
Sparse Least Square Linear Regression
Introduction
Recently a LocalSolver customer has to model a linear regression model with additional combinatorial
constraints. The mathematical formulation of the problem was quite easy but there are at least three
models that can be implemented in LocalSolver, from a simple continuous optimization problem to a
more complex binary one using advanced features. The fastest model is nearly 10 time faster than the
others to find similar solution. This article describes the three proposed model on a sparse linear
regression model with one combinatorial constraint and discuss the advantages and drawbacks of each
model. If you are already familiar with linear regression and sparse linear regression you can skip the
first two paragraphs.

Linear Regression
Linear Regression is an approach to predict the behavior of a variable using a linear combination of
explanatory variables (1). For instance, one can model the price of a car according to its size, its weight,
its consumption, its power and so on. To build the model you need to have several examples of cars
with their price and their explanatory variables. More formally assume our dataset is composed of 𝑚𝑚
samples and let 𝑌𝑌 ∈ ℝ𝑚𝑚 be the vector that we want to explain with a linear combination of 𝑛𝑛
explanatory variables 𝑋𝑋 ∈ ℝ𝑚𝑚 ×𝑛𝑛. The linear model is described by a vector 𝛽𝛽 ∈ ℝ𝑛𝑛 of parameters that
satisfy the following system of equations 𝑌𝑌 = 𝑋𝑋𝑋𝑋.

This system could be overdetermined or underdetermined and in practice we pick the parameters 𝛽𝛽
that is the solution of the following optimization problem:

min
𝛽𝛽
‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖2

This continuous optimization problem is well studied and there is an analytical formula to find the
optimal parameters.

Sparse Linear Regression
In practice the number of explanatory variables can be very high and most of these variables are not
related to the one we want to predict. In our car price example, some explanatory variables can
represent the length of the antenna, the wavelength of the body paint and it is very unlikely that these
variables can be linearly linked to the price of the car. Variables with low explanatory power must be
discarded from the model as they can lead to some overfitting and make more complex the model
readability. To overcome this issue, one can try to find a sparse model with only a few non zeros
parameters.

The classical approaches to sparse linear regression add a regularization term in the objective function.
In the Lasso model the regularization term is a 𝐿𝐿1 penalization of the parameters and in the Ridge
regression approach the regularization is a 𝐿𝐿2 penalization. For instance, the Lasso model solves the
following optimization problem for a given value of 𝜆𝜆:

min
𝛽𝛽
‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖2 + 𝜆𝜆‖𝛽𝛽‖1

Another approach is to add combinatorial constraints to the model to restrict the structure of the
solutions (3). In particular we are interested in restricting the vector of parameters to have less than a

given number of non zeros entries (the 𝐿𝐿0 norm). This problem is NP-Hard (2) but good solutions can
be found in practice using mixed integers quadratic solvers or heuristics.

LocalSolver models
The Sparse Linear regression model that we want to solve is the following Mixed Integers Quadratic
optimization problem:

min
𝛽𝛽
‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖2

𝑠𝑠𝑠𝑠. ‖𝛽𝛽‖0 ≤ 𝑘𝑘

This mathematical optimization problem can be solved using a purely continuous model, a mixed
integers model or a purely binary model.

Continuous model
A first attempt to model this problem is to use only continuous decisions and to create expressions to
compute the number of non zeros entries in beta. Here is our LocalSolver model using the Python API:

min
𝛽𝛽
‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖2

𝑠𝑠𝑠𝑠.�𝛽𝛽𝑗𝑗 ≠ 0
𝑗𝑗

≤ 𝑘𝑘,∀𝑖𝑖

Using a random instance with 1000 samples and 259 explanatory variables, this model is not able to
find a feasible solution in 60s. The first problem is a numerical precision issue with the comparison
between the parameter value and zero. The second problem is that 0 is a special value in the domain
that should be handled specifically. If LocalSolver starts from a feasible point (all the parameters values
are 0), it is able to find a solution of cost 14482.

Mixed Integer model
To avoid the special value 0 in the variable range, let us create new binary decisions that decides if a
parameter value is zero or not.

RANGE=10
ls = localsolver.LocalSolver()
model = ls.model
beta = [model.float(-RANGE, RANGE) for j in range(n)]
nzeros = [beta[j] != 0.0 for j in range(n)]
totalError = model.sum()
for i in range(m):

rowValue = model.sum([beta[j] * X[i][j] for j in range(n)])
 rowErr = rowValue - Y[i]
 totalError.add_operand(rowErr * rowErr)
model.add_constraint(model.sum(nzeros) <= k)

model.minimize(totalError)
model.close()

min
𝛽𝛽,𝑧𝑧∈{0,1}𝑛𝑛

‖𝑌𝑌 − 𝑋𝑋𝛽𝛽′‖2

𝑠𝑠𝑠𝑠.�
�𝑧𝑧𝑗𝑗
𝑗𝑗

≤ 𝑘𝑘,∀𝑖𝑖

𝛽𝛽𝑗𝑗′ = 𝑧𝑧𝑗𝑗𝛽𝛽𝑗𝑗,∀𝑗𝑗

With this model the solver is able to find a feasible solution in less than a second but after 60s the
solver has a solution of only 29018. The main problem with this alternative model is that we broke the
“locality” between two solutions. In order to move from one feasible solution to another with a close
objective value we need to change the value a binary decision and a continuous one.

Binary model
To avoid the “locality” problem, recall that once the non-zero decisions are fixed, finding the
parameters is just an ordinary least square problem on the non-zero dimension that can be easily
found using linear algebra. With LocalSolver native function operator, we can call a linear algebra
solver to find the optimal parameters during the search.

min
𝑧𝑧∈{0,1}𝑛𝑛

‖𝑌𝑌 − 𝑋𝑋𝑋𝑋‖2

RANGE=10
ls = localsolver.LocalSolver()
model = ls.model
beta = [model.float(-RANGE, RANGE) for j in range(n)]
nzeros = [model.bool() for j in range(n)]
totalError = model.sum()
for i in range(m):
 rowValue = model.sum([nzeros[j] * beta[j] * X[i][j] for j in range(n)])
 rowErr = rowValue - Y[i]
 totalError.add_operand(rowErr * rowErr)
model.add_constraint(model.sum(nzeros) <= k)

model.minimize(totalError)
model.close()

ls = localsolver.LocalSolver()
model = ls.model
nzeros = [model.bool() for j in range(n)]

#call external linear solver in numpy
totalErrorEvaluator = model.create_native_function(native_leastsq)
totalError = model.call(totalErrorEvaluator)
totalError.add_operands(nzeros)

model.add_constraint(model.sum(nzeros) <= k)

model.minimize(totalError)
model.close()

𝑠𝑠𝑠𝑠.�
�𝑧𝑧𝑗𝑗
𝑗𝑗

≤ 𝑘𝑘,∀𝑖𝑖

𝛽𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛γ ‖𝑌𝑌 − 𝑋𝑋𝑧𝑧𝛾𝛾‖2

Here in less than 10 seconds we are able to find a solution with a cost of 10622.7 even if the number
of iteration per seconds is reduced by calling the linear algebra solver.

Conclusion
The sparse linear regression problem can be tackled by at least 3 different LocalSolver models. The
performance differences between the three models are illustrated by their convergence curves (values
before 10s are not shown to increase readability):

The continuous model seems to be the more natural but has some trouble handling combinatorial
constraints. The introduction of binary decision is helpful to handle the combinatorial constraints but
the convergence rate is worse than the continuous model. Finally, the last model uses only binary
decision to handle the combinatorial constraint and decides the parameters values by solving linear
algebra problem. This last model is able to find good solutions in faster than the other models.

References
1. Linear Regression. Wikipedia. [Online] 2016. https://en.wikipedia.org/wiki/Linear_regression.

2. Welch, W. Algorithmic complexity: three NP-hard problems in computational statistics. Journal
of Statistical Computation and Simulation. 1982, Vol. 15, 1.

3. D. Bertsimas, A. King. An Algorithmic Approach to Linear Regression. OPERATIONS RESEARCH.
2016, Vol. 64, 1.

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300 350

O
bj

ec
tiv

e

Time (s)

Continuous

Mixed

Binary

	Introduction
	Linear Regression
	Sparse Linear Regression
	LocalSolver models
	Continuous model
	Mixed Integer model
	Binary model

	Conclusion
	References

