
end-model
SUBMODELSOURCE`
end-declarations

! Compile the model from memory
if compile("", "text:source_of_model", "tmp:burglar.bim")<>0 then
exit(1)

end-if

� zlib

deflate Handles files compressed using the zlib compression format.
Example: decompress the file myfile.gz to myfile:

fcopy("zlib.deflate:myfile.gz", "myfile")

gzip Handles files compressed using the gzip compression format.
Example: the following statement creates the compressed file myfile.gz from
myfile.txt:

fcopy("myfile.txt", "zlib.gzip:myfile.gz")

The reader is referred to the whitepaper Generalized file handling in Mosel that is provided as a part ofthe Xpress documentation in the standard distribution and also on the Xpress website under ‘ProductDocumentation’ for further explanation of this topic and a documented set of examples, includingsome user-written I/O drivers.

17.2 Multiple models and parallel solving with mmjobs

The module mmjobs makes it possible to exchange information between models runningconcurrently—locally or in a network. Its functionality includes facilities for handling Mosel instances(e.g. connecting and disconnecting Mosel instances, access to remote files), model management (e.g.compiling, running, or interrupting a model from within a second model), synchronization of concurrentmodels based on event queues, and a shared memory I/O driver for an efficient exchange of databetween models that are executed concurrently.
Several complete examples (including examples of Benders decomposition and Dantzig-Wolfedecomposition) of the use of module mmjobs are described in the whitepaper Multiple models and
parallel solving with Mosel that is provided as a part of the Xpress documentation and also on the’Product Documentation’ page of the Xpress website. We show here how to use the basic functionalityfor executing a model from a second model.

17.2.1 Running a model from another model

As a test case, we shall once more work with model prime.mos from Section 8.3. In the first instance,we now show how to compile and run this model from a second model, runprime.mos:

Fair Isaac Corporation Confidential and Proprietary Information 174

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_io/dhtml/
http://www.fico.com/xpress
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_parallel/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/xpress

Language extensions

model "Run model prime"
uses "mmjobs"

declarations
modPrime: Model
event: Event
end-declarations

! Compile 'prime.mos'
if compile("prime.mos")<>0 then exit(1); end-if

load(modPrime, "prime.bim") ! Load bim file

run(modPrime, "LIMIT=50000") ! Start execution and
wait(2) ! wait 2 seconds for an event

if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")
stop(modPrime) ! ... stop the model,
wait ! ... and wait for the termination event
end-if

! An event is available: model finished
event:=getnextevent
writeln("Exit status: ", getvalue(event))
writeln("Exit code : ", getexitcode(modPrime))

unload(modPrime) ! Unload the submodel
end-model

The compile command generates the BIM file for the given submodel; the command load loads thebinary file into Mosel; and finally we start the model with the command run. The run command is notused in its basic version (single argument with the model reference): here its second argument sets anew value for the parameter LIMIT of the submodel.
In addition to the standard compile–load–run sequence, the model above shows some basic featuresof interaction with the submodel: if the submodel has not terminated after 2 seconds (that is, if it hasnot sent a termination message) it is stopped by the master model. After termination of the submodel(either by finishing its calculations within less than 2 seconds or stopped by the master model) itstermination status and the exit value are retrieved (functions getvalue and getexitcode).Unloading a submodel explicitly as shown here is only really necessary in larger applications thatcontinue after the termination of the submodel, so as to free the memory used by it.
Note: our example model shows an important property of submodels—they are running in parallel tothe master model and also to any other submodels that may have been started from the master model.It is therefore essential to insert wait at appropriate places to coordinate the execution of the differentmodels.

17.2.2 Compiling to memory

The model shown in the previous section compiles and runs a submodel. The default compilation of aMosel file filename.mos generates a binary model file filename.bim. To avoid the generation ofphysical BIM files for submodels we may compile the submodel to memory, making use of the conceptof I/O drivers introduced in Section 17.1.
Compiling a submodel to memory is done by replacing the standard compile and load commands bythe following lines (model runprime2.mos):

if compile("","prime.mos","shmem:bim")<>0 then
exit(1)
end-if

load(modPrime,"shmem:bim") ! Load bim file from memory...
fdelete("shmem:bim") ! ... and release the memory block

Fair Isaac Corporation Confidential and Proprietary Information 175

Language extensions

The full version of compile takes three arguments: the compilation flags (e.g., use "g" for debugging),the model file name, and the output file name (here a label prefixed by the name of the shared memorydriver). Having loaded the model we may free the memory used by the compiled model with a call to
fdelete (this subroutine is provided by the module mmsystem).

17.2.3 Exchanging data between models

When working with submodels we are usually not just interested in executing the submodels, we alsowish to retrieve their results in the master model. This is done most efficiently by exchanging data in(shared) memory as shown in the model runprimeio.mos below. Besides the retrieval and printout ofthe solution we have replaced the call to stop by sending the user event ‘STOPMOD’ to the submodel:instead of simply terminating the submodel this event will make it interrupt its calculations and writeout the current solution. To make sure that the submodel is actually running at the point where we sentthe ‘STOPMOD’ event, we have also introduced an event sent from the submodel to the master toindicate the point of time when it starts the calculations (with heavy operating system loads the actualsubmodel start may be delayed). Once the submodel has terminated (after sending the ‘STOPMOD’event we wait for the model’s termination message) we may read its solution from memory, using the
initializations block with the drivers raw (binary format) and shmem (read from shared memory).

model "Run model primeio"
uses "mmjobs"

declarations
modPrime: Model
NumP: integer ! Number of prime numbers found
SetP: set of integer ! Set of prime numbers
STOPMOD = 2 ! "Stop submodel" user event
MODREADY = 3 ! "Submodel ready" user event
end-declarations

! Compile 'prime.mos'
if compile("primeio.mos")<>0 then exit(1); end-if

load(modPrime, "primeio.bim") ! Load bim file

! Disable model output
setdefstream(modPrime,"","null:","null:")
run(modPrime, "LIMIT=35000") ! Start execution and
wait ! ... wait for an event
if getclass(getnextevent) <> MODREADY then
writeln("Problem with submodel run")
exit(1)
end-if

wait(2) ! Let the submodel run for 2 seconds

if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")
send(modPrime, STOPMOD, 0) ! ... stop the model, then wait
wait
end-if
dropnextevent ! Discard end events

initializations from "bin:shmem:resdata"
NumP SetP as "SPrime"
end-initializations

writeln(SetP) ! Output the result
writeln(" (", NumP, " prime numbers.)")

unload(modPrime)
end-model

Fair Isaac Corporation Confidential and Proprietary Information 176

Language extensions

We now have to modify the submodel (file primeio.mos) correspondingly: at its start it sends the‘MODREADY’ event to trigger the start of the time measurement in the master and it further needs tointercept the ‘STOPMOD’ event interrupting the calculations (via an additional test isqueueempty forthe repeat-until loop) and write out the solution to memory in the end:
model "Prime IO"
uses "mmjobs"

parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
OUTPUTFILE = "bin:shmem:resdata" ! Location for output data
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
MODREADY = 3 ! "Submodel ready" user event
end-declarations

send(MODREADY,0) ! Send "model ready" event

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until (SNumbers={} or not isqueueempty)

NumP:= getsize(SPrime)

initializations to OUTPUTFILE
NumP SPrime
end-initializations

end-model

Note: since the condition isqueueempty is tested only once per iteration of the repeat-until loop,the termination of the submodel is not immediate for large values of LIMIT. If you wish to run thismodel with very large values, please see Section 15.2 for an improved implementation of the primenumber algorithm that considerably reduces its execution time.
17.2.4 Distributed computing

The module mmjobs not only allows the user to start several models in parallel on a given machine, italso makes it possible to execute models remotely and to coordinate their processing. With only fewadditions, the model from Section 17.2.1 is extended to form model version runprimedistr.mos thatlaunches the submodel prime.mos on another Mosel instance (either on the local machine as in thepresent example or on some other machine within a network specified by its name or IP address in the
connect statement): we need to create a new Mosel instance (through a call to connect) and add anadditional argument to the load statement to specify the Mosel instance we wish to use. All elseremains the same as in the single-instance version.

model "Run model prime remotely"
uses "mmjobs"

Fair Isaac Corporation Confidential and Proprietary Information 177

Language extensions

declarations
moselInst: Mosel
modPrime: Model
event: Event
end-declarations

! Compile 'prime.mos' locally
if compile("prime.mos")<>0 then exit(1); end-if

! Start a remote Mosel instance:
! "" means the node running this model

if connect(moselInst, "")<>0 then exit(2); end-if

! Load bim file into remote instance
load(moselInst, modPrime, "rmt:prime.bim")

run(modPrime, "LIMIT=50000") ! Start execution and
wait(2) ! wait 2 seconds for an event

if isqueueempty then ! No event has been sent...
writeln("Model too slow: stopping it!")
stop(modPrime) ! ... stop the model, then wait
wait
end-if

! An event is available: model finished
event:=getnextevent
writeln("Exit status: ", getvalue(event))
writeln("Exit code : ", getexitcode(modPrime))

unload(modPrime) ! Unload the submodel
end-model

This model can be extended to include data exchange between the master and the submodel exactly inthe same way as in the example of Section 17.2.3. The main difference (besides the connection to aremote instance) lies in the use of the driver rmt to denote the Mosel instance where data is to besaved. In our case, we wish to save data on the instance running the master model, meaning that weneed to use the rmt: prefix when writing output within the submodel. The new output file name ispassed into the submodel via the runtime parameter OUTPUTFILE:
run(modPrime, "LIMIT=35000,OUTPUTFILE=bin:rmt:shmem:resdata")

The master model then simply reads as before from its own instance:
initializations from "bin:shmem:resdata"
NumP SetP as "SPrime"
end-initializations

The Mosel model for the extended version including data exchange is provided in the file
runprimeiodistr.mos.

17.3 Graphics and GUIs

Different components of FICO Xpress Optimization provide graphics and GUI functionality for Moselmodels:
� Users may enrich their Mosel models with graphical output using the module mmsvg.
� Xpress Insight embeds Mosel models into a multi-user application for deploying optimizationmodels in a distributed client-server architecture. Through the Xpress Insight GUI, business usersinteract with Mosel models to evaluate different scenarios and model configurations withoutdirectly accessing to the model itself.

Fair Isaac Corporation Confidential and Proprietary Information 178

Language extensions

� XML is a widely used data format, particularly in the context of web-based applications. TheMosel module mmxml provides functionality for generating and handling XML documents.
mmxml can also be used to produce HTML format output from Mosel that can be incorporatedinto Xpress Insight applications.

The functionality of modules mmxml and mmsvg is documented in the Mosel Language ReferenceManual. Xpress Insight has several manuals and guides for developers and GUI users, most importantlythe ’Xpress Insight Developer Guide’ and ’Xpress Insight Web Client User Guide’; the correspondingexamples are located in the subdirectory examples/insight of the Xpress distribution.
17.3.1 Drawing user graphs with mmsvg

The graphic in Figure 17.1 is an example of using mmsvg to produce a graphical representation of thesolution to the transport problem from Section 3.2.
It was obtained by calling the following procedure draw_solution at the end of the model file (that is,after the call to minimize).

procedure draw_solution
declarations
YP: array(PLANT) of integer ! y-coordinates of plants
YR: array(REGION) of integer ! y-coordinates of sales regions
end-declarations

! Scale the size of the displayed graph
svgsetgraphviewbox(0,0,4,getsize(REGION)+1)
svgsetgraphscale(100)

! Determine y-coordinates for plants and regions
ct:= 1+floor((getsize(REGION)-getsize(PLANT))/2)
forall(p in PLANT, ct as counter) YP(p):= ct

ct:=1
forall(r in REGION, ct as counter) YR(r):= ct

! Draw the plants
svgaddgroup("PGr", "Plants", svgcolor(0,63,95))
forall(p in PLANT) svgaddtext(0.55, YP(p)-0.1, p)

! Draw the sales regions
svgaddgroup("RGr", "Regions", svgcolor(0,157,169))
forall(r in REGION) svgaddtext(3.1, YR(r)-0.1, r)

! Draw all transport routes
svgaddgroup("TGr", "Routes", SVG_GREY)
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)))
svgaddline(1, YP(p), 3, YR(r))

! Draw the routes used by the solution
svgaddgroup("SGr", "Solution", SVG_ORANGE)
forall(p in PLANT, r in REGION | exists(flow(p,r)) and getsol(flow(p,r)) > 0)
svgaddarrow(1, YP(p), 3, YR(r))

! Save graphic in SVG format
svgsave("transport.svg")

! Display the graphic
svgrefresh
svgwaitclose
end-procedure

Fair Isaac Corporation Confidential and Proprietary Information 179

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/insight_dev_guide/

Language extensions

Figure 17.1: User graph for the transport problem

17.3.2 XML and HTML

HTML files are simple text files—their contents can be generated as free-format output from Mosel (seefor example Section 10.2). However, more elegantly we can use Mosel’s XML module mmxml togenerate HTML documents.
17.3.2.1 mmxml

The module mmxml provides an XML parser and generator for the manipulation of XML documentsfrom Mosel models. An XML document is stored as a list of nodes. mmxml supports the node types’element’, ’text’, ’comment’, CDATA, ’processing instruction’ and DATA (see section mmxml of the MoselLanguage Reference Manual for further detail). Each node is characterized by a name and a value.Element nodes have also an ordered list of child nodes. The root node is a special element node withno name, no parent and no successor that includes the entire document as its children.
The type xmldoc represents an XML document stored in the form of a tree. Each node of the tree isidentified by a node number (an integer) that is attached to the document (i.e. a node number cannot beshared by different documents and in two different documents the same number represents twodifferent nodes). The root node of the document has number 0. Nodes can be retrieved using a pathsimilar to a directory path used to locate a file (usually called XML path).
17.3.2.2 Reading and writing XML data

Data for the ’Transport’ problem has so far been given as a text data file in initializations format.We now wish to read in the same data from the XML file transprt.xml shown here:
<transport fuelcost="17">
<demand>

<region name="Scotland">2840</region>
<region name="North">2800</region>

Fair Isaac Corporation Confidential and Proprietary Information 180

Language extensions

<region name="SWest">2600</region>
<region name="SEast">2820</region>
<region name="Midlands">2750</region>

</demand>
<plantdata>
<plant name="Corby">

<capacity>3000</capacity>
<cost>1700</cost>

</plant>
<plant name="Deeside">

<capacity>2700</capacity>
<cost>1600</cost>

</plant>
<plant name="Glasgow">

<capacity>4500</capacity>
<cost>2000</cost>

</plant>
<plant name="Oxford">

<capacity>4000</capacity>
<cost>2100</cost>

</plant>
</plantdata>
<routes>
<route from="Corby" to="North" capacity="1000" distance="400"/>
<route from="Corby" to="SWest" capacity="1000" distance="400"/>
<route from="Corby" to="SEast" capacity="1000" distance="300"/>
<route from="Corby" to="Midlands" capacity="2000" distance="100"/>
<route from="Deeside" to="Scotland" capacity="1000" distance="500"/>
<route from="Deeside" to="North" capacity="2000" distance="200"/>
<route from="Deeside" to="SWest" capacity="1000" distance="200"/>
<route from="Deeside" to="SEast" capacity="1000" distance="200"/>
<route from="Deeside" to="Midlands" capacity="300" distance="400"/>
<route from="Glasgow" to="Scotland" capacity="3000" distance="200"/>
<route from="Glasgow" to="North" capacity="2000" distance="400"/>
<route from="Glasgow" to="SWest" capacity="1000" distance="500"/>
<route from="Glasgow" to="SEast" capacity="200" distance="900"/>
<route from="Oxford" to="North" capacity="2000" distance="600"/>
<route from="Oxford" to="SWest" capacity="2000" distance="300"/>
<route from="Oxford" to="SEast" capacity="2000" distance="200"/>
<route from="Oxford" to="Midlands" capacity="500" distance="400"/>

</routes>
</transport>

The Mosel code (file transport_xml.mos) for reading this XML file first loads the entire document(load). We then need to retrieve the nodes we are interested in from the XML document tree structure.This is achieved by selecting lists of nodes that satisfy some specified condition (here: a specific XMLpath that describes the location of the desired nodes in the document, such as
transport/demand/region). XML documents are saved as text, we therefore use functions like
getrealvalue or getstrattr to retrieve data and indices of the desired type into the model datastructures.

uses "mmxml"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: dynamic array(PLANT,REGION) of real

! Capacity on each route plant->region
DISTANCE: dynamic array(PLANT,REGION) of real

! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

AllData: xmldoc ! XML document

Fair Isaac Corporation Confidential and Proprietary Information 181

Language extensions

NodeList: list of integer ! List of XML nodes
end-declarations

load(AllData, "transprt.xml") ! Load the entire XML document

getnodes(AllData, "transport/demand/region", NodeList)
forall(l in NodeList) ! Read demand data
DEMAND(getstrattr(AllData,l,"name")):= getrealvalue(AllData, l)

getnodes(AllData, "transport/plantdata/plant", NodeList)
forall(l in NodeList) do ! Read plant data
PLANTCAP(getstrattr(AllData,l,"name")):=
getrealvalue(AllData, getnode(AllData,l,"capacity"))

PLANTCOST(getstrattr(AllData,l,"name")):=
getrealvalue(AllData, getnode(AllData,l,"cost"))

end-do
! Read routes data

getnodes(AllData, "transport/routes/route", NodeList)
forall(l in NodeList) do
DISTANCE(getstrattr(AllData,l,"from"),getstrattr(AllData,l,"to")):=
getrealattr(AllData,l,"distance")

TRANSCAP(getstrattr(AllData,l,"from"),getstrattr(AllData,l,"to")):=
getrealattr(AllData,l,"capacity")

end-do
! Read 'fuelcost' attribute

FUELCOST:= getrealattr(AllData, getnode(AllData, "transport"), "fuelcost")

In the model extract above we have used several simple XML path specifications to retrieve lists ofnodes from the XML document. Such queries can take more complicated forms, including tests onnode values (all plants with capacity >3500) or attributes (all routes to ’Scotland’)—see the chapter on
mmxml in the Mosel Language Reference Manual for further detail.

getnodes(AllData, "transport/plantdata/plant/capacity[number()>3500]/..", NodeList)
getnodes(AllData, "transport/routes/route[@to='Scotland']", NodeList)

We now also want to output the optimization results in XML format. As a first step, we create a rootelement ’solution’ in the XML document ResData. In a well-formed XML document, all elements needto form a tree under the root element. All following nodes (containing the solution information perplant) are therefore created as element nodes under the ’solution’ node. The objective function solutionvalue and the execution date of the model are saved as attributes to the ’solution’ tag. And finally, weuse save to write an XML file or display a node with the (sub)tree formed by its children.
declarations
ResData: xmldoc ! XML document
Sol,Plant,Reg,Total: integer ! XML nodes
end-declarations

Sol:=addnode(ResData, 0, XML_ELT, "solution") ! Create root node "solution"
setattr(ResData, Sol, "Objective", MinCost.sol) ! Obj. value as attribute
setattr(ResData, Sol, "RunDate", text(datetime(SYS_NOW)))

forall(p in PLANT) do
Plant:=addnode(ResData, Sol, XML_ELT, "plant") ! Add a node to "solution"
setattr(ResData, Plant, "name", p) ! ... with attribute "name"
forall(r in REGION | flow(p,r).sol>0) do
Reg:=addnode(ResData, Plant, XML_ELT, "region") ! Add a node to "plant"
setattr(ResData, Reg, "name", r) ! ... with attribute "name"
setvalue(ResData, Reg, flow(p,r).sol) ! ... and solution value

end-do
Total:=addnode(ResData, Plant, "total",

sum(r in REGION)flow(p,r).sol) ! Add node with total flow
end-do

save(ResData, "transportres.xml") ! Save solution to XML format file
save(ResData, Sol, "") ! Display XML format solution on screen

Fair Isaac Corporation Confidential and Proprietary Information 182

Language extensions

The Mosel code printed above will create a file transportres.xml with the following contents:
<?xml version="1.0" encoding="iso-8859-1"?>
<solution Objective="8.1018e+07" RunDate="2012-10-17T14:00:50,664">
<plant name="Corby">
<region name="North">80</region>
<region name="SEast">920</region>
<region name="Midlands">2000</region>
<total>3000</total>

</plant>
<plant name="Deeside">
<region name="North">1450</region>
<region name="SWest">1000</region>
<region name="Midlands">250</region>
<total>2700</total>

</plant>
<plant name="Glasgow">
<region name="Scotland">2840</region>
<region name="North">1270</region>
<total>4110</total>

</plant>
<plant name="Oxford">
<region name="SWest">1600</region>
<region name="SEast">1900</region>
<region name="Midlands">500</region>
<total>4000</total>

</plant>
</solution>

17.3.2.3 Generating HTML

An HTML file is generated and written out just like XML documents. The name of the root element inthis case usually is ’html’. Below follows an extract of the code (example file transport_html.mos)that generates the HTML page shown in Figure 17.2. Notice the use of copynode to insert the samenode/subtree at different positions in the XML document. By default, new nodes created with addnodeare appended to the end of the node list of the specified parent node. This corresponds to using thevalue XML_LASTCHILD for the (optional) positioning argument of subroutines creating new nodes.
declarations
ResultHTML: xmldoc
Root, Head, Body, Style, Title, Table, Row, Cell, EmptyCell: integer
end-declarations

Root:= addnode(ResultHTML, 0, XML_ELT, "html") ! Root node
Head:= addnode(ResultHTML, Root, XML_ELT, "head") ! Element node
Style:= addnode(ResultHTML, Head, XML_ELT, "style",
"body {font-family: Verdana, Geneva, Helvetica, Arial, sans-serif;" +
" color: 003f5f; background-color: d8e3e9 }\n" +
"table td {background-color: e9e3db; color: 003f5f; text-align: right }\n" +
"table th {background-color: f7c526; color: 003f5f}")

setattr(ResultHTML, Style, "type", "text/css") ! Set an attribute

Body:= addnode(ResultHTML, Root, XML_ELT, "body") ! Body of HTML page
Title:= addnode(ResultHTML, Body XML_ELT, "h2", "Transportation Plan")

Table:= addnode(ResultHTML, Body, XML_ELT, "table") ! 'table' element
setattr(ResultHTML, Table, "width", '100%') ! Set some attributes
setattr(ResultHTML, Table, "border", 0)
Row:= addnode(ResultHTML, Table, XML_ELT, "tr") ! Table row element
EmptyCell:= addnode(ResultHTML, Row, XML_ELT, "td") ! Table cell element
setattr(ResultHTML, EmptyCell, "width", '5%') ! Set an attribute
Cell:= addnode(ResultHTML, Row, "td", "Total cost: " +

textfmt(MinCost.sol,6,2)) ! Table cell element with contents
Cell:= addnode(ResultHTML, Cell, XML_DATA, "£") ! DATA node
Cell:= addnode(ResultHTML, Row, "td", text(datetime(SYS_NOW)))

Fair Isaac Corporation Confidential and Proprietary Information 183

Language extensions

EmptyCell:= ! Node created by copying a node
copynode(ResultHTML, EmptyCell, ResultHTML, Row, XML_LASTCHILD)

...

save(ResultHTML, "transportres.html") ! Write the HTML file
save(ResultHTML, Table, "") ! Display table def. on screen

The resulting HTML page might now look as shown in Figure 17.2.

Figure 17.2: HTML page generated by Mosel

17.3.3 Xpress Insight

For embedding a Mosel model into Xpress Insight, we make a few edits to the model. All functionalitythat is needed to establish the connection between Mosel and Xpress Insight is provided by mminsightthat now needs to be loaded. Since Xpress Insight manages the data scenarios, we only need to read indata from the original sources when loading the so-called baseline scenario into Xpress Insight(triggered by the test of insightgetmode=INSIGHT_MODE_LOAD in the model below), for modelruns started from Xpress Insight (that is, in the case of insightgetmode=INSIGHT_MODE_RUN) thescenario data will be input directly from Xpress Insight at the insertion point marked with
insightpopulate. For standalone execution (insightgetmode=INSIGHT_MODE_NONE) the modeldefaults to its original behavior, that is, reading the data from file followed by definition and solving ofthe optimization problem. Furthermore, the solver call to start the optimization is replaced by
insightminimize / insightmaximize. Please also note that any model entities to be managed byXpress Insight need to be declared as public—in the following code example this marker has beenapplied to the entire declarations block, alternatively it can be added to individual entitydeclarations.

model "Transport (Xpress Insight)"
uses "mmxprs", "mminsight"

public declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants

DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: dynamic array(PLANT,REGION) of real

! Capacity on each route plant->region
DISTANCE: dynamic array(PLANT,REGION) of real

Fair Isaac Corporation Confidential and Proprietary Information 184

Language extensions

! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance

MaxCap: array(PLANT) of linctr ! Capacity constraints
flow: dynamic array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

procedure readdata ! Data for baseline
initializations from 'transprt.dat'
DEMAND
[PLANTCAP,PLANTCOST] as 'PLANTDATA'
[DISTANCE,TRANSCAP] as 'ROUTES'
FUELCOST
end-initializations
end-procedure

case insightgetmode of
INSIGHT_MODE_LOAD: do

readdata ! Input baseline data and
exit(0) ! stop the model run here
end-do

INSIGHT_MODE_RUN: insightpopulate ! Inject scenario data and continue
INSIGHT_MODE_NONE: readdata ! Input baseline data and continue
else
writeln("Unknown run mode")
exit(1)

end-case

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))

(FUELCOST ⁎ DISTANCE(p,r) + PLANTCOST(p)) ⁎ flow(p,r)

! Limits on plant capacity
forall(p in PLANT) MaxCap(p):= sum(r in REGION) flow(p,r) <= PLANTCAP(p)

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
flow(p,r) <= TRANSCAP(p,r)

insightminimize(MinCost) ! Solve the problem through Xpress Insight

The handling of model entities by Xpress Insight can be configured via annotations (see Chapter 18 fordetail), for example to define aliases to be displayed in the UI in place of the model entity names, or toselect which data entities are to be treated as inputs or results respectively. The annotations defined byXpress Insight form the category insight, the following model extract shows some exampledefinitions for the ’Transport’ problem, please refer to the Xpress Insight Mosel Interface Manual for acomplete documentation.
!@insight.manage=input
public declarations
!@insight.alias Customer regions
REGION: set of string ! Set of customer regions
!@insight.alias Plants
PLANT: set of string ! Set of plants
!@insight.alias Demand
DEMAND: array(REGION) of real ! Demand at regions
!@insight.alias Production capacity
PLANTCAP: array(PLANT) of real ! Production capacity at plants
!@insight.alias Unit production cost
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
!@insight.alias Capacity on each route

Fair Isaac Corporation Confidential and Proprietary Information 185

Language extensions

TRANSCAP: dynamic array(PLANT,REGION) of real
!@insight.alias Distance per route
DISTANCE: dynamic array(PLANT,REGION) of real
!@insight.alias Fuel cost per unit distance
FUELCOST: real ! Fuel cost per unit distance
end-declarations

!@insight.manage=result
public declarations
!@insight.alias Production capacity limits
MaxCap: array(PLANT) of linctr ! Capacity constraints
!@insight.alias Amount shipped
flow: dynamic array(PLANT,REGION) of mpvar ! Flow on each route
!@insight.hidden=true
MincostSol: real
!@insight.alias Total
pltotal: array(PLANT) of real ! Solution: production per plant
end-declarations

Xpress Insight expects models to be provided in compiled form, that is, as BIM files. An Xpress Insight
app archive is a ZIP archive that contains the BIM file and the optional subdirectories
model_resources (data files), client_resources (custom view definitions), and source (Mosel
model source files). When developing an Insight app with Xpress Workbench, select the button to
create the app archive or to publish the app directly to Insight.

Figure 17.3: Xpress Insight web view showing a VDL view for the transportation problem

If we wish to deploy an optimization app to the Xpress Insight Web Client we need to take into accountthat besides the ’Entity browser’ view that lists all managed model entities there are no default views:any visualization of input or result data needs to be explicitly implemented as views. The screenshot inFigure 17.3 shows a VDL (View Definition Language) view for the transportation example with editableinput data and a ’Run’ button that triggers re-solving of the optimization problem with the scenario datadisplayed on screen. Such views can be created via a drag-and-drop editor in Xpress Workbench (thescreenshot in Figure 17.4 shows the design view of the VDL file that defines the webview in the previousfigure). The complete set of files is provided in the app archive transport_insight.zip. Pleaserefer to the Xpress Insight Developer Manual for further detail on view definition using the VDL markuplanguage or the Xpress Insight Javascript API.

Fair Isaac Corporation Confidential and Proprietary Information 186

http://www.fico.com/fico-xpress-optimization/docs/latest/insight_dev_guide/

Language extensions

Figure 17.4: VDL view designer in Xpress Workbench

17.4 Solvers

In this user guide we have explained the basics of working with Mosel, focussing on the formulation ofLinear and Mixed Integer Programming problems and related solution techniques. However, the Mosellanguage is not limited to certain types of Mathematical Programming problems.
The module mmnl extends the Mosel language with functionality for handling general non-linearconstraints. This module (documented in the Mosel Language Reference Manual) does not contain anysolver on its own. In combination with mmxprs you can use it to formulate and solve QCQP(Quadratically Constrained Quadratic Programming) problems through the QCQP solvers within XpressOptimizer.
All other solvers of FICO Xpress Optimization (Xpress NonLinear for solving non-linear problems, andXpress Kalis for Constraint Programming, CP) are provided with separate manuals and their own setsof examples. Please see the Xpress website for an overview of the available products.
With Mosel it is possible to combine several solvers to formulate hybrid solution approaches forsolving difficult application problems. The whitepaper Hybrid MIP/CP solving with Xpress Optimizer and
Xpress Kalis, available for download from the Xpress website, gives several examples of hybrid solvingwith LP/MIP and Constraint Programming.
Below follow a few examples for some of the solvers mentioned above.

17.4.1 QCQP solving with Xpress Optimizer

In Section 12.1 we have solved a quadratically constrained problem by a recursion algorithm. One mightbe tempted to try solving this problem with a QCQP solver. Unfortunately, it does not meet theproperties required by the definition of QCQP problems: problems solvable by QCQP must not containequality constraints with quadratic terms (reformulation as two inequalities will not work either) sincesuch constraints do not satisfy the convexity condition. We shall see below how to solve this problemwith the general non-linear solver Xpress NonLinear (using SLP).
Let us therefore take a look at a different problem: the task is to distribute a set of points representedby tuples of x-/y-coordinates on a plane minimizing the total squared distance between all pairs ofpoints. For each point i we are given a target location (CXi,CYi) and the (square of the) maximumallowable distance to this location, the (squared) radius Ri around this location.

Fair Isaac Corporation Confidential and Proprietary Information 187

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_lang/dhtml/
http://www.fico.com/xpress
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/hypridmpcp/dhtml/
http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/hypridmpcp/dhtml/

Language extensions

In mathematical terms, we have two decision variables xi and yi for the coordinates of every point i. Theobjective to minimize the total squared distance between all points is expressed by the following sum.
N–1∑
i=1

N∑
j=i+1

((
xi – xj

)2 + (yi – yj
)2)

For every point i we have the following quadratic inequality.
(xi – CXi)2 + (yi – CYi)2 ≤ Ri

The resulting Mosel model (file airport_qp.mos) looks thus.
model "airport"
uses "mmxprs", "mmnl"

declarations
RN: range ! Set of airports
R: array(RN) of real ! Square of max. distance to given location
CX,CY: array(RN) of real ! Target location for each point
x,y: array(RN) of mpvar ! x-/y- coordinates
LimDist: array(RN) of nlctr
end-declarations

initialisations from "airport.dat"
CY CX R
end-initialisations

! Set bounds on variables
forall(i in RN) do
-10<=x(i); x(i)<=10
-10<=y(i); y(i)<=10
end-do

! Objective: minimise the total squared distance between all points
TotDist:= sum(i,j in RN | i<j) ((x(i)-x(j))^2+(y(i)-y(j))^2)

! Constraints: all points within given distance of their target location
forall(i in RN)
LimDist(i):= (x(i)-CX(i))^2+(y(i)-CY(i))^2 <= R(i)

setparam("XPRS_verbose", true);
minimise(TotDist);

writeln("Solution: ", getobjval);
forall(i in RN) writeln(i, ": ", getsol(x(i)), ", ", getsol(y(i)))

end-model

A QCQP matrix can be exported to a text file (option "" for MPS or "l" LP format) through the
writeprob function of Xpress Optimizer. That is, you need to add the following lines to your modelafter the problem definition:

setparam("XPRS_loadnames", true)
loadprob(TotDist)
writeprob("airport.mat","l")

A graphical representation of the result with mmsvg, obtained with the following lines of Mosel code, isshown in Figure 17.5.
! Set the size of the displayed graph
svgsetgraphviewbox(-10,-10,10,10)

Fair Isaac Corporation Confidential and Proprietary Information 188

Language extensions

svgsetgraphscale(20)

! Draw the target locations
svgaddgroup("T", "Target area", SVG_SILVER)
svgsetstyle(SVG_FILL,SVG_CURRENT)
forall(i in RN) svgaddcircle(CX(i), CY(i), sqrt(R(i)))

! Draw the solution points
svgaddgroup("S", "Solution", SVG_BLUE)
forall(i in RN) svgaddpoint(x(i).sol, y(i).sol)

! Output to file
svgsave("airport.svg")

! Update the display
svgrefresh
svgwaitclose

Figure 17.5: Result graphic in SVG format

17.4.2 Xpress NonLinear

The following example solves the non-linear financial planning problem from Section 12.1 with XpressNonLinear (using the SLP solver). The definition of constraints is straightforward (nonlinear constraintshave the type nlctr with mmxnlp). Other functionality contributed by the module mmxnlp that appearsin this model are the setinitval subroutine—used for setting start values for the decision variables—and the overloaded minimize subroutine for loading and solving nonlinear problems. Here, we simplyneed to become feasible and therefore use 0 as argument to minimize. Xpress NonLinearautomatically selects a solver among the installed solvers of the Xpress suite (Simplex, Barrier, SLP, orKnitro) depending on the detected problem type. We know that this problem can be solved by recursionand therefore preselect the SLP solver by setting the parameter XNLP_SOLVER.
model "Recursion (NLP)"
uses "mmxnlp" ! Use Xpress NonLinear

declarations
NT=6 ! Time horizon
QUARTERS=1..NT ! Range of time periods
M,P,V: array(QUARTERS) of real ! Payments

interest: array(QUARTERS) of mpvar ! Interest
net: array(QUARTERS) of mpvar ! Net

Fair Isaac Corporation Confidential and Proprietary Information 189

Language extensions

balance: array(QUARTERS) of mpvar ! Balance
rate: mpvar ! Interest rate
end-declarations

M:: [-1000, 0, 0, 0, 0, 0]
P:: [206.6, 206.6, 206.6, 206.6, 206.6, 0]
V:: [-2.95, 0, 0, 0, 0, 0]

setinitval(rate, 0) ! Set initial values for variables
forall(t in QUARTERS) setinitval(balance(t), 1)

! net = payments - interest
forall(t in QUARTERS) net(t) = (M(t)+P(t)+V(t)) - interest(t)

! Money balance across periods
forall(t in QUARTERS) balance(t) = if(t>1, balance(t-1), 0) - net(t)

! Interest rate
forall(t in 2..NT) -(365/92)⁎interest(t) + balance(t-1) ⁎ rate = 0

interest(1) = 0 ! Initial interest is zero
forall(t in QUARTERS) net(t) is_free
forall(t in 1..NT-1) balance(t) is_free
balance(NT) = 0 ! Final balance is zero

! setparam("XNLP_VERBOSE",true) ! Uncomment to see detailed output
setparam("XNLP_SOLVER", 0) ! Use the SLP solver

minimize(0) ! Solve the problem (get feasible)

! Print the solution
writeln("\nThe interest rate is ", getsol(rate))
write(strfmt("t",5), strfmt(" ",4))
forall(t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))
write("\nBalances ")
forall(t in QUARTERS) write(strfmt(getsol(balance(t)),8,2))
write("\nInterest ")
forall(t in QUARTERS) write(strfmt(getsol(interest(t)),8,2))
writeln

end-model

The results displayed by this model are exactly the same as those we have obtained from the recursionalgorithm in Section 12.1.
17.4.3 Xpress Kalis

Constraint Programming is an entirely different method of representing and solving problemscompared to the Mathematical Programming approaches we have employed so far in this manual.Consequently, the Mosel module kalis defines its own set of types that behave differently from theirMathematicl Programming counterparts, including cpvar, cpfloatvar and cpctr for decisionvariables and constraints, but also cpbranching for search strategies (a standard constituent of CPmodels) and aggregate modeling objects such as cptask and cpresource.
Below we show the CP implementation of a binpacking example from the book ‘Applications ofoptimization with Xpress-MP’ (Section 9.4 ‘Backing up files’). The problem is to save sixteen files ofdifferent sizes onto empty disks of the same fixed capacity minimizing the total number of disks thatare used.
Our model formulation remains close to the Mixed Integer Programming formulation and yet showssome specifities of Constraint Programming. Two sets of decision variables are used, savef indicatingthe choice of disk for file f and usefd the amount of diskspace used by a file on a particular disk.Whereas the variables savef simply take integer values in a specified interval, each of the usefdvariables may take only two values, 0 or SIZEf . For every file / disk combination we establish the logical

Fair Isaac Corporation Confidential and Proprietary Information 190

http://examples.xpress.fico.com/example.pl#mosel_app

Language extensions

relation
savef = d⇔ usefd = SIZEf

a constraint that cannot be stated in this form in a Mathematical Programming model. A second,so-called global constraint relation is used to state the maximum relation for calculating the number ofdisks used:
diskuse = maximum(savef∈DISKS)

And finally, the constraint limiting the capacity available per disk is a linear inequality that could occur inthe same form in a Mathematical Programming model.
∀d ∈ DISKS : ∑

f∈FILES
usefd ≤ CAP

This is the complete Mosel CP model for the binpacking problem.
model "D-4 Bin packing (CP)"
uses "kalis"

declarations
ND: integer ! Number of floppy disks
FILES = 1..16 ! Set of files
DISKS: range ! Set of disks

CAP: integer ! Floppy disk size
SIZE: array(FILES) of integer ! Size of files to be saved
end-declarations

initializations from 'd4backup.dat'
CAP SIZE
end-initializations

! Provide a sufficiently large number of disks
ND:= ceil((sum(f in FILES) SIZE(f))/CAP)
DISKS:= 1..ND
finalize(DISKS)

setparam("kalis_default_lb", 0)

declarations
save: array(FILES) of cpvar ! Disk a file is saved on
use: array(FILES,DISKS) of cpvar ! Space used by file on disk
diskuse: cpvar ! Number of disks used
end-declarations

! Set variable domains
forall(f in FILES) setdomain(save(f), DISKS)
forall(f in FILES, d in DISKS) setdomain(use(f,d), {0, SIZE(f)})

! Correspondence between disk choice and space used
forall(f in FILES, d in DISKS) equiv(save(f)=d, use(f,d)=SIZE(f))

! Limit the number of disks used
diskuse = maximum(save)

! Capacity limit of disks
forall(d in DISKS) sum(f in FILES) use(f,d) <= CAP

! Minimize the total number of disks used
if not cp_minimize(diskuse) then
writeln("Problem infeasible")
end-if

Fair Isaac Corporation Confidential and Proprietary Information 191

Language extensions

! Solution printing
writeln("Number of disks used: ", getsol(diskuse))
forall(d in 1..getsol(diskuse)) do
write(d, ":")
forall(f in FILES) write(if(getsol(save(f))=d , " "+SIZE(f), ""))
writeln(" space used: ", getsol(sum(f in FILES) use(f,d)))
end-do

end-model

This implementation is one of several possible formulations of this problem as a CP model. Analternative and generally more efficient model being the formulation as a cumulative schedulingproblem, where the disks are represented by a single resource of discrete capacity, the files to savecorrespond to tasks of duration 1 with a resource requirement defined by the file size. The objective inthis case is to minimize the duration of the schedule (= number of disks used). The interested reader isrefered to the Xpress Kalis User Guide for a detailed discussion of this problem.

17.5 Date and time data types

The module mmsystem of the standard distribution of Mosel defines the types date (calendar day:day, month, and year), time (time of the day in milliseconds), and datetime (combination of the firsttwo) for working with date and time related data in Mosel models. We show here some examples of
� reading and writing dates and times from/to file,
� formatting dates and times,
� using sets of constant dates and times for indexing arrays,
� transformation from/to the underlying numerical representation,
� applying operations (comparison, addition, difference, sorting),
� enumerating dates and times.

17.5.1 Initializing dates and times

The following line prints out the current date and time (using the default format):
writeln("Today: ", date(SYS_NOW), ", current local time: ", time(SYS_NOW),

"UTC time: ", gettime(datetime(timestamp)))

When we wish to read data from a file, the formatting of dates and times needs to be adapted to theformat used in the file. For example, consider the following data file (datetime.dat)
Time1: "4pm"
Time2: "16h00"
Time3: "16:00:00"

Date1: "2-20-2002"
Date2: "20/02/02"
Date3: "20-Feb-2002"

A Mosel model reading in this data file may look thus (file dates.mos).
declarations
t: time
d: date

Fair Isaac Corporation Confidential and Proprietary Information 192

http://www.fico.com/fico-xpress-optimization/docs/latest/solver/kalis/kalis_ug/dhtml/

Language extensions

end-declarations

setparam("timefmt", "%h%p") ! h: hours in 1-12, p: am/pm
setparam("datefmt", "%m-%d-%y") ! m: month, d: day, y: year

initializations from "datetime.dat"
t as "Time1"
d as "Date1"
end-initializations

writeln(d, ", ", t)

setparam("timefmt", "%Hh%0M") ! H: hours in 0-23, M: minutes
setparam("datefmt", "%0d/%0m/%0Y") ! Y: year in 0-99

! 0: fill spaces with '0'

initializations from "datetime.dat"
t as "Time2"
d as "Date2"
end-initializations

writeln(d, ", ", t)

setparam("timefmt", "%H:%0M:%0S") ! S: seconds
setparam("datefmt", "%d-%N-%y") ! N: use month names

initializations from "datetime.dat"
t as "Time3"
d as "Date3"
end-initializations

writeln(d, ", ", t)

For the encoding of date and time format strings please refer to the documentation of the parameters
datefmt and timefmt in the ’Mosel Language Reference Manual’.
Date3 in this example uses a month name, not a number. The default 3-letter abbreviations of monthnames can be changed (e.g., translated) by redefining the parameter monthnames. For instance, a datewritten in French, such as

Date4: "20 fevrier 2002"

is read by the following Mosel code:
setparam("datefmt", "%d %N %y")

setparam("monthnames", "janvier fevrier mars avril mai juin juillet " +
"aout septembre octobre novembre decembre")

initializations from "datetime.dat"
d as "Date4"
end-initializations

writeln(d)

In the examples of this section we have used Mosel’s standard text format for reading and writingdates and times. These data types can also be used when accessing spreadsheets or databasesthrough Mosel’s ODBC connection or the software-specific interfaces for Oracle and MS Excel. Thewhitepaper Using ODBC and other database interfaces with Mosel documents some examples ofaccessing date and time data in spreadsheets and databases.
Note: When initializing or constructing dates Mosel does not control whether they correspond to anactual calendar day (e.g., 0-valued or negative day and month counters are accepted). The validity of adate or time can be tested with the function isvalid. For example, the following code extract

Fair Isaac Corporation Confidential and Proprietary Information 193

http://www.fico.com/fico-xpress-optimization/docs/latest/mosel/mosel_data/dhtml/

Language extensions

d:= date(2000,0,0)
writeln(d, " is a valid date: ", if(isvalid(d), "true", "false"))

results in this output:
2000-00-00 is a valid date: false

17.5.2 Dates and times as constants

It is possible to use the types ’date’, ’time’, ’datetime’ as index sets for arrays if the elements of the setare flagged as being constant. The effect of such a declaration as constant is illustrated by thefollowing code snippet (taken from the example file dates.mos). Entities such as someday in theexample below that receive a value directly in the declarations block via ’=’ also are constants, theirvalue can not be changed or re-assigned.
declarations
someday=date(2020,3,24) ! A constant date
SD: set of date ! Set of date references
SDC: set of constant date ! Set of constant date references
AD: dynamic array(SDC) of real ! Array indexed by 'date' type

end-declarations

! Operations on a set of dates
SD:= {date(2020,3,24), date(2020,3,24)+1}
writeln("Is someday in SD? ", someday in SD) ! Output: false
writeln("Next day in SD? ", someday+1 in SD) ! Output: false
SD+= {date(2020,3,24), date(2020,3,24)+1}
writeln("SD after addition: ", SD, " size=", SD.size) ! Output: size=4

! Operations on a set of constant dates
SDC:= {date(2020,3,24),date(2020,3,24)+1}
writeln("Is someday in SDC? ", someday in SDC) ! Output: true
writeln("Next day in SDC? ", someday+1 in SDC) ! Output: true
SDC+= {date(SYS_NOW), date(SYS_NOW)+1}
writeln("SDC after addition: ", SDC, " size=", SDC.size) ! Output: size=2

The example shown here only mentions the type ’date’, but the constant declaration is also applicableto the types ’time’ and ’datetime’.
17.5.3 Conversion to and from numbers

In some cases it might be necessary to use the numerical representation in the place of a date or time.In the following Mosel extract we wish to define an array YEARS that is indexed by a set of dates. In thisexample we show how to use as index values the numerical representation that is obtained by applying
getasnumber to the dates (this function returns an integer, the Julian Day number = number of dayselapsed since 1/1/1970; if the argument is a time getasnumber returns the number of millisecondssince midnight). By applying date to the numerical representation it is converted back to the originaldate.
With this Mosel code

declarations
Dates: set of date
YEAR: array(NDates: set of integer) of integer
end-declarations

setparam("datefmt", "") ! Use the default format

initializations from "datetime.dat"
Dates
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 194

Language extensions

writeln("Dates: ", Dates)
forall(dd in Dates) YEAR(getasnumber(dd)):= getyear(dd)
writeln("YEAR: ", YEAR)
forall(n in NDates) writeln(date(n)) ! Mapping back to original dates

and the following data
Dates: ["1999-1-21" "2000-2-22" "2002-3-23" "2005-4-24" "2010-5-25"]

we obtain this output:
Dates: {1999-01-21,2000-02-22,2002-03-23,2005-04-24,2010-05-25}
YEAR: [(10612,1999),(11009,2000),(11769,2002),(12897,2005),(14754,2010)]
1999-01-21
2000-02-22
2002-03-23
2005-04-24
2010-05-25

Similarly to what is shown here, function getasnumber can be used with ’time’ and ’datetime’, thebackwards conversion being carried out by time or datetime respectively.
17.5.4 Operations and access functions

The following Mosel model extract (dates.mos) shows some operations on dates and times,including sorting lists of dates or times, difference between two dates or times, and addition ofconstants to obtain an enumeration of dates or times.
declarations
t: time
d: date
now1,now2: datetime
DNAMES: array(1..7) of string
TList: list of time
DList: list of date
end-declarations

! Difference between dates
writeln("February 2004 had ", date(2004,3,1)-date(2004,2,1), " days.")

! Retrieve the weekday
DNAMES:: (1..7)["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday", "Sunday"]
writeln("1st January 2000 was a ", DNAMES(getweekday(date(2000,1,1))))

! Difference between times
now1:= datetime(SYS_NOW)
wait(1) ! Delay model execution for 1 second
now2:= datetime(SYS_NOW)
writeln("Elapsed time: ", now2-now1, "ms")

! Enumeration / addition to 'time'
setparam("timefmt", "%.h.%0M%p")
t:= time(11,0)
forall(i in 1..5) do
writeln(t)
t+=30⁎60⁎1000 ! Add 30 minutes
end-do

! Enumeration / addition to 'date'
setparam("datefmt", "%.d/%0m/%0Y")
d:= date(2005,12,20)
forall(i in 1..5) do
writeln(d)

Fair Isaac Corporation Confidential and Proprietary Information 195

Language extensions

d+=14 ! Add 14 days
end-do

! Sorting lists of dates and times
setparam("datefmt", "") ! Revert to default date format
DList:= [date(2021,1,1),date(1900,1,2),date(2020,3,24)]
writeln("Orig. DL=", DList)
qsort(SYS_UP, DList)
writeln("Sorted DL=", DList)

setparam("timefmt", "") ! Revert to default time format
TList:= [time(12,0),time(10,30),time(16,15),time(8,45)]
writeln("Orig. TL=", TList)
qsort(SYS_UP, TList)
writeln("Sorted TL=", TList)

Executing this model produces the following output.
February 2004 had 29 days.
1st January 2000 was a Saturday
Elapsed time: 1.006ms
11.00am
11.30am
12.00pm
12.30pm
1.00pm
20/12/05
3/01/06
17/01/06
31/01/06
14/02/06
Orig. DL=[2021-1-1,1900-01-02,2020-03-24]
Sorted DL=[1900-01-02,2020-03-24,2021-1-1]
Orig. TL=[12:00:00,10:30:00,16:15:00,8:45:00]
Sorted TL=[8:45:00,10:30:00,12:00:00,16:15:00]

17.6 Text handling and regular expressions

The module mmsystem provides a large set of text handling functionality, including
� the types text, parsectx, and textarea
� text formatting routines (number format, upper/lower case)
� parsing routines
� regular expressions

In the following subsections we show some examples of text handling with Mosel, for a full descriptionof the available functinoality please refer to the chapter mmsystem of the ’Mosel Language ReferenceManual’.
17.6.1 text vs. string

Although apparently denoting similar concepts, the purpose and usage recommendations for the types
string and text in Mosel models are quite distinct: any string defined in a model is added to themodel’s names dictionary and is only freed at termination of the model run, this is not the case formodel objects of the type text. The type string therefore should be used whenever it is a questionof identifying objects, so in particular for index sets.

Fair Isaac Corporation Confidential and Proprietary Information 196

Language extensions

The type text is in general the more appropriate choice for descriptive or editable texts, includingreporting or logging messages, and any texts generated via (partial) copies or concatenation. A textobject can be altered, allowing for a considerably wider set of operations (such as insertion, deletion) incomparison with strings. Furthermore, with the I/O driver text: a public text object can be used asinput or output file in a model (see Section 17.1.2).
It is, however, not always possible to draw a clear line between where to use string or text. Anumber of module subroutines therefore define multiple versions, accepting both, string or textarguments. Note further that if required, Mosel automatically converts from the type string to text,but not the other way round.

17.6.2 Parsing text

In the example below we configure the global parser settings to read real numbers from a text that hasfields separated by commas.
declarations
values: list of real
comma=getchar(",",1) ! ASCII value for ","

end-declarations

txt:= text(", , 123.4 , 345.6 ,")

! Parsing without context
setparam("sys_sepchar", comma) ! Comma as separation character
setparam("sys_trim", true) ! Trim blanks around separation character
while (nextfield(txt)) do ! Get next field
values+= [parsereal(txt)] ! Read a real number from the field
writeln("Read up to position ", getparam("sys_endparse"))

end-do
writeln("Values read: ", values) ! Output: [0,0,123.4,345.6,0]

The same behavior can be achieved with a parser context—here we do not modify any global settings,which has the advantage of preventing possible interactions with other parser settings that may beused elsewhere in our model.
declarations
pctx: parsectx
values: list of real
comma=getchar(",",1) ! ASCII value for ","

end-declarations

txt:= text(", , 123.4 , 345.6 ,")

! Parsing real numbers with context
setsepchar(pctx, comma) ! Comma as separation character
settrim(pctx, true) ! Trim blanks around separation character
while (nextfield(txt,pctx)) do ! Get next field
values+= [parsereal(txt, pctx)] ! Read a real number from the field
writeln("Read up to position ", pctx.endparse)

end-do
writeln("Values read: ", values) ! Output: [0,0,123.4,345.6,0]

When implementing data handling for optimization applications, it is good practice to add errorhandling to the parsing loop, for example to check whether the fields are formatted as expected:
pctx.endparse:=0 ! Start at the beginning of text
pctx.sepchar:=comma ! Comma as separation character
pctx.trim:=true ! Trim blanks around separation character
while (nextfield(txt,pctx)) do ! Get next field
if getchar(txt, pctx.endparse)=comma or pctx.endparse>=txt.size then
values+=[0.0] ! The field is empty

else

Fair Isaac Corporation Confidential and Proprietary Information 197

Language extensions

r:=parsereal(txt, pctx) ! Read a real number from the field
if getsysstat=0 then values+= [r]
else
writeln("Malformed field contents at position ", pctx.endparse,
" (", copytext(txt, pctx.endparse,pctx.endparse+2), ")")

end-if
end-if
writeln("Read up to position ", pctx.endparse)

end-do
writeln("Values read: ", values) ! Output: [0,0,123.4,345.6,0]

One might also choose to work with multiple parser contexts (e.g. using an ’inner’ context pctxi forreading some part of each field from the original text—here an integer number that is read from a stringcontaining a real).
declarations
pctx,pctx1: parsectx
ivalues: list of integer
comma=getchar(",",1) ! ASCII value for ","

end-declarations

txt:= text(", , 123.4 , 345.6 ,")

setsepchar(pctx, comma) ! Comma as separation character
settrim(pctx, true) ! Trim blanks around separation character
while (nextfield(txt,pctx)) do ! Get next field
tt:=parsetext(txt, pctx) ! Get contents of the field
pctxi.endparse:=1 ! Reset start to beginning of the text
i:=parseint(tt,pctxi) ! Read an integer number from the field
if getsysstat=0 then ivalues+= [i]; end-if
writeln("Read up to position ", pctx.endparse)

end-do
writeln("Values read: ", ivalues) ! Output: [123,345]

17.6.3 Regular expressions

A regular expression (in the following abbreviated to regex) is a sequence of characters that form asearch pattern. Regex are used to describe or match a set of strings according to certain syntax rules.Mosel supports the Basic Regular Expressions syntax (BRE) and the Extended Regular Expressionssyntax (ERE) of the POSIX standard, the implementation of regular expression matching relies on theTRE library.
Here are some examples of regular expression matching and replacement with some explanations ofthe meaning of the employed regex—for a complete description of the supported regex syntax thereader is refered to the documentation of the TRE library (see http://laurikari.net/tre), another usefulresource are the examples provided on the page en.wikipedia.org/wiki/Regular_expression.
The following example (regex.mos) displays all strings containing ’My’ that occur in a text. The firstmatching statement uses BRE syntax, it displays all strings starting with ’My’ irrespective ofupper/lower case spelling (option REG_ICASE). The second matching statement uses ERE syntax(option REG_EXTENDED) to retrieve all strings containing ’My’ other than at their beginning. We havechosen to retrieve different individual portions of the matching string (specified via the parantheses inthe regular expression statement) the positions of which are stored in their order of occurrence into thearray m (of type textarea)

declarations
m: array(range) of textarea
t: text

end-declarations
t:="MyValue=10,Sometext Mytext MoretextMytext2, MYVAL=1.5 mYtext3"
m(0).succ:=1
while (regmatch(t, '\<My\(\w⁎\)', m(0).succ, REG_ICASE, m))
writeln("Word starting with 'My': ", copytext(t,m(0)))

Fair Isaac Corporation Confidential and Proprietary Information 198

http://laurikari.net/tre
http://laurikari.net/tre
https://en.wikipedia.org/wiki/Regular_expression#Examples

Language extensions

! Output: MyValue Mytext MYVAL mYtext3

m(0).succ:=1
while (regmatch(t, '\w+((My)(\w⁎))', m(0).succ, REG_ICASE+REG_EXTENDED, m))

writeln("String containing 'My' (not at beginning): ",
copytext(t,m(0)), " (", copytext(t,m(1)), "=", copytext(t,m(2)) ,
"+", copytext(t,m(3)), ")")

! Output: MoretextMytext2 (Mytext2=My+text2)

The special characters used in the formulation of the regular expressions above have the followingmeaning: \<marks the beginning of a word, \w denotes alphanumeric or underscore characters, ⁎means 0 or more times and + stands for 1 or more times.
The following Mosel code snippet shows how to replace matching expressions in a text that containsdates with different formats:

t:="date1=20/11/2010,date2=1-Oct-2013,date3=2014-6-30"
numr:= regreplace(t, '([[:digit:]]{4})-([01]?[[:digit:]])-([0-3]?[[:digit:]])',

'\3/\2/\1', 1, REG_EXTENDED)
if numr>0 then
writeln(numr, " replacements: ", t)
end-if

This is the output produced by the code above:
1 replacements: date1=20/11/2010,date2=1-Oct-2013,date3=30/6/2014

There are alternative ways of stating the same regular expression with BRE or ERE syntax, for example:
numr:= regreplace(t, '\(\d\{4\}\)-\([01]\{0,1\}\d\)-\([0-3]\{0,1\}\d\)',

'\3/\2/\1')
numr:= regreplace(t, '(\d{4})-([01]{0,1}\d)-([0-3]{0,1}\d)',

'\3/\2/\1', 1, REG_EXTENDED)

In these replacement statements we have used the following special characters for stating regularexpressions: \d or [:digit:] indicates a numerical character, square brackets contain a set ofpossible character matches, {M,N}means minimum M and maximum N match count and ? stands for0 times or once.

Fair Isaac Corporation Confidential and Proprietary Information 199

CHAPTER 18

Annotations

Annotations are meta data expressed in a Mosel source file (model or package) that are stored in theresulting BIM file after compilation. This additional information is either global or associated withpublic globally declared objects (including subroutines). Annotations do not have any direct impact onthe model itself as they are treated like comments. Typical uses of annotations include modeldocumentation or application configuration information.
Mosel annotations have the following format:

� a single-line annotation starts with ’!@’ and a name
!@doc.name This is my document title

� multi-line annotations are surrounded by ’(!@’ and ’!)’
(!@mynote Some annotation text.
Another line of text.
!)

� ’!@’ is followed by the annotation name (identifier)
– no space between ’!’ and ’@’ characters
– space is allowed between ’@’ and the name

� value assignment operators are ’ ’ (space), ’:’, or ’=’
– no space between annotation name and operator

!@mynote contents for 'mynote'
!@ another=contents of 'another'
!@third: contents of 'third'

� association with symbols:
!@mynote This annotation is applied to all objects declared below
public declarations
val: integer !@doc.descr Explanation of 'val'
!@doc.descr Text associated with 'msg'
msg: string ! A standard comment
!@mynote2 This annotation is ignored (no associated object)

end-declarations

Annotations are organized in categories. A category groups a set of annotations and other categories(or sub-categories). For example
doc.name

Fair Isaac Corporation Confidential and Proprietary Information 200

Annotations

will be used to select the annotation namemember of the doc category. Predefined category namesinclude mc (Mosel compiler) and doc (model documentation). Models can also define/employ newannotations and categories—these must be valid Mosel identifiers, that is, their names can only usealpha-numeric symbols and ’_’.
We show some examples of the doc category in Section 18.2 below. The category mc is used to passinformation to the compiler during the compilation, including the (optional) declaration of newannotations with the mc.def annotation or the definition of aliases, such as

!@mc.def descr alias doc.descr insight.descr

that redirects onto two different annotations (see section ’Annotations’ of the Mosel LanguageReference Manual for further detail).

18.1 Accessing annotations

Annotations can be retrieved from the model itself during its execution or before/after execution fromthe calling program (using the Mosel libraries). The following example annottest.mos shows how toretrieve an annotation that is defined in the same model. The subroutine getannotations is definedby mmjobs, it takes an additional first argument of type Model if it is to be applied to a submodel andnot the model itself.
model "Using annotations"
uses "mmjobs"

public declarations
(!@.
@value.first 5
@value.second 0
@descr A scalar value
!)
myint: integer
AnnNames: set of string !@descr Set of annotation names
Ann: array(string) of string !@descr Annotation values
mytxt: text !@descr Default input data file
end-declarations

!@descr Annotations test
!@furtherinfo Simply displays all defined global or specific annotations

! Get all global annotations defined in this model:
getannotations("", "", AnnNames, Ann)
writeln("Global annotations:")
forall(a in AnnNames) writeln(" ", a, " = ", Ann(a))

! Get all annotations for "myint":
getannotations("myint", "", AnnNames, Ann)
writeln("Annotations defined for 'myint':")
forall(a in AnnNames) writeln(" ", a, " = ", Ann(a))

! Retrieve all annotations starting with 'value.' and that are
! associated to 'myint'
getannotations("myint", "value.", AnnNames, Ann)
writeln("'value' annotations for 'myint':")
forall(a in AnnNames) writeln(" ", a, " = ", Ann(a))
end-model

Running this model produces output like the following:
Global annotations:
.descr = Annotations test

Fair Isaac Corporation Confidential and Proprietary Information 201

Annotations

.furtherinfo = Simply displays all defined global or specific annotations
Annotations defined for 'myint':
.descr = A scalar value
value.first = 5
value.second = 0

'value' annotations for 'myint':
value.first = 5
value.second = 0

And here is an example how to retrieve annotations into a C program (file annotdisplay.c):
#define MAXANN 100

int main()
{
XPRMmodel mod;
void ⁎ref;
const char ⁎symb; /⁎ A model object name ⁎/
const char ⁎ann[MAXANN⁎2]; /⁎ List of annotations ⁎/
int i,n;

if(XPRMinit()) return 1; /⁎ Initialize Mosel ⁎/
if((mod=XPRMloadmod("annottest.bim",NULL))==NULL) /⁎ Load a BIM file ⁎/
return 2;

/⁎ Retrieve and display global annotations ⁎/
n=XPRMgetannotations(mod,NULL,NULL,ann,MAXANN⁎2);
printf("Global annotations (total: %d):\n", n/2);
for(i=0;i<n && i<MAXANN;i+=2)
printf(" %s:%s\n",ann[i],(ann[i+1]!=NULL)?ann[i+1]:"");

/⁎ Retrieve and display all annotations associated with model objects ⁎/
printf("Annotations associated with objects:\n");
ref=NULL;
while((symb=XPRMgetnextanident(mod,&ref))!=NULL)
{
n=XPRMgetannotations(mod,symb,NULL,ann,MAXANN⁎2);
printf(" %s->\n",symb);
for(i=0;i<n && i<MAXANN;i+=2)
printf(" %s:%s\n",ann[i],(ann[i+1]!=NULL)?ann[i+1]:"");

}

/⁎ Retrieve and display annotations for model object 'myint' ⁎/
n=XPRMgetannotations(mod,"myint",NULL,ann,MAXANN⁎2);
printf("Annotations defined for 'myint' (total: %d):\n", n/2);
for(i=0;i<n && i<MAXANN;i+=2)
printf(" %s:%s\n",ann[i],(ann[i+1]!=NULL)?ann[i+1]:"");

return 0;
}

The corresponding Java code looks as follows:
public class annotdisplay
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMAnnotation ann[]; // List of annotations

mosel = new XPRM(); // Initialize Mosel
mod = mosel.loadModel("annottest.bim"); // Load a BIM file

// Retrieve and display global annotations
ann=mod.getAnnotations("");
System.out.println("Global annotations (total: "+ ann.length +"):");

Fair Isaac Corporation Confidential and Proprietary Information 202

Annotations

for(int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);

// Retrieve and display all annotations associated with model objects
System.out.println("Annotations associated with objects:");
for(XPRMIdentifiers ids=mod.annotatedIdentifiers(); ids.hasNext();)
{
XPRMIdentifier id=(XPRMIdentifier)ids.next();
ann=mod.getAnnotations(id,"");
System.out.println(" "+id.getName()+"->");
for(int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);
}

// Retrieve and display annotations for model object 'myint'
ann=mod.getAnnotations("myint","");
System.out.println("Annotations defined for 'myint' (total: "+ ann.length +"):");
for(int i=0;i<ann.length;i++) System.out.println(" "+ann[i]);
}
}

Notice that the host application only needs to load the BIM file (and not necessarily run a model) inorder to be able to retrieve the annotations.

18.2 moseldoc: Generating model documentation

The Mosel compiler reserves a special treatment to annotations belonging to the doc category. Thisannotation category will only be included into the BIM file if the source file is compiled with the option
-D, such as

mosel comp -D mymodel.mos

To enable the -D compiler option in Xpress Workbench open the Run menu and select the entry
Compiler Options, enable the Generate Doc Annotations option, and confirm with Save. When you next
click the Compile button in the Workbench toolbar, the resulting BIM file will contain documentation
annotations.
The tool moseldoc can be applied to the resulting BIM file to generate an XML file that is thenprocessed into a set of HTML pages:

moseldoc mymodel ! Generates HTML and XML
moseldoc -html mymodel ! HTML output only
moseldoc -o mydir -html mymodel ! Specify HTML output directory
moseldoc -xml mymodel ! XML output only
moseldoc -ixml mymodel ! XML file for inclusion (omitting header+root)
moseldoc -f mymodel ! Force output overwrite

Here are some examples of how to use the documentation annotations:
� Document structure:

(!@doc.
@title An example of model documentation
@version 0.0.1
@date March 2015

@chapter Introduction
@p
This model needs to be compiled with the <tt>-D</tt> compiler option
to include the documentation annotations into the BIM.
The <tt>moseldoc</tt> program takes the resulting BIM file as input.
!)

Fair Isaac Corporation Confidential and Proprietary Information 203

Annotations

!@doc.chapter The example
!@doc.section Parameters

The resulting cover page and table of contents generated by moseldoc look as follows (thecontents listing also refers to the entity and subroutine annotations shown in the following items):

� Documenting parameters:
parameters
!@doc.descr Short parameter description
!@doc.value v1 possible value
!@doc.value v2 another possible value
!@doc.info Some more explanation (longer text)
MYPAR="some text"
end-parameters

� Documenting entity declarations (type definitions, constants, variables):
!@doc.section Constants and variables
public declarations
(!@doc.
@descr Short description of the constant set
@info Some additional information

!)
S=1..10

!@doc.descr An error code constant
MYERR=11

(!@doc.
@descr A record type
@recflddescr fld1 field description
@recflddescr fld2 another field description
@info Several @doc.info tags can be used for a given entity
@info Entities can be referenced: <entRef>rectype</entRef>

!)
rectype=public record
fld1:integer
fld2:string
end-record
end-declarations

This is the HTML page generated by moseldoc from these parameter and entity annotations:

Fair Isaac Corporation Confidential and Proprietary Information 204

Annotations

� Documenting subroutines:
!@doc.section Subroutines

(!@doc.
@descr A short description
@param i first parameter
@paramval i value1 description of value1
@paramval i value2 description of value2
@param r second parameter
@err MYERR reference to an error code constant
@return The return value
@example Some descriptive text for the example
@example [SRC]
the example code is here
@info Some useful information for <tt>myfunct</tt>
@related <fctRef>myotherfunct</fctRef>

!)
public function myfunct(i:integer,r:real):boolean
returned:=i>r
end-function

!@doc.group myfunct
!@doc.info <tt>myotherfunc</tt> is an alternative to <fctRef>myfunct</fctRef>
public function myotherfunc(i:integer):boolean
returned:=true
end-function

The HTML subroutine documentation page generated by moseldoc from these annotations isshown here:

Fair Isaac Corporation Confidential and Proprietary Information 205

Annotations

� Relocating documentation contents:
!@doc.section A section title
!@doc.relocate newlocref
... ! All doc annotations defined here will be inserted at marker 'newlocref'
!@doc.relocate
... ! All subsequently defined doc annotations remain where they are

!@doc.section Destination location
!@doc.location newlocref

� Excluding contents from generated documentation:
!@doc.autogen=false
public declarations
... ! All doc annotations defined here will be ignored

end-declarations
!@doc.autogen=true
... ! All subsequently defined doc annotations will get processed

Fair Isaac Corporation Confidential and Proprietary Information 206

V. Remote invocation of Mosel

Overview

All previous sections of this manual assume that you are working with a standard installation of Xpresson your local computer. However, a local installation of Xpress is not a requirement when working withMosel. The examples in this part show how to use the Mosel remote invocation library XPRD forbuilding applications requiring the Xpress technology that run from environments where Xpress is notinstalled—including architectures for which Xpress is not available.
XPRD is a self-contained library (i.e. with no dependency on the usual Xpress libraries) that relies on the
Mosel Distributed Framework (module mmjobs, see Section 17.2). The examples in this part areintroductory examples of some of the most commun programming tasks when working with a remoteinstallation of Xpress, namely

� starting Mosel instances (locally or on remote hosts)
� compiling, loading, running, and interrupting Mosel models remotely
� redirection of standard streams
� sending and receiving events
� retrieving data from a Mosel model

Further examples, particularly of more advanced uses, are discussed in the whitepaper Multiple models
and parallel solving with Mosel and also in the Advanced Evaluators’ Guide. Both documents areprovided with their examples as a part of the Xpress distribution. For a complete documentation of theXPRD library the reader is referred to the XPRD Reference Manual.
The first chapter (Chapter 19) of this part introduces the C version of XPRD. The Java versions of thesame examples are described in Chapter 20.

Fair Isaac Corporation Confidential and Proprietary Information 208

http://www.fico.com/fico-xpress-optimization/docs/latest
http://www.fico.com/fico-xpress-optimization/docs/latest

CHAPTER 19

XPRD C

The program example runprimedistr.c below shows how to run the model prime.mos remotelyusing the XPRD C library (NB: this program corresponds to the mmjobs distributed computing example
runprimedistr.mos from Section 17.2.4). At first sight, the reader might be reminded of the Mosel Clibraries presented in Chapter 13. However, there are two major additions besides the change of theprefixes from XPRM to XPRD:

� We need to connect to a remote machine and create a new Mosel instance (XPRDmosel) prior toworking with any Mosel models. Remote machines are specified by their name or IP address, theempty string in the present example indicates that we want to use the local machine.
� The submodel is executed in an independent process and we therefore need to wait for itstermination.

In summary, the standard execution sequence for Mosel models of compile load run is augmented to
connect – compile load run wait in the context of distributed computing (this remark equally applies tosubmodels launched via mmjobs).
Instead of simply waiting for the submodel to terminate, the program below waits for 2 seconds and ifno termination event message has been received from the Mosel model, it is stopped by theapplication. After termination of the submodel (either by finishing its calculations within less than 2seconds or stopped by the master model) the application reports the full event information and alsodisplays the termination status and the exit value of the Mosel model. Unloading a model explicitly asshown here is only really necessary in larger applications that continue after the termination of thesubmodel, so as to free the memory used by it.

#include <stdio.h>
#include <stdlib.h>
#include "xprd.h"

int main(int argv,char ⁎args[])
{
XPRDcontext xprd;
XPRDmosel moselInst;
XPRDmodel modPrime, evsender;
double evvalue;
int evclass;

xprd=XPRDinit(); /⁎ Create an XPRD context ⁎/

/⁎ Open connection to a remote node: "" means the node running this program ⁎/
moselInst=XPRDconnect(xprd, "", NULL, NULL, NULL, 0);

/⁎ Compile the model file ⁎/
XPRDcompmod(moselInst, "", "rmt:prime.mos", "rmt:prime.bim", "");

/⁎ Load BIM into the remote instance ⁎/
modPrime=XPRDloadmod(moselInst, "rmt:prime.bim");

XPRDrunmod(modPrime, "LIMIT=50000"); /⁎ Start execution and ⁎/

Fair Isaac Corporation Confidential and Proprietary Information 209

XPRD C

XPRDwaitevent(xprd,2); /⁎ wait 2 seconds for an event ⁎/

if (XPRDqueueempty(xprd)==1) /⁎ No event has been sent... ⁎/
{
printf("Model too slow: stopping it!\n");
XPRDstoprunmod(modPrime); /⁎ ... stop the model, then wait ⁎/
XPRDwaitevent(xprd,-1);
}

XPRDgetevent(xprd, &evsender, &evclass, &evvalue); /⁎ Get the event ⁎/
printf("Event value: %g sent by model %d\n", evvalue, XPRDgetnum(evsender));
printf("Exit status: %d\n", XPRDgetstatus(modPrime));
printf("Exit code : %d\n", XPRDgetexitcode(modPrime));

XPRDunloadmod(modPrime); /⁎ Unload the model ⁎/
XPRDdisconnect(moselInst); /⁎ Disconnect remote instance ⁎/
XPRDfinish(xprd); /⁎ Terminate XPRD ⁎/

remove("prime.bim"); /⁎ Clean up temporary files ⁎/

return 0;
}

In this example, we assume that the model source is saved on the local machine running XPRD, and theBIM file is written back to this machine (indicated by the I/O driver prefix rmt: in the ’compile’ and’load’ functions that are executed on the remote instance). Alternatively, we might choose to save theBIM file on the remote machine, e.g. in memory (shmem:primebim) or in Mosel’s temporary directory(tmp:prime.bim).

19.1 Exchanging data with the model

A typical programming task when working with remote models is the retrieval of results into the callingapplication. In this section we show how to use XPRD functionality for retrieving data that is written bya Mosel model in an initializations block into the XPRD program. The choice of the method forexchanging data usually depends on the particular system setup (write access rights) and the volumeof data to be communicated (memory usage). Data in Mosel format can be output
1. on the remote machine running Mosel

(a) in memory
(b) as a physical file

2. on the local machine running XPRD
(a) in memory
(b) as a physical file

Case 1a is implemented in the program version runprimeiodistr.c printed below. Case 1b isobtained by removing the shmem: prefix from the file name, for example, the setting
OUTPUTFILE=bin:tmp:resdata

will create a file resdata in Mosel’s temporary directory. Cases 2a and 2b could use the setting
OUTPUTFILE=bin:rmt:resdata

For the implementation of case 2b we simply replace the calls to the XPRD remote file accessfunctions by the standard C library functions fopen, fread, and fclose. Somewhat more work is

Fair Isaac Corporation Confidential and Proprietary Information 210

XPRD C

required for the implementation of case 2a: the program needs to define an XPRD file manager tohandle the data in memory—an example implementation is provided in the file runprimeiodistr2.c.
All implementation versions share the use of the bin: I/O driver and they all define the same function
show_solution that decodes Mosel’s binary format and displays the solution values. Using Mosel’sbinary format is recommended (though not a necessity) in distributed applications—it isplatform-independent and uses less space than the standard text format.
The program example of the previous section stops the Mosel model with a call to XPRDstoprunmod.We now replace this hard stop by sending the user event ‘STOPMOD’ to the submodel: instead ofimmediately terminating the submodel this event is intercepted by the submodel and makes it interruptits calculations and write out the current solution. To make sure that the submodel is actually runningat the point where we sent the ‘STOPMOD’ event, we have also introduced a ’MODREADY’ event sentfrom the submodel to the master to indicate the point of time when it starts the calculations (withheavy operating system loads the actual submodel start may be delayed).
The Mosel model primeio.mos remains the same as shown in Section 17.2.3.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xprd.h"
#include "bindrv.h"

#define STOPMOD 2 /⁎ Identifier for "Stop submodel" user event ⁎/
#define MODREADY 3 /⁎ Identifier for "Submodel ready" user event ⁎/

int main(int argv,char ⁎args[])
{
XPRDcontext xprd;
XPRDmosel moselInst;
XPRDmodel modPrime, evsender;
double evvalue;
int evclass;
XPRDfile f;

xprd=XPRDinit(); /⁎ Create an XPRD context ⁎/
/⁎ Open connection to a remote node:

"" means the node running this program ⁎/
moselInst=XPRDconnect(xprd, "", NULL, NULL, NULL, 0);

/⁎ Compile the model file ⁎/
XPRDcompmod(moselInst, "", "rmt:primeio.mos", "tmp:primeio.bim", "");

/⁎ Load the bim file into the remote instance ⁎/
modPrime=XPRDloadmod(moselInst, "tmp:primeio.bim");

/⁎ Disable submodel output ⁎/
XPRDsetdefstream(moselInst, modPrime, XPRD_F_WRITE, "null:");

/⁎ Start execution ⁎/
XPRDrunmod(modPrime, "LIMIT=50000,OUTPUTFILE=bin:shmem:resdata");
XPRDwaitevent(xprd,0); /⁎ Wait for an event ⁎/
XPRDgetevent(xprd, &evsender, &evclass, &evvalue); /⁎ Get the event ⁎/
if (evclass != MODREADY) /⁎ Check the event class ⁎/
{
printf("Problem with submodel run");
return 1;

}

XPRDwaitevent(xprd,2); /⁎ Wait 2 seconds for an event ⁎/

if (XPRDqueueempty(xprd)==1) /⁎ No event has been sent ⁎/
{
printf("Model too slow: stopping it!\n");
XPRDsendevent(modPrime, STOPMOD, 0); /⁎ Stop the model, then ⁎/
XPRDwaitevent(xprd,-1); /⁎ wait for its termination ⁎/
}

Fair Isaac Corporation Confidential and Proprietary Information 211

XPRD C

/⁎ Open the output file, retrieve and display the solution data ⁎/
f=XPRDfopen(moselInst, "shmem:resdata", XPRD_F_BINARY|XPRD_F_INPUT, NULL,0);
show_solution(my_read,f);
XPRDfclose(f);

XPRDunloadmod(modPrime); /⁎ Unload the model ⁎/
XPRDdisconnect(moselInst); /⁎ Disconnect remote instance ⁎/
XPRDfinish(xprd); /⁎ Terminate XPRD ⁎/

return 0;
}

Once the submodel has terminated we read its solution from the location specified in the modelparameter OUTPUTFILE and display the results. The subroutine show_solution uses functions fromthe bindrv library that is provided with XPRD to decode Mosel’s binary format. The output file read bythis routine has the same structure as the correponding text file in Mosel format, for example:
NumP: 6
SPrime: [2 3 5 7 11 13]

Since XPRD and bindrv expect different signatures for their reading functions, we also define a wrapperfunction my_read.
/⁎⁎⁎⁎ Wrapper function for 'bindrv' ⁎⁎⁎⁎/
static size_t my_read(void ⁎buf, size_t size, size_t nmemb, void ⁎ctx)
{
size_t s,a;
long t;

s=size⁎nmemb;
a=0;
while(s>0)
{
t=XPRDfread(ctx,(char⁎)buf+a,s);
if(t<=0) break;
else
{
a+=t;
s-=t;
}
}
return a/size;
}

/⁎⁎⁎⁎ Using bindrv: Decode the binary file and display its contents ⁎⁎⁎⁎/
void show_solution(size_t (⁎doread)(void ⁎,size_t,size_t,void⁎), void ⁎rctx)
{
s_bindrvctx bdrv;
int ⁎solarr;
int size,i,n;
char ⁎str;

bdrv=bindrv_newreader(doread,rctx); /⁎ Initialize binreader ⁎/

i=size=0;
solarr=NULL;
while(bindrv_nexttoken(bdrv)>=0)
{
bindrv_getctrl(bdrv,&n); /⁎ 'label' (marker) ⁎/
bindrv_getstring(bdrv,&str); /⁎ Read a string ⁎/
if(strcmp(str,"NumP")==0)
{
free(str);
bindrv_getint(bdrv,&size); /⁎ Read an integer ⁎/
printf("(%d prime numbers)\n", size);
if(size>0) /⁎ Prepare array to receive values ⁎/

Fair Isaac Corporation Confidential and Proprietary Information 212

XPRD C

solarr=malloc(sizeof(int)⁎size);
else
break;

}
else
if(strcmp(str,"SPrime")==0)
{
free(str);
bindrv_getctrl(bdrv,&n); /⁎ [(start marker) ⁎/
while(bindrv_nexttoken(bdrv)==BINDRV_TYP_INT)
{ /⁎ Read integers ⁎/
bindrv_getint(bdrv,&(solarr[i++]));
}
bindrv_getctrl(bdrv,&n); /⁎] (end marker) ⁎/
}
else
{
printf("Unexpected label: %s\n", str);
free(str);
exit(1);
}
}

bindrv_delete(bdrv); /⁎ Release bin reader ⁎/

/⁎ Print the set of prime numbers ⁎/
printf("Prime numbers={");
for(i=0;i<size;i++)
printf(" %d",solarr[i]);
printf("}\n");

free(solarr); /⁎ Clean up ⁎/
}

Fair Isaac Corporation Confidential and Proprietary Information 213

CHAPTER 20

XPRD Java

For the remote execution of Mosel models we need to augment the standard execution sequence forMosel models (that we have seen, for example, in Section 14.1) of compile load run to the sequence
connect – compile load run wait (this remark equally applies to submodels launched via mmjobs). Themeaning of these additions is the following:

� We need to connect to a remote machine and create a new Mosel instance (XPRDmosel) prior toworking with any Mosel models. Remote machines are specified by their name or IP address, theempty string in the example below indicates that we want to use the local machine.
� The submodel is executed in an independent process and we therefore need to wait for itstermination.

The program example runprimedistr.java below shows how to run the model prime.mos usingthe XPRD Java library. If the submodel has not terminated after 2 seconds (i.e., not terminationmessage has been received from this model), then it is stopped by the application. After termination ofthe submodel (either by finishing its calculations within less than 2 seconds or stopped by the mastermodel) the application reports the full event information and also displays the termination status andthe exit value of the Mosel model. Unloading a model explicitly as shown here is only really necessaryin larger applications that continue after the termination of the submodel, so as to free the memoryused by it.
import com.dashoptimization.⁎;
import java.lang.⁎;
import java.io.⁎;

public class runprimedistr
{
public static void main(String[] args) throws Exception
{
XPRD xprd=new XPRD();
XPRDMosel moselInst;
XPRDModel modPrime;
XPRDEvent event;

moselInst=xprd.connect(""); // Open connection to remote nodes
// "" means the node running this program

// Compile the model file on remote instance
moselInst.compile("", "rmt:prime.mos", "rmt:prime.bim");

// Load the bim file into remote instance
modPrime=moselInst.loadModel("rmt:prime.bim");

modPrime.execParams = "LIMIT=50000";
modPrime.run(); // Start execution and
xprd.waitForEvent(2); // wait 2 seconds for an event

Fair Isaac Corporation Confidential and Proprietary Information 214

XPRD Java

if (xprd.isQueueEmpty()) // No event has been sent...
{
System.out.println("Model too slow: stopping it!");
modPrime.stop(); // ... stop the model, then wait
xprd.waitForEvent();
}

// An event is available: model finished
event=xprd.getNextEvent();
System.out.println("Event value: " + event.value +

" sent by model " + event.sender.getNumber());
System.out.println("Exit status: " + modPrime.getExecStatus());
System.out.println("Exit code : " + modPrime.getResult());

moselInst.unloadModel(modPrime); // Unload the submodel
moselInst.disconnect(); // Terminate the connection

new File("prime.bim").delete(); // Clean up temporary files
}
}

The model source file prime.mos used by this example is saved on the local machine running XPRD,and the BIM file is written back to this machine (indicated by the I/O driver prefix rmt: in the ’compile’and ’load’ function calls that are executed on the remote instance). Alternatively, we might choose tosave the BIM file on the remote machine, e.g. in memory (shmem:primebim) or in Mosel’s temporarydirectory (tmp:prime.bim).

20.1 Exchanging data with the model

An application that processes a Mosel model typically needs to retrieve some (result) data from themodel for reporting or further treatment. Besides exchanging data via external sources (e.g.databases), Mosel offers a number of possibilities for directly retrieving data into an XPRD program.The choice of the method for exchanging data usually depends on the particular system setup (writeaccess rights) and the volume of data to be communicated (memory usage). Data in Mosel formatwritten in an initializations block can be output
1. on the remote machine running Mosel

(a) in memory
(b) as a physical file

2. on the local machine running XPRD
(a) in memory
(b) as a physical file

Case 1a is implemented in the program version runprimeiodistr.java printed below. Case 1b isobtained by removing the shmem: prefix from the file name, for example, the setting
OUTPUTFILE=bin:tmp:resdata

will create a file resdata in Mosel’s temporary directory. Cases 2a and 2b could use the setting
OUTPUTFILE=bin:rmt:resdata

For the implementation of case 2b we simply replace the XPRD remote file access by standard Java fileaccess, for example

Fair Isaac Corporation Confidential and Proprietary Information 215

XPRD Java

resdata=new FileInputStream("resdata");

Somewhat more work is required for the implementation of case 2a: the program needs to define anXPRD file manager to handle the data in memory—an example implementation is provided in the file
runprimeiodistr2.java.
All implementation versions share the use of the bin: I/O driver and they all define the same function
showSolution that decodes Mosel’s binary format and displays the solution values. Using Mosel’sbinary format is recommended (though not a necessity) in distributed applications—it isplatform-independent and uses less space than the standard text format.
The program version printed below introduces two user events to achieve more precise time measuresfor the remote process: the hard stop of the Mosel model is replaced by sending the user event‘STOPMOD’ to the submodel: instead of immediately terminating the submodel this event is interceptedby the submodel and makes it interrupt its calculations and write out the current solution. To make surethat the submodel is actually running at the point where we sent the ‘STOPMOD’ event, we have alsointroduced a ’MODREADY’ event sent from the submodel to the master to indicate the point of timewhen it starts the calculations (with heavy operating system loads the actual submodel start may bedelayed).
We work with the Mosel model primeio.mos from Section 17.2.3.

import com.dashoptimization.⁎;
import java.lang.⁎;
import java.util.⁎;
import java.io.⁎;

public class runprimeiodistr
{
static final int STOPMOD = 2; // Identifier for "Stop submodel" user event
static final int MODREADY = 3; // Identifier for "Submodel ready" user event

public static void main(String[] args) throws Exception
{
XPRD xprd=new XPRD(); // Initialize XPRD
XPRDMosel moselInst;
XPRDModel modPrime;
XPRDEvent event;
InputStream resdata;

moselInst=xprd.connect(""); // Open connection to remote nodes
// "" means the node running this program

// Compile the model file on remote instance
moselInst.compile("", "rmt:primeio.mos", "tmp:primeio.bim");

// Load the bim file into remote instance
modPrime=moselInst.loadModel("tmp:primeio.bim");

// Disable submodel output
modPrime.setDefaultStream(modPrime.F_OUTPUT, "null:");

modPrime.execParams = "LIMIT=50000,OUTPUTFILE=bin:shmem:resdata";
modPrime.run(); // Start execution and
xprd.waitForEvent(); // ...wait for an event
event=xprd.getNextEvent(); // Retrieve the event
if (event.eventClass != MODREADY) // Check the event class
{
System.out.println("Problem with submodel run");
System.exit(1);

}

xprd.waitForEvent(2); // Let the submodel run for 2 seconds

if (xprd.isQueueEmpty()) // No event has been sent...
{

Fair Isaac Corporation Confidential and Proprietary Information 216

XPRD Java

System.out.println("Model too slow: stopping it!");
modPrime.sendEvent(STOPMOD, 0); // ... stop the model, then
xprd.waitForEvent(); // wait for its termination
}

// Open the output file, retrieve and display the solution data
resdata=moselInst.openForReading("shmem:resdata", moselInst.F_BINARY);
showSolution(resdata);
resdata.close();

moselInst.unloadModel(modPrime); // Unload the submodel
moselInst.disconnect(); // Terminate the connection
}
}

After termination of the model run, the XPRD application reads the solution data from the locationspecified in the model parameter OUTPUTFILE and displays the results. Below follows theimplementation of the function showSolution that uses an instance of BinDrvReader to decodeMosel’s binary format (the bindrv library is provided with XPRD). A binary format files has the samestructure as the correponding text file in Mosel format, for example:
NumP: 6
SPrime: [2 3 5 7 11 13]

Each data entry starts with a label (string followed by a colon), followed either by a single, scalar datavalue, or a list of data values surrounded by square brackets.
// ⁎⁎⁎⁎ Decode the binary stream and display its contents ⁎⁎⁎⁎
static void showSolution(InputStream inbuf) throws Exception
{
BinDrvReader bdrv=new BinDrvReader(inbuf); // Initialize binreader
String label;
ArrayList<Integer> setP=new ArrayList<Integer>();

while(bdrv.nextToken()>=0)
{
bdrv.getControl(); // 'label' (marker)
label=bdrv.getString(); // Read a string
if(label.equals("NumP"))
{ // Read an integer
System.out.println("(" + bdrv.getInt() + " prime numbers.)");
}
else
if(label.equals("SPrime"))
{
bdrv.getControl(); // [(start marker)
while(bdrv.nextToken()==BinDrvReader.TYP_INT) // or] at end of list
{ // Read integers
setP.add(new Integer(bdrv.getInt()));
}
bdrv.getControl(); //] (end marker)
}
else
{
System.out.println("Unexpected label: "+label);
System.exit(0);
}
}

// Display the contents of the set 'SPrime'
Iterator<Integer> iprime=setP.iterator();
System.out.print("Prime numbers={");
while(iprime.hasNext())
{
Integer p=iprime.next();
System.out.print(" "+p);

Fair Isaac Corporation Confidential and Proprietary Information 217

XPRD Java

}
System.out.println(" }");
}

Fair Isaac Corporation Confidential and Proprietary Information 218

Appendix

APPENDIX A

Mosel Language overview

A.1 Structure of a Mosel model

A Mosel model (text file with extension .mos) has the form
model model_name

Compiler directives

Parameters

Body

end-model

Compiler directives � Options are specified as a compiler directive, at the beginning of themodel
� Options include explterm, which means that each statement must endwith a semi-colon, and noimplicit, which forces all objects to bedeclared

options explterm
options noimplicit

� uses statements are also compiler directives
uses "mmxprs", "mmodbc"

� Can define a version number for your model
version 1.0.0

� Another set of compiler directives serves for the definition andconfiguration of namespaces
namespace mynsp
nssearch myns2

Run-time parameters � Scalars (of type integer, real, boolean, or string) with a specifieddefault value
� Their value may be reset when executing the model
� Use initializations from for inputting structured data (arrays,sets,...)
� At most one parameters block per model

Model body � Model statements other than compiler directives and parameters,including any number of

Fair Isaac Corporation Confidential and Proprietary Information 220

Mosel Language overview

– declarations
– initializations from / initializations to
– functions and procedures

Implicit declaration � Mosel does not require all objects to be declared
� Simple objects can be used without declaring them, if their type isobvious
� Use the noimplicit option to force all objects to be declared beforeusing them (see item Compiler directives above)

Mosel statements � Can extend over several lines and use spaces
� However, a line break acts as an expression terminator
� To continue an expression, it must be cut after a symbol that impliescontinuation (e.g. + - , ⁎)

A.2 Data structures

array, set, list, record and any combinations thereof, e.g.,
S: set of list of integer
A: array(range) of set of real

Arrays Array: collection of labeled objects of a given type where the label of an array entry isdefined by its index tuple
declarations
A: array(1..5) of real
B: array(range, set of string) of integer
x: array(1..10) of mpvar

end-declarations

A:: [4.5, 2.3, 7, 1.5, 10]
A(2):= 1.2
B:: (2..4,["ABC", "DE", "KLM"])[15,100,90,60,40,15,10,1,30]

Sets Set: collection of objects of the same type without establishing an order amongthem (as opposed to arrays and lists)Set elements are unique: if the same element is added twice the set still onlycontains it once.
declarations
S: set of string
R: range

end-declarations

S:= "A", "B", "C", "D"
R:= 1..10

Lists List: collection of objects of the same typeA list may contain the same element several times. The order of the list elements isspecified by construction.
declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[['A','B','C'], ['D','E'], ['F','G','H','I']]

Fair Isaac Corporation Confidential and Proprietary Information 221

Mosel Language overview

Records Record: finite collection of objects of any typeEach component of a record is called a field and is characterized by its name and itstype.
declarations
ARC: array(ARCSET:range) of record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5

User types User types are treated in the same way as the predefined types of the Mosellanguage. New types are defined in declarations blocks by specifying a typename, followed by =, and the definition of the type.
declarations
myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

A.3 Selection statements

if ... end-if if c=1 then
writeln('c equals 1')

end-if

if ... else ... end-if if c=1 then
writeln('c equals 1')

else
writeln('c does not equal 1')

end-if

if ... elif ... else ... end-if if c=1 then
writeln('c equals 1')

elif c1 then
writeln('c is bigger than 1')

else
writeln('c is smaller than 1')

end-if

case ... end-case case c of
1,2 : writeln('c equals 1 or 2')
3 : writeln('c equals 3')
4..6: do

writeln('c is in 4..6')
writeln('c is not 1, 2 or 3')
end-do

else
writeln('c is not in 1..6')

end-case

A.4 Loops

forall forall(f in FAC, t in TIME)
make(f,t) = MAXCAP(f,t)

forall(t in TIME) do
use(t) = MAXUSE(t)
buy(t) = MAXBUY(t)

end-do

Fair Isaac Corporation Confidential and Proprietary Information 222

Mosel Language overview

while i := 1
while (i = 10) do
write(' ', i)
i += 1

end-do

repeat ... until i := 1
repeat
write(' ', i)
i += 1

until (i 10)

break, next � break jumps out of the current loop
� break n jumps out of n nested loops (where n is a positive integer)
� next jumps to the beginning of the next iteration of the current loop

counter � Use the construct as counter to specify a counter variable in abounded loop (i.e., forall or aggregate operators such as sum). Ateach iteration, the counter is incremented
cnt:=0.0
writeln("Average of odd numbers in 1..10: ",

(sum(cnt as counter, i in 1..10 | isodd(i)) i) / cnt)

A.5 Operators

Assignment operators i := 10
i += 20 ! Same as i := i + 20
i -= 5 ! Same as i := i - 5

Assignment operators with linear constraints

C := 5⁎x + 2⁎y = 20
D := C + 7⁎y

then D is
D := 5⁎x + 9⁎y - 20

The constraint type is dropped with :=
C := 5⁎x + 2⁎y = 20
C += 7⁎y

then C is
C := 5⁎x + 9⁎y = 20

The constraint type is retained with +=, -=
Arithmetic operators standard: + - ⁎ /power: ˆint. division/remainder: mod divsum: sum(i in 1..10) ...product: prod(i in 1..10) ...minimum/maximum: min(i in 1..10) ...count: count(i in 1..10 | isodd(i))

Fair Isaac Corporation Confidential and Proprietary Information 223

Mosel Language overview

Linear and non-linear expressionsDecision variables can be combined into linear or non-linear expressionsusing the arithmetic operators
� module mmxprs only works with linear constraints, so no prod, min,

max, ...
� other solver modules, e.g., mmnl, mmxnlp, also accept (certain)non-linear expressions

Logical operators constants: true, falsestandard: and, or, notAND: and(i in 1..10) ...OR: or(i in 1..10) ...comparison: <, >, =, <>, <=, >=

Set operators constants: {’A’, ’B’}union: +union: union(i in 1..10) ...intersection: ⁎intersection: inter(i in 1..10) ...difference: -

Set comparison operators subset: Set1 <= Set2superset: Set1 >= Set2equals: Set1 = Set2not equals: Set1 <>Set2element of: "Oil5" in Set1not element of: "Oil5" not in Set1

List operators constants: [1, 2, 3]concatenation: +, sumtruncation: -equals: L1 = L2not equals: L1 <>L2enumeration: i in L (within forall, sum etc.)

A.6 Built in functions and procedures

The following is a list of built in functions and procedures of the Mosel language (excluding modules).Functions return a value; procedures do not.
Dynamic array handling create exists delcell isdynamic

Freeze (finalize) a dynamic set finalize

Rounding functions ceil floor round abs

Mathematical functions exp log ln sqrt
cos sin arctan
isodd

Special real values isfinite isinf isnan

Random number generator random setrandseed

Fair Isaac Corporation Confidential and Proprietary Information 224

Mosel Language overview

Minimum/maximum of a list of values v := minlist(5, 7, 2, 9)
w := maxlist(CAP(1), CAP(2))

Inline “if” function MAX_INVEN(t) := if(t MAX_TIME, 1000, 0)

Inven(t) := stock(t) = buy(t) - sell(t) +
if(t 1, stock(t-1), 0)

Matrix export to file exportprob

File handling fopen fclose fselect
getfid getfname getreadcnt
iseof fflush fskipline
fwrite[_] / fwriteln[_]
read / readln write[_] / writeln[_]

String handling strfmt substr _

Access and modify model objects getcoeff[s] setcoeff getvars
sethidden ishidden setname setrange
gettype settype getsize
makesos1 makesos2
getelt getfirst getlast findfirst
findlast gethead gettail cutelt
cutfirst cutlast cuthead cuttail
reverse getreverse splithead splittail

Access solution values getobjval
getsol getrcost
getslack getact getdual

Exit from a model exit

Mosel controls getparam setparam localsetparam restoreparam

Date/time currentdate currenttime timestamp

Bit value handling bitflip bitneg bitset
bitshift bittest bitval

Miscellaneous asproc assert compare datablock
memoryuse newmuid publish unpublish
reset setioerr setmatherr
versionnum versionstr

� Overloading of subroutines

– Some functions or procedures are overloaded: a single subroutine can be called withdifferent types and numbers of arguments
� Additional subroutines are provided by Mosel library modules, which extend the basic Mosellanguage, e.g.,

– mmxprs: Xpress Optimizer
– mmodbc: ODBC data connection
– mmsheet: accessing spreadsheets
– mmsystem: system calls; text handling
– mmjobs: handling multiple models and (remote) Mosel instances
– mmsvg: graphics

⇒ See the ‘Mosel Language Reference Manual’ for full details
� User-defined functions and procedures

– You can also write your own functions and procedures within a Mosel model

Fair Isaac Corporation Confidential and Proprietary Information 225

Mosel Language overview

– Structure of subroutines is similar to a model (may have declarations blocks)
– User subroutines may define overloaded versions of built in subroutines

⇒ See examples in Chapter Functions and procedures

� Packages

– Additional subroutines may also be provided through packages (Mosel libraries written in theMosel language as opposed to Mosel modules that are implemented in C)
⇒ See the Chapter Packages for further detail

A.7 Constraint handling

Ctr1:= 2⁎x + y = 10 ! Named constraints
Ctr2:= x is_integer

2⁎x + y = 10 ! Anonymous constraints
y = 5

Named constraints can be accessed: val:= getact(Ctr)
getvars(Ctr, vars)hidden: sethidden(Ctr, true)redefined: Ctr:= x+y = 10
Ctr:= 2⁎x+5⁎y = 5modified: Ctr += 2⁎x
settype(Ctr, CT_UNB)deleted (reset): Ctr:= 0

Anonymous constraints are constraints that are specified without assigning them to a linctrvariable. Bounds are (to Mosel) just simple constraints without a name. Anonymous constraints areapplied in the optimization problem just like ordinary constraints. The only difference is that it is notpossible to refer to them again, either to modify them, or to examine their solution value.

A.8 Problem handling

� Mosel can handle several problems in a given model file. A default problem is associated withevery model.
� Built in type mpproblem to identify mathematical programming problems

– The same decision variable (type mpvar) may be used in several problems
– Constraints (type linctr) belong to the problem where they are defined

� The statement with allows to open a problem (= select the active problem):
declarations
myprob: mpproblem

end-declarations
...
with myprob do
x+y = 0

end-do

� Modules can define other specific problem types. New problem types can also be defined bycombining existing ones, for instance:

Fair Isaac Corporation Confidential and Proprietary Information 226

Mosel Language overview

mypbtyp = mpproblem and somepbtype

� Problem types support assignment: P1:= P2and additive assignment: P1 += P2

Fair Isaac Corporation Confidential and Proprietary Information 227

APPENDIX B

Good modeling practice with Mosel

The following recommendations for writing Mosel models establish some guidelines as to how to write“good” models with Mosel. By “good” we mean re-usability, readability, and perhaps most importantly,efficiency: when observing these guidelines you can expect to obtain the best possible performance ofMosel for the compilation and execution of your models.

B.1 Using constants and parameters

Many mathematical models start with a set of definitions like the following:
NT:= 3
Months:= {'Jan', 'Feb', 'Mar'}
MAXP:= 8.4
Filename= "mydata.dat"

If these values do not change later in the model, they should be defined as constants, allowing Mosel tohandle them more efficiently:
declarations
NT = 3
Months = {'Jan', 'Feb', 'Mar'}
MAXP = 8.4
Filename= "mydata.dat"
end-declarations

If such constants may change with the model instance that is solved, their definition should be movedinto the parameters block (notice that this possibility only applies to simple types, excluding sets orarrays):
parameters
NT = 3
MAXP = 8.4
Filename = "mydata.dat"
end-parameters

Mosel interprets these parameters as constants, but their value may be changed at every execution of amodel, e.g.
mosel exec mymodel NT=5 MAXP=7.5 Filename="mynewdata.dat"

B.2 Naming sets

It is customary in mathematical models to write index sets as 1, ...,N or the like. Instead of translating

Fair Isaac Corporation Confidential and Proprietary Information 228

Good modeling practice with Mosel

this directly into Mosel code like the following:
declarations
x: array(1..N) of mpvar
end-declarations

sum(i in 1..N) x(i) >= 10

it is recommended to name index sets:
declarations
RI = 1..N
x: array(RI) of mpvar
end-declarations

sum(i in RI) x(i) >= 10

The same remark holds if several loops or operators use the same intermediate set(s). Instead of
forall(i in RI | isodd(i)) x(i) is_integer
forall(i in RI | isodd(i)) x(i) <= 5
sum(i in RI | isodd(i)) x(i) >= 10

which calculates the same intermediate set of odd numbers three times, it is more efficient to definethis set explicitly and calculate it only once:
ODD:= union(i in RI | isodd(i)) {i}

forall(i in ODD) x(i) is_integer
forall(i in ODD) x(i) <= 5
sum(i in ODD) x(i) >= 10

Alternatively, loops of the same type and with the same index set(s) may be regrouped to reduce thenumber of times that the sets are calculated:
forall(i in RI | isodd(i)) do
x(i) is_integer
x(i) <= 5
end-do
sum(i in RI | isodd(i)) x(i) >= 10

B.3 Finalizing sets and dynamic arrays

The declaration of an array in Mosel has one of these two forms
1. Explicit declaration as sparse array by using one of the keywords dynamic or hashmap.
2. ‘Standard’ declaration, resulting in a dense array that is either static (all index sets are known) or

not fixed (some or all indexing sets are unknown at the point where the declaration takes place).
If an array is used to represent dense data one should avoid defining it as a sparse array as that usesmore memory and is slower than the corresponding dense array.
In many optimization models, dense arrays are created as non-fixed arrays because their contents isinitially unknown—but there is no real need to treat them as dynamic structures throughout the wholemodel as they remain unchanged once they have been initialized.
The automatic finalization mechanism of Mosel therefore transforms such initially dynamicsets/non-fixed arrays as to handle them more efficiently. As an additional advantage, set finalization

Fair Isaac Corporation Confidential and Proprietary Information 229

Good modeling practice with Mosel

allows Mosel to check for ‘out of range’ errors that cannot be detected if the sets are allowed to growdynamically.
� By default, initializations blocks finalize the sets they initialize and also the index sets ofinitialized dense arrays.
� Data of non-dynamic arrays is read before finalization of the index sets in order to create thearrays static.
� Arrays that are not explicitly declared as sparse arrays are only allocated when they are firstaccessed: this allows these arrays to be static even if their index sets are finalized after thedeclaration of the arrays.

So, code like the following example
declarations
S: set of string
A,B: array(S) of real
x: array(S) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations

sum(s in S) B(s)⁎x(s)

where all arrays are declared as dense arrays that are not fixed (their size is not known at theirdeclaration) but only A that is initialized using a data file really needs to be non-fixed, will be treated byMosel as if you had written the following
declarations
S: set of string
A: array(S) of real
end-declarations

initializations from "mydata.dat"
A
end-initializations

finalize(S)

declarations
B: array(S) of real
x: array(S) of mpvar
end-declarations

That is, B and x are created as static arrays, making the access to the array entries more efficient.
As a general rule, the following sequence of actions gives better results (in terms of memoryconsumption and efficiency):

1. Declare data arrays and sets that are to be initialized from external sources.
2. Perform initializations of data.
3. Finalize all related sets.
4. Declare any other arrays indexed by these sets (including decision variable arrays).

Note: there are several possibilities to stop Mosel from applying automatic finalization to modelobjects:

Fair Isaac Corporation Confidential and Proprietary Information 230

Good modeling practice with Mosel

� Declare arrays explicitly as dynamic or hashmap arrays. (See examples in Sections 3.2 and3.3.1.)
� Declare sets explicitly as dynamic in which case they cannot be finalized.
� Use control parameter autofinal to enable/disable automatic finalization locally:

setparam("autofinal", false)
initializations from "datafile.dat"
...

end-initializations
setparam("autofinal", true)

� Use option noautofinal to disable automatic finalization globally for the whole model:
model "modelname"
options noautofinal

B.4 Ordering indices

Especially when working with sparse arrays, the sequence of their indices in loops should correspondas far as possible to the sequence given in their declaration. For example an array of variables declaredby:
declarations
A,B,C: range
x: array(A,B,C) of mpvar
end-initializations

that is mostly used in expressions like sum(b in B, c in C, a in A) x(a,b,c) shouldpreferrably be declared as
declarations
A,B,C: range
x: array(B,C,A) of mpvar
end-declarations

or alternatively the indices of the loops adapted to the order of indices of the variables.

B.5 Use of exists

The Mosel compiler is able to identify sparse loops and optimizes them automatically, such as in thefollowing example:
declarations
I=1..1000
J=1..500
A: dynamic array(I,J) of real
x: array(I,J) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations

C:= sum(i in I,j in J | exists(A(i,j))) A(i,j)⁎x(i,j) = 0

Fair Isaac Corporation Confidential and Proprietary Information 231

Good modeling practice with Mosel

Notice that we obtain the same definition for the constraint C with the following variant of the code, butno loop optimization takes place:
C:= sum(i in I,j in J) A(i,j)⁎x(i,j) = 0

Here all index tuples are enumerated and the corresponding entries of A are set to 0. Similarly, if not allentries of x are defined, the missing entries are interpreted as 0 by the sum operator.
The following rules have to be observed for efficient use of the function exists, :

1. The arrays have to be indexed by named sets (here I and J):
A: dynamic array(I,J) of real ! can be optimized
H: hashmap array(I,J) of real ! can be optimized
B: dynamic array(1..1000,1..500) of real ! cannot be optimized

2. The same sets have to be used in the loops:
forall(i in I,j in J | exists(A(i,j))) ! fast
K:=I; forall(i in K,j in 1..500 | exists(A(i,j))) ! slow

3. The order of the sets has to be respected, particularly for dynamic arrays:
forall(i in I,j in J | exists(A(i,j))) ! fast
forall(j in J,i in I | exists(H(i,j))) ! slower
forall(j in J,i in I | exists(A(i,j))) ! slowest

4. The exists function calls have to be at the beginning of the condition:
forall(i in I,j in I | exists(A(i,j)) and i+j<>10) ! fast
forall(i in J,j in J | i+j<>10 and exists(A(i,j))) ! slow

5. The optimization does not apply to or conditions:
forall(i in I,j in J | exists(A(i,j)) and i+j<>10) ! fast
forall(i in I,j in J | exists(A(i,j)) or i+j<>10) ! slow

B.6 Structuring a model

Procedures and functions may be introduced to structure a model. For easy readability, the length of asubroutine should not exceed the length of one page (screen).
Large model files could even be split into several files (and combined using the include statement).

B.7 Transforming subroutines into user modules

The definitions of subroutines that are expensive in terms of execution time and are called very often(e.g. at every node of the Branch-and-Bound search) may be moved to a user module. Via the MoselNative Interface it is possible to access and change all information in a Mosel model during itsexecution. See the Mosel Native Interface User Guide for a detailed description of how to define usermodules.

B.8 Algorithm choice and parameter settings

The performance of the underlying solution algorithm has, strictly speaking, nothing to do with theefficiency of Mosel. But for completeness’ sake the reader may be reminded that the subroutines

Fair Isaac Corporation Confidential and Proprietary Information 232

Good modeling practice with Mosel

getparam and setparam can be used to access and modify the current settings of parameters ofMosel and also those provided by modules, such as solvers.
The list of parameters defined by a module can be obtained with the Mosel command

exam -p module_name

With Xpress Optimizer (module mmxprs) you may try re-setting the following control parameters for thealgorithm choice:
� LP: XPRS_PRESOLVE
� MIP: XPRS_PREPROBING, XPRS_MIPPRESOLVE, XPRS_CUTSTRATEGY, XPRS_HEURSTRATEGY,
XPRS_SBEFFORT, XPRS_NODESELECTION

� Other useful parameters are the criteria for stopping the MIP search: XPRS_MAXNODE,
XPRS_MAXMIPSOL, XPRS_MAXTIME, the cutoff value (XPRS_MIPADDCUTOFF,
XPRS_MIPABSCUTOFF), and various tolerance settings (e.g. XPRS_MIPTOL).

Refer to the Xpress Optimizer Reference Manual for more detail.
You may also add priorities or preferred branching directions with the procedure setmipdir(documented in the chapter on mmxprs in the Mosel Reference Manual).

Fair Isaac Corporation Confidential and Proprietary Information 233

APPENDIX C

Character encoding in Mosel

This chapter addresses a number of questions relating to character encoding, in particular:
� What is a "character encoding", "character map", "code page"?
� What is Unicode?
� What is the meaning of UTF-8,16,32 and UCS-2?
� What is a BOM?
� Which character encoding is configured on my computer?
� Which files are concerned by character encoding in Mosel?
� How can I convert the character encoding of a text file?

C.1 What is a "character encoding", "character map", "code page"?

Although these terms are not strictly equivalent they all relate to the same problematic: how torepresent a symbol (or character) in a computer system. Such a representation is characterized by 2properties:
1. a character map to associate each symbol to a unique numerical ID (or code point). For instanceUS-ASCII defines 128 positions to represent the letters, digits and punctuation commonly used inEnglish: "exclamation mark" (!) has code point 33, "zero" has code point 48, "Capital Letter A" hascode point 65, etc.
2. an encoding method to actually represent each code point in memory. With ASCII, 7 bits aresufficient to encode the entire code set: each character is usually encoded on a single byte.

Various character encodings have been invented to satisfy local requirements around the world. Forexample, ISO-8859-1 is an 8-bit extension of ASCII (i.e. the 128 first code points of this encoding are thesame as ASCII) specifically designed for a group of European languages: it adds a set of accentedletters to standard ASCII. Another version, ISO-8859-7 is suitable for Greek but cannot representaccented letters such as those used in French.When the number of code points exceeds 256 it is required to switch to a multi-byte encoding. Shift-JIS(used in Japan) is an example of multi-byte encoding: each character is encoded using either 1 or 2bytes.
Typically a computer system is set up with some national encoding suitable to handle the symbolsrequired by the local language. For instance a Windows system installed in Germany uses encodingCP1252 (where CP stands for Code page) that supports symbols like ’ß’ or ’ö’ but will not be able todisplay any Greek (e.g. ’ θ ’) or Hebrew characters (e.g. ’ ℵ ’).

Fair Isaac Corporation Confidential and Proprietary Information 234

Character encoding in Mosel

C.2 What is Unicode?

Unicode is a universal encoding aimed at representing all known symbols such that a single encodingcan be used for any country/language. Unicode is widely adopted and most computer systems use itinternally to store character strings: the Windows operating system (and file system) uses thisencoding as well as most Unix/Linux systems. Programming environments like Java or .NET are alsobased on Unicode.
Note that in China the GB18030 encoding is preferred to Unicode: this is a universal encoding publishedby the Chinese National Standard.

C.3 What is the meaning of UTF-8,16,32 and UCS-2?

Unicode defines the mapping between code points and symbols, the effective encoding is specified bya Unicode Transformation Format (UTF). The most commonly used UTF encodings are:
UTF-32 a character is represented by a 4-byte integer
UTF-16 a character is represented by 1 or 2 2-byte integers
UTF-8 a character requires between 1 and 4 bytes
Compared to the other UTF encodings UTF-8 has the advantage of being compatible with ASCII: a textthat consists only of ASCII characters has the same representation in UTF-8 and ASCII. As aconsequence UTF-8 is also more compact than the other UTF encodings for English and mostEuropean languages (because the majority of symbols are included in the ASCII set).
UCS-2 (Universal Character Set v2) is a deprecated encoding originally used in Windows and Java: itencodes each character on a 2-bytes integer and is therefore limited to the first 65536 code points ofUnicode, this is why it has gradually been replaced by plain UTF-16.

C.4 What is a BOM?

For UTF-16 and UTF-32 the byte ordering has to be known (in fact we should refer to UTF-16LE,UTF-16BE, UTF-32LE, UTF-32BE to take into account the endianness of the encoding). In order to avoidincorrect interpretation of these encodings a Byte Order Mark (BOM) may be put at the beginning ofdocuments: it consists in a sequence of bytes that identifies both the encoding (UTF-16 or UTF-32) andthe byte ordering used (Little Endian or Big Endian).
Although UTF-8 does not require any byte ordering information, a dedicated BOM can be used with thisencoding: its primary purpose is to differentiate UTF-8 from other byte-oriented encodings. If notinterpreted this marker takes the form of the 3-characters sequence "ï�¿" (in ISO-8859-1 or CP1252): adocument starting with this sequence must be read with an UTF-8 enabled software.

C.5 Which character encoding is configured on my computer?

You can use the command ’xprnls info’ of the XPRNLS command tool to identify which encoding isused on your system. The following example shows the output produced for western EuropeanWindows / ’latin’ encoding with UK English as the selected language (the program output is highlightedin bold face):

Fair Isaac Corporation Confidential and Proprietary Information 235

Character encoding in Mosel

>xprnls info
Language: en
Default encodings:
System: CP1252
Console: CP437
File names: CP1252
Wide chars: UTF-16LE

Note that Xpress Workbench works with UTF-8 character encoding, independent of the system settings.

C.6 Which files are concerned by character encoding in Mosel?

Starting with version 4.0 Mosel is working in UTF-8. This concerns
� the internal representation of text
� all external APIs (i.e. all Mosel libraries)
� the communication with the system via Unicode (Windows) or system encoding (Posix)

All streams and text files default to UTF-8. There is no impact on applications that only use pure ASCII(first 127 characters), but text data files and source code using other encodings might requireconversions or tagging. Note that no changes are required for other file types such as spreadsheets ordatabases.
Model source and text data files in Mosel format: Specify the encoding with the annotation
!@encoding. For example if you are editing your model with an editor that employs the encodingCP1252:

!@encoding CP1252
model "my testmodel"
...

Other text/string input or output: Convert the encoding via the enc: prefix to file names and streamsor by using the conversion routines of the XPRNLS library or command tool (see paragraph ’How can Iconvert the character encoding of a text file’ below).

C.7 How can I convert the character encoding of a text file?

Text format data files (other than the Mosel initializations format for which the !@encodingmarker can be used) such as CSV files or files accessed via fopen that do not use UTF-8 encodingneed to be converted with the ’enc:’ prefix when accessing them from within a Mosel model.Example:
! Encoding names are operating system dependent, eg CP1252, ISO88591
fopen(enc:GB18030,testdata.txt", F_INPUT)

It is usually preferrable to specify the encoding used by a data file as shown above, but Mosel alsoimplements shorthands for encodings configured on the system running the model.
! Encoding aliases:
! raw, sys, wchar, fname, tty, ttyin, stdin, stdout, stderr
initializations to "enc:sys,mmsheet.csv:testoutput.csv"
...

end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 236

Character encoding in Mosel

Using the prefix enc:sysmeans that the default system encoding is employed (which corresponds tothe behaviour of Mosel versions prior to Mosel 4).
On the API level, you can use the XPRNLS library to convert to/from UTF-8 encoding (please see thereference manual XPRNLS command tool and library for the full documentation of its functionality):

� this library is platform independent and has no external dependency
� it handles encoding conversions between UTF-8 and local encodings
� it implements UTF-8/16/32(LE+BE), ISO-8859-1/15, ASCII, CP1252
� other supported encodings depend on the operating system

// Open a file using the C function 'fopen' with a file name coming from Mosel
f = fopen(XNLSconvstrto(XNLS_ENC_SYS,filename,-1,NULL),"r");

Alternatively, you can use the XPRNLS command tool for converting the character encoding of text filesbetween any two supported encodings:
xprnls conv -f CP1252 -t UTF8 -o outfile.txt myfile.txt

Note: you can display the list of the available xprnls commands by entering
xprnls

at the command prompt.

Fair Isaac Corporation Confidential and Proprietary Information 237

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 238

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 239

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
⁎, 7, 59
+, 15, 59, 62
+=, 60, 62
,, 15
-, 15, 59, 62
-=, 60, 62::, 13, 221
<=, 7
=, 7
>=, 7
A
abs, 74
addcuts, 87
and, 40annotation, 200character encoding, 236annotation category, 200annotation name, 200applicationaccess model, 105compile model, 103data exchange, 108, 124, 135execute model, 104model parameters, 105solution access, 105array, 12, 53automatic, 56declaration, 13dense, 25, 107, 110, 123, 124, 134, 135, 156, 229dynamic, 25, 27, 84, 91, 155finalize, 229index set, 55initialization, 13, 17initialization operator, 13input data format, 25multi-dimensional, 13, 25non-fixed, 25sparse, 107, 111, 123, 125, 134, 136, 155static, 27, 155, 229
array, 40, 53, 56, 80
as, 40
as counter, 49automatic array, 56automatic finalization, 28, 58, 229disable, 231
Bbaseline scenario, 184BIM file, 103
bin, 168

binary format, 168binary model file, 175binary variable, 32blending constraint, 16BOM, see Byte Order Mark
boolean, 40, 53bounded variable, 16BRE, 198
break, 40, 52Byte Order Mark, 235
CC interface, 103callback, 88
case, 40
cb, 112, 168
ceil, 90character encodingcompatibility, 236conversion, 236character map, 234code page, 234column, see variablecolumn generation, 89combining solvers, 187comment, 7multiple lines, 7comparisonlist, 62set, 60comparison tolerance, 87compile, 8, 103to memory, 175
compile, 175condition, 26, 46, 232conditional generation, 26conditional loop, 49
connect, 177constant, 12
constant, 40, 194constant list, 61constant set, 57constant type, 55constrainthide, 100MVLB, 85named, 14non-negativity, 6, 7type, 99Constraint Programming, 187continuation line, 15
count, 40, 50

Fair Isaac Corporation Confidential and Proprietary Information 240

Index

counter, 40counters, 49CP, see Constraint Programming
create, 26, 55cross-recursion, 73
csv, 173CSV format, 22cut generation, 83cut manager, 87cut manager entry callback, 88cut pool, 87cutting plane method, 83cutting stock problem, 89
Ddata communication, 108, 124, 135declaration, 156dense, 156exchange with application, 108, 124, 135initialization, 156input from database, 18input from file, 17, 25, 28multi-dimensional array, 25, 28output, 78sparse, 156sparse format, 28data file, 167format, 17, 25data formatdense, 110, 124, 135sparse, 111, 125, 136database, 18date, 39
date, 192, 194
datefmt, 193
datetime, 192, 195
debug, 149debugger, 149debugging, 41decision variable, see variable, 5array, 13declarationarray, 13public, 161subroutine, 73
declarations, 7, 40, 71decomposition, 174default I/O driver, 167
deflate, 174
delcell, 54delete temporary filesmodel, 121, 131dense, 107, 123, 134dense array, 25, 54dense data, 55, 156, 229dense data format, 110dense format, 124, 135deviation variable, 99difference, 59, 60

Dim, 135
diskdata, 29, 79, 80, 171distributed computing, 177
div, 40
do, 40
doc, 201
dotnet, 138, 141, 169
dotnetraw, 135, 136, 170
dynamic, 25, 40, 54, 155, 229dynamic array, 25, 27, 54, 84, 155dynamic data input, 114, 127, 138dynamic list, 61dynamic output retrieval, 113, 127, 138dynamic set, 57
Eefficiency, 152
elif, 40
else, 40embeddingdata exchange, 108, 124, 135model access, 105
enc:, 236
encoding, 236encoding method, 234
end, 40
end-declarations, 7
end-do, 48
end-function, 70
end-initializations, 17
end-model, 7
end-procedure, 70enumerationdense array, 107, 123, 134inverse order, 62set, 106, 122, 133sparse array, 108, 124, 135ERE, 198errordata, 41logical, 41redirection, 117, 130, 141, 145run time, 42syntax, 41error handling, 30error stream, 145redirecting, 31
ETC_SPARSE, 79, 80
ETC_OUT, 78
ETC_SPARSE, 78
evaluation, 40, 80
exam, 39, 168
excel, 173Excel spreadsheet, 21
execute, 8execution speed, 152
exists, 26, 156, 232
exportprob, 27, 167extended file name, 167

Fair Isaac Corporation Confidential and Proprietary Information 241

Index

F
F_APPEND, 78
F_OUTPUT, 78
false, 40
fclose, 31, 78, 167
fdelete, 176feasibility tolerance, 87field, 53access, 66file generalized, 167file handling, 167file output, 78solution, 80
finalize, 28finalized, 27
FindIdentifier, 133
findIdentifier, 122finish, 104, 108
FirstIndex, 133fixed set, 57fixed size array, 54flow control, 46
fopen, 31, 78, 167
forall, 14, 26, 40, 48, 49, 51
forall-do, 48formatdate, 193real number output, 81text output, 76time, 193
forward, 40, 73, 88free variable, 96
from, 40fully qualified entity name, 163function, 70, 232
function, 40, 70
Ggeneralized file, 167
getFirstTEIndex, 124
getannotations, 201
getasnumber, 194, 195
getcoeff, 74
getDimension, 124
getexitcode, 175
getFirstIndex, 122, 123
getfstat, 30
getLastIndex, 122
getobjval, 8
getparam, 30, 163
getreadcnt, 30
getreverse, 62
getsize, 60
getsol, 8, 36, 74
gettype, 99
getvalue, 175global annotation, 200gnuplot, 173Goal Programming, 98

Archimedian, 98lexicographic, 98pre-emptive, 98graphics, 178
gzip, 174
H
hashmap, 40, 54, 155, 229hashmap array, 54head, 62hide constraint, 100hybrid solution approaches, 187
II/O driver, 80, 167bin, 168, 169cb, 168csv, 173default, 167deflate, 174diskdata, 171dotnet, 169dotnetraw, 170excel, 173gzip, 174java, 171jraw, 172mem, 168mempipe, 172null, 169oci, 172odbc, 173pipe, 173raw, 169rcmd, 172rmt, 172shmem, 172sysfd, 169text, 173url, 171xls, 173xlsx, 173xsrv, 172xssh, 172I/O error, 30
if, 40, 49
if-then, 46
if-then-else, 50implicitly dynamic array, 229
imports, 40, 157
in, 40, 60
include, 40, 157, 232indexmultiple, 49index set, 12, 15index set type, 55
Indices, 134
info, 155
initialisations, 40

Fair Isaac Corporation Confidential and Proprietary Information 242

Index

initializationarray, 13, 17list, 61set, 57
initializations, 17, 28, 40, 78, 125, 136, 167, 176,230
initializations from, 17
initializations to, 164Insight, see Xpress Insight
integer, 40, 53integer knapsack problem, 92Integer Programming, 36integer variable, 32
inter, 40interruptloop, 52intersection, 59
ioctrl, 30
iostatus, 30IP, see Integer Programming
is_binary, 40
is_continuous, 40
is_free, 40
is_integer, 40
is_partint, 40
is_semcont, 40
is_semint, 40
is_sos1, 33, 36, 40
is_sos2, 33, 40
is_binary, 32
is_integer, 32
is_partint, 32
is_semcont, 33
is_semint, 33
isqueueempty, 177
isvalid, 193
J
java, 126, 130, 171
jraw, 124, 125, 172
Kknapsack problem, 11integer, 92
Llargest common divisor, 50
LastIndex, 133limit, see bound
linctr, 40, 53line break, 15Linear Programming, 4, 36Linear Programming problem, 6list, 53comparison, 62concatenation, 62constant, 61dynamic, 61enumeration, 62initialization, 61

merging, 63operators, 62
list, 40, 53load, 8, 103
load, 175
loadprob, 118loop, 14, 46, 48conditional, 49, 156interrupting, 52nested, 52sparse, 231LP, see Linear Programming
lsmods, 155
lssymb, 155
Mmatchregular expression, 198Mathematical Programming, 4
max, 40, 49
maximize, 118maximum, 47
mc, 201
mem, 110, 168memory consumption, 152
mempipe, 172meta data, 200
min, 40minimum, 47MIP, see Mixed Integer ProgrammingMIQP, see Mixed Integer Quadratic ProgrammingMixed Integer Programming, 4, 32, 83Mixed Integer Quadratic Programming, 187
mmdotnet, 169
mmetc, 29, 79, 171
mmhttp, 171
mminsight, 178
mmjava, 171
mmjobs, 172, 174
mmoci, 172
mmodbc, 19, 173mmsheet, 21
mmsheet, 19, 173
mmsvg, 178
mmsystem, 39, 173mmxml, 180
mmxml, 179
mmxprs, 8, 39, 42, 118
mod, 40model, 6access from application, 105compile, 103coordination, 175data from application, 108, 124, 135execute, 8, 104parameters, 105reset, 104, 108, 120, 131run, 8unload, 104
model, 7, 40, 157

Fair Isaac Corporation Confidential and Proprietary Information 243

Index

model documentation, 203model file, 103model structure, 232modelingefficiency, 152module, 39, 167I/O driver, 169
monthnames, 193Mosel Remote Launcher, 172
MOSEL_DSO, 158moseldoc, 203MP, see Mathematical Programming
mpproblem, 93
mpvar, 7, 13, 25, 40, 53multiple indices, 49multiple models, 174multiple nodes, 177multiple problems, 92, 93MVLB constraint, 85
Nnameconstraint, 14
namespace, 40, 163namespace group, 163
nbread, 28, 30negation, 60nested loops, 52
next, 40
nextTEIndex, 124
nextIndex, 123NLP, see Non-linear Programming
noautofinal, 231
noindex, 110Non-linear Programming, 187non-negative variable, 6, 7non-negativity constraint, 6, 7
not, 40, 60
nsgroup, 40, 163
nssearch, 40, 163
null, 31, 169number output format, 81
Oobjective function, 6, 7
oci, 172ODBC, 19
odbc, 173
of, 40
open, 169operatorcounter, 50set, 60optimization, 8
options, 40
or, 40, 232output, 8disable, 169file, 78formatted, 98

formatting, 76redirection, 117, 130, 141, 145, 169splitting, 169output file, 145overloading, 74
Ppackage, 157internal name, 158location, 158name, 158
package, 40, 157, 158package parameter, 161parallel solving, 174parameter, 18comparison tolerance, 87global, 71local, 71number output format, 81subroutine, 71parameters, 105, 110, 124, 135
parameters, 18, 40, 228parser, 41partial integer variable, 32perfect number, 48
pipe, 173prime number, 59, 105, 121, 132problemdecomposition, 174multiple, 92, 93solving, 8procedure, 70, 232
procedure, 40, 70
prod, 40
profile, 152profiler, 152project planning problem, 34
public, 40, 65, 89, 105, 121, 161, 184
QQCQP, see Quadratically Constrained QuadraticProgrammingQP, see Quadratic Programming
qsort, 73, 195Quadratic Programming, 4, 187Quadratically Constrained Quadratic Programming,187quick sort, 73
quit, 149
R
range, 40, 48range set, 12
raw, 111, 169
rcmd, 172
read, 28
readcnt, 30
readln, 28real output format, 81

Fair Isaac Corporation Confidential and Proprietary Information 244

Index

real, 40, 53
REALFMT, 81record, 53
record, 40, 53, 65recursion, 72, 95redirecting output, 169reference row entries, 33
REG_EXTENDED, 198
REG_ICASE, 198regex, see regular expressionregular expression, 198matching, 198relocating documentation, 206remote execution, 177
repeat, 40
repeat-until, 48, 51, 52
requirements, 40resetmodel, 104, 108, 120, 131
reset, 54
return, 40
returned, 70
reverse, 62
rmt, 172row, see constraintrun, 8, 103
run, 175
SscalarI/O in memory, 115, 129, 140selection statements, 46semi-continuous integer variable, 33semi-continuous variable, 33set, 53, 105, 121, 132comparison, 60constant, 27, 57dynamic, 57finalize, 229finalized, 27fixed, 57, 58initialization, 57maximum, 47minimum, 47string indices, 15type, 53
set, 40, 53set of constants, 194set of strings, 15set operation, 59set operator, 60
sethidden, 92, 100
setparam, 30, 163
shared, 40shell sort, 51
shmem, 172
sleep, 151SLP, 187solution output, 80solution value, 106, 122, 133

solverscombining, 187solving, 8sortingdate, 195time, 195sorting algorithm, 39, 51, 73sparse, 25, 28, 79loop, 231sparse array, 54, 155sparse data, 55, 155sparse format, 107, 111, 123, 125, 134, 136sparsity, 23Special Ordered Set of type one, 33, 36Special Ordered Set of type two, 33spreadsheet, 18static array, 155
stop, 176
strfmt, 76
string, 40, 53submodel, 174coordination, 175interaction, 175status, 175, 209subproblem, 93, 100subroutine, 70, 232declaration, 73definition, 73overloading, 74parameter, 71subscript, 12subset, 60Successive Linear Programming, 95
sum, 40, 49, 62summation, 14superset, 60syntaxregular expression, 198syntax error, 41
sysfd, 169system call, 39
Ttable, see arraytail, 62
tee, 169
TEIndices, 135temporary directory, 169temporary filesdelete, 121, 131termination, 104, 108
text, 31, 173, 197
textarea, 198
then, 40
time, 192, 195time measurement, 39
timefmt, 193
tmp, 169
to, 40tolerance

Fair Isaac Corporation Confidential and Proprietary Information 245

Index

comparison, 87feasibility, 87real number output, 81transport problem, 23, 107, 123, 134
true, 40type array, 53basic, 53constant, 12constraint, 99elementary, 53external, 53list, 53MP, 53record, 53set, 53structured, 53user, 68
Uunbounded variable, 96Unicode, 235Unicode Transformation Format, 235union, 59
union, 40, 49unloadmodel, 104
until, 40
url, 171
uses, 19, 40, 157UTF, see Unicode Transformation Format
Vvariable, 5binary, 14, 32bounds, 16conditional creation, 26free, 96integer, 14, 32lower bound, 7non-negative, 6, 7partial integer, 32semi-continuous, 33semi-continuous integer, 33unbounded, 96VDL, see View Definition Language
version, 40View Definition Language, 186
W
wait, 175warning, 42
while, 40, 48, 50–52, 60
while-do, 48, 50
with, 40, 94Workbench, 9
workdir, 30
write, 8, 76, 79
writeln, 8, 28, 76, 78, 79

X
xls, 173
xlsx, 173XML document, 180XML path, 180
xmldoc, 180
XPRDstoprunmod, 211Xpress Insight, see Xpress Insight, 178Xpress Kalis, 187Xpress Optimizer, 118Xpress Workbench, see Workbench
XPRM, 120, 131
XPRM.Init(), 131
XPRM_F_ERROR, 145
XPRM_F_OUTPUT, 145
XPRMcompmod, 167
XPRMexecmod, 104
XPRMexecmod, 105
XPRMfinddso, 118
XPRMfindident, 106
XPRMfinish, 104, 105
XPRMgetfirstarrtruentry, 108
XPRMgetnextarrtruentry, 108
XPRMgetarrdim, 108
XPRMgetarrsets, 108
XPRMgetelsetval, 106
XPRMgetfirstarrentry, 107
XPRMgetfirstsetndx, 106
XPRMgetlastsetndx, 106
XPRMgetnextarrentry, 107
XPRMloadmod, 104, 167
XPRMresetmod, 104, 108
XPRMrunmod, 104, 167
XPRMsetdefstream, 117
xprmsrv, 172
XPRMunloadmod, 104, 105
xprnls, 235, 237XPRNLS command tool, 235, 237XPRNLS library, 237
XPRS_PROBLEM, 118
XPRS_LOADNAMES, 43
XPRS_VERBOSE, 43
xsrv, 172
xssh, 172
Z
ZEROTOL, 87
zlib, 174

Fair Isaac Corporation Confidential and Proprietary Information 246

	I Using the Mosel language
	Introduction
	Why you need Mosel
	What you need to know before using Mosel
	Symbols and conventions
	The structure of this guide

	Getting started with Mosel
	Entering a model
	The chess set problem: description
	A first formulation

	Solving the chess set problem
	Building the model
	Obtaining a solution using Mosel
	Running Mosel from a command line
	Using Xpress Workbench

	Some illustrative examples
	The burglar problem
	Model formulation
	Implementation
	The burglar problem revisited

	A blending example
	The model background
	Model formulation
	Implementation
	Re-running the model with new data
	Reading data from spreadsheets and databases
	Excel spreadsheets
	Database example
	Generic spreadsheet example

	More advanced modeling features
	Overview
	A transport example
	Model formulation
	Implementation

	Conditional generation — the | operator
	Conditional variable creation and create

	Reading sparse data
	Data input with initializations from
	Data input with readln
	Data input with diskdata

	I/O error handling

	Integer Programming
	Integer Programming entities in Mosel
	A project planning model
	Model formulation
	Implementation

	The project planning model using Special Ordered Sets

	Overview of subroutines and reserved words
	Modules
	Reserved words

	Correcting errors in Mosel models
	Correcting syntax errors in Mosel
	Correcting run time errors in Mosel

	II Advanced language features
	Overview
	Flow control constructs
	Selections
	Loops
	forall
	Multiple indices
	Conditional looping
	Counters

	while
	repeat until

	Arrays, sets, lists, and records
	Arrays
	Array declaration
	Multiple indices
	create

	Array initialization from file
	Automatic arrays: the array operator

	Initializing sets
	Constant sets
	Set initialization from file, finalized and fixed sets

	Working with sets
	Set operators

	Initializing lists
	Constant list
	List initialization from file

	Working with lists
	Enumeration
	List operators
	List handling functions

	Records
	Defining records
	Initialization of records from file

	User types

	Functions and procedures
	Subroutine definition
	Parameters
	Recursion
	forward
	Overloading of subroutines

	Output
	Producing formatted output
	File output
	Data output with initializations to
	Data output with writeln
	Data output with diskdata
	Solution output with initializations to

	Real number format

	More about Integer Programming
	Cut generation
	Example problem
	Model formulation
	Implementation
	Cut-and-Branch
	Comparison tolerance
	Branch-and-Cut

	Column generation
	Example problem
	Model formulation
	Implementation
	Alternative implementation: Working with multiple problems

	Extensions to Linear Programming
	Recursion
	Example problem
	Model formulation
	Implementation

	Goal Programming
	Example problem
	Implementation

	III Working with the Mosel libraries
	Overview
	C interface
	Basic tasks
	Compiling a model in C
	Executing a model in C
	Termination

	Parameters
	Accessing modeling objects and solution values
	Accessing sets
	Retrieving solution values
	Sparse arrays

	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output
	Problem solving in C with Xpress Optimizer

	Other programming language interfaces
	Java
	Compiling and executing a model in Java
	Termination
	Parameters
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output

	.NET
	Compiling and executing a model in C#
	Termination
	Parameters
	Accessing sets
	Retrieving solution values
	Sparse arrays
	Exchanging data between an application and a model
	Dense arrays
	Sparse arrays
	Dynamic data
	Scalars

	Redirecting the Mosel output

	VBA
	Compiling and executing a model in VBA
	Parameters
	Redirecting the Mosel output

	IV Extensions and tools
	Overview
	Debugger and Profiler
	The Mosel Debugger
	Using the Mosel Debugger
	Debugging concurrent models

	Debugger in Xpress Workbench

	Efficient modeling through the Mosel Profiler
	Using the Mosel Profiler
	Profiling concurrent models

	Other commands for model analysis
	Some recommendations for efficient modeling

	Packages
	Definition of constants
	Definition of subroutines
	Definition of types
	Definition of parameters
	Namespaces
	Packages vs. modules

	Language extensions
	Generalized file handling
	Displaying the available I/O drivers
	List of I/O drivers

	Multiple models and parallel solving with mmjobs
	Running a model from another model
	Compiling to memory
	Exchanging data between models
	Distributed computing

	Graphics and GUIs
	Drawing user graphs with mmsvg
	XML and HTML
	mmxml
	Reading and writing XML data
	Generating HTML

	Xpress Insight

	Solvers
	QCQP solving with Xpress Optimizer
	Xpress NonLinear
	Xpress Kalis

	Date and time data types
	Initializing dates and times
	Dates and times as constants
	Conversion to and from numbers
	Operations and access functions

	Text handling and regular expressions
	text vs. string
	Parsing text
	Regular expressions

	Annotations
	Accessing annotations
	moseldoc

	V Remote invocation of Mosel
	Overview
	XPRD C
	Exchanging data with the model

	XPRD Java
	Exchanging data with the model

	Appendix
	Mosel Language overview
	Structure of a Mosel model
	Data structures
	Selection statements
	Loops
	Operators
	Built in functions and procedures
	Constraint handling
	Problem handling

	Good modeling practice with Mosel
	Using constants and parameters
	Naming sets
	Finalizing sets and dynamic arrays
	Ordering indices
	Use of exists
	Structuring a model
	Transforming subroutines into user modules
	Algorithm choice and parameter settings

	Character encoding in Mosel
	What is a "character encoding", "character map", "code page"?
	What is Unicode?
	What is the meaning of UTF-8,16,32 and UCS-2?
	What is a BOM?
	Which character encoding is configured on my computer?
	Which files are concerned by character encoding in Mosel?
	How can I convert the character encoding of a text file?

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

