
FICOFICO R⃝R⃝ Xpress OptimizationXpress Optimization

version 40.01

Last update 01 April 2022

FICO R⃝ Xpress Nonlinear
Manual

©1983–2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes
to determine whether to purchase a license to the software described in this documentation, or as otherwise
set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and
no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except as
may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular
purpose. Portions of this documentation and the software described in it may contain copyright of various
authors and may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Xpress Nonlinear

Deliverable Version: A

Last Revised: 01 April 2022

Version version 40.01

Contents

I Overview 1

1 Introduction 2
1.1 Mathematical programs . 2

1.1.1 Linear programs . 3
1.1.2 Convex quadratic programs . 3
1.1.3 Convex quadratically constrained quadratic programs 3
1.1.4 Second order conic problems . 3
1.1.5 General nonlinear optimization problems . 4
1.1.6 Mixed integer programs . 4

1.2 Technology Overview . 4
1.2.1 The Simplex Method . 4
1.2.2 The Logarithmic Barrier Method . 4
1.2.3 Outer approximation schemes . 5
1.2.4 Successive Linear Programming . 5
1.2.5 Second Order Methods . 5
1.2.6 Mixed Integer Solvers . 5

1.3 API naming convention . 5

2 An example problem 7
2.1 Problem Definition . 7
2.2 Problem Formulation . 7

3 Modeling in Mosel 9
3.1 Basic formulation . 9
3.2 Setting up and solving the problem . 10
3.3 Looking at the results . 11
3.4 User functions . 11
3.5 Parallel evaluation of Mosel user functions . 12

4 The Xpress NonLinear API Functions 14
4.1 Header files . 14
4.2 Initialization . 14
4.3 Callbacks . 14
4.4 Creating the linear part of the problem . 15
4.5 Adding the non-linear part of the problem . 17
4.6 Adding the non-linear part of the problem using character formulae 20
4.7 Checking the data . 21
4.8 Solving and printing the solution . 21
4.9 Closing the program . 21
4.10 Adding initial values . 22

5 The Nonlinear Console Program 23
5.1 The Console Nonlinear . 23

5.1.1 The nonlinear console extensions . 23

Fair Isaac Corporation Proprietary Information i

Contents

5.1.2 Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer
console . 24

II Advanced 26

6 Nonlinear Problems 27
6.1 Coefficients and formulas . 27
6.2 SLP variables . 28
6.3 Local and global optimality . 28
6.4 Convexity . 28
6.5 Converged and practical solutions . 29
6.6 The duals of general, nonlinear program . 29

7 Extended MPS file format 31
7.1 Formulae . 31
7.2 COLUMNS . 32
7.3 BOUNDS . 33
7.4 SLPDATA . 33

7.4.1 DR (Determining row) . 33
7.4.2 EC (Enforced constraint) . 34
7.4.3 FR (Free variable) . 34
7.4.4 FX (Fixed variable) . 34
7.4.5 IV (Initial value) . 34
7.4.6 LO (Lower bounded variable) . 35
7.4.7 Rx, Tx (Relative and absolute convergence tolerances) 35
7.4.8 SB (Initial step bound) . 35
7.4.9 UF (User function) . 36
7.4.10 UP (Free variable) . 36
7.4.11 WT (Explicit row weight) . 36
7.4.12 DL (variable specific Determining row cascade iteration Limit) 36

8 Xpress-SLP Solution Process 37
8.1 Analyzing the solution process . 38
8.2 The initial point . 38
8.3 Derivatives . 38

8.3.1 Finite Differences . 38
8.3.2 Symbolic Differentiation . 39
8.3.3 Automatic Differentiation . 39

8.4 Points of inflection . 39
8.5 Trust regions . 40

9 Handling Infeasibilities 41
9.1 Infeasibility Analysis in the Xpress Optimizer . 41
9.2 Managing Infeasibility with Xpress Knitro . 41
9.3 Managing Infeasibility with Xpress-SLP . 42
9.4 Penalty Infeasibility Breakers in XSLP . 42

10 Cascading 44
10.1 Determining rows and determining columns . 45

11 Convergence criteria 46
11.1 Convergence criteria . 46
11.2 Convergence overview . 46

11.2.1 Strict Convergence . 46
11.2.2 Extended Convergence . 46

Fair Isaac Corporation Proprietary Information ii

Contents

11.2.3 Stopping Criterion . 47
11.2.4 Step Bounding . 48

11.3 Convergence: technical details . 48
11.3.1 Closure tolerance (CTOL) . 51
11.3.2 Delta tolerance (ATOL) . 51
11.3.3 Matrix tolerance (MTOL) . 51
11.3.4 Impact tolerance (ITOL) . 52
11.3.5 Slack impact tolerance (STOL) . 52
11.3.6 Fixed variables due to determining columns smaller than threshold (FX) 53
11.3.7 User-defined convergence . 53
11.3.8 Static objective function (1) tolerance (VTOL) . 53
11.3.9 Static objective function (2) tolerance (OTOL) . 54
11.3.10 Static objective function (3) tolerance (XTOL) . 54
11.3.11 Extended convergence continuation tolerance (WTOL) 55

12 Xpress-SLP Structures 56
12.1 SLP Matrix Structures . 56

12.1.1 Augmentation of a nonlinear coefficient . 56
12.1.2 Augmentation of a nonlinear term . 58
12.1.3 Augmentation of a user-defined SLP variable . 59
12.1.4 SLP penalty error vectors . 60

12.2 Xpress-SLP Matrix Name Generation . 60
12.3 Xpress-SLP Statistics . 61
12.4 SLP Variable History . 63

13 Xpress NonLinear Formulae 64
13.1 Parsed and unparsed formulae . 64
13.2 Example of an arithmetic formula . 65
13.3 Example of a formula involving a simple function . 66

14 User Functions 67
14.1 Callbacks and user functions . 67
14.2 User function interface . 67
14.3 User Function declaration in native languages . 68

14.3.1 User function declaration in C . 68
14.4 Programming Techniques for User Functions . 69

14.4.1 Deltas . 69
14.4.2 Return values and ReturnArray . 69
14.4.3 Returning Derivatives . 69
14.4.4 Function Instances . 70

15 Management of zero placeholder entries 72
15.1 The augmented matrix structure . 72
15.2 Derivatives and zero derivatives . 72
15.3 Placeholder management . 73

16 Special Types of Problem 75
16.1 Nonlinear objectives . 75
16.2 Convex Quadratic Programming . 75
16.3 Mixed Integer Nonlinear Programming . 76

16.3.1 Mixed Integer SLP . 76
16.3.2 Heuristics for Mixed Integer SLP . 76
16.3.3 Fixing or relaxing the values of the SLP variables 77
16.3.4 Iterating at each node . 78
16.3.5 Termination criteria at each node . 78
16.3.6 Callbacks . 78

Fair Isaac Corporation Proprietary Information iii

Contents

16.4 Integer and semi-continuous delta variables . 79

17 Xpress NonLinear multistart 81

III Reference 82

18 Problem Attributes 83
18.1 Double problem attributes . 86

XSLP_CURRENTDELTACOST . 86
XSLP_CURRENTERRORCOST . 86
XSLP_ERRORCOSTS . 86
XSLP_OBJVAL . 86
XSLP_PENALTYDELTATOTAL . 86
XSLP_PENALTYDELTAVALUE . 86
XSLP_PENALTYERRORTOTAL . 87
XSLP_PENALTYERRORVALUE . 87
XSLP_PRIMALINTEGRAL . 87
XSLP_VALIDATIONINDEX_A . 87
XSLP_VALIDATIONINDEX_K . 87
XSLP_VALIDATIONINDEX_R . 87
XSLP_VSOLINDEX . 88

18.2 Integer problem attributes . 89
XSLP_COEFFICIENTS . 89
XSLP_DELTAS . 89
XSLP_ECFCOUNT . 89
XSLP_EXPLOREDELTAS . 89
XSLP_EQUALSCOLUMN . 89
XSLP_IFS . 89
XSLP_IMPLICITVARIABLES . 90
XSLP_INTEGERDELTAS . 90
XSLP_ITER . 90
XSLP_JOBID . 90
XSLP_KEEPBESTITER . 90
XSLP_MINUSPENALTYERRORS . 90
XSLP_MIPITER . 91
XSLP_MIPNODES . 91
XSLP_MIPSOLS . 91
XSLP_MODELCOLS . 91
XSLP_MODELROWS . 91
XSLP_MSSTATUS . 92
XSLP_NLPSTATUS . 92
XSLP_NONCONSTANTCOEFF . 92
XSLP_NONLINEARCONSTRAINTS . 92
XSLP_ORIGINALCOLS . 93
XSLP_ORIGINALROWS . 93
XSLP_PENALTYDELTACOLUMN . 93
XSLP_PENALTYDELTAROW . 93
XSLP_PENALTYDELTAS . 93
XSLP_PENALTYERRORCOLUMN . 93
XSLP_PENALTYERRORROW . 94
XSLP_PENALTYERRORS . 94
XSLP_PLUSPENALTYERRORS . 94
XSLP_PRESOLVEELIMINATIONS . 94
XSLP_PRESOLVESTATE . 94

Fair Isaac Corporation Proprietary Information iv

Contents

XSLP_SBXCONVERGED . 94
XSLP_SEMICONTDELTAS . 95
XSLP_SOLVERSELECTED . 95
XSLP_SOLSTATUS . 95
XSLP_STATUS . 95
XSLP_STOPSTATUS . 97
XSLP_TOLSETS . 97
XSLP_TOTALEVALUATIONERRORS . 97
XSLP_UCCONSTRAINEDCOUNT . 97
XSLP_UFINSTANCES . 97
XSLP_UFS . 98
XSLP_UNCONVERGED . 98
XSLP_USEDERIVATIVES . 98
XSLP_USERFUNCCALLS . 98
XSLP_VARIABLES . 98
XSLP_ZEROESRESET . 98
XSLP_ZEROESRETAINED . 99
XSLP_ZEROESTOTAL . 99

18.3 Reference (pointer) problem attributes . 100
XSLP_MIPPROBLEM . 100
XSLP_XPRSPROBLEM . 100
XSLP_XSLPPROBLEM . 100

18.4 String problem attributes . 101
XSLP_VERSIONDATE . 101

19 Control Parameters 102
19.1 Double control parameters . 110

XSLP_ATOL_A . 110
XSLP_ATOL_R . 110
XSLP_BARSTALLINGTOL . 110
XSLP_CASCADETOL_PA . 111
XSLP_CASCADETOL_PR . 111
XSLP_CDTOL_A . 111
XSLP_CDTOL_R . 112
XSLP_CLAMPSHRINK . 112
XSLP_CLAMPVALIDATIONTOL_A . 112
XSLP_CLAMPVALIDATIONTOL_R . 112
XSLP_CTOL . 113
XSLP_DAMP . 113
XSLP_DAMPEXPAND . 113
XSLP_DAMPMAX . 114
XSLP_DAMPMIN . 114
XSLP_DAMPSHRINK . 114
XSLP_DEFAULTIV . 115
XSLP_DEFAULTSTEPBOUND . 115
XSLP_DELTA_A . 115
XSLP_DELTA_R . 116
XSLP_DELTA_X . 116
XSLP_DELTA_Z . 116
XSLP_DELTA_ZERO . 117
XSLP_DELTACOST . 117
XSLP_DELTACOSTFACTOR . 117
XSLP_DELTAMAXCOST . 117
XSLP_DJTOL . 118
XSLP_DRCOLTOL . 118

Fair Isaac Corporation Proprietary Information v

Contents

XSLP_ECFTOL_A . 118
XSLP_ECFTOL_R . 119
XSLP_ENFORCECOSTSHRINK . 119
XSLP_ENFORCEMAXCOST . 119
XSLP_ERRORCOST . 120
XSLP_ERRORCOSTFACTOR . 120
XSLP_ERRORMAXCOST . 120
XSLP_ERRORTOL_A . 121
XSLP_ERRORTOL_P . 121
XSLP_ESCALATION . 121
XSLP_ETOL_A . 121
XSLP_ETOL_R . 122
XSLP_EVTOL_A . 122
XSLP_EVTOL_R . 123
XSLP_EXPAND . 123
XSLP_FEASTOLTARGET . 123
XSLP_GRANULARITY . 124
XSLP_INFINITY . 124
XSLP_ITOL_A . 124
XSLP_ITOL_R . 125
XSLP_MATRIXTOL . 125
XSLP_MAXWEIGHT . 126
XSLP_MEMORYFACTOR . 126
XSLP_MERITLAMBDA . 126
XSLP_MINSBFACTOR . 127
XSLP_MINWEIGHT . 127
XSLP_MIPCUTOFF_A . 127
XSLP_MIPCUTOFF_R . 128
XSLP_MIPERRORTOL_A . 128
XSLP_MIPERRORTOL_R . 128
XSLP_MIPOTOL_A . 129
XSLP_MIPOTOL_R . 129
XSLP_MSMAXBOUNDRANGE . 129
XSLP_MTOL_A . 130
XSLP_MTOL_R . 130
XSLP_MVTOL . 131
XSLP_OBJSENSE . 131
XSLP_OBJTOPENALTYCOST . 132
XSLP_OPTIMALITYTOLTARGET . 132
XSLP_OTOL_A . 132
XSLP_OTOL_R . 133
XSLP_PRESOLVEZERO . 134
XSLP_PRIMALINTEGRALREF . 134
XSLP_SHRINK . 134
XSLP_SHRINKBIAS . 134
XSLP_STOL_A . 135
XSLP_STOL_R . 135
XSLP_VALIDATIONTARGET_R . 135
XSLP_VALIDATIONTARGET_K . 136
XSLP_VALIDATIONTOL_A . 136
XSLP_VALIDATIONTOL_R . 136
XSLP_VTOL_A . 137
XSLP_VTOL_R . 138
XSLP_WTOL_A . 138
XSLP_WTOL_R . 139

Fair Isaac Corporation Proprietary Information vi

Contents

XSLP_XTOL_A . 140
XSLP_XTOL_R . 141
XSLP_ZERO . 141

19.2 Integer control parameters . 143
XSLP_ALGORITHM . 143
XSLP_ANALYZE . 145
XSLP_AUGMENTATION . 146
XSLP_AUTOSAVE . 147
XSLP_BARCROSSOVERSTART . 147
XSLP_BARLIMIT . 148
XSLP_BARSTALLINGLIMIT . 148
XSLP_BARSTALLINGOBJLIMIT . 148
XSLP_BARSTARTOPS . 149
XSLP_CALCTHREADS . 149
XSLP_CASCADE . 150
XSLP_CASCADENLIMIT . 150
XSLP_CONTROL . 151
XSLP_CONVERGENCEOPS . 151
XSLP_CUTSTRATEGY . 152
XSLP_DAMPSTART . 152
XSLP_DELTAOFFSET . 152
XSLP_DELTAZLIMIT . 153
XSLP_DERIVATIVES . 153
XSLP_DETERMINISTIC . 154
XSLP_ECFCHECK . 154
XSLP_ECHOXPRSMESSAGES . 154
XSLP_ERROROFFSET . 155
XSLP_EVALUATE . 155
XSLP_FILTER . 155
XSLP_FINDIV . 156
XSLP_FUNCEVAL . 156
XSLP_GRIDHEURSELECT . 157
XSLP_HEURSTRATEGY . 157
XSLP_HESSIAN . 158
XSLP_INFEASLIMIT . 158
XSLP_ITERLIMIT . 158
XSLP_JACOBIAN . 158
XSLP_KEEPEQUALSCOLUMN . 159
XSLP_LINQUADBR . 159
XSLP_LOG . 159
XSLP_LSITERLIMIT . 160
XSLP_LSPATTERNLIMIT . 160
XSLP_LSSTART . 160
XSLP_LSZEROLIMIT . 161
XSLP_MAXTIME . 161
XSLP_MIPALGORITHM . 161
XSLP_MIPCUTOFFCOUNT . 162
XSLP_MIPCUTOFFLIMIT . 163
XSLP_MIPDEFAULTALGORITHM . 163
XSLP_MIPFIXSTEPBOUNDS . 163
XSLP_MIPITERLIMIT . 164
XSLP_MIPLOG . 164
XSLP_MIPOCOUNT . 164
XSLP_MIPRELAXSTEPBOUNDS . 165
XSLP_MULTISTART . 165

Fair Isaac Corporation Proprietary Information vii

Contents

XSLP_MULTISTART_MAXSOLVES . 166
XSLP_MULTISTART_MAXTIME . 166
XSLP_MULTISTART_POOLSIZE . 166
XSLP_MULTISTART_SEED . 167
XSLP_MULTISTART_THREADS . 167
XSLP_OCOUNT . 167
XSLP_PENALTYINFOSTART . 168
XSLP_POSTSOLVE . 168
XSLP_PRESOLVE . 168
XSLP_PRESOLVELEVEL . 168
XSLP_PRESOLVEOPS . 169
XSLP_PROBING . 169
XSLP_REFORMULATE . 170
XSLP_SAMECOUNT . 171
XSLP_SAMEDAMP . 171
XSLP_SBROWOFFSET . 171
XSLP_SBSTART . 172
XSLP_SCALE . 172
XSLP_SCALECOUNT . 173
XSLP_SOLVER . 173
XSLP_SLPLOG . 173
XSLP_STOPOUTOFRANGE . 173
XSLP_THREADS . 174
XSLP_THREADSAFEUSERFUNC . 174
XSLP_TRACEMASKOPS . 174
XSLP_UNFINISHEDLIMIT . 175
XSLP_UPDATEOFFSET . 175
XSLP_VCOUNT . 176
XSLP_VLIMIT . 176
XSLP_WCOUNT . 177
XSLP_XCOUNT . 177
XSLP_XLIMIT . 178
XSLP_ZEROCRITERION . 179
XSLP_ZEROCRITERIONCOUNT . 180
XSLP_ZEROCRITERIONSTART . 180

19.3 String control parameters . 181
XSLP_DELTAFORMAT . 181
XSLP_ITERFALLBACKOPS . 181
XSLP_IVNAME . 181
XSLP_MINUSDELTAFORMAT . 182
XSLP_MINUSERRORFORMAT . 182
XSLP_PENALTYCOLFORMAT . 182
XSLP_PENALTYROWFORMAT . 183
XSLP_PLUSDELTAFORMAT . 183
XSLP_PLUSERRORFORMAT . 183
XSLP_SBLOROWFORMAT . 184
XSLP_SBNAME . 184
XSLP_SBUPROWFORMAT . 184
XSLP_TOLNAME . 185
XSLP_TRACEMASK . 185
XSLP_UPDATEFORMAT . 185

19.4 Knitro controls . 186

20 Library functions and the programming interface 187
20.1 Counting . 187

Fair Isaac Corporation Proprietary Information viii

Contents

20.2 The Xpress NonLinear problem pointer . 187
20.3 The XSLPload... functions . 188
20.4 Library functions . 188

XSLPaddcoefs . 195
XSLPaddformulas . 197
XSLPadddfs . 199
XSLPaddtolsets . 200
XSLPadduserfunction . 201
XSLPaddvars . 203
XSLPcalcslacks . 205
XSLPcascade . 206
XSLPcascadeorder . 207
XSLPchgcascadenlimit . 208
XSLPchgccoef . 209
XSLPchgcoef . 210
XSLPchgdeltatype . 212
XSLPchgdf . 213
XSLPchgformulastring . 214
XSLPchgformula . 215
XSLPchgrowstatus . 216
XSLPchgrowwt . 217
XSLPchgtolset . 218
XSLPchgvar . 220
XSLPconstruct . 222
XSLPcopycallbacks . 223
XSLPcopycontrols . 224
XSLPcopyprob . 225
XSLPcreateprob . 226
XSLPdelcoefs . 227
XSLPdelformulas . 228
XSLPdeltolsets . 229
XSLPdeluserfunction . 230
XSLPdelvars . 231
XSLPdestroyprob . 232
XSLPevaluatecoef . 233
XSLPevaluateformula . 234
XSLPfixpenalties . 235
XSLPfree . 236
XSLPgetbanner . 237
XSLPgetccoef . 238
XSLPgetcoefformula . 239
XSLPgetcoefs . 240
XSLPgetcolinfo . 241
XSLPgetdblattrib . 242
XSLPgetdblcontrol . 243
XSLPgetdf . 244
XSLPgetformula . 245
XSLPgetformulastring . 246
XSLPgetformularows . 247
XSLPgetindex . 248
XSLPgetintattrib . 249
XSLPgetintcontrol . 250
XSLPgetlasterror . 251
XSLPgetptrattrib . 252
XSLPgetrowinfo . 253

Fair Isaac Corporation Proprietary Information ix

Contents

XSLPgetrowstatus . 254
XSLPgetrowwt . 255
XSLPgetslpsol . 256
XSLPgetstrattrib . 257
XSLPgetstrcontrol . 258
XSLPgettolset . 259
XSLPgetvar . 260
XSLPimportlibfunc . 262
XSLPinit . 263
XSLPinterrupt . 264
XSLPitemname . 265
XSLPloadcoefs . 266
XSLPloaddfs . 268
XSLPloadformulas . 269
XSLPloadtolsets . 271
XSLPloadvars . 273
XSLPmaxim . 275
XSLPminim . 276
XSLPmsaddcustompreset . 277
XSLPmsaddjob . 278
XSLPmsaddpreset . 279
XSLPmsclear . 280
XSLPnlpoptimize . 281
XSLPpostsolve . 282
XSLPpresolve . 283
XSLPprintmemory . 284
XSLPprintevalinfo . 285
XSLPreadprob . 286
XSLPremaxim . 287
XSLPreminim . 288
XSLPrestore . 289
XSLPreinitialize . 290
XSLPsave . 291
XSLPsaveas . 292
XSLPscaling . 293
XSLPsetcbcascadeend . 294
XSLPsetcbcascadestart . 295
XSLPsetcbcascadevar . 296
XSLPsetcbcascadevarfail . 297
XSLPsetcbcoefevalerror . 298
XSLPsetcbconstruct . 299
XSLPsetcbdestroy . 301
XSLPsetcbdrcol . 302
XSLPsetcbintsol . 303
XSLPsetcbiterend . 304
XSLPsetcbiterstart . 305
XSLPsetcbitervar . 306
XSLPsetcbmessage . 307
XSLPsetcbmsjobend . 309
XSLPsetcbmsjobstart . 310
XSLPsetcbmswinner . 311
XSLPsetcboptnode . 312
XSLPsetcbprenode . 313
XSLPsetcbpreupdatelinearization . 314
XSLPsetcbpresolved . 315

Fair Isaac Corporation Proprietary Information x

Contents

XSLPsetcbslpend . 316
XSLPsetcbslpnode . 317
XSLPsetcbslpstart . 318
XSLPsetcurrentiv . 319
XSLPsetdblcontrol . 320
XSLPsetdefaultcontrol . 321
XSLPsetdefaults . 322
XSLPsetdetrow . 323
XSLPsetfunctionerror . 324
XSLPsetinitval . 325
XSLPsetintcontrol . 326
XSLPsetlogfile . 327
XSLPsetparam . 328
XSLPsetstrcontrol . 329
XSLPunconstruct . 330
XSLPupdatelinearization . 331
XSLPvalidate . 332
XSLPvalidatekkt . 333
XSLPvalidateprob . 334
XSLPvalidaterow . 335
XSLPvalidatevector . 336
XSLPwriteprob . 337
XSLPwriteslxsol . 338

21 Internal Functions 339
21.1 Trigonometric functions . 340

ARCCOS . 341
ARCSIN . 342
ARCTAN . 343
COS . 344
SIN . 345
TAN . 346

21.2 Other mathematical functions . 347
ABS . 348
ERF . 349
ERFC . 350
EXP . 351
LN . 352
LOG, LOG10 . 353
MAX . 354
MIN . 355
PWL . 356
SIGN . 357
SQRT . 358

22 Error Messages 359

23 Xpress Knitro Control Parameters 365
23.1 Double control parameters . 368

XKTR_PARAM_BAR_FEASMODETOL . 368
XKTR_PARAM_BAR_INITMU . 368
XKTR_PARAM_DELTA . 368
XKTR_PARAM_FEASTOL . 368
XKTR_PARAM_FEASTOLABS . 368
XKTR_PARAM_INFEASTOL . 369

Fair Isaac Corporation Proprietary Information xi

Contents

XKTR_PARAM_MIP_INTEGERTOL . 369
XKTR_PARAM_MIP_INTGAPABS . 369
XKTR_PARAM_MIP_INTGAPREL . 369
XKTR_PARAM_OBJRANGE . 369
XKTR_PARAM_OPTTOL . 370
XKTR_PARAM_OPTTOLABS . 370
XKTR_PARAM_PRESOLVE_TOL . 370
XKTR_PARAM_XTOL . 370

23.2 Integer control parameters . 371
XKTR_PARAM_ALGORITHM . 371
XKTR_PARAM_BAR_DIRECTINTERVAL . 371
XKTR_PARAM_BAR_FEASIBLE . 371
XKTR_PARAM_BAR_INITPT . 372
XKTR_PARAM_BAR_MAXBACKTRACK . 372
XKTR_PARAM_BAR_MAXCROSSIT . 372
XKTR_PARAM_BAR_MAXREFACTOR . 373
XKTR_PARAM_BAR_MURULE . 373
XKTR_PARAM_BAR_PENCONS . 373
XKTR_PARAM_BAR_PENRULE . 374
XKTR_PARAM_BAR_SWITCHRULE . 374
XKTR_PARAM_GRADOPT . 374
XKTR_PARAM_HESSOPT . 375
XKTR_PARAM_HONORBNDS . 375
XKTR_PARAM_LMSIZE . 375
XKTR_PARAM_MAXCGIT . 376
XKTR_PARAM_MAXIT . 376
XKTR_PARAM_MIP_BRANCHRULE . 376
XKTR_PARAM_MIP_GUB_BRANCH . 376
XKTR_PARAM_MIP_HEURISTIC . 377
XKTR_PARAM_MIP_HEURISTIC_MAXIT . 377
XKTR_PARAM_MIP_IMPLICATNS . 377
XKTR_PARAM_MIP_KNAPSACK . 377
XKTR_PARAM_MIP_LPALG . 377
XKTR_PARAM_MIP_MAXNODES . 378
XKTR_PARAM_MIP_MAXSOLVES . 378
XKTR_PARAM_MIP_METHOD . 378
XKTR_PARAM_MIP_OUTINTERVAL . 378
XKTR_PARAM_MIP_OUTLEVEL . 379
XKTR_PARAM_MIP_PSEUDOINIT . 379
XKTR_PARAM_MIP_ROOTALG . 379
XKTR_PARAM_MIP_ROUNDING . 379
XKTR_PARAM_MIP_SELECTRULE . 379
XKTR_PARAM_MIP_STRONG_CANDLIM . 380
XKTR_PARAM_MIP_STRONG_LEVEL . 380
XKTR_PARAM_MIP_STRONG_MAXIT . 380
XKTR_PARAM_MIP_TERMINATE . 380
XKTR_PARAM_OUTLEV . 380
XKTR_PARAM_PRESOLVE . 381
XKTR_PARAM_SCALE . 381
XKTR_PARAM_SOC . 381

Appendix 382

A The Xpress-SLP Log 383

Fair Isaac Corporation Proprietary Information xii

Contents

A.0.1 Logging controls . 383
A.0.2 The structure of the log . 383

B Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP 386

B.0.1 Convex Quadratic Programs (QPs) . 386
B.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs) 386
B.0.3 Convexity . 387
B.0.4 Characterizing Convexity in Quadratic Constraints 387

C Files used by Xpress NonLinear 389

D Contacting FICO 390
Product support . 390
Product education . 390
Product documentation . 390
Sales and maintenance . 391
Related services . 391
FICO Community . 391
About FICO . 391

Index 392

Fair Isaac Corporation Proprietary Information xiii

I. Overview

CHAPTER 1

Introduction

This part of the manual is intended to provide a general description of the facilities available for modeling
with Xpress NonLinear. It is not an exhaustive list of possibilities, and it does not go into very great depth
on some of the more advanced topics. All the functions and formats are given in more detail in the
second part of this manual and the Xpress-Mosel Reference Manual (Module mmxnlp section).

Xpress Nonlinear consists of:

■ the Xpress Optimizer to solve linear, mixed integer linear, and convex quadratic problems,

■ Xpress-SLP which uses Successive Linear Programming to solve non-linear models, and

■ Artelys Knitro, which is used as a plugin to solve higly nonlinear models.

The functionalities of Xpress NonLinear extend those of the Xpress Optimizer. Almost any problem that
fits into the problem types supported by the Xpress Optimizer are automatically detected and converted
into the appropriate format to take advantage of the power of the optimizer’s purpose written algorithms.

Xpress-SLP is in essence, a technique which involves making a linear approximation of the original
problem at a chosen point, solving the linear approximation and seeing how "far away" the solution point
is from the original chosen point. If it is "sufficiently close" then the solution is said to have converged
and the process stops. Otherwise, a new point is chosen, based on the solution, and a new linear
approximation is made. This process repeats (iterates) until the solution converges. Although this
process will find a solution which is the optimum for the linear approximation, there is no guarantee that
the solution will be the optimum for the original non-linear problem (that is to say: it may not be the best
possible solution to the original problem). Such a solution is called a "local optimum", because it is a
better solution than any others in the immediate neighborhood, but may not be better than one a long way
away.

The problem of local optima can be thought of as being like trying to find the deepest valley in a range of
mountains. You can find a valley relatively easily (just keep going downhill). However, when you reach it,
you have no idea whether there is a deeper valley somewhere else, because the mountains block your
view. You have found a local optimum, but you do not know whether it is a global optimum. Indeed, in
general, there is no way to find the global optimum except an exhaustive search (check every valley in the
mountain range).

While Xpress-SLP is most powerful for large or integer nonlinear problems, Knitro which can take
advantage of using second order partial derivative information can be more beneficial for highly nonlinear
models.

1.1 Mathematical programs
There are many specialised forms of model in mathematical programming, and if such a form can be
identified, there are usually much more efficient solution techniques available. This section describes
some of the major types of problem that Xpress NonLinear can identify automatically.

Fair Isaac Corporation Proprietary Information 2

Chapter 1: Introduction

1.1.1 Linear programs
Linear programming (LP) involves solving problems of the form

minimize cTx
subject to Ax ≤ b

and in practice this encompasses, via transformations, any problem whose objective and constraints are
linear functions.

Such problems were traditionally solved with the simplex method, although recently interior point
methods have come to be favoured for larger instances. Linear programs can be solved quickly, and
solution techniques scale to enormous sizes of the matrix A. However, few applications are genuinely
linear. It was common in the past, however, to approximate general functions by linear counterparts when
LPs were the only class of problem with efficient solution techniques.

1.1.2 Convex quadratic programs
Convex quadratic programming (QP) involves solving problems of the form

minimize cTx + xTQx
subject to Ax ≤ b

for which the matrix Q is symmetric and positive semi-definite (that is, xTQx ≥ 0 for all x). This
encompasses, via transformations, all problems with a positive semi-definite Q and linear constraints.
Such problems can be solved efficiently by interior point methods, and also by quadratic variants of the
simplex method.

1.1.3 Convex quadratically constrained quadratic programs
Convex quadratically constrained quadratic programming (QCQP) involves solving problems of the form

minimize cTx + xTQx
subject to Ax ≤ b

qTj x + xTPjx ≤ dj, ∀j

for which the matrix Q and all matrices Pj are positive semi-definite. The most efficient solution
techniques are based on interior point methods.

1.1.4 Second order conic problems
Second order conic problems is a special form of a convex quadratically constrained quadratic program,
where although the quadratic matrix is not positive semi-definite, the feasible range of the problem is
convex, and there are specialized algorithm to solve them.

minimize cTx + xTQx
subject to Ax ≤ b

x is in Cj, ∀j

for which the matrix Cj is a convex second order cone and Q is positive semi-definite. The standard form
of a second order cone is xT Ix ≤ y ∗ y where y is non-negative, or (a rotated second order cone)
xT Ix ≤ y ∗ z where y and z are non-negative. Many quadratic problems can be formulated as a second
order convex conic problem, including any convex quadratically constrained quadratic programs.
Transformation happens automatically for most convertible problems.

Fair Isaac Corporation Proprietary Information 3

Chapter 1: Introduction

1.1.5 General nonlinear optimization problems
Nonlinear programming (NLP) involves solving problems of the form

minimize f(x)
subject to gj(x) ≤ b, ∀j

where f(x) is an arbitrary function, and g(x) are a set of arbitrary functions. This is the most general type
of problem, and any constrained model can be realised in this form via simple transformations.

Until recently, few practical techniques existed for tackling such problems, but it is now possible to solve
even large instances using Successive Linear Programming solvers (SLP) or second-order methods.

1.1.6 Mixed integer programs
Mixed-integer programming (MIP), in the most general case, involves solving problems of the form

minimize f(x)
subject to gj(x) ≤ b, ∀j

xk integral

It can be combined with any of the previous problem types, giving Mixed-Integer Linear Programming
(MILP), Mixed-Integer Quadratic Programming (MIQP), Mixed-Integer Quadratically Constrained Quadratic
Programming (MIQCQP), Mixed-Integer Second Order Conic Problems (MISOCP) and Mixed-Integer
Nonlinear Programming (MINLP). Efficient solution techniques now exist for all of these classes of
problem.

1.2 Technology Overview
In real-world applications, it is vital to match the right optimization technology to your problem. The FICO
Xpress libraries provide dedicated, high performance implementations of optimization technologies for
the many model classes commonly appearing in practical applications. This includes solvers for linear
programming (LP), mixed integer programming (MIP), convex quadratic programming (QP), and convex
quadratically constrained programming (QCQP), and general nonlinear programming (NLP).

1.2.1 The Simplex Method
The simplex method is one of the most well-developed and highly studied mathematical programming
tools. The solvers in the FICO Xpress Optimizer are the product of over 30 years of research, and include
high quality, competitive implementations of the primal and dual simplex methods for both linear and
quadratic programs. A key advantage of the simplex method is that it can very quickly reoptimize a
problem after it has been modified, which is an important step in solving mixed integer programs.

1.2.2 The Logarithmic Barrier Method
The interior point method of the FICO Xpress Optimizer is a state of the art implementation, with leading
performance across a variety of large models. It is capable of solving not only the largest and most
difficult linear and convex quadratic programs, but also convex quadratically constrained quadratic and
second order conic programs. It includes optimized versions of both infeasible logarithmic barrier
methods, and also homogeneous self-dual methods.

Fair Isaac Corporation Proprietary Information 4

Chapter 1: Introduction

1.2.3 Outer approximation schemes
A drawback of the barrier methods is that they are not efficiently warm-started. This makes these
methods unattractive for solving several related problems, like the ones arising from a branch and bound
search. While for linear and convex quadratic problems the simplex methods can be used, there is no
immediate such alternative for convex quadratic constrained and second order methods. To bridge the
gap, outer approximation cutting schemes are used, which themselves may be warm started by a barrier
solution.

1.2.4 Successive Linear Programming
For general nonlinear programs which are very large, highly structured, or contain a significant linear part,
the FICO Xpress Sequential Linear Programming solver (XSLP) offers exceptional performance.
Successive linear programming is a first order, iterative approach for solving nonlinear models. At each
iteration, a linear approximation to the original problem is solved at the current point, and the distance of
the result from the the selected point is examined. When the two points are sufficiently close, the solution
is said to have converged and the result is returned. This technique is thus based upon solving a
sequence of linear programming problems and benefits from the advanced algorithmic and presolving
techniques available for linear problems. This makes XSLP scalable, as well as efficient for large
problems. In addition, the relatively simple core concepts make understanding the solution process and
subsequent tuning comparatively straightforward.

1.2.5 Second Order Methods
Also integrated into the Xpress suite is Knitro from Artelys, a second-order method which is particularly
suited to large-scale continuous problems containing high levels of nonlinearity. Second order methods
approximate a problem by examining quadratic programs fitted to a local region. This can provide
information about the curvature of the solution space to the solver, which first-order methods do not have.
Advanced implementations of such methods, like Knitro, may as a result be able to produce more resilient
solutions. This can be especially noticeable when the initial point is close to a local optimum.

1.2.6 Mixed Integer Solvers
The FICO Xpress MIP Solver is a highly scalable parallel branch and bound framework for all classes of
mixed integer programs. It is based on a branch and bound search utilizing continuous solvers, advanced
cutting planes, in-tree presolving and multiple heuristics, for discovering primal solutions and tightening
best bounds. The search is guided by advanced methods for selecting branching variables and estimating
sub-tree sizes/efforts. Mixed integer programming forms the basis of many important applications, and
the implementation in the FICO Xpress Suite has proven itself in operation for some of the world’s largest
organizations. Both XSLP and Knitro are also able to solve mixed integer nonlinear problems (MINLP).

1.3 API naming convention
Xpress Nonlinear has been developed as an extension to the XPRS library building on the SLP solver
technology, which is reflected in the naming convention. All XPRS API functions are used the same way
as normal to build the linear part of the problem, while the API functions prefixed with XSLP are used for
all nonlinear aspects, independently of how the problem is solved afterwards (convex quadratic problems
by a dedicated solver or Knitro instead of SLP). Some controls have both an XPRS and an XSLP
counterpart, for example "XPRS_PRESOLVE" and "XSLP_PRESOLVE". In such cases, "XSLP_PRESOLVE"
refers to the nonlinear presolver (even if another solver than SLP is used to solve the problem afterwards)
and "XPRS_PRESOLVE" refers to problems that are not deemed as general nonlinear (LP, MIP or convex
quadratic); in such cases, if SLP solves one of such problems as part of its iterative process, the XPRS

Fair Isaac Corporation Proprietary Information 5

Chapter 1: Introduction

control is respected for such sub-solves.

Fair Isaac Corporation Proprietary Information 6

CHAPTER 2

An example problem

2.1 Problem Definition
The diameter of a two-dimensional shape is the greatest distance between any two of its points. For a
circle, this definition corresponds to the normal meaning of "diameter". For a polygon (with straight
sides), it is equivalent to the greatest distance between any two vertices.

What is the greatest area of a polygon with N sides and a diameter of 1?

2.2 Problem Formulation
This formulation is one of two described by Prieto [1]. It is easy to visualize, and has advantages in later
examples. The pentagon is about the smallest model which can reasonably be used – it is non-trivial but
is still just about small enough to be written out in full.

Figure 2.1: Polygon Example

One vertex (the highest-numbered, VN) is chosen as the "base" point, and all the other vertices are
measured from it, using (r, θ) coordinates – that is, the distance ("r") is measured from the vertex, and the
angle or bearing of the vertex (" θ ") is measured from the X-axis.

We shall use ri and θi as the coordinates of vertex Vi. Then simple geometry and trigonometry gives:

Fair Isaac Corporation Proprietary Information 7

Chapter 2: An example problem

■ The area of the triangle VNViVj: area(VNViVj) = 1
2 · ri · rj · sin(θj – θi)

■ The side ViVj is given by: (ViVj)2 = r2i + r2j – 2 · ri · rj · cos(θj – θi)

■ The total area of the polygon is:
∑N–1

i=2 area(VNViVi–1)

■ The maximum diameter of 1 requires that all the sides of all the triangles are ≤ 1 – that is:
ri ≤ 1 for i = 1, ...,N – 1
and
ViVj ≤ 1 for i = 1, ...,N – 2, j = i + 1, ...,N – 1

We have assumed in the diagram 2.1 and in the formulation that θ i ≤ θ i+1 – in other words, the vertices
are in order anti-clockwise. In fact, this is not just an assumption, and we need to include these
constraints as well.

In the diagram, we have assumed that the first angle θ 1 is ≥ 0. This is not an additional restriction if we
use the normal modeling convention that all variables are non-negative. We also assumed that the last
vertex is still "above" the X-axis – that is, θ N–1 is ≤ 180◦ (or π radians).

The requirement is therefore:

maximize
∑N–1

i=2 (ri · ri–1 · sin(θi – θi–1)) ∗ 0.5 (area of the polygon)

subject to: ri ≤ 1 for i = 1, ...,N – 1 (distances betweem VN and other vertices)
r2i + r2j – 2 · ri · rj · cos(θj – θi ≤ 1 for i = 1, ...,N – 2, j = i + 1, ...,N – 1

(distances between other pairs of vertices)
θ1 ≥ 0 (first bearing is non-negative)
θi+1 – θi ≥ 0 for i = 1, ...,N – 2 (bearings are in order)
θN–1 ≤ π (last vertex is above X-axis)

Reference:
(1) F.J. Prieto. Maximum area for unit-diameter polygon of N sides, first model and second model (Netlib
AMPL programs in ftp://netlib.bell-labs.com/netlib/ampl/models).

Fair Isaac Corporation Proprietary Information 8

CHAPTER 3

Modeling in Mosel

3.1 Basic formulation
Nonlinear capabilities in Mosel are provided by the mmxnlpmodule. Please refer to the module
documentation for more details. This chapter provides a short introduction only.

The model uses the Mosel module mmxnlp which contains the extensions required for modeling general
non-linear expressions. This automatically loads the mmxprs module, so there is no need to include this
explicitly as well.

model "Polygon"
uses "mmxnlp"

We can design the model to work for any number of sides, so one way to do this is to set the number of
sides of the polygon as a parameter.

parameters
N=5

end-parameters

The meanings of most of these declarations will become apparent as the modeling progresses.

declarations
area: nlctr
rho: array(1..N) of mpvar
theta: array(1..N) of mpvar
objdef: mpvar
D: array(1..N,1..N) of nlctr

end-declarations

■ The distances are described as "rho", to distinguish them from the default names for the rows in
the generated matrix (which are R1, R2, etc).

■ The types nlctr (nonlinear constraint) are defined by the mmxnlpmodule.

area := sum(i in 2..N-1) (rho(i) ⁎ rho(i-1) ⁎ sin(theta(i)-theta(i-1)))⁎0.5

This uses the normal Mosel sum function to calculate the area. Notice that the formula is written in
essentially the same way as normal, including the use of the sin function. Because the argument to the
function is not a constant, Mosel will not try to evaluate the function yet; instead, it will be evaluated as
part of the optimization process.

area is a Mosel object of type nlctr.

objdef = area
objdef is_free

Fair Isaac Corporation Proprietary Information 9

Chapter 3: Modeling in Mosel

What we really want to do is to maximize area. However, although Xpress NonLinear is happy in principle
with a non-linear objective function, the Xpress Optimizer is not, unless it is handled in a special way.
Xpress NonLinear therefore imposes the requirement that the objective function itself must be linear.
This is not really a restriction, because – as in this case – it is easy to reformulate a non-linear objective
function as an apparently linear one. Simply replace the function by a new mpvar and then maximize the
value of the mpvar. In general, because the objective could have a positive or negative value, we make
the variable free, so that it can take any value. In this example, we say:

objdef = area defining the variable objdef to be equal to the non-linear expres-
sion area

objdef is_free defining objdef to be a free variable
maximize(objdef) maximizing the linear objective

This is firstly setting the standard bounds on the variables rho and theta. To reduce problems with
sides of zero length, we impose a minimum of 0.1 on rho(i) instead of the default minimum of zero.

forall (i in 1..N-1) do
rho(i) >= 0.1
rho(i) <= 1
setinitval(rho(i), 4⁎i⁎(N+1-i)/((N+1)^2))
setinitval(theta(i), M_PI⁎i/N)

end-do

We also give Xpress NonLinear initial values by using the setinitval procedure. The first argument is
the name of the variable, and the second is the initial value to be used. The initial values for theta are
divided equally between 0 and π . The initial values for rho are designed to go from 0 (when i = 0 or N) to
1 (when i is about half way) and back.

forall (i in 1..N-2, j in i+1..N-1) do
D(i,j) := rho(i)^2 + rho(j)^2 - rho(i)⁎rho(j)⁎2⁎cos(theta(j)-theta(i)) <= 1

end-do

This is creating the constraints D(i,j) which constrain the other sides of the triangles to be ≤ 1.

These constraints could be made anonymous – that is, the assignment to an object of type nlctr could
be omitted – but then it would not be possible to report the values.

forall (i in 2..N-1) do
theta(i) >= theta(i-1) + 0.01

end-do

These anonymous constraints put the values of the theta variables in non-decreasing order. To avoid
problems with triangles which have zero angles, we make each bearing at least 0.01 greater than its
predecessor.

This is the boundary condition on the bearing of the final vertex.

theta(N-1) <= M_PI

3.2 Setting up and solving the problem
loadprob(objdef)

This procedure loads the currently-defined non-linear problem into the Xpress NonLinear optimization
framework. This includes any purely linear part. Where a constraint has a linear expression as its left or

Fair Isaac Corporation Proprietary Information 10

Chapter 3: Modeling in Mosel

right hand side, that linear expression will be retained as linear relationships (constant coefficients) in the
matrix. Thus, for example, in the anonymous constraint defining objdef, the objdef coefficient will be
identified as a linear term and will appear as a separate item in the problem.

maximise

Optimization is carried out with the maximise or minimise procedures. They can take a string
parameter – for example maxmimise("b") – as described in the Xpress NonLinear and Xpress
Optimizer reference manuals.

With the default settings of the parameters, you will see usually nothing from the optimizer. The following
parameters affect what is produced:

xnlp_verbose Normally set to false. If set to true, it produces standard Xpress
NonLinear iteration logging.

xprs_verbose Normally set to false. If set to true, then information from the
optimizer will also be output.

xslp_log Normally set to -1. If set to 0, limited information is output from
the SLP iterations. Settings of 1 or greater produce progressively
more information for each SLP iteration.

xslp_slplog If xslp_log is set to 0, this determines the frequency with which
SLP progress is reported. The default is 10, which means that it
prints every 10 SLP iterations.

3.3 Looking at the results
Within Mosel, the values of the variables and named constraints can be obtained using the getsol,
getslack and similar functions. A simple report lists just the area and the positions of the vertices:

writeln("Area = ", getobjval)
forall (i in 1..N-1) do
writeln("V", i, ": r=", getsol(rho(i)), " theta=", getsol(theta(i)))

end-do

This produces the following result for the case N=5:

Area = 0.657166
V1: r=0.616416 theta=0.703301
V2: r=1 theta=1.33111
V3: r=1 theta=1.96079
V4: r=0.620439 theta=2.58648

3.4 User functions
If an analytic description of the model is not available, it is possible to use black box functions
implemented either directly in Mosel or by any external application.

The area calculation of the example could be implemented in Mosel as

public function MoselArea(I: array(Indices: range, Types: set of string) of real): real
returned := (sum (i in 2..N-1) (I(i,"rho")⁎I(i-1,"rho")⁎sin(I(i,"theta")-I(i-1,"theta")))) ⁎ 0.5
end-function

The user function is linked to the model using a user function object

Fair Isaac Corporation Proprietary Information 11

Chapter 3: Modeling in Mosel

declarations
AreaFunction : userfunc
end-declarations
AreaFunction := userfuncMosel("MoselArea")

The arguments, which can be any expression, are passed down using an array of expressions

declarations
FunctionArg: array(RN,{"rho","theta"}) of nlctr
end-declarations
forall (i in 1..N) do
FunctionArg(i, "rho") := rho(i)
FunctionArg(i, "theta") := theta(i)
end-do

Once the user function is declared and the arguments built, the user function is added to the model using
F:

Area := F(AreaFunction,FunctionArg)

The function arguments are copied at the point when the F function is used, any later changes to the
arrays holding the arguments are ignored.

3.5 Parallel evaluation of Mosel user functions
It is possible to use parallel evaluations of simple Mosel functions that return a single real value. These
functions may take an arbitrary array of nlctr expressions as input. It is the modeler’s responsibility to
ensure that the user functions to be called in parallel are thread-safe (i.e., they do not depend upon
shared resources). Assuming the name of the user function is MyFunc, the user function before enabling
the parallel version is expected to be declared as usefuncMosel(’MyFunc’).

In order for mmxnlp to be able to utilize parallel user function evaluations, the user function must be
implemented as a public function in a Mosel package. Any initialization necessary to enable the
evaluation of the user function should be performed as part of the package initialization (which is the
code in in the main body of the package).

To enable parallel evaluations, a parallel enabled version of the user function needs to be generated using
the mmxnlp procedure generateUFparallel, which takes two arguments: the compiled package .bim
name implementing the user function and the name of the user function within the package. It is good
practice to use a separate Mosel model to perform this generation, keeping it separate from the main
model. Multiple generated parallel user functions may be used within a single model.

The generator will produce a single Mosel file, the Mosel package MyFunc_master. This package also
includes the worker model which will be responsible for the user function evaluations and will be resident
in memory during the execution. The package also implements the parallel version of the user function,
called MyFunc_parallel.

After compiling and including the master package into your model, it is this function that should be used
in the actual model as userfuncMosel(’MyFunc_parallel’,XSLP_DELTAS). In most cases, no
other modifications are necessary, as the parallel function will detect the number of threads in the system
and will start that many worker threads automatically. These will be shut down when your model finishes.
Each worker’s initialization code is performed only once, at the time of its first execution.

It may be necessary to explicitly start the worker threads, either to control the number of threads used, or
to pass specific parameter settings to the user function package. This can be done by the procedure
MyFunc_StartWorkers(ThreadCount : integer, UfPackageParameters : string).
In case it is necessary to stop the workers, the procedure MyFunc_StopWorkersmay be used.

In case the user functions are computationally very expensive, by modifying the connection string in the

Fair Isaac Corporation Proprietary Information 12

Chapter 3: Modeling in Mosel

generated module it is possible to utilize distributed/cloud-based computation of the user functions.

The worker model will only be compiled into memory during execution, but may be modified as necessary
within the master model. For debugging purposes, it may be practical to redirect the worker to a file.

Fair Isaac Corporation Proprietary Information 13

CHAPTER 4

The Xpress NonLinear API Functions

Instead of writing an extended MPS file and reading in the model from the file, it is possible to embed
Xpress NonLinear directly into your application, and to create the problem, solve it and analyze the
solution entirely by using the Xpress NonLinear API functions. This example uses the C header files and
API calls. We shall assume you have some familiarity with the Xpress Optimizer API functions.

The structure of the model and the naming system will follow that used in the previous section, so you
should read the chapter ?? first.

4.1 Header files
The header file containing the Xpress NonLinear definitions is xslp.h. This must be included together
with the Xpress Optimizer header xprs.h, where xprs.hmust come first.

#include "xprs.h"
#include "xslp.h"

4.2 Initialization
Xpress NonLinear and Xpress Optimizer both need to be initialized, and an empty problem created. All
Xpress NonLinear functions return a code indicating whether the function completed successfully. A
non-zero value indicates an error. For ease of reading, we have for the most part omitted the tests on the
return codes, but a well-written program should always test the values.

XPRSprob mprob;
XSLPprob sprob;

if (ReturnValue=XPRSinit(NULL)) goto ErrorReturn;
if (ReturnValue=XSLPinit()) goto ErrorReturn;
if (ReturnValue=XPRScreateprob(&mprob)) goto ErrorReturn;
if (ReturnValue=XSLPcreateprob(&sprob, &mprob)) goto ErrorReturn;

4.3 Callbacks
It is good practice to set up at least a message callback, so that any messages produced by the system
appear on the screen or in a file. The XSLPsetcbmessage function sets both the Xpress NonLinear and
Xpress Optimizer callbacks, so that all messages appear in the same place.

XSLPsetcbmessage(sprob, XSLPMessage, NULL);

void XPRS_CC XSLPMessage(XSLPprob my_prob, void ⁎my_object, char ⁎msg, int len,
int msg_type)

Fair Isaac Corporation Proprietary Information 14

Chapter 4: The Xpress NonLinear API Functions

{
switch (msg_type) {
case 4: /⁎ error ⁎/
case 3: /⁎ warning ⁎/
case 2: /⁎ dialogue ⁎/
case 1: /⁎ information ⁎/
printf("%s\n", msg);
break;

default: /⁎ exiting ⁎/
fflush(stdout);
break;

}
}

This is a simple callback routine, which prints any message to standard output.

4.4 Creating the linear part of the problem
The linear part of the problem, and the definitions of the rows and columns of the problem are carried out
using the normal Xpress Optimizer functions.

#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
int nRow, nCol, nSide, nRowName, nColName;
int Sin, Cos;
char RowType[MAXROW];
double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT];
double Lower[MAXCOL], Upper[MAXCOL];
int ColStart[MAXCOL+1], RowIndex[MAXELT];
char RowNames[500], ColNames[500];

In this example, we have set the dimensions by using #define statements, rather than working out the
actual sizes required from the number of sides and then allocating the space dynamically.

nSide = 5;
nRowName = 0;
nColName = 0;

By making the number of sides a variable (nSide) we can create other polygons by changing its value.

It is useful – at least while building a model – to be able to see what has been created. We will therefore
create meaningful names for the rows and columns. nRowName and nColName count along the
character buffers RowNames and ColNames.

nRow = nSide-2 + (nSide-1)⁎(nSide-2)/2 + 1;
nCol = (nSide-1)⁎2 + 2;
for (i=0; i<nRow; i++) RHS[i] = 0;

The number of constraints is:

nSide-2 for the relationships between adjacent thetas.
(nSide-1)⁎(nSide-2)/2 for the distances between pairs of vertices.
1 for the OBJEQ non-linear "objective function".

The number of columns is:

Fair Isaac Corporation Proprietary Information 15

Chapter 4: The Xpress NonLinear API Functions

nSide-1 for the thetas.
nSide-1 for the rhos.
1 for the OBJX objective function column.

We are using "C"-style numbering for rows and columns, so the counting starts from zero.

nRow = 0;
RowType[nRow++] = 'E'; /⁎ OBJEQ ⁎/
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "OBJEQ");
for (i=1; i<nSide-1; i++) {
RowType[nRow++] = 'G'; /⁎ T2T1 .. T4T3 ⁎/
RHS[i] = 0.001;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "T%dT%d", i+1, i);

}

This sets the row type indicator for OBJEQ and the theta relationships, with a right hand side of 0.001. We
also create row names in the RowNames buffer. Each name is terminated by a NULL character
(automatically placed there by the sprintf function). sprintf returns the length of the string written,
excluding the terminating NULL character.

for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {

RowType[nRow] = 'L';
RHS[nRow++] = 1.0;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "V%dV%d", i, j);

}
}

This defines the L-type rows which constrain the distances between pairs of vertices. The right hand side
is 1.0 (the maximum value) and the names are of the form ViVj.

for (i=0; i<nCol; i++) {
OBJ[i] = 0; /⁎ objective function ⁎/
Lower[i] = 0; /⁎ lower bound normally zero ⁎/
Upper[i] = XPRS_PLUSINFINITY; /⁎ upper bound = infinity ⁎/

}

This sets up the standard column data, with objective function entries of zero, and default bounds of zero
to plus infinity. We shall change these for the individual items as required.

nCol = 0;
nElement = 0;
ColStart[nCol] = nElement;
OBJ[nCol] = 1.0;
Lower[nCol++] = XPRS_MINUSINFINITY; /⁎ free column ⁎/
Element[nElement] = -1.0;
RowIndex[nElement++] = 0;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "OBJX");

This starts the construction of the matrix elements. nElement counts through the Element and
RowIndex arrays, nCol counts through the ColStart, OBJ, Lower and Upper arrays. The first column,
OBJX, has the objective function value of +1 and a value of -1 in the OBJEQ row. It is also defined to be
"free", by making its lower bound equal to minus infinity.

iRow = 0
for (i=1; i<nSide; i++) {
nColName = nColName + 1 + sprintf(&ColNames[nColName], "THETA%d", i);
ColStart[nCol++] = nElement;
if (i < nSide-1) {

Element[nElement] = -1;

Fair Isaac Corporation Proprietary Information 16

Chapter 4: The Xpress NonLinear API Functions

RowIndex[nElement++] = iRow+1;
}
if (i > 1) {

Element[nElement] = 1;
RowIndex[nElement++] = iRow;

}
iRow++;

}

This creates the relationships between adjacent thetas. The tests on i are to deal with the first and last
thetas which do not have relationships with both their predecessor and successor.

Upper[nCol-1] = 3.1415926;

This sets the bound on the final theta to be π . The column index is nCol-1 because nCol has already
been incremented.

for (i=1; i<nSide; i++) {
Lower[nCol] = 0.01; /⁎ lower bound ⁎/
Upper[nCol] = 1;
ColStart[nCol++] = nElement;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "RHO%d", i);

}
ColStart[nCol] = nElement;

The remaining columns – the rho variables – have only non-linear formulas and so they do not appear in
the linear section except as empty columns. They are bounded between 0.01 and 1.0 but have no entries.
The final entry in ColStart is one after the end of the last column.

XPRSsetintcontrol(mprob, XPRS_MPSNAMELENGTH, 16);

If you are creating your own names – as we are here – then you need to make sure that Xpress Optimizer
can handle both the names you have created and the names that will be created by Xpress NonLinear.
Typically, Xpress NonLinear will create names which are three characters longer than the names you have
used. If the longest name would be more than 8 characters, you should set the Xpress Optimizer name
length to be larger – it comes in multiples of 8, so we have used 16 here. If you do not make the name
length sufficiently large, then the XPRSaddnames function will return an error either here or during the
Xpress NonLinear "construct" phase.

XPRSloadlp(mprob, "Polygon", nCol, nRow, RowType, RHS, NULL,
OBJ, ColStart, NULL, RowIndex, Element, Lower, Upper);

This actually loads the model into Xpress Optimizer. We are not using ranges or column element counts,
which is why the two arguments are NULL.

XPRSaddnames(mprob, 1, RowNames, 0, nRow-1);
XPRSaddnames(mprob, 2, ColNames, 0, nCol-1);

The row and column names can now be added.

4.5 Adding the non-linear part of the problem
Be warned – this section is complicated, but it is the most efficient way – from SLP’s point of view – to
input formulae. See the next section for a much easier (but less efficient) way of inputting the formulae
directly.

#define MAXTOKEN 200

Fair Isaac Corporation Proprietary Information 17

Chapter 4: The Xpress NonLinear API Functions

#define MAXFORM 20
...
int Sin, Cos;
FormulaStart[MAXFORM];
Type[MAXTOKEN];
double Value[MAXTOKEN];

The arrays for the non-linear part can often be re-used from the linear part. The new arrays are
FormulaStart for the nonlinear formulas and Type and Value to hold the internal forms of the
formulae.

XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "SIN", &Sin);
XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "COS", &Cos);

We will be using the Xpress NonLinear internal functions SIN and COS. The XSLPgetindex function
finds the index of an Xpress NonLinear entity (character variable, internal or user function).

nToken = 0;
nForm = 0;
RowIndex[nForm] = 0;
FormulaStart[nForm++] = nToken;

For each nonlinear formula, the following information is required:

RowIndex the index of the row.
FormulaStart the beginning of the internal formula array for the nonlinear for-

mula.

for (i=1; i<nSide-1; i++) {
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i+1;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_RB;
Value[nToken++] = 0;
Type[nToken] = XSLP_COL;
Value[nToken++] = i+1;
Type[nToken] = XSLP_COL;
Value[nToken++] = i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_IFUN;
Value[nToken++] = Sin;
Type[nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
if (i>1) {

Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_PLUS;

}
}

This looks very complicated, but it is really just rather large. We are using the "reverse Polish" or "parsed"
form of the formula for area. The original formula, written in the normal way, would look like this:
RHO2 ⁎ RHO1 ⁎ SIN (THETA2 - THETA1) +
In reverse Polish notation, tokens are pushed onto the stack or popped from it. Typically, this means that
a binary operation A x B is written as A B x (push A, push B, pop A and B and push the result). The first
term of our area formula then becomes:
RHO2 RHO1 ⁎) THETA2 THETA1 - SIN ⁎

Fair Isaac Corporation Proprietary Information 18

Chapter 4: The Xpress NonLinear API Functions

Notice that the right hand bracket appears as an explicit token. This allows the SIN function to identify
where its argument list starts – and incidentally allows functions to have varying numbers of arguments.

Each token of the formula is written as two items – Type and Value.
Type is an integer and is one of the defined types of token, as given in the xslp.h header file.
XSLP_CON, for example, is a constant; XSLP_COL is a column.
Value is a double precision value, and its meaning depends on the corresponding Type. For a Type of
XSLP_CON, Value is the constant value; for XSLP_COL, Value is the column number; for XSLP_OP
(arithmetic operation), Value is the operand number as defined in xslp.h; for a function (type
XSLP_IFUN for internal functions, XSLP_FUN for user functions), Value is the function number.
A list of tokens for a formula is always terminated by a token of type XSLP_EOF.

The loop writes each term in order, and adds terms (using the XSLP_PLUS operator) after the first pass
through the loop.

for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {
RowIndex[nForm] = iRow++;
FormulaStart[nForm++] = nToken;

Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_EXPONENT;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+j;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_PLUS;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+j;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_RB;
Value[nToken++] = 0;
Type[nToken] = XSLP_COL;
Value[nToken++] = j;
Type[nToken] = XSLP_COL;
Value[nToken++] = i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_IFUN;
Value[nToken++] = Cos;
Type[nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_EOF;
Value[nToken++] = 0;

}
}

This writes the formula for the distances between pairs of vertices. It follows the same principle as the
previous formula, writing the formula in parsed form as:
RHOi 2 ˆ RHOj 2 ˆ + 2 RHOi ⁎ RHOj ⁎) THETAj THETAi - COS ⁎ -

Fair Isaac Corporation Proprietary Information 19

Chapter 4: The Xpress NonLinear API Functions

XSLPloadformulass(sprob, nForm, RowIndex, FormulaStart, 1, Type,
Value);

The XSLPloadformulas is the most efficient way of loading non-linear formulas into a problem. There
is an XSLPaddformulas function which is identical except that it does not delete any existing nonlinear
formulas first. There is also an XSLPchgformula function, which can be used to change individual
nonlinear formulas one at a time. Because we are using internal parsed format, the "Parsed" flag in the
argument list is set to 1.

4.6 Adding the non-linear part of the problem using
character formulae
Provided that all entities – in particular columns and user functions – have explicit and unique names, the
non-linear part can be input by writing the formulae as character strings. This is not as efficient as using
the XSLPloadformulas() function but is generally easier to understand.

/⁎ Build up nonlinear formulas ⁎/
/⁎ Allow space for largest formula - approx 50 characters per side for area ⁎/

FormBuffer = (char ⁎) malloc(50⁎nSide);

We shall be using large formulae, so we need a character buffer large enough to hold the largest formula
we are using. The estimate here is 50 characters per side of the polygon for the area formula, which is the
largest we are using.

/⁎ Area ⁎/

BufferPos = 0;
for (i=1; i<nSide-1; i++) {
if (i > 1) {

BufferPos = BufferPos + sprintf(&FormBuffer[BufferPos], " + ");
}
BufferPos = BufferPos + sprintf(&FormBuffer[BufferPos], "RHO%d ⁎ RHO%d ⁎

SIN (THETA%d - THETA%d)", i+1, i, i+1, i);
}
XSLPchgformulatext(sprob, 0, nSide, FormBuffer);

The area formula is of the form:
(RHO2⁎RHO1⁎SIN(THETA2-THETA1) + RHO3⁎RHO2⁎SIN(THETA3-THETA2) + ...) / 2
The loop writes the product for each consecutive pair of vertices and also puts in the "+" sign after the
first one.

The XSLPchgformulatext function is a variation of XSLPchgformula but uses a character string for
the formula instead of passing it as arrays of tokens. The arguments to the function are:

RowIndex the index of the row.
FormBuffer the formula, written in character form.

In this case, RowIndex is zero.

/⁎ Distances ⁎/
for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {

sprintf(FormBuffer, "RHO%d ^ 2 + RHO%d ^ 2 - 2 ⁎ RHO%d ⁎ RHO%d ⁎
COS (THETA%d - THETA%d)", j, i, j, i, j, i);

XSLPchgformulatext(sprob, iRow, FormBuffer);
iRow++;

}

Fair Isaac Corporation Proprietary Information 20

Chapter 4: The Xpress NonLinear API Functions

This creates the formula for the distance between pairs of vertices and writes each into a new row.

Provided you have given names to any user functions in your program, you can use them in a formula in
exactly the same way as SIN and COS have been used above.

4.7 Checking the data
Xpress NonLinear includes the function XSLPwriteprob which writes out a non-linear problem in text
form which can then be checked manually. Indeed, the problem can then be run using the XSLP console
program, provided there are no user functions which refer back into your compiled program. In particular,
this facility does allow small versions of a problem to be checked before moving on to the full size ones.

XSLPwriteprob(sprob, "testmat", "");

The first argument is the Xpress NonLinear problem pointer; the second is the name of the matrix to be
produced (the suffix ".mat" will be added automatically). The last argument allows various different types
of output including "scrambled" names – that is, internally-generated names will be used rather than
those you have provided. For checking purposes, this is obviously not a good idea.

4.8 Solving and printing the solution
XSLPmaxim(sprob, "");

The XSLPmaxim and XSLPminim functions perform a non-linear maximization or minimization on the
current problem. The second argument can be used to pass flags as defined in the Xpress NonLinear
Reference Manual.

XPRSwriteprtsol(mprob);

The standard Xpress Optimizer solution print can be obtained by using the XPRSwriteprtsol function.
The row and column activities and dual values can be obtained using the XPRSgetlpsol function.

In addition, you can use the XSLPgetvar function to obtain the values of SLP variables – that is, of
variables which are in nonlinear formulas, or which have nonlinear formulas. If you are using cascading
(see the Xpress NonLinear reference manual for more details) so that Xpress NonLinear recalculates the
values of the dependent SLP variables at each SLP iteration, then the value from XSLPgetvar will be the
recalculated value, whereas the value from XPRSgetlpsol will be the value from the LP solution (before
recalculation).

4.9 Closing the program
The XSLPdestroyprob function frees any system resources allocated by Xpress NonLinear for the
specific problem. The problem pointer is then no longer valid. XPRSdestroyprob performs a similar
function for the underlying linear problem mprob. The XSLPfree function frees any system resources
allocated by Xpress NonLinear. You must then call XPRSfree to perform a similar operation for the
optimizer.

XSLPdestroyprob(sprob);
XPRSdestroyprob(mprob);
XSLPfree();
XPRSfree();

Fair Isaac Corporation Proprietary Information 21

Chapter 4: The Xpress NonLinear API Functions

If these functions are not called, the program may appear to have worked and terminated correctly.
However, in such a case there may be areas of memory which are not returned to the system when the
program terminates and so repeated executions of the program will result in progressive loss of available
memory to the system, which will manifest iself in poorer performance and could ultimately produce a
system crash.

4.10 Adding initial values
So far, Xpress NonLinear has started by using values which it estimates for itself. Because most of the
variables are bounded, these initial values are fairly reasonable, and the model will solve. However, in
general, you will need to provide initial values for at least some of the variables. Initial values are provided
using the XSLPsetinitval function.

Fair Isaac Corporation Proprietary Information 22

CHAPTER 5

The Nonlinear Console Program

5.1 The Console Nonlinear
The nonlinear optimizer is an extension to the FICO Xpress Optimizer interactive console.

The console for nonlinear is started from the command line using the following syntax:

C:\> optimizer [problem_name] [@filename]

5.1.1 The nonlinear console extensions
The nonlinear console is an extension of the Xpress optimizer console. The optimizer automatically
switches to nonlinear mode if a nonlinear license is detected. All the optimizer console commands work
the same way as in the normal optimizer console. The active working problem for those commands is
the actual linearization after augmentation, and the linear part of the problem before augmentation.

Optimizer console commands with an extended effect:

readprob Read in an MPS/MAT or LP file
minim Minimize an LP, a MIP or an SLP problem
maxim Maximize an LP, a MIP or an SLP problem
lpoptimize Minimize or maximize a problem
mipoptimize Solve the problem to MIP optimality
writeprob Export the problem into file
dumpcontrols Display controls which are at a non default value

The MPS file can be an extended MPS file containing an NLP model. The minim and maxim commands
will call XPRSminim or XPRSmaxim for LP and MIP problems, and XSLPminim and XSLPmaxim for SLP
problems respectively; with the same applying to lpoptimize and mipoptimize. All these commands
accept the same flags as the corresponding library function

New commands:
cascade Perform cascading
cascadeorder Recalculate the cascading order
construct Construct the augmented problem
dumpattributes Display problem attributes
reinitialize Reinitialize an augmented problem
setcurrentiv Copy the current solution as initial value
slp_save XSLPsave
slp_scaling Display scaling statistics
unconstruct Remove the augmentation
validate Validate the current solution
validatekkt Validate the kkt conditions for the current solution

Fair Isaac Corporation Proprietary Information 23

Chapter 5: The Nonlinear Console Program

In order to separate XSLP controls and attributes for the XPRS ones, all XSLP controls and attributes are
pretagged as XSLP_ or SLP_, for example XSLP_ALGORITHM.

5.1.2 Common features of the Xpress Optimizer and the Xpress
Nonlinear Optimizer console
All features of the Xpress optimizer console program is supported. For a full description, please refer to
the Xpress optimizer reference manual.

From the command line an initial problem name can be optionally specified together with an optional
second argument specifying a text "script" file from which the console input will be read as if it had been
typed interactively.

Note that the syntax example above shows the command as if it were input from the Windows Command
Prompt (i.e., it is prefixed with the command prompt string C:\>). For Windows users Console XSLP can
also be started by typing xslp into the "Run ..." dialog box in the Start menu.

The Console XSLP provides a quick and convenient interface for operating on a single problem loaded
into XSLP. The Console XSLP problem contains the problem data as well as (i) control variables for
handling and solving the problem and (ii) attributes of the problem and its solution information.

The Console SLP auto–completion feature is a useful way of reducing key strokes when issuing
commands. To use the auto–completion feature, type the first part of an optimizer command name
followed by the Tab key. For example, by typing "CONST" followed by the Tab key Console Xpress will
complete to the "CONSTRUCT". Note that once you have finished inputting the command name portion of
your command line, Console Xpress can also auto–complete on file names. Note that the
auto–completion of file names is case–sensitive.

Console XSLP also features integration with the operating system’s shell commands. For example, by
typing "dir" (or "ls" under Unix) you will directly run the operating system’s directory listing command.
Using the "cd" command will change the working directory, which will be indicated in the prompt string:

[xpress bin] cd \
[xpress C:\]

Finally, note that when the Console XSLP is first started it will attempt to read in an initialization file
named optimizer.ini from the current working directory. This is an ASCII "script" file that may
contain commands to be run at start up, which are intended to setup a customized default Console
Xpress environment for the user (e.g., defining custom controls settings on the Console Xpress problem).

The Console XSLP interactive command line hosts a TCL script parser (http://www.tcl.tk). With TCL
scripting the user can program flow control into their optimizer scripts. Also TCL scripting provides the
user with programmatic access to a powerful suite of functionality in the TCL library. With scripting
support the Console Xpress provides a high level of control and flexibility well beyond that which can be
achieved by combining operating system batch files with simple piped script files. Indeed, with scripting
support the Console XSLP is ideal for (i) early application development, (ii) tuning of model formulations
and solving performance and (iii) analyzing difficulties and bugs in models.

Note that the TCL parser has been customized and simplified to handle intuitive access to the controls
and attributes of the Optimizer and XSLP. The following example shows how to proceed with write and
read access to the XSLP_ALGROITHM control:

[xpress C:\] xslp_algorithm=166
[xpress C:\] xslp_algorithm
166

Fair Isaac Corporation Proprietary Information 24

http://www.tcl.tk/

Chapter 5: The Nonlinear Console Program

The following shows how this would usually be achieved using TCL syntax:

[xpress C:\] set xslp_algorithm 166
166
[xpress C:\] $miplog
166

For examples on how TCL can be used for scripting, tuning and testing models, please refer to the Xpress
Optimizer reference manual.

Console XSLP users may interrupt the running of the commands (e.g., minim) by typing Ctrl–C. Once
interrupted Console Xpress will return to its command prompt. If an optimization algorithm has been
interrupted in this way, any solution process will stop at the first ’safe’ place before returning to the
prompt.

When Console XSLP is being run with script input then Ctrl–C will not return to the command prompt and
the Console Xpress process will simply stop.

Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl–C input to fail
on some operating systems.

The XSLP console program can be used as a direct substitute for the Xpress Optimizer console program.
The one exception is the fixed format MPS files, which is not supported by XSLP and thus neither by the
XSLP console.

Fair Isaac Corporation Proprietary Information 25

II. Advanced

CHAPTER 6

Nonlinear Problems

Xpress NonLinear will solve nonlinear problems. In this context, a nonlinear problem is one in which there
are nonlinear relationships between variables or where there are nonlinear terms in the objective function.
There is no such thing as a nonlinear variable — all variables are effectively the same — but there are
nonlinear constraints and formulae. A nonlinear constraint contains terms which are not linear. A
nonlinear term is one which is not a constant and is not a variable with a constant coefficient. A nonlinear
constraint can contain any number of nonlinear terms.

Xpress NonLinear will also solve linear problems — that is, if the problem presented to Xpress NonLinear
does not contain any nonlinear terms, then Xpress NonLinear will still solve it, using the normal optimizer
library.

The solution mechanism used by Xpress-SLP is Successive (or Sequential) Linear Programming. This
involves building a linear approximation to the original nonlinear problem, solving this approximation (to
an optimal solution) and attempting to validate the result against the original problem. If the linear
optimal solution is sufficiently close to a solution to the original problem, then the SLP is said to have
converged, and the procedure stops. Otherwise, a new approximation is created and the process is
repeated. Xpress-SLP has a number of features which help to create good approximations to the original
problem and therefore help to produce a rapid solution.

When licensed, Xpress NonLinear may also utilize Knitro to solve nonlinear problems.

Note that although the solution is the result of an optimization of the linear approximation, there is no
guarantee that it will be an optimal solution to the original nonlinear problem. It may be a local optimum —
that is, it is a better solution than any points in its immediate neighborhood, but there is a better solution
rather further away. However, a converged SLP solution will always be (to within defined tolerances) a
self-consistent — and therefore practical — solution to the original problem.

6.1 Coefficients and formulas
Later in this manual, it will be helpful to distinguish between nonlinear expressions written as coefficients
and those written as formulas.

If X is a variable, then in the nonlinear expression X ∗ f(Y), f(Y) is the coefficient of X.

If f(X) appears in a nonlinear constraint, then f(X) is a nonlinear formula in the nonlinear constraint.

If X ∗ f(Y) appears in a nonlinear constraint, then the entity X ∗ f(Y) is a term in the nonlinear constraint.

As this implies, a formula written as a variable multiplied by a coefficient can always be viewed as a term,
but there are terms which cannot be viewed as variables multiplied by coefficients. For example, in the
constraint
X – SIN(Y) = 0,
SIN(Y) is a formula and cannot be written as a coefficient.

Fair Isaac Corporation Proprietary Information 27

Chapter 6: Nonlinear Problems

6.2 SLP variables
A variable which appears in a nonlinear coefficient or formula is described as an SLP variable.

Normally, any variable which has a nonlinear coefficient will also be treated as an SLP variable. However,
it is possible to set options so that variables which do not appear in nonlinear coefficients or formulas
are not treated as SLP variables.

Any variable, whether it is related to a nonlinear formula or not, can be defined by the user as an SLP
variable. This is most easily achieved by setting an initial value for the variable.

6.3 Local and global optimality
A globally optimal solution is a feasible solution with the best possible objective value. In general, the
global optimum for a problem is not unique. By contrast, a locally optimal solution has the best possible
objective value within an open neighbourhood around it. For a convex problem, every local optimum is a
global optimum, but for general nonlinear problems, this is not the case.

For convex problems, which include linear, convex quadratic and convex quadratically constrained
programs, solvers in the FICO Xpress library will always provide a globally optimal solution when one
exists. This also holds true for mixed integer problems whose continuous relaxation is convex.

When a problem is of a more general nonlinear type, there will typically be many local optima, which are
potentially widely spaced, or even in parts of the feasible region which are not connected. For these
problems, both XSLP and Knitro guarantee only that they will return a locally optimal solution. That is, the
result of optimization will be a solution which is better than any others in its immediate neighborhood, but
there might exist other solutions which are far distant which have a better objective value.

Finding a guaranteed global optimum for an arbitrary nonlinear function requires an exhaustive search,
which may be orders of magnitude more expensive. To use an analogy, it is the difference between
finding a valley in a range of mountains, and finding the deepest valley. When standing in a particular
valley, there is no way to know whether there is a deeper valley somewhere else.

Neither local nor global optima are typically unique. The solution returned by a solver will depend on the
control settings used and, particularly for non-convex problems, on the initial values provided. A
connected set of initial points yielding the same locally optimal solutions is sometimes referred to as a
region of attraction for the solution. These regions are typically both algorithm and setting dependent.

6.4 Convexity
Convex problems have many desirable characteristics from the perspective of mathematical
optimization. Perhaps the most significant of these is that should both the objective and the feasible
region be convex, any local optimally solutions found are also known immediately to be globally optimal.

A constraint f(x) ≤ 0 is convex if the matrix of second derivatives of f , that is to say its Hessian, is
positive semi-definite at every point at which it exists. This requirement can be understood geometrically
as requiring every point on every line segment which connects two points satisfying the constraint to also
satisfy the constraint. It follows trivially that linear functions always lead to convex constraints, and that a
nonlinear equality constraint is never convex.

For regions, a similar property must hold. If any two points of the region can be connected by a line
segment which lies fully in the region itself, the region is convex. This extension is straightforward when
the the properties of convex functions are considered.

It is important to note that convexity is necessary for some solution techniques and not for others. In

Fair Isaac Corporation Proprietary Information 28

Chapter 6: Nonlinear Problems

Figure 6.1: Two convex functions on the left, and two non-convex functions on the right.

Figure 6.2: A convex region on the left and a non-convex region on the right.

particular, some solvers require convexity of the constraints and objective function to hold only in the
feasible region, whilst others may require convexity to hold across the entire space, including infeasible
points. In the special case of quadratic and quadratically constrained programs, Xpress NonLinear
seamlessly migrates problems to solvers whose convexity requirements match the convexity of the
problem.

6.5 Converged and practical solutions
In a strict mathematical sense, an algorithm is said to have converged if repeated iterations do not alter
the coordinates of its solution significantly. A more practical view of convergence, as used in the
nonlinear solvers of the Xpress suite, is to also consider the algorithm to have converged if repeated
iterations have no significant effect on either the objective value or upon feasibility. This will be called
extended convergence to distinguish it from the strict sense.

For some problems, a solver may visit points at which the local neighborhood is very complex, or even
malformed due to numerical issues. In this situation, the best results may be obtained when convergence
of some of the variables is forced. This leads to practical solutions, which are feasible and converged in
most variables, but the remaining variables have had their convergence forced by the solver, for example
by means of a trust region. Although these solutions are not locally optimal in a strict sense, they provide
meaningful, useful results for difficult problems in practice.

6.6 The duals of general, nonlinear program
The dual of a mathematical program plays a fundamental role in the theory of continuous optimization.
Each variable in a problem has a corresponding partner in that problem’s dual, and the values of those
variables are called the reduced costs and dual multipliers (shadow prices). Xpress NonLinear makes
estimates of these values available. These are normally defined in a similar way to the usual linear
programming case, so that each value represents the rate of change of the objective when either
increasing the corresponding primal variable or relaxing the corresponding primal constraint.

Fair Isaac Corporation Proprietary Information 29

Chapter 6: Nonlinear Problems

From an algorithmic perspective, one of the most important roles of the dual variables is to characterize
local optimality. In this context, the dual multipliers and reduced costs are called Lagrange multipliers,
and a solution with both primal and dual feasible variables satisfies the Karush-Kuhn-Tucker conditions.
However, it is important to note that for general nonlinear problems, there exist situations in which there
are no such multipliers. Geometrically, this means that the slope of the objective function is orthogonal to
the linearization of the active constraints, but that their curvature still prevents any movement in the
improving direction.

As a simple example, consider:
minimize y
subject to x2 + y2 ≤ 1

(x – 2)2 + y2 ≤ 1

which is shown graphically in figure 6.3.

Figure 6.3: A problem admitting no dual values

This problem has a single feasible solution at (1,0). Reduced costs and dual multipliers could never be
meaningful indicators of optimality, and indeed are not well-defined for this problem. Intuitively, this
arises because the feasible region lacks an interior, and the existence of an interior (also referred to as
the Slater condition) is one of several alternative conditions which can be enforced to ensure that such
situations do not occur. The other common condition for well-defined duals is that the gradients of the
active constraints are linearly independent.

Problems without valid duals do not often arise in practice, but it is important to be aware of the
possibility. Analytic detection of such issues is difficult, and they manifest instead in the form of
unexpectedly large or otherwise implausible dual values.

Fair Isaac Corporation Proprietary Information 30

CHAPTER 7

Extended MPS file format

One method of inputting a problem to Xpress NonLinear is from a text file which is similar to the normal
MPS format matrix file. The Xpress NonLinear file uses free format MPS-style data. All the features of
normal free-format MPS are supported. There are no changes to the sections except as indicated below.

Note: the use of free-format requires that no name in the matrix contains any leading or embedded
spaces and that no name could be interpreted as a number. Therefore, the following names are invalid:

B 02 because it contains an embedded space;

1E02 because it could be interpreted as 100 (the scientific or floating-point format number,
1.0E02).

It is possible to use column and row names including mathematical operators. A variable name a+b is
valid. However, as an expression a + b would be interpreted as the addition of variables a and b - note the
spaces between the variable names - it is best practice to avoid such names when possible. SLP will
produce a warning if such names are encountered in the MPS file.

7.1 Formulae
One new feature of the Extended MPS format is the formula. A formula is written in much the same way
as it would be in any programming language or spreadsheet. It is made up of (for example) constants,
functions, the names of variables, and mathematical operators. The formula always starts with an equals
sign, and each item (or token) is separated from its neighbors by one or more spaces.

Tokens may be one of the following:

■ A constant;

■ The name of a variable;

■ An arithmetic operator "+", "-", "*", "/";

■ The exponentiation operator "**" or "̂";

■ An opening or closing bracket "(" or ")";

■ A comma "," separating a list of function arguments;

■ The name of a supported internal function such as LOG, SIN, EXP;

■ The name of a user-supplied function;

■ A colon ":" preceding the return argument indicator of a multi-valued function;

■ The name of a return argument from a multi-valued function.

Fair Isaac Corporation Proprietary Information 31

Chapter 7: Extended MPS file format

The following are valid formulae:

= SIN (A / B) SIN is a recognized internal function which takes one argument and returns one
result (the sin of its argument).

= A ˆ B ˆis the exponentiation symbol. Note that the formula may have valid syntax but it still may
not be possible to evaluate it (for example if A = –1 and B = 0.5).

= MyFunc1 (C1 , – C2 , C3 : 1) MyFunc1must be a function which can take three
arguments and which returns an array of results. This formula is asking for the first item
in the array.

The following are not valid formulae:

SIN (A) Missing the equals sign at the start

= SIN(A) No spaces between adjacent tokens

= A ∗ ∗ B "**" is exponentiation, "* *" (with an embedded space) is not a recognized operation.

= MyFunc1 (C1 , – C2 , C3 , 1) If MyFunc1 is as shown in the previous set of examples, it
returns an array of results. The last argument to the function must be delimited by a colon,
not a comma, and is the name or number of the item to be returned as the value of the
function.

There is no limit to the length of a formula. However, parsing very long records can be slow, and
consideration should be given to pre-parsing them and passing the parsed formula to Xpress NonLinear
rather than asking it to parse the formula itself.

7.2 COLUMNS
Normal MPS-style records of the form

column row1 value1 [row2 value2]

are supported. Non-linear relationships are modeled by using a formula instead of a constant in the value1
field. If a formula is used, then only one coefficient can be described in the record (that is, there can be no
row2 value2). The formula begins with an equals sign ("=") and is as described in the previous section.

A formula must be contained entirely on one record.

Variables used in formulae may be included in the COLUMNS section as variables, or may exist only as
items within formulae. A variable which exists only within formulae is called an implicit variable.

Sometimes the non-linearity cannot be written as a coefficient. For example, in the constraint
Y – LOG(X) = 0,
LOG(X) cannot be written in the form of a coefficient. In such a case, the reserved column name "=" may
be used in the first field of the record as shown:

Y MyRow 1
= MyRow = – LOG (X)

Effectively, "=" is a column with a fixed activity of 1.0 .

When a file is read by XSLPreadprob, more than one coefficient can be defined for the same
column/row intersection. As long as there is at most one constant coefficient (one not written as a

Fair Isaac Corporation Proprietary Information 32

Chapter 7: Extended MPS file format

formula), the coefficients will be added together. If there are two or more constant coefficients for the
same intersection, they will be handled by the Optimizer according to its own rules (normally additive, but
the objective function retains only the last coefficient).

7.3 BOUNDS
Bounds can be included for variables which are not defined explicitly in the COLUMNS section of the
matrix. If they are not in the COLUMNS section, they must appear as variables within formulae (implicit
variables). A BOUNDS entry for an item which is not a column or a variable will produce a warning
message and will be ignored.

Global entities (such as integer variables and members of Special Ordered Sets) must be defined
explicitly in the COLUMNS section of the matrix. If a variable would otherwise appear only in formulae in
coefficients, then it should be included in the COLUMNS section with a zero entry in a row (for example,
the objective function) which will not affect the result.

7.4 SLPDATA
SLPDATA is a new section which holds additional information for solving the non-linear problem using
SLP.

Many of the data items have a setname. This works in the same way as the BOUND, RANGE or RHS name,
in that a number of different values can be given, each with a different set name, and the one which is
actually used is then selected by specifying the appropriate setname before reading the problem.

Record type IV and the tolerance records Tx, Rx can have "=" as the variable name. This provides a
default value for the record type, which will be used if no specific information is given for a particular
variable.

Note that only linear BOUND types can be included in the SLPDATA section. Bound types for global
entities (discrete variables and special ordered sets) must be provided in the normal BOUNDS section and
the variables must also appear explicitly in the COLUMNS section.

All of the items in the SLPDATA section can be loaded into a model using Xpress NonLinear function calls.

7.4.1 DR (Determining row)
DR variable rowname [weighting] [limit]

The DR record defines the determining row for a variable.

In most non-linear problems, there are some variables which are effectively defined by means of an
equation in terms of other variables. Such an equation is called a determining row. If Xpress NonLinear
knows the determining rows for the variables which appear in coefficients, then it can provide better
linear approximations for the problem and can then solve it more quickly. Optionally, a non-zero integer
value can be included in the weighting field. Variables which have weights will generally be evaluated in
order of increasing weight. Variables without weights will generally be evaluated after those which do
have weights. However, if a variable A (with or without a weight) is dependent through its determining row
on another variable B, then B will always be evaluated first. The optional limit field provides a variable
specific value for XSLP_CASCADENLIMIT.

Example:

DR X Row1
This defines Row1 as the determining row for the variable X. If Row1 is
X – Y ∗ Z = 6
then Y and Z will be recalculated first before X is recalculated as Y ∗ Z + 6.

Fair Isaac Corporation Proprietary Information 33

Chapter 7: Extended MPS file format

7.4.2 EC (Enforced constraint)
EC rowname

The EC record defines an enforced constraint. Penalty error vectors are never added to enforced
constraints, so the effect of such constraints is maintained at all times.

Note that this means the linearized version of the enforced constraint will be active, so it is important to
appreciate that enforcing too many constraints can easily lead to infeasible linearizations which will
make it hard to solve the original nonlinear problem.

Example:

EC Row1
This defines Row1 as an enforced constraint. When the SLP is augmented, no penalty error vectors will
be added to the constraint, so the linearized version of Row1 will constrain the linearized problem in the
same sense (L, G or E) as the nonlinear version of Row1 constrains the original nonlinear problem.

7.4.3 FR (Free variable)
FR boundname variable

An FR record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

7.4.4 FX (Fixed variable)
FX boundname variable value

An FX record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

7.4.5 IV (Initial value)
IV setname variable [value | = formula]

An IV record specifies the initial value for a variable. All variables which appear in coefficients or terms,
or which have non-linear coefficients, should have an IV record.

A formula provided as the initial value for a variable can contain references to other variables. It will be
evaluated based on the initial values of those variables (which may themselves be calculated by formula).
It is the user’s responsibility to ensure that there are no circular references within the formulae. Formulae
are typically used to calculate consistent initial values for dependent variables based on the values of
independent variables.

If an IV record is provided for the equals column (the column whose name is "=" and which has a fixed
value of 1.0), the value provided will be used for all SLP variables which do not have an explicit initial value
of their own.

If there is no explicit or implied initial value for an SLP variable, the value of control parameter
XSLP_DEFAULTIV will be used.

If the initial value is greater than the upper bound of the variable, the upper bound will be used; if the initial
value is less than the lower bound of the variable, the lower bound will be used.

If both a formula and a value are provided, then the explicit value will be used.

Example:

IV IVSET1 Col99 1.4971

Fair Isaac Corporation Proprietary Information 34

Chapter 7: Extended MPS file format

IV IVSET2 Col99 2.5793
This sets the initial value of column Col99. The initial value to be used is selected using control
parameter XSLP_IVNAME. If no selection is made, the first initial value set found will be used.

If Col99 is bounded in the range 1 ≤ Col99 ≤ 2 then in the second case (when IVSET2 is selected),
an initial value of 2 will be used because the value given is greater than the upper bound.

IV IVSET2 Col98 = Col99 ⁎ 2
This sets the value of Col98 to twice the initial value of Col99 when IVSET2 is the selected initial value
set.

7.4.6 LO (Lower bounded variable)
LO boundname variable value

A LO record performs the same function in the SLPDATA section as it does in the BOUNDS section. It can
be used for bounding variables which do not appear as explicit columns in the matrix.

7.4.7 Rx, Tx (Relative and absolute convergence tolerances)
Rx setname variable value

Tx setname variable value

The Tx and Rx records (where "x" is one of the defined tolerance types) define specific tolerances for
convergence of the variable. See the section "convergence criteria" for a list of convergence tolerances.
The same tolerance set name (setname) is used for all the tolerance records.

Example:

RA TOLSET1 Col99 0.005
TA TOLSET1 Col99 0.05
RI TOLSET1 Col99 0.015
RA TOLSET1 Col01 0.01
RA TOLSET2 Col01 0.015
These records set convergence tolerances for variables Col99 and Col01. Tolerances RA (relative
convergence tolerance), TA (absolute convergence tolerance) and RI (relative impact tolerance) are set
for Col99 using the tolerance set named TOLSET1.
Tolerance RA is set for variable Col01 using tolerance sets named TOLSET1 and TOLSET2.
If control parameter XSLP_TOLNAME is set to the name of a tolerance set before the problem is read
using XSLPreadprob, then only the tolerances on records with that tolerance set will be used. If
XSLP_TOLNAME is blank or not set, then the name of the set on the first tolerance record will be used.

7.4.8 SB (Initial step bound)
SB setname variable value

An SB record defines the initial step bounds for a variable. Step bounds are symmetric (i.e. the bounds on
the delta are –SB ≤ delta ≤ +SB). If a value of 1.0E+20 is used (equivalent to XPRS_PLUSINFINITY in
programming), the delta will never have step bounds applied, and will almost always be regarded as
converged.

If there is no explicit initial step bound for an SLP variable, a value will be estimated either from the size of
the coefficients in the initial linearization, or from the values of the variable during the early SLP iterations.
The value of control parameter XSLP_DEFAULTSTEPBOUND provides a lower limit for the step bounds in
such cases.

If there is no explicit initial step bound, then the closure convergence tolerance cannot be applied to the

Fair Isaac Corporation Proprietary Information 35

Chapter 7: Extended MPS file format

variable.

Example:

SB SBSET1 Col99 1.5
SB SBSET2 Col99 7.5
This sets the initial step bound of column Col99. The value to be used is selected using control
parameter XSLP_SBNAME. If no selection is made, the first step bound set found will be used.

7.4.9 UF (User function)
UF funcname = libraryname (functiontype) linkage = library

A UF record defines a user function.
The definition includes the function’s type which matches the parameter supplied to the adduserfunction
call.

Example:

UF MyFunc (VECMAPDELTA) DLL = UserLib
This defines a user function called MyFunc that takes multiple input arguments and supplies its own
derivatives. The linkage is DLL (free-standing user library or DLL) and the function is in file UserLib.

7.4.10 UP (Free variable)
UP boundname variable value

An UP record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

7.4.11 WT (Explicit row weight)
WT rowname value

The WT record is a way of setting the initial penalty weighting for a row. If value is positive, then the
default initial weight is multiplied by the value given. If value is negative, then the absolute value will be
used instead of the default weight.

Increasing the penalty weighting of a row makes it less attractive to violate the constraint during the SLP
iterations.

Examples:

WT Row1 3
This changes the initial weighting on Row1 by multiplying by 3 the default weight calculated by
Xpress-SLP during problem augmentation.

WT Row1 -3
This sets the initial weighting on Row1 to 3.

7.4.12 DL (variable specific Determining row cascade iteration
Limit)

DL columnname limit

A DL record specififies a variable specific iteration limit to be emposed on the number of iterations when
cascading the variable. This can be used to overwrite the setting of XSLP_CASCADENLIMIT for a
specific variable.

Fair Isaac Corporation Proprietary Information 36

CHAPTER 8

Xpress-SLP Solution Process

This section gives a brief overview of the sequence of operations within Xpress-SLP once the data has
been set up. The positions of the possible user callbacks are also shown.

Check if problem is an SLP problem or not. Call the appropriate XPRS library function if not, and DONE.
[Call out to user callback if set by XSLPsetcbslpstart]
Augment the matrix (create the linearized structure) if not already done
If determining row data supplied, calculate cascading order and detect determining columns
DO

[Call out to user callback if set by XSLPsetcbiterstart]
If previous solution available, pre-process solution

Execute line search
[Call out to user callback if set by XSLPsetcbcascadestart]
Sequentially update values of SLP variables (cascading) and re-calculate coefficients
For each variable (in a suitable evaluation order):

Update solution value (cascading) and re-calculate coefficients
[Call out to user callback if set by XSLPsetcbcascadevar]

[Call out to user callback if set by XSLPsetcbcascadeend]
Update penalties
Update coefficients, bounds and RHS in linearized matrix
Solve linearized problem using the Xpress Optimizer
Recover SLP variable and delta solution values
Test convergence against specified tolerances and other criteria
For each variable:

Test convergence against specified tolerances
[Call out to user callback if set by XSLPsetcbitervar]

For each variable with a determining column:
Check value of determining column and fix variable when necessary, or
[Call out to user callback if set by XSLPsetcbdrcol]
Reset variable convergence status if a change is made to a variable

If not all variables have converged, check for other extended convergence criteria
If the solution has converged, then BREAK
For each SLP variable:

Update history
Reset step bounds

[Call out to user callback if set by XSLPsetcbiterend]
Change row types for DC rows as required
If SLP iteration limit is reached, then BREAK

ENDDO
[Call out to user callback if set by XSLPsetcbslpend]

For MISLP (mixed-integer SLP) problems, the above solution process is normally repeated at each node.

Fair Isaac Corporation Proprietary Information 37

Chapter 8: Xpress-SLP Solution Process

The standard procedure for each node is as follows:

Initialize node
[Call out to user callback if set by XSLPsetcbprenode]
Solve node using SLP procedure
If an optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcboptnode]
If an integer optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcbintsol]
When node is completed

[Call out to user callback if set by XSLPsetcbslpnode]

When a problem is destroyed, there is a call out to the user callback set by XSLPsetcbdestroy.

8.1 Analyzing the solution process
Xpress-SLP provides a comprehensive set of callbacks to interact with, and to analyze the solution
process. However, there are a set of purpose build options that are intended to assist and make the
analysis more efficient.

For infeasible problems, it often helps to identify the source of conflict by running XPRESS’ Irreducible
Infeasibiliy Set (IIS) finder tool. The set found by IIS often helps to either point to a problem in the original
model formulation, or if the infeasibility is a result of conflicting step bounds or linearization updates;
please see control XSLP_ANALYZE.

It is often advantageous to trace a certain variable, constraint or a certain property through the solution
process. XSLP_TRACEMASK and XSLP_TRACEMASKOPS allows for collecting detailed information
during the solution process, without the need to stop XSLP between iterations.

For in depth debugging purposes or support requests, it is possible to create XSLP save files and
linearizations at verious iterations, controlled by XSLP_AUTOSAVE and XSLP_ANALYZE.

8.2 The initial point
The solution process is sensitive to the initial values which are selected for variables in the problem, and
particularly so for non-convex problems. It is not uncommon for a general nonlinear problem to have a
feasible region which is not connected, and in this case the starting point may largely determine which
region, connected set, or basin of attraction the final solution belongs to.

Note that it may not always be beneficial to completely specify an initial point, as the solvers themselves
may be able to detect suitable starting values for some or all of the variables.

8.3 Derivatives
Both XSLP and Knitro require the availability of derivative information for the constraints and objective
function in order to solve a problem. In the Xpress NonLinear framework, several advanced approaches
to the production of both first and second order derivatives (the Jacobian and Hessian matrices) are
available, and which approach is used can be controlled by the user.

8.3.1 Finite Differences
The simplest such method is the use of finite differences, sometimes called numerical derivatives. This is
a relatively coarse approximation, in which the function is evaluated in a small neighborhood of the point

Fair Isaac Corporation Proprietary Information 38

Chapter 8: Xpress-SLP Solution Process

in question. The standard argument from calculus indicates that an increasingly accurate approximation
to the derivative of the function will be found as the size of the neighborhood decreases. This argument
ignores the effects of floating point arithmetic, however, which can make it difficult to select values
sufficiently small to give a good approximation to the function, and yet sufficiently large to avoid
substantial numerical error.

The high performance implementation in XSLP makes use of subexpression caching to improve
performance, but finite differences are inherently inefficient. They may however be necessary when the
function itself is not known in closed form. When analytic approaches cannot be used, due to the use of
expensive black box functions which do not provide derivatives (note that XSLP does allow user functions
to provide their own derivatives), the cost of function evaluations may become a dominant factor in solve
time. It is important to note that each second order numerical derivative costs twice as much as a first
order numerical derivative, and this can make XSLP more attractive than Knitro for such problems.

8.3.2 Symbolic Differentiation
Xpress NonLinear will instead provide analytic derivatives where possible, which are both more accurate
and more efficient. There are two major approaches to such calculations, and high quality
implementations of both are available in this framework.

A symbolic differentiation engine calculates the derivative of an expression in closed form, using its
formula representation. This is a very efficient way of recalculating individual entries of the Jacobian, and
is the default approach to providing derivative information to XSLP in case the total size of all derivatives
is expected to fit into memory.

8.3.3 Automatic Differentiation
An automatic differentiation engine in contrast can simultaneously compute multiple derivatives by
repeated application of the chain rule. This is a very efficient means of calculating large numbers of
Hessian entries, and is the default approach to providing derivative information to Knitro. It is also the
default choice for SLP in case of large scale models.

8.4 Points of inflection
A point of inflection in a given variable occurs when the first and second order partial derivatives with
respect to that variable become zero, but there exist nonzero derivatives of higher order. At such points,
the approximations the iterative nonlinear methods create do not encapsulate enough information about
the behavior of the function, and both first and second order methods may experience difficulties. For
example, consider the following problem

minimize x3
subject to –1 ≤ x ≤ 1

for which the optimal solution is -1.

When the initial value of x is varied, XSLP and Knitro produce the solutions presented in Table 8.1 for this
problem:

As a second order method, Knitro examines a local quadratic approximation to the function. Starting at
both 0 and 1, this approximation will closely resemble the x2 function, and so the solution will be attracted
to zero. For XSLP, which is a first order method, the approximation at 0 will have a zero gradient. However,
XSLP can detect this situation and will perform the analysis required to substitute an appropriate small
nonzero (placeholder) value for the derivative during the first iterations. As can be seen, this allows XSLP
find an optimal solution in all three cases.

This is only one example of the behaviour of these solvers without further tuning. The long steps which

Fair Isaac Corporation Proprietary Information 39

Chapter 8: Xpress-SLP Solution Process

Figure 8.1: Effect of an inflection point on solution values.

XSLP often takes can be both beneficial and harmful in different contexts. For example, if the function to
be optimized includes many local minima, it is possible to see the opposite pattern for XSLP and Knitro.
Consider

minimize x sin(100x2)
subject to –1 ≤ x ≤ 1

which has many local minima. For this problem, the results obtained are presented in Table 8.2:

Figure 8.2: Local solutions for a function with several local optima

In this case the same long steps made by XSLP lead to it finding the an identical, but unfortunate, local
optimum no matter which initial point it begins from.

8.5 Trust regions
In a second order method like Knitro, there is a well-defined merit function which can be used to compare
solutions, and which provides a measure of the progress being made by the algorithm. This is a
significant advantage over first order methods, in which there is generally no such function.

Despite their speed and resilience to points of inflection, first order methods can also experience
difficulties at points in which the current approximation is not well posed. Consider

minimize x2
subject to x free

at x = 1. A naive linearization is simply

minimize 2x
subject to x free

which is unbounded. To address such situations, XSLP will introduce trust regions to model the
neighborhood in which the current approximation is believed to be applicable. When coupled with the use
of derivative placeholders described in the previous section, this can lead XSLP to initially make large
moves from its starting position.

Fair Isaac Corporation Proprietary Information 40

CHAPTER 9

Handling Infeasibilities

By default, Xpress-SLP will include penalty error vectors in the augmented SLP structure. This feature
adds explicit positive and negative slack vectors to all constraints (or, optionally, just to equality
constraints) which include nonlinear coefficients. In many cases, this is itself enough to retain feasibility.
There is also an opportunity to add penalty error vectors to all constraints, but this is not normally
required.

During cascading (see next section), Xpress-SLP will ensure that the value of a cascaded variable is never
set outside its lower and upper bounds (if these have been specified).

9.1 Infeasibility Analysis in the Xpress Optimizer
For problems which can be solved using the Xpress Optimizer, that is LP, convex QP and QCQP and their
MIP counterparts, there is normally no difficulty with establishing feasibility. This is because for these
convex problem classes, Xpress can produce global solutions, and any problem declared infeasible is
globally infeasible. The concept of local infeasibility is primarily of use in the case of nonlinear problems,
and in particular non-convex, nonlinear problems.

When the Xpress Optimizer declares a problem to be infeasible, the tools provided with the Xpress
Optimizer console can be used to analyse the infeasibility, and hence to subsequently alter the model to
overcome it. One important step in this respect is the ability to retrieve an irreducible infeasible set (IIS)
(using the iis command). An IIS is a statement of a particular conflict in the model between a set of
constraints and bounds, which make the problem certainly infeasible. An IIS is minimal in the sense that
if any constraint or bound of the IIS were removed from the subproblem represented by the IIS, the
resulting (relaxed) subproblem would be feasible. The Xpress Optimizer also contains a tool to identify
the minimum weighted violations of constraints or bounds that would make the problem feasible (called
repairinfeas).

Both iis and repairinfeas can be applied to any LP, convex QP, or convex QCQP problem, as well as
to their mixed integer counterparts. Please refer to the Xpress Optimizer and Mosel reference manuals
for more information.

9.2 Managing Infeasibility with Xpress Knitro
Xpress Knitro has three major controls which govern feasibility.

XKTR_PARAM_FEASTOL This is the relative feasibility tolerance applied to a problem.

XKTR_PARAM_FEASTOLABS This is the corresponding absolute feasibility tolerance.

XKTR_PARAM_INFEASTOL This is the tolerance for declaring a problem infeasible.

Fair Isaac Corporation Proprietary Information 41

Chapter 9: Handling Infeasibilities

The feasibility emphasis control, XKTR_PARAM_BAR_FEASIBLE, can be set for models on which Knitro
has encountered difficulties in finding a feasible solution. If it is set to get or get_stay, particular
emphasis will be placed upon obtaining feasibility, rather than balancing progress toward feasibility and
optimality as is the default.

If one of the built-in interior point methods is used, as determined by XKTR_PARAM_ALGORITHM, the
feasibility emphasis control can force the iterates to strictly satisfy inequalities. It does not, however,
require Knitro to satisfy all equality constraints at intermediate iterates.

The migration between a pure search for feasibility, and a balanced approach to feasibility and optimality,
may be further fine tuned by using the XKTR_PARAM_BAR_SWITCHRULE control. Should a model still fail
to converge to a feasible solution, the XKTR_PARAM_BAR_PENCONS control may be used to instruct
Knitro to introduce penalty breakers of its own. This option has similar behaviour to the corresponding
option in XSLP.

9.3 Managing Infeasibility with Xpress-SLP
There are two sources of infeasibility when XSLP is used

1. Infeasibility introduced by the error of the approximation, most noticeable when significant steps
are made in the linearization.

2. Infeasibility introduced by the activation of penalty breakers, where it was not otherwise possible to
make a meaningful step in the linearization.

The infeasibility induced by the former diminishes as the solution converges, provided mild assumptions
regarding the continuity of the functions describing the model are satisfied. The focus of any analysis of
infeasibility in XSLP must therefore most often be on the penalty breakers (also called error vectors).

For some problems, Xpress-SLP may terminate with a solution which is not sufficiently feasible for use in
a desired application. The first controls to use to try to resolve such an issue are

XSLP_ECFTOL_A The absolute linearization feasibility tolerance is compared for each constraint in
the original, nonlinear problem to its violation by the current solution.

XSLP_ECFTOL_R The relative linearization feasibility tolerance is compared for each constraint in the
original, nonlinear problem to its violation by the current solution, relative to the
maximum absolute value of the positive and negative contributions to the
constraint.

9.4 Penalty Infeasibility Breakers in XSLP
Convergence will automatically address any errors introduced by movement within the linearization.
When only small movements occur in the solution, then for differentiable functions the drift resulting
from motion on the linearization is also limited.

However, it is not always possible to stay within the linearization and still make an improving step. XSLP
is often able to resolve such situations automatically by the introduction of penalty infeasibility breakers.
These allow the solver to violate the linearized constraints by a small amount. Such variables are
associated with large cost penalties in the linearized problems, which prevents the solution process from
straying too far from the approximated feasible region.

Note that if penalty breakers are required, the solution process may be very sensitive to the choice of cost
penalties placed on the breakers. In most cases, XSLP’s constraint analysis will automatically identify
appropriate penalties as needed for each row, but for some problems additional tuning might be required.

Fair Isaac Corporation Proprietary Information 42

Chapter 9: Handling Infeasibilities

Xpress-SLP will attempt to force all penalty breakers to zero in the limit by associating a substantial cost
with them in the objective function. Such costs will be increased repeatedly should the penalty breaker
remain non-zero over a period of time. The current penalty cost for all such variables is available as
XSLP_CURRENTERRORCOST. The control XSLP_ERRORCOST determines the initial value for this cost,
while the XSLP_ERRORCOSTFACTOR controls the factor by which it increases if active error vectors
remain. The maximum value of the penalty is determined by the control XSLP_ERRORMAXCOST. If the
maximum error cost is reached, it is unlikely that XSLP will converge. It is possible in this situation to
terminate the solve, by setting bit 11 of XSLP_ALGORITHM.

Some problems may be sensitive to the initial value of XSLP_ERRORCOST. If this value is too small
relative to the original objective in the model, feasibility will not be sufficiently strongly encouraged during
the solution process. This can cause SLP to explore highly infeasible solutions in the early stages, since
the original objective will dominate any consideration of feasibility. It is even possible in this case for
unboundedness of the linearizations to occur, although SLP is capable of automatic recovery from such a
situation.

When the initial penalty cost is too high, the penalty term will dominate the objective. This in turn will may
lead to initially low quality solutions being explored, with the attendant possibility of numerical errors
accumulating. The control XSLP_OBJTOPENALTYCOST guides the process which selects an automatic
value for XSLP_ERRORCOST, but determining such a value analytically can be difficult. For some difficult
problems, there may be significant benefits to selecting the value directly.

Often for infeasible problems, the contribution of the individual constraints to the overall infeasibility is
non-uniform. XSLP can automatically associate a weight with each row based upon the magnitude of the
terms in the constraint. It is both possible to refine these weights, or alternatively to allow XSLP update
them dynamically. The latter case is called escalation, and is controlled by bit 8 of XSLP_ALGORITHM.

Devising appropriate weights manually can be difficult, and in most cases it is preferable to leave the
identification of these values to Xpress-SLP. However if it is necessary to do, the output of XSLP may
provide hints as to appropriate values if detailed logging is enabled. This can be turned on with
XSLP_LOG. The most important points in such output are the active error vectors at each iteration, where
the most attractive constraints to modify are those which occur regularly in the log in association with
non-zero error vectors.

Fair Isaac Corporation Proprietary Information 43

CHAPTER 10

Cascading

Cascading is the process of recalculating the values of SLP variables to be more consistent with each
other. The procedure involves sequencing the designated variables in order of dependence and then,
starting from the current solution values, successively recalculating values for the variables, and
modifying the stored solution values as required. Normal cascading is only possible if a determining row
can be identified for each variable to be recalculated. A determining row is an equality constraint which
uniquely determines the value of a variable in terms of other variables whose values are already known.
Any variable for which there is no determining row will retain its original solution value. Defining a
determining row for a column automatically makes the column into an SLP variable.

In extended MPS format, the SLPDATA record type "DR" is used to provide information about determining
rows.

In the Xpress NonLinear function library, function XSLPsetdetrow allows the definition of a determining
row for a column.

The cascading procedure is as follows:

■ Produce an order of evaluation to ensure that variables are cascaded after any variables on which
they are dependent.

■ After each SLP iteration, evaluate the columns in order, updating coefficients only as required. If a
determining row cannot calculate a new value for the SLP variable (for example, because the
coefficient of the variable evaluates to zero), then the current value may be left unchanged, or
(optionally) the previous value can be used instead.

■ If a feedback loop is detected (that is, a determining row for a variable is dependent indirectly on
the value of the variable), the evaluation sequence is carried out in the order in which the variables
are weighted, or the order in which they are encountered if there is no explicit weighting.

■ Check the step bounds, individual bounds and cascaded values for consistency. Adjust the
cascaded result to ensure it remains within any explicit or implied bounds.

Normally, the solution value of a variable is exactly equal to its assumed value plus the solution value of
its delta. Occasionally, this calculation is not exact (it may vary by up to the LP feasibility tolerance) and
the difference may cause problems with the SLP solution path. This is most likely to occur in a quadratic
problem when the quadratic part of the objective function contains SLP variables. Xpress NonLinear can
re-calculate the value of an SLP variable to be equal to its assumed value plus its delta, rather than using
the solution value itself.

XSLP_CASCADE is a bitmap which determines whether cascading takes place and whether the
recalculation of solution values is extended from the use of determining rows to recalculation of the
solution values for all SLP variables, based on the assumed value and the solution value of the delta.

In the following table, in the definitions under Category, error means the difference between the solution
value and the assumed value plus the delta value. Bit settings in XSLP_CASCADE are used to determine
which category of variable will have its value recalculated as follows:

Fair Isaac Corporation Proprietary Information 44

Chapter 10: Cascading

Bit Constant name Category
0 XSLP_CASCADE_ALL SLP variables with determining rows
1 XSLP_CASCADE_COEF_VAR Variables appearing in coefficients where the error is

greater than the feasibility tolerance
2 XSLP_CASCADE_ALL_COEF_VAR Variables appearing in coefficients where the error is

greater than 1.0E-14
3 XSLP_CASCADE_STRUCT_VAR Variables not appearing in coefficients where the er-

ror is greater than the feasibility tolerance
4 XSLP_CASCADE_ALL_STRUCT_VAR Variables not appearing in coefficients where the er-

ror is greater than 1.0E-14

In the presence of determining rows that include instantiated functions, SLP can attempt to group the
corresponding variables together in the cascading order. This can be achieved by setting

Bit Constant name Effect
0 XSLP_CASCADE_SECONDARY_GROUPS Create secondary order groupping DR rows with in-

stantiated user functions together in the order

10.1 Determining rows and determining columns
Normally, Xpress-SLP automatically identifies if the constraint selected as determining row for a variable
defines the value of the SLP variable which it determines or not. However, in certain situations, the value
of a single other column determines if the determing row defines the variable or not; such a column is
called the determining column for the variable.

This situation is typical when the determined and determining column form a bilinear term: x * y + F(Z) =
0 where y is the determined variable, Z is a set of other variables not including x or y, and F is an arbitrary
function; in this case x is the determining column. These variable pairs are detected automatically. In case
the absolute value of x is smaller than XSLP_DRCOLTOL, then variable y will not be cascaded, instead its
value will be fixed and kept at its current value until the value of x becomes larger than the threshold.

Alternatively, the handling of variables for which a determining column has been identified can be
customized by using a callback, see XSLPsetcbdrcol.

Fair Isaac Corporation Proprietary Information 45

CHAPTER 11

Convergence criteria

11.1 Convergence criteria
In Xpress-SLP there are two levels of convergence criteria. On the higher level, convergence is driven by
the target relative feasibility / validation control XSLP_VALIDATIONTARGET_R, and the target first order
validation tolerance XSLP_VALIDATIONTARGET_K. These high level targets drive the traditional SLP
convergence measures, of which there are three types for testing convergence:

■ Strict convergence tests on variables

■ Extended convergence tests on variables

■ Convergence tests on the solution overall

11.2 Convergence overview
11.2.1 Strict Convergence

Three tolerances in XSLP are used to determine whether an individual variable has strictly converged, that
is they describe the numerical behavior of convergence in the formal, mathematical sense.

XSLP_CTOL The closure tolerance is compared against the movement of a variable relative to its
initial step bound.

XSLP_ATOL_A The absolute delta tolerance is compared against the absolute movement of a variable.

XSLP_ATOL_R The relative delta tolerance is compared against the movement of a variable relative to
its initial value.

11.2.2 Extended Convergence
There are six tolerances in XSLP used to determine whether an individual variable has converged
according to the extended definition. These tests essentially measure the quality of the linearization,
including the effect of changes to the nonlinear terms that contribute to a variable in the linearization. In
order to be deemed to have converged in the extended sense, all terms in which it appears must satisfy at
least one of the following:

XSLP_MTOL_A The absolute matrix tolerance is compared against the approximation error relative
only to the absolute value of the variable.

XSLP_MTOL_R The relative matrix tolerance is compared against the approximation error relative to
the size of the nonlinear term before any step is taken.

Fair Isaac Corporation Proprietary Information 46

Chapter 11: Convergence criteria

XSLP_ITOL_A The absolute impact tolerance is compared against the approximation error of the
nonlinear term.

XSLP_ITOL_R The relative impact tolerance is compared against the approximation error relative to
the positive and negative contributions to each constraint.

XSLP_STOL_A The absolute slack impact tolerance is compared against the approximation error, but
only for non-binding constraints, which is to say those for which the marginal value is
small (as defined by XSLP_MVTOL).

XSLP_STOL_R The relative slack impact tolerance is compared against the approximation error
relative to the term’s contribution to its constraints, but only for non-binding
constraints, which is to say those for which the marginal value is small (as defined by
XSLP_MVTOL).

11.2.3 Stopping Criterion
The stopping criterion requires that all variables in the problem have converged in one of the three senses.
Detailed information regarding the conditions under which XSLP has terminated can be obtained from
the XSLP_STATUS solver attribute. Note that a solution is deemed to have fully converged if all variables
have converged in the strict sense. If all variables have converged either in the strict or extended sense,
and there are no active step bounds, then the solution is called a practical solution. In contrast, the
solution may be called converged if it is feasible and the objective is no longer improving.

The following four control sets can be applied by XSLP to determine whether the objective is stationary,
depending on the convergence control parameter XSLP_CONVERGENCEOPS:

VTOL This is the baseline static objective function tolerance, which is compared against the
change in the objective over a given number of iterations, relative to the average objective
value. Satisfaction of VTOL does not imply convergence of the variables.

XSLP_VCOUNT This is the number of iterations over which to apply this measure of
static objective convergence.

XSLP_VLIMIT The static objective function test is applied only after at least
XSLP_VLIMIT + XSLP_SBSTART XSLP iterations have taken place.

XSLP_VTOL_A This is the absolute tolerance which is compared to the range of the
objective over the last XSLP_VLIMIT iterations.

XSLP_VTOL_R This is the tolerance used for a scaled version of the absolute test
which considers the average size of the absolute value of the objective
over the previous XSLP_VLIMIT iterations.

OTOL This static objective function tolerance is applied when there are no unconverged variables in
active constraints, although some variables with active step bounds might remain. It is
compared to the change in the objective over a given number of iterations, relative to the
average objective value.

XSLP_OCOUNT This is the number of iterations over which to apply this measure of
static objective convergence.

XSLP_OTOL_A This is the absolute tolerance which is compared to the range of the
objective over the last XSLP_OCOUNT iterations.

XSLP_OTOL_R This is used for a scaled version of the absolute test which considers
the average size of the absolute value of the objective over the
previous XSLP_OCOUNT iterations.

Fair Isaac Corporation Proprietary Information 47

Chapter 11: Convergence criteria

XTOL This static objective function tolerance is applied when a practical solution has been found. It
is compared against the change in the objective over a given number of iterations, relative to
the average objective value.

XSLP_XCOUNT This is the number of iterations over which to apply this measure of
static objective convergence.

XSLP_XLIMIT This is the maximum number of iterations which can have occurred for
this static objective function test to be applied. Once this number is
exceeded, the solution is deemed to have converged if all the variables
have converged by the strict or extended criteria.

XSLP_XTOL_A This is the absolute tolerance which is compared to the range of the
objective function over the last XSLP_XLIMIT iterations.

XSLP_XTOL_R This is used for a scaled version of the absolute test which considers
the average size of the absolute value of the objective over the last
XSLP_XLIMIT iterations.

WTOL The extended convergence continuation tolerance is applied when a practical solution has
been found. It is compared to the change in the objective during the previous iteration.

XSLP_WCOUNT This is number of iterations over which to calculate this measure of
static objective convergence in the relative version of the test.

XSLP_WTOL_A This is the absolute tolerance which is compared to the change in the
objective in the previous iteration.

XSLP_WTOL_R This is used for a scaled version of the test which considers the
average size of the absolute value of the objective over the last
XSLP_WCOUNT iterations.

11.2.4 Step Bounding
Step bounding in XSLP can be activated in two cases. It may be enabled adaptively in response to
variable oscillation, or it may be enabled by after XSLP_SBSTART iterations, by setting
XSLP_ALGORITHM appropriately. Two major controls define the behaviour of step bounds:

XSLP_SBSTART This defines the number of iterations which must occur before XSLP may
apply non-essential step bounding. When a linearization is unbounded,
XSLP will introduce step bounding regardless of the value of this control.

XSLP_DEFAULTSTEPBOUND This is the initial size of the step bounds introduced. Depending upon the
value of XSLP_ALGORITHM, XSLP may use the iterations before
XSLP_SBSTART to refine this initial value on a per variable basis.

11.3 Convergence: technical details
In the following sections we shall use the subscript 0 to refer to values used to build the linear
approximation (the assumed value) and the subscript 1 to refer to values in the solution to the linear
approximation (the actual value). We shall also use δ to indicate the change between the assumed and
the actual values, so that for example:
δX = X1 – X0.

The tests are described in detail later in this section. Tests are first carried out on each variable in turn,
according to the following sequence:

Strict convergence criteria:

Fair Isaac Corporation Proprietary Information 48

Chapter 11: Convergence criteria

1. Closure tolerance (CTOL).
This tests δX against the initial step bound of X.

2. Delta tolerance (ATOL)
This tests δX against X0.

If the strict convergence tests fail for a variable, it is tested against the extended convergence criteria:

3. Matrix tolerance (MTOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the linearization.
It tests the error against the magnitude of the effect.

4. Impact tolerance (ITOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the linearization.
It tests the error against the magnitude of the contributions to the constraint.

5. Slack impact tolerance (STOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the linearization
and is applied only if the constraint has a negligible marginal value (that is, it is regarded as "not
constraining"). The test is the same as for the impact tolerance, but the tolerance values may be
different.

The three extended convergence tests are applied simultaneously to all coefficients involving the variable,
and each coefficient must pass at least one of the tests if the variable is to be regarded as converged. If
any coefficient fails the test, the variable has not converged.

Regardless of whether the variable has passed the system convergence tests or not, if a convergence
callback function has been set using XSLPsetcbitervar then it is called to allow the user to determine
the convergence status of the variable.

6. User convergence test
This test is entirely in the hands of the user and can return one of three conditions: the variable has
converged on user criteria; the variable has not converged; or the convergence status of the variable
is unchanged from that determined by the system.

Once the tests have been completed for all the variables, there are several possibilities for the
convergence status of the solution:

(a) All variables have converged on strict criteria or user criteria.

(b) All variables have converged, some on extended criteria, and there are no active step bounds (that
is, there is no delta vector which is at its bound and has a significant reduced cost).

(c) All variables have converged, some on extended criteria, and there are active step bounds (that is,
there is at least one delta vector which is at its bound and has a significant reduced cost).

(d) Some variables have not converged, but these have non-constant coefficients only in constraints
which are not active (that is, the constraints do not have a significant marginal value);

(e) Some variables have not converged, and at least one has a non-constant coefficient in an active
constraint (that is, the constraint has a significant marginal value);

If (a) is true, then the solution has converged on strict convergence criteria.

If (b) is true, then the solution has converged on extended convergence criteria.

If (c) is true, then the solution is a practical solution. That is, the solution is an optimal solution to the
linearization and, within the defined tolerances, it is a solution to the original nonlinear problem. It is

Fair Isaac Corporation Proprietary Information 49

Chapter 11: Convergence criteria

possible to accept this as the solution to the nonlinear problem, or to continue optimizing to see if a
better solution can be obtained.

If (d) or (e) is true, then the solution has not converged. Nevertheless, there are tests which can be
applied to establish whether the solution can be regarded as converged, or at least whether there is
benefit in continuing with more iterations.

The first convergence test on the solution simply tests the variation in the value of the objective function
over a number of SLP iterations:

7. Objective function convergence test 1 (VTOL)
This test measures the range of the objective function (the difference between the maximum and
minimum values) over a number of SLP iterations, and compares this against the magnitude of the
average objective function value. If the range is small, then the solution is deemed to have
converged.

Notice that this test says nothing about the convergence of the variables. Indeed, it is almost certain that
the solution is not in any sense a practical solution to the original nonlinear problem. However, experience
with a particular type of problem may show that the objective function does settle into a narrow range
quickly, and is a good indicator of the ultimate value obtained. This test can therefore be used in
circumstances where only an estimate of the solution value is required, not how it is made up. One
example of this is where a set of schedules is being evaluated. If a quick estimate of the value of each
schedule can be obtained, then only the most profitable or economical ones need be examined further.

If the convergence status of the variables is as in (d) above, then it may be that the solution is practical
and can be regarded as converged:

8. Objective function convergence test 2 (XTOL)
If there are no unconverged values in active constraints, then the inaccuracies in the linearization
(at least for small errors) are not important. If a constraint is not active, then deleting the constraint
does not change the feasibility or optimality of the solution. The convergence test measures the
range of the objective function (the difference between the maximum and minimum values) over a
number of SLP iterations, and compares this against the magnitude of the average objective
function value. If the range is small, then the solution is deemed to have converged.

The difference between this test and the previous one is the requirement for the convergence status of
the variables to be (d).

Unless test 7 (VTOL) is being applied, if the convergence status of the variables is (e) then the solution
has not converged and another SLP iteration will be carried out.

If the convergence status is (c), then the solution is practical. Because there are active step bounds in the
solution, a "better" solution would be obtained to the linearization if the step bounds were relaxed.
However, the linearization becomes less accurate the larger the step bounds become, so it might not be
the case that a better solution would also be achieved for the nonlinear problem. There are two
convergence tests which can be applied to decide whether it is worth continuing with more SLP iterations
in the hope of improving the solution:

9. Objective function convergence test 3 (OTOL)
If all variables have converged (even if some are converged on extended criteria only, and some of
those have active step bounds), the solution is a practical one. If the objective function has not
changed significantly over the last few iterations, then it is reasonable to suppose that the solution
will not be significantly improved by continuing with more SLP iterations. The convergence test
measures the range of the objective function (the difference between the maximum and minimum
values) over a number of SLP iterations, and compares this against the magnitude of the average
objective function value. If the range is small, then the solution is deemed to have converged.

Fair Isaac Corporation Proprietary Information 50

Chapter 11: Convergence criteria

10. Extended convergence continuation test (WTOL)
Once a solution satisfying (c) has been found, we have a practical solution against which to
compare solution values from later SLP iterations. As long as there has been a significant
improvement in the objective function, then it is worth continuing. If the objective function over the
last few iterations has failed to improve over the practical solution, then the practical solution is
restored and the solution is deemed to have converged.

The difference between tests 9 and 10 is that 9 (OTOL) tests for the objective function being stable,
whereas 10 (WTOL) tests whether it is actually improving. In either case, if the solution is deemed to have
converged, then it has converged to a practical solution.

11.3.1 Closure tolerance (CTOL)
If an initial step bound is provided for a variable, then the closure test measures the significance of the
magnitude of the delta compared to the magnitude of the initial step bound. More precisely:

Closure test:
ABS(δX) ≤ B ∗ XSLP_CTOL

where B is the initial step bound for X. If no initial step bound is given for a particular variable, the closure
test is not applied to that variable, even if automatic step bounds are applied to it during the solution
process.

If a variable passes the closure test, then it is deemed to have converged.

11.3.2 Delta tolerance (ATOL)
The simplest tests for convergence measure whether the actual value of a variable in the solution is
significantly different from the assumed value used to build the linear approximation.

The absolute test measures the significance of the magnitude of the delta; the relative test measures the
significance of the magnitude of the delta compared to the magnitude of the assumed value. More
precisely:

Absolute delta test:
ABS(δX) ≤ XSLP_ATOL_A

Relative delta test:
ABS(δX) ≤ X0 ∗ XSLP_ATOL_R

If a variable passes the absolute or relative delta tests, then it is deemed to have converged.

11.3.3 Matrix tolerance (MTOL)
The matrix tests for convergence measure the linearization error in the effect of a coefficient. The effect
of a coefficient is its value multiplied by the activity of the column in which it appears.

E = V ∗ C

where V is the activity of the matrix column in which the coefficient appears, and C is the value of the
coefficient. The linearization approximates the effect of the coefficient as

E = V ∗ C0 + δX ∗ C′
0

where V is as before, C0 is the value of the coefficient C calculated using the assumed values for the
variables and C′

0 is the value of ∂C
∂X calculated using the assumed values for the variables.

Fair Isaac Corporation Proprietary Information 51

Chapter 11: Convergence criteria

The error in the effect of the coefficient is given by

δE = V1 ∗ C1 – (V1 ∗ C0 + δX ∗ C′
0)

Absolute matrix test:
ABS(δE) ≤ XSLP_MTOL_A

Relative matrix test:
ABS(δE) ≤ V0 ∗ X0 ∗ XSLP_MTOL_R

If all the coefficients which involve a given variable pass the absolute or relative matrix tests, then the
variable is deemed to have converged.

11.3.4 Impact tolerance (ITOL)
The impact tests for convergence also measure the linearization error in the effect of a coefficient. The
effect of a coefficient was described in the previous section. Whereas the matrix test compares the error
against the magnitude of the coefficient itself, the impact test compares the error against a measure of
the magnitude of the constraint in which it appears. All the elements of the constraint are examined: for
each, the contribution to the constraint is evaluated as the element multiplied by the activity of the vector
in which it appears; it is then included in a total positive contribution or total negative contribution
depending on the sign of the contribution. If the predicted effect of the coefficient is positive, it is tested
against the total positive contribution; if the effect of the coefficient is negative, it is tested against the
total negative contribution.

As in the matrix tests, the predicted effect of the coefficient is

V ∗ C0 + δX ∗ C′
0

and the error is
δE = V1 ∗ C1 – (V1 ∗ C0 + δX ∗ C′

0)

Absolute impact test:
ABS(δE) ≤ XSLP_ITOL_A

Relative impact test:
ABS(δE) ≤ T0 ∗ XSLP_ITOL_R

where
T0 = ABS(

∑
v∈V

v0 ∗ c0)

c is the value of the constraint coefficient in the vector v; V is the set of vectors such that v0 ∗ c0 > 0 if E
is positive, or the set of vectors such that v0 ∗ c0 < 0 if E is negative.

If a coefficient passes the matrix test, then it is deemed to have passed the impact test as well. If all the
coefficients which involve a given variable pass the absolute or relative impact tests, then the variable is
deemed to have converged.

11.3.5 Slack impact tolerance (STOL)
This test is identical in form to the impact test described in the previous section, but is applied only to
constraints whose marginal value is less than XSLP_MVTOL. This allows a weaker test to be applied
where the constraint is not, or is almost not, binding.

Fair Isaac Corporation Proprietary Information 52

Chapter 11: Convergence criteria

Absolute slack impact test:
ABS(δE) ≤ XSLP_STOL_A

Relative slack impact test:
ABS(δE) ≤ T0 ∗ XSLP_STOL_R

where the items in the expressions are as described in the previous section, and the tests are applied only
when

ABS(πi) < XSLP_MVTOL

where πi is the marginal value of the constraint.

If all the coefficients which involve a given variable pass the absolute or relative matrix, impact or slack
impact tests, then the variable is deemed to have converged.

11.3.6 Fixed variables due to determining columns smaller than
threshold (FX)

Variables having a determining column, that are temporarily fixed due to the absolute value of the
determining column being smaller than the threshold XSLP_DRCOLTOL are regarded as converged.

11.3.7 User-defined convergence
Regardless of what the Xpress-SLP convergence tests have said about the status of an individual
variable, it is possible for the user to set the convergence status for a variable by using a function defined
through the XSLPsetcbitervar callback registration procedure. The callback function returns an
integer result S which is interpreted as follows:

S < 0 mark variable as unconverged

S = 0 leave convergence status of variable unchanged

S ≥ 11 mark variable as converged with status S

Values of S in the range 1 to 10 are interpreted as meaning convergence on the standard system-defined
criteria.

If a variable is marked by the user as converged, it is treated as if it has converged on strict criteria.

11.3.8 Static objective function (1) tolerance (VTOL)
This test does not measure convergence of individual variables, and in fact does not in any way imply that
the solution has converged. However, it is sometimes useful to be able to terminate an optimization once
the objective function appears to have stabilized. One example is where a set of possible schedules are
being evaluated and initially only a good estimate of the likely objective function value is required, to
eliminate the worst candidates.

The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding objective
function value.

Fair Isaac Corporation Proprietary Information 53

Chapter 11: Convergence criteria

Absolute static objective function (3) test:

ABS(δObj) ≤ XSLP_VTOL_A

Relative static objective function (3) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_R

The static objective function (3) test is applied only after at least XSLP_VLIMIT + XSLP_SBSTART SLP
iterations have taken place. Where step bounding is being applied, this ensures that the test is not applied
until after step bounding has been introduced.

If the objective function passes the relative or absolute static objective function (3) test then the solution
will be deemed to have converged.

11.3.9 Static objective function (2) tolerance (OTOL)
This test does not measure convergence of individual variables. Instead, it measures the significance of
the changes in the objective function over recent SLP iterations. It is applied when all the variables
interacting with active constraints (those that have a marginal value of at least XSLP_MVTOL) have
converged. The rationale is that if the remaining unconverged variables are not involved in active
constraints and if the objective function is not changing significantly between iterations, then the solution
is more-or-less practical.

The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (2) test:

ABS(δObj) ≤ XSLP_OTOL_A

Relative static objective function (2) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_R

If the objective function passes the relative or absolute static objective function (2) test then the solution
is deemed to have converged.

11.3.10 Static objective function (3) tolerance (XTOL)
It may happen that all the variables have converged, but some have converged on extended criteria
(MTOL, ITOL or STOL) and at least one of these is at its step bound. It is therefore possible that an
improved result could be obtained by taking another SLP iteration. However, if the objective function has
already been stable for several SLP iterations, then there is less likelihood of an improved result, and the
converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the objective function
over recent SLP iterations. It is applied when all the variables have converged, but some have converged
on extended criteria (MTOL, ITOL or STOL) and at least one of these is at its step bound. Because all the
variables have converged, the solution is already converged but the fact that some variables are at their
step bound limit suggests that the objective function could be improved by going further.

Fair Isaac Corporation Proprietary Information 54

Chapter 11: Convergence criteria

The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (1) test:

ABS(δObj) ≤ XSLP_XTOL_A

Relative static objective function (1) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have taken place.
After that, if all the variables have converged on strict or extended criteria, the solution is deemed to have
converged.

If the objective function passes the relative or absolute static objective function (1) test then the solution
is deemed to have converged.

11.3.11 Extended convergence continuation tolerance (WTOL)
This test is applied after a converged solution has been found where at least one variable has converged
on extended criteria and is at its step bound limit. As described under XTOL above, it is possible that by
continuing with additional SLP iterations, the objective function might improve. The extended
convergence continuation test measures whether any improvement is being achieved. If not, then the last
converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration compared
to the objective function at the last converged solution is given by:

δObj = Obj – ConvergedObj

(for a minimization problem, the sign is reversed).

Absolute extended convergence continuation test:

δObj > XSLP_WTOL_A

Relative extended convergence continuation test:

δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R

A solution is deemed to have a significantly better objective function value than the converged solution if
δObj passes the relative and absolute extended convergence continuation tests.

When a solution is found which converges on extended criteria and with active step bounds, the solution
is saved and SLP optimization continues until one of the following:

■ a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution

■ a new solution is found which converges on extended criteria and with active step bounds, and
which has a significantly better objective function, in which case this is taken as the new saved
solution

■ none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objective function
than the saved solution, in which case the saved solution is restored and the SLP optimization stops

Fair Isaac Corporation Proprietary Information 55

CHAPTER 12

Xpress-SLP Structures

12.1 SLP Matrix Structures
Xpress-SLP augments the original matrix to include additional rows and columns to model some or all of
the variables involved in nonlinear relationships, together with first-order derivatives.

The amount and type of augmentation is determined by the bit map control variable
XSLP_AUGMENTATION:

Bit 0 Minimal augmentation. All SLP variables appearing in coefficients or matrix entries are
provided with a corresponding update row and delta vector.

Bit 1 Even-handed augmentation. All nonlinear expressions are converted into terms. All SLP
variables are provided with a corresponding update row and delta vector.

Bit 2 Create penalty error vectors (+ and -) for each equality row of the original problem
containing a nonlinear coefficient or term. This can also be implied by the setting of bit 3.

Bit 3 Create penalty error vectors (+ and/or - as required) for each row of the original problem
containing a nonlinear coefficient or term. Setting bit 3 to 1 implies the setting of bit 2 to 1
even if it is not explicitly carried out.

Bit 4 Create additional penalty delta vectors to allow the solution to exceed the step bounds at
a suitable penalty.

Bit 8 Implement step bounds as constraint rows.

Bit 9 Create error vectors (+ and/or - as required) for each constraining row of the original
problem.

If Bits 0-1 are not set, then Xpress-SLP will use standard augmentation: all SLP variables (appearing in
coefficients or matrix entries, or variables with non constant coefficients) are provided with a
corresponding update row and delta vector.

To avoid too many levels of super- and sub- scripting, we shall use X, Y and Z as variables, F() as a
function, and R as the row name. In the matrix structure, column and row names are shown in italics.

X0 is the current estimate ("assumed value") of X. F′x(...) is the first derivative of F with respect to X.

12.1.1 Augmentation of a nonlinear coefficient
Original matrix structure

X
R F(Y ,Z)

Fair Isaac Corporation Proprietary Information 56

Chapter 12: Xpress-SLP Structures

Matrix structure: minimal augmentation (XSLP_AUGMENTATION=1)

X Y Z dY dZ
R F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

■ The SLP variable (e.g. Y)

■ The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the
update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is the
assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the implied term X ∗ F(Y ,Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

Matrix structure: standard augmentation (XSLP_AUGMENTATION=0)

X Y Z dX dY dZ
R F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

■ The SLP variable (e.g. Y)

■ The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the
update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is the
assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the implied term X ∗ F(Y ,Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

One new vector and one new equality constraint are created for the variable containing the nonlinear
coefficient.

The new vector is:

Fair Isaac Corporation Proprietary Information 57

Chapter 12: Xpress-SLP Structures

■ The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in the
update row are the +1 and -1 for the original variable and delta variable respectively. The right hand side is
the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Matrix structure: even-handed augmentation (XSLP_AUGMENTATION=2)

= X Y Z dX dY dZ
R X0 ∗ F(Y0,Z0) F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The coefficient is treated as if it was the term X ∗ F(Y ,Z) and is expanded in the same way as a nonlinear
term.

12.1.2 Augmentation of a nonlinear term
Original matrix structure

=
R F(X,Y ,Z)

The column name = is a reserved name for a column which has a fixed activity of 1.0 and can
conveniently be used to hold nonlinear terms, particularly those which cannot be expressed as
coefficients of variables.

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(X0,Y0,Z0) F′x(X0,Y0,Z0) F′y(X0,Y0,Z0) F′z(X0,Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (=,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

■ The SLP variable (e.g. Y)

■ The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the
update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is the
assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the term F(X,Y ,Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

Fair Isaac Corporation Proprietary Information 58

Chapter 12: Xpress-SLP Structures

One new vector and one new equality constraint are created for the variable containing the nonlinear
coefficient.

The new vector is:

■ The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in the
update row are the +1 and -1 for the original variable and delta variable respectively. The right hand side is
the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Note that if F(X,Y,Z) = X*F(Y,Z) then this translation is exactly equivalent to that for the nonlinear
coefficient described earlier.

12.1.3 Augmentation of a user-defined SLP variable
Typically, this will arise when a variable represents the result of a nonlinear function, and is required to
converge, or to be constrained by step-bounding to force convergence. In essence, it would arise from a
relationship of the form
X = F(Y ,Z)

Original matrix structure

= X
R F(Y ,Z) –1

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(Y0,Z0) –1 F′y(Y0,Z0) F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The Y,Z structures are identical to those which would result from a nonlinear term or coefficient. The X,
dX and uX structures effectively define dX as the deviation of X from X0 which can be controlled with
step bounds.

The augmented and even-handed structures include more delta vectors, and so allow for more
measurement and control of convergence.

Type of structure Minimal Standard Even-handed
Type of variable
Variables in nonlinear coefficients Y Y Y
Variables with nonlinear coefficients N Y Y
User-defined SLP variable Y Y Y
Nonlinear term Y Y Y

Y SLP variable has a delta vector which can be measured and/or controlled for convergence.

N SLP variable does not have a delta and cannot be measured and/or controlled for
convergence.

There is no mathematical difference between the augmented and even-handed structures.

Fair Isaac Corporation Proprietary Information 59

Chapter 12: Xpress-SLP Structures

The even-handed structure is more elegant because it treats all variables in an identical way. However, the
original coefficients are lost, because their effect is transferred to the "=" column as a term and so it is
not possible to look up the coefficient value in the matrix after the SLP solution process has finished
(whether because it has converged or because it has terminated for some other reason). The values of
the SLP variables are still accessible in the usual way.

Some of the extended convergence criteria will be less effective because the effects of the individual
coefficients may be amalgamated into one term (so, for example, the total positive and negative
contributions to a constraint are no longer available).

12.1.4 SLP penalty error vectors
Bits 2, 3 and 9 of control variable XSLP_AUGMENTATION determine whether SLP penalty error vectors
are added to constraints. Bit 9 applies penalty error vectors to all constraints; bits 2 and 3 apply them only
to constraints containing nonlinear terms. When bit 2 or bit 3 is set, two penalty error vectors are added
to each such equality constraint; when bit 3 is set, one penalty error vector is also added to each such
inequality constraint. The general form is as follows:

Original matrix structure

=
R F(Y ,Z)

Matrix structure with error vectors
X R+ R-

R F(Y ,Z) +1 –1
P_ERROR +Weight +Weight

For equality rows, two penalty error vectors are added. These have penalty weights in the penalty error
row PERROR, whose total is transferred to the objective with a cost of XSLP_CURRENTERRORCOST. For
inequality rows, only one penalty error vector is added — the one corresponding to the slack is omitted. If
any error vectors are used in a solution, the transfer cost from the cost penalty error row will be increased
by a factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST.

Error vectors are ignored when calculating cascaded values.

The presence of error vectors at a non-zero level in an SLP solution normally indicates that the solution is
not self-consistent and is therefore not a solution to the nonlinear problem.

Control variable XSLP_ERRORTOL_A is a tolerance on error vectors. Any error vector with a value less
than XSLP_ERRORTOL_A will be regarded as having a value of zero.

Bit 9 controls whether error vectors are added to all constraints. If bit 9 is set, then error vectors are
added in the same way as for the setting of bit 3, but to all constraints regardless of whether or not they
have nonlinear coefficients.

12.2 Xpress-SLP Matrix Name Generation
Xpress-SLP adds rows and columns to the nonlinear problem in order to create a linear approximation.
The new rows and columns are given names derived from the row or column to which they are related as
follows:

Fair Isaac Corporation Proprietary Information 60

Chapter 12: Xpress-SLP Structures

Row or column type Control parameter containing for-
mat

Default format

Update row XSLP_UPDATEFORMAT pU_r
Delta vector XSLP_DELTAFORMAT pD_c
Penalty delta (below step
bound)

XSLP_MINUSDELTAFORMAT pD-c

Penalty delta (above step
bound)

XSLP_PLUSDELTAFORMAT pD+c

Penalty error (below RHS) XSLP_MINUSERRORFORMAT pE-r
Penalty error (above RHS) XSLP_PLUSERRORFORMAT pE+r
Row for total of all penalty vec-
tors (error or delta)

XSLP_PENALTYROWFORMAT pPR_x

Column for standard penalty
cost (error or delta)

XSLP_PENALTYCOLFORMAT pPC_x

LO step bound formulated as a
row

XSLP_SBLOROWFORMAT pSB-c

UP step bound formulated as a
row

XSLP_SBUPROWFORMAT pSB+c

In the default formats:

p a unique prefix (one or more characters not used as the beginning of any name in the
problem).

r the original row name.

c the original column name.

x The penalty row and column vectors are suffixed with "ERR" or "DELT" (for error and delta
respectively).

Other characters appear "as is".

The format of one of these generated names can be changed by setting the corresponding control
parameter to a formatting string using standard "C"-style conventions. In these cases, the unique prefix is
not available and the only obvious choices, apart from constant names, use "%s" to include the original
name — for example:

U_%s would create names like U_abcdefghi
U_%-8s would create names like U_abcdefgh (always truncated to 8 characters).

You can use a part of the name by using the XSLP_⁎OFFSET control parameters (such as
XSLP_UPDATEOFFSET) which will offset the start of the original name by the number of characters
indicated (so, setting XSLP_UPDATEOFFSET to 1 would produce the name U_bcdefghi).

12.3 Xpress-SLP Statistics
When a matrix is read in using XSLPreadprob, statistics on the model are produced. They should be
interpreted as described in the numbered footnotes:

Reading Problem xxx (1)
Problem Statistics

1920 (0 spare) rows (2)
899 (0 spare) structural columns (3)
6683 (3000 spare) non-zero elements (4)

Global Statistics
0 entities 0 sets 0 set members (5)

Xpress-SLP Statistics:

Fair Isaac Corporation Proprietary Information 61

Chapter 12: Xpress-SLP Structures

3632 coefficients (6)
14 extended variable arrays (7)
1 user functions (8)

1011 SLP variables (9)

Notes:

1. Standard output from XPRSreadprob reading the linear part of the problem

2. Number of rows declared in the ROWS section

3. Number of columns with at least one constant coefficient

4. Number of constant elements

5. Integer and SOS statistics if appropriate

6. Number of non-constant coefficients

7. Number of XVs defined

8. Number of user functions defined

9. Number of variables identified as SLP variables (interacting with a non-linear coefficient)

When the original problem is augmented prior to optimization, the following statistics are produced:

Xpress-SLP Augmentation Statistics:
Columns:

754 implicit SLP variables (10)
1010 delta vectors (11)
2138 penalty error vectors (1177 positive, 961 negative) (12)

Rows:
1370 nonlinear constraints (13)
1010 update rows (14)

1 penalty error rows (15)
Coefficients:

11862 non-constant coefficients (16)

Notes:

10. SLP variables appearing only in coefficients and having no constant elements

11. Number of delta vectors created

12. Numbers of penalty error vectors

13. Number of constraints containing nonlinear terms

14. Number of update rows (equals number of delta vectors)

15. Number of rows totaling penalty vectors (error or delta)

16. Number of non-constant coefficients in the linear augmented matrix

If the matrix is read in using the XPRSloadxxx and XSLPloadxxx functions then these statistics may
not be produced. However, most of the values are accessible through Xpress NonLinear integer attributes
using the XSLPgetintattrib function.

Fair Isaac Corporation Proprietary Information 62

Chapter 12: Xpress-SLP Structures

12.4 SLP Variable History
Xpress-SLP maintains a history value for each SLP variable. This value indicates the direction in which
the variable last moved and the number of consecutive times it moved in the same direction. All variables
start with a history value of zero.

Current History Change in activity of
variable

New History

0 >0 1
0 <0 -1
>0 >0 No change unless delta vector is at its bound. If it is,

then new value is Current History + 1
>0 <0 -1
<0 <0 No change unless delta vector is at its bound. If it is,

then new value is Current History - 1
<0 >0 1
anything 0 No change

Tests of variable movement are based on comparison with absolute and relative (and, if set, closure)
tolerances. Any movement within tolerance is regarded as zero.

If the new absolute value of History exceeds the setting of XSLP_SAMECOUNT, then the step bound is
reset to a larger value (determined by XSLP_EXPAND) and History is reset as if it had been zero.

If History and the change in activity are of opposite signs, then the step bound is reset to a smaller value
(determined by XSLP_SHRINK) and History is reset as if it had been zero.

With the default settings, History will normally be in the range -1 to -3 or +1 to +3.

Fair Isaac Corporation Proprietary Information 63

CHAPTER 13

Xpress NonLinear Formulae

Xpress NonLinear can handle formulae described in three different ways:

Character strings The formula is written exactly as it would appear in, for example, the Extended
MPS format used for text file input.

Internal unparsed format The tokens within the formula are replaced by a
{tokentype, tokenvalue} pair. The list of types and values is in the table below.

Internal parsed format The tokens are converted as in the unparsed format, but the order is
changed so that the resulting array forms a reverse-Polish execution stack for direct
evaluation by the system.

13.1 Parsed and unparsed formulae
All formulae input into Xpress NonLinear are parsed into a reverse-Polish execution stack. Tokens are
identified by their type and a value. The table below shows the values used in interface functions.

All formulae are provided in the interface functions as two parallel arrays:
an integer array of token types;
a double array of token values.

The last token type in the array should be an end-of-formula token (XSLP_EOF, which evaluates to zero).

If the value required is an integer, it should still be provided in the array of token values as a double
precision value.

Even if a token type requires no token value, it is best practice to initialize such values as zeros.

Type Description Value
XSLP_COL column index of matrix column.
XSLP_CON constant (double) value.
XSLP_DEL delimiter XSLP_COMMA (1) = comma (",")

XSLP_COLON (2) = colon (":")
XSLP_EOF end of formula not required: use zero
XSLP_FUN user function index of function
XSLP_IFUN internal function index of function
XSLP_LB left bracket not required: use zero
XSLP_OP operator XSLP_UMINUS (1) = unary minus ("-")

XSLP_EXPONENT (2) = exponent ("**" or "̂")
XSLP_MULTIPLY (3) = multiplication ("*")
XSLP_DIVIDE (4) = division ("/")
XSLP_PLUS (5) = addition ("+")
XSLP_MINUS (6) = subtraction ("-")

XSLP_RB right bracket not required: use zero

Fair Isaac Corporation Proprietary Information 64

Chapter 13: Xpress NonLinear Formulae

When a formula is passed to Xpress NonLinear in "internal unparsed format" — that is, with the formula
already converted into tokens — the full range of token types is permitted.

When a formula is passed to Xpress NonLinear in "parsed format" — that is, in reverse Polish — the
following rules apply:
XSLP_DEL comma is optional.
XSLP_FUN implies a following left-bracket, which is not included explicitly.
XSLP_IFUN implies a following left-bracket, which is not included explicitly.
XSLP_LB never used.
XSLP_RB only used to terminate the list of arguments to a function.
Brackets are not used in the reverse Polish representation of the formula: the order of evaluation is
determined by the order of the items on the stack. Functions which need the brackets — for example
XSLPgetccoef — fill in brackets as required to achieve the correct evaluation order. The result may not
match the formula as originally provided.

13.2 Example of an arithmetic formula
x2 + 4y(z – 3)

Written as an unparsed formula, each token is directly transcribed as follows:

Type Value
XSLP_COL index of x
XSLP_OP XSLP_EXPONENT
XSLP_CON 2
XSLP_OP XSLP_PLUS
XSLP_CON 4
XSLP_OP XSLP_MULTIPLY
XSLP_COL index of y
XSLP_OP XSLP_MULTIPLY
XSLP_LB 0
XSLP_COL index of z
XSLP_OP XSLP_MINUS
XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:

x 2 ˆ 4 y ∗ z 3 – ∗ +

and this is then transcribed as follows:
Type Value
XSLP_COL index of x
XSLP_CON 2
XSLP_OP XSLP_EXPONENT
XSLP_CON 4
XSLP_COL index of y
XSLP_OP XSLP_MULTIPLY
XSLP_COL index of z
XSLP_CON 3
XSLP_OP XSLP_MINUS
XSLP_OP XSLP_MULTIPLY
XSLP_OP XSLP_PLUS
XSLP_EOF 0

Notice that the brackets used to establish the order of evaluation in the unparsed formula are not

Fair Isaac Corporation Proprietary Information 65

Chapter 13: Xpress NonLinear Formulae

required in the parsed form.

13.3 Example of a formula involving a simple function
y ∗MyFunc(z, 3)

Written as an unparsed formula, each token is directly transcribed as follows:

Type Value
XSLP_COL index of y
XSLP_OP XSLP_MULTIPLY
XSLP_FUN index of MyFunc
XSLP_LB 0
XSLP_COL index of z
XSLP_DEL XSLP_COMMA
XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:

y) 3 , z MyFunc(∗

and this is then transcribed as follows:
Type Value
XSLP_COL index of y
XSLP_RB 0
XSLP_CON 3
XSLP_DEL XSLP_COMMA
XSLP_COL index of z
XSLP_FUN index of MyFunc
XSLP_OP XSLP_MULTIPLY
XSLP_EOF 0

Notice that the function arguments are in reverse order, and that a right bracket is used as a delimiter to
indicate the end of the argument list. The left bracket indicating the start of the argument list is implied
by the XSLP_FUN token.

Fair Isaac Corporation Proprietary Information 66

CHAPTER 14

User Functions

14.1 Callbacks and user functions
Callbacks and user functions both provide mechanisms for connecting user-written functions to Xpress
NonLinear. However, they have different capabilities and are not interchangeable.

A callback is called at a specific point in the SLP optimization process (for example, at the start of each
SLP iteration). It has full access to all the problem data and can, in principle, change the values of any
items — although not all such changes will necessarily be acted upon immediately or at all.

A user function is essentially the same as any other mathematical function, used in a formula to calculate
the current value of a coefficient. The function is called when a new value is needed; for efficiency, user
functions are not usually called if the value is already known (for example, when the function arguments
are the same as on the previous call). Therefore, there is no guarantee that a user function will be called
at any specific point in the optimization procedure or at all.

Although a user function is normally free-standing and needs no access to problem or other data apart
from that which it receives through its argument list, there are facilities to allow it to access the problem
and its data if required. The following limitations should be observed:

1. The function should not make use of any variable data which is not in its list of arguments;

2. The function should not change any of the problem data.

The reasons for these restrictions are as follows:

1. Xpress NonLinear determines which variables are linked to a formula by examining the list of
variables and arguments to functions in the formula. If a function were to access and use the value
of a variable not in this list, then incorrect relationships would be established, and incorrect or
incomplete derivatives would be calculated. The predicted and actual values of the coefficient
would then always be open to doubt.

2. Xpress NonLinear generally allows problem data to be changed between function calls, and also by
callbacks called from within an Xpress NonLinear function. However, user functions are called at
various points during the optimization and no checks are generally made to see if any problem data
has changed. The effects of any such changes will therefore at best be unpredictable.

For a description of how to access the problem data from within a user function, see the section on "More
complicated user functions" later in this chapter.

14.2 User function interface
In its simplest form, a user function is exactly the same as any other mathematical function: it takes a set
of arguments (constants or values of variables) and returns a value as its result. In this form, which is the

Fair Isaac Corporation Proprietary Information 67

Chapter 14: User Functions

usual implementation, the function needs no information apart from the values of its arguments. It is
possible to create more complicated functions which do use external data in some form.

Xpress NonLinear distinguishes six different types of user functions.

■ A user function is called a map, if it takes and returns a single value.

■ A user function is called a mapvec, if it takes an array of inputs, and returns a single evaluation
value.

■ A user function is called a multimap, if it takes an array of inputs, and also returns an array of
evaluation values.

■ A mapdelta user function is an extended version of a map that also returns its own partial
derivatives when requested

■ A mapvecdelta user function is an extended version of a mapvec that also returns its own partial
derivatives when requested

■ A multimapdelta user function is an extended version of a multimap that also returns its own
partial derivatives when requested

14.3 User Function declaration in native languages
This section describes how to declare a user function in C. The general shape of the declaration is shown.
Not all the possible arguments will necessarily be used by any particular function, and the actual
arguments required will depend on the way the function is declared to Xpress NonLinear.

14.3.1 User function declaration in C
If the function is placed in a library, XSLPimportlibfuncmay be used to retrieve a pointer to be
passed to XSLPadduserfunction.

A user function can be included in the executable program which calls Xpress NonLinear.

A multimapdelta function’s deltas is an array with the same number of items as inputvalues. It is
used as an indication of which derivatives (if any) are required on a particular function call. If deltas[i]
is zero then a derivative for input variable i is not required and must not be returned. If deltas[i] is
nonzero then a derivative for input variable i is required and must be returned.

When no derivatives are calculated, the array of return values simply contains the results.
When derivatives are calculated, the array contains the values and the derivatives as follows (DVi is the
ith variable for which derivatives are required, which may not be the same as the ith input value):
Result1
Derivative of Result1 w.r.t. DV1
Derivative of Result1 w.r.t. DV2
...
Derivative of Result1 w.r.t. DVn
Result2
Derivative of Result2 w.r.t. DV1
Derivative of Result2 w.r.t. DV2
...
Derivative of Result2 w.r.t. DVn
...
Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.

Fair Isaac Corporation Proprietary Information 68

Chapter 14: User Functions

The return value of the user functions that return an int (as opposed to the evaluation value) is a status
code indicating whether the function has completed normally. Possible values are:

0 No errors: the function has completed normally.

1 The function has encountered an error. This will terminate the optimization.

-1 The calling function must estimate the function value from the last set of values calculated. This
will cause an error if no values are available.

14.4 Programming Techniques for User Functions
This section is principally concerned with the programming of large or complicated user functions,
perhaps taking a potentially large number of input values and calculating a large number of results.
However, some of the issues raised are also applicable to simpler functions.

The first part describes in more detail some of the possible arguments to the function. The remainder of
the section looks at function instances, function objects and direct calls to user functions.

14.4.1 Deltas
The Deltas array has the same dimension as InputValues and is used to indicate which of the input
variables should be used to calculate derivatives. If Deltas[i] is zero, then no derivative should be
returned for input variable i. If Deltas[i] is nonzero, then a derivative is required for input variable i.
The value of Deltas[i] can be used as a suggested perturbation for numerical differentiation (a
negative sign indicates that if a one-sided derivative is calculated, then a backward one is preferred). If
derivatives are calculated analytically, or without requiring a specific perturbation, then Deltas can be
interpreted simply as an array of flags indicating which derivatives are required.

14.4.2 Return values and ReturnArray
The ReturnArray array is provided for those user functions which return more than one value, either
because they do calculate more than one result, or because they also calculate derivatives. The function
must either return the address of an array which holds the values, or pass the values to the calling
program through the ReturnArray array.

The total number of values returned depends on whether derivatives are being calculated. The
FunctionInfo array holds details of the number of input values supplied, the number of return values
required (nRet) and the number of sets derivatives required (nDeriv). The total number of values (and
hence the minimum size of the array) is nRet ∗ (nDeriv + 1). Xpress NonLinear guarantees that
ReturnArray will be large enough to hold the total number of values requested.

A function which calculates and returns a single value can use the ReturnArray array provided that the
declarations of the function in Xpress NonLinear and in the native language both include the appropriate
argument definition.

functions which use the ReturnArray array must also return a status code as their return value. Zero is
the normal return value. A value of 1 or greater is an error code which will cause any formula evaluation to
stop and will normally interrupt any optimization or other procedure. A value of -1 asks Xpress NonLinear
to estimate the function values from the last calculation of the values and partial derivatives. This will
produce an error if there is no such set of values.

14.4.3 Returning Derivatives
A multi-valued function which does not calculate its own derivatives will return its results as a
one-dimensional array.

Fair Isaac Corporation Proprietary Information 69

Chapter 14: User Functions

As already described, when derivatives are calculated as well, the order is changed, so that the required
derivatives follow the value for each result. That is, the order becomes:
A, ∂A

∂X1
, ∂A
∂X2

, ... ∂A∂Xn
, B, ∂B

∂X1
, ∂B
∂X2

, ... ∂B∂Xn
, ... ∂Z∂Xn

where A, B, Z are the return values, and X1, X2, Xn, are the input (independent) variables (in order) for
which derivatives have been requested.

Not all calls to a user function necessarily require derivatives to be calculated. Check FunctionInfo for
the number of derivatives required (it will be zero if only a value calculation is needed), and Deltas for
the indications as to which independent variables are required to produce derivatives. Xpress NonLinear
will not ask for, nor will it expect to receive, derivatives for function arguments which are actually constant
in a particular problem. A function which provides uncalled-for derivatives will cause errors in subsequent
calculations and may cause other unexpected side-effects if it stores values outside the expected
boundaries of the return array.

14.4.4 Function Instances
Xpress NonLinear defines an instance of a user function to be a unique combination of function and
arguments. For functions which return an array of values, the specific return argument is ignored when
determining instances. Thus, given the following formulae:

f(x) + f(y) + g(x, y : 1)
f(y) ∗ f(x) ∗ g(x, y : 2)
f(z)

the following instances are created:
f(x)
f(y)
f(z)
g(x, y)
(A function reference of the form g(x, y : n) means that g is a multi-valued function of x and y, and we
want the nth return value.)

Xpress NonLinear regards as complicated any user function which returns more than one value, which
uses input or return names, or which calculates its own derivatives. All complicated functions give rise to
function instances, so that each function is called only once for each distinct combination of arguments.

Functions which are not regarded as complicated are normally called each time a value is required.

Note that conditional re-evaluation of the function is only possible if it generates function instances.

Using function instances can improve the performance of a problem, because the function is called only
once for each combination of arguments, and is not re-evaluated if the values have not changed
significantly. If the function is computationally intensive, the improvement can be significant.

Xpress NonLinear normally expects to obtain a set of partial derivatives from a user function at a
particular base-point and then to use them as required, depending on the evaluation settings for the
various functions. If for any reason this is not appropriate, then the integer control parameter
XSLP_EVALUATE can be set to 1, which will force re-evaluation every time.
A function instance is not re-evaluated if all of its arguments are unchanged.
A simple function which does not have a function instance is evaluated every time.

If XSLP_EVALUATE is not set, then it is still possible to by-pass the re-evaluation of a function if the
values have not changed significantly since the last evaluation. If the input values to a function have all
converged to within their strict convergence tolerance (CTOL, ATOL_A, ATOL_R), and bit 4 of
XSLP_FUNCEVAL is set to 1, then the existing values and derivatives will continue to be used. At the
option of the user, an individual function, or all functions, can be re-evaluated in this way or at each SLP
iteration. If a function is not re-evaluated, then all the required values will be calculated from the base
point and the partial derivatives; the input and return values used in making the original function
calculation are unchanged.

Fair Isaac Corporation Proprietary Information 70

Chapter 14: User Functions

Bits 3-5 of integer control parameter XSLP_FUNCEVAL determine the nature of function evaluations. The
meaning of each bit is as follows:

Bit 3 evaluate functions whenever independent variables change.

Bit 4 evaluate functions when independent variables change outside tolerances.

Bit 5 apply evaluation mode to all functions.

If bits 3-4 are zero, then the settings for the individual functions are used.
If bit 5 is zero, then the settings in bits 3-4 apply only to functions which do not have their own specific
evaluation modes set.

Examples:

Bits 3-5 = 1 (set bit 3) Evaluate functions whenever their input arguments (independent variables)
change, unless the functions already have their own evaluation options set.

Bits 3-5 = 5 (set bits 3 and 5) Evaluate all functions whenever their input arguments (independent
variables) change.

Bits 3-5 = 6 (set bits 4 and 5) Evaluate functions whenever input arguments (independent variables)
change outside tolerance. Use existing calculation to estimate values otherwise.

Bits 6-8 of integer control parameter XSLP_FUNCEVAL determine the nature of derivative calculations.
The meaning of each bit is as follows:

Bit 6 tangential derivatives.

Bit 7 forward derivatives.

Bit 8 apply evaluation mode to all functions.

If bits 6-7 are zero, then the settings for the individual functions are used.
If bit 8 is zero, then the settings in bits 6-7 apply only to functions which do not have their own specific
derivative calculation modes set.

Examples:

Bits 6-8 = 1 (set bit 6) Use tangential derivatives for all functions which do not already have their own
derivative options set.

Bits 6-8 = 5 (set bits 6 and 8) Use tangential derivatives for all functions.

Bits 6-8 = 6 (set bits 7 and 8) Use forward derivatives for all functions.

The following constants are provided for setting these bits:

Setting bit 3 XSLP_RECALC
Setting bit 4 XSLP_TOLCALC
Setting bit 5 XSLP_ALLCALCS
Setting bit 6 XSLP_2DERIVATIVE
Setting bit 7 XSLP_1DERIVATIVE
Setting bit 8 XSLP_ALLDERIVATIVES

When analytical derivatives are used, for user functions not returning their own derivatives, SLP will
calculate approximated derivatives using finite differences for instantiated functions and use these
values when deriving analytical derivatives.

Fair Isaac Corporation Proprietary Information 71

CHAPTER 15

Management of zero placeholder entries

15.1 The augmented matrix structure
During the augmentation process, Xpress-SLP builds additional matrix structure to represent the linear
approximation of the nonlinear constraints within the problem (see Xpress-SLP Structures). In effect, it
adds a generic structure which approximates the effect of changes to variables in nonlinear expressions,
over and above that which would apply if the variables were simply replaced by their current values.

As a very simple example, consider the nonlinear constraint (R1, say)
X ∗ Y ≤ 10

The variables X and Y are replaced by X0 + δX and Y0 + δY respectively, where X0 and Y0 are the values of
X and Y at which the approximation will be made.

The original constraint is therefore
(X0 + δX) ∗ (Y0 + δY) ≤ 10

Expanding this into individual terms, we have
X0 ∗ Y0 + X0 ∗ δY + Y0 ∗ δX + δX ∗ δY ≤ 10

The first term is constant, the next two terms are linear in δY and δX respectively, and the last term is
nonlinear.

The augmented structure deletes the nonlinear term, so that the remaining structure is a linear
approximation to the original constraint. The justification for doing this is that if δX or δY (or both) are
small, then the error involved in ignoring the term is also small.

The resulting matrix structure has entries of Y0 in the delta variable δX and X0 in the delta variable δY. The
constant entry X0 ∗ Y0 is placed in the special "equals" column which has a fixed activity of 1. All these
entries are updated at each SLP iteration as the solution process proceeds and the problem is linearized
at a new point. The positions of these entries – (R1, δX), (R1, δY) and (R1, =) – are known as placeholders.

15.2 Derivatives and zero derivatives
At each SLP iteration, the values of the placeholders are re-calculated. In the example in the previous
section, the values X0 in the delta variable δY and Y0 in the delta variable δX were effectively determined
by analytic methods – that is, we differentiated the original formula to determine what values would be
required in the placeholders.

In general, analytic differentiation may not be possible: the formula may contain functions which cannot
be differentiated (because, for example, they are not smooth or not continuous), or for which the analytic
derivatives are not known (because, for example, they are functions providing values from "black boxes"
such as databases or simulators). In such cases, Xpress-SLP approximates the differentiation process by
numerical methods. The example in the previous section would have approximate derivatives calculated
as follows:

Fair Isaac Corporation Proprietary Information 72

Chapter 15: Management of zero placeholder entries

The current value of X (X0) is perturbed by a small amount (dX), and the value of the formula is
recalculated in each case.

fd = (X0 – dX) ∗ Y0
fu = (X0 + dX) ∗ Y0

derivative = (fu – fd)/(2 ∗ dX)

In this particular example, the value obtained by numerical methods is the same as the analytic derivative.
For more complex functions, there may be a slight difference, depending on the magnitude of dX.

This derivative represents the effect on the constraint of a change in the value of X. Obviously, if Y
changes as well, then the combined effect will not be fully represented although, in general, it will be
directionally correct.

The problem comes when Y0 is zero. In such a case, the derivative is calculated as zero, meaning that
changing X has no effect on the value of the formula. This can impact in one of two ways: either the value
of X never changes because there is no incentive to do so, or it changes by unreasonably large amounts
because there is no effect from doing so. If X and Y are linked in some other way, so that Y becomes
nonzero when X changes, the approximation using zero as the derivative can cause the optimization
process to behave badly.

Xpress-SLP tries to avoid the problem of zero derivatives by using small nonzero values for variables
which are in fact zero. In most cases this gives a small nonzero value for the derivative, and hence for the
placeholder entry. The model then contains some effect for the change in a variable, even if
instantaneously the effect is zero.

The same principle is applied to analytic derivatives, so that the values obtained by either method are
broadly similar.

15.3 Placeholder management
The default action of Xpress-SLP is to retain all the calculated values for all the placeholder entries. This
includes values which would be zero without the special handling described in the previous section. We
will call such values "zero placeholders".

Although retaining all the values gives the best chance of finding a good optimum, the presence of a large
dense area of small values often gives rise to considerable numerical instability which adversely affects
the optimization process. Xpress-SLP therefore offers a way of deleting small values which is less likely
to affect the final outcome whilst improving numerical stability.

Most of the candidate placeholders are in the delta variables (represented by the δX and δY variables
above). Various criteria can be selected for deletion of zero placeholder entries without affecting the
validity of the basis (and so making the next SLP iteration more costly in time and stability). The criteria
are selected using the control parameter XSLP_ZEROCRITERION as follows:

■ Bit 0 (=1) Remove placeholders in nonbasic SLP variables
This criterion applies to placeholders which are in the SLP variable (not the delta). Any value can be
deleted from a nonbasic variable without upsetting the basis, so all eligible zero placeholders can
be deleted.

■ Bit 1 (=2) Remove placeholders in nonbasic delta variables
Any value can be deleted from a nonbasic variable without upsetting the basis, so all eligible zero
placeholders can be deleted.

■ Bit 2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
If the update row is nonbasic, then generally the basic SLP variable can be pivoted in the update
row, so the basis is still valid if other entries are deleted. The entry in the update row is always 1.0
and will never be deleted.

Fair Isaac Corporation Proprietary Information 73

Chapter 15: Management of zero placeholder entries

■ Bit 3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and the
corresponding SLP variable is nonbasic
If the delta is basic and the corresponding SLP variable is nonbasic, then the delta will pivot in the
update row (the delta and the SLP variable are the only two variables in the update row), so the
basis is still valid if other entries are deleted. The entry in the update row is always -1.0 and will
never be deleted.

■ Bit 4 (=16) Remove placeholders in a basic delta variable if the determining row for the
corresponding SLP variable is nonbasic
If the delta variable is basic and the determining row for the corresponding SLP variable is nonbasic
then it is generally possible (although not 100% guaranteed) to pivot the delta variable in the
determining row. so the basis is still valid if other entries are deleted. The entry in the determining
row is never deleted even if it is otherwise eligible.

The following constants are provided for setting these bits:

Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVAR
Setting bit 1 XSLP_ZEROCRTIERION_NBDELTA
Setting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW
Setting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROW
Setting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROW

There are two additional control parameters used in this procedure:

■ XSLP_ZEROCRITERIONSTART
This is the first SLP iteration at which zero placeholders will be examined for eligibility. Use of this
parameter allows a balance to be made between optimality and numerical stability.

■ XSLP_ZEROCRITERIONCOUNT
This is the number of consecutive SLP iterations that a placeholder is a zero placeholder before it is
deleted. So, if in the earlier example XSLP_ZEROCRITERIONCOUNT is 2, the entry in the delta
variable dX will be deleted only if Y was also zero on the previous SLP iteration.

Regardless of the basis status of a variable, its delta, update row and determining row, if a zero
placeholder was deleted on the previous SLP iteration, it will always be deleted in the current SLP
iteration (keeping a zero matrix entry at zero does not upset the basis).

If the optimization method is barrier, or the basis is not being used, then the bit settings of
XSLP_ZEROCRITERION are not used as such: if XSLP_ZEROCRITERION is nonzero, all zero
placeholders will be deleted subject to XSLP_ZEROCRITERIONCOUNT and
XSLP_ZEROCRITERIONSTART.

Fair Isaac Corporation Proprietary Information 74

CHAPTER 16

Special Types of Problem

16.1 Nonlinear objectives
Xpress NonLinear works with nonlinear constraints. If a nonlinear objective is required (except for the
special case of a quadratic objective — see below) then the objective should be provided using a
constraint in the problem. For example, to optimize f(x) where f is a nonlinear function and x is a set of
one or more variables, create the constraint

f(x) – X = 0

where X is a new variable, and then optimize X.

In general, X should be made a free variable, so that the problem does not converge prematurely on the
basis of an unchanging objective function. It is generally important that the objective is not artificially
constrained (for example, by bounding X) because this can distort the solution process. Also, as such an
objective transfer row is not a real constraint, no error vectors should be added (row can be enforced);
feasibility should be provided by the transfer variable X being free.

16.2 Convex Quadratic Programming
Convex quadratic programming (QP) is a special case of nonlinear programming where the constraints
are linear but the objective is quadratic (that is, it contains only terms which are constant, variables
multiplied by a constant, or products of two variables multiplied by a constant) and convex (convexity is
checked by the Xpress Optimizer). It is possible to solve convex quadratic problems using SLP, but it is
not usually the best way. The reason is that the solution to a convex QP problem is typically not at a vertex.
In SLP a non-vertex solution is achieved by applying step bounds to create additional constraints which
surround the solution point, so that ultimately the solution has been obtained within suitable tolerances.
Because of the nature of the problem, successive solutions will often swing from one step bound to the
other; in such circumstances, the step bounds are reduced on each SLP iteration but it will still take a long
time before convergence. In addition, unless the linear approximation is adequately constrained, it will be
unbounded because the linear approximation will not recognize the change in direction of the relationship
with the derivative as the variable passes through a stationary point. The easiest way to ensure that the
linear problem is constrained is to provide realistic upper and lower bounds on all variables.

In Xpress NonLinear, convex quadratic problems can be solved using the quadratic optimizer within the
Xpress optimizer package. For pure QP (or MIQP) problems, therefore, SLP is not required. However, the
SLP algorithm can be used together with QP to solve problems with a quadratic objective and also
nonlinear constraints. The constraints are handled using the normal SLP techniques; the objective is
handled by the QP optimizer. If the objective is not convex (not semi-definite), the QP optimizer may not
give a solution (with default settings, it will produce an error message); SLP will find a solution but — as
always — it may be a local optimum.

Fair Isaac Corporation Proprietary Information 75

Chapter 16: Special Types of Problem

If a QP problem is to be solved, then the quadratic component should be input in the normal way (using
QMATRIX or QUADOBJ in MPS file format, or the library functions XPRSloadqp or XPRSloadqglobal).
Xpress NonLinear will then automatically use the QP optimizer. If the problem is to be solved using the
SLP routines throughout, then the objective should be provided via a constraint as described in the
previous section.

This applies to quadratically constrained (QCQP and MIQCQP) problems as well.

For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP problems,
please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

16.3 Mixed Integer Nonlinear Programming
Mixed Integer Non-Linear Programming (MINLP) is the application of mixed integer techniques to the
solution of problems including non-linear relationships. Xpress NonLinear offers a set of components to
implement MINLP using Mixed Integer Successive Linear Programming (MISLP).

16.3.1 Mixed Integer SLP
The mixed integer successive linear programming (MISLP) solver is a generalization of the traditional
branch and bound procedure to nonlinear programming. The MIP engine is used to control the
branch-and-bound algorithm, with each node being evaluated using SLP. MIP then compares the SLP
solutions at each node to decide which node to explore next, and to decide when an integer feasible and
ultimately optimal solution have been obtained.

MISLP, also known as SLP within MIP, offers nonlinear specific root heuristics controlled by control
XSLP_HEURSTRATEGY.

Other generic heuristics are controlled by the respective XPRS heuristics controls.

The branch and bound tree exploration is executed in parallel. Use the XPRS control MIPTHREADS to limit
the number of threads used.

Normally, the relaxed problem is solved first, using XSLPnlpoptimize with the -l flag to ignore the
integer elements of the problem. It is also possible to call the XSLPnlpoptimize routine with the -g
flag and allow it to do the initial SLP optimization as well. In either case, ensure that the control parameter
XSLP_OBJSENSE is set to +1 (minimization) or -1 (maximization) before calling XSLPnlpoptimize.

The actual algorithm employed is controlled by a number of control parameters, as well as offering the
possibility of direct user interaction through call-backs at key points in the solution process.

16.3.2 Heuristics for Mixed Integer SLP
For hard MINLP problems, or where a solution must quickly be generated, the root heuristics of MISLP
can be executed as stand alone methods. These approaches can be used by changing the value of the
control parameter XSLP_MIPALGORITHM.

there are two MISLP heuristics:

1. MIP within SLP. In this, each SLP iteration is optimized using MIP to obtain an integer optimal
solution to the linear approximation of the original problem. SLP then compares this MIP solution to
the MIP solution of the previous SLP iteration and determines convergence based on the
differences between the successive MIP solutions.

2. SLP then MIP. In this, SLP is used to find a converged solution to the relaxed problem. The resulting
linearization is then fixed (i.e. the base point and the partial derivatives do not change) and MIP is

Fair Isaac Corporation Proprietary Information 76

Chapter 16: Special Types of Problem

run to find an integer optimum. SLP is then run again to find a converged solution to the original
problem with these integer settings.

The approach described in (1) seems potentially dangerous, in that changes in the integer variables could
have disproportionate effects on the solution and on the values of the SLP variables. There are also
question-marks over the use of step-bounding to control convergence, particularly if any of the integer
variables are also SLP variables.

The approach described in (2) has the big advantage that MIP is working on a linear problem and so can
take advantage of all of the special attributes of such a problem. This means that the solution time is
likely to be much faster than the alternatives. However, if the real problem is significantly non-linear, the
integer solution to the initial SLP solution may not be a good integer solution to the original problem and
so a false optimum may occur.

16.3.3 Fixing or relaxing the values of the SLP variables
The solution process may involve step-bounding to obtain the converged solution. Some MIP solution
strategies may want to fix the values of some of the SLP variables before moving on to the MIP part of
the process, or they may want to allow the child nodes more freedom than would be allowed by the final
settings of the step bounds. Control parameters XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS
and XSLP_MIPRELAXSTEPBOUNDS can be used to free, or fix to zero, various categories of step bounds,
thus effectively freeing the SLP variables or fixing them to their values in the initial solution.

At each node, step bounds may again be fixed to zero or relaxed or left in the same state as in the
solution to the parent node.

XSLP_MIPALGORITHM uses bits 2-3 (for the root node) and 4-5 (for other nodes) to determine which
step bounds are fixed to zero (thus fixing the values of the corresponding variables) or freed (thus
allowing the variables to change, possibly beyond the point they were restricted to in the parent node).
Set bit 2 (4) of XSLP_MIPALGORITHM to implement relaxation of defined categories of step bounds as
determined by XSLP_MIPRELAXSTEPBOUNDS at the root node (at each node).
Set bit 3 (5) of XSLP_MIPALGORITHM to implement fixing of defined categories of step bounds as
determined by XSLP_MIPFIXSTEPBOUNDS at the root node (at each node).

Alternatively, specific actions on setting bounds can be carried out by the user callback defined by
XSLPsetcbprenode.

The default setting of XSLP_MIPALGORITHM is 17 which relaxes step bounds at all nodes except the root
node. The step bounds from the initial SLP optimization are retained for the root node.

XSLP_MIPRELAXSTEPBOUNDS and XSLP_MIPFIXSTEPBOUNDS are bitmaps which determine which
categories of SLP variables are processed.

Bit 1 Process SLP variables which do not appear in coefficients but which do have coefficients
(constant or variable) in the original problem.

Bit 2 Process SLP variables which have coefficients (constant or variable) in the original problem.

Bit 3 Process SLP variables which appear in coefficients but which do not have coefficients
(constant or variable) in the original problem.

Bit 4 Process SLP variables which appear in coefficients.

In most cases, the default settings (XSLP_MIPFIXSTEPBOUNDS=0, XSLP_MIPRELAXSTEPBOUNDS=15)
are appropriate.

Fair Isaac Corporation Proprietary Information 77

Chapter 16: Special Types of Problem

16.3.4 Iterating at each node
Any number of SLP iterations can be carried out at each node. The maximum number is set by control
parameter XSLP_MIPITERLIMIT and is activated by XSLP_MIPALGORITHM. The significant values for
XSLP_MIPITERLIMIT are:

0 Perform an LP optimization with the current linearization. This means that, subject to the step
bounds, the SLP variables can take on other values, but the coefficients are not updated.

1 As for 0, but the model is updated after each iteration, so that each node starts with a new
linearization based on the solution of its parent.

n>1 Perform up to n SLP iterations, but stop when a termination criterion is satisfied. If no other
criteria are set, the SLP will terminate on XSLP_ITERLIMIT or XSLP_MIPITERLIMIT
iterations, or when the SLP converges.

After the last MIP node has been evaluated and the MIP procedure has terminated, the final solution can
be re-optimized using SLP to obtain a converged solution. This is only necessary if the individual nodes
are being terminated on a criterion other than SLP convergence.

16.3.5 Termination criteria at each node
Because the intention at each node is to get a reasonably good estimate for the SLP objective function
rather than to obtain a fully converged solution (which is only required at the optimum), it may be possible
to set looser but practical termination criteria. The following are provided:

Testing for movement of the objective function
This functions in a similar way to the extended convergence criteria for ordinary SLP convergence, but
does not require the SLP variables to have converged in any way. The test is applied once step bounding
has been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current iteration if the range of the objective function values over the
last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within XSLP_MIPOTOL_R ∗ OBJ
where OBJ is the average value of the objective function over those iterations.

Related control parameters:

XSLP_MIPOTOL_A Absolute tolerance
XSLP_MIPOTOL_R Relative tolerance
XSLP_MIPOCOUNT Number of SLP iterations over which the movement is measured

Testing the objective function against a cutoff
If the objective function is worse by a defined amount than the best integer solution obtained so far, then
the SLP will be terminated (and the node will be cut off). The node will be cut off at the current SLP
iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than
the best obtained so far, and the difference is greater than XSLP_MIPCUTOFF_A and
XSLP_MIPCUTOFF_R ∗ OBJ where OBJ is the best integer solution obtained so far.

Related control parameters:

XSLP_MIPCUTOFF_A Absolute amount by which the objective function is worse
XSLP_MIPCUTOFF_R Relative amount by which the objective function is worse
XSLP_MIPCUTOFFCOUNT Number of SLP iterations checked
XSLP_MIPCUTOFFLIMIT Number of SLP iterations before which the cutoff takes effect

16.3.6 Callbacks
User callbacks are provided as follows:

Fair Isaac Corporation Proprietary Information 78

Chapter 16: Special Types of Problem

XSLPsetcbintsol(XSLPprob Prob,
int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject),
void ⁎Object);

UserFunc is called when an integer solution has been obtained. The return value is ignored.

XSLPsetcboptnode(XSLPprob Prob,
int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called when an optimal solution is obtained at a node.
If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then further
processing of the node will be terminated (it is declared infeasible).

XSLPsetcbprenode(XSLPprob Prob,
int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called at the beginning of each node after the SLP problem has been set up but before any
SLP iterations have taken place.
If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then the node will be
declared infeasible and cut off. In particular, the SLP optimization at the node will not be performed.

XSLPsetcbslpnode(XSLPprob Prob,
int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called after each SLP iteration at each node, after the SLP iteration, and after the
convergence and termination criteria have been tested.
If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then the node will be
declared infeasible and cut off.

16.4 Integer and semi-continuous delta variables
Functions implementing piecewise linear expressions often lead to local stalling due to the partial
derivatives not capturing the true nature of the behaviour of the function. Such functions are often
implemented as user functions or expressions using the abs function. To provide Xpress with a better
way of evaluating such expressions, it is possible to mark variables (typically the key dependencies of the
expression) as having a semi-continuous delta variable with a minimum perturbation size associated,
which means the value of any expression that involves this variable is expected to meaningfully change if
the variable’s value in the current solution is changed by at least the semi-continuous bound of the delta.
If a minimum meaningful perturbation is not known, the variable’s delta may be set up to being of type
explore, when SLP will trial several values up to the provided maximum in case zero partials are detected.
Using exploration deltas may significantly increase the number of times the formulas the variable is used
in are evaluated.

It is important to note that the value with a semi-continuous delta will still be allowed to take any value
and make arbitrary steps between iterations, the extra information of the delta variable is solely used as a
means of better evaluating the effect of change per variable.

User functions that can only be evaluated at given values (e.g. lookup tables or simulations over integer
input) may be modelled with variables with an integer delta variable. If a variable’s delta variable is
flagged as being integer, with a step value of ’delta’, then assuming the variable has an initial value of ’x0’,
the possible values of the variable are ’x0 + i * delta’ where ’i’ is an integer number. If no initial value is
provided, the lower bound (or zero if no lower bound) is used to start the possible values from.

Variables with a semi-continuous delta are not expected to make the problem harder, in fact, the extra

Fair Isaac Corporation Proprietary Information 79

Chapter 16: Special Types of Problem

information usually aids the solve noticeably.

A model with variables with integer deltas is considered to be hard. An integer delta is expected to be
used to model the domain of user functions, and should not be used to otherwise model integrality of the
original variable. Variables with an integer delta used in constraints tend to make the problem difficult to
solve unless their use is balanced by the presence of infeasibility breaker variables (penalty slacks).

To change the type of a delta variable, use ’XSLPchgdeltatype’ in the API and the ’setdeltatype’ method in
Mosel.

If variables with integer deltas are present in the problem, then SLP will run a number of heuristics as part
of the solve, please refer to XSLP_GRIDHEURSELECT.

Fair Isaac Corporation Proprietary Information 80

CHAPTER 17

Xpress NonLinear multistart

The feature is an additive feature that minimizes the development overhead and effort of implementing
parallel multistart searches. The purpose of multistart is two-fold. Traditionally, multistart is a so called
globalization feature. It is important to correctly understand what this technology offers, and what it does
not. It offers a convenient and efficient way of exploring a larger feasible space building on top of
existing local solver algorithms by the means of perturbing initial points and/or parameters or even the
problem statement itself. Multistart can also be viewed as a left-alone feature. In a typical situation,
versions of a model react favourably to a set of control settings, dependent on data. Multistart allows for
a simple way of combining different control setting scenarios, increasing the robustness of the model.

The base problem is defined as the baseline: as the model is normally loaded it without any multistart
information, including problem description, callbacks and controls. A run or a job is defined as a problem
instance that needs to be solved as part of multistart.

On completion, the current problem is set up to match that of the winner, allowing examination of the
winning strategy and solution using the normal means.

The original prob object is not reused, all runs are made on a copy of the problem, allowing full
customization from the callbacks, including changes to structure.

Callbacks are inherited by the multistart jobs from the master problem and can be customized from the
the multistart callbacks. XSLinterrupt has a global scope, and calling it terminates the multistart search.

Although not intended as the primary use, multistart allows the execution of all supported problem
classes, so for example alternate MIP strategies can be used in parallel.

The mutistart job pool is maintained and can be extended until the first maxim / minim with
XSLP_MULTISTART on. This allows for doing optimizations runs aimed at generating multistart jobs.
The multistart pool is dynamic and new jobs can be added on the fly from the jobstart and jobend
callbacks.

Fair Isaac Corporation Proprietary Information 81

III. Reference

CHAPTER 18

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and made
available to users of the Xpress NonLinear Libraries in the form of problem attributes. These can be
accessed in much the same manner as the controls. Examples of problem attributes include the sizes of
arrays, for which library users may need to allocate space before the arrays themselves are retrieved. A
full list of the attributes available and their types may be found in this chapter.

Library users are provided with the following functions for obtaining the values of attributes:

XSLPgetintattrib XSLPgetdblattrib
XSLPgetptrattrib XSLPgetstrattrib

The attributes listed in this chapter are all prefixed with XSLP_. It is possible to use the above functions
with attributes for the Xpress Optimizer (attributes prefixed with XPRS_). For details of the Optimizer
attributes, see the Optimizer manual.

Example of the usage of the functions:

XSLPgetintattrib(Prob, XSLP_ITER, &nIter);
printf("The number of SLP iterations is %d\n", nIter);
XSLPgetdblattrib(Prob, XSLP_ERRORCOSTS, &Errors);
printf("and the total error cost is %lg\n", Errors);

The following is a list of all the Xpress NonLinear attributes:

XSLP_COEFFICIENTS Number of nonlinear coefficients p. 89

XSLP_CURRENTDELTACOST Current value of penalty cost multiplier for penalty delta vectors p. 86

XSLP_CURRENTERRORCOST Current value of penalty cost multiplier for penalty error vectors p. 86

XSLP_DELTAS Number of delta vectors created during augmentation p. 89

XSLP_ECFCOUNT Number of infeasible constraints found at the point of linearization p. 89

XSLP_EQUALSCOLUMN Index of the reserved "=" column p. 89

XSLP_ERRORCOSTS Total penalty costs in the solution p. 86

XSLP_EXPLOREDELTAS Number of variables with an exploration-type delta set up in the problem
p. 89

XSLP_IFS Number of internal functions p. 89

XSLP_IMPLICITVARIABLES Number of SLP variables appearing only in coefficients p. 90

XSLP_INTEGERDELTAS Number of variables set up with an integer delta in the problem p. 90

Fair Isaac Corporation Proprietary Information 83

Chapter 18: Problem Attributes

XSLP_ITER SLP iteration count p. 90

XSLP_JOBID Unique identifier for the current job p. 90

XSLP_KEEPBESTITER The iteration in which the returned solution has been found. p. 90

XSLP_MINUSPENALTYERRORS Number of negative penalty error vectors p. 90

XSLP_MIPITER Total number of SLP iterations in MISLP p. 91

XSLP_MIPNODES Number of nodes explored in MISLP. This includes any nodes for which a
non-linear solve has been carried out. p. 91

XSLP_MIPPROBLEM The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a reference
of type XPRSprob, and should be used in MISLP callbacks to access
MIP-specific Optimizer values (such as node and parent numbers). p. 100

XSLP_MIPSOLS Number of integer solutions found in MISLP. This includes solutions found
during the tree search or any heuristics. p. 91

XSLP_MODELCOLS Number of model columns in the problem p. 91

XSLP_MODELROWS Number of model rows in the problem p. 91

XSLP_MSSTATUS Status of the mutlistart search p. 92

XSLP_NLPSTATUS The solution status of the problem. p. 92

XSLP_NONCONSTANTCOEFF Number of coefficients in the augmented problem that might change
between SLP iterations p. 92

XSLP_NONLINEARCONSTRAINTS Number of nonlinear constraints in the problem p. 92

XSLP_OBJVAL Objective function value excluding any penalty costs p. 86

XSLP_ORIGINALCOLS Number of model columns in the problem p. 93

XSLP_ORIGINALROWS Number of model rows in the problem p. 93

XSLP_PENALTYDELTACOLUMN Index of column costing the penalty delta row p. 93

XSLP_PENALTYDELTAROW Index of equality row holding the penalties for delta vectors p. 93

XSLP_PENALTYDELTAS Number of penalty delta vectors p. 93

XSLP_PENALTYDELTATOTAL Total activity of penalty delta vectors p. 86

XSLP_PENALTYDELTAVALUE Total penalty cost attributed to penalty delta vectors p. 86

XSLP_PENALTYERRORCOLUMN Index of column costing the penalty error row p. 93

XSLP_PENALTYERRORROW Index of equality row holding the penalties for penalty error vectors p. 94

XSLP_PENALTYERRORS Number of penalty error vectors p. 94

XSLP_PENALTYERRORTOTAL Total activity of penalty error vectors p. 87

XSLP_PENALTYERRORVALUE Total penalty cost attributed to penalty error vectors p. 87

XSLP_PLUSPENALTYERRORS Number of positive penalty error vectors p. 94

XSLP_PRESOLVEELIMINATIONS Number of SLP variables eliminated by XSLPpresolve p. 94

XSLP_PRESOLVESTATE Indicates if the problem is presolved p. 94

XSLP_PRIMALINTEGRAL Local primal integral of the solve p. 87

Fair Isaac Corporation Proprietary Information 84

Chapter 18: Problem Attributes

XSLP_SBXCONVERGED Number of step-bounded variables converged only on extended criteria p. 94

XSLP_SEMICONTDELTAS Number of variables with a minimum perturbation step set up in the problem
p. 95

XSLP_SOLSTATUS Indicates the type of solution returned by the solver. p. 95

XSLP_SOLVERSELECTED Includes information of which Xpress solver has been used to solve the
problem p. 95

XSLP_STATUS Bitmap holding the problem convergence status p. 95

XSLP_STOPSTATUS Status of the optimization process. p. 97

XSLP_TOLSETS This control is deprecated and may be removed in future releases. Number of
tolerance sets p. 97

XSLP_TOTALEVALUATIONERRORS The total number of evaluation errors during the solve p. 97

XSLP_UCCONSTRAINEDCOUNT Number of unconverged variables with coefficients in constraining
rows p. 97

XSLP_UFINSTANCES Number of user function instances p. 97

XSLP_UFS Number of user functions p. 98

XSLP_UNCONVERGED Number of unconverged values p. 98

XSLP_USEDERIVATIVES Indicates whether numeric or analytic derivatives were used to create the
linear approximations and solve the problem p. 98

XSLP_USERFUNCCALLS Number of calls made to user functions p. 98

XSLP_VALIDATIONINDEX_A Absolute validation index p. 87

XSLP_VALIDATIONINDEX_K Relative first order optimality validation index p. 87

XSLP_VALIDATIONINDEX_R Relative validation index p. 87

XSLP_VARIABLES Number of SLP variables p. 98

XSLP_VERSIONDATE Date of creation of Xpress NonLinear p. 101

XSLP_VSOLINDEX Vertex solution index p. 88

XSLP_XPRSPROBLEM The underlying Optimizer problem p. 100

XSLP_XSLPPROBLEM The Xpress NonLinear problem p. 100

XSLP_ZEROESRESET Number of placeholder entries set to zero p. 98

XSLP_ZEROESRETAINED Number of potentially zero placeholders left untouched p. 99

XSLP_ZEROESTOTAL Number of potential zero placeholder entries p. 99

Fair Isaac Corporation Proprietary Information 85

Chapter 18: Problem Attributes

18.1 Double problem attributes
XSLP_CURRENTDELTACOST

Description Current value of penalty cost multiplier for penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTERRORCOST

XSLP_CURRENTERRORCOST

Description Current value of penalty cost multiplier for penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTDELTACOST

XSLP_ERRORCOSTS

Description Total penalty costs in the solution

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_OBJVAL

Description Objective function value excluding any penalty costs

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTATOTAL

Description Total activity of penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTAVALUE

Description Total penalty cost attributed to penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Proprietary Information 86

Chapter 18: Problem Attributes

XSLP_PENALTYERRORTOTAL

Description Total activity of penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYERRORVALUE

Description Total penalty cost attributed to penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PRIMALINTEGRAL

Description Local primal integral of the solve

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_VALIDATIONINDEX_A

Description Absolute validation index

Type Double

Set by routines XSLPvalidate

XSLP_VALIDATIONINDEX_K

Description Relative first order optimality validation index

Type Double

Set by routines XSLPvalidatekkt

XSLP_VALIDATIONINDEX_R

Description Relative validation index

Type Double

Set by routines XSLPvalidate

Fair Isaac Corporation Proprietary Information 87

Chapter 18: Problem Attributes

XSLP_VSOLINDEX

Description Vertex solution index

Type Double

Notes The vertex solution index (VSOLINDEX) is a measure of how nearly the converged solution to a
problem is at a vertex (that is, at the intersection of a set of constraints) of the feasible region.
Where the solution is in the middle of a face, the solution will in general have been achieved
through the use of step bounds. The VSOLINDEX is the fraction of delta vectors which are not
at a bound in the solution. Therefore, a value of 1.0 means that no delta is at a step bound and
therefore the solution is at a vertex of the feasible region. Smaller values indicate that there are
deltas at step bounds and so the solution is further from being a vertex solution.

Fair Isaac Corporation Proprietary Information 88

Chapter 18: Problem Attributes

18.2 Integer problem attributes
XSLP_COEFFICIENTS

Description Number of nonlinear coefficients

Type Integer

Set by routines XSLPaddcoefs, XSLPchgcoef, XSLPloadcoefs, XSLPreadprob

XSLP_DELTAS

Description Number of delta vectors created during augmentation

Type Integer

Set by routines XSLPconstruct

XSLP_ECFCOUNT

Description Number of infeasible constraints found at the point of linearization

Type Integer

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ECFCHECK, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_EXPLOREDELTAS

Description Number of variables with an exploration-type delta set up in the problem

Type Integer

Set by routines XSLPconstruct

XSLP_EQUALSCOLUMN

Description Index of the reserved "=" column

Type Integer

Note If there had been no "=" column present, it will be assumed that the user needs the index to add
nonlinear terms into the problem that are not coefficients, and an "=" columns will be added to
the problem, whose index is then returned. Please note, that this means that a call to
XSLPgetintattrib with this attribute might make a slight modification to the problem itself.

Set by routines XSLPconstruct, XSLPreadprob

XSLP_IFS

Description Number of internal functions

Type Integer

Set by routines XSLPcreateprob

Fair Isaac Corporation Proprietary Information 89

Chapter 18: Problem Attributes

XSLP_IMPLICITVARIABLES

Description Number of SLP variables appearing only in coefficients

Type Integer

Set by routines XSLPconstruct

XSLP_INTEGERDELTAS

Description Number of variables set up with an integer delta in the problem

Type Integer

Set by routines XSLPconstruct

XSLP_ITER

Description SLP iteration count

Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_JOBID

Description Unique identifier for the current job

Type Integer

Note Assigned when a job is created, and can be used to identify jobs in callbacks. Note that all
callback receives an optional job name that can be assigned at job creation time.

Set by routines XSLPmaxim, XSLPminim

XSLP_KEEPBESTITER

Description The iteration in which the returned solution has been found.

Type Integer

Note A zero value indicates no solution or the filter option is off. A value of ’-1’ indicates the initial
solution has been returned.

Set by routines XSLPmaxim, XSLPminim

XSLP_MINUSPENALTYERRORS

Description Number of negative penalty error vectors

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Proprietary Information 90

Chapter 18: Problem Attributes

XSLP_MIPITER

Description Total number of SLP iterations in MISLP

Type Integer

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_MIPNODES

Description Number of nodes explored in MISLP. This includes any nodes for which a non-linear solve has
been carried out.

Type Integer

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_MIPSOLS

Description Number of integer solutions found in MISLP. This includes solutions found during the tree
search or any heuristics.

Type Integer

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_MODELCOLS

Description Number of model columns in the problem

Type Integer

Note This is the number of columns currently in the problem without any augmentation, i.e. the
number of columns that describe the algebraic definition of the problem. These columns
always precede the augmentation columns in order. If the problem is presolved, this may be
smaller than the number of original columns in the problem. To access the number of original
columns, use XSLP_ORIGINALCOLS.

XSLP_MODELROWS

Description Number of model rows in the problem

Type Integer

Note This is the number of rows currently in the problem without any augmentation, i.e. the number
of rows that describe the algebraic definition of the problem. These rows always precede the
augmentation rows in order. If the problem is presolved, this may be smaller than the number of
original rows in the problem. To access the number of original rows, use
XSLP_ORIGINALROWS.

Fair Isaac Corporation Proprietary Information 91

Chapter 18: Problem Attributes

XSLP_MSSTATUS

Description Status of the mutlistart search

Type Integer

Note The value matches that of the winner job if the multistart search completes and a feasible
solution has been found. If no solution is found, it is set to XSLP_NLPSTATUS_INFEASIBLE. If
the search is terminated early, it is set to XSLP_NLPSTATUS_UNFINISHED (thought in which
case the winner if any is still synchronized to the base problem and the solution and
XSLP_NLPSTATUS is available).

XSLP_NLPSTATUS

Description The solution status of the problem.

Type Integer

Values 0 Optimization unstarted (XSLP_NLPSTATUS_UNSTARTED)
1 Solution found (XSLP_NLPSTATUS_SOLUTION)
2 Globally optimal (XSLP_NLPSTATUS_OPTIMAL)
3 No solution found (XSLP_NLPSTATUS_NOSOLUTION)
4 Proven infeasible (XSLP_NLPSTATUS_INFEASIBLE)
5 Locally unbounded (XSLP_NLPSTATUS_UNBOUNDED)
6 Problem could not be solved due to numerical issues.

(XSLP_NLPSTATUS_UNFINISHED)
7 Unsolved (XSLP_NLPSTATUS_UNSOLVED)

Default value 0

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_NONCONSTANTCOEFF

Description Number of coefficients in the augmented problem that might change between SLP iterations

Type Integer

Set by routines XSLPconstruct

XSLP_NONLINEARCONSTRAINTS

Description Number of nonlinear constraints in the problem

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Proprietary Information 92

Chapter 18: Problem Attributes

XSLP_ORIGINALCOLS

Description Number of model columns in the problem

Type Integer

Note The number of columns in the original matrix before presolveing without any augmentation
columns.

XSLP_ORIGINALROWS

Description Number of model rows in the problem

Type Integer

Note The number of rows in the original matric before presolveing without any augmentation rows.

XSLP_PENALTYDELTACOLUMN

Description Index of column costing the penalty delta row

Type Integer

Note This index always counts from 1. It is zero if there is no penalty delta row.

Set by routines XSLPconstruct

XSLP_PENALTYDELTAROW

Description Index of equality row holding the penalties for delta vectors

Type Integer

Note This index always counts from 1. It is zero if there are no penalty delta vectors.

Set by routines XSLPconstruct

XSLP_PENALTYDELTAS

Description Number of penalty delta vectors

Type Integer

Set by routines XSLPconstruct

XSLP_PENALTYERRORCOLUMN

Description Index of column costing the penalty error row

Type Integer

Note This index always counts from 1. It is zero if there is no penalty error row.

Set by routines XSLPconstruct

Fair Isaac Corporation Proprietary Information 93

Chapter 18: Problem Attributes

XSLP_PENALTYERRORROW

Description Index of equality row holding the penalties for penalty error vectors

Type Integer

Note This index always counts from 1. It is zero if there are no penalty error vectors.

Set by routines XSLPconstruct

XSLP_PENALTYERRORS

Description Number of penalty error vectors

Type Integer

Set by routines XSLPconstruct

XSLP_PLUSPENALTYERRORS

Description Number of positive penalty error vectors

Type Integer

Set by routines XSLPconstruct

XSLP_PRESOLVEELIMINATIONS

Description Number of SLP variables eliminated by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

XSLP_PRESOLVESTATE

Description Indicates if the problem is presolved

Type Integer

Values 0 The problem is not presolved
1 The problem is presolved, but no columns or rows have been removed from the

problem
2 The problem is fully presolved, and the column and row indices do not match the

original problem

Set by routines XSLPmaxim, XSLPminim, XSLPpresolve

XSLP_SBXCONVERGED

Description Number of step-bounded variables converged only on extended criteria

Type Integer

Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Proprietary Information 94

Chapter 18: Problem Attributes

XSLP_SEMICONTDELTAS

Description Number of variables with a minimum perturbation step set up in the problem

Type Integer

Set by routines XSLPconstruct

XSLP_SOLVERSELECTED

Description Includes information of which Xpress solver has been used to solve the problem

Type Integer

Values -1 Unset
0 Xpress-SLP
1 Knitro (Artelys)
2 Xpress Optimizer

Default value -1

Set by routines XSLPmaxim, XSLPminim

Note The following constants are provided:
0 XSLP_SOLVER_XSLP
1 XSLP_SOLVER_KNITRO
2 XSLP_SOLVER_OPTIMIZER

XSLP_SOLSTATUS

Description Indicates the type of solution returned by the solver.

Type Integer

Values 0 No solution available.
1 A solution with no dual information.
2 A locally optimal solution with dual information.
3 A globally optimal solution without dual information.
4 A globally optimal solution with dual information.

Default value 0

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_STATUS

Description Bitmap holding the problem convergence status

Type Integer

Fair Isaac Corporation Proprietary Information 95

Chapter 18: Problem Attributes

Values Bit Meaning
0 Converged on objective function with no unconverged values in active constraints.
1 Converged on objective function with some variables converged on extended criteria

only.
2 LP solution is infeasible.
3 LP solution is unfinished (not optimal or infeasible).
4 SLP terminated on maximum SLP iterations.
5 SLP is integer infeasible.
6 SLP converged with residual penalty errors.
7 Converged on objective.
9 SLP terminated on max time.
10 SLP terminated by user.
11 Some variables are linked to active constraints.
12 No unconverged values in active constraints.
13 OTOL is satisfied - range of objective change small, active step bounds.
14 VTOL is satisfied - range of objective change is small.
15 XTOL is satisfied - range of objective change small, no unconverged in active.
16 WTOL is satisfied - convergence continuation.
17 ERRORTOL satisfied - penalties not increased further.
18 EVTOL satisfied - penalties not increased further.
19 There were iterations where the solution had to be polished.
20 There were iterations where the solution polishing failed.
21 There were iterations where rows were enforced.
22 Terminated due to XSLP_INFEASLIMIT.

Note A value of zero after SLP optimization means that the solution is fully converged.
The following constants are provided for checking these bits:
Setting bit 0 XSLP_STATUS_CONVERGEDOBJUCC
Setting bit 1 XSLP_STATUS_CONVERGEDOBJSBX
Setting bit 2 XSLP_STATUS_LPINFEASIBLE
Setting bit 3 XSLP_STATUS_LPUNFINISHED
Setting bit 4 XSLP_STATUS_MAXSLPITERATIONS
Setting bit 5 XSLP_STATUS_INTEGERINFEASIBLE
Setting bit 6 XSLP_STATUS_RESIDUALPENALTIES
Setting bit 7 XSLP_STATUS_CONVERGEDOBJOBJ
Setting bit 9 XSLP_STATUS_MAXTIME
Setting bit 10 XSLP_STATUS_USER
Setting bit 11 XSLP_STATUS_VARSLINKEDINACTIVE
Setting bit 12 XSLP_STATUS_NOVARSINACTIVE
Setting bit 13 XSLP_STATUS_OTOL
Setting bit 14 XSLP_STATUS_VTOL
Setting bit 15 XSLP_STATUS_XTOL
Setting bit 16 XSLP_STATUS_WTOL
Setting bit 17 XSLP_STATUS_ERROTOL
Setting bit 18 XSLP_STATUS_EVTOL
Setting bit 19 XSLP_STATUS_POLISHED
Setting bit 20 XSLP_STATUS_POLISH_FAILURE
Setting bit 21 XSLP_STATUS_ENFORCED
Setting bit 22 XSLP_STATUS_CONSECUTIVE_INFEAS

Fair Isaac Corporation Proprietary Information 96

Chapter 18: Problem Attributes

Set by routines XSLPmaxim, XSLPminim

XSLP_STOPSTATUS

Description Status of the optimization process.

Type Integer

Note Possible values are:

Value Description
XSLP_STOP_NONE no interruption - the solve completed normally
XSLP_STOP_TIMELIMIT time limit hit
XSLP_STOP_CTRLC control C hit
XSLP_STOP_NODELIMIT node limit hit
XSLP_STOP_ITERLIMIT iteration limit hit
XSLP_STOP_MIPGAP MIP gap is sufficiently small
XSLP_STOP_SOLLIMIT solution limit hit
XSLP_STOP_USER user interrupt.

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_TOLSETS

Description This control is deprecated and may be removed in future releases. Number of tolerance sets

Type Integer

Set by routines XSLPaddtolsets, XSLPchgtolset, XSLPloadtolsets, XSLPreadprob

XSLP_TOTALEVALUATIONERRORS

Description The total number of evaluation errors during the solve

Type Integer

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim.

XSLP_UCCONSTRAINEDCOUNT

Description Number of unconverged variables with coefficients in constraining rows

Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_UFINSTANCES

Description Number of user function instances

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Proprietary Information 97

Chapter 18: Problem Attributes

XSLP_UFS

Description Number of user functions

Type Integer

Set by routines XSLPadduserfunction, XSLPdeluserfunction, XSLPreadprob

XSLP_UNCONVERGED

Description Number of unconverged values

Type Integer

Note Prior to the first iteration this will return -1.

Set by routines XSLPmaxim, XSLPminim

XSLP_USEDERIVATIVES

Description Indicates whether numeric or analytic derivatives were used to create the linear approximations
and solve the problem

Type Integer

Values 0 numeric derivatives.
1 analytic derivatives for all formulae unless otherwise specified.

Set by routines XSLPconstruct

XSLP_USERFUNCCALLS

Description Number of calls made to user functions

Type Integer

Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,
XSLPmaxim, XSLPminim

XSLP_VARIABLES

Description Number of SLP variables

Type Integer

Set by routines XSLPconstruct

XSLP_ZEROESRESET

Description Number of placeholder entries set to zero

Type Integer

Fair Isaac Corporation Proprietary Information 98

Chapter 18: Problem Attributes

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRETAINED,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESRETAINED

Description Number of potentially zero placeholders left untouched

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESTOTAL

Description Number of potential zero placeholder entries

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESRETAINED, Management of zero placeholder entries

Fair Isaac Corporation Proprietary Information 99

Chapter 18: Problem Attributes

18.3 Reference (pointer) problem attributes
The reference attributes are void pointers whose size (32 or 64 bit) depends on the platform.

XSLP_MIPPROBLEM

Description The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a reference of type XPRSprob,
and should be used in MISLP callbacks to access MIP-specific Optimizer values (such as node
and parent numbers).

Type Reference

Set by routines XSLPnlpoptimize

XSLP_XPRSPROBLEM

Description The underlying Optimizer problem

Type Reference

Set by routines XSLPcreateprob

XSLP_XSLPPROBLEM

Description The Xpress NonLinear problem

Type Reference

Set by routines XSLPcreateprob

Fair Isaac Corporation Proprietary Information 100

Chapter 18: Problem Attributes

18.4 String problem attributes
XSLP_VERSIONDATE

Description Date of creation of Xpress NonLinear

Type String

Note The format of the date is dd mmm yyyy.

Set by routines XSLPinit

Fair Isaac Corporation Proprietary Information 101

CHAPTER 19

Control Parameters

Various controls exist within Xpress NonLinear to govern the solution procedure and the form of the
output. Some of these take integer values and act as switches between various types of behavior. Many
are tolerances on values related to the convergence criteria; these are all double precision. There are also
a few controls which are character strings, setting names for structures. Any of these may be altered by
the user to enhance performance of the SLP algorithm. In most cases, the default values provided have
been found to work well in practice over a range of problems and caution should be exercised if they are
changed.

Users of the Xpress NonLinear function library are provided with the following set of functions for setting
and obtaining control values:

XSLPgetintcontrol XSLPgetdblcontrol XSLPgetstrcontrol
XSLPsetintcontrol XSLPsetdblcontrol XSLPsetstrcontrol

All the controls as listed in this chapter are prefixed with XSLP_. It is possible to use the above functions
with control parameters for the Xpress Optimizer (controls prefixed with XPRS_). For details of the
Optimizer controls, see the Optimizer manual.

Example of the usage of the functions:

XSLPgetintcontrol(Prob, XSLP_PRESOLVE, &presolve);
printf("The value of PRESOLVE was %d\n", presolve);
XSLPsetintcontrol(Prob, XSLP_PRESOLVE, 1-presolve);
printf("The value of PRESOLVE is now %d\n", 1-presolve);

The following is a list of all the Xpress NonLinear controls:

XSLP_ALGORITHM Bit map describing the SLP algorithm(s) to be used p. 143

XSLP_ANALYZE Bit map activating additional options supporting model / solution path
analyzis p. 145

XSLP_ATOL_A Absolute delta convergence tolerance p. 110

XSLP_ATOL_R Relative delta convergence tolerance p. 110

XSLP_AUGMENTATION Bit map describing the SLP augmentation method(s) to be used p. 146

XSLP_AUTOSAVE Frequency with which to save the model p. 147

XSLP_BARCROSSOVERSTART Default crossover activation behaviour for barrier start p. 147

XSLP_BARLIMIT Number of initial SLP iterations using the barrier method p. 148

XSLP_BARSTALLINGLIMIT Number of iterations to allow numerical failures in barrier before
switching to dual p. 148

Fair Isaac Corporation Proprietary Information 102

Chapter 19: Control Parameters

XSLP_BARSTALLINGOBJLIMIT Number of iterations over which to measure the objective change for
barrier iterations with no crossover p. 148

XSLP_BARSTALLINGTOL Required change in the objective when progress is measured in barrier
iterations without crossover p. 110

XSLP_BARSTARTOPS Controls behaviour when the barrier is used to solve the linearizations p. 149

XSLP_CALCTHREADS Number of threads used for formula and derivatives evaluations p. 149

XSLP_CASCADE Bit map describing the cascading to be used p. 150

XSLP_CASCADENLIMIT Maximum number of iterations for cascading with non-linear determining
rows p. 150

XSLP_CASCADETOL_PA Absolute cascading print tolerance p. 111

XSLP_CASCADETOL_PR Relative cascading print tolerance p. 111

XSLP_CDTOL_A Absolute tolerance for deducing constant derivatives p. 111

XSLP_CDTOL_R Relative tolerance for deducing constant derivatives p. 112

XSLP_CLAMPSHRINK Shrink ratio used to impose strict convergence on variables converged in
extended criteria only p. 112

XSLP_CLAMPVALIDATIONTOL_A Absolute validation tolerance for applying XSLP_CLAMPSHRINK
p. 112

XSLP_CLAMPVALIDATIONTOL_R Relative validation tolerance for applying XSLP_CLAMPSHRINK
p. 112

XSLP_CONTROL Bit map describing which Xpress NonLinear functions also activate the
corresponding Optimizer Library function p. 151

XSLP_CONVERGENCEOPS Bit map describing which convergence tests should be carried out p. 151

XSLP_CTOL Closure convergence tolerance p. 113

XSLP_CUTSTRATEGY Determines whihc cuts to apply in the MISLP search when the default
SLP-in-MIP strategy is used. p. 152

XSLP_DAMP Damping factor for updating values of variables p. 113

XSLP_DAMPEXPAND Multiplier to increase damping factor during dynamic damping p. 113

XSLP_DAMPMAX Maximum value for the damping factor of a variable during dynamic
damping p. 114

XSLP_DAMPMIN Minimum value for the damping factor of a variable during dynamic damping
p. 114

XSLP_DAMPSHRINK Multiplier to decrease damping factor during dynamic damping p. 114

XSLP_DAMPSTART SLP iteration at which damping is activated p. 152

XSLP_DEFAULTIV Default initial value for an SLP variable if none is explicitly given p. 115

XSLP_DEFAULTSTEPBOUND Minimum initial value for the step bound of an SLP variable if none is
explicitly given p. 115

XSLP_DELTA_A Absolute perturbation of values for calculating numerical derivatives p. 115

XSLP_DELTA_R Relative perturbation of values for calculating numerical derivatives p. 116

Fair Isaac Corporation Proprietary Information 103

Chapter 19: Control Parameters

XSLP_DELTA_X Minimum absolute value of delta coefficients to be retained p. 116

XSLP_DELTA_Z Tolerance used when calculating derivatives p. 116

XSLP_DELTA_ZERO Absolute zero acceptance tolerance used when calculating derivatives p. 117

XSLP_DELTACOST Initial penalty cost multiplier for penalty delta vectors p. 117

XSLP_DELTACOSTFACTOR Factor for increasing cost multiplier on total penalty delta vectors p. 117

XSLP_DELTAFORMAT Formatting string for creation of names for SLP delta vectors p. 181

XSLP_DELTAMAXCOST Maximum penalty cost multiplier for penalty delta vectors p. 117

XSLP_DELTAOFFSET Position of first character of SLP variable name used to create name of delta
vector p. 152

XSLP_DELTAZLIMIT Number of SLP iterations during which to apply XSLP_DELTA_Z p. 153

XSLP_DERIVATIVES Bitmap describing the method of calculating derivatives p. 153

XSLP_DETERMINISTIC Determines if the parallel features of SLP should be guaranteed to be
deterministic p. 154

XSLP_DJTOL Tolerance on DJ value for determining if a variable is at its step bound p. 118

XSLP_DRCOLTOL The minimum absolute magnitude of a determining column, for which the
determined variable is still regarded as well defined p. 118

XSLP_ECFCHECK Check feasibility at the point of linearization for extended convergence
criteria p. 154

XSLP_ECFTOL_A Absolute tolerance on testing feasibility at the point of linearization p. 118

XSLP_ECFTOL_R Relative tolerance on testing feasibility at the point of linearization p. 119

XSLP_ECHOXPRSMESSAGES Controls if the XSLP message callback should relay messages from the
XPRS library. p. 154

XSLP_ENFORCECOSTSHRINK Factor by which to decrease the current penalty multiplier when
enforcing rows. p. 119

XSLP_ENFORCEMAXCOST Maximum penalty cost in the objective before enforcing most violating rows
p. 119

XSLP_ERRORCOST Initial penalty cost multiplier for penalty error vectors p. 120

XSLP_ERRORCOSTFACTOR Factor for increasing cost multiplier on total penalty error vectors p. 120

XSLP_ERRORMAXCOST Maximum penalty cost multiplier for penalty error vectors p. 120

XSLP_ERROROFFSET Position of first character of constraint name used to create name of penalty
error vectors p. 155

XSLP_ERRORTOL_A Absolute tolerance for error vectors p. 121

XSLP_ERRORTOL_P Absolute tolerance for printing error vectors p. 121

XSLP_ESCALATION Factor for increasing cost multiplier on individual penalty error vectors p. 121

XSLP_ETOL_A Absolute tolerance on penalty vectors p. 121

XSLP_ETOL_R Relative tolerance on penalty vectors p. 122

XSLP_EVALUATE Evaluation strategy for user functions p. 155

Fair Isaac Corporation Proprietary Information 104

Chapter 19: Control Parameters

XSLP_EVTOL_A Absolute tolerance on total penalty costs p. 122

XSLP_EVTOL_R Relative tolerance on total penalty costs p. 123

XSLP_EXPAND Multiplier to increase a step bound p. 123

XSLP_FEASTOLTARGET When set, this defines a target feasibility tolerance to which the
linearizations are solved to p. 123

XSLP_FILTER Bit map for controlling solution updates p. 155

XSLP_FINDIV Option for running a heuristic to find a feasible initial point p. 156

XSLP_FUNCEVAL Bit map for determining the method of evaluating user functions and their
derivatives p. 156

XSLP_GRANULARITY Base for calculating penalty costs p. 124

XSLP_GRIDHEURSELECT Bit map selectin which heuristics to run if the problem has variable with an
integer delta p. 157

XSLP_HESSIAN Second order differentiation mode when using analytical derivatives p. 158

XSLP_HEURSTRATEGY Branch and Bound: This specifies the MINLP heuristic strategy. On some
problems it is worth trying more comprehensive heuristic strategies by
setting HEURSTRATEGY to 2 or 3. p. 157

XSLP_INFEASLIMIT The maximum number of consecutive infeasible SLP iterations which can
occur before Xpress-SLP terminates p. 158

XSLP_INFINITY Value returned by a divide-by-zero in a formula p. 124

XSLP_ITERFALLBACKOPS Alternative LP level control values for numerically challengeing problems
p. 181

XSLP_ITERLIMIT The maximum number of SLP iterations p. 158

XSLP_ITOL_A Absolute impact convergence tolerance p. 124

XSLP_ITOL_R Relative impact convergence tolerance p. 125

XSLP_IVNAME Name of the set of initial values to be used p. 181

XSLP_JACOBIAN First order differentiation mode when using analytical derivatives p. 158

XSLP_KEEPEQUALSCOLUMN When set to a nonzero value, the MPS reader will keep the equals column
in the problem p. 159

XSLP_LINQUADBR Use linear and quadratic constraints and objective function to further reduce
bounds on all variables p. 159

XSLP_LOG Level of printing during SLP iterations p. 159

XSLP_LSITERLIMIT Number of iterations in the line search p. 160

XSLP_LSPATTERNLIMIT Number of iterations in the pattern search preceding the line search p. 160

XSLP_LSSTART Iteration in which to active the line search p. 160

XSLP_LSZEROLIMIT Maximum number of zero length line search steps before line search is
deactivated p. 161

XSLP_MATRIXTOL This control is deprecated and may be removed in future releases. Provides
an override value for XPRS_MATRIXTOL, which controls the smallest
magnitude of matrix coefficients p. 125

Fair Isaac Corporation Proprietary Information 105

Chapter 19: Control Parameters

XSLP_MAXTIME The maximum time in seconds that the SLP optimization will run before it
terminates p. 161

XSLP_MAXWEIGHT Maximum penalty weight for delta or error vectors p. 126

XSLP_MEMORYFACTOR Factor for expanding size of dynamic arrays in memory p. 126

XSLP_MERITLAMBDA Factor by which the net objective is taken into account in the merit function
p. 126

XSLP_MINSBFACTOR Factor by which step bounds can be decreased beneath XSLP_ATOL_A
p. 127

XSLP_MINUSDELTAFORMAT Formatting string for creation of names for SLP negative penalty delta
vectors p. 182

XSLP_MINUSERRORFORMAT Formatting string for creation of names for SLP negative penalty error
vectors p. 182

XSLP_MINWEIGHT Minimum penalty weight for delta or error vectors p. 127

XSLP_MIPALGORITHM Bitmap describing the MISLP algorithms to be used p. 161

XSLP_MIPCUTOFF_A Absolute objective function cutoff for MIP termination p. 127

XSLP_MIPCUTOFF_R Absolute objective function cutoff for MIP termination p. 128

XSLP_MIPCUTOFFCOUNT Number of SLP iterations to check when considering a node for cutting off
p. 162

XSLP_MIPCUTOFFLIMIT Number of SLP iterations to check when considering a node for cutting off
p. 163

XSLP_MIPDEFAULTALGORITHM Default algorithm to be used during the global search in MISLP p. 163

XSLP_MIPERRORTOL_A Absolute penalty error cost tolerance for MIP cut-off p. 128

XSLP_MIPERRORTOL_R Relative penalty error cost tolerance for MIP cut-off p. 128

XSLP_MIPFIXSTEPBOUNDS Bitmap describing the step-bound fixing strategy during MISLP p. 163

XSLP_MIPITERLIMIT Maximum number of SLP iterations at each node p. 164

XSLP_MIPLOG Frequency with which MIP status is printed p. 164

XSLP_MIPOCOUNT Number of SLP iterations at each node over which to measure objective
function variation p. 164

XSLP_MIPOTOL_A Absolute objective function tolerance for MIP termination p. 129

XSLP_MIPOTOL_R Relative objective function tolerance for MIP termination p. 129

XSLP_MIPRELAXSTEPBOUNDS Bitmap describing the step-bound relaxation strategy during MISLP
p. 165

XSLP_MSMAXBOUNDRANGE Defines the maximum range inside which initial points are generated by
multistart presets p. 129

XSLP_MTOL_A Absolute effective matrix element convergence tolerance p. 130

XSLP_MTOL_R Relative effective matrix element convergence tolerance p. 130

XSLP_MULTISTART The multistart master control. Defines if the multistart search is to be
initiated, or if only the baseline model is to be solved. p. 165

Fair Isaac Corporation Proprietary Information 106

Chapter 19: Control Parameters

XSLP_MULTISTART_MAXSOLVES The maximum number of jobs to create during the multistart search.
p. 166

XSLP_MULTISTART_MAXTIME The maximum total time to be spent in the mutlistart search. p. 166

XSLP_MULTISTART_POOLSIZE The maximum number of problem objects allowed to pool up before
synchronization in the deterministic multistart. p. 166

XSLP_MULTISTART_SEED Random seed used for the automatic generation of initial point when
loading multistart presets p. 167

XSLP_MULTISTART_THREADS The maximum number of threads to be used in multistart p. 167

XSLP_MVTOL Marginal value tolerance for determining if a constraint is slack p. 131

XSLP_OBJSENSE Objective function sense p. 131

XSLP_OBJTOPENALTYCOST Factor to estimate initial penalty costs from objective function p. 132

XSLP_OCOUNT Number of SLP iterations over which to measure objective function variation
for static objective (2) convergence criterion p. 167

XSLP_OPTIMALITYTOLTARGET When set, this defines a target optimality tolerance to which the
linearizations are solved to p. 132

XSLP_OTOL_A Absolute static objective (2) convergence tolerance p. 132

XSLP_OTOL_R Relative static objective (2) convergence tolerance p. 133

XSLP_PENALTYCOLFORMAT Formatting string for creation of the names of the SLP penalty transfer
vectors p. 182

XSLP_PENALTYINFOSTART Iteration from which to record row penalty information p. 168

XSLP_PENALTYROWFORMAT Formatting string for creation of the names of the SLP penalty rows p. 183

XSLP_PLUSDELTAFORMAT Formatting string for creation of names for SLP positive penalty delta
vectors p. 183

XSLP_PLUSERRORFORMAT Formatting string for creation of names for SLP positive penalty error
vectors p. 183

XSLP_POSTSOLVE This control determines whether postsolving should be performed
automatically p. 168

XSLP_PRESOLVE This control determines whether presolving should be performed prior to
starting the main algorithm p. 168

XSLP_PRESOLVELEVEL This control determines the level of changes presolve may carry out on the
problem p. 168

XSLP_PRESOLVEOPS Bitmap indicating the SLP presolve actions to be taken p. 169

XSLP_PRESOLVEZERO Minimum absolute value for a variable which is identified as nonzero during
SLP presolve p. 134

XSLP_PRIMALINTEGRALREF Reference solution value to take into account when calculating the
primal integral p. 134

XSLP_PROBING This control determines whether probing on a subset of variables should be
performed prior to starting the main algorithm. Probing runs multiple times
bound reduction in order to further tighten the bounding box. p. 169

Fair Isaac Corporation Proprietary Information 107

Chapter 19: Control Parameters

XSLP_REFORMULATE Controls the problem reformulations carried out before augmentation. This
allows SLP to take advantage of dedicated algorithms for special problem
classes. p. 170

XSLP_SAMECOUNT Number of steps reaching the step bound in the same direction before step
bounds are increased p. 171

XSLP_SAMEDAMP Number of steps in same direction before damping factor is increased p. 171

XSLP_SBLOROWFORMAT Formatting string for creation of names for SLP lower step bound rows p. 184

XSLP_SBNAME Name of the set of initial step bounds to be used p. 184

XSLP_SBROWOFFSET Position of first character of SLP variable name used to create name of SLP
lower and upper step bound rows p. 171

XSLP_SBSTART SLP iteration after which step bounds are first applied p. 172

XSLP_SBUPROWFORMAT Formatting string for creation of names for SLP upper step bound rows
p. 184

XSLP_SCALE When to re-scale the SLP problem p. 172

XSLP_SCALECOUNT Iteration limit used in determining when to re-scale the SLP matrix p. 173

XSLP_SHRINK Multiplier to reduce a step bound p. 134

XSLP_SHRINKBIAS Defines an overwrite / adjustment of step bounds for improving iterations
p. 134

XSLP_SLPLOG Frequency with which SLP status is printed p. 173

XSLP_SOLVER First order differentiation mode when using analytical derivatives p. 173

XSLP_STOL_A Absolute slack convergence tolerance p. 135

XSLP_STOL_R Relative slack convergence tolerance p. 135

XSLP_STOPOUTOFRANGE Stop optimization and return error code if internal function argument is out
of range p. 173

XSLP_THREADS Default number of threads to be used p. 174

XSLP_THREADSAFEUSERFUNC Defines if user functions are allowed to be called in parallel p. 174

XSLP_TOLNAME Name of the set of tolerance sets to be used p. 185

XSLP_TRACEMASK Mask of variable or row names that are to be traced through the SLP iterates
p. 185

XSLP_TRACEMASKOPS Controls the information printed for XSLP_TRACEMASK. The order in which
the information is printed is determined by the order of bits in
XSLP_TRACEMASKOPS. p. 174

XSLP_UNFINISHEDLIMIT The number of consecutive SLP iterations that may have an unfinished
status before the solve is terminated. p. 175

XSLP_UPDATEFORMAT Formatting string for creation of names for SLP update rows p. 185

XSLP_UPDATEOFFSET Position of first character of SLP variable name used to create name of SLP
update row p. 175

XSLP_VALIDATIONTARGET_K Optimality target tolerance p. 136

Fair Isaac Corporation Proprietary Information 108

Chapter 19: Control Parameters

XSLP_VALIDATIONTARGET_R Feasiblity target tolerance p. 135

XSLP_VALIDATIONTOL_A Absolute tolerance for the XSLPvalidate procedure p. 136

XSLP_VALIDATIONTOL_R Relative tolerance for the XSLPvalidate procedure p. 136

XSLP_VCOUNT Number of SLP iterations over which to measure static objective (3)
convergence p. 176

XSLP_VLIMIT Number of SLP iterations after which static objective (3) convergence
testing starts p. 176

XSLP_VTOL_A Absolute static objective (3) convergence tolerance p. 137

XSLP_VTOL_R Relative static objective (3) convergence tolerance p. 138

XSLP_WCOUNT Number of SLP iterations over which to measure the objective for the
extended convergence continuation criterion p. 177

XSLP_WTOL_A Absolute extended convergence continuation tolerance p. 138

XSLP_WTOL_R Relative extended convergence continuation tolerance p. 139

XSLP_XCOUNT Number of SLP iterations over which to measure static objective (1)
convergence p. 177

XSLP_XLIMIT Number of SLP iterations up to which static objective (1) convergence
testing starts p. 178

XSLP_XTOL_A Absolute static objective function (1) tolerance p. 140

XSLP_XTOL_R Relative static objective function (1) tolerance p. 141

XSLP_ZERO Absolute tolerance p. 141

XSLP_ZEROCRITERION Bitmap determining the behavior of the placeholder deletion procedure p. 179

XSLP_ZEROCRITERIONCOUNT Number of consecutive times a placeholder entry is zero before being
considered for deletion p. 180

XSLP_ZEROCRITERIONSTART SLP iteration at which criteria for deletion of placeholder entries are
first activated. p. 180

Fair Isaac Corporation Proprietary Information 109

Chapter 19: Control Parameters

19.1 Double control parameters
XSLP_ATOL_A

Description Absolute delta convergence tolerance

Type Double

Note The absolute delta convergence criterion assesses the change in value of a variable (δX)
against the absolute delta convergence tolerance. If
δX < XSLP_ATOL_A
then the variable has converged on the absolute delta convergence criterion. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and
1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_R

XSLP_ATOL_R

Description Relative delta convergence tolerance

Type Double

Note The relative delta convergence criterion assesses the change in value of a variable (δX) relative
to the value of the variable (X), against the relative delta convergence tolerance. If
δX < X ∗ XSLP_ATOL_R
then the variable has converged on the relative delta convergence criterion. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and
1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_A

XSLP_BARSTALLINGTOL

Description Required change in the objective when progress is measured in barrier iterations without
crossover

Type Double

Note Minumum objective variability change required in relation to control
XSLP_BARSTALLINGOBJLIMIT for the iterations to be regarded as making progress. The net
objective, error cost and error sum are taken into account.

Default value 0.05

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGOBJLIMIT

Fair Isaac Corporation Proprietary Information 110

Chapter 19: Control Parameters

XSLP_CASCADETOL_PA

Description Absolute cascading print tolerance

Type Double

Note The change to the value of a variable as a result of cascading is only printed if the change is
deemed significant. The change is tested against: absolute and relative convergence tolerance
and absolute and relative cascading print tolerance. The change is printed only if all tests fail.
The absolute cascading print criterion measures the change in value of a variable (δX) against
the absolute cascading print tolerance. If
δX < XSLP_CASCADETOL_PA
then the change is within the absolute cascading print tolerance and will not be printed.
XSLP_LOG must be at least 5 for this control to have an effect.

Default value 0.01

See also Cascading, XSLP_CASCADETOL_PR

Affects routines XSLPcascade

XSLP_CASCADETOL_PR

Description Relative cascading print tolerance

Type Double

Note The change to the value of a variable as a result of cascading is only printed if the change is
deemed significant. The change is tested against: absolute and relative convergence tolerance
and absolute and relative cascading print tolerance. The change is printed only if all tests fail.
The relative cascading print criterion measures the change in value of a variable (δX) relative to
the value of the variable (X), against the relative cascading print tolerance. If
δX < X ∗ XSLP_CASCADETOL_PR
then the change is within the relative cascading print tolerance and will not be printed.
XSLP_LOG must be at least 5 for this control to have an effect.

Default value 0.01

See also Cascading, XSLP_CASCADETOL_PA

Affects routines XSLPcascade

XSLP_CDTOL_A

Description Absolute tolerance for deducing constant derivatives

Type Double

Note The absolute tolerance test for constant derivatives is used as follows:
If the value of the user function at point X0 is Y0 and the values at (X0 – δX) and (X0 + δX) are Yd
and Yu respectively, then the numerical derivatives at X0 are:
"down" derivative Dd = (Y0 – Yd)/δX
"up" derivative Du = (Yu – Y0)/δX
If abs(Dd – Du) ≤ XSLP_CDTOL_A
then the derivative is regarded as constant.

Default value 1.0e-08

See also XSLP_CDTOL_R

Fair Isaac Corporation Proprietary Information 111

Chapter 19: Control Parameters

XSLP_CDTOL_R

Description Relative tolerance for deducing constant derivatives

Type Double

Note The relative tolerance test for constant derivatives is used as follows:
If the value of the user function at point X0 is Y0 and the values at (X0 – δX) and (X0 + δX) are Yd
and Yu respectively, then the numerical derivatives at X0 are:
"down" derivative Dd = (Y0 – Yd)/δX
"up" derivative Du = (Yu – Y0)/δX
If abs(Dd – Du) ≤ XSLP_CDTOL_R ∗ abs(Yd + Yu)/2
then the derivative is regarded as constant.

Default value 1.0e-08

See also XSLP_CDTOL_A

XSLP_CLAMPSHRINK

Description Shrink ratio used to impose strict convergence on variables converged in extended criteria only

Type Double

Note If the solution has converged but there are variables converged on extended criteria only, the
XSLP_CLAMPSHRINK acts as a shrinking ratio on the step bounds and the problem is optimized
(if necessary multiple times), with the purpose of expediting strict convergence on all variables.
XSLP_ALGORITHM controls if this shrinking is applied at all, and if shrinking is applied to of the
variables converged on extended criteria only with active step bounds only, or if on all variables.

Default value 0.3

See also XSLP_ALGORITHM, XSLP_CLAMPVALIDATIONTOL_A, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_A

Description Absolute validation tolerance for applying XSLP_CLAMPSHRINK

Type Double

Note If set and the absolute validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

Default value 0.0 (not set)

See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_R

Description Relative validation tolerance for applying XSLP_CLAMPSHRINK

Type Double

Fair Isaac Corporation Proprietary Information 112

Chapter 19: Control Parameters

Note If set and the relative validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

Default value 0.0 (not set)

See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_A

XSLP_CTOL

Description Closure convergence tolerance

Type Double

Notes The closure convergence criterion measures the change in value of a variable (δX) relative to
the value of its initial step bound (B), against the closure convergence tolerance. If
δX < B ∗ XSLP_CTOL
then the variable has converged on the closure convergence criterion.
If no explicit initial step bound is provided, then the test will not be applied and the variable can
never converge on the closure criterion. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R.
Good values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_A, XSLP_ATOL_R

XSLP_DAMP

Description Damping factor for updating values of variables

Type Double

Note The damping factor sets the next assumed value for a variable based on the previous assumed
value (X0) and the actual value (X1). The new assumed value is given by
X1 ∗ XSLP_DAMP + X0 ∗ (1 – XSLP_DAMP)

Default value 1

See also Xpress-SLP Solution Process, XSLP_DAMPEXPAND XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPEXPAND

Description Multiplier to increase damping factor during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMEDAMP successive
changes in the same direction for a variable, then the damping factor (D) for the variable will be
reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)

Default value 1

Fair Isaac Corporation Proprietary Information 113

Chapter 19: Control Parameters

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPMAX

Description Maximum value for the damping factor of a variable during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMEDAMP successive
changes in the same direction for a variable, then the damping factor (D) for the variable will be
reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPMIN

Description Minimum value for the damping factor of a variable during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D) for the
variable will be reset to
D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1 – XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPSHRINK, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPSHRINK

Description Multiplier to decrease damping factor during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D) for the
variable will be reset to
D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1 – XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPMIN, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Proprietary Information 114

Chapter 19: Control Parameters

XSLP_DEFAULTIV

Description Default initial value for an SLP variable if none is explicitly given

Type Double

Note If no initial value is given for an SLP variable, then the initial value provided for the "equals
column" will be used. If no such value has been provided, then XSLP_DEFAULTIV will be used.
If this is above the upper bound for the variable, then the upper bound will be used; if it is below
the lower bound for the variable, then the lower bound will be used.

Default value 100

Affects routines XSLPconstruct

XSLP_DEFAULTSTEPBOUND

Description Minimum initial value for the step bound of an SLP variable if none is explicitly given

Type Double

Notes If no initial step bound value is given for an SLP variable, this will be used as a minimum value.
If the algorithm is estimating step bounds, then the step bound actually used for a variable may
be larger than the default.
A default initial step bound is ignored when testing for the closure tolerance XSLP_CTOL: if
there is no specific value, then the test will not be applied.

Default value 16

See also XSLP_CTOL

Affects routines XSLPconstruct

XSLP_DELTA_A

Description Absolute perturbation of values for calculating numerical derivatives

Type Double

Note First-order derivatives are calculated by perturbing the value of each variable in turn by a small
amount. The amount is determined by the absolute and relative delta factors as follows:
XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_R
where (X) is the current value of the variable. If the perturbation takes the variable outside a
bound, then the perturbation normally made only in the opposite direction.

Default value 0.001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_R

Fair Isaac Corporation Proprietary Information 115

Chapter 19: Control Parameters

XSLP_DELTA_R

Description Relative perturbation of values for calculating numerical derivatives

Type Double

Note First-order derivatives are calculated by perturbing the value of each variable in turn by a small
amount. The amount is determined by the absolute and relative delta factors as follows:
XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_R
where (X) is the current value of the variable. If the perturbation takes the variable outside a
bound, then the perturbation normally made only in the opposite direction.

Default value 0.001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_A

XSLP_DELTA_X

Description Minimum absolute value of delta coefficients to be retained

Type Double

Notes If the value of a coefficient in a delta column is less than this value, it will be reset to zero.
Larger values of XSLP_DELTA_X will result in matrices with fewer elements, which may be
easier to solve. However, there will be increased likelihood of local optima as some of the small
relationships between variables and constraints are deleted. There may also be increased
difficulties with singular bases resulting from deletion of pivot elements from the matrix.

Default value 1.0e-6

Affects routines XSLPmaxim, XSLPminim

XSLP_DELTA_Z

Description Tolerance used when calculating derivatives

Type Double

Notes If the absolute value of a variable is less than this value, then a value of XSLP_DELTA_Z will be
used instead for calculating derivatives.
If a nonzero derivative is calculated for a formula which always results in a matrix coefficient
less than XSLP_DELTA_Z, then a larger value will be substituted so that at least one of the
coefficients is XSLP_DELTA_Z in magnitude.
If XSLP_DELTAZLIMIT is set to a positive number, then when that number of iterations have
passed, values smaller than XSLP_DELTA_Z will be set to zero.

Default value 0.00001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTAZLIMIT, XSLP_DELTA_ZERO

Fair Isaac Corporation Proprietary Information 116

Chapter 19: Control Parameters

XSLP_DELTA_ZERO

Description Absolute zero acceptance tolerance used when calculating derivatives

Type Double

Notes Provides an override value for the XSLP_DELTA_Z behavior. Derivatives smaller than
XSLP_DELTA_ZERO will not be substituted by XSLP_DELTA_Z, defining a range in which
derivatives are deemed nonzero and are affected by XSLP_DELTA_Z.
A negative value means that this tolerance will not be applied.

Default value -1.0 (not applied)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTAZLIMIT, XSLP_DELTA_Z

XSLP_DELTACOST

Description Initial penalty cost multiplier for penalty delta vectors

Type Double

Note If penalty delta vectors are used, this parameter sets the initial cost factor. If there are active
penalty delta vectors, then the penalty cost may be increased.

Default value 200

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOSTFACTOR, XSLP_DELTAMAXCOST,
XSLP_ERRORCOST

XSLP_DELTACOSTFACTOR

Description Factor for increasing cost multiplier on total penalty delta vectors

Type Double

Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST

Default value 1.3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTAMAXCOST, XSLP_ERRORCOST

XSLP_DELTAMAXCOST

Description Maximum penalty cost multiplier for penalty delta vectors

Type Double

Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST

Fair Isaac Corporation Proprietary Information 117

Chapter 19: Control Parameters

Default value infinite

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTACOSTFACTOR, XSLP_ERRORCOST

XSLP_DJTOL

Description Tolerance on DJ value for determining if a variable is at its step bound

Type Double

Note If a variable is at its step bound and within the absolute delta tolerance XSLP_ATOL_A or
closure tolerance XSLP_CTOL then the step bounds will not be further reduced. If the DJ is
greater in magnitude than XSLP_DJTOL then the step bound may be relaxed if it meets the
necessary criteria.

Default value 1.0e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ATOL_A, XSLP_CTOL

XSLP_DRCOLTOL

Description The minimum absolute magnitude of a determining column, for which the determined variable
is still regarded as well defined

Type Double

Notes This control affects the cascading procedure. Please see Chapter Cascading for more
information.

Default value 0

See also XSLP_CASCADE

Affects routines XSLPconstruct XSLPcascade

XSLP_ECFTOL_A

Description Absolute tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation — in
particular, that it should be reasonably close to feasibility. Each constraint is tested at the point
of linearization, and the total positive and negative contributions to the constraint from the
columns in the problem are calculated. A feasibility tolerance is calculated as the largest of
XSLPECFTOLA and
max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_R
If the calculated infeasibility is greater than the tolerance, the point of linearization is regarded
as infeasible and the extended convergence criteria will not be applied. When the value is set to
be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-1 and
1e-6.

Fair Isaac Corporation Proprietary Information 118

Chapter 19: Control Parameters

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_R

XSLP_ECFTOL_R

Description Relative tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation — in
particular, that it should be reasonably close to feasibility. Each constraint is tested at the point
of linearization, and the total positive and negative contributions to the constraint from the
columns in the problem are calculated. A feasibility tolerance is calculated as the largest of
XSLPECFTOLA and
max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_R
If the calculated infeasibility is greater than the tolerance, the point of linearization is regarded
as infeasible and the extended convergence criteria will not be applied. When the value is set to
be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-1 and
1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_A

XSLP_ENFORCECOSTSHRINK

Description Factor by which to decrease the current penalty multiplier when enforcing rows.

Type Double

Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its error variable,
removing the variable (fixing it to zero) can force the row to be satisfied, as set by
XSLP_ENFORCEMAXCOST. After the error variables have been removed (which is equivalent to
setting to row to be enforced) the penalties on the remaining error variables are rebalanced to
allow for a reduction in the size of the penalties in the objective in order to achive better
numerical behaviour.

Default value 0.00001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ENFORCEMAXCOST

XSLP_ENFORCEMAXCOST

Description Maximum penalty cost in the objective before enforcing most violating rows

Type Double

Fair Isaac Corporation Proprietary Information 119

Chapter 19: Control Parameters

Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its error variable,
removing the variable (fixing it to zero) can force the row to be satisfied. After the error
variables have been removed (which is equivalent to setting to row to be enforced) the
penalties on the remaining error variables are rebalanced to allow for a reduction in the size of
the penalties in the objective in order to achive better numerical behaviour, controlled by
XSLP_ENFORCECOSTSHRINK.

Default value 10000000000

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ENFORCECOSTSHRINK

XSLP_ERRORCOST

Description Initial penalty cost multiplier for penalty error vectors

Type Double

Note If penalty error vectors are used, this parameter sets the initial cost factor. If there are active
penalty error vectors, then the penalty cost may be increased.

Default value 200

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOSTFACTOR,
XSLP_ERRORMAXCOST

XSLP_ERRORCOSTFACTOR

Description Factor for increasing cost multiplier on total penalty error vectors

Type Double

Note If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST

Default value 1.3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORMAXCOST

XSLP_ERRORMAXCOST

Description Maximum penalty cost multiplier for penalty error vectors

Type Double

Note If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST

Default value infinite

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORCOSTFACTOR

Fair Isaac Corporation Proprietary Information 120

Chapter 19: Control Parameters

XSLP_ERRORTOL_A

Description Absolute tolerance for error vectors

Type Double

Note The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than XSLP_ERRORTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value.

Default value 0.00001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EVTOL_A, XSLP_EVTOL_R

XSLP_ERRORTOL_P

Description Absolute tolerance for printing error vectors

Type Double

Note The solution log includes a print of penalty delta and penalty error vectors with an activity
greater than XSLP_ERRORTOL_P.

Default value 0.0001

Affects routines XSLPmaxim, XSLPminim

XSLP_ESCALATION

Description Factor for increasing cost multiplier on individual penalty error vectors

Type Double

Note If penalty cost escalation is activated in XSLP_ALGORITHM then the penalty cost multiplier will
be increased by a factor of XSLP_ESCALATION for any active error vector up to a maximum of
XSLP_MAXWEIGHT.

Default value 1.25

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_MAXWEIGHT

XSLP_ETOL_A

Description Absolute tolerance on penalty vectors

Type Double

Fair Isaac Corporation Proprietary Information 121

Chapter 19: Control Parameters

Note For each penalty error vector, the contribution to its constraint is calculated, together with the
total positive and negative contributions to the constraint from other vectors. If its contribution
is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less than
abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not have its
penalty increased. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ETOL_R XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_ETOL_R

Description Relative tolerance on penalty vectors

Type Double

Note For each penalty error vector, the contribution to its constraint is calculated, together with the
total positive and negative contributions to the constraint from other vectors. If its contribution
is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less than
abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not have its
penalty increased. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ETOL_A XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_EVTOL_A

Description Absolute tolerance on total penalty costs

Type Double

Note The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than XSLP_ERRORTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and
1e-6, but normally a magnitude larger than XSLP_ETOL_A.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ERRORTOL_A, XSLP_EVTOL_R

Fair Isaac Corporation Proprietary Information 122

Chapter 19: Control Parameters

XSLP_EVTOL_R

Description Relative tolerance on total penalty costs

Type Double

Note The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than XSLP_ERRORTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and
1e-6, but normally a magnitude larger than XSLP_ETOL_R.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ERRORTOL_A, XSLP_EVTOL_A

XSLP_EXPAND

Description Multiplier to increase a step bound

Type Double

Note If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMECOUNT successive
changes reaching the step bound and in the same direction for a variable, then the step bound
(B) for the variable will be reset to
B ∗ XSLP_EXPAND.

Default value 2

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SHRINK, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_FEASTOLTARGET

Description When set, this defines a target feasibility tolerance to which the linearizations are solved to

Type Double

Note This is a soft version of XPRS_FEASTOL, and will dynamically revert back to XPRS_FEASTOL if
the desired accuracy could not be achieved.

Default value 0 (ignored, not set)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OPTIMALITYTOLTARGET,

Fair Isaac Corporation Proprietary Information 123

Chapter 19: Control Parameters

XSLP_GRANULARITY

Description Base for calculating penalty costs

Type Double

Note If XSLP_GRANULARITY >1, then initial penalty costs will be powers of XSLP_GRANULARITY.

Default value 4

Affects routines XSLPconstruct

See also XSLP_MAXWEIGHT, XSLP_MINWEIGHT

XSLP_INFINITY

Description Value returned by a divide-by-zero in a formula

Type Double

Default value 1.0e+10

XSLP_ITOL_A

Description Absolute impact convergence tolerance

Type Double

Note The absolute impact convergence criterion assesses the change in the effect of a coefficient in
a constraint. The effect of a coefficient is its value multiplied by the activity of the column in
which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is the value
of the coefficient. The linearization approximates the effect of the coefficient as

E1 = X ∗ C0 + δX ∗ C′
0

where X is as before, C0 is the value of the coefficient C calculated using the assumed values
for the variables and C′

0 is the value of ∂C
∂X calculated using the assumed values for the

variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′
0)

If δE < XSLP_ITOL_A
then the variable has passed the absolute impact convergence criterion for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative or
absolute) impact or matrix criteria for all the coefficients in which it appears, then it is deemed
to have converged. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

Fair Isaac Corporation Proprietary Information 124

Chapter 19: Control Parameters

XSLP_ITOL_R

Description Relative impact convergence tolerance

Type Double

Note The relative impact convergence criterion assesses the change in the effect of a coefficient in a
constraint in relation to the magnitude of the constituents of the constraint. The effect of a
coefficient is its value multiplied by the activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is the value
of the coefficient. The linearization approximates the effect of the coefficient as

E1 = X ∗ C0 + δX ∗ C′
0

where X is as before, C0 is the value of the coefficient C calculated using the assumed values
for the variables and C′

0 is the value of ∂C
∂X calculated using the assumed values for the

variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′
0)

All the elements of the constraint are examined, excluding delta and error vectors: for each, the
contribution to the constraint is evaluated as the element multiplied by the activity of the vector
in which it appears; it is then included in a total positive contribution or total negative
contribution depending on the sign of the contribution. If the predicted effect of the coefficient
is positive, it is tested against the total positive contribution; if the effect of the coefficient is
negative, it is tested against the total negative contribution. If T0 is the total positive or total
negative contribution to the constraint (as appropriate)
and δE < T0 ∗ XSLP_ITOL_R
then the variable has passed the relative impact convergence criterion for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative or
absolute) impact or matrix criteria for all the coefficients in which it appears, then it is deemed
to have converged. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_MATRIXTOL

Description This control is deprecated and may be removed in future releases. Provides an override value
for XPRS_MATRIXTOL, which controls the smallest magnitude of matrix coefficients

Type Double

Note Any value smaller than XSLP_MATRIXTOL in magnitude will not be loaded into the linearization.
This only applies to the matrix coefficients; bounds, right hand sides and objectives are not
affected.

Fair Isaac Corporation Proprietary Information 125

Chapter 19: Control Parameters

Default value 0.0

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

XSLP_MAXWEIGHT

Description Maximum penalty weight for delta or error vectors

Type Double

Note When penalty vectors are created, or when their weight is increased by escalation, the
maximum weight that will be used is given by XSLP_MAXWEIGHT.

Default value 100

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_AUGMENTATION, XSLP_ESCALATION, XSLP_MINWEIGHT

XSLP_MEMORYFACTOR

Description Factor for expanding size of dynamic arrays in memory

Type Double

Note When a dynamic array has to be increased in size, the new space allocated will be
XSLP_MEMORYFACTOR times as big as the previous size. A larger value may result in improved
performance because arrays need to be re-sized and moved less frequently; however, more
memory may be required under such circumstances because not all of the previous memory
area can be re-used efficiently.

Default value 1.6

See also Memory control variables XSLP_MEM⁎Memory control variables XSLP_MEM⁎

XSLP_MERITLAMBDA

Description Factor by which the net objective is taken into account in the merit function

Type Double

Note The merit function is evaluated in the original, non-augmented / linearized space of the problem.
A solution is deemed improved, if either feasibility improved, or if feasibility is not deteriorated
but the net objective is improved, or if the combination of the two is improved, where the value
of the XSLP_MERITLAMBDA control is used to combine the two measures. A nonpositive value
indicates that the combined effect should not be checked.

Default value 0.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_FILTER XSLP_LSITERLIMIT XSLP_LSPATTERNLIMIT

Fair Isaac Corporation Proprietary Information 126

Chapter 19: Control Parameters

XSLP_MINSBFACTOR

Description Factor by which step bounds can be decreased beneath XSLP_ATOL_A

Type Double

Note Normally, step bounds are not decreased beneath XSLP_ATOL_A, as such variables are treated
as converged. However, it may be beneficial to decrease step bounds further, as individual
variable value changes might affect the convergence of other variables in the model, even if the
variablke itself is deemed converged.

Default value 1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ATOL_A

XSLP_MINWEIGHT

Description Minimum penalty weight for delta or error vectors

Type Double

Note When penalty vectors are created, the minimum weight that will be used is given by
XSLP_MINWEIGHT.

Default value 0.01

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_MAXWEIGHT

XSLP_MIPCUTOFF_A

Description Absolute objective function cutoff for MIP termination

Type Double

Note If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off at
the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.
The MIP cutoff tests are only applied after XSLP_MIPCUTOFFLIMIT SLP iterations at the
current node.

Default value 0.0001

Affects routines XSLPnlpoptimize

See also XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_R

Fair Isaac Corporation Proprietary Information 127

Chapter 19: Control Parameters

XSLP_MIPCUTOFF_R

Description Absolute objective function cutoff for MIP termination

Type Double

Note If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off at
the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.
The MIP cutoff tests are only applied after XSLP_MIPCUTOFFLIMIT SLP iterations at the
current node.

Default value 0.0001

Affects routines XSLPnlpoptimize

See also XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_A

XSLP_MIPERRORTOL_A

Description Absolute penalty error cost tolerance for MIP cut-off

Type Double

Note The penalty error cost test is applied at each node where there are active penalties in the
solution. If XSLP_MIPERRORTOL_A is nonzero and the absolute value of the penalty costs is
greater than XSLP_MIPERRORTOL_A, the node will be declared infeasible. If
XSLP_MIPERRORTOL_A is zero then no test is made and the node will not be declared
infeasible on this criterion.

Default value 0 (inactive)

Affects routines XSLPnlpoptimize

See also XSLP_MIPERRORTOL_R

XSLP_MIPERRORTOL_R

Description Relative penalty error cost tolerance for MIP cut-off

Type Double

Note The penalty error cost test is applied at each node where there are active penalties in the
solution. If XSLP_MIPERRORTOL_R is nonzero and the absolute value of the penalty costs is
greater than XSLP_MIPERRORTOL_R ∗ abs(Obj) where Obj is the value of the objective function,
then the node will be declared infeasible. If XSLP_MIPERRORTOL_R is zero then no test is
made and the node will not be declared infeasible on this criterion.

Default value 0 (inactive)

Affects routines XSLPnlpoptimize

See also XSLP_MIPERRORTOL_A

Fair Isaac Corporation Proprietary Information 128

Chapter 19: Control Parameters

XSLP_MIPOTOL_A

Description Absolute objective function tolerance for MIP termination

Type Double

Note The objective function test for MIP termination is applied only when step bounding has been
applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within
OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function over those
iterations.

Default value 0.00001

Affects routines XSLPnlpoptimize

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_R XSLP_SBSTART

XSLP_MIPOTOL_R

Description Relative objective function tolerance for MIP termination

Type Double

Note The objective function test for MIP termination is applied only when step bounding has been
applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within
OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function over those
iterations.

Default value 0.00001

Affects routines XSLPnlpoptimize

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_A XSLP_SBSTART

XSLP_MSMAXBOUNDRANGE

Description Defines the maximum range inside which initial points are generated by multistart presets

Type Double

Note The is the maximum range in which initial points are generated; the actual range is expected to
be smaller as bounds are domains are also considered.

Default value 1000

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

Fair Isaac Corporation Proprietary Information 129

Chapter 19: Control Parameters

XSLP_MTOL_A

Description Absolute effective matrix element convergence tolerance

Type Double

Note The absolute effective matrix element convergence criterion assesses the change in the effect
of a coefficient in a constraint. The effect of a coefficient is its value multiplied by the activity of
the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is the value
of the coefficient. The linearization approximates the effect of the coefficient as

E = X ∗ C0 + δX ∗ C′
0

where V is as before, C0 is the value of the coefficient C calculated using the assumed values
for the variables and C′

0 is the value of ∂C
∂X calculated using the assumed values for the

variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′
0)

If δE < X ∗ XSLP_MTOL_A
then the variable has passed the absolute effective matrix element convergence criterion for
this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative or
absolute) impact or matrix criteria for all the coefficients in which it appears, then it is deemed
to have converged. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_MTOL_R

Description Relative effective matrix element convergence tolerance

Type Double

Note The relative effective matrix element convergence criterion assesses the change in the effect of
a coefficient in a constraint relative to the magnitude of the coefficient. The effect of a
coefficient is its value multiplied by the activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is the value
of the coefficient. The linearization approximates the effect of the coefficient as

E1 = X ∗ C0 + δX ∗ C′
0

Fair Isaac Corporation Proprietary Information 130

Chapter 19: Control Parameters

where V is as before, C0 is the value of the coefficient C calculated using the assumed values
for the variables and C′

0 is the value of ∂C
∂X calculated using the assumed values for the

variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′
0)

If δE < E1 ∗ XSLP_MTOL_R
then the variable has passed the relative effective matrix element convergence criterion for this
coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative or
absolute) impact or matrix criteria for all the coefficients in which it appears, then it is deemed
to have converged. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control
are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_STOL_A, XSLP_STOL_R

XSLP_MVTOL

Description Marginal value tolerance for determining if a constraint is slack

Type Double

Note If the absolute value of the marginal value of a constraint is less than XSLP_MVTOL, then
(1) the constraint is regarded as not constraining for the purposes of the slack tolerance
convergence criteria;
(2) the constraint is not regarded as an active constraint when identifying unconverged
variables in active constraints. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_STOL_A, XSLP_STOL_R

XSLP_OBJSENSE

Description Objective function sense

Type Double

Note XSLP_OBJSENSE is set to +1 for minimization and to -1 for maximization. It is automatically set
by XSLPmaxim and XSLPminim; it must be set by the user before calling XSLPnlpoptimize.

Set by routines XSLPmaxim, XSLPminim

Default value +1

Affects routines XSLPmaxim, XSLPminim, XSLPnlpoptimize

Fair Isaac Corporation Proprietary Information 131

Chapter 19: Control Parameters

XSLP_OBJTOPENALTYCOST

Description Factor to estimate initial penalty costs from objective function

Type Double

Notes The setting of initial penalty error costs can affect the path of the optimization and, indeed,
whether a solution is achieved at all. If the penalty costs are too low, then unbounded solutions
may result although Xpress-SLP will increase the costs in an attempt to recover. If the penalty
costs are too high, then the requirement to achieve feasibility of the linearized constraints may
be too strong to allow the system to explore the nonlinear feasible region. Low penalty costs
can result in many SLP iterations, as feasibility of the nonlinear constraints is not achieved until
the penalty costs become high enough; high penalty costs force feasibility of the linearizations,
and so tend to find local optima close to an initial feasible point. Xpress-SLP can analyze the
problem to estimate the size of penalty costs required to avoid an initial unbounded solution.
XSLP_OBJTOPENALTYCOST can be used in conjunction with this procedure to scale the costs
and give an appropriate initial value for balancing the requirements of feasibility and optimality.
Not all models are amenable to the Xpress-SLP analysis. As the analysis is initially concerned
with establishing a cost level to avoid unboundedness, a model which is sufficiently
constrained will never show unboundedness regardless of the cost. Also, as the analysis is
done at the start of the optimization to establish a penalty cost, significant changes in the
coefficients, or a high degree of nonlinearity, may invalidate the initial analysis.
A setting for XSLP_OBJTOPENALTYCOST of zero disables the analysis. A setting of 3 or 4 has
proved successful for many models. If XSLP_OBJTOPENALTYCOST cannot be used because
of the problem structure, its effect can still be emulated by some initial experiments to
establish the cost required to avoid unboundedness, and then manually applying a suitable
factor. If the problem is initially unbounded, then the penalty cost will be increased until either it
reaches its maximum or the problem becomes bounded.

Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_OPTIMALITYTOLTARGET

Description When set, this defines a target optimality tolerance to which the linearizations are solved to

Type Double

Note This is a soft version of XPRS_OPTIMALITYTOL, and will dynamically revert back to
XPRS_OPTIMALITYTOL if the desired accuracy could not be achieved.

Default value 0 (ignored, not set)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_FEASTOLTARGET,

XSLP_OTOL_A

Description Absolute static objective (2) convergence tolerance

Type Double

Fair Isaac Corporation Proprietary Information 132

Chapter 19: Control Parameters

Note The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_OTOL_A
then the problem has converged on the absolute static objective (2) convergence criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the optimality
target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_R

XSLP_OTOL_R

Description Relative static objective (2) convergence tolerance

Type Double

Note The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_R
then the problem has converged on the relative static objective (2) convergence criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the optimality
target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_A

Fair Isaac Corporation Proprietary Information 133

Chapter 19: Control Parameters

XSLP_PRESOLVEZERO

Description Minimum absolute value for a variable which is identified as nonzero during SLP presolve

Type Double

Note During the SLP (nonlinear)presolve, a variable may be identified as being nonzero (for example,
because it is used as a divisor). A bound of plus or minus XSLP_PRESOLVEZERO will be
applied to the variable if it is identified as non-negative or non-positive.

Default value 1.0E-09

Affects routines XSLPpresolve

XSLP_PRIMALINTEGRALREF

Description Reference solution value to take into account when calculating the primal integral

Type Double

Note When a global optimum is known, this can used to calculate a globally valid primal integral. It
can also be used to indicate the target objective value still to be taken into account in the
integral.

Default value XPRS_PLUSINFINITY

Affects routines XSLPminim, XSLPmaxim

XSLP_SHRINK

Description Multiplier to reduce a step bound

Type Double

Note If step bounding is enabled, the step bound for a variable will be decreased if successive
changes are in opposite directions. The step bound (B) for the variable will be reset to
B ∗ XSLP_SHRINK.
If the step bound is already below the strict (delta or closure) tolerances, it will not be reduced
further.

Default value 0.5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EXPAND, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_SHRINKBIAS

Description Defines an overwrite / adjustment of step bounds for improving iterations

Type Double

Note Positive values overwrite XSLP_SHRINK only if the objective is improving. A negative value is
used to scale all step bounds in improving iterations.

Default value 0 (ignored, not set)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_SHRINK, XSLP_EXPAND, XSLP_SAMECOUNT

Fair Isaac Corporation Proprietary Information 134

Chapter 19: Control Parameters

XSLP_STOL_A

Description Absolute slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except that the
tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R (instead of
XSLP_ITOL_R). See XSLP_ITOL_A for a description of the test. When the value is set to be
negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and
1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_R

XSLP_STOL_R

Description Relative slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except that the
tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R (instead of
XSLP_ITOL_R). See XSLP_ITOL_R for a description of the test. When the value is set to be
negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and
1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A

XSLP_VALIDATIONTARGET_R

Description Feasiblity target tolerance

Type Double

Note Primary feasiblity control for SLP. When the relevant feasibility based convergence controls are
left at their default values, SLP will adjust their value to match the target. The control defines a
target value, that may not necessarily be attainable.

Default value 1e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_VALIDATIONTARGET_K

Fair Isaac Corporation Proprietary Information 135

Chapter 19: Control Parameters

XSLP_VALIDATIONTARGET_K

Description Optimality target tolerance

Type Double

Note Primary optimality control for SLP. When the relevant optimality based convergence controls
are left at their default values, SLP will adjust their value to match the target. The control
defines a target value, that may not necessarily be attainable for problem with no strong
constraint qualifications.

Default value 1e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_VALIDATIONTARGET_R

XSLP_VALIDATIONTOL_A

Description Absolute tolerance for the XSLPvalidate procedure

Type Double

Note XSLPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the
constraint is infeasible, then the difference (D) is tested against the absolute and relative
validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_A
then the constraint is within the relative validation tolerance. For each constraint which is
outside both the absolute and relative validation tolerances, validation factors are calculated
which are the factors by which the infeasibility exceeds the corresponding validation tolerance;
the smaller factor is printed in the validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is an
absolute validation factor multiplied by the absolute validation tolerance; the validation index
XSLP_VALIDATIONINDEX_R is the largest of these factors which is a relative validation factor
multiplied by the relative validation tolerance.

Default value 0.00001

Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_R

XSLP_VALIDATIONTOL_R

Description Relative tolerance for the XSLPvalidate procedure

Type Double

Note XSLPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the

Fair Isaac Corporation Proprietary Information 136

Chapter 19: Control Parameters

constraint is infeasible, then the difference (D) is tested against the absolute and relative
validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is
outside both the absolute and relative validation tolerances, validation factors are calculated
which are the factors by which the infeasibility exceeds the corresponding validation tolerance;
the smaller factor is printed in the validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is an
absolute validation factor multiplied by the absolute validation tolerance; the validation index
XSLP_VALIDATIONINDEX_R is the largest of these factors which is a relative validation factor
multiplied by the relative validation tolerance.

Default value 0.00001

Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A

XSLP_VTOL_A

Description Absolute static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2. Where
step bounding is being used, this ensures that the test is not applied until after step bounding
has been introduced. When the value is set to be negative, the value is adjusted automatically
by SLP, based on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the
control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_R

Fair Isaac Corporation Proprietary Information 137

Chapter 19: Control Parameters

XSLP_VTOL_R

Description Relative static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_R
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2. Where
step bounding is being used, this ensures that the test is not applied until after step bounding
has been introduced. When the value is set to be negative, the value is adjusted automatically
by SLP, based on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the
control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_A

XSLP_WTOL_A

Description Absolute extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is
being achieved when additional SLP iterations are carried out. If not, then the last converged
solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObj
For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.

Fair Isaac Corporation Proprietary Information 138

Chapter 19: Control Parameters

When a solution is found which converges on extended criteria and with active step bounds, the
solution is saved and SLP optimization continues until one of the following:
(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;
(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;
(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall
between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WCOUNT, XSLP_WTOL_R

XSLP_WTOL_R

Description Relative extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is
being achieved when additional SLP iterations are carried out. If not, then the last converged
solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObj
For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.
If XSLP_WCOUNT is greater than zero, and a solution is found which converges on extended
criteria and with active step bounds, the solution is saved and SLP optimization continues until
one of the following:
(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;
(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;
(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.

Fair Isaac Corporation Proprietary Information 139

Chapter 19: Control Parameters

When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall
between 1e-4 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WCOUNT, XSLP_WTOL_A

XSLP_XTOL_A

Description Absolute static objective function (1) tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then there
is less likelihood of an improved result, and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the fact
that some variables are at their step bound limit suggests that the objective function could be
improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static objective
function (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall
between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_R

Fair Isaac Corporation Proprietary Information 140

Chapter 19: Control Parameters

XSLP_XTOL_R

Description Relative static objective function (1) tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then there
is less likelihood of an improved result, and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the fact
that some variables are at their step bound limit suggests that the objective function could be
improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static objective
function (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.
When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall
between 1e-4 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_A

XSLP_ZERO

Description Absolute tolerance

Type Double

Note If a value is below XSLP_ZERO in magnitude, then it will be regarded as zero in certain formula
calculations:
an attempt to divide by such a value will give a "divide by zero" error;

Fair Isaac Corporation Proprietary Information 141

Chapter 19: Control Parameters

an exponent of a negative number will produce a "negative number, fractional exponent" error if
the exponent differs from an integer by more than XSLP_ZERO.

Default value 1.0E-10

Affects routines XSLPevaluatecoef, XSLPevaluateformula

Fair Isaac Corporation Proprietary Information 142

Chapter 19: Control Parameters

19.2 Integer control parameters
XSLP_ALGORITHM

Description Bit map describing the SLP algorithm(s) to be used

Type Integer

Values Bit Meaning
0 Do not apply step bounds.
1 Apply step bounds to SLP delta vectors only when required.
2 Estimate step bounds from early SLP iterations.
3 Use dynamic damping.
4 Do not update values which are converged within strict tolerance.
5 Retain previous value when cascading if determining row is zero.
6 Reset XSLP_DELTA_Z to zero when converged and continue SLP.
7 Quick convergence check.
8 Escalate penalties.
9 Use the primal simplex algorithm when all error vectors become inactive.
11 Continue optimizing after penalty cost reaches maximum.
12 Accept a solution which has converged even if there are still significant active penalty

error vectors.
13 Skip the solution polishing step if the LP postsolve returns a slightly infeasible, but

claimed optimal solution.
14 Step bounds are updated to accomodate cascaded values (otherwise cascaded

values are pushed to respect step bounds).
15 Apply clamping when converged on extended criteria only with some variables having

active step bounds.
16 Apply clamping when converged on extended criteria only.

Notes Bit 0: Do not apply step bounds. The default algorithm uses step bounds to force
convergence. Step bounds may not be appropriate if dynamic damping is used.
Bit 1: Apply step bounds to SLP delta vectors only when required. Step bounds can be
applied to all vectors simultaneously, or applied only when oscillation of the delta vector
(change in sign between successive SLP iterations) is detected.
Bit 2: Estimate step bounds from early SLP iterations. If initial step bounds are not being
explicitly provided, this gives a good method of calculating reasonable values. Values will tend
to be larger rather than smaller, to reduce the risk of infeasibility caused by excessive tightness
of the step bounds.
Bit 3: Use dynamic damping. Dynamic damping is sometimes an alternative to step
bounding as a means of encouraging convergence, but it does not have the same power to
force convergence as do step bounds.
Bit 4: Do not update values which are converged within strict tolerance. Models which are
numerically unstable may benefit from this setting, which does not update values which have
effectively hardly changed. If a variable subsequently does move outside its strict convergence
tolerance, it will be updated as usual.
Bit 5: Retain previous value when cascading if determining row is zero. If the determining
row is zero (that is, all the coefficients interacting with it are either zero or in columns with a
zero activity), then it is impossible to calculate a new value for the vector being cascaded. The
choice is to use the solution value as it is, or to revert to the assumed value

Fair Isaac Corporation Proprietary Information 143

Chapter 19: Control Parameters

Bit 6: Reset XSLP_DELTA_Z to zero when converged and continue SLP. One of the
mechanisms to avoid local optima is to retain small non-zero coefficients between delta
vectors and constraints, even when the coefficient should strictly be zero. If this option is set,
then a converged solution will be continued with zero coefficients as appropriate.
Bit 7: Quick convergence check. Normally, each variable is checked against all convergence
criteria until either a criterion is found which it passes, or it is declared "not converged". Later
(extended convergence) criteria are more expensive to test and, once an unconverged variable
has been found, the overall convergence status of the solution has been established. The quick
convergence check carries out checks on the strict criteria, but omits checks on the extended
criteria when an unconverged variable has been found.
Bit 8: Escalate penalties. Constraint penalties are increased after each SLP iteration where
penalty vectors are present in the solution. Escalation applies an additional scaling factor to the
penalty costs for active errors. This helps to prevent successive solutions becoming "stuck"
because of a particular constraint, because its cost will be raised so that other constraints may
become more attractive to violate instead and thus open up a new region to explore.
Bit 9: Use the primal simplex algorithm when all error vectors become inactive. The primal
simplex algorithm often performs better than dual during the final stages of SLP optimization
when there are relatively few basis changes between successive solutions. As it is impossible
to establish in advance when the final stages are being reached, the disappearance of error
vectors from the solution is used as a proxy.
Bit 11: Continue optimizing after penalty cost reaches maximum. Normally if the penalty
cost reaches its maximum (by default the value of XPRS_PLUSINFINITY), the optimization
will terminate with an unconverged solution. If the maximum value is set to a smaller value,
then it may make sense to continue, using other means to determine when to stop.
Bit 12: Accept a solution which has converged even if there are still significant active
penalty error vectors. Normally, the optimization will continue if there are active penalty vectors
in the solution. However, it may be that there is no feasible solution (and so active penalties will
always be present). Setting bit 12 means that, if other convergence criteria are met, then the
solution will be accepted as converged and the optimization will stop.
Bit 13: Due to the nature of the SLP linearizations, and in particular because of the large
differences in the objective function (model objective against penalty costs) some dual
reductions in the linear presolver might introduce numerically instable reductions that cause
slight infeasibilities to appear in postsolve. It is typically more efficient to remove these
infeasibilities with an extra call to the linear optimizer; compared to switching these reductions
off, which usually has a significant cost in performance. This bit is provided for numerically very
hard problems, when the polishing step proves to be too expensive (XSLP will report these if
any in the final log summary).
Bit 14: Normally, cascading will respect the step bounds of the SLP variable being cascaded.
However, allowing the cascaded value to fall outside the step bounds (i.e. expanding the step
bounds) can lead to better linearizations, as cascading will set better values for the SLP
variables regarding their determining rows; note, that this later strategy might interfere with
convergence of the cascaded variables.
Bit 15: When clamping is applied, then in any iteration when the solution would normally be
deemed converged on extended criteria only, an extra step bound shrinking step is applied to
help imposing strict convergence. In this variant, clamping is only applied on variables that
have converged on extended criteria only and have active step bounds.
Bit 16: When clamping is applied, then in any iteration when the solution would normally be
deemed converged on extended criteria only, an extra step bound shrinking step is applied to
help imposing strict convergence. In this variant, clamping is applied on all variables that have
converged on extended criteria only.
The following constants are provided for setting these bits:

Fair Isaac Corporation Proprietary Information 144

Chapter 19: Control Parameters

Setting bit 0 XSLP_NOSTEPBOUNDS
Setting bit 1 XSLP_STEPBOUNDSASREQUIRED
Setting bit 2 XSLP_ESTIMATESTEPBOUNDS
Setting bit 3 XSLP_DYNAMICDAMPING
Setting bit 4 XSLP_HOLDVALUES
Setting bit 5 XSLP_RETAINPREVIOUSVALUE
Setting bit 6 XSLP_RESETDELTAZ
Setting bit 7 XSLP_QUICKCONVERGENCECHECK
Setting bit 8 XSLP_ESCALATEPENALTIES
Setting bit 9 XSLP_SWITCHTOPRIMAL
Setting bit 11 XSLP_MAXCOSTOPTION
Setting bit 12 XSLP_RESIDUALERRORS
Setting bit 13 XSLP_NOLPPOLISHING
Setting bit 14 XSLP_CASCADEDBOUNDS
Setting bit 15 XSLP_CLAMPEXTENDEDACTIVESB
Setting bit 16 XSLP_CLAMPEXTENDEDALL

Recommended setting: Bits 1, 2, 5, 7 and usually bits 8 and 9.

Default value 166 (sets bits 1, 2, 5, 7)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_Z, XSLP_ERRORMAXCOST, XSLP_ESCALATION, XSLP_CLAMPSHRINK

XSLP_ANALYZE

Description Bit map activating additional options supporting model / solution path analyzis

Type Integer

Values Bit Meaning
3 Include an extended iteration summary.
4 Run infeasibility analysis on infeasible iterations.
6 Write the linearizations to disk at every XSLP_AUTOSAVE iterations.
7 Write the initial basis of the linearizations to disk at every XSLP_AUTOSAVE iterations.
8 Create an XSLP save file at every XSLP_AUTOSAVE iterations.

Note In most cases, the value of this control does not affect the solution process itself. However, bit
3 (extended summary) will cause SLP to do more function evaluations, and the presence of
non-deterministic user functions might cause changes in the solution process. These options
are off by default due to performance considerations. The following constants are provided for
setting these bits:
Setting bit 3 XSLP_ANALYZE_EXTENDEDFINALSUMMARY
Setting bit 4 XSLP_ANALYZE_INFEASIBLE_ITERATION
Setting bit 6 XSLP_ANALYZE_SAVELINEARIZATIONS
Setting bit 7 XSLP_ANALYZE_SAVEITERBASIS
Setting bit 8 XSLP_ANALYZE_SAVEFILE

Default value 0

See also XSLP_AUTOSAVE

Fair Isaac Corporation Proprietary Information 145

Chapter 19: Control Parameters

XSLP_AUGMENTATION

Description Bit map describing the SLP augmentation method(s) to be used

Type Integer

Values Bit Meaning
0 Minimum augmentation.
1 Even handed augmentation.
2 Penalty error vectors on all non-linear equality constraints.
3 Penalty error vectors on all non-linear inequality constraints.
4 Penalty vectors to exceed step bounds.
5 Use arithmetic means to estimate penalty weights.
6 Estimate step bounds from values of row coefficients.
7 Estimate step bounds from absolute values of row coefficients.
8 Row-based step bounds.
9 Penalty error vectors on all constraints.
10 Intial values do not imply an SLP variable.

Notes Bit 0: Minimum augmentation. Standard augmentation includes delta vectors for all variables
involved in nonlinear terms (in non-constant coefficients or as vectors containing non-constant
coefficients). Minimum augmentation includes delta vectors only for variables in non-constant
coefficients. This produces a smaller linearization, but there is less control on convergence,
because convergence control (for example, step bounding) cannot be applied to variables
without deltas.
Bit 1: Even handed augmentation. Standard augmentation treats variables which appear in
non-constant coefficients in a different way from those which contain non-constant
coefficients. Even-handed augmentation treats them all in the same way by replacing each
non-constant coefficient C in a vector V by a new coefficient C ∗V in the "equals" column (which
has a fixed activity of 1) and creating delta vectors for all types of variable in the same way.
Bit 2: Penalty error vectors on all non-linear equality constraints. The linearization of a
nonlinear equality constraint is inevitably an approximation and so will not generally be feasible
except at the point of linearization. Adding penalty error vectors allows the linear approximation
to be violated at a cost and so ensures that the linearized constraint is feasible.
Bit 3: Penalty error vectors on all non-linear inequality constraints. The linearization of a
nonlinear constraint is inevitably an approximation and so may not be feasible except at the
point of linearization. Adding penalty error vectors allows the linear approximation to be
violated at a cost and so ensures that the linearized constraint is feasible.
Bit 4: Penalty vectors to exceed step bounds. Although it has rarely been found necessary or
desirable in practice, Xpress-SLP allows step bounds to be violated at a cost. This may help
with feasibility but it generally slows down or prevents convergence, so it should be used only if
found absolutely necessary.
Bit 5: Use arithmetic means to estimate penalty weights. Penalty weights are estimated from
the magnitude of the elements in the constraint or interacting rows. Geometric means are
normally used, so that a few excessively large or small values do not distort the weights
significantly. Arithmetic means will value the coefficients more equally.
Bit 6: Estimate step bounds from values of row coefficients. If step bounds are to be
imposed from the start, the best approach is to provide explicit values for the bounds.
Alternatively, Xpress-SLP can estimate the values from the range of estimated coefficient sizes
in the relevant rows.

Fair Isaac Corporation Proprietary Information 146

Chapter 19: Control Parameters

Bit 7: Estimate step bounds from absolute values of row coefficients. If step bounds are to
be imposed from the start, the best approach is to provide explicit values for the bounds.
Alternatively, Xpress-SLP can estimate the values from the largest estimated magnitude of the
coefficients in the relevant rows.
Bit 8: Row-based step bounds. Step bounds are normally applied as bounds on the delta
variables. Some applications may find that using explicit rows to bound the delta vectors gives
better results.
Bit 9: Penalty error vectors on all constraints. If the linear portion of the underlying model
may actually be infeasible, then applying penalty vectors to all rows may allow identification of
the infeasibility and may also allow a useful solution to be found.
Bit 10: Having an initial value will not cause the augmentation to include the corresponding
delta variable; i.e. treat the variable as an SLP variable. Useful to provide initial values
necessary in the first linearization in case of a minimal augmentation, or as a convenience
option when it’s easiest to set an initial value for all variables for some reason.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_MINIMUMAUGMENTATION
Setting bit 1 XSLP_EVENHANDEDAUGMENTATION
Setting bit 2 XSLP_EQUALITYERRORVECTORS
Setting bit 3 XSLP_ALLERRORVECTORS
Setting bit 4 XSLP_PENALTYDELTAVECTORS
Setting bit 5 XSLP_AMEANWEIGHT
Setting bit 6 XSLP_SBFROMVALUES
Setting bit 7 XSLP_SBFROMABSVALUES
Setting bit 8 XSLP_STEPBOUNDROWS
Setting bit 9 XSLP_ALLROWERRORVECTORS
Setting bit 10 XSLP_NOUPDATEIFONLYIV

The recommended setting is bits 2 and 3 (penalty vectors on all nonlinear constraints).

Default value 12 (sets bits 2 and 3)

Affects routines XSLPconstruct

XSLP_AUTOSAVE

Description Frequency with which to save the model

Type Integer

Note A value of zero means that the model will not automatically be saved. A positive value of n will
save model information at every nth SLP iteration as requested by XSLP_ANALYZIS.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ANALYZE

XSLP_BARCROSSOVERSTART

Description Default crossover activation behaviour for barrier start

Type Integer

Fair Isaac Corporation Proprietary Information 147

Chapter 19: Control Parameters

Note When XSLP_BARLIMIT is set, XSLP_BARCROSSOVERSTART offers an overwrite control on
when crossover is applied. A positive value indicates that crossover should be disabled in
iterations smaller than XSLP_BARCROSSOVERSTART and should be enabled afterwards, or
when stalling is detected as described in XSLP_BARSTARTOPS. A value of 0 indicates to
respect the value of XPRS_CROSSOVER and only overwrite its value when stalling is detected. A
value of -1 indicates to always rely on the value of XPRS_CROSSOVER.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARLIMIT, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARLIMIT

Description Number of initial SLP iterations using the barrier method

Type Integer

Note Particularly for larger models, using the Newton barrier method is faster in the earlier SLP
iterations. Later on, when the basis information becomes more useful, a simplex method
generally performs better. XSLP_BARLIMIT sets the number of SLP iterations which will be
performed using the Newton barrier method.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTALLINGLIMIT

Description Number of iterations to allow numerical failures in barrier before switching to dual

Type Integer

Note On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver as specified by XSLP_BARLIMIT. On some numerically
difficult problems, the barrier may stop prematurely due to numerical issues. Such solves can
sometimes be finished if crossover is applied. After XSLP_BARSTALLINGLIMIT such
attempts, SLP will automatically switch to use the dual simplex.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTALLINGOBJLIMIT

Description Number of iterations over which to measure the objective change for barrier iterations with no
crossover

Type Integer

Fair Isaac Corporation Proprietary Information 148

Chapter 19: Control Parameters

Note On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver without crossover by setting XSLP_BARLIMIT to a positive
value and setting XPRS_CROSSOVER to 0. A potential drawback is slower convergence due to
the interior point provided by the barrier solve keeping a higher number of variables active. This
may lead to stalling in progress, negating the benefit of using the barrier. When in the last
XSLP_BARSTALLINGOBJLIMIT iterations no significant progress has been made, crossover
is automatically enabled.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTARTOPS

Description Controls behaviour when the barrier is used to solve the linearizations

Type Integer

Values Bit Meaning
0 Check objective progress when no crossover is applied.
1 Fall back to dual simplex if too many numerical problems are reported by the barrier.
2 If a non-vertex converged solution found by barrier without crossover can be returned

as a final solution.
Note The following constants are provided for setting these bits:

Setting bit 0 BARSTARTOPS_STALLING_OBJECTIVE
Setting bit 1 BARSTARTOPS_STALLING_NUMERICAL
Setting bit 2 BARSTARTOPS_ALLOWINTERIORSOLUTION

Default value -1

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_CALCTHREADS

Description Number of threads used for formula and derivatives evaluations

Type Integer

Note When beneficial, SLP can calculate formula values and partial derivative information in parallel.

Default value -1 (automatically determined)

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_THREADS,

Fair Isaac Corporation Proprietary Information 149

Chapter 19: Control Parameters

XSLP_CASCADE

Description Bit map describing the cascading to be used

Type Integer

Values Bit Meaning
0 Apply cascading to all variables with determining rows.
1 Apply cascading to SLP variables which appear in coefficients and which would

change by more than XPRS_FEASTOL.
2 Apply cascading to all SLP variables which appear in coefficients.
3 Apply cascading to SLP variables which are structural and which would change by

more than XPRS_FEASTOL.
4 Apply cascading to all SLP variables which are structural.
5 Create secondary order groupping DR rows with instantiated user functions together in

the order.

Note Normal cascading (bit 0) uses determining rows to recalculate the values of variables to be
consistent with values already available or already recalculated.
Other bit settings are normally required only in quadratic programming where some of the SLP
variables are in the objective function. The values of such variables may need to be corrected if
the corresponding update row is slightly infeasible. The following constants are provided for
setting these bits:
Setting bit 0 XSLP_CASCADE_ALL
Setting bit 1 XSLP_CASCADE_COEF_VAR
Setting bit 2 XSLP_CASCADE_ALL_COEF_VAR
Setting bit 3 XSLP_CASCADE_STRUCT_VAR
Setting bit 4 XSLP_CASCADE_ALL_STRUCT_VAR
Setting bit 5 XSLP_CASCADE_SECONDARY_GROUPS

Default value 1

Affects routines XSLPcascade

XSLP_CASCADENLIMIT

Description Maximum number of iterations for cascading with non-linear determining rows

Type Integer

Note Re-calculation of the value of a variable uses a modification of the Newton-Raphson method.
The maximum number of steps in the method is set by XSLP_CASCADENLIMIT. If the
maximum number of steps is taken without reaching a converged value, the best value found
will be used.

Default value 10

Affects routines XSLPcascade

See also XSLP_CASCADE

Fair Isaac Corporation Proprietary Information 150

Chapter 19: Control Parameters

XSLP_CONTROL

Description Bit map describing which Xpress NonLinear functions also activate the corresponding
Optimizer Library function

Type Integer

Values Bit Meaning
0 Xpress NonLinear problem management functions do NOT invoke the corresponding

Optimizer Library function for the underlying linear problem.
1 XSLPcopycontrols does NOT invoke XPRScopycontrols.
2 XSLPcopycallbacks does NOT invoke XPRScopycallbacks.
3 XSLPcopyprob does NOT invoke XPRScopyprob.
4 XSLPsetdefaults does NOT invoke XPRSsetdefaults.
5 XSLPsave does NOT invoke XPRSsave.
6 XSLPrestore does NOT invoke XPRSrestore.

Note The problem management functions are:
XSLPcopyprob to copy from an existing problem;
XSLPcopycontrols and XSLPcopycallbacks to copy the current controls and callbacks
from an existing problem;
XSLPsetdefaults to reset the controls to their default values;
XSLPsave and XSLPrestore for saving and restoring a problem.

Default value 0 (no bits set)

Affects routines XSLPcopycontrols, XSLPcopycallbacks, XSLPcopyprob, XSLPrestore, XSLPsave,
XSLPsetdefaults

XSLP_CONVERGENCEOPS

Description Bit map describing which convergence tests should be carried out

Type Integer

Values Bit Meaning
0 Execute the closure tolerance checks.
1 Execute the delta tolerance checks.
2 Execute the matrix tolerance checks.
3 Execute the impact tolerance checks.
4 Execute the slack impact tolerance checks.
5 Check for user provided convergence.
6 Execute the objective range checks.
7 Execute the objective range + constraint activity check.
8 Execute the objective range + active step bound check.
9 Execute the convergence continuation check.
10 Take scaling of individual variables / rows into account.
11 Execute the validation target convergence checks.
12 Execute the first order optimality target convergence checks.

Note Provides fine tuned control (over setting the related convergence tolerances) of which
convergence checks are carried out.

Fair Isaac Corporation Proprietary Information 151

Chapter 19: Control Parameters

The following constants are provided for setting these bits:
Setting bit 0 XSLP_CONVERGEBIT_CTOL
Setting bit 1 XSLP_CONVERGEBIT_ATOL
Setting bit 2 XSLP_CONVERGEBIT_MTOL
Setting bit 3 XSLP_CONVERGEBIT_ITOL
Setting bit 4 XSLP_CONVERGEBIT_STOL
Setting bit 5 XSLP_CONVERGEBIT_USER
Setting bit 6 XSLP_CONVERGEBIT_VTOL
Setting bit 7 XSLP_CONVERGEBIT_XTOL
Setting bit 8 XSLP_CONVERGEBIT_OTOL
Setting bit 9 XSLP_CONVERGEBIT_WTOL
Setting bit 10 XSLP_CONVERGEBIT_EXTENDEDSCALING
Setting bit 11 CONVERGEBIT_VALIDATION
Setting bit 12 CONVERGEBIT_VALIDATION_K

Default value 7167 (bits 0-9 and 11-12 are set)

Affects routines XSLPmaxim, XSLPminim

XSLP_CUTSTRATEGY

Description Determines whihc cuts to apply in the MISLP search when the default SLP-in-MIP strategy is
used.

Type Integer

Note Cuts are derived from the linearizations and are local cuts in that they are valid in the
linearization and not necessarily valid for the full problem. The values mirror that of
XPRS_CUTSTRATEGY.

Default value 0

Affects routines XSLPminim, XSLPmaxim

XSLP_DAMPSTART

Description SLP iteration at which damping is activated

Type Integer

Note If damping is used as part of the SLP algorithm, it can be delayed until a specified SLP iteration.
This may be appropriate when damping is used to encourage convergence after an un-damped
algorithm has failed to converge.

Default value 0

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_ALGORITHM, XSLP_DAMPEXPAND, XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK

XSLP_DELTAOFFSET

Description Position of first character of SLP variable name used to create name of delta vector

Type Integer

Fair Isaac Corporation Proprietary Information 152

Chapter 19: Control Parameters

Note During augmentation, a delta vector, and possibly penalty delta vectors, are created for each
SLP variable. They are created with names derived from the corresponding SLP variable.
Customized naming is possible using XSLP_DELTAFORMAT etc to define a format and
XSLP_DELTAOFFSET to define the first character (counting from zero) of the variable name to
be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_DELTAFORMAT, XSLP_MINUSDELTAFORMAT, XSLP_PLUSDELTAFORMAT

XSLP_DELTAZLIMIT

Description Number of SLP iterations during which to apply XSLP_DELTA_Z

Type Integer

Note XSLP_DELTA_Z is used to retain small derivatives which would otherwise be regarded as zero.
This is helpful in avoiding local optima, but may make the linearized problem more difficult to
solve because of the number of small nonzero elements in the resulting matrix.
XSLP_DELTAZLIMIT can be set to a nonzero value, which is then the number of iterations for
which XSLP_DELTA_Z will be used. After that, small derivatives will be set to zero. A negative
value indicates no automatic perturbations to the derivatives in any situation.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_Z

XSLP_DERIVATIVES

Description Bitmap describing the method of calculating derivatives

Type Integer

Values Bit Meaning
0 analytic derivatives where possible
1 avoid embedding numerical derivatives of instantiated functions into analytic

derivatives
Notes If no bits are set then numerical derivatives are calculated using finite differences.

Analytic derivatives cannot be used for formulae involving discontinuous functions. They may
not work well with functions which are not smooth (such as MAX), or where the derivative
changes very quickly with the value of the variable (such as LOG of small values).
Both first and second order analytic derivatives can either be calculated as symbolic formulas,
or by the means of auto-differentiation, with the exception that the second order symbolic
derivatives require that the first order derivatives are also calculated using the symbolic
method.

Default value 1

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_JACOBIAN, XSLP_HESSIAN

Fair Isaac Corporation Proprietary Information 153

Chapter 19: Control Parameters

XSLP_DETERMINISTIC

Description Determines if the parallel features of SLP should be guaranteed to be deterministic

Type Integer

Note Determinism can only be guaranteed if no callbacks are used, or if in the presence of callbacks
the effect of the callbacks only depend on local information provided by SLP.

Default value 1

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART_POOLSIZE,

XSLP_ECFCHECK

Description Check feasibility at the point of linearization for extended convergence criteria

Type Integer

Values 0 no check (extended criteria are always used);
1 check until one infeasible constraint is found;
2 check all constraints.

Notes The extended convergence criteria measure the accuracy of the solution of the linear
approximation compared to the solution of the original nonlinear problem. For this to work, the
linear approximation needs to be reasonably good at the point of linearization. In particular, it
needs to be reasonably close to feasibility.
XSLP_ECFCHECK is used to determine what checking of feasibility is carried out at the point of
linearization. If the point of linearization at the start of an SLP iteration is deemed to be
infeasible, then the extended convergence criteria are not used to decide convergence at the
end of that SLP iteration.
If all that is required is to decide that the point of linearization is not feasible, then the search
can stop after the first infeasible constraint is found (parameter is set to 1). If the actual
number of infeasible constraints is required, then XSLP_ECFCHECK should be set to 2, and all
constraints will be checked.
The number of infeasible constraints found at the point of linearization is returned in
XSLP_ECFCOUNT.

Default value 1

Affects routines Convergence criteria, XSLPmaxim, XSLPminim

See also XSLP_ECFCOUNT, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_ECHOXPRSMESSAGES

Description Controls if the XSLP message callback should relay messages from the XPRS library.

Type Integer

Values Bit Meaning
-1 messages from the nonlinear solver are sent to the XPRS message callback if set.
0 the XPRS and XSLP message callbacks are treated as independent.
1 messages from the XPRS message callback are sent to the XSLP message callback.

Default value -1

Fair Isaac Corporation Proprietary Information 154

Chapter 19: Control Parameters

XSLP_ERROROFFSET

Description Position of first character of constraint name used to create name of penalty error vectors

Type Integer

Note During augmentation, penalty error vectors may be created for some or all of the constraints.
The vectors are created with names derived from the corresponding constraint name.
Customized naming is possible using XSLP_MINUSERRORFORMAT and
XSLP_PLUSERRORFORMAT to define a format and XSLP_ERROROFFSET to define the first
character (counting from zero) of the constraint name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_MINUSERRORFORMAT, XSLP_PLUSERRORFORMAT

XSLP_EVALUATE

Description Evaluation strategy for user functions

Type Integer

Values 0 use derivatives where possible;
1 always re-evaluate.

Note If a user function returns derivatives or returns more than one value, then it is possible for
Xpress NonLinear to estimate the value of the function from its derivatives if the new point of
evaluation is sufficiently close to the original. Setting XSLP_EVALUATE to 1 will force
re-evaluation of all functions regardless of how much or little the point of evaluation has
changed.

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula

See also XSLP_FUNCEVAL

XSLP_FILTER

Description Bit map for controlling solution updates

Type Integer

Values Bit Meaning
0 retrain solution best according to the merit function.
1 check cascaded solutions against improvements in the merit function.
2 force minimum step sizes in line search.
3 accept the trust region step is the line search returns a zero step size.

Notes Bits 0 determine if XSLPgetslpsol should return the final converged solution, or the solution
which had the best value according to the merit function.
If bit 1 is set, a cascaded solution which does not improve the merit function will be rejected
(XSLP will revert to the solution of the linearization).

Fair Isaac Corporation Proprietary Information 155

Chapter 19: Control Parameters

Bits 2-3 determine the strategy for when the step direction is not improving according to the
merit function.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_FILTER_KEEPBEST
Setting bit 1 XSLP_FILTER_CASCADE
Setting bit 2 XSLP_FILTER_ZEROLINESEARCH
Setting bit 3 XSLP_FILTER_ZEROLINESEARCHTR

Default value 3 (bit 0,1)

Affects routines XSLPmaxim, XSLPminim, XSLPcascade

See also XSLP_MERITLAMBDA, XSLP_CASCADE, XSLP_LSSTART, XSLP_LSITERLIMIT,
XSLP_LSPATTERNLIMIT

XSLP_FINDIV

Description Option for running a heuristic to find a feasible initial point

Type Integer

Values -1 Automatic (default).
0 Disable the heuristic.
1 Enable the heuristic.

Notes The procedure uses bound reduction (and, up to an extent, probing) to obtain a point in the
initial bounding box that is feasible for the bound reduction techniques.
If an initial point is already specified and is found not to violate bound reduction, then the
heuristic is not run and the given point is used as the initial solution.

Default value -1

Affects routines XSLPmaxim, XSLPminim

XSLP_FUNCEVAL

Description Bit map for determining the method of evaluating user functions and their derivatives

Type Integer

Values Bit Meaning
3 evaluate function whenever independent variables change.
4 evaluate function when independent variables change outside tolerances.
5 application of bits 3-4: 0 = functions which do not have a defined re-evaluation mode;1

= all functions.
6 tangential derivatives.
7 forward derivatives
8 application of bits 6-7: 0 = functions which do not have a defined derivative mode;1 =

all functions.
Notes Bits 3-4 determine the type of function re-evaluation. If both bits are zero, then the settings for

each individual function are used.
If bit 3 or bit 4 is set, then bit 5 defines which functions the setting applies to. If it is set to 1,
then it applies to all functions. Otherwise, it applies only to functions which do not have an
explicit setting of their own.

Fair Isaac Corporation Proprietary Information 156

Chapter 19: Control Parameters

Bits 6-7 determine the type of calculation for numerical derivatives. If both bits are zero, then
the settings for each individual function are used.
If bit 6 or bit 7 is set, then bit 8 defines which functions the setting applies to. If it is set to 1,
then it applies to all functions. Otherwise, it applies only to functions which do not have an
explicit setting of their own.
The following constants are provided for setting these bits:
Setting bit 3 XSLP_RECALC
Setting bit 4 XSLP_TOLCALC
Setting bit 5 XSLP_ALLCALCS
Setting bit 6 XSLP_2DERIVATIVE
Setting bit 7 XSLP_1DERIVATIVE
Setting bit 8 XSLP_ALLDERIVATIVES

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula

See also XSLP_EVALUATE

XSLP_GRIDHEURSELECT

Description Bit map selectin which heuristics to run if the problem has variable with an integer delta

Type Integer

Values Bit Meaning
0 Enumeration: try all combinations.
1 Simple search heuristics.
2 Simulated annealing.

Note A value of 0 indicates that integer deltas are only taken into consideration during the SLP
iterations.

Note The enumeration option can be useful for cases where the number of possible values of the
variables with an integer delta is small.

Default value 3 (bits 1-2 are set)

Affects routines XSLPmaxim, XSLPminim

XSLP_HEURSTRATEGY

Description Branch and Bound: This specifies the MINLP heuristic strategy. On some problems it is worth
trying more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.

Type Integer

Values -1 Automatic selection of heuristic strategy.
0 No heuristics.
1 Basic heuristic strategy.
2 Enhanced heuristic strategy.
3 Extensive heuristic strategy.
4 Run all heuristics without effort limits.

Default value -1

Affects routines XSLPminim, XSLPmaxim.

Fair Isaac Corporation Proprietary Information 157

Chapter 19: Control Parameters

XSLP_HESSIAN

Description Second order differentiation mode when using analytical derivatives

Type Integer

Values -1,0 automatic selection
1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is also set to symbolic mode.

Default value -1

See also XSLP_DERIVATIVES, XSLP_JACOBIAN

XSLP_INFEASLIMIT

Description The maximum number of consecutive infeasible SLP iterations which can occur before
Xpress-SLP terminates

Type Integer

Note An infeasible solution to an SLP iteration means that is likely that Xpress-SLP will create a poor
linear approximation for the next SLP iteration. Sometimes, small infeasibilities arise because
of numerical difficulties and do not seriously affect the solution process. However, if successive
solutions remain infeasible, it is unlikely that Xpress-SLP will be able to find a feasible
converged solution. XSLP_INFEASLIMIT sets the number of successive SLP iterations which
must take place before Xpress-SLP terminates with a status of "infeasible solution".

Default value 3

Affects routines XSLPmaxim, XSLPminim

XSLP_ITERLIMIT

Description The maximum number of SLP iterations

Type Integer

Note If Xpress-SLP reaches XSLP_ITERLIMIT without finding a converged solution, it will stop. For
MISLP, the limit is on the number of SLP iterations at each node.

Default value -1 (automatic based on problem)

Affects routines XSLPnlpoptimize, XSLPmaxim, XSLPminim

XSLP_JACOBIAN

Description First order differentiation mode when using analytical derivatives

Type Integer

Fair Isaac Corporation Proprietary Information 158

Chapter 19: Control Parameters

Values -1,0 automatic selection
1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is set to symbolic mode.

Default value -1

See also XSLP_DERIVATIVES, XSLP_HESSIAN

XSLP_KEEPEQUALSCOLUMN

Description When set to a nonzero value, the MPS reader will keep the equals column in the problem

Type Integer

Note This control is provided mainly for backward compatibility.

Default value 0

Affects routines XSLPreadprob

XSLP_LINQUADBR

Description Use linear and quadratic constraints and objective function to further reduce bounds on all
variables

Type Integer

Values -1 automatic selection
0 disable
1 enable

Note While bound reduction is effective when performed on nonlinear, nonquadratic constraints and
objective function, it can be useful to obtain tightened bounds from linear and quadratic
constraints, as the corresponding variables may appear in other nonlinear constraints. This
option then allows for a slightly more expensive bound reduction procedure, at the benefit of
further reduction in the problem’s bounds.

Default value -1

See also XSLP_PRESOLVEOPS, XSLP_PROBING

XSLP_LOG

Description Level of printing during SLP iterations

Type Integer

Fair Isaac Corporation Proprietary Information 159

Chapter 19: Control Parameters

Values -1 none
0 minimal
1 normal: iteration, penalty vectors
2 omit from convergence log any variables which have converged
3 omit from convergence log any variables which have already converged (except

variables on step bounds)
4 include all variables in convergence log
5 include user function call communications in the log

Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_LSITERLIMIT

Description Number of iterations in the line search

Type Integer

Notes The line search attempts to refine the step size suggested by the trust region step bounds. The
line search is a local method; the control sets a maximum on the number of model evaluations
during the line search.

Default value 0

See also XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSPATTERNLIMIT

Description Number of iterations in the pattern search preceding the line search

Type Integer

Notes When positive, defines the number of samples taken along the step size suggested by the trust
region step bounds before initiating the line search. Useful for highly non-convex problems.

Default value 0

See also XSLP_LSITERLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSSTART

Description Iteration in which to active the line search

Type Integer

Notes

Default value 8

See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Proprietary Information 160

Chapter 19: Control Parameters

XSLP_LSZEROLIMIT

Description Maximum number of zero length line search steps before line search is deactivated

Type Integer

Notes When the line search repeatedly returns a zero step size, counteracted by bits set on
XSLP_FILTER, the effort spent in line search is redundant, and line search will be deactivated
after XSLP_LSZEROLIMIT consecutive such iteration.

Default value 5

See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_MAXTIME

Description The maximum time in seconds that the SLP optimization will run before it terminates

Type Integer

Notes The (elapsed) time is measured from the beginning of the first SLP optimization.
If XSLP_MAXTIME is negative, Xpress NonLinear will terminate after (-XSLP_MAXTIME)
seconds. If it is positive, Xpress NonLinear will terminate in MISLP after XSLP_MAXTIME
seconds or as soon as an integer solution has been found thereafter.

Default value 0

Affects routines XSLPnlpoptimize, XSLPmaxim, XSLPminim

XSLP_MIPALGORITHM

Description Bitmap describing the MISLP algorithms to be used

Type Integer

Values Bit Meaning

0 Solve initial SLP to convergence.
2 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after initial node.
3 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after initial node.
4 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS at each node.
5 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS at each node.
6 Limit iterations at each node to XSLP_MIPITERLIMIT.
7 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after MIP solution is

found.
8 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after MIP solution is found.
9 Use MIP at each SLP iteration instead of SLP at each node.
10 Use MIP on converged SLP solution and then SLP on the resulting MIP solution.

Fair Isaac Corporation Proprietary Information 161

Chapter 19: Control Parameters

Notes XSLP_MIPALGORITHM determines the strategy of XSLPnlpoptimize for solving MINLP
problems. The recommended approach is to solve the problem first without reference to the
global variables. This can be handled automatically by setting bit 0 of XSLP_MIPALGORITHM;
if done manually, then optimize using the "l" option to prevent the Optimizer presolve from
changing the problem.
Some versions of the optimizer re-run the initial node as part of the global search; it is possible
to initiate a new SLP optimization at this point by relaxing or fixing step bounds (use bits 2 and
3). If step bounds are fixed for a class of variable, then the variables in that class will not
change their value in any child node.
At each node, it is possible to relax or fix step bounds. It is recommended that step bounds are
relaxed, so that the new problem can be solved starting from its parent, but without undue
restrictions cased by step bounding (use bit 4). Exceptionally, it may be preferable to restrict the
freedom of child nodes by relaxing fewer types of step bound or fixing the values of some
classes of variable (use bit 5).
When the optimal node has been found, it is possible to fix the global variables and then
re-optimize with SLP. Step bounds can be relaxed or fixed for this optimization as well (use bits
7 and 8).
Although it is ultimately necessary to solve the optimal node to convergence, individual nodes
can be truncated after XSLP_MIPITERLIMIT SLP iterations. Set bit 6 to activate this feature.
The normal MISLP algorithm uses SLP at each node. One alternative strategy is to use the MIP
optimizer for solving each SLP iteration. Set bit 9 to implement this strategy ("MIP within SLP").
Another strategy is to solve the problem to convergence ignoring the nature of the global
variables. Then, fixing the linearization, use MIP to find the optimal setting of the global
variables. Then, fixing the global variables, but varying the linearization, solve to convergence.
Set bit 10 to implement this strategy ("SLP then MIP").
For mode details about MISLP algorithms and strategies, see the separate section.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_MIPINITIALSLP
Setting bit 1 XSLP_MIPFINALSLP
Setting bit 2 XSLP_MIPINITIALRELAXSLP
Setting bit 3 XSLP_MIPINITIALFIXSLP
Setting bit 4 XSLP_MIPNODERELAXSLP
Setting bit 5 XSLP_MIPNODEFIXSLP
Setting bit 6 XSLP_MIPNODELIMITSLP
Setting bit 7 XSLP_MIPFINALRELAXSLP
Setting bit 8 XSLP_MIPFINALFIXSLP
Setting bit 9 XSLP_MIPWITHINSLP
Setting bit 10 XSLP_SLPTHENMIP
Setting bit 11 XSLP_NOFINALROUNDING

Default value 17 (bits 0 and4 are set)

Affects routines XSLPnlpoptimize

See also XSLP_ALGORITHM, XSLP_MIPFIXSTEPBOUNDS, XSLP_MIPITERLIMIT,
XSLP_MIPRELAXSTEPBOUNDS

XSLP_MIPCUTOFFCOUNT

Description Number of SLP iterations to check when considering a node for cutting off

Type Integer

Notes If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off at

Fair Isaac Corporation Proprietary Information 162

Chapter 19: Control Parameters

the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.
The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have been carried
out at the current node.

Default value 5

Affects routines XSLPnlpoptimize

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFLIMIT

XSLP_MIPCUTOFFLIMIT

Description Number of SLP iterations to check when considering a node for cutting off

Type Integer

Notes If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off at
the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.
The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have been carried
out at the current node.

Default value 10

Affects routines XSLPnlpoptimize

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFCOUNT

XSLP_MIPDEFAULTALGORITHM

Description Default algorithm to be used during the global search in MISLP

Type Integer

Note The default algorithm used within SLP during the MISLP optimization can be set using
XSLP_MIPDEFAULTALGORITHM. It will not necessarily be the same as the one best suited to
the initial SLP optimization.

Default value 1 (automatic)

Affects routines XSLPnlpoptimize

See also XPRS_DEFAULTALG, XSLP_MIPALGORITHM

XSLP_MIPFIXSTEPBOUNDS

Description Bitmap describing the step-bound fixing strategy during MISLP

Type Integer

Fair Isaac Corporation Proprietary Information 163

Chapter 19: Control Parameters

Values Bit Meaning

0 Fix step bounds on structural SLP variables which are not in coefficients.
1 Fix step bounds on all structural SLP variables.
2 Fix step bounds on SLP variables appearing only in coefficients.
3 Fix step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to fix the step bounds of
classes of variables so that the variables themselves will not change. This may help with
convergence, but it does increase the chance of a local optimum because of excessive artificial
restrictions on the variables.

Default value 0

Affects routines XSLPnlpoptimize

See also XSLP_MIPALGORITHM, XSLP_MIPRELAXSTEPBOUNDS

XSLP_MIPITERLIMIT

Description Maximum number of SLP iterations at each node

Type Integer

Note If bit 6 of XSLP_MIPALGORITHM is set, then the number of iterations at each node will be
limited to XSLP_MIPITERLIMIT.

Default value 0

Affects routines XSLPnlpoptimize

See also XSLP_ITERLIMIT, XSLP_MIPALGORITHM

XSLP_MIPLOG

Description Frequency with which MIP status is printed

Type Integer

Note By default (zero or negative value) the MIP status is printed after syncronization points. If
XSLP_MIPLOG is set to a positive integer, then the current MIP status (node number, best value,
best bound) is printed every XSLP_MIPLOG nodes.

Default value 0 (deterministic logging)

Affects routines XSLPnlpoptimize

See also XSLP_LOG, XSLP_SLPLOG

XSLP_MIPOCOUNT

Description Number of SLP iterations at each node over which to measure objective function variation

Type Integer

Fair Isaac Corporation Proprietary Information 164

Chapter 19: Control Parameters

Note The objective function test for MIP termination is applied only when step bounding has been
applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not being used).
The node will be terminated at the current SLP iteration if the range of the objective function
values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within
OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function over those
iterations.

Default value 5

Affects routines XSLPnlpoptimize

See also XSLP_MIPOTOL_A XSLP_MIPOTOL_R XSLP_SBSTART

XSLP_MIPRELAXSTEPBOUNDS

Description Bitmap describing the step-bound relaxation strategy during MISLP

Type Integer

Values Bit Meaning

0 Relax step bounds on structural SLP variables which are not in coefficients.
1 Relax step bounds on all structural SLP variables.
2 Relax step bounds on SLP variables appearing only in coefficients.
3 Relax step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to relax the step bounds of
classes of variables so that the variables themselves are completely free to change. This may
help with finding a global optimum, but it may also increase the solution time, because more
SLP iterations are necessary at each node to obtain a converged solution.

Default value 15 (relax all types)

Affects routines XSLPnlpoptimize

See also XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS

XSLP_MULTISTART

Description The multistart master control. Defines if the multistart search is to be initiated, or if only the
baseline model is to be solved.

Type Integer

Values -1 Depends on if any multistart jobs have been added.
0 Multistart is off.
1 Multistart is on.

Note By default, the multistart search will always be initiated if multistart jobs have been added to
the problem. The (original) base problem is not part of the multisearch job pool. To make it so,
add an job with no extra settings (template job). It might be useful to load multiple template
jobs, and customize them from callbacks.

Default value -1

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART_MAXSOLVES, XSLP_MULTISTART_MAXTIME

Fair Isaac Corporation Proprietary Information 165

Chapter 19: Control Parameters

XSLP_MULTISTART_MAXSOLVES

Description The maximum number of jobs to create during the multistart search.

Type Integer

Note This control can be increased on the fly during the mutlistart search: for example, if a job gets
refused by a user callback, the callback may increase this limit to account for the rejected job.

Default value 0 (no upper limit)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXTIME

Description The maximum total time to be spent in the mutlistart search.

Type Integer

Note XSLP_MAXTIME applies on a per job instance basis. There will be some time spent even after
XSLP_MULTISTART_MAXTIME has elapsed, while the running jobs get terminated and their
results collected.

Default value 0 (no upper limit)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_MULTISTART_MAXSOLVES

XSLP_MULTISTART_POOLSIZE

Description The maximum number of problem objects allowed to pool up before synchronization in the
deterministic multistart.

Type Integer

Default value 2

Note Deterministic multistart is ensured by guaranteeing that the multistart solve results are
evaluated in the same order every time. Solves that finish too soon can be pooled until all
earlier started solves finish, allowing the system to start solving other multistart instances in
the meantime on idle threads. Larger pool sizes will provide better speedups, but will require
larger amounts of memory. Positive values are interpreted as a multiplier on the maximum
number of active threads used, while negative values are interpreted as an absolute limit (and
the absolute value is used). A value of zero will mean no result pooling.

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_DETERMINISTIC

Fair Isaac Corporation Proprietary Information 166

Chapter 19: Control Parameters

XSLP_MULTISTART_SEED

Description Random seed used for the automatic generation of initial point when loading multistart presets

Type Integer

Default value 0

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_MULTISTART_THREADS

Description The maximum number of threads to be used in multistart

Type Integer

Default value -1 (determined automatically)

Note The current hard upper limit on the number of threads to be sued in multistart is 64.

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_OCOUNT

Description Number of SLP iterations over which to measure objective function variation for static objective
(2) convergence criterion

Type Integer

Note The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_OTOL_A
then the problem has converged on the absolute static objective (2) convergence criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2.

Default value 5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OTOL_A XSLP_OTOL_R

Fair Isaac Corporation Proprietary Information 167

Chapter 19: Control Parameters

XSLP_PENALTYINFOSTART

Description Iteration from which to record row penalty information

Type Integer

Note Information about the size (current and total) of active penalties of each row and the number of
times a penalty vector has been active is recorded starting at the SLP iteration number given by
XSLP_PENALTYINFOSTART.

Default value 3

XSLP_POSTSOLVE

Description This control determines whether postsolving should be performed automatically

Type Integer

Values 0 Do not automatically postsolve.
1 Postsolve automatically.

Default value 0

See also XSLP_PRESOLVE

XSLP_PRESOLVE

Description This control determines whether presolving should be performed prior to starting the main
algorithm

Type Integer

Values 0 Disable SLP presolve.
1 Activate SLP presolve.
2 Low memory presolve. Original problem is not restored by postsolve and dual solution

may not be completely postsolved.

Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).

Default value 1

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVEOPS, XSLP_REFORMULATE

XSLP_PRESOLVELEVEL

Description This control determines the level of changes presolve may carry out on the problem

Type Integer

Fair Isaac Corporation Proprietary Information 168

Chapter 19: Control Parameters

Values XSLP_PRESOLVELEVEL_LOCALIZED Individual rows only presolve, no nonlinear
transformations.

XSLP_PRESOLVELEVEL_BASIC Individual rows and bounds only presolve, no nonlinear
transformations.

XSLP_PRESOLVELEVEL_LINEAR Presolve allowing changing problem dimension, no
nonlinear transformations.

XSLP_PRESOLVELEVEL_FULL Full presolve.

Note XSLP_PRESOLVEOPS and XSLP_REFORMULATE controls the operations carried out in
presolve. XSLP_PRESOLVELEVEL controls how those operations may change the problem.

Default value XSLP_PRESOLVELEVEL_FULL

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVE, XSLP_PRESOLVEOPS, XSLP_REFORMULATE

XSLP_PRESOLVEOPS

Description Bitmap indicating the SLP presolve actions to be taken

Type Integer

Values Bit Meaning
0 Generic SLP presolve.
1 Explicitly fix columns identified as fixed to zero.
2 Explicitly fix all columns identified as fixed.
3 SLP bound tightening.
4 MISLP bound tightening.
5 Bound tightening based on function domains.
8 Do not presolve coefficients.
9 Do not remove delta variables.
10 Avoid reductions that can not be dual postsolved.
11 Allow eliminations on determined variables.
12 Avoid performing linear reductions at the nlp level.
13 Avoid simplifying nonlinear expressions.

Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration). Linear
reductions are performed according to XPRS_PRESOLVEOPS if bit 12 is not set.

Default value 2104

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVE, XSLP_PRESOLVEOPS, XSLP_REFORMULATE

XSLP_PROBING

Description This control determines whether probing on a subset of variables should be performed prior to
starting the main algorithm. Probing runs multiple times bound reduction in order to further
tighten the bounding box.

Type Integer

Fair Isaac Corporation Proprietary Information 169

Chapter 19: Control Parameters

Values -1 Automatic.
0 Disable SLP probing.
1 Activate SLP probing only on binary variables.
2 Activate SLP probing only on binary or unbounded integer variables.
3 Activate SLP probing only on binary or integer variables.
4 Activate SLP probing only on binary, integer variables, and unbounded continuous

variables.
5 Activate SLP probing on any variable.

Default value -1: XSLP sets the probing level based on the problem size

Note The Xpress NonLinear nonlinear probing, which is carried out once, is independent of the
Optimizer presolve (which is carried out during each SLP iteration). The probing level allows for
probing on an expanding set of variables, allowing for probing on all variables (level 5) or only
those for which probing is more likely to be useful (binary variables).

Affects routines XSLPpresolve

See also XSLP_PRESOLVEOPS,

XSLP_REFORMULATE

Description Controls the problem reformulations carried out before augmentation. This allows SLP to take
advantage of dedicated algorithms for special problem classes.

Type Integer

Values Bit Meaning
0 Solve convex quadratic objectives using the XPRS library .
1 Convert non-convex quadratic objectives to SLP constructs .
2 Solve convex quadratic constraints using the XPRS library.
3 Convert non-convex QCQP constraints to SLP constructs.
4 Convexity of a quadratic only problem may be checked by calling the optimizer to

solve the instance.
5 Convert pievewise linear functions to MIP constructs.
6 Convert ABS functions to MIP constraints if the full problem can be made not

nonlienar.
7 Convert MIN and MAX functions to MIP expressions if the full problem can be made

not nonlinear.
8 Always convert ABS expressions.
9 Always convert MIN and MAX expressions.

Default value -1: All structures are checked against reformulation

Note The reformulation is part of XSLP presolve, and is only carried out if XSLP_PRESOLVE is
nonzero. The following constants are provided for setting these bits:

Fair Isaac Corporation Proprietary Information 170

Chapter 19: Control Parameters

Setting bit 0 XSLP_REFORMULATE_SLP2QP
Setting bit 1 XSLP_REFORMULATE_QP2SLP
Setting bit 2 XSLP_REFORMULATE_SLP2QCQP
Setting bit 3 XSLP_REFORMULATE_QCQP2SLP
Setting bit 4 XSLP_REFORMULATE_QPSOLVE
Setting bit 5 XSLP_REFORMULATE_PWL
Setting bit 6 XSLP_REFORMULATE_ABS
Setting bit 7 XSLP_REFORMULATE_MINMAX
Setting bit 8 XSLP_REFORMULATE_ALLABS
Setting bit 9 XSLP_REFORMULATE_ALLMINMAX

Affects routines XSLPconstruct, XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim,
XSLPnlpoptimize

XSLP_SAMECOUNT

Description Number of steps reaching the step bound in the same direction before step bounds are
increased

Type Integer

Note If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMECOUNT successive
changes reaching the step bound and in the same direction for a variable, then the step bound
(B) for the variable will be reset to
B ∗ XSLP_EXPAND.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EXPAND

XSLP_SAMEDAMP

Description Number of steps in same direction before damping factor is increased

Type Integer

Note If dynamic damping is enabled, the damping factor for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMEDAMP successive
changes in the same direction for a variable, then the damping factor (D) for the variable will be
reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)

Default value 3

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX

Affects routines XSLPmaxim, XSLPminim

XSLP_SBROWOFFSET

Description Position of first character of SLP variable name used to create name of SLP lower and upper
step bound rows

Fair Isaac Corporation Proprietary Information 171

Chapter 19: Control Parameters

Type Integer

Note During augmentation, a delta vector is created for each SLP variable. Step bounds are provided
for each delta variable, either using explicit bounds, or by using rows to provide lower and upper
bounds. If such rows are used, they are created with names derived from the corresponding
SLP variable. Customized naming is possible using XSLP_SBLOROWFORMAT and
XSLP_SBUPROWFORMAT to define a format and XSLP_SBROWOFFSET to define the first
character (counting from zero) of the variable name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_SBLOROWFORMAT, XSLP_SBUPROWFORMAT

XSLP_SBSTART

Description SLP iteration after which step bounds are first applied

Type Integer

Note If step bounds are used, they can be applied for the whole of the SLP optimization process, or
started after a number of SLP iterations. In general, it is better not to apply step bounds from
the start unless one of the following applies:
(1) the initial estimates are known to be good, and explicit values can be provided for initial step
bounds on all variables; or
(2) the problem is unbounded unless all variables are step-bounded.

Default value 8

Affects routines XSLPmaxim, XSLPminim

XSLP_SCALE

Description When to re-scale the SLP problem

Type Integer

Values 0 No re-scaling.
1 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations after the end of

barrier optimization.
2 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations in total.
3 Re-scale every SLP iteration until primal simplex is automatically invoked.
4 Re-scale every SLP iteration.
5 Re-scale every XSLP_SCALECOUNT SLP iterations.
6 Re-scale every XSLP_SCALECOUNT SLP iterations after the end of barrier

optimization.

Note During the SLP optimization, matrix entries can change considerably in magnitude, even when
the formulae in the coefficients are not very nonlinear. Re-scaling of the matrix can reduce
numerical errors, but may increase the time taken to achieve convergence.

Default value 1

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SCALECOUNT

Fair Isaac Corporation Proprietary Information 172

Chapter 19: Control Parameters

XSLP_SCALECOUNT

Description Iteration limit used in determining when to re-scale the SLP matrix

Type Integer

Notes If XSLP_SCALE is set to 1 or 2, then XSLP_SCALECOUNT determines the number of iterations
(after the end of barrier optimization or in total) in which the matrix is automatically re-scaled.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SCALE

XSLP_SOLVER

Description First order differentiation mode when using analytical derivatives

Type Integer

Values -1 automatic selection, based on model characteristics and solver availability
0 use Xpress-SLP (always available)
1 use Knitro if available

Note The presence of Knitro is detected automatically. Knitro can be used to solve any problem
loaded into XSLP, independently from how the problem was loaded. XSLP_SOLVER is set to
automatic, XSLP will be selected if any SLP specific construct has been loaded (these are
ignored if Knitro is selcetd manually).

Default value -1

XSLP_SLPLOG

Description Frequency with which SLP status is printed

Type Integer

Note If XSLP_LOG is set to zero (minimal logging) then a nonzero value for XSLP_SLPLOG defines
the frequency (in SLP iterations) when summary information is printed out.

Default value 1

Affects routines XSLPnlpoptimize, XSLPmaxim, XSLPminim

See also XSLP_LOG, XSLP_MIPLOG

XSLP_STOPOUTOFRANGE

Description Stop optimization and return error code if internal function argument is out of range

Type Integer

Note If XSLP_STOPOUTOFRANGE is set to 1, then if an internal function receives an argument which
is out of its allowable range (for example, LOG of a negative number), an error code is set and
the optimization is terminated.

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula XSLPmaxim, XSLPminim

Fair Isaac Corporation Proprietary Information 173

Chapter 19: Control Parameters

XSLP_THREADS

Description Default number of threads to be used

Type Integer

Note Overall thread control value, used to determine the number of threads used where parallel
calculations are possible.

Default value -1 (automatically determined)

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_CALCTHREADS, XSLP_MULTISTART_THREADS,

XSLP_THREADSAFEUSERFUNC

Description Defines if user functions are allowed to be called in parallel

Type Integer

Note Date and time printing can be useful for identifying slow procedures during the SLP
optimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during the
optimization.

Values 0 user function are not thread safe, and will not be called in parallel
1 user functions are thread safe, and may be called in parallel

Default value 0 (no parallel user function calls)

Affects routines XSLPmaxim, XSLPminim

XSLP_TRACEMASKOPS

Description Controls the information printed for XSLP_TRACEMASK. The order in which the information is
printed is determined by the order of bits in XSLP_TRACEMASKOPS.

Type Integer

Values Bit Meaning
0 The variable name is used as a mask, not as an exact fit.
1 Use mask to trace rows.
2 Use mask to trace columns.
3 Use mask to trace cascaded SLP variables.
4 Show row / column category.
5 Trace slack values.
6 Trace dual values.
7 Trace row penalty multiplier.
8 Trace variable values (as returned by the lineariation).
9 Trace reduced costs.
10 Trace slp value (value used in linearization and cascaded).
11 Trace step bounds.
12 Trace convergence status.
13 Trace line search.

Fair Isaac Corporation Proprietary Information 174

Chapter 19: Control Parameters

Default value -1: all bits are set

Note The following constants are provided for setting these bits:
Setting bit 0 XSLP_TRACEMASK_GENERALFIT
Setting bit 1 XSLP_TRACEMASK_ROWS
Setting bit 2 XSLP_TRACEMASK_COLS
Setting bit 3 XSLP_TRACEMASK_CASCADE
Setting bit 4 XSLP_TRACEMASK_TYPE
Setting bit 5 XSLP_TRACEMASK_SLACK
Setting bit 6 XSLP_TRACEMASK_DUAL
Setting bit 7 XSLP_TRACEMASK_WEIGHT
Setting bit 8 XSLP_TRACEMASK_SOLUTION
Setting bit 9 XSLP_TRACEMASK_REDUCEDCOST
Setting bit 10 XSLP_TRACEMASK_SLPVALUE
Setting bit 11 XSLP_TRACEMASK_STEPBOUND
Setting bit 12 XSLP_TRACEMASK_CONVERGE
Setting bit 13 XSLP_TRACEMASK_LINESEARCH

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize

XSLP_UNFINISHEDLIMIT

Description The number of consecutive SLP iterations that may have an unfinished status before the solve
is terminated.

Type Integer

Note If the optimization of the current linear approximation terminates with an "unfinished" status,
then first a number of strategies are applied to attempt a successful solve of the same
linearization. If this fails, then a new iteration is started to change the linearization itself. This
control limits the numner of such repeated attempts.

Default value 3

Affects routines XSLPnlpoptimize, XSLPmaxim, XSLPminim

XSLP_UPDATEOFFSET

Description Position of first character of SLP variable name used to create name of SLP update row

Type Integer

Note During augmentation, one or more delta vectors are created for each SLP variable. The values
of these are linked to that of the variable through an update row which is created as part of the
augmentation procedure. Update rows are created with names derived from the corresponding
SLP variable. Customized naming is possible using XSLP_UPDATEFORMAT to define a format
and XSLP_UPDATEOFFSET to define the first character (counting from zero) of the variable
name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_UPDATEFORMAT

Fair Isaac Corporation Proprietary Information 175

Chapter 19: Control Parameters

XSLP_VCOUNT

Description Number of SLP iterations over which to measure static objective (3) convergence

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2. Where
step bounding is being used, this ensures that the test is not applied until after step bounding
has been introduced.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VLIMIT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_VLIMIT

Description Number of SLP iterations after which static objective (3) convergence testing starts

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of individual
variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2. Where
step bounding is being used, this ensures that the test is not applied until after step bounding
has been introduced.

Fair Isaac Corporation Proprietary Information 176

Chapter 19: Control Parameters

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_WCOUNT

Description Number of SLP iterations over which to measure the objective for the extended convergence
continuation criterion

Type Integer

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
The extended convergence continuation criterion is applied after a converged solution has been
found where at least one variable has converged on extended criteria and is at its step bound
limit. The extended convergence continuation test measures whether any improvement is
being achieved when additional SLP iterations are carried out. If not, then the last converged
solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObj
For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.
When a solution is found which converges on extended criteria and with active step bounds, the
solution is saved and SLP optimization continues until one of the following:
(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;
(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;
(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.
If XSLP_WCOUNT is zero, then the extended convergence continuation criterion is disabled.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WTOL_A, XSLP_WTOL_R

XSLP_XCOUNT

Description Number of SLP iterations over which to measure static objective (1) convergence

Type Integer

Fair Isaac Corporation Proprietary Information 177

Chapter 19: Control Parameters

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then there
is less likelihood of an improved result, and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the fact
that some variables are at their step bound limit suggests that the objective function could be
improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static objective
function (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

Default value 5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XLIMIT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_XLIMIT

Description Number of SLP iterations up to which static objective (1) convergence testing starts

Type Integer

Note It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then there
is less likelihood of an improved result, and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but
some have converged on extended criteria and at least one of these variables is at its step
bound. Because all the variables have converged, the solution is already converged but the fact
that some variables are at their step bound limit suggests that the objective function could be
improved by going further.

Fair Isaac Corporation Proprietary Information 178

Chapter 19: Control Parameters

The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static objective
function (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

Default value 100

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_ZEROCRITERION

Description Bitmap determining the behavior of the placeholder deletion procedure

Type Integer

Values Bit Meaning
0 (=1) Remove placeholders in nonbasic SLP variables
1 (=2) Remove placeholders in nonbasic delta variables
2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and

the corresponding SLP variable is nonbasic
4 (=16) Remove placeholders in a basic delta variable if the determining row for the

corresponding SLP variable is nonbasic
5 (=32) Print information about zero placeholders

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVAR
Setting bit 1 XSLP_ZEROCRTIERION_NBDELTA
Setting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW
Setting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROW
Setting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROW
Setting bit 5 XSLP_ZEROCRTIERION_PRINT

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, Management of zero
placeholder entries

Fair Isaac Corporation Proprietary Information 179

Chapter 19: Control Parameters

XSLP_ZEROCRITERIONCOUNT

Description Number of consecutive times a placeholder entry is zero before being considered for deletion

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONSTART, Management of zero placeholder
entries

XSLP_ZEROCRITERIONSTART

Description SLP iteration at which criteria for deletion of placeholder entries are first activated.

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONCOUNT, Management of zero placeholder
entries

Fair Isaac Corporation Proprietary Information 180

Chapter 19: Control Parameters

19.3 String control parameters
XSLP_DELTAFORMAT

Description Formatting string for creation of names for SLP delta vectors

Type String

Note This control can be used to create a specific naming structure for delta vectors. The structure
follows the normal C-style printf form, and can contain printing characters plus one %s string.
This will be replaced by sequential characters from the name of the variable starting at position
XSLP_DELTAOFFSET.

Default value pD_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_ITERFALLBACKOPS

Description Alternative LP level control values for numerically challengeing problems

Type String

Notes When set, this control provides alternative ways of solving a linearization called adaptive
iteration solves. This can be useful for numerically challenging problems that either solve to a
non-satisfactory accuracy (relative to XSLP_FEASTOLTARGET) with the default solves, or that
can incorrectly report infeasibility or unboundedness. In such cases, the solve will try the
controls listed by XSLP_ITERFALLBACKOPS until a satisfactory solution is found or all options
are exhausted.
The individual controls for each solve are separated by a comma (’,’), while the set of controls
for an attepmt by a colon (’:’) . Example: ’XPRS_DEFAULTALG=3 : XPRS_BARORDER = 2,
XPRS_PRESOVLE = 0’ will try primal in one solve, and the homogenous barrier with presolve
turned off in an other. Optimizer flags are not inherited by the solve, so use XPRS_DEFAULTALG
for selecting an LP solver to use.
The resulting LP solves are carried out in a parallel manner, using
XSLP_MULTISTART_THREADS number of threads.
The result of the adaptive solves are always deterministic.
Once a satisfactory solution is found, remaining solves are progressed only as far as necessary
to guarantee determinism, so it is beneficial to list more promising control sets first.

Default value none

Affects routines XSLPminim, XSLPmaxim, XSLPnlpoptimize

See also XSLP_FEASTOLTARGET,

XSLP_IVNAME

Description Name of the set of initial values to be used

Type String

Fair Isaac Corporation Proprietary Information 181

Chapter 19: Control Parameters

Notes This variable may be required for input from a file using XSLPreadprob if there is more than
one set of initial values in the file. If no name is set, then the first set of initial values will be
used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where initial values are
included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_SBNAME, XSLP_TOLNAME

XSLP_MINUSDELTAFORMAT

Description Formatting string for creation of names for SLP negative penalty delta vectors

Type String

Note This control can be used to create a specific naming structure for negative penalty delta
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name of
the variable starting at position XSLP_DELTAOFFSET.

Default value pD-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_MINUSERRORFORMAT

Description Formatting string for creation of names for SLP negative penalty error vectors

Type String

Note This control can be used to create a specific naming structure for negative penalty error
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name of
the variable starting at position XSLP_ERROROFFSET.

Default value pE-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_PENALTYCOLFORMAT

Description Formatting string for creation of the names of the SLP penalty transfer vectors

Type String

Fair Isaac Corporation Proprietary Information 182

Chapter 19: Control Parameters

Note This control can be used to create a specific naming structure for the penalty transfer vectors
which transfer penalty costs into the objective. The structure follows the normal C-style printf
form, and can contain printing characters plus one %s string. This will be replaced by "DELT" for
the penalty delta transfer vector and "ERR" for the penalty error transfer vector.

Default value pPC_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

XSLP_PENALTYROWFORMAT

Description Formatting string for creation of the names of the SLP penalty rows

Type String

Note This control can be used to create a specific naming structure for the penalty rows which total
the penalty costs for the objective. The structure follows the normal C-style printf form, and can
contain printing characters plus one %s string. This will be replaced by "DELT" for the penalty
delta row and "ERR" for the penalty error row.

Default value pPR_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

XSLP_PLUSDELTAFORMAT

Description Formatting string for creation of names for SLP positive penalty delta vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty delta vectors.
The structure follows the normal C-style printf form, and can contain printing characters plus
one %s string. This will be replaced by sequential characters from the name of the variable
starting at position XSLP_DELTAOFFSET.

Default value pD+%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_PLUSERRORFORMAT

Description Formatting string for creation of names for SLP positive penalty error vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty error vectors.
The structure follows the normal C-style printf form, and can contain printing characters plus
one %s string. This will be replaced by sequential characters from the name of the variable
starting at position XSLP_ERROROFFSET.

Default value pE+%s
where p is a unique prefix for names in the current problem

Fair Isaac Corporation Proprietary Information 183

Chapter 19: Control Parameters

Affects routines XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_SBLOROWFORMAT

Description Formatting string for creation of names for SLP lower step bound rows

Type String

Note This control can be used to create a specific naming structure for lower limits on step bounds
modeled as rows. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name of
the variable starting at position XSLP_SBROWOFFSET.

Default value pSB-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET

XSLP_SBNAME

Description Name of the set of initial step bounds to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more than
one set of initial step bounds in the file. If no name is set, then the first set of initial step bounds
will be used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where initial step bounds
are included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_IVNAME, XSLP_TOLNAME

XSLP_SBUPROWFORMAT

Description Formatting string for creation of names for SLP upper step bound rows

Type String

Note This control can be used to create a specific naming structure for upper limits on step bounds
modeled as rows. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name of
the variable starting at position XSLP_SBROWOFFSET.

Default value pSB+%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET

Fair Isaac Corporation Proprietary Information 184

Chapter 19: Control Parameters

XSLP_TOLNAME

Description Name of the set of tolerance sets to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more than
one set of tolerance sets in the file. If no name is set, then the first set of tolerance sets will be
used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where tolerance sets are
included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_IVNAME, XSLP_SBNAME

XSLP_TRACEMASK

Description Mask of variable or row names that are to be traced through the SLP iterates

Type String

Notes If the mask is nonempty, variables and rows matching the mask are listed after each SLP
iteration and each cascade, allowing for a convenient means to observe how certain variables
change through the iterates. This feasture is provided for tuning and model debugging
purposes. The actual information printed is controlled by XSLP_TRACEMASKOPS.
The string in the tracemask may contain several variable or row names, separated by a
whitespace. Wildcards may also be used.

Default value none: no tracing

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize,

See also XSLP_TRACEMASKOPS

XSLP_UPDATEFORMAT

Description Formatting string for creation of names for SLP update rows

Type String

Note This control can be used to create a specific naming structure for update rows. The structure
follows the normal C-style printf form, and can contain printing characters plus one %s string.
This will be replaced by sequential characters from the name of the variable starting at position
XSLP_UPDATEOFFSET.

Default value pU_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_UPDATEOFFSET

Fair Isaac Corporation Proprietary Information 185

Chapter 19: Control Parameters

19.4 Knitro controls
All Knitro controls are available with an ’X’ pre-tag. For example the Knitro integer control
’KTR_PARAM_ALGORITHM’ can be set using XSLPsetintcontrol using the control ID defined as
’XKTR_PARAM_ALGORITHM’. Please refer to the Xpress Knitro manual for the description of the Knitro
controls.

Fair Isaac Corporation Proprietary Information 186

CHAPTER 20

Library functions and the programming inter-
face

20.1 Counting
All Xpress NonLinear entities are numbered from 1. The 0th item is defined, and is an empty entity of the
appropriate type. Therefore, whenever an Xpress NonLinear function returns a zero value, it means that
there is no data of that type.

In parsed and unparsed function arrays, the indices always count from 1. This includes types XSLP_VAR
and XSLP_CONSTRAINT: the index is the matrix column or row index +1.

Note that for input of function arrays, types XSLP_COL and XSLP_ROW can be used, but will be converted
into standard XSLP_VAR or XSLP_CONSTRAINT references. When a function array is returned from
Xpress NonLinear, the XSLP_VAR or XSLP_CONSTRAINT type will always be used.

20.2 The Xpress NonLinear problem pointer
Xpress NonLinear uses the same concept as the Optimizer library, with a "pointer to a problem". The
optimizer problem must be initialized first in the normal way. Then the corresponding Xpress NonLinear
problem must be initialized, including a pointer to the underlying optimizer problem. For example:

{
...
XPRSprob prob=NULL;
XSLPprob SLPprob=NULL;

XPRSinit("");
XSLPinit();
XPRScreateprob(&prob);
XSLPcreateprob(&SLPprob,&prob);
...
}

At the end of the program, the Xpress NonLinear problem should be destroyed. You are responsible for
destroying the underlying XPRSprob linear problem afterwards. For example:

{
...
XSLPdestroyprob(SLPprob);
XPRSdestroyprob(prob);
XSLPfree();
XPRSfree();
...

}

Fair Isaac Corporation Proprietary Information 187

Chapter 20: Library functions and the programming interface

The following functions are provided to manage Xpress NonLinear problems. See the documentation
below on the individual functions for more details.

XSLPcopycontrols(XSLPprob prob1, XSLPprob prob2)
Copy the settings of control variables

XSLPcopycallbacks(XSLPprob prob1, XSLPprob prob2)
Copy the callback settings

XSLPcopyprob(XSLPprob prob1, XSLPprob prob2, char ⁎ProbName)
Copy a problem completely

XSLPcreateprob(XSLPprob ⁎prob1, XPRSprob ⁎prob2)
Create an Xpress NonLinear problem

XSLPdestroyprob(XSLPprob prob1)
Delete an Xpress NonLinear problem from memory

XSLPrestore(XSLPprob prob1)
Restore Xpress NonLinear data structures from file

XSLPsave(XSLPprob prob1)
Save Xpress NonLinear data structures to file

20.3 The XSLPload... functions
The XSLPload... functions can be used to load an Xpress NonLinear problem directly into the Xpress
data structures. Because there are so many additional items which can be loaded apart from the basic
(linear) matrix, the loading process is divided into several functions.

The best practice is to load the linear part of the problem irst, using the normal Optimizer Library
functions XPRSloadlp or XPRSloadglobal. Then the appropriate parts of the Xpress NonLinear
problem can be loaded. After all the XSLPload... functions have been called, XSLPconstruct should
be called to create the SLP matrix and data structures. If XSLPconstruct is not invoked before a call to
one of the Xpress NonLinear optimization routines, then it will be called by the optimization routine itself.

All of these functions initialize their data areas. Therefore, if a second call is made to the same function
for the same problem, the previous data will be deleted. If you want to include additional data of the same
type, then use the corresponding XSLPadd... function.

It is possible to remove parts of the SLP strcutures with the various XSLPdel functions, and
XSLPunconstruct can also be used to remove the augmentation.

Xpress NonLinear is compatible with the Xpress quadratic programming optimizer. XPRSloadqp and
XPRSloadqglobal can be used to load quadratic problems (or quadratically constrained problmes
using XPRSloadqcqp and XPRSloadqcqpglobal). The quadratic objective will be optimized using the
Xpress quadratic optimizer; the nonlinear constraints will be handled with the normal SLP procedures.
Please note, that this separation is only useful for a convex quadratic objective and convex quadratic
inequality constraints. All nonconvex quadratic matrices should be handled as SLP strctures.

For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP problems,
please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

20.4 Library functions
A large number of routines are available for Library users of Xpress NonLinear, ranging from simple
routines for the input and solution of problems from matrix files to sophisticated callback functions and
greater control over the solution process. Library users have access to a set of functions providing

Fair Isaac Corporation Proprietary Information 188

Chapter 20: Library functions and the programming interface

advanced control over their program’s interaction with the SLP module and catering for more complicated
problem development.

XSLPaddcoefs Add non-linear coefficients to the SLP problem. For a simpler version of this
function see XSLPaddformulas. p. 195

XSLPadddfs Add a set of distribution factors p. 199

XSLPaddformulas Add non-linear formulas to the SLP problem. p. 197

XSLPaddtolsets This function is deprecated and may be removed in future releases. Add sets
of standard tolerance values to an SLP problem p. 200

XSLPadduserfunction Add user function definitions to an SLP problem. p. 201

XSLPaddvars This function is deprecated and may be removed in future releases. Add SLP
variables defined as matrix columns to an SLP problem p. 203

XSLPcalcslacks Calculate the slack values for the provided solution in the non-linear problem
p. 205

XSLPcascade Re-calculate consistent values for SLP variables based on the current values
of the remaining variables. p. 206

XSLPcascadeorder Establish a re-calculation sequence for SLP variables with determining rows.
p. 207

XSLPchgcascadenlimit Set a variable specific cascade iteration limit p. 208

XSLPchgccoef Add or change a single matrix coefficient using a character string for the
formula. For a simpler version of this function see
XSLPchgformulastring. p. 209

XSLPchgcoef Add or change a single matrix coefficient using a parsed or unparsed
formula. For a simpler version of this function see XSLPchgformula.
p. 210

XSLPchgdeltatype Changes the type of the delta assigned to a nonlinear variable p. 212

XSLPchgdf Set or change a distribution factor p. 213

XSLPchgformula Add or replace a single matrix formula using a parsed or unparsed formula
p. 215

XSLPchgformulastring Add or replace a single matrix formula using a character string for the
formula.. p. 214

XSLPchgrowstatus Change the status setting of a constraint p. 216

XSLPchgrowwt Set or change the initial penalty error weight for a row p. 217

XSLPchgtolset This function is deprecated and may be removed in future releases. Add or
change a set of convergence tolerances used for SLP variables p. 218

XSLPchgvar This function is deprecated and may be removed in future releases. Define a
column as an SLP variable or change the characteristics and values of an
existing SLP variable p. 220

XSLPconstruct Create the full augmented SLP matrix and data structures, ready for
optimization p. 222

XSLPcopycallbacks Copy the user-defined callbacks from one SLP problem to another p. 223

Fair Isaac Corporation Proprietary Information 189

Chapter 20: Library functions and the programming interface

XSLPcopycontrols Copy the values of the control variables from one SLP problem to another
p. 224

XSLPcopyprob Copy an existing SLP problem to another p. 225

XSLPcreateprob Create a new SLP problem p. 226

XSLPdelcoefs Delete coefficients from the current problem. For a simpler version of this
function see XSLPdelformulas. p. 227

XSLPdelformulas Delete nonlinear formulas from the current problem p. 228

XSLPdeltolsets This function is deprecated and may be removed in future releases. Delete
tolerance sets from the current problem p. 229

XSLPdeluserfunction Delete a user function from the current problem p. 230

XSLPdelvars This function is deprecated and may be removed in future releases. Convert
SLP variables to normal columns. Variables must not appear in SLP
structures p. 231

XSLPdestroyprob Delete an SLP problem and release all the associated memory p. 232

XSLPevaluatecoef Evaluate a coefficient using the current values of the variables p. 233

XSLPevaluateformula Evaluate a formula using the current values of the variables p. 234

XSLPfixpenalties Fixe the values of the error vectors p. 235

XSLPfree Free any memory allocated by Xpress NonLinear and close any open Xpress
NonLinear files p. 236

XSLPgetbanner This function is deprecated and may be removed in future releases. This
function has the same effect as XPRSgetbanner p. 237

XSLPgetccoef Retrieve a single matrix coefficient as a formula in a character string. For a
simpler version of this function see XSLPgetformulastring. p. 238

XSLPgetcoefformula Retrieve a single matrix coefficient as a formula split into tokens. For a
simpler version of this function see XSLPchgformula. p. 239

XSLPgetcoefs Retrieve the list of positions of the nonlinear coefficients in the problem. For
a simpler version of this function see XSLPgetformularows. p. 240

XSLPgetcolinfo Get current column information. p. 241

XSLPgetdblattrib Retrieve the value of a double precision problem attribute p. 242

XSLPgetdblcontrol Retrieve the value of a double precision problem control p. 243

XSLPgetdf Get a distribution factor p. 244

XSLPgetformula Retrieve a single matrix formula as a formula split into tokens. p. 245

XSLPgetformularows Retrieve the list of positions of the nonlinear formulas in the problem p. 247

XSLPgetformulastring Retrieve a single matrix formula in a character string. p. 246

XSLPgetindex Retrieve the index of an Xpress NonLinear entity with a given name p. 248

XSLPgetintattrib Retrieve the value of an integer problem attribute p. 249

XSLPgetintcontrol Retrieve the value of an integer problem control p. 250

Fair Isaac Corporation Proprietary Information 190

Chapter 20: Library functions and the programming interface

XSLPgetlasterror Retrieve the error message corresponding to the last Xpress NonLinear error
during an SLP run p. 251

XSLPgetptrattrib Retrieve the value of a problem pointer attribute p. 252

XSLPgetrowinfo Get current row information. p. 253

XSLPgetrowstatus Retrieve the status setting of a constraint p. 254

XSLPgetrowwt Get the initial penalty error weight for a row p. 255

XSLPgetslpsol Obtain the solution values for the most recent SLP iteration p. 256

XSLPgetstrattrib Retrieve the value of a string problem attribute p. 257

XSLPgetstrcontrol Retrieve the value of a string problem control p. 258

XSLPgettolset This function is deprecated and may be removed in future releases. Retrieve
the values of a set of convergence tolerances for an SLP problem p. 259

XSLPgetvar This function is deprecated and may be removed in future releases. Retrieve
information about an SLP variable p. 260

XSLPimportlibfunc Imports a function from a library file to be called as a user function p. 262

XSLPinit Initializes the Xpress NonLinear system p. 263

XSLPinterrupt Interrupts the current SLP optimization p. 264

XSLPitemname Retrieves the name of an Xpress NonLinear entity or the value of a function
token as a character string. p. 265

XSLPloadcoefs Load non-linear coefficients into the SLP problem. For a simpler version of
this function see XSLPloadformulas. p. 266

XSLPloaddfs Load a set of distribution factors p. 268

XSLPloadformulas Load non-linear formulas into the SLP problem p. 269

XSLPloadtolsets This function is deprecated and may be removed in future releases. Load
sets of standard tolerance values into an SLP problem p. 271

XSLPloadvars This function is deprecated and may be removed in future releases. Load
SLP variables defined as matrix columns into an SLP problem p. 273

XSLPmaxim Maximize an SLP problem p. 275

XSLPminim Minimize an SLP problem p. 276

XSLPmsaddcustompreset A combined version of XSLPmsaddjob and XSLPmsaddpreset. The preset
described is loaded, topped up with the specific settings supplied p. 277

XSLPmsaddjob Adds a multistart job to the multistart pool p. 278

XSLPmsaddpreset Loads a preset of jobs into the multistart job pool. p. 279

XSLPmsclear Removes all scheduled jobs from the multistart job pool p. 280

XSLPnlpoptimize Maximize or minimize an SLP problem p. 281

XSLPpostsolve Restores the problem to its pre-solve state p. 282

XSLPpresolve Perform a nonlinear presolve on the problem p. 283

Fair Isaac Corporation Proprietary Information 191

Chapter 20: Library functions and the programming interface

XSLPprintevalinfo Print a summary of any evaluation errors that may have occurred during
solving a problem p. 285

XSLPprintmemory Print the dimensions and memory allocations for a problem p. 284

XSLPreadprob Read an Xpress NonLinear extended MPS format matrix from a file into an
SLP problem p. 286

XSLPreinitialize Reset the SLP problem to match a just augmented system p. 290

XSLPremaxim Continue the maximization of an SLP problem. This function is deprecated
and may be removed in future releases. Please use XSLPmaxim with the ’c’
flag instead. p. 287

XSLPreminim Continue the minimization of an SLP problem This function is deprecated
and may be removed in future releases. Please use XSLPmaxim with the ’c’
flag instead. p. 288

XSLPrestore Restore the Xpress NonLinear problem from a file created by XSLPsave
p. 289

XSLPsave Save the Xpress NonLinear problem to file p. 291

XSLPsaveas Save the Xpress NonLinear problem to a named file p. 292

XSLPscaling Analyze the current matrix for largest/smallest coefficients and ratios p. 293

XSLPsetcbcascadeend Set a user callback to be called at the end of the cascading process, after
the last variable has been cascaded p. 294

XSLPsetcbcascadestart Set a user callback to be called at the start of the cascading process,
before any variables have been cascaded p. 295

XSLPsetcbcascadevar Set a user callback to be called after each column has been cascaded p. 296

XSLPsetcbcascadevarfail Set a user callback to be called after cascading a column was not
successful p. 297

XSLPsetcbcoefevalerror Set a user callback to be called when an evaluation of a coefficient fails
during the solve p. 298

XSLPsetcbconstruct Set a user callback to be called during the Xpress-SLP augmentation
process p. 299

XSLPsetcbdestroy Set a user callback to be called when an SLP problem is about to be
destroyed p. 301

XSLPsetcbdrcol Set a user callback used to override the update of variables with small
determining column p. 302

XSLPsetcbintsol Set a user callback to be called during MISLP when an integer solution is
obtained p. 303

XSLPsetcbiterend Set a user callback to be called at the end of each SLP iteration p. 304

XSLPsetcbiterstart Set a user callback to be called at the start of each SLP iteration p. 305

XSLPsetcbitervar Set a user callback to be called after each column has been tested for
convergence p. 306

XSLPsetcbmessage Set a user callback to be called whenever Xpress NonLinear outputs a line of
text according to XSLP_ECHOXPRSMESSAGES. p. 307

Fair Isaac Corporation Proprietary Information 192

Chapter 20: Library functions and the programming interface

XSLPsetcbmsjobend Set a user callback to be called every time a new multistart job finishes. Can
be used to overwrite the default solution ranking function p. 309

XSLPsetcbmsjobstart Set a user callback to be called every time a new multistart job is created,
and the pre-loaded settings are applied p. 310

XSLPsetcbmswinner Set a user callback to be called every time a new multistart job is created,
and the pre-loaded settings are applied p. 311

XSLPsetcboptnode Set a user callback to be called during MISLP when an optimal SLP solution
is obtained at a node p. 312

XSLPsetcbprenode Set a user callback to be called during MISLP after the set-up of the SLP
problem to be solved at a node, but before SLP optimization p. 313

XSLPsetcbpresolved Set a user callback to be called after the nonlinear presolver has been
applied. p. 315

XSLPsetcbpreupdatelinearization Set a user callback to be called before the linearization is
updated p. 314

XSLPsetcbslpend Set a user callback to be called at the end of the SLP optimization p. 316

XSLPsetcbslpnode Set a user callback to be called during MISLP after the SLP optimization at
each node. p. 317

XSLPsetcbslpstart Set a user callback to be called at the start of the SLP optimization p. 318

XSLPsetcurrentiv Transfer the current solution to initial values p. 319

XSLPsetdblcontrol Set the value of a double precision problem control p. 320

XSLPsetdefaultcontrol Set the values of one SLP control to its default value p. 321

XSLPsetdefaults Set the values of all SLP controls to their default values p. 322

XSLPsetdetrow Set the determining row of a variable p. 323

XSLPsetfunctionerror Set the function error flag for the problem p. 324

XSLPsetinitval Set the initial value of a variable p. 325

XSLPsetintcontrol Set the value of an integer problem control p. 326

XSLPsetlogfile Define an output file to be used to receive messages from Xpress NonLinear
p. 327

XSLPsetparam Set the value of a control parameter by name p. 328

XSLPsetstrcontrol Set the value of a string problem control p. 329

XSLPunconstruct Removes the augmentation and returns the problem to its pre-linearization
state p. 330

XSLPupdatelinearization Updates the current linearization p. 331

XSLPvalidate Validate the feasibility of constraints in a converged solution p. 332

XSLPvalidatekkt Validates the first order optimality conditions also known as the
Karush-Kuhn-Tucker (KKT) conditions versus the currect solution p. 333

XSLPvalidateprob Validates the current problem formulation and statement p. 334

XSLPvalidaterow Prints an extensive analysis on a given constraint of the SLP problem p. 335

Fair Isaac Corporation Proprietary Information 193

Chapter 20: Library functions and the programming interface

XSLPvalidatevector Validate the feasibility of constraints for a given solution p. 336

XSLPwriteprob Write the current problem to a file in extended MPS or text format p. 337

XSLPwriteslxsol Write the current solution to an MPS like file format p. 338

Fair Isaac Corporation Proprietary Information 194

Chapter 20: Library functions and the programming interface

XSLPaddcoefs

Purpose
Add non-linear coefficients to the SLP problem. For a simpler version of this function see
XSLPaddformulas.

Synopsis
int XPRS_CC XSLPaddcoefs(XSLPprob prob, int ncoefs, int ⁎rowind, int

⁎colind, double ⁎factor, int ⁎formulastart, int parsed, int ⁎type,
double ⁎value);

Arguments
prob The current SLP problem.
ncoefs Number of non-linear coefficients to be added.
rowind Integer array holding index of row for the coefficient.
colind Integer array holding index of column for the coefficient.
factor Double array holding factor by which formula is scaled. If this is NULL, then a value of 1.0

will be used.
formulastart Integer array of length ncoefs+1 holding the start position in the arrays type and

value of the formula for the coefficients. formulastart[ncoefs] should be set to
the next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(parsed=0) or internal parsed reverse Polish (parsed=1).

type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in type.

Example
Assume that the rows and columns of prob are named Row1, Row2 ..., Col1, Col2 ... The following
example adds coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int rowind[3], colind[3], formulastart[4], type[8];
int n, ncoefs;
double value[8];

rowind[0] = 1; colind[0] = 2;
rowind[1] = 1; colind[1] = 6;
rowind[2] = 3; colind[2] = 2;

n = ncoefs = 0;
formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 3;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_CON; value[n++] = 2;
type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_CON; value[n++] = 2;

Fair Isaac Corporation Proprietary Information 195

Chapter 20: Library functions and the programming interface

type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n++] = XSLP_EOF;

formulastart[ncoefs] = n;

XSLPaddcoefs(prob, ncoefs, rowind, colind,
NULL, formulastart, 1 /⁎ reversed Polish ⁎/, type, value);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (parsed=1), so the formula is written as
Col2 Col2 ⁎
rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further information
The jth coefficient is made up of two parts: factor and Formula. factor is a constant multiplier,
which can be provided in the factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in type and value starting at formulastart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula
must be terminated with an XSLP_EOF token. If several coefficients share the same formula, they can
have the same value in formulastart. For possible token types and values see the chapter on 13.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.
The behaviour for existing coefficients is additive: the formula defined in the parameters are added to any
existing formula coefficients. However, due to performance considerations, such duplications should be
avoided when possible.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 196

Chapter 20: Library functions and the programming interface

XSLPaddformulas

Purpose
Add non-linear formulas to the SLP problem.

Synopsis
int XPRS_CC XSLPaddformulas(XSLPprob prob, int ncoefs, int ⁎rowind, int

⁎formulastart, int parsed, int ⁎type, double ⁎value);

Arguments
prob The current SLP problem.
ncoefs Number of non-linear coefficients to be added.
rowind Integer array holding index of row for the coefficient.
formulastart Integer array of length ncoefs+1 holding the start position in the arrays type and

value of the formula for the coefficients. formulastart[ncoefs] should be set to
the next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(parsed=0) or internal parsed reverse Polish (parsed=1).

type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in type.

Example
Assume that the rows and columns of prob are named Row0, Row1 ..., Col0, Col1 ... The following
example adds nonlinear formulas representing:
Col2 ⁎ Col3 ⁎ Col6ˆ2 into Row1 and
Col2 ⁎ Col3 ˆ 2 into Row3.

int rowind[3], formulastart[4], type[8];
int n, ncoefs;
double value[8];

rowind[0] = 1;
rowind[1] = 1;
rowind[2] = 3;

n = ncoefs = 0;
formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 3;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_COL; value[n++] = 3;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n] = XSLP_COL; value[n++] = 6;
type[n] = XSLP_CON; value[n++] = 2;
type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_COL; value[n++] = 3;
type[n] = XSLP_CON; value[n++] = 2;

Fair Isaac Corporation Proprietary Information 197

Chapter 20: Library functions and the programming interface

type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n++] = XSLP_EOF;

formulastart[ncoefs] = n;

XSLPaddformulas(prob, ncoefs, rowind, formulastart, 1 /⁎ reversed Polish ⁎/, type, value);

Further information
Formula is made up of a list of tokens in type and value starting at formulastart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula
must be terminated with an XSLP_EOF token. If several rows share the same nonlinear expression, they
can have the same value in formulastart. For possible token types and values see the chapter on 13.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.
The behaviour for existing formulas is additive: the formula defined in the parameters are added to any
existing nonlinear expressions in the row. However, due to performance considerations, such
duplications should be avoided when possible.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 198

Chapter 20: Library functions and the programming interface

XSLPadddfs

Purpose
Add a set of distribution factors

Synopsis
int XSLP_CC XSLPadddfs(XSLPprob prob, int ndf, const int ⁎colind, const int

⁎rowind, const double ⁎value)

Arguments
prob The current SLP problem.
ndf The number of distribution factors.
colind Array of indices of columns whose distribution factor is to be changed.
rowind Array of indices of the rows where each distribution factor applies.
value Array of double precision variables holding the new values of the distribution factors.

Example
The following example adds distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.

int colind[3], rowind[3];
double value[3];
colind[0] = 282; rowind[0] = 134; value[0] = 0.1;
colind[1] = 282; rowind[1] = 136; value[1] = 0.15;
colind[2] = 285; rowind[2] = 133; value[2] = 1.0;
XSLPadddfs(prob,3,colind,rowind,value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgdf, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Proprietary Information 199

Chapter 20: Library functions and the programming interface

XSLPaddtolsets

Purpose
This function is deprecated and may be removed in future releases. Add sets of standard tolerance values
to an SLP problem

Synopsis
int XPRS_CC XSLPaddtolsets(XSLPprob prob, int ntol, double ⁎tol);

Arguments
prob The current SLP problem.
ntol The number of tolerance sets to be added.
tol Double array of (ntol ⁎ 9) items containing the 9 tolerance values for each set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double tol[18];
for (i=0;i<9;i++) tol[i] = 0.005;
tol[9] = 0;
for (i=10;i<18;i=i+2) tol[i] = 0.01;
for (i=11;i<18;i=i+2) tol[i] = 0.001;
XSLPaddtolsets(prob, 2, tol);

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable.
If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a tolerance,
use the XSLPchgtolset function and set the Status variable appropriately.
See the section Convergence criteria for a fuller description of tolerances and their uses.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgtolset, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Proprietary Information 200

Chapter 20: Library functions and the programming interface

XSLPadduserfunction

Purpose
Add user function definitions to an SLP problem.

Synopsis
int XPRS_CC XSLPadduserfunction(XSLPprob prob, const char ⁎ funcname, int

functype, int nin, int nout, int options, XPRSfunctionptr
function,void ⁎ data, int ⁎ p_type);

Arguments
prob The current SLP problem.
funcname The name of the function as it appears in text formula expressions.
functype The type of the user function, one of

1 (XSLP_USERFUNCTION_MAP) function takes double, returns
double.

2 (XSLP_USERFUNCTION_VECMAP) function takes double array, returns
double.

3 (XSLP_USERFUNCTION_MULTIMAP) function takes double array, returns
double array.

4 (XSLP_USERFUNCTION_MAPDELTA) function takes double, returns double
and delta.

5 (XSLP_USERFUNCTION_VECMAPDELTA) function takes double array, returns
double and deltas.

6 (XSLP_USERFUNCTION_MULTIMAPDELTA) function takes double array, returns
double array and deltas.

nin Number of arguments the user function takes.
nout Number of return arguments for the function.
options options as a bitmap to the user function

XSLP_INSTANCEFUNCTION always instantiate the function.
function Pointer of the user function to call.
data Context pointer to provide the user function with.
p_type The token id of the user function added, to be used in the Value array when defining

formulas and using with XSLP_FUN.

Further information
The type XPRSfunctionptr is a generic function pointer.
The function declarations expected for the user functions are defined by the functype argument.
The function of type XSLP_USERFUNCTION_MAP expects a function in the form of ’double XPRS_CC
F(double Value, void *Context)’.
The function of type XSLP_USERFUNCTION_VECMAP expects a function in the form of ’double XPRS_CC
F(double *Value, void *Context)’.
The function of type XSLP_USERFUNCTION_MULTIMAP expects a function in the form of ’int XPRS_CC
F(double *Value, double *Out, void *Context)’.
The function of type XSLP_USERFUNCTION_MAPDELTA expects a function in the form of ’int XPRS_CC
F(double Value, double Delta, double *Evaluation, double *Partial, void *Context)’.
The function of type XSLP_USERFUNCTION_VECMAPDELTA expects a function in the form of ’int
XPRS_CC F(double *Value, double *Deltas, double *Evaluation, double *Partials, void *Context)’.
The function of type XSLP_USERFUNCTION_MULTIMAPDELTA expects a function in the form of ’int
XPRS_CC F(double *Value, double *Deltas, double *Out, void *Context)’.

Fair Isaac Corporation Proprietary Information 201

Chapter 20: Library functions and the programming interface

Related topics
Function Declaration in Xpress NonLinear, XSLPdeluserfunction, XSLPimportlibfunc

Fair Isaac Corporation Proprietary Information 202

Chapter 20: Library functions and the programming interface

XSLPaddvars

Purpose
This function is deprecated and may be removed in future releases. Add SLP variables defined as matrix
columns to an SLP problem

Synopsis
int XPRS_CC XSLPaddvars(XSLPprob prob, int nvars, int ⁎colind, int ⁎coltype,

int ⁎detrow, int ⁎seqnum, int ⁎tolind, double ⁎initial, double
⁎stepbound);

Arguments
prob The current SLP problem.
nvars The number of SLP variables to be added.
colind Integer array holding the index of the matrix column corresponding to each SLP variable.
coltype Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be NULL if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be NULL if not required.

tolind Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be NULL if not required.

initial Double array holding the initial value for each SLP variable (use the coltype bit map to
indicate if a value is being provided)
May be NULL if not required.

stepbound Double array holding the initial step bound size for each SLP variable (a zero value means
that no initial step bound size has been specified). If a value of XPRS_PLUSINFINITY is
used for a value in stepbound, the delta will never have step bounds applied, and will
almost always be regarded as converged.
May be NULL if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23 and 25
of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific initial
value

int colind[2], coltype[2];
double initial[2];

colind[0] = 23; coltype[0] = 0;
colind[1] = 25; Vartype[1] = 2; initial[1] = 1.42;

XSLPaddvars(prob, 2, colind, coltype, NULL, NULL,
NULL, initial, NULL);

initial is not set for the first variable, because it is not used (coltype = 0). Bit 1 of coltype is set
for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Proprietary Information 203

Chapter 20: Library functions and the programming interface

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used at all,
and so have been passed to the function as NULL.

Further information
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgvar, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Proprietary Information 204

Chapter 20: Library functions and the programming interface

XSLPcalcslacks

Purpose
Calculate the slack values for the provided solution in the non-linear problem

Synopsis
int XPRS_CC XSLPcalcslacks(XSLPprob prob, const double ⁎ solution, double ⁎

slack);

Arguments
prob The current SLP problem.
solution The solution for which the slacks are requested for.
slack Vector of length NROWS to return the slack in.

Related topics
XSLPvalidate, XSLPvalidaterow

Fair Isaac Corporation Proprietary Information 205

Chapter 20: Library functions and the programming interface

XSLPcascade

Purpose
Re-calculate consistent values for SLP variables based on the current values of the remaining variables.

Synopsis
int XPRS_CC XSLPcascade(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example changes the solution value for column 91, and then re-calculates the values of
those dependent on it.

int ColNum;
double Value;

ColNum = 91;
XSLPgetvar(prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL);

Value = Value + 1.42;
XSLPchgvar(prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL);

XSLPcascade(prob);

XSLPgetvar and XSLPchgvar are being used to get and change the current value of a single variable.
Provided no other values have been changed since the last execution of XSLPcascade, values will be
changed only for variables which depend on column 91.

Further information
See the section on cascading for an extended discussion of the types of cascading which can be
performed.
XSLPcascade is called automatically during the SLP iteration process and so it is not normally
necessary to perform an explicit cascade calculation.
The variables are re-calculated in accordance with the order generated by XSLPcascadeorder.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Proprietary Information 206

Chapter 20: Library functions and the programming interface

XSLPcascadeorder

Purpose
Establish a re-calculation sequence for SLP variables with determining rows.

Synopsis
int XPRS_CC XSLPcascadeorder(XSLPprob prob);

Argument
prob The current SLP problem.

Example
Assuming that all variables are SLP variables, the following example sets default values for the variables,
creates the re-calculation order and then calls XSLPcascade to calculate consistent values for the
dependent variables.

int ColNum;
for (ColNum=1;ColNum<=nCol;ColNum++)

XSLPchgvar(prob, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &DefaultValue[ColNum], NULL, NULL, NULL,
NULL);

XSLPcascadeorder(prob);
XSLPcascade(prob);

Further information
XSLPcascadeorder is called automatically at the start of the SLP iteration process and so it is not
normally necessary to perform an explicit cascade ordering.

Related topics
XSLPcascade

Fair Isaac Corporation Proprietary Information 207

Chapter 20: Library functions and the programming interface

XSLPchgcascadenlimit

Purpose
Set a variable specific cascade iteration limit

Synopsis
int XPRS_CC XSLPchgcascadenlimit(XSLPprob prob, int col, int limit);

Arguments
prob The current SLP problem.
col The index of the column corresponding to the SLP variable for which the cascading limit

is to be imposed.
limit The new cascading iteration limit.

Further information
A value set by this function will overwrite the value of XSLP_CASCADENLIMIT for this variable. To
remove any previous value set by this function, use an iteration limit of 0.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Proprietary Information 208

Chapter 20: Library functions and the programming interface

XSLPchgccoef

Purpose
Add or change a single matrix coefficient using a character string for the formula. For a simpler version
of this function see XSLPchgformulastring.

Synopsis
int XPRS_CC XSLPchgccoef(XSLPprob prob, int row, int col, const double

⁎factor, const char ⁎formula);

Arguments
prob The current SLP problem.
row The index of the matrix row for the coefficient.
col The index of the matrix column for the coefficient.
factor Address of a double precision variable holding the constant multiplier for the formula. If

factor is NULL, a value of 1.0 will be used.
formula Character string holding the formula with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

char ⁎formula="sin (Col1)";
double factor;

factor = 2.5;
XSLPchgccoef(prob, 1, 3, &factor, formula);

Note that all the tokens in the formula (including mathematical operators and separators) are separated
by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: factor and formula. factor is a constant multiplier which can
be provided in the factor variable. If Xpress NonLinear can identify a constant factor in the formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.
This function can only be used if all the operands in the formula can be correctly identified as constants,
existing columns, character variables or functions. Therefore, if a formula refers to a new column, that
new item must be added to the Xpress NonLinear problem first.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 209

Chapter 20: Library functions and the programming interface

XSLPchgcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula. For a simpler version of
this function see XSLPchgformula.

Synopsis
int XPRS_CC XSLPchgcoef(XSLPprob prob, int row, int col, double ⁎factor,

int parsed, int ⁎type, double ⁎value);

Arguments
prob The current SLP problem.
row The index of the matrix row for the coefficient.
col The index of the matrix column for the coefficient.
factor Address of a double precision variable holding the constant multiplier for the formula. If

factor is NULL, a value of 1.0 will be used.
parsed Integer indicating the whether the token arrays are formatted as internal unparsed

(parsed=0) or internal parsed reverse Polish (parsed=1).
type Array of token types providing the description and formula for each item.
value Array of values corresponding to the types in type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.

int n, iSin, type[4];
double value[4];
double factor;

XSLPgetindex(prob, XSLP_INTERNALFUNCNAMESNOCASE,
"sin", &iSin);

n = 0;
type[n] = XSLP_IFUN; value[n++] = iSin;
type[n] = XSLP_VAR; value[n++] = 1;
type[n++] = XSLP_RB;
type[n++] = XSLP_EOF;

factor = 2.5;
XSLPchgcoef(prob, 1, 3, &factor, 0, type, value);

XSLPgetindex is used to retrieve the index for the internal function sin. The "nocase" version matches
the function name regardless of the (upper or lower) case of the name.
Token type XSLP_VAR always counts from 1, so Col1 is always 1.
The formula is written in unparsed form (parsed = 0) and so it is provided as tokens in the same order
as they would appear if the formula were written in character form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
A coefficient is made up of two parts: factor and Formula. factor is a constant multiplier which can
be provided in the factor variable. If Xpress NonLinear can identify a constant factor in the Formula,
then it will use that as well, to minimize the size of the formula which has to be calculated.

Fair Isaac Corporation Proprietary Information 210

Chapter 20: Library functions and the programming interface

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 211

Chapter 20: Library functions and the programming interface

XSLPchgdeltatype

Purpose
Changes the type of the delta assigned to a nonlinear variable

Synopsis
int XPRS_CC XSLPchgdeltatype(XSLPprob prob, int nvars, int varind[], int

deltatypes[], double values[]);

Arguments
prob The current SLP problem.
nvars The number of SLP variables to change the delta type for.
varind Indices of the variables to change the deltas for.
deltatypes Type if the delta variable:

0 Differentiable variable, default.
1 Variable defined over the grid size given in values.
2 Variable where a minimum perturbation size given in valuesmay be

required before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be detected,

with an upper limit given in values.
values Grid or minimum step sizes for the variables.

Further information
Changing the delta type of a variables makes the variable nonlinear.

Related topics
XSLP_SEMICONTDELTAS, XSLP_INTEGERDELTAS, XSLP_EXPLOREDELTAS

Fair Isaac Corporation Proprietary Information 212

Chapter 20: Library functions and the programming interface

XSLPchgdf

Purpose
Set or change a distribution factor

Synopsis
int XSLP_CC XSLPchgdf(XSLPprob prob, int col, int row, const double ⁎value)

Arguments
prob The current SLP problem.
col The index of the column whose distribution factor is to be set or changed.
row The index of the row where the distribution applies.
value Address of a double precision variable holding the new value of the distribution factor.

May be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and
changes it to be twice as large.

double value;
XSLPgetdf(prob,282,134,&value);
value = value ⁎ 2;
XSLPchgdf(prob,282,134,&value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress NonLinear can accept distribution factors instead of initial values, provided
that the values of the variables involved can all be calculated after optimization using determining rows,
or by a callback.

Related topics
XSLPadddfs, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Proprietary Information 213

Chapter 20: Library functions and the programming interface

XSLPchgformulastring

Purpose
Add or replace a single matrix formula using a character string for the formula..

Synopsis
int XPRS_CC XSLPchgformulastring(XSLPprob prob, int row, const char

⁎formula);

Arguments
prob The current SLP problem.
row The index of the matrix row for the coefficient.
formula Character string holding the formula with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula sin(Col1) into row 1.

char ⁎formula="sin (Col1)";
XSLPchgformulastring(prob, 1, formula);

Note that all the tokens in the formula (including mathematical operators and separators) are separated
by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.
This function can only be used if all the operands in the formula can be correctly identified as constants,
existing columns, character variables or functions. Therefore, if a formula refers to a new column, that
new item must be added to the Xpress NonLinear problem first.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 214

Chapter 20: Library functions and the programming interface

XSLPchgformula

Purpose
Add or replace a single matrix formula using a parsed or unparsed formula

Synopsis
int XPRS_CC XSLPchgformula(XSLPprob prob, int row, int parsed, const int

⁎type, const double ⁎value);

Arguments
prob The current SLP problem.
row The index of the matrix row for the coefficient.
parsed Integer indicating the whether the token arrays are formatted as internal unparsed

(parsed=0) or internal parsed reverse Polish (parsed=1).
type Array of token types providing the description and formula for each item.
value Array of values corresponding to the types in type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts the
formula sin(Col1) into the coefficient in row 1.

int n, iSin, type[4];
double value[4];

XSLPgetindex(prob, XSLP_INTERNALFUNCNAMESNOCASE,
"sin", &iSin);

n = 0;
type[n] = XSLP_IFUN; value[n++] = iSin;
type[n] = XSLP_VAR; value[n++] = 1;
type[n++] = XSLP_RB;
type[n++] = XSLP_EOF;

Factor = 2.5;
XSLPchgformula(prob, 1, 0, type, value);

XSLPgetindex is used to retrieve the index for the internal function sin. The "nocase" version matches
the function name regardless of the (upper or lower) case of the name.
Token type XSLP_VAR always counts from 1, so Col1 is always 1.
The formula is written in unparsed form (parsed = 0) and so it is provided as tokens in the same order
as they would appear if the formula were written in character form.

Further information
If the row already has a nonlinear expression in it, it will be changed into the new formula. If it does not
exist, it will be added to the problem.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 215

Chapter 20: Library functions and the programming interface

XSLPchgrowstatus

Purpose
Change the status setting of a constraint

Synopsis
int XPRS_CC XSLPchgrowstatus(XSLPprob prob, int row, int ⁎status);

Arguments
prob The current SLP problem.
row The index of the matrix row to be changed.
status Address of an integer holding a bitmap with the new status settings. If the status is to be

changed, always get the current status first (use XSLPgetrowstatus) and then change
settings as required. The only settings likely to be changed are:
Bit 11 Set if row must not have a penalty error vector. This is the equivalent of an

enforced constraint (SLPDATA type EC).

Example
The following example changes the status of row 9 to be an enforced constraint.

int row, status;
row = 9;
XSLPgetrowstatus(prob,row,&status);
status = status | (1<<11);
XSLPchgrowstatus(prob,row,&status);

Further information
If status is NULL the current status will remain unchanged.

Related topics
XSLPgetrowstatus

Fair Isaac Corporation Proprietary Information 216

Chapter 20: Library functions and the programming interface

XSLPchgrowwt

Purpose
Set or change the initial penalty error weight for a row

Synopsis
int XSLP_CC XSLPchgrowwt(XSLPprob prob, int row, const double ⁎weight)

Arguments
prob The current SLP problem.
row The index of the row whose weight is to be set or changed.
weight Address of a double precision variable holding the new value of the weight. May be NULL

if not required.

Example
The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the initial weight
of row 4 to a value twice the calculated default value.

double weight;
weight = -3.6;
XSLPchgrowwt(prob,2,&weight);
weight = 2.0;
XSLPchgrowwt(prob,4,&weight);

Further information
A positive value is interpreted as a multiplier of the default row weight calculated by Xpress-SLP.
A negative value is interpreted as a fixed value: the absolute value is used directly as the row weight.
The initial row weight is used only when the augmented structure is created.

Related topics
XSLPgetrowwt

Fair Isaac Corporation Proprietary Information 217

Chapter 20: Library functions and the programming interface

XSLPchgtolset

Purpose
This function is deprecated and may be removed in future releases. Add or change a set of convergence
tolerances used for SLP variables

Synopsis
int XPRS_CC XSLPchgtolset(XSLPprob prob, int ntols, int ⁎status, double

⁎tols);

Arguments
prob The current SLP problem.
tolset Tolerance set for which values are to be changed. A zero value for tolset will create a

new set.
status Address of an integer holding a bitmap describing which tolerances are active in this set.

See below for the settings.
tols Array of 9 double precision values holding the values for the corresponding tolerances.

Example
The following example creates a new tolerance set with the default values for all tolerances except the
relative delta tolerance, which is set to 0.005. It then changes the value of the absolute delta and
absolute impact tolerances in tolerance set 6 to 0.015

int status;
double tols[9];

tols[2] = 0.005;
status = 1<<2;
XSLPchgtolset(prob, 0, &status, tols);
tols[1] = tols[5] = 0.015;
status = 1<<1 | 1<<5;
XSLPchgtolset(prob, 6, &status, tols);

Further information
The bits in status are set to indicate that the corresponding tolerance is to be changed in the tolerance
set. The meaning of the bits is as follows:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable. The members of the tols array corresponding to nonzero bit settings in status will be used to
change the tolerance set. So, for example, if bit 3 is set in status, then tols[3] will replace the current
value of the absolute coefficient tolerance. If a bit is not set in status, the value of the corresponding
element of tols is unimportant.

Fair Isaac Corporation Proprietary Information 218

Chapter 20: Library functions and the programming interface

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Proprietary Information 219

Chapter 20: Library functions and the programming interface

XSLPchgvar

Purpose
This function is deprecated and may be removed in future releases. Define a column as an SLP variable or
change the characteristics and values of an existing SLP variable

Synopsis
int XPRS_CC XSLPchgvar(XSLPprob prob, int col, int ⁎detrow, double

⁎initstepbound, double ⁎stepbound, double ⁎penalty, double ⁎damp,
double ⁎initial, double ⁎value, int ⁎tolset, int ⁎history, int
⁎converged, int ⁎vartype);

Arguments
prob The current SLP problem.
col The index of the matrix column.
detrow Address of an integer holding the index of the determining row. Use -1 if there is no

determining row. May be NULL if not required.
initstepbound Address of a double precision variable holding the initial step bound size. May be

NULL if not required.
stepbound Address of a double precision variable holding the current step bound size. Use zero to

disable the step bounds. May be NULL if not required.
penalty Address of a double precision variable holding the weighting of the penalty cost for

exceeding the step bounds. May be NULL if not required.
damp Address of a double precision variable holding the damping factor for the variable. May be

NULL if not required.
initial Address of a double precision variable holding the initial value for the variable. May be

NULL if not required.
value Address of a double precision variable holding the current value for the variable. May be

NULL if not required.
tolset Address of an integer holding the index of the tolerance set for this variable. Use zero if

there is no specific tolerance set. May be NULL if not required.
history Address of an integer holding the history value for this variable. May be NULL if not

required.
converged Address of an integer holding the convergence status for this variable. May be NULL if not

required.
vartype Address of an integer holding a bitmap defining the existence of certain properties for this

variable:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
May be NULL if not required.

Example
The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the matrix.

double InitialValue;
int vartype, tolset;

InitialValue = 1.42;
tolset = 2;
vartype = 1<<1 | 1<<2;

XSLPchgvar(prob, 25, NULL, NULL, NULL, NULL,

Fair Isaac Corporation Proprietary Information 220

Chapter 20: Library functions and the programming interface

NULL, &InitialValue, NULL, &tolset,
NULL, NULL, &vartype);

Note that bits 1 and 2 of vartype are set, indicating that the variable has a delta vector and an initial
value. For columns already defined as SLP variables, use XSLPgetvar to obtain the current value of
vartype because other bits may already have been set by the system.

Further information
If any of the arguments is NULL then the corresponding information for the variable will be left unaltered.
If the information is new (i.e. the column was not previously defined as an SLP variable) then the default
values will be used.
Changing value, history or converged is only effective during SLP iterations.
Changing initial and initstepbound is only effective before XSLPconstruct.
If a value of XPRS_PLUSINFINITY is used in the value for stepbound or initstepbound, the delta
will never have step bounds applied, and will almost always be regarded as converged.

Related topics
XSLPaddvars, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Proprietary Information 221

Chapter 20: Library functions and the programming interface

XSLPconstruct

Purpose
Create the full augmented SLP matrix and data structures, ready for optimization

Synopsis
int XPRS_CC XSLPconstruct(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example constructs the augmented matrix and then outputs the result in MPS format to a
file called augment.mat

/⁎ creation and/or loading of data ⁎/
/⁎ precedes this segment of code ⁎/
...
XSLPconstruct(prob);
XSLPwriteprob(prob,"augment","l");

The "l" flag causes output of the current linear problem (which is now the augmented structure and the
current linearization) rather than the original nonlinear problem.

Further information
XSLPconstruct adds new rows and columns to the SLP matrix and calculates initial values for the
non-linear coefficients. Which rows and columns are added will depend on the setting of
XSLP_AUGMENTATION. Names for the new rows and columns are generated automatically, based on the
existing names and the string control variables XSLP_xxxFORMAT.
Once XSLPconstruct has been called, no new rows, columns or non-linear coefficients can be added
to the problem. Any rows or columns which will be required must be added first. Non-linear coefficients
must not be changed; constant matrix elements can generally be changed after XSLPconstruct, but
not after XSLPpresolve if used.
XSLPconstruct is called automatically by the SLP optimization procedure, and so only needs to be
called explicitly if changes need to be made between the augmentation and the optimization.

Related topics
XSLPpresolve

Fair Isaac Corporation Proprietary Information 222

Chapter 20: Library functions and the programming interface

XSLPcopycallbacks

Purpose
Copy the user-defined callbacks from one SLP problem to another

Synopsis
int XPRS_CC XSLPcopycallbacks(XSLPprob dest, XSLPprob src);

Arguments
dest The SLP problem to receive the callbacks.
src The SLP problem from which the callbacks are to be copied.

Example
The following example creates a new problem and copies only the Xpress NonLinear callbacks from the
existing problem (not the Optimizer library ones).

XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<2;
XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);
XSLPcopycallbacks(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.

Further information
Normally XSLPcopycallbacks copies both the Xpress NonLinear callbacks and the Optimizer Library
callbacks for the underlying problem. If only the Xpress NonLinear callbacks are required, set the integer
control variable XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Proprietary Information 223

Chapter 20: Library functions and the programming interface

XSLPcopycontrols

Purpose
Copy the values of the control variables from one SLP problem to another

Synopsis
int XPRS_CC XSLPcopycontrols(XSLPprob dest, XSLPprob src);

Arguments
dest The SLP problem to receive the controls.
src The SLP problem from which the controls are to be copied.

Example
The following example creates a new problem and copies only the Xpress NonLinear controls from the
existing problem (not the Optimizer library ones).

XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<1;
XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);
XSLPcopycontrols(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.

Further information
Normally XSLPcopycontrols copies both the Xpress NonLinear controls and the Optimizer Library
controls for the underlying problem. If only the Xpress NonLinear controls are required, set the integer
control variable XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Proprietary Information 224

Chapter 20: Library functions and the programming interface

XSLPcopyprob

Purpose
Copy an existing SLP problem to another

Synopsis
int XPRS_CC XSLPcopyprob(XSLPprob dest, XSLPprob src, char ⁎probname);

Arguments
dest The SLP problem to receive the copy.
src The SLP problem from which to copy.
probname The name to be given to the problem.

Example
The following example creates a new Xpress NonLinear problem and then copies an existing problem to
it. The new problem is named "ANewProblem".

XSLPprob nProb;
XPRSprob xProb;

XSLPcreateprob(&nProb, &xProb);
XSLPcopyprob(nProb, Prob, "ANewProblem");

Further information
Normally XSLPcopyprob copies both the Xpress NonLinear problem and the underlying Optimizer
Library problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.
This function does not copy controls or callbacks. These must be copied separately using
XSLPcopycontrols and XSLPcopycallbacks if required.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Proprietary Information 225

Chapter 20: Library functions and the programming interface

XSLPcreateprob

Purpose
Create a new SLP problem

Synopsis
int XPRS_CC XSLPcreateprob(XSLPprob ⁎p_prob, XPRSprob ⁎p_xprob);

Arguments
p_prob The address of the SLP problem variable.
p_xprob The address of the underlying Optimizer Library problem variable.

Example
The following example creates an optimizer problem, and then a new Xpress NonLinear problem.

XSLPprob nProb;
XPRSprob xprob;

XPRScreateprob(&xprob);
XSLPcreateprob(&nProb, &xprob);

Further information
An Xpress NonLinear problem includes an underlying optimizer problem which is used to solve the
successive linear approximations. The user is responsible for creating and destroying the underlying
linear problem, and can also access it using the normal optimizer library functions. When an SLP problem
is to be created, the underlying problem is created first, and the SLP problem is then created, knowing the
address of the underlying problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Proprietary Information 226

Chapter 20: Library functions and the programming interface

XSLPdelcoefs

Purpose
Delete coefficients from the current problem. For a simpler version of this function see
XSLPdelformulas.

Synopsis
int XPRS_CC XSLPdelcoefs(XSLPprob prob, in ncoefs, int ⁎rowind, int

⁎colind);

Arguments
prob The current SLP problem.
ncoefs Number of SLP coefficients to delete.
rowind Row indices of the SLP coefficients to delete.
colind Column indices of the SLP coefficients to delete.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 227

Chapter 20: Library functions and the programming interface

XSLPdelformulas

Purpose
Delete nonlinear formulas from the current problem

Synopsis
int XPRS_CC XSLPdelformulas(XSLPprob prob, in nformulas, int ⁎rowind);

Arguments
prob The current SLP problem.
nformulas Number of SLP nonlinear formulas to delete.
rowind Row indices of the SLP nonlinear formulas to delete.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 228

Chapter 20: Library functions and the programming interface

XSLPdeltolsets

Purpose
This function is deprecated and may be removed in future releases. Delete tolerance sets from the current
problem

Synopsis
int XPRS_CC XSLPdeltolsets(XSLPprob prob, int ntolsets, int ⁎tolind);

Arguments
prob The current SLP problem.
ntolsets Number of tolerance sets to delete.
tolind Indices of tolerance sets to delete.

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Proprietary Information 229

Chapter 20: Library functions and the programming interface

XSLPdeluserfunction

Purpose
Delete a user function from the current problem

Synopsis
int XPRS_CC XSLPdeluserfunction(XSLPprob prob, int type);

Arguments
prob The current SLP problem.
type The identifier of the user function as returned by XSLPadduserfunction.

Related topics
XSLPadduserfunction, XSLPimportlibfunc

Fair Isaac Corporation Proprietary Information 230

Chapter 20: Library functions and the programming interface

XSLPdelvars

Purpose
This function is deprecated and may be removed in future releases. Convert SLP variables to normal
columns. Variables must not appear in SLP structures

Synopsis
int XPRS_CC XSLPdelvars(XSLPprob prob, int nvars, int ⁎colind);

Arguments
prob The current SLP problem.
nvars Number SLP variables to be converted to linear columns.
colind Column indices of the SLP vars to be converted to linear ones.

Further information
The SLP variables to be converted to linear, non SLP columns must not be in use by any other SLP
structure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or change
functions to remove them first.

Related topics
XSLPaddvars, XSLPchgvar, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Proprietary Information 231

Chapter 20: Library functions and the programming interface

XSLPdestroyprob

Purpose
Delete an SLP problem and release all the associated memory

Synopsis
int XPRS_CC XSLPdestroyprob(XSLPprob prob);

Argument
prob The SLP problem.

Example
The following example creates an SLP problem and then destroys it together with the underlying
optimizer problem.

XSLPprob nProb;
XPRSprob xProb;

XPRScreateprob(&xProb);
XSLPcreateprob(&nProb, &xProb);
...
XSLPdestroyprob(nProb);
XPRSdestroyprob(xProb);

Further information
When you have finished with the SLP problem, it should be "destroyed" so that the memory used by the
problem can be released. Note that this does not destroy the underlying optimizer problem, so a call to
XPRSdestroyprob should follow XSLPdestroyprob as and when you have finished with the
underlying optimizer problem.

Related topics
XSLPcreateprob

Fair Isaac Corporation Proprietary Information 232

Chapter 20: Library functions and the programming interface

XSLPevaluatecoef

Purpose
Evaluate a coefficient using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluatecoef(XSLPprob prob, int row, int col, double

⁎dValue);

Arguments
prob The current SLP problem.
row Integer index of the row.
col Integer index of the column.
p_value Address of a double precision value to receive the result of the calculation.

Example
The following example sets the value of column 5 to 1.42 and then calculates the coefficient in row 2,
column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the calculation.

double value, dValue;

value = 1.42;
XSLPchgvar(prob, 5, NULL, NULL, NULL, NULL,

NULL, NULL, &value, NULL, NULL, NULL,
NULL);

XSLPevaluatecoef(prob, 2, 3, &dValue);

Further information
The values of the variables are obtained from the solution, or from the p_value setting of an SLP
variable (see XSLPchgvar and XSLPgetvar).

Related topics
XSLPchgvar, XSLPevaluateformula XSLPgetvar

Fair Isaac Corporation Proprietary Information 233

Chapter 20: Library functions and the programming interface

XSLPevaluateformula

Purpose
Evaluate a formula using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluateformula(XSLPprob prob, int parsed, int ⁎type,

double ⁎values, double ⁎p_value);

Arguments
prob The current SLP problem.
parsed integer indicating whether the formula of the item is in internal unparsed format

(parsed=0) or parsed (reverse Polish) format (parsed=1).
type Integer array of token types for the formula.
values Double array of values corresponding to type.
p_value Address of a double precision value to receive the result of the calculation.

Example
The following example calculates the value of column 3 divided by column 6.

int n, type[10];
double value, values[10];

n = 0;
type[n] = XSLP_COL; values[n++] = 3;
type[n] = XSLP_COL; values[n++] = 6;
type[n] = XSLP_OP; values[n++] = XSLP_DIVIDE;
type[n++] = XSLP_EOF;

XSLPevaluateformula(prob, 1, type, values, &value);

Further information
The formula in type and valuesmust be terminated by an XSLP_EOF token.
The formula cannot include "complicated" functions, such as user functions which return more than one
value

Related topics
XSLPevaluatecoef

Fair Isaac Corporation Proprietary Information 234

Chapter 20: Library functions and the programming interface

XSLPfixpenalties

Purpose
Fixe the values of the error vectors

Synopsis
int XPRS_CC XSLPfixpenalties(XSLPprob prob, int ⁎p_status);

Arguments
prob The current SLP problem.
p_status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further information
The function fixes the values of all error vectors on their current values. It also removes their objective
cost contribution.
The function is intended to support post optimization analysis, by removing any possible direct effect of
the error vectors from the dual and reduced cost values.
The XSLPfixpenalties will automatically reoptimize the linearization. However, as the XSLP convergence
and infeasibility checks (regarding the original non-linear problem) will not be carried out, this function
will not update the SLP solution itself. The updated values will be accessible using XPRSgetlpsolution
instead.

Fair Isaac Corporation Proprietary Information 235

Chapter 20: Library functions and the programming interface

XSLPfree

Purpose
Free any memory allocated by Xpress NonLinear and close any open Xpress NonLinear files

Synopsis
int XPRS_CC XSLPfree(void);

Example
The following code frees the Xpress NonLinear memory and then frees the optimizer memory:

XSLPfree();
XPRSfree();

Further information
A call to XSLPfree only frees the items specific to Xpress NonLinear. XPRSfreemust be called after
XSLPfree to free the optimizer structures.

Related topics
XSLPinit

Fair Isaac Corporation Proprietary Information 236

Chapter 20: Library functions and the programming interface

XSLPgetbanner

Purpose
This function is deprecated and may be removed in future releases. This function has the same effect as
XPRSgetbanner

Synopsis
int XPRS_CC XSLPgetbanner(char ⁎banner);

Argument
banner Character buffer to hold the banner. This will be at most 512 characters including the null

terminator.

Fair Isaac Corporation Proprietary Information 237

Chapter 20: Library functions and the programming interface

XSLPgetccoef

Purpose
Retrieve a single matrix coefficient as a formula in a character string. For a simpler version of this
function see XSLPgetformulastring.

Synopsis
int XPRS_CC XSLPgetccoef(XSLPprob prob, int row, int col, double ⁎p_factor,

char ⁎formula, int maxbytes);

Arguments
prob The current SLP problem.
row Integer holding the row index for the coefficient.
col Integer holding the column index for the coefficient.
p_factor Address of a double precision variable to receive the value of the constant factor

multiplying the formula in the coefficient.
formula Character buffer in which the formula will be placed in the same format as used for input

from a file. The formula will be null terminated.
maxbytes Maximum length of returned formula.

Return value
0 Normal return.
1 formula is too long for the buffer and has been truncated.
other Error.

Example
The following example displays the formula for the coefficient in row 2, column 3:

char Buffer[60];
double factor;
int Code;

Code = XSLPgetccoef(prob, 2, 3, &factor, Buffer, 60);
switch (Code) {
case 0: printf("\nFormula is %s",Buffer);

printf("\nFactor = %lg",factor);
break;

case 1: printf("\nFormula is too long for the buffer");
break;

default: printf("\nError accessing coefficient");
break;

}

Further information
If the requested coefficient is constant, then p_factor will be set to 1.0 and the value will be formatted
in formula.
If the length of the formula would exceed maxbytes-1, the formula is truncated to the last token that
will fit, and the (partial) formula is terminated with a null character.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 238

Chapter 20: Library functions and the programming interface

XSLPgetcoefformula

Purpose
Retrieve a single matrix coefficient as a formula split into tokens. For a simpler version of this function
see XSLPchgformula.

Synopsis
int XPRS_CC XSLPgetcoefformula(XSLPprob prob, int row, int col, double

⁎p_factor, int parsed, int maxtypes, int ⁎p_ntypes, int ⁎type, double
⁎value);

Arguments
prob The current SLP problem.
row Integer holding the row index for the coefficient.
col Integer holding the column index for the coefficient.
p_factor Address of a double precision variable to receive the value of the constant factor

multiplying the formula in the coefficient.
parsed Integer indicating whether the formula of the item is to be returned in internal unparsed

format (parsed=0) or parsed (reverse Polish) format (parsed=1).
maxtypes Maximum number of tokens to return, i.e. length of the type and value arrays.
p_ntypes Number of tokens returned in type and value.
type Integer array to hold the token types for the formula.
value Double array of values corresponding to type.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:

int n, type[10];
double value[10];
double factor;
int ntypes;

XSLPgetcoefformula(prob, 2, 3, &factor, 0, 10, &ntypes, type, value);

for (n=0;type[n] != XSLP_EOF;n++)
printf("\nType=%-3d value=%lg",type[n],value[n]);

Further information
The type and value arrays are terminated by an XSLP_EOF token.
If the requested coefficient is constant, then p_factor will be set to 1.0 and the value will be returned
with token type XSLP_CON.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 239

Chapter 20: Library functions and the programming interface

XSLPgetcoefs

Purpose
Retrieve the list of positions of the nonlinear coefficients in the problem. For a simpler version of this
function see XSLPgetformularows.

Synopsis
int XPRS_CC XSLPgetcoefs(XSLPprob prob, int ⁎p_ncoefs, int ⁎rowind, int

⁎colind);

Arguments
prob The current SLP problem.
p_ncoefs Integer used to return the total number of nonlinear coefficients in the problem.
rowind Integer array used for returning the row positions of the coefficients. May be NULL if not

required.
colind Integer array used for returning the column positions of the coefficients. May be NULL if

not required.

Related topics
XSLPgetccoef, XSLPgetcoefformula

Fair Isaac Corporation Proprietary Information 240

Chapter 20: Library functions and the programming interface

XSLPgetcolinfo

Purpose
Get current column information.

Synopsis
int XSLP_CC XSLPgetcolinfo(XSLPprob prob, int type, int col, XSLPalltype

⁎p_info);

Arguments
prob The current SLP problem
type Type of information (see below)
col Index of the column whose information is to be handled
p_info Address of information to be set or retrieved

Further information
If the data is not available, the type of the returned p_info is set to XSLPtype_undefined.
Please refer to the header file xslp.h for the definition of XSLPalltype.
The following constants are provided for column information handling:

XSLP_COLINFO_VALUE Get the current value of the column
XSLP_COLINFO_RDJ Get the current reduced cost of the column
XSLP_COLINFO_DELTAINDEX Get the delta variable index associated to the column
XSLP_COLINFO_DELTA Get the delta value (change since previous value) of the column
XSLP_COLINFO_DELTADJ Get the delta variables reduced cost
XSLP_COLINFO_UPDATEROW Get the index of the update (or step bound) row associated to the

column
XSLP_COLINFO_SB Get the step bound on the variable
XSLP_COLINFO_SBDUAL Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Proprietary Information 241

Chapter 20: Library functions and the programming interface

XSLPgetdblattrib

Purpose
Retrieve the value of a double precision problem attribute

Synopsis
int XPRS_CC XSLPgetdblattrib(XSLPprob prob, int attrib, double ⁎p_value);

Arguments
prob The current SLP problem.
attrib attribute (SLP or optimizer) whose value is to be returned.
p_value Address of a double precision variable to receive the value.

Example
The following example retrieves the value of the Xpress NonLinear attribute XSLP_CURRENTDELTACOST
and of the optimizer attribute XPRS_LPOBJVAL:

double DeltaCost, ObjVal;
XSLPgetdblattrib(prob, XSLP_CURRENTDELTACOST, &DeltaCost);
XSLPgetdblattrib(prob, XPRS_LPOBJVAL, &ObjVal);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetdblattrib.

Related topics
XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Proprietary Information 242

Chapter 20: Library functions and the programming interface

XSLPgetdblcontrol

Purpose
Retrieve the value of a double precision problem control

Synopsis
int XPRS_CC XSLPgetdblcontrol(XSLPprob prob, int control, double ⁎p_value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
p_value Address of a double precision variable to receive the value.

Example
The following example retrieves the value of the Xpress NonLinear control XSLP_CTOL and of the
optimizer control XPRS_FEASTOL:

double CTol, FeasTol;
XSLPgetdblcontrol(prob, XSLP_CTOL, &CTol);
XSLPgetdblcontrol(prob, XPRS_FEASTOL, &FeasTol);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is requested,
the return value will be the same as that from XPRSgetdblcontrol.

Related topics
XSLPgetintcontrol, XSLPgetstrcontrol, XSLPsetdblcontrol

Fair Isaac Corporation Proprietary Information 243

Chapter 20: Library functions and the programming interface

XSLPgetdf

Purpose
Get a distribution factor

Synopsis
int XSLP_CC XSLPgetdf(XSLPprob prob, int col, int row, double ⁎p_value)

Arguments
prob The current SLP problem.
col The index of the column whose distribution factor is to be retrieved.
row The index of the row from which the distribution factor is to be taken.
p_value Address of a double precision variable to receive the value of the distribution factor. May

be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and
changes it to be twice as large.

double value;
XSLPgetdf(prob,282,134,&value);
value = value ⁎ 2;
XSLPchgdf(prob,282,134,&value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.

Related topics
XSLPadddfs, XSLPchgdf, XSLPloaddfs

Fair Isaac Corporation Proprietary Information 244

Chapter 20: Library functions and the programming interface

XSLPgetformula

Purpose
Retrieve a single matrix formula as a formula split into tokens.

Synopsis
int XPRS_CC XSLPgetformula(XSLPprob prob, int row, int parsed, int maxtypes,

int ⁎p_ntypes, int ⁎type, double ⁎value);

Arguments
prob The current SLP problem.
row Integer holding the row index for the formula.
parsed Integer indicating whether the formula of the row is to be returned in internal unparsed

format (parsed=0) or parsed (reverse Polish) format (parsed=1).
maxtypes Maximum number of tokens to return, i.e. length of the type and value arrays.
p_ntypes Number of tokens returned in type and value.
type Integer array to hold the token types for the formula.
value Double array of values corresponding to type.

Example
The following example displays the nonlinear formula in row 2, column 3 in unparsed form:

int n, type[10];
double value[10];
int ntypes;

XSLPgetformula(prob, 2, 0, 10, &ntypes, type, value);

for (n=0;type[n] != XSLP_EOF;n++)
printf("\nType=%-3d value=%lg",type[n],value[n]);

Further information
The type and value arrays are terminated by an XSLP_EOF token.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 245

Chapter 20: Library functions and the programming interface

XSLPgetformulastring

Purpose
Retrieve a single matrix formula in a character string.

Synopsis
int XPRS_CC XSLPgetformulastring(XSLPprob Prob, int RowIndex, char ⁎Formula,

int fLen);

Arguments
Prob The current SLP problem.
RowIndex Integer holding the row index for the formula.
Formula Character buffer in which the formula will be placed in the same format as used for input

from a file. The formula will be null terminated.
fLen Maximum length of returned formula.

Return value
0 Normal return.
1 Formula is too long for the buffer and has been truncated.
other Error.

Example
The following retrieves a formula in text form:

char Buffer[60];
double Factor;
int Code;

Code = XSLPgetformulastring(Prob, 2, Buffer, 60);
switch (Code) {
case 0: printf("\nFormula is %s",Buffer);

break;
case 1: printf("\nFormula is too long for the buffer");

break;
default: printf("\nError accessing formula");

break;
}

Further information
If the length of the formula would exceed fLen-1, the formula is truncated to the last token that will fit,
and the (partial) formula is terminated with a null character.

Related topics
XSLPaddformulas, XSLPchgformulastring, XSLPchgformula, XSLPloadformulas,
XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 246

Chapter 20: Library functions and the programming interface

XSLPgetformularows

Purpose
Retrieve the list of positions of the nonlinear formulas in the problem

Synopsis
int XPRS_CC XSLPgetformularows(XSLPprob prob, int ⁎p_nformulas, int

⁎rowind);

Arguments
prob The current SLP problem.
p_nformulas Integer used to return the total number of nonlinear formulas in the problem.
rowind Integer array used for returning the row positions of the nonlinear formulas. May be NULL

if not required.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 247

Chapter 20: Library functions and the programming interface

XSLPgetindex

Purpose
Retrieve the index of an Xpress NonLinear entity with a given name

Synopsis
int XPRS_CC XSLPgetindex(XSLPprob prob, int type, char ⁎name, int

⁎p_index);

Arguments
prob The current SLP problem.
type type of entity. The following are defined:

XSLP_USERFUNCNAMES (=5) User functions;
XSLP_INTERNALFUNCNAMES (=6) Internal functions;
XSLP_USERFUNCNAMESNOCASE (=7) User functions, case insensitive;
XSLP_INTERNALFUNCNAMESNOCASE (=8) Internal functions, case insensitive;
The constants 1 (for row names) and 2 (for column names) may also be used.

name Character string containing the name, terminated by a null character.
p_index Integer to receive the index of the item.

Example
The following example retrieves the index of the internal SIN function using both an upper-case and a
lower case version of the name.

int UpperIndex, LowerIndex;
XSLPgetindex(prob, XSLP_INTERNALFUNCNAMESNOCASE,

"SIN", &UpperIndex);
XSLPgetindex(prob, XSLP_INTERNALFUNCNAMESNOCASE,

"sin", &LowerIndex);

UpperIndex and LowerIndex will contain the same value because the search was made using
case-insensitive matching.

Further information
All entities count from 1. This includes the use of 1 or 2 (row or column) for type. A value of zero
returned in p_indexmeans there is no matching item. The case-insensitive types will find the first
match regardless of the case of name or of the defined function.

Fair Isaac Corporation Proprietary Information 248

Chapter 20: Library functions and the programming interface

XSLPgetintattrib

Purpose
Retrieve the value of an integer problem attribute

Synopsis
int XPRS_CC XSLPgetintattrib(XSLPprob prob, int attrib, int ⁎p_value);

Arguments
prob The current SLP problem.
attrib attribute (SLP or optimizer) whose value is to be returned.
p_value Address of an integer variable to receive the value.

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetintattrib.

Related topics
XSLPgetdblattrib, XSLPgetstrattrib

Fair Isaac Corporation Proprietary Information 249

Chapter 20: Library functions and the programming interface

XSLPgetintcontrol

Purpose
Retrieve the value of an integer problem control

Synopsis
int XPRS_CC XSLPgetintcontrol(XSLPprob prob, int control, int ⁎p_value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
p_value Address of an integer variable to receive the value.

Example
The following example retrieves the value of the Xpress NonLinear control XSLP_ALGORITHM and of the
optimizer control XPRS_DEFAULTALG:

int Algorithm, DefaultAlg;
XSLPgetintcontrol(prob, XSLP_ALGORITHM, &Algorithm);
XSLPgetintcontrol(prob, XPRS_DEFAULTALG, &DefaultAlg);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is requested,
the return value will be the same as that from XPRSgetintcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetstrcontrol, XSLPsetintcontrol

Fair Isaac Corporation Proprietary Information 250

Chapter 20: Library functions and the programming interface

XSLPgetlasterror

Purpose
Retrieve the error message corresponding to the last Xpress NonLinear error during an SLP run

Synopsis
int XPRS_CC XSLPgetlasterror(XSLPprob prob, int ⁎p_code, char ⁎msg);

Arguments
prob The current SLP problem.
p_code Address of an integer to receive the message number of the last error. May be NULL if not

required.
msg Character buffer to receive the error message. The error message will never be longer

than 256 characters. May be NULL if not required.

Example
The following example checks the return code from reading a matrix. If the code is nonzero then an error
has occurred, and the error number is retrieved for further processing.

int Error, code;
if (Error=XSLPreadprob(prob, "Matrix", "")) {

XSLPgetlasterror(prob, &code, NULL);
MyErrorHandler(code);

}

Further information
In general, Xpress NonLinear functions return a value of 32 to indicate a non-recoverable error.
XSLPgetlasterror can retrieve the actual error number and message. In case no SLP error code was
retuned, the function will check the underlying XPRS libary for any errors reported.

Fair Isaac Corporation Proprietary Information 251

Chapter 20: Library functions and the programming interface

XSLPgetptrattrib

Purpose
Retrieve the value of a problem pointer attribute

Synopsis
int XPRS_CC XSLPgetptrattrib(XSLPprob prob, int attrib, void ⁎⁎p_value);

Arguments
prob The current SLP problem.
attrib attribute whose value is to be returned.
p_value Address of a pointer to receive the value.

Example
The following example retrieves the value of the Xpress NonLinear pointer attribute
XSLP_XPRSPROBLEM which is the underlying optimizer problem pointer:

XPRSprob xprob;
XSLPgetptrattrib(prob, XSLP_XPRSPROBLEM, &xprob);

Further information
This function is normally used to retrieve the underlying optimizer problem pointer, as shown in the
example.

Related topics
XSLPgetdblattrib, XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Proprietary Information 252

Chapter 20: Library functions and the programming interface

XSLPgetrowinfo

Purpose
Get current row information.

Synopsis
int XSLP_CC XSLPgetrowinfo(XSLPprob prob, int type, int row, XSLPalltype

⁎p_info);

Arguments
prob The current SLP problem
type Type of information (see below)
row Index of the row whose information is to be handled
p_info Address of information to be set or retrieved

Further information
If the data is not available, the type of the returned p_info is set to XSLPtype_undefined.
Please refer to the header file xslp.h for the definition of XSLPalltype.
The following constants are provided for row information handling:

XSLP_ROWINFO_SLACK Get the current slack value of the row
XSLP_ROWINFO_DUAL Get the current dual multiplier of the row
XSLP_ROWINFO_NUMPENALTYERRORS Get the number of times the penalty error vector has been

active for the row
XSLP_ROWINFO_MAXPENALTYERROR Get the maximum size of the penalty error vector activity for the

row
XSLP_ROWINFO_TOTALPENALTYERROR Get the total size of the penalty error vector activity for the

row
XSLP_ROWINFO_CURRENTPENALTYERROR Get the size of the penalty error vector activity in the

current iteration for the row
XSLP_ROWINFO_CURRENTPENALTYFACTOR Set the size of the penalty error factor for the current

iteration for the row
XSLP_ROWINFO_PENALTYCOLUMNPLUS Get the index of the positive penalty column for the row (+)
XSLP_ROWINFO_PENALTYCOLUMNPLUSVALUE Get the value of the positive penalty column for the

row (+)
XSLP_ROWINFO_PENALTYCOLUMNPLUSDJ Get the reduced cost of the positive penalty column for the

row (+)
XSLP_ROWINFO_PENALTYCOLUMNMINUS Get the index of the negative penalty column for the row (-)
XSLP_ROWINFO_PENALTYCOLUMNMINUSVALUE Get the value of the negative penalty column for the

row (-)
XSLP_ROWINFO_PENALTYCOLUMNMINUSDJ Get the reduced cost of the negative penalty column for

the row (-)

Fair Isaac Corporation Proprietary Information 253

Chapter 20: Library functions and the programming interface

XSLPgetrowstatus

Purpose
Retrieve the status setting of a constraint

Synopsis
int XPRS_CC XSLPgetrowstatus(XSLPprob prob, int row, int ⁎p_status);

Arguments
prob The current SLP problem.
row The index of the matrix row whose data is to be obtained.
p_status Address of an integer holding a bitmap to receive the status settings.

Example
This recovers the status of the rows of the matrix of the current problem and reports those which are
flagged as enforced constraints.

int iRow, nRow, status;
XSLPgetintattrib(prob, XPRS_ROWS, &nRow);
for (iRow=0;iRow<nRow;iRow++) {

XSLPgetrowstatus(prob, iRow, &status);
if (status & 0x800) printf("\nRow %d is enforced");

}

Further information
See the section on bitmap settings for details on the possible information in p_status.

Related topics
XSLPchgrowstatus

Fair Isaac Corporation Proprietary Information 254

Chapter 20: Library functions and the programming interface

XSLPgetrowwt

Purpose
Get the initial penalty error weight for a row

Synopsis
int XSLP_CC XSLPgetrowwt(XSLPprob prob, int row, double ⁎p_weight)

Arguments
prob The current SLP problem.
row The index of the row whose weight is to be retrieved.
p_weight Address of a double precision variable to receive the value of the weight.

Example
The following example gets the initial weight of row number 2.

double weight;
XSLPgetrowwt(prob,2,&weight)

Further information
The initial row weight is used only when the augmented structure is created. After that, the current
weighting can be accessed using XSLPgetrowinfo.

Related topics
XSLPchgrowwt, XSLPgetrowinfo

Fair Isaac Corporation Proprietary Information 255

Chapter 20: Library functions and the programming interface

XSLPgetslpsol

Purpose
Obtain the solution values for the most recent SLP iteration

Synopsis
int XPRS_CC XSLPgetslpsol(XSLPprob prob, double ⁎x, double ⁎slack, double

⁎duals, double ⁎djs);

Arguments
prob The current SLP problem.
x Double array of length XSLP_ORIGINALCOLS to hold the values of the primal variables.

May be NULL if not required.
slack Double array of length XSLP_ORIGINALROWS to hold the values of the slack variables.

May be NULL if not required.
duals Double array of length XSLP_ORIGINALROWS to hold the values of the duals variables.

May be NULL if not required.
djs Double array of length XSLP_ORIGINALCOLS to hold the recuded costs of the primal

variables. May be NULL if not required.

Example
The following code fragment recovers the values and reduced costs of the primal variables from the most
recent SLP iteration:

XSLPprob prob;
int nCol;
double ⁎val, ⁎djs;
XSLPgetintattrib(prob,XSLP_ORIGINALCOLS,&nCol);
val = malloc(nCol⁎sizeof(double));
djs = malloc(nCol⁎sizeof(double));
XSLPgetslpsol(prob,val,NULL,NULL,djs);

Further information
XSLPgetslpsol can be called at any time after an SLP iteration has completed, and will return the
same values even if the problem is subsequently changed. XSLPgetslpsol returns values for the
columns and rows originally in the problem and not for any augmentation rows or columns. To access
the values of any augmentation columns or rows, use XPRSgetlpsol; accessing the augmented
solution is only recommended if XSLP_PRESOLVELEVEL indicates that the problem dimensions should
not be changed in presolve.

Fair Isaac Corporation Proprietary Information 256

Chapter 20: Library functions and the programming interface

XSLPgetstrattrib

Purpose
Retrieve the value of a string problem attribute

Synopsis
int XPRS_CC XSLPgetstrattrib(XSLPprob prob, int attrib, char ⁎value);

Arguments
prob The current SLP problem.
attrib attribute (SLP or optimizer) whose value is to be returned.
value Character buffer to receive the value.

Example
The following example retrieves the value of the Xpress NonLinear attribute XSLP_VERSIONDATE and of
the optimizer attribute XPRS_MATRIXNAME:

char VersionDate[200], MatrixName[200];
XSLPgetstrattrib(prob, XSLP_VERSIONDATE, VersionDate);
XSLPgetstrattrib(prob, XPRS_MATRIXNAME, MatrixName);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetstrattrib.

Related topics
XSLPgetdblattrib, XSLPgetintattrib

Fair Isaac Corporation Proprietary Information 257

Chapter 20: Library functions and the programming interface

XSLPgetstrcontrol

Purpose
Retrieve the value of a string problem control

Synopsis
int XPRS_CC XSLPgetstrcontrol(XSLPprob prob, int control, char ⁎value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
value Character buffer to receive the value.

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is requested,
the return value will be the same as that from XPRSgetstrcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 258

Chapter 20: Library functions and the programming interface

XSLPgettolset

Purpose
This function is deprecated and may be removed in future releases. Retrieve the values of a set of
convergence tolerances for an SLP problem

Synopsis
int XPRS_CC XSLPgettolset(XSLPprob prob, int tolset, int ⁎p_status, double

⁎tols);

Arguments
prob The current SLP problem.
tolset The index of the tolerance set.
p_status Address of integer to receive the bit-map of status settings. May be NULL if not required.
tols Array of 9 double-precision values to hold the tolerances. May be NULL if not required.

Example
The following example retrieves the values for tolerance set 3 and prints those which are set:

double tols[9];
int i, status;
XSLPgettolset(prob, 3, &status, tols);
for (i=0;i<9;i++)

if (status & (1<<i))
printf("\nTolerance %d = %lg",i,tols[i]);

Further information
If p_status or tols is NULL, then the corresponding information will not be returned.
If tols is not NULL, then a set of 9 values will always be returned. p_status indicates which of these
values is active as follows. Bit n of p_status is set if tols[n] is active, where n is:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable.

Related topics

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPdeltolsets, XSLPloadtolsets

Fair Isaac Corporation Proprietary Information 259

Chapter 20: Library functions and the programming interface

XSLPgetvar

Purpose
This function is deprecated and may be removed in future releases. Retrieve information about an SLP
variable

Synopsis
int XPRS_CC XSLPgetvar(XSLPprob prob, int col, int ⁎p_detrow, double

⁎p_initstepbound, double ⁎p_stepbound, double ⁎p_penalty, double
⁎p_damp, double ⁎p_initial, double ⁎p_value, int ⁎p_tolset, int
⁎p_history, int ⁎p_converged, int ⁎p_vartype, int ⁎p_delta, int
⁎p_penaltydelta, int ⁎p_updaterow, double ⁎p_old);

Arguments
prob The current SLP problem.
col The index of the column.
p_detrow Address of an integer to receive the index of the determining row. May be NULL if not

required.
p_initstepbound Address of a double precision variable to receive the value of the initial step bound

of the variable. May be NULL if not required.
p_stepbound Address of a double precision variable to receive the value of the current step bound of

the variable. May be NULL if not required.
p_penalty Address of a double precision variable to receive the value of the penalty delta weighting

of the variable. May be NULL if not required.
p_damp Address of a double precision variable to receive the value of the current damping factor

of the variable. May be NULL if not required.
p_initial Address of a double precision variable to receive the value of the initial value of the

variable. May be NULL if not required.
p_value Address of a double precision variable to receive the current activity of the variable. May

be NULL if not required.
p_tolset Address of an integer to receive the index of the tolerance set of the variable. May be

NULL if not required.
p_history Address of an integer to receive the SLP history of the variable. May be NULL if not

required.
p_converged Address of an integer to receive the convergence status of the variable as defined in the

"Convergence Criteria" section (The returned value will match the numbering of the
tolerances). May be NULL if not required.

p_vartype Address of an integer to receive the status settings (a bitmap defining the existence of
certain properties for this variable). The following bits are defined:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
Other bits are reserved for internal use. May be NULL if not required.

p_delta Address of an integer to receive the index of the delta vector for the variable. May be
NULL if not required.

p_penaltydelta Address of an integer to receive the index of the first penalty delta vector for the
variable. The second penalty delta immediately follows the first. May be NULL if not
required.

p_updaterow Address of an integer to receive the index of the update row for the variable. May be
NULL if not required.

p_old Address of a double precision variable to receive the value of the variable at the previous

Fair Isaac Corporation Proprietary Information 260

Chapter 20: Library functions and the programming interface

SLP iteration. May be NULL if not required.

Example
The following example retrieves the current value, convergence history and status for column 3.

int converged, history;
double value;

XSLPgetvar(prob, 3, NULL, NULL, NULL,
NULL, NULL, NULL, &value,
NULL, &history, &converged,
NULL, NULL, NULL, NULL, NULL);

Further information
If col refers to a column which is not an SLP variable, then all the return values will indicate that there is
no corresponding data.
p_detrow will be set to -1 if there is no determining row.
p_delta, p_penaltydelta and p_updaterow will be set to -1 if there is no corresponding item.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPloadvars

Fair Isaac Corporation Proprietary Information 261

Chapter 20: Library functions and the programming interface

XSLPimportlibfunc

Purpose
Imports a function from a library file to be called as a user function

Synopsis
int XPRS_CC XSLPimportlibfunc(XSLPprob prob,const char ⁎ libname, const

char ⁎ funcname, XPRSfunctionptraddr p_function, int ⁎ p_status);

Arguments
prob The current SLP problem.
libname Filename of the library.
funcname Fucntion name inside the library.
p_function Function pointer to return the loaded function.
p_status Outcome of the load operation

0 success.
1 library file not found.
2 library function in library file not found.

Further information
On systems where necessary, Xpress will hold the handle of the library opened and free up when the
problem object prob is destroyed. The type XPRSfunctionptraddr is a pointer to a generic function
pointer.

Related topics
XSLPadduserfunction, XSLPdeluserfunction

Fair Isaac Corporation Proprietary Information 262

Chapter 20: Library functions and the programming interface

XSLPinit

Purpose
Initializes the Xpress NonLinear system

Synopsis
int XPRS_CC XSLPinit();

Argument
none

Example
The following example initiates the Xpress NonLinear system and prints the banner.

char Buffer[256];
XPRSinit();
XSLPinit();
XSLPgetbanner(Buffer);

XPRSinit initializes the Xpress optimizer; XSLPinit then initializes the SLP module, so that the banner
contains information from both systems.

Further information
XSLPinitmust be the first call to the Xpress NonLinear system except for XSLPgetbanner and
XSLPgetversion. It initializes any global parts of the system if required. The call to XSLPinitmust
be preceded by a call to XPRSinit to initialize the Optimizer Library part of the system first.

Related topics
XSLPfree

Fair Isaac Corporation Proprietary Information 263

Chapter 20: Library functions and the programming interface

XSLPinterrupt

Purpose
Interrupts the current SLP optimization

Synopsis
int XPRS_CC XSLPinterrupt(int reason);

Arguments
prob The current SLP problem.
reason Interrupt code to be propagated.

Further information
Provides functionality to stop the SLP optimization process from inside a callback. The following
constants are provided for the paramter value:
Value 1 XSLP_STOP_TIMELIMIT
Value 2 XSLP_STOP_CTRLC
Value 3 XSLP_STOP_NODELIMIT
Value 4 XSLP_STOP_ITERLIMIT
Value 5 XSLP_STOP_MIPGAP
Value 6 XSLP_STOP_SOLLIMIT
Value 9 XSLP_STOP_USER

Fair Isaac Corporation Proprietary Information 264

Chapter 20: Library functions and the programming interface

XSLPitemname

Purpose
Retrieves the name of an Xpress NonLinear entity or the value of a function token as a character string.

Synopsis
int XPRS_CC XSLPitemname(XSLPprob prob, int type, double value, char

⁎buffer);

Arguments
prob The current SLP problem.
type Integer holding the type of Xpress NonLinear entity. This can be any one of the token

types described in the section on 13.
value Double precision value holding the index or value of the token. The use and meaning of

the value is as described in the section on 13.
buffer Character buffer to hold the result, which will be terminated with a null character.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:

int n, type[10];
double value[10];
char buffer[60];
int TokenCount;

XSLPgetcoefformula(prob, 2, 3, &Factor, 0, 10, &TokenCount, type, value);

printf("\n");
for (n=0;type[n] != XSLP_EOF;n++) {

XSLPitemname(prob, type[n], value[n], buffer);
printf(" %s", buffer);

}

Further information
If a name has not been provided for an Xpress NonLinear entity, then an internally-generated name will be
used.
Numerical values will be formatted as fixed-point or floating-point depending on their size.

Fair Isaac Corporation Proprietary Information 265

Chapter 20: Library functions and the programming interface

XSLPloadcoefs

Purpose
Load non-linear coefficients into the SLP problem. For a simpler version of this function see
XSLPloadformulas.

Synopsis
int XPRS_CC XSLPloadcoefs(XSLPprob prob, int ncoefs, int ⁎rowind, int

⁎colind, double ⁎factor, int ⁎formulastart, int parsed, int ⁎type,
double ⁎coef);

Arguments
prob The current SLP problem.
ncoefs Number of non-linear coefficients to be loaded.
rowind Integer array holding index of row for the coefficient.
colind Integer array holding index of column for the coefficient.
factor Double array holding factor by which formula is scaled. If this is NULL, then a value of 1.0

will be used.
formulastart Integer array of length ncoefs+1 holding the start position in the arrays type and

coef of the formula for the coefficients. formulastart[ncoefs] should be set to the
next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(parsed=0) or internal parsed reverse Polish (parsed=1).

type Array of token types providing the formula for each coefficient.
coef Array of values corresponding to the types in type.

Example
Assume that the rows and columns of prob are named Row1, Row2 ..., Col1, Col2 ... The following
example loads coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int rowind[3], colind[3], formulastart[4], type[8];
int n, ncoefs;
double coef[8];

rowind[0] = 1; colind[0] = 2;
rowind[1] = 1; colind[1] = 6;
rowind[2] = 3; colind[2] = 2;

n = ncoefs = 0;
formulastart[ncoefs++] = n;
type[n] = XSLP_COL; coef[n++] = 3;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; coef[n++] = 2;
type[n] = XSLP_COL; coef[n++] = 2;
type[n] = XSLP_OP; coef[n++] = XSLP_MULTIPLY;
type[n++] = XSLP_EOF;

formulastart[ncoefs++] = n;
type[n] = XSLP_COL; coef[n++] = 2;
type[n++] = XSLP_EOF;

Fair Isaac Corporation Proprietary Information 266

Chapter 20: Library functions and the programming interface

formulastart[ncoefs] = n;

XSLPloadcoefs(prob, ncoefs, rowind, colind,
NULL, formulastart, 1, type, coef);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (parsed=1), so the formula is written as
Col2 Col2 ⁎
rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further information
The jth coefficient is made up of two parts: factor and Formula. factor is a constant multiplier,
which can be provided in the factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in type and coef starting at formulastart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula
must be terminated with an XSLP_EOF token. If several coefficients share the same formula, they can
have the same value in formulastart. For possible token types and values see the chapter on 13.
The XSLPload... functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd... functions add or replace items leaving other items of the
same type unchanged.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 267

Chapter 20: Library functions and the programming interface

XSLPloaddfs

Purpose
Load a set of distribution factors

Synopsis
int XSLP_CC XSLPloaddfs(XSLPprob prob, int ndfs, const int ⁎colind, const

int ⁎rowind, const double ⁎value)

Arguments
prob The current SLP problem.
ndfs The number of distribution factors.
colind Array of indices of columns whose distribution factor is to be changed.
rowind Array of indices of the rows where each distribution factor applies.
value Array of double precision variables holding the new values of the distribution factors.

Example
The following example loads distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.
Any other first-order derivative placeholders are set to XSLP_DELTA_Z.

int colind[3], rowind[3];
double value[3];
colind[0] = 282; rowind[0] = 134; value[0] = 0.1;
colind[1] = 282; rowind[1] = 136; value[1] = 0.15;
colind[2] = 285; rowind[2] = 133; value[2] = 1.0;
XSLPloaddfs(prob,3,colind,rowind,value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or by
a callback.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPadddfs, XSLPchgdf, XSLPgetdf

Fair Isaac Corporation Proprietary Information 268

Chapter 20: Library functions and the programming interface

XSLPloadformulas

Purpose
Load non-linear formulas into the SLP problem

Synopsis
int XPRS_CC XSLPloadformulas(XSLPprob prob, int nnlpcoefs, int ⁎rowind, int

⁎formulastart, int parsed, int ⁎type, double ⁎value);

Arguments
prob The current SLP problem.
nnlpcoefs Number of non-linear coefficients to be loaded.
rowind Integer array holding index of row for the coefficient.
formulastart Integer array of length nnlpcoefs+1 holding the start position in the arrays type

and value of the formula for the coefficients. formulastart[nnlpcoefs] should be
set to the next position after the end of the last formula.

parsed Integer indicating whether the token arrays are formatted as internal unparsed
(parsed=0) or internal parsed reverse Polish (parsed=1).

type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in type.

Example
Assume that the rows and columns of prob are named Row0, Row1 ..., Col0, Col1 ... The following
example adds coefficients representing:
Col2 ⁎ Col3 ⁎ Col6ˆ2 into Row1 and
Col2 ⁎ Col3 ˆ 2 into Row3.

int rowind[3], formulastart[4], type[8];
int n, nnlpcoefs;
double value[8];

rowind[0] = 1;
rowind[1] = 1;
rowind[2] = 3;

n = nnlpcoefs = 0;
formulastart[nnlpcoefs++] = n;
type[n] = XSLP_COL; value[n++] = 3;
type[n++] = XSLP_EOF;

formulastart[nnlpcoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_COL; value[n++] = 3;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n] = XSLP_COL; value[n++] = 6;
type[n] = XSLP_CON; value[n++] = 2;
type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n++] = XSLP_EOF;

formulastart[nnlpcoefs++] = n;
type[n] = XSLP_COL; value[n++] = 2;
type[n] = XSLP_COL; value[n++] = 3;
type[n] = XSLP_CON; value[n++] = 2;

Fair Isaac Corporation Proprietary Information 269

Chapter 20: Library functions and the programming interface

type[n] = XSLP_OP; value[n++] = XSLP_EXPONENT;
type[n] = XSLP_OP; value[n++] = XSLP_MULTIPLY;
type[n++] = XSLP_EOF;

formulastart[nnlpcoefs] = n;

XSLPloadformulas(prob, nnlpcoefs, rowind, formulastart, 1, type, value);

Further information
Formula j is made up of a list of tokens in type and value starting at formulastart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of parsed. The formula must
be terminated with an XSLP_EOF token. If several formulas share the same nonlinear expressions, they
can have the same value in formulastart. For possible token types and values see the chapter on 13.
The XSLPload... functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd... functions add or replace items leaving other items of the
same type unchanged.

Related topics
XSLPgetformulastring, XSLPaddformulas, XSLPchgformulastring, XSLPchgformula,
XSLPloadformulas, XSLPgetformularows, XSLPgetformula, XSLPdelformulas

Fair Isaac Corporation Proprietary Information 270

Chapter 20: Library functions and the programming interface

XSLPloadtolsets

Purpose
This function is deprecated and may be removed in future releases. Load sets of standard tolerance
values into an SLP problem

Synopsis
int XPRS_CC XSLPloadtolsets(XSLPprob prob, int ntolsets, double ⁎tols);

Arguments
prob The current SLP problem.
ntolsets The number of tolerance sets to be loaded.
tols Double array of (ntolsets ⁎ 9) items containing the 9 tolerance values for each set in

order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double tols[18];
for (i=0;i<9;i++) tols[i] = 0.005;
tols[9] = 0;
for (i=10;i<18;i=i+2) tols[i] = 0.01;
for (i=11;i<18;i=i+2) tols[i] = 0.001;
XSLPloadtolsets(prob, 2, tols);

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while the
XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP
variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable.
If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a tolerance,
use the XSLPchgtolset function and set the Status variable appropriately.
See the section "Convergence Criteria" for a fuller description of tolerances and their uses.
The XSLPload... functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd... functions add or replace items leaving other items of the
same type unchanged.

Fair Isaac Corporation Proprietary Information 271

Chapter 20: Library functions and the programming interface

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPchgtolset, XSLPgettolset

Fair Isaac Corporation Proprietary Information 272

Chapter 20: Library functions and the programming interface

XSLPloadvars

Purpose
This function is deprecated and may be removed in future releases. Load SLP variables defined as matrix
columns into an SLP problem

Synopsis
int XPRS_CC XSLPloadvars(XSLPprob prob, int nvars, int ⁎colind, int

⁎vartype, int ⁎detrow, int ⁎seqnum, int ⁎tolind, double ⁎initial,
double ⁎stepbound);

Arguments
prob The current SLP problem.
nvars The number of SLP variables to be loaded.
colind Integer array holding the index of the matrix column corresponding to each SLP variable.
vartype Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be NULL if not required.

seqnum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be NULL if not required.

tolind Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be NULL if not required.

initial Double array holding the initial value for each SLP variable (use the vartype bit map to
indicate if a value is being provided)
May be NULL if not required.

stepbound Double array holding the initial step bound size for each SLP variable (a zero value means
that no initial step bound size has been specified). If a value of XPRS_PLUSINFINITY is
used for a value in stepbound, the delta will never have step bounds applied, and will
almost always be regarded as converged.
May be NULL if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23 and 25
of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific initial
value

int colind[2], vartype[2];
double initial[2];

colind[0] = 23; vartype[0] = 0;
colind[1] = 25; vartype[1] = 4; initial[1] = 1.42;

XSLPloadvars(prob, 2, colind, vartype, NULL, NULL,
NULL, initial, NULL);

initial is not set for the first variable, because it is not used (vartype = 0). Bit 1 of vartype is set
for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Proprietary Information 273

Chapter 20: Library functions and the programming interface

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used at all,
and so have been passed to the function as NULL.

Further information
The XSLPload... functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd... functions add or replace items leaving other items of the
same type unchanged.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPgetvar

Fair Isaac Corporation Proprietary Information 274

Chapter 20: Library functions and the programming interface

XSLPmaxim

Purpose
Maximize an SLP problem

Synopsis
int XPRS_CC XSLPmaxim(XSLPprob prob, char ⁎flags);

Arguments
prob The current SLP problem.
flags These have the same meaning as for XPRSmaxim with the exception of the extra ’c’ flag which

makes XSLPmaxim continue a solve.

Example
The following example reads an SLP problem from file and then maximizes it using the primal simplex
optimizer.

XSLPreadprob("Matrix","");
XSLPmaxim(prob,"p");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)

used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP optimization

starts.

Further information
If XSLPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPminim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Proprietary Information 275

Chapter 20: Library functions and the programming interface

XSLPminim

Purpose
Minimize an SLP problem

Synopsis
int XPRS_CC XSLPminim(XSLPprob prob, char ⁎flags);

Arguments
prob The current SLP problem.
flags These have the same meaning as for XPRSminim with the exception of the extra ’c’ flag which

makes XSLPminim continue a solve.

Example
The following example reads an SLP problem from file and then minimizes it using the Newton barrier
optimizer.

XSLPreadprob("Matrix","");
XSLPminim(prob,"b");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)

used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP optimization

starts.

Further information
If XSLPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPmaxim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Proprietary Information 276

Chapter 20: Library functions and the programming interface

XSLPmsaddcustompreset

Purpose
A combined version of XSLPmsaddjob and XSLPmsaddpreset. The preset described is loaded, topped up
with the specific settings supplied

Synopsis
int XSLP_CC XSLPmsaddcustompreset(XSLPprob prob, const char ⁎description,

const int preset, const int maxjobs, const int ninitial, const int
⁎colind, const double ⁎initial, const int nintcontrols, const int
⁎intcontrolid, const int ⁎intcontrolval, const int ndblcontrols,
const int ⁎dblcontrolid, const double ⁎dblcontrolval, void ⁎data);

Arguments
prob The current SLP problem.
description Text description of the job. Used for messaging, may be NULL if not required.
preset Which preset to load.
maxjobs Maximum number of jobs to be added to the multistart pool.
ninitial Number of initial values to set.
colind Indices of the variables for which to set an initial value. May be NULL if ninitial is zero.
initial Initial values for the variables for which to set an initial value. May be NULL if ninitial is

zero.
nintcontrols Number of integer controls to set.
intcontrolid The indices of the integer controls to be set. May be NULL if nintcontrols is zero.
intcontrolval The values of the integer controls to be set. May be NULL if nintcontrols is zero.
ndblcontrols Number of double controls to set.
dblcontrolid The indices of the double controls to be set. May be NULL if ndblcontrols is zero.
dblcontrolval The values of the double controls to be set. May be NULL if ndblcontrols is zero.
data Job specific user context pointer to be passed to the multistart callbacks.

Further information
This function allows for repeatedly calling the same multistart preset (e.g. initial values) using different
basic controls.

Related topics
XSLPmsaddpreset, XSLPmsaddjob, XSLPmsclear

Fair Isaac Corporation Proprietary Information 277

Chapter 20: Library functions and the programming interface

XSLPmsaddjob

Purpose
Adds a multistart job to the multistart pool

Synopsis
int XSLP_CC XSLPmsaddjob(XSLPprob prob, const char ⁎description, const int

ninitial, const int ⁎colind, const double ⁎initial, const int
nintcontrols, const int ⁎intcontrolid, const int ⁎intcontrolval,
const int ndblcontrols, const int ⁎dblcontrolid, const double
⁎dblcontrolval, void ⁎data);

Arguments
prob The current SLP problem.
description Text description of the job. Used for messaging, may be NULL if not required.
ninitial Number of initial values to set.
colind Indices of the variables for which to set an initial value. May be NULL if ninitial is zero.
initial Initial values for the variables for which to set an initial value. May be NULL if ninitial is

zero.
nintcontrols Number of integer controls to set.
intcontrolid The indices of the integer controls to be set. May be NULL if nintcontrols is zero.
intcontrolval The values of the integer controls to be set. May be NULL if nintcontrols is zero.
ndblcontrols Number of double controls to set.
dblcontrolid The indices of the double controls to be set. May be NULL if ndblcontrols is zero.
dblcontrolval The values of the double controls to be set. May be NULL if ndblcontrols is zero.
data Job specific user context pointer to be passed to the multistart callbacks.

Further information
Adds a mutistart job, applying the specified initial point and option combinations on top of the base
problem, i.e. the options and initial values specified to the function is applied on top of the existing
settigns.
This function allows for loading empty template jobs, that can then be identified using the data variable.

Related topics
XSLPmsaddpreset, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Proprietary Information 278

Chapter 20: Library functions and the programming interface

XSLPmsaddpreset

Purpose
Loads a preset of jobs into the multistart job pool.

Synopsis
int XSLP_CC XSLPmsaddpreset(XSLPprob prob, const char ⁎description, const

int preset, const int maxjobs, void ⁎data);

Arguments
prob The current SLP problem.
description Text description of the preset. Used for messaging, may be NULL if not required.
preset Which preset to load.
maxjobs Maximum number of jobs to be added to the multistart pool.
data Job specific user context pointer to be passed to the multistart callbacks.

Further information
The following presets are defined:
XSLP_MSSET_INITIALVALUES: generate maxjobs number of random base points.
XSLP_MSPRESET_SOLVERS: load all solvers.
XSLP_MSPRESET_SLPCONTROLSBASIC: load the most typical SLP tuning settings. A maximum of
maxjobs jobs are loaded.
XSLP_MSPRESET_SLPCONROLSEXTENSIVE: load a comprehensive set of SLP tuning settings. A
maximum of maxjobs jobs are loaded.
XSLP_MSPRESET_KNITROBASIC: load the most typical Knitro tuning settings. A maximum of maxjobs
jobs are loaded.
XSLP_MSPRESET_KNITROEXTENSIVE: load a comprehensive set of Knitro tuning settings. A maximum
of maxjobs jobs are loaded.
XSLP_MSSET_INITIALFILTERED: generate maxjobs number of random base points, filtered by a merit
function centred on initial feasibility.
XSLP_MSSET_INITIALDYNAMIC: generate maxjobs number of random base points, that are then
refined and combined further by any solution found during the search.
See XSLP_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
XSLPmsaddjob, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Proprietary Information 279

Chapter 20: Library functions and the programming interface

XSLPmsclear

Purpose
Removes all scheduled jobs from the multistart job pool

Synopsis
int XSLP_CC XSLPmsclear(XSLPprob prob);

Argument
prob The current SLP problem.

Related topics
XSLPmsaddjob, XSLPmsaddpreset, XSLPmsaddcustompreset

Fair Isaac Corporation Proprietary Information 280

Chapter 20: Library functions and the programming interface

XSLPnlpoptimize

Purpose
Maximize or minimize an SLP problem

Synopsis
int XPRS_CC XSLPnlpoptimize(XSLPprob prob, char ⁎flags);

Arguments
prob The current SLP problem.
flags These have the same meaning as for XPRSmaxim and XPRSminim.

Related controls
Double

XSLP_OBJSENSE Determines the direction of optimization: +1 is for minimization, -1 is for
maximization.

Integer
XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)

used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP optimization

starts.

Further information
XSLPnlpoptimize is equivalent to XSLPmaxim (if XSLP_OBJSENSE = -1) or XSLPminim (if
XSLP_OBJSENSE = +1).
If XSLPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPmaxim, XSLPminim, XSLPpresolve

Fair Isaac Corporation Proprietary Information 281

Chapter 20: Library functions and the programming interface

XSLPpostsolve

Purpose
Restores the problem to its pre-solve state

Synopsis
int XPRS_CC XSLPpostsolve(XSLPprob prob);

Argument
prob The current SLP problem.

Related controls
Integer

XSLP_POSTSOLVE Determines if postsolve is applied automatically.

Further information
If Xpress-SLP was used to solve the problem, postsolve will unconstruct the problem before postsolving
(including any reformulation that might have been applied).

Related topics
XSLP_POSTSOLVE

Fair Isaac Corporation Proprietary Information 282

Chapter 20: Library functions and the programming interface

XSLPpresolve

Purpose
Perform a nonlinear presolve on the problem

Synopsis
int XPRS_CC XSLPpresolve(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example reads a problem from file, sets the presolve control, presolves the problem and
then maximizes it.

XSLPreadprob(prob, "Matrix", "");
XSLPsetintcontrol(prob, XSLP_PRESOLVE, 1);
XSLPpresolve(prob);
XSLPmaximize(prob,"");

Related controls
Integer

XSLP_PRESOLVE Bitmap containing nonlinear presolve options.

Further information
If bit 1 of XSLP_PRESOLVE is not set, no nonlinear presolve will be performed. Otherwise, the presolve
will be performed in accordance with the bit settings.. XSLPpresolve is called automatically by
XSLPconstruct, so there is no need to call it explicitly unless there is a requirement to interrupt the
process between presolve and optimization. XSLPpresolvemust be called before XSLPconstruct or
any of the SLP optimization procedures..

Related topics
XSLP_PRESOLVE

Fair Isaac Corporation Proprietary Information 283

Chapter 20: Library functions and the programming interface

XSLPprintmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis
int XPRS_CC XSLPprintmemory(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example loads a problem from file and then prints the dimensions of the arrays.

XSLPreadprob(prob, "Matrix1", "");
XSLPprintmemory(prob);

The output is similar to the following:

Arrays and dimensions:
Array Item Used Max Allocated Memory

Size Items Items Memory Control
MemList 28 103 129 4K
String 1 8779 13107 13K XSLP_MEM_STRING
Xv 16 2 1000 16K XSLP_MEM_XV
Xvitem 48 11 1000 47K XSLP_MEM_XVITEM
....

Further information
XSLPprintmemory lists the current sizes and amounts used of the variable arrays in the current
problem. For each array, the size of each item, the number used and the number allocated are shown,
together with the size of memory allocated and, where appropriate, the name of the memory control
variable to set the array size. Loading and execution of some problems can be speeded up by setting the
memory controls immediately after the problem is created. If an array has to be moved to re-allocate it
with a larger size, there may be insufficient memory to hold both the old and new versions; pre-setting the
memory controls reduces the number of such re-allocations which take place and may allow larger
problems to be solved.

Fair Isaac Corporation Proprietary Information 284

Chapter 20: Library functions and the programming interface

XSLPprintevalinfo

Purpose
Print a summary of any evaluation errors that may have occurred during solving a problem

Synopsis
int XPRS_CC XSLPprintevalinfo(XSLPprob prob);

Argument
prob The current SLP problem.

Related topics
XSLPsetcbcoefevalerror

Fair Isaac Corporation Proprietary Information 285

Chapter 20: Library functions and the programming interface

XSLPreadprob

Purpose
Read an Xpress NonLinear extended MPS format matrix from a file into an SLP problem

Synopsis
int XPRS_CC XSLPreadprob(XSLPprob prob, char ⁎filename, char ⁎flags);

Arguments
prob The current SLP problem.
filename Character string containing the name of the file from which the matrix is to be read.
flags Character string containing any flags needed for the input routine:

l only filename.lp is searched for;
v use the provided filename verbatim, without appending the .mps, .mat or

.lp extension;
z read a compressed input file.

Example
The following example reads the problem from file "Matrix.mat".

XSLPreadprob(prob, "Matrix", "");

Further information
XSLPreadprob tries to open the file with an extension of "mat" or, failing that, an extension of "mps". If
both fail, the file name will be tried with no extension.
XSLPreadprob is capable to read most Ampl .nl files. To specify that a .nl file is to be read, provide the
full filename including the .nl extension.
For details of the format of the file, see the section on Extended MPS format.

Related topics
Extended MPS format, XSLPwriteprob

Fair Isaac Corporation Proprietary Information 286

Chapter 20: Library functions and the programming interface

XSLPremaxim

Purpose
Continue the maximization of an SLP problem. This function is deprecated and may be removed in future
releases. Please use XSLPmaxim with the ’c’ flag instead.

Synopsis
int XPRS_CC XSLPremaxim(XSLPprob prob, char ⁎flags);

Arguments
prob The current SLP problem.
flags These have the same meaning as for XSLPmaxim.

Example
The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, it
saves the file and continues for another 10.

int Status;

XSLPsetintcontrol(prob, XSLP_ITERLIMIT, 10);
XSLPmaxim(prob,"");
XSLPgetintattrib(prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(prob);
XSLPsetintcontrol(prob, XSLP_ITERLIMIT, 20);
XSLPremaxim(prob,"");

}

Further information
This allows Xpress NonLinear to continue the maximization of a problem after it has been terminated,
without re-initializing any of the parameters. In particular, the iteration count will resume at the point
where it previously stopped, and not at 1.

Related topics
XSLPmaxim, XSLPreminim

Fair Isaac Corporation Proprietary Information 287

Chapter 20: Library functions and the programming interface

XSLPreminim

Purpose
Continue the minimization of an SLP problem This function is deprecated and may be removed in future
releases. Please use XSLPmaxim with the ’c’ flag instead.

Synopsis
int XPRS_CC XSLPreminim(XSLPprob prob, char ⁎flags);

Arguments
prob The current SLP problem.
flags These have the same meaning as for XSLPminim.

Example
The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, it
saves the file and continues for another 10.

int Status;

XSLPsetintcontrol(prob, XSLP_ITERLIMIT, 10);
XSLPminim(prob,"");
XSLPgetintattrib(prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(prob);
XSLPsetintcontrol(prob, XSLP_ITERLIMIT, 20);
XSLPreminim(prob,"");

}

Further information
This allows Xpress NonLinear to continue the minimization of a problem after it has been terminated,
without re-initializing any of the parameters. In particular, the iteration count will resume at the point
where it previously stopped, and not at 1.

Related topics
XSLPminim, XSLPremaxim

Fair Isaac Corporation Proprietary Information 288

Chapter 20: Library functions and the programming interface

XSLPrestore

Purpose
Restore the Xpress NonLinear problem from a file created by XSLPsave

Synopsis
int XPRS_CC XSLPrestore(XSLPprob prob, char ⁎filename);

Arguments
prob The current SLP problem.
filename Character string containing the name of the problem which is to be restored.

Example
The following example restores a problem originally saved on file "MySave"

XSLPrestore(prob, "MySave");

Further information
Normally XSLPrestore restores both the Xpress NonLinear problem and the underlying optimizer
problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL, XSLPsave

Fair Isaac Corporation Proprietary Information 289

Chapter 20: Library functions and the programming interface

XSLPreinitialize

Purpose
Reset the SLP problem to match a just augmented system

Synopsis
int XPRS_CC XSLPreinitialize(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Can be used to rerun the SLP optimization process with updated parameters, penalties or initial values,
but unchanged augmentation.

Related topics
XSLPcreateprob, XSLPdestroyprob, XSLPunconstruct, XSLPsetcurrentiv,

Fair Isaac Corporation Proprietary Information 290

Chapter 20: Library functions and the programming interface

XSLPsave

Purpose
Save the Xpress NonLinear problem to file

Synopsis
int XPRS_CC XSLPsave(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Normally XSLPsave saves both the Xpress NonLinear problem and the underlying optimizer problem. If
only the Xpress NonLinear problem is required, set the integer control variable XSLP_CONTROL
appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsaveas

Fair Isaac Corporation Proprietary Information 291

Chapter 20: Library functions and the programming interface

XSLPsaveas

Purpose
Save the Xpress NonLinear problem to a named file

Synopsis
int XPRS_CC XSLPsaveas(XSLPprob prob, const char ⁎filename);

Arguments
prob The current SLP problem.
filename The name of the file (without extension) in which the problem is to be saved.

Further information
Normally XSLPsaveas saves both the Xpress NonLinear problem and the underlying optimizer problem.
If only the Xpress NonLinear problem is required, set the integer control variable XSLP_CONTROL
appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsave

Fair Isaac Corporation Proprietary Information 292

Chapter 20: Library functions and the programming interface

XSLPscaling

Purpose
Analyze the current matrix for largest/smallest coefficients and ratios

Synopsis
int XPRS_CC XSLPscaling(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example analyzes the matrix

XSLPscaling(prob);

Further information
The current matrix (including augmentation if it has been carried out) is scanned for the absolute and
relative sizes of elements. The following information is reported:

■ Largest and smallest elements in the matrix;
■ Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between 1.0E+01

and 1.0E+02);
■ List of the rows (with largest and smallest elements) which appear in the highest range;
■ Counts of the ranges of column ratios in powers of 10 (e.g. number of columns with ratio between

1.0E+01 and 1.0E+02);
■ List of the columns (with largest and smallest elements) which appear in the highest range;
■ Element ranges in powers of 10 (e.g. number of elements between 1.0E+01 and 1.0E+02).

Where any of the reported items (largest or smallest element in the matrix or any reported row or column
element) is in a penalty error vector, the results are repeated, excluding all penalty error vectors.

Fair Isaac Corporation Proprietary Information 293

Chapter 20: Library functions and the programming interface

XSLPsetcbcascadeend

Purpose
Set a user callback to be called at the end of the cascading process, after the last variable has been
cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadeend(XSLPprob prob, int (XPRS_CC ⁎cascadeend)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
cascadeend The function to be called at the end of the cascading process. UserFunc returns an

integer value. The return value is noted by Xpress-SLP but it has no effect on the
optimization.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbcascadeend.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the end of the cascading process which
checks if any of the values have been changed significantly:

double ⁎cSol;
XSLPsetcbcascadeend(prob, CBCascEnd, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBCascEnd(XSLPprob MyProb, void ⁎Obj) {
int iCol, nCol;
double ⁎cSol, Value;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);
for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

if (fabs(Value-cSol[iCol]) > .01)
printf("\nCol %d changed from %lg to %lg",

iCol, cSol[iCol], Value);
}
return 0;

}

The data argument is used here to hold the address of the array cSol which we assume has been
populated with the original solution values.

Further information
This callback can be used at the end of the cascading, when all the solution values have been
recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadestart, XSLPsetcbcascadevar,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Proprietary Information 294

Chapter 20: Library functions and the programming interface

XSLPsetcbcascadestart

Purpose
Set a user callback to be called at the start of the cascading process, before any variables have been
cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadestart(XSLPprob prob, int (XPRS_CC ⁎cascadestart)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
cascadestart The function to be called at the start of the cascading process. UserFunc returns an

integer value. If the return value is nonzero, the cascading process will be omitted for the
current SLP iteration, but the optimization will continue.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbcascadestart.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the start of the cascading process to save the
current values of the variables:

double ⁎cSol;
XSLPsetcbcascadestart(prob, CBCascStart, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBCascStart(XSLPprob MyProb, void ⁎Obj) {
int iCol, nCol;
double ⁎cSol;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);
for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &cSol[iCol],
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

}
return 0;

}

The data argument is used here to hold the address of the array cSol which we populate with the
solution values.

Further information
This callback can be used at the start of the cascading, before any of the solution values have been
recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadevar, XSLPsetcbcascadevarfail

Fair Isaac Corporation Proprietary Information 295

Chapter 20: Library functions and the programming interface

XSLPsetcbcascadevar

Purpose
Set a user callback to be called after each column has been cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadevar(XSLPprob prob, int (XPRS_CC ⁎cascadevar)

(XSLPprob cbprob, void ⁎cbdata, int col), void ⁎data);

Arguments
prob The current SLP problem.
cascadevar The function to be called after each column has been cascaded. UserFunc returns an

integer value. If the return value is nonzero, the cascading process will be omitted for the
remaining variables during the current SLP iteration, but the optimization will continue.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbcascadevar.
col The number of the column which has been cascaded.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed after each variable has been cascaded:

double ⁎cSol;
XSLPsetcbcascadevar(prob, CBCascVar, &cSol);

The following sample callback function resets the value of the variable if the cascaded value is of the
opposite sign to the original value:

int XPRS_CC CBCascVar(XSLPprob MyProb, void ⁎Obj, int iCol) {
double ⁎cSol, Value;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

if (Value ⁎ cSol[iCol] < 0) {
Value = cSol[iCol];
XSLPchgvar(MyProb, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL);

}
return 0;

}

The data argument is used here to hold the address of the array cSol which we assume has been
populated with the original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been calculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Proprietary Information 296

Chapter 20: Library functions and the programming interface

XSLPsetcbcascadevarfail

Purpose
Set a user callback to be called after cascading a column was not successful

Synopsis
int XPRS_CC XSLPsetcbcascadevarfail(XSLPprob prob, int (XPRS_CC

⁎cascadevarfail) (XSLPprob cbprob, void ⁎cbdata, int col), void
⁎data);

Arguments
prob The current SLP problem.
cascadevarfail The function to be called after cascading a column was not successful. UserFunc

returns an integer value. If the return value is nonzero, the cascading process will be
omitted for the remaining variables during the current SLP iteration, but the optimization
will continue.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbcascadevarfail.
col The number of the column which has been cascaded.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Further information
This callback can be used to provide user defined updates for SLP variables having a determining row
that were not successfully cascaded due to the determining row being close to singular around the
current values. This callback will always be called in place of the cascadevar callback in such cases, and
in no situation will both the cascadevar and the cascadevarfail callback be called in the same iteration for
the same variable.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart, XSLPsetcbcascadevar

Fair Isaac Corporation Proprietary Information 297

Chapter 20: Library functions and the programming interface

XSLPsetcbcoefevalerror

Purpose
Set a user callback to be called when an evaluation of a coefficient fails during the solve

Synopsis
int XPRS_CC XSLPsetcbcoefevalerror(XSLPprob prob, int (XPRS_CC

⁎coefevalerror) (XSLPprob cbprob, void ⁎cbdata, int row, int col),
void ⁎data);

Arguments
prob The current SLP problem.
coefevalerror The function to be called when an evaluation fails.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbcoefevalerror.
row The row position of the coefficient.
col The column position of the coefficient.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Further information
This callback can be used to capture when an evaluation of a coefficient fails. The callback is called only
once for each coefficient.

Related topics
XSLPprintevalinfo

Fair Isaac Corporation Proprietary Information 298

Chapter 20: Library functions and the programming interface

XSLPsetcbconstruct

Purpose
Set a user callback to be called during the Xpress-SLP augmentation process

Synopsis
int XPRS_CC XSLPsetcbconstruct(XSLPprob prob, int (XPRS_CC ⁎construct)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
construct The function to be called during problem augmentation. UserFunc returns an integer

value. See below for an explanation of the values.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbconstruct.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed during the Xpress-SLP problem augmentation:

double ⁎cValue;
cValue = NULL;
XSLPsetcbconstruct(prob, CBConstruct, &cValue);

The following sample callback function sets values for the variables the first time the function is called
and returns to XSLPconstruct to recalculate the initial matrix. The second time it is called it frees the
allocated memory and returns to XSLPconstruct to proceed with the rest of the augmentation.

int XPRS_CC CBConstruct(XSLPprob MyProb, void ⁎Obj) {
double ⁎cValue;
int i, n;

/⁎ if data is NULL, this is first-time entry ⁎/
if (⁎(void⁎⁎)Obj == NULL) {

XSLPgetintattrib(MyProb,XPRS_COLS,&n);
cValue = malloc(n⁎sizeof(double));

/⁎ ... initialize with values (not shown here) and then ... ⁎/
for (i=0;i<n;i++)

/⁎ store into SLP structures ⁎/
XSLPchgvar(MyProb, i, NULL, NULL, NULL, NULL,

NULL, NULL, &cValue[i], NULL, NULL, NULL,
NULL);

/⁎ set data non-null to indicate we have processed data ⁎/
⁎(void⁎⁎)Obj = cValue;
return -1;

}
else {

/⁎ free memory, clear marker and continue ⁎/
free(⁎(void⁎⁎)Obj);
⁎(void⁎⁎)Obj = NULL;

}
return 0;

}

Fair Isaac Corporation Proprietary Information 299

Chapter 20: Library functions and the programming interface

Further information
This callback can be used during the problem augmentation, generally (although not exclusively) to
change the initial values for the variables.
The following return codes are accepted:

0 Normal return: augmentation continues
-1 Return to recalculate matrix values
-2 Return to recalculate row weights and matrix entries
other Error return: augmentation terminates, XSLPconstruct terminates with a nonzero error

code.

The return values -1 and -2 will cause the callback to be called a second time after the matrix has been
recalculated. It is the responsibility of the callback to ensure that it does ultimately exit with a return value
of zero.

Related topics
XSLPconstruct

Fair Isaac Corporation Proprietary Information 300

Chapter 20: Library functions and the programming interface

XSLPsetcbdestroy

Purpose
Set a user callback to be called when an SLP problem is about to be destroyed

Synopsis
int XPRS_CC XSLPsetcbdestroy(XSLPprob prob, int (XPRS_CC ⁎destroy)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
destroy The function to be called when the SLP problem is about to be destroyed. UserFunc

returns an integer value. At present the return value is ignored.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbdestroy.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed before the SLP problem is destroyed:

double ⁎cSol;
XSLPsetcbdestroy(prob, CBDestroy, &cSol);

The following sample callback function frees the memory associated with the user-defined object:

int XPRS_CC CBDestroy(XSLPprob MyProb, void ⁎Obj) {
if (⁎(void⁎⁎)Obj) free(⁎(void⁎⁎)Obj);
return 0;

}

The data argument is used here to hold the address of the array cSol which we assume was assigned
using one of the malloc functions.

Further information
This callback can be used when the problem is about to be destroyed to free any user-defined resources
which were allocated during the life of the problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Proprietary Information 301

Chapter 20: Library functions and the programming interface

XSLPsetcbdrcol

Purpose
Set a user callback used to override the update of variables with small determining column

Synopsis
int XPRS_CC XSLPsetcbdrcol(XSLPprob prob, int (XPRS_CC ⁎drcol) (XSLPprob

prob, void ⁎data, int col, int detcol, double detval, double ⁎
p_value, double lb, double ub), void ⁎data);

Arguments
prob The current SLP problem.
drcol The function to be called after each column has been cascaded. UserFunc returns an

integer value. If the return value is positive, it will indicate that the value has been fixed,
and cascading should be omitted for the variable. A negative value indicates that a
previously fixed value has been relaxed. If no action is taken, a 0 return value should be
used.

prob The problem passed to the callback function.
data The user-defined object passed as data to XSLPsetcbcascadevar.
col The index of the column for which the determining columns is checked.
detcol The index of the determining column for the column that is being updated.
detval The value of the determining column in the current SLP iteration.
p_value Used to return the new value for column col, should it need to be updated, in which case

the callback must return a positive value to indicate that this value should be used.
lb The original lower bound of column col. The callback provides this value as a reference,

should the bound be updated or changed during the solution process.
ub The original upper bound of column col. The callback provides this value as a reference,

should the bound be updated or changed during the solution process.
data Address of a user-defined object, which can be used for any purpose. by the function.

data is passed to UserFunc as data.

Further information
If set, this callback is called as part of the cascading procedure. Please see Chapter Cascading for more
information.

Related topics
XSLP_DRCOLTOL, XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart

Fair Isaac Corporation Proprietary Information 302

Chapter 20: Library functions and the programming interface

XSLPsetcbintsol

Purpose
Set a user callback to be called during MISLP when an integer solution is obtained

Synopsis
int XPRS_CC XSLPsetcbintsol(XSLPprob prob, int (XPRS_CC ⁎intsol) (XSLPprob

cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
intsol The function to be called when an integer solution is obtained. UserFunc returns an

integer value. At present, the return value is ignored.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbintsol.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed whenever an integer solution is found during
MISLP:

double ⁎cSol;
XSLPsetcbintsol(prob, CBIntSol, &cSol);

The following sample callback function saves the solution values for the integer solution just found:

int XPRS_CC CBIntSol(XSLPprob MyProb, void ⁎Obj) {
XPRSprob xprob;
double ⁎cSol;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetlpsol(xprob, cSol, NULL, NULL, NULL);
return 0;

}

The data argument is used here to hold the address of the array cSol which we assume was assigned
using one of the malloc functions.

Further information
This callback must be used during MISLP instead of the XPRSsetcbintsol callback which is used for
MIP problems.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Proprietary Information 303

Chapter 20: Library functions and the programming interface

XSLPsetcbiterend

Purpose
Set a user callback to be called at the end of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterend(XSLPprob prob, int (XPRS_CC ⁎iterend)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
iterend The function to be called at the end of each SLP iteration. UserFunc returns an integer

value. If the return value is nonzero, the SLP iterations will stop.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbiterend.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the end of each SLP iteration. It records the
number of LP iterations in the latest optimization and stops if there were fewer than 10:

XSLPsetcbiterend(prob, CBIterEnd, NULL);

A suitable callback function might resemble this:

int XPRS_CC CBIterEnd(XSLPprob MyProb, void ⁎Obj) {
int nIter;
XPRSprob xprob;
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XSLPgetintattrib(xprob, XPRS_SIMPLEXITER, &nIter);
if (nIter < 10) return 1;
return 0;

}

The data argument is not used here, and so is passed as NULL.

Further information
This callback can be used at the end of each SLP iteration to carry out any further processing and/or stop
any further SLP iterations.

Related topics
XSLPsetcbiterstart, XSLPsetcbitervar

Fair Isaac Corporation Proprietary Information 304

Chapter 20: Library functions and the programming interface

XSLPsetcbiterstart

Purpose
Set a user callback to be called at the start of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterstart(XSLPprob prob, int (XPRS_CC ⁎iterstart)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
iterstart The function to be called at the start of each SLP iteration. UserFunc returns an integer

value. If the return value is nonzero, the SLP iterations will stop.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbiterstart.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the start of the optimization to save to save
the values of the variables from the previous iteration:

double ⁎cSol;
XSLPsetcbiterstart(prob, CBIterStart, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBIterStart(XSLPprob MyProb, void ⁎Obj) {
XPRSprob xprob;
double ⁎cSol;
int nIter;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintattrib(MyProb, XSLP_ITER, &nIter);
if (nIter == 0) return 0; /⁎ no previous solution ⁎/
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetlpsol(xprob, cSol, NULL, NULL, NULL);
return 0;

}

The data argument is used here to hold the address of the array cSol which we populate with the
solution values.

Further information
This callback can be used at the start of each SLP iteration before the optimization begins.

Related topics
XSLPsetcbiterend, XSLPsetcbitervar

Fair Isaac Corporation Proprietary Information 305

Chapter 20: Library functions and the programming interface

XSLPsetcbitervar

Purpose
Set a user callback to be called after each column has been tested for convergence

Synopsis
int XPRS_CC XSLPsetcbitervar(XSLPprob prob, int (XPRS_CC ⁎itervar)

(XSLPprob cbprob, void ⁎cbdata, int col), void ⁎data);

Arguments
prob The current SLP problem.
itervar The function to be called after each column has been tested for convergence. UserFunc

returns an integer value. The return value is interpreted as a convergence status. The
possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion

(these values should not normally be returned);
> 10 The variable has converged on user criteria.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbitervar.
col The number of the column which has been tested for convergence.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and holds a
flag for each variable indicating whether it is important that it converges.

int ⁎Important;
XSLPsetcbitervar(prob, CBIterVar, &Important);

The following sample callback function tests if the variable is already converged. If not, then it checks if
the variable is important. If it is not important, the function returns a convergence status of 99.

int XPRS_CC CBIterVar(XSLPprob MyProb, void ⁎Obj, int iCol) {
int ⁎Important, Converged;
Important = ⁎(int ⁎⁎) Obj;
XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,
NULL, NULL, &Converged, NULL,
NULL, NULL, NULL, NULL);

if (Converged) return 0;
if (!Important[iCol]) return 99;
return -1;

}

The data argument is used here to hold the address of the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Related topics
XSLPsetcbiterend, XSLPsetcbiterstart

Fair Isaac Corporation Proprietary Information 306

Chapter 20: Library functions and the programming interface

XSLPsetcbmessage

Purpose
Set a user callback to be called whenever Xpress NonLinear outputs a line of text according to
XSLP_ECHOXPRSMESSAGES.

Synopsis
int XPRS_CC XSLPsetcbmessage(XSLPprob prob, void (XPRS_CC ⁎message)

(XSLPprob cbprob, void ⁎cbdata, char ⁎msg, int msglen, int msgtype),
void ⁎data);

Arguments
prob The current SLP problem.
message The function to be called whenever Xpress NonLinear outputs a line of text. UserFunc

does not return a value.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbmessage.
msg Character buffer holding the string to be output.
msglen Length in characters of msg excluding the null terminator.
msgtype Type of message. The following are system-defined:

1 Information message
3 Warning message
4 Error message
A negative value indicates that the Optimizer is about to finish and any buffers should be
flushed at this time.

data Address of a user-defined object, which can be used for any purpose by the function.
data is passed to UserFunc as cbdata.

Example
The following example creates a log file into which all messages are placed. System messages are also
printed on standard output:

FILE ⁎logfile;
logfile = fopen("myLog","w");
XSLPsetcbmessage(prob, CBMessage, logfile);

A suitable callback function could resemble the following:

void XPRS_CC CBMessage(XSLPprob prob, void ⁎Obj,
char ⁎msg, int msglen, int msgtype) {

FILE ⁎logfile;
logfile = (FILE ⁎) Obj;
if (msgtype < 0) {

fflush(stdout);
if (logfile) fflush(logfile);
return;

}
switch (msgtype) {

case 1: /⁎ information ⁎/
case 3: /⁎ warning ⁎/
case 4: /⁎ error ⁎/

printf("%s\n",msg);
default: /⁎ user ⁎/

if (logfile)
fprintf(logfile,"%s\n",msg);

Fair Isaac Corporation Proprietary Information 307

Chapter 20: Library functions and the programming interface

break;
}
return;

}

Further information
If a user message callback is defined then screen output is automatically disabled.
Output can be directed into a log file by using XSLPsetlogfile.

Related topics
XSLPsetlogfile

Fair Isaac Corporation Proprietary Information 308

Chapter 20: Library functions and the programming interface

XSLPsetcbmsjobend

Purpose
Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite the
default solution ranking function

Synopsis
int XSLP_CC XSLPsetcbmsjobend(XSLPprob prob, int (XSLP_CC

⁎msjobend)(XSLPprob cbprob, void ⁎cbdata,void ⁎jobdata,const char
⁎jobdesc,int ⁎p_status), void ⁎data);

Arguments
prob The current SLP problem.
msjobend The function to be called when a new multistart job is created
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbmsjobend.
jobdata Job specific user-defined object, as specified in by the multistart job creating API

functions.
jobdesc The description of the problem as specified in by the multistart job creating API functions.
p_status User return status variable:

0 - use the default evaluation of the finished job
1 - disregard the result and continue
2 - stop the multistart search

data User data passed to the callback function.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbmswinner

Fair Isaac Corporation Proprietary Information 309

Chapter 20: Library functions and the programming interface

XSLPsetcbmsjobstart

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings are
applied

Synopsis
int XSLP_CC XSLPsetcbmsjobstart(XSLPprob prob, int (XSLP_CC

⁎msjobstart)(XSLPprob cbprob, void ⁎cbdata,void ⁎jobdata,const char
⁎jobdesc,int ⁎p_status), void ⁎data);

Arguments
prob The current SLP problem.
msjobstart The function to be called when a new multistart job is created
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbmsjobstart.
jobdata Job specific user-defined object, as specified in by the multistart job creating API

functions.
jobdesc The description of the problem as specified in by the multistart job creating API functions.
p_status User return status variable:

0 - normal return, solve the job,
1 - disregard this job and continue,
2 - Stop multistart.

data User data passed to the callback function.

Further information
All mulit-start jobs operation on an independent copy of the original problem, and any modification to the
problem is allowed, including structural changes. Please note however, that any modification will be
carried over to the base problem, should a modified problem be declared the winner prob.

Related topics
XSLPsetcbmsjobend, XSLPsetcbmswinner

Fair Isaac Corporation Proprietary Information 310

Chapter 20: Library functions and the programming interface

XSLPsetcbmswinner

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings are
applied

Synopsis
int XSLP_CC XSLPsetcbmswinner(XSLPprob prob, int (XSLP_CC

⁎mswinner)(XSLPprob cbprob, void ⁎cbdata,void ⁎jobdata,const char
⁎jobdesc), void ⁎data);

Arguments
prob The current SLP problem.
mswinner The function to be called when a new multistart job is created
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbmswinner.
jobdata Job specific user-defined object, as specified in by the multistart job creating API

functions.
jobdesc The description of the problem as specified in by the multistart job creating API functions.
data User data passed to the callback function.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbmsjobend

Fair Isaac Corporation Proprietary Information 311

Chapter 20: Library functions and the programming interface

XSLPsetcboptnode

Purpose
Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node

Synopsis
int XPRS_CC XSLPsetcboptnode(XSLPprob prob, int (XPRS_CC ⁎optnode)

(XSLPprob cbprob, void ⁎cbdata, int ⁎p_infeasible), void ⁎data);

Arguments
prob The current SLP problem.
optnode The function to be called when an optimal SLP solution is obtained at a node. UserFunc

returns an integer value. If the return value is nonzero, or if the feasibility flag is set
nonzero, then further processing of the node will be terminated (it is declared infeasible).

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcboptnode.
p_infeasible Address of an integer containing the feasibility flag. If optnode sets the flag nonzero,

the node is declared infeasible.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example defines a callback function to be executed at each node when an SLP optimal
solution is found. If there are significant penalty errors in the solution, the node is declared infeasible.

XSLPsetcboptnode(prob, CBOptNode, NULL);

A suitable callback function might resemble the following:

int XPRS_CC CBOptNode(XSLPprob cbprob, void ⁎Obj, int ⁎p_infeasible) {
double Total, ObjVal;
XSLPgetdblattrib(cbprob, XSLP_ERRORCOSTS, &Total);
XSLPgetdblattrib(cbprob, XSLP_OBJVAL, &ObjVal);
if (fabs(Total) > fabs(ObjVal) ⁎ 0.001 &&

fabs(Total) > 1) ⁎p_infeasible = 1;
return 0;

Further information
If a node is declared infeasible from the callback function, the cost of exploring the node further will be
avoided.
This callback must be used in place of XPRSsetcboptnode when optimizing with MISLP.

Related topics
XSLPsetcbprenode, XSLPsetcbslpnode

Fair Isaac Corporation Proprietary Information 312

Chapter 20: Library functions and the programming interface

XSLPsetcbprenode

Purpose
Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at a node,
but before SLP optimization

Synopsis
int XPRS_CC XSLPsetcbprenode(XSLPprob prob, int (XPRS_CC ⁎prenode)

(XSLPprob cbprob, void ⁎cbdata, int ⁎p_infeasible), void ⁎data);

Arguments
prob The current SLP problem.
prenode The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared
infeasible).

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbprenode.
p_infeasible Address of an integer containing the feasibility flag. If prenode sets the flag nonzero,

the node is declared infeasible.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback function to be executed at each node before the SLP
optimization starts. The array IntList contains a list of integer variables, and the function prints the
bounds on these variables.

int ⁎IntList;
XSLPsetcbprenode(prob, CBPreNode, IntList);

A suitable callback function might resemble the following:

int XPRS_CC CBPreNode(XSLPprob cbprob, void ⁎Obj, int ⁎p_infeasible) {
XPRSprob xprob;
int i, ⁎IntList;
double LO, UP;
IntList = (int ⁎) Obj;
XSLPgetptrattrib(cbprob, XSLP_XPRSPROBLEM, &xprob);
for (i=0; IntList[i]>=0; i++) {

XPRSgetlb(xprob,&LO,IntList[i],IntList[i]);
XPRSgetub(xprob,&UP,IntList[i],IntList[i]);
if (LO > 0 || UP < XPRS_PLUSINFINITY)

printf("\nCol %d: %lg <= %lg",LO,UP);
}
return 0;

}

Further information
If a node can be identified as infeasible by the callback function, then the initial optimization at the
current node is avoided, as well as further exploration of the node.
This callback must be used in place of XPRSsetcbprenode when optimizing with MISLP.

Related topics
XSLPsetcboptnode, XSLPsetcbslpnode

Fair Isaac Corporation Proprietary Information 313

Chapter 20: Library functions and the programming interface

XSLPsetcbpreupdatelinearization

Purpose
Set a user callback to be called before the linearization is updated

Synopsis
int XPRS_CC XSLPsetcbpreupdatelinearization(XSLPprob prob, int (XPRS_CC

⁎preupdatelinearization) (XSLPprob cbprob, void ⁎cbdata, int
⁎ifRepeat), void ⁎data);

Arguments
prob The current SLP problem.
preupdatelinearization The function to be called at the end of the SLP optimization. UserFunc

returns an integer value. If the return value is nonzero, the optimization will return an error
code and the "User Return Code" error will be set.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to
ifRepeat If returned nonzero, SLP restart the lienarization update. XSLPsetcbslpend.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Further information
This callback is intended to be used with user functions, allowing to peak where the functions will be
evaluated, and then asked to redo the linearization. This is usefull for user functions returning their own
partial derivatives implemented in a parallel setup. The callback is called again after the linearization is
complete with ifRepeat being initialzied to -1, to indicate that any further evaluations are no longer part of
updating the linearization.

Fair Isaac Corporation Proprietary Information 314

Chapter 20: Library functions and the programming interface

XSLPsetcbpresolved

Purpose
Set a user callback to be called after the nonlinear presolver has been applied.

Synopsis
int XSLP_CC XSLPsetcbpresolved(XSLPprob prob, int (XSLP_CC

⁎presolved)(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
presolved The function to be invoked after the nlp presolver is completed.
cbprob The problem passed to the callback function.
cbdata The user-defined object received by the callback.
data The user-defined object passed as cbdata to presolved.

Fair Isaac Corporation Proprietary Information 315

Chapter 20: Library functions and the programming interface

XSLPsetcbslpend

Purpose
Set a user callback to be called at the end of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpend(XSLPprob prob, int (XPRS_CC ⁎slpend) (XSLPprob

cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
slpend The function to be called at the end of the SLP optimization. UserFunc returns an integer

value. If the return value is nonzero, the optimization will return an error code and the
"User Return Code" error will be set.

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbslpend.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the end of the SLP optimization. It frees the
memory allocated to the object created when the optimization began:

void ⁎ObjData;
ObjData = NULL;
XSLPsetcbslpend(prob, CBSlpEnd, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpEnd(XSLPprob MyProb, void ⁎Obj) {
void ⁎ObjData;
ObjData = ⁎ (void ⁎⁎) Obj;
if (ObjData) free(ObjData);
⁎ (void ⁎⁎) Obj = NULL;
return 0;

}

Further information
This callback can be used at the end of the SLP optimization to carry out any further processing or
housekeeping before the optimization function returns.

Related topics
XSLPsetcbslpstart

Fair Isaac Corporation Proprietary Information 316

Chapter 20: Library functions and the programming interface

XSLPsetcbslpnode

Purpose
Set a user callback to be called during MISLP after the SLP optimization at each node.

Synopsis
int XPRS_CC XSLPsetcbslpnode(XSLPprob prob, int (XPRS_CC ⁎slpnode)

(XSLPprob cbprob, void ⁎cbdata, int ⁎p_infeasible), void ⁎data);

Arguments
prob The current SLP problem.
slpnode The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared
infeasible).

cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbslpnode.
p_infeasible Address of an integer containing the feasibility flag. If slpnode sets the flag nonzero,

the node is declared infeasible.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback function to be executed at each node after the SLP optimization
finishes. If the solution value is worse than a target value (referenced through the user object), the node
is cut off (it is declared infeasible).

double OBJtarget;
XSLPsetcbslpnode(prob, CBSLPNode, &OBJtarget);

A suitable callback function might resemble the following:

int XPRS_CC CBSLPNode(XSLPprob cbprob, void ⁎Obj, int ⁎p_infeasible) {
double TargetValue, LPValue;
XSLPgetdblattrib(prob, XPRS_LPOBJVAL, &LPValue);
TargetValue = ⁎ (double ⁎) Obj;
if (LPValue < TargetValue) ⁎p_infeasible = 1;
return 0;

}

Further information
If a node can be cut off by the callback function, then further exploration of the node is avoided.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Proprietary Information 317

Chapter 20: Library functions and the programming interface

XSLPsetcbslpstart

Purpose
Set a user callback to be called at the start of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpstart(XSLPprob prob, int (XPRS_CC ⁎slpstart)

(XSLPprob cbprob, void ⁎cbdata), void ⁎data);

Arguments
prob The current SLP problem.
slpstart The function to be called at the start of the SLP optimization. UserFunc returns an

integer value. If the return value is nonzero, the optimization will not be carried out.
cbprob The problem passed to the callback function.
cbdata The user-defined object passed as data to XSLPsetcbslpstart.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to UserFunc as cbdata.

Example
The following example sets up a callback to be executed at the start of the SLP optimization. It allocates
memory to a user-defined object to be used during the optimization:

void ⁎ObjData;
ObjData = NULL;
XSLPsetcbslpstart(prob, CBSlpStart, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpStart(XSLPprob MyProb, void ⁎Obj) {
void ⁎ObjData;
ObjData = ⁎ (void ⁎⁎) Obj;
if (ObjData) free(ObjData);
⁎ (void ⁎⁎) Obj = malloc(99⁎sizeof(double));
return 0;

}

Further information
This callback can be used at the start of the SLP optimization to carry out any housekeeping before the
optimization actually starts. Note that a nonzero return code from the callback will terminate the
optimization immediately.

Related topics
XSLPsetcbslpend

Fair Isaac Corporation Proprietary Information 318

Chapter 20: Library functions and the programming interface

XSLPsetcurrentiv

Purpose
Transfer the current solution to initial values

Synopsis
int XPRS_CC XSLPsetcurrentiv(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Provides a way to set the current iterates solution as initial values, make changes to parameters or to the
underlying nonlinear problem and then rerun the SLP optimization process.

Related topics
XSLPreinitialize, XSLPunconstruct

Fair Isaac Corporation Proprietary Information 319

Chapter 20: Library functions and the programming interface

XSLPsetdblcontrol

Purpose
Set the value of a double precision problem control

Synopsis
int XPRS_CC XSLPsetdblcontrol(XSLPprob prob, int control, double value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
value Double precision value to be set.

Example
The following example sets the value of the Xpress NonLinear control XSLP_CTOL and of the optimizer
control XPRS_FEASTOL:

XSLPsetdblcontrol(prob, XSLP_CTOL, 0.001);
XSLPgetdblcontrol(prob, XPRS_FEASTOL, 0.005);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is set, the return
value will be the same as that from XPRSsetdblcontrol.

Related topics
XSLPgetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 320

Chapter 20: Library functions and the programming interface

XSLPsetdefaultcontrol

Purpose
Set the values of one SLP control to its default value

Synopsis
int XPRS_CC XSLPsetdefaultcontrol(XSLPprob prob, int control);

Arguments
prob The current SLP problem.
control The number of the control to be reset to its default.

Example
The following example reads a problem from file, sets the XSLP_LOG control, optimizes the problem and
then reads and optimizes another problem using the default setting.

XSLPreadprob(prob, "Matrix1", "");
XSLPsetintcontrol(prob, XSLP_LOG, 4);
XSLPmaxim(prob, "");
XSLPsetdefaultcontrol(prob,XSLP_LOG);
XSLPreadprob(prob, "Matrix2", "");
XSLPmaxim(prob, "");

Further information
This function cannot reset the optimizer controls. Use XPRSsetdefaults or
XPRSsetdefaultcontrolas well to reset optimizer controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetdefaults, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 321

Chapter 20: Library functions and the programming interface

XSLPsetdefaults

Purpose
Set the values of all SLP controls to their default values

Synopsis
int XPRS_CC XSLPsetdefaults(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example reads a problem from file, sets some controls, optimizes the problem and then
reads and optimizes another problem using the default settings.

XSLPreadprob(prob, "Matrix1", "");
XSLPsetintcontrol(prob, XSLP_LOG, 4);
XSLPsetdblcontrol(prob, XSLP_CTOL, 0.001);
XSLPsetdblcontrol(prob, XSLP_ATOL_A, 0.005);
XSLPmaxim(prob, "");
XSLPsetdefaults(prob);
XSLPreadprob(prob, "Matrix2", "");
XSLPmaxim(prob, "");

Further information
This function does not reset the optimizer controls. Use XPRSsetdefaults as well to reset all the
controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 322

Chapter 20: Library functions and the programming interface

XSLPsetdetrow

Purpose
Set the determining row of a variable

Synopsis
int XPRS_CC XSLPsetdetrow(XSLPprob prob, int nvars, const int ⁎colind,

const int ⁎rowind);

Arguments
prob The current SLP problem.
nvars The number of variables for which determining rows are set.
colind Array of length nvars with the index of the column for which the determining row is set.
rowind Array of length nvars with the index of the determining row.

Related topics
XSLPsetinitval

Fair Isaac Corporation Proprietary Information 323

Chapter 20: Library functions and the programming interface

XSLPsetfunctionerror

Purpose
Set the function error flag for the problem

Synopsis
int XPRS_CC XSLPsetfunctionerror(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Once the function error has been set, calculations generally stop and the routines will return to their caller
with a nonzero return code.

Fair Isaac Corporation Proprietary Information 324

Chapter 20: Library functions and the programming interface

XSLPsetinitval

Purpose
Set the initial value of a variable

Synopsis
int XPRS_CC XSLPsetinitval(XSLPprob prob, int nvars, const int ⁎colind,

const double ⁎initial);

Arguments
prob The current SLP problem.
nvars Number of variables for which the initial value is to be set.
colind Array of length nvars with index of the column for which the initial value is provided.
initial Array of length nvars with the initial value.

Related topics
XSLPsetdetrow

Fair Isaac Corporation Proprietary Information 325

Chapter 20: Library functions and the programming interface

XSLPsetintcontrol

Purpose
Set the value of an integer problem control

Synopsis
int XPRS_CC XSLPsetintcontrol(XSLPprob prob, int control, int value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
value The value to be set.

Example
The following example sets the value of the Xpress NonLinear control XSLP_ALGORITHM and of the
optimizer control XPRS_DEFAULTALG:

XSLPsetintcontrol(prob, XSLP_ALGORITHM, 934);
XSLPsetintcontrol(prob, XPRS_DEFAULTALG, 3);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is requested, the
return value will be the same as that from XPRSsetintcontrol.

Related topics
XSLPgetintcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 326

Chapter 20: Library functions and the programming interface

XSLPsetlogfile

Purpose
Define an output file to be used to receive messages from Xpress NonLinear

Synopsis
int XPRS_CC XSLPsetlogfile(XSLPprob prob, char ⁎Filename, int option);

Arguments
prob The current SLP problem.
filename Character string containing the name of the file to be used for output.
option option to indicate whether the output is directed to the file only (option=0) or (in console

mode) to the console as well (option=1).

Example
The following example defines a log file "MyLog1" and directs output to the file and to the console:

XSLPsetlogfile(prob, "MyLog1", 1);

Further information
If Filename is NULL, the current log file (if any) will be closed, and message handling will revert to the
default mechanism.

Related topics
XSLPsetcbmessage

Fair Isaac Corporation Proprietary Information 327

Chapter 20: Library functions and the programming interface

XSLPsetparam

Purpose
Set the value of a control parameter by name

Synopsis
int XPRS_CC XSLPsetparam(XSLPprob prob, const char ⁎name, const char

⁎value);

Arguments
prob The current SLP problem.
name Name of the control or attribute whose value is to be returned.
value Character buffer containing the value.

Example
The following example sets the value of XSLP_ALGORITHM:

XSLPprob prob;
int Algorithm;
char Buffer[32];
Algorithm = 934;
sprintf(Buffer,"%d",Algorithm);
XSLPsetparam(prob, "XSLP_ALGORITHM", Buffer);

Further information
This function can be used to set any Xpress NonLinear or Optimizer control. The value is always passed
as a character string. It is the user’s responsibility to create the character string in an appropriate format.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetparam, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 328

Chapter 20: Library functions and the programming interface

XSLPsetstrcontrol

Purpose
Set the value of a string problem control

Synopsis
int XPRS_CC XSLPsetstrcontrol(XSLPprob prob, int control, const char

⁎value);

Arguments
prob The current SLP problem.
control control (SLP or optimizer) whose value is to be returned.
value Character buffer containing the value.

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is requested, the
return value will be the same as that from XPRSsetstrcontrol.

Related topics
XSLPgetstrcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Proprietary Information 329

Chapter 20: Library functions and the programming interface

XSLPunconstruct

Purpose
Removes the augmentation and returns the problem to its pre-linearization state

Synopsis
int XPRS_CC XSLPunconstruct(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Only limited changes are allowed to an augmented problem.

Related topics
XSLPconstruct

Fair Isaac Corporation Proprietary Information 330

Chapter 20: Library functions and the programming interface

XSLPupdatelinearization

Purpose
Updates the current linearization

Synopsis
int XPRS_CC XSLPupdatelinearization(XSLPprob prob);

Argument
prob The current SLP problem.

Further information
Updates the augmented probem (the linearization) to match the current base point. The base point is the
current SLP solution. The values of the SLP variables can be changed using XSLPchgvar.
The linearization must be present, and this function can only be called after the problem has been
augmented by XSLPconstruct.

Related topics
XSLPconstruct

Fair Isaac Corporation Proprietary Information 331

Chapter 20: Library functions and the programming interface

XSLPvalidate

Purpose
Validate the feasibility of constraints in a converged solution

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob prob);

Argument
prob The current SLP problem.

Example
The following example sets the validation tolerance parameters, validates the converged solution and
retrieves the validation indices.

double IndexA, IndexR;
XSLPsetdblcontrol(prob, XSLP_VALIDATIONTOL_A, 0.001);
XSLPsetdblcontrol(prob, XSLP_VALIDATIONTOL_R, 0.001);
XSLPvalidate(prob);
XSLPgetdblattrib(prob, XSLP_VALIDATIONINDEX_A, &IndexA);
XSLPgetdblattrib(prob, XSLP_VALIDATIONINDEX_R, &IndexR);

Further information
XSLPvalidate checks the feasibility of a converged solution against relative and absolute tolerances
for each constraint. The left hand side and the right hand side of the constraint are calculated using the
converged solution values. If the calculated values imply that the constraint is infeasible, then the
difference (D) is tested against the absolute and relative validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and negative
contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is outside both
the absolute and relative validation tolerances, validation factors are calculated which are the factors by
which the infeasibility exceeds the corresponding validation tolerance; the smallest factor is printed in the
validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest absolute validation factor multiplied by
the absolute validation tolerance; the validation index XSLP_VALIDATIONINDEX_R is the largest
relative validation factor multiplied by the relative validation tolerance.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Proprietary Information 332

Chapter 20: Library functions and the programming interface

XSLPvalidatekkt

Purpose
Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditions
versus the currect solution

Synopsis
int XPRS_CC XSLPvalidatekkt(XSLPprob prob, int mode, int respectbasis, int

updatemult, double violtarget);

Arguments
prob The current SLP problem.
mode The calculation mode can be:

0 recalculate the reduced costs at the current solution using the current dual
solution.

1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

respectbasis The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus XSLP_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

updatemult The calculated values can be:
0 only used to calculate the XSLP_VALIDATIONINDEX_Kmeasure.
1 used to update the current dual solution and reduced costs.

violtarget When calculating the best KKT multipliers, it is possible to enforce an even distribution of
reduced costs violations by enforcing a bound on them.

Further information
The bounds enforced by violtarget are automatically relaxed if the desired accuracy cannot be achieved.

Fair Isaac Corporation Proprietary Information 333

Chapter 20: Library functions and the programming interface

XSLPvalidateprob

Purpose
Validates the current problem formulation and statement

Synopsis
int XPRS_CC XSLPvalidateprob(XSLPprob prob, int ⁎p_nerrors, int

⁎p_nwarnings);

Arguments
prob The current SLP problem.
p_nerrors Returns the number of errors found in the problem. Errors are expected to make the

problem not solve.
p_nwarnings Returns the number of potential issues found in the problem. The solver may be able to

automatically recover during the solve.

Further information
This function is expected to be used in the development stage of a model.

Fair Isaac Corporation Proprietary Information 334

Chapter 20: Library functions and the programming interface

XSLPvalidaterow

Purpose
Prints an extensive analysis on a given constraint of the SLP problem

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob prob, int row);

Arguments
prob The current SLP problem.
row The index of the row to be analyzed

Further information
The analysis will include the readable format of the original constraint and the augmented constraint. For
infeasible constraints, the absolute and relative infeasibility is calculated. Variables in the constraints are
listed including their value in the solution of the last linearization, the internal value (e.g. cascaded),
reduced cost, step bound and convergence status. Scaling analysis is also provided.

Fair Isaac Corporation Proprietary Information 335

Chapter 20: Library functions and the programming interface

XSLPvalidatevector

Purpose
Validate the feasibility of constraints for a given solution

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob prob, double ⁎solution, double ⁎p_suminf,

double ⁎p_sumscaledinf, double ⁎p_objval);

Arguments
prob The current SLP problem.
solution A vector of length XPRS_COLS containing the solution vector to be checked.
p_suminf Pointer to double in which the sum of infeasibility will be returned. May be NULL if not

required.
p_sumscaledinf Pointer to double in which the sum of scaled (relative) infeasibility will be returned.

May be NULL if not required.
p_objval Pointer to double in which the net objective will be returned. May be NULL if not required.

Further information
XSLPvalidatevector works the same way as XSLPvalidate, and will update
XSLP_VALIDATIONINDEX_A and XSLP_VALIDATIONINDEX_R.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Proprietary Information 336

Chapter 20: Library functions and the programming interface

XSLPwriteprob

Purpose
Write the current problem to a file in extended MPS or text format

Synopsis
int XPRS_CC XSLPwriteprob(XSLPprob prob, char ⁎filename, char ⁎flags);

Arguments
prob The current SLP problem.
filename Character string holding the name of the file to receive the output. The extension ".mat"

will automatically be appended to the file name, except for LP format when ".lp" will be
appended.

flags The following flags can be used:
a write the current approximation (linearized) matrix (the default is to write

the non-linear matrix including formulae);
o one coefficient per line (the default is up to two numbers or one formula per

line);
l write the matrix in LP format, similar to the LP format written by

XPRSwriteprob, with more SLP specific information
s "scrambled" names (the default is to use the names provided on input);
v use the provided filename verbatim, without appending the .mps or .lp

extension;
z write a compressed file.

Example
The following example reads a problem from file, augments it and writes the augmented (linearized)
matrix in text form to file "output.lp":

XSLPreadprob(prob, "Matrix", "");
XSLPconstruct(prob);
XSLPwriteprob(prob, "output", "l");

Related topics
XSLPreadprob

Fair Isaac Corporation Proprietary Information 337

Chapter 20: Library functions and the programming interface

XSLPwriteslxsol

Purpose
Write the current solution to an MPS like file format

Synopsis
int XPRS_CC XSLPwriteslxsol(XSLPprob prob, char ⁎filename, char ⁎flags);

Arguments
prob The current SLP problem.
filename Character string holding the name of the file to receive the output. The extension ".slx" will

automatically be appended to the file name, unless an extension is already specified in
the filename.

flags The following flags can be used:
p use double precision numbers;
v use the provided filename verbatim, without appending the .slx extension;
z write a compressed file.

Fair Isaac Corporation Proprietary Information 338

CHAPTER 21

Internal Functions

Xpress NonLinear provides a set of standard functions for use in formulae. Many are standard
mathematical functions; there are a few which are intended for specialized applications.

The following is a list of all the Xpress NonLinear internal functions:

ABS Absolute value p. 348

ARCCOS Arc cosine trigonometric function p. 341

ARCSIN Arc sine trigonometric function p. 342

ARCTAN Arc tangent trigonometric function p. 343

COS Cosine trigonometric function p. 344

ERF The error function p. 349

ERFC The complementary error function p. 350

EXP Exponential function (e raised to the power) p. 351

LN Natural logarithm p. 352

LOG, LOG10 Logarithm to base 10 p. 353

MAX Maximum value of two or more expressions p. 354

MIN Minimum value of two or more expressions p. 355

PWL The piecewise linear function p. 356

SIGN The sign function p. 357

SIN Sine trigonometric function p. 345

SQRT Square root p. 358

TAN Tangent trigonometric function p. 346

Fair Isaac Corporation Proprietary Information 339

Chapter 21: Internal Functions

21.1 Trigonometric functions
The trigonometric functions SIN, COS and TAN return the value corresponding to their argument in
radians. SIN and COS are well-defined, continuous and differentiable for all values of their arguments;
care must be exercised when using TAN because it is discontinuous.

The inverse trigonometric functions ARCSIN and ARCCOS are undefined for arguments outside the range
-1 to +1 and special care is required to ensure that no attempt is made to evaluate them outside this range.
Derivatives for the inverse trigonometric functions are always calculated numerically.

Fair Isaac Corporation Proprietary Information 340

Chapter 21: Internal Functions

ARCCOS

Purpose
Arc cosine trigonometric function

Synopsis
ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range 0 to +π.

Further information
valuemust be in the range -1 to +1. Values outside the range will return zero and produce an appropriate
error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Proprietary Information 341

Chapter 21: Internal Functions

ARCSIN

Purpose
Arc sine trigonometric function

Synopsis
ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range –π/2 to +π/2.

Further information
valuemust be in the range -1 to +1. Values outside the range will return zero and produce an appropriate
error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Proprietary Information 342

Chapter 21: Internal Functions

ARCTAN

Purpose
Arc tangent trigonometric function

Synopsis
ARCTAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range –π/2 to +π/2.

Fair Isaac Corporation Proprietary Information 343

Chapter 21: Internal Functions

COS

Purpose
Cosine trigonometric function

Synopsis
COS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 344

Chapter 21: Internal Functions

SIN

Purpose
Sine trigonometric function

Synopsis
SIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 345

Chapter 21: Internal Functions

TAN

Purpose
Tangent trigonometric function

Synopsis
TAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 346

Chapter 21: Internal Functions

21.2 Other mathematical functions
Most of the mathematical functions are differentiable, although care should be taken in using analytic
derivatives where the derivative is changing rapidly.

Fair Isaac Corporation Proprietary Information 347

Chapter 21: Internal Functions

ABS

Purpose
Absolute value

Synopsis
ABS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
ABS is not always differentiable and so alternative modeling approaches should be used where possible.

Fair Isaac Corporation Proprietary Information 348

Chapter 21: Internal Functions

ERF

Purpose
The error function

Synopsis
ERF(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 349

Chapter 21: Internal Functions

ERFC

Purpose
The complementary error function

Synopsis
ERFC(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 350

Chapter 21: Internal Functions

EXP

Purpose
Exponential function (e raised to the power)

Synopsis
EXP(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 351

Chapter 21: Internal Functions

LN

Purpose
Natural logarithm

Synopsis
LN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Proprietary Information 352

Chapter 21: Internal Functions

LOG, LOG10

Purpose
Logarithm to base 10

Synopsis
LOG(value)
LOG10(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Proprietary Information 353

Chapter 21: Internal Functions

MAX

Purpose
Maximum value of two or more expressions

Synopsis
MAX(value1, value2)

Argument
value1, value2 Each argument is one of the following: a constant; a variable; a formula evaluating

to a single value

Further information
MAX is not always differentiable and so alternative modeling approaches should be used where possible.
In mmxnlp, fmax is used to represent the max function.

Fair Isaac Corporation Proprietary Information 354

Chapter 21: Internal Functions

MIN

Purpose
Minimum value of two or more expressions

Synopsis
MIN(value1, value2)

Argument
value1, value2 Each argument is one of the following: a constant; a variable; a formula evaluating

to a single value

Further information
MIN is not always differentiable and so alternative modeling approaches should be used where possible.
In mmxnlp, fmin is used to represent the min function.

Fair Isaac Corporation Proprietary Information 355

Chapter 21: Internal Functions

PWL

Purpose
The piecewise linear function

Synopsis
PWL(variable, x1, y1, ..., xk, yk)

Arguments
variable is a single variable that describes where the pwl shold be evaluated.
x1,y2, ..., xk, yk are the k breakpoints of the piecewise linear function. The pwl is extended to

minus and plus infinity using the first and last 2 breakpoints respectively.

Fair Isaac Corporation Proprietary Information 356

Chapter 21: Internal Functions

SIGN

Purpose
The sign function

Synopsis
SIGN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Proprietary Information 357

Chapter 21: Internal Functions

SQRT

Purpose
Square root

Synopsis
SQRT(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be non-negative.

Fair Isaac Corporation Proprietary Information 358

CHAPTER 22

Error Messages

If the optimization procedure or some other library function encounters an error, then the procedure
normally terminates with a nonzero return code and sets an error code. For most functions, the return
code is 32 for an error; those functions which can return Optimizer return codes (such as the functions
for accessing attributes and controls) will return the Optimizer code in such circumstances.

If an error message is produced, it will normally be output to the message handler; for console-based
output, it will appear on the console. The error message and the error code can also be obtained using
the function XSLPgetlasterror. This allows the user to retrieve the message number and/or the
message text. The format is:

XSLPgetlasterror(Prob, &ErrorCode, &ErrorMessage);

The following is a list of the error codes and an explanation of the message. In the list, error numbers are
prefixed by E- and warnings by W-. The printed messages are generally prefixed by Xpress NonLinear error
and Xpress NonLinear warning respectively.

E-12001 invalid parameter number num
This message is produced by the functions which access SLP or Optimizer controls and
attributes. The parameter numbers for SLP are given in the header file xslp.h. The parameter
is of the wrong type for the function, or cannot be changed by the user.

E-12002 internal hash error
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

E-12003 XSLPprob problem pointer is NULL
The problem pointer has not been initialized and contains a zero address. Initialize the problem
using XSLPcreateprob.

E-12004 XSLPprob is corrupted or is not a valid problem
The problem pointer is not the address of a valid problem. The problem pointer has been
corrupted, and no longer contains the correct address; or the problem has not been initialized
correctly; or the problem has been corrupted in memory. Check that your program is using the
correct pointer and is not overwriting part of the memory area.

E-12005 memory manager error - allocation error
This message normally means that the system has run out of memory when trying to allocate
or reallocate arrays. Use XSLPprintmemory to obtain a list of the arrays and amounts of
memory allocated by the system. Ensure that any memory allocated by user programs is freed
at the appropriate time.

E-12006 memory manager error - Array expansion size (num) ≤ 0
This may be caused by incorrect setting of the XSLP_EXTRA⁎ control parameters to negative
numbers. Use XSLPprintmemory to obtain a list of the arrays and amounts of memory

Fair Isaac Corporation Proprietary Information 359

Chapter 22: Error Messages

allocated by the system for the specified array. If the problem persists, please contact your
local Xpress support office.

E-12007 memory manager error - object Obj size not defined
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

E-12008 cannot open file name
This message appears when Xpress NonLinear is required to open a file of any type and
encounters an error while doing so. Check that the file name is spelt correctly (including the
path, directory or folder) and that it is accessible (for example, not locked by another
application).

E-12009 cannot open problem file name
This message is produced by XSLPreadprob if it cannot find name.mat, name.mps or name.
Note that "lp" format files are not accepted for SLP input.

E-12010 internal I/O error
This error is produced by XSLPreadprob if it is unable to read or write intermediate files
required for input.

E-12011 XSLPreadprob unknown record type name
This error is produced by XSLPreadprob if it encounters a record in the file which is not
identifiable. It may be out of place (for example, a matrix entry in the BOUNDS section), or it
may be a completely invalid record type.

E-12012 XSLPreadprob invalid function argument type name
This error is produced by XSLPreadprob if it encounters a user function definition with an
argument type that is not one of NULL, DOUBLE, INTEGER, CHAR or VARIANT.

E-12013 XSLPreadprob invalid function linkage type name
This error is produced by XSLPreadprob if it encounters a user function with a linkage type
that is not one of DLL, XLS, XLF, MOSEL or COM.

E-12014 XSLPreadprob unrecognized function name
This error is produced by XSLPreadprob if it encounters a function reference in a formula
which is not a pre-defined internal function nor a defined user function. Check the formula and
the function name, and define the function if required.

E-12015 func: item num out of range
This message is produced by the Xpress NonLinear function func which is referencing the SLP
item (row, column variable, etc). The index provided is out of range (less than 1 unless zero is
explicitly allowed, or greater than the current number of items of that type). Remember that
most Xpress NonLinear items count from 1.

E-12016 missing left bracket in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. A right bracket is not correctly paired with a corresponding left bracket. Check
the formulae.

E-12017 missing left operand in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. An operator which takes two operands is missing the left hand one (and so
immediately follows another operator or a bracket). Check the formulae.

E-12018 missing right operand in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. An operator is missing the right hand (following) operand (and so is
immediately followed by another operator or a bracket). Check the formulae.

Fair Isaac Corporation Proprietary Information 360

Chapter 22: Error Messages

E-12019 missing right bracket in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. A left bracket is not correctly paired with a corresponding right bracket. Check
the formulae.

E-12020 column #n is defined more than once as an SLP variable
This message is produced by XSLPaddvars or XSLPloadvars if the same column appears
more than once in the list, or has already been defined as an SLP variable. Although
XSLPchgvar is less efficient, it can be used to set the properties of an SLP variable whether or
not it has already been declared.

E-12022 undefined tolerance type name
This error is produced by XSLPreadprob if it encounters a tolerance which is not one of the 9
defined types (TC, TA, TM, TI, TS, RA, RM, RI, RS). Check the two-character code for the
tolerance.

W-12023 name has been given a tolerance but is not an SLP variable
This error is produced by XSLPreadprob if it encounters a tolerance for a variable which is not
an SLP variable (it is not in a coefficient, it does not have a non-constant coefficient and it has
not been given an initial value). If the tolerance is required (that is, if the variable is to be
monitored for convergence) then give it an initial value so that it becomes an SLP variable.
Otherwise, the tolerance will be ignored.

W-12024 name has been given SLP data of type ty but is not an SLP variable
This error is produced by XSLPreadprob if it encounters SLPDATA for a variable which has not
been defined as an SLP variable. Typically, this is because the variable would only appear in
coefficients, and the relevant coefficients are missing. The data item will be ignored.

E-12025 func has the same source and destination problems
This message is produced by XSLPcopycallbacks, XSLPcopycontrols and
XSLPcopyprob if the source and destination problems are the same. If they are the same,
then there is no point in copying them.

E-12026 invalid or corrupt SAVE file
This message is produced by XSLPrestore if the SAVE file header is not valid, or if internal
consistency checks fail. Check that the file exists and was created by XSLPsave.

E-12027 SAVE file version is too old
This message is produced by XSLPrestore if the SAVE file was produced by an earlier version
of Xpress NonLinear. In general, it is not possible to restore a file except with the same version
of the program as the one which SAVEd it.

W-12028 problem already has augmented SLP structure
This message is produced by XSLPconstruct if it is called for a second time for the same
problem. The problem can only be augmented once, which must be done after all the variables
and coefficients have been loaded. XSLPconstruct is called automatically by XSLPmaxim
and XSLPminim if it has not been called earlier.

E-12029 zero divisor
This message is produced by the formula evaluation routines if an attempt is made to divide by
a value less than XSLP_ZERO. A value of +/-XSLP_INFINITY is returned as the result and the
calculation continues.

E-12030 negative number, fractional exponent - truncated to integer
This message is produced by the formula evaluation routines if an attempt is made to raise a
negative number to a non-integer exponent. The exponent is truncated to an integer value and
the calculation continues.

Fair Isaac Corporation Proprietary Information 361

Chapter 22: Error Messages

E-12031 binary search failed
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

E-12032 wrong number (num) of arguments to function func
This message is produced by the formula evaluation routines if a formula contains the wrong
number of arguments for an internal function (for example, SIN(A,B)). Correct the formula.

E-12033 argument value out of range in function func
This message is produced by the formula evaluation routines if an internal function is called
with an argument outside the allowable range (for example, LOG of a negative number). The
function will normally return zero as the result and, if XSLP_STOPOUTOFRANGE is set, will set
the function error flag.

W-12034 terminated following user return code num
This message is produced by XSLPmaxim and XSLPminim if a nonzero value is returned by
the callback defined by XSLPsetcbiterend or XSLPsetcbslpend.

E-12037 failed to load library/file/program "name" containing function "func"
This message is produced if a user function is defined to be in a file, but Xpress NonLinear
cannot the specified file. Check that the correct file name is specified (also check the search
paths such as $PATH and %path% if necessary).
This message may also be produced if the specified library exists but is dependent on another
library which is missing.

E-12038 function "func" is not correctly defined or is not in the specified location
This message is produced if a user function is defined to be in a file, but Xpress NonLinear
cannot find it in the file. Check that the number and type of the arguments is correct, and that
the (external) name of the user function matches the name by which it is known in the file.

E-12084 Xpress NonLinear has not been initialized
An attempt has been made to use Xpress NonLinear functions without a previous call to
XSLPinit. Only a very few functions can be called before initialization. Check the sequence of
calls to ensure that XSLPinit is called first, and that it completed successfully. This error
message normally produces return code 279.

E-12085 Xpress NonLinear has not been licensed for use here
Either Xpress NonLinear is not licensed at all (although the Xpress Optimizer may be licensed),
or the particular feature (such as MISLP) is not licensed. Check the license and contact the
local Fair Isaac sales office if necessary. This error message normally produces return code 352.

E-12105 Xpress NonLinear error: I/O error on file
The message is produced by XSLPsave or XSLPwriteprob if there is an I/O error when
writing the output file (usually because there is insufficient space to write the file).

E-12107 Xpress NonLinear error: user function type name not supported on this platform
This message is produced if a user function defined as being of type XLS, XLF or COM and is
run on a non-Windows platform.

E-12110 Xpress NonLinear error: unidentified section in REVISE: name
The file provided to XSLPrevise contains an unsupported MPS section.

E-12111 Xpress NonLinear error: unidentified row type in REVISE: name
The file provided to XSLPrevise contains an unsupported row type.

E-12112 Xpress NonLinear error: unidentified row in REVISE: name
The file provided to XSLPrevise contains a row name not found in the current problem.

E-12113 Xpress NonLinear error: unidentified bound in REVISE: name
The file provided to XSLPrevise contains an unsupported bound type.

Fair Isaac Corporation Proprietary Information 362

Chapter 22: Error Messages

E-12114 Xpress NonLinear error: unidentified column in REVISE: name
The file provided to XSLPrevise contains a column name not found in the current problem.

E-12121 Xpress NonLinear error: bad return code num from user function func
This message is produced during evaluation of a complicated user function if it returns a value
(-1) indicating that the system should estimate the result from a previous function call, but there
has been no previous function call.

E-12124 Xpress NonLinear error: augmented problem not set up
The message is produced by XSLPvalidate if an attempt is made to validate the problem
without a preceding call to XSLPconstruct. In fact, unless a solution to the linearized
problem is available, XSLPvalidate will not be able to give useful results.

E-12125 Xpress NonLinear error: user function func terminated with errors
This message is produced during evaluation of a user function if it sets the function error flag
(see XSLPsetfunctionerror).

W-12142 Xpress NonLinear warning: invalid record: text
This error is produced by XSLPreadprob if it encounters a record in the file which is
identifiable but invalid (for example, a BOUNDS record without a bound set name). The record is
ignored.

E-12147 Xpress NonLinear error: incompatible arguments in user function func
This message is produced if a user function is called without providing the arguments required
by the function.

E-12150 Xpress NonLinear error: problem contains undefined user functions
This error is produced if an mps or lp file is read that contains user functions that are later not
defined before optimization.

E-12158 Xpress NonLinear error: unknown parameter name name
This message is produced if an attempt is made to set or retrieve a value for a control
parameter or attribute given by name where the name is incorrect.

E-12159 Xpress NonLinear error: unknown parameter type name
A parameter has an unexpected type and cannot be retrieved. This is an internal error, please
contanct FICO support.

E-12159 Xpress NonLinear error: parameter number is not writable
This message is produced if an attempt is made to set a value for an attribute.

E-12160 Xpress NonLinear error: parameter num is not available
This message is produced if an attempt is made to retrieve a value for a control or attribute
which is not readable

E-12161 Xpress NonLinear error: parameter num is not available
The parameter corresponding to the provided ID is aninternal, not readable parameter.

E-12192 Xpress NonLinear error: no problem or solution read
No problem or solution has been read. If a problem read fails, it is not valid to continue with any
problem building or solving functions.

E-12193 Xpress NonLinear error: this version of SLP requires XPRS version num or newer
Altough not recommended, Xpress SLP can work with different xprs library versions. This error
is issued when a tool old xpres library is found.

E-12194 Xpress NonLinear error: provided buffer is too short
The provided buffer is too short. This error may occur if a formula is retrieved from Xpress, into
a buffer that is not large enough.

Fair Isaac Corporation Proprietary Information 363

Chapter 22: Error Messages

E-12195 Xpress NonLinear error: type index value is invalid
The index provided is not valid for the this type.

E-12196 Xpress NonLinear error: error in problem transformation
An error occurred while the problem was attempted to be reformulated as part of the nonlinear
presolver. Please contact FICO support.

E-12197 Xpress NonLinear error: request index invalid
The requested information cannot be retrieved as it is not valid or not availanble.

E-12198 Xpress NonLinear error: error while cascading. Cannot evaluate coefficient at row rowname
column.
Evaluating an expression in cascading has returned an error. There is likely a user function in
the expression returning an error.

E-12199 Xpress NonLinear error: nonlinear coefficient in neutral objective row ’rowname’. Please use
an objective transfer row instead.
A nonlinear objective function in SLP needs to be modelled using an objective transfer row.

E-12200 Xpress NonLinear error: problem is not augmented.
The operation is only valid for augmented problems. Please call the construct method first, or
solve using SLP.

E-12201 Xpress NonLinear error: an internal error has occured.
An internal error has occured that is not expected to have been caused by incorrect input.
Please contact FICO support.

E-12202 Xpress NonLinear error: attribute i cannot be changed.
Attributes normally cannot be changed, as they are set up by the solver. There are a few
exceptions to this rule, the requested attribute is not among the exceptions.

E-12203 Xpress NonLinear error: no problem or solution written.
No problem or solution was written to disk due to an error processing the data.

Fair Isaac Corporation Proprietary Information 364

CHAPTER 23

Xpress Knitro Control Parameters

This chapter provides a full list of the controls accepted by Xpress for setting Knitro parameters. Knitro
has a great number and variety of user option settings and although it tries to choose the best settings by
default, often significant performance improvements can be realized by choosing some non-default
option settings.

XKTR_PARAM_ALGORITHM Indicates which algorithm to use to solve the problem p. 371

XKTR_PARAM_BAR_DIRECTINTERVAL Controls the maximum number of consecutive conjugate
gradient (CG) steps before Knitro will try to enforce that a step is taken using
direct linear algebra. p. 371

XKTR_PARAM_BAR_FEASIBLE Specifies whether special emphasis is placed on getting and staying
feasible in the interior-point algorithms. p. 371

XKTR_PARAM_BAR_FEASMODETOL Specifies the tolerance in equation that determines whether Knitro
will force subsequent iterates to remain feasible. p. 368

XKTR_PARAM_BAR_INITMU Specifies the initial value for the barrier parameter : µ used with the barrier
algorithms. This option has no effect on the Active Set algorithm. p. 368

XKTR_PARAM_BAR_INITPT Indicates whether an initial point strategy is used with barrier algorithms.
p. 372

XKTR_PARAM_BAR_MAXBACKTRACK Indicates the maximum allowable number of backtracks during
the linesearch of the Interior/Direct algorithm before reverting to a CG step.
p. 372

XKTR_PARAM_BAR_MAXCROSSIT Specifies the maximum number of crossover iterations before
termination. p. 372

XKTR_PARAM_BAR_MAXREFACTOR Indicates the maximum number of refactorizations of the KKT
system per iteration of the Interior/Direct algorithm before reverting to a CG
step. p. 373

XKTR_PARAM_BAR_MURULE Indicates which strategy to use for modifying the barrier parameter mu in
the barrier algorithms. p. 373

XKTR_PARAM_BAR_PENCONS Indicates whether a penalty approach is applied to the constraints.
p. 373

XKTR_PARAM_BAR_PENRULE Indicates which penalty parameter strategy to use for determining
whether or not to accept a trial iterate. p. 374

XKTR_PARAM_BAR_SWITCHRULE Indicates whether or not the barrier algorithms will allow switching
from an optimality phase to a pure feasibility phase. p. 374

Fair Isaac Corporation Proprietary Information 365

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_DELTA Specifies the initial trust region radius scaling factor used to determine the
initial trust region size. p. 368

XKTR_PARAM_FEASTOL Specifies the final relative stopping tolerance for the feasibility error. p. 368

XKTR_PARAM_FEASTOLABS Specifies the final absolute stopping tolerance for the feasibility error.
p. 368

XKTR_PARAM_GRADOPT Specifies how to compute the gradients of the objective and constraint
functions. p. 374

XKTR_PARAM_HESSOPT Specifies how to compute the (approximate) Hessian of the Lagrangian.
p. 375

XKTR_PARAM_HONORBNDS Indicates whether or not to enforce satisfaction of simple variable bounds
throughout the optimization. p. 375

XKTR_PARAM_INFEASTOL Specifies the (relative) tolerance used for declaring infeasibility of a model.
p. 369

XKTR_PARAM_LMSIZE Specifies the number of limited memory pairs stored when approximating
the Hessian using the limited-memory quasi-Newton BFGS option. p. 375

XKTR_PARAM_MAXCGIT Specifies the number of limited memory pairs stored when approximating
the Hessian using the limited-memory quasi-Newton BFGS option. p. 376

XKTR_PARAM_MAXIT Specifies the maximum number of iterations before termination. p. 376

XKTR_PARAM_MIP_BRANCHRULE Specifies which branching rule to use for MIP branch and bound
procedure. p. 376

XKTR_PARAM_MIP_GUB_BRANCH Specifies whether or not to branch on generalized upper bounds
(GUBs). p. 376

XKTR_PARAM_MIP_HEURISTIC Specifies which MIP heuristic search approach to apply to try to find
an initial integer feasible point. p. 377

XKTR_PARAM_MIP_HEURISTIC_MAXIT Specifies the maximum number of iterations to allow for MIP
heuristic, if one is enabled. p. 377

XKTR_PARAM_MIP_IMPLICATNS Specifies whether or not to add constraints to the MIP derived from
logical implications. p. 377

XKTR_PARAM_MIP_INTEGERTOL This value specifies the threshold for deciding whether or not a
variable is determined to be an integer. p. 369

XKTR_PARAM_MIP_INTGAPABS The absolute integrality gap stop tolerance for MIP. p. 369

XKTR_PARAM_MIP_INTGAPREL The relative integrality gap stop tolerance for MIP. p. 369

XKTR_PARAM_MIP_KNAPSACK Specifies rules for adding MIP knapsack cuts. p. 377

XKTR_PARAM_MIP_LPALG Specifies which algorithm to use for any linear programming (LP)
subproblem solves that may occur in the MIP branch and bound procedure.
p. 377

XKTR_PARAM_MIP_MAXNODES Specifies the maximum number of nodes explored. p. 378

XKTR_PARAM_MIP_MAXSOLVES Specifies the maximum number of subproblem solves allowed (0
means no limit). p. 378

XKTR_PARAM_MIP_METHOD Specifies which MIP method to use. p. 378

Fair Isaac Corporation Proprietary Information 366

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_MIP_OUTINTERVAL Specifies node printing interval for XKTR_PARAM_MIP_OUTLEVEL
when XKTR_PARAM_MIP_OUTLEVEL > 0. p. 378

XKTR_PARAM_MIP_OUTLEVEL Specifies how much MIP information to print. p. 379

XKTR_PARAM_MIP_PSEUDOINIT Specifies the method used to initialize pseudo-costs corresponding
to variables that have not yet been branched on in the MIP method. p. 379

XKTR_PARAM_MIP_ROOTALG Specifies which algorithm to use for the root node solve in MIP (same
options as XKTR_PARAM_ALGORITHM user option). p. 379

XKTR_PARAM_MIP_ROUNDING Specifies the MIP rounding rule to apply. p. 379

XKTR_PARAM_MIP_SELECTRULE Specifies the MIP select rule for choosing the next node in the
branch and bound tree. p. 379

XKTR_PARAM_MIP_STRONG_CANDLIM Specifies the maximum number of candidates to explore for
MIP strong branching. p. 380

XKTR_PARAM_MIP_STRONG_LEVEL Specifies the maximum number of tree levels on which to
perform MIP strong branching. p. 380

XKTR_PARAM_MIP_STRONG_MAXIT Specifies the maximum number of iterations to allow for MIP
strong branching solves. p. 380

XKTR_PARAM_MIP_TERMINATE Specifies conditions for terminating the MIP algorithm. p. 380

XKTR_PARAM_OBJRANGE Specifies the extreme limits of the objective function for purposes of
determining unboundedness. p. 369

XKTR_PARAM_OPTTOL Specifies the final relative stopping tolerance for the KKT (optimality) error.
p. 370

XKTR_PARAM_OPTTOLABS Specifies the final absolute stopping tolerance for the KKT (optimality)
error. p. 370

XKTR_PARAM_OUTLEV Controls the level of output produced by Knitro. p. 380

XKTR_PARAM_PRESOLVE Determine whether or not to use the Knitro presolver to try to simplify the
model by removing variables or constraints. Specifies conditions for
terminating the MIP algorithm. p. 381

XKTR_PARAM_PRESOLVE_TOL Determines the tolerance used by the Knitro presolver to remove
variables and constraints from the model. p. 370

XKTR_PARAM_SCALE Performs a scaling of the objective and constraint functions based on their
values at the initial point. p. 381

XKTR_PARAM_SOC Specifies whether or not to try second order corrections (SOC). p. 381

XKTR_PARAM_XTOL The optimization process will terminate if the relative change in all
components of the solution point estimate is less than xtol. p. 370

Fair Isaac Corporation Proprietary Information 367

Chapter 23: Xpress Knitro Control Parameters

23.1 Double control parameters
These double control parameters can be set using XSLPsetdblcontrol using the Xpress NonLinear API,
XNLPsetsolverdoublecontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_BAR_FEASMODETOL

Description Specifies the tolerance in equation that determines whether Knitro will force subsequent
iterates to remain feasible.

Type Double

Note The tolerance applies to all inequality constraints in the problem. This option only has an effect
if option XKTR_PARAM_BAR_FEASIBLE = stay or XKTR_PARAM_BAR_FEASIBLE = get_stay.

Default value 1.0e-4

XKTR_PARAM_BAR_INITMU

Description Specifies the initial value for the barrier parameter : µ used with the barrier algorithms. This
option has no effect on the Active Set algorithm.

Type Double

Default value 1.0e-1

XKTR_PARAM_DELTA

Description Specifies the initial trust region radius scaling factor used to determine the initial trust region
size.

Type Double

Default value 1.0e0

XKTR_PARAM_FEASTOL

Description Specifies the final relative stopping tolerance for the feasibility error.

Type Double

Note Smaller values of feastol result in a higher degree of accuracy in the solution with respect to
feasibility.

Default value 1.0e-6

XKTR_PARAM_FEASTOLABS

Description Specifies the final absolute stopping tolerance for the feasibility error.

Type Double

Note Smaller values of feastol_abs result in a higher degree of accuracy in the solution with respect
to feasibility.

Default value 0.0e0

Fair Isaac Corporation Proprietary Information 368

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_INFEASTOL

Description Specifies the (relative) tolerance used for declaring infeasibility of a model.

Type Double

Note Smaller values of infeastol make it more difficult to satisfy the conditions Knitro uses for
detecting infeasible models. If you believe Knitro incorrectly declares a model to be infeasible,
then you should try a smaller value for infeastol.

Default value 1.0e-8

XKTR_PARAM_MIP_INTEGERTOL

Description This value specifies the threshold for deciding whether or not a variable is determined to be an
integer.

Type Double

Default value 1.0e-8

XKTR_PARAM_MIP_INTGAPABS

Description The absolute integrality gap stop tolerance for MIP.

Type Double

Default value 1.0e-6

XKTR_PARAM_MIP_INTGAPREL

Description The relative integrality gap stop tolerance for MIP.

Type Double

Default value 1.0e-6

XKTR_PARAM_OBJRANGE

Description Specifies the extreme limits of the objective function for purposes of determining
unboundedness.

Type Double

Note If the magnitude of the objective function becomes greater than objrange for a feasible iterate,
then the problem is determined to be unbounded and Knitro proceeds no further.

Default value 1.0e20

Fair Isaac Corporation Proprietary Information 369

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_OPTTOL

Description Specifies the final relative stopping tolerance for the KKT (optimality) error.

Type Double

Note Smaller values of opttol result in a higher degree of accuracy in the solution with respect to
optimality.

Default value 1.0e-6

XKTR_PARAM_OPTTOLABS

Description Specifies the final absolute stopping tolerance for the KKT (optimality) error.

Type Double

Note Smaller values of opttol_abs result in a higher degree of accuracy in the solution with respect to
optimality.

Default value 0.0e0

XKTR_PARAM_PRESOLVE_TOL

Description Determines the tolerance used by the Knitro presolver to remove variables and constraints from
the model.

Type Double

Note If you believe the Knitro presolver is incorrectly modifying the model, use a smaller value for
this tolerance (or turn the presolver off).

Default value 1.0e-6

XKTR_PARAM_XTOL

Description The optimization process will terminate if the relative change in all components of the solution
point estimate is less than xtol.

Type Double

Note If using the Interior/Direct or Interior/CG algorithm and the barrier parameter is still large, Knitro
will first try decreasing the barrier parameter before terminating.

Default value 1.0e-15

Fair Isaac Corporation Proprietary Information 370

Chapter 23: Xpress Knitro Control Parameters

23.2 Integer control parameters
These integer control parameters can be set using XSLPsetintcontrol using the Xpress NonLinear API,
XNLPsetsolverintcontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_ALGORITHM

Description Indicates which algorithm to use to solve the problem

Type Integer

Values 0 (auto) let Knitro automatically choose an algorithm, based on the problem
characteristics.

1 (direct) use the Interior/Direct algorithm.
2 (cg) use the Interior/CG algorithm.
3 (active) use the Active Set algorithm.
4 (sqp) use the SQP algorithm.
5 (multi) run all algorithms, perhaps in parallel.

Default value 0

XKTR_PARAM_BAR_DIRECTINTERVAL

Description Controls the maximum number of consecutive conjugate gradient (CG) steps before Knitro will
try to enforce that a step is taken using direct linear algebra.

Type Integer

Note This option is only valid for the Interior/Direct algorithm and may be useful on problems where
Knitro appears to be taking lots of conjugate gradient steps. Setting bar_directinterval to 0 will
try to enforce that only direct steps are taken which may produce better results on some
problems.

Default value 10

XKTR_PARAM_BAR_FEASIBLE

Description Specifies whether special emphasis is placed on getting and staying feasible in the
interior-point algorithms.

Type Integer

Values 0 (no) No special emphasis on feasibility.
1 (stay) Iterates must satisfy inequality constraints once they become sufficiently

feasible.
2 (get) Special emphasis is placed on getting feasible before trying to optimize.
3 (get_stay) Implement both options 1 and 2 above.

Note This option can only be used with the Interior/Direct and Interior/CG algorithms. If bar_feasible
= stay or bar_feasible = get_stay, this will activate the feasible version of Knitro. The feasible
version of Knitro will force iterates to strictly satisfy inequalities, but does not require
satisfaction of equality constraints at intermediate iterates. This option and the honorbnds
option may be useful in applications where functions are undefined outside the region defined

Fair Isaac Corporation Proprietary Information 371

Chapter 23: Xpress Knitro Control Parameters

by inequalities. The initial point must satisfy inequalities to a sufficient degree; if not, Knitro
may generate infeasible iterates and does not switch to the feasible version until a sufficiently
feasible point is found. Sufficient satisfaction occurs at a point x if it is true for all inequalities
that cl + tol ≤ c(x) ≤ cu - tol The constant tol is determined by the option bar_feasmodetol. If
bar_feasible = get or bar_feasible = get_stay, Knitro will place special emphasis on first trying to
get feasible before trying to optimize.

Default value 0

XKTR_PARAM_BAR_INITPT

Description Indicates whether an initial point strategy is used with barrier algorithms.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.
1 (yes) Shift the initial slacks and multipliers to improve barrier algorithm performance.
2 (no) Do no alter the initial slacks and multipliers.

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_MAXBACKTRACK

Description Indicates the maximum allowable number of backtracks during the linesearch of the
Interior/Direct algorithm before reverting to a CG step.

Type Integer

Note Increasing this value will make the Interior/Direct algorithm less likely to take CG steps. If the
Interior/Direct algorithm is taking a large number of CG steps (as indicated by a positive value
for ’Gits’ in the output), this may improve performance. This option has no effect on the Active
Set algorithm.

Default value 3

XKTR_PARAM_BAR_MAXCROSSIT

Description Specifies the maximum number of crossover iterations before termination.

Type Integer

Note If the value is positive and the algorithm in operation is Interior/Direct or Interior/CG, then Knitro
will crossover to the Active Set algorithm near the solution. The Active Set algorithm will then
perform at most bar_maxcrossit iterations to get a more exact solution. If the value is 0, no
Active Set crossover occurs and the interior-point solution is the final result. If Active Set
crossover is unable to improve the approximate interior-point solution, then Knitro will restore
the interior-point solution. In some cases (especially on large-scale problems or difficult
degenerate problems) the cost of the crossover procedure may be significant - for this reason,
crossover is disabled by default. Enabling crossover generally provides a more accurate
solution than Interior/Direct or Interior/CG.

Default value 0

Fair Isaac Corporation Proprietary Information 372

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_BAR_MAXREFACTOR

Description Indicates the maximum number of refactorizations of the KKT system per iteration of the
Interior/Direct algorithm before reverting to a CG step.

Type Integer

Note These refactorizations are performed if negative curvature is detected in the model. Rather
than reverting to a CG step, the Hessian matrix is modified in an attempt to make the
subproblem convex and then the KKT system is refactorized. Increasing this value will make
the Interior/Direct algorithm less likely to take CG steps. If the Interior/Direct algorithm is taking
a large number of CG steps (as indicated by a positive value for "CGits" in the output), this may
improve performance. This option has no effect on the Active Set algorithm.

Default value -1

XKTR_PARAM_BAR_MURULE

Description Indicates which strategy to use for modifying the barrier parameter mu in the barrier algorithms.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.
1 (monotone) Monotonically decrease the barrier parameter. Available for both barrier

algorithms.
2 (adaptive) Use an adaptive rule based on the complementarity gap to determine the

value of the barrier parameter. Available for both barrier algorithms.
3 (probing) Use a probing (affine-scaling) step to dynamically determine the barrier

parameter. Available only for the Interior/Direct algorithm.
4 (dampmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier

parameter, with safeguards on the corrector step. Available only for the Interior/Direct
algorithm.

5 (fullmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier
parameter, without safeguards on the corrector step. Available only for the
Interior/Direct algorithm.

6 (quality) Minimize a quality function at each iteration to determine the barrier
parameter. Available only for the Interior/Direct algorithm.

Note Not all strategies are available for both barrier algorithms. This option has no effect on the
Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_PENCONS

Description Indicates whether a penalty approach is applied to the constraints.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.
1 (none) No constraints are penalized.
2 (all) A penalty approach is applied to all general constraints.

Fair Isaac Corporation Proprietary Information 373

Chapter 23: Xpress Knitro Control Parameters

Note Using a penalty approach may be helpful when the problem has degenerate or difficult
constraints. It may also help to more quickly identify infeasible problems, or achieve feasibility
in problems with difficult constraints. This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_PENRULE

Description Indicates which penalty parameter strategy to use for determining whether or not to accept a
trial iterate.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.
1 (single) Use a single penalty parameter in the merit function to weight feasibility

versus optimality.
2 (flex) Use a more tolerant and flexible step acceptance procedure based on a range of

penalty parameter values.

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_SWITCHRULE

Description Indicates whether or not the barrier algorithms will allow switching from an optimality phase to
a pure feasibility phase.

Type Integer

Values 0 (auto) Let Knitro determine the switching procedure.
1 (never) Never switch to feasibility phase.
2 (level1) Allow switches to feasibility phase.
3 (level2) Use a more aggressive switching rule.

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_GRADOPT

Description Specifies how to compute the gradients of the objective and constraint functions.

Type Integer

Values 1 (exact) User provides a routine for computing the exact gradients.
2 (forward) Knitro computes gradients by forward finite-differences.
3 (central) Knitro computes gradients by central finite differences.

Note It is highly recommended to provide exact gradients if at all possible as this greatly impacts the
performance of the code.

Default value 1

Fair Isaac Corporation Proprietary Information 374

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_HESSOPT

Description Specifies how to compute the (approximate) Hessian of the Lagrangian.

Type Integer

Values 1 (exact) User provides a routine for computing the exact Hessian.
2 (bfgs) Knitro computes a (dense) quasi-Newton BFGS Hessian.
3 (sr1) Knitro computes a (dense) quasi-Newton SR1 Hessian.
4 (finite_diff) Knitro computes Hessian-vector products using finite-differences.
5 (product) User provides a routine to compute the Hessian-vector products.
6 (lbfgs) Knitro computes a limited-memory quasi-Newton BFGS Hessian (its size is

determined by the option lmsize).

Note Options hessopt = 4 and hessopt = 5 are not available with the Interior/Direct algorithm. Knitro
usually performs best when the user provides exact Hessians (hessopt = 1) or exact
Hessian-vector products (hessopt = 5). If neither can be provided but exact gradients are
available (i.e., gradopt = 1), then hessopt = 4 is recommended. This option is comparable in
terms of robustness to the exact Hessian option and typically not much slower in terms of time,
provided that gradient evaluations are not a dominant cost. If exact gradients cannot be
provided, then one of the quasi-Newton options is preferred. Options hessopt = 2 and hessopt =
3 are only recommended for small problems (n ≤ 1000) since they require working with a dense
Hessian approximation. Option hessopt = 6 should be used for large problems.

Default value 1

XKTR_PARAM_HONORBNDS

Description Indicates whether or not to enforce satisfaction of simple variable bounds throughout the
optimization.

Type Integer

Values 0 (no) Knitro does not require that the bounds on the variables be satisfied at
intermediate iterates.

1 (always) Knitro enforces that the initial point and all subsequent solution estimates
satisfy the bounds on the variables.

2 (initpt) Knitro enforces that the initial point satisfies the bounds on the variables.

Note This option and the bar_feasible option may be useful in applications where functions are
undefined outside the region defined by inequalities.

Default value 2

XKTR_PARAM_LMSIZE

Description Specifies the number of limited memory pairs stored when approximating the Hessian using
the limited-memory quasi-Newton BFGS option.

Type Integer

Note The value must be between 1 and 100 and is only used with XKTR_PARAM_HESSOPT = 6. Larger
values may give a more accurate, but more expensive, Hessian approximation. Smaller values
may give a less accurate, but faster, Hessian approximation. When using the limited memory
BFGS approach it is recommended to experiment with different values of this parameter.

Fair Isaac Corporation Proprietary Information 375

Chapter 23: Xpress Knitro Control Parameters

Default value 10

XKTR_PARAM_MAXCGIT

Description Specifies the number of limited memory pairs stored when approximating the Hessian using
the limited-memory quasi-Newton BFGS option.

Type Integer

Values 0 Let Knitro automatically choose a value based on the problem size.
n At most n>0 CG iterations may be performed during one minor iteration of Knitro.

Default value 0

XKTR_PARAM_MAXIT

Description Specifies the maximum number of iterations before termination.

Type Integer

Values 0 Let Knitro automatically choose a value based on the problem type. Currently Knitro
sets this value to 10000 for LPs/NLPs and 3000 for MIP problems.

n At most n>0 iterations may be performed before terminating.

Default value 0

XKTR_PARAM_MIP_BRANCHRULE

Description Specifies which branching rule to use for MIP branch and bound procedure.

Type Integer

Values 0 (auto) Let Knitro automatically choose the branching rule.
1 (most_frac) Use most fractional (most infeasible) branching.
2 (pseudcost) Use pseudo-cost branching.
3 (strong) Use strong branching (see options XKTR_PARAM_MIP_STRONG_CANDLIM,

XKTR_PARAM_MIP_STRONG_LEVEL, XKTR_PARAM_MIP_STRONG_MAXIT for
further control of strong branching procedure).

Default value 0

XKTR_PARAM_MIP_GUB_BRANCH

Description Specifies whether or not to branch on generalized upper bounds (GUBs).

Type Integer

Values 0 (no) Do not branch on GUBs.
1 (yes) Allow branching on GUBs.

Default value 0

Fair Isaac Corporation Proprietary Information 376

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_MIP_HEURISTIC

Description Specifies which MIP heuristic search approach to apply to try to find an initial integer feasible
point.

Type Integer

Values 0 (auto) Let Knitro choose the heuristic to apply (if any).
1 (none) No heuristic search applied.
2 (feaspump) Apply feasibility pump heuristic.
3 (mpec) Apply heuristic based on MPEC formulation.

Note If a heuristic search procedure is enabled, it will run for at most mip_heuristic_maxit iterations,
before starting the branch and bound procedure.

Default value 0

XKTR_PARAM_MIP_HEURISTIC_MAXIT

Description Specifies the maximum number of iterations to allow for MIP heuristic, if one is enabled.

Type Integer

Default value 100

XKTR_PARAM_MIP_IMPLICATNS

Description Specifies whether or not to add constraints to the MIP derived from logical implications.

Type Integer

Values 0 (no) Do not add constraints from logical implications.
1 (yes) Knitro adds constraints from logical implications.

Default value 1

XKTR_PARAM_MIP_KNAPSACK

Description Specifies rules for adding MIP knapsack cuts.

Type Integer

Values 0 (none) Do not add knapsack cuts.
1 (ineqs) Add cuts derived from inequalities only.
2 (ineqs_eqs) Add cuts derived from both inequalities and equalities.

Default value 1

XKTR_PARAM_MIP_LPALG

Description Specifies which algorithm to use for any linear programming (LP) subproblem solves that may
occur in the MIP branch and bound procedure.

Type Integer

Fair Isaac Corporation Proprietary Information 377

Chapter 23: Xpress Knitro Control Parameters

Values 0 (auto) Let Knitro automatically choose an algorithm, based on the problem
characteristics.

1 (direct) Use the Interior/Direct (barrier) algorithm.
2 (cg) Use the Interior/CG (barrier) algorithm.
3 (active) Use the Active Set (simplex) algorithm.

Note LP subproblems may arise if the problem is a mixed integer linear program (MILP), or if using
XKTR_PARAM_MIP_METHOD = HQG. (Nonlinear programming subproblems use the algorithm
specified by the algorithm option.)

Default value 0

XKTR_PARAM_MIP_MAXNODES

Description Specifies the maximum number of nodes explored.

Type Integer

Note Zero vealue means no limit.

Default value 100000

XKTR_PARAM_MIP_MAXSOLVES

Description Specifies the maximum number of subproblem solves allowed (0 means no limit).

Type Integer

Default value 200000

XKTR_PARAM_MIP_METHOD

Description Specifies which MIP method to use.

Type Integer

Values 0 (auto) Let Knitro automatically choose the method.
1 (BB) Use the standard branch and bound method.
2 (HQG) Use the hybrid Quesada-Grossman method (for convex, nonlinear problems

only).

Default value 0

XKTR_PARAM_MIP_OUTINTERVAL

Description Specifies node printing interval for XKTR_PARAM_MIP_OUTLEVEL when
XKTR_PARAM_MIP_OUTLEVEL > 0.

Type Integer

Values 0 Print output every node.
2 Print output every 2nd node.
N Print output every Nth node.

Default value 10

Fair Isaac Corporation Proprietary Information 378

Chapter 23: Xpress Knitro Control Parameters

XKTR_PARAM_MIP_OUTLEVEL

Description Specifies how much MIP information to print.

Type Integer

Values 0 (none) Do not print any MIP node information.
1 (iters) Print one line of output for every node.

Default value 1

XKTR_PARAM_MIP_PSEUDOINIT

Description Specifies the method used to initialize pseudo-costs corresponding to variables that have not
yet been branched on in the MIP method.

Type Integer

Values 0 Let Knitro automatically choose the method.
1 Initialize using the average value of computed pseudo-costs.
2 Initialize using strong branching.

Default value 0

XKTR_PARAM_MIP_ROOTALG

Description Specifies which algorithm to use for the root node solve in MIP (same options as
XKTR_PARAM_ALGORITHM user option).

Type Integer

Default value 0

XKTR_PARAM_MIP_ROUNDING

Description Specifies the MIP rounding rule to apply.

Type Integer

Values 0 (auto) Let Knitro choose the rounding rule.
1 (none) Do not round if a node is infeasible.
2 (heur_only) Round using a fast heuristic only.
3 (nlp_sometimes) Round and solve a subproblem if likely to succeed.
4 (nlp_always) Always round and solve a subproblem.

Default value 0

XKTR_PARAM_MIP_SELECTRULE

Description Specifies the MIP select rule for choosing the next node in the branch and bound tree.

Type Integer

Fair Isaac Corporation Proprietary Information 379

Chapter 23: Xpress Knitro Control Parameters

Values 0 (auto) Let Knitro choose the node selection rule.
1 (depth_first) Search the tree using a depth first procedure.
2 (best_bound) Select the node with the best relaxation bound.
3 (combo_1) Use depth first unless pruned, then best bound.

Default value 0

XKTR_PARAM_MIP_STRONG_CANDLIM

Description Specifies the maximum number of candidates to explore for MIP strong branching.

Type Integer

Default value 10

XKTR_PARAM_MIP_STRONG_LEVEL

Description Specifies the maximum number of tree levels on which to perform MIP strong branching.

Type Integer

Default value 10

XKTR_PARAM_MIP_STRONG_MAXIT

Description Specifies the maximum number of iterations to allow for MIP strong branching solves.

Type Integer

Default value 1000

XKTR_PARAM_MIP_TERMINATE

Description Specifies conditions for terminating the MIP algorithm.

Type Integer

Values 0 (optimal) Terminate at optimum.
1 (feasible) Terminate at first integer feasible point.

Default value 0

XKTR_PARAM_OUTLEV

Description Controls the level of output produced by Knitro.

Type Integer

Fair Isaac Corporation Proprietary Information 380

Chapter 23: Xpress Knitro Control Parameters

Values 0 (none) Printing of all output is suppressed.
1 (summary) Print only summary information.
2 (iter_10) Print basic information every 10 iterations.
3 (iter) Print basic information at each iteration.
4 (iter_verbose) Print basic information and the function count at each iteration.
5 (iter_x) Print all the above, and the values of the solution vector x.
6 (all) Print all the above, and the values of the constraints c at x and the Lagrange

multipliers lambda.

Default value 2

XKTR_PARAM_PRESOLVE

Description Determine whether or not to use the Knitro presolver to try to simplify the model by removing
variables or constraints. Specifies conditions for terminating the MIP algorithm.

Type Integer

Values 0 (none) Do not use Knitro presolver.
1 (basic) Use the Knitro basic presolver.

Default value 1

XKTR_PARAM_SCALE

Description Performs a scaling of the objective and constraint functions based on their values at the initial
point.

Type Integer

Values 0 (no) No scaling is performed.
1 (yes) Knitro is allowed to scale the objective function and constraints.

Note If scaling is performed, all internal computations, including the stopping tests, are based on the
scaled values.

Default value 1

XKTR_PARAM_SOC

Description Specifies whether or not to try second order corrections (SOC).

Type Integer

Values 0 (no) No second order correction steps are attempted.
1 (maybe) Second order correction steps may be attempted on some iterations.
2 (yes) Second order correction steps are always attempted if the original step is

rejected and there are nonlinear constraints.

Note A second order correction may be beneficial for problems with highly nonlinear constraints.

Default value 1

Fair Isaac Corporation Proprietary Information 381

Appendix

APPENDIX A

The Xpress-SLP Log

The Xpress-SLP log consists of log lines of two different types: the output of the underlying XPRS
optimizer, and the log of XSLP itself.

By default, messages produced by the nonlinear code are sent to the normal XPRS message callback as
controlled by XSLP_ECHOXPRSMESSAGES. It may also be intercepted by a user function using the user
output callback; see XSLPsetcbmessage. Users need to define a callback function and print messages
to the screen themselves if they wish output to be displayed.

A.0.1 Logging controls
General SLP logging

XPRS_OUTPUTLOG Logging level of the underlying XPRS problem
XPRS_LPLOG Logging frequency for solving the linearization
XPRS_MIPLOG Logging frequency for the MIP solver

Logging for the underlying XPRS problem

XSLP_LOG Level of SLP logging (iteration, penalty, convergence)
XSLP_SLPLOG Logging frequency for SLP iterations
XSLP_MIPLOG MI-SLP specific logging

Special logging settings

XPRS_DCLOG Logging of delayed constraint activation
XSLP_ERRORTOL_P Absolute tolerance for printing error vectors

A.0.2 The structure of the log
The typical log with the default settings starts with statistics about the problem sizes. On the
Polygon1.mps example, using the XSLP console program this looks like

[xpress mps] readprob Polygon1.mps
Reading Problem Polygon
Problem Statistics

11 (0 spare) rows
10 (4 spare) structural columns
8 (0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

PV: 0 DC: 0 DR: 0 EC: 0
IV: 0 RX: 0 TX: 0 SB: 0
UF: 0 WT: 0 XV: 0 Total: 0

Xpress-SLP Statistics:
7 coefficients
9 SLP variables

Fair Isaac Corporation Proprietary Information 383

Appendix A: The Xpress-SLP Log

The standard XPRS optimizer problem loading statistics is extended with a report about the special
structures possibly present in the problem, including DC (delayed constraints), DR (determining rows), EC
(enforced constraints), IV (initial values), RX/TX (relative and absolute tolerances), SB (initial step
bounds), UF (user functions), WT (initial row weights), followed by a statistics about the number of SLP
coefficients and variables.

SLP iteration 1, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 68 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 828864.7136 D 0 0 .000000 0

Uncrunching matrix
0 828864.7136 D 0 0 .000000 0

Optimal solution found
8 unconverged values (at least 1 in active constraints)
Total feasibility error costs 829100.765742

Penalty Error Vectors - Penalties scaled by 200
Variable Activity Penalty
BE-V1V4 1381.836001 1.000000
BE-V2V4 1381.834610 1.000000
BE-V3V4 1381.833218 1.000000
Total: 4145.503829
Error Costs: 829100.765742 Penalty Delta Costs: 0.000000 Net Objective: -236.052107

SLP iteration 2, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 73 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 -3.13860E-05 D 0 0 .000000 0

Uncrunching matrix
0 -3.13860E-05 D 0 0 .000000 0

Optimal solution found
4 unconverged values (at least 1 in active constraints)

SLP iteration 3, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 72 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 -1.56933E-05 D 0 0 .000000 0

Uncrunching matrix
0 -1.56933E-05 D 0 0 .000000 0

Optimal solution found

The default solution log consists of the optimizer output of solving the linearizations, followed by
statistics of the nonlinear infeasibilities, the penalty and the objective, and the convergence status.

Iteration summary
Itr. LPS NetObj ErrorSum ErrorCost Unconv. Extended Action

1 O -236.052107 4145.503829 829100.7657 8 0

Fair Isaac Corporation Proprietary Information 384

Appendix A: The Xpress-SLP Log

2 O -3.13860E-05 .000000 .000000 4 0
3 O -1.56932E-05 .000000 .000000 0 0

Xpress-SLP stopped after 3 iterations. 0 unconverged items
No unconverged values in active constraints

The final iteration summary contains the following fields:

Itr: The iteration number.

LPS: The LP status of the linearization, which can take the following values:
O Linearization is optimal
I Linearization is infeasible
U Linearization is unbounded
X Solving the linearization was interupted

NetObj: The net objective of the SLP iteration.

ErrorSum: Sum of the error delta variables. A measure of infeasibility.

ErrorCost: The value of the weighted error delta variables in the objective. A measure of the effort needed
to push the model towards feasiblity.

Unconv: The number of SLP variables that are not converged.

Extended: The number of SLP variables that are converged, but only by extended criteria

Action: The special actions that happened in the iteration. These can be
⁎ A new incumbent solution was found
0 Failed line search (non-improving)
A Adaptive iterations were enabled
B Enforcing step bounds
C Variable clamping was applied
D The determining column filter was applied
E Some infeasible rows were enforced
F Function evaluation error
G Global variables were fixed
I At least one working problem was unexpectedly infeasible
K Optimality validation induces further iterations
P The solution needed polishing, postsolve instability
P! Solution polishing failed
R Penalty error vectors were removed
s Switching to primal simplex
S Step bound induced infeasibility was repaired
V Feasiblity validation induces further iterations

The presence of a P! suggests that the problem is particularly hard to solve without postsolve, and the
model might benefit from setting XSLP_NOLPPOLISHING on XSLP_ALGORITHM (please note, that this
should only be considered if the solution polishing features is very slow or fails, as the numerical
inaccuracies it aims to remove can cause other problems to the solution process).

Fair Isaac Corporation Proprietary Information 385

APPENDIX B

Selecting the right algorithm for a nonlinear
problem - when to use the XPRS library in-
stead of XSLP

This chapter focuses on the nonlinear capabilities of the Xpress XPRS optimizer. As a general rule of
thumb, problems that can be handled by the XPRS library do not require the use of XSLP; while Xpress
XSLP is able to efficiently solve most nonlinear problems, there are subclasses of nonlinear problems for
which the Xpress optimizer features specialized algorithms that are able to solve those problems more
efficiently and in larger sizes. These are notably the convex quadratic programming and the convex
quadratically constrained problems and their mixed integer counterparts.

It is also possible to separate the convex quadratic information from the rest of XSLP, and let the Xpress
XPRS optimizer handle those directly. Doing so is good modelling practice, but emphasis must be placed
on that the optimizer can only handle convex quadratic constraints.

B.0.1 Convex Quadratic Programs (QPs)
Convex Quadratic Programming (QP) problems are an extension of Linear Programming (LP) problems
where the objective function may include a second order polynomial. The FICO Xpress Optimizer can be
used directly for solving QP problems (and the Mixed Integer version MIQP).

If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms for the
solution of convex QP (MIQP) problems, that are much more efficient than solving the problem as a
general nonlinear problem with XSLP.

B.0.2 Convex Quadratically Constrained Quadratic Programs (QC-
QPs)

Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the Quadratic Programming
(QP) problem where the constraints may also include second order polynomials.

A QCQP problem may be written as:

minimize: c1x1+...+cnxn+xTQ0x
subject to: a11x1+...+a1nxn+xTQ1x ≤ b1

...
am1x1+...+amnxn+xTQmx ≤ bm

l1 ≤ x1 ≤ u1,...,ln ≤ xn ≤ un

Fair Isaac Corporation Proprietary Information 386

Appendix B: Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP

where any of the lower or upper bounds li or ui may be infinite.

If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms for the
solution of convex QCQP (and the integer counterpart MIQCQP) problems, that are much more efficient
than solving the problem as a general nonlinear problem with XSLP.

B.0.3 Convexity
A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity. A region
is called convex, if for any two points from the region the connecting line segment is also part of the
region.

The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in the
objective may introduce the phenomenon of locally optimal solutions that are not global ones (a local
optimal solution is one for which a neighborhood in the feasible region exists in which that solution is the
best). While the lack of convexity in constraints can also give rise to local optimums, they may even
introduce non–connected feasible regions as shown in Figure B.1.

Figure B.1: Non-connected feasible regions

In this example, the feasible region is divided into two parts. Over feasible region B, the objective function
has two alterative local optimal solutions, while over feasible region A the objective is not even bounded.

For convex problems, each locally optimal solution is a global one, making the characterization of the
optimal solution efficient.

B.0.4 Characterizing Convexity in Quadratic Constraints
A quadratic constraint of form

a1x1 + ... + anxn + xTQx ≤ b

defines a convex region if and only if Q is a so–called positive semi–definite (PSD) matrix.

A rectangular matrix Q is PSD by definition if for any vector (not restricted to the feasible set of a
problem) x it holds that xTQx ≥ 0.

It follows that for greater or equal constraints

a1x1 + ... + anxn – xTQx ≥ b

the negative of Q shall be PSD.

Fair Isaac Corporation Proprietary Information 387

Appendix B: Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP

A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always defines a
nonconvex region, therefore those must be modelled as XSLP structures.

There is no straightforward way of checking if a matrix is PSD or not. An intuitive way of checking this
property, is that the quadratic part shall always only make a constraint harder to satisfy (i.e. taking the
quadratic part away shall always be a relaxation of the original problem).

There are certain constructs however, that can easily be recognized as being non convex:

1. the product of two variables say xy without having both x2 and y2 defined;

2. having –x2 in any quadratic expression in a less or equal, or having x2 in any greater or equal row.

As a general rule, a convex quadratic objective and convex quadratic constraints are best handled by the
XPRS library; while all nonconvex counterparts should be modelled as XSLP structures.

Fair Isaac Corporation Proprietary Information 388

APPENDIX C

Files used by Xpress NonLinear

Most of the data used by Xpress NonLinear is held in memory. However, there are a few files which are
written, either automatically or on demand, in addition to those created by the Xpress Optimizer.

LOGFILE Created by: XSLPsetlogfile
The file name and location are user-defined.

NAME.mps Created by: XSLPwriteprob
This is the matrix file in extended MPS format. The name is user-defined. The
extension .mps is appended automatically.

NAME.lp Created by: XSLPwriteprob
This is the matrix file in human-readable "text". The name is user-defined. The
extension .lp is appended automatically.

Fair Isaac Corporation Proprietary Information 389

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support
FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ’Xpress’ in the subject line of your support queries.

Product education
FICO Product Education is the principal provider of product training for our clients and partners. Product
Education offers instructor-led classroom courses, web-based training, seminars, and training tools for
both new user enablement and ongoing performance support. For additional information, visit the
Product Education home page at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation
FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let us
know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.

Fair Isaac Corporation Proprietary Information 390

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance
If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

■ Phone: +1 (408) 535-1500 or +44 207 940 8718

■ Web: www.fico.com/optimization and use the available contact forms

Related services
Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time to
assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting time
can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community
The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical support,
build relationships with local and remote professionals, and improve your business practices. For
additional information, visit the FICO Community (community.fico.com/welcome).

About FICO
FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper. Founded
in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics and data
science to improve operational decisions. FICO holds more than 165 US and foreign patents on
technologies that increase profitability, customer satisfaction, and growth for businesses in financial
services, telecommunications, health care, retail, and many other industries. Using FICO solutions,
businesses in more than 100 countries do everything from protecting 2.6 billion payment cards from
fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are in the right
place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Proprietary Information 391

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
= column, 32

A
ABS, 348
Absolute tolerance record

Tx, 35
ARCCOS, 341
ARCSIN, 342
ARCTAN, 343
Attributes, Problem, 83
Augmentation, 56

B
BOUNDS section in file, 33

C
Callbacks and user functions, 67
Callbacks in MISLP, 78
Cascading, 44
Closure convergence tolerance, 51
Coefficients

and terms, 27
COLUMNS section in file, 32
Control parameters, 102
Convergence

closure, 51
delta, 51
extended convergence continuation, 55
impact, 52
matrix, 51
slack impact, 52
static objective (1), 53
static objective (2), 54
static objective (3), 54
user-defined, 53

Convergence criteria, 46
convex region, 387
COS, 344
Counting, 187

D
Delta convergence tolerance, 51
Derivatives

returning from user function, 69
user function, 70

Determining Row record, 33
DR record in SLPDATA, 33

E
E-12001, 359
E-12002, 359

E-12003, 359
E-12004, 359
E-12005, 359
E-12006, 359
E-12007, 360
E-12008, 360
E-12009, 360
E-12010, 360
E-12011, 360
E-12012, 360
E-12013, 360
E-12014, 360
E-12015, 360
E-12016, 360
E-12017, 360
E-12018, 360
E-12019, 361
E-12020, 361
E-12022, 361
E-12025, 361
E-12026, 361
E-12027, 361
E-12029, 361
E-12030, 361
E-12031, 362
E-12032, 362
E-12033, 362
E-12037, 362
E-12038, 362
E-12084, 362
E-12085, 362
E-12105, 362
E-12107, 362
E-12110, 362
E-12111, 362
E-12112, 362
E-12113, 362
E-12114, 363
E-12121, 363
E-12124, 363
E-12125, 363
E-12147, 363
E-12150, 363
E-12158, 363
E-12159, 363
E-12160, 363
E-12161, 363
E-12192, 363
E-12193, 363
E-12194, 363
E-12195, 364
E-12196, 364

Fair Isaac Corporation Proprietary Information 392

Index

E-12197, 364
E-12198, 364
E-12199, 364
E-12200, 364
E-12201, 364
E-12202, 364
E-12203, 364
EC record in SLPDATA, 34
Enforced Constraint record, 34
Equals column, 32
ERF, 349
ERFC, 350
Error Messages, 359
Error vectors, penalty, 60
EXP, 351
Extended convergence continuation tolerance, 55
Extended MPS file format, 31

F
files

.ini, 24
Files used by Xpress NonLinear, 389
Fixing values of SLP variables in MISLP, 77
Formula

Initial Value record, 34
Formulae, 31, 64
Functions, internal, 339
Functions, library, 187
Functions, user, 67

G
getslack, 11
getsol, 11

H
Handling Infeasibilities, 41
History, 63

I
Impact convergence tolerance, 52
Implicit variable, 32
Infeasibilities, handling, 41
Initial Value formula, 34
Initial Value record, 34
Instance

user function, 70
Internal Functions, 339
Iterating at each node in MISLP, 78
IV record in SLPDATA, 34

L
Library functions, 187, 188
LN, 352
loadprob, 10
LOG, 353
LOG10, 353

M
Matrix convergence tolerance, 51
Matrix Name Generation, 60
Matrix Structures, 56

MAX, 354
maximise, 11
MIN, 355
minimise, 11
MINLP, 76
MISLP

Callbacks, 78
Fixing or relaxing values of SLP variables, 77
Iterating at each node, 78
Termination criteria at each node, 78

Mixed Integer Non-Linear Programming, 76
mmxnlp, 9
mutlistart, 81

N
Name Generation, 60
nlctr, 9
Nonlinear objectives, 75
Nonlinear problems, 27

O
Objectives, nonlinear, 75
Objectives, quadratic, 75

P
Parsed formula format, 64
Penalty error vectors, 60
Pointer (reference) attribute, 100
positive semi-definite matrix, 387
Problem attributes, 83
Problem pointer, 187
PWL, 356

Q
Quadratic objectives, 75

R
Relative tolerance record Rx, 35
Relaxing values of SLP variables in MISLP, 77
Row weight

Extended MPS record, 36
Rx record in SLPDATA, 35

S
SB record in SLPDATA, 35
Sequential Linear Programming, see Successive

Linear Programming
setinitval, 10
SIGN, 357
SIN, 345
Slack impact convergence tolerance, 52
SLP problem pointer, 187
SLP variable, 28
SLPDATA

DR record, 33
EC record, 34
IV record, 34
Rx record, 35
SB record, 35
Tx record, 35
UF record, 36

Fair Isaac Corporation Proprietary Information 393

Index

WT record, 36
SLPDATA section in file, 33
solution, 386
Solution Process, 37
Special Types of Problem, see Problem, special types

Mixed Integer Non-Linear Programming, 76
Nonlinear objectives, 75
Quadratic objectives, 75

SQRT, 358
Static objective (1) convergence tolerance, 53
Static objective (2) convergence tolerance, 54
Static objective (3) convergence tolerance, 54
Statistics, Xpress-SLP, 61
Step Bound record, 35
Structures, SLP matrix, 56
Successive Linear Programming, 27

T
TAN, 346
Termination criteria at each node in MISLP, 78
Terms

and coefficients, 27
Tolerance record

Rx, 35
Tolerance record Tx, 35
Tolerances, convergence, 46
Tx record in SLPDATA, 35

U
UF record in SLPDATA, 36
Unparsed formula format, 64
User function, 67

declaration in native languages, 68
Deltas, 69
instance, 70
programming techniques, 69
ReturnArray, 69
returning derivatives, 69

User function Derivatives, 70
User function interface, 67
User Function record, 36
User Functions, 67
User-defined convergence, 53

V
Values of SLP variables in MISLP, fixing or relaxing, 77
Variable

implicit, 32
SLP, 28

W
W-12023, 361
W-12024, 361
W-12028, 361
W-12034, 362
W-12142, 363
WT record in SLPDATA, 36

X
XKTR_PARAM_ALGORITHM, 371
XKTR_PARAM_BAR_DIRECTINTERVAL, 371

XKTR_PARAM_BAR_FEASIBLE, 371
XKTR_PARAM_BAR_FEASMODETOL, 368
XKTR_PARAM_BAR_INITMU, 368
XKTR_PARAM_BAR_INITPT, 372
XKTR_PARAM_BAR_MAXBACKTRACK, 372
XKTR_PARAM_BAR_MAXCROSSIT, 372
XKTR_PARAM_BAR_MAXREFACTOR, 373
XKTR_PARAM_BAR_MURULE, 373
XKTR_PARAM_BAR_PENCONS, 373
XKTR_PARAM_BAR_PENRULE, 374
XKTR_PARAM_BAR_SWITCHRULE, 374
XKTR_PARAM_DELTA, 368
XKTR_PARAM_FEASTOL, 368
XKTR_PARAM_FEASTOLABS, 368
XKTR_PARAM_GRADOPT, 374
XKTR_PARAM_HESSOPT, 375
XKTR_PARAM_HONORBNDS, 375
XKTR_PARAM_INFEASTOL, 369
XKTR_PARAM_LMSIZE, 375
XKTR_PARAM_MAXCGIT, 376
XKTR_PARAM_MAXIT, 376
XKTR_PARAM_MIP_BRANCHRULE, 376
XKTR_PARAM_MIP_GUB_BRANCH, 376
XKTR_PARAM_MIP_HEURISTIC, 377
XKTR_PARAM_MIP_HEURISTIC_MAXIT, 377
XKTR_PARAM_MIP_IMPLICATNS, 377
XKTR_PARAM_MIP_INTEGERTOL, 369
XKTR_PARAM_MIP_INTGAPABS, 369
XKTR_PARAM_MIP_INTGAPREL, 369
XKTR_PARAM_MIP_KNAPSACK, 377
XKTR_PARAM_MIP_LPALG, 377
XKTR_PARAM_MIP_MAXNODES, 378
XKTR_PARAM_MIP_MAXSOLVES, 378
XKTR_PARAM_MIP_METHOD, 378
XKTR_PARAM_MIP_OUTINTERVAL, 378
XKTR_PARAM_MIP_OUTLEVEL, 379
XKTR_PARAM_MIP_PSEUDOINIT, 379
XKTR_PARAM_MIP_ROOTALG, 379
XKTR_PARAM_MIP_ROUNDING, 379
XKTR_PARAM_MIP_SELECTRULE, 379
XKTR_PARAM_MIP_STRONG_CANDLIM, 380
XKTR_PARAM_MIP_STRONG_LEVEL, 380
XKTR_PARAM_MIP_STRONG_MAXIT, 380
XKTR_PARAM_MIP_TERMINATE, 380
XKTR_PARAM_OBJRANGE, 369
XKTR_PARAM_OPTTOL, 370
XKTR_PARAM_OPTTOLABS, 370
XKTR_PARAM_OUTLEV, 380
XKTR_PARAM_PRESOLVE, 381
XKTR_PARAM_PRESOLVE_TOL, 370
XKTR_PARAM_SCALE, 381
XKTR_PARAM_SOC, 381
XKTR_PARAM_XTOL, 370
xnlp_verbose, 11
Xpress NonLinear problem pointer, 187
Xpress-SLP Statistics, 61
xprs_verbose, 11
XPRSdestroyprob, 21
XPRSfree, 21
XPRSgetlpsol, 21

Fair Isaac Corporation Proprietary Information 394

Index

XPRSwriteprtsol, 21
XSLP_ALGORITHM, 143
XSLP_ANALYZE, 145
XSLP_ATOL_A, 110
XSLP_ATOL_R, 110
XSLP_AUGMENTATION, 146
XSLP_AUTOSAVE, 147
XSLP_BARCROSSOVERSTART, 147
XSLP_BARLIMIT, 148
XSLP_BARSTALLINGLIMIT, 148
XSLP_BARSTALLINGOBJLIMIT, 148
XSLP_BARSTALLINGTOL, 110
XSLP_BARSTARTOPS, 149
XSLP_CALCTHREADS, 149
XSLP_CASCADE, 150
XSLP_CASCADENLIMIT, 150
XSLP_CASCADETOL_PA, 111
XSLP_CASCADETOL_PR, 111
XSLP_CDTOL_A, 111
XSLP_CDTOL_R, 112
XSLP_CLAMPSHRINK, 112
XSLP_CLAMPVALIDATIONTOL_A, 112
XSLP_CLAMPVALIDATIONTOL_R, 112
XSLP_COEFFICIENTS, 89
XSLP_COL, 19
XSLP_CON, 19
XSLP_CONTROL, 151
XSLP_CONVERGENCEOPS, 151
XSLP_CTOL, 113
XSLP_CURRENTDELTACOST, 86
XSLP_CURRENTERRORCOST, 86
XSLP_CUTSTRATEGY, 152
XSLP_DAMP, 113
XSLP_DAMPEXPAND, 113
XSLP_DAMPMAX, 114
XSLP_DAMPMIN, 114
XSLP_DAMPSHRINK, 114
XSLP_DAMPSTART, 152
XSLP_DEFAULTIV, 115
XSLP_DEFAULTSTEPBOUND, 115
XSLP_DELTA_A, 115
XSLP_DELTA_R, 116
XSLP_DELTA_X, 116
XSLP_DELTA_Z, 116
XSLP_DELTA_ZERO, 117
XSLP_DELTACOST, 117
XSLP_DELTACOSTFACTOR, 117
XSLP_DELTAFORMAT, 181
XSLP_DELTAMAXCOST, 117
XSLP_DELTAOFFSET, 152
XSLP_DELTAS, 89
XSLP_DELTAZLIMIT, 153
XSLP_DERIVATIVES, 153
XSLP_DETERMINISTIC, 154
XSLP_DJTOL, 118
XSLP_DRCOLTOL, 118
XSLP_ECFCHECK, 154
XSLP_ECFCOUNT, 89
XSLP_ECFTOL_A, 118
XSLP_ECFTOL_R, 119

XSLP_ECHOXPRSMESSAGES, 154
XSLP_ENFORCECOSTSHRINK, 119
XSLP_ENFORCEMAXCOST, 119
XSLP_EOF, 19
XSLP_EQUALSCOLUMN, 89
XSLP_ERRORCOST, 120
XSLP_ERRORCOSTFACTOR, 120
XSLP_ERRORCOSTS, 86
XSLP_ERRORMAXCOST, 120
XSLP_ERROROFFSET, 155
XSLP_ERRORTOL_A, 121
XSLP_ERRORTOL_P, 121
XSLP_ESCALATION, 121
XSLP_ETOL_A, 121
XSLP_ETOL_R, 122
XSLP_EVALUATE, 155
XSLP_EVTOL_A, 122
XSLP_EVTOL_R, 123
XSLP_EXPAND, 123
XSLP_EXPLOREDELTAS, 89
XSLP_FEASTOLTARGET, 123
XSLP_FILTER, 155
XSLP_FINDIV, 156
XSLP_FUN, 19
XSLP_FUNCEVAL, 156
XSLP_GRANULARITY, 124
XSLP_GRIDHEURSELECT, 157
XSLP_HESSIAN, 158
XSLP_HEURSTRATEGY, 157
XSLP_IFS, 89
XSLP_IFUN, 19
XSLP_IMPLICITVARIABLES, 90
XSLP_INFEASLIMIT, 158
XSLP_INFINITY, 124
XSLP_INTEGERDELTAS, 90
XSLP_ITER, 90
XSLP_ITERFALLBACKOPS, 181
XSLP_ITERLIMIT, 158
XSLP_ITOL_A, 124
XSLP_ITOL_R, 125
XSLP_IVNAME, 181
XSLP_JACOBIAN, 158
XSLP_JOBID, 90
XSLP_KEEPBESTITER, 90
XSLP_KEEPEQUALSCOLUMN, 159
XSLP_LINQUADBR, 159
XSLP_LOG, 159
xslp_log, 11
XSLP_LSITERLIMIT, 160
XSLP_LSPATTERNLIMIT, 160
XSLP_LSSTART, 160
XSLP_LSZEROLIMIT, 161
XSLP_MATRIXTOL, 125
XSLP_MAXTIME, 161
XSLP_MAXWEIGHT, 126
XSLP_MEMORYFACTOR, 126
XSLP_MERITLAMBDA, 126
XSLP_MINSBFACTOR, 127
XSLP_MINUSDELTAFORMAT, 182
XSLP_MINUSERRORFORMAT, 182

Fair Isaac Corporation Proprietary Information 395

Index

XSLP_MINUSPENALTYERRORS, 90
XSLP_MINWEIGHT, 127
XSLP_MIPALGORITHM, 161
XSLP_MIPCUTOFF_A, 127
XSLP_MIPCUTOFF_R, 128
XSLP_MIPCUTOFFCOUNT, 162
XSLP_MIPCUTOFFLIMIT, 163
XSLP_MIPDEFAULTALGORITHM, 163
XSLP_MIPERRORTOL_A, 128
XSLP_MIPERRORTOL_R, 128
XSLP_MIPFIXSTEPBOUNDS, 163
XSLP_MIPITER, 91
XSLP_MIPITERLIMIT, 164
XSLP_MIPLOG, 164
XSLP_MIPNODES, 91
XSLP_MIPOCOUNT, 164
XSLP_MIPOTOL_A, 129
XSLP_MIPOTOL_R, 129
XSLP_MIPPROBLEM, 100
XSLP_MIPRELAXSTEPBOUNDS, 165
XSLP_MIPSOLS, 91
XSLP_MODELCOLS, 91
XSLP_MODELROWS, 91
XSLP_MSMAXBOUNDRANGE, 129
XSLP_MSSTATUS, 92
XSLP_MTOL_A, 130
XSLP_MTOL_R, 130
XSLP_MULTISTART, 165
XSLP_MULTISTART_MAXSOLVES, 166
XSLP_MULTISTART_MAXTIME, 166
XSLP_MULTISTART_POOLSIZE, 166
XSLP_MULTISTART_SEED, 167
XSLP_MULTISTART_THREADS, 167
XSLP_MVTOL, 131
XSLP_NLPSTATUS, 92
XSLP_NONCONSTANTCOEFF, 92
XSLP_NONLINEARCONSTRAINTS, 92
XSLP_OBJSENSE, 131
XSLP_OBJTOPENALTYCOST, 132
XSLP_OBJVAL, 86
XSLP_OCOUNT, 167
XSLP_OP, 19
XSLP_OPTIMALITYTOLTARGET, 132
XSLP_ORIGINALCOLS, 93
XSLP_ORIGINALROWS, 93
XSLP_OTOL_A, 132
XSLP_OTOL_R, 133
XSLP_PENALTYCOLFORMAT, 182
XSLP_PENALTYDELTACOLUMN, 93
XSLP_PENALTYDELTAROW, 93
XSLP_PENALTYDELTAS, 93
XSLP_PENALTYDELTATOTAL, 86
XSLP_PENALTYDELTAVALUE, 86
XSLP_PENALTYERRORCOLUMN, 93
XSLP_PENALTYERRORROW, 94
XSLP_PENALTYERRORS, 94
XSLP_PENALTYERRORTOTAL, 87
XSLP_PENALTYERRORVALUE, 87
XSLP_PENALTYINFOSTART, 168
XSLP_PENALTYROWFORMAT, 183

XSLP_PLUSDELTAFORMAT, 183
XSLP_PLUSERRORFORMAT, 183
XSLP_PLUSPENALTYERRORS, 94
XSLP_POSTSOLVE, 168
XSLP_PRESOLVE, 168
XSLP_PRESOLVEELIMINATIONS, 94
XSLP_PRESOLVELEVEL, 168
XSLP_PRESOLVEOPS, 169
XSLP_PRESOLVESTATE, 94
XSLP_PRESOLVEZERO, 134
XSLP_PRIMALINTEGRAL, 87
XSLP_PRIMALINTEGRALREF, 134
XSLP_PROBING, 169
XSLP_REFORMULATE, 170
XSLP_SAMECOUNT, 171
XSLP_SAMEDAMP, 171
XSLP_SBLOROWFORMAT, 184
XSLP_SBNAME, 184
XSLP_SBROWOFFSET, 171
XSLP_SBSTART, 172
XSLP_SBUPROWFORMAT, 184
XSLP_SBXCONVERGED, 94
XSLP_SCALE, 172
XSLP_SCALECOUNT, 173
XSLP_SEMICONTDELTAS, 95
XSLP_SHRINK, 134
XSLP_SHRINKBIAS, 134
XSLP_SLPLOG, 173
xslp_slplog, 11
XSLP_SOLSTATUS, 95
XSLP_SOLVER, 173
XSLP_SOLVERSELECTED, 95
XSLP_STATUS, 95
XSLP_STOL_A, 135
XSLP_STOL_R, 135
XSLP_STOPOUTOFRANGE, 173
XSLP_STOPSTATUS, 97
XSLP_THREADS, 174
XSLP_THREADSAFEUSERFUNC, 174
XSLP_TOLNAME, 185
XSLP_TOLSETS, 97
XSLP_TOTALEVALUATIONERRORS, 97
XSLP_TRACEMASK, 185
XSLP_TRACEMASKOPS, 174
XSLP_UCCONSTRAINEDCOUNT, 97
XSLP_UFINSTANCES, 97
XSLP_UFS, 98
XSLP_UNCONVERGED, 98
XSLP_UNFINISHEDLIMIT, 175
XSLP_UPDATEFORMAT, 185
XSLP_UPDATEOFFSET, 175
XSLP_USEDERIVATIVES, 98
XSLP_USERFUNCCALLS, 98
XSLP_VALIDATIONINDEX_A, 87
XSLP_VALIDATIONINDEX_K, 87
XSLP_VALIDATIONINDEX_R, 87
XSLP_VALIDATIONTARGET_K, 136
XSLP_VALIDATIONTARGET_R, 135
XSLP_VALIDATIONTOL_A, 136
XSLP_VALIDATIONTOL_R, 136

Fair Isaac Corporation Proprietary Information 396

Index

XSLP_VARIABLES, 98
XSLP_VCOUNT, 176
XSLP_VERSIONDATE, 101
XSLP_VLIMIT, 176
XSLP_VSOLINDEX, 88
XSLP_VTOL_A, 137
XSLP_VTOL_R, 138
XSLP_WCOUNT, 177
XSLP_WTOL_A, 138
XSLP_WTOL_R, 139
XSLP_XCOUNT, 177
XSLP_XLIMIT, 178
XSLP_XPRSPROBLEM, 100
XSLP_XSLPPROBLEM, 100
XSLP_XTOL_A, 140
XSLP_XTOL_R, 141
XSLP_ZERO, 141
XSLP_ZEROCRITERION, 179
XSLP_ZEROCRITERIONCOUNT, 180
XSLP_ZEROCRITERIONSTART, 180
XSLP_ZEROESRESET, 98
XSLP_ZEROESRETAINED, 99
XSLP_ZEROESTOTAL, 99
XSLP_ATOL, 51
XSLP_CTOL, 51
XSLP_ITOL, 52
XSLP_MTOL, 52
XSLP_OCOUNT, 54
XSLP_OTOL, 54
XSLP_STOL, 53
XSLP_VCOUNT, 53
XSLP_VLIMIT, 54
XSLP_VTOL, 54
XSLP_WCOUNT, 55
XSLP_WTOL, 55
XSLP_XCOUNT, 55
XSLP_XLIMIT, 55
XSLP_XTOL, 55
XSLPaddcoefs, 195
XSLPadddfs, 199
XSLPaddformulas, 197
XSLPaddtolsets, 200
XSLPadduserfunction, 201
XSLPaddvars, 203
XSLPcalcslacks, 205
XSLPcascade, 206
XSLPcascadeorder, 207
XSLPchgcascadenlimit, 208
XSLPchgccoef, 209
XSLPchgcoef, 210
XSLPchgdeltatype, 212
XSLPchgdf, 213
XSLPchgformula, 20, 215
XSLPchgformulastring, 214
XSLPchgrowstatus, 216
XSLPchgrowwt, 217
XSLPchgtolset, 218
XSLPchgvar, 220
XSLPconstruct, 222
XSLPcopycallbacks, 223

XSLPcopycontrols, 224
XSLPcopyprob, 225
XSLPcreateprob, 226
XSLPdelcoefs, 227
XSLPdelformulas, 228
XSLPdeltolsets, 229
XSLPdeluserfunction, 230
XSLPdelvars, 231
XSLPdestroyprob, 21, 232
XSLPevaluatecoef, 233
XSLPevaluateformula, 234
XSLPfixpenalties, 235
XSLPfree, 21, 236
XSLPgetbanner, 237
XSLPgetccoef, 238
XSLPgetcoefformula, 239
XSLPgetcoefs, 240
XSLPgetcolinfo, 241
XSLPgetdblattrib, 242
XSLPgetdblcontrol, 243
XSLPgetdf, 244
XSLPgetformula, 245
XSLPgetformularows, 247
XSLPgetformulastring, 246
XSLPgetindex, 248
XSLPgetintattrib, 249
XSLPgetintcontrol, 250
XSLPgetlasterror, 251
XSLPgetptrattrib, 252
XSLPgetrowinfo, 253
XSLPgetrowstatus, 254
XSLPgetrowwt, 255
XSLPgetslpsol, 256
XSLPgetstrattrib, 257
XSLPgetstrcontrol, 258
XSLPgettolset, 259
XSLPgetvar, 21, 260
XSLPimportlibfunc, 262
XSLPinit, 263
XSLPinterrupt, 264
XSLPitemname, 265
XSLPload... functions, 188
XSLPloadcoefs, 266
XSLPloaddfs, 268
XSLPloadformulas, 20, 269
XSLPloadtolsets, 271
XSLPloadvars, 273
XSLPmaxim, 21, 275
XSLPminim, 21, 276
XSLPmsaddcustompreset, 277
XSLPmsaddjob, 278
XSLPmsaddpreset, 279
XSLPmsclear, 280
XSLPnlpoptimize, 281
XSLPpostsolve, 282
XSLPpresolve, 283
XSLPprintevalinfo, 285
XSLPprintmemory, 284
XSLPprob, 187
XSLPreadprob, 286

Fair Isaac Corporation Proprietary Information 397

Index

XSLPreinitialize, 290
XSLPremaxim, 287
XSLPreminim, 288
XSLPrestore, 289
XSLPsave, 291
XSLPsaveas, 292
XSLPscaling, 293
XSLPsetcbcascadeend, 294
XSLPsetcbcascadestart, 295
XSLPsetcbcascadevar, 296
XSLPsetcbcascadevarfail, 297
XSLPsetcbcoefevalerror, 298
XSLPsetcbconstruct, 299
XSLPsetcbdestroy, 301
XSLPsetcbdrcol, 302
XSLPsetcbintsol, 303
XSLPsetcbiterend, 304
XSLPsetcbiterstart, 305
XSLPsetcbitervar, 306
XSLPsetcbmessage, 14, 307
XSLPsetcbmsjobend, 309
XSLPsetcbmsjobstart, 310
XSLPsetcbmswinner, 311
XSLPsetcboptnode, 312
XSLPsetcbprenode, 313
XSLPsetcbpresolved, 315
XSLPsetcbpreupdatelinearization, 314
XSLPsetcbslpend, 316
XSLPsetcbslpnode, 317
XSLPsetcbslpstart, 318
XSLPsetcurrentiv, 319
XSLPsetdblcontrol, 320
XSLPsetdefaultcontrol, 321
XSLPsetdefaults, 322
XSLPsetdetrow, 323
XSLPsetfunctionerror, 324
XSLPsetinitval, 325
XSLPsetintcontrol, 326
XSLPsetlogfile, 327
XSLPsetparam, 328
XSLPsetstrcontrol, 329
XSLPunconstruct, 330
XSLPupdatelinearization, 331
XSLPvalidate, 332
XSLPvalidatekkt, 333
XSLPvalidateprob, 334
XSLPvalidaterow, 335
XSLPvalidatevector, 336
XSLPwriteprob, 21, 337
XSLPwriteslxsol, 338

Fair Isaac Corporation Proprietary Information 398

	I Overview
	Introduction
	Mathematical programs
	Linear programs
	Convex quadratic programs
	Convex quadratically constrained quadratic programs
	Second order conic problems
	General nonlinear optimization problems
	Mixed integer programs

	Technology Overview
	The Simplex Method
	The Logarithmic Barrier Method
	Outer approximation schemes
	Successive Linear Programming
	Second Order Methods
	Mixed Integer Solvers

	API naming convention

	An example problem
	Problem Definition
	Problem Formulation

	Modeling in Mosel
	Basic formulation
	Setting up and solving the problem
	Looking at the results
	User functions
	Parallel evaluation of Mosel user functions

	The Xpress NonLinear API Functions
	Header files
	Initialization
	Callbacks
	Creating the linear part of the problem
	Adding the non-linear part of the problem
	Adding the non-linear part of the problem using character formulae
	Checking the data
	Solving and printing the solution
	Closing the program
	Adding initial values

	The Nonlinear Console Program
	The Console Nonlinear
	The nonlinear console extensions
	Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer console

	II Advanced
	Nonlinear Problems
	Coefficients and formulas
	SLP variables
	Local and global optimality
	Convexity
	Converged and practical solutions
	The duals of general, nonlinear program

	Extended MPS file format
	Formulae
	COLUMNS
	BOUNDS
	SLPDATA
	DR (Determining row)
	EC (Enforced constraint)
	FR (Free variable)
	FX (Fixed variable)
	IV (Initial value)
	LO (Lower bounded variable)
	Rx, Tx (Relative and absolute convergence tolerances)
	SB (Initial step bound)
	UF (User function)
	UP (Free variable)
	WT (Explicit row weight)
	DL (variable specific Determining row cascade iteration Limit)

	Xpress-SLP Solution Process
	Analyzing the solution process
	The initial point
	Derivatives
	Finite Differences
	Symbolic Differentiation
	Automatic Differentiation

	Points of inflection
	Trust regions

	Handling Infeasibilities
	Infeasibility Analysis in the Xpress Optimizer
	Managing Infeasibility with Xpress Knitro
	Managing Infeasibility with Xpress-SLP
	Penalty Infeasibility Breakers in XSLP

	Cascading
	Determining rows and determining columns

	Convergence criteria
	Convergence criteria
	Convergence overview
	Strict Convergence
	Extended Convergence
	Stopping Criterion
	Step Bounding

	Convergence: technical details
	Closure tolerance (CTOL)
	Delta tolerance (ATOL)
	Matrix tolerance (MTOL)
	Impact tolerance (ITOL)
	Slack impact tolerance (STOL)
	Fixed variables due to determining columns smaller than threshold (FX)
	User-defined convergence
	Static objective function (1) tolerance (VTOL)
	Static objective function (2) tolerance (OTOL)
	Static objective function (3) tolerance (XTOL)
	Extended convergence continuation tolerance (WTOL)

	Xpress-SLP Structures
	SLP Matrix Structures
	Augmentation of a nonlinear coefficient
	Augmentation of a nonlinear term
	Augmentation of a user-defined SLP variable
	SLP penalty error vectors

	Xpress-SLP Matrix Name Generation
	Xpress-SLP Statistics
	SLP Variable History

	Xpress NonLinear Formulae
	Parsed and unparsed formulae
	Example of an arithmetic formula
	Example of a formula involving a simple function

	User Functions
	Callbacks and user functions
	User function interface
	User Function declaration in native languages
	User function declaration in C

	Programming Techniques for User Functions
	Deltas
	Return values and ReturnArray
	Returning Derivatives
	Function Instances

	Management of zero placeholder entries
	The augmented matrix structure
	Derivatives and zero derivatives
	Placeholder management

	Special Types of Problem
	Nonlinear objectives
	Convex Quadratic Programming
	Mixed Integer Nonlinear Programming
	Mixed Integer SLP
	Heuristics for Mixed Integer SLP
	Fixing or relaxing the values of the SLP variables
	Iterating at each node
	Termination criteria at each node
	Callbacks

	Integer and semi-continuous delta variables

	Xpress NonLinear multistart

	III Reference
	Problem Attributes
	Double problem attributes
	XSLP_CURRENTDELTACOST
	XSLP_CURRENTERRORCOST
	XSLP_ERRORCOSTS
	XSLP_OBJVAL
	XSLP_PENALTYDELTATOTAL
	XSLP_PENALTYDELTAVALUE
	XSLP_PENALTYERRORTOTAL
	XSLP_PENALTYERRORVALUE
	XSLP_PRIMALINTEGRAL
	XSLP_VALIDATIONINDEX_A
	XSLP_VALIDATIONINDEX_K
	XSLP_VALIDATIONINDEX_R
	XSLP_VSOLINDEX

	Integer problem attributes
	XSLP_COEFFICIENTS
	XSLP_DELTAS
	XSLP_ECFCOUNT
	XSLP_EXPLOREDELTAS
	XSLP_EQUALSCOLUMN
	XSLP_IFS
	XSLP_IMPLICITVARIABLES
	XSLP_INTEGERDELTAS
	XSLP_ITER
	XSLP_JOBID
	XSLP_KEEPBESTITER
	XSLP_MINUSPENALTYERRORS
	XSLP_MIPITER
	XSLP_MIPNODES
	XSLP_MIPSOLS
	XSLP_MODELCOLS
	XSLP_MODELROWS
	XSLP_MSSTATUS
	XSLP_NLPSTATUS
	XSLP_NONCONSTANTCOEFF
	XSLP_NONLINEARCONSTRAINTS
	XSLP_ORIGINALCOLS
	XSLP_ORIGINALROWS
	XSLP_PENALTYDELTACOLUMN
	XSLP_PENALTYDELTAROW
	XSLP_PENALTYDELTAS
	XSLP_PENALTYERRORCOLUMN
	XSLP_PENALTYERRORROW
	XSLP_PENALTYERRORS
	XSLP_PLUSPENALTYERRORS
	XSLP_PRESOLVEELIMINATIONS
	XSLP_PRESOLVESTATE
	XSLP_SBXCONVERGED
	XSLP_SEMICONTDELTAS
	XSLP_SOLVERSELECTED
	XSLP_SOLSTATUS
	XSLP_STATUS
	XSLP_STOPSTATUS
	XSLP_TOLSETS
	XSLP_TOTALEVALUATIONERRORS
	XSLP_UCCONSTRAINEDCOUNT
	XSLP_UFINSTANCES
	XSLP_UFS
	XSLP_UNCONVERGED
	XSLP_USEDERIVATIVES
	XSLP_USERFUNCCALLS
	XSLP_VARIABLES
	XSLP_ZEROESRESET
	XSLP_ZEROESRETAINED
	XSLP_ZEROESTOTAL

	Reference (pointer) problem attributes
	XSLP_MIPPROBLEM
	XSLP_XPRSPROBLEM
	XSLP_XSLPPROBLEM

	String problem attributes
	XSLP_VERSIONDATE

	Control Parameters
	Double control parameters
	XSLP_ATOL_A
	XSLP_ATOL_R
	XSLP_BARSTALLINGTOL
	XSLP_CASCADETOL_PA
	XSLP_CASCADETOL_PR
	XSLP_CDTOL_A
	XSLP_CDTOL_R
	XSLP_CLAMPSHRINK
	XSLP_CLAMPVALIDATIONTOL_A
	XSLP_CLAMPVALIDATIONTOL_R
	XSLP_CTOL
	XSLP_DAMP
	XSLP_DAMPEXPAND
	XSLP_DAMPMAX
	XSLP_DAMPMIN
	XSLP_DAMPSHRINK
	XSLP_DEFAULTIV
	XSLP_DEFAULTSTEPBOUND
	XSLP_DELTA_A
	XSLP_DELTA_R
	XSLP_DELTA_X
	XSLP_DELTA_Z
	XSLP_DELTA_ZERO
	XSLP_DELTACOST
	XSLP_DELTACOSTFACTOR
	XSLP_DELTAMAXCOST
	XSLP_DJTOL
	XSLP_DRCOLTOL
	XSLP_ECFTOL_A
	XSLP_ECFTOL_R
	XSLP_ENFORCECOSTSHRINK
	XSLP_ENFORCEMAXCOST
	XSLP_ERRORCOST
	XSLP_ERRORCOSTFACTOR
	XSLP_ERRORMAXCOST
	XSLP_ERRORTOL_A
	XSLP_ERRORTOL_P
	XSLP_ESCALATION
	XSLP_ETOL_A
	XSLP_ETOL_R
	XSLP_EVTOL_A
	XSLP_EVTOL_R
	XSLP_EXPAND
	XSLP_FEASTOLTARGET
	XSLP_GRANULARITY
	XSLP_INFINITY
	XSLP_ITOL_A
	XSLP_ITOL_R
	XSLP_MATRIXTOL
	XSLP_MAXWEIGHT
	XSLP_MEMORYFACTOR
	XSLP_MERITLAMBDA
	XSLP_MINSBFACTOR
	XSLP_MINWEIGHT
	XSLP_MIPCUTOFF_A
	XSLP_MIPCUTOFF_R
	XSLP_MIPERRORTOL_A
	XSLP_MIPERRORTOL_R
	XSLP_MIPOTOL_A
	XSLP_MIPOTOL_R
	XSLP_MSMAXBOUNDRANGE
	XSLP_MTOL_A
	XSLP_MTOL_R
	XSLP_MVTOL
	XSLP_OBJSENSE
	XSLP_OBJTOPENALTYCOST
	XSLP_OPTIMALITYTOLTARGET
	XSLP_OTOL_A
	XSLP_OTOL_R
	XSLP_PRESOLVEZERO
	XSLP_PRIMALINTEGRALREF
	XSLP_SHRINK
	XSLP_SHRINKBIAS
	XSLP_STOL_A
	XSLP_STOL_R
	XSLP_VALIDATIONTARGET_R
	XSLP_VALIDATIONTARGET_K
	XSLP_VALIDATIONTOL_A
	XSLP_VALIDATIONTOL_R
	XSLP_VTOL_A
	XSLP_VTOL_R
	XSLP_WTOL_A
	XSLP_WTOL_R
	XSLP_XTOL_A
	XSLP_XTOL_R
	XSLP_ZERO

	Integer control parameters
	XSLP_ALGORITHM
	XSLP_ANALYZE
	XSLP_AUGMENTATION
	XSLP_AUTOSAVE
	XSLP_BARCROSSOVERSTART
	XSLP_BARLIMIT
	XSLP_BARSTALLINGLIMIT
	XSLP_BARSTALLINGOBJLIMIT
	XSLP_BARSTARTOPS
	XSLP_CALCTHREADS
	XSLP_CASCADE
	XSLP_CASCADENLIMIT
	XSLP_CONTROL
	XSLP_CONVERGENCEOPS
	XSLP_CUTSTRATEGY
	XSLP_DAMPSTART
	XSLP_DELTAOFFSET
	XSLP_DELTAZLIMIT
	XSLP_DERIVATIVES
	XSLP_DETERMINISTIC
	XSLP_ECFCHECK
	XSLP_ECHOXPRSMESSAGES
	XSLP_ERROROFFSET
	XSLP_EVALUATE
	XSLP_FILTER
	XSLP_FINDIV
	XSLP_FUNCEVAL
	XSLP_GRIDHEURSELECT
	XSLP_HEURSTRATEGY
	XSLP_HESSIAN
	XSLP_INFEASLIMIT
	XSLP_ITERLIMIT
	XSLP_JACOBIAN
	XSLP_KEEPEQUALSCOLUMN
	XSLP_LINQUADBR
	XSLP_LOG
	XSLP_LSITERLIMIT
	XSLP_LSPATTERNLIMIT
	XSLP_LSSTART
	XSLP_LSZEROLIMIT
	XSLP_MAXTIME
	XSLP_MIPALGORITHM
	XSLP_MIPCUTOFFCOUNT
	XSLP_MIPCUTOFFLIMIT
	XSLP_MIPDEFAULTALGORITHM
	XSLP_MIPFIXSTEPBOUNDS
	XSLP_MIPITERLIMIT
	XSLP_MIPLOG
	XSLP_MIPOCOUNT
	XSLP_MIPRELAXSTEPBOUNDS
	XSLP_MULTISTART
	XSLP_MULTISTART_MAXSOLVES
	XSLP_MULTISTART_MAXTIME
	XSLP_MULTISTART_POOLSIZE
	XSLP_MULTISTART_SEED
	XSLP_MULTISTART_THREADS
	XSLP_OCOUNT
	XSLP_PENALTYINFOSTART
	XSLP_POSTSOLVE
	XSLP_PRESOLVE
	XSLP_PRESOLVELEVEL
	XSLP_PRESOLVEOPS
	XSLP_PROBING
	XSLP_REFORMULATE
	XSLP_SAMECOUNT
	XSLP_SAMEDAMP
	XSLP_SBROWOFFSET
	XSLP_SBSTART
	XSLP_SCALE
	XSLP_SCALECOUNT
	XSLP_SOLVER
	XSLP_SLPLOG
	XSLP_STOPOUTOFRANGE
	XSLP_THREADS
	XSLP_THREADSAFEUSERFUNC
	XSLP_TRACEMASKOPS
	XSLP_UNFINISHEDLIMIT
	XSLP_UPDATEOFFSET
	XSLP_VCOUNT
	XSLP_VLIMIT
	XSLP_WCOUNT
	XSLP_XCOUNT
	XSLP_XLIMIT
	XSLP_ZEROCRITERION
	XSLP_ZEROCRITERIONCOUNT
	XSLP_ZEROCRITERIONSTART

	String control parameters
	XSLP_DELTAFORMAT
	XSLP_ITERFALLBACKOPS
	XSLP_IVNAME
	XSLP_MINUSDELTAFORMAT
	XSLP_MINUSERRORFORMAT
	XSLP_PENALTYCOLFORMAT
	XSLP_PENALTYROWFORMAT
	XSLP_PLUSDELTAFORMAT
	XSLP_PLUSERRORFORMAT
	XSLP_SBLOROWFORMAT
	XSLP_SBNAME
	XSLP_SBUPROWFORMAT
	XSLP_TOLNAME
	XSLP_TRACEMASK
	XSLP_UPDATEFORMAT

	Knitro controls

	Library functions and the programming interface
	Counting
	The Xpress NonLinear problem pointer
	The XSLPload... functions
	Library functions
	XSLPaddcoefs
	XSLPaddformulas
	XSLPadddfs
	XSLPaddtolsets
	XSLPadduserfunction
	XSLPaddvars
	XSLPcalcslacks
	XSLPcascade
	XSLPcascadeorder
	XSLPchgcascadenlimit
	XSLPchgccoef
	XSLPchgcoef
	XSLPchgdeltatype
	XSLPchgdf
	XSLPchgformulastring
	XSLPchgformula
	XSLPchgrowstatus
	XSLPchgrowwt
	XSLPchgtolset
	XSLPchgvar
	XSLPconstruct
	XSLPcopycallbacks
	XSLPcopycontrols
	XSLPcopyprob
	XSLPcreateprob
	XSLPdelcoefs
	XSLPdelformulas
	XSLPdeltolsets
	XSLPdeluserfunction
	XSLPdelvars
	XSLPdestroyprob
	XSLPevaluatecoef
	XSLPevaluateformula
	XSLPfixpenalties
	XSLPfree
	XSLPgetbanner
	XSLPgetccoef
	XSLPgetcoefformula
	XSLPgetcoefs
	XSLPgetcolinfo
	XSLPgetdblattrib
	XSLPgetdblcontrol
	XSLPgetdf
	XSLPgetformula
	XSLPgetformulastring
	XSLPgetformularows
	XSLPgetindex
	XSLPgetintattrib
	XSLPgetintcontrol
	XSLPgetlasterror
	XSLPgetptrattrib
	XSLPgetrowinfo
	XSLPgetrowstatus
	XSLPgetrowwt
	XSLPgetslpsol
	XSLPgetstrattrib
	XSLPgetstrcontrol
	XSLPgettolset
	XSLPgetvar
	XSLPimportlibfunc
	XSLPinit
	XSLPinterrupt
	XSLPitemname
	XSLPloadcoefs
	XSLPloaddfs
	XSLPloadformulas
	XSLPloadtolsets
	XSLPloadvars
	XSLPmaxim
	XSLPminim
	XSLPmsaddcustompreset
	XSLPmsaddjob
	XSLPmsaddpreset
	XSLPmsclear
	XSLPnlpoptimize
	XSLPpostsolve
	XSLPpresolve
	XSLPprintmemory
	XSLPprintevalinfo
	XSLPreadprob
	XSLPremaxim
	XSLPreminim
	XSLPrestore
	XSLPreinitialize
	XSLPsave
	XSLPsaveas
	XSLPscaling
	XSLPsetcbcascadeend
	XSLPsetcbcascadestart
	XSLPsetcbcascadevar
	XSLPsetcbcascadevarfail
	XSLPsetcbcoefevalerror
	XSLPsetcbconstruct
	XSLPsetcbdestroy
	XSLPsetcbdrcol
	XSLPsetcbintsol
	XSLPsetcbiterend
	XSLPsetcbiterstart
	XSLPsetcbitervar
	XSLPsetcbmessage
	XSLPsetcbmsjobend
	XSLPsetcbmsjobstart
	XSLPsetcbmswinner
	XSLPsetcboptnode
	XSLPsetcbprenode
	XSLPsetcbpreupdatelinearization
	XSLPsetcbpresolved
	XSLPsetcbslpend
	XSLPsetcbslpnode
	XSLPsetcbslpstart
	XSLPsetcurrentiv
	XSLPsetdblcontrol
	XSLPsetdefaultcontrol
	XSLPsetdefaults
	XSLPsetdetrow
	XSLPsetfunctionerror
	XSLPsetinitval
	XSLPsetintcontrol
	XSLPsetlogfile
	XSLPsetparam
	XSLPsetstrcontrol
	XSLPunconstruct
	XSLPupdatelinearization
	XSLPvalidate
	XSLPvalidatekkt
	XSLPvalidateprob
	XSLPvalidaterow
	XSLPvalidatevector
	XSLPwriteprob
	XSLPwriteslxsol

	Internal Functions
	Trigonometric functions
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	SIN
	TAN

	Other mathematical functions
	ABS
	ERF
	ERFC
	EXP
	LN
	LOG, LOG10
	MAX
	MIN
	PWL
	SIGN
	SQRT

	Error Messages
	Xpress Knitro Control Parameters
	Double control parameters
	XKTR_PARAM_BAR_FEASMODETOL
	XKTR_PARAM_BAR_INITMU
	XKTR_PARAM_DELTA
	XKTR_PARAM_FEASTOL
	XKTR_PARAM_FEASTOLABS
	XKTR_PARAM_INFEASTOL
	XKTR_PARAM_MIP_INTEGERTOL
	XKTR_PARAM_MIP_INTGAPABS
	XKTR_PARAM_MIP_INTGAPREL
	XKTR_PARAM_OBJRANGE
	XKTR_PARAM_OPTTOL
	XKTR_PARAM_OPTTOLABS
	XKTR_PARAM_PRESOLVE_TOL
	XKTR_PARAM_XTOL

	Integer control parameters
	XKTR_PARAM_ALGORITHM
	XKTR_PARAM_BAR_DIRECTINTERVAL
	XKTR_PARAM_BAR_FEASIBLE
	XKTR_PARAM_BAR_INITPT
	XKTR_PARAM_BAR_MAXBACKTRACK
	XKTR_PARAM_BAR_MAXCROSSIT
	XKTR_PARAM_BAR_MAXREFACTOR
	XKTR_PARAM_BAR_MURULE
	XKTR_PARAM_BAR_PENCONS
	XKTR_PARAM_BAR_PENRULE
	XKTR_PARAM_BAR_SWITCHRULE
	XKTR_PARAM_GRADOPT
	XKTR_PARAM_HESSOPT
	XKTR_PARAM_HONORBNDS
	XKTR_PARAM_LMSIZE
	XKTR_PARAM_MAXCGIT
	XKTR_PARAM_MAXIT
	XKTR_PARAM_MIP_BRANCHRULE
	XKTR_PARAM_MIP_GUB_BRANCH
	XKTR_PARAM_MIP_HEURISTIC
	XKTR_PARAM_MIP_HEURISTIC_MAXIT
	XKTR_PARAM_MIP_IMPLICATNS
	XKTR_PARAM_MIP_KNAPSACK
	XKTR_PARAM_MIP_LPALG
	XKTR_PARAM_MIP_MAXNODES
	XKTR_PARAM_MIP_MAXSOLVES
	XKTR_PARAM_MIP_METHOD
	XKTR_PARAM_MIP_OUTINTERVAL
	XKTR_PARAM_MIP_OUTLEVEL
	XKTR_PARAM_MIP_PSEUDOINIT
	XKTR_PARAM_MIP_ROOTALG
	XKTR_PARAM_MIP_ROUNDING
	XKTR_PARAM_MIP_SELECTRULE
	XKTR_PARAM_MIP_STRONG_CANDLIM
	XKTR_PARAM_MIP_STRONG_LEVEL
	XKTR_PARAM_MIP_STRONG_MAXIT
	XKTR_PARAM_MIP_TERMINATE
	XKTR_PARAM_OUTLEV
	XKTR_PARAM_PRESOLVE
	XKTR_PARAM_SCALE
	XKTR_PARAM_SOC

	Appendix
	The Xpress-SLP Log
	Logging controls
	The structure of the log

	Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP
	Convex Quadratic Programs (QPs)
	Convex Quadratically Constrained Quadratic Programs (QCQPs)
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Files used by Xpress NonLinear
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

