
The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

Modeling and problem solving with
Xpress-Mosel

FICO Xpress Training

S. Heipcke
Xpress Team, FICO

http://www.fico.com/xpress

c©2010 Fair Issac Corporation.

Introduction, Xpress overview

c©2010 Fair Issac Corporation.

Topics

» Introduction to Xpress
» Modeling with Mosel:

» Linear and Mixed Integer Programming (LP and MIP)
» Accessing data sources
» Programming language features

» Embedding models in applications

c©2010 Fair Issac Corporation.

Aims

» At the end of the course you will
» be familiar with optimization methods and the

terminology used to describe them
» be confident about formulating optimization models

and understanding the solution
» know how use Xpress to model and solve problems
» be able to embed a model in a application

c©2010 Fair Issac Corporation.

Other materials

» Not a replacement for the reference manuals!
» Focuses on areas that are of practical

importance
» Does not try to be exhaustive
» Pointers to reference material at the end of

every chapter

c©2010 Fair Issac Corporation.

Overview of Xpress

c©2010 Fair Issac Corporation.

Overview of Xpress

» Optimization algorithms
» enables you to solve different classes of problems
» built for speed, robustness and scalability

» Modeling interfaces
» enables you to provide your problem in the most

suitable way for your application
» built for ease of use and interfacing

c©2010 Fair Issac Corporation.

Optimization algorithms

LP MIQPMIPQCQP

Primal & Dual

Simplex

Barrier

Branch & Cut
MIP

SLP

Optimizer

NLP MINLPMIQCQP

c©2010 Fair Issac Corporation.

Modeling interfaces

» Mosel
» formulate model and develop optimization methods

using Mosel language / environment

» BCL
» build up model in your application code using

object-oriented model builder library

» Optimizer
» read in matrix files
» input entire matrix from program arrays

c©2010 Fair Issac Corporation.

Mosel

» A modeling and solving environment
» integration of modeling and solving
» programming facilities
» open, modular architecture

» Interfaces to external data sources (e.g. ODBC,
host application) provided

» Language is concise, user friendly, high level
» Best choice for rapid development and

deployment

c©2010 Fair Issac Corporation.

Mosel:
Components and interfaces

» Mosel language: to implement problems and
solution algorithms
⇒ model or Mosel program

» Mosel Model Compiler and Run-time Libraries:
to compile, execute and access models from a
programming language
⇒ C/C++, C#, Java, or VB program

c©2010 Fair Issac Corporation.

Mosel:
Components and interfaces

» Mosel Native Interface (NI): to provide new or
extend existing functionality of the Mosel
language
⇒ module

» Xpress-IVE: graphical user interface,
representation of the problem matrix, solution
status/progress graphs, and result display

c©2010 Fair Issac Corporation.

Mosel Libraries

» Embed Mosel models directly in your
application

» Access the solution within your application
» Compiled models are platform independent
» Enjoy benefits of structured modeling

language and rapid deployment when
building applications

» Available for C, Java, C#, and VB

c©2010 Fair Issac Corporation.

Xpress-IVE

» Visual Studio style visual development
environment for optimization & model
building with Mosel

» Mosel model editor & compiler
» Real time graphs show optimization

performance
» Browse solution values in entity tree

c©2010 Fair Issac Corporation.

Mosel and Optimizer Consoles

» Stand-alone command line executables with
text interfaces

» Useful for simple deployment using
batch/script files

» Available for all platforms supported by Xpress

c©2010 Fair Issac Corporation.

Why use modeling software?

c©2010 Fair Issac Corporation.

Why use modeling software?

& analysis
Interpretation

conception
Problem

Model

Computational

Computational
solution instance

Model solution

problem instance

Human Computer

c©2010 Fair Issac Corporation.

Why use modeling software?

» Developing a working model is the difficult bit
» Important to have software that helps

» speed to market
» verify correctness
» maintenance & modification
» algorithmic considerations
» execution speed

c©2010 Fair Issac Corporation.

Xpress modeling software

» The concepts we describe – how to formulate
and solve problems – apply to all modeling
software

» In this course we will use the Xpress-IVE
development environment with the
Xpress-Mosel language because it is
» easy to understand and learn
» easy to use

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Models: new, saving, opening, switching
start a new model

open an existing model

save current model

show list of available modules
» Bars: editor, entity, info, output (run)

switch between window layouts

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Editor: colors, auto-complete, tool tips

copy selection

cut selection

paste selection

go to next / last line with same indentation

go to previous / next cursor position (line)

undo / redo last editor command

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Compile, run
compile current model

execute current model

open run options dialog

pause execution

interrupt execution

search for the N best solutions

start infeasibility repair

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Output bar: log, stats, matrix, graphs, tree
» Viewing solution values
» Problem and matrix export and import

generate BIM file

export the problem matrix

optimize an imported matrix

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Search, bookmark
search

delete bookmarks
» Help

help

model generation wizzard & example models

module generation wizzard

c©2010 Fair Issac Corporation.

Xpress-IVE demonstration

» Debugger
set/delete breakpoint at cursor

define conditional breakpoint

start/stop debugger

step over an expression

step into an expression

run up to the cursor

show debugger options dialog
» Profiler

start the profiler

c©2010 Fair Issac Corporation.

Reference material

» The manual Getting Started with Xpress
introduces first time or occasional users to
modeling with Mosel and BCL, or the direct
Optimizer interface

» The Evaluators Guide and Advanced
Evaluators Guide provide a quick
walk-through of the Getting Started examples
and some more advanced features

The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

c©2010 Fair Issac Corporation.

Modeling with Mosel

c©2010 Fair Isaac Corporation.

Overview

» Modeling basics
» Accessing data sources
» Advanced modeling topics
» Programming language

features
» Mosel modules and packages

c©2010 Fair Issac Corporation.

Modeling basics

» A first model
» Data structures and loops
» Model building style

c©2010 Fair Issac Corporation.

Topics

» Definition of decision variables and constraints
» Solving with Xpress-Optimizer
» Solution output

c©2010 Fair Issac Corporation.

Example: Chess problem

» A joinery makes two different sizes of
boxwood chess sets.

» The small set requires 3 hours of machining on
a lathe, and the large set requires 2 hours.
There are 4 lathes with skilled operators who
each work a 40 hour week.

» The small chess set requires 1 kg of boxwood,
and the large set requires 3 kg. Only 200 kg of
boxwood can be obtained per week.

c©2010 Fair Issac Corporation.

Example: Chess problem

» Each of the large chess sets yields a profit of
$20, and one of the small chess sets has a
profit of $5.

» How many sets of each kind should be made
each week so as to maximize profit?

c©2010 Fair Issac Corporation.

Chess problem:
Mathematical formulation

» xl – quantity of large chess sets made
xs – quantity of small chess sets made

max z = 5 · xs + 20 · xl

s.t. 3 · xs + 2 · xl ≤ 160(= 4 · 40) (lathe time)

xs + 3 · xl ≤ 200 (wood)

xs, xl ≥ 0

c©2010 Fair Issac Corporation.

Chess problem:
Graphical solution

200 240

40

80

120

40 80 120 160 280 xs

xl

z=800
z=1200

z=1600

z=2000

z=400

optimal solution

time wood

c©2010 Fair Issac Corporation.

Chess problem:
Model Chess 1

model "Chess 1"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
xs: mpvar ! Number of small chess sets
xl: mpvar ! Number of large chess sets

end-declarations

3*xs + 2*xl <= 160 ! Constraint: limit on working hours
xs + 3*xl <= 200 ! Constraint: raw mat. availability

maximize(5*xs + 20*xl) ! Objective: maximize total profit

end-model

c©2010 Fair Issac Corporation.

Starting and ending a Mosel model

model "Chess 1"
...

end-model

c©2010 Fair Issac Corporation.

Preamble

» uses statement: Say we will use the
Xpress-Optimizer library, so that we can solve
our problem

» Options:
» noimplicit: force all objects to be declared
» explterm: Use ’;’ to mark line ends

uses ’mmxprs’
options noimplicit
options explterm

c©2010 Fair Issac Corporation.

Decision variables

» mpvar means mathematical programming
variable or decision variable

» Decision variables are unknowns: they have no
value until the model is run, and the optimizer
finds values for the decision variables

c©2010 Fair Issac Corporation.

Decision variables

» In optimization problems, decision variables
are often just called variables

» In computer programs, a variable can be used
to refer to many different types of objects

» For instance, in Mosel models, a program
variable can be used to refer to a decision
variable, as well as integers, reals, etc.

c©2010 Fair Issac Corporation.

Bounds on decision variables

» Variables can take values between 0 and
infinity by default

» Other bounds may be specified

x <= 10
y(1) = 25.5
y(2) is_free
z(2,3) >= -50
z(2,3) <= 50

c©2010 Fair Issac Corporation.

Constraints

» Have type linctr – linear constraint

declarations
Wood: linctr
Inven: array(1..10) of linctr

end-declarations

c©2010 Fair Issac Corporation.

Constraints

» The ‘value’ of a constraint entity is a linear
expression of decision variables, a constraint
type, and a constant term

» Set using an assignment statement

Wood := xs + 3*xl <= 200

c©2010 Fair Issac Corporation.

Objective function

» An objective function is just a constraint with
no constraint type

declarations
MinCost: linctr

end-declarations

MinCost := 10*x(1) + 20*x(2) + 30*x(3) + 40*x(4)

c©2010 Fair Issac Corporation.

Optimization &
matrix generation

» Generate the matrix and solve the problem:
minimize(MinCost)
maximize(5*xs + 20*xl)

» Load the matrix:
loadprob(MinCost)

» Matrix export:
exportprob(0, "explout", MinCost)

c©2010 Fair Issac Corporation.

Viewing the solution

» Can access and manipulate the solution values
within the model
writeln(’Solution: ’, getobjval)

writeln(’xs = ’, getsol(xs))
writeln(’xl = ’, getsol(xl))

write(’Wood: ’, getact(Wood), ’ ’)
writeln(getslack(Wood))

» Solution values of constraints
activity value + slack value = RHS

c©2010 Fair Issac Corporation.

Project work [C-1]:
Chess problem

» Execute the model chess1.mos.
» Add printing of the solution values.
» Is the solution realistic/desirable?
» Constrain the variables to take integer values

only.
» Add output of constraint activity and slack

values.

c©2010 Fair Issac Corporation.

Project work [C-1]:
Chess problem

» Executing model chess1.mos with IVE:
» double click on the model file to start IVE or open the

file from within IVE
» click on the run button:

» Model execution from the command line:
mosel -c "exe chess1.mos"

» or:

mosel
exe chess1.mos
quit

c©2010 Fair Issac Corporation.

Solution:
Completed model Chess 1

model "Chess 1 (completed)"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
xs,xl: mpvar ! Decision variables

end-declarations

Profit:= 5*xs + 20*xl ! Name the objective function
Time:= 3*xs + 2*xl <= 160 ! and the constraints
Wood:= xs + 3*xl <= 200
xs is_integer; xl is_integer ! Integrality constraints

maximize(Profit) ! Objective: maximize total profit

writeln("Solution: ", getobjval) ! Print objective function value
writeln("xs: ", getsol(xs), " xl: ", getsol(xl)) ! Print sol. val.s
write("Time: ", getact(Time)) ! Constraint activity
writeln(" ", getslack(Time)) ! and slack
end-model

c©2010 Fair Issac Corporation.

Solution analysis

» What happens if machines operate 35 instead
of 40 hours?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800

z=2000

z=1600

z=1200

optimal solution

time wood

» Calculate spare capacity: getslack,
getactivity

c©2010 Fair Issac Corporation.

LP solution analysis

» What is the cost of an extra unit of wood/extra
working hour?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400
z=1200

z=1600

z=2000

woodtime

optimal solution

z=800

» Reduced cost: getrcost

c©2010 Fair Issac Corporation.

LP solution analysis

» What is the cost of producing an additional
unit of each product?

200 240

40

80

120

40 80 120 160 280

wood

xs

xl

z=400 z=800 z=1200 z=1600

z=2000

optimal solutions

time

» Dual values (’shadow prices’): getdual
» Increase price of xl to reach break even point

c©2010 Fair Issac Corporation.

Solution analysis

» Limit the amount of xl.

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800
z=1200

z=1600

z=2000

xl=50

woodtime

optimal solution

c©2010 Fair Issac Corporation.

Extending the example:
Model Chess 2

uses "mmxprs"
options explterm ! Use ’;’ to mark line ends

declarations
Allvars: set of mpvar; ! Set of variables
DescrV: array(Allvars) of string; ! Descriptions of variables
xs,xl: mpvar;

end-declarations

DescrV(xs):= "Small"; DescrV(xl):= "Large";

Profit:= 5*xs + 20*xl; ! Objective function
Time:= 3*xs + 2*xl <= 160; ! Constraints
Wood:= xs + 3*xl <= 200;
xs is_integer; xl is_integer;

maximize(Profit);
writeln("Solution: ", getobjval);
forall(x in Allvars) writeln(DescrV(x), ": ", getsol(x));

c©2010 Fair Issac Corporation.

Data structures

» Set: unordered collection of objects of the
same type
» used as index sets
» special type range sets (= interval of integers)

» Array: multidimensional table of objects of
the same type
» used for data, decision variables, constraints
» may be dynamic or static

c©2010 Fair Issac Corporation.

Arrays and loops:
Model Chess 3

uses "mmxprs"

declarations
R = 1..2 ! Index range
DUR, WOOD, PROFIT: array(R) of real ! Coefficients
x: array(R) of mpvar ! Array of variables
end-declarations

DUR :: [3, 2] ! Initialize data arrays
WOOD :: [1, 3]
PROFIT :: [5, 20]

sum(i in R) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in R) WOOD(i)*x(i) <= 200
forall(i in R) x(i) is_integer
maximize(sum(i in R) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

c©2010 Fair Issac Corporation.

Data declaration

declarations
NWEEKS = 20 ! Integer constant
DATA_DIR = ’c:/data’ ! String constant
NPROD: integer ! Integer variable
SCOST: real ! Real variable
DIR: string ! String variable
IF_DEBUG: boolean ! Boolean variable

PRODUCTS = {"P1", "P2", "P4"} ! Constant set of string
S: set of integer ! Variable set of integer
R: range ! Range of integers
COST: array(1..3,1..4) of real ! Array of real

end-declarations

c©2010 Fair Issac Corporation.

Data initialization

NPROD:= 50
SCOST:= 5.4
DIR:= ’c:/data’
IF_DEBUG:= true

S:= {10, 0, -5, 13}
R:= 1..NPROD
COST:: [11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34]

c©2010 Fair Issac Corporation.

Summations

» Sum up an array of variables in a constraint

Ctr1:= sum(p in 1..10) (RES(p)*buy(p) + sell(p)) <= 100

Ctr2:= sum(p in PRODUCTS) (buy(p) + sum(r in 1..5) make(p,r)) <= 100

Ctr3:= sum(p in 1..NP) (2*CAP(p)*buy(p)/10 +
SCAP(p)*sell(p)) <= MAXCAP

c©2010 Fair Issac Corporation.

Loops

» Use a loop to assign an array of constraints

forall(t in 2..NT)
Inven(t):= bal(t) = bal(t-1) + buy(t) - sell(t)

c©2010 Fair Issac Corporation.

Loops

» Use do/end-do to group several statements
into one loop

forall(t in 1..NT) do
MaxRef(t):= sum(i in PRODUCTS)

use(i,t) <= MAXREF(t)

Inven(t):= store(t) = store(t-1) + buy(t) - use(t)
end-do

c©2010 Fair Issac Corporation.

Loops

» Can nest forall statements

forall(t in 1..NT) do
MaxRef(t):= sum(i in 1..NI) use(i,t) <= MAXREF(t)

forall(i in 1..NI)
Inven(i,t):= store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)

end-do

c©2010 Fair Issac Corporation.

Conditions

» May include conditions in sums or loops

forall(c in 1..10 | CAP(c)>=100.0)
MaxCap(c):=

sum(i in 1..10, j in 1..10 | i<>j)
TECH(i,j,c)*x(i,j,c) <= MAXTECH(c)

c©2010 Fair Issac Corporation.

Mosel statements

» Can extend over several lines and use spaces
» However, a line break acts as an expression

terminator
» To continue an expression, it must be cut after

a symbol that implies continuation (e.g. + - ,)

c©2010 Fair Issac Corporation.

Model building style

» You should aim to build a model with sections
in this order
» constant data: declare, initialize
» all non-constant objects: declare
» variable data: initialize / input / calculate
» decision variables: create, specify bounds
» constraints: declare, specify
» objective: declare, specify, optimize

c©2010 Fair Issac Corporation.

Model building style

» In both LP and MIP it is very important to
distinguish between
» known values

» data, parameters, etc.
» and unknown values

» decision variables

» All constraints must be linear expressions of
the variables

c©2010 Fair Issac Corporation.

Model building style

» Suggestion: name objects as follows
» known values (data) using upper case
» unknown values (variables) using lower case
» constraints using mixed case

so that it is easy to distinguish between them,
and see that constraints are indeed linear

c©2010 Fair Issac Corporation.

Model building style

» Variables are actions that your model will
prescribe

» Use verbs for the names of variables
» this emphasizes that variables represent ‘what to do’

decisions

» Indices are the objects that the actions are
performed on

» Use nouns for the names of indices

c©2010 Fair Issac Corporation.

Model building style

» Using named index sets/ranges
» improves the readability of a model
» makes it easier to apply the model to different sized

data sets
» makes the model easier to maintain
» may speed up your model

c©2010 Fair Issac Corporation.

Model building style

» Try to include ‘Min’ or ‘Max’ in the name of
your objective function

» An objective function called ‘Obj’ is not very
helpful when taken out of context!

c©2010 Fair Issac Corporation.

Model building style

» Comments are essential for a well written
model

» Always use a comment to explain what each
parameter, data table, variable, and constraint
is for when you declare it

» Add extra comments to explain any complex
calculation etc.

c©2010 Fair Issac Corporation.

Model building style

» Comments in Mosel:

declarations
PRODUCTS = 1..NP ! Set of products
TIMES = 1..NT ! Set of time periods
make: array(PRODUCTS, TIMES) of mpvar

! Amount of p produced in time t
sell: array(PRODUCTS, TIMES) of mpvar

! Amount of p sold in time t
end-declarations

(! And here is a multi-line
comment !) forall(t in TIMES)

c©2010 Fair Issac Corporation.

Accessing data sources

» The initializations block
» Dynamic arrays
» Run-time parameters
» Using other data sources

c©2010 Fair Issac Corporation.

Topics

» Text files
» ODBC
» Sparse data

c©2010 Fair Issac Corporation.

Separation of problem logic and
data

» Typically, the model logic stays constant once
developed, with the data changing each run

» Editing the model can create errors, expose
intellectual property, and is impractical for
industrial size data

» It makes good sense to fix the model and
obtain data from their source

c©2010 Fair Issac Corporation.

Data input from file: Chess 4

uses "mmxprs"

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables
end-declarations

initializations from "chess.dat" ! Read data from file
DUR WOOD PROFIT ! chess.dat: PROFIT: [5 20]
end-initializations ! DUR: [3 2]

! WOOD: [1 3]
sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

c©2010 Fair Issac Corporation.

Data file chess.dat

» Every data item/table has a label, its identifier
» Single line comments (marked with ’!’)

! Data file for ’chess4.mos’

DUR: [3 2]
WOOD: [1 3]
PROFIT: [5 20]

c©2010 Fair Issac Corporation.

Sparse data format

» Every data entry specified with its index tuple
» Can read data from one labeled data source

into several Mosel data tables at once
» data tables must have identical indices

initializations from ’chess.dat’
[DUR, WOOD, PROFIT] as ’ChessData’
end-initializations

c©2010 Fair Issac Corporation.

Sparse data format

» Format of data file with several data values in
one labeled data range (use a * for a missing
data value)

! chess.dat

ChessData: [
(1) [3 1 5]
(2) [2 3 20]

]

c©2010 Fair Issac Corporation.

Writing data out to text files

» You can write out values in an analogous way
to reading them in using initializations
to

» To write out the solution values of variables,
or other solution values (slack, activity, dual,
reduced cost) you must first put the values
into a data table

c©2010 Fair Issac Corporation.

Writing data out to text files

declarations
x_sol: array(PRODS) of real

end-declarations

forall(i in PRODS)
x_sol(i) := getsol(x(i))

initializations to ’result.dat’
x_sol

end-initializations

c©2010 Fair Issac Corporation.

Free format text files

fopen("result.dat", F_OUTPUT+F_APPEND)

forall(i in PRODS)
writeln(i, ": ", getsol(x(i))

fclose(F_OUTPUT)

c©2010 Fair Issac Corporation.

Project work [C-2]:
Arrays and index sets

» Modify the model chess4.mos to use indices
of type string.

» Execute this new model chess4s.mos with
data set chess2.dat.

» Output the solution values to file sol.dat
using initializations to.

» Modify the models further to read the
contents of the index set from file
(chess5.mos, chess5s.mos).

c©2010 Fair Issac Corporation.

Dynamic arrays

» Mosel provides a user friendly and efficient
means of modeling mathematical
programming problems

» Objects such as dynamic arrays and variable
index sets, together with efficient loops and
sums, allow large scale models to be written
easily, and execute quickly

c©2010 Fair Issac Corporation.

Dynamic arrays

» Dynamic array: indexing sets not known at
declaration, or array explicitly marked
dynamic

» Initialize dynamic data arrays from text files or
using ODBC
» data must use sparse format
» this is so Mosel can work out the values of the indices
» reading in the data array initializes both the index

values and the data values at the same time

c©2010 Fair Issac Corporation.

Dynamic arrays of
decision variables

» An entry of a dynamic array is only created
when a value is assigned to it

» Decision variables don’t get created, because
you don’t assign values to them

» To create decision variables in a dynamic array,
use the create procedure

c©2010 Fair Issac Corporation.

Dynamic arrays of
decision variables

declarations
TIME: range ! = set of contiguous integers
COST: array(TIME) of real
use: array(TIME) of mpvar

end-declarations

(...) ! Read in COST data etc

forall(t in TIME | exists(COST(t)))
create(use(t))

c©2010 Fair Issac Corporation.

Dynamic arrays of
decision variables

» Note: if you declare decision variables after
reading in the data, then decision variables
will be created for all combinations of the
index set elements that exist at that time

» Do not use create in this case
» Define decision variables before reading in

data if you want to use create to control
exactly which elements get created

c©2010 Fair Issac Corporation.

Dynamic arrays

» Use dynamic arrays
» to size data tables automatically when the data is

read in
» to initialize the index values automatically when the

data is read in
» to conserve memory when storing sparse data
» to eliminate index combinations without using

conditions each time

c©2010 Fair Issac Corporation.

Dynamic arrays

» Don’t use dynamic arrays
» when you can use an ordinary (static) array instead
» when storing dense data, and you can size the data

table and initialize the indices in some other way
(dynamic arrays are slower and use more memory
than a static array when storing dense data)

c©2010 Fair Issac Corporation.

Data input from file:
Chess 4 completed

uses "mmxprs"
parameters
FILENAME="chess.dat" ! Name of the data file
end-parameters

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables
end-declarations

initializations from FILENAME ! Read data from file
DUR WOOD PROFIT
end-initializations

sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))

c©2010 Fair Issac Corporation.

Run-time parameters

» Parameters
» a special type of constant
» default value may be overriden at run-time

parameters
DATA_DIR = ’c:/data’
DEBUG = true
NUM_RECORDS = 1000

end-parameters

c©2010 Fair Issac Corporation.

Run-time parameters

» The value in the model is used by default
» A different value may be given at run-time

» In IVE, an alternative value may be set in the Build �
Options dialogue

» When running a Mosel model from an application, an
alternative value can be set in the parameters string

c©2010 Fair Issac Corporation.

Run-time parameters

» A parameters section must come at the top
of the model
» after any uses or options statements
» before any other statements

c©2010 Fair Issac Corporation.

Run-time parameters

» Parameters are especially useful for passing
directories/paths into the model
» all files referenced in the model should use a

directory parameter
» otherwise, Mosel may not be able to find the file

when the model is deployed (the default path differs
when run from an application)

» use ’+’ to join strings

c©2010 Fair Issac Corporation.

Run-time parameters

» Specifying directory paths
» preferably use ’/’ as directory separator

parameters
DIR = ’.’
end-parameters

fopen(DIR+’/cap.dat’, F_INPUT)
...
fclose(F_INPUT)
...
initializations from DIR+’/cost.dat’
...

c©2010 Fair Issac Corporation.

Project work [C-3]:
Run-time parameters

» In models chess5.mos and chess5s.mos
turn the data file name into a run-time
parameter.

» Re-run your model chess5s.mos with the
larger data set chess3.dat without changing
the filename in the model.

c©2010 Fair Issac Corporation.

Project work [C-3]:
Run-time parameters

» Setting runtime parameters within IVE:
» select menu Build � Options or click on the button
» check Use model parameters to activate the

parameter input field and enter the new value(s)

» Runtime parameters from the command line:
mosel -c "exe chess5s.mos DATAFILE=’chess3.dat’"

» or:

mosel
exe chess5s.mos DATAFILE=’chess3.dat’
quit

c©2010 Fair Issac Corporation.

Using other data sources

» The initializations block can work with
many different data sources and formats
thanks to the notion of I/O drivers

» I/O drivers for physical data files:
mmodbc.excel, mmoci.oci, mmetc.diskdata

» Other drivers available, e.g. for data exchange
in memory

» Change of the data source = change of the I/O
driver, no other modifications to your model

c©2010 Fair Issac Corporation.

Data transfer using ODBC

» First, must check ODBC driver for your chosen
data source (external to Xpress)
» Start � Settings � Control Panel � Administrative

Tools � Data Sources (ODBC)
» Check that data source is defined, and note its name

(the data source name, DSN)

c©2010 Fair Issac Corporation.

Data transfer using ODBC

» Next, identify specific data source – a database
or spreadsheet
» note its location (path)
» the data must be in a table in a database, or a named

range in a spreadsheet

c©2010 Fair Issac Corporation.

Data transfer using ODBC

» Now, in your model
» use the mmodbc module (requires licence)
» use the odbc driver in initializations blocks, or
» write out the corresponding SQL commands:

» set up an ODBC data connection to the specific data
source

» input data using SQL statements
» disconnect

c©2010 Fair Issac Corporation.

Reading data via ODBC

» Excel spreadsheet (’ChessData’ = range in the
spreadsheet):
initializations from ’mmodbc.odbc:chess.xls’
[DUR, WOOD, PROFIT] as ’ChessData’
end-initializations

» Access database (’ChessData’ = data table):
initializations from ’mmodbc.odbc:debug;chess.mdb’
[DUR, WOOD, PROFIT] as ’ChessData’
end-initializations

c©2010 Fair Issac Corporation.

Data export to a database

initializations to ’mmodbc.odbc:debug;chess.mdb’
x_sol as ’ChessSol’

end-initializations

» Before every new run, delete the data from
the previous run in the destination range/table

» Otherwise the new results will either be
appended to the existing ones or, if ’PRODS’
has been defined as key field in a database,
the insertion will fail

c©2010 Fair Issac Corporation.

Special notes for data export to
Excel

» Make sure the ’Read Only’ option is disabled
in the ODBC data source set-up options

» Define the destination range in the
spreadsheet, with one line of column
headings, one line of dummy data, and no
other data

» Excel does not support the full range of ODBC
functionality (commands like ’update’ or
’delete’ will fail)
⇒ preferably use direct connection (excel
driver)

c©2010 Fair Issac Corporation.

Data exchange with MS Excel

» Software-specific driver excel for MS Excel
» use mmodbc module (requires licence)
» use the excel driver (instead of odbc) in
initializations blocks

» no driver setup required (works with standard Excel
installation)

» simply replace "mmodbc.odbc:" by
"mmodbc.excel:skiph;" in the preceding
examples

c©2010 Fair Issac Corporation.

Data exchange with Oracle

» Software-specific driver oci for Oracle
databases
» use mmoci module (requires licence)
» setup: Oracle’s Instant Client package must be

installed on the machine running the Mosel model
» in initializations blocks replace
"mmodbc.odbc:" by "mmoci.oci:" in the
preceding examples

» supports SQL statements (replace the prefix SQL by
OCI)

c©2010 Fair Issac Corporation.

SQL

» The I/O driver odbc generates automatically
the SQL commands required to connect to the
database/spreadsheet

» For advanced uses module mmodbc also
defines most standard SQL commands directly
for the Mosel language

c©2010 Fair Issac Corporation.

Project work [C-4]:
ODBC

» Check that the ODBC DSN for Excel is set up on
your computer

» Re-run your model chess5.mos with the Excel
file chess.xls

c©2010 Fair Issac Corporation.

Summary

» We have seen that it is possible to completely
separate the data and the model

» The model specifies the logic of the problem,
without any reference to its size

» The model can be applied to any data
instance, simply by providing data files

c©2010 Fair Issac Corporation.

Reference material

» Refer to the Mosel User Guide for a detailed
introduction to working with Mosel.

» The book Applications of optimization with
Xpress-MP provides a large collection of
examples models from different application
areas.

» See the whitepaper Using ODBC and other
database interfaces with Mosel for further
detail on data handling.

c©2010 Fair Issac Corporation.

Advanced modeling topics

» MIP variable types
» Modeling with binary variables

c©2010 Fair Issac Corporation.

Topics

» MIP variable types
» Modeling with binary variables

c©2010 Fair Issac Corporation.

MIP variable types

» Binary variables
» can take either the value 0 or the value 1 (do/ don’t

do variables)
» model logical conditions

x(4) is_binary

c©2010 Fair Issac Corporation.

MIP variable types

» Integer variables
» can take only integer values
» used where the underlying decision variable really

has to take on a whole number value for the optimal
solution to make sense

x(7) is_integer

c©2010 Fair Issac Corporation.

MIP variable types

» Partial integer variables
» can take integer values up to a specified limit and

any value above that limit
» computational advantages in problems where it is

acceptable to round the LP solution to an integer if
the optimal value of a decision variable is quite large,
but unacceptable if it is small

x(1) is_partint 5 ! Integer up to 5, then continuous

c©2010 Fair Issac Corporation.

MIP variable types

» Semi-continuous variables
» can take either the value 0, or a value between some

lower limit and upper limit
» help model situations where if a variable is to be

used at all, it has to be used at some minimum level

x(2) is_semcont 6 ! A ’hole’ between 0 and 6, then continuous

c©2010 Fair Issac Corporation.

MIP variable types

» Semi-continuous integer variables
» can take either the value 0, or an integer value

between some lower limit and upper limit
» help model situations where if a variable is to be

used at all, it has to be used at some minimum level,
and has to be integer

x(3) is_semint 7 ! A ’hole’ between 0 and 7, then integer

c©2010 Fair Issac Corporation.

MIP variable types

» Special Ordered Sets of type one (SOS1)
» an ordered set of variables at most one of which can

take a non-zero value
» single choice among several possibilities

» Special Ordered Sets of type two (SOS2)
» an ordered set of variables, of which at most two can

be non-zero, and if two are non-zero these must be
consecutive in their ordering

» e.g. approximation of non-linear functions with a
piecewise linear function

c©2010 Fair Issac Corporation.

SOS definition

» WEIGHT array determines the ordering of the
variables:
MYSOS:= sum(i in IRng) WEIGHT(i)*x(i) is_sosX

where is_sosX is either is_sos1 or is_sos2

c©2010 Fair Issac Corporation.

SOS definition

» Alternative: set S of set members, linear
constraint L with ordering coefficients (=
reference row entries):
makesos1(S,L); makesos2(S,L)

» must be used if the coefficient WEIGHT(i) of an
intended set member is zero

» Note: the ordering coefficients must all be
distinct (or else they are not doing their job of
supplying an order!)

c©2010 Fair Issac Corporation.

Logical conditions

» Projects A, B, C, D
» Binary variables a, b, c, d

» do at most 3 projects: a + b + c + d ≤ 3
» must do D if A done: d ≥ a
» can only do C if both A and B done:

c ≤ (a + b) / 2
c ≤ a, c ≤ b

c©2010 Fair Issac Corporation.

Disjunctions

» Either
5 ≤ x ≤ 10

or
80 ≤ x ≤ 100

c©2010 Fair Issac Corporation.

Disjunctions

» Introduce a new variable:
ifupper: 0 if 5 ≤ x ≤ 10; 1 if 80 ≤ x ≤ 100
x ≤ 10 + (100− 10) · ifupper [1]

x ≥ 5 + (80− 5) · ifupper [2]

c©2010 Fair Issac Corporation.

Disjunctions

» Either 5 ≤
∑

i Aixi ≤ 10
or 80 ≤

∑
i Aixi ≤ 100

∑
i

Aixi ≤ 10 + 90 · ifupper∑
i

Aixi ≥ 5 + 75 · ifupper

c©2010 Fair Issac Corporation.

Absolute values

» Two variables
x1, x2

with
0 ≤ xi ≤ U [1. i]

want
y = |x1 − x2|

c©2010 Fair Issac Corporation.

Absolute values

» Introduce binary variables

d1, d2

to mean
d1 : 1 if x1 − x2 is the positive value
d2 : 1 if x2 − x1 is the positive value

c©2010 Fair Issac Corporation.

Absolute values

» MIP formulation of y = |x1 − x2|
0 ≤ xi ≤ U [1.i]

0 ≤ y − (x1 − x2) ≤ 2 · U · d2 [2]

0 ≤ y − (x2 − x1) ≤ 2 · U · d1 [3]

d1 + d2 = 1 [4]

c©2010 Fair Issac Corporation.

Project work [C-5]:
Logical constraints

» Take a look at the capital budgeting model in
capbgt.mos: the objective is to determine the
most profitable choice among 8 possible
projects, subject to limited resources
(personnel and capital)

» Formulate the following additional
constraints:
» P1 can only be done if P2 is done
» P1 can only be done if P3 and P6 are done
» It is not possible to do both P5 and P6
» Either P1 and P2 must be done or P3 and P4 (but not

both pairs).

c©2010 Fair Issac Corporation.

Solution

! p1 can only be done if p2 is done
x(2) >= x(1)

! p1 can only be done if p3 and p6 are done
(x(3) + x(6))/2 >= x(1)

! It is not possible to do both p5 and p6
x(5) + x(6) <= 1

! Either p1 and p2 must be done or p3 and p4 (but not both pairs).
x(1) = x(2); x(3) = x(4)
x(1) + x(2) = 2 - (x(3) + x(4))

c©2010 Fair Issac Corporation.

Programming language features

» Selections
» Loops
» Functions and procedures
» Data structures
» Programming solution algorithms

c©2010 Fair Issac Corporation.

Mosel:
A programming environment

» Selections
» Loops
» Set operations
» Subroutines
» Data structures

c©2010 Fair Issac Corporation.

Selections

» if

if A >= 20 then
x <= 7

elif A <= 10 then
x >= 35

else
x = 0

end-if

» case

case A of
-1000..10 : x >= 35
20..1000 : x <= 7
12, 15 : x = 1
else x = 0

end-case

c©2010 Fair Issac Corporation.

Loops

» forall [do]

» while [do]

» repeat until

c©2010 Fair Issac Corporation.

Example: Prime numbers

» Implements the ‘Sieve of Eratosthenes’.

SNumbers = {2, . . . , L}
n := 2
repeat

while (n 6 ∈SNumbers) n := n + 1
SPrime := SPrime ∪ {n}
i := n
while (i ≤ L)

SNumbers := SNumbers\{i}
i := i + n

until SNumbers = {}

c©2010 Fair Issac Corporation.

Example: Prime numbers

model Prime
parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT

end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations

SNumbers:={2..LIMIT}
writeln("Prime numbers between 2 and ", LIMIT, ":")

c©2010 Fair Issac Corporation.

Example: Prime numbers

n:=2
repeat

while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples

SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")
end-model

c©2010 Fair Issac Corporation.

Operations on sets

» Set operators include
» union: +
» intersection: *
» difference: -

» Logical expressions using sets include
» subset: Set1 <= Set2
» superset: Set1 >= Set2
» equals: Set1 = Set2
» not equals: Set1 <>Set2
» element of: ’Oil5’ in Set1
» not element of: ’Oil5’ not in Set1

c©2010 Fair Issac Corporation.

Functions and procedures

» Similar structure as model, including the
declarations blocks

» Terminated by end-function or
end-procedure

» Function defines returned with its return
value

» forward declaration
» Overloading possible (each version with a

different number or types of arguments)

c©2010 Fair Issac Corporation.

Example: Quick Sort algorithm

1. Choose a middle value v for partitioning
(here: v = (min + max) / 2)

2. Divide the list into two parts ‘left’ (all
elements x < v) and ‘right’ (all elements x > v)

3. Repeat from 1. for lists ‘left’ and ‘right’

c©2010 Fair Issac Corporation.

Example: Quick Sort algorithm

model "Quick Sort"
parameters
LIM=50

end-parameters
! Declare procedures that are defined later

forward procedure qsort(L:array(range) of integer)
forward procedure qsort(L:array(range) of integer, s,e:integer)

declarations
T:array(1..LIM) of integer

end-declarations
! Generate randomly an array of numbers

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
time:=gettime

qsort(T) ! Sort the array
writeln(T) ! Print the sorted array

c©2010 Fair Issac Corporation.

Example: Quick Sort algorithm

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer, i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k

end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))

end-procedure

c©2010 Fair Issac Corporation.

Example: Quick Sort algorithm

! Sorting routine
procedure qsort(L:array(range) of integer, s,e:integer)
v:=L((s+e) div 2)
i:=s; j:=e
repeat
while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then
swap(L,i,j)
i+=1; j-=1

end-if
until i>=j
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if

end-procedure

end-model

c©2010 Fair Issac Corporation.

Data structures

» array

» set

c©2010 Fair Issac Corporation.

Data structures

» array

» set

» list

» record

c©2010 Fair Issac Corporation.

Data structures

» array

» set

» list

» record

» ... and any combinations thereof, e.g.,
S: set of list of integer
A: array(range) of set of real

c©2010 Fair Issac Corporation.

List

» Collection of objects of the same type
» May contain the same element several times
» Order of list elements is specified by

construction
» Handling: cuthead, splittail, reverse...

declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[[’A’,’B’,’C’], [’D’,’E’], [’F’,’G’,’H’,’I’]]

c©2010 Fair Issac Corporation.

Record

» Finite collection of objects of any type
» Each component of a record is called a ’field’

and is characterized by its name and its type
declarations

ARC: array(ARCSET:range) of record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5

c©2010 Fair Issac Corporation.

User types

» Treated in the same way as the predefined
types of the Mosel language

» New types are defined in declarations
blocks by specifying a type name, followed by
=, and the definition of the type
declarations

myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

c©2010 Fair Issac Corporation.

User types

» Typical uses
» shorthand for repetitions in declarations
» naming records

declarations
arc = record

Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
A: arc
ARC: array(ARCSET:range) of arc

end-declarations

c©2010 Fair Issac Corporation.

Summary: Language features

» Data structures: array, set, list, record
» Selections: if-then-[elif-then]-[else], case
» Loops: forall-[do], while-[do], repeat-until
» Operators:

» standard arithmetic operators
» aggregate operators (sum, prod, and, or, min, max,

union, intersection)
» set operators

» Subroutines: functions, procedures
(forward declaration, overloading)

c©2010 Fair Issac Corporation.

Mosel:
A solving environment

» No separation between ‘modeling statements’
and ‘solving statements’

» Programming facilities for pre/postprocessing,
algorithms

» Principle of incrementality
» Not solver-specific
» Possibility of interaction with solver(s)

c©2010 Fair Issac Corporation.

Solving: Variable fixing heuristic

» Solution heuristic written with Mosel
» Program split into several source files

c©2010 Fair Issac Corporation.

Solving: Variable fixing heuristic
(main file)

model Coco
uses "mmxprs"

include "fixbv_pb.mos"
include "fixbv_solve.mos"

solution:=solve
writeln("The objective value is: ", solution)

end-model

c©2010 Fair Issac Corporation.

Solving: Variable fixing heuristic
(model)

declarations
RF=1..2 ! Range of factories (f)
RT=1..4 ! Range of time periods (t)
(...)
openm: array(RF,RT) of mpvar
end-declarations

(...)
forall(f in RF,t in 1..NT-1) Closed(f,t):= openm(f,t+1) <= openm(f,t)
forall(f in RF,t in RT) openm(f,t) is_binary

c©2010 Fair Issac Corporation.

Solving: Variable fixing heuristic
(algorithm)

function solve:real
declarations
osol: array(RF,1..2) of real
bas: basis

end-declarations

setparam("XPRS_PRESOLVE",0)
setparam("zerotol", 5.0E-4) ! Set Mosel comparison tolerance
maximize(XPRS_LPSTOP,MaxProfit) ! Solve the root LP
savebasis(bas) ! Save the basis

forall(f in RF, t in 1..2) do ! Fix some binary variables
osol(f,t):= getsol(openm(f,t))
if osol(f,t) = 0 then
setub(openm(f,t), 0.0)
elif osol(f,t) = 1 then
setlb(openm(f,t), 1.0)
end-if

end-do

c©2010 Fair Issac Corporation.

Solving: Variable fixing heuristic
(algorithm)

maximize(XPRS_CONT,MaxProfit) ! Solve modified problem
solval:=getobjval ! Save solution value

forall(f in RF, t in 1..2) ! Reset variable bounds
if((osol(f,t) = 0) or (osol(f,t) = 1)) then
setlb(openm(f,t), 0.0)
setub(openm(f,t), 1.0)
end-if

loadbasis(bas) ! Load previously saved basis
setparam("XPRS_MIPABSCUTOFF", solval) ! Set cutoff value
maximize(MaxProfit) ! Solve original problem
returned:= if(getprobstat=XPRS_OPT, getobjval, solval)

end-function

c©2010 Fair Issac Corporation.

Mosel modules and packages

c©2010 Fair Issac Corporation.

Mosel:
A modular environment

» Open architecture:
» possibility to define language extensions via

packages or modules without any need to modify the
core of the Mosel language

c©2010 Fair Issac Corporation.

Mosel:
A modular environment

» Package = library written in the Mosel
language
» making parts of Mosel models re-usable
» deployment of Mosel code whilst protecting your

intellectual property
» similar structure as models (keyword model is

replaced by package), compiled in the same way
» included with the uses statement
» definition of new types, subroutines, symbols
» see examples in the Mosel User Guide

c©2010 Fair Issac Corporation.

Mosel:
A modular environment

» Module = dynamic library written in C
» modules of the Mosel distribution:

» solver interfaces:
Xpress-Optimizer (LP, MIP, QP), SLP, SP, CP

» database access: ODBC, OCI
» system commands; model handling; graphics

» write your own modules for
» connecting to external software
» time-critical tasks
» defining new types, subroutines, operators, I/O

drivers, control parameters, symbols

c©2010 Fair Issac Corporation.

Some highlights
of module features

» Interaction with external programs during
their execution (callback functions)

» Access to other solvers and solving paradigms
(NLP, CP)

» Implementation of graphical applications
(mmive, XAD)

c©2010 Fair Issac Corporation.

Module mmxprs:
Using callback functions

uses "mmxprs"

declarations
x: array(1..10) of mpvar
end-declarations

public procedure printsol
writeln("Solution: ", getsol(Objective))
forall(i in 1..10) write("x(", i, ")=", getsol(x(i)), "�")
writeln
end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

c©2010 Fair Issac Corporation.

Module mmxslp:
Solving an NLP by SLP

» What is the greatest area of a polygon of N
sides and a diameter of 1?

c©2010 Fair Issac Corporation.

Module mmxslp:
Solving an NLP by SLP

model "Polygon"
uses "mmxslp"

declarations
N=5
area: gexp
rho, theta: array(1..N) of mpvar
objdef: mpvar
D: array(1..N,1..N) of genctr

end-declarations

forall(i in 1..N-1) do ! Initialization of SLP variables
rho(i) >= 0.1; rho(i) <= 1
SLPDATA("IV", rho(i), 4*i*(N + 1 - i)/((N+1)^2))
SLPDATA("IV", theta(i), M_PI*i/N)

end-do

c©2010 Fair Issac Corporation.

Module mmxslp:
Solving an NLP by SLP

forall(i in 1..N-2, j in i+1..N-1) ! Third side of all triangles
D(i,j):= rho(i)^2 + rho(j)^2 -

rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1

! Vertices in increasing order
forall(i in 2..N-1) theta(i) >= theta(i-1) +.01

theta(N-1) <= M_PI ! Boundary conditions

area:= ! Objective: sum of areas
(sum(i in 2..N-1) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1))))*0.5

objdef = area; objdef is_free
SLPloadprob(objdef)
SLPmaximize

writeln("Area = ", getobjval)
end-model

c©2010 Fair Issac Corporation.

Module kalis:
Constraint Programming

» Example: jobshop scheduling
» schedule the production of a set of jobs on a set of

machines. Every job is produced by a sequence of
tasks, each of these tasks is processed on a different
machine. A machine processes at most one job at a
time.

» Implementation with high-level modeling
objects (tasks and resources)

c©2010 Fair Issac Corporation.

Module kalis:
Constraint Programming

model "Job Shop"
uses "kalis"

declarations
JOBS = 1..NJ ! Set of jobs
MACH = 1..NM ! Set of resources
RES: array(JOBS,MACH) of integer ! Resource use of tasks
DUR: array(JOBS,MACH) of integer ! Durations of tasks

res: array(MACH) of cpresource ! Resources
task: array(JOBS,MACH) of cptask ! Tasks

end-declarations

... ! Initialize the data

HORIZON:= sum(j in JOBS, m in MACH) DUR(j,m)

c©2010 Fair Issac Corporation.

Module kalis:
Constraint Programming

forall(j in JOBS) getend(task(j,NM)) <= HORIZON

! Setting up the resources (capacity 1)
forall(m in MACH)
set_resource_attributes(res(m), KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks (durations, resource used)
forall(j in JOBS, m in MACH)
set_task_attributes(task(j,m), DUR(j,m), res(RES(j,m)))

! Precedence constraints between the tasks of every job
forall (j in JOBS, m in 1..NM-1)
setsuccessors(task(j,m), {task(j,m+1)})

! Solve the problem & print solution
if cp_schedule(getmakespan)<>0 then
writeln("Total completion time: ", getsol(getmakespan))

end-if
end-model

c©2010 Fair Issac Corporation.

Module mmive:
Drawing user graphs

model "Schedule"
uses "mmive", "mmsystem"

declarations
MACHINES=6; JOBS=6
graphs, colors: array(1..MACHINES) of integer
labels: array(1..JOBS) of integer
curmachine, curjobs, n1, n2, n3: integer

end-declarations

colors:: [IVE_WHITE, IVE_YELLOW, IVE_CYAN, IVE_RED, IVE_GREEN,
IVE_MAGENTA]

fopen("schedule.dat", F_INPUT)

forall (i in 1..MACHINES) do
graphs(i):= IVEaddplot("Machine "+i, IVE_BLUE)
labels(i):= IVEaddplot("Jobs for machine "+i, Color(i))

end-do

c©2010 Fair Issac Corporation.

Module mmive:
Drawing user graphs

forall (i in 1..MACHINES) do
readln(n1, n2) ! Read machine no. & no. of jobs
writeln("Machine ", n1, " Jobs:", n2)
curmachine:= n; curjobs:= n2
forall(j in 1..curjobs) do
readln(n1, n2, n3) ! Read job no., start & finish times
writeln("On machine ", curmachine, " job ", n1,

" starts at ", n2, " and finishes at ", n3)
IVEdrawarrow(graphs(curmachine), n2, curmachine, n3, curmachine)
IVEdrawlabel(labels(n1), (n2+n3)/2, curmachine,

"Job "+n1+"\r starts: "+n2+"\r ends: "+n3)
end-do

end-do

IVEzoom(0, 0, 30, 7)
fclose(F_INPUT)
end-model

c©2010 Fair Issac Corporation.

Module mmive:
Drawing user graphs

c©2010 Fair Issac Corporation.

c©2010 Fair Issac Corporation.

And also

» Working with several models in parallel,
possibly in a heterogeneous distributed
architecture (module mmjobs)
» see whitepaper Multiple models and parallel solving

with Mosel

» Combining different solvers
» see whitepaper Hybrid MIP/CP solving with

Xpress-Optimizer and Xpress-Kalis

c©2010 Fair Issac Corporation.

Reference material

» The modules of the Mosel distribution are
documented in the Mosel Language Reference
Manual (with separate manuals for solver
modules mmxslp and kalis)

» The Mosel Native Interface User Guide
explains how to write your own modules.

The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

c©2010 Fair Issac Corporation.

Embedding Mosel models

c©2010 Fair Issac Corporation.

Embedding models in applications

c©2010 Fair Issac Corporation.

What is the Mosel API?

» The Mosel language allows you to formulate
optimization problems, and develop
optimization methods (i.e., use the Optimizer
to solve them), as a Mosel model

» The Mosel API (also Mosel libraries) allows you
to embed Mosel models in an application

c©2010 Fair Issac Corporation.

Programming environments

» The Mosel API is available for C/C++, Java, .NET
and VB

» We use Java in the slides, but the functionality
applies to all languages, and similar
applications can be developed in other
languages

c©2010 Fair Issac Corporation.

Mosel libraries

» Model Compiler Library
» compiles to a virtual machine
» binary format architecture independent

» Runtime Library
» load and run binary (models)
» access to Mosel internal database (data, solution

values, ...)

c©2010 Fair Issac Corporation.

Generating a
deployment template

» With Xpress-IVE: select Deploy � Deploy or
click the deploy button

c©2010 Fair Issac Corporation.

Generating a
deployment template

» Choose the application language:

c©2010 Fair Issac Corporation.

Generating a
deployment template

» Clicking on the Next button will open a new
window with the resulting code

» Use the Save as button to set the name and
location of the new file.

c©2010 Fair Issac Corporation.

Mosel library functions

» General:
XPRM(), XPRM.getVersion, XPRM.license, ...

» Model handling:
XPRM.compile, XPRM.loadModel, XPRMModel.run, XPRMmodel.getResult,
XPRMModel.getExecStatus, XPRMModel.reset, ...

» Solution information:
XPRMModel.getObjectiveValue, XPRMModel.getProblemStatus,
XPRMMPVar.getSolution, XPRMLinCtr.getActivity, ...

c©2010 Fair Issac Corporation.

Mosel library functions

» Accessing model objects:
XPRMModel.findIdentifier

» Arrays:
XPRMArray.getDimension, XPRMArray.getIndexSets,
XPRMArray.getFirstIndex, XPRMArray.nextIndex, XPRMArray.get, ...

» Sets:
XPRMSet.getSize, XPRMSet.getFirstIndex, XPRMSet.isFixed, ...

» Handling of modules:
XPRM.findModule, XPRM.setModulesPath, XPRMModule.parameters, ...

c©2010 Fair Issac Corporation.

Project work [C-6]:
Model deployment

» Use IVE to generate a Java program that
compiles and runs model chess5.mos

» Modify the program so that the model
execution uses the data file chess4.dat.

» Check the problem status and output the
objective value.

c©2010 Fair Issac Corporation.

Solution

import com.dashoptimization.*;

public class chessc
{

public static void main(String[] args) throws Exception
{

int result;
XPRMModel model;
XPRM xprm;

// Initialize Mosel
xprm = new XPRM();

// Load compiled model (.BIM file)
model = xprm.loadModel("chess5.bim");

c©2010 Fair Issac Corporation.

Solution

// Run model
model.execParams = "DATAFILE=chess4.dat";
model.run();
System.out.println("Model execution returned: " +

model.getResult());

// Check problem status and retrieve the optimal solution value
if (model.getProblemStatus()==XPRMModel.PB_OPTIMAL)

System.out.println("Objective value: " +
model.getObjectiveValue());

model.reset();
}

}

c©2010 Fair Issac Corporation.

Extending the example

» Retrieving detailed solution information and
model data

XPRMModel model;
XPRMSet prods;
XPRMArray profit, ax;
XPRMMPVar x;
int[] idx = new int[1];
double val;

// Retrieve solution values and problem data
prods = (XPRMSet)model.findIdentifier("PRODS");
profit = (XPRMArray)model.findIdentifier("PROFIT");
ax = (XPRMArray)model.findIdentifier("x");

c©2010 Fair Issac Corporation.

Extending the example

// Get the first entry of array ’ax’
// (we know that the array is dense and has a single dimension)
idx = ax.getFirstIndex();
do
{

x = ax.get(idx).asMPVar(); // Get a variable from ’ax’
val = profit.getAsReal(idx); // Get the corresponding value
System.out.println(prods.get(idx[0]) + ": " + x.getSolution() +

"\t (profit: " + val + ")");
// Print the solution value

} while(ax.nextIndex(idx)); // Get the next index

c©2010 Fair Issac Corporation.

Extending the example

» Data exchange in memory with host
application

public class chessio
{

static int NP = 4; // Input data
static final double[] dur = {3, 2, 2, 3};
static final double[] wood = {1, 2, 3, 6};
static final double[] profit = {5,12,20,40};

// Array for solution values
static double[] solution = new double[NP];

public static void main(String[] args) throws Exception
{

int result;
XPRMModel model;
XPRM xprm;

c©2010 Fair Issac Corporation.

Extending the example

xprm = new XPRM(); // Initialize Mosel
xprm.compile("chess5ioj.mos"); // Compile + load model
model = xprm.loadModel("chess5ioj.bim");
xprm.bind("DUR", dur); // Associate Java objects with
xprm.bind("WOOD", wood); // names in Mosel
xprm.bind("PROFIT", profit);
xprm.bind("xsol", solution);
model.execParams = "NP="+NP; // Set runtime parameters
model.run(); // Run the model
if (model.getProblemStatus()==model.PB_OPTIMAL)
{ // Check problem status and display the solution

System.out.println("Objective: " + model.getObjectiveValue());
for(int i=0;i<NP;i++)

System.out.println("x(" + (i+1) + "): " + solution[i] +
"\t (profit: " + profit[i] + ")");

}
model.reset();

}
}

c©2010 Fair Issac Corporation.

Summary

» Mosel libraries allow you to embed model
programs directly in your application

» Access the solution directly in your
application, as alternative to using ODBC

» Enjoy benefits of structured modeling
language and rapid deployment when
building applications

c©2010 Fair Issac Corporation.

Summary

» May choose to work with compiled models
rather than model source files – provides
protection against the user viewing / changing
the model

» Compiled models are platform independent

c©2010 Fair Issac Corporation.

Reference material

» You will find it helpful to refer to the Mosel
Libraries Reference Manual

» The part ’Working with the Mosel libraries’ of
the Mosel User Guide documents examples for
different programming language interfaces

The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

c©2010 Fair Issac Corporation.

Summary and further information

c©2010 Fair Issac Corporation.

Summary

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» FICO Xpress product suite

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» FICO Xpress product suite

» solvers

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» FICO Xpress product suite

» solvers
» modeling interfaces

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» FICO Xpress product suite

» solvers
» modeling interfaces
» development environment

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» Modeling with Mosel

» formulating Linear and Mixed Integer Programming
(LP and MIP) problems

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» Modeling with Mosel

» formulating Linear and Mixed Integer Programming
(LP and MIP) problems

» accessing data sources

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» Modeling with Mosel

» formulating Linear and Mixed Integer Programming
(LP and MIP) problems

» accessing data sources
» programming language features

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» Modeling with Mosel

» formulating Linear and Mixed Integer Programming
(LP and MIP) problems

» accessing data sources
» programming language features
» language extensions (modules and packages)

c©2010 Fair Issac Corporation.

Summary

» Have seen:
» Modeling with Mosel

» formulating Linear and Mixed Integer Programming
(LP and MIP) problems

» accessing data sources
» programming language features
» language extensions (modules and packages)

» Embedding models in applications for deployment

c©2010 Fair Issac Corporation.

Further information

» Xpress website:
http://www.fico.com/xpress

» Examples database:
http://examples.xpress.fico.com

» Whitepapers, documentation:
http://optimization.fico.com

http://www.fico.com/xpress
http://examples.xpress.fico.com/example.pl
http://optimization.fico.com/product-information/

The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

The material in this presentation is the property of Fair Issac Corporation, is provided for the recipient only, and
shall not be used, reproduced, or disclosed without Fair Isaac Corporation’s express consent.

c©2010 Fair Issac Corporation.

www.fico.com/xpress

