
FICO R© Xpress Optimization Xpress Optimizer Python interface

User’s manual

Last update 3 June 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©1983–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

Xpress Optimizer

Deliverable Version: A

Last Revised: 3 June 2017

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Installing the Python Xpress module . 1

1.2.1 Installation from the Xpress Optimizer distribution 1
1.2.2 Installation from Conda . 2

2 Modeling an optimization problem 3
2.1 Getting started . 3
2.2 Creating a problem . 3
2.3 Variables . 3
2.4 Constraints . 4
2.5 Objective function . 5
2.6 Special Ordered Sets (SOSs) . 6
2.7 Indicator constraints . 6
2.8 Modeling and solving nonlinear problems . 6
2.9 Solving a problem . 8
2.10 Querying a problem . 8
2.11 Reading and writing a problem . 10
2.12 Hints for building models efficiently . 10

3 Using Python numerical libraries 12
3.1 Using NumPy in the Xpress Python interface . 12
3.2 Products of NumPy arrays . 13

4 Controls and Attributes 14
4.1 Controls . 14
4.2 Examples . 15
4.3 Attributes . 15
4.4 Examples . 16
4.5 Accessing controls and attributes as object members 16

5 Using Callbacks 19
5.1 Introduction . 19

6 Examples of use 21
6.1 Creating simple problems . 21

6.1.1 Generating a small Linear Programming problem 21
6.1.2 A Mixed Integer Linear Programming problem 22

6.2 Modeling examples . 23
6.2.1 A simple model . 23
6.2.2 Using IIS to investigate an infeasible problem 23
6.2.3 Modeling a problem using Python lists and vectors 24
6.2.4 A knapsack problem . 24
6.2.5 A Min-cost-flow problem using NumPy . 25
6.2.6 A nonlinear model . 26
6.2.7 Finding the maximum-area n-gon . 26

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

6.2.8 Solving the n-queens problem . 27
6.2.9 Solving Sudoku problems . 27

6.3 Examples using NumPy . 28
6.3.1 Using NumPy multidimensional arrays to create variables 28
6.3.2 Using the dot product to create arrays of expressions 29
6.3.3 Using the Dot product to create constraints and quadratic functions 29
6.3.4 Using NumPy to create quadratic optimization problems 30

6.4 Advanced examples: callbacks and problem querying/modifying 30
6.4.1 Visualize the branch-and-bound tree of a problem 30
6.4.2 Query and modify a simple problem . 32
6.4.3 Change a problem after solution . 32
6.4.4 Combining modeling and API functions . 34
6.4.5 A simple Traveling Salesman Problem (TSP) solver 34

7 Reference Manual 38
7.1 Using this chapter . 38

Format of the reference . 39
7.2 Global methods of the Xpress module . 39
7.3 Methods of the problem class . 40
7.4 Methods for branching objects . 42
7.5 Methods for adding/removing callbacks of a problem object 42
7.6 Methods to be used within a callback of a problem object 42
xpress.free . 44
xpress.getbanner . 45
xpress.getcheckedmode . 46
xpress.getdaysleft . 47
xpress.getlasterror . 48
xpress.getlicerrmsg . 49
xpress.getversion . 50
xpress.init . 51
xpress.setcheckedmode . 52
xpress.setdefaults . 53
xpress.setdefaultcontrol . 54
xpress.Sum . 55
xpress.Dot . 56
xpress.Prod . 58
xpress.exp . 59
xpress.log . 60
xpress.log10 . 61
xpress.sin . 62
xpress.cos . 63
xpress.tan . 64
xpress.asin . 65
xpress.acos . 66
xpress.atan . 67
xpress.max . 68
xpress.min . 69
xpress.abs . 70
xpress.sign . 71
xpress.erf . 72
xpress.erfc . 73
xpress.sqrt . 74
xpress.user . 75
xpress.addcbmsghandler . 76
xpress.removecbmsghandler . 77

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

problem.addcbbariteration . 78
problem.addcbbarlog . 80
problem.addcbchgbranchobject . 81
problem.addcbcutlog . 82
problem.addcbdestroymt . 83
problem.addcbgapnotify . 84
problem.addcbgloballog . 86
problem.addcbinfnode . 87
problem.addcbintsol . 88
problem.addcblplog . 89
problem.addcbmessage . 90
problem.addcbmipthread . 91
problem.addcbnewnode . 92
problem.addcbnodecutoff . 93
problem.addcboptnode . 94
problem.addcbpreintsol . 95
problem.addcbprenode . 96
problem.addcbusersolnotify . 97
problem.addcoefs . 98
problem.addcols . 100
problem.addConstraint . 101
problem.addcuts . 102
problem.adddfs . 103
problem.addIndicator . 104
problem.addmipsol . 105
problem.addqmatrix . 106
problem.addrows . 107
problem.addSOS . 108
problem.addtolsets . 109
problem.addVariable . 110
problem.addvars . 111
problem.basisstability . 112
problem.btran . 113
problem.calcobjective . 114
problem.calcreducedcosts . 115
problem.calcslacks . 116
problem.calcsolinfo . 117
problem.cascade . 118
problem.cascadeorder . 119
problem.chgbounds . 120
problem.chgcoef . 121
problem.chgcoltype . 122
problem.chgcascadenlimit . 123
problem.chgccoef . 124
problem.chgdeltatype . 125
problem.chgdf . 126
problem.chgglblimit . 127
problem.chgmcoef . 128
problem.chgmqobj . 129
problem.chgnlcoef . 130
problem.chgobj . 131
problem.chgobjsense . 132
problem.chgqobj . 133
problem.chgqrowcoeff . 134
problem.chgrhs . 135

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

problem.chgrhsrange . 136
problem.chgrowstatus . 137
problem.chgrowtype . 138
problem.chgrowwt . 139
problem.chgtolset . 140
problem.chgvar . 142
problem.construct . 144
problem.copy . 145
problem.copycallbacks . 146
problem.copycontrols . 147
problem.delcoefs . 148
problem.delConstraint . 149
problem.delcpcuts . 150
problem.delcuts . 151
problem.delqmatrix . 152
problem.delSOS . 153
problem.deltolsets . 154
problem.delVariable . 155
problem.delvars . 156
problem.dumpcontrols . 157
problem.estimaterowdualranges . 158
problem.evaluatecoef . 159
problem.evaluateformula . 160
problem.filesol . 161
problem.fixglobals . 162
problem.fixpenalties . 163
problem.ftran . 164
problem.getAttrib . 165
problem.getattribinfo . 166
problem.getbasis . 167
problem.getccoef . 168
problem.getcoef . 169
problem.getcoefformula . 170
problem.getcoefs . 171
problem.getcolinfo . 172
problem.getcols . 173
problem.getcoltype . 174
problem.getConstraint . 175
problem.getControl . 176
problem.getcontrolinfo . 177
problem.getcpcutlist . 178
problem.getcpcuts . 179
problem.getcutlist . 180
problem.getcutmap . 181
problem.getcutslack . 182
problem.getdirs . 183
problem.getdf . 184
problem.getdtime . 185
problem.getDual . 186
problem.getdualray . 187
problem.getglobal . 188
problem.getiisdata . 189
problem.getIndex . 191
problem.getIndexFromName . 192
problem.getindicators . 193

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

problem.getinfeas . 194
problem.getlasterror . 195
problem.getlb . 196
problem.getlpsol . 197
problem.getmessagestatus . 198
problem.getmessagetype . 199
problem.getmipsol . 200
problem.getmqobj . 201
problem.getobj . 202
problem.getObjVal . 203
problem.getpivotorder . 204
problem.getpivots . 205
problem.getpresolvebasis . 206
problem.getpresolvemap . 207
problem.getpresolvesol . 208
problem.getprimalray . 209
problem.getProbStatus . 210
problem.getProbStatusString . 211
problem.getqobj . 212
problem.getqrowcoeff . 213
problem.getqrowqmatrix . 214
problem.getqrowqmatrixtriplets . 215
problem.getqrows . 216
problem.getRCost . 217
problem.getrhs . 218
problem.getrhsrange . 219
problem.getrowinfo . 220
problem.getrows . 221
problem.getrowstatus . 222
problem.getrowtype . 223
problem.getrowwt . 224
problem.getscaledinfeas . 225
problem.getSlack . 226
problem.getslpsol . 227
problem.getSolution . 228
problem.getSOS . 229
problem.gettolset . 230
problem.getub . 231
problem.getunbvec . 232
problem.getvar . 233
problem.getVariable . 235
problem.globalsol . 236
problem.hasdualray . 237
problem.hasprimalray . 238
problem.iisall . 239
problem.iisclear . 240
problem.iisfirst . 241
problem.iisisolations . 242
problem.iisnext . 243
problem.iisstatus . 244
problem.iiswrite . 245
problem.interrupt . 246
problem.loadbasis . 247
problem.loadbranchdirs . 248
problem.loadcoefs . 249

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

problem.loadcuts . 251
problem.loaddelayedrows . 252
problem.loaddfs . 253
problem.loaddirs . 254
problem.loadlpsol . 255
problem.loadmipsol . 256
problem.loadmodelcuts . 257
problem.loadpresolvebasis . 258
problem.loadpresolvedirs . 259
problem.loadproblem . 260
problem.loadsecurevecs . 262
problem.loadtolsets . 263
problem.loadvars . 264
problem.lpoptimize . 266
problem.mipoptimize . 267
problem.msaddcustompreset . 268
problem.msaddjob . 269
problem.msaddpreset . 270
problem.msclear . 271
problem.name . 272
problem.objsa . 273
problem.parsecformula . 274
problem.parseformula . 275
problem.postsolve . 276
problem.preparseformula . 277
problem.presolve . 278
problem.presolverow . 279
problem.printmemory . 280
problem.printevalinfo . 281
problem.printmsg . 282
problem.read . 283
problem.readbasis . 284
problem.readbinsol . 285
problem.readdirs . 286
problem.readslxsol . 287
problem.refinemipsol . 288
problem.reinitialize . 289
problem.removecbbariteration . 290
problem.removecbbarlog . 291
problem.removecbchgbranchobject . 292
problem.removecbcutlog . 293
problem.removecbdestroymt . 294
problem.removecbgapnotify . 295
problem.removecbgloballog . 296
problem.removecbinfnode . 297
problem.removecbintsol . 298
problem.removecblplog . 299
problem.removecbmessage . 300
problem.removecbmipthread . 301
problem.removecbnewnode . 302
problem.removecbnodecutoff . 303
problem.removecboptnode . 304
problem.removecbpreintsol . 305
problem.removecbprenode . 306
problem.removecbusersolnotify . 307

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

problem.repairinfeas . 308
problem.repairweightedinfeas . 310
problem.repairweightedinfeasbounds . 312
problem.reset . 314
problem.restore . 315
problem.rhssa . 316
problem.save . 317
problem.scale . 318
problem.scaling . 319
problem.setbranchbounds . 320
problem.setbranchcuts . 321
problem.setcbcascadeend . 322
problem.setcbcascadestart . 323
problem.setcbcascadevar . 324
problem.setcbcascadevarfail . 325
problem.setcbcoefevalerror . 326
problem.setcbconstruct . 327
problem.setcbdestroy . 329
problem.setcbdrcol . 330
problem.setcbformula . 331
problem.setcbiterend . 332
problem.setcbiterstart . 333
problem.setcbitervar . 334
problem.setcbmessage . 335
problem.setcbmsjobend . 336
problem.setcbmsjobstart . 337
problem.setcbmswinner . 338
problem.setcbslpend . 339
problem.setcbslpnode . 340
problem.setcbslpstart . 341
problem.setControl . 342
problem.setcurrentiv . 343
problem.setdefaultcontrol . 344
problem.setdefaults . 345
problem.setindicators . 346
problem.setlogfile . 347
problem.setmessagestatus . 348
problem.setObjective . 349
problem.setprobname . 350
problem.setuniqueprefix . 351
problem.solve . 352
problem.storebounds . 353
problem.storecuts . 354
problem.strongbranch . 355
problem.strongbranchcb . 356
problem.tokencount . 357
problem.tune . 358
problem.tunerreadmethod . 359
problem.tunerwritemethod . 360
problem.unconstruct . 361
problem.updatelinearization . 362
problem.validate . 363
problem.validatekkt . 364
problem.validaterow . 365
problem.validatevector . 366

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

problem.validformula . 367
problem.write . 368
problem.writebasis . 369
problem.writebinsol . 370
problem.writedirs . 371
problem.writeprtsol . 372
problem.writeslxsol . 373
problem.writesol . 374
branchobj.addbounds . 375
branchobj.addbranches . 376
branchobj.addcuts . 377
branchobj.addrows . 378
branchobj.getbounds . 379
branchobj.getbranches . 380
branchobj.getid . 381
branchobj.getlasterror . 382
branchobj.getrows . 383
branchobj.setpreferredbranch . 384
branchobj.setpriority . 385
branchobj.store . 386
branchobj.validate . 387

Appendix 388

A Contacting FICO 388
Product support . 388
Product education . 388
Product documentation . 388
Sales and maintenance . 389
Related services . 389
About FICO . 389

Index 390

Fair Isaac Corporation Confidential and Proprietary Information viii

CHAPTER 1

Introduction

The Xpress Python interface allows for creating and solving optimization problems using the
Python programming language and the FICO Xpress Optimizer library. This manual describes how
to use the Xpress Python interface.

1.1 Outline

The following chapters cover:

� Creating, handling, solving, and querying optimization problems (Chapter 2);

� Using Python numerical libraries such as NumPy when creating optimization problems
(Chapter 3);

� Setting and getting the value of controls, and getting the value of attributes of a problem
(Chapter 4).

� Using Python functions as callbacks for the Xpress Optimizer and the Xpress Nonlinear
solver (Chapter 5);

� Several examples of usage of the Xpress Python interface (Chapter 6).

� A reference with all functions and parameters in the Python interface (Chapter 7).

It is assumed here that the reader has basic understanding of the Python programming language.
Ample documentation on Python is available at http://docs.python.org, including a tutorial and a
reference manual. Unless specified otherwise, Python 3 is used in all of the examples and code
samples throughout this manual. The current version of the Xpress Python interface works on
Python 2.7, Python 3.4, and subsequent versions.

1.2 Installing the Python Xpress module

1.2.1 Installation from the Xpress Optimizer distribution

Using the Xpress Optimizer suite, the module is automatically installed by the installation script.
If xpress_dir is the directory where the Xpress Optimizer suite was installed (for example
c:\xpressmp for Windows users or /opt/xpressmp for *nix users), then the Python module is at
xpress_dir/lib for *nix users and xpress_dir\bin for Windows users.

Documentation is available under xpress_dir/docs/python, both in PDF form (see
xpress_dir/docs/python/xpress_python_interface.pdf) and as a set of HTML pages (see
xpress_dir/docs/python/dhtml/index.html).

Fair Isaac Corporation Confidential and Proprietary Information 1

http://docs.python.org

Introduction

1.2.2 Installation from Conda

A Conda package is available for download with the following command:

conda install -c fico-xpress xpress

Conda packages for Python 2.7, 3.4, 3.5, and 3.6 are available, for Windows, Linux, and MacOS.
The Conda package contains the Python interface module and its documentation, but not the
Xpress Optimizer’s libraries, its documentation, or a license. Please refer to the FICO Xpress
Optimizer web pages for instructions on how to obtain a full installation of the Xpress
optimization suite, which also contains an installation package that is compatible with Conda.

Fair Isaac Corporation Confidential and Proprietary Information 2

CHAPTER 2

Modeling an optimization problem

This chapter illustrates the modeling capabilities of the Xpress Python interface. It shows how to
create variables, constraints of different types, add an objective function, and solving and
retrieving a problem’s solution. It also shows how to read or write a problem from/to a file.

2.1 Getting started

The Xpress Python module is imported as follows:

import xpress

A complete list of methods and constants available in the module is obtained by running the
Python command dir (xpress). Because all types and methods must be called by prepending
"xpress.", it is advisable to alias the module name upon import:

import xpress as xp

We assume that this is the way the module is imported from now on. It is also possible to import
all methods and types to avoid prepending the module name or its alias, but this practice is
usually advised against:

from xpress import *

2.2 Creating a problem

Create an empty optimization problem myproblem as follows:

myproblem = xp.problem ()

A name can be assigned to a problem upon creation:

myproblem = xp.problem (name = "My first problem")

The problem has no variables or constraint at this point.

2.3 Variables

The Xpress type var allows for creating optimization variables. Note that variables are not tied to
a problem but may exist globally in a Python program. In order for them to be included into a

Fair Isaac Corporation Confidential and Proprietary Information 3

Modeling an optimization problem

problem, they have to be explicitly added to that problem. Below is the complete declaration
with the list of all parameters (all of them are optional):

var (name, lb, ub, threshold, vartype)

The parameters are:

1. name is a Python UTF-8 string containing the name of the variable (its ASCII version will be
saved if written onto a file); a default name is assigned if the user does not specify it;

2. lb is the lower bound (0 by default);

3. ub is the upper bound (+inf is the default);

4. threshold is the threshold for semi-continuous, semi-integer, and partially integer variables;
it must be between its lower and its upper bound; it has no default, so if a variable is
defined as partially integer the threshold must be specified;

5. vartype is the variable type, one of the six following types:

� xpress.continuous for continuous variables;

� xpress.binary for binary variables (lower and upper bound are further restricted to 0
and 1);

� xpress.integer for integer variables;

� xpress.semicontinuous for semi-continuous variables;

� xpress.semiinteger for semi-integer variables;

� xpress.partiallyinteger for partially integer variables.

The features of each variable are accessible as members of the associated object: after declaring a
variable with x = xpress.var(), its name, lower and upper bound can be accessed via x.name,
x.lb, and x.ub. Note that, after a variable x has been added to one or more problems, a change
in its feature will not be reflected in these problems, but only in the problems to which this
variable is added subsequently.

One or more variables (or vectors of variables) can be added to a problem with the addVariable
method:

v = xp.var (lb = -1, ub = 2)

m.addVariable (v)

x = [xp.var (ub = 10) for i in range (10)]
y = [xp.var (ub = 10, vartype = xp.integer) for i in range (10)]

m.addVariable (x,y)

2.4 Constraints

Linear, quadratic, and nonlinear constraints can be specified as follows:

constraint (constraint, body, lb, ub, sense, rhs, name)

The parameters are:

1. constraint is the full-form constraint, such as x1 + 2 * x2 <= 4;

Fair Isaac Corporation Confidential and Proprietary Information 4

Modeling an optimization problem

2. body is the body of the constraint, such as 3 * x1 + x2 (it may contain constants);

3. lb is the lower bound on the body of the constraint;

4. ub is the upper bound on the body of the constraint;

5. sense is the sense of the constraint, one among xpress.leq, xpress.geq, xpress.eq, and
xpress.range; in the first three cases, the parameter rhs must be specified; only in the
fourth case must lb and ub be specified;

6. rhs is the right-hand side of the constraint;

7. name is the name of the constraint. Parameters lb, ub, and rhs must be constant.

A constraint can be specified more naturally as a condition on an expression:

myconstr = x1 + x2 * (x2 + 1) <= 4
myconstr2 = xp.exp (xp.sin (x1)) + x2 * (x2**5 + 1) <= 4

One or more constraints (or vectors of constraints) can be added to a problem via the
addConstraint method:

m.addConstraint (myconstr)
m.addConstraint (v1 + xp.tan (v2) <= 3)
m.addConstraint (x[i] + y[i] <= 2 for i in range (10))

In order to help formulate compact problems, the Sum operator of the xpress module can be used
to express sums of expressions. Its argument is a list of expressions:

m.addConstraint (xp.Sum ([y[i] for i in range (10)]) <= 1)
m.addConstraint (xp.Sum ([x[i]**5 for i in range (9)]) <= x[9])

When handling variables or expressions, it is advised to use the Sum operator in the Xpress module
rather than the native Python operator, for reasons of efficiency.

As for variables, an object of type constraint allows for read/write access of its features via its
members name, body, lb, and ub. The same caveat for variables holds here: any change to an
object’s members will only have an effect in the problems to which a constraint is added after the
change.

2.5 Objective function

The objective function is any expression, so it can be constructed as for constraints. The method
setObjective can be used to set (or replace if one has been specified before) the objective
function of a problem. The definition of setObjective is as follows:

setObjective (objective, sense)

where objective is the expression defining the new objective and sense is either
xpress.minimize or xpress.maximize. Examples follows (in the first, the objective function is to
be minimized as per default, while the second example specifies the optimization sense as
maximization).

m.setObjective (xp.Sum ([y[i]**2 for i in range (10)]))
m.setObjective (v1 + 3 * v2, sense = xp.maximize)

Fair Isaac Corporation Confidential and Proprietary Information 5

Modeling an optimization problem

2.6 Special Ordered Sets (SOSs)

A Special Order Set (SOS) is a modeling tool for constraining a small number of consecutive
variables in a vector to be nonzero. The Xpress Python interface allows for defining a SOS as
follows:

sos (indices, weights, type, name)

The first argument, indices, is a list of variables, while weights is a list of floating point numbers.
The type of SOS (either 1 or 2) is specified by type. While indices and weights are mandatory
parameters, type and name are not; type is set to a default of 1 when not specified. Examples
follow:

set1 = xp.sos (x, [0.5 + i*0.1 for i in range(10)], type = 2)
set2 = xp.sos ([y[i] for i in range(5)], [i+1 for i in range(5)])
set3 = xp.sos ([v1, v2], [2, 5], 2)

One or more SOS can be added to a problem via the addSOS method:

set1 = xp.sos (x, [0.5 + i*0.1 for i in range(10)], type = 2)
m.addSOS (set1)
n = 10
w = [xp.var () for i in range (n)]
m.addSOS ([xpr.sos ([w[i],w[i+1]], [2,3], type = 2) for i in range (n-1)])

The name member of a SOS object can be read and written by the user.

2.7 Indicator constraints

Indicator constraints are defined by a binary variable, called the indicator, and a constraint.
Depending on the value of the indicator, the constraint is enforced or relaxed.

For instance, if the constraint x + y ≥ 3 should only be enforced if the binary variable u is equal to
1, then (u = 1→ x + y ≥ 3) is an indicator constraint.

An indicator constraint in Python can be added to a problem with the addIndicator as follows
(note the "==" as the symbol for equality):

m.addIndicator (vb == 1, v1 + v2 >= 4)

2.8 Modeling and solving nonlinear problems

Version 8.3 of the Xpress Optimizer suite introduces nonlinear modeling in the Python interface.
It allows for creating and solving nonlinear, possibly nonconvex problems with similar functions
as for linear, quadratic, and conic problems and their mixed integer counterpart.

A nonlinear problem can be defined by creating one or more variables and then adding
constraints and an objective function. This can be done using the same Python calls as one would
do for other problems. The available operators are +, -, *, /, ** (which is the Python equivalent
for the power operator). Univariate functions can also be used from the following list: sin, cos,
tan, asin, acos, atan, exp, log, log10, abs, sign, and sqrt. Multivariate functions are min and max,
which can receive an arbitrary number of arguments.

Examples of nonlinear constraints are as follows:

Fair Isaac Corporation Confidential and Proprietary Information 6

Modeling an optimization problem

import xpress as xp
import math

x = xp.var ()
p = xp.problem ()

p.addVariable (x)

polynomial constraint
p.addConstraint (x**4 + 2 * x**2 - 5 >= 0)

A terrible way to constrain x to be integer
p.addConstraint (xp.sin (math.pi * x) == 0)

p.addConstraint (x**2 * xp.sign (x) <= 4)

Note that non-native mathematical functions such as log and sin must be prefixed with xpress
or its alias, xp in this case. This can be avoided by importing all symbols from xpress using the
import * command as follows

from xpress import *
x = var()
a = sin(x)

but this hides namespaces and is usually frowned upon.

User functions are also accepted in the Python interface, and must be specified with the keyword
user and the function as the first argument. They are handled in the Nonlinear solver in a
transparent way, so all is needed is to define a Python function to be run as the user function and
specify it in the problem with user, as in the following example:

import xpress as xp
import math

def mynorm (x1, x2):
return math.sqrt (x1**2 + x2**2)

def myfun (v1, v2, v3):
return v1 / v2 + math.cos (v3)

x,y = xp.var (), xp.var ()

p = xp.problem ()

p.addVariables (x,y)

p.setObjective (user (mynorm, x, y))

p.addConstraint (x+y >= 2)
p.addConstraint (user (myfun, x**2, x**3, 1/y) <= 3)

As a final word of caution, solving nonlinear problem requires a preprocessing step that is
transparent to the user except for two steps: first, if the objective function has a nonlinear
component f(x) then a new constraint (called objective transfer row or objtransrow) and a new
variable, the objective transfer column or objtranscol) are called that are defined as follows:

objtransrow : −objtranscol + f(x) = 0

The resulting problem is equivalent in that the set of optimal (resp. feasible) solutions of this
problem will be the same as those of the original problem. The user, however, will notice an
increase by one of both the number of rows and of columns when a nonlinear objective function
is set.

The second caveat is about yet another variable that may be added to the problem for reasons

Fair Isaac Corporation Confidential and Proprietary Information 7

Modeling an optimization problem

having to do with one of the Xpress Nonlinear solvers. This variable is called equalscol and it is
fixed to 1. Its existence and value are therefore of no interest to the user.

The reader can find more information on this in the Xpress Nonlinear reference manual.

2.9 Solving a problem

Simply call solve() to solve an optimization problem that was either built or read from a file. The
type of solver is determined based on the type of problem: if at least one integer variable was
declared, then the problem will be solved as a mixed integer (linear, quadratically constrained, or
nonlinear) problem, while if all variables are continuous the problem is solved as a continuous
optimization problem. If the problem is nonlinear in that it contains non-quadratic, non-conic
nonlinear constraints, then the appropriate nonlinear solver of the Xpress Optimization suite will
be called. Note that in case of a nonconvex quadratic problem, the Xpress Nonlinear solver will
be applied as the Xpress Optimizer solver cannot handle such problems.

m.solve ()

The status of a problem after solution can be inquired via the functions getProbStatus() and
getProbStatusString() as follows:

import xpress as xp

m = xp.problem ()
m.read ("example3.lp")
m.solve ()

print ("problem status: ", m.getProbStatus ())
print ("problem status, explained: ", m.getProbStatusString ())

The meaning of the returned value is explained in the Optimizer’s reference manual. Note that
the value and string returned by the above functions reflect the type of problem as input by the
user, not the way the problem was last solved. If the user creates a MILP and then solves it as an
LP with the flag "l", then both getProbStatus() and getProbStatusString() yield the status of
the MILP rather than the LP relaxation. At all effects, the call p.getProbStatus() returns
p.attributes.lpstatus if p has continuous variables and p.attributes.mipstatus if p has integer
variables.

2.10 Querying a problem

It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a
continuous or mixed integer problem, the two methods getSolution and getSlack return the
vector (of portions thereof) of an optimal solution or the slack of the constraints. If an optimal
solution was not found but a feasible solution is available, these methods will return data based
on this solution. They can be used in multiple ways as shown in the following examples:

import xpress as xp

v1 = xp.var ()
x = [xp.var (lb = -1, ub = 1, vartype = xp.integer) for i in range(10)]

m = xp.problem ()

m.addVariable (v1, x)

[...] # add constraints and objective

Fair Isaac Corporation Confidential and Proprietary Information 8

Modeling an optimization problem

m.solve()

print (m.getSolution ()) # prints a list with an optimal solution
print ("v1 is", m.getSolution (v1)) # only prints the value of v1
a = m.getSolution (x) # gets the values of all variables in the vector x
b = m.getSolution (0:4) # gets the value of v1 and x[0], x[1], x[2]

Consider the last four commands. The first of them returns a list of ncol floating point scalars,
where ncol is the number of variables of the problem (nrow is the number of constraints, the size
of the vector returned by getSlack) containing the full solution. The second example retrieves
the value of the single variable v1. The third example returns an array of the same size as x with
the value of all variables of the list x. Finally, the fourth example shows that a range of indices
can be specified in order to obtain a vector of values without specifying the corresponding
variables. Recall that the column and row indices begin at 0.

The method getSlack works similarly, except constraints or integer indices must be passed. The
following examples illustrate a few possible uses.

import xpress as xp

N = 10

x = [xp.var (vartype = xp.binary) for i in range(N)]

m = xp.problem ()

m.addVariable (x)

con1 = xp.Sum (x[i] * i for i in range (N)) <= N)
con2 = (x[i] >= x[i+1] for i in range (N-1))

m.addConstraints (con1, con2)
m.setObjective (xp.Sum (x[i] for i in range (N))
m.solve ()

print (m.getSlack ()) # prints a list of slacks for all N constraints
print ("slack_1 is", m.getSlack (con1)) # only prints the slack of con1

a = m.getSlack (con2) # gets the slack of N-1 constraints con2
b = m.getSlack (0:2) # gets the slack of con1 and con2[0]

In addition, for problems with only continuous variables, the two methods getDual and getRCost
return the the vector (or a portion thereof) of dual variables and reduced costs, respectively. Their
usage is similar to that for getSolution and getSlack.

Note that the inner workings of the Python interface obtain a copy of the whole solution, slack,
dual, or reduced cost vectors, even if only one element is requested. It is therefore advisable that
instead of repeated calls (for instance, in a loop) to getSolution, getSlack, etc. only one call is
made and the result is stored in a list to be consulted in the loop. Hence, in the following
example:

import xpress as xp

n = 10000
N = range (n)

x = [xp.var () for i in N]

p = xp.problem ()

p.addVariable (x)
m.addConstraints (xp.Sum (x[i] * i for i in N) <= n))
m.setObjective (xp.Sum (x[i] for i in N)
m.solve ()

Fair Isaac Corporation Confidential and Proprietary Information 9

Modeling an optimization problem

for i in N:
if m.getSolution (x[i]) > 1e-3:

print (i)

the last three lines should be substituted as follows, as this will prevent repeatedly copying a
large (10,000) vector:

sol = m.getSolution ()

for i in N:
if sol[i] > 1e-3:

print (i)

2.11 Reading and writing a problem

After creating an empty problem, method, one can read a problem from a file via the read
method, which only takes the file name as its argument. An already-built problem can be written
to a file with the write method. Its arguments are similar to those in the Xpress Optimizer API
function XPRSwriteprob, to which we refer.

import xpress as xp

m = xp.problem ()
m.read ("example2.lp")
m.solve ()

print (m.getSolution ())

m2 = xp.problem ()
v1 = xp.var ()
v2 = xp.var (vartype = xp.integer)

m2.addVariable (v1, v2)
m2.addConstraint (v1 + v2 <= 4)
m2.setObjective (v1**2 + v2)

m2.write ("twovarsproblem", "lp")

2.12 Hints for building models efficiently

The Xpress Python interface allows for creating optimization models using methods described in
this and other sections. As happens with other interpreted languages, using explicit loops may
result in a slow Python script. When using the Xpress Python interface, this can be noticeable in
large optimization models if multiple calls to addVariable, addConstraint, or addSOS are made.
For this reason, the Xpress module allows for generators and list, dictionaries, and sequences as
arguments to these methods, to ensure faster execution.

Let us consider an example:

import xpress as xp

N = 100000
S = range(N)

x = [xp.var() for i in S]
y = [xp.var(vartype = xp.binary) for i in S]

for i in S:
m.addVariable (x[i])

Fair Isaac Corporation Confidential and Proprietary Information 10

Modeling an optimization problem

m.addVariable (y[i])

for i in S:
m.addConstraint (x[i] <= y[i])

m.solve()

While the declaration of x and y is correct and efficient, the two subsequent loops are very
inefficient: they imply 2N calls to addVariable and N calls to addConstraint. Both methods add
some overhead due to the conversion of Python object into data that can be read by the
Optimizer, and the total overhead can be large.

Most methods of the Xpress Python interface allow for passing sequences (lists, dictionaries,
NumPy arrays, etc.) as parameters, and are automatically recognized as such. Hence the first loop
can be replaced by two calls to addVariable:

m.addVariable (x)
m.addVariable (y)

or, more compact and slightly more efficient:

m.addVariable (x,y)

The largest gain in performance, though, comes from replacing the second loop with a single call
to addConstraint:

m.addConstraint (x[i] <= y[i] for i in S)

This line is equivalent to the second loop above, and it is much faster and more elegant.

When declaring x and y as NumPy vectors, an equally efficient and even more compact model can
be written:

import xpress as xp
import numpy as np

N = 100000
S = range(N)

x = np.array ([xp.var () for i in S])
y = np.array ([xp.var (vartype = xp.binary) for i in S])

m.addVariable (x,y)
m.addConstraint (x <= y)

m.solve()

See Chapter 3 for more information on how to use NumPy arrays in the Xpress Python interface.

Fair Isaac Corporation Confidential and Proprietary Information 11

CHAPTER 3

Using Python numerical libraries

The NumPy library allows for creating and using arrays of any order and size for efficiency and
compactness purposes. This chapter shows how to take advantage of the features of NumPy in
the creation of optimization problems. The Xpress Python interface works with NumPy versions
1.10 and above.

3.1 Using NumPy in the Xpress Python interface

NumPy arrays can be used as usual when creating variables, functions (linear and quadratic) of
variables, and constraints. All functions described in this manual that take lists or tuples as
arguments can take array’s, i.e., NumPy array objects, as well, as in the following example:

import numpy as np
import xpress as xp
N = 20
S = range (N)
x = np.array ([xp.var () for i in S])
y = np.array ([xp.var (vartype = xp.binary) for i in S])
constr1 = x <= y
p = xp.problem ()
p.addVariable (x, y)
p.addConstraint (constr1)

The above script imports both NumPy and the Xpress Python interface, then declares two arrays of
variables and creates the set of constraints xi ≤ yi for all i in the set S.

As happens for all NumPy operations, all operations are replicated on each element of an array,
taking into account all broadcasting features. For example, the following script “broadcasts” the
right-hand side 1 to all elements of the array, thus creating the set of constraints xi + yi ≤ 1 for all
i in the set S.

constr2 = x + y <= 1

All these operations can be carried out on arrays of any number of dimensions, and can be
aggregated at any level. The following example shows two three-dimensional array of variables
involved in two systems of constraints: the first has two variables per each of the 200 constraints,
while the second has 10 constraints and 20 variables in each constraint.

z = np.array ([xp.var () for i in range (200)]).reshape (4,5,10)
t = np.array ([xp.var (vartype = xp.binary) for i in range (200)]).reshape (4,5,10)
p.addVariable (z,t)
p.addConstraint (z**2 <= 1 + t)
p.addConstraint (xp.Sum (z[i][j][k] for i in range (4) for j in range (5)) <= 4

for k in range (10))

Fair Isaac Corporation Confidential and Proprietary Information 12

Using Python numerical libraries

3.2 Products of NumPy arrays

The dot product is a useful operator for carrying out aggregate operations on vectors, matrices,
and tensors. The dot operator in NumPy allows for reducing, along one axis of a multi-dimensional
arrays, data such as floating points or integer values.

The application of the dot product of NumPy of two multi-dimensional arrays of dimensions
(i1, i2, . . . , ik′) and (j1, j2, . . . , jk′′), respectively, requires that ik′ = jk′′−1, i.e., the size of the last
dimension of the first array must match the size of the penultimate dimension of the second
vector. For instance, the following dot product is valid:

import numpy as np
a = np.random.random (4,6)
b = np.random.random (6,2)
c = np.dot (a,b)

and the result is a 4x2 matrix. The Xpress Python interface has its own dot product operator,
which can be used for all similar operations on variables and expression. The rules for applying
the Xpress dot operator are the same as for the native Python dot product, with one extra
feature: there is no limit on the number of arguments, hence the following example is correct as
per the restrictions on the dimensions, albeit it yields a nonconvex constraint.

coeff_pre = np.random.random (6,3,7)
x = np.array ([xp.var () for i in range(140)]).reshape (4,7,5)
y = np.array ([xp.var () for i in range(80)]).reshape (2,5,8)
coeff_post = np.random.random (6,8,7)
p.addConstraint (xp.Dot (coeff_pre, x, y, coeff_post) >= 0)

Similar to the NumPy dot product, the Xpress dot product has an out parameter for defining the
output in which to store the product.

The following script defines two constraints: the first restricts the squared norm ||z|| = z · z of the
vector z of variables to be at most one. It does so by applying the dot operator on the vector
itself. The second constraint (t − z)′Q(t − z) ≤ 1 restricts the quadratic form on the left-hand side
to be at most 1.

p.addConstraint (xp.Dot (z,z) <= 1) # restrict norm of z to 1

Q = np.random.random (N,N) # create a random 20x20 matrix
p.addConstraint (xp.Dot ((t-z), Q, (t-z)) <= 1)

As for the Sum operator, when handling variables or expressions, it is advised to use the Dot
operator in the Xpress module rather than the native Python operator, for reasons of efficiency.

Fair Isaac Corporation Confidential and Proprietary Information 13

CHAPTER 4

Controls and Attributes

A control is a parameter that can influence the performance and behavior of the Xpress
Optimizer. For example, the MIP gap, the feasibility tolerance, or the type of root LP algorithms
are controls that can be set. Controls can both be read from and written to an optimization
problem.

An attribute is a feature of an optimization problem, such as the number of rows and columns or
the number of quadratic elements of the objective function. They are read-only parameters in
that they can only be modified by functions for adding constraints or variables, or functions for
setting and modifying the objective function.

Both controls and attributes are of three types: integer, floating point, or string. The Xpress
Python interface allows for setting and retrieving the value of all controls of an optimization
problem, as well as getting the value of all of a problem’s attributes.

Following Python’s philosophy, one can set and obtain multiple controls/attributes with one
function call. In other words, one can set either (i) a single control and its value; or (ii) a Python
dictionary coupling a list of control names and their respective value. Similarly, with one function
call one can obtain (i) the value of a single attribute or control by specifying it as a parameter; or
(ii) a dictionary associating names to values for each of a list of controls or attributes given as an
argument. See the examples below for more information.

4.1 Controls

Use the method setControl to set the value of one or more controls. Its synopsis is as follows:

setControl (ctrl, value)
setControl ({ctrl1: value1, ctrl2: value2, ..., ctrlk: valuek})

The first form is for setting the value of the control ctrl to value. The second form is for setting
ctrl1 to value1, ctrl2 to value2, ..., and ctrlk to valuek.

A list of all controls can be found on the Xpress Optimizer’s reference manual. The control
parameters to be passed in setControl are lower-case strings:

p.setControl (’miprelstop’, 1e-9)
p.setControl ({’miprelstop’: 1e-3, ’feastol’: 1e-6})

Use the method getControl to retrieve the value of one or more controls. Its synopsis is one of
the following:

getControl (ctrl)
getControl ([ctrl1, ctrl2, ..., ctrlk])
getControl (ctrl1, ctrl2, ..., ctrlk)
getControl ()

Fair Isaac Corporation Confidential and Proprietary Information 14

Controls and Attributes

The first form is for obtaining the value of the control ctrl. The output will be the value of the
control. The second and third forms are for retrieving ctrl1 , ctrl2 , ..., and ctrlk. Whether the
controls are declared in a list or a tuple does not matter. The result will be a dictionary coupling
each control with its value. The last form is to obtain all controls; the result is a dictionary
coupling all controls with their respective value.

The control parameters to be passed in getControl are lower-case strings. For a problem p the call
will be as follows:

mrs = p.getControl (’miprelstop’)
someattr = p.getControl (’miprelstop’, ’feastol’)

4.2 Examples

import xpress as xp

p = xp.problem ()

p.setControl ({’miprelstop’: 1e-5, ’feastol’: 1e-4})
p.setControl (’miprelstop’, 1e-5)

print (p.getControl (’miprelstop’)) # print the current value of miprelstop
print (p.getControl (’maxtime’, ’feastol’)) # print a dictionary with the current

value of miprelstop and feastol
print (p.getControl ([’presolve’, ’miplog’])) # Same output
print (p.getControl ()) # print a dictionary with ALL control

initialize a dictionary with two controls and their value. Then
change their value conditionally and set their new (possibly
changed) value

myctrl = p.getControl ([’miprelstop’, ’feastol’])

if (myctrl[’miprelstop’] <= 1e-4):
myctrl[’miprelstop’] = 1e-3;
myctrl[’feastol’] = 1e-3;

else:
myctrl[’feastol’] = 1e-4;

p.setControl (myctrl)

4.3 Attributes

Use the method getAttrib to retrieve the value of one or more controls. Its synopsis is one of the
following:

getAttrib (attr)
getAttrib ([attr1, attr2, ..., attrk])
getAttrib (attr1, attr2, ..., attrk)
getAttrib ()

The first form is for obtaining the value of the attribute attr. The output will be the value of the
attribute. The second and third forms are for retrieving attr1 , attr2 , ..., and attrk. Whether the
attributes are declared in a list or a tuple does not matter. The result will be a dictionary coupling
each attribute with its value. The last form is to obtain all attributes; the result is a dictionary
coupling all attributes with their respective value.

A list of all attributes can be found on the Xpress Optimizer’s reference manual. As for controls,
the attribute parameters to be passed in getAttrib are lower-case strings. For a problem p the
call will be as follows:

Fair Isaac Corporation Confidential and Proprietary Information 15

Controls and Attributes

nrows = p.getAttrib (’nrow’)
problemsize = p.getAttrib (’nrow’, ’ncol’)

4.4 Examples

import xpress as xp

p = xp.problem ()

p.read ("example.lp")

print ("The problem has ",
p.getAttrib (’nrow’), "rows and",
p.getAttrib (’ncol’), "columns")

Obtain dictionary with two entries: the number of rows and
columns of the problem read

print (p.getAttrib ([’nrow’, ’ncol’]))

produce a Python dictionary with all attributes of problem m, and
hence of LP file example.lp

attributes = p.getAttrib ()

4.5 Accessing controls and attributes as object members

An alternative, more "prompt-friendly" way to get controls and attributes is through their direct
access in a problem or, in the case of controls, the Xpress module itself.

The Xpress module has an object, called controls, containing all controls of the Optimizer. Upon
importing the Xpress module, these controls are initialized at their default value. The user can
obtain their value at any point and can also set their value; this new value will be inherited by all
problems created after the modification. They can be read and written as follows:

xpress.controls.<controlname>
xpress.controls.<controlname> = <new value>

For example, the object xpress.controls.miprelstop contains the value of the control
miprelstop. Controls can be read (and, for example, printed) and set as follows:

import xpress as xp
print (xp.controls.heurstrategy)
xp.controls.feastol = 1e-4 # Set new default to 1e-4

These "global" controls are maintained throughout while the Xpress module is loaded. Note that
the controls object of the Xpress module does not refer to any specific problem.

In addition, every problem has a controls object that stores the controls related to the problem
itself. This is the object the functions getControl and setControl refer to. Similar to the Xpress
module’s controls object, all members of a problem’s object can be read and written. For a
problem p, the following shows how to read and write a problem’s control:

p.controls.<controlname>
p.controls.<controlname> = <new value>

A problem’s controls are independent of the global controls object of the Xpress module.
However, when a new problem is created its controls are copied from the current values in the

Fair Isaac Corporation Confidential and Proprietary Information 16

Controls and Attributes

global object. Note that after creating a new problem, changing the members in
xpress.controls does not affect the problem’s controls. The following examples should clarify
this:

import xpress as xp

create a new problem whose MIPRELSTOP is ten times smaller
than the default value

p1 = xp.problem ("problem1")
p1.controls.miprelstop = 0.1 * xp.controls.miprelstop
p1.controls.feastol = 1e-5
p1.read ("example1.lp")

xp.controls.miprelstop = 1e-8 # Set new default

The new problem will have a MIPRELSTOP of 1e-8

p2 = xp.problem ("problem2")
p2.read ("example2.lp")

The next problem has a less restrictive feasibility tolerance
(i.e. 1e-6) than problem 2

p2v = xp.problem ("problem2 variant")
p2v.read ("example2.lp")
p2v.controls.feastol = 100 * p2.controls.feastol

p1.solve ()
p2.solve ()
p2v.solve () # solve "example2.lp" with a less restrictive

feasibility tolerance

Attributes can be handled similar as above through a member of the class problem, called
attributes, with two exceptions: first, there is no "global" attribute object, as a set of attributes
only makes sense when associated with a problem; second, an attribute cannot be set.

Once a problem p has been created (or read from a file), its attributes are available as
p.attribute.attribute_name. The example in the previous section can be modified as follows:

import xpress as xp
p = xp.problem ()
p.read ("example.lp")
print ("The problem has ",

p.attributes.nrow, "rows and ",
p.attributes.ncol, "columns")

When using the Python prompt in creating problems with the Xpress module, the name of
controls and attributes can be auto-completed by pressing TAB (note: this only works in Python
3.4 and subsequent versions). For instance,

>>> import xpress
>>> p = xp.problem ()
>>> p.read ("example.lp")
>>> p.attributes.n<TAB>
p.attributes.namelength p.attributes.nodedepth p.attributes.nodes p.attributes.numiis
>>> p.attributes.nodedepth
0
>>> p.attributes.ma<TAB>
p.attributes.matrixname p.attributes.maxabsdualinfeas
p.attributes.maxabsprimalinfeas p.attributes.maxprobnamelength
p.attributes.maxreldualinfeas p.attributes.maxrelprimalinfeas
>>> p.attributes.matrixname
’noname’
>>>>> xp.controls.o<TAB>

Fair Isaac Corporation Confidential and Proprietary Information 17

Controls and Attributes

xp.controls.oldnames xp.controls.omniformat
xp.controls.optimalitytol xp.controls.optimalitytoltarget
xp.controls.outputlog xp.controls.outputmask
xp.controls.outputtol
>>> xp.controls.omniformat
0

Fair Isaac Corporation Confidential and Proprietary Information 18

CHAPTER 5

Using Callbacks

This chapter shows how to define and use callback functions from the Xpress Python interface.
The design of this part of the interface reflects as closely as possible the design of the callback
functions defined in the C API of the Xpress Optimizer.

5.1 Introduction

Callback functions are a useful tool for adapting the Xpress Optimizer to the solution of various
classes of problems, in particular Mixed Integer Programming (MIP) problems, both with linear or
nonlinear constraints. Their main purpose is to provide the user with a point of entry into the
branch-and-bound, which is the workhorse algorithm for MIPs.

Using callback function is simple: the user first defines a function (say myfunction) that is to be
run every time the branch-and-bound reaches a well-specified point; second, the user calls a
function (such as addcbpreintsol) with myfunction as its argument. Finally, the user runs the
solve command that launches the branch-and-bound, the simplex solver, or the barrier solver; it
is while these are run that myfunction is called.

A callback function, hence, is passed once as an argument and used possibly many times. It is
called while a solver is running, and it is passed the following:

� a problem object (of the same class as an object declared with p = xpress.problem()); and

� a data object.

The data object is user-defined and is given to the problem when adding the callback function. It
can be used to store information that the user can read and/or modify within the callback. For
instance, the following code shows how to add a callback function, preintsolcb that is called
every time a new integer solution is found.

import xpress as xp

class foo:
"Simple class"
bar = 0
def __init__ (self):

self.bar = 1
def update (self):

self.bar += 1

def preintsolcb (prob, data, isheuristic, cutoff):
"""
Callback to be used when an integer solution is found. The
"data" parameter is of class foo
"""

Fair Isaac Corporation Confidential and Proprietary Information 19

Using Callbacks

p = xp.problem ()
p.read (’myprob.lp’) # reads in a problem, let’s say a MIP

baz = foo ()

p.addcbpreintsol (preintsolcb, baz, 3)
p.solve ()

While the function argument is necessary for all addcb* functions, the data object can be
specified as None. In that case, the callback will be run with None as its data argument. The call
also specifies a priority with which the callback should be called: the larger the (positive) priority,
the more urgently it is called.

Any call to an addcb* function, as the names imply, only adds a function to a list of callback
functions for that specific point of the BB algorithm. For instance, two calls to addcbpreintsol
with two functions preint1 and preint2, respectively with priority 3 and 5, puts the two
functions in a list. The two functions will be called (preint2 first) whenever the BB algorithm
finds an integer solution.

In order to remove a callback function that was added with addcb*, a corresponding removecb*
function is provided, for instance removecbpreintsol. This function takes two arguments, i.e., the
callback function and the data object, and deletes all elements of the list of callbacks that were
added with the corresponding addcb function that match the function and the data.

The None keyword acts as a wildcard that matches any function/data object: if removecb* is called
with None as the function, then all callbacks matching the data will be deleted. If the data is also
None, all callback functions of that type are deleted; this can be obtained by passing no argument
to removecb*.

The arguments and return value of the callback functions reflect those in the C API, and this holds
for parameter names as well. As for the other API functions of the Python interface, there are a
few exceptions:

� If a function in the C API requires a parameter n to indicate the size of an array argument to
follow, n is not required in the corresponding Python function;

� If a function in the C API uses passing by reference as a means to allow for modifying a
value and returning it as an output, the Python counterpart will have this as the return
value of the function. Where multiple output values are comprised in the list of parameters,
the return value is a tuple composed of the returned values. Elements of this tuple can be
None if no change was made to that output value.

Most callback functions refer to a problem, therefore the addcb* method is called from a problem
object. The only exception is the function xpress.addcbmsghandler(), which is called on the
Xpress module itself and allows for providing a function that is called every time any output is
produced within the Optimizer.

We refer to the Reference chapter of this manual for all information regarding callback functions
and how to add/remove them from a problem.

Fair Isaac Corporation Confidential and Proprietary Information 20

CHAPTER 6

Examples of use

This chapter discusses some example Python scripts that are part of the Xpress Optimizer’s Python
interface. Most of them are well commented so the user can refer directly to the source for
guidance.

Most of these scripts have an initial part in common, which we reproduce here but omit in all
explanations below for compactness. These initial lines import the Xpress module itself and the
NumPy module, which is used in some of the examples. The last line is to make the print
statements, which are in Python 3 style here, work in Python 2.7 as well.

import xpress as xp
import numpy as np
from __future__ import print_function

6.1 Creating simple problems

Below are a few examples on how to create simple LP, MIP, MIQP, and similar problems. Note that
they make use of API functions that resemble the C API functions for creating problems, and are
used similarly here.

6.1.1 Generating a small Linear Programming problem

In this example, we create a problem and load a matrix of coefficients, a rhs, and an objective
coefficient vector with the loadproblem function. We also assign names to both rows and
columns (both are optional). These data correspond to the following problem with three
variables and four constraints:

minimize: 3 x1 + 4 x2 + 5 x3

subject to: x1 + x3 ≥ -2.4

2x1 + 3x3 ≥ -3

2x2 + 3x3 = 4

x2 + x3 ≤ 5

-1 ≤ x1 ≤ 3

-1 ≤ x1 ≤ 5

-1 ≤ x1 ≤ 8

p = xp.problem ()

p.loadproblem ("", # probname
[’G’,’G’,’E’, ’L’], # qrtypes
[-2.4, -3, 4, 5], # rhs

Fair Isaac Corporation Confidential and Proprietary Information 21

Examples of use

None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,2,2,1,1,3,3,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
colnames = [’X1’,’X2’,’X3’], # column names
rownames = [’row1’,’row2’,’row3’,’constr_04’]) # row names

p.write ("loadlp", "lp")
p.solve ()

We then create another variable and add it to the problem, then modify the objective function.
Note that the objective function is replaced by, not amended with, the new expression. After
solving the problem, it saves it into a file called update.lp.

x = xp.var()
p.addVariable (x)
p.setObjective (x**2 + 2*x + 444)
p.solve()
p.write ("updated", "lp")

6.1.2 A Mixed Integer Linear Programming problem

This example uses loadproblem to create a Mixed Integer Quadratically Constrained Quadratic
Programming problem with two Special Ordered Sets. Note that data that is not needed is simply
set as None.

The Examples directory provides similar examples for different types of problems.

p = xp.problem ()

p.loadproblem ("", # probname
[’G’,’G’,’L’, ’L’], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2], # dqe
[2,3], # qcrows
[2,3], # qcnquads
[1,2,0,0,2], # qcmqcol1
[1,2,0,2,2], # qcmqcol2
[3,4,1,1,1], # qcdqval
[’I’,’S’], # qgtype
[0,1], # mgcols
[0,2], # dlim
[’1’,’1’], # qstype
[0,2,4], # msstart
[0,1,0,2], # mscols
[1.1,1.2,1.3,1.4]) # dref

p.solve ()

Fair Isaac Corporation Confidential and Proprietary Information 22

Examples of use

6.2 Modeling examples

6.2.1 A simple model

This example demonstrates how variables and constraints, or arrays thereof, can be added into a
problem. The script then prints the solution and all attributes/controls of the problem.

N = 4
S = range (N)
v = [xp.var (name = "y{0}".format (i)) for i in S] # set name of a variable as

m = xp.problem ()

v1 = xp.var (name = "v1", lb=0, ub=10, threshold=5, vartype = xp.continuous)
v2 = xp.var (name = "v2", lb=1, ub=7, threshold=3, vartype = xp.continuous)
vb = xp.var (name = "vb", vartype = xp.binary)

Create a variable with name yi, where i is an index in S
v = [xp.var (name = "y{0}".format (i), lb = 0, ub = 2*N) for i in S]

The call below adds both v, a vector (list) of variables, and v1 and v2, two scalar variables.

m.addVariable (vb, v, v1, v2)

c1 = v1 + v2 >= 5

m.addConstraint (c1, # Adds a list of constraints: three single constraints...
2*v1 + 3*v2 >= 5,
v[0] + v[2] >= 1,
... and a set of constraints indexed by all {i in
S: i<N-1} (recall that ranges in Python are from 0
to n-1)
(v[i+1] >= v[i] + 1 for i in S if i < N-1))

objective overwritten at each setObjective ()
m.setObjective (xp.Sum ([i*v[i] for i in S]), sense = xp.minimize)

m.solve ()

print ("status: ", m.getProbStatus ())
print ("string: ", m.getProbStatusString ())

print ("solution:", m.getSolution ())

6.2.2 Using IIS to investigate an infeasible problem

The problem modeled below is infeasible,

x0 = xp.var()
x1 = xp.var()
x2 = xp.var(vartype = xp.binary)

c1 = x0 + 2 * x1 >= 1
c2 = 2 * x0 + x1 >= 1
c3 = x0 + x1 <= .5

c4 = 2 * x0 + 3 * x1 >= 0.1

The three constraints c1, c2, and c3 above are incompatible as can be easily verified. Adding all of
them to a problem will make it infeasible. We use the functions to retrieve the Irreducible
Infeasible Subsystems (IIS).

Fair Isaac Corporation Confidential and Proprietary Information 23

Examples of use

minf = xp.problem ("ex-infeas")

minf.addVariable (x0,x1,x2)
minf.addConstraint (c1,c2,c3,c4)

minf.solve()
minf.iisall()
print ("there are ", minf.attributes.numiis, " iis’s")

miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []
isolationrows = []
isolationcols = []

get data for the first IIS

minf.getiisdata (1, miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

print ("iis data:", miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

Another way to check IIS isolations
print ("iis isolations:", minf.iisisolations (1))

rowsizes = []
colsizes = []
suminfeas = []
numinfeas = []

print ("iisstatus:", minf.iisstatus (rowsizes, colsizes, suminfeas, numinfeas))
print ("vectors:", rowsizes, colsizes, suminfeas, numinfeas)

6.2.3 Modeling a problem using Python lists and vectors

We create a convex QCQP problem. We use a vector of N=5 variables and sets constraints and
objective. We define all constraints and the objective function using a Python aggregate type.

N = 5
S = range (N)

v = [xp.var (name = "y{0}".format (i)) for i in S]

m = xp.problem ("problem 1")

print ("variable:", v)

m.addVariable (v)

m.addConstraint (v[i] + v[j] >= 1 for i in range (N-4) for j in range (i,i+4))
m.addConstraint (xp.Sum([v[i]**2 for i in range (N-1)]) <= N**2 * v[N-1]**2)
m.setObjective (xp.Sum ([i*v[i] for i in S]) * (xp.Sum ([i*v[i] for i in S])))

m.solve ()

print ("solution: ", m.getSolution ())

6.2.4 A knapsack problem

Here follows an example of a knapsack problem formulated using lists of numbers. All data in the
problem are lists, and so are the variables.

Fair Isaac Corporation Confidential and Proprietary Information 24

Examples of use

S = range (5) # that’s the set {0,1,2,3,4}
value = [102, 512, 218, 332, 41] # or just read them from file
weight = [21, 98, 44, 59, 9]

x = [xp.var (vartype = xp.binary) for i in S]
profit = xp.Sum (value[i] * x[i] for i in S)

p = xp.problem ("knapsack")
p.addVariable (x)
p.addConstraint (xp.Sum (weight[i] * x[i] for i in S) <= 130)
p.setObjective (profit, sense = xp.maximize)
p.solve ()

Note that the same result could have been achieved using NumPy arrays and the Xpress module’s
dot product as follows:

value = np.array ([102, 512, 218, 332, 41])
weight = np.array ([21, 98, 44, 59, 9])

x = np.array ([xp.var (vartype = xp.binary) for i in S])
profit = xp.Dot (value, x)

p = xp.problem ("knapsack")
p.addVariable (x)
p.addConstraint (xp.Dot (weight, x) <= 130)
p.setObjective (profit, sense = xp.maximize)
p.solve ()

6.2.5 A Min-cost-flow problem using NumPy

This example solves a min-cost-flow problem using NumPy and the incidence matrix of the graph.
It uses the networkx package, which might have to be installed using, for example, pip.

import networkx as netx

digraph definition

V = [1,2,3,4,5] # vertices
E = [[1,2], [1,4], [2,3], [3,4], [4,5], [5,1]] # arcs

n = len (V) # number of nodes
m = len (E) # number of arcs

G = netx.DiGraph (E)

Get NumPy representation
A = (netx.incidence_matrix (G, oriented = True).toarray())

We use NumPy vectors and the Xpress interface’s dot product, the xpress.Dot operator. Note that
although NumPy has a dot operator, especially for large models it is strongly advised to use the
Xpress interface’s Dot function for reasons of efficiency.

demand = np.array ([3, -5, 7, -2, -3])

cost = np.array ([23, 62, 90, 5, 6, 8])

flow = np.array ([xp.var () for i in E]) # flow variables declared on arcs

p = xp.problem (’network flow’)

p.addVariable (flow)
p.addConstraint (xp.Dot (A, flow) == - demand)
p.setObjective (xp.Dot (cost, flow))

p.solve ()

Fair Isaac Corporation Confidential and Proprietary Information 25

Examples of use

for i in range (m):
print (’flow on’, E[i], ’:’, p.getSolution (flow [i]))

6.2.6 A nonlinear model

Let’s solve a classical nonlinear problem: finding the minimum of the Rosenbrock function. For
parameters a and b, minimize (a− x)2 + b(y − x2)2.

a,b = 1,100

x = xp.var (lb = -xp.infinity)
y = xp.var (lb = -xp.infinity)

p = xp.problem ()

p.addVariable (x,y)

p.setObjective ((a-x)**2 + b*(y-x**2)**2)

p.controls.xslp_solver = 0 # solve it with SLP, not Knitro

p.solve ()

print ("status: ", p.getProbStatus ())
print ("string: ", p.getProbStatusString ())

print ("solution:", p.getSolution ())

6.2.7 Finding the maximum-area n-gon

The problem asks, given n, to find the n-sided polygon of largest area inscribed in the unit circle.

While it is natural to prove that all vertices of a global optimum reside on the unit circle, the
problem is formulated so that every vertex i is at distance rhoi from the center, and at angle
thetai. We would expect that the local optimum found has all rho’s are equal to 1. The example
file contains instructions for drawing the resulting polygon using matplotlib.

The objective function is the total area of the polygon. Considering the segment S[i] joining the
center to the i-th vertex and A(i,j) the area of the triangle defined by the two segments S[i] and
S[j], the objective function is A(0,1) + A(1,2)+. . . +A(N−1,0), where
A(i,j) = 1 / 2 ∗ rhoi ∗ rhoj ∗ sin(thetai − thetaj). We first define the set Vertices as the set of integers
from 0 to n− 1.

rho = [xp.var (lb = 1e-5, ub = 1.0) for i in Vertices]
theta = [xp.var (lb = -math.pi, ub = math.pi) for i in Vertices]

p = xp.problem ()

p.addVariable (rho, theta)

p.setObjective (
0.5*(xp.Sum (rho[i]*rho[i-1]*xp.sin (theta[i]-theta[i-1]) for i in Vertices if i != 0)

+ rho[0]*rho[N-1]*xp.sin (theta[0]-theta[N-1])), sense = xp.maximize)

We establish that the angles must be increasing in order to obtain a sensible solution:

p.addConstraint (theta[i] >= theta[i-1] + 1e-4 for i in Vertices if i != 0)

Note also that we enforce that the angles be different as otherwise they might form a local
optimum where all of them are equal.

Fair Isaac Corporation Confidential and Proprietary Information 26

Examples of use

6.2.8 Solving the n-queens problem

In chess, the queen can move in all directions (even diagonally) and travel any distance. The
problem of the n queens consists in placing n queens on an n × n chessboard so that none of
them can be eaten in one move.

We first create a dictionary of variables, mapping each cell of the chessboard to one variable so
that we can refer to it later. All variables are clearly binary as they indicate whether a given cell
has a queen or not.

n = 10 # the size of the chessboard
N = range (n)

x = {(i,j): xp.var (vartype = xp.binary, name=’q{0}{1}’.format (i,j))
for i in N for j in N}

vertical = [xp.Sum (x[i,j] for i in N) <= 1 for j in N]
horizontal = [xp.Sum (x[i,j] for j in N) <= 1 for i in N]
diagonal1 = [xp.Sum (x[i,j] for j in N for i in N if i+j == k) <= 1

for k in range (1,2*n-2)]
diagonal2 = [xp.Sum (x[i,j] for j in N for i in N if i-j == k) <= 1

for k in range (2-n,n-1)]

p = xp.problem()

p.addVariable (x)
p.addConstraint (vertical, horizontal, diagonal1, diagonal2)

Objective, to be maximized: number of queens on the chessboard
p.setObjective (xp.Sum (x), sense = xp.maximize)

p.solve ()

As a rudimentary form of visualization, we print the solution on the chessboard with different
symbols for variables at one or zero.

for i in N:
for j in N:

if p.getSolution (x[i,j]) == 1:
print (’@’, sep=’’, end=’’)

else:
print (’.’, sep=’’, end=’’)

print (’’)

6.2.9 Solving Sudoku problems

The well-known Sudoku puzzles ask one to place numbers from 1 to 9 into a 9 × 9 grid such that
no number repeats in any row, in any column, and in any 3x3 sub-grid. For a more general
version of the game, replace 3 with q and 9 with q2.

We model this problem as an assignment problem where certain conditions must be met for all
numbers in the columns, rows, and sub-grids.

These subgrids are lists of tuples with the coordinates of each subgrid. In a 9 × 9 sudoku, for
instance, subgrids[0,1] has the 9 elements in the middle top square.

The input is a starting grid where the unknown numbers are replaced by zero. The example file
contains a relatively hard 9 × 9 sudoku, which we show below, and also a 16 × 16 variant of the
same game.

q = 3

starting_grid = \

Fair Isaac Corporation Confidential and Proprietary Information 27

Examples of use

[[8,0,0,0,0,0,0,0,0],
[0,0,3,6,0,0,0,0,0],
[0,7,0,0,9,0,2,0,0],
[0,5,0,0,0,7,0,0,0],
[0,0,0,0,4,5,7,0,0],
[0,0,0,1,0,0,0,3,0],
[0,0,1,0,0,0,0,6,8],
[0,0,8,5,0,0,0,1,0],
[0,9,0,0,0,0,4,0,0]]

n = q**2 # the size must be the square of the size of the subgrids
N = range (n)

x = {(i,j,k): xp.var (vartype = xp.binary, name=’x{0}_{1}_{2}’.format(i,j,k))
for i in N for j in N for k in N}

define all q^2 subgrids
subgrids = {(h,l): [(i,j) for i in range (q*h, q*h + q)

for j in range (q*l, q*l + q)]
for h in range (q) for l in range (q)}

vertical = [xp.Sum (x[i,j,k] for i in N) == 1 for j in N for k in N]
horizontal = [xp.Sum (x[i,j,k] for j in N) == 1 for i in N for k in N]
subgrid = [xp.Sum (x[i,j,k] for (i,j) in subgrids[h,l]) == 1

for (h,l) in subgrids.keys() for k in N]

Assign exactly one number to each cell

assign = [xp.Sum (x[i,j,k] for k in N) == 1 for i in N for j in N]

Then we fix those variables that are non-zero in the input grid. We don’t need an objective
function as this is a feasibility problem. After computing the solution, we print it to the screen.

init = [x[i,j,k] == 1 for k in N for i in N for j in N
if starting_grid[i][j] == k+1]

p = xp.problem()

p.addVariable (x)
p.addConstraint (vertical, horizontal, subgrid, assign, init)

p.solve ()

print (’Solution:’)

for i in N:
for j in N:

l = [k for k in N if p.getSolution (x[i,j,k]) >= 0.5]
assert (len (l) == 1)
print (’{0:2d}’.format (1 + l[0]), end = ’’, sep=’’)

print (’’)

6.3 Examples using NumPy

6.3.1 Using NumPy multidimensional arrays to create variables

Use NumPy arrays for creating a 3-dimensional array of variables, then use it to create a mode.

S1 = range (2)
S2 = range (3)
S3 = range (4)

m = xp.problem ()

Fair Isaac Corporation Confidential and Proprietary Information 28

Examples of use

h = np.array ([[[xp.var (vartype = xp.binary)
for i in S1]
for j in S2]
for k in S3])

m.addVariable (h)

m.setObjective (h[0][0][0] * h[0][0][0] +
h[1][0][0] * h[0][0][0] +
h[1][0][0] * h[1][0][0] +
xp.Sum (h[i][j][k] for i in S3 for j in S2 for k in S1))

cons00 = - h[0][0][0] ** 2 +
xp.Sum (i * j * k * h[i][j][k]for i in S3 for j in S2 for k in S1) >= 11

m.addConstraint (cons00)

m.solve ()

The final part of the code retrieves the matrix representation of the quadratic part of the only
constraint.

mstart1=[]
mclind1=[]
dqe1=[]
m.getqrowqmatrix (cons00, mstart1, mclind1, dqe1, 29, h[0][0][0], h[3][2][1])
print ("row 0:", mstart1, mclind1, dqe1)

6.3.2 Using the dot product to create arrays of expressions

Here we use NumPy arrays to print the product of a matrix by a random vector, and the
xpress.Dot function on a matrix and a vector. Note that the NumPy dot operator works perfectly
fine here, but should be avoided for reasons of performance, especially when handling large
arrays where at least one contains optimization variables or expressions.

x = np.array ([xp.var() for i in range(5)])

p = xp.problem ()
p.addVariable (x)
p.addConstraint (xp.Sum (x) >= 2)

p.setObjective (xp.Sum (x[i]**2 for i in range (5)))
p.solve()

A = np.array (range(30)).reshape(6,5) # A is a 6x5 matrix
sol = np.array (p.getSolution ()) # a vector of size 5
columns = A*sol # not a matrix-vector product!
v = np.dot (A,sol) # an array: matrix-vector product A*sol
w = xp.Dot (A,x) # an array of expressions

print (v,w)

6.3.3 Using the Dot product to create constraints and quadratic functions

This is an example of a problem formulation that uses the xpress.Dot operator to formulate
constraints in a concise fashion. Note that the NumPy dot operator is not suitable here as the
result is an expression in the Xpress variables.

A = np.random.random(30).reshape(6,5) # A is a 6x5 matrix
Q = np.random.random(25).reshape(5,5) # Q is a 5x5 matrix
x = np.array ([xp.var() for i in range(5)]) # vector of variables
x0 = np.random.random (5) # random vector

Fair Isaac Corporation Confidential and Proprietary Information 29

Examples of use

Q += 4 * np.eye (5) # add 5 * the identity matrix

Lin_sys = xp.Dot (A,x) <= np.array([3,4,1,4,8,7]) # 6 constraints (rows of A)
Conv_c = xp.Dot (x,Q,x) <= 1 # one quadratic constraint

p = xp.problem ()

p.addVariable (x)
p.addConstraint (Lin_sys, Conv_c)
p.setObjective (xp.Dot (x-x0, x-x0)) # minimize distance from x0

p.solve ()

6.3.4 Using NumPy to create quadratic optimization problems

This example creates and solves a simple quadratic optimization problem. Given an n × n matrix
Q and a point x0, minimize the quadratic function xT (Q + n3I)x subject to the linear system
(x − x0)TQ + e = 0, where e is the vector of all ones, the inequalities Qx ≥ 0, and nonnegativity on
all variables. Report solution if available.

n = 10

Q = np.arange (1, n**2 + 1).reshape (n, n)
x = np.array ([xp.var () for i in range (n)])
x0 = np.random.random (n)

p = xp.problem ()

p.addVariable (x)

c1 = xp.Dot ((x - x0), Q) + 1 == 0
c2 = xp.Dot (Q, x) >= 0

p.addConstraint (c1,c2)
p.setObjective (xp.Dot (x, Q + N**3 * np.eye (N), x))

p.solve (’’)

print ("nrows, ncols:", p.attributes.rows, p.attributes.cols)
print ("solution:", p.getSolution ())

p.write ("test5-qp", "lp")

6.4 Advanced examples: callbacks and problem querying/modifying

6.4.1 Visualize the branch-and-bound tree of a problem

This example shows how to visualize the BB tree of a problem after (partially) solving it. It is
assumed here that all branches are binary.

We first define a recursive function that computes the cardinality of a subtree rooted at a node i.
This is necessary as the visualization of the BB tree is more balanced when the subtree size is
taken into account. The card_subtree array, which is filled here, is used then for computing the
width of each visualized subtree.

import networkx as netx
from matplotlib import pyplot as plt

def postorder_count (node):

"""
Recursively count nodes to compute the cardinality of a subtree for

Fair Isaac Corporation Confidential and Proprietary Information 30

Examples of use

each node
"""

card = 0

if node in left.keys (): # see if node has a left key
postorder_count (left [node])
card += card_subtree [left [node]]

if node in right.keys ():
postorder_count (right [node])
card += card_subtree [right [node]]

card_subtree [node] = 1 + card

We also define a function that determines the position of each node depending on the
cardinality of the subtree rooted at the node.

def setpos (T, node, curpos, st_width, depth):

"""
Set position depending on cardinality of each subtree
"""

Special condition: we are at the root
if node == 1:

T.add_node (node, pos = (0.5, 1))

alpha = .1 # use a convex combination of subtree comparison and
depth to assign a width to each subtree

if node in left.keys ():

X position in the graph should not just depend on depth,
otherwise we’d see a long and thin subtree and it would just
look like a path

leftwidth = st_width * (alpha * .5 + (1 - alpha) * card_subtree [left [node]]
/ card_subtree [node])

leftpos = curpos - (st_width - leftwidth) / 2

T.add_node (left [node], pos = (leftpos, - depth))
T.add_edge (node, left [node])
setpos (T, left [node], leftpos, leftwidth, depth + 1)

if node in right.keys ():

rightwidth = st_width * (alpha * .5 + (1 - alpha) * card_subtree [right [node]]
/ card_subtree [node])

rightpos = curpos + (st_width - rightwidth) / 2

T.add_node (right [node], pos = (rightpos, - depth))
T.add_edge (node, right [node])
setpos (T, right [node], rightpos, rightwidth, depth + 1)

This is the only operation we need to be carried out at every node: given a node number,
newnode, and its parent, parent, we store the information in the left and right arrays so that at
the end of the BB we have an explicit BB tree stored in these arrays.

def storeBBnode (prob, Tree, parent, newnode, branch):
Tree is the callback data, and it’s equal to T

if branch == 0:
left [parent] = newnode

else:
right [parent] = newnode

Fair Isaac Corporation Confidential and Proprietary Information 31

Examples of use

We now set up the BB tree data and create a problem. We read it from a local file, but any user
problem can be read and analyzed. We set the node callback with addcbnewnode so that we can
collect information at each new node.

T = nx.Graph ()

left = {}
right = {}
card_subtree = {}
pos = {}

p = xp.problem ()
p.read (’sampleprob.mps.gz’)
p.addcbnewnode (storeBBnode, T, 100)
p.controls.maxnode=40000 # Limit the number of nodes inserted in the graph
p.solve ()

postorder_count (1) # assign card_subtree to each node
setpos (T, 1, 0.5, 1, 0) # determine the position of each node

depending on subtree cardinalities

pos = nx.get_node_attributes (T, ’pos’)

nx.draw (T, pos) # create BB tree representation
plt.show () # display it; you can zoom indefinitely and see all subtrees

6.4.2 Query and modify a simple problem

This example shows how to change an optimization problem using the Xpress Python interface.

x = xp.var ()
y = xp.var ()

cons1 = x + y >= 2
upperlim = 2*x + y <= 3

p = xp.problem ()

p.addVariable (x,y)
p.setObjective ((x-4)**2 + (y-1)**2)
p.addConstraint (cons1, upperlim)

p.write (’original’, ’lp’)

After saving the problem to a file, we change two of its coefficients. Note that the same
operations can be carried out with a single call to p.chgmcoef ([cons1,1],[x,0],[3,4]).

p.chgcoef (cons1, x, 3) # coefficient of x in cons1 becomes 3
p.chgcoef (1, 0, 4) # coefficient of y in upperlim becomes 4

p.write (’changed’, ’lp’)

6.4.3 Change a problem after solution

Construct a problem using addVariable and addConstraint, then use the Xpress API routines to
amend the problem with rows and quadratic terms.

p = xp.problem ()

N = 5
S = range (N)

x = [xp.var (vartype = xp.binary) for i in S]

Fair Isaac Corporation Confidential and Proprietary Information 32

Examples of use

p.addVariable (x)

vectors can be used whole or addressed with their index

c0 = xp.Sum (x) <= 10
cc = [x[i]/1.1 <= x[i+1]*2 for i in range (N-1)]

p.addConstraint (c0, cc)

p.setObjective (3 - x[0])

mysol = [0, 0, 1, 1, 1, 1.4]

add a variable with its coefficients

p.addcols ([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [2], [’Y’], [’B’])
p.write ("problem1", "lp")

load a MIP solution
p.loadmipsol ([0,0,1,1,1,1.4])

We now add a quadratic term x2
0 − 2x0x3 + x3

1 to the second constraint. Note that the -2 coefficient
for an off-diagonal element must be passed divided by two.

The same effect would be obtained with p.addqmatrix (cc[0], [x[0],x[3],x[3]],
[x[0],x[0],x[3]], [1,-1,1])

As constraint vector cc was added after c0, it is the latter which has index 0 in the problem, while
cc[0] has index 1.

We then add the seventh and eighth constraints:

subject to: x0 + 2 x1 + 3x2 ≥ 4

4x0 + 5x1 + 6x2 + 7 x3 + 8 x4 + y ≤ 4.4

Note the new column named ’Y’ is added with its index 5 (variables’ indices begin at 0). The same
would happen if 5 were substituted by Y.

p.addqmatrix (1, [x[0],x[3],x[3]], [x[0],x[0],x[3]], [1,-1,1])

p.addrows (qrtype = [’G’, ’L’],
rhs = [4, 4.4],
mstart = [0, 3, 9],
mclind = [x[0],x[1],x[2], x[0],x[1],x[2],x[3],x[4], 5],
dmatval = [1,2,3,4,5,6,7,8,-3],
names = [’newcon1’, ’newcon2’])

p.solve ()
p.write ("amended", "lp")

slacks = []

p.calcslacks (solution = mysol, calculatedslacks = slacks)

print ("slacks:", slacks)

The code below add five columns, then solves the problem and prints the solution, if one has
been found.

p.addcols ([4], [0,3], [c0,4,2], [-3, -2, 1], [0], [2], [’p1’], [’I’])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [10], [’p2’], [’C’])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [1], [’p3’], [’S’])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2.4, 4], [0], [2], [’p4’], [’P’])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [2], [’p5’], [’R’])

Fair Isaac Corporation Confidential and Proprietary Information 33

Examples of use

p.solve ()

try:
print ("new solution:", p.getSolution ())

except:
print ("could not get solution, perhaps problem is infeasible")

Note that the single command below has the same effect as the four addcols calls above, and is
to be preferred when adding a large number of columns for reasons of efficiency.

p.addcols ([4,4,4,4,4],
[0,3,6,9,12,15],
[c0,4,2,c0,4,2,c0,4,2,c0,4,2,c0,4,2],
[3, -2, 1, -3, 2.4, 1.4, 3, 2, 1, -3, 2.4, 4, 3, 2, 1],
[0,0,0,0,0],
[2,10,1,2,2],
[’p1’,’p2’,’p3’,’p4’,’p5’],
[’I’,’C’,’S’,’P’,’R’])

6.4.4 Combining modeling and API functions

This is an example where a problem is loaded from a file, solved, then modified by adding a
Global Upper Bound (GUB) constraint. Note that we do not know the structure of the problem
when reading it, yet we can simply extract the list of variables and use them to add a constraint.

p = xpress.problem ()

p.read ("example.lp")
p.solve ()
print ("solution of the original problem: ", p.getVariable(), "==>", p.getSolution())

After solving the problem, we obtain its variables through getVariable and add a constraints so
that their sum cannot be more than 1.1.

x = p.getVariable ()
p.addConstraint (xpress.Sum (x) <= 1.1)
p.solve()
print ("New solution: ", p.getSolution ())

6.4.5 A simple Traveling Salesman Problem (TSP) solver

A classical example of use of callbacks is the development of a simple solver for the well-known
TSP problem. The aim here is not to create an efficient solver (there are far better
implementations), but rather a simple solver where the user only needs to specify two callbacks:
one for checking whether a given solution forms a Hamiltonian tour and one for separating a
subtour elimination constraint from the current node solution.

After a successful solve (or an interrupted one with a feasible solution), the best Hamiltonian tour
is displayed. Note that this section omits unnecessary details (checks of return values, exceptions,
etc.) of the actual code, which can be found in the Examples/ directory.

import networkx as nx
import xpress as xp
import re, math, sys

from matplotlib import pyplot as plt

import urllib.request as ul

filename = ’dj38.tsp’

Fair Isaac Corporation Confidential and Proprietary Information 34

Examples of use

ul.urlretrieve (’http://www.math.uwaterloo.ca/tsp/world/’ + filename, filename)

instance = open (filename, ’r’)
coord_section = False
points = {}

G = nx.Graph ()

We have downloaded an instance of the TSP and now it must be read and interpreted as it does
not have a format that we know. We save in cx and cy the coordinates of all nodes in the graph,
which is assumed to be complete, i.e., all nodes are connected to one another.

for line in instance.readlines ():

if re.match (’NODE_COORD_SECTION.*’, line):
coord_section = True
continue

elif re.match (’EOF.*’, line):
break

if coord_section:
coord = line.split (’ ’)
index = int (coord [0])
cx = float (coord [1])
cy = float (coord [2])
points [index] = (cx, cy)
G.add_node (index, pos = (cx, cy))

The next step is to define a callback function for checking if the solution forms a Hamiltonian
tour, i.e., if it connects all nodes of the graph. The callback will be passed with the method
addcbpreintsol, therefore it needs to return a tuple of two values: the first value is True if the
solution should be rejected, and the second is the new cutoff in case it has to be changed. This is
not the case here, so None can be safely returned.

After obtaining the integer solution to be checked, the function scans the graph from node 1 to
see if the solutions at one form a tour.

def check_tour (prob, G, isheuristic, cutoff):

s = []

prob.getlpsol (s, None, None, None)

orignode = 1
nextnode = 1
card = 0

while nextnode != orignode or card == 0:

FS = [j for j in V if j != nextnode
and s[prob.getIndex (x[nextnode,j])] == 1] # forward star

card += 1

if len (FS) < 1:
return (True, None) # reject solution if we can’t close the loop

nextnode = FS [0]

If there are n arcs in the loop, the solution is feasible

return (card < n, None) # accept the cutoff: return second element as None

The second callback to be defined is a separator for subtour elimination constraints. It must
return a nonzero value if the node is deemed infeasible by the function, zero otherwise. The
function addcuts is used to insert a subtour elimination constraint.

Fair Isaac Corporation Confidential and Proprietary Information 35

Examples of use

The function works as follows: Starting from node 1, gather all connected nodes of a loop in
connset. If this set contains all nodes, then the solution is valid if integer, otherwise the function
adds a subtour elimination constraint in the form of a clique constraint with all arcs (i, j) for all i, j
in connset.

def eliminate_subtour (prob, G):

s = [] # initialize s to an empty string to provide it as an output parameter

prob.getlpsol (s, None, None, None)

orignode = 1
nextnode = 1

connset = []

while nextnode != orignode or len (connset) == 0:

connset.append (nextnode)

FS = [j for j in V if j != nextnode
and s [prob.getIndex (x [nextnode, j])] == 1] # forward star

if len (FS) < 1:
return 0

nextnode = FS [0]

if len (connset) < n:

Add a subtour elimination using the nodes in connset (or, if
card (connset) > n/2, its complement)

if len (connset) <= n/2:
columns = [x[i,j] for i in connset for j in connset

if i != j]
nArcs = len (connset)

else:
columns = [x[i,j] for i in V for j in V

if not i in connset and not j in connset and i != j]
nArcs = n - len (connset)

nTerms = len (columns)

prob.addcuts ([1], [’L’], [nArcs - 1], [0, nTerms], columns, [1] * nTerms)

return 0

We now formulate the problem with the degree constraints on each node and the objective
function (the cost of each arc (i, j) is assumed to be the Euclidean distance between i and j).

n = len (points) # number of nodes
V = range (1, n+1) # set of nodes
A = [(i,j) for i in V for j in V if i != j] # set of arcs (i.e. all pairs)

x = {(i,j): xp.var (name = ’x_{0}_{1}’.format (i,j), vartype = xp.binary) for (i,j) in A}

conservation_in = [xp.Sum (x[i,j] for j in V if j != i) == 1 for i in V]
conservation_out = [xp.Sum (x[j,i] for j in V if j != i) == 1 for i in V]

p = xp.problem ()

p.addVariable (x)
p.addConstraint (conservation_in, conservation_out)

xind = {(i,j): p.getIndex (x[i,j]) for (i,j) in x.keys ()}

Fair Isaac Corporation Confidential and Proprietary Information 36

Examples of use

Objective function: total distance travelled
p.setObjective (xp.Sum (math.sqrt ((points[i][0] - points[j][0])**2 +

(points[i][1] - points[j][1])**2) *
x[i,j]

for (i,j) in A))

p.controls.maxtime = -2000 # negative for "stop even if no solution is found"

p.addcboptnode (eliminate_subtour, G, 1)
p.addcbpreintsol (check_tour, G, 1)

We now solve the problem, and if a solution is found it is displayed using the Python library
matplotlib.

p.solve ()

sol = p.getSolution ()

Read solution and store it in the graph

for (i,j) in A:
if sol [p.getIndex (x[i,j])] > 0.5:

G.add_edge (i,j)

Display best tour found

pos = nx.get_node_attributes (G, ’pos’)

nx.draw (G, points) # create a graph with the tour
plt.show () # display it interactively

Fair Isaac Corporation Confidential and Proprietary Information 37

CHAPTER 7

Reference Manual

7.1 Using this chapter

This chapter provides a list of functions available through the Xpress Python interface. For each
function, the synopsis and an example are given.

In keeping with the Xpress Optimizer’s C API, the name and order of the parameters used in
these functions has been retained. However, in order to make optimal use of the greater
flexibility provided by Python, the argument lists and the return value of some functions has been
modified so as to obtain a more compact notation.

For example, for functions with a list as an argument, the number of elements of the list is not
part of the arguments. Compare the call to the C function XPRSaddrows, where the parameters
newrow and newnz must be passed, to its Python counterpart:

(C) result = XPRSaddrows (prob, n, nnz, type,
rhs, NULL, mstart, indices, values);

(Python) p.addrows (type, rhs, None, mstart, indices, values)

In the Python version, the prob pointer is not provided as obviously addrows is a method of the
problem class. The C variables n and nnz, which are assigned to arguments newrow and newnz,
respectively, of the call to XPRSaddrows, are not necessary in the Python call as the length of rhs,
mstart, etc. is inferred from the passed lists. If the lengths of all lists passed as arguments are not
consistent with one another, an error will be returned.

Because Python lists (or tuples, generators, iterators, sequences) can be used as parameters of all
functions in this manual, their size does not need to be passed explicitly as it is detected from the
parameter itself. The interface will check the consistency and the content if the vector is referred
to the variables or constraints, and will return an error in case of a mismatch.

Another difference between the Python methods and their C API counterpart is that some output
arguments are no longer passed (by reference) as arguments to the Python functions but rather
are (part of) the value returned by the function. Where multiple scalar output parameters are
returned by the C API function, some Python functions return a tuple containing all such output
values.

The non-scalar parameters can instead be specified as Python lists, NumPy arrays, sequences, or
generators when applicable. The output non-scalar parameters are stored as Python lists.

Optional parameters can be specified as None or skipped, provided the subsequent arguments are
explicitly declared with their parameter name as Python allows:

p.addrows (qrtype = type, rhs = rhs, mstart = mstart,
mclind = indices, dmatval = values)

Fair Isaac Corporation Confidential and Proprietary Information 38

Reference Manual

Because the Python interface relies on the Xpress Optimizer low-level interface, it is advisable to
complement the knowledge in this reference manual with that of the Xpress Optimizer reference
manual.

Format of the reference

The descriptions in the following pages report, for each function:

� Name;

� A short description of its purpose;

� Its synopsis, i.e., how it must be called. If it returns a value, then it will be presented as an
assignment Python command, otherwise it will be just shown as a call without a returned
value; also, if it is a module function rather than a problem-specific function, it will be
prefixed by xpress;

� A description of its arguments and whether each argument is optional;

� Error values;

� Associated controls;

� A sample usage of the function;

� Further useful information about the function;

� Related functions, parameters.

Note that all arguments defined in the following as "array" can be many other Python non-scalar
objects: lists, generators, and NumPy arrays are admissible as parameters, except when specified
(e.g. getControl). However, for simplicity we refer to non-scalar arguments as array.

Finally, some attributes and controls are referred to as uppercase words for clarity. For example,
ROWS indicates the attribute "rows" of a problem, hence it is equivalent to
problem.attributes.rows.

7.2 Global methods of the Xpress module

Below is a list of functions that are invoked from the Xpress module, i.e., they are not methods of
the problem or the branchobj class and can be invoked after the import command. The invocation
is therefore as in the example that follows:

import xpress as xp
print (xp.getlasterror ())

xpress.init xpress.free xpress.addcbmsghandler

xpress.getbanner xpress.getcheckedmode xpress.getdaysleft

xpress.getlasterror xpress.getlicerrmsg xpress.getversion

xpress.Sum xpress.Dot xpress.setcheckedmode

xpress.removecbmsghandler xpress.setdefaultcontrol xpress.setdefaults

Fair Isaac Corporation Confidential and Proprietary Information 39

Reference Manual

7.3 Methods of the problem class

The tables below show all methods of the class problem of the Xpress Python interface, with the
exception of callbacks, which are listed separately. Their invocation is therefore to be preceded by
a problem object (the class prefix problem. is omitted in the table for compactness), as follows:

import xpress as xp
x = xp.var ()
p = xp.problem ()
p.setObjective (x + 3 * x**2 + 2)

addcols addConstraint addIndicator addmipsol

addqmatrix addrows addSOS addVariable

basisstability btran calcobjective calcreducedcosts

calcslacks calcsolinfo chgbounds chgcoef

chgcoltype chgglblimit chgmcoef chgmqobj

chgobj chgobjsense chgqobj chgqrowcoeff

chgrhs chgrhsrange chgrowtype copy

copycontrols delConstraint delqmatrix delSOS

delVariable dumpcontrols estimaterowdualranges fixglobals

ftran

getAttrib getbasis getcoef getcols

getcoltype getConstraint getControl getdirs

getDual getdualray getglobal getiisdata

getIndex getIndexFromName getindicators getinfeas

getlasterror getlb getlpsol getmessagestatus

getmipsol getmqobj getobj getObjVal

getpivotorder getpivots getpresolvebasis getpresolvemap

getpresolvesol getprimalray getProbStatus getProbStatusString

getqobj getqrowcoeff getqrowqmatrix getqrowqmatrixtriplets

getqrows getRCost getrhs getrhsrange

getrows getrowtype getscaledinfeas getSlack

getSolution getSOS getub getunbvec

getVariable hasdualray hasprimalray

Fair Isaac Corporation Confidential and Proprietary Information 40

Reference Manual

iisall iisclear iisfirst

iisisolations iisnext iisstatus

iiswrite loadbasis loadbranchdirs

loaddelayedrows loaddirs loadlpsol

loadmipsol loadmodelcuts loadpresolvebasis

loadpresolvedirs loadproblem loadsecurevecs

lpoptimize mipoptimize name

objsa postsolve presolverow

read readbasis readbinsol

readdirs readslxsol refinemipsol

repairinfeas repairweightedinfeas repairweightedinfeasbounds

restore reset rhssa

save scale setControl

setdefaults setindicators setlogfile

setmessagestatus setObjective setprobname

solve strongbranch write

writebasis writebinsol writedirs

writeprtsol writeslxsol writesol

The following table contains the problem functions to be called for nonlinear problems.

addcoefs adddfs addtolsets

addvars cascade cascadeorder

chgcascadenlimit chgccoef chgnlcoef

chgdeltatype chgdf chgrowstatus

chgrowwt chgtolset chgvar

construct delcoefs deltolsets

delvars evaluatecoef evaluateformula

filesol fixpenalties getccoef

getcoefformula getcoefs getcolinfo

getdf getdtime getmessagetype

getrowinfo getrowstatus getrowwt

getslpsol gettolset getvar

globalsol loadcoefs loaddfs

loadtolsets loadvars msaddcustompreset

msaddjob msaddpreset msclear

parsecformula parseformula preparseformula

presolve printmemory printevalinfo

printmsg reinitialize scaling

setcurrentiv setuniqueprefix tokencount

unconstruct updatelinearization validformula

validate validatekkt validaterow

validatevector

Fair Isaac Corporation Confidential and Proprietary Information 41

Reference Manual

7.4 Methods for branching objects

The following pages present the methods of the branchobj class, i.e., the methods used when
creating and manipulating branching objects. Their invocation can be as follows:

import xpress as xp
b = xp.branchobj ()
b.addbranches (3)

branchobj.addbounds branchobj.addbranches branchobj.addcuts

branchobj.addrows branchobj.getbounds branchobj.getbranches

branchobj.getid branchobj.getlasterror branchobj.getrows

branchobj.setpreferredbranch branchobj.setpriority branchobj.store

branchobj.validate

7.5 Methods for adding/removing callbacks of a problem object

The following pages present methods that can be called from a problem before optimization has
started, to add or remove callbacks. All these methods are part of the problem class and have to
be instantiated from a problem object.

addcbbariteration removecbbariteration

addcbbarlog removecbbarlog

addcbchgbranchobject removecbchgbranchobject

addcbcutlog removecbcutlog

addcbdestroymt removecbdestroymt

addcbgapnotify removecbgapnotify

addcbgloballog removecbgloballog

addcbinfnode removecbinfnode

addcbintsol removecbintsol

addcblplog removecblplog

addcbmessage removecbmessage

addcbmipthread removecbmipthread

addcbnewnode removecbnewnode

addcbnodecutoff removecbnodecutoff

addcboptnode removecboptnode

addcbpreintsol removecbpreintsol

addcbprenode removecbprenode

addcbusersolnotify removecbusersolnotify

7.6 Methods to be used within a callback of a problem object

The following methods can be called from within a callback function that has been passed in one

Fair Isaac Corporation Confidential and Proprietary Information 42

Reference Manual

of the problem.addcb* methods. Calling these functions outside of a callback may result in an
error and trigger termination of the optimization process. We provide two tables: one is for the
Optimizer and another for the nonlinear solvers.

copycallbacks delcpcuts delcuts

getcpcutlist getcpcuts getcutlist

getcutmap getcutslack interrupt

loadcuts setbranchbounds setbranchcuts

storebounds storecuts strongbranchcb

addcuts

setcbcascadeend setcbcascadestart setcbcascadevar

setcbcascadevarfail setcbcoefevalerror setcbconstruct

setcbdestroy setcbdrcol setcbformula

setcbiterend setcbiterstart setcbitervar

setcbmsjobend setcbmsjobstart setcbmswinner

setcbslpend setcbslpnode setcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 43

Reference Manual

xpress.free

Purpose
Releases the Xpress environment, thus freeing up one license. The subsequent creation of a
problem automatically triggers a call to xpress.init.
Note that it is unnecessary to call this function upon exiting a block that uses the Xpress module,
or when the optimizer is no longer used, as Python will release the Xpress environment when
freeing the Xpress module. This function might be useful when a license is needed by another
user or program, and one wishes to release the license.

Synopsis
xpress.free ()

Example
The following example shows how to call xpress.free and a possible use:

x = xp.var ()
y = xp.var ()
p = xp.problem () # This would imply a call to xp.init()
p.addVariable (x, y)
p.addConstraint (x+y <= 1)
p.setObjective (x+2*y, sense=xp.maximize)
p.solve ()
xp.free () # from this point on, the license

can be claimed by other users

Note that xpress.init is only useful when the user wants to claim a license that might be used by
another program or user.

Further information
Similar to a call to XPRSfree() of the C API, calling xpress.free cleans the Xpress environment.
Any problem created prior to a call to xpress.free is no longer available, and referring to it may
lead to errors. For instance, the following code results in an aborted run:

import xpress p = xpress.problem () xpress.free() xpress.init()
p.solve ()

Related topics
xpress.init

Fair Isaac Corporation Confidential and Proprietary Information 44

Reference Manual

xpress.getbanner

Purpose
Returns the banner and copyright message.

Synopsis
i = xpress.getbanner ()

Example

print (xpress.getbanner ())

Fair Isaac Corporation Confidential and Proprietary Information 45

Reference Manual

xpress.getcheckedmode

Purpose
Returns whether checking & validation of all Optimizer function calls is enabled for the current
process. Checking & validation is enabled by default but can be disabled by
xpress.setcheckedmode.

Synopsis
i = xpress.getcheckedmode ()

Related topics
xpress.setcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 46

Reference Manual

xpress.getdaysleft

Purpose
Returns the number of days left until an evaluation license expires.

Synopsis
d = xpress.getdaysleft ()

Example
The following calls getdaysleft to print information about the license:

try:
ndays = xpress.getdaysleft ()

except RuntimeError:
print ("Not an evaluation license")

else
print ("Evaluation license expires in {0} days".format (ndays))

Further information
This function can only be used with evaluation licenses, and if called when a normal license is in
use returns an error. The expiry information for evaluation licenses is also included in the
Optimizer banner message.

Fair Isaac Corporation Confidential and Proprietary Information 47

Reference Manual

xpress.getlasterror

Purpose
Returns the last error encountered during a call to the Xpress global environment.

Synopsis
(i,s) = xpress.getlasterror ()

Arguments
i Error code

s Error message relating to the global environment will be returned.

Example

import xpress as xp
last error referring to the global environment
print (xp.getlasterror ())

Fair Isaac Corporation Confidential and Proprietary Information 48

Reference Manual

xpress.getlicerrmsg

Purpose
Returns the error message string describing the last licensing error, if any occurred.

Synopsis
m = xpress.getlicerrmsg ()

Example
The following calls getlicerrmsg to find out why the import of the Xpress Python module failed:

try:
import xpress

except RuntimeError:
print (xpress.getlicerrmsg ())

else:
print ("all good")

Fair Isaac Corporation Confidential and Proprietary Information 49

Reference Manual

xpress.getversion

Purpose
Returns the full Optimizer version number in the form 15.10.03, where 15 is the major release, 10
is the minor release, and 03 is the build number.

Synopsis
v = xpress.getversion ()

Example

print ("Using Xpress Optimizer version", xpress.getversion ())

Fair Isaac Corporation Confidential and Proprietary Information 50

Reference Manual

xpress.init

Purpose
Initializes the Xpress environment prior to creating or reading a problem.
Note that it is not necessary to call this function after importing the Xpress module and before
creating or solving a problem, as Python will claim a license automatically. This function might be
useful when the user wants to reserve a license and prevent that it is claimed by user or program.

Synopsis
xpress.init ()

Example
The following example shows how to call xpress.init and why it could be useful:

xp.init () # reserves the license before creating variables
x = xp.var ()
y = xp.var ()
p = xp.problem () # This would imply a call to xp.init()
p.addVariable (x, y)
p.addConstraint (x+y <= 1)
p.setObjective (x+2*y, sense=xp.maximize)
p.solve ()

Note that the call to xpress.init is not necessary and should only be made when the user wants
to claim a license that might be used by another program or user before the call to
xpress.problem.

Related topics
xpress.free

Fair Isaac Corporation Confidential and Proprietary Information 51

Reference Manual

xpress.setcheckedmode

Purpose
Disable/enable some of the checking & validation of function calls & function call parameters for
calls to the Xpress Optimizer API. This checking is relatively lightweight but disabling it can
improve performance in cases where non-intensive Xpress Optimizer functions are called
repeatedly in a short space of time.

Please note: after disabling function call checking & validation, invalid usage of Xpress Optimizer
functions may not be detected and may cause the Xpress Optimizer process to behave
unexpectedly or crash. It is not recommended to disable function call checking & validation
during application development.

Synopsis
xpress.setcheckedmode (checked_mode)

Argument
checked_mode Pass as 0 to disable much of the validation for all Xpress function calls from the

current process. Pass 1 to re-enable validation. By default, validation is enabled.

Related topics
xpress.getcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 52

Reference Manual

xpress.setdefaults

Purpose
Sets the module’s controls to their default values. This affects all problems created after calling
setdefaults, not before.

Synopsis
xpress.setdefaults ()

Example
The following creates two problems, one before and one after calling setdefaults():

xpress.controls.presolve = 0
p1 = xpress.problem()
xpress.setdefaults()
p2 = xpress.problem ()
print (’I bet p1.controls.presolve is 0: ’, p1.controls.presolve)
print (’I bet p2.controls.presolve is its default:’, p2.controls.presolve)

Related topics
xpress.setdefaultcontrol, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 53

Reference Manual

xpress.setdefaultcontrol

Purpose
Sets one of the module’s controls to its default values. This affects all problems created after
calling setdefaults, not before.

Synopsis
xpress.setdefaultcontrol (control)

Argument
control Name of the control to be set to default.

Example
The following creates two problems, one before and one after calling
setdefaultcontrol(xpress.presolve):

xpress.controls.presolve = 0
p1 = xpress.problem ()
xpress.setdefaultcontrol (’presolve’)
p2 = xpress.problem ()
print (’I bet p1.controls.presolve is 0: ’, p1.controls.presolve)
print (’I bet p2.controls.presolve is its default:’, p2.controls.presolve)

Related topics
xpress.setdefaults, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 54

Reference Manual

xpress.Sum

Purpose
Alternative sum operator for an arbitrary number of objects created by a Python list, tuple,
generator, NumPy array, dictionary, etc.

Synopsis
a = xpress.Sum (t1, t2, ...)

Example
The following are allowed uses of the Sum operator:

N = 20
S = range (S)
x = [xpress.var () for i in S]
y = [xpress.var (vartype = xpress.binary) for i in S]
p = xpress.problem ()
p.addVariable (x, y)
p.setObjective (x[0] + xpress.Sum (x[i]**2 for i in S))
p.addConstraint (xpress.Sum (x,y) <= 100)
p.addConstraint (xpress.Sum (x[:i]) + xpress.Sum (y[:i])

<= log (10 + i) for i in S)

Further information
The Sum operator is functionally equivalent to Python’s native sum operator. However, it is
strongly advised to use the Xpress’ Sum operator when constructing large expressions involving
variables, as doing otherwise might slow down the execution significantly.

Fair Isaac Corporation Confidential and Proprietary Information 55

Reference Manual

xpress.Dot

Purpose
Alternative dot-product operator for an arbitrary number of NumPy single- or multi-dimensional
arrays. Following the convention for dot-product, the result of Dot for a list of k objects
T1, T2, . . . , Tk of d1, d2, . . . , dk dimensions is an object of d1 + d2+. . . +dk − 2(k − 1) dimensions. For
each i-th factor in [1,2,...,k − 1], the arity of the last dimension of Ti must match the arity of the
penultimate dimension of Ti+1 (or its arity if Ti+1 is single-dimensional, i.e., a vector).

Synopsis
a = xpress.Dot (t1, t2, ..., out)

Argument
out (optional) NumPy array of the correct dimension and arity where the result is stored. If

not provided, the dot product is returned.

Example
The following code shows some possible uses of the Dot operator:

import numpy as np
import xpress as xp

N = 10
M = 20
S = range (N)

x = np.array ([xp.var () for i in S])
x0 = np.random.random (N) # creates an N-vector of random numbers

p = xp.problem ()

objective function is the squared Euclidean distance of the
variable vector x from a fixed point x0
p.setObjective (xp.Dot ((x-x0), (x-x0)))

A = np.random.random (M * N).reshape (M, N)
b = np.random.random (M)

constraint Ax = b, random MxN matrix A and M-vector b
p.addConstraint (xp.Dot (A, x) == b)

Create a single quadratic constraint with
a positive semidefinite matrix Q + N^3 * I

Q = np.random.random (N,N)
p.addConstraint (xp.Dot (x, Q + N**3 * np.eye (N), x) <= 1)

Create four quadratic constraints using an order-three
tensor, i.e., a three-dimensional array.

k = 4

T = np.random.random (k,N,N)
q = np.random.random (k)
p.addConstraint (xp.Dot (x, T, x) <= q)

Fair Isaac Corporation Confidential and Proprietary Information 56

Reference Manual

Further information
From an operational standpoint, the dot product of k multi-dimensional arrays is the result of
k − 1 dot products of two factors each, and proceeds as in the following Python code:

result = T[0]
for i in range (1,k):

result = xpress.Dot (result, T[i])

The dot product of two multi-dimensional array T ′ and T ′′ of dimensions d′ and d′′ and of arities
(n1, n2, . . . , nd′) and (m1, m2, . . . , md′′), respectively, is a multi-dimensional array of dimension
d′ + d′′ − 2, whose arity vector is (n1, n2, . . . , nd′−1, m1, m2, . . . , md′′−2, md′′) and whose generic
element is

vi1,i2,...,id′−1,j1,j2,...,jd′′−2,jd′′ =
∑

1≤h≤nd′
t′i1,i2,...,id′−1,h · t

′′
j1,j2,...,jd′′−2,h,jd′′

.

It is assumed here that nd′ = md′′−1. Two simple cases may help understand the behavior of the
operator: for two single-dimensional arrays v′ and v′′ of size n, the result is the inner product∑

1≤h≤n v′h · v
′′
h .

For two matrices A and B of sizes m× n and n× p respectively, the result is the m× p matrix C
whose generic element is

Cij =
∑

1≤h≤n Aih · Bhj.

The Dot operator is functionally equivalent to Python’s dot operator from the NumPy package.
However, the Xpress Dot operator is the only one that can work on variables and expressions
containing variables.

Fair Isaac Corporation Confidential and Proprietary Information 57

Reference Manual

xpress.Prod

Purpose
Returns the product of a sequence of one or more expressions.

Synopsis
a = xpress.Prod (t1, t2, ...)

Example
The following are allowed uses of the Prod operator:

n=10
x = [xp.var() for i in range (n)]
prod = xp.Prod(x)
polynomial = xp.Sum (i * xp.Prod (x[i:i+4]) for i in range (n-4))

Further information
While n-ary product operators may exist in Python and/or NumPy, it is advisable to use
xpress.Prod when creating products of many expressions as it is the most efficient alternative.

Fair Isaac Corporation Confidential and Proprietary Information 58

Reference Manual

xpress.exp

Purpose
Returns the exponential of a given expression.

Synopsis
a = xpress.exp (t)

Argument
t Exponent.

Further information
Using Python’s math library operator math.exp is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 59

Reference Manual

xpress.log

Purpose
Returns the natural logarithm of a given expression.

Synopsis
a = xpress.log (t)

Argument
t Argument of the log function.

Further information
Using Python’s math library operator math.log is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 60

Reference Manual

xpress.log10

Purpose
Returns the base-10 logarithm of a given expression.

Synopsis
a = xpress.log10 (t1)

Argument
t Argument.

Related topics
xpress.log.

Fair Isaac Corporation Confidential and Proprietary Information 61

Reference Manual

xpress.sin

Purpose
Returns the sine of a given expression.

Synopsis
a = xpress.sin (t)

Argument
t Argument of the sine function.

Further information
Using Python’s math library operator math.sin is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.cos, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 62

Reference Manual

xpress.cos

Purpose
Returns the cosine of a given expression.

Synopsis
a = xpress.cos (t)

Argument
t Argument of the cosine function.

Further information
Using Python’s math library operator math.cos is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 63

Reference Manual

xpress.tan

Purpose
Returns the tangent of a given expression.

Synopsis
a = xpress.tan (t)

Argument
t Argument of the tangent function.

Further information
Using Python’s math library operator math.tan is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 64

Reference Manual

xpress.asin

Purpose
Returns the arcsine of a given expression.

Synopsis
a = xpress.asin (t)

Argument
t Argument of the arcsine function.

Further information
Using Python’s math library operator math.asin is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 65

Reference Manual

xpress.acos

Purpose
Returns the arccosine of a given expression.

Synopsis
a = xpress.acos (t)

Argument
t Argument of the arccosine function.

Further information
Using Python’s math library operator math.acos is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 66

Reference Manual

xpress.atan

Purpose
Returns the arctangent of a given expression.

Synopsis
a = xpress.atan (t)

Argument
t Argument of the arctangent function.

Further information
Using Python’s math library operator math.atan is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.acos.

Fair Isaac Corporation Confidential and Proprietary Information 67

Reference Manual

xpress.max

Purpose
Returns the maximum of one or more expressions.

Synopsis
a = xpress.max (t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further information
Using Python’s operator max is only advisable when the argument is not an expression that
depends on variables.

Related topics
xpress.min.

Fair Isaac Corporation Confidential and Proprietary Information 68

Reference Manual

xpress.min

Purpose
Returns the minimum of one or more expressions.

Synopsis
a = xpress.min (t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further information
Using Python’s operator min is only advisable when the argument is not an expression that
depends on variables.

Related topics
xpress.max.

Fair Isaac Corporation Confidential and Proprietary Information 69

Reference Manual

xpress.abs

Purpose
Returns the absolute value of a given expression

Synopsis
a = xpress.abs (t)

Argument
t Argument of the abs() function.

Further information
Using Python’s math library operator math.abs is only advisable when the argument is not an
expression that depends on variables. Python’s native abs operator is equivalent to xpress.abs
for arguments that are functions of variables.

Fair Isaac Corporation Confidential and Proprietary Information 70

Reference Manual

xpress.sign

Purpose
Returns the sign of an expression: 1 if positive, -1 if negative, 0 if zero.

Synopsis
a = xpress.sign (t)

Argument
t Argument of the sign function.

Fair Isaac Corporation Confidential and Proprietary Information 71

Reference Manual

xpress.erf

Purpose
Returns the error function with an expression as its argument.

Synopsis
a = xpress.erf (t)

Argument
t Argument of the function.

Further information
For reasons related to compilers and math libraries, on Windows machines this function can only
be used with Python 3.

Related topics
xpress.erfc.

Fair Isaac Corporation Confidential and Proprietary Information 72

Reference Manual

xpress.erfc

Purpose
Returns the complementary error function with an expression as its argument.

Synopsis
a = xpress.erfc (t)

Argument
t Argument of the function.

Further information
For reasons related to compilers and math libraries, on Windows machines this function can only
be used with Python 3.

Related topics
xpress.erf.

Fair Isaac Corporation Confidential and Proprietary Information 73

Reference Manual

xpress.sqrt

Purpose
Returns the square root of an expression.

Synopsis
a = xpress.sqrt (t)

Argument
t Radicand of the function.

Further information
Using Python’s math library operator math.sqrt is only advisable when the argument is not an
expression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 74

Reference Manual

xpress.user

Purpose
Creates an expression that is computed by means of a user-specified function.

Synopsis
def f (a1, a2, ..., an): [...] a = xpress.user (f, t1, t2, ..., tn)

Arguments
f User function; must be a Python function with as many (possibly optional) arguments as

specified in the declaration.

t1,...,tn Arguments of the user function.

Example
The following code shows how to define user functions:

import math
def mynorm (v):
return math.sqrt (sum (v[i] for i in range (len (v)))

def weighted_sum (t1, t2, t3 = 0):
return 2*t1 + 3*t2 + 4*t3

x = [xp.var() for i in range (20)]

f1 = xp.user (mynorm, x)
f2 = xp.user (weighted_sum, x[0], x[1], x[2])

doesn’t use optional arg
f3 = xp.user (weighted_sum, x[0], x[1])

Further information
User functions must return a Float, as the behaviour is otherwise undefined.

Fair Isaac Corporation Confidential and Proprietary Information 75

Reference Manual

xpress.addcbmsghandler

Purpose
Declares an output callback function in the global environment, called every time a line of
message text is output by any object in the library. This callback function will be called in addition
to any output callbacks already added by xpress.addcbmsghandler.

Synopsis
xpress.addcbmsghandler (f_msghandler, object, priority)
ret = f_msghandler (vObject, vUserContext, vSystemThreadId, sMsg, iMsgType,

iMsgNumber)

Arguments
f_msghandler The callback function which takes six arguments, vObject, vUserContext,

vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use None to cancel a callback
function.

vObject The object sending the message.

vUserContext The user-defined object passed to the callback function.

vSystemThreadId The system id of the thread sending the message cast to a void *.

sMsg A string containing the message, which may simply be a new line. When the
callback is called for the first time sMsg will be empty.

iMsgType Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
When the callback is called for the first time iMsgType will be a negative value.

iMsgNumber The number associated with the message. If the message is an error or a warning
then you can look up the number in the section Optimizer Error and Warning
Messages for advice on what it means and how to resolve the associated issue.

object A user-defined object to be passed to the callback function.

priority An integer that determines the order in which multiple message handler callbacks
will be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Further information
To send all messages to a log file the built in message handler logfilehandler can be used. This
can be done with:

xpress.addcbmsghandler (logfilehandler,
’log.txt’, 0)

Related topics
xpress.removecbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 76

Reference Manual

xpress.removecbmsghandler

Purpose
Removes a message callback function previously added by xpress.addcbmsghandler. The specified
callback function will no longer be called after it has been removed.

Synopsis
xpress.removecbmsghandler (f_msghandler, object)

Arguments
f_msghandler The callback function to remove. If None then all message callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all message callbacks with the function pointer
f_msghandler will be removed.

Related topics
xpress.addcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 77

Reference Manual

problem.addcbbariteration

Purpose
Declares a barrier iteration callback function, called after each iteration during the interior point
algorithm, with the ability to access the current barrier solution/slack/duals or reduced cost
values, and to ask barrier to stop. This callback function will be called in addition to any callbacks
already added by addcbbariteration.

Synopsis
problem.addcbbariteration (f_bariteration, object, priority)
barrier_action = f_bariteration (my_prob, my_object)

Arguments
f_bariteration The callback function itself. This takes two arguments, my_prob and my_object,

and returns an integer return value. This function is called at every barrier
iteration.

my_prob The problem passed to the callback function, fubi.

my_object The user-defined object passed as object when setting up the callback with
addcbbariteration.

barrier_action Defines a return value controlling barrier:
<0 continue with the next iteration;
=0 let barrier decide (use default stopping criteria)
1 barrier stops with status not defined;
2 barrier stops with optimal status;
3 barrier stops with dual infeasible status;
4 barrier stops wih primal infeasible status;

object A user-defined object to be passed to the callback function, f_bariteration.

priority An integer that determines the order in which callbacks of this type will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
This simple example demonstrates how the solution might be retrieved for each barrier iteration.

Barrier iteration callback
def BarrierIterCallback (my_prob, my_object):

current_iteration = my_prob.attributes.bariter

PrimalObj = my_prob.attributes.barprimalobj
DualObj = my_prob.attributes.bardualobj

Gap = DualObj - PrimalObj

PrimalInf = my_prob.attributes.barprimalinf
DualInf = my_prob.attributes.bardualinf
ComplementaryGap = my_prob.attributes.barcgap

decide if stop or continue
barrier_action = 0
if (current_iteration >= 50 or

Gap <= 0.1 * max (abs (PrimalObj), abs (DualObj))):
barrier_action = 2

return barrier_action

Fair Isaac Corporation Confidential and Proprietary Information 78

Reference Manual

To set callback:
xprob.addcbbariteration (BarrierIterCallback, myobj, 0)

Further information

1. Only the following functions are expected to be called from the callback: problem.getlpsol and
the attribute/control value retrieving and setting routines.

2. Please note that these values refer to the scaled and presolved problem used by barrier, and may
differ from the ones calculated from the postsolved solution returned by problem.getlpsol.

Related topics
problem.removecbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 79

Reference Manual

problem.addcbbarlog

Purpose
Declares a barrier log callback function, called at each iteration during the interior point
algorithm. This callback function will be called in addition to any barrier log callbacks already
added by addcbbarlog.

Synopsis
problem.addcbbarlog (f_barlog, object, priority)
ret = f_barlog (my_prob, my_object)

Arguments
f_barlog The callback function itself. This takes two arguments, my_prob and my_object, and

has an integer return value. If the value returned by f_barlog is nonzero, the
solution process will be interrupted. This function is called at every barrier
iteration.

my_prob The problem passed to the callback function, f_barlog.

my_object The user-defined object passed as object when setting up the callback with
addcbbarlog.

object A user-defined object to be passed to the callback function, f_barlog.

priority An integer that determines the order in which multiple barrier log callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
This simple example prints a line to the screen for each iteration of the algorithm.

prob.addcbbarlog (barLog, None, 0)
prob.lpoptimize (’b’)

The callback function might resemble:

def barLog (prob, object):
print (’Next barrier iteration’)

Further information
If the callback function returns a nonzero value, the Optimizer run will be interrupted.

Related topics
problem.removecbbarlog, problem.addcbgloballog, problem.addcblplog, problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 80

Reference Manual

problem.addcbchgbranchobject

Purpose
Declares a callback function that will be called every time the Optimizer has selected a global
entity for branching. Allows the user to inspect and override the Optimizer’s branching choice.
This callback function will be called in addition to any callbacks already added by
problem.addcbchgbranchobject.

Synopsis
problem.addcbchgbranchobject (f_chgbranchobject, object, priority)
newobject = f_chgbranchobject (my_prob, my_object, obranch)

Arguments
f_chgbranchobject The callback function, which takes three arguments: my_prob, my_object,

and obranch. This function is called every time the Optimizer has selected a
candidate entity for branching.

my_prob The problem passed to the callback function, f_chgbranchobject.

my_object The user defined object passed as object when setting up the callback with
addcbchgbranchobject.

obranch The candidate branching object selected by the Optimizer.

newobject New branching object to replace the Optimizer’s selection. Can be None.

object A user-defined object to be passed to the callback function, f_chgbranchobject.

priority An integer that determines the order in which multiple callbacks of this type will
be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Further information

1. The branching object given by the Optimizer provides a linear description of how the Optimizer
intends to branch on the selected candidate. This will often be one of standard global entities of
the current problem, but can also be e.g. a split disjunction or a structural branch, if those
features are turned on.

2. The functions branchobj.getbranches, branchobj.getbounds and branchobj.getrows can be used
to inspect the given branching object.

3. Refer to the branchobj class to learn how to create a new branching object to replace the
Optimizer’s selection. Note that the new branching object should be created with a priority value
no higher than the current object to guarantee it will be used for branching.

Related topics
problem.removecbchgbranchobject.

Fair Isaac Corporation Confidential and Proprietary Information 81

Reference Manual

problem.addcbcutlog

Purpose
Declares a cut log callback function, called each time the cut log is printed. This callback function
will be called in addition to any callbacks already added by problem.addcbcutlog.

Synopsis
problem.addcbcutlog (f_cutlog, object, priority)
ret = f_cutlog (my_prob, my_object)

Arguments
f_cutlog The callback function which takes two arguments, my_prob and my_object, and has

an integer return value.

my_prob The problem passed to the callback function, f_cutlog.

my_object The user-defined object passed as object when setting up the callback with
addcbcutlog.

object A user-defined object to be passed to the callback function, f_cutlog.

priority An integer that determines the order in which multiple cut log callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Further information
The callback f_cutlog should return a non-zero value to stop cutting on the current node.

Related topics
problem.removecbcutlog.

Fair Isaac Corporation Confidential and Proprietary Information 82

Reference Manual

problem.addcbdestroymt

Purpose
Declares a callback function that is called every time a MIP thread is destroyed by the parallel MIP
code. This callback function will be called in addition to any callbacks already added by
addcbdestroymt.

Synopsis
problem.addcbdestroymt (f_destroymt, object, priority)
f_destroymt (my_prob, my_object)

Arguments
f_destroymt The callback function which takes two arguments, my_prob and my_object, and has

no return value.

my_prob The thread problem passed to the callback function.

my_object The user-defined object passed as object when setting up the callback with
addcbdestroymt.

object A user-defined object to be passed to the callback function.

priority An integer that determines the order in which multiple callbacks of this type will
be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Further information
This callback is useful for freeing up any user data created in the MIP thread callback.

Related topics
problem.removecbdestroymt, problem.addcbmipthread.

Fair Isaac Corporation Confidential and Proprietary Information 83

Reference Manual

problem.addcbgapnotify

Purpose
Declares a gap notification callback, to be called when a MIP solve reaches a predefined target,
set using the miprelgapnotify, mipabsgapnotify, mipabsgapnotifyobj, and/or
mipabsgapnotifybound controls.

Synopsis
problem.addcbgapnotify (f_gapnotify, object, priority)
(RelGapNotify, AbsGapNotify, AbsGapNotifyObj, AbsGapNotifyBound) = f_gapnotify

(my_prob, my_object)

Arguments
f_gapnotify The callback function.

object A user-defined object that wil be passed into the callback f_gpanotify.

priority An integer that determines the order in which multiple gap notification callbacks
will be invoked. The callback added with the higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

my_prob The current problem.

my_object The user-defined object passed as object when setting up the callback with
addcbgapnotify.

RelGapNotify The value the miprelgapnotify control will be set to after this callback. May be
modified within the callback in order to set a new notification target.

AbsGapNotify The value the mipabsgapnotify control will be set to after this callback. May be
modified within the callback in order to set a new notification target.

AbsGapNotifyObj The value the mipabsgapnotifyobj control will be set to after this callback.
May be modified within the callback in order to set a new notification target.

AbsGapNotifyBound The value the mipabsgapnotifybound control will be set to after this callback.
May be modified within the callback in order to set a new notification target.

object A user-defined object to be passed to the callback function, f_gapnotify.

priority An integer that determines the order in which multiple estimate callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
The following example prints a message when the gap reaches 10% and 1%

def gapnotify (prob, object):

obj = prob.attributes.mipobjval
bound = prob.attributes.bestbound
relgap = abs ((obj - bound) / obj)

newRelGapNotifyTarget = -1

if relgap <= 0.1:
print (’Gap reached 10%’)
newRelGapNotifyTarget = 0.1

if relgap <= 0.01:
print (’Gap reached 1%’)
newRelGapNotifyTarget = -1 # Don’t call gapnotify again

Fair Isaac Corporation Confidential and Proprietary Information 84

Reference Manual

return a quadruple with new values, or
None for those that should not be set
return (newRelGapNotifyTarget, None, None, None)

prob.controls.miprelgapnotify = 0.1
prob.addcbgapnotify (gapnotify, None, 0)
prob.mipoptimize (’’)

Further information
The target values that caused the callback to be triggered will automatically be reset to prevent
the same callback from being fired again.

Related topics
MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND,
problem.removecbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 85

Reference Manual

problem.addcbgloballog

Purpose
Declares a global log callback function, called each time the global log is printed. This callback
function will be called in addition to any callbacks already added by addcbgloballog.

Synopsis
problem.addcbgloballog (f_globallog, object, priority)
ret = f_globallog (my_prob, my_object)

Arguments
f_globallog The callback function which takes two arguments, my_prob and my_object, and has

an integer return value. This function is called whenever the global log is printed
as determined by the MIPLOG control.

my_prob The problem passed to the callback function, f_globallog.

my_object The user-defined object passed as object when setting up the callback with
addcbgloballog.

object A user-defined object to be passed to the callback function, f_globallog.

priority An integer that determines the order in which multiple global log callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
The following example prints at each node of the global search the node number and its depth:

prob.controls.miplog = 3
prob.addcbgloballog (globalLog, None, 0)
prob.mipoptimize (’’)

The callback function may resemble:

def globalLog (prob, object):

nodedepth = prob.attributes.nodedepth
node = prob.attributes.currentnode

print (’Node {0} with depth {1} has been processed’.format
(node, nodedepth))

return 0

Further information
If the callback function returns a nonzero value, the global search will be interrupted.

Related topics
problem.removecbgloballog, problem.addcbbarlog, problem.addcblplog, problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 86

Reference Manual

problem.addcbinfnode

Purpose
Declares a user infeasible node callback function, called after the current node has been found to
be infeasible during the Branch and Bound search. This callback function will be called in
addition to any callbacks already added by addcbinfnode.

Synopsis
problem.addcbinfnode (f_infnode, object, priority)
f_infnode (my_prob, my_object)

Arguments
f_infnode The callback function which takes two arguments, my_prob and my_object, and has

no return value. This function is called after the current node has been found to be
infeasible.

my_prob The problem passed to the callback function, f_infnode.

my_object The user-defined object passed as object when setting up the callback with
addcbinfnode.

object A user-defined object to be passed to the callback function, f_infnode.

priority An integer that determines the order in which multiple user infeasible node
callbacks will be invoked. The callback added with a higher priority will be called
before a callback with a lower priority. Set to 0 if not required.

Example
The following notifies the user whenever an infeasible node is found during the global search:

prob.addcbinfnode (nodeInfeasible, None, 0)
prob.mipoptimize ("")

The callback function may resemble:

def nodeInfeasible (prob, object):
node = prob.attributes.currentnode
print ("Node {0} infeasible".format (node))

Related topics
problem.removecbinfnode, problem.addcboptnode, problem.addcbintsol,
problem.addcbnodecutoff.

Fair Isaac Corporation Confidential and Proprietary Information 87

Reference Manual

problem.addcbintsol

Purpose
Declares a user integer solution callback function, called every time an integer solution is found
by heuristics or during the Branch and Bound search. This callback function will be called in
addition to any callbacks already added by addcbintsol.

Synopsis
problem.addcbintsol (f_intsol, object, priority)
f_intsol (my_prob, my_object)

Arguments
f_intsol The callback function which takes two arguments, my_prob and my_object, and has

no return value. This function is called if the current node is found to have an
integer feasible solution, i.e. every time an integer feasible solution is found.

my_prob The problem passed to the callback function, f_intsol.

my_object The user-defined object passed as object when setting up the callback with
addcbintsol.

object A user-defined object to be passed to the callback function, f_intsol.

priority An integer that determines the order in which multiple integer solution callbacks
will be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Example
The following example prints integer solutions as they are discovered in the global search:

prob.addcbintsol (printsol, None, 0)
prob.mipoptimize ("")

The callback function might resemble:

def printsol (my_prob, object):

cols = my_prob.attributes.originalcols
objval = my_prob.attributes.lpobjval

x = []
my_prob.getlpsol (x, None, None, None)

print ("Integer solution found:", objval, "; values:")
print (x)

Further information

1. This callback is useful if the user wants to retrieve the integer solution when it is found.

2. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.
problem.getmipsol always returns the last integer solution found and, if called from the intsol
callback, it will not necessarily return the solution that caused the invocation of the callback (for
example, it is possible that when solving with multiple MP threads, another thread finds a new
integer solution before the user calls problem.getmipsol).

3. This callback is called after a new integer solution was found by the Optimizer. Use a callback set
by problem.addcbpreintsol in order to be notified before a new integer solution is accepted by
the Optimizer, which allows for the new solution to be rejected.

Related topics
problem.removecbintsol, problem.addcbpreintsol.

Fair Isaac Corporation Confidential and Proprietary Information 88

Reference Manual

problem.addcblplog

Purpose
Declares a simplex log callback function which is called after every LPLOG iterations of the simplex
algorithm. This callback function will be called in addition to any callbacks already added by
addcblplog.

Synopsis
problem.addcblplog (f_lplog, object, priority)
ret = f_lplog (my_prob, my_object)

Arguments
f_lplog The callback function which takes two arguments, my_prob and my_object, and has

an integer return value. This function is called every LPLOG simplex iterations
including iteration 0 and the final iteration.

my_prob The problem passed to the callback function, f_lplog.

my_object The user-defined object passed as object when setting up the callback with
addcblplog.

object A user-defined object to be passed to the callback function, f_lplog.

priority An integer that determines the order in which multiple lplog callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
The following code sets a callback function, lpLog, to be called every 10 iterations of the
optimization:

prob.controls.lplog = 10
prob.addcblplog (lpLog, None, 0)
prob.read ("problem", "")
prob.mipoptimize ("")

The callback function may resemble:

def lpLog (my_prob, object):

iter = my_prob.attributes.simplexiter
obj = my_prob.attributes.lpobjval

print ("At iteration {0} objval is {1}".format (iter, obj))
return 0

Further information
If the callback function returns a nonzero value, the solution process will be interrupted.

Related topics
problem.removecblplog, problem.addcbbarlog, problem.addcbgloballog, problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 89

Reference Manual

problem.addcbmessage

Purpose
Declares an output callback function, called every time a text line relating to the given prob is
output by the Optimizer. This callback function will be called in addition to any callbacks already
added by addcbmessage.

Synopsis
problem.addcbmessage (f_message, object, priority)
f_message (my_prob, my_object, msg, msgtype)

Arguments
f_message The callback function which takes five arguments, my_prob, my_object, msg, len and

msgtype, and has no return value. Use a None value to cancel a callback function.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object when setting up the callback with
addcbmessage.

msg A null terminated character array (string) containing the message, which may
simply be a new line.

msgtype Indicates the type of output message:
1 information messages;
2 (not used)
3 warning messages;
4 error messages.
A negative value indicates that the Optimizer is about to finish and the buffers
should be flushed at this time if the output is being redirected to a file.

object A user-defined object to be passed to the callback function.

priority An integer that determines the order in which callbacks of this type will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Example
The following example simply sends all output to the screen (stdout):

prob.addcbmessage (Message, None, 0)

The callback function might resemble:

def Message (my_prob, object, msg, msgtype):

print (’{0}: {1}’.format (msgtype, msg))

Further information

1. Screen output is automatically created by the Optimizer Console only. To produce output when
using the Optimizer library, it is necessary to define this callback function and use it to print the
messages to the screen (stdout).

2. This function offers one method of handling the messages which describe any warnings and
errors that may occur during execution. Other methods are to check the return values of
functions and then get the error code using the ERRORCODE attribute, obtain the last error
message directly using problem.getlasterror, or send messages direct to a log file using
problem.setlogfile.

Related topics
problem.removecbmessage, problem.addcbbarlog, problem.addcbgloballog, problem.addcblplog,
problem.setlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 90

Reference Manual

problem.addcbmipthread

Purpose
Declares a MIP thread callback function, called every time a MIP worker problem is created by the
parallel MIP code. This callback function will be called in addition to any callbacks already added
by addcbmipthread.

Synopsis
problem.addcbmipthread (f_mipthread, object, priority)
f_mipthread (my_prob, my_object, thread_prob)

Arguments
f_mipthread The callback function which takes three arguments, my_prob, my_object and

thread_prob, and has no return value.

my_prob The problem passed to the callback function.

my_object The user-defined object passed to the callback function.

thread_prob The problem for the MIP thread

object A user-defined object to be passed to the callback function.

priority An integer that determines the order in which multiple callbacks of this type will
be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Example
The following example clears the message callback for each of the MIP threads:

prob.addcbmipthread (mipthread, None, 0)

def mipthread (my_prob, my_object, mipthread):
my_prob.removecbmessage (mipthread, None)

Further information
This function will be called when a new MIP worker problem is created. Each worker problem
receives a unique identifier that can be obtained through the MIPTHREADID attribute. Worker
problems can be matched with different system threads at different points of a solve, so the
system thread that is responsible for executing the callback is not necessarily the same thread
used for all subsequent callbacks for the same worker problem. On the other hand, worker
problems are always assigned to a single thread at a time and the same nodes are always solved
on the same worker problem in repeated runs of a deterministic MIP solve. A worker problem
therefore acts as a virtual thread through the node solves.

Related topics
problem.removecbmipthread, problem.addcbdestroymt.

Fair Isaac Corporation Confidential and Proprietary Information 91

Reference Manual

problem.addcbnewnode

Purpose
Declares a callback function that will be called every time a new node is created during the
branch and bound search. This callback function will be called in addition to any callbacks already
added by addcbnewnode.

Synopsis
problem.addcbnewnode (f_newnode, object, priority)
f_newnode (my_prob, my_object, parentnode, newnode, branch)

Arguments
f_newnode The callback function, which takes five arguments: myprob, my_object, parentnode,

newnode and branch. This function is called every time a new node is created
through branching.

my_prob The problem passed to the callback function, f_newnode.

my_object The user-defined object passed as object when setting up the callback with
addcbnewnode.

parentnode Unique identifier for the parent of the new node.

newnode Unique identifier assigned to the new node.

branch The sequence number of the new node amongst the child nodes of parentnode.
For regular branches on a global entity this will be either 0 or 1.

object A user-defined object to be passed to the callback function.

priority An integer that determines the order in which callbacks of this type will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Further information

1. For regular branches on a global entity, branch will be either zero or one, depending on whether
the new node corresponds to branching the global entity up or down.

2. When branching on a branchobject, branch refers to the given branch index of the object.

Related topics
problem.removecbnewnode.

Fair Isaac Corporation Confidential and Proprietary Information 92

Reference Manual

problem.addcbnodecutoff

Purpose
Declares a user node cutoff callback function, called every time a node is cut off as a result of an
improved integer solution being found during the branch and bound search. This callback
function will be called in addition to any callbacks already added by addcbnodecutoff.

Synopsis
problem.addcbnodecutoff (f_nodecutoff, object, priority)
f_nodecutoff (my_prob, my_object, node)

Arguments
f_nodecutoff The callback function, which takes three arguments, my_prob, my_object and node,

and has no return value. This function is called every time a node is cut off as the
result of an improved integer solution being found.

my_prob The problem passed to the callback function, f_nodecutoff.

my_object The user-defined object passed as object when setting up the callback with
addcbnodecutoff.

node The number of the node that is cut off.

object A user-defined object to be passed to the callback function, f_nodecutoff.

priority An integer that determines the order in which multiple node-optimal callbacks will
be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Example
The following notifies the user whenever a node is cutoff during the global search:

prob.addcbnodecutoff (Cutoff, None, 0)
mipoptimize (prob, "")

The callback function might resemble:

def Cutoff (prob, object, node):

print ("Node {0} cutoff".format (node))

Further information
This function allows the user to keep track of the eligible nodes. Note that the LP solution will
not be available from this callback.

Related topics
problem.removecbnodecutoff, problem.addcboptnode, problem.addcbinfnode,
problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 93

Reference Manual

problem.addcboptnode

Purpose
Declares an optimal node callback function, called during the branch and bound search, after the
LP relaxation has been solved for the current node, and after any internal cuts and heuristics have
been applied, but before the Optimizer checks if the current node should be branched. This
callback function will be called in addition to any callbacks already added by addcboptnode.

Synopsis
problem.addcboptnode (f_optnode, object, priority)
feas = f_optnode (my_prob, my_object)

Arguments
f_optnode The callback function which takes three arguments, my_prob, my_object and feas,

and has no return value.

my_prob The problem passed to the callback function, f_optnode.

my_object The user-defined object passed as object when setting up the callback with
addcboptnode.

feas The feasibility status. If set to a nonzero value by the user, the current node will be
declared infeasible.

object A user-defined object to be passed to the callback function, f_optnode.

priority An integer that determines the order in which multiple node-optimal callbacks will
be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Example
The following prints the optimal objective value of the node LP relaxations:

prob.addcboptnode (nodeOptimal, None, 0)
prob.mipoptimize ("")

The callback function might resemble:

def nodeOptimal (prob, object, feas):

node = prob.attributes.currentnode
print ("NodeOptimal: node number", node)
objval = prob.attributes.lpobjval
print ("Objective function value =", objval)

Related topics
problem.removecboptnode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, CALLBACKCOUNT_OPTNODE.

Fair Isaac Corporation Confidential and Proprietary Information 94

Reference Manual

problem.addcbpreintsol

Purpose
Declares a user integer solution callback function, called when an integer solution is found by
heuristics or during the branch and bound search, but before it is accepted by the Optimizer. This
callback function will be called in addition to any integer solution callbacks already added by
addcbpreintsol.

Synopsis
problem.addcbpreintsol (f_preintsol, object, priority)
(ifreject, newcutoff) = f_preintsol (my_prob, my_object, isheuristic, cutoff)

Arguments
f_preintsol The callback function which takes five arguments, my_prob, my_object,

isheuristic, ifreject and cutoff, and has no return value. This function is called
when an integer solution is found, but before the solution is accepted by the
Optimizer, allowing the user to reject the solution.

my_prob The problem passed to the callback function, f_preintsol.

my_object The user-defined object passed as object when setting up the callback with
addcbpreintsol.

isheuristic Set to 1 if the solution was found using a heuristic. Otherwise, it will be the global
feasible solution to the current node of the global search.

ifreject Set this to 1 if the solution should be rejected.

cutoff The current cutoff value.

newcutoff The new cutoff value, to be used by the Optimizer if the solution is accepted. The
returned newcutoff value will not be updated if the solution is rejected.

object A user-defined object to be passed to the callback function, f_preintsol.

priority An integer that determines the order in which callbacks of this type will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Further information

1. If a solution is rejected, the Optimizer will drop the found solution without updating any
attributes, including the cutoff value. To change the cutoff value when rejecting a solution, the
control MIPABSCUTOFF should be set instead.

2. When a node solution is rejected (isheuristic = 0), the node itself will be dropped without
further branching.

3. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.
problem.getmipsol will not return the newly found solution because it has not been saved at this
point.

Related topics
problem.removecbpreintsol, problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 95

Reference Manual

problem.addcbprenode

Purpose
Declares a preprocess node callback function, called before the LP relaxation of a node has been
optimized, so the solution at the node will not be available. This callback function will be called
in addition to any callbacks already added by addcbprenode.

Synopsis
problem.addcbprenode (f_prenode, object, priority)
nodinfeas = f_prenode (my_prob, my_object)

Arguments
f_prenode The callback function, which takes three arguments, my_prob, my_object and

nodinfeas, and has no return value. This function is called before a node is
reoptimized and the node may be made infeasible by setting *nodinfeas to 1.

my_prob The problem passed to the callback function, f_prenode.

my_object The user-defined object passed as object when setting up the callback with
addcbprenode.

nodinfeas The feasibility status. If set to a nonzero value by the user, the current node will be
declared infeasible by the Optimizer.

object A user-defined object to be passed to the callback function, f_prenode.

priority An integer that determines the order in which multiple preprocess node callbacks
will be invoked. The callback added with a higher priority will be called before a
callback with a lower priority. Set to 0 if not required.

Example
The following example notifies the user before each node is processed:

prob.addcbprenode (preNode, None, 0)
prob.mipoptimize ("")

The callback function might resemble:

def preNode (prob, object):

return 0 # set to 1 if node is infeasible

Related topics
problem.removecbprenode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 96

Reference Manual

problem.addcbusersolnotify

Purpose
Declares a callback function to be called each time a solution added by problem.addmipsol has
been processed. This callback function will be called in addition to any callbacks already added by
addcbusersolnotify.

Synopsis
problem.addcbusersolnotify (f_usersolnotify, object, priority)
f_usersolnotify (my_prob, my_object, solname, status)

Arguments
f_usersolnotify The callback function which takes four arguments, my_prob, my_object, id and

status and has no return value.

my_prob The problem passed to the callback function, f_usersolnotify.

my_object The user-defined object passed as object when setting up the callback with
addcbusersolnotify.

solname The string name assigned to the solution when it was loaded into the Optimizer
using problem.addmipsol.

status One of the following status values:
0 An error occured while processing the solution.
1 Solution is feasible.
2 Solution is feasible after reoptimizing with fixed globals.
3 A local search heuristic was applied and a feasible solution discovered.
4 A local search heuristic was applied but a feasible solution was not found.
5 Solution is infeasible and a local search could not be applied.
6 Solution is partial and a local search could not be applied.
7 Failed to reoptimize the problem with globals fixed to the provided

solution. Likely because a time or iteration limit was reached.
8 Solution is dropped. This can happen if the MIP problem is changed or

solved to completion before the solution could be processed.
object A user-defined object to be passed to the callback function, f_usersolnotify.

priority An integer that determines the order in which multiple callbacks will be invoked.
The callback added with a higher priority will be called before a callback with a
lower priority. Set to 0 if not required.

Further information
If presolve is turned on, any solution added with problem.addmipsol will first be presolved before
it can be checked. The value returned in status refers to the presolved solution, which might
have had values adjusted due to bound changes, fixing of variables, etc.

Related topics
problem.removecbusersolnotify, problem.addmipsol.

Fair Isaac Corporation Confidential and Proprietary Information 97

Reference Manual

problem.addcoefs

Purpose
Add non-linear coefficients to the SLP problem

Synopsis
problem.addcoefs (rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Array holding the indices of rows for the coefficient.

colindex Array holding the indices of columns for the coefficient.

factor Array holding factor by which formula is scaled. If None, a value of 1.0 will be used.

FormulaStart Integer array of length nSLPCoef+1 holding the start position in the arrays Type
and Value of the formula for the coefficients. FormulaStart should have an extra
entry containing the next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(parsed = False) or internal parsed reverse Polish (parsed = True).

type Array of token types providing the formula for each coefficient.

value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ..., respectively.
The following example adds coefficients representing:
Col2 * Col3 + Col6 * Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []

n = 0
ncoef = 0

formulastart[ncoef], ncoef = n, ncoef + 1
Type[n], Value[n], n = xslp_op_col, 3, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_op, xslp_MULTIPLY, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], n = xslp_op_eof, n+1

formulastart [ncoef] = n

p.addcoefs (rowindex, colindex, None, formulastart, 1, Type, Value)

Fair Isaac Corporation Confidential and Proprietary Information 98

Reference Manual

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 * Col3.

The second coefficient in Row1 is in Col6 and has the formula Col2 * Col2 so it represents Col6 *
Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 *
rather than the unparsed form
Col2 * Col2

The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 * Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated. Formula is made up of a list of tokens in Type and Value starting at formulastart[j].
The tokens follow the rules for parsed or unparsed formulae as indicated by the setting of
Parsed. The formula must be terminated with an xslp_op_eof token. If several coefficients share
the same formula, they can have the same value in FormulaStart. For possible token types and
values see the chapter on "Formula Parsing".

The addcoef function loads additional items into the SLP problem. The corresponding loadcoefs
function deletes any existing items first.

The behaviour for existing coefficients is additive: the formula defined in the parameters are
added to any existing formula coefficients. However, due to performance considerations, such
duplications should be avoided when possible.

Related topics
problem.chgnlcoef, problem.chgccoef, problem.delcoefs, problem.getcoefformula,
problem.getccoef, problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 99

Reference Manual

problem.addcols

Purpose
Add columns to the problem after passing it to the Optimizer using the input routines.

Synopsis
problem.addcols (objx, mstart, mrwind, dmatval, bdl, bdu, names, types)

Arguments
objx Array containing the objective function coefficients of the new columns.

mstart Array containing the offsets in the mrwind and dmatval arrays of the start of the
elements for each column.

mrwind Array containing the row indices for the elements in each column.

dmatval Array containing the element values.

bdl Array containing the lower bounds on the added columns.

bdu Array containing the upper bounds on the added columns.

names (optional) Array containing the names of the columns added.

types (optional) Array of characters containing the types of the newly added columns:
C indicates a continuous variable (default);
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

Example
In this example, we consider the two problems:

(a) maximize: 2x + y (b) maximize: 2x + y + 3z

subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24

y ≤ 5 y + z ≤ 5

3x + y ≤ 20 3x + y ≤ 20

x + y ≤ 9 x + y + 3z ≤ 9

z ≤ 12

Using addcols, the following transforms (a) into (b):

p = xpress.problem ()

p.read ("example.lp")

assume this problem has at least four constraints
p.addcols (obj = [3], mstart = [0,3], mrwind = [0, 1, 3],

matval = [2,1,3], bdl = [-xpress.infinity], bdu = [12],
names = [’john_cleese’], types = [’C’])

Further information

1. The constant xpress.infinity can be used to represent infinite bounds.

2. If the columns are added to a MIP problem, then they will be continuous variables unless types is
specified. Use problem.chgcoltype to impose integrality conditions on such new columns.

Related topics
problem.addrows, problem.chgcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 100

Reference Manual

problem.addConstraint

Purpose
Adds one or more constraints to the problem.

Synopsis
problem.addConstraint (c1, c2, ...)

Argument
c1,c2... Constraints or list/tuples/array of constraints created with the xpress.constraint()

call.

Example

N = 20
x = [xpress.var () for i in range (N)]
c = [x[i] <= x[i+1] for i in range (N-1)]
c2 = x[0] >= x[19]
p = xpress.problem ()
p.addVariable (x)
p.addConstraint (x[2] == x[4])
p.addConstraint (c, c2)

Further information
All arguments can be single constraints or lists, tuples, or NumPy arrays of constraints created as
xpress.constraint objects. Arguments do not need to be declared prior to the call.

Fair Isaac Corporation Confidential and Proprietary Information 101

Reference Manual

problem.addcuts

Purpose
Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the current
node and not deleted at the current node will be automatically added to the cut pool. The cuts
added to the cut pool will be automatically restored at descendant nodes.

Synopsis
problem.addcuts (mtype, rtype, rhs, mstart, mcols, matval)

Arguments
mtype Array containing the user assigned cut types. The cut types can be any integer

chosen by the user, and are used to identify the cuts in other cut manager routines
using user supplied parameters. The cut type can be interpreted as an integer or a
bitmap - see problem.delcuts.

rtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.

rhs Array of length ncuts containing the right hand side elements for the cuts.

mstart Array containing offset into the mcols and dmatval arrays indicating the start of
each cut. This array is of length ncuts+1 with the last element, mstart[ncuts],
being where cut ncuts+1 would start.

cols Array of length mstart[ncuts] containing the column indices in the cuts.

matval Array of length mstart[ncuts] containing the matrix values for the cuts.

Further information

1. The columns and elements of the cuts must be stored contiguously in the mcols and dmatval
arrays passed to addcuts. The starting point of each cut must be stored in the mstart array. To
determine the length of the final cut, the mstart array must be of length ncuts+1 with the last
element of this array containing the position in mcols and dmatval where the cut ncuts+1 would
start. mstart[ncuts] denotes the number of nonzeros in the added cuts.

2. The cuts added to the matrix are always added at the end of the matrix and the number of rows
is always set to the original number of cuts added. If ncuts have been added, then the rows
0,...,ROWS-ncuts-1 are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the added cuts.
The number of cuts can be found by consulting the CUTS problem attribute.

Related topics
problem.addrows, problem.delcpcuts, problem.delcuts, problem.getcpcutlist,
problem.getcutlist, problem.loadcuts, problem.storecuts, Section "Working with the cut
manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 102

Reference Manual

problem.adddfs

Purpose
Add a set of distribution factors

Synopsis
problem.adddfs (colindex, rowindex, value)

Arguments
colindex Array of indices of columns whose distribution factor is to be changed.

rowindex Array of indices of the rows where each distribution factor applies.

value Array holding the new values of the distribution factors.

Example
The following example adds distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.

colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.adddfs (colindex,rowindex,value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

The problem.adddfs functions load additional items into the SLP problem. The corresponding
problem.loaddfs functions delete any existing items first.

Related topics
problem.chgdf, problem.getdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 103

Reference Manual

problem.addIndicator

Purpose
Adds one or more indicator constraints to the problem.

Synopsis
problem.addIndicator (c1, c2, ...)

Argument
c1,c2... Tuples containing an indicator constraints, or list/tuples/array of tuples containing a

binary condition and a constraint.

Example

x = xpress.var (vartype = xpress.binary)
y = xpress.var (lb = 10, ub = 20)
z = xpress.var ()
ind1 = (x==1, y+z <= 40)
p = xpress.problem ()
p.addVariable (x,y,z)
p.addIndicator (ind1)

Further information
All arguments can be single indicator constraints or lists, tuples, or NumPy arrays created as
indicator constraints. An indicator constraint is a tuple of two elements, the first being a
condition (i.e. a binary variable being 0 or 1) and the second being the constraint.

Fair Isaac Corporation Confidential and Proprietary Information 104

Reference Manual

problem.addmipsol

Purpose
Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.

Synopsis
problem.addmipsol (mipsolval, mipsolcol, solname)

Arguments
mipsolval Array containing solution values.

mipsolcol Optional integer array containing the column indices for the solution values
provided in mipsolval. It is optional when the length of mipsolval is equal to COLS,
in which case it is assumed that mipsolval provides a complete solution vector.

solname An optional name to associate with the solution.

Further information

1. The function returns immediately after passing the solution to the Optimizer. The solution is
placed in a pool until the Optimizer is able to analyze the solution during a MIP solve.

2. If the provided solution is found to be infeasible, a limited local search heuristic will be run in an
attempt to find a close feasible integer solution.

3. If a partial solution is provided, global columns will be fixed to any provided values and a limited
local search will be run in an attempt to find integer feasible values for the remaining unspecified
columns. Values provided for continuous column in partial solutions are currently ignored.

4. The problem.addcbusersolnotify callback function can be used to discover the outcome of a
loaded solution. The optional name provided as solname will be returned in the callback function.

5. If one or more solutions are loaded during the problem.addcboptnode callback, the Optimizer will
process all loaded solutions and fire the callback again. This will be repeated as long as new
solutions are loaded during the callback.

Related topics
problem.addcbusersolnotify, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 105

Reference Manual

problem.addqmatrix

Purpose
Adds a new quadratic matrix into a row defined by triplets.

Synopsis
problem.addqmatrix (irow, mqc1, mqc2, dqe)

Arguments
irow Index of the row where the quadratic matrix is to be added.

mqc1 First index in the triplets.

mqc2 Second index in the triplets.

dqe Coefficients in the triplets.

Further information

1. The triplets should define the whole quadratic expression. This means that to add x2 + 4xy the dqe
arrays shall contain the coefficients 1 and 4.

2. The matrix defined by mqc1, mqc2 and dqe should be positive semi-definite for ≤ and negative
semi-definite for ≥ rows.

3. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.chgqrowcoeff, problem.getqrowqmatrix,
problem.getqrowqmatrixtriplets, problem.getqrows, problem.chgqobj, problem.chgmqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 106

Reference Manual

problem.addrows

Purpose
Adds rows and their coefficient to the problem.

Synopsis
problem.addrows (qrtype, rhs, mstart, mclind, dmatval, range = None, names = None)

Arguments
qrtype Character array containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side elements.

mstart Array containing the offsets in the mclind and dmatval arrays of the start of the
elements for each row.

mclind Array containing the (contiguous) column indices for the elements in each row.

dmatval Array containing the (contiguous) element values.

range (optional) Array containing the row range elements. Optional. The values in the
range array will only be read for R type rows. The entries for other type rows will
be ignored.

names (optional) Array of names to be assigned to each new row.

Example
Suppose the current problem is:

maximize: 2x + y + 3z

subject to: x + 4y + 2z ≤ 24

y + z ≤ 5

3x + y ≤ 20

x + y + 3z ≤ 9

Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

p = xpress.problem ()
p.addrows ([’L’], [25], None, [0,3], [0,1,2],

dmatval = [8, 9, 10], names = [’NewRow’])

Further information
Range rows are automatically converted to type L, with an upper bound in the slack. This must be
taken into consideration, when retrieving row type, right–hand side values or range information
for rows.

Related topics
problem.addcols, problem.addcuts.

Fair Isaac Corporation Confidential and Proprietary Information 107

Reference Manual

problem.addSOS

Purpose
Adds one or more Special Ordered Set (SOS) to the problem.

Synopsis
problem.addSOS (s1, s2, ...)

Argument
s1,s2... Special Ordered Sets defined prior to the call or (see example below) defined

directly in the call.

Example

N = 20
x = [xpress.var () for i in range (N)]
p = xpress.problem ()
p.addVariable (x)
s = xpress.sos ([x], [i+2 for i in range (N)])
p.addSOS (s)
p.addSOS ([x[0], x[2]], [4,6])

Further information
All arguments can be single SOSs or lists, tuples, or NumPy arrays of SOSs created as xpress.sos
objects. As for constraints, a SOS does not need to be declared prior to being added as an
argument.

Fair Isaac Corporation Confidential and Proprietary Information 108

Reference Manual

problem.addtolsets

Purpose
Add sets of standard tolerance values to an SLP problem

Synopsis
problem.addtolsets (tol)

Argument
slptol Array of 9h elements containing the 9 tolerance values for each set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances;
the second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for
absolute tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

tol = 9*[0.005]+[0]+[0.01,0.001]*4
p.addtolsets (tol)

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC

1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA

2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM

5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI

6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI

7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS

8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for
a given SLP variable. Once created, a tolerance set can be used to set the tolerances for any SLP
variable. If a tolerance value is zero, then the default tolerance will be used instead. To force the
use of a zero tolerance, use the problem.chgtolset function and set the Status variable
appropriately. See the section "Convergence criteria" of the SLP Reference Manual for a fuller
description of tolerances and their uses. The problem.addtolsets functions load additional items
into the SLP problem. The corresponding problem.loadtolsets functions delete any existing
items first.

Related topics
problem.chgtolset, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 109

Reference Manual

problem.addVariable

Purpose
Adds one or more variables to the problem.

Synopsis
problem.addVariable (v1, v2, ...)

Argument
v1,v2... Variables or list/tuples/array of variables created with the xpress.var() call.

Example

x = xpress.var (vartype = xpress.binary)
Y = [xpress.var () for i in range (20)]
p = xpress.problem ()
p.addVariable (x, Y)

Further information
All arguments can be single variables or lists, tuples, or NumPy arrays of variables created as
xpress.var objects.

Fair Isaac Corporation Confidential and Proprietary Information 110

Reference Manual

problem.addvars

Purpose
Add SLP variables defined as matrix columns to an SLP problem

Synopsis
problem.addvars (colindex, vartype, detrow, seqnum, tolindex, initvalue, stepbound)

Arguments

colindex Integer array holding the index of the matrix column corresponding to each SLP
variable.

vartype Bitmap giving information about the SLP variable as follows:
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a
negative value means there is no determining row)
May be None if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP
variable (a zero value means there is no pre-defined order for this variable)
May be None if not required.

tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero
value means the default tolerances are used)
May be None if not required.

initvalue Double array holding the initial value for each SLP variable (use the VarType bit
map to indicate if a value is being provided)
May be None if not required.

stepbound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
xpress.infinity is used for a value in stepbound, the delta will never have step
bounds applied, and will almost always be regarded as converged.
May be None if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23
and 25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no
specific initial value

colindex = [23,25]
vartype = [0,2]
initvalue = [0,1.42]

p.addvars (colindex, vartype, None, None, None, initvalue, None)

initvalue is not set for the first variable, because it is not used (vartype = 0). Bit 1 of vartype is
set for the second variable to indicate that the initial value has been set. The arrays for
determining rows, sequence numbers, tolerance sets and step bounds are not used at all, and so
have been passed to the function as None.

Further information
The addvars functions load additional items into the SLP problem. The corresponding loadvars
functions delete any existing items first.

Related topics
problem.chgvar, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 111

Reference Manual

problem.basisstability

Purpose
Returns various measures for the stability of the current basis, including the basis condition
number.

Synopsis
x = problem.basisstability (type, norm, ifscaled)

Arguments
type 0 Condition number of the basis.

1 Stability measure for the solution relative to the current basis.
2 Stability measure for the duals relative to the current basis.
3 Stability measure for the right hand side relative to the current basis.
4 Stability measure for the basic part of the objective relative to the current

basis.
norm 0 Use the infinity norm.

1 Use the 1 norm.
2 Use the Euclidian norm for vectors and the Frobenius norm for matrices.

ifscaled If the stability values are to be calculated in the scaled or the unscaled matrix.

Further information

1. The condition number (type = 0) of an invertible matrix is the norm of the matrix multiplied with
the norm of its inverse. This number is an indication of how accurate the solution can be
calculated and how sensitive it is to small changes in the data. The larger the condition number
is, the less accurate the solution is likely to become.

2. The stability measures (type = 1...4) are using the original matrix and the basis to recalculate the
various vectors related to the solution and the duals. The returned stability measure is the norm
of the difference of the recalculated vector to the original one.

Fair Isaac Corporation Confidential and Proprietary Information 112

Reference Manual

problem.btran

Purpose
Post-multiplies a (row) vector provided by the user by the inverse of the current basis.

Synopsis
problem.btran (vec)

Argument
vec Array of length ROWS containing the values by which the basis inverse is to be

multiplied. The transformed values will also be returned in this array.

Example
Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have been
dimensioned.

y = [0,1,0,0]
p.btran (y)
print ("btran result:", y)

Further information
If the problem is in a presolved state, btran works with the basis for the presolved problem.

Related topics
problem.ftran.

Fair Isaac Corporation Confidential and Proprietary Information 113

Reference Manual

problem.calcobjective

Purpose
Returns the objective value of a given solution.

Synopsis
objval = problem.calcobjective (solution)

Argument
solution Array of length COLS that holds the solution.

Further information
The calculations are always carried out in the original problem, even if the problem is currently
presolved.

Related topics
problem.calcslacks, problem.calcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 114

Reference Manual

problem.calcreducedcosts

Purpose
Returns the reduced cost values for a given (row) dual solution.

Synopsis
problem.calcreducedcosts (duals, solution, calculateddjs)

Arguments
duals Array of length ROWS that holds the dual solution to calculate the reduced costs for.

solution Optional array of length COLS that holds the primal solution. This is necessary for
quadratic problems.

calculateddjs Array of length COLS in which the calculated reduced costs are returned.

Example

p = xpress.problem ()
p.read ("silly_walks.lp") # assume problem has 4 constraints
dj = []
p.calcreducedcosts ([0,1,1,1], None, dj)
print ("red. cost:", dj)

Further information

1. The calculations are always carried out in the original problem, even if the problem is currently
presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and
ORIGINALROWS to retrieve the non-presolved dimensions of the problem.

Related topics
problem.calcslacks, problem.calcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 115

Reference Manual

problem.calcslacks

Purpose
Calculates the row slack values for a given solution.

Synopsis
problem.calcslacks (solution, calculatedslacks)

Arguments
solution Array of length COLS that holds the solution to calculate the slacks for.

calculatedslacks Array of length ROWS in which the calculated row slacks are returned.

Further information

1. The calculations are always carried out in the original problem, even if the problem is currently
presolved.

2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and
ORIGINALROWS to retrieve the non-presolved dimensions of the problem.

Related topics
problem.calcreducedcosts, problem.calcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 116

Reference Manual

problem.calcsolinfo

Purpose
Returns the required property of a solution, like maximum infeasibility of a given primal and dual
solution.

Synopsis
val = problem.calcsolinfo (solution, dual, property)

Arguments
solution Array of length COLS that holds the solution.

dual Array of length ROWS that holds the dual solution.

property xpress.solinfo_absprimalinfeas absolute primal infeasibility.
xpress.solinfo_relprimalinfeas relative primal infeasibility.
xpress.solinfo_absdualinfeas absolute dual infeasibility.
xpress.solinfo_reldualinfeas relative dual infeasibility.
xpress.solinfo_maxmipfractional absolute MIP infeasibility

(fractionality).

Further information
The calculations are always carried out in the original problem, even if the problem is currently
presolved.

Related topics
problem.calcslacks, problem.calcobjective, problem.calcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 117

Reference Manual

problem.cascade

Purpose
Re-calculate consistent values for SLP variables. based on the current values of the remaining
variables

Synopsis
problem.cascade ()

Example
The following example changes the solution value for column 91, and then re-calculates the
values of those dependent on it.

colnum = 91
(a,b,c,d,e,f,value,h,i,j,k,l,m,n,o) = p.getvar (colnum)

value += 1.42;

p.chgvar (colnum, None, None, None, None,
None, None, value, None, None, None,
None)

p.cascade ()

problem.getvar and problem.chgvar are being used to get and change the current value of a
single variable. Provided no other values have been changed since the last execution of cascade,
values will be changed only for variables which depend on column 91.

Further information
See the section on cascading for an extended discussion of the types of cascading which can be
performed.

cascade is called automatically during the SLP iteration process and so it is not normally necessary
to perform an explicit cascade calculation.

The variables are re-calculated in accordance with the order generated by problem.cascadeorder.

Related topics
problem.cascadeorder

Fair Isaac Corporation Confidential and Proprietary Information 118

Reference Manual

problem.cascadeorder

Purpose
Establish a re-calculation sequence for SLP variables with determining rows.

Synopsis
problem.cascadeorder ()

Example
Assuming that all variables are SLP variables, the following example sets default values for the
variables, creates the re-calculation order and then calls problem.cascade to calculate consistent
values for the dependent variables.

int ColNum;
for colnum in range (1, nCol):
p.chgvar (colnum, None, None, None, None,

None, None, [DefaultValue [ColNum]], None, None, None,
None)

p.cascadeorder ()
p.cascade ()

Further information
cascadeorder is called automatically at the start of the SLP iteration process and so it is not
normally necessary to perform an explicit cascade ordering.

Related topics
problem.cascade

Fair Isaac Corporation Confidential and Proprietary Information 119

Reference Manual

problem.chgbounds

Purpose
Changes the bounds on columns in the problem.

Synopsis
problem.chgbounds (mindex, qbtype, bnd)

Arguments
mindex Array containing the indices of the columns on which the bounds will change.

qbtype Character array indicating the type of bound to change:
U indicates a change in the upper bound;
L indicates a change in the lower bound;
B indicates a change in both bounds, i.e. the column is fixed.

bnd Array giving the new bound values.

Example
The following changes column 0 of the current problem to have an upper bound of 0.5:

p.chgbounds ([0,1,2],[’L’,’U’,’B’],[1,2,3])

Further information

1. A column index may appear twice in the mindex array so it is possible to change both the upper
and lower bounds on a variable in one go.

2. chgbounds may be applied to the problem in a presolved state, in which case it expects references
to the presolved problem.

3. The double constant xpress.infinity can be used to represent plus and minus infinity in the
bound (bnd) array.

4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is
changed to be less than 0 then the variable will become an integer variable.

Related topics
problem.getlb, problem.getub.

Fair Isaac Corporation Confidential and Proprietary Information 120

Reference Manual

problem.chgcoef

Purpose
Changes a single coefficient in the problem. If the coefficient does not already exist, a new
coefficient will be added to the problem. If many coefficients are being added to a row of the
problem, it may be more efficient to delete the old row and add a new row.

Synopsis
problem.chgcoef (irow, icol, dval)

Arguments
irow Row index for the coefficient.

icol Column index for the coefficient.

dval New value for the coefficient. If dval is zero, any existing coefficient will be
deleted.

Example
In the following, the constraint is introduced in the problem and then its linear coefficient for x is
changed to 3:

p = xpress.problem ()
x = xpress.var ()
c = x + x**2 <= 3
p.addVariable (x)
p.addConstraint (c)
p.chgcoef (c,x,3)

Further information
problem.chgmcoef is more efficient than multiple calls to chgcoef and should be used in its place
in such circumstances.

Related topics
problem.addcols, problem.addrows, problem.chgmcoef, problem.chgmqobj, problem.chgobj,
problem.chgqobj, problem.chgrhs, problem.getcols, problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 121

Reference Manual

problem.chgcoltype

Purpose
Changes the type of a column in the problem.

Synopsis
problem.chgcoltype (mindex, qctype)

Arguments
mindex Array containing the indices of the columns.

qctype Character array giving the new column types:
C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.
S indicates a semi–continuous column. The semi–continuous lower bound

will be set to 1.0.
R indicates a semi–integer column. The semi–integer lower bound will be set

to 1.0.
P indicates a partial integer column. The partial integer bound will be set to

1.0.

Example
The following changes the type of variable x from binary to integer:

p = xpress.problem ()
x = xpress.var (vartype = xp.binary)
p.addVariable (x)
p.chgcoltype ([x],[’I’])

Further information

1. The column types can only be changed before the global search is started.

2. Calling chgcoltype to change any variable into a binary variable causes the bounds previously
defined for the variable to be deleted and replaced by bounds of 0 and 1.

3. Calling chgcoltype to change a continuous variable into an integer variable cause its lower
bound to be rounded up to the nearest integer value and its upper bound to be rounded down
to the nearest integer value.

Related topics
problem.addcols, problem.chgrowtype, problem.getcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 122

Reference Manual

problem.chgcascadenlimit

Purpose
Set a variable specific cascade iteration limit

Synopsis
problem.chgcascadenlimit (icol, cascadenlimit)

Arguments
icol The index of the column corresponding to the SLP variable for which the cascading

limit is to be imposed.

cascadenlimit The new cascading iteration limit.

Further information
A value set by this function will overwrite the value of the control xslp_cascadenlimit for this
variable. To remove any previous value set by this function, use an iteration limit of 0.

Related topics
problem.cascadeorder

Fair Isaac Corporation Confidential and Proprietary Information 123

Reference Manual

problem.chgccoef

Purpose
Add or change a single matrix coefficient using a character string for the formula

Synopsis
problem.chgccoef (rowindex, colindex, factor, formula)

Arguments
rowindex The index of the matrix row for the coefficient.

colindex The index of the matrix column for the coefficient.

factor Constant multiplier for the formula. If factor is None, a value of 1.0 will be used.

Formula Character string holding the formula, with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts
the formula 2.5*sin(Col1) into the coefficient in row 1, column 3.

Formula = "sin (Col1)"
Factor = 2.5
p.chgccoef (1, 3, Factor, Formula)

Note that all the tokens in the formula (including mathematical operators and separators) are
separated by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new
coefficient. If it does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which
can be provided in the Factor variable. If Xpress Nonlinear can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated.

This function can only be used if all the operands in the formula can be correctly identified as
constants, existing columns, character variables or functions. Therefore, if a formula refers to a
new column, that new item must be added to the Xpress Nonlinear problem first.

Related topics
problem.addcoefs, problem.delcoef, problem.chgnlcoef, problem.getcoefformula,
problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 124

Reference Manual

problem.chgdeltatype

Purpose
Changes the type of the delta assigned to a nonlinear variable

Synopsis
problem.chgdeltatype (vars, deltatypes, values)

Arguments
Vars Indices of the variables to change the deltas for.

DeltaTypes Type if the delta variable:
0 Differentiable variable, default.
1 Variable defined over the grid size given in values.
2 Variable where a minimum perturbation size given in values may be

required before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be

detected, with an upper limit given in values.
Values Grid or minimum step sizes for the variables.

Further information
Changing the delta type of a variables makes the variable nonlinear.

Related topics

Fair Isaac Corporation Confidential and Proprietary Information 125

Reference Manual

problem.chgdf

Purpose
Set or change a distribution factor

Synopsis
problem.chgdf (colindex, rowindex, value)

Arguments
colindex The index of the column whose distribution factor is to be set or changed.

rowindex The index of the row where the distribution applies.

value Address of a double precision variable holding the new value of the distribution
factor. May be None if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134
and changes it to be twice as large.

value = p.getdf (282,134)
value *= 2;
p.chgdf (282,134,value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress Nonlinear can accept distribution factors
instead of initial values, provided that the values of the variables involved can all be calculated
after optimization using determining rows, or by a callback.

Related topics
problem.adddfs, problem.getdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 126

Reference Manual

problem.chgglblimit

Purpose
Changes semi-continuous or semi-integer lower bounds, or upper limits on partial integers.

Synopsis
problem.chgglblimit (mindex, dlimit)

Arguments
mindex Array containing the indices of the semi-continuous, semi-integer or partial integer

columns that should have their limits changed.

dlimit Array giving the new limit values.

Further information

1. The new limits are not allowed to be negative.

2. Partial integer limits can be at most 228.

Related topics
problem.chgcoltype, problem.getglobal.

Fair Isaac Corporation Confidential and Proprietary Information 127

Reference Manual

problem.chgmcoef

Purpose
Change multiple coefficients in the problem. The coefficients that do not exist yet will be added
to the problem. If many coefficients are being added to a row of the matrix, it may be more
efficient to delete the old row of the matrix and add a new one.

Synopsis
problem.chgmcoef (mrow, mcol, dval)

Arguments
mrow Array containing the row indices of the coefficients to be changed.

mcol Array containing the column indices of the coefficients to be changed.

dval Array containing the new coefficient values. If an element of dval is zero, the
coefficient will be deleted.

Example

con1 = x + y + z <= 2
con2 = x + y >= 1
con3 = x + 3*y = 1
p.addVariable (x,y,z)
p.addConstraint (con1, con2, con3)
p.chgmcoef ([con1,con1,con1,con2,con3], [x,y,z,x,x], [-2, -3, -3.2, 1, 3])

This changes five coefficients, three of which in the first constraint and one in each of the second
and third constraints.

Further information
chgmcoef is more efficient than repeated calls to problem.chgcoef and should be used in its place
if many coefficients are to be changed.

Related topics
problem.chgcoef, problem.chgmqobj, problem.chgobj, problem.chgqobj, problem.chgrhs,
problem.getcols, problem.getrhs.

Fair Isaac Corporation Confidential and Proprietary Information 128

Reference Manual

problem.chgmqobj

Purpose
Change multiple quadratic coefficients in the objective function. If any of the coefficients does
not exist already, new coefficients will be added to the objective function.

Synopsis
problem.chgmqobj (mqcol1, mqcol2, dval)

Arguments
mqcol1 Array containing the column index of the first variable in each quadratic term.

mqcol2 Array containing the column index of the second variable in each quadratic term.

dval New values for the coefficients. If an entry in dval is 0, the corresponding entry will
be deleted. These are the coefficients of the lower triangular part of the Hessian of
the objective function.

Example
The following code results in an objective function with terms: [4x2

1 + 6x1x2

p.chgmqobj ([x1,x1], [x1,x2], [4,3])

Further information

1. The columns in the arrays mqcol1 and mqcol2 must already exist in the matrix. If the columns do
not exist, they must be added.

2. chgmqobj is more efficient than repeated calls to problem.chgqobj and should be used in its place
when several coefficients are to be changed.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgobj, problem.chgqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 129

Reference Manual

problem.chgnlcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula

Synopsis
problem.chgnlcoef (rowindex, colindex, factor, parsed, type, value)

Arguments
rowindex The index of the matrix row for the coefficient.

colindex The index of the matrix column for the coefficient.

factor Address of a double precision variable holding the constant multiplier for the
formula. If Factor is None, a value of 1.0 will be used.

parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(parsed=False) or internal parsed reverse Polish (parsed=True).

type Array of token types providing the description and formula for each item.

value Array of values corresponding to the types in type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts
the formula 2.5*sin(Col1) into the coefficient in row 1, column 3.

type = [xp.xslp_op_ifun, xp.xslp_op_var, xp.xslp_op_rb, xp.xslp_op_eof]
value = [xp.xslp_ifun_sin, 1, 0, 0]

Factor = 2.5
p.chgnlcoef (1, 3, Factor, 0, type, value)

problem.getindex is used to retrieve the index for the internal function sin. The "nocase" version
matches the function name regardless of the (upper or lower) case of the name. Tokens of type
xpress.xslp_op_var always count from 1, so Col1 is 1. The formula is written in unparsed form
(parsed = 0) and so it is provided as tokens in the same order as they would appear if the formula
were written in character form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new
coefficient. If it does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which
can be provided in the factor variable. If Xpress Nonlinear can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated.

Related topics
problem.addcoefs, problem.chgccoef, problem.delcoefs, problem.getcoefformula,
problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 130

Reference Manual

problem.chgobj

Purpose
Change the objective function coefficients.

Synopsis
problem.chgobj (mindex, obj)

Arguments
mindex Arraycontaining the indices of the columns on which the range elements will

change. An index of -1 indicates that the fixed part of the objective function on
the right hand side should change.

obj Array giving the new objective function coefficient.

Example
Changing three coefficients of the objective function with chgobj:

p.chgobj ([x1,x2,x3,-1], [3.5, -2, 0, 224])

Further information
The value of the fixed part of the objective function can be obtained using the OBJRHS problem
attribute.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgqobj, problem.getobj.

Fair Isaac Corporation Confidential and Proprietary Information 131

Reference Manual

problem.chgobjsense

Purpose
Changes the problem’s objective function sense to minimize or maximize.

Synopsis
problem.chgobjsense (sense)

Argument
objsense xpress.minimize or xpress.maximize to change into a minimization or

maximization problem, respectively.

Example
Changing three coefficients of the objective function with chgobj:

p.chgobjsense (xpress.maximize) # optimize in this general direction

Related topics
problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 132

Reference Manual

problem.chgqobj

Purpose
Change a single quadratic coefficient in the objective function corresponding to the variable pair
(icol,jcol) of the Hessian matrix.

Synopsis
problem.chgqobj (icol, jcol, dval)

Arguments
icol Column index for the first variable in the quadratic term.

jcol Column index for the second variable in the quadratic term.

dval New value for the coefficient in the quadratic Hessian matrix. If an entry in dval is
0, the corresponding entry will be deleted.

Example
The following code adds the terms [6x2

1 + 3x1x2 + 3x2x1] / 2 to the objective function:

p.chgqobj (x1, x1, 6)
p.chgqobj (x1, x2, 3)

Further information

1. The columns icol and jcol must already exist in the matrix..

2. If icol is not equal to jcol, then both the matrix elements (icol, jcol) and (jcol, icol) are
changed to leave the Hessian symmetric.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 133

Reference Manual

problem.chgqrowcoeff

Purpose
Changes a single quadratic coefficient in a row.

Synopsis
problem.chgqrowcoeff (irow, icol, jcol, dval)

Arguments
irow Index of the row where the quadratic matrix is to be changed.

icol First index of the coefficient to be changed.

jcol Second index of the coefficient to be changed.

dval The new coefficient.

Further information

1. This function may be used to add new nonzero coefficients, or even to define the whole
quadratic expression with it. Doing that, however, is significantly less efficient than adding the
whole expression with problem.addqmatrix.

2. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.getqrows, problem.chgqobj,
problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 134

Reference Manual

problem.chgrhs

Purpose
Changes right–hand side values of the problem.

Synopsis
problem.chgrhs (mindex, rhs)

Arguments
mindex Array containing the indices of the rows whose right hand side will change.

rhs Array containing the right hand side values.

Example
Here we change the three right hand sides in rows 2, 6, and 8 to new values:

p.chgrhs ([2,8,6], [5, 3.8, 5.7])

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhsrange, problem.getrhs,
problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 135

Reference Manual

problem.chgrhsrange

Purpose
Change the range for one or more rows of the problem.

Synopsis
problem.chgrhsrange (mindex, rng)

Arguments
mindex Array containing the indices of the rows on which the range elements will change.

rng Array containing the range values.

Example
Here, the constraint cons1 x + y ≤ 10 is changed to 8 ≤ x + y ≤ 10:

p.chgrhsrange ([cons1], [2])

Further information
If the range specified on the row is r, what happens depends on the row type and value of r. It is
possible to convert non-range rows using this routine.

Value of r Row type Effect

r ≥ 0 = b, ≤ b b− r ≤
∑

ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r

r < 0 = b, ≤ b b ≤
∑

ajxj ≤ b− r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhs, problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 136

Reference Manual

problem.chgrowstatus

Purpose
Change the status setting of a constraint

Synopsis
problem.chgrowstatus (rowindex, status)

Arguments
rowindex The index of the matrix row to be changed.

status The bitmap with the new status settings. If the status is to be changed, always get
the current status first (use problem.getrow) and then change settings as required.
The only settings likely to be changed are:
Bit 11 Set if row must not have a penalty error vector. This is the equivalent

of an enforced constraint (SLPDATA type EC).

Example
The following example changes the status of row 9 to be an enforced constraint.

status = p.getrowstatus (9)
status = status | (1<<11)
p.chgrowstatus (9, status)

Further information
If status is None the current status will remain unchanged.

Related topics
problem.getrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 137

Reference Manual

problem.chgrowtype

Purpose
Changes the type of a row in the problem.

Synopsis
problem.chgrowtype (mindex, qrtype)

Arguments
mindex Array containing the indices of the rows.

qrtype Character array giving the new row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example
Here two rows are changed to an equality and a free row, respectively:

p.chgrowtype ([con1, con2], [’E’, ’N’])

Further information
A row can be changed to a range type row by first changing the row to an R or L type row and
then changing the range on the row using problem.chgrhsrange.

Related topics
problem.addrows, problem.chgcoltype, problem.chgrhs, problem.chgrhsrange,
problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 138

Reference Manual

problem.chgrowwt

Purpose
Set or change the initial penalty error weight for a row

Synopsis
problem.chgrowwt (rowindex, value)

Arguments
RowIndex The index of the row whose weight is to be set or changed.

Value The new value of the weight. May be None if not required.

Example
The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the
initial weight of row 4 to a value twice the calculated default value.

p.chgrowwt (2, -3.6)
p.chgrowwt (4,2)

Further information
A positive value is interpreted as a multiplier of the default row weight calculated by Xpress SLP.

A negative value is interpreted as a fixed value: the absolute value is used directly as the row
weight.

The initial row weight is used only when the augmented structure is created. After that, the
current weighting can be accessed and changed using problem.rowinfo.

Related topics
problem.getrowwt, problem.rowinfo

Fair Isaac Corporation Confidential and Proprietary Information 139

Reference Manual

problem.chgtolset

Purpose
Add or change a set of convergence tolerances used for SLP variables

Synopsis
problem.chgtolset (ntol, status, tols)

Arguments
ntol Tolerance set for which values are to be changed. A zero value for nSLPTol will

create a new set.

status Address of an integer holding a bitmap describing which tolerances are active in
this set. See below for the settings.

tols Array of 9 double precision values holding the values for the corresponding
tolerances.

Example
The following example creates a new tolerance set with the default values for all tolerances
except the relative delta tolerance, which is set to 0.005. It then changes the value of the
absolute delta and absolute impact tolerances in tolerance set 6 to 0.015

Tols = 9*[0]
Tols[2] = 0.005
Status = 1<<2;

p.chgtolset (0, 1<<2, Tols)
Tols[1] = 0.015
Tols[5] = 0.015
Status = 1<<1 | 1<<5
p.chgtolset (6, Status, Tols)

Further information
The bits in status are set to indicate that the corresponding tolerance is to be changed in the
tolerance set. The meaning of the bits is as follows:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC

1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA

2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM

5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI

6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI

7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS

8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for
a given SLP variable. The members of the Tols array corresponding to nonzero bit settings in
Status will be used to change the tolerance set. So, for example, if bit 3 is set in Status, then
Tols[3] will replace the current value of the absolute coefficient tolerance. If a bit is not set in
Status, the value of the corresponding element of Tols is unimportant.

Fair Isaac Corporation Confidential and Proprietary Information 140

Reference Manual

Related topics
problem.addtolsets, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 141

Reference Manual

problem.chgvar

Purpose
Define a column as an SLP variable or change the characteristics and values of an existing SLP
variable

Synopsis
problem.chgvar (colindex, detrow, initstepbound, stepbound, penalty, damp, initvalue,

value, tolset, history, converged, vartype)

Arguments
colindex The index of the matrix column.

detrow Address of an integer holding the index of the determining row. Use -1 if there is
no determining row. May be None if not required.

initstepbound Address of a double precision variable holding the initial step bound size. May
be None if not required.

stepbound Address of a double precision variable holding the current step bound size. Use
zero to disable the step bounds. May be None if not required.

penalty Address of a double precision variable holding the weighting of the penalty cost
for exceeding the step bounds. May be None if not required.

damp Address of a double precision variable holding the damping factor for the variable.
May be None if not required.

initvalue Address of a double precision variable holding the initial value for the variable.
May be None if not required.

value Address of a double precision variable holding the current value for the variable.
May be None if not required.

tolset Address of an integer holding the index of the tolerance set for this variable. Use
zero if there is no specific tolerance set. May be None if not required.

history Address of an integer holding the history value for this variable. May be None if not
required.

converged Address of an integer holding the convergence status for this variable. May be
None if not required.

vartype Address of an integer holding a bitmap defining the existence of certain properties
for this variable:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
May be None if not required.

Example
The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the
matrix.

p.chgvar (25, None, None, None, None,
None, 1.42, None, 2,
None, None, 1<<1 | 1<<2)

Note that bits 1 and 2 of vartype are set, indicating that the variable has a delta vector and an
initial value. For columns already defined as SLP variables, use problem.getvar to obtain the
current value of vartype because other bits may already have been set by the system.

Further information
If any of the arguments is None then the corresponding information for the variable will be left
unaltered. If the information is new (i.e. the column was not previously defined as an SLP

Fair Isaac Corporation Confidential and Proprietary Information 142

Reference Manual

variable) then the default values will be used.

Changing Value, History or Converged is only effective during SLP iterations.

Changing initvalue and initstepbound is only effective before problem.construct. If a value of
xpress.infinity is used in the value for stepbound or initstepbound, the delta will never have
step bounds applied, and will almost always be regarded as converged.

Related topics
problem.addvars, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 143

Reference Manual

problem.construct

Purpose
Create the full augmented SLP matrix and data structures, ready for optimization

Synopsis
problem.construct ()

Example
The following example constructs the augmented matrix and then outputs the result in MPS
format to a file called augment.mat

creation and/or loading of data
precedes this segment of code
p.construct ()
p.writeprob ("augment","l")

The "l" flag causes output of the current linear problem (which is now the augmented structure
and the current linearization) rather than the original nonlinear problem.

Further information
construct adds new rows and columns to the SLP matrix and calculates initial values for the
non-linear coefficients. Which rows and columns are added will depend on the setting of
xslp_augmentation. Names for the new rows and columns are generated automatically, based on
the existing names and the string control variables xslp_xxxformat.

Once construct has been called, no new rows, columns or non-linear coefficients can be added to
the problem. Any rows or columns which will be required must be added first. Non-linear
coefficients must not be changed; constant matrix elements can generally be changed after
construct, but not after problem.presolve if used.

construct is called automatically by the SLP optimization procedure, and so only needs to be
called explicitly if changes need to be made between the augmentation and the optimization.

Related topics
problem.presolve

Fair Isaac Corporation Confidential and Proprietary Information 144

Reference Manual

problem.copy

Purpose
Obtains a copy of a problem.

Synopsis
p = problem.copy ()

Example

p = xpress.problem () x = [xpress.var () for
_ in range (10)] p.addVariable (x) p.addConstraint (xpress.Sum (x) <=
10) p2 = p.copy () # add a constraint that won’t be in p
p2.addConstraint (xpress.Sum (x) >= 6) # x[0] is deleted from p2
p2.delVariable (x[0])

Further information
The objects of the copied problem (variables, constraints, SOSs) are the same as the source
problem, i.e., the one of which a copy was created. Therefore, any object that existed in the
source problem can be addressed and used in the copy problem.

Related topics
problem.copycallbacks.

Fair Isaac Corporation Confidential and Proprietary Information 145

Reference Manual

problem.copycallbacks

Purpose
Copies callback functions defined for one problem to another.

Synopsis
problem.copycallbacks (src)

Argument
src The problem from which the callbacks are copied.

Example
The following sets up a message callback function callback for problem prob1 and then copies
this to the problem prob2.

prob1 = xp.problem ()
prob1.addcbmessage (callback, None, 0)
prob2 = xp.problem ()
prob2.copycallbacks (prob1)

Related topics
problem.copycontrols, problem.copy.

Fair Isaac Corporation Confidential and Proprietary Information 146

Reference Manual

problem.copycontrols

Purpose
Copies controls defined for one problem to another.

Synopsis
problem.copycontrols (src)

Argument
src The problem from which the controls are copied.

Example
The following turns off presolve for problem prob1 and then copies this and other control values
to the problem prob2:

prob1 = xpress.problem ()
prob2 = xpress.problem ()
prob1.controls.presolve = 0
prob2.copycontrols (prob1)

Related topics
problem.copycallbacks.

Fair Isaac Corporation Confidential and Proprietary Information 147

Reference Manual

problem.delcoefs

Purpose
Delete coefficients from the current problem

Synopsis
problem.delcoefs (rowindex, colindex)

Arguments
rowindex Row indices of the SLP coefficients to delete.

colindex Column indices of the SLP coefficients to delete.

Related topics
problem.addcoefs, problem.chgnlcoef, problem.chgccoef, problem.getcoefformula,
problem.getccoef, problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 148

Reference Manual

problem.delConstraint

Purpose
Delete one or more constraints from the problem.

Synopsis
problem.delConstraint (c1, c2, ...)

Example

N = 20
x = [xpress.var () for i in range (N)]
p = xpress.problem ()
p.addVariable (x)
p.addConstraint (x[i] >= x[i+1] for i in range (N-1))
p.delConstraint (2) # deletes x[2] >= x[3]

Further information

1. All arguments can be single constraints or lists, tuples, or NumPy arrays of variables. They can also
be constraint indices (from 0 to ROWS-1). The index of variables, constraints, and SOSs can be
obtained with problem.getIndex.

2. Indicator constraints are indexed as constraints, hence they can also be deleted with this function.

Fair Isaac Corporation Confidential and Proprietary Information 149

Reference Manual

problem.delcpcuts

Purpose
During the branch and bound search, cuts are stored in the cut pool to be applied at descendant
nodes. These cuts may be removed from a given node using problem.delcuts, but if this is to be
applied in a large number of cases, it may be preferable to remove the cut completely from the
cut pool. This is achieved using delcpcuts.

Synopsis
problem.delcpcuts (itype, interp, cutind)

Arguments
itype User defined cut type to match against.

interp Way in which the cut itype is interpreted:
-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

cutind Array containing the cuts which are to be deleted.

Related topics
problem.addcuts, problem.delcuts, problem.loadcuts, Section "Working with the cut manager"
of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 150

Reference Manual

problem.delcuts

Purpose
Deletes cuts from the matrix at the current node. Cuts from the parent node which have been
automatically restored may be deleted as well as cuts added to the current node using
problem.addcuts or problem.loadcuts. The cuts to be deleted can be specified in a number of
ways. If a cut is ruled out by any one of the criteria it will not be deleted.

Synopsis
problem.delcuts (ibasis, itype, interp, delta, cutind)

Arguments
ibasis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may

be deleted.

itype User defined type of the cut to be deleted.

interp Way in which the cut itype is interpreted:
-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the
cuts, this argument should be set to -xpress.infinity.

cutind Array containing the cuts which are to be deleted.

Further information

1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be
valid and it may take many iterations to recover an optimal basis. If the ibasis parameter is set
to 1, this will ensure that cuts with non-basic slacks will not be deleted even if the other
parameters specify that these cuts should be deleted. It is highly recommended that the ibasis
parameter is always set to 1.

2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only
those cuts with a slack value greater than the delta parameter will be deleted.

3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node can
be obtained with the problem.getcutlist command.

Related topics
problem.addcuts, problem.delcpcuts, problem.getcutlist, problem.loadcuts, Section "Working
with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 151

Reference Manual

problem.delqmatrix

Purpose
Deletes the quadratic part of a row or of the objective function.

Synopsis
problem.delqmatrix (row)

Argument
row Index of row from which the quadratic part is to be deleted.

Further information
If a row index of -1 is used, the function deletes the quadratic coefficients from the objective
function.

Related topics
problem.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 152

Reference Manual

problem.delSOS

Purpose
Delete one or more SOSs from the problem.

Synopsis
problem.delSOS (s1, s2, ...)

Example

N = 20
x = [xpress.var () for i in range (N)]
p = xpress.problem ()
p.addVariable (x)
s = xpress.sos (x, i+1 for i in range (N))
p.addSOS (s)
p.delSOS (s)

Further information
All arguments can be single SOSs or lists, tuples, or NumPy arrays of SOSs. They can also be
constraint indices (from 0 to ROWS-1). The index of variables, constraints, and SOSs can be
obtained with problem.getIndex.

Fair Isaac Corporation Confidential and Proprietary Information 153

Reference Manual

problem.deltolsets

Purpose
Delete tolerance sets from the current problem

Synopsis
problem.deltolsets (index)

Argument
tolsetindex Indices of tolerance sets to delete.

Related topics
problem.addtolsets, problem.chgtolset, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 154

Reference Manual

problem.delVariable

Purpose
Delete one or more variables from the problem.

Synopsis
problem.delVariable (x1, x2, ...)

Example

N = 20

x = [xpress.var () for i in range (N)]
p = xpress.problem ()
p.addVariable (x)
p.addConstraint (x[i] >= x[i+1] for i in range (N-1))

deletes x[2], x[3], i.e., third and fourth variable
p.delVariable (x[2:4])

Further information
All arguments can be single variables or lists, tuples, or NumPy arrays of variables. They can also
be variable indices (from 0 to COLS-1). The index of variables, constraints, and SOSs can be
obtained with problem.getIndex.

Fair Isaac Corporation Confidential and Proprietary Information 155

Reference Manual

problem.delvars

Purpose
Convert SLP variables to normal columns. Variables must not appear in SLP structures

Synopsis
problem.delvars (index)

Argument
colindex Columns to be converted to linear ones.

Further information
The SLP variables to be converted to linear, non SLP columns must not be in use by any other SLP
structure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or
change functions to remove them first.

Related topics
problem.addvars, problem.chgvar, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 156

Reference Manual

problem.dumpcontrols

Purpose
Displays the list of controls and their current value for those controls that have been set to a non
default value.

Synopsis
problem.dumpcontrols ()

Related topics
problem.setdefaults

Fair Isaac Corporation Confidential and Proprietary Information 157

Reference Manual

problem.estimaterowdualranges

Purpose
Performs a dual side range sensitivity analysis, i.e. calculates estimates for the possible ranges for
dual values.

Synopsis
problem.estimaterowdualranges (rowIndices, iterationLimit, minDualActivity,

maxDualActivity)

Arguments
rowIndices Row indices to analyze.

iterationLimit Effort limit expressed as simplex iterations per row.

minDualActivity Estimated lower bounds on the possible dual ranges.

maxDualActivity Estimated upper bounds on the possible dual ranges.

Further information
This function may provide better results for individual row dual ranges when called for a larger
number of rows.

Related topics
problem.lpoptimize, problem.strongbranch

Fair Isaac Corporation Confidential and Proprietary Information 158

Reference Manual

problem.evaluatecoef

Purpose
Evaluate a coefficient using the current values of the variables

Synopsis
value = problem.evaluatecoef (rowindex, colindex)

Arguments
rowindex Integer index of the row.

colindex Integer index of the column.

value The result of the calculation.

Example
The following example sets the value of column 5 to 1.42 and then calculates the coefficient in
row 2, column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the
calculation.

p.chgvar (5, None, None, None, None,
None, None, 1.42, None, None, None,
None)

value = p.evaluatecoef (2, 3)

Further information
The values of the variables are obtained from the solution, or from the Value setting of an SLP
variable (see problem.chgvar and problem.getvar).

Related topics
problem.chgvar, problem.evaluateformula problem.getvar

Fair Isaac Corporation Confidential and Proprietary Information 159

Reference Manual

problem.evaluateformula

Purpose
Evaluate a formula using the current values of the variables

Synopsis
result = problem.evaluateformula (parsed, type, value)

Arguments
parsed integer indicating whether the formula of the item is in internal unparsed format

(Parsed=0) or parsed (reverse Polish) format (Parsed=1).

type Integer array of token types for the formula.

value Double array of values corresponding to Type.

result The result of the calculation.

Example
The following example calculates the value of column 3 divided by column 6.

type = [xp.xslp_op_var, xp.xslp_op_var, xp.xslp_op_op, xp.xslp_op_eof]
value = [3, 6, xp.xslp_ifun_divide, 0]

value = p.evaluateformula (1, type, value)

Further information
The formula in Type and Value must be terminated by an xslp_op_eof token.

The formula cannot include "complicated" functions, such as user functions which return more
than one value.

Related topics
problem.evaluatecoef

Fair Isaac Corporation Confidential and Proprietary Information 160

Reference Manual

problem.filesol

Purpose
Prints the last SLP iteration’s solution to file

Synopsis
problem.filesol (filename)

Argument
filename Name of the file to write the solution into

Further information
For SLP variables, the initial values are also printed.

Related topics
problem.writeprob

Fair Isaac Corporation Confidential and Proprietary Information 161

Reference Manual

problem.fixglobals

Purpose
Fixes all the global entities to the values of the last found MIP solution. This is useful for finding
the reduced costs for the continuous variables after the global variables have been fixed to their
optimal values.

Synopsis
problem.fixglobals (ifround)

Argument
ifround If all global entities should be rounded to the nearest discrete value in the solution

before being fixed.

Example
This example performs a global search on problem myprob and then uses fixglobals before
solving the remaining linear problem:

p.read ("myprob", "")
p.mipoptimize ()
p.fixglobals (1)
p.lpoptimize ()
p.writeprtsol ()

Further information

1. Because of tolerances, it is possible for e.g. a binary variable to be slightly fractional in the MIP
solution, where it might have the value 0.999999 instead of being at exactly 1.0. With ifround =
0, such a binary will be fixed at 0.999999, but with ifround = 1, it will be fixed at 1.0.

2. This command is useful for inspecting the reduced costs of the continuous variables in a problem
after the global entities have been fixed. Sensitivity analysis can also be performed on the
continuous variables in a MIP problem using problem.rhssa or problem.objsa after calling
fixglobals.

Related topics
problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 162

Reference Manual

problem.fixpenalties

Purpose
Fixe the values of the error vectors

Synopsis
status = problem.fixpenalties ()

Argument
status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further information
The function fixes the values of all error vectors on their current values. It also removes their
objective cost contribution.

The function is intended to support post optimization analysis, by removing any possible direct
effect of the error vectors from the dual and reduced cost values.

The fixpenalties function will automatically reoptimize the linearization. However, as the XSLP
convergence and infeasibility checks (regarding the original non-linear problem) will not be
carried out, this function will not update the SLP solution itself. The updated values will be
accessible using getlpsolution instead.

Fair Isaac Corporation Confidential and Proprietary Information 163

Reference Manual

problem.ftran

Purpose
Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.

Synopsis
problem.ftran (vec)

Argument
vec Array of length ROWS containing the values which are to be multiplied by the basis

inverse. The transformed values appear in the array.

Example
To get the (unscaled) tableau column of structural variable number jcol, assuming that all arrays
have been dimensioned, do the following:

y = [0,1,0,0]
p.ftran (y)
print ("ftran result:", y)

Further information
If the problem is in a presolved state, the function will work with the basis for the presolved
problem.

Related topics
problem.btran.

Fair Isaac Corporation Confidential and Proprietary Information 164

Reference Manual

problem.getAttrib

Purpose
Retrieves one or more attributes of a problem.

Synopsis
a = problem.getAttrib (attr1, attr2, ...)

Example

p = xpress.problem ()
p.read ("example.lp")
print (p.getAttrib (’cols’), "columns and ",

p.getAttrib (’rows’), "rows")
prob_attrib = p.getAttrib ()
attr_subset = p.getAttrib ([’cols’, ’rows’])

Further information
This function can be passed either a single attribute name, whose value will be returned, or a list
of attribute names, in which case the return value is a dictionary associating each key in the list
with its value. If no argument is provided, a dictionary containing all attributes of the problem
will be returned.

Fair Isaac Corporation Confidential and Proprietary Information 165

Reference Manual

problem.getattribinfo

Purpose
Accesses the id number and the type information of an attribute given its name. An attribute
name may be for example ’rows’. The function will return an id number of 0 and a type value of
notdefined if the name is not recognized as an attribute name. Note that this will occur if the
name is a control name and not an attribute name.

Synopsis
(id,type) = problem.getattribinfo (name)

Argument
name The name of the attribute to be queried. Names are case-insensitive. A full list of

all attributes may be found in the Xpress Optimizer reference manual.

Related topics
problem.getcontrolinfo.

Fair Isaac Corporation Confidential and Proprietary Information 166

Reference Manual

problem.getbasis

Purpose
Returns the current basis into the user’s data arrays.

Synopsis
problem.getbasis (rstatus, cstatus)

Arguments
rstatus Array of length ROWS to the basis status of the slack, surplus or artificial variable

associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.
May be None if not required.

cstatus Array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable

has no lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.
May be None if not required.

Example
The following example minimizes a problem before saving the basis for later:

rstatus = []
cstatus = []
p.lpoptimize ()
p.getbasis (rstatus, cstatus)

Related topics
problem.getpresolvebasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 167

Reference Manual

problem.getccoef

Purpose
Retrieve a single matrix coefficient as a formula in a character string

Synopsis
(factor, formula) = problem.getccoef (rowindex, colindex, flen)

Arguments
RowIndex Integer holding the row index for the coefficient.

ColIndex Integer holding the column index for the coefficient.

Factor Address of a double precision variable to receive the value of the constant factor
multiplying the formula in the coefficient.

Formula Character buffer in which the formula will be placed in the same format as used for
input from a file. The formula will be null terminated.

fLen Maximum length of returned formula.

Return value
0 Normal return.

1 Formula is too long for the buffer and has been truncated.

other Error.

Example
The following example displays the formula for the coefficient in row 2, column 3:

(factor, formula) = p.getccoef (2, 3, 60)

Further information
If the requested coefficient is constant, then factor will be set to 1.0 and the value will be
formatted in formula.

If the length of the formula would exceed flen - 1, the formula is truncated to the last token
that will fit, and the (partial) formula is terminated with a null character.

Related topics
problem.chgccoef, problem.chgnlcoef, problem.getcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 168

Reference Manual

problem.getcoef

Purpose
Returns a single coefficient in the constraint matrix.

Synopsis
coef = problem.getcoef (irow, icol)

Arguments
irow Row of the constraint matrix.

icol Column of the constraint matrix.

Further information
It is quite inefficient to get several coefficients with the getcoef function. It is better to use
getcols or getrows.

Related topics
problem.getcols, problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 169

Reference Manual

problem.getcoefformula

Purpose
Retrieve a single matrix coefficient as a formula split into tokens

Synopsis
(factor, tokencount, type, value) = problem.getcoefformula (rowindex, colindex,

parsed, bufsize)

Arguments
rowindex The row index for the coefficient.

colindex The column index for the coefficient.

factor The value of the constant factor multiplying the formula in the coefficient.

parsed Integer indicating whether the formula of the item is to be returned in internal
unparsed format (Parsed=0) or parsed (reverse Polish) format (Parsed=1).

bufsize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

tokencount Number of tokens returned in Type and Value.

type Array to hold the token types for the formula.

value Array of values corresponding to Type.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed
form:

(fac, tc, type, value) = p.getcoefformula (2, 3, 0, 10);

Further information
The type and value arrays are terminated by an xslp_op_eof token.

If the requested coefficient is constant, then factor will be set to 1.0 and the value will be
returned with token type xslp_op_con.

Related topics
problem.chgccoef, problem.chgnlcoef, problem.getccoef

Fair Isaac Corporation Confidential and Proprietary Information 170

Reference Manual

problem.getcoefs

Purpose
Retrieve the list of positions of the nonlinear coefficients in the problem

Synopsis
problem.getcoefs (rowindex, colindex)

Arguments
rowindices Row positions of the coefficients. May be None if not required.

colindices Column positions of the coefficients. May be None if not required.

Related topics
problem.getccoef, problem.getcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 171

Reference Manual

problem.getcolinfo

Purpose
Get current column information.

Synopsis
problem.getcolinfo (infotype, colindex);

Arguments
InfoType Type of information (see below)

ColIndex Index of the column whose information is to be handled

Info Address of information to be set or retrieved

Further information
If the data is not available, the type of the returned Info is set to None.

The following constants are provided for column information handling:

xpress.colinfo_value Get the current value of the column

xpress.colinfo_rdj Get the current reduced cost of the column

xpress.colinfo_deltaindex Get the delta variable index associated to the column

xpress.colinfo_delta Get the delta value (change since previous value) of the column

xpress.colinfo_deltadj Get the delta variables reduced cost

xpress.colinfo_updaterow Get the index of the update (or step bound) row associated to
the column

xpress.colinfo_sb Get the step bound on the variable

xpress.colinfo_sbdual Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Confidential and Proprietary Information 172

Reference Manual

problem.getcols

Purpose
Returns the nonzeros in the constraint matrix for the columns in a given range.

Synopsis
problem.getcols (mstart, mrwind, dmatval, size, first, last)

Arguments
mstart Array which will be filled with the indices indicating the starting offsets in the

mrwind and dmatval arrays for each requested column. It must be of length at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatval
arrays, and has mstart[i+1]-mstart[i] elements in it. May be None if not required.

mrwind Array of length size which will be filled with the row indices of the nonzero
coefficents for each column. May be None if not required.

dmatval Array of length size which will be filled with the nonzero coefficient values. May
be None if not required.

size The size of the mrwind and dmatval arrays. This is the maximum number of nonzero
coefficients that the Optimizer is allowed to return.

first First column in the range.

last Last column in the range.

Example
The following examples retrieves the mstart vector of the problem:

p = xpress.problem ()
p.read ("example", "l")
mstart = []
p.getcols (mstart, first = 0, last = p.attributes.cols - 1)

Further information
It is possible to obtain just the number of elements in the range of columns by replacing mstart,
mrwind and dmatval by None, as in the example. In this case, size must be set to 0 to indicate that
the length of arrays passed is zero. This is demonstrated in the example above.

Related topics
problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 173

Reference Manual

problem.getcoltype

Purpose
Returns the column types for the columns in a given range.

Synopsis
problem.getcoltype (coltype, first, last)

Arguments
coltype Character array of length last-first+1 where the column types will be returned:

C indicates a continuous variable;
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.

last Last column in the range.

Example
This example finds the types for all columns in the matrix and prints them:

coltype = []
p.getcoltype (coltype, 0, p.attributes.cols - 1)
print ("coltypes:", coltype)

Related topics
problem.chgcoltype, problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 174

Reference Manual

problem.getConstraint

Purpose
Returns one or more constraint of a problem corresponding to one or more indices passed as
arguments. These constraints are returned as Python objects and can be used to access and
manipulate the problem.

Synopsis
r = problem.getConstraint (index, first, last)

Arguments
first (optional) The first index of the constraints to be returned. It must be between 0

and ROWS - 1.

last (optional) The last index of the constraints to be returned. It must be between 0
and ROWS - 1.

index (optional) Either an integer or a list of integers (not necessarily sorted) with the
index/indices of all constraints to be returned, all between 0 and ROWS - 1

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all
constraints of the problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getVariable, problem.getSOS.

Fair Isaac Corporation Confidential and Proprietary Information 175

Reference Manual

problem.getControl

Purpose
Retrieves one or more controls of a problem.

Synopsis
c = problem.getControl (ctrl1, ctrl2, ...)

Example

p = xpress.problem ()
[...]
print ("tolerance for feasibility and optimality: ",
p.getControl (’feastol’), p.getControl (’miprelstop’))

all_ctrls = p.getControl ()
ctrl_subset = p.getControl ([’presolve’, ’miprelstop’, ’feastol’])

Further information
This function can be passed either a single control name, whose value will be returned, or a list of
control names, in which case the return value is a dictionary associating each key in the list with
its value. If no argument is provided, a dictionary containing all controls of the problem will be
returned.

Related topics
problem.setControl.

Fair Isaac Corporation Confidential and Proprietary Information 176

Reference Manual

problem.getcontrolinfo

Purpose
Accesses the id number and the type information of a control given its name. A control name
may be for example ’presolve’. The function will return an id number of 0 and a type value of
notdefined if the name is not recognized as a control name. Note that this will occur if the name
is an attribute name rather than a control name.

Synopsis
(id,type) = problem.getcontrolinfo (name)

Argument
name The name of the control to be queried. Names are case-insensitive. A full list of all

control may be found in the Xpress Optimizer reference manual.

Related topics
problem.getattribinfo.

Fair Isaac Corporation Confidential and Proprietary Information 177

Reference Manual

problem.getcpcutlist

Purpose
Returns a list of cut indices from the cut pool.

Synopsis
ncuts = problem.getcpcutlist (itype, interp, delta, size, cutind, viol)

Arguments
itype The user defined type of the cuts to be returned.

interp Way in which the cut type is interpreted:
-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

delta Only those cuts with a signed violation greater than delta will be returned.

size Maximum number of cuts to be returned.

mcutind Array of length size where the cuts will be returned.

dviol Array of length size where the values of the signed violations of the cuts will be
returned.

Further information

1. The violated cuts can be obtained by setting the delta parameter to the size of the (signed)
violation required. If unviolated cuts are required as well, delta may be set to _MINUSINFINITY
which is defined in the library header file.

2. If the number of active cuts is greater than size, only size cuts will be returned. Otherwise only
the existing cuts will be used to fill in the positions of mcutind.

3. In case of a cut of type ’L’, the violation equals the negative of the slack associated with the row
of the cut. In case of a cut of type ’G’, the violation equals the slack associated with the row of the
cut. For cuts of type ’E’, the violation equals the absolute value of the slack.

4. Please note that the violations returned are absolute violations, while feasibility is checked by the
Optimizer in the scaled problem.

Related topics
problem.delcpcuts, problem.getcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcutslack, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 178

Reference Manual

problem.getcpcuts

Purpose
Returns cuts from the cut pool. A list of cuts in the array mindex must be passed to the routine.
The columns and elements of the cut will be returned in the regions pointed to by the mcols and
dmatval parameters. The columns and elements will be stored contiguously and the starting point
of each cut will be returned in the region pointed to by the mstart parameter.

Synopsis
problem.getcpcuts (mindex, size, type, rtype, mstart, mcols, matval, drhs)

Arguments
mindex Array of length ncuts containing the cuts.

size Maximum number of column indices of the cuts to be returned.

type Array of length at least ncuts where the cut types will be returned.

rtype Character array of length at least ncuts where the sense of the cuts (L, G, or E) will
be returned.

mstart Array of length at least ncuts+1 containing the offsets into the mcols and dmatval
arrays. The last element indicates where cut ncuts+1 would start.

cols Array of length size where the column indices of the cuts will be returned.

matval Array of length size where the matrix values will be returned.

rhs Array of length at least ncuts where the right hand side elements for the cuts will
be returned.

Related topics
problem.getcpcutlist, problem.getcutlist, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 179

Reference Manual

problem.getcutlist

Purpose
Retrieves a list of cuts for the cuts active at the current node.

Synopsis
problem.getcutlist (itype, interp, size, cutind)

Arguments
itype User defined type of the cuts to be returned. A value of -1 indicates return all

active cuts.

interp Way in which the cut type is interpreted:
-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

size Maximum number of cuts to be retrieved.

cutind Array of length size where the pointers to the cuts will be returned.

Further information
If the number of active cuts is greater than size, then size cuts will be returned. Otherwise only
the positions corresponding to the number of active cuts will be filled in cutind.

Related topics
problem.getcpcutlist, problem.getcpcuts, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 180

Reference Manual

problem.getcutmap

Purpose
Returns in which rows a list of cuts are currently loaded into the Optimizer. This is useful for
example to retrieve the duals associated with active cuts.

Synopsis
problem.getcutmap (cuts, cutmap)

Arguments
cuts Array with the cuts for which the row index is requested.

cutmap Array of length ncuts, where the row indices are returned.

Further information
For cuts currently not loaded into the problem, a row index of -1 is returned.

Related topics
problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutslack, problem.getcpcuts, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 181

Reference Manual

problem.getcutslack

Purpose
Used to calculate the slack value of a cut with respect to the current LP relaxation solution. The
slack is calculated from the cut itself, and might be requested for any cut (even if it is not
currently loaded into the problem).

Synopsis
slack = problem.getcutslack (cut)

Arguments
cuts Pointer of the cut for which the slack is to be calculated.

slack Double pointer where the value of the slack is returned.

Related topics
problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcpcuts, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 182

Reference Manual

problem.getdirs

Purpose
Returns the directives that have been loaded into a problem. Priorities, forced branching
directions and pseudo costs can be returned. If called after presolve, getdirs will get the
directives for the presolved problem.

Synopsis
problem.getdirs (mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers (0, 1, 2,...) or negative values corresponding

to special ordered sets (the first set numbered -1, the second numbered -2,...). May
be None if not required.

mpri Array containing the priorities for the columns and sets. May be None if not
required.

qbr Character array with the branching direction for each column or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.

dupc Array containing the up pseudo costs for the columns and sets. May be None if not
required.

ddpc Array containing the down pseudo costs for the columns and sets. May be None if
not required.

Further information
The size of all lists is at most MIPENTS, obtainable from xproblem.attributes.mipents.

Related topics
problem.loaddirs, problem.loadpresolvedirs.

Fair Isaac Corporation Confidential and Proprietary Information 183

Reference Manual

problem.getdf

Purpose
Get a distribution factor

Synopsis
value = problem.getdf (colindex, rowindex)

Arguments
colindex The index of the column whose distribution factor is to be retrieved.

rowindex The index of the row from which the distribution factor is to be taken.

value The value of the distribution factor.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134
and changes it to be twice as large.

value = p.getdf (282,134)
value *= 2
p.chgdf (282,134,calue)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

Related topics
problem.adddfs, problem.chgdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 184

Reference Manual

problem.getdtime

Purpose
Retrieve a double precision time stamp in seconds

Synopsis
seconds = problem.getdtime ()

Argument
seconds Address of double precision variable of the time in seconds.

Example
The following example measures the elapsed time to read a problem:

start = p.getdtime ()
p.read ("NewMat","")
finish = p.getdtime ();
print ("Elapsed time to read = {0} secs".format (finish - start))

Further information
The timing information returned is provided by the operating system and is typically accurate to
no more than 1 millisecond.

The clock is not initialized when Xpress Nonlinear starts, so it is necessary to save an initial time
and then measure all times by difference.

Related topics
problem.gettime

Fair Isaac Corporation Confidential and Proprietary Information 185

Reference Manual

problem.getDual

Purpose
Return the dual for all constraints of the problem w.r.t. the solution found by solve(); this only
works on continuous optimization problems.

Synopsis
d = problem.getDual ()

Example

p.solve ()
print ("duals:", p.getDual ())

Related topics
problem.getlpsol, problem.getSlack, problem.getRCost, problem.getProbStatus,
problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 186

Reference Manual

problem.getdualray

Purpose
Retrieves a dual ray (dual unbounded direction) for the current problem, if the problem is found
to be infeasible.

Synopsis
problem.getdualray (dray)

Argument
dray Array of length ROWS to hold the ray. May be None if not required.

Example
The following code tries to retrieve a dual ray:

if not p.hasdualray ():
print ("Could not retrieve a dual ray")

else:
dray = []
p.getdualray (dray)
print ("dual ray:", dray)

Further information

1. It is possible to retrieve a dual ray only when, after solving an LP problem, the final status is
xpress.lp_infeas.

2. Dual rays are not post-solved. If the problem is in a presolved state, the dual ray that is returned
will be for the presolved problem. If the problem was solved with presolve on and has been
restored to the original state (the default behavior), this function will not be able to return a ray.
To ensure that a dual ray can be obtained, it is recommended to solve a problem with presolve
turned off (presolve = 0).

Related topics
problem.getprimalray.

Fair Isaac Corporation Confidential and Proprietary Information 187

Reference Manual

problem.getglobal

Purpose
Retrieves global information about a problem. It must be called before problem.mipoptimize if
the presolve option is used.

Synopsis
problem.getglobal (qgtype, mgcols, dlim, qstype, msstart, mscols, dref)

Arguments
qgtype Character array where the entity types will be returned. The types will be one of:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Array where the column indices of the global entities will be returned.

dlim Array where the limits for the partial integer variables and lower bounds for the
semi-continuous and semi-continuous integer variables will be returned (any
entries in the positions corresponding to binary and integer variables will be
meaningless).

qstype Character array where the set types will be returned. The set types will be one of:
1 SOS1 type sets;
2 SOS2 type sets.

msstart Array where the offsets into the mscols and dref arrays indicating the start of the
sets will be returned. This array must be of length SETMEMBERS+1: the final element
contains the length of the mscols and dref arrays.

mscols Array of length SETMEMBERS where the columns in each set will be returned.

dref Array of length SETMEMBERS where the reference row entries for each member of
the sets will be returned.

Example
The following obtains the SOS information:

qstype = []
mstart = []
mscols = []
dref = []
p.getglobal (None, None, None, qstype, mstart, mscols, dref)

Further information
All arguments may be None if not required.

Related topics
problem.loadproblem.

Fair Isaac Corporation Confidential and Proprietary Information 188

Reference Manual

problem.getiisdata

Purpose
Returns information for an Irreducible Infeasible Set: size, variables (row and column vectors) and
conflicting sides of the variables, duals and reduced costs.

Synopsis
problem.getiisdata (num, miisrow, miiscol, constrainttype, colbndtype, duals, rdcs,

isolationrows, isolationcols)

Arguments
num The ordinal number of the IIS to get data for.

miisrow Indices of rows in the IIS. Can be None if not required.

miiscol Indices of bounds (columns) in the IIS. Can be None if not required.

constrainttype Sense of rows in the IIS:
L for less or equal row;
G for greater or equal row.
E for an equality row (for a non LP IIS);
1 for a SOS1 row;
2 for a SOS2 row;
I for an indicator row.
Can be None if not required.

colbndtype Sense of bound in the IIS:
U for upper bound;
L for lower bound.
F for fixed columns (for a non LP IIS);
B for a binary column;
I for an integer column;
P for a partial integer columns;
S for a semi-continuous column;
R for a semi-continuous integer column.
Can be None if not required.

duals The >dual multipliers associated with the rows. Can be None if not required.

rdcs The dual multipliers (reduced costs) associated with the bounds. Can be None if not
required.

isolationrows The isolation status of the rows:
-1 if isolation information is not available for row (run iis isolations);
0 if row is not in isolation;
1 if row is in isolation.
Can be None if not required.

isolationcols The isolation status of the bounds:
-1 if isolation information is not available for column (run iisisolations);
0 if column is not in isolation;
1 if column is in isolation. Can be None if not required.

Example
This example first retrieves the size of IIS 1, then gets the detailed information for the IIS.

miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []

Fair Isaac Corporation Confidential and Proprietary Information 189

Reference Manual

isolationrows = []
isolationcols = []
p.getiisdata (1, miisrow, miiscol, constrainttype, colbndtype,

duals, rdcs, isolationrows, isolationcols)

Further information

1. IISs are numbered from 1 to NUMIIS. Index number 0 refers to the IIS approximation.

2. If miisrow and miiscol both are None, only the rownumber and colnumber are returned.

3. The arrays may be None if not required. However, arrays constrainttype, duals and
isolationrows are only returned if miisrow is not None. Similarly, arrays colbndtype, rdcs and
isolationcols are only returned if miiscol is not None.

4. For the initial IIS approximation (num = 0) the number of rows and columns with a nonzero
Lagrange multiplier (dual/reduced cost respectively) are returned. Please note that in such cases,
it might be necessary to call problem.iisstatus to retrieve the necessary size of the return arrays.

5. If there are Special Ordered Sets in the IIS, their number is included in the miisrow array.

6. For non-LP IISs, some column indices may appear more than once in the miiscol array, for
example an integrality and a bound restriction for the same column.

7. Duals, reduced cost and isolation information is not available for nonlinear IIS problems, and for
those the arrays are filled with zero values in case they are provided.

Related topics
problem.iisall, problem.iisclear, problem.iisfirst, problem.iisisolations, problem.iisnext,
problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 190

Reference Manual

problem.getIndex

Purpose
Returns the numerical index for a specified row, column, or set of the optimizer.

Synopsis
ind = problem.getIndex (obj)

Argument
obj Python object with the column, row, or SOS

Example
The following example adds a constraint to a problem and then retrieves its index:

x = xpress.var ()
c = x**2 + 2*x >= 5
p.addVariable (x)
p.addConstraint (c)
print ("c has index", p.getIndex (c))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Confidential and Proprietary Information 191

Reference Manual

problem.getIndexFromName

Purpose
Returns the index for a specified row or column name.

Synopsis
ind = problem.getIndexFromName (type, name)

Arguments
type 1 if a row index is required;

2 if a column index is required.
name String containing name of the item sought.

Example
The following example retrieves the index of column "xnew":

x = xpress.var (name = ’xnew’)
[...]
print ("variable’s index: ", p.getIndexFromName (’xnew’))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Confidential and Proprietary Information 192

Reference Manual

problem.getindicators

Purpose
Returns the indicator constraint condition (indicator variable and complement flag) associated to
the rows in a given range.

Synopsis
problem.getindicators (inds, comps, first, last)

Arguments
inds Array of length last-first+1 where the column indices of the indicator variables

are to be placed.

comps Array of length last-first+1 where the indicator complement flags will be
returned:
0 not an indicator constraint (in this case the corresponding entry in the

inds array is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

first First row in the range.

last Last row in the range (inclusive).

Example
The following example retrieves information about three indicator constraints in the problem
and prints a list of their indices.

inds = []
comps = []
p.getindicators (inds, comps, 2, 4)
print ("indices:", inds)
print ("complement flags:", comps)

Related topics
problem.setindicators.

Fair Isaac Corporation Confidential and Proprietary Information 193

Reference Manual

problem.getinfeas

Purpose
Returns a list of infeasible primal and dual variables.

Synopsis
problem.getinfeas (mx, mslack, mdual, mdj)

Arguments
mx Array to store the primal infeasible variables. May be None if not required.

mslack Array to store the primal infeasible rows. May be None if not required.

mdual Array to store the dual infeasible rows. May be None if not required.

mdj Array to store the dual infeasible variables. May be None if not required.

Example

mx = []
mslack = []
p.getinfeas (mx, mslack, None, None)
print ("getinfeas --> mx and mslack:", mx, mslack)

Further information
To find the infeasibilities in a previously saved solution, the solution must first be loaded into
memory with the problem.readbinsol function.

Related topics
problem.getscaledinfeas, problem.getiisdata, problem.iisall, problem.iisclear,
problem.iisfirst, problem.iisisolations, problem.iisnext, problem.iisstatus,
problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 194

Reference Manual

problem.getlasterror

Purpose
Returns the error message corresponding to the last error triggered by a library function.

Synopsis
s = problem.getlasterror ()

Example
The following shows how this function might be used in error-checking:

p.solve ()
print ("Current error status:", p.getlasterror ())

Related topics
ERRORCODE, problem.addcbmessage, problem.setlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 195

Reference Manual

problem.getlb

Purpose
Returns the lower bounds on the columns in a given range.

Synopsis
problem.getlb (lb, first, last)

Arguments
lb Array where the lower bounds are to be placed.

first (optional, default 0) First column in the range.

last (optional, default COLS - 1) Last column in the range.

Example
The following example retrieves the lower bounds for the columns of the current problem:

newlb = []
p.getlb (newlb, 0, 4)
print ("lb: ", newlb)

Further information
Values greater than or equal to xpress.infinity should be interpreted as infinite; values less
than or equal to - xpress.infinity should be interpreted as negative infinite.

Related topics
problem.chgbounds, problem.getub.

Fair Isaac Corporation Confidential and Proprietary Information 196

Reference Manual

problem.getlpsol

Purpose
Used to obtain the LP solution values following optimization.

Synopsis
problem.getlpsol (x, slack, dual, dj)

Arguments
x Array to store the values of the primal variables. May be None if not required.

slack Array to store the values of the slack variables. May be None if not required.

dual Array to store the values of the dual variables (cT
BB−1). May be None if not required.

dj Array to store the reduced cost for each variable (cT − cT
BB−1A). May be None if not

required.

Example
The following sequence of commands will get the LP solution (x) at the top node of a MIP and
the optimal MIP solution (y):

p.mipoptimize ("l") # only solve the LP relaxation
x = []
p.getlpsol (x)
print ("root LP solution:", x)
p.mipoptimize () # solve the MIP problem
p.getmipsol (x)
print ("final MIP solution", x)

Further information

1. If called during a global callback the solution of the current node will be returned.

2. When an integer solution is found during a global search, it is always set up as a solution to the
current node; therefore the integer solution is available as the current node solution and can be
retrieved with getlpsol and problem.getpresolvesol.

3. If the problem is modified after calling lpoptimize, then the solution will no longer be available.

4. If the problem has been presolved, then getlpsol returns the solution to the original problem.
The only way to obtain the presolved solution is to call the related function,
problem.getpresolvesol.

Related topics
problem.getpresolvesol, problem.getmipsol, problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 197

Reference Manual

problem.getmessagestatus

Purpose
Returns the current suppression status of a message: non-zero if the message is not suppressed; 0
otherwise.

Synopsis
status = problem.getmessagestatus (errcode)

Argument
errcode The id number of the message. Refer to the Xpress Optimizer reference manual for

a list of possible message numbers.

Further information
If a message is suppressed globally then the message will always have status return zero from
getmessagestatus.

Related topics
problem.setmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 198

Reference Manual

problem.getmessagetype

Purpose
Retrieve the message type corresponding to a message number

Synopsis
type = problem.getmessagetype (code)

Arguments
code The message number.

type The message type.

Example
The following example retrieves the last error message and finds its type.

(code, a) = p.getlasterror ()
type = p.getmessagetype (code)
print ("Error of type ", type)

Further information
The possible values returned in type are:

0 no such message number
1 information
3 warning
4 error

Related topics
problem.getlasterror

Fair Isaac Corporation Confidential and Proprietary Information 199

Reference Manual

problem.getmipsol

Purpose
Used to obtain the solution values of the last MIP solution that was found.

Synopsis
problem.getmipsol (x, slack)

Arguments
x Array to store the values of the primal variables. May be None if not required.

slack Array to store the values of the slack variables. May be None if not required.

Example
The following sequence of commands will get the solution (x) of the last MIP solution for a
problem:

x = []
p.mipoptimize ()
p.getmipsol (x)
print ("solution:", x)

Related topics
problem.getpresolvesol, problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 200

Reference Manual

problem.getmqobj

Purpose
Returns the nonzeros in the quadratic objective coefficients’ matrix for the columns in a given
range. To achieve maximum efficiency, getmqobj returns the lower triangular part of this matrix
only.

Synopsis
problem.getmqobj (mstart, mclind, dobjval, size, first, last)

Arguments
mstart Array which will be filled with indices indicating the starting offsets in the mclind

and dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatval
arrays, and has mstart[i+1]-mstart[i] elements in it. May be None if size is 0.

mclind Array which will be filled with at most size column indices of the nonzero
elements in the lower triangular part of Q. May be None if size is 0.

dobjval Array which will be filled with at most size nonzero element values. May be None
if size is 0.

size The maximum number of elements to be returned (size of the arrays).

first First column in the range.

last Last column in the range.

Further information
The objective function is of the form cTx+0.5xTQx where Q is positive semi-definite for
minimization problems and negative semi-definite for maximization problems. If this is not the
case the optimization algorithms may converge to a local optimum or may not converge at all.
Note that only the upper or lower triangular part of the Q matrix is returned.

Related topics
problem.chgmqobj, problem.chgqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 201

Reference Manual

problem.getobj

Purpose
Returns the objective function coefficients for the columns in a given range.

Synopsis
problem.getobj (obj, first, last)

Arguments
obj Array of length last-first+1 where the objective function coefficients are to be

placed.

first First column in the range.

last Last column in the range.

Example
The following example retrieves the objective function coefficients of the first five variables of
the current problem:

obj = []
p.getobj (obj, 0, 4)

Related topics
problem.chgobj.

Fair Isaac Corporation Confidential and Proprietary Information 202

Reference Manual

problem.getObjVal

Purpose
Returns the objective value of the solution found by the Optimizer.

Synopsis
o = problem.getObjVal ()

Example
The following prints the objective value of an optimal solution after the solve() command is run:

p.solve ()
print ("optimal solution:", p.getObjVal ())

Related topics
problem.solve.

Fair Isaac Corporation Confidential and Proprietary Information 203

Reference Manual

problem.getpivotorder

Purpose
Returns the pivot order of the basic variables.

Synopsis
problem.getpivotorder (mpiv)

Argument
mpiv Array where the pivot order will be returned.

Example
The following returns the pivot order of the variables into an array pPivot :

mpiv = []
p.getpivotorder (mpiv)

Further information
Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
problem.getpivots.

Fair Isaac Corporation Confidential and Proprietary Information 204

Reference Manual

problem.getpivots

Purpose
Returns a list of potential leaving variables if a specified variable enters the basis. The return
value is a tuple containing the objective function value that would result if in entered the basis;
and an integer where the actual number of potential leaving variables will be returned.

Synopsis
dobj, npiv = problem.getpivots (in, outlist, x, maxpiv)

Arguments
in Index of the specified row or column to enter basis.

outlist Array of length at least maxpiv to hold list of potential leaving variables. May be
None if not required.

x Array of length ROWS+SPAREROWS+COLS to hold the values of all the variables that
would result if in entered the basis. May be None if not required.

maxpiv Maximum number of potential leaving variables to return.

Example
The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the basis:

outlist = []
x = []
obj, npiv = p.getpivots (2, outlist, x, 10)

Further information

1. If the variable in enters the basis and the problem is degenerate then several basic variables are
candidates for leaving the basis, and the number of potential candidates is returned in npiv. A
list of at most maxpiv of these candidates is returned in outlist which must be at least maxpiv
long. If variable in were to be pivoted in, then because the problem is degenerate, the resulting
values of the objective function and all the variables do not depend on which of the candidates
from outlist is chosen to leave the basis. The value of the objective is returned in dobj and the
values of the variables into x.

2. Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
problem.getpivotorder.

Fair Isaac Corporation Confidential and Proprietary Information 205

Reference Manual

problem.getpresolvebasis

Purpose
Returns the current basis from memory into the user’s data areas. If the problem is presolved, the
presolved basis will be returned. Otherwise the original basis will be returned.

Synopsis
problem.getpresolvebasis (rstatus, cstatus)

Arguments
rstatus Array of length ROWS to the basis status of the stack, surplus or artificial variable

associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
May be None if not required.

cstatus Array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable

has no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.
May be None if not required.

Example
The following obtains and outputs basis information on a presolved problem prior to the global
search:

cs = []
p = xpress.problem ()
p.read ("global1", "")
p.mipoptimize ()
p.getpresolvebasis (cstatus = cs)

Related topics
problem.getbasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 206

Reference Manual

problem.getpresolvemap

Purpose
Returns the mapping of the row and column numbers from the presolve problem back to the
original problem.

Synopsis
problem.getpresolvemap (rowmap, colmap)

Arguments
rowmap Array to store the row maps.

colmap Array to store the column maps.

Example
The following reads in a (Mixed) Integer Programming problem and gets the mapping for the
rows and columns back to the original problem following optimization of the linear relaxation.
The elimination operations of the presolve are turned off so that a one-to-one mapping between
the presolve problem and the original problem.

p.read ("MyProb", "")
p.controls.presolveops = 255
p.mipoptimize ("l")
rowmap = []
colmap = []
p.getpresolvemap (rowmap, colmap)

Further information
The presolved problem can contain rows or columns that do not map to anything in the original
problem. An example of this are cuts created during the MIP solve and temporarily added to the
presolved problem. It is also possible that the presolver will introduce new rows or columns. For
any row or column that does not have a mapping to a row or column in the original problem, the
corresponding entry in the returned rowmap and colmap arrays will be -1.

Fair Isaac Corporation Confidential and Proprietary Information 207

Reference Manual

problem.getpresolvesol

Purpose
Returns the solution for the presolved problem from memory.

Synopsis
problem.getpresolvesol (x, slack, dual, dj)

Arguments
x Array to store the values of the primal variables. May be None if not required.

slack Array to store the values of the slack variables. May be None if not required.

dual Array to store the values of the dual variables. May be None if not required.

dj Array to store the reduced cost for each variable. May be None if not required.

Example
The following reads in a (Mixed) Integer Programming problem and displays the solution to the
presolved problem following optimization of the linear relaxation:

p.read ("MyProb", "")
p.mipoptimize ("l")
sol = []
p.getpresolvesol (x = sol)
print ("presolved sol", sol)

Further information

1. If the problem has not been presolved, the solution in memory will be returned.

2. The solution to the original problem should be returned using the related function
problem.getlpsol.

3. If called during a global callback the solution of the current node will be returned.

4. When an integer solution is found during a global search, it is always set up as a solution to the
current node; therefore the integer solution is available as the current node solution and can be
retrieved with getlpsol and problem.getpresolvesol.

Fair Isaac Corporation Confidential and Proprietary Information 208

Reference Manual

problem.getprimalray

Purpose
Retrieves a primal ray (primal unbounded direction) for the current problem, if the problem is
found to be unbounded.

Synopsis
problem.getprimalray (ray)

Argument
ray Array of length COLS to hold the ray. May be None if not required.

Example
The following code tries to retrieve a primal ray:

if not p.hasprimalray ():
print ("Could not retrieve a primal ray")

else:
ray = []
p.getprimalray (ray)
print ("primal ray:", ray)

Further information

1. It is possible to retrieve a primal ray only when, after solving an LP problem, the final status
(LPSTATUS) is xpress.lp_unbounded.

2. Primal rays are not post-solved. If the problem is in a presolved state, the primal ray that is
returned will be for the presolved problem. If the problem was solved with presolve on and has
been restored to the original state (the default behavior), this function will not be able to return
a ray. To ensure that a primal ray can be obtained, it is recommended to solve a problem with
presolve turned off (PRESOLVE = 0).

Related topics
problem.getdualray.

Fair Isaac Corporation Confidential and Proprietary Information 209

Reference Manual

problem.getProbStatus

Purpose
Returns the problem status before or after a solve () command. The returned number
corresponds to the problem status described in the Xpress Optimizer reference manual. If the
problem is an LP, the returned value is equal to p.attributes.lpstatus if the problem is an LP,
and to p.attrobutes.mipstatus if the problem is a MIP.

Synopsis
s = problem.getProbStatus ()

Example

p = xpress.problem ()
p.read ("example2", "")
p.solve ()
print ("solution status code: ", p.getProbStatus (), " -->",

p.getProbStatusString ())

Related topics
problem.solve, problem.getSolution, problem.getDual, problem.getSlack, problem.getRCost,
problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 210

Reference Manual

problem.getProbStatusString

Purpose
Returns the string corresponding to the the problem status before or after a solve () command.

Synopsis
s = problem.getProbStatusString ()

Example

p = xpress.problem ()
p.read ("example2", "")
p.solve ()
print ("solution status code: ", p.getProbStatus (), " -->",

p.getProbStatusString ())

Related topics
problem.solve, problem.getSolution, problem.getDual, problem.getSlack, problem.getRCost,
problem.getProbStatus.

Fair Isaac Corporation Confidential and Proprietary Information 211

Reference Manual

problem.getqobj

Purpose
Returns a single quadratic objective function coefficient corresponding to the variable pair
(icol, jcol) of the Hessian matrix.

Synopsis
objqcoef = problem.getqobj (icol, jcol)

Arguments
icol Column index for the first variable in the quadratic term.

jcol Column index for the second variable in the quadratic term.

Example
The following returns the coefficient of the x0

2 term in the objective function, placing it in the
variable value :

print ("diagonal coeff of the Hessian:",
[p.getqobj (i,i) for i in range (p.attributes.cols)])

Further information
For example, if the objective function has the term [3x1x2 + 3x2x1]/2 the value retrieved by
getqobj is 3.0 and if the objective function has the term [6x1

2]/2 the value retrieved by getqobj is
6.0.

Related topics
problem.getmqobj, problem.chgqobj, problem.chgmqobj.

Fair Isaac Corporation Confidential and Proprietary Information 212

Reference Manual

problem.getqrowcoeff

Purpose
Returns a single quadratic constraint coefficient corresponding to the variable pair (icol, jcol) of
the Hessian of a given constraint.

Synopsis
coeff = problem.getqrowcoeff (row, icol, jcol)

Arguments
row The quadratic row where the coefficient is to be looked up.

icol Column index for the first variable in the quadratic term.

jcol Column index for the second variable in the quadratic term.

Example
The following returns the coefficient of the dist2 term in the constraint cons1:

print ("diagonal coeff of dist:", p.getqrowcoeff (cons1, dist, dist)

Further information
The coefficient returned corresponds to the Hessian of the constraint. That means the for
constraint x + [x2 + 6 xy] <= 10 getqrowcoeff would return 1 as the coefficient of x2 and 3 as
the coefficient of xy.

Related topics
problem.loadproblem, problem.addqmatrix, problem.chgqrowcoeff, problem.getqrowqmatrix,
problem.getqrowqmatrixtriplets, problem.getqrows, problem.chgqobj, problem.chgmqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 213

Reference Manual

problem.getqrowqmatrix

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix for the columns in a given
range. To achieve maximum efficiency, getqrowqmatrix returns the lower triangular part of this
matrix only.

Synopsis
problem.getqrowqmatrix (irow, mstart, mclind, dqe, size, first, last)

Arguments
irow Index of the row for which the quadratic coefficients are to be returned.

mstart Array which will be filled with indices indicating the starting offsets in the mclind
and dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatval
arrays, and has mstart[i+1]-mstart[i] elements in it. May be None if size is 0.

mclind Array of length size which will be filled with the column indices of the nonzero
elements in the lower triangular part of Q. May be None if size is 0.

dqe Array of length size which will be filled with the nonzero element values. May be
None if size is 0.

size Maximum number of elements to be returned in mclind and dqe.

first First column in the range.

last Last column in the range.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrixtriplets, problem.getqrows, problem.chgqobj, problem.chgmqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 214

Reference Manual

problem.getqrowqmatrixtriplets

Purpose
Returns the nonzeros in a quadratic constraint coefficients matrix as triplets (index pairs with
coefficients). To achieve maximum efficiency, getqrowqmatrixtriplets returns the lower
triangular part of this matrix only.

Synopsis
problem.getqrowqmatrixtriplets (irow, mqcol1, mqcol2, dqe)

Arguments
irow Index of the row for which the quadratic coefficients are to be returned.

nqelem Argument used to return the number of quadratic coefficients in the row.

mqcol1 First index in the triplets. May be None if not required.

mqcol2 Second index in the triplets. May be None if not required.

dqe Coefficients in the triplets. May be None if not required.

Further information
If a row index of -1 is used, the function returns the quadratic coefficients for the objective
function.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrows, problem.chgqobj, problem.chgmqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 215

Reference Manual

problem.getqrows

Purpose
Returns the list indices of the rows that have quadratic coefficients.

Synopsis
problem.getqrows (qcrows)

Argument
qcrows Array to contain the indices of rows with quadratic coefficients in them. May be

None if not required.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.chgqobj, problem.chgmqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 216

Reference Manual

problem.getRCost

Purpose
Return the reduced cost of all variables of the problem w.r.t. the solution found by solve(). This
function only works on continuous optimization problems.

Synopsis
r = problem.getRCost ()

Example

p.solve ()
print ("reduced costs:", p.getRCost ())

Related topics
problem.solve, problem.getlpsol, problem.getSolution, problem.getDual, problem.getSlack,
problem.getProbStatus, problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 217

Reference Manual

problem.getrhs

Purpose
Returns the right hand side elements for the rows in a given range.

Synopsis
problem.getrhs (rhs, first, last)

Arguments
rhs Array where the (last - first + 1) right hand side elements are to be placed.

first First row in the range.

last Last row in the range.

Example
The following example retrieves the right hand side values of the problem:

b = []
p.getrhs (b, 0, p.attributes.rows - 1)

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 218

Reference Manual

problem.getrhsrange

Purpose
Returns the right hand side range values for the rows in a given range.

Synopsis
problem.getrhsrange (range, first, last)

Arguments
range Array of length last-first+1 where the right hand side range values are to be

placed.

first First row in the range.

last Last row in the range.

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhs.

Fair Isaac Corporation Confidential and Proprietary Information 219

Reference Manual

problem.getrowinfo

Purpose
Get current row information.

Synopsis
info = problem.getrowinfo (infotype, rowindex);

Arguments
infotype Type of information (see below)

rowindex Index of the row whose information is to be handled

info Information to be retrieved

Further information
If the data is not available, the type of the returned info is set to xpress.undefined.

The following constants are provided for row information handling:

rowinfo_slack Get the current slack value of the row

rowinfo_dual Get the current dual multiplier of the row

rowinfo_numpenaltyerrors Get the number of times the penalty error vector has been active
for the row

rowinfo_maxpenaltyerror Get the maximum size of the penalty error vector activity for the
row

rowinfo_totalpenaltyerror Get the total size of the penalty error vector activity for the row

rowinfo_currentpenaltyerror Get the size of the penalty error vector activity in the current
iteration for the row

rowinfo_currentpenaltyfactor Set the size of the penalty error factor for the current iteration
for the row

rowinfo_penaltycolumnplus Get the index of the positive penalty column for the row (+)

rowinfo_penaltycolumnplusvalue Get the value of the positive penalty column for the row (+)

rowinfo_penaltycolumnplusdj Get the reduced cost of the positive penalty column for the row
(+)

rowinfo_penaltycolumnminus Get the index of the negative penalty column for the row (-)

rowinfo_penaltycolumnminusvalue Get the value of the negative penalty column for the row (-)

rowinfo_penaltycolumnminusdj Get the reduced cost of the negative penalty column for the
row (-)

Fair Isaac Corporation Confidential and Proprietary Information 220

Reference Manual

problem.getrows

Purpose
Returns the nonzeros in the constraint matrix for the rows in a given range.

Synopsis
problem.getrows (mstart, mclind, dmatval, size, first, last)

Arguments
mstart Array which will be filled with the indices indicating the starting offsets in the

mclind and dmatval arrays for each requested row. It must be of length at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatval
arrays, and has mstart[i+1]-mstart[i] elements in it. May be None if not required.

mclind Arrays which will be filled with at most size column indices of the nonzero
elements for each row. May be None if not required.

dmatval Array which will be filled with at most size nonzero element values. May be None
if not required.

size Maximum number of elements to be retrieved.

first First row in the range.

last Last row in the range.

Related topics
problem.getcols, problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 221

Reference Manual

problem.getrowstatus

Purpose
Retrieve the status setting of a constraint

Synopsis
status = problem.getrowstatus (rowIndex)

Arguments
rowindex The index of the matrix row whose data is to be obtained.

status The status settings.

Example
This recovers the status of the rows of the matrix of the current problem and reports those which
are flagged as enforced constraints.

m = p.getintattrib (’rows’)
for i in range(m):
status = p.getrowstatus (i)
if (Status & 0x800) print ("Row {0} is enforced".format (i))

Further information
See the section on bitmap settings of the XSLP reference manual for details on the possible
information in Status.

Related topics
problem.chgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 222

Reference Manual

problem.getrowtype

Purpose
Returns the row types for the rows in a given range.

Synopsis
problem.getrowtype (qrtype, first, last)

Arguments
qrtype Character array of length last-first+1 characters where the row types will be

returned:
N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.

last Last row in the range.

Example
The following example retrieves the type of the first three rows of the problem into an array qrt :

qrt = []
p.getrowtype (qrt, 0, 3)

Related topics
problem.chgrowtype, problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 223

Reference Manual

problem.getrowwt

Purpose
Get the initial penalty error weight for a row

Synopsis
value = problem.getrowwt (rowindex)

Arguments
rowindex The index of the row whose weight is to be retrieved.

value The value of the weight.

Example
The following example gets the initial weight of row number 2.

value = p.getrowwt (2)

Further information
The initial row weight is used only when the augmented structure is created. After that, the
current weighting can be accessed using problem.getrowinfo.

Related topics
problem.chgrowwt, problem.getrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 224

Reference Manual

problem.getscaledinfeas

Purpose
Returns a list of scaled infeasible primal and dual variables for the original problem. If the
problem is currently presolved, it is postsolved before the function returns.

Synopsis
problem.getscaledinfeas (mx, mslack, mdual, mdj)

Arguments
mx Array to store the primal infeasible variables. May be None if not required.

mslack Array to store the primal infeasible rows. May be None if not required.

mdual Array to store the dual infeasible rows. May be None if not required.

mdj Array to store the dual infeasible variables. May be None if not required.

Example

mx = []
mslack = []
mdual = []
mdj = []
p.getscaledinfeas (mx, mslack, mdual, mdj)

Related topics
problem.getinfeas, problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 225

Reference Manual

problem.getSlack

Purpose
Return the slack for all constraints of the problem w.r.t. the solution found by solve(). This
function works both with continuous and mixed-integer optimization problems.

Synopsis
s = problem.getSlack ()

Example

p.solve ()
print ("slack:", p.getSlack ())

Related topics
problem.solve, problem.getlpsol, problem.getmipsol, problem.getSolution, problem.getDual,
problem.getRCost, problem.getProbStatus, problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 226

Reference Manual

problem.getslpsol

Purpose
Obtain the solution values for the most recent SLP iteration

Synopsis
problem.getslpsol (x, slack, dual, dj)

Arguments
x Array of length xslp_originalcols to hold the values of the primal variables. May

be None if not required.

slack Array of length xslp_originalrows to hold the values of the slack variables. May
be None if not required.

dual Array of length xslp_originalrows to hold the values of the dual variables. May be
None if not required.

dj Array of length xslp_originalcols to hold the recuded costs of the primal
variables. May be None if not required.

Example
The following code fragment recovers the values and reduced costs of the primal variables from
the most recent SLP iteration:

ncol = p.getintattrib (prob,xpress.xslp_originalcols)
val = []
dj = []
p.getslpsol (val,None,None,dj)

Further information
getslpsol can be called at any time after an SLP iteration has completed, and will return the
same values even if the problem is subsequently changed. getslpsol returns values for the
columns and rows originally in the problem and not for any augmentation rows or columns. To
access the values of any augmentation columns or rows, use getlpsol; accessing the augmented
solution is only recommended if xslp_presolvelevel indicates that the problem dimensions
should not be changed in presolve.

Fair Isaac Corporation Confidential and Proprietary Information 227

Reference Manual

problem.getSolution

Purpose
Returns the solution to an optimization problem if called after the solve() function has
terminated. This function works with both continuous and mixed-integer optimization problems.

Synopsis
x = problem.getSolution ()

Example

p.solve ()
print ("solution:", p.getSolution ())

Related topics
problem.getlpsol, problem.getmipsol, problem.getDual, problem.getSlack, problem.getRCost,
problem.getProbStatus, problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 228

Reference Manual

problem.getSOS

Purpose
Returns one or more SOSs of a problem corresponding to one or more indices passed as
arguments. These SOSs are returned as Python objects and can be used to access and manipulate
the problem.

Synopsis
x = problem.getSOS (index, first, last)

Arguments
first (optional) The first index of the SOSs to be returned.

last (optional) The last index of the SOSs to be returned.

index (optional) Either an integer or a list of integers (not necessarily sorted) with the
index/indices of all SOSs to be returned.

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all SOSs
of the problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getVariable, problem.getConstraint,

Fair Isaac Corporation Confidential and Proprietary Information 229

Reference Manual

problem.gettolset

Purpose
Retrieve the values of a set of convergence tolerances for an SLP problem

Synopsis
status = problem.gettolset (nslptol, tols)

Arguments
nslptol The index of the tolerance set.

status The bit-map of status settings.

Tols Array of 9 double-precision values to hold the tolerances. May be None if not
required.

Example
The following example retrieves the values for tolerance set 3 and prints those which are set:

tols = []
status = p.gettolset (3, Tols);
for i in range(9):
if status & (1<<i):
print ("Tolerance {0} = {1}".format (i,Tols[i]))

Further information
If Tols is None, then the corresponding information will not be returned.

If Tols is not None, then a set of 9 values will always be returned. Status indicates which of these
values is active as follows. Bit n of Status is set if Tols[n] is active, where n is:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC

1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA

2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM

5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI

6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI

7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS

8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for
a given SLP variable.

Related topics

Related topics
problem.addtolsets, problem.chgtolset, problem.deltolsets, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 230

Reference Manual

problem.getub

Purpose
Returns the upper bounds on the columns in a given range.

Synopsis
problem.getub (ub, first, last)

Arguments
ub Array where the last - first + 1 upper bounds are to be placed.

first First column in the range.

last Last column in the range.

Related topics
problem.chgbounds, problem.getlb.

Fair Isaac Corporation Confidential and Proprietary Information 231

Reference Manual

problem.getunbvec

Purpose
Returns the index vector which causes the primal simplex or dual simplex algorithm to determine
that a problem is primal or dual unbounded respectively.

Synopsis
junb = problem.getunbvec ()

Further information
When solving using the dual simplex method, if the problem is primal infeasible then
getunbvec returns the pivot row where dual unboundedness was detected. Also note that when
solving using the dual simplex method, if the problem is primal unbounded then getunbvec
returns -1 since the problem is dual infeasible and not dual unbounded.

Related topics
problem.getinfeas, problem.lpoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 232

Reference Manual

problem.getvar

Purpose
Retrieve information about an SLP variable

Synopsis
(detrow, initstepbound, stepbound, penalty, damp, initvalue, value, tolset, history,

converged, vartype, delta, penaltydelta, updaterow, oldvalue) = problem.getvar
(colindex)

Arguments
colindex The index of the column.

detrow Address of an integer to receive the index of the determining row. May be None if
not required.

initstepbound Address of a double precision variable to receive the value of the initial step
bound of the variable. May be None if not required.

stepbound Address of a double precision variable to receive the value of the current step
bound of the variable. May be None if not required.

penalty Address of a double precision variable to receive the value of the penalty delta
weighting of the variable. May be None if not required.

damp Address of a double precision variable to receive the value of the current damping
factor of the variable. May be None if not required.

initvalue Address of a double precision variable to receive the value of the initial value of
the variable. May be None if not required.

value Address of a double precision variable to receive the current activity of the
variable. May be None if not required.

tolset Address of an integer to receive the index of the tolerance set of the variable. May
be None if not required.

history Address of an integer to receive the SLP history of the variable. May be None if not
required.

converged Address of an integer to receive the convergence status of the variable as defined
in the "Convergence Criteria" section (The returned value will match the
numbering of the tolerances). May be None if not required.

vartype Address of an integer to receive the status settings (a bitmap defining the
existence of certain properties for this variable). The following bits are defined:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
Other bits are reserved for internal use. May be None if not required.

delta Address of an integer to receive the index of the delta vector for the variable. May
be None if not required.

penaltydelta Address of an integer to receive the index of the first penalty delta vector for the
variable. The second penalty delta immediately follows the first. May be None if not
required.

updaterow Address of an integer to receive the index of the update row for the variable. May
be None if not required.

oldvalue Address of a double precision variable to receive the value of the variable at the
previous SLP iteration. May be None if not required.

Example
The following example retrieves the current value, convergence history and status for column 3.

Fair Isaac Corporation Confidential and Proprietary Information 233

Reference Manual

(a,b,c,d,e,value,g,history,converged,j,k,i,h,k,l) = p.getvar (3)

Further information
If colindex refers to a column which is not an SLP variable, then all the return values will indicate
that there is no corresponding data.

detrow will be set to -1 if there is no determining row.

delta, penaltydelta and updaterow will be set to -1 if there is no corresponding item.

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 234

Reference Manual

problem.getVariable

Purpose
Returns one or more variables of a problem corresponding to one or more indices passed as
arguments. These variables are returned as Python objects and can be used to access and
manipulate the problem.

Synopsis
x = problem.getVariable (index, first, last)

Arguments
first (optional) The first index of the variables to be returned. It must be between 0 and

COLS - 1.

last (optional) The last index of the variables to be returned. It must be between 0 and
COLS - 1.

index (optional) Either an integer or a list of integers (not necessarily sorted) with the
index/indices of all variables to be returned, all between 0 and COLS - 1

Further information
All arguments are optional. If neither of them is provided, the return value is a list with all
variables of the problem. Otherwise, either first and last or just index can be passed.

Related topics
problem.getConstraint, problem.getSOS.

Fair Isaac Corporation Confidential and Proprietary Information 235

Reference Manual

problem.globalsol

Purpose
Initiate the Xpress Nonlinear mixed integer SLP (MISLP) algorithm

Synopsis
problem.globalsol ()

Example
The following example solves the continuous relaxation of the problem and then finds the
integer solution.

p.nlpoptimize ()
p.globalsol ()

Further information
The current Xpress Nonlinear mixed integer problem will be maximized or minimized using the
algorithm defined by the control variable xslp_mipalgorithm.

It is recommended that problem.nlpoptimize be used first to obtain a converged solution to the
relaxed problem. If this is not done, ensure that xslp_ojsense is set appropriately.

See the chapter on Mixed Integer Non-Linear Programming in the SLP Reference Manual for
more information about the Xpress Nonlinear MISLP algorithms.

Related topics
xslp_MIPALGORITHM, xslp_OBJSENSE

Fair Isaac Corporation Confidential and Proprietary Information 236

Reference Manual

problem.hasdualray

Purpose
Returns true if a dual ray (dual unbounded direction) exists for the current problem, if the
problem is found to be infeasible.

Synopsis
v = problem.hasdualray ()

Related topics
problem.getdualray.

Fair Isaac Corporation Confidential and Proprietary Information 237

Reference Manual

problem.hasprimalray

Purpose
Returns true if a primal ray (primal unbounded direction) exists for the current problem, if the
problem is found to be unbounded.

Synopsis
v = problem.hasprimalray ()

Related topics
problem.getprimalray.

Fair Isaac Corporation Confidential and Proprietary Information 238

Reference Manual

problem.iisall

Purpose
Performs an automated search for independent Irreducible Infeasible Sets (IIS) in an infeasible
problem.

Synopsis
problem.iisall ()

Example
This example searches for IISs and then questions the problem attribute NUMIIS to determine how
many were found:

p.iisall ()
print ("The problem has {0} IISs".format (p.attributes.numiis))

Further information

1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible.
For this reason the Optimizer can find an IIS for each of the infeasibilities in a model. If the
control MAXIIS is set to a positive integer value then the problem.iisall command will stop if
MAXIIS IISs have been found. By default the control MAXIIS is set to -1, in which case an IIS is
found for each of the infeasibilities in the model.

2. The problem attribute NUMIIS allows the user to recover the number of IISs found in a particular
search. Alternatively, the problem.iisstatus function may be used to retrieve the number of IISs
found by the problem.iisfirst, problem.iisnext, or problem.iisall functions.

Related topics
problem.getiisdata, problem.iisclear, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 239

Reference Manual

problem.iisclear

Purpose
Resets the search for Irreducible Infeasible Sets (IIS).

Synopsis
problem.iisclear ()

Further information

1. The information stored internally about the IISs identified by problem.iisfirst, problem.iisnext
or problem.iisall are cleared. Functions problem.getiisdata, problem.iisstatus,
problem.iiswrite and problem.iisisolations cannot be called until the IIS identification
procedure is started again.

2. This function is automatically called by problem.iisfirst and problem.iisall.

Related topics
problem.getiisdata, problem.iisall, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 240

Reference Manual

problem.iisfirst

Purpose
Initiates a search for an Irreducible Infeasible Set (IIS) in an infeasible problem. The returned
value can be 0 for success, 1 if the problem is feasible, or 2 in case of error.

Synopsis
status_code = problem.iisfirst (iismode)

Argument
iismode The IIS search mode:

0 stops after finding the initial infeasible subproblem;

1 find an IIS, emphasizing simplicity of the IIS;

2 find an IIS, emphasizing a quick result.

Example
This looks for the first IIS.

p.iisfirst (1)

Further information

1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible.
For this reason the Optimizer can find an IIS for each of the infeasibilities in a model. For the
generation of several independent IISs use functions problem.iisnext or problem.iisall.

2. IIS sensitivity filter: after an optimal but infeasible first phase primal simplex, it is possible to
identify a subproblem containing all the infeasibilities (corresponding to the given basis) to
reduce the size of the IIS working problem dramatically, i.e., rows with zero duals (thus with
artificials of zero reduced cost) and columns that have zero reduced costs may be deleted.
Moreover, for rows and columns with nonzero costs, the sign of the cost is used to relax equality
rows either to less than or greater than equal rows, and to drop either possible upper or lower
bounds on columns.

3. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as
initial infeasible subproblem. Its size is crucial to the running time of the deletion filter and it
contains all the infeasibilities of the first phase simplex, thus if the corresponding rows and
bounds are removed the problem becomes feasible.

4. problem.iisfirst performs the initial sensitivity analysis on rows and columns to reduce the
problem size, and sets up the initial infeasible subproblem. This subproblem significantly speeds
up the generation of IISs, however in itself it may serve as an approximation of an IIS, since its
identification typically takes only a fraction of time compared to the identification of an IIS.

5. The IIS approximation and the IISs generated so far are always available.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 241

Reference Manual

problem.iisisolations

Purpose
Performs the isolation identification procedure for an Irreducible Infeasible Set (IIS).

Synopsis
problem.iisisolations (num)

Argument
num The number of the IIS identified by either problem.iisfirst, problem.iisnext, or

problem.iisall in which the isolations should be identified.

Example
This example finds the first IIS and searches for the isolations in that IIS.

if p.iisfirst (1) == 0:
iisisolations (1)

Further information

1. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or
bound will remove all infeasibilities in the IIS without increasing the infeasibilities in any row or
column outside the IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of
each independent infeasibility and give an indication of which constraint or bound to drop or
modify. It is not always possible to find IIS isolations.

2. Generally, one should first look for rows or columns in the IIS which are both in isolation, and
have a high dual multiplier relative to the others.

3. The num parameter cannot be zero: the concept of isolations is meaningless for the initial
infeasible subproblem.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst, problem.iisnext,
problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 242

Reference Manual

problem.iisnext

Purpose
Continues the search for further Irreducible Infeasible Sets (IIS), or calls problem.iisfirst if no IIS
has been identified yet. The returned value is 0 in case of success; 1 if no more IIS could be found,
or problem is feasible if no problem.iisfirst call preceded; or 2 in case of an error.

Synopsis
status_code = problem.iisnext ()

Example
This looks for a further IIS.

while p.iisnext () == 0:
[...] # do something with the iis

Further information

1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible.
For this reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. Call
the problem.iisnext function repeatedly, or use the problem.iisall function to retrieve all IIS at
once.

2. This function is not affected by the control MAXIIS.

3. If the problem has been modified since the last call to problem.iisfirst or problem.iisnext, the
generation process has to be started from scratch.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 243

Reference Manual

problem.iisstatus

Purpose
Returns statistics on the Irreducible Infeasible Sets (IIS) found so far by problem.iisfirst,
problem.iisnext, or problem.iisall. The returned value is the number of IISs found so far.

Synopsis
iiscount = problem.iisstatus (rowsizes, colsizes, suminfeas, numinfeas)

Arguments
rowsizes Number of rows in the IISs.

colsizes Number of bounds in the IISs.

suminfeas The sum of infeasibilities in the IISs after the first phase simplex.

numinfeas The number of infeasible variables in the IISs after the first phase simplex.

Example
This example first retrieves the number of IISs found so far, and then retrieves their main
properties. Note that the arrays have size count+1, since the first index is reserved for the initial
infeasible subset.

rs = []
cs = []
ninf = []
p.iisstatus (rs, cs, numinfeas = ninf) # suminf is not of interest

Further information

1. The arrays are 0 based, index 0 corresponding to the initial infeasible subproblem.

2. The arrays may be None if not required.

3. For the initial infeasible problem (at position 0) the subproblem size is returned (which may be
different from the number of bounds), while for the IISs the number of bounds is returned
(usually much smaller than the number of columns in the IIS).

4. Note that the values in suminfeas and numinfeas heavily depend on the actual basis where the
simplex has stopped.

5. iiscount is set to -1 if the search for IISs has not yet started.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 244

Reference Manual

problem.iiswrite

Purpose
Writes an LP/MPS/CSV file containing a given Irreducible Infeasible Set (IIS). If 0 is passed as the IIS
number parameter, the initial infeasible subproblem is written.

Synopsis
problem.iiswrite (num, fn, type, typeflags)

Arguments
num The ordinal number of the IIS to be written.

fn The name of the file to be created.

type Type of file to be created:

0 creates an lp/mps file containing the IIS as a linear programming problem;

1 creates a comma separated (csv) file containing the description and supplementary
information on the given IIS.

typeflags Flags passed to the problem.write function.

Example
This writes the first IIS (if one exists and is already found) as an lp file.

p.iiswrite (1, "iis.lp", 0, "l")

Further information

1. Please note that there are problems on the boundary of being infeasible or not. For such
problems, feasibility or infeasibility often depends on tolerances or even on scaling. This
phenomenon makes it possible that after writing an IIS out as an LP file and reading it back, it
may report feasibility. As a first check it is advised to consider the following options:

(a) save the IIS using MPS hexadecimal format to eliminate rounding errors associated with
conversion between internal and decimal representation.

(b) turn presolve off since the nature of an IIS makes it necessary that during their identification
the presolve is turned off.

(c) use the primal simplex method to solve the problem.

2. Note that the original sense of the original objective function plays no role in an IIS.

3. Even though an attempt is made to identify the most infeasible IISs first by the problem.iisfirst,
problem.iisnext, and problem.iisall functions, it is also possible that an IIS becomes just
infeasible in problems that are otherwise highly infeasible. In such cases, it is advised to try to
deal with the more stable IISs first, and consider to use the infeasibility breaker tool if only slight
infeasibilities remain.

4. The LP or MPS files created by problem.iiswrite corresponding to an IIS contain no objective
function, since infeasibility is independent from the objective.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iisstatus.

Fair Isaac Corporation Confidential and Proprietary Information 245

Reference Manual

problem.interrupt

Purpose
Interrupts the Optimizer algorithms.

Synopsis
problem.interrupt (reason)

Argument
reason The reason for stopping. Possible reasons are:

xpress.stop_timelimit time limit hit;
xpress.stop_ctrlc control C hit;
xpress.stop_nodelimit node limit hit;
xpress.stop_iterlimit iteration limit hit;
xpress.stop_mipgap MIP gap is sufficiently small;
xpress.stop_sollimit solution limit hit;
xpress.stop_user user interrupt.

Further information
The interrupt command can be called from any callback.

Fair Isaac Corporation Confidential and Proprietary Information 246

Reference Manual

problem.loadbasis

Purpose
Loads a basis as specified by the user.

Synopsis
problem.loadbasis (rstatus, cstatus)

Arguments
rstatus Array of length ROWS containing the basis status of the slack, surplus or artificial

variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

cstatus Array of length COLS containing the basis status of each of the columns in the
constraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable

has no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
This example loads a problem and then reloads a (previously optimized) basis from a similar
problem to speed up the optimization:

p.read ("problem", "")
p.loadbasis (rstatus, cstatus)
p.lpoptimize ("")

Further information
If the problem has been altered since saving an advanced basis, one can alter the basis as follows
before loading it:

� Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has
an infinite lower bound and a finite upper bound, in which case make the variable non-basic
at its upper bound (cstatus[icol]=2);

� Make new constraints basic (rstatus[jrow]=1);

� Try not to delete basic variables, or non-basic constraints.

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 247

Reference Manual

problem.loadbranchdirs

Purpose
Loads directives into the current problem to specify which global entities the Optimizer should
continue to branch on when a node solution is global feasible.

Synopsis
problem.loadbranchdirs (mcols, mbranch)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number

(the first set being -1, the second -2, and so on).

mbranch Array containing either 0 or 1 for the entities given in mcols. Entities for which
mbranch is set to 1 will be branched on until fixed before a global feasible solution
is returned. If mbranch is None, the branching directive will be set for all entities in
mcols.

Related topics
problem.loaddirs, problem.readdirs.

Fair Isaac Corporation Confidential and Proprietary Information 248

Reference Manual

problem.loadcoefs

Purpose
Load non-linear coefficients into the SLP problem

Synopsis
problem.loadcoefs (rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Integer array holding index of row for the coefficient.

colindex Integer array holding index of column for the coefficient.

factor Double array holding factor by which formula is scaled. If this is None, then a value
of 1.0 will be used.

fstart Integer array of length nSLPCoef+1 holding the start position in the arrays Type and
Value of the formula for the coefficients. FormulaStart[nSLPCoef] should be set to
the next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

type Array of token types providing the formula for each coefficient.

value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The following
example loads coefficients representing:
Col2 * Col3 + Col6 * Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []

n = 0
ncoef = 0

formulastart[ncoef], ncoef = n, ncoef + 1
Type[n], Value[n], n = xslp_op_col, 3, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_op, xslp_MULTIPLY, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], n = xslp_op_eof, n+1

formulastart [ncoef] = n

Fair Isaac Corporation Confidential and Proprietary Information 249

Reference Manual

p.loadcoefs (rowindex, colindex, None, formulastart, 1, Type, Value)

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 * Col3.

The second coefficient in Row1 is in Col6 and has the formula Col2 * Col2 so it represents Col6 *
Col2ˆ2. The formulae are described as parsed (parsed=1), so the formula is written as
Col2 Col2 *
rather than the unparsed form
Col2 * Col2

The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 * Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated. Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j].
The tokens follow the rules for parsed or unparsed formulae as indicated by the setting of
Parsed. The formula must be terminated with an xslp_op_eof token. If several coefficients share
the same formula, they can have the same value in FormulaStart. For possible token types and
values see the chapter on "Formula Parsing".

The loadcoefs function loads items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding addcoefs function adds or replace items leaving other items of
the same type unchanged.

Related topics
problem.addcoefs, problem.chgnlcoef, problem.chgccoef, problem.getcoefformula,
problem.getccoef

Fair Isaac Corporation Confidential and Proprietary Information 250

Reference Manual

problem.loadcuts

Purpose
Loads cuts from the cut pool into the matrix. Without calling loadcuts the cuts will remain in the
cut pool but will not be active at the node. Cuts loaded at a node remain active at all descendant
nodes unless they are deleted using problem.delcuts.

Synopsis
problem.loadcuts (itype, interp, cutind)

Arguments
itype Cut type.

interp The way in which the cut type is interpreted:
-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in

itype.
mcutind Array containing the cuts to be loaded into the matrix.

Related topics
problem.addcuts, problem.delcpcuts, problem.delcuts, problem.getcpcutlist, Section
"Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 251

Reference Manual

problem.loaddelayedrows

Purpose
Specifies that a set of rows in the problem will be treated as delayed rows during a global search.
These are rows that must be satisfied for any integer solution, but will not be loaded into the
active set of constraints until required.

Synopsis
problem.loaddelayedrows (mrows)

Argument
mrows An array of row indices to treat as delayed rows.

Example
This sets the first six matrix rows as delayed rows in the global problem prob.

p.loaddelayedrows ([0,1,2,3,4,5])
p.mipoptimize ("")

Further information
Delayed rows must be set up before solving the problem. Any delayed rows will be removed from
the problem after presolve and added to a special pool. A delayed row will be added back into
the active matrix only when such a row is violated by an integer solution found by the Optimizer.

Related topics
problem.loadmodelcuts.

Fair Isaac Corporation Confidential and Proprietary Information 252

Reference Manual

problem.loaddfs

Purpose
Load a set of distribution factors

Synopsis
problem.loaddfs (colindex, rowindex, value)

Arguments
colindex Array of columns whose distribution factor is to be changed.

rowindex Array of rows where each distribution factor applies.

value Array of the new values of the distribution factors.

Example
The following example loads distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.
Any other first-order derivative placeholders are set to xslp_DELTA_Z.

colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.loaddfs (colindex, rowindex, value)

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

The adddfs functions load additional items into the SLP problem. The corresponding loaddfs
functions delete any existing items first.

Related topics
problem.adddfs, problem.chgdf, problem.getdf

Fair Isaac Corporation Confidential and Proprietary Information 253

Reference Manual

problem.loaddirs

Purpose
Loads directives into the problem.

Synopsis
problem.loaddirs (mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number

(the first set being -1, the second -2, and so on).

mpri Array containing the priorities for the columns or sets. Priorities must be between 0
and 1000. May be None if not required.

qbr Character array specifying the branching direction for each column or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be None if not required.

dupc Array containing the up pseudo costs for the columns or sets. May be None if not
required.

ddpc Array containing the down pseudo costs for the columns or sets. May be None if not
required.

Related topics
problem.getdirs, problem.loadpresolvedirs, problem.readdirs.

Fair Isaac Corporation Confidential and Proprietary Information 254

Reference Manual

problem.loadlpsol

Purpose
Loads an LP solution for the problem into the Optimizer. The returned status is either 0 if the
solution is loaded or 1 if the solution is not loaded because the problem is in presolved status.

Synopsis
status = problem.loadlpsol (x, slack, dual, dj)

Arguments
x Optional: Array of length COLS (for the original problem and not the presolve

problem) containing the values of the variables.

slack Optional: double array of length ROWS containing the values of slack variables.

dual Optional: double array of length ROWS containing the values of dual variables.

dj Optional: double array of length COLS containing the values of reduced costs.

Example
This example loads a problem and loads a solution for the problem.

p.read ("problem", "")
status = p.loadlpsol (x, None, dual, None)

Further information

1. At least one of variables x and dual variables dual must be provided.

2. When variables x is None, the variables will be set to their bounds.

3. When slack variables slack is None, it will be computed from variables x. If slacks are provided,
variables cannot be omitted.

4. When dual variables dual is None, both dual variables and reduced costs will be set to zero.

5. When reduced costs dj is None, it will be computed from dual variables dual. If reduced costs are
provided, dual variables cannot be omitted.

Related topics
problem.getlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 255

Reference Manual

problem.loadmipsol

Purpose
Loads a MIP solution for the problem into the Optimizer. The returned status is one of the
following values:

� -1: Solution rejected because an error occurred;

� 0: Solution accepted. When loading a solution before a MIP solve, the solution is always
accepted. See Further Information below.

� 1: Solution rejected because it is infeasible;

� 2: Solution rejected because it is cut off;

� 3: Solution rejected because the LP reoptimization was interrupted.

Synopsis
status = problem.loadmipsol (dsol)

Argument
dsol Array of length COLS (for the original problem and not the presolve problem)

containing the values of the variables.

Example
This example loads a problem and then loads a solution found previously for the problem to help
speed up the MIP search:

p.read ("problem", "")
status = p.loadmipsol (dsol)
p.mipoptimize ("")

Further information

1. When a solution is loaded before a MIP solve, the solution is simply placed in temporary storage
until the MIP solve is started. Only after the MIP solve has commenced and any presolve has been
applied, will the loaded solution be checked and possibly accepted as a new incumbent integer
solution. There are no checks performed on the solution before the MIP solve and the returned
status in problem.loadmipsol will always be 0 for accepted.

2. Solutions can be loaded during a MIP solve using the optnode callback function. Any solution
loaded this way is immediately checked and the returned status will be one of the values 0
through 3.

3. Loaded solution values will automatically be adjusted to fit within the current problem bounds.

Related topics
problem.getmipsol, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 256

Reference Manual

problem.loadmodelcuts

Purpose
Specifies that a set of rows in the problem will be treated as model cuts.

Synopsis
problem.loadmodelcuts (mrows)

Argument
mrows An array of row indices to be treated as cuts.

Example
This sets the first six matrix rows as model cuts in the global problem myprob.

p.loadmodelcuts ([0,1,2,3,4,5])
p.mipoptimize ("")

Further information

1. During presolve the model cuts are removed from the problem and added to an internal cut pool.
During the global search, the Optimizer will regularly check this cut pool for any violated model
cuts and add those that cuts off a node LP solution.

2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal
MIP solution. The Optimizer does not guarantee to add all violated model cuts, so they must not
be required to define the optimal MIP solution.

Fair Isaac Corporation Confidential and Proprietary Information 257

Reference Manual

problem.loadpresolvebasis

Purpose
Loads a presolved basis from the user’s areas.

Synopsis
problem.loadpresolvebasis (rstatus, cstatus)

Arguments
rstatus Array containing the basis status of the slack, surplus or artificial variable

associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

cstatus Array containing the basis status of each of the columns in the matrix. The status
must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable

has no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
The following example saves the presolved basis for one problem, loading it into another:

p1 = xpress.problem ()
p2 = xpress.problem ()

p1.read ("myprob", "")
p1.mipoptimize ("l")
rs = []
cs = []
p1.getpresolvebasis (rs, cs)

p2.read ("myprob2", "")
p2.mipoptimize ("l")
p2.loadpresolvebasis (rs, cs)

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadbasis.

Fair Isaac Corporation Confidential and Proprietary Information 258

Reference Manual

problem.loadpresolvedirs

Purpose
Loads directives into the presolved matrix.

Synopsis
problem.loadpresolvedirs (mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number (-1

being the first set, -2 the second, and so on).

mpri Array containing the priorities for the columns or sets. May be None if not required.

qbr Character array specifying the branching direction for each column or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be None if not required.

dupc Array containing the up pseudo costs for the columns or sets. May be None if not
required.

ddpc Array containing the down pseudo costs for the columns or sets. May be None if not
required.

Example
The following loads priority directives for column 0 in the problem:

p.mipoptimize ("l")
p.loadpresolvedirs ([0], [1], None, None, None)
p.mipoptimize ("")

Related topics
problem.getdirs, problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 259

Reference Manual

problem.loadproblem

Purpose
Load an optimization problem, possibly with quadratic objective and/or constraints, and integer
variables.

Synopsis
problem.loadproblem (probname, qrtypes, rhs, range, obj, mstart, mnel, mrwind,

dmatval, dlb, dub, mqcol1, mqcol2, dqe, qcrows, qcnquads, qcmqcol1, qcmqcol2,
qcdqval, qgtype, mgcols, dlim, qstype, msstart, mscols, dref, colnames,
rownames)

Arguments
probname A string of up to 200 characters containing the problem name.

qrtype Character array containing the row types:
L indicates a <= constraint;
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side coefficients of the rows. The right hand side
value for a range row gives the upper bound on the row.

range Array containing the range values for range rows. Values for all other rows will be
ignored. May be None if there are no ranged constraints. The lower bound on a
range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

obj Array containing the objective function coefficients.

mstart Array containing the offsets in the mrwind and dmatval arrays of the start of the
elements for each column. This array is of length equal to the number ncol of
added variables or, if mnel is None, ncol+1. If mnel is None the extra entry of mstart,
mstart[ncol], contains the position in the mrwind and dmatval arrays at which an
extra column would start, if it were present.

mnel Array containing the number of nonzero elements in each column. May be None if
all elements are contiguous and mstart[ncol] contains the offset where the
elements for column ncol+1 would start. This array is not required if the non-zero
coefficients in the mrwind and dmatval arrays are continuous, and the mstart array
has ncol+1 entries as described above. It may be None if not required.

mrwind Array containing the row indices for the nonzero elements in each column. If the
indices are input contiguously, with the columns in ascending order, the length of
the mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is None, mstart[ncol].

dmatval Array containing the nonzero element values; length as for mrwind.

dlb Array containing the lower bounds on the columns. Use -xpress.infinity to
represent a lower bound of minus infinity.

dub Array containing the upper bounds on the columns. Use xpress.infinity to
represent an upper bound of plus infinity.

mqc1 (optional) Array with the first variable in each quadratic term.

mqc2 (optional) Array with the second variable in each quadratic term.

dqe (optional) Array with the quadratic coefficients.

qcrows (optional) Integer containing the indices of rows with quadratic matrices in them.
Note that the rows are expected to be defined in qrtype as type L.

qcnquads (optional) Array containing the number of nonzeros in each quadratic constraint
matrix.

Fair Isaac Corporation Confidential and Proprietary Information 260

Reference Manual

qcmqcol1 (optional) Array with a number of elements equal to the sum of the elements in
qcnquads (i.e. the total number of quadratic matrix elements in all the constraints).
It contains the first column indices of the quadratic matrices. Indices for the first
matrix are listed from 0 to qcnquads[0]-1, for the second matrix from qcnquads[0]
to qcnquads[0]+ qcnquads[1]-1, etc.

qcmqcol2 (optional) Array containing the second index for the quadratic constraint matrices.

qcdqval (optional) Array containing the coefficients for the quadratic constraint matrices.

qgtype Character array containing the entity types:
B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols (optional) Array containing the variables of the global entities.

dlim (optional) Array containing the integer limits for the partial integer variables and
lower bounds for semi-continuous and semi-continuous integer variables (any
entries in the positions corresponding to binary and integer variables will be
ignored). May be None if not required.

qstype (optional) Character array of length equal to the number of sets specified, nsets,
and specifies the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be None if not required.

msstart (optional) Array containing the offsets in the mscols and dref arrays indicating the
start of the sets. This array is of length nsets+1, the last member containing the
offset where set nsets+1 would start. May be None if not required.

mscols (optional) Array of length msstart[nsets]-1 containing the columns in each set.
May be None if not required.

dref (optional) Array of length msstart[nsets]-1 containing the reference row entries
for each member of the sets. May be None if not required.

colname (optional) Array of containing the column names for all variables added.

rowname (optional) Array of containing the row names for all constraints added.

Further information

1. The objective function is of the form cTx+ 1/2 xTQx where Q is positive semi-definite for
minimization problems and negative semi-definite for maximization problems. If this is not the
case the optimization algorithms may converge to a local optimum or may not converge at all.
Note that only the upper or lower triangular part of the Q matrix is specified.

2. All Q matrices in the constraints must be positive semi-definite. Note that only the upper or lower
triangular part of the Q matrix is specified for constraints as well.

3. The row and column indices are from 0 to nrow-1 and 0 to ncol-1 respectively.

4. The row and column indices are from 0 to nrow-1 and 0 to ncol-1 respectively.

5. Semi-continuous lower bounds are taken from the dlim array. If this is None then they are given a
default value of 1.0. If a semi-continuous variable has a positive lower bound then this will be
used as the semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
problem.loadproblem, problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 261

Reference Manual

problem.loadsecurevecs

Purpose
Allows the user to mark rows and columns in order to prevent the presolve removing these rows
and columns from the problem.

Synopsis
problem.loadsecurevecs (mrow, mcol)

Arguments
mrow Array containing the rows to be marked. May be None if not required.

mcol Array containing the columns to be marked. May be None if not required.

Example
This sets the first six rows and the first four columns to not be removed during presolve.

p.read ("myprob", "")
p.loadsecurevecs (mrow = [0,1,2,3,4,5], mcol = [0,1,2,3])
p.mipoptimize ("")

Fair Isaac Corporation Confidential and Proprietary Information 262

Reference Manual

problem.loadtolsets

Purpose
Load sets of standard tolerance values into an SLP problem

Synopsis
problem.loadtolsets (slptol)

Argument
slptol Array of 9h items containing the 9 tolerance values for each set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances;
the second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for
absolute tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

tol = 9*[0.005]+[0]+[0.01,0.001]*4
p.loadtolsets (tol)

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC

1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA

2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM

5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI

6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI

7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS

8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for
a given SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable. If a tolerance
value is zero, then the default tolerance will be used instead. To force the use of a zero tolerance,
use the problem.chgtolset function and set the Status variable appropriately.

See the section "Convergence Criteria" in the SLP reference manual for a fuller description of
tolerances and their uses. The loadtolsets functions load items into the SLP problem. Any
existing items of the same type are deleted first. The corresponding addtolsets functions add or
replace items leaving other items of the same type unchanged.

Related topics
problem.addtolsets, problem.deltolsets, problem.chgtolset, problem.gettolset

Fair Isaac Corporation Confidential and Proprietary Information 263

Reference Manual

problem.loadvars

Purpose
Load SLP variables defined as matrix columns into an SLP problem

Synopsis
problem.loadvars (colindex, vartype, detrow, seqnum, tolindex, initvalue, stepbound)

Arguments
colindex Integer array holding the index of the matrix column corresponding to each SLP

variable.

vartype Bitmap giving information about the SLP variable as follows:
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a
negative value means there is no determining row)
May be None if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP
variable (a zero value means there is no pre-defined order for this variable)
May be None if not required.

tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero
value means the default tolerances are used)
May be None if not required.

initvalue Double array holding the initial value for each SLP variable (use the VarType bit
map to indicate if a value is being provided)
May be None if not required.

stepbound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
xpress.infinity is used for a value in StepBound, the delta will never have step
bounds applied, and will almost always be regarded as converged.
May be None if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23
and 25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no
specific initial value

colindex = [23,25]
vartype = [0,2]
initvalue = [0,1.42]

p.loadvars (colindex, vartype, None, None, None, initvalue, None)

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType is
set for the second variable to indicate that the initial value has been set. The arrays for
determining rows, sequence numbers, tolerance sets and step bounds are not used at all, and so
have been passed to the function as None.

Further information
The loadvars functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding addvars functions add or replace items leaving other items of
the same type unchanged.

Fair Isaac Corporation Confidential and Proprietary Information 264

Reference Manual

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.getvar

Fair Isaac Corporation Confidential and Proprietary Information 265

Reference Manual

problem.lpoptimize

Purpose
This function begins a search for the optimal continuous (LP) solution. The direction of
optimization is given by OBJSENSE. The status of the problem when the function completes can be
checked using LPSTATUS. Any global entities in the problem will be ignored.

Synopsis
problem.lpoptimize (flags)

Argument
flags (optional) Flags to pass to lpoptimize. The default is "" or None, in which case the

algorithm used is determined by the DEFAULTALG control. If the argument includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
n (lower case N), the network part of the model will be identified and solved

using the network simplex algorithm;

Further information

1. The algorithm used to optimize is determined by the DEFAULTALG control if no flags are provided.
By default, the dual simplex is used for linear problems and the barrier is used for non-linear
problems.

2. The d and p flags can be used with the n flag to complete the solution of the model with either
the dual or primal algorithms once the network algorithm has solved the network part of the
model.

3. The b flag cannot be used with the n flag.

Related topics
problem.mipoptimize, Chapter 4 of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 266

Reference Manual

problem.mipoptimize

Purpose
This function begins a global search for the optimal MIP solution. The direction of optimization is
given by OBJSENSE. The status of the problem when the function completes can be checked using
MIPSTATUS.

Synopsis
problem.mipoptimize (flags)

Argument
flags (optional) Flags to pass to problem.mipoptimize, which specifies how to solve the

initial continuous problem where the global entities are relaxed. If the argument
includes:
b the initial continuous relaxation will be solved using the Newton barrier

method;
p the initial continuous relaxation will be solved using the primal simplex

algorithm;
d the initial continuous relaxation will be solved using the dual simplex

algorithm;
n the network part of the initial continuous relaxation will be identified and

solved using the network simplex algorithm;
l stop after having solved the initial continous relaxation.

Further information

1. If the l flag is used, the Optimizer will stop immediately after solving the initial continuous
relaxation. The status of the continuous solve can be checked with LPSTATUS and standard LP
results are available, such as the objective value (LPOBJVAL) and solution (use problem.getlpsol),
depending on LPSTATUS.

2. It is possible for the Optimizer to find integer solutions before solving the initial continuous
relaxation, either through heuristics or by having the user load an initial integer solution. This
can potentially result in the global search finishing before solving the continuous relaxation to
optimality.

3. If the function returns without having completed the search for an optimal solution, the search
can be resumed from where it stopped by calling problem.mipoptimize again.

4. The algorithm used to reoptimize the continuous relaxations during the global search is given by
DEFAULTALG. The default is to use the dual simplex algorithm.

Related topics
problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 267

Reference Manual

problem.msaddcustompreset

Purpose
A combined version of msaddjob and msaddpreset. The preset described is loaded, topped up
with the specific settings supplied

Synopsis
problem.msaddcustompreset (description, preset, count, ivcols, ivvalues, control,

job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.

preset Which preset to load.

ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.

ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs
is zero.

control Python dictionary with control strings as keys and numbers as values. Note that
only numerical controls are allowed.

job_object Job-specific user context object to be passed to the multistart callbacks.

Further information
This function allows for repeatedly calling the same multistart preset (e.g. initial values) using
different basic controls.

Related topics
problem.msaddpreset, problem.msaddjob, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 268

Reference Manual

problem.msaddjob

Purpose
Adds a multistart job to the multistart pool

Synopsis
problem.msaddjob (description, ivcols, ivvalues, control, job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.

ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.

ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs
is zero.

control Python dictionary with control strings as keys and numbers as values. Note that
only numerical controls are allowed.

job_object Job-specific user context pointer to be passed to the multistart callbacks.

Further information
Adds a mutistart job, applying the specified initial point and option combinations on top of the
base problem, i.e. the options and initial values specified to the function is applied on top of the
existing settigns.

This function allows for loading empty template jobs, that can then be identified using the
pJobObject variable.

Related topics
problem.msaddpreset, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 269

Reference Manual

problem.msaddpreset

Purpose
Loads a preset of jobs into the multistart job pool.

Synopsis
problem.msaddpreset (description, preset, count, job_object)

Arguments
description Text description of the preset. Used for messaging, may be None if not required.

preset Which preset to load.

count Maximum number of jobs to be added to the multistart pool.

job_object Job-specific user context pointer to be passed to the multistart callbacks.

Further information
The following presets are defined:

msset_initialvalues: generate count number of random base points.

msset_solvers: load all solvers.

msset_slp_basic: load the most typical SLP tuning settings. A maximum of count jobs are loaded.

msset_slp_extended: load a comprehensive set of SLP tuning settings. A maximum of count jobs
are loaded.

msset_knitro_basic: load the most typical Knitro tuning settings. A maximum of count jobs are
loaded.

msset_knitro_extended: load a comprehensive set of Knitro tuning settings. A maximum of count
jobs are loaded.

msset_initialfiltered: generate count number of random base points, filtered by a merit
function centred on initial feasibility.

See xslp_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
problem.msaddjob, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 270

Reference Manual

problem.msclear

Purpose
Removes all scheduled jobs from the multistart job pool

Synopsis
problem.msclear ()

Related topics
problem.msaddjob, problem.msaddpreset, problem.msaddcustompreset

Fair Isaac Corporation Confidential and Proprietary Information 271

Reference Manual

problem.name

Purpose
Returns the name of the problem as a Python string.

Synopsis
brian = problem.name ()

Related topics
problem.setprobname.

Fair Isaac Corporation Confidential and Proprietary Information 272

Reference Manual

problem.objsa

Purpose
Returns upper and lower sensitivity ranges for specified objective function coefficients. If the
objective coefficients are varied within these ranges the current basis remains optimal and the
reduced costs remain valid.

Synopsis
problem.objsa (mindex, lower, upper)

Arguments
mindex Array containing the indices of the columns whose objective function coefficients

sensitivity ranges are required.

lower Array of the same size as mindex where the objective function lower range values
are to be returned.

upper Array of the same size as mindex where the objective function upper range values
are to be returned.

Example
Here we obtain the objective function ranges for the three columns: 2, 6 and 8:

l = []
u = []
p.objsa ([2,8,6], l, u)

After which l and u contain:

l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5. 0 ≤ C2 ≤ 7. 0, 3. 8 ≤ C8 ≤ 5. 2 and
5. 7 ≤ C6, Ci being the objective coefficient of column i.

Further information
objsa can only be called when an optimal solution to the current LP has been found. It cannot be
used when the problem is MIP presolved.

Related topics
problem.rhssa.

Fair Isaac Corporation Confidential and Proprietary Information 273

Reference Manual

problem.parsecformula

Purpose
Parse a formula written as a character string into internal parsed (reverse Polish) format

Synopsis
ntoken = problem.parsecformula (formula, type, value)

Arguments
ntoken Number of tokens in the parsed formula (not counting the terminating

xslp_op_eof token).

formula Character string containing the formula, written in the same free-format style as
used in formulae in Extended MPS format, with spaces separating tokens.

Type Array of token types providing the parsed formula.

Value Array of values corresponding to the types in Type.

Example
Assuming that x and y are already defined as columns, the following example converts the
formula "sin(x+y)" into internal parsed format, and then writes it out as a sequence of tokens.

type = []
value = []
ntoken = p.parsecformula ("sin (x + y)", Type, Value)
i = 0
while type[i] != xslp_op_eof:
str = p.itemname (type[i], value[i])
printf (str)
i += 1

Further information
Tokens are identified by name, so any columns or user functions which appear in the formula
must already have been defined. Unidentified tokens will appear as type xslp_UNKNOWN.

Related topics
problem.parseformula, problem.preparseformula

Fair Isaac Corporation Confidential and Proprietary Information 274

Reference Manual

problem.parseformula

Purpose
Parse a formula written as an unparsed array of tokens into internal parsed (reverse Polish)
format

Synopsis
ntoken = problem.parseformula (intype, invalue, type, value)

Arguments
intype Array of token types providing the unparsed formula.

invalue Array of values corresponding to the types in inType.

ntoken The number of tokens in the parsed formula (not counting the terminating
xslp_op_eof token).

type Array of token types providing the parsed formula.

value Array of values corresponding to the types in type.

Example
Assuming that x and y are already defined as columns with index iX and iY respectively, the
following example converts the formula "sin(x+y)" into internal parsed format, and then writes it
out as a sequence of tokens.

intype = []
invalue = []

intype = [xslp_op_ifun, xslp_op_lb, xslp_op_col, xslp_op_op,
xslp_op_col, xslp_op_rb, xslp_op_eof]

invalue = [xslp_op_sin, 0, iX , xslp_op_plus,
iY, 0, 0]

type = []
value = []

ntoken = p.parseformula (intype, invalue, type, value);

i=0
while type[n] != xslp_op_eof:
str = p.itemname (type[i], value[i])
print (str);
i += 1

Further information
For possible token types and values, see the chapter on "Formula Parsing" in the SLP reference
manual.

Related topics
problem.parsecformula, problem.preparseformula

Fair Isaac Corporation Confidential and Proprietary Information 275

Reference Manual

problem.postsolve

Purpose
Postsolve the current problem when it is in a presolved state.

Synopsis
problem.postsolve ()

Further information
A problem is left in a presolved state whenever a LP or MIP optimization does not complete. In
these cases postsolve can be called to get the problem back into its original state.

Related topics
problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 276

Reference Manual

problem.preparseformula

Purpose
Perform an initial scan of a formula written as a character string, identifying the operators but
not attempting to identify the types of the individual tokens

Synopsis
(type, value, stringtable) = problem.preparseformula (formula)

Arguments
formula Character string containing the formula, written in the same free-format style as

formulae in Extended MPS format, with spaces separating tokens.

type Array of token types providing the parsed formula.

value Array of values corresponding to the types in Type.

stringtable Character buffer to receive the names of the unidentified tokens.

Example
The following example converts the formula "sin(x+y)" into internal parsed format without
trying to identify the tokens apart from operands and numbers, and then writes it out as a
sequence of tokens.

(type, value, stab) = p.preparseformula ("sin (x + y)")

i=0
while type[i] != xslp_op_eof:
if type[n] == xslp_UNKNOWN:
print ("? ", value[i])

else:
str = p.itemname (type[i], value[i])
printf (str)

i += 1

Further information
Only operands and numbers are identified by preparseformula. All other operands, including
names of variables, functions are left as strings of type xslp_op_unknown. The Value of such a type
is the index in stringtable of the start of the token name.

The parsed formula can be converted into a calculable formula by replacing the xslp_op_unknown
tokens by the correct types and values.

Related topics
problem.parsecformula, problem.parseformula

Fair Isaac Corporation Confidential and Proprietary Information 277

Reference Manual

problem.presolve

Purpose
Perform a nonlinear presolve on the problem

Synopsis
problem.presolve ()

Example
The following example reads a problem from file, sets the presolve control, presolves the
problem and then maximizes it.

p.readprob ("Matrix", "")
p.controls.xslp_presolve = 1
p.presolve ()
p.solve ("")

Further information
If bit 1 of xslp_presolve is not set, no nonlinear presolve will be performed. Otherwise, the
presolve will be performed in accordance with the bit settings. problem.presolve is called
automatically by problem.construct, so there is no need to call it explicitly unless there is a
requirement to interrupt the process between presolve and optimization. problem.presolve must
be called before problem.construct or any of the SLP optimization procedures..

Related topics
xslp_presolve

Fair Isaac Corporation Confidential and Proprietary Information 278

Reference Manual

problem.presolverow

Purpose
Presolves a row formulated in terms of the original variables such that it can be added to a
presolved problem. Returns a tuple of two elements containing, respectively, the presolved
right-hand side and the status of the presolved row:

� -3: Failed to presolve the row due to presolve dual reductions;

� -2: Failed to presolve the row due to presolve duplicate column reductions;

� -1: Failed to presolve the row due to an error. Check the Optimizer error code for the cause;

� 0: The row was successfully presolved;

� 1: The row was presolved, but may be relaxed.

Synopsis
drhsp, status = problem.presolverow (qrtype, mcolso, dvalo, drhso, maxcoeffs, mcolsp,

dvalp)

Arguments
qrtype The type of the row:

L indicates a ≤ row;
G indicates a ≥ row.

mcolso Array containing the column indices of the row to presolve.

dvalo Array containing the non-zero coefficients of the row to presolve.

drhso The right-hand side constant of the row to presolve.

maxcoeffs Maximum number of elements to return in the mcolsp and dvalp arrays.

mcolsp Array which will be filled with the column indices of the presolved row.

dvalp Array which will be filled with the coefficients of the presolved row.

Example
Adding the row 2x1 + x2 ≤ 1 to our presolved problem can be done as follows:

presind = []
prescoe = []
prhs, status = p.presolverow (’L’, [1,2], [2,1], 1.0,

p.attributes.cols, presind, prescoe)

Further information
There are certain presolve operations that can prevent a row from being presolved exactly. If the
row contains a coefficient for a column that was eliminated due to duplicate column reductions
or singleton column reductions, the row might have to be relaxed to remain valid for the
presolved problem. The relaxation will be done automatically by the problem.presolverow
function, but a return status of +1 will be returned. If it is not possible to relax the row, a status of
-2 will be returned instead. Likewise, it is possible that certain dual reductions prevents the row
from being presolved. In such a case a status of -3 will be returned instead.

If problem.presolverow is used for presolving e.g. branching bounds or constraints, then dual
reductions and duplicate column reductions should be disabled, by clearing the corresponding
bits of PRESOLVEOPS. By clearing these bits, the default value for PRESOLVEOPS changes to 471.

If the user knows in advance which columns will have non-zero coefficients in rows that will be
presolved, it is possible to protect these individual columns through the problem.loadsecurevecs
function. This way the Optimizer is left free to apply all possible reductions to the remaining
columns.

Related topics
problem.addcuts, problem.loadsecurevecs, problem.setbranchcuts, problem.storecuts.

Fair Isaac Corporation Confidential and Proprietary Information 279

Reference Manual

problem.printmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis
problem.printmemory ()

Example
The following example loads a problem from file and then prints the dimensions of the arrays.

p.readprob ("Matrix1", "")
p.printmemory ()

The output is similar to the following:

Arrays
and dimensions: Array Item Used Max Allocated Memory Size Items Items
Memory Control MemList 28 103 129 4K String 1 8779 13107 13K
xslp_MEM_STRING Xv 16 2 1000 16K xslp_MEM_XV Xvitem 48 11 1000 47K
xslp_MEM_XVITEM

Further information
printmemory lists the current sizes and amounts used of the variable arrays in the current
problem. For each array, the size of each item, the number used and the number allocated are
shown, together with the size of memory allocated and, where appropriate, the name of the
memory control variable to set the array size. Loading and execution of some problems can be
speeded up by setting the memory controls immediately after the problem is created. If an array
has to be moved to re-allocate it with a larger size, there may be insufficient memory to hold
both the old and new versions; pre-setting the memory controls reduces the number of such
re-allocations which take place and may allow larger problems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 280

Reference Manual

problem.printevalinfo

Purpose
Print a summary of any evaluation errors that may have occurred during solving a problem

Synopsis
problem.printevalinfo ()

Related topics
problem.setcbcoefevalerror

Fair Isaac Corporation Confidential and Proprietary Information 281

Reference Manual

problem.printmsg

Purpose
Print a message string according to the current settings for Xpress Nonlinear output

Synopsis
problem.printmsg (msgtype, msg)

Arguments
MsgType Integer containing the message type. The following types are system-defined:

1 Information message
3 Warning message
4 Error message
Other message types can be used and passed to a user-supplied message handler.

Msg Character string containing the message.

Example
The following example checks the SLP optimization status and prints an informative message for
some of the possible values.

status = p.attributes.xslp_status
if status == 0:
p.printmsg (1, "Fully converged solution")

if status & xp.xslp_maxtime:
p.printmsg (3, "Max time exceeded")

if status & xp.xslp_convergedobjucc:
p.printmsg (1, "Solution with unimportant unconverged values")

Further information
If msgtype is outside the range 1 to 4, any message handler written to handle the standard
message types may not print the message correctly. One of the uses of the fucntion is to provide
a unified means of logging from the callbacks.

Fair Isaac Corporation Confidential and Proprietary Information 282

Reference Manual

problem.read

Purpose
Read an optimization problem into a Python problem object created prior to the call. All formats
allowed by the Xpress Optimizer C API are allowed.

Synopsis
problem.read (filename, flags)

Arguments
filename A string of up to 200 characters with the name of the file to be read.

flags (optional) Flags to pass to read:
l only the .lp version of the file is searched.
z read the input file in compressed .gz format.

Example
Read problem problem1.lp and output an optimal solution:

p.read ("problem1", "l")
p.solve ("", "")
print ("solution of problem1.lp:", p.getSolution ())

Related topics
problem.write.

Fair Isaac Corporation Confidential and Proprietary Information 283

Reference Manual

problem.readbasis

Purpose
Instructs the Optimizer to read in a previously saved basis from a file.

Synopsis
problem.readbasis (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to

be read. If omitted, the default problem_name is used with a .bss extension.

flags (optional) Flags to pass to readbasis:
i output the internal presolved basis.
t input a compact advanced form of the basis;

Example
If an advanced basis is available for the current problem the Optimizer input might be:

p.read ("filename", "")
p.readbasis ("", "")
p.mipoptimize ("")

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.

Further information

1. The only check done when reading compact basis is that the number of rows and columns in the
basis agrees with the current number of rows and columns.

2. readbasis will read the basis for the original problem even if the problem has been presolved.
The Optimizer will read the basis, checking that it is valid, and will display error messages if it
detects inconsistencies.

Related topics
problem.loadbasis, problem.writebasis.

Fair Isaac Corporation Confidential and Proprietary Information 284

Reference Manual

problem.readbinsol

Purpose
Reads a solution from a binary solution file.

Synopsis
problem.readbinsol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the solution is

to be read. If omitted, the default problem_name is used with a .sol extension.

flags (optional) Flags to pass to readbinsol:
m load the solution as a solution for the MIP.

Example
A previously saved solution can be loaded into memory and a print file created from it with the
following commands:

p.read ("myprob", "")
p.readbinsol ("", "")
p.writeprtsol ("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.writebinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 285

Reference Manual

problem.readdirs

Purpose
Reads a directives file to help direct the global search.

Synopsis
problem.readdirs (filename)

Argument
filename A string of up to 200 characters containing the file name from which the directives

are to be read. If omitted (or None), the default problem_name is used with a .dir
extension.

Example
The following example reads in directives from the file dirfile.dir for use with the problem,
prob2:

p.read ("prob2","")
p.readdirs ("dirfile")
p.mipoptimize ("")

Further information

1. Directives cannot be read in after a model has been presolved, so unless presolve has been
disabled by setting PRESOLVE to 0, this command must be issued before problem.mipoptimize.

2. Directives can be given relating to priorities, forced branching directions, pseudo costs and model
cuts. There is a priority value associated with each global entity. The lower the number, the more
likely the entity is to be selected for branching; the higher, the less likely. By default, all global
entities have a priority value of 500 which can be altered with a priority entry in the directives
file. In general, it is advantageous for the entity’s priority to reflect its relative importance in the
model. Priority entries with values in excess of 1000 are illegal and are ignored. A full description
of the directives file format may be found in the Xpress Optimizer reference manual.

3. By default, problem.mipoptimize will explore the branch expected to yield the best integer
solution from each node, irrespective of whether this forces the global entity up or down. This
can be overridden with an UP or DN entry in the directives file, which forces mipoptimize to branch
up first or down first on the specified entity.

4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default
mipoptimize uses dual information to calculate estimates of the unit up and down costs and these
are added to the default pseudo costs which are set to the PSEUDOCOST control. The default
pseudo costs can be overridden by a PU or PD entry in the directives file.

5. If model cuts are used, then the specified constraints are removed from the problem and added
to the Optimizer cut pool, and only put back in the problem when they are violated by an LP
solution at one of the nodes in the global search.

6. If creating a directives file by hand, wild cards can be used to specify several vectors at once, for
example PR x1* 2 will give all global entities whose names start with x1 a priority of 2.

Related topics
problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 286

Reference Manual

problem.readslxsol

Purpose
Reads an ASCII solution file (.slx) created by the problem.writeslxsol function.

Synopsis
problem.readslxsol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to

be read. If omitted, the default problem_name is used with a .slx extension.

flags (optional) Flags to pass to writeslxsol:
l read the solution as an LP solution in case of a MIP problem;
m read the solution as a solution for the MIP problem;
a reads multiple MIP solutions from the .slx file and adds them to the MIP

problem;

Example

p.readslxsol ("lpsolution", "")

This loads the solution to the MIP problem if the problem contains global entities, or otherwise
loads it as an LP (barrier in case of quadratic problems) solution into the problem.

Further information

1. When readslxsol is called before a MIP solve, the loaded solutions will not be checked before
calling problem.mipoptimize. By default, only the last MIP solution read from the .slx file will be
stored. Use the a flag to store all MIP solutions read from the file.

2. When using the a flag, read solutions will be queued similarly to the user of the
problem.addmipsol function. Each name string given by the NAME field in the .slx file will be
associated with the corresponding solution. Any registered usersolnotify callback will be fired
when the solution has been checked, and will include the read name string as one of its
arguments.

3. Refer to the Appendix of the Xpress Optimizer reference manual on Log and File Formats for a
description of the ASCII Solution (.slx) file format.

Related topics
problem.readbinsol, problem.writeslxsol problem.writebinsol problem.readbinsol
problem.addmipsol, problem.addcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 287

Reference Manual

problem.refinemipsol

Purpose
Runs the MIP solution refiner.

Synopsis
problem.refinemipsol (options, flags, solution, refined_solution)

Arguments
options Refinement options:

0 Reducing MIP fractionality is priority.
1 Reducing LP infeasiblity is priority

flags Flags passed to any optimization calls during refinement.

solution The MIP solution to refine. Must be a valid MIP solution.

refined_solution The refined MIP solution in case of success

refinestatus Refinement results:
0 An error has occurred
1 The solution has been refined
2 Current solution meets target criteria
3 Solution cannot be refined

Further information
The function provides a mechanism to refine the MIP solution by attempting to round any
fractional global entity and by attempting to reduce LP infeasiblity.

Related topics
REFINEOPS.

Fair Isaac Corporation Confidential and Proprietary Information 288

Reference Manual

problem.reinitialize

Purpose
Reset the SLP problem to match a just augmented system

Synopsis
problem.reinitialize ()

Further information
Can be used to rerun the SLP optimization process with updated parameters, penalties or initial
values, but unchanged augmentation.

Related topics
problem.createprob, problem.destroyprob, problem.unconstruct, problem.setcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 289

Reference Manual

problem.removecbbariteration

Purpose
Removes a barrier iteration callback function previously added by addcbbariteration. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbbariteration (f_bariteration, object)

Arguments
f_bariteration The callback function to remove. If None then all bariteration callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all barrier iteration callbacks with the function pointer
f_bariteration will be removed.

Related topics
problem.addcbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 290

Reference Manual

problem.removecbbarlog

Purpose
Removes a newton barrier log callback function previously added by addcbbarlog. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbbarlog (f_barlog, object)

Arguments
f_barlog The callback function to remove. If None then all barrier log callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all barrier log callbacks with the function pointer f_barlog
will be removed.

Related topics
problem.addcbbarlog.

Fair Isaac Corporation Confidential and Proprietary Information 291

Reference Manual

problem.removecbchgbranchobject

Purpose
Removes a callback function previously added by addcbchgbranchobject. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbchgbranchobject (f_chgbranchobject, object)

Arguments
f_chgbranchobject The callback function to remove. If None then all branch object callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, the object value will
not be checked and all branch object callbacks with the function pointer
f_chgbranchobject will be removed.

Related topics
problem.addcbchgbranchobject.

Fair Isaac Corporation Confidential and Proprietary Information 292

Reference Manual

problem.removecbcutlog

Purpose
Removes a cut log callback function previously added by addcbcutlog. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbcutlog (f_cutlog, object)

Arguments
f_cutlog The callback function to remove. If None then all cut log callback functions added

with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all cut log callbacks with the function pointer f_cutlog will
be removed.

Related topics
problem.addcbcutlog.

Fair Isaac Corporation Confidential and Proprietary Information 293

Reference Manual

problem.removecbdestroymt

Purpose
Removes a slave thread destruction callback function previously added by addcbdestroymt. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbdestroymt (f_destroymt, object)

Arguments
f_destroymt The callback function to remove. If None then all thread destruction callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all thread destruction callbacks with the function pointer
f_destroymt will be removed.

Related topics
problem.addcbdestroymt.

Fair Isaac Corporation Confidential and Proprietary Information 294

Reference Manual

problem.removecbgapnotify

Purpose
Removes a callback function previously added by problem.addcbgapnotify. The specified callback
function will no longer be removed after it has been returned.

Synopsis
problem.removecbgapnotify (f_gapnotify, object)

Arguments
f_gapnotify The callback function to remove. If None then all gapnotify callback functions

added with the given user-defined pointer value will be removed.

object The user-defined pointer value that the callback was added with. If None then the
pointer value will not be checked and all the gapnotify callbacks with the function
pointer f_gapnotify will be removed.

Related topics
problem.addcbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 295

Reference Manual

problem.removecbgloballog

Purpose
Removes a global log callback function previously added by addcbgloballog. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbgloballog (f_globallog, object)

Arguments
f_globallog The callback function to remove. If None then all global log callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all global log callbacks with the function pointer
f_globallog will be removed.

Example
The following code sets and removes a callback function:

prob.controls.miplog = 3
prob.addcbgloballog (globalLog, None, 0)
prob.mipoptimize ("")
prob.removecbgloballog (globalLog, None)

Related topics
problem.addcbgloballog.

Fair Isaac Corporation Confidential and Proprietary Information 296

Reference Manual

problem.removecbinfnode

Purpose
Removes a user infeasible node callback function previously added by addcbinfnode. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbinfnode (f_infnode, object)

Arguments
f_infnode The callback function to remove. If None then all user infeasible node callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all user infeasible node callbacks with the function pointer
f_infnode will be removed.

Related topics
problem.addcbinfnode.

Fair Isaac Corporation Confidential and Proprietary Information 297

Reference Manual

problem.removecbintsol

Purpose
Removes an integer solution callback function previously added by addcbintsol. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbintsol (f_intsol, object)

Arguments
f_intsol The callback function to remove. If None then all integer solution callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all integer solution callbacks with the function pointer
f_intsol will be removed.

Related topics
problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 298

Reference Manual

problem.removecblplog

Purpose
Removes a simplex log callback function previously added by addcblplog. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecblplog (f_lplog, object)

Arguments
f_lplog The callback function to remove. If None then all lplog callback functions added

with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all lplog callbacks with the function pointer f_lplog will
be removed.

Example
The following code sets and removes a callback function:

prob.controls.lplog = 10
prob.addcblplog (lpLog, None, 0)
prob.readprob ("problem", "")
prob.lpoptimize ("")
prob.removecblplog (lpLog, None)

Related topics
problem.addcblplog.

Fair Isaac Corporation Confidential and Proprietary Information 299

Reference Manual

problem.removecbmessage

Purpose
Removes a message callback function previously added by addcbmessage. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbmessage (f_message, object)

Arguments
f_message The callback function to remove. If None then all message callback functions added

with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all message callbacks with the function pointer f_message
will be removed.

Related topics
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 300

Reference Manual

problem.removecbmipthread

Purpose
Removes a callback function previously added by addcbmipthread. The specified callback function
will no longer be called after it has been removed.

Synopsis
problem.removecbmipthread (f_mipthread, object)

Arguments
f_mipthread The callback function to remove. If None then all variable branching callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all variable branching callbacks with the function pointer
f_mipthread will be removed.

Related topics
problem.addcbmipthread.

Fair Isaac Corporation Confidential and Proprietary Information 301

Reference Manual

problem.removecbnewnode

Purpose
Removes a new-node callback function previously added by addcbnewnode. The specified callback
function will no longer be called after it has been removed.

Synopsis
problem.removecbnewnode (f_newnode, object)

Arguments
f_newnode The callback function to remove. If None then all separation callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all separation callbacks with the function pointer
f_newnode will be removed.

Related topics
problem.addcbnewnode.

Fair Isaac Corporation Confidential and Proprietary Information 302

Reference Manual

problem.removecbnodecutoff

Purpose
Removes a node-cutoff callback function previously added by addcbnodecutoff. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbnodecutoff (f_nodecutoff, object)

Arguments
f_nodecutoff The callback function to remove. If None then all node-cutoff callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all node-cutoff callbacks with the function pointer
f_nodecutoff will be removed.

Related topics
problem.addcbnodecutoff.

Fair Isaac Corporation Confidential and Proprietary Information 303

Reference Manual

problem.removecboptnode

Purpose
Removes a node-optimal callback function previously added by addcboptnode. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecboptnode (f_optnode, object)

Arguments
f_optnode The callback function to remove. If None then all node-optimal callback functions

added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all node-optimal callbacks with the function pointer
f_optnode will be removed.

Related topics
problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 304

Reference Manual

problem.removecbpreintsol

Purpose
Removes a pre-integer solution callback function previously added by addcbpreintsol. The
specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbpreintsol (f_preintsol, object)

Arguments
f_preintsol The callback function to remove. If None then all user infeasible node callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all user infeasible node callbacks with the function pointer
f_preintsol will be removed.

Related topics
problem.addcbpreintsol.

Fair Isaac Corporation Confidential and Proprietary Information 305

Reference Manual

problem.removecbprenode

Purpose
Removes a preprocess node callback function previously added by addcbprenode. The specified
callback function will no longer be called after it has been removed.

Synopsis
problem.removecbprenode (f_prenode, object)

Arguments
f_prenode The callback function to remove. If None then all preprocess node callback

functions added with the given user-defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all preprocess node callbacks with the function pointer
f_prenode will be removed.

Related topics
problem.addcbprenode.

Fair Isaac Corporation Confidential and Proprietary Information 306

Reference Manual

problem.removecbusersolnotify

Purpose
Removes a user solution notification callback previously added by problem.addcbusersolnotify.
The specified callback function will no longer be called after it has been removed.

Synopsis
problem.removecbusersolnotify (f_usersolnotify, object)

Arguments
f_usersolnotify The callback function to remove. If None then all user solution notification

callback functions added with the given user defined object value will be removed.

object The object value that the callback was added with. If None, then the object value
will not be checked and all integer solution callbacks with the function pointer
f_usersolnotify will be removed.

Related topics
problem.addcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 307

Reference Manual

problem.repairinfeas

Purpose
Provides a simplified interface for problem.repairweightedinfeas. The returned value is as
follows:

� 0: relaxed optimum found;

� 1: relaxed problem is infeasible;

� 2: relaxed problem is unbounded;

� 3: solution of the relaxed problem regarding the original objective is nonoptimal;

� 4: error (when return code is nonzero);

� 5: numerical instability;

� 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairinfeas (pflags, oflags, gflags, lrp, grp, lbp, ubp, delta)

Arguments
pflags The type of penalties created from the preferences:

c each penalty is the reciprocal of the preference (default);
s the penalties are placed in the scaled problem.

oflags Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for

the analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for

the analys of the problem.
gflags Specifies if the global search should be done:

g do the global search (default);
l solve as a linear model ignoring the discreteness of variables.

lrp Preference for relaxing the less or equal side of row.

grp Preference for relaxing the greater or equal side of a row.

lbp Preferences for relaxing lower bounds.

ubp Preferences for relaxing upper bounds.

delta The relaxation multiplier in the second phase -1. A positive value means a relative
relaxation by multiplying the first phase objective with (delta-1), while a negative
value means an absolute relaxation, by adding abs(delta) to the first phase
objective.

Fair Isaac Corporation Confidential and Proprietary Information 308

Reference Manual

Further information

1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the
infeasibility of the row or bound. Suppose for example that row aTx = b is relaxed from below.
Then a new variable (infeasibility breaker) s>=0 is added to the row, which becomes aTx +s = b.
Observe that aTx may now take smaller values than b. To minimize such violations, the weighted
sum of these new variables is minimized.

2. A preference of 0 results in the row or bound not being relaxed.

3. A negative preference indicates that a quadratic penalty cost should be applied. This can
specified on a per constraint side or bound basis.

4. Note that the set of preferences are scaling independent.

5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the
sum of violations is restricted to be no greater than (1+delta)p, and the problem is optimized
with respect to the original objective function. A nonzero delta increases the freedom of the
original problem.

6. Note that on some problems, slight modifications of delta may affect the value of the original
objective drastically.

7. Note that because of their special associated modeling properties, binary and semi-continuous
variables are not relaxed.

8. The default algorithm for the first phase is the simplex algorithm, since the primal problem can
be efficiently warm started in case of the extended problem. These may be altered by setting the
value of control DEFAULTALG.

9. If pflags is set such that each penalty is the reciprocal of the preference, the following rules are
applied while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0

lrp = rows aTx - aux_var = b 1/lrp*aux_var 1/lrp*aux_var2

lrp <= rows aTx - aux_var <= b 1/lrp*aux_var 1/lrp*aux_var2

grp = rows aTx + aux_var = b 1/grp*aux_var 1/grp*aux_var2

grp >= rows aTx + aux_var >= b 1/grp*aux_var 1/grp*aux_var2

ubp upper bounds xi - aux_var <= u 1/ubp*aux_var 1/ubp*aux_var2

lbp lower bounds xi + aux_var >= l 1/lbp*aux_var 1/lbp*aux_var2

10. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through
the IIS retrieval fucntions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairweightedinfeas.

Fair Isaac Corporation Confidential and Proprietary Information 309

Reference Manual

problem.repairweightedinfeas

Purpose
By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to
identify a ’solution’ that violates the selected set of constraints and bounds minimally, while
satisfying all other constraints and bounds. Among such solution candidates, it selects one that is
optimal regarding to the original objective function. Similar to repairinfeas, the returned value
is as follows:

� 1: relaxed problem is infeasible;

� 2: relaxed problem is unbounded;

� 3: solution of the relaxed problem regarding the original objective is nonoptimal;

� 4: error (when return code is nonzero);

� 5: numerical instability;

� 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairweightedinfeas (lrp_array, grp_array, lbp_array,

ubp_array, phase2, delta, optflags)

Arguments
lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of

row.

grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side
of a row.

lbp_array Array of size COLS containing the preferences for relaxing lower bounds.

ubp_array Array of size COLS containing preferences for relaxing upper bounds.

phase2 Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for

the analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for

the analys of the problem.
delta The relaxation multiplier in the second phase -1.

optflags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 310

Reference Manual

Further information

1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the
infeasibility of the row or bound. Suppose for example that row aTx = b is relaxed from below.
Then a new variable (’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b.
Observe that aTx may now take smaller values than b. To minimize such violations, the weighted
sum of these new variables is minimized.

2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the
more willing the modeller is to relax a given row or bound.

3. The weight of each infeasibility breaker in the objective minimizing the violations is 1/p, where p
is the preference associated with the infeasibility breaker. Thus the higher the preference is, the
lower a penalty is associated with the infeasibility breaker while minimizing the violations.

4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the
sum of violations is restricted to be no greater than (1+delta)p, and the problem is optimized
with respect to the original objective function. A nonzero delta increases the freedom of the
original problem.

5. Note that on some problems, slight modifications of delta may affect the value of the original
objective drastically.

6. Note that because of their special associated modeling properties, binary and semi-continuous
variables are not relaxed.

7. If pflags is set such that each penalty is the reciprocal of the preference, the following rules are
applied while introducing the auxiliary variables:

Pref. array Affects Relaxation Cost if pref.>0 Cost if pref.<0

lrp_array = rows aTx - aux_var = b 1/lrp*aux_var 1/lrp*aux_var2

lrp_array <= rows aTx - aux_var <= b 1/lrp*aux_var 1/lrp*aux_var2

grp_array = rows aTx + aux_var = b 1/grp*aux_var 1/grp*aux_var2

grp_array >= rows aTx + aux_var >= b 1/grp*aux_var 1/grp*aux_var2

ubp_array upper bounds xi - aux_var <= u 1/ubp*aux_var 1/ubp*aux_var2

lbp_array lower bounds xi + aux_var >= l 1/lbp*aux_var 1/lbp*aux_var2

8. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through
the IIS retrieval fucntions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairinfeas, problem.repairweightedinfeasbounds.

Fair Isaac Corporation Confidential and Proprietary Information 311

Reference Manual

problem.repairweightedinfeasbounds

Purpose
An extended version of problem.repairweightedinfeas that allows for bounding the level of
relaxation allowed. The returned value is the same as repairweightedinfeas.

Synopsis
status = problem.repairweightedinfeasbounds (lrp_array, grp_array, lbp_array,

ubp_array, lrb_array, grb_array, lbb_array, ubb_array, phase2, delta, optflags)

Arguments
lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of

row.

grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side
of a row.

lbp_array Array of size COLS containing the preferences for relaxing lower bounds.

ubp_array Array of size COLS containing preferences for relaxing upper bounds.

lrb_array Array of size ROWS containing the upper bounds on the amount the less or equal
side of a row can be relaxed.

grb_array Array of size ROWS containing the upper bounds on the amount the greater or
equal side of a row can be relaxed.

lbb_array Array of size COLS containing the upper bounds on the amount the lower bounds
can be relaxed.

ubb_array Array of size COLS containing the upper bounds on the amount the upper bounds
can be relaxed.

phase2 Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for

the analys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for

the analys of the problem.
delta The relaxation multiplier in the second phase -1.

optflags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 312

Reference Manual

Further information

1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the
infeasibility of the row or bound. Suppose for example that row aTx = b is relaxed from below.
Then a new variable (’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b.
Observe that aTx may now take smaller values than b. To minimize such violations, the weighted
sum of these new variables is minimized.

2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the
more willing the modeller is to relax a given row or bound.

3. A negative preference indicates that a quadratic penalty cost should be applied. This can
specified on a per constraint side or bound basis.

4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the
sum of violations is restricted to be no greater than (1+delta)p, and the problem is optimized
with respect to the original objective function. A nonzero delta increases the freedom of the
original problem.

5. Note that on some problems, slight modifications of delta may affect the value of the original
objective drastically.

6. Note that because of their special associated modeling properties, binary and semi-continuous
variables are not relaxed.

7. Given any row j with preferences lrp=lrp_array[j] and grp=grp_array[j], or variable i with
bound preferences ubp=ubp_array[i] and lbp=lbp_array[i], the following rules are applied
while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0

lrp = rows aTx - aux_var = b 1/lrp*aux_var 1/lrp*aux_var2

lrp <= rows aTx - aux_var <= b 1/lrp*aux_var 1/lrp*aux_var2

grp = rows aTx + aux_var = b 1/grp*aux_var 1/grp*aux_var2

grp >= rows aTx + aux_var >= b 1/grp*aux_var 1/grp*aux_var2

ubp upper bounds xi - aux_var <= u 1/ubp*aux_var 1/ubp*aux_var2

lbp lower bounds xi + aux_var >= l 1/lbp*aux_var 1/lbp*aux_var2

8. Only positive bounds are applied; a zero or negative bound is ignored and the amount of
relaxation allowed for the corresponding row or bound is not limited. The effect of a zero bound
on a row or bound would be equivalent with not relaxing it, and can be achieved by setting its
preference array value to zero instead, or not including it in the preference arrays.

9. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through
the IIS retrieval fucntions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairinfeas.

Fair Isaac Corporation Confidential and Proprietary Information 313

Reference Manual

problem.reset

Purpose
Clears all information regarding an optimization problem and returns it to the same status as it
would be after creation (i.e. after the instruction p = xpress.problem ()).

Synopsis
problem.reset ()

Example

p = xpress.problem ()
p.read ("problem0", "l")
p.solve ()
x0 = p.getSolution ()
p.reset ()
p.read ("problem1", "")
p.solve ()
x1 = p.getSolution ()

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 314

Reference Manual

problem.restore

Purpose
Restores the Optimizer’s data structures from a file created by problem.save. Optimization may
then recommence from the point at which the file was created.

Synopsis
problem.restore (probname, flags)

Arguments
probname A string of up to 200 characters containing the problem name.

flags f Force the restoring of a save file even if its from a different version.

Example

p.restore ("", "")

Further information

1. This routine restores the data structures from the file probname.svf that was created by a
previous execution of save. The file probname.sol is also required and, if recommencing
optimization in a global search, the files problem_name.glb and problem_name.ctp are
required too. Note that .svf files are particular to the release of the Optimizer used to create
them. They can only be read using the same release Optimizer as used to create them.

2. The use of the ’f’ flag is not recommended and can cause unexpected results.

Related topics
problem.save.

Fair Isaac Corporation Confidential and Proprietary Information 315

Reference Manual

problem.rhssa

Purpose
Returns upper and lower sensitivity ranges for specified right hand side (RHS) function
coefficients. If the RHS coefficients are varied within these ranges the current basis remains
optimal and the reduced costs remain valid.

Synopsis
problem.rhssa (mindex, lower, upper)

Arguments
mindex Array containing the indices of the rows whose RHS coefficients sensitivity ranges

are required.

lower Array where the RHS lower range values are to be returned.

upper Array where the RHS upper range values are to be returned.

Example
Here we obtain the RHS function ranges for the three columns: 2, 6 and 8:

l = []
u = []
p.rhssa ([2,8,6], l, u)

After which lower and upper contain:

l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤ rhs6,
rhsi being the RHS coefficient of row i.

Further information
rhssa can only be called when an optimal solution to the current LP has been found. It cannot be
used when the problem is MIP presolved.

Related topics
problem.objsa.

Fair Isaac Corporation Confidential and Proprietary Information 316

Reference Manual

problem.save

Purpose
Saves the current data structures, i.e. matrices, control settings and problem attribute settings to
file and terminates the run so that optimization can be resumed later.

Synopsis
problem.save ()

Example

p.save ()

Further information
The data structures are written to the file problem_name.svf. Optimization may recommence
from the same point when the data structures are restored by a call to problem.restore. Under
such circumstances, the file problem_name.sol and, if a branch and bound search is in progress,
the global files problem_name.glb and problem_name.ctp are also required. These files will be
present after execution of save, but will be modified by subsequent optimization, so no
optimization calls may be made after the call to save. Note that the .svf files created are
particular to the release of the Optimizer used to create them. They can only be read using the
same release Optimizer as used to create them.

Related topics
problem.restore.

Fair Isaac Corporation Confidential and Proprietary Information 317

Reference Manual

problem.scale

Purpose
Re-scales the current problem.

Synopsis
problem.scale (mrscal, mcscal)

Arguments
mrscal Array of size ROWS containing the exponents of the powers of 2 with which to scale

the rows, or None if not required.

mcscal Array of size COLS containing the exponents of the powers of 2 with which to scale
the columns, or None if not required.

Example

p.read ("prob1", "")
p.scale ([1] * p.attributes.rows, [3] * p.attributes.cols)
p.lpoptimize ("")

This reads the MPS file prob1.mat, rescales the problem and seeks the minimum objective value.

Further information

1. If mrscal and mcscal are both non-None then they will be used to scale the problem. Otherwise
the problem will be scaled according to the control SCALING. This routine may be useful when the
current problem has been modified by calls to routines such as problem.chgmcoef and
problem.addrows.

2. scale cannot be called if the current problem is presolved.

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 318

Reference Manual

problem.scaling

Purpose
Analyze the current matrix for largest/smallest coefficients and ratios

Synopsis
problem.scaling ()

Example
The following example analyzes the matrix

p.scaling ()

Further information
The current matrix (including augmentation if it has been carried out) is scanned for the absolute
and relative sizes of elements. The following information is reported:

� Largest and smallest elements in the matrix;

� Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between
10 and 100);

� List of the rows (with largest and smallest elements) which appear in the highest range;

� Counts of the ranges of column ratios in powers of 10;

� List of the columns (with largest and smallest elements) which appear in the highest range;

� Element ranges in powers of 10.

Where any of the reported items (largest or smallest element in the matrix or any reported row
or column element) is in a penalty error vector, the results are repeated, excluding all penalty
error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 319

Reference Manual

problem.setbranchbounds

Purpose
Specifies the bounds previously stored using problem.storebounds that are to be applied in order
to branch on a user global entity.

Synopsis
problem.setbranchbounds (mindex)

Argument
mindex Object previously defined in a call to problem.storebounds that references the

stored bounds to be used to separate the node.

Related topics
problem.loadcuts, problem.storebounds, Section "Working with the cut manager" of the Xpress
Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 320

Reference Manual

problem.setbranchcuts

Purpose
Specifies the cuts in the cut pool that are to be applied in order to branch on a user global entity..

Synopsis
problem.setbranchcuts (mindex)

Argument
mindex Array containing the pointers to the cuts in the cut pool that are to be applied.

Typically obtained from problem.storecuts.

Related topics
problem.getcpcutlist, problem.storecuts, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 321

Reference Manual

problem.setcbcascadeend

Purpose
Set a user callback to be called at the end of the cascading process, after the last variable has
been cascaded

Synopsis
problem.setcbcascadeend (userfunc, object)
value = userfunc (prob, myobject)

Arguments
userfunc The function to be called at the end of the cascading process. userfunc returns an

integer value. The return value is noted by Xpress SLP but it has no effect on the
optimization.

prob The problem passed to the callback function.

myobject The user-defined object passed as object to setcbcascadeend.

object User-defined object, which can be used for any purpose by the function. object is
passed to userfunc as my_object.

Example
The following example sets up a callback to be executed at the end of the cascading process
which checks if any of the values have been changed significantly:

csol = [1,2,3,4]
p.setcbcascadeend (CBCascEnd, csol)

A suitable callback function might resemble this:

def CBCascEnd (prob, obj):
for iCol in range (prob.controls.cols):
(a,b,c,s,d,e,f,value,g,h,i,j,k,l,m,n) = prob.getvar (iCol)
if (abs (value - obj[iCol]) > .01) :
print ("Col {0} changed from {1} to {2}".format (iCol, obj[iCol], value)

return 0

The obj argument is used here to hold the original solution values.

Further information
This callback can be used at the end of the cascading, when all the solution values have been
recalculated.

Related topics
problem.cascade, problem.setcbcascadestart, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 322

Reference Manual

problem.setcbcascadestart

Purpose
Set a user callback to be called at the start of the cascading process, before any variables have
been cascaded

Synopsis
problem.setcbcascadestart (userfunc, object)
retval = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called at the start of the cascading process. userfunc returns an

integer value. If the return value is nonzero, the cascading process will be omitted
for the current SLP iteration, but the optimization will continue.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbcascadestart.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Further information
This callback can be used at the start of the cascading, before any of the solution values have
been recalculated.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 323

Reference Manual

problem.setcbcascadevar

Purpose
Set a user callback to be called after each column has been cascaded

Synopsis
problem.setcbcascadevar (userfunc, object)
retval = userfunc (my_prob, my_object, colindex)

Arguments
userfunc The function to be called after each column has been cascaded. userfunc returns

an integer value. If the return value is nonzero, the cascading process will be
omitted for the remaining variables during the current SLP iteration, but the
optimization will continue.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to problem.setcbcascadevar.

ColIndex The number of the column which has been cascaded.

Object User-defined object, which can be used for any purpose by the function. object is
passed to userfunc as my_object.

Example
The following example sets up a callback to be executed after each variable has been cascaded:

obj = []
p.setcbcascadevar (CBCascVar, obj)

The following sample callback function resets the value of the variable if the cascaded value is of
the opposite sign to the original value:

def CBCascVar (myprob, obj, iCol):
(a,b,c,d,e,f,value,g,h,i,j,k,l,m,n) = myprob.getvar (iCol)
if (value * obj[iCol] < 0):
p.chgvar (myprob, ColNum, None, None, None, None,

None, None, obj[iCol], None, None, None,
None)

return 0

The object argument is used here to hold the address of the array cSol which we assume has
been populated with the original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been
calculated.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 324

Reference Manual

problem.setcbcascadevarfail

Purpose
Set a user callback to be called after cascading a column was not successful

Synopsis
problem.setcbcascadevarfail (userfunc, object)
retval = userfunc (my_prob, my_object, colindex)

Arguments
userfunc The function to be called after cascading a column was not successful. userfunc

returns an integer value. If the return value is nonzero, the cascading process will
be omitted for the remaining variables during the current SLP iteration, but the
optimization will continue.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbcascadevarfail.

ColIndex The number of the column which has been cascaded.

Object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Further information
This callback can be used to provide user defined updates for SLP variables having a determining
row that were not successfully cascaded due to the determining row being close to singular
around the current values. This callback will always be called in place of the cascadevar callback
in such cases, and in no situation will both the cascadevar and the cascadevarfail callback be
called in the same iteration for the same variable.

Related topics
problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 325

Reference Manual

problem.setcbcoefevalerror

Purpose
Set a user callback to be called when an evaluation of a coefficient fails during the solve

Synopsis
problem.setcbcoefevalerror (userfunc, object)
retval = userfunc (my_prob, my_object, rowindex, colIndex)

Arguments
userfunc The function to be called when an evaluation fails.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbcoefevalerror.

RowIndex The row position of the coefficient.

ColIndex The column position of the coefficient.

Object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Further information
This callback can be used to capture when an evaluation of a coefficient fails. The callback is
called only once for each coefficient.

Related topics
problem.printevalinfo

Fair Isaac Corporation Confidential and Proprietary Information 326

Reference Manual

problem.setcbconstruct

Purpose
Set a user callback to be called during the Xpress SLP augmentation process

Synopsis
problem.setcbconstruct (userfunc, object)
retval = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called during problem augmentation. userfunc returns an

integer value. See below for an explanation of the values.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbconstruct.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback to be executed during the Xpress SLP problem
augmentation:

value = []
p.setcbconstruct (CBConstruct, value);

The following sample callback function sets values for the variables the first time the function is
called and returns to problem.construct to recalculate the initial matrix. The second time it is
called it frees the allocated memory and returns to problem.construct to proceed with the rest
of the augmentation.

def CBConstruct (myprob, obj) {
if (obj == None):
n = myprob.attributes.cols
cValue = n * [0]
initialize with values (not shown here)
for i in range (n):
store into SLP structures
myprob.chgvar (i, None, None, None, None,

None, None, cValue[i], None, None, None,
None)

set Object non-null to indicate we have processed data
obj = cValue
return -1

else:
obj = None

return 0

Further information
This callback can be used during the problem augmentation, generally (although not exclusively)
to change the initial values for the variables.

The following return codes are accepted:

0 Normal return: augmentation continues

-1 Return to recalculate matrix values

-2 Return to recalculate row weights and matrix entries

Fair Isaac Corporation Confidential and Proprietary Information 327

Reference Manual

other Error return: augmentation terminates, problem.construct terminates with a
nonzero error code.

The return values -1 and -2 will cause the callback to be called a second time after the matrix has
been recalculated. It is the responsibility of the callback to ensure that it does ultimately exit with
a return value of zero.

Related topics
problem.construct

Fair Isaac Corporation Confidential and Proprietary Information 328

Reference Manual

problem.setcbdestroy

Purpose
Set a user callback to be called when an SLP problem is about to be destroyed

Synopsis
problem.setcbdestroy (userfunc, object) int (XPRS_CC *userfunc) (XSLPprob my_prob,

void *my_object), void *Object)

Arguments
userfunc The function to be called when the SLP problem is about to be destroyed. userfunc

returns an integer value. At present the return value is ignored.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbdestroy.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback to be executed before the SLP problem is destroyed:

p.setcbdestroy (CBDestroy, cSol)

The following sample callback function frees the memory associated with the user-defined object:

def CBDestroy (myprob, Obj):
if (Obj != None):
Obj.inuse = 0

return 0

The object argument is used here to hold the address of the array cSol which we assume was
assigned using one of the malloc functions.

Further information
This callback can be used when the problem is about to be destroyed to free any user-defined
resources which were allocated during the life of the problem.

Related topics
problem.destroyprob

Fair Isaac Corporation Confidential and Proprietary Information 329

Reference Manual

problem.setcbdrcol

Purpose
Set a user callback used to override the update of variables with small determining column

Synopsis
problem.setcbdrcol (userfunc, object)
newvalue = userfunc (my_prob, my_object, colindex, drcolindex, drcolvalue, vlb, vub)

Arguments
userfunc The function to be called after each column has been cascaded. userfunc returns

an integer value. If the return value is positive, it will indicate that the value has
been fixed, and cascading should be omitted for the variable. A negative value
indicates that a previously fixed value has been relaxed. If no action is taken, a 0
return value should be used.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbcascadevar.

ColIndex The index of the column for which the determining columns is checked.

DrColIndex The index of the determining column for the column that is being updated.

DrColValue The value of the determining column in the current SLP iteration.

NewValue Used to return the new value for column ColIndex, should it need to be updated,
in which case the callback must return a positive value to indicate that this value
should be used.

VLB The original lower bound of column ColIndex. The callback provides this value as a
reference, should the bound be updated or changed during the solution process.

VUB The original upper bound of column ColIndex. The callback provides this value as a
reference, should the bound be updated or changed during the solution process.

object Address of a user-defined object, which can be used for any purpose. by the
function. object is passed to userfunc as my_object.

Further information
If set, this callback is called as part of the cascading procedure. Please see the chapter on
cascading of the SLP Reference Manual for more information.

Related topics
xslp_DRCOLTOL, problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart

Fair Isaac Corporation Confidential and Proprietary Information 330

Reference Manual

problem.setcbformula

Purpose
Set a callback to be used in formula evaluation when an unknown token is found

Synopsis
problem.setcbformula (userfunc, object)
(retval = result) = userfunc (my_prob, my_object, value)

Arguments
userfunc The function to be called during formula evaluation. userfunc returns an integer

value. At present the value is ignored.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbformula.

value The Value of the unknown token.

result Address of a double precision value to hold the result of the calculation.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets a callback to process unknown tokens in formulae. It then creates a
formula with an unknown token, and evaluates it.

def MyCB (MyProb, MyObject, MyValue):
if (MyValue == None):
Result = 1

else:
Result = 0

return (0, Result)

p.setcbformula (MyCB,None);

nToken = 0;
type = [xslp_op_con, xslp_op_unknown, xslp_op_op, xslp_op_eof]
value = [10, z, xslp_op_plus, 0]

answer = p.evaluateformula (1, type, value)

printf ("Answer:", answer)

This demonstrates how the value of an unknown token can be set in any way, as long as the
routine that sets the token up and the callback agree on how it is to be interpreted. In this case,
the value actually contains the address of a character string, which is converted by the callback
into a real number.

Related topics
problem.evaluateformula

Fair Isaac Corporation Confidential and Proprietary Information 331

Reference Manual

problem.setcbiterend

Purpose
Set a user callback to be called at the end of each SLP iteration

Synopsis
problem.setcbiterend (userfunc, object)
retval = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called at the end of each SLP iteration. userfunc returns an

integer value. If the return value is nonzero, the SLP iterations will stop.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbiterend.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback to be executed at the end of each SLP iteration. It
records the number of LP iterations in the latest optimization and stops if there were fewer than
10:

p.setcbiterend (CBIterEnd, None)

A suitable callback function might resemble this:

def CBIterEnd (MyProb, Obj):
niter = MyProb.attributes.simplexiter
return (niter < 10)

The object argument is not used here, and so is passed as None.

Further information
This callback can be used at the end of each SLP iteration to carry out any further processing
and/or stop any further SLP iterations.

Related topics
problem.setcbiterstart, problem.setcbitervar, problem.setcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 332

Reference Manual

problem.setcbiterstart

Purpose
Set a user callback to be called at the start of each SLP iteration

Synopsis
problem.setcbiterstart (userfunc, object)
retval = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called at the start of each SLP iteration. userfunc returns an

integer value. If the return value is nonzero, the SLP iterations will stop.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbiterstart.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback to be executed at the start of the optimization to save
to save the values of the variables from the previous iteration:

p.setcbiterstart (CBIterStart, cSol)

A suitable callback function might resemble this:

def CBIterStart (MyProb, Obj):
niter = MyProb.attributes.xslp_iter
if nIter == 0:
return 0 # no previous solution

Obj = []
MyProb.getsol(xprob, Obj, None, None, None)
return 0

The object argument is used here to hold the address of the array cSol which we populate with
the solution values.

Further information
This callback can be used at the start of each SLP iteration before the optimization begins.

Related topics
problem.setcbiterend, problem.setcbitervar, problem.setcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 333

Reference Manual

problem.setcbitervar

Purpose
Set a user callback to be called after each column has been tested for convergence

Synopsis
problem.setcbitervar (userfunc, object)
retval = userfunc (my_prob, my_object, colindex)

Arguments
userfunc The function to be called after each column has been tested for convergence.

userfunc returns an integer value. The return value is interpreted as a convergence
status. The possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion

(these values should not normally be returned);
> 10 The variable has converged on user criteria.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbitervar.

ColIndex The number of the column which has been tested for convergence.

object A user-defined object, which can be used for any purpose by the function. object is
passed to userfunc as my_object.

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and
holds a flag for each variable indicating whether it is important that it converges.

Obj = None
p.setcbitervar (CBIterVar, Obj)

The following sample callback function tests if the variable is already converged. If not, then it
checks if the variable is important. If it is not important, the function returns a convergence
status of 99.

def CBIterVar (MyProb, Obj, iCol):
(a,b,c,d,e,f,g,h,i,converged,j,k,l,m,n) = MyProb.getvar (iCol)
if (converged):
return 0

if Obj[iCol]:
return 99

return -1

The object argument is used here to hold the address of the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Related topics
problem.setcbiterend, problem.setcbiterstart, problem.setcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 334

Reference Manual

problem.setcbmessage

Purpose
Set a user callback to be called whenever Xpress Nonlinear outputs a line of text

Synopsis
problem.setcbmessage (userfunc, object)
userfunc (my_prob, my_object, msg, msgtype)

Arguments
userfunc The function to be called whenever Xpress Nonlinear outputs a line of text.

userfunc does not return a value.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbmessage.

msg Character buffer holding the string to be output.

msgtype Type of message. The following are system-defined:
1 Information message
3 Warning message
4 Error message
A negative value indicates that the Optimizer is about to finish and any buffers
should be flushed at this time. User-defined values are also possible for msgtype
which can be passed using problem.printmsg

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example creates a log file into which all messages are placed. System messages are
also printed on standard output:

log = ’’
p.setcbmessage (CBMessage, log)

A suitable callback function could resemble the following:

def CBMessage (Obj, msg, msgtype):
if msgtype < 0:
print (log)
log = ’’
return

if msgtype >= 1 and msgtype <= 4:
print (msg)

else:
log += msg + ’;’

Further information
If a user message callback is defined then screen output is automatically disabled.

Output can be directed into a log file by using problem.setlogfile.

Related topics
problem.setcbmessageF, problem.setlogfile,

Fair Isaac Corporation Confidential and Proprietary Information 335

Reference Manual

problem.setcbmsjobend

Purpose
Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite
the default solution ranking function

Synopsis
problem.setcbmsjobend (userfunc, object)
status = userfunc (my_prob, my_object, job_object, description)

Arguments
userfunc The function to be called when a new multistart job is created

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbmsjobend.

job_object Job specific user-defined object, as specified in by the multistart job creating API
functions.

description The description of the problem as specified in by the multistart job creating API
functions.

status User return status variable:
0 - use the default evaluation of the finished job
1 - disregard the result and continue
2 - stop the multistart search

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
problem.setcbmsjobstart, problem.setcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 336

Reference Manual

problem.setcbmsjobstart

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded
settings are applied

Synopsis
problem.setcbmsjobstart (userfunc, object)
status = userfunc (my_prob, my_object, job_object, description)

Arguments
userfunc The function to be called when a new multistart job is created;

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbmsjobstart.

job_object Job specific user-defined object, as specified in by the multistart job creating API
functions.

description The description of the problem as specified in by the multistart job creating API
functions.

status User return status variable:
0 - normal return, solve the job,
1 - disregard this job and continue,
2 - Stop multistart.

Further information
All mulit-start jobs operation on an independent copy of the original problem, and any
modification to the problem is allowed, including structural changes. Please note however, that
any modification will be carried over to the base problem, should a modified problem be
declared the winner prob.

Related topics
problem.setcbmsjobend, problem.setcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 337

Reference Manual

problem.setcbmswinner

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded
settings are applied

Synopsis
problem.setcbmswinner (userfunc, object)
userfunc (my_prob, my_object, job_object, description)

Arguments
userfunc The function to be called when a new multistart job is created

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbmswinner.

job_object Job specific user-defined object, as specified in by the multistart job creating API
functions.

description The description of the problem as specified in by the multistart job creating API
functions.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
problem.setcbmsjobstart, problem.setcbmsjobend

Fair Isaac Corporation Confidential and Proprietary Information 338

Reference Manual

problem.setcbslpend

Purpose
Set a user callback to be called at the end of the SLP optimization

Synopsis
problem.setcbslpend (userfunc, object)
userfunc (my_prob, my_object)

Arguments
userfunc The function to be called at the end of the SLP optimization. userfunc returns an

integer value. If the return value is nonzero, the optimization will return an error
code and the "User Return Code" error will be set.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbslpend.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback to be executed at the end of the SLP optimization. It
frees the memory allocated to the object created when the optimization began:

ObjData = None;
p.setcbslpend (CBSlpEnd, ObjData)

A suitable callback function might resemble this:

def CBSlpEnd (MyProb, Obj):
if (Obj != None)
Obj = []

else Obj = None
return 0

Further information
This callback can be used at the end of the SLP optimization to carry out any further processing or
housekeeping before the optimization function returns.

Related topics
problem.setcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 339

Reference Manual

problem.setcbslpnode

Purpose
Set a user callback to be called during MISLP after the SLP optimization at each node.

Synopsis
problem.setcbslpnode (userfunc, object)
(retval, feas) = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called after the set-up of the SLP problem to be solved at a

node. userfunc returns an integer value. If the return value is nonzero, or if the
feasibility flag is set nonzero, then further processing of the node will be
terminated (it is declared infeasible).

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbslpnode.

feas Address of an integer containing the feasibility flag. If userfunc sets the flag
nonzero, the node is declared infeasible.

object Address of a user-defined object, which can be used for any purpose by the
function. object is passed to userfunc as my_object.

Example
The following example sets up a callback function to be executed at each node after the SLP
optimization finishes. If the solution value is worse than a target value (referenced through the
user object), the node is cut off (it is declared infeasible).

objtarget = []
p.setcbslpnode (CBSLPNode, objtarget)

A suitable callback function might resemble the following:

def CBSLPNode (my_prob, my_obj):
lpval = my_prob.attributes.lpobjval
return (0, (lpval < my_obj))

Further information
If a node can be cut off by the callback function, then further exploration of the node is avoided.

Related topics
problem.setcboptnode, problem.setcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 340

Reference Manual

problem.setcbslpstart

Purpose
Set a user callback to be called at the start of the SLP optimization

Synopsis
problem.setcbslpstart (userfunc, object)
retval = userfunc (my_prob, my_object)

Arguments
userfunc The function to be called at the start of the SLP optimization. userfunc returns an

integer value. If the return value is nonzero, the optimization will not be carried
out.

my_prob The problem passed to the callback function.

my_object The user-defined object passed as object to setcbslpstart.

object User-defined object, which can be used for any purpose by the function. object is
passed to userfunc as my_object.

Example
The following example sets up a callback to be executed at the start of the SLP optimization:

Objdata = []
p.setcbslpstart (CBSlpStart, Objdata)

A suitable callback function might resemble this:

def CBSlpStart (object):
object.append (1)
return 0

Further information
This callback can be used at the start of the SLP optimization to carry out any housekeeping
before the optimization actually starts. Note that a nonzero return code from the callback will
terminate the optimization immediately.

Related topics
problem.setcbslpend

Fair Isaac Corporation Confidential and Proprietary Information 341

Reference Manual

problem.setControl

Purpose
Sets one or more controls of a problem.

Synopsis
problem.setControl (string, value)

Example

p = xpress.problem ()
p.setControl (’miprelstop’, 1e-4)
p.setControl ({’feastol’: 1e-4, ’presolve’: 0})

Further information

1. As mentioned in the previous chapter, there is an alternative way to set and retrieve controls. It
works by querying the data structure controls of each problem or, if one wants to set a control
to be used by all problems defined subsequently, the global control object xpress.controls.

2. This function can be used in two ways depending on whether one wants to set one or more
controls. In the first case, the arguments form a pair (string, value) where the first element is the
lower-case name of a control (see the Xpress Optimizer reference manual for a complete list of
controls). In the second case, the argument is a Python dictionary whose keys are control name
string and whose values are the value of the control.

Related topics
problem.getControl.

Fair Isaac Corporation Confidential and Proprietary Information 342

Reference Manual

problem.setcurrentiv

Purpose
Transfer the current solution to initial values

Synopsis
problem.setcurrentiv ()

Further information
Provides a way to set the current iterates solution as initial values, make changes to parameters
or to the underlying nonlinear problem and then rerun the SLP optimization process.

Related topics
problem.reinitialize, problem.unconstruct

Fair Isaac Corporation Confidential and Proprietary Information 343

Reference Manual

problem.setdefaultcontrol

Purpose
Sets one control to its default values. Must be called before the problem is read or loaded by
problem.read and problem.loadproblem.

Synopsis
problem.setdefaultcontrol (control)

Argument
control Name of the control to be set to default.

Example
The following turns off presolve to solve a problem, before resetting the control defaults,
reading it and solving it again:

p.controls.presolve = 0
p.mipoptimize ("")
p.writeprtsol ()
p.setdefaultcontrol (’presolve’)
p.read ()
p.mipoptimize ("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 344

Reference Manual

problem.setdefaults

Purpose
Sets all controls to their default values. Must be called before the problem is read or loaded by
problem.read and problem.loadproblem.

Synopsis
problem.setdefaults ()

Example
The following turns off presolve to solve a problem, before resetting the control defaults,
reading it and solving it again:

p.controls.presolve = 0
p.mipoptimize ("")
p.writeprtsol ()
p.setdefaults ()
p.read ()
p.mipoptimize ("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaults.

Fair Isaac Corporation Confidential and Proprietary Information 345

Reference Manual

problem.setindicators

Purpose
Specifies that a set of rows in the problem will be treated as indicator constraints during a global
search. An indicator constraint is made of a condition and a linear inequality. The condition is
of the type "bin = value", where bin is a binary variable and value is either 0 or 1. The linear
inequality is any linear row in the problem with type <= (L) or >= (G). During global search, a
row configured as an indicator constraint is enforced only when condition holds, that is only if
the indicator variable bin has the specified value.

Synopsis
problem.setindicators (mrows, inds, comps)

Arguments
mrows Array containing the indices of the rows that define the linear inequality part for

the indicator constraints.

inds Array containing the column indices of the indicator variables.

comps Array with the complement flags:
0 not an indicator constraint (in this case the corresponding entry in the

inds array is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

Example
This sets the first two matrix rows as indicator rows in the global problem prob; the first row
controlled by condition x4=1 and the second row controlled by condition x5=0 (assuming x4 and
x5 correspond to columns indices 4 and 5).

p.setindicators ([0,1],[4,5],[1,-1])
p.mipoptimize ("")

Further information
Indicator rows must be set up before solving the problem. Any indicator row will be removed
from the problem after presolve and added to a special pool. An indicator row will be added
back into the active matrix only when its associated condition holds. An indicator variable can be
used in multiple indicator rows and can also appear in normal rows and in the objective function.

Related topics
problem.getindicators.

Fair Isaac Corporation Confidential and Proprietary Information 346

Reference Manual

problem.setlogfile

Purpose
This directs all Optimizer output to a log file.

Synopsis
problem.setlogfile (filename)

Argument
filename The name of the file to which all output will be directed. If set to None, redirection

of the output will stop and all screen output will be turned back on (except for DLL
users where screen output is always turned off).

Example
The following directs output to the file logfile.log:

p = xpress.problem ()
p.setlogfile ("logfile.log")

Further information

1. It is recommended that a log file be set up for each problem being worked on, since it provides a
means for obtaining any errors or warnings output by the Optimizer during the solution process.

2. If output is redirected with setlogfile all screen output will be turned off.

3. Alternatively, an output callback can be defined using problem.addcbmessage, which will be called
every time a line of text is output. Defining a user output callback will turn all screen output off.
To discard all output messages the OUTPUTLOG integer control can be set to 0.

Related topics
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 347

Reference Manual

problem.setmessagestatus

Purpose
Manages suppression of messages.

Synopsis
problem.setmessagestatus (errcode, status)

Arguments
errcode The id number of the message. Refer to the Section 9 of the Xpress Optimizer

reference manual for a list of possible message numbers.

status Non-zero if the message is not suppressed; 0 otherwise.

Example
Attempting to optimize a problem that has no matrix loaded gives error 91. The following code
uses setmessagestatus to suppress the error message:

p = xpress.problem ()
p.setmessagestatus (91, 0)
p.lpoptimize ("")

Further information
If a message is suppressed globally then the message can only be enabled for any problem once
the global suppression is removed with a call to setmessagestatus with prob passed as None.

Related topics
problem.getmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 348

Reference Manual

problem.setObjective

Purpose
Sets the objective function of the problem.

Synopsis
problem.setObjective (expr)

Argument
expr A linear or quadratic function of the variables that were added to the problem

prior to this call. An error will be returned if any variable in the linear or quadratic
part of the objective was not added to the problem via addVariable.

Example
The following example sets the objective function of the problem to [2x2

1 + 3x1x2 + 5x2
2 + 4x1 + 4]:

x1 = xpress.var ()
x2 = xpress.var ()
p = xpress.problem ()
p.addVariables (x1, x2)
p.setObjective (2*x1**2 + 3*x1*x2 + 5*x2**2 + 4*x1 + 4)

Further information
Multiple calls to setObjective are allowed, and each replaces the old objective function with a
new one.

Related topics
problem.addVariable.

Fair Isaac Corporation Confidential and Proprietary Information 349

Reference Manual

problem.setprobname

Purpose
Sets the current default problem name.

Synopsis
problem.setprobname (probname)

Argument
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.

Related topics
problem.read, problem.name, MAXPROBNAMELENGTH.

Fair Isaac Corporation Confidential and Proprietary Information 350

Reference Manual

problem.setuniqueprefix

Purpose
Find a prefix character string which is different from all the names currently in use within the SLP
problem

Synopsis
problem.setuniqueprefix ()

Example
The following example reads a problem from file and then finds a unique prefix so that new
names can be added without fear of duplications:

p.read ("Matrix", "")
p.setuniqueprefix ()
s = p.attributes.xslp_uniqueprefix
print ("No names start with ", s)

Further information
The unique prefix may be more than one character in length, and may change if new names are
added to the problem. The value of the unique prefix can be obtained from the string attribute
xslp_uniqueprefix.

Fair Isaac Corporation Confidential and Proprietary Information 351

Reference Manual

problem.solve

Purpose
Solves the current problem.

Synopsis
problem.solve (flags)

Argument
flags (optional) a string with flags expressed as characters.

Fair Isaac Corporation Confidential and Proprietary Information 352

Reference Manual

problem.storebounds

Purpose
Stores bounds for node separation using user separate callback function.

Synopsis
problem.storebounds (mcols, type, bds, mindex)

Arguments
nbnds Number of bounds to store.

mcols Array containing the column indices.

qbtype Array containing the bounds types:
U indicates an upper bound;
L indicates a lower bound.

dbds Array containing the bound values.

mindex Object that the user will use to reference the stored bounds for the Optimizer in
problem.setbranchbounds.

Related topics
problem.setbranchbounds.

Fair Isaac Corporation Confidential and Proprietary Information 353

Reference Manual

problem.storecuts

Purpose
Stores cuts into the cut pool, but does not apply them to the current node. These cuts must be
explicitly loaded into the matrix using problem.loadcuts or problem.setbranchcuts before they
become active.

Synopsis
problem.storecuts (nodupl, type, rtype, rhs, mstart, mindex, mcols, matval)

Arguments
nodupl 0 do not exclude duplicates from the cut pool;

1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

mtype Array of length ncuts containing the cut types. The cut types can be any integer
and are used to identify the cuts.

qrtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

drhs Array containing the right hand side elements for the cuts.

mstart Array containing offsets into the mcols and dmtval arrays indicating the start of
each cut. This array is of length ncuts+1 where ncuts is the length of drhs, with the
last element mstart[ncuts] being where cut ncuts+1 would start.

mindex Array of length ncuts where the pointers to the cuts will be returned.

mcols Array of length mstart[ncuts] containing the column indices in the cuts.

dmatval Array of length mstart[ncuts] containing the matrix values for the cuts.

Further information

1. storecuts can be used to eliminate duplicate cuts. If the nodupl parameter is set to 1, the cut
pool will be checked for duplicate cuts with a cut type identical to the cuts being added. If a
duplicate cut is found the new cut will only be added if its right hand side value makes the cut
stronger. If the cut in the pool is weaker than the added cut it will be removed unless it has been
applied to an active node of the tree. If nodupl is set to 2 the same test is carried out on all cuts,
ignoring the cut type.

2. storecuts returns a list of the cuts added to the cut pool in the mindex array. If the cut is not
added to the cut pool because a stronger cut exits a NULL will be returned. The mindex array can
be passed directly to problem.loadcuts or problem.setbranchcuts to load the most recently
stored cuts into the matrix.

3. The columns and elements of the cuts must be stored contiguously in the mcols and dmtval arrays
passed to storecuts. The starting point of each cut must be stored in the mstart array. To
determine the length of the final cut the mstart array must be of length ncuts+1 with the last
element of this array containing where the cut ncuts+1 would start.

Related topics
problem.loadcuts problem.setbranchcuts, Section "Working with the cut manager" of the
Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 354

Reference Manual

problem.strongbranch

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound
change, strongbranch performs dual simplex iterations starting from the current optimal solution
of the base LP, and returns both the status and objective value reached after these iterations.

Synopsis
problem.strongbranch (mbndind, cbndtype, dbndval, itrlimit, dsbobjval, msbstatus)

Arguments
mbndind Array containing the indices of the columns on which the bounds will change.

cbndtype Character array indicating the type of bound to change:
U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

dbndval Array giving the new bound values.

itrlimit Maximum number of LP iterations to perform for each bound change.

dsobjval Objective value of each LP after performing the strong branching iterations.

msbstatus Status of each LP after performing the strong branching iterations, as detailed for
the LPSTATUS attribute.

Example
Suppose that the current LP relaxation has two integer columns (columns 0 and 1 which are
fractionals at 0.3 and 1.5, respectively, and we want to perform strong branching in order to
choose which to branch on. This could be done in the following way:

dsbobjval = []
msbstatus = []
p.strongbranch ([0,0,1,0], [’’,’’,’’,’’], [1,0,2,1],

1000, dsbobjval, msbstatus)

Further information
Prior to calling strongbranch, the current LP problem must have been solved to optimality and an
optimal basis must be available.

Fair Isaac Corporation Confidential and Proprietary Information 355

Reference Manual

problem.strongbranchcb

Purpose
Performs strong branching iterations on all specified bound changes. For each candidate bound
change, strongbranchcb performs dual simplex iterations starting from the current optimal
solution of the base LP, and returns both the status and objective value reached after these
iterations.

Synopsis
problem.strongbranchcb (bndind, bndtype, bndval, itrlimit, objval, status, sbsolvecb,

vContext)
ret = sbsolvecb (prob, vContext, ibnd)

Arguments
bndind Array of size nbnds containing the indices of the columns on which the bounds will

change.

bndtype Character array of length nbnds indicating the type of bound to change:
U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Array of length nbnds giving the new bound values.

itrlimit Maximum number of LP iterations to perform for each bound change.

objval Objective value of each LP after performing the strong branching iterations.

status Status of each LP after performing the strong branching iterations, as detailed for
the LPSTATUS attribute.

sbsolvecb Function to be called after each strong branch has been reoptimized.

vContext User context to be provided for sbsolvecb.

ibnd The index of bound for which sbsolvecb is called.

Further information
Prior to calling strongbranchcb, the current LP problem must have been solved to optimality and
an optimal basis must be available.

strongbranchcb is an extension to problem.strongbranch. If identical input arguments are
provided both will return identical results, the difference being that for the case of
PRSstrongbranchcb the sbnodecb function is called at the end of each LP reoptimization. For each
branch optimized, the LP can be interrogated: the LP status of the branch is available through
checking LPSTATUS, and the objective function value is available through LPOBJVAL. It is possible
to access the full current LP solution by using problem.getlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 356

Reference Manual

problem.tokencount

Purpose
Count the number of tokens in a free-format character string

Synopsis
token = problem.tokencount (record)

Argument
record The character string to be processed. This must be terminated with a null character.

Return value
The number of tokens (strings separated by one or more spaces) in record.

Example
The following example counts the number of tokens in the string "sin (x + y)":

int nToken;
nToken = p.tokencount ("sin (x + y)")

Further information
Record should follow the conventions for Extended MPS Format, with each token being
separated by one or more spaces from the previous token.

Related topics
problem.qparse

Fair Isaac Corporation Confidential and Proprietary Information 357

Reference Manual

problem.tune

Purpose
Begin a tuner sesssion for the current problem. The tuner will solve the problem multiple times
while evaluating a list of control settings and promising combinations of them. When finished,
the tuner will select and set the best control setting on the problem. Note that the direction of
optimization is given by xpress.attributes.objsense.

Synopsis
problem.tune (flags)

Argument
flags Flags to specify whether to tune the current problem as an LP or a MIP problem,

and the algorithm for solving the LP problem or the initial LP relaxation of the
MIP. The flags are optional. If the argument includes:
l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

Example

p.tune (’dp’)

This tunes the current problem. The problem type is automatically determined. If it is an LP
problem, it will be solved with a concurrent run of the dual and primal simplex method. If it is a
MIP problem, the initial LP relaxation of the MIP will be solved with a concurrent run of primal
and dual simplex.

Further information
Please refer to the Xpress Optimizer reference manual for a detailed guide of how to use the
tuner.

Fair Isaac Corporation Confidential and Proprietary Information 358

Reference Manual

problem.tunerreadmethod

Purpose
Load a user defined tuner method from the given file.

Synopsis
problem.tunerreadmethod (methodfile)

Argument
methodfile The method file name, from which the tuner can load a user-defined tuner

method.

Example

p.tunerreadmethod (’method.xtm’)

This loads the tuner method from the method.xtm file.

Further information
Please refer to the Xpress Optimizer reference manual for more information about the tuner
method and for the format of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 359

Reference Manual

problem.tunerwritemethod

Purpose
Writes the current tuner method to a given file or prints it to the console.

Synopsis
problem.tunerwritemethod (methodfile)

Argument
methodfile The file name to which the tuner will write the current tuner method. If the input

is stdout or STDOUT, then the tuner will print the method to the console instead.

Example 1 (Library)

p.tunerwritemethod (’method.xtm’)

This writes the tuner method to the file method.xtm.

Example 2 (Library)

p.tunerwritemethod (’stdout’)

This prints the tuner method to the console.

Further information
Please refer to the Xpress Optimizer reference manual for more information about the tuner
method and for the format of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 360

Reference Manual

problem.unconstruct

Purpose
Reset the SLP problem and removes the augmentation structures

Synopsis
problem.unconstruct ()

Further information
Can be used to rerun the SLP optimization process with changed parameters or underlying lienar
/ nonlienar strcutures.

Related topics
problem.createprob, problem.destroyprob, problem.reinitialize, problem.setcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 361

Reference Manual

problem.updatelinearization

Purpose
Updates the current linearization

Synopsis
problem.updatelinearization ()

Further information
Updates the augmented probem (the linearization) to match the current base point. The base
point is the current SLP solution. The values of the SLP variables can be changed using
problem.chgvar.

The linearization must be present, and this function can only be called after the problem has
been augmented by problem.construct.

Related topics
problem.construct

Fair Isaac Corporation Confidential and Proprietary Information 362

Reference Manual

problem.validate

Purpose
Validate the feasibility of constraints in a converged solution

Synopsis
problem.validate ()

Example
The following example sets the validation tolerance parameters, validates the converged solution
and retrieves the validation indices.

p.controls.xslp_validationtol_a = 0.001
p.controls.xslp_validationtol_r = 0.001
p.validate ()
indexA = p.attributes.xslp_validationindex_a
indexR = p.attributes.xslp_validationindex_r

Further information
XSLPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the constraint
is infeasible, then the difference (D) is tested against the absolute and relative validation
tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos), ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is outside
both the absolute and relative validation tolerances, validation factors are calculated which are
the factors by which the infeasibility exceeds the corresponding validation tolerance; the smallest
factor is printed in the validation report.
The validation index xslp_validationindex_a is the largest absolute validation factor multiplied
by the absolute validation tolerance; the validation index xslp_validationindex_r is the largest
relative validation factor multiplied by the relative validation tolerance.

Related topics
xslp_validationindex_A, xslp_validationindex_R, xslp_validationtol_A,
xslp_validationtol_R

Fair Isaac Corporation Confidential and Proprietary Information 363

Reference Manual

problem.validatekkt

Purpose
Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT)
conditions versus the currect solution

Synopsis
problem.validatekkt (calculationmode, respectbasisstatus, updatemultipliers,

kktviolationtarget)

Arguments
calculationmode The calculation mode can be:

0 recalculate the reduced costs at the current solution using the current
dual solution.

1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

respectbasisstatus The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus xslp_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

updatemultipliers The calculated values can be:
0 only used to calculate the xslp_validationindex_k measure.
1 used to update the current dual solution and reduced costs.

kktviolationtarget When calculating the best KKT multipliers, it is possible to enforce an even
distribution of reduced costs violations by enforcing a bound on them.

Further information
The bounds enforced by kktviolationtarget are automatically relaxed if the desired accuracy
cannot be achieved.

Fair Isaac Corporation Confidential and Proprietary Information 364

Reference Manual

problem.validaterow

Purpose
Prints an extensive analysis on a given constraint of the SLP problem

Synopsis
problem.validate (row)

Argument
row The index of the row to be analyzed.

Further information
The analysis will include the readable format of the original constraint and the augmented
constraint. For infeasible constraints, the absolute and relative infeasibility is calculated. Variables
in the constraints are listed including their value in the solution of the last linearization, the
internal value (e.g. cascaded), reduced cost, step bound and convergence status. Scaling analysis
is also provided.

Fair Isaac Corporation Confidential and Proprietary Information 365

Reference Manual

problem.validatevector

Purpose
Validate the feasibility of constraints for a given solution

Synopsis
(suminf, sumscaledinf, obj) = problem.validate (vector)

Arguments
vector A vector of length xpress.attributes.cols containing the solution vector to be

checked.

suminf The sum of infeasibilities.

sumscaledinf The sum of scaled (relative) infeasibilities.

obj The net objective.

Further information
validatevector works the same way as problem.validate, and will update
xslp_validationindex_a and xslp_validationindex_r.

Related topics
Xslp_Validationindex_a, xslp_validationindex_r, xslp_validationtol_a,
xslp_validationtol_r

Fair Isaac Corporation Confidential and Proprietary Information 366

Reference Manual

problem.validformula

Purpose
Check a formula in internal (parsed or unparsed) format for unknown tokens

Synopsis
(token, name, stringtable) = problem.validformula (type, value)

Arguments
type Array of token types providing the formula.

value Array of values corresponding to the types in inType
ntoken Number of the first invalid token in the formula. A value of zero means that the

formula is valid. May be None if not required.

name Character buffer to hold the name of the first invalid token. May be None if not
required.

stringtable Character buffer holding the names of the unidentified tokens (this can be created
by problem.preparseformula).

Related topics
problem.preparseformula

Fair Isaac Corporation Confidential and Proprietary Information 367

Reference Manual

problem.write

Purpose
Writes the current problem to an MPS or LP file.

Synopsis
problem.write (filename, flags)

Arguments
filename A string of up to 200 characters to contain the file name to which the problem is to

be written. If omitted, the default problem_name is used with a .mps extension,
unless the l flag is used in which case the extension is .lp.

flags (optional) Flags, which can be one or more of the following:
h single precision of numerical values;
o one element per line;
n scaled;
s scrambled vector names;
l output in LP format;
x output MPS file in hexadecimal format.
p obsolete flag (now default behavior).

Example
The following example outputs the current problem in full precision, LP format with scrambled
vector names to the file problem_name.lp.

p.write ("", "lps")

Further information

1. If problem.loadproblem is used to obtain a problem then there is no association between the
objective function and the N rows in the problem and so a separate N row (called __OBJ___) is
created upon a write. Also, if after a call to read either the objective row or the N row in the
problem corresponding to the objective row are changed, the association between the two is lost
and the __OBJ___ row is created with an write. To remove the objective row from the problem
when doing a read, set keepnrows to -1 before read.

2. The hexadecimal format is useful for saving the exact internal precision of the problem.

3. Warning: If problem.read is used to input a problem, then the input file will be overwritten by
write if a new filename is not specified.

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 368

Reference Manual

problem.writebasis

Purpose
Writes the current basis to a file for later input into the Optimizer.

Synopsis
problem.writebasis (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to

be written. If omitted, the default problem_name is used with a .bss extension.

flags (optional) Flags to pass to writebasis:
i output the internal presolved basis.
t output a compact advanced form of the basis.
n output basis file containing current solution values.
h output values in single precision.
x output values in hexadecimal format.
p obsolete flag (now default behavior).

Example
After an LP has been solved it may be desirable to save the basis for future input as an advanced
starting point for other similar problems. This may save significant amounts of time if the LP is
complex. The Optimizer input commands might then be:

p.read ("myprob", "")
p.lpoptimize ("")
p.writebasis ("", "")

This reads in a problem file, maximizes the LP and saves the basis. Loading a basis for a MIP
problem can disable some MIP presolve operations which can result in a large increase in solution
times so it is generally not recommended.

Further information

1. The t flag is only useful for later input to a similar problem using the t flag with
problem.readbasis.

2. If the Newton barrier algorithm has been used for optimization then crossover must have been
performed before there is a valid basis. This basis can then only be used for restarting the simplex
(primal or dual) algorithm.

3. writebasis will output the basis for the original problem even if the problem has been presolved.

Related topics
problem.getbasis, problem.readbasis.

Fair Isaac Corporation Confidential and Proprietary Information 369

Reference Manual

problem.writebinsol

Purpose
Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.

Synopsis
problem.writebinsol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to

be written. If omitted, the default problem_name is used with a .sol extension.

flags (optional) Flags to pass to writebinsol:
x output the LP solution.

Example
After an LP has been solved or a MIP solution has been found the solution can be saved to file. If
a MIP solution exists it will be written to file unless the x flag is passed to writebinsol in which
case the LP solution will be written.

p.read ("myprob", "")
p.mipoptimize ("")
p.writebinsol ("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 370

Reference Manual

problem.writedirs

Purpose
Writes the global search directives from the current problem to a directives file.

Synopsis
problem.writedirs (filename)

Argument
filename A string of up to 200 characters containing the file name to which the directives

should be written. If omitted (or None), the default problem_name is used with a
.dir extension.

Further information
If the problem has been presolved, only the directives for columns in the presolved problem will
be written to file.

Related topics
problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 371

Reference Manual

problem.writeprtsol

Purpose
Writes the current solution to a fixed format ASCII file, problem_name.prt.

Synopsis
problem.writeprtsol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to

be written. If omitted, the default problem_name will be used. The extension .prt
will be appended.

flags (optional) Flags for writeprtsol are:
x write the LP solution instead of the current MIP solution.

Example
This example shows the standard use of this function, outputting the solution to file immediately
following optimization:

p.read ("myprob", "")
p.lpoptimize ("")
p.writeprtsol ("", "")

Further information

1. The fixed width ASCII format created by this command is not as readily useful as that produced by
problem.writesol. The main purpose of writeprtsol is to create a file that can be sent directly to
a printer. The format of this fixed format ASCII file is described in the Xpress Optimizer reference
manual.

2. To create a prt file for a previously saved solution, the solution must first be loaded with the
problem.readbinsol function.

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writebinsol,
problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 372

Reference Manual

problem.writeslxsol

Purpose
Creates an ASCII solution file (.slx) using a similar format to MPS files. These files can be read
back into the Optimizer using the problem.readslxsol function.

Synopsis
problem.writeslxsol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to

be written. If omitted, the default problem_name is used with a .slx extension.

flags (optional) Flags to pass to writeslxsol:
l write the LP solution in case of a MIP problem;
m write the MIP solution;
p use full precision for numerical values;
x use hexadecimal format to write values;
d LP solution only: including dual variables;
s LP solution only: including slack variables;
r LP solution only: including reduced cost.

Example

p.writeslxsol ("lpsolution", "")

This saves the MIP solution if the problem contains global entities, or otherwise saves the LP
(barrier in case of quadratic problems) solution of the problem.

Related topics
problem.readslxsol problem.writeprtsol, problem.writebinsol, problem.readbinsol.

Fair Isaac Corporation Confidential and Proprietary Information 373

Reference Manual

problem.writesol

Purpose
Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).

Synopsis
problem.writesol (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to

be written. If omitted, the default problem_name will be used. The extensions
.hdr and .asc will be appended.

flags (optional) Flags to control which optional fields are output:
s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.
Additional flags:
e outputs every MIP or goal programming solution saved;
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution.

Example
In this example the basis status is output (along with the sequence number) following
optimization:

p.read ("prob1", "")
p.lpoptimize ("")
p.writesol ("", "sb")

Further information

1. The command produces two readable files: filename.hdr (the solution header file) and
filename.asc (the CSV foramt solution file). The header file contains summary information, all in
one line. The ASCII file contains one line of information for each row and column in the problem.
Any fields appearing in the .asc file will be in the order the flags are described above. The order
that the flags are specified by the user is irrelevant.

2. Additionally, the mask control OUTPUTMASK may be used to control which names are reported to
the ASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set by
default to "????????", so that all vectors are output.

Related topics
problem.getlpsol, problem.getmipsol, problem.writerange, problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 374

Reference Manual

branchobj.addbounds

Purpose
Adds new bounds to a branch of a user branching object.

Synopsis
branchobj.addbounds (ibranch, bndtype, bndcol, bndval)

Arguments
ibranch The number of the branch to add the new bounds for. This branch must already

have been created using branchobj.addbranches. Branches are indexed starting
from zero.

bndtype Character array of length nbounds indicating the type of bounds to add:
L Lower bound.
U Upper bound.

bndcol Array of length nbounds containing the columns for the new bounds.

bndval Array of length nbounds giving the bound values.

Fair Isaac Corporation Confidential and Proprietary Information 375

Reference Manual

branchobj.addbranches

Purpose
Adds new, empty branches to a user defined branching object.

Synopsis
branchobj.addbranches (nbranches)

Argument
nbranches Number of new branches to create.

Fair Isaac Corporation Confidential and Proprietary Information 376

Reference Manual

branchobj.addcuts

Purpose
Adds stored user cuts as new constraints to a branch of a user branching object.

Synopsis
branchobj.addcuts (ibranch, cutind)

Arguments
ibranch The number of the branch to add the cuts for. This branch must already have been

created using branchobj.addbranches. Branches are indexed starting from zero.

cutind Array containing the user cuts that should be added to the branch.

Related topics
branchobj.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 377

Reference Manual

branchobj.addrows

Purpose
Adds new constraints to a branch of a user branching object.

Synopsis
branchobj.addrows (ibranch, rtype, rhs, beg, mcol, val)

Arguments
ibranch The number of the branch to add the new constraints for. This branch must already

have been created using branchobj.addbranches. Branches are indexed starting
from zero.

rtype Character array of length nrows indicating the type of constraints to add:
L Less than type.
G Greater than type.
E Equality type.

rhs Array of length nrows containing the right hand side values.

beg Array of length nrows containing the offsets of the mcol and dval arrays of the
start of the non zero coefficients in the new constraints.

mcol Array of length nelems containing the column indices for the non zero coefficients.

dval Array of length nelems containing the non zero coefficient values.

Example
The following function will create a branching object that branches on constraints x1 + x2 ≥ 1 or
x1 + x2 ≤ 0:

def CreateConstraintBranch (mip, icol):

Create the new object with two empty branches.
bo = xpress.branchobj (mip, isoriginal = True)
bo.addbranches (2)

Add the constraint of the branching object:
x1 + x2 >= 1
x1 + x2 <= 0
bo.addrows (0, 1, 2, [’G’], [1.0], [0], [0,1], [1.0,1.0])
bo.addrows (1, 1, 2, [’L’], [0.0], [0], [0,1], [1.0,1.0])

Set a low priority value so our branch object is picked up
before the default branch candidates.
bo.setpriority (100)

return bo

Fair Isaac Corporation Confidential and Proprietary Information 378

Reference Manual

branchobj.getbounds

Purpose
Returns the bounds for a branch of a user branching object. The returned value is the actual
number of bounds returned in the output arrays.

Synopsis
branchobj.getbounds (ibranch, nbounds_size, bndtype, bndcol, bndval)

Arguments
ibranch The number of the branch to get the bounds for.

nbounds_size Maximum number of bounds to return.

bndtype Character array of length nbounds_size where the types of bounds twill be
returned:
L Lower bound.
U Upper bound.

bndcol Array of length nbounds_size where the column indices will be returned.

bndval Array of length nbounds_size where the bound values will be returned.

Related topics
branchobj.addbounds.

Fair Isaac Corporation Confidential and Proprietary Information 379

Reference Manual

branchobj.getbranches

Purpose
Returns the number of branches of a branching object.

Synopsis
branchobj.getbranches ()

Related topics
branchobj.addbranches.

Fair Isaac Corporation Confidential and Proprietary Information 380

Reference Manual

branchobj.getid

Purpose
Returns the unique identifier assigned to a branching object.

Synopsis
branchobj.getid ()

Further information

1. Branching objects associated with existing column entities (binaries, integers, semi–continuous
and partial integers), are given an identifier from 1 to MIPENTS.

2. Branching objects associated with existing Special Ordered Sets are given an identifier from
MIPENTS+1 to MIPENTS+SETS.

3. User created branching objects will always have a negative identifier.

Fair Isaac Corporation Confidential and Proprietary Information 381

Reference Manual

branchobj.getlasterror

Purpose
Returns the last error encountered during a call to the given branch object.

Synopsis
(id,msg) = branchobj.getlasterror ()

Arguments
id Error code.

msg A string with the last error message relating to the branching object will be
returned.

Example
The following shows how this function might be used in error checking:

obranch = xpress.branchobj ()

try:
obranch.setpreferredbranch (3)

except:
(i,m) = obranch.getlasterror ()
print ("ERROR when setting preferred branch:", m)

Fair Isaac Corporation Confidential and Proprietary Information 382

Reference Manual

branchobj.getrows

Purpose
Returns the constraints for a branch of a user branching object.

Synopsis
branchobj.getrows (ibranch, nrows_size, nelems_size, rtype, rrhs, rbeg, mcol, dval)

Arguments
ibranch The number of the branch to get the constraints from.

nrows_size Maximum number of rows to return.

nelems_size Maximum number of non zero coefficients to return.

rtype Character array of length nrows_size where the types of the rows will be returned:
L Less than type.
G Greater than type.
E Equality type.

rhs Array of length nrows_size where the right hand side values will be returned.

mbeg Array of length nrows_size which will be filled with the offsets of the mcol and
dval arrays of the start of the non zero coefficients in the returned constraints.

mcol Array of length nelems_size which will be filled with the column indices for the
non zero coefficients.

dval Array of length nelems_size which will be filled with the non zero coefficient
values.

Related topics
branchobj.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 383

Reference Manual

branchobj.setpreferredbranch

Purpose
Specifies which of the child nodes corresponding to the branches of the object should be
explored first.

Synopsis
branchobj.setpreferredbranch (ibranch)

Argument
ibranch The number of the branch to mark as preferred.

Fair Isaac Corporation Confidential and Proprietary Information 384

Reference Manual

branchobj.setpriority

Purpose
Sets the priority value of a user branching object.

Synopsis
branchobj.setpriority (ipriority)

Argument
ipriority The new priority value to assign to the branching object, which must be a number

from 0 to 1000. User branching objects are created with a default priority value of
500.

Further information

1. A candidate branching object with lowest priority number will always be selected for branching
before an object with a higher number.

2. Priority values must be an integer from 0 to 1000. User branching objects and global entities are
by default assigned a priority value of 500. Special branching objects, such as those arising from
structural branches or split disjunctions are assigned a priority value of 400.

Fair Isaac Corporation Confidential and Proprietary Information 385

Reference Manual

branchobj.store

Purpose
Adds a new user branching object to the Optimizer’s list of candidates for branching. This
function is available only through the callback function set by problem.addcboptnode.

Synopsis
status = branchobj.store ()

Argument
status The returned status from checking the provided branching object:

0 The object was accepted successfully.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in

presolve.
3 The object contains an empty branch.
The object was not added to the candidate list if a non zero status is returned.

Further information

1. To ensure that a user branching object expressed in terms of the original matrix columns can be
applied to the presolved problem, it might be necessary to turn off certain presolve operations.

2. If any of the original matrix columns referred to in the object are unbounded, dual reductions
might prevent the corresponding bound or constraint from being presolved. To avoid this, dual
reductions should be turned off in presolve, by clearing bit 3 of the integer control PRESOLVEOPS.

3. If one or more of the original matrix columns of the object are duplicates in the original matrix,
but not in the branching object, it might not be possible to presolve the object due to duplicate
column eliminations in presolve. To avoid this, duplicate column eliminations should be turned
off in presolve, by clearing bit 5 of PRESOLVEOPS.

4. As an alternative to turning off the above mentioned presolve features, it is possible to protect
individual columns of a the problem from being modified by presolve. Use the
problem.loadsecurevecs function to mark any columns that might be branched on using
branching objects.

Related topics
branchobj.validate.

Fair Isaac Corporation Confidential and Proprietary Information 386

Reference Manual

branchobj.validate

Purpose
Verifies that a given branching object is valid for branching on the current branch-and-bound
node of a MIP solve. The function will check that all branches are non-empty, and if required,
verify that the branching object can be presolved.

Synopsis
status = branchobj.validate ()

Argument
status The returned status from checking the provided branching object:

0 The object is acceptable.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in

presolve.
3 The object contains an empty branch.

Fair Isaac Corporation Confidential and Proprietary Information 387

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 388

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 389

Index

B
branchobj.addbounds, 375
branchobj.addbranches, 376
branchobj.addcuts, 377
branchobj.addrows, 378
branchobj.getbounds, 379
branchobj.getbranches, 380
branchobj.getid, 381
branchobj.getlasterror, 382
branchobj.getrows, 383
branchobj.setpreferredbranch, 384
branchobj.setpriority, 385
branchobj.store, 386
branchobj.validate, 387

P
problem.addcbbariteration, 78
problem.addcbbarlog, 80
problem.addcbchgbranchobject, 81
problem.addcbcutlog, 82
problem.addcbdestroymt, 83
problem.addcbgapnotify, 84
problem.addcbgloballog, 86
problem.addcbinfnode, 87
problem.addcbintsol, 88
problem.addcblplog, 89
problem.addcbmessage, 90
problem.addcbmipthread, 91
problem.addcbnewnode, 92
problem.addcbnodecutoff, 93
problem.addcboptnode, 94
problem.addcbpreintsol, 95
problem.addcbprenode, 96
problem.addcbusersolnotify, 97
problem.addcoefs, 98
problem.addcols, 100
problem.addConstraint, 101
problem.addcuts, 102
problem.adddfs, 103
problem.addIndicator, 104
problem.addmipsol, 105
problem.addqmatrix, 106
problem.addrows, 107
problem.addSOS, 108
problem.addtolsets, 109
problem.addVariable, 110
problem.addvars, 111
problem.basisstability, 112
problem.btran, 113
problem.calcobjective, 114
problem.calcreducedcosts, 115
problem.calcslacks, 116

problem.calcsolinfo, 117
problem.cascade, 118
problem.cascadeorder, 119
problem.chgbounds, 120
problem.chgcascadenlimit, 123
problem.chgccoef, 124
problem.chgcoef, 121
problem.chgcoltype, 122
problem.chgdeltatype, 125
problem.chgdf, 126
problem.chgglblimit, 127
problem.chgmcoef, 128
problem.chgmqobj, 129
problem.chgnlcoef, 130
problem.chgobj, 131
problem.chgobjsense, 132
problem.chgqobj, 133
problem.chgqrowcoeff, 134
problem.chgrhs, 135
problem.chgrhsrange, 136
problem.chgrowstatus, 137
problem.chgrowtype, 138
problem.chgrowwt, 139
problem.chgtolset, 140
problem.chgvar, 142
problem.construct, 144
problem.copy, 145
problem.copycallbacks, 146
problem.copycontrols, 147
problem.delcoefs, 148
problem.delConstraint, 149
problem.delcpcuts, 150
problem.delcuts, 151
problem.delqmatrix, 152
problem.delSOS, 153
problem.deltolsets, 154
problem.delVariable, 155
problem.delvars, 156
problem.dumpcontrols, 157
problem.estimaterowdualranges, 158
problem.evaluatecoef, 159
problem.evaluateformula, 160
problem.filesol, 161
problem.fixglobals, 162
problem.fixpenalties, 163
problem.ftran, 164
problem.getAttrib, 165
problem.getattribinfo, 166
problem.getbasis, 167
problem.getccoef, 168
problem.getcoef, 169
problem.getcoefformula, 170

Fair Isaac Corporation Confidential and Proprietary Information 390

Index

problem.getcoefs, 171
problem.getcolinfo, 172
problem.getcols, 173
problem.getcoltype, 174
problem.getConstraint, 175
problem.getControl, 176
problem.getcontrolinfo, 177
problem.getcpcutlist, 178
problem.getcpcuts, 179
problem.getcutlist, 180
problem.getcutmap, 181
problem.getcutslack, 182
problem.getdf, 184
problem.getdirs, 183
problem.getdtime, 185
problem.getDual, 186
problem.getdualray, 187
problem.getglobal, 188
problem.getiisdata, 189
problem.getIndex, 191
problem.getIndexFromName, 192
problem.getindicators, 193
problem.getinfeas, 194
problem.getlasterror, 195
problem.getlb, 196
problem.getlpsol, 197
problem.getmessagestatus, 198
problem.getmessagetype, 199
problem.getmipsol, 200
problem.getmqobj, 201
problem.getobj, 202
problem.getObjVal, 203
problem.getpivotorder, 204
problem.getpivots, 205
problem.getpresolvebasis, 206
problem.getpresolvemap, 207
problem.getpresolvesol, 208
problem.getprimalray, 209
problem.getProbStatus, 210
problem.getProbStatusString, 211
problem.getqobj, 212
problem.getqrowcoeff, 213
problem.getqrowqmatrix, 214
problem.getqrowqmatrixtriplets, 215
problem.getqrows, 216
problem.getRCost, 217
problem.getrhs, 218
problem.getrhsrange, 219
problem.getrowinfo, 220
problem.getrows, 221
problem.getrowstatus, 222
problem.getrowtype, 223
problem.getrowwt, 224
problem.getscaledinfeas, 225
problem.getSlack, 226
problem.getslpsol, 227
problem.getSolution, 228
problem.getSOS, 229
problem.gettolset, 230
problem.getub, 231

problem.getunbvec, 232
problem.getvar, 233
problem.getVariable, 235
problem.globalsol, 236
problem.hasdualray, 237
problem.hasprimalray, 238
problem.iisall, 239
problem.iisclear, 240
problem.iisfirst, 241
problem.iisisolations, 242
problem.iisnext, 243
problem.iisstatus, 244
problem.iiswrite, 245
problem.interrupt, 246
problem.loadbasis, 247
problem.loadbranchdirs, 248
problem.loadcoefs, 249
problem.loadcuts, 251
problem.loaddelayedrows, 252
problem.loaddfs, 253
problem.loaddirs, 254
problem.loadlpsol, 255
problem.loadmipsol, 256
problem.loadmodelcuts, 257
problem.loadpresolvebasis, 258
problem.loadpresolvedirs, 259
problem.loadproblem, 260
problem.loadsecurevecs, 262
problem.loadtolsets, 263
problem.loadvars, 264
problem.lpoptimize, 266
problem.mipoptimize, 267
problem.msaddcustompreset, 268
problem.msaddjob, 269
problem.msaddpreset, 270
problem.msclear, 271
problem.name, 272
problem.objsa, 273
problem.parsecformula, 274
problem.parseformula, 275
problem.postsolve, 276
problem.preparseformula, 277
problem.presolve, 278
problem.presolverow, 279
problem.printevalinfo, 281
problem.printmemory, 280
problem.printmsg, 282
problem.read, 283
problem.readbasis, 284
problem.readbinsol, 285
problem.readdirs, 286
problem.readslxsol, 287
problem.refinemipsol, 288
problem.reinitialize, 289
problem.removecbbariteration, 290
problem.removecbbarlog, 291
problem.removecbchgbranchobject, 292
problem.removecbcutlog, 293
problem.removecbdestroymt, 294
problem.removecbgapnotify, 295

Fair Isaac Corporation Confidential and Proprietary Information 391

Index

problem.removecbgloballog, 296
problem.removecbinfnode, 297
problem.removecbintsol, 298
problem.removecblplog, 299
problem.removecbmessage, 300
problem.removecbmipthread, 301
problem.removecbnewnode, 302
problem.removecbnodecutoff, 303
problem.removecboptnode, 304
problem.removecbpreintsol, 305
problem.removecbprenode, 306
problem.removecbusersolnotify, 307
problem.repairinfeas, 308
problem.repairweightedinfeas, 310
problem.repairweightedinfeasbounds, 312
problem.reset, 314
problem.restore, 315
problem.rhssa, 316
problem.save, 317
problem.scale, 318
problem.scaling, 319
problem.setbranchbounds, 320
problem.setbranchcuts, 321
problem.setcbcascadeend, 322
problem.setcbcascadestart, 323
problem.setcbcascadevar, 324
problem.setcbcascadevarfail, 325
problem.setcbcoefevalerror, 326
problem.setcbconstruct, 327
problem.setcbdestroy, 329
problem.setcbdrcol, 330
problem.setcbformula, 331
problem.setcbiterend, 332
problem.setcbiterstart, 333
problem.setcbitervar, 334
problem.setcbmessage, 335
problem.setcbmsjobend, 336
problem.setcbmsjobstart, 337
problem.setcbmswinner, 338
problem.setcbslpend, 339
problem.setcbslpnode, 340
problem.setcbslpstart, 341
problem.setControl, 342
problem.setcurrentiv, 343
problem.setdefaultcontrol, 344
problem.setdefaults, 345
problem.setindicators, 346
problem.setlogfile, 347
problem.setmessagestatus, 348
problem.setObjective, 349
problem.setprobname, 350
problem.setuniqueprefix, 351
problem.solve, 352
problem.storebounds, 353
problem.storecuts, 354
problem.strongbranch, 355
problem.strongbranchcb, 356
problem.tokencount, 357
problem.tune, 358
problem.tunerreadmethod, 359

problem.tunerwritemethod, 360
problem.unconstruct, 361
problem.updatelinearization, 362
problem.validate, 363
problem.validatekkt, 364
problem.validaterow, 365
problem.validatevector, 366
problem.validformula, 367
problem.write, 368
problem.writebasis, 369
problem.writebinsol, 370
problem.writedirs, 371
problem.writeprtsol, 372
problem.writeslxsol, 373
problem.writesol, 374

X
xpress.abs, 70
xpress.acos, 66
xpress.addcbmsghandler, 76
xpress.asin, 65
xpress.atan, 67
xpress.cos, 63
xpress.Dot, 56
xpress.erf, 72
xpress.erfc, 73
xpress.exp, 59
xpress.free, 44
xpress.getbanner, 45
xpress.getcheckedmode, 46
xpress.getdaysleft, 47
xpress.getlasterror, 48
xpress.getlicerrmsg, 49
xpress.getversion, 50
xpress.init, 51
xpress.log, 60
xpress.log10, 61
xpress.max, 68
xpress.min, 69
xpress.Prod, 58
xpress.removecbmsghandler, 77
xpress.setcheckedmode, 52
xpress.setdefaultcontrol, 54
xpress.setdefaults, 53
xpress.sign, 71
xpress.sin, 62
xpress.sqrt, 74
xpress.Sum, 55
xpress.tan, 64
xpress.user, 75

Fair Isaac Corporation Confidential and Proprietary Information 392

	Introduction
	Outline
	Installing the Python Xpress module
	Installation from the Xpress Optimizer distribution
	Installation from Conda

	Modeling an optimization problem
	Getting started
	Creating a problem
	Variables
	Constraints
	Objective function
	Special Ordered Sets (SOSs)
	Indicator constraints
	Modeling and solving nonlinear problems
	Solving a problem
	Querying a problem
	Reading and writing a problem
	Hints for building models efficiently

	Using Python numerical libraries
	Using NumPy in the Xpress Python interface
	Products of NumPy arrays

	Controls and Attributes
	Controls
	Examples
	Attributes
	Examples
	Accessing controls and attributes as object members

	Using Callbacks
	Introduction

	Examples of use
	Creating simple problems
	Generating a small Linear Programming problem
	A Mixed Integer Linear Programming problem

	Modeling examples
	A simple model
	Using IIS to investigate an infeasible problem
	Modeling a problem using Python lists and vectors
	A knapsack problem
	A Min-cost-flow problem using NumPy
	A nonlinear model
	Finding the maximum-area n-gon
	Solving the n-queens problem
	Solving Sudoku problems

	Examples using NumPy
	Using NumPy multidimensional arrays to create variables
	Using the dot product to create arrays of expressions
	Using the Dot product to create constraints and quadratic functions
	Using NumPy to create quadratic optimization problems

	Advanced examples: callbacks and problem querying/modifying
	Visualize the branch-and-bound tree of a problem
	Query and modify a simple problem
	Change a problem after solution
	Combining modeling and API functions
	A simple Traveling Salesman Problem (TSP) solver

	Reference Manual
	Using this chapter
	Format of the reference

	Global methods of the Xpress module
	Methods of the problem class
	Methods for branching objects
	Methods for adding/removing callbacks of a problem object
	Methods to be used within a callback of a problem object
	xpress.free
	xpress.getbanner
	xpress.getcheckedmode
	xpress.getdaysleft
	xpress.getlasterror
	xpress.getlicerrmsg
	xpress.getversion
	xpress.init
	xpress.setcheckedmode
	xpress.setdefaults
	xpress.setdefaultcontrol
	xpress.Sum
	xpress.Dot
	xpress.Prod
	xpress.exp
	xpress.log
	xpress.log10
	xpress.sin
	xpress.cos
	xpress.tan
	xpress.asin
	xpress.acos
	xpress.atan
	xpress.max
	xpress.min
	xpress.abs
	xpress.sign
	xpress.erf
	xpress.erfc
	xpress.sqrt
	xpress.user
	xpress.addcbmsghandler
	xpress.removecbmsghandler
	problem.addcbbariteration
	problem.addcbbarlog
	problem.addcbchgbranchobject
	problem.addcbcutlog
	problem.addcbdestroymt
	problem.addcbgapnotify
	problem.addcbgloballog
	problem.addcbinfnode
	problem.addcbintsol
	problem.addcblplog
	problem.addcbmessage
	problem.addcbmipthread
	problem.addcbnewnode
	problem.addcbnodecutoff
	problem.addcboptnode
	problem.addcbpreintsol
	problem.addcbprenode
	problem.addcbusersolnotify
	problem.addcoefs
	problem.addcols
	problem.addConstraint
	problem.addcuts
	problem.adddfs
	problem.addIndicator
	problem.addmipsol
	problem.addqmatrix
	problem.addrows
	problem.addSOS
	problem.addtolsets
	problem.addVariable
	problem.addvars
	problem.basisstability
	problem.btran
	problem.calcobjective
	problem.calcreducedcosts
	problem.calcslacks
	problem.calcsolinfo
	problem.cascade
	problem.cascadeorder
	problem.chgbounds
	problem.chgcoef
	problem.chgcoltype
	problem.chgcascadenlimit
	problem.chgccoef
	problem.chgdeltatype
	problem.chgdf
	problem.chgglblimit
	problem.chgmcoef
	problem.chgmqobj
	problem.chgnlcoef
	problem.chgobj
	problem.chgobjsense
	problem.chgqobj
	problem.chgqrowcoeff
	problem.chgrhs
	problem.chgrhsrange
	problem.chgrowstatus
	problem.chgrowtype
	problem.chgrowwt
	problem.chgtolset
	problem.chgvar
	problem.construct
	problem.copy
	problem.copycallbacks
	problem.copycontrols
	problem.delcoefs
	problem.delConstraint
	problem.delcpcuts
	problem.delcuts
	problem.delqmatrix
	problem.delSOS
	problem.deltolsets
	problem.delVariable
	problem.delvars
	problem.dumpcontrols
	problem.estimaterowdualranges
	problem.evaluatecoef
	problem.evaluateformula
	problem.filesol
	problem.fixglobals
	problem.fixpenalties
	problem.ftran
	problem.getAttrib
	problem.getattribinfo
	problem.getbasis
	problem.getccoef
	problem.getcoef
	problem.getcoefformula
	problem.getcoefs
	problem.getcolinfo
	problem.getcols
	problem.getcoltype
	problem.getConstraint
	problem.getControl
	problem.getcontrolinfo
	problem.getcpcutlist
	problem.getcpcuts
	problem.getcutlist
	problem.getcutmap
	problem.getcutslack
	problem.getdirs
	problem.getdf
	problem.getdtime
	problem.getDual
	problem.getdualray
	problem.getglobal
	problem.getiisdata
	problem.getIndex
	problem.getIndexFromName
	problem.getindicators
	problem.getinfeas
	problem.getlasterror
	problem.getlb
	problem.getlpsol
	problem.getmessagestatus
	problem.getmessagetype
	problem.getmipsol
	problem.getmqobj
	problem.getobj
	problem.getObjVal
	problem.getpivotorder
	problem.getpivots
	problem.getpresolvebasis
	problem.getpresolvemap
	problem.getpresolvesol
	problem.getprimalray
	problem.getProbStatus
	problem.getProbStatusString
	problem.getqobj
	problem.getqrowcoeff
	problem.getqrowqmatrix
	problem.getqrowqmatrixtriplets
	problem.getqrows
	problem.getRCost
	problem.getrhs
	problem.getrhsrange
	problem.getrowinfo
	problem.getrows
	problem.getrowstatus
	problem.getrowtype
	problem.getrowwt
	problem.getscaledinfeas
	problem.getSlack
	problem.getslpsol
	problem.getSolution
	problem.getSOS
	problem.gettolset
	problem.getub
	problem.getunbvec
	problem.getvar
	problem.getVariable
	problem.globalsol
	problem.hasdualray
	problem.hasprimalray
	problem.iisall
	problem.iisclear
	problem.iisfirst
	problem.iisisolations
	problem.iisnext
	problem.iisstatus
	problem.iiswrite
	problem.interrupt
	problem.loadbasis
	problem.loadbranchdirs
	problem.loadcoefs
	problem.loadcuts
	problem.loaddelayedrows
	problem.loaddfs
	problem.loaddirs
	problem.loadlpsol
	problem.loadmipsol
	problem.loadmodelcuts
	problem.loadpresolvebasis
	problem.loadpresolvedirs
	problem.loadproblem
	problem.loadsecurevecs
	problem.loadtolsets
	problem.loadvars
	problem.lpoptimize
	problem.mipoptimize
	problem.msaddcustompreset
	problem.msaddjob
	problem.msaddpreset
	problem.msclear
	problem.name
	problem.objsa
	problem.parsecformula
	problem.parseformula
	problem.postsolve
	problem.preparseformula
	problem.presolve
	problem.presolverow
	problem.printmemory
	problem.printevalinfo
	problem.printmsg
	problem.read
	problem.readbasis
	problem.readbinsol
	problem.readdirs
	problem.readslxsol
	problem.refinemipsol
	problem.reinitialize
	problem.removecbbariteration
	problem.removecbbarlog
	problem.removecbchgbranchobject
	problem.removecbcutlog
	problem.removecbdestroymt
	problem.removecbgapnotify
	problem.removecbgloballog
	problem.removecbinfnode
	problem.removecbintsol
	problem.removecblplog
	problem.removecbmessage
	problem.removecbmipthread
	problem.removecbnewnode
	problem.removecbnodecutoff
	problem.removecboptnode
	problem.removecbpreintsol
	problem.removecbprenode
	problem.removecbusersolnotify
	problem.repairinfeas
	problem.repairweightedinfeas
	problem.repairweightedinfeasbounds
	problem.reset
	problem.restore
	problem.rhssa
	problem.save
	problem.scale
	problem.scaling
	problem.setbranchbounds
	problem.setbranchcuts
	problem.setcbcascadeend
	problem.setcbcascadestart
	problem.setcbcascadevar
	problem.setcbcascadevarfail
	problem.setcbcoefevalerror
	problem.setcbconstruct
	problem.setcbdestroy
	problem.setcbdrcol
	problem.setcbformula
	problem.setcbiterend
	problem.setcbiterstart
	problem.setcbitervar
	problem.setcbmessage
	problem.setcbmsjobend
	problem.setcbmsjobstart
	problem.setcbmswinner
	problem.setcbslpend
	problem.setcbslpnode
	problem.setcbslpstart
	problem.setControl
	problem.setcurrentiv
	problem.setdefaultcontrol
	problem.setdefaults
	problem.setindicators
	problem.setlogfile
	problem.setmessagestatus
	problem.setObjective
	problem.setprobname
	problem.setuniqueprefix
	problem.solve
	problem.storebounds
	problem.storecuts
	problem.strongbranch
	problem.strongbranchcb
	problem.tokencount
	problem.tune
	problem.tunerreadmethod
	problem.tunerwritemethod
	problem.unconstruct
	problem.updatelinearization
	problem.validate
	problem.validatekkt
	problem.validaterow
	problem.validatevector
	problem.validformula
	problem.write
	problem.writebasis
	problem.writebinsol
	problem.writedirs
	problem.writeprtsol
	problem.writeslxsol
	problem.writesol
	branchobj.addbounds
	branchobj.addbranches
	branchobj.addcuts
	branchobj.addrows
	branchobj.getbounds
	branchobj.getbranches
	branchobj.getid
	branchobj.getlasterror
	branchobj.getrows
	branchobj.setpreferredbranch
	branchobj.setpriority
	branchobj.store
	branchobj.validate

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

