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Abstract
This paper describes several examples of sequential and parallel solving of multiple models with Mosel. With-
out being able to give an exhaustive list of possible configurations, the examples showcase different uses of the
Mosel module mmjobs, such as concurrent execution of several instances of a model, the (sequential) embed-
ding of a submodel into a master, and the implementation of decomposition algorithms (Dantzig-Wolfe and
Benders decomposition).
From a more technical point of view, topics discussed in this paper include model management, synchronization
of concurrent models, and the use of the shared memory IO driver.
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1 Introduction

Release 1.6 of Mosel introduces the possibility to work with multiple models directly in the Mosel
language. The new functionality, provided by the module mmjobs, includes facilities for model
management, synchronization of concurrent models based on event queues, and a shared
memory IO driver. The following list gives an overview on the available functionality. For the
complete documentation of this module the reader is referred to the section mmjobs of the
‘Mosel Reference Manual’.

• Model management: compilation of source model files, loading of bim files, model
execution and interruption, retrieval of model information (status, exit code, ID), redirection
of IO streams.

• Synchronization mechanism: sending and retrieving events, waiting for events or event
classes, retrieval of event information (class, value, sender model).

• Shared memory IO driver: shared memory version of the mem driver for exchanging data
between concurrent models (write access by a single model, read access by several models
simultaneously), usable wherever Mosel expects a (generalized) filename, in particular in
initializations blocks.

• Memory pipe IO driver: memory pipes for exchanging data between concurrent models
(write access by several models, read access by a single model), usable wherever Mosel
expects a (generalized) filename, in particular in initializations blocks.

mmjobs introduces two new types, Model and Event. The type Model is used to reference a
Mosel model. Before using the reference to a model it has to be initialized by loading a bim file.
The type Event represents an event in the Mosel language. Events are characterized by a class
and a value and may be exchanged between a model and its parent model. An event queue is
attached to each model to collect all events sent to this model and is managed with a FIFO policy
(First In – First Out).

The first section of this paper introduces the reader to the basic tasks that are typically performed
when working with several models in Mosel, namely:
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• Executing a submodel from a master model: the compile – load – run – wait sequence

• Stopping the submodel execution

• Output from the submodel: redirection to a file (especially under IVE), making the
submodel silent

• Compilation to memory

• Passing runtime parameters

• Running several submodels

– in sequence

– in parallel

• Communication of data between different models: using the shared memory and memory
pipe IO drivers

The remainder of the paper gives some more advanced examples of the use of mmjobs with a
detailed explanation of their implementation. All examples are available for download from the
Xpress website.

• Column generation: re-implementation of the column generation example from the Mosel
User Guide with two separate models that are solved sequentially, passing data via shared
memory.

• Parallel solving: several instances of the same model are run concurrently with different
solution algorithm parameterizations. Improved solution values are sent for bound updates
to all running models and the first model that finishes stops all others.

• Dantzig-Wolfe decomposition: an iterative sequence of concurrent solving of a set of
subproblem instances, followed by solving of the updated master problem; data exchange
via shared memory.

• Benders decomposition: solving iteratively a sequence of several different subproblems;
data exchange via shared memory.

1.1 Multi-problem vs. multi-model

At this place we would like to stress the difference between multiple models and multiple
problems — Mosel releases prior to version 3.0 always associate a single problem with every
model. This means, for instance, if a model contains several calls to a solver such as
Xpress-Optimizer, then the solver will work with a single problem representation, and only the
solution to the last optimization run can be obtained from the solver at any time.

Release 3.0 of Mosel introduces the possibility of defining several problems within a single model.
At any point a single problem is active. It is possible to switch back and forth between problems,
e.g., to retrieve solution information for a decision variable from different problems. To
represent a ’problem’, the Mosel language defines the type mpproblem, modules can provide
their own problem types and users may equally create new problem types on the language level.

Here is a comparison of the main characteristics of multi-problem and multi-model
implementations with Mosel.
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Multi-problem (mpproblem) Multi-model (mmjobs)

Single model file Several model files

– problems share data – communication of data (in memory)

– integrated; no direct access to
(sub)problems by other models/ap-
plications

– stand-alone execution of submodels
or use of submodels with other mas-
ter models/applications

Sequential access to problems only Sequential or parallel execution of models

Problem solving approaches that involve parallel execution of (sub)models can only be
implemented as multiple models, whereas sequential solving can be formulated with either one.
For sequential algorithms (such as in Column generation and Benders decomposition) the
developer may choose among the two design options.

2 Basic tasks

This section introduces the basic tasks that typically need to be performed when working with
several models in Mosel using the functionality of the module mmjobs.

2.1 Executing a submodel

Assume we are given the following simple model testsub.mos (the submodel) that we wish to
run from a second model (its master model):

model "Test submodel"

forall(i in 10..20) write(i^2, " ")
writeln

end-model

The reader is certainly familiar with the standard compile-load-run sequence that is always
required for the execution of a Mosel model independent of the place from where it is executed
(be it the Mosel command line, a host application, or another Mosel model). In the case of a
Mosel model executing a second model, we need to augment this standard sequence to
compile-load-run-wait. The rationale behind this is that the submodel is started as a separate
thread and we thus make sure that the submodel has terminated before the master model ends
(or continues its execution with results from the submodel, see Section 2.7 below).

The following model runtestsub.mos uses the compile-load-run-wait sequence in its basic
form to execute the model testsub.mos printed above. The corresponding Mosel subroutines
are defined by the module mmjobs that needs to be included with a uses statement. The
submodel remains as is (that is, there is no need to include mmjobs if the submodel itself does not
use any functionality of this module). The last statement of the master model, dropnextevent,
may require some further explanation: the termination of the submodel is indicated by an event
(of class EVENT_END) that is sent to the master model. The wait statement pauses the execution
of the master model until it receives an event. Since in the present case the only event sent by the
submodel is this termination message we simply remove the message from the event queue of
the master model without checking its nature.

model "Run model testsub"
uses "mmjobs"
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declarations
modSub: Model
end-declarations

! Compile the model file
if compile("testsub.mos")<>0 then exit(1); end-if
load(modSub, "testsub.bim") ! Load the bim file
run(modSub) ! Start model execution
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

The two models are run by executing the master model in any standard way of executing Mosel
models (from the Mosel command line, within Xpress-IVE, or from a host application). With the
Mosel command line you may use, for instance, the following command:

mosel -c "exec runtestsub.mos"

As a result you should see the following output printed by the submodel (for readers working
under Xpress-IVE: please see Section 2.3):

100 121 144 169 196 225 256 289 324 361 400

If we wish to obtain more precise information about the termination status of the submodel we
could replace the statement dropnextevent by the following lines that retrieve the event sent
by the submodel and print out its class (the termination event has the predefined class
EVENT_END) and the value attached to it (here the default value 0). In addition, we display the
exit code of the model (value sent by an exit statement terminating the model execution or the
default value 0).

declarations
ev: Event
end-declarations

ev:=getnextevent
writeln("Event class: ", getclass(ev))
writeln("Event value: ", getvalue(ev))
writeln("Exit code : ", getexitcode(modSub))

2.2 Stopping the submodel execution

If a submodel execution takes a long time it may be desirable to interrupt the submodel without
stopping the master model itself. The following modified version of our master model (file
runsubwait.mos) shows how this can be achieved by adding a duration (in seconds) to the wait
statement. If the submodel has not yet sent the termination event message after executing for
one second it is stopped by the call to stop with the model reference.

model "Run model testsub"
uses "mmjobs"

declarations
modSub: Model
end-declarations

! Compile the model file
if compile("testsub.mos")<>0 then exit(1); end-if
load(modSub, "testsub.bim") ! Load the bim file
run(modSub) ! Start model execution
wait(1) ! Wait 1 second for an event
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if isqueueempty then ! No event has been sent: model still runs
writeln("Stopping the submodel")
stop(modSub) ! Stop the model
wait ! Wait for model termination
end-if
dropnextevent ! Ignore termination event message

end-model

2.3 Output from the submodel

Readers who have tried to execute the master models from the previous sections within
Xpress-IVE will not have seen any output from the submodel since IVE only captures the output
from the master model. The best way to obtain access to the submodel output in this case is to
redirect this output to a file. Redirecting the submodel output may also become necessary when
several (sub)models are run in parallel as the output on screen is likely to mix up output printed
by several of these models.

Output may be redirected directly within the submodel with statements like the following added
to the model before any output is printed:

fopen("testout.txt", F_OUTPUT+F_APPEND) ! Output to file (in append mode)
fopen("tee:testout.txt&", F_OUTPUT) ! Output to file and on screen
fopen("null:", F_OUTPUT) ! Disable all output

where the first line redirects the output to the file testout.txt, the second statement
maintains the output on screen while writing to the file at the same time, and the third line
makes the model entirely silent. The output file is closed by adding the statement
fclose(F_OUTPUT) after the printing statements in the model.

The same can be achieved from the master model by adding output redirection before the run
statement for the corresponding submodel, such as:

setdefstream(modSub, F_OUTPUT, "testout.txt") ! Output to file
setdefstream(modSub, F_OUTPUT, "tee:testout.txt&")

! Output to file and on screen
setdefstream(modSub, F_OUTPUT, "null:") ! Disable all output

The output redirection for a submodel may be terminated by resetting its output stream to the
default output:

setdefstream(modSub, F_OUTPUT, "")

2.4 Compilation to memory

The default compilation of a Mosel file filename.mos generates a binary model file
filename.bim. To avoid the generation of physical BIM files for submodels we may compile the
submodel to memory, as shown in the following example runsubmem.mos. Working in memory
usually is more efficient than accessing physical files. Furthermore, this feature will also be
helpful if you do not have write access at the place where the master model is executed.

model "Run model testsub"
uses "mmjobs", "mmsystem"

declarations
modSub: Model
end-declarations

! Compile the model file
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if compile("", "testsub.mos", "shmem:testsubbim")<>0 then
exit(1)
end-if
load(modSub, "shmem:testsubbim") ! Load the bim file from memory
fdelete("shmem:testsubbim") ! ... and release the memory block
run(modSub) ! Start model execution
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

The full version of compile takes three arguments: the compilation flags (e.g., use "g" for
debugging), the model file name, and the output file name (here a label prefixed by the name of
the shared memory driver). Having loaded the model we may free the memory used by the
compiled model with a call to fdelete (this subroutine is provided by the module mmsystem
that needs to be loaded in addition to mmjobs).

2.5 Runtime parameters

A convenient means of modifying data in a Mosel model when running the model (that is,
without having to modify the model itself and recompile it) is to use runtime parameters. Such
parameters are declared at the beginning of the model in a parameters block where every
parameter is given a default value that will be applied if no other value is specified for this
parameter at the model execution.

Consider the following model rtparams.mos that may receive parameters of four different
types—integer, real, string, and Boolean—and prints out their values.

model "Runtime parameters"
parameters
PARAM1 = 0
PARAM2 = 0.5
PARAM3 = ’’
PARAM4 = false
end-parameters

writeln(PARAM1, " ", PARAM2, " ", PARAM3, " ", PARAM4)

end-model

The master model runrtparam.mos executing this (sub)model may look as follows—all runtime
parameters are given new values:

model "Run model rtparams"
uses "mmjobs"

declarations
modPar: Model
end-declarations

! Compile the model file
if compile("rtparams.mos")<>0 then exit(1); end-if
load(modPar, "rtparams.bim") ! Load the bim file

! Start model execution
run(modPar, "PARAM1=" + 2 + ",PARAM2=" + 3.4 +

",PARAM3=’a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model
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2.6 Running several submodels

Once we have seen how to run a parameterized model from a master model it is only a small step
to the execution of several different submodel instances from a master model. The two following
sections deal with the two cases of sequential and parallel execution of submodels. For
simplicity’s sake, the submodels in our examples are all parameterized versions of a single model.
It is of course equally possible to compile, load, and run different submodel files from a single
master model.

2.6.1 Sequential submodels

Running several instances of a submodel in sequence only requires small modifications to the
master model that we have used for a single model instance as can be seen from the following
example (file runrtparamseq.mos)—to keep things simple, we now only reset a single
parameter at every execution:

model "Run model rtparams in sequence"
uses "mmjobs"

declarations
A = 1..10
modPar: Model
end-declarations

! Compile the model file
if compile("rtparams.mos")<>0 then exit(1); end-if
load(modPar, "rtparams.bim") ! Load the bim file

forall(i in A) do
run(modPar, "PARAM1=" + i) ! Start model execution
wait ! Wait for model termination
dropnextevent ! Ignore termination event message
end-do

end-model

The submodel is compiled and loaded once and after starting the execution of a submodel
instance we wait for its termination before the next instance is started.

2.6.2 Parallel submodels

The parallel execution of submodel (instances) requires slightly more modifications. We still have
to compile the submodel only once, but it now needs to be loaded as many times as we want to
run parallel instances. The wait statements are now moved to a separate loop since we first want
to start all submodels and then wait for their termination.

model "Run model rtparams in parallel"
uses "mmjobs"

declarations
A = 1..10
modPar: array(A) of Model
end-declarations

! Compile the model file
if compile("rtparams.mos")<>0 then exit(1); end-if

forall(i in A) do
load(modPar(i), "rtparams.bim") ! Load the bim file
run(modPar(i), "PARAM1=" + i) ! Start model execution
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end-do

forall(i in A) do
wait ! Wait for model termination
dropnextevent ! Ignore termination event message
end-do

end-model

The order in which the submodel output appears on screen is nondeterministic because the
models are run in parallel. However, since the submodel execution is very quick, this may not
become obvious: try adding the line wait(1) to the submodel rtparams.mos immediately
before the writeln statement (you will also need to add the statement uses "mmjobs" at the
beginning of the model) and compare the output of several runs of the master model. You are
now likely to see different output sequences with every run.

2.7 Communication of data between different models

Runtime parameters are a means of communicating single data values to a submodel but they are
not suited, for instance, to pass data tables or sets to a submodel. Also, they cannot be employed
to retrieve any information from a submodel or to exchange data between models during their
execution. All these tasks are addressed by the two IO drivers defined by the module mmjobs: the
shmem driver and the mempipe driver. As was already stated earlier, the shmem driver is meant for
one-to-many communication (one model writing, many reading) and the mempipe driver serves
for many-to-one communication. In the case of one model writing and one model reading we
may use either, where shmem is conceptionally probably the easier to use.

2.7.1 Using the shared memory driver

With the shmem shared memory driver we write and read data blocks from/to memory. The use of
this driver is quite similar to the way we would work with physical files. We have already
encountered an example of its use in Section 2.4: the filename is replaced by a label, prefixed by
the name of the driver, such as "mmjobs.shmem:aLabel". If the module mmjobs is loaded by
the model (or another model held in memory at the same time, such as its master model) we may
use the short form "shmem:aLabel".

The exchange of data between different models is carried out through initializations blocks.
In general, the shmem driver will be combined with the raw driver to save data in binary format.

Let us now take a look at a modified version testsubshm.mos of our initial test submodel
(Section 2.1). This model reads in the index range from memory and writes back the resulting
array to memory:

model "Test submodel"
declarations
A: range
B: array(A) of real
end-declarations

initializations from "raw:"
A as "shmem:A"
end-initializations

forall(i in A) B(i):= i^2

initializations to "raw:"
B as "shmem:B"
end-initializations
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end-model

The master model runsubshm.mos to run this submodel may look as follows:

model "Run model testsubshm"
uses "mmjobs"

declarations
modSub: Model
A = 30..40
B: array(A) of real
end-declarations

! Compile the model file
if compile("testsubshm.mos")<>0 then exit(1); end-if
load(modSub, "testsubshm.bim") ! Load the bim file

initializations to "raw:"
A as "shmem:A"
end-initializations

run(modSub) ! Start model execution
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

initializations from "raw:"
B as "shmem:B"
end-initializations

writeln(B)

end-model

Before the submodel run is started the index range is written to memory and after its end we
retrieve the result array to print it out from the master model.

If memory blocks are no longer used it is recommended to free up these blocks by calling
fdelete (subroutine provided by module mmsystem), especially if the data blocks are large, since
the data blocks survive the termination of the model that has created them, even if the model is
unloaded explicitly, until the module mmjobs is unloaded (explicitly or by the termination of the
Mosel session). At the end of our master model we might thus add the lines

fdelete("shmem:A")
fdelete("shmem:B")

2.7.2 Using the memory pipe driver

The memory pipe IO driver mempipe works in the opposite way to what we have seen for the
shared memory driver: a pipe first needs to be opened before it can be written to. That means
we need to call initializations from before initializations to. The submodel (file
testsubpip.mos) now looks as follows:

model "Test submodel"
declarations
A: range
B: array(A) of real
end-declarations

initializations from "mempipe:indata"
A
end-initializations
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forall(i in A) B(i):= i^2

initializations to "mempipe:resdata"
B
end-initializations

end-model

This is indeed not very different from the previous submodel. However, there are more changes
to the master model (file runsubpip.mos): the input data is now written by the master model
after the submodel run has started. The master model then opens a new pipe to read the result
data before the submodel terminates its execution.

model "Run model testsubpip"
uses "mmjobs"

declarations
modSub: Model
A = 30..40
B: array(A) of real
end-declarations

! Compile the model file
if compile("testsubpip.mos")<>0 then exit(1); end-if
load(modSub, "testsubpip.bim") ! Load the bim file

run(modSub) ! Start model execution

initializations to "mempipe:indata"
A
end-initializations

initializations from "mempipe:resdata"
B
end-initializations

wait ! Wait for model termination
dropnextevent ! Ignore termination event message

writeln(B)

end-model

Once a file has opened a pipe for reading it remains blocked in this state until it has received the
requested data through this pipe. The program control flow is therefore the following in the
present case:

1. The master model starts the submodel.

2. The submodel opens the input data pipe and waits for the master to write to it.

3. Once the input data has been communicated the submodel continues its execution while
the master model opens the result data pipe and waits for the results.

4. When the result data pipe is open, the submodel writes to the result data pipe and then
terminates.

5. The master model prints out the result.

3 Column generation: solving different models in sequence

The cutting stock example we are working with in this section is taken from the ‘Mosel User
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Guide’. The reader is refered to this manual for further detail on the column generation
algorithm and its implementation with Mosel.

Column generation algorithms are typically used for solving linear problems with a huge number
of variables for which it is not possible to generate explicitly all columns of the problem matrix.
Starting with a very restricted set of columns, after each solution of the problem a column
generation algorithm adds one or several columns that improve the current solution.

Our column generation algorithm for the cutting stock problem requires us to solve a knapsack
problem based on the dual value of the current solution to determine a new column (= cutting
pattern). The difference between the User Guide implementation and the one shown below
consists in the handling of this knapsack (sub)problem. In the User Guide implementation Mosel’s
constraint hiding functionality is used to blend out subsets of constraints; in the version shown
below the subproblem is implemented in a model on its own. Both versions implement exactly
the same algorithm and their performance is comparable. On larger instances, however, the
two-model version is likely to be slightly more efficient, since every model defines exactly the
problem to be solved, without any selection of (un)hidden constraints.

In this example, the changes to the problems are such that they cause complete re-loading of the
problems for every optimization run. A clearer advantage of the multi-model version would show
up if there were only slight changes (bound updates) to the main (cutting stock) problem so that
this problem did not have to be reloaded into the solver for every new run.

3.1 Example problem: cutting stock

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into
smaller rolls according to the customer orders. The rolls can be cut into NWIDTHS different sizes.
The orders are given as demands for each width i (DEMANDi). The objective of the paper mill is
to satisfy the demand with the smallest possible number of paper rolls in order to minimize the
losses.

The objective of minimizing the total number of rolls can be expressed as choosing the best set of
cutting patterns for the current set of demands. Since it may not be obvious how to calculate all
possible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS1,...,
PATTERNSNWIDTH), that consists of cutting small rolls all of the same width as many times as
possible out of the large roll.

If we define variables usej to denote the number of times a cutting pattern j
(j ∈WIDTHS = {1, . . . , NWIDTH}) is used, then the objective becomes to minimize the sum of these
variables, subject to the constraints that the demand for every size has to be met.

minimize
∑

j∈WIDTHS

usej∑
j∈WIDTHS

PATTERNSij · usej ≥ DEMANDi

∀j ∈WIDTHS : usej ≤ dDEMANDj / PATTERNSjje, usej ∈ IN

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is likely to
incur significant losses through wasting more than necessary of every large roll and by cutting
more small rolls than its customers have ordered. We therefore employ a column generation
heuristic to find more suitable cutting patterns.

Our heuristic performs a column generation loop at the top node, before starting the MIP search.
Every iteration of the column generation loop executes the following steps:

1. solve the LP and save the basis
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2. get the solution values

3. compute a more profitable cutting pattern based on the current solution

4. generate a new column (= cutting pattern): add a term to the objective function and to the
corresponding demand constraints

5. load the modified problem and load the saved basis

Step 3 of this loop requires us to solve an integer knapsack problem of the form

maximize z =
∑

j∈WIDTHS

Ci · xj∑
j∈WIDTHS

Aj · xj ≤ B

∀j ∈WIDTHS : xj integer

This second optimization problem is independent of the main, cutting stock problem since the
two have no variables in common.

3.2 Implementation

The implementation is divided into two parts: the master model (file paperp.mos) with the
definition of the cutting stock problem and the column generation algorithm, and the knapsack
model (file knapsack.mos) that is run from the master.

3.2.1 Master model

The main part of the cutting stock model looks as follows:

model "Papermill (multi-prob)"
uses "mmxprs", "mmjobs"

forward procedure column_gen
forward function knapsack(C:array(range) of real,

A:array(range) of real,
B:real,
xbest:array(range) of integer): real

declarations
NWIDTHS = 5 ! Number of different widths
WIDTHS = 1..NWIDTHS ! Range of widths
RP: range ! Range of cutting patterns
MAXWIDTH = 94 ! Maximum roll width
EPS = 1e-6 ! Zero tolerance

WIDTH: array(WIDTHS) of real ! Possible widths
DEMAND: array(WIDTHS) of integer ! Demand per width
PATTERNS: array(WIDTHS, WIDTHS) of integer ! (Basic) cutting patterns

use: array(RP) of mpvar ! Rolls per pattern
soluse: array(RP) of real ! Solution values for variables ‘use’
Dem: array(WIDTHS) of linctr ! Demand constraints
MinRolls: linctr ! Objective function

Knapsack: Model ! Reference to the knapsack model
end-declarations
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WIDTH:: [ 17, 21, 22.5, 24, 29.5]
DEMAND:: [150, 96, 48, 108, 227]

! Make basic patterns
forall(j in WIDTHS) PATTERNS(j,j) := floor(MAXWIDTH/WIDTH(j))

forall(j in WIDTHS) do
create(use(j)) ! Create NWIDTHS variables ‘use’
use(j) is_integer ! Variables are integer and bounded
use(j) <= integer(ceil(DEMAND(j)/PATTERNS(j,j)))
end-do

MinRolls:= sum(j in WIDTHS) use(j) ! Objective: minimize no. of rolls

! Satisfy all demands
forall(i in WIDTHS)
Dem(i):= sum(j in WIDTHS) PATTERNS(i,j) * use(j) >= DEMAND(i)

res:= compile("knapsack.mos") ! Compile the knapsack model
load(Knapsack, "knapsack.bim") ! Load the knapsack model
column_gen ! Column generation at top node

minimize(MinRolls) ! Compute the best integer solution
! for the current problem (including
! the new columns)

writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i)),", ")
writeln
end-model

Before starting the column generation heuristic (the definition of procedure column_gen is left
out here since it remains unchanged from the User Guide example) the knapsack model is
compiled and loaded so that at every column generation loop we merely need to run it with new
data. The knapsack model is run from the function knapsack that takes as its parameters the
data for the knapsack problem and its solution values. The function saves all data to shared
memory, then runs the knapsack model and retrieves the solution from shared memory. Its return
value is the objective value (zbest) of the knapsack problem.

function knapsack(C:array(range) of real,
A:array(range) of real,
B:real,
xbest:array(range) of integer):real

initializations to "raw:noindex"
A as "shmem:A" B as "shmem:B" C as "shmem:C"
end-initializations

run(Knapsack, "NWIDTHS="+NWIDTHS) ! Start solving knapsack subproblem
wait ! Wait until subproblem finishes
dropnextevent ! Ignore termination message

initializations from "raw:"
xbest as "shmem:xbest" returned as "shmem:zbest"
end-initializations

end-function

To enforce a sequential execution of the two models (we need to retrieve the results from the
knapsack problem before we may continue with the master) we must add a call to the procedure
wait immediately after the run statement. Otherwise the execution of the master model
continues concurrently to the child model. On termination, the child model sends a ‘termination’
event (an event of class EVENT_END). Since our algorithm does not require this event we simply

Column generation c©2009 Fair Isaac Corporation. All rights reserved. page 14



Mosel: multiple models and parallel solving

remove it from the model’s event queue with a call to dropnextevent.

3.2.2 Knapsack model

The implementation of the knapsack model is straightforward. All problem data is obtained from
shared memory and after solving the problem its solution is saved into shared memory.

model "Knapsack"
uses "mmxprs"

parameters
NWIDTHS=5 ! Number of different widths
end-parameters

declarations
WIDTHS = 1..NWIDTHS ! Range of widths
A,C: array(WIDTHS) of real ! Constraint + obj. coefficients
B: real ! RHS value of knapsack constraint
KnapCtr, KnapObj: linctr ! Knapsack constraint+objective
x: array(WIDTHS) of mpvar ! Knapsack variables
xbest: array(WIDTHS) of integer ! Solution values
end-declarations

initializations from "raw:noindex"
A as "mmjobs.shmem:A" B as "mmjobs.shmem:B" C as "mmjobs.shmem:C"
end-initializations

! Define the knapsack problem
KnapCtr:= sum(j in WIDTHS) A(j)*x(j) <= B
KnapObj:= sum(j in WIDTHS) C(j)*x(j)

forall(j in WIDTHS) x(j) is_integer

! Solve the problem and retrieve the solution
maximize(KnapObj)
z:=getobjval
forall(j in WIDTHS) xbest(j):=round(getsol(x(j)))

initializations to "raw:"
xbest as "mmjobs.shmem:xbest" z as "mmjobs.shmem:zbest"
end-initializations

end-model

In this model we have prefixed the shared memory driver shmem with the name of the module
mmjobs. Doing so is only required if we want to be able to run the knapsack model separately,
that is, without the cutting stock master model that loads the mmjobs module into memory.

Another case where we would have to explicitly add the name of a module to a driver occurs
when we need to distinguish between several shmem drivers defined by different modules.

3.3 Results

With the data in the model above, the column generation algorithm generates 6 new patterns,
taking the value of the LP-relaxation of the cutting stock problem from originally 177.67 down to
160.95. The MIP finds a solution with 161 rolls using the following patterns:
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Widths

Pattern 17 21 22.5 24 29.5 Usage

3 0 0 4 0 0 1

5 0 0 0 0 3 15

6 0 1 0 3 0 32

8 2 0 0 0 2 75

10 0 2 1 0 1 32

11 0 0 2 2 0 6

4 Solving several model instances in parallel

In this section we show how to execute several models in parallel and communicate solution
information among these models. This scheme may be particularly interesting when working
with Mosel on a multi-processor machine, e.g. by starting a number of models that corresponds
to the available number of processors.

Our idea is to run several instances (different only by the parameterization of the solution
algorithm) of the same MIP model concurrently and to stop the entire run when the first model
has finished. If the different solution algorithms are complementary in the sense that some
quickly produce (good) solutions and others are better at proving optimality once the best
solution is found then one may reasonably expect an additional synergy effect from exchanging
solution updates during the MIP search.

To implement this scheme, we define a master model that starts the model runs and coordinates
the solution updates, and a parameterizable child model that is loaded and run with the desired
number of versions. The child models all use the same solver (Xpress-Optimizer) but it would
equally be possible to use a different solver for some of the child models, provided it defines the
necessary functionality for interacting with the search.

4.1 Example problem: economic lot sizing

Economic lot sizing (ELS) considers production planning over a given planning horizon, in our
example a range of time periods TIMES = 1, . . . , T . In every period t, there is a given demand
DEMANDpt for every product p (p ∈ PRODUCTS) that must be satisfied by the production in this
period and by inventory carried over from previous periods.

A set-up cost SETUPCOSTt is associated with production in a period, and the total production
capacity per period, CAPt, is limited. The unit production cost PRODCOSTpt per product and time
period is also given. There is no inventory or stock-holding cost.

We introduce the decision variables producept for the amount of product p made in period t and
the binary variables setuppt indicating whether a setup takes place for product p in period t
(setuppt = 1) or not (setuppt = 0).

We may then formulate the following mathematical model for this problem:

minimize
∑

t∈TIMES

SETUPCOSTt ·
∑

p∈PRODUCTS

setuppt +
∑

p∈PRODUCTS

PRODCOSTpt · producept


∀p ∈ PRODUCTS, t ∈ TIMES :

t∑
s=1

produceps ≥
t∑

s=1

DEMANDps
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∀p ∈ PRODUCTS, t ∈ TIMES : producept ≤ DptT · setuppt

∀t ∈ TIMES :
∑

p∈PRODUCTS

producept ≤ CAPt

∀p ∈ PRODUCTS, t ∈ TIMES : setuppt ∈ {0, 1}, producept ≥ 0

The objective function is to minimize the total cost. The constraints in the second line formulate
the requirement that the production of p in periods 0 to t must satisfy the total demand for this
product during this period of time. The next set of constraints establish the implication ‘if there is
production during t then there is a setup in t’ where Dptl stands for the demand of product p in
periods t to l. The production capacity per period t is limited. And finally, the setuppt variables
are binaries.

4.1.1 Cutting plane algorithm

A well-known class of valid inequalities for ELS are the so-called (l, S)-inequalities [PW94]. If Dptl
denotes the total demand of p in periods t to l, then for each period l and each subset of periods
S of 1 to l, the (l, S)-inequality is

l∑
t=1
t∈S

producept +
l∑

t=1
t 6∈S

Dptl · setuppt ≥ Dp1l

It says that actual production producept in the periods included in S plus the maximum potential
production Dptl · setuppt in the remaining periods (those not in S) must at least equal the total
demand in periods 1 to l.

It is possible to develop the following cutting plane algorithm based on these (l, S)-inequalities:

1. Solve the LP.

2. Identify violated (l, S)-inequalities by testing violations of

l∑
t=1

min(producept, Dptl · setuppt) ≥ Dp1l

3. Add violated inequalities as cuts to the problem.

4. Re-solve the LP problem.

There are numerous options for how to configure this algorithm. For instance:

• Generation of cuts only in the root node or also during the search (Cut-and-Branch versus
Branch-and-Cut).

• Number of cut generation passes at a node (e.g. one pass or looping around steps 2.-4. until
no more cuts are generated).

• Search tree depth for cut generation (up to a given depth or at all nodes).

• Exclusive use of (l, S)-cuts or combination with others (e.g. default cuts generated by the
solver).

The implementation of the (l, S)-cut generation algorithm shown below may be configured to
generate cuts at the top node only (TOPONLY = true) and to generate one or several rounds of
cuts (SEVERALROUNDS = true).
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4.2 Implementation

With mmjobs events are always sent between parent – child pairs, not directly from one child to
another. The ’solution found’ message therefore needs to be sent to the parent model that then
passes on this message to all other child models.

Another point that should be stressed is the fact that we only compile the ELS model file once,
but the number of instances loaded into memory needs to correspond to the number of child
models we wish to run.

4.2.1 Master model

The master model compiles, loads and runs the child models and coordinates the solution
updates. Some care must be taken with the solution updates since new solutions that are
reported are not guaranteed to be better than others previously reported by other child models.
For instance, if two models find solutions almost at the same time, the first solution that reaches
the master may be the better one and it must not be overridden by the next.

For a nice solution display at the end, the master model also reads in parts of the problem data
from file.

model "Els master"
uses "mmjobs"

parameters
DATAFILE = "els5.dat"
T = 45
P = 4
end-parameters

declarations
RM = 0..5 ! Range of models
TIMES = 1..T ! Time periods
PRODUCTS = 1..P ! Set of products
solprod: array(PRODUCTS,TIMES) of real ! Sol. values for var.s produce
solsetup: array(TIMES) of real ! Sol. values for var.s setup
DEMAND: array(PRODUCTS,TIMES) of integer ! Demand per period

modELS: array(RM) of Model ! Models
modid: array(set of integer) of integer ! Model indices
NEWSOL = 2 ! Identifier for "sol. found" event
Msg: Event ! Messages sent by models
end-declarations

! Compile, load, and run models M1 and M2
M1:= 1; M2:=2
res:= compile("elsp.mos")
load(modELS(M1), "elsp.bim")
load(modELS(M2), "elsp.bim")
forall(m in RM) modid(getid(modELS(m))):= m
run(modELS(M1), "ALG="+M1+",DATAFILE="+DATAFILE+",T="+T+",P="+P)
run(modELS(M2), "ALG="+M2+",DATAFILE="+DATAFILE+",T="+T+",P="+P)

objval:= MAX_REAL
algsol:= -1; algopt:= -1

repeat
wait ! Wait for the next event
Msg:= getnextevent ! Get the event
if getclass(Msg)=NEWSOL then ! Get the event class
if getvalue(Msg) < objval then ! Value of the event (= obj. value)
algsol:= modid(getfromid(Msg)) ! ID of model sending the event
objval:= getvalue(Msg)
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writeln("Improved solution ", objval, " found by model ", algsol)
forall(m in RM | m <> algsol) send(modELS(m), NEWSOL, objval)
else
writeln("Solution ", getvalue(Msg), " found by model ",

modid(getfromid(Msg)))
end-if
end-if
until getclass(Msg)=EVENT_END ! A model has finished

algopt:= modid(getfromid(Msg)) ! Retrieve ID of terminated model
forall(m in RM) stop(modELS(m)) ! Stop all running models

! Retrieve the best solution from shared memory
initializations from "raw:noindex"
solprod as "shmem:solprod"+algsol
solsetup as "shmem:solsetup"+algsol
end-initializations

initializations from DATAFILE
DEMAND
end-initializations

! Solution printing
writeln("Best solution found by model ", algsol)
writeln("Optimality proven by model ", algopt)
writeln("Objective value: ", objval)
write("Period setup ")
forall(p in PRODUCTS) write(strfmt(p,-7))
forall(t in TIMES) do
write("\n ", strfmt(t,2), strfmt(solsetup(t),8), " ")
forall(p in PRODUCTS) write(strfmt(solprod(p,t),3), " (",DEMAND(p,t),")")
end-do
writeln

end-model

In this implementation we define an array modid that establishes the correspondence between
the model index used in our model and Mosel’s internal ID of the model. Whenever a child model
sends an event to the master, we retrieve its ID (with function getfromid) and store the
corresponding model index, to be able to use it for solution printing later on.

4.2.2 ELS model

The ELS child model is written in such a way that the model can be executed separately. In
particular, every model performs the complete initialization of its data from file, a task that for
greater efficiency could be reserved to the master model, communicating data via shared
memory to the child models (however, in our example data handling time is negligible compared
to the running time of the solution algorithms).

The main part of the ELS model contains the definition of the model itself and the selection of
the solution algorithm:

model Els
uses "mmxprs","mmjobs"

parameters
ALG = 0 ! Default algorithm: no user cuts
DATAFILE = "els4.dat"
T = 60
P = 4
end-parameters
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forward procedure tree_cut_gen
forward public function cb_node: boolean
forward public function cb_updatebnd(node:integer): integer
forward public procedure cb_intsol

declarations
NEWSOL = 2 ! "New solution" event class
EPS = 1e-6 ! Zero tolerance
TIMES = 1..T ! Time periods
PRODUCTS = 1..P ! Set of products

DEMAND: array(PRODUCTS,TIMES) of integer ! Demand per period
SETUPCOST: array(TIMES) of integer ! Setup cost per period
PRODCOST: array(PRODUCTS,TIMES) of real ! Production cost per period
CAP: array(TIMES) of integer ! Production capacity per period
D: array(PRODUCTS,TIMES,TIMES) of integer ! Total demand in periods t1 - t2

produce: array(PRODUCTS,TIMES) of mpvar ! Production in period t
setup: array(TIMES) of mpvar ! Setup in period t

solprod: array(PRODUCTS,TIMES) of real ! Sol. values for var.s produce
solsetup: array(TIMES) of real ! Sol. values for var.s setup

Msg: Event ! An event
end-declarations

initializations from DATAFILE
DEMAND SETUPCOST PRODCOST CAP
end-initializations

forall(p in PRODUCTS,s,t in TIMES) D(p,s,t):= sum(k in s..t) DEMAND(p,k)

! Objective: minimize total cost
MinCost:= sum(t in TIMES) (SETUPCOST(t) * setup(t) +

sum(p in PRODUCTS) PRODCOST(p,t) * produce(p,t) )

! Production in period t must not exceed the total demand for the
! remaining periods; if there is production during t then there
! is a setup in t
forall(t in TIMES)
sum(p in PRODUCTS) produce(p,t) <= sum(p in PRODUCTS) D(p,t,T) * setup(t)

! Production in periods 0 to t must satisfy the total demand
! during this period of time
forall(p in PRODUCTS,t in TIMES)
sum(s in 1..t) produce(p,s) >= sum (s in 1..t) DEMAND(p,s)

! Capacity limits
forall(t in TIMES) sum(p in PRODUCTS) produce(p,t) <= CAP(t)

forall(t in TIMES) setup(t) is_binary ! Variables setup are 0/1

setparam("zerotol", EPS/100) ! Set Mosel comparison tolerance
SEVERALROUNDS:=false; TOPONLY:=false

case ALG of
1: do

setparam("XPRS_CUTSTRATEGY", 0) ! No cuts
setparam("XPRS_HEURSTRATEGY", 0) ! No heuristics
end-do

2: do
setparam("XPRS_CUTSTRATEGY", 0) ! No cuts
setparam("XPRS_HEURSTRATEGY", 0) ! No heuristics
setparam("XPRS_PRESOLVE", 0) ! No presolve
end-do

3: tree_cut_gen ! User branch&cut (single round)
4: do ! User branch&cut (several rounds)
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tree_cut_gen
SEVERALROUNDS:=true
end-do

5: do ! User cut&branch (several rounds)
tree_cut_gen
SEVERALROUNDS:=true
TOPONLY:=true
end-do

end-case

! Parallel setup
setcallback(XPRS_CB_PRENODE, "cb_updatebnd") ! Node pre-treatment callback
setcallback(XPRS_CB_INTSOL, "cb_intsol") ! Integer solution callback
setparam("XPRS_SOLUTIONFILE",0) ! Do not save solutions to file

! Solve the problem
minimize(MinCost)

end-model

The procedure tree_cut_gen sets up a user cut generation routine, configurable to generate
cuts only at the top node of the branch-and-bound search (TOPONLY) or to execute one or several
cut generation iterations per node (SEVERALROUNDS). The definition of the cut generation
routine cb_node itself is left out here.

procedure tree_cut_gen
setparam("XPRS_HEURSTRATEGY", 0) ! Switch heuristics off
setparam("XPRS_CUTSTRATEGY", 0) ! Switch automatic cuts off
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix

setcallback(XPRS_CB_CUTMGR, "cb_node") ! Define the cut manager callback
end-procedure

The communication between concurrently running child models has two parts: (a) any integer
solution found must be saved and comunicated to the master model and (b) bound updates sent
by the master problem must be incorporated into the search. Xpress-Optimizer provides a specific
integer solution callback for saving solutions into user structures. An obvious place for bound
updates in nodes is the cut-manager callback function. However, this function being already in
use for other purposes with certain settings of the algorithm, we employ a different callback
function that also gets called at every node, the node pre-treatment callback.

! Update cutoff value
public function cb_updatebnd(node:integer): integer
if not isqueueempty then
repeat
Msg:= getnextevent
until isqueueempty
newcutoff:= getvalue(Msg)
setparam("XPRS_MIPABSCUTOFF", newcutoff)
if (newcutoff < getparam("XPRS_LPOBJVAL")) then
returned:= 1 ! Node becomes infeasible
end-if
end-if
end-function

! Store and communicate new solution
public procedure cb_intsol
objval:= getparam("XPRS_LPOBJVAL") ! Retrieve current objective value
cutoff:= getparam("XPRS_MIPABSCUTOFF")
if(cutoff > objval) then
setparam("XPRS_MIPABSCUTOFF", objval)
end-if
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! Get the solution values
forall(t in TIMES) do
forall(p in PRODUCTS) solprod(p,t):=getsol(produce(p,t))
solsetup(t):=getsol(setup(t))
end-do

! Store the solution in shared memory
initializations to "raw:noindex"
solprod as "shmem:solprod"+ALG
solsetup as "shmem:solsetup"+ALG
end-initializations

! Send "solution found" signal
send(NEWSOL, objval)
end-procedure

The bound update callback function checks whether the event queue contains any events, if this
is the case, it takes all events from the queue and sets the value of the last event as the new
cutoff value. The rationale behind the loop for emptying the event queue is that the master
model may have sent several improved solution values since the last check, the best value is
always the one sent last, that is, the last in the queue.

The integer solution callback writes the solution values to shared memory, adding the identifier
of the model (= value of ALG). The latter ensures that two child models that possibly write out
their solution at the same time do not use the same memory area.

4.3 Results

A run with two models may generate a log similar to the following one (note that the model that
terminates the search is not the same that has found the optimal solution).

Improved solution 1283 found by model 2
Improved solution 1250 found by model 2
Improved solution 1242 found by model 1
Improved solution 1236 found by model 2
Improved solution 1234 found by model 2
Best solution found by model 2
Optimality proven by model 1
Objective value: 1234

5 Dantzig-Wolfe decomposition: combining sequential and parallel solv-
ing

Dantzig-Wolfe decomposition (see [Teb01] for further detail) is a solution method for problems
where, if a relatively small number of constraints were removed, the problem would fall apart
into a number of independent problems. This means, it is possible to re-order the rows and
columns of the constraint matrix as shown in Figure 1, where non-zero coefficients only occur
within the gray shaded areas. Such a primal block angular structure may become immediately
apparent by visualizing a problem matrix with Xpress-IVE. However, in most cases it will be
necessary to re-organize the constraint definitions, grouping them by common index (sub)sets
such as time periods, products, plant locations, and so on.

The constraints (including the objective function) involving variables of several or all subproblems
are referred to as global constraints (also: common, linking, or master constraints). These
constraints are used to form the master problem. The individual blocks on the diagonal of the
coefficient matrix are solved as pricing subproblems, coordinated by the master problem. By
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. . 
.

Figure 1: Coeffcient matrix with primal block angular structure

solving the master problem we obtain a solution to the original problem. Since the master
problem has a large number of variables (defined by the set of basic feasible solutions and
unbounded directions of the pricing problems), we work with a restricted master problem over a
small subset of the variables. The variables to enter the active set of variables of the restricted
master problem are determined by solving the pricing subproblems. With objective functions for
the pricing problems that are based on the dual values of the restricted master problem we can
obtain that the objective function value at each extreme point is the reduced cost (or price) of
the master problem variable associated with the extreme point.

For maximization problems, solving the modified pricing problems generates basic feasible
solutions of maximum reduced cost. If the objective value at an extreme point is positive, then
the associated master problem variable is added to the master problem; if the minimum objective
value over all extreme points is negative, then no master problem variables exists to improve the
current master problem solution.

The computational advantage of Dantzig-Wolfe decomposition arises from performing a
significant amount of the computational work in the pricing problems that are roughly an order
of magnitude smaller than the original problem and thus easier to solve. An aspect of the
method that is of interest in the context of this paper is that the subproblems are independent of
each other, and may therefore be solved concurrently.

A potential drawback of the decomposition approach is the huge size of the master problem, it
has many more variables—though fewer constraints—than the original problem. In general it is
not required to generate all variables explicitly but since the feasible region of the master
problem is more complex than that of the original problem, the solution path may be longer.
Furthermore, numerical problems may occur through the dynamic generation of variables of the
master problem.

Many factors may influence the performance of a decomposition approach, so for a particular
application computational experiments will be required to find out whether this solution method
is suitable. Such tests may include different ways of decomposing a given problem. As a general
rule for the definition of a problem decomposition, one should aim for few global constraints
since it is important to be able to (re)solve the master problem quickly. In addition, the pricing
problems should be constructed in such a way that they are well formed problems in their own
right to avoid computational problems due to degeneracy.
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5.1 Example problem: multi-item, multi-period production planning

The company Coco has two plants that can produce two types of cocoa powder. The first factory
has a total capacity of 400 tons per month and the second of 500 tons per month. The marketing
department has provided estimations for the maximum amount of every product that may be
sold in each of the next four months, and also the expected sales prices. Several raw materials are
used in the production with known raw material requirements per ton of finished products.
Finished products and raw material may be stored at the factories from one tim period to the
next, incurring a given cost per ton and per time period. The raw material storage capacity at the
factories is limited to 300 tons. How should the two plants be operated during the planning
period to maximize the total profit?

5.1.1 Original model

Let PRODS be the set of finished products, FACT the set of factories, RAW the set of raw
materials, and TIMES = {1, . . . , NT} the set of time periods under consideration.

We define decision variables makepft representing the quantity of product p made at factory f
during time period t. Furthermore, to model the transition from one time period to the next and
to account for the different types of cost incurred, we need several other sets of variables: sellpft,
the amount of product p sold at factory f in period t; buyrft the amount of raw material r bought
at f in t; and finally pstockpft and rstockrft (both defined for t = 1, . . . , NT + 1) respectively the
amount of product and raw material held in stock at factory f at the beginning of period t.

Let further MXSELLpt be the maximum sales quantity of product p in period t, MXMAKEf the
capacity limit of factory f , and MXRSTOCK the raw material storage capacity.

Let IPSTOCKpf be the quantity of product p initially held in stock at factory f and IRSTOCKrf the
initial stock level of raw material r. We denote by CPSTOCK and CRSTOCK respectively the unit
cost for storing finished product and raw material.

The objective function of maximizing the total profit is to maximize the sales revenues (REVp),
minus the cost of production (CMAKEpf ), buying raw material (CBUYrt), and storing finished
products and raw material.

maximize
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

REVpt · sellpft

−
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

CMAKEpf ·makepft −
∑

r∈RAW

∑
f∈FACT

∑
t∈TIME

CBUYrt · buyrft

−
∑

p∈PRODS

∑
f∈FACT

NT+1∑
t=2

CPSTOCK · pstockpft −
∑

r∈RAW

∑
f∈FACT

NT+1∑
t=2

CRSTOCK · rstockrft

The possibility to store products between time periods gives rise to three sets of constraints: the
inventory balance constraints for finished products (PBalpft) and for raw material (RBalrft), and the
limit on the raw material storage capacity (MxRStockft). The stock pstockp,f,t+1 of product p at the
beginning of t + 1 is given by the stock at the beginning of t plus the production in t reduced by
the amount sold on t. The stock rstockr,f,t+1 of raw material r at the beginning of t + 1 is given by
the corresponding stock at the beginning of t plus the amount bought in t reduced by the
quantity used in production during t.

∀p ∈ PRODS,∀f ∈ FACT,∀t ∈ TIME : PBalpft := pstockp,f,t+1 = pstockpft + makepft − sellpft

∀r ∈ RAW, ∀f ∈ FACT,∀t ∈ TIME :
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RBalrft := rstockr,f,t+1 = rstockrft + buyrft −
∑

p∈PRODS

REQpr ·makepft

∀f ∈ FACT,∀t ∈ {2, . . . , NT + 1} : MxRStockft :=
∑

r∈RAW

rstockrft ≤MXRSTOCK

We further have two sets of capacity constraints: the production capacity of the factories is
limited (constraints MxMakeft) and we can only sell up to a given maximum amount of finished
products per time period (constraints MxSellft).

Below the complete mathematical model is given. The initial stock levels (t = 1) of finished
products and raw material are fixed to the given values.

maximize
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

REVpt · sellpft

−
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

CMAKEpf ·makepft −
∑

r∈RAW

∑
f∈FACT

∑
t∈TIME

CBUYrt · buyrft

−
∑

p∈PRODS

∑
f∈FACT

NT+1∑
t=2

CPSTOCK · pstockpft −
∑

r∈RAW

∑
f∈FACT

NT+1∑
t=2

CRSTOCK · rstockrft

∀p ∈ PRODS, ∀f ∈ FACT,∀t ∈ TIME : PBalpft := pstockp,f,t+1 = pstockpft + makepft − sellpft

∀r ∈ RAW, ∀f ∈ FACT,∀t ∈ TIME :

RBalrft := rstockr,f,t+1 = rstockrft + buyrft −
∑

p∈PRODS

REQpr ·makepft

∀p ∈ PRODS, ∀t ∈ TIME : MxSellpt :=
∑

f∈FACT

sellpft ≤MXSELLp

∀f ∈ FACT,∀t ∈ TIME : MxMakeft :=
∑

p∈PRODS

makepft ≤MXMAKEf

∀f ∈ FACT,∀t ∈ {2, . . . , NT + 1} : MxRStockft :=
∑

r∈RAW

rstockrft ≤MXRSTOCK

∀p ∈ PRODS, ∀f ∈ FACT : pstockpf1 = IPSTOCKpf

∀r ∈ RAW, ∀f ∈ FACT : rstockrf1 = IRSTOCKrf

∀p ∈ PRODS, ∀f ∈ FACT,∀t ∈ TIME : makepft ≥ 0, sellpft ≥ 0

∀r ∈ RAW, ∀f ∈ FACT,∀t ∈ TIME : buyrft ≥ 0

∀p ∈ PRODS, ∀f ∈ FACT,∀t ∈ {1, . . . , NT + 1} : pstockpft ≥ 0

∀r ∈ RAW, ∀f ∈ FACT,∀t ∈ {1, . . . , NT + 1} : rstockrft ≥ 0

5.1.2 Problem decomposition

We now decompose the problem described above according to production locations. Notice that
this is not the only way of decomposing this problem: we may just as well choose a
decomposition by products or by time periods. However, both of these choices result in a larger
number of global constraints than the decomposition by factories, meaning that the master
problem may become more difficult to solve.

For every factory f we obtain the following subproblem (including the sales limit constraints
MxSell in the form of bounds in the submodels is not required, but may lead to better, that is,
more exact or faster solutions).
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maximize
∑

p∈PRODS

∑
t∈TIME

REVpt · sellpt

−
∑

p∈PRODS

∑
t∈TIME

CMAKEp ·makept −
∑

r∈RAW

∑
t∈TIME

CBUYrt · buyrt

−
∑

p∈PRODS

NT+1∑
t=2

CPSTOCK · pstockpt −
∑

r∈RAW

NT+1∑
t=2

CRSTOCK · rstockrt

∀p ∈ PRODS,∀t ∈ TIME : PBalpt := pstockp,t+1 = pstockpt + makept − sellpt

∀r ∈ RAW, ∀t ∈ TIME : RBalrt := rstockr,t+1 = rstockrt + buyrt −
∑

p∈PRODS

REQpr ·makept

∀t ∈ TIME : MxMaket :=
∑

p∈PRODS

makept ≤MXMAKE

∀t ∈ {2, . . . , NT + 1} : MxRStockt :=
∑

r∈RAW

rstockrt ≤MXRSTOCK

∀p ∈ PRODS,∀t ∈ TIME : MxSellpt := sellpt ≤MXSELLp

∀p ∈ PRODS : pstockp1 = IPSTOCKp

∀r ∈ RAW : rstockr1 = IRSTOCKr

∀p ∈ PRODS, ∀t ∈ TIME : makept ≥ 0, sellpt ≥ 0

∀r ∈ RAW, ∀t ∈ TIME : buyrt ≥ 0

∀p ∈ PRODS, ∀t ∈ {1, . . . , NT + 1} : pstockpt ≥ 0

∀r ∈ RAW, ∀t ∈ {1, . . . , NT + 1} : rstockrt ≥ 0

The master problem only contains a single set of global constraints, namely the sales limit
constraints MxSell (for clarity’s sake, the non-negativity constraints are left out here).

maximize
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

REVpt · sellpft

−
∑

p∈PRODS

∑
f∈FACT

∑
t∈TIME

CMAKEpf ·makepft −
∑

r∈RAW

∑
f∈FACT

∑
t∈TIME

CBUYrt · buyrft

−
∑

p∈PRODS

∑
f∈FACT

NT+1∑
t=2

CPSTOCK · pstockpft −
∑

r∈RAW

∑
f∈FACT

NT+1∑
t=2

CRSTOCK · rstockrft

∀p ∈ PRODS,∀t ∈ TIME : MxSellpt :=
∑

f∈FACT

sellpft ≤MXSELLp

In the decomposition algorithm, the decision variables in the master problem are expressed via
the solutions (proposals) generated by the subproblems, such as

∀p ∈ PRODS, ∀f ∈ FACT,∀t ∈ TIME : sellpft =
nPROPf∑

k=1

Prop_sellpftk ·weightfk

where Prop_sellpftk stands for the solution value of variable sellpt in the kth proposal generated by
subproblem f and Prop_costfk is the objective value this proposal. For every subproblem f we
need to add a convexity constraint Convexf on the weightfk variables.
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maximize
∑

f∈FACT

nPROPf∑
k=1

Prop_costfk ·weightfk

∀p ∈ PRODS,∀t ∈ TIME : MxSellpt :=
∑

f∈FACT

nPROPf∑
k=1

Prop_sellpftk ·weightfk ≤MXSELLp

∀f ∈ FACT : Convexf :=
nPROPf∑

k=1

weightfk = 1

∀f ∈ FACT, ∀k ∈ 1, . . . , nPROPf : weightfk ≥ 0

We shall refer to this problem as the modified master problem. Without going any further into
technical detail we simply remark that a correspondence exists between the solution of the
original problem and those of the modified master problem.

5.2 Implementation

The decomposition algorithm has several phases:

• Phase 1: generation of a set of proposals to obtain a feasible solution to the modified
master problem.

• Phase 2: optimization of the modified master problem.

• Phase 3: calculate the solution to the original problem.

The suproblems solved in phases 1 and 2 take as their objective functions sums of the dual values
from the modfied master problem. To avoid starting off with an empty master problem and
hence random dual information that may be misleading we add a crash Phase 0 to our
implementation that generates one proposal for each subproblem with the original objective
function.

5.2.1 Master model

Below follows the body of the master model file. The definitions of the function bodies will be
shown later in Section 5.2.3.

model "Coco3 Master"
uses "mmxprs","mmjobs","mmsystem"

parameters
DATAFILE = "coco2.dat"
ALG = 0 ! 0: stop phase with 1st failed subpb.

! 1: stop when all subprob.s fail
end-parameters

forward procedure process_sub_result
forward procedure solve_master(phase:integer)
forward procedure process_master_result
forward function calc_solution:real
forward procedure print_solution

declarations
PHASE_0=2 ! Event codes sent to submodels
PHASE_1=3
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PHASE_2=4
PHASE_3=5
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_FAILED=7
EVENT_READY=8
NPROD, NFACT, NRAW, NT: integer
end-declarations

initializations from DATAFILE
NPROD NFACT NRAW NT
end-initializations

declarations
PRODS = 1..NPROD ! Range of products (p)
FACT = 1..NFACT ! factories (f)
RAW = 1..NRAW ! raw materials (r)
TIME = 1..NT ! time periods (t)

nIter: integer ! Iteration counter
nPROP: array(FACT) of integer ! Counters of proposals from subprob.s
end-declarations

!**** Master problem ****
declarations
MXSELL: array(PRODS,TIME) of real ! Max. amount of p that can be sold
excessS: mpvar ! Violation of sales/buying limits
weight: array(FACT,range) of mpvar ! weights for proposals
MxSell: array(PRODS,TIME) of linctr ! Sales limit constraints
Convex: array(FACT) of linctr ! Convexity constraints
Price_convex: array(FACT) of real ! Dual price on convexity constraints
Price_sell: array(PRODS,TIME) of real ! Dual price on sales limits
end-declarations

initializations from DATAFILE
MXSELL
end-initializations

!**** Submodels ****
declarations
submod: array(FACT) of Model ! One subproblem per factory
Stopped: set of integer
modid: array(set of integer) of integer ! Model indices
end-declarations

res:= compile("g","cocoSubF.mos") ! Compile the submodel file
forall(f in FACT) do ! Load & run one submodel per product
Price_convex(f):= 1
load(submod(f), "cocoSubF.bim")
modid(getid(submod(f))):= f
run(submod(f), "Factory=" + f + ",DATAFILE=" + DATAFILE)
wait ! Wait for child model to be ready
dropnextevent
end-do

!**** Phase 0: Crash ****
nIter:=1; finished:=false
writeln("\nPHASE 0 -- Iteration ", nIter); fflush

forall(f in FACT) ! Start solving all submodels (Phase 1)
send(submod(f), PHASE_0, 0)

forall(f in FACT) do
wait ! Wait for child (termination) events
ev:= getnextevent
if getclass(ev)=EVENT_SOLVED then
process_sub_result ! Add new proposal to master problem
elif getclass(ev)=EVENT_FAILED then
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finished:= true
end-if
end-do

if finished then
writeln("Problem is infeasible")
exit(1)
end-if

solve_master(1) ! Solve the updated Ph. 1 master problem
process_master_result ! Store initial pricing data for submodels

!**** Phase 1: proposal generation (feasibility) ****
repeat
noimprove:= 0
nIter+=1
writeln("\nPHASE 1 -- Iteration ", nIter); fflush

forall(f in FACT) ! Start solving all submodels (Phase 1)
send(submod(f), PHASE_1, Price_convex(f))

forall(f in FACT) do
wait ! Wait for child (termination) events
ev:= getnextevent
if getclass(ev)=EVENT_SOLVED then
process_sub_result ! Add new proposal to master problem
elif getclass(ev)=EVENT_FAILED then
noimprove += 1
end-if
end-do

if noimprove = NFACT then
writeln("Problem is infeasible")
exit(2)
end-if
if ALG=0 and noimprove > 0 then
writeln("No improvement by some subproblem(s)")
break
end-if

solve_master(1) ! Solve the updated Ph. 1 master problem
if getobjval>0.00001 then
process_master_result ! Store new pricing data for submodels
end-if
until getobjval <= 0.00001

!**** Phase 2: proposal generation (optimization) ****
writeln("\n**** PHASE 2 ****")
finished:=false
repeat
solve_master(2) ! Solve Phase 2 master problem
process_master_result ! Store new pricing data for submodels

nIter+=1
writeln("\nPHASE 2 -- Iteration ", nIter); fflush

forall(f in FACT) ! Start solving all submodels (Phase 2)
send(submod(f), PHASE_2, Price_convex(f))

forall(f in FACT) do
wait ! Wait for child (termination) events
ev:= getnextevent
if getclass(ev)=EVENT_SOLVED then
process_sub_result ! Add new proposal to master problem
elif getclass(ev)=EVENT_FAILED then
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if ALG=0 then
finished:=true ! 1st submodel w/o prop. stops phase 2

else
Stopped += {modid(getfromid(ev))} ! Stop phase 2 only when no submodel

! generates a new proposal
end-if
end-if
end-do

if getsize(Stopped) = NFACT then finished:= true; end-if
until finished

solve_master(2) ! Re-solve master to integrate
! proposal(s) from last ph. 2 iteration

!**** Phase 3: solution to the original problem ****
writeln("\n**** PHASE 3 ****")
forall(f in FACT) do
send(submod(f), PHASE_3, 0) ! Stop all submodels
wait
dropnextevent
end-do

writeln("Total Profit=", calc_solution)
print_solution
end-model

The initial declarations block of this model defines a certain number of event codes that are
used to identify the messages sent between this master model and its child (sub)models. The
same declarations need to be repeated in the child models.

5.2.2 Single factory model

The model file cocoSubF.mos with the definition of the subproblems has the following contents.

model "Coco Subproblem (factory based decomp.)"
uses "mmxprs", "mmjobs"

parameters
Factory = 0
TOL = 0.00001
DATAFILE = "coco3.dat"
end-parameters

forward procedure process_solution

declarations
PHASE_0=2 ! Event codes sent to submodels
PHASE_1=3
PHASE_2=4
PHASE_3=5
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_FAILED=7
EVENT_READY=8
NPROD, NFACT, NRAW, NT: integer
end-declarations

send(EVENT_READY,0) ! Model is ready (= running)

initializations from DATAFILE
NPROD NFACT NRAW NT
end-initializations

declarations
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PRODS = 1..NPROD ! Range of products (p)
FACT = 1..NFACT ! factories (f)
RAW = 1..NRAW ! raw materials (r)
TIME = 1..NT ! time periods (t)

REV: array(PRODS,TIME) of real ! Unit selling price of products
CMAKE: array(PRODS,FACT) of real ! Unit cost to make product p

! at factory f
CBUY: array(RAW,TIME) of real ! Unit cost to buy raw materials
REQ: array(PRODS,RAW) of real ! Requirement by unit of product p

! for raw material r
MXSELL: array(PRODS,TIME) of real ! Max. amount of p that can be sold
MXMAKE: array(FACT) of real ! Max. amount factory f can make

! over all products
IPSTOCK: array(PRODS,FACT) of real ! Initial product stock levels
IRSTOCK: array(RAW,FACT) of real ! Initial raw material stock levels
CPSTOCK: real ! Unit cost to store any product p
CRSTOCK: real ! Unit cost to store any raw mat. r
MXRSTOCK: real ! Raw material storage capacity

make: array(PRODS,TIME) of mpvar ! Amount of products made at factory
sell: array(PRODS,TIME) of mpvar ! Amount of product sold from factory
buy: array(RAW,TIME) of mpvar ! Amount of raw material bought
pstock: array(PRODS,1..NT+1) of mpvar ! Product stock levels at start

! of period t
rstock: array(RAW,1..NT+1) of mpvar ! Raw material stock levels

! at start of period t

sol_make: array(PRODS,TIME) of real ! Amount of products made
sol_sell: array(PRODS,TIME) of real ! Amount of product sold
sol_buy: array(RAW,TIME) of real ! Amount of raw mat. bought
sol_pstock: array(PRODS,1..NT+1) of real ! Product stock levels
sol_rstock: array(RAW,1..NT+1) of real ! Raw mat. stock levels

Profit: linctr ! Profit of proposal
Price_sell: array(PRODS,TIME) of real ! Dual price on sales limits
end-declarations

initializations from DATAFILE
CMAKE REV CBUY REQ MXSELL MXMAKE
IPSTOCK IRSTOCK MXRSTOCK CPSTOCK CRSTOCK
end-initializations

! Product stock balance
forall(p in PRODS,t in TIME)
PBal(p,t):= pstock(p,t+1) = pstock(p,t) + make(p,t) - sell(p,t)

! Raw material stock balance
forall(r in RAW,t in TIME)
RBal(r,t):= rstock(r,t+1) =
rstock(r,t) + buy(r,t) - sum(p in PRODS) REQ(p,r)*make(p,t)

! Capacity limit
forall(t in TIME)
MxMake(t):= sum(p in PRODS) make(p,t) <= MXMAKE(Factory)

! Limit on the amount of prod. p to be sold
forall(p in PRODS,t in TIME) sell(p,t) <= MXSELL(p,t)

! Raw material stock limit
forall(t in 2..NT+1)
MxRStock(t):= sum(r in RAW) rstock(r,t) <= MXRSTOCK

! Initial product and raw material stock levels
forall(p in PRODS) pstock(p,1) = IPSTOCK(p,Factory)
forall(r in RAW) rstock(r,1) = IRSTOCK(r,Factory)
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! Total profit
Profit:=
sum(p in PRODS,t in TIME) REV(p,t) * sell(p,t) - ! revenue
sum(p in PRODS,t in TIME) CMAKE(p,Factory) * make(p,t) - ! prod. cost
sum(r in RAW,t in TIME) CBUY(r,t) * buy(r,t) - ! raw mat.
sum(p in PRODS,t in 2..NT+1) CPSTOCK * pstock(p,t) - ! p storage
sum(r in RAW,t in 2..NT+1) CRSTOCK * rstock(r,t) ! r storage

! (Re)solve this model until it is stopped by event "PHASE_3"
repeat
wait
ev:= getnextevent
Phase:= getclass(ev)
if Phase=PHASE_3 then ! Stop the execution of this model
break
end-if
Price_convex:= getvalue(ev) ! Get new pricing data

if Phase<>PHASE_0 then
initializations from "raw:noindex"
Price_sell as "shmem:Price_sell"
end-initializations
end-if

! (Re)solve this model
if Phase=PHASE_0 then
maximize(Profit)
elif Phase=PHASE_1 then
maximize(sum(p in PRODS,t in TIME) Price_sell(p,t)*sell(p,t) + Price_convex)
else ! PHASE 2
maximize(
Profit - sum(p in PRODS,t in TIME) Price_sell(p,t)*sell(p,t) -
Price_convex)

end-if

writeln("Factory ", Factory, " - Obj: ", getobjval,
" Profit: ", getsol(Profit), " Price_sell: ",
getsol(sum(p in PRODS,t in TIME) Price_sell(p,t)*sell(p,t) ),
" Price_convex: ", Price_convex)

fflush

if getobjval > TOL then ! Solution found: send values to master
process_solution
elif getobjval <= TOL then ! Problem is infeasible (Phase 0/1) or
send(EVENT_FAILED,0) ! no improved solution found (Phase 2)
else
send(EVENT_READY,0)
end-if
until false

!-----------------------------------------------------------
! Process solution data
procedure process_solution
forall(p in PRODS,t in TIME) do
sol_make(p,t):= getsol(make(p,t))
sol_sell(p,t):= getsol(sell(p,t))
end-do
forall(r in RAW,t in TIME) sol_buy(r,t):= getsol(buy(r,t))
forall(p in PRODS,t in 1..NT+1) sol_pstock(p,t):= getsol(pstock(p,t))
forall(r in RAW,t in 1..NT+1) sol_rstock(r,t):= getsol(rstock(r,t))
Prop_cost:= getsol(Profit)
send(EVENT_SOLVED,0)

initializations to "mempipe:noindex,sol"
Factory
sol_make sol_sell sol_buy sol_pstock sol_rstock
Prop_cost
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end-initializations
end-procedure
end-model

The child models are re-solved until they receive the PHASE_3 code. At every iteration they write
their solution values to memory so that these can be processed by the master model.

5.2.3 Master problem subroutines

The following three subroutines of the master model recover the solutions produced by the
subproblems (process_sub_result), re-solve the master problem (solve_master), and
communicate the solution of the master problem to its child models (process_master_result).

declarations
Prop_make: array(PRODS,FACT,TIME,range) of real ! Amount of products made
Prop_sell: array(PRODS,FACT,TIME,range) of real ! Amount of product sold
Prop_buy: array(RAW,FACT,TIME,range) of real ! Amount of raw mat. bought
Prop_pstock: array(PRODS,FACT,1..NT+1,range) of real ! Product stock levels
Prop_rstock: array(RAW,FACT,1..NT+1,range) of real ! Raw mat. stock levels
Prop_cost: array(FACT,range) of real ! Cost/profit of each proposal
end-declarations

procedure process_sub_result
declarations
f: integer ! Factory index

! Solution values of the proposal:
sol_make: array(PRODS,TIME) of real ! Amount of products made
sol_sell: array(PRODS,TIME) of real ! Amount of product sold
sol_buy: array(RAW,TIME) of real ! Amount of raw mat. bought
sol_pstock: array(PRODS,1..NT+1) of real ! Product stock levels
sol_rstock: array(RAW,1..NT+1) of real ! Raw mat. stock levels
pc: real ! Cost of the proposal
end-declarations

! Read proposal data from memory
initializations from "mempipe:noindex,sol"
f
sol_make sol_sell sol_buy sol_pstock sol_rstock
pc
end-initializations

! Add the new proposal to the master problem
nPROP(f)+=1
create(weight(f,nPROP(f)))
forall(p in PRODS,t in TIME) do
Prop_make(p,f,t,nPROP(f)):= sol_make(p,t)
Prop_sell(p,f,t,nPROP(f)):= sol_sell(p,t)
end-do
forall(r in RAW,t in TIME) Prop_buy(r,f,t,nPROP(f)):= sol_buy(r,t)
forall(p in PRODS,t in 1..NT+1) Prop_pstock(p,f,t,nPROP(f)):= sol_pstock(p,t)
forall(r in RAW,t in 1..NT+1) Prop_rstock(r,f,t,nPROP(f)):= sol_rstock(r,t)
Prop_cost(f,nPROP(f)):= pc
writeln("Sol. for factory ", f, ":\n make: ", sol_make, "\n sell: ",

sol_sell, "\n buy: ", sol_buy, "\n pstock: ", sol_pstock,
"\n rstock: ", sol_rstock)

end-procedure

!-----------------------------------------------------------
procedure solve_master(phase: integer)
forall(f in FACT)
Convex(f):= sum (k in 1..nPROP(f)) weight(f,k) = 1

if phase=1 then
forall(p in PRODS,t in TIME)
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MxSell(p,t):=
sum(f in FACT,k in 1..nPROP(f)) Prop_sell(p,f,t,k)*weight(f,k) -
excessS <= MXSELL(p,t)

minimize(excessS)
else
forall(p in PRODS,t in TIME)
MxSell(p,t):=
sum(f in FACT,k in 1..nPROP(f)) Prop_sell(p,f,t,k)*weight(f,k) <=
MXSELL(p,t)

maximize(sum(f in FACT, k in 1..nPROP(f)) Prop_cost(f,k) * weight(f,k))
end-if

writeln("Master problem objective: ", getobjval)
write(" Weights:")
forall(f in FACT,k in 1..nPROP(f)) write(" ", getsol(weight(f,k)))
writeln
end-procedure

!-----------------------------------------------------------
procedure process_master_result
forall(p in PRODS,t in TIME) Price_sell(p,t):=getdual(MxSell(p,t))
forall(f in FACT) Price_convex(f):=getdual(Convex(f))

initializations to "raw:noindex"
Price_sell as "shmem:Price_sell"
end-initializations
end-procedure

Finally, the master model is completed by two subroutines for calculating the solution to the
original problem (calc_solution), Phase 3 of the decomposition algorithm, and printing out
the solution (print_solution). The solution to the original problem is obtained from the
solution values of the modfied master problem and the proposals generated by the subproblems.

declarations
REV: array(PRODS,TIME) of real ! Unit selling price of products
CMAKE: array(PRODS,FACT) of real ! Unit cost to make product p

! at factory f
CBUY: array(RAW,TIME) of real ! Unit cost to buy raw materials
COPEN: array(FACT) of real ! Fixed cost of factory f being

! open for one period
CPSTOCK: real ! Unit cost to store any product p
CRSTOCK: real ! Unit cost to store any raw mat. r

Sol_make: array(PRODS,FACT,TIME) of real ! Solution value (products made)
Sol_sell: array(PRODS,FACT,TIME) of real ! Solution value (product sold)
Sol_buy: array(RAW,FACT,TIME) of real ! Solution value (raw mat. bought)
Sol_pstock: array(PRODS,FACT,1..NT+1) of real ! Sol. value (prod. stock)
Sol_rstock: array(RAW,FACT,1..NT+1) of real ! Sol. value (raw mat. stock)
end-declarations

initializations from DATAFILE
CMAKE REV CBUY CPSTOCK CRSTOCK COPEN
end-initializations

function calc_solution: real
forall(p in PRODS,f in FACT,t in TIME) do
Sol_sell(p,f,t):=
sum(k in 1..nPROP(f)) Prop_sell(p,f,t,k) * getsol(weight(f,k))
Sol_make(p,f,t):=
sum(k in 1..nPROP(f)) Prop_make(p,f,t,k) * getsol(weight(f,k))

end-do
forall(r in RAW,f in FACT,t in TIME) Sol_buy(r,f,t):=
sum(k in 1..nPROP(f)) Prop_buy(r,f,t,k) * getsol(weight(f,k))

forall(p in PRODS,f in FACT,t in 1..NT+1) Sol_pstock(p,f,t):=
sum(k in 1..nPROP(f)) Prop_pstock(p,f,t,k) * getsol(weight(f,k))
forall(r in RAW,f in FACT,t in 1..NT+1) Sol_rstock(r,f,t):=
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sum(k in 1..nPROP(f)) Prop_rstock(r,f,t,k) * getsol(weight(f,k))

returned:=
sum(p in PRODS,f in FACT,t in TIME) REV(p,t) * Sol_sell(p,f,t) -
sum(p in PRODS,f in FACT,t in TIME) CMAKE(p,f) * Sol_make(p,f,t) -
sum(r in RAW,f in FACT,t in TIME) CBUY(r,t) * Sol_buy(r,f,t) -
sum(p in PRODS,f in FACT,t in 2..NT+1) CPSTOCK * Sol_pstock(p,f,t) -
sum(r in RAW,f in FACT,t in 2..NT+1) CRSTOCK * Sol_rstock(r,f,t)

end-function

!-----------------------------------------------------------
procedure print_solution
writeln("Finished products:")
forall(f in FACT) do
writeln("Factory ", f, ":")
forall(p in PRODS) do
write(" ", p, ": ")
forall(t in TIME) write(strfmt(Sol_make(p,f,t),6,1), "(",

strfmt(Sol_pstock(p,f,t+1),5,1), ")")
writeln
end-do
end-do

writeln("Raw material:")
forall(f in FACT) do
writeln("Factory ", f, ":")
forall(r in RAW) do
write(" ", r, ": ")
forall(t in TIME) write(strfmt(Sol_buy(r,f,t),6,1), "(",

strfmt(Sol_rstock(r,f,t+1),5,1), ")")
writeln
end-do
end-do

writeln("Sales:")
forall(f in FACT) do
writeln("Factory ", f, ":")
forall(p in PRODS) do
write(" ", p, ": ")
forall(t in TIME) write(strfmt(Sol_sell(p,f,t),4))
writeln
end-do
end-do

writeln("\nComputation time: ", gettime)
end-procedure

5.3 Results

For the test cases that have been tried the solutions produced by our decomposition algorithm
are close to the optimal solution, but the latter is not always reached. The reason behind this is
that the decomposition algorithm is a sequence of iterations that may accumulate errors at
different levels—lowering the tolerances used as stopping criterion in the submodels most of the
time does not improve the solution. However, the configuration of the decomposition algorithm
itself shows some impact on the solution: in phases 1 and 2 one may choose, for instance, to stop
once the first submodel returns no improvement or continue until no more proposals are
generated. Generating more proposals sometimes helps finding a better solution, but it also
increases the number of times (sub)problems are solved and hence prolongates the solving time.
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6 Benders decomposition: working with several different submodels

Benders decomposition is a decomposition method for solving large Mixed Integer Programming
problems. Instead of solving a MIP problem that may be too large for standard solution methods
all-in-one, we work with a sequence of linear and pure integer subproblems (the latter with a
smaller number of constraints than the original problem). The description of the decomposition
algorithm below is taken from [Hu69] where the interested reader will also find proofs of its
finiteness and of the statement that it always results in the optimal solution.

Consider the following standard form of a mixed-integer programming problem (problem I).

minimize z = Cx + Dy

Ax + By ≥ b

x, y ≥ 0, y integer

In the above, and all through this section, we use bold letters for vectors and matrices. For
instance, Cx + Dy stands for

∑NCTVAR
i=1 Ci · xi +

∑NINTVAR
i=1 Di · yi, where NCTVAR denotes the number of

continuous variables and NINTVAR the number of integer variables.

For given values y′ of y the problem above is reduced to a linear program (problem II)—we leave
out the constant term in the objective:

minimize Cx

Ax ≥ b− By′

x ≥ 0

The dual program of problem II is given by problem IId:

maximize u(b− By′)

uA ≤ C

u ≥ 0

An interesting feature of the dual problem IId is that the feasible region of u is independent of y.
Furthermore, from duality theory it follows that if problem IId is infeasible or has no finite
optimum solution, then the original problem I has no finite optimum solution. Again from
duality theory we know that if problem IId has a finite optimum solution u∗ then this solution has
the same value as the optimum solution to the primal problem (that is, u∗(b− By′) = Cx∗), and for
a solution up (at a vertex p of the feasible region) we have up(b− By′) ≤ Cx∗. Substituting the
latter into the objective of the original MIP problem we obtain a constraint of the form

z ≥ up(b− By) + Dy

To obtain the optimum solution z∗ of the original MIP problem (problem I) we may use the
following partitioning algorithm that is known as Benders decomposition algorithm:

Step 0 Find a u′ that satisfies u’A ≤ C
if no such u′ exists
then the original problem (I) has no feasible solution
else continue with Step 1
end-if
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Step 1 Solve the pure integer program

minimize z

z ≥ u′(b− By) + Dy

y ≥ 0, y integer

If z is unbounded from below, take a z to be any small value z′.

Step 2 With the solution y′ of Step 1, solve the linear program

maximize u(b− By′)

uA ≤ C

u ≥ 0

If u goes to inifinity with u(b− By′)
then add the constraint

∑
i ui ≤M, where M is a large positive constant, and resolve

the problem
end-if
Let the solution of this program be u′′.
if z′ − Dy′ ≤ u′′(b− By′)
then continue with Step 3
else return to Step 1 and add the constraint z′ ≥ Dy + u′′(b− By)
end-if

Step 3 With the solution y′ of Step 1, solve the linear program

minimize Cx

Ax ≥ b− By′

x ≥ 0

x′ and y′ are the optimum solution z∗ = Cx′ + Dy′

This algorithm is provably finite. It results in the optimum solution and at any time during its
execution lower and upper bounds on the optimum solution z∗ can be obtained.

6.1 A small example problem

Our implementation of Benders decomposition will solve the following example problem with
NCTVAR = 3 continuous variables xi, NINTVAR = 3 integer variables yi, and NC = 4 inequality
constraints.

maximize 5 · x1 + 4 · x2 + 3 · x3 + 2 · y1 + 2 · y2 + 3 · y3

x1 − x2 + 5 · x3 + 3 · y1 + 2 · y3 ≤ 5

4 · x2 + 3 · x3 − y1 + y2 ≤ 7

2 · x1 − 2 · x3 + y1 − y2 + y3 ≤ 4

3 · x1 + 5 · y1 + 5 · y2 + 5 · y3 ≤ −2

x, y ≥ 0, y integer
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6.2 Implementation

6.2.1 Master model

The master model reads in the data, defines the solution algorithm, coordinates the
communication between the submodels, and prints out the solution at the end. For step 2 of the
algorithm (solving the dual problem with fixed integer variables) we have the choice to solve
either the primal problem and retrieve the dual solution values from the Optimizer or to define
the dual problem ourselves and solve it. Model parameter ALG lets the user choose between
these two options.

The main part of the master model looks as follows. Prior to the start of the solution algorithm
itself all submodels are compiled, loaded, and started so that in each step of the algorithm we
simply need to trigger the (re)solving of the corresponding submodel.

model "Benders (master model)"
uses "mmxprs", "mmjobs"

parameters
NCTVAR = 3
NINTVAR = 3
NC = 4
BIGM = 1000
ALG = 1 ! 1: Use Benders decomposition (dual)

! 2: Use Benders decomposition (primal)
DATAFILE = "bprob33.dat"
end-parameters

forward procedure start_solution
forward procedure solve_primal_int(ct: integer)
forward procedure solve_cont
forward function eval_solution: boolean
forward procedure print_solution

declarations
STEP_0=2 ! Event codes sent to submodels
STEP_1=3
STEP_2=4
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_INFEAS=7
EVENT_READY=8

CtVars = 1..NCTVAR ! Continuous variables
IntVars = 1..NINTVAR ! Discrete variables
Ctrs = 1..NC ! Set of constraints (orig. problem)

A: array(Ctrs,CtVars) of integer ! Coeff.s of continuous variables
B: array(Ctrs,IntVars) of integer ! Coeff.s of discrete variables
b: array(Ctrs) of integer ! RHS values
C: array(CtVars) of integer ! Obj. coeff.s of continuous variables
D: array(IntVars) of integer ! Obj. coeff.s of discrete variables
Ctr: array(Ctrs) of linctr ! Constraints of orig. problem
CtrD: array(CtVars) of linctr ! Constraints of dual problem
MC: array(range) of linctr ! Constraints generated by alg.

sol_u: array(Ctrs) of real ! Solution of dual problem
sol_x: array(CtVars) of real ! Solution of primal prob. (cont.)
sol_y: array(IntVars) of real ! Solution of primal prob. (integers)
sol_obj: real ! Objective function value (primal)

RM: range ! Model indices
stepmod: array(RM) of Model ! Submodels
end-declarations
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initializations from DATAFILE
A B b C D
end-initializations

! **** Submodels ****

initializations to "raw:noindex" ! Save data for submodels
A as "shmem:A" B as "shmem:B"
b as "shmem:b" C as "shmem:C" D as "shmem:D"
end-initializations

! Compile + load all submodels
if compile("benders_int.mos")<>0 then exit(1); end-if
create(stepmod(1)); load(stepmod(1), "benders_int.bim")
if compile("benders_dual.mos")<>0 then exit(2); end-if

if ALG=1 then
create(stepmod(2)); load(stepmod(2), "benders_dual.bim")
else
create(stepmod(0)); load(stepmod(0), "benders_dual.bim")
if compile("benders_cont.mos")<>0 then exit(3); end-if
create(stepmod(2)); load(stepmod(2), "benders_cont.bim")
run(stepmod(0), "NCTVAR=" + NCTVAR + ",NINTVAR=" + NINTVAR + ",NC=" + NC)
end-if

! Start the execution of the submodels
run(stepmod(1), "NINTVAR=" + NINTVAR + ",NC=" + NC)
run(stepmod(2), "NCTVAR=" + NCTVAR + ",NINTVAR=" + NINTVAR + ",NC=" + NC)

forall(m in RM) do
wait ! Wait for "Ready" messages
ev:= getnextevent
if getclass(ev) <> EVENT_READY then
writeln("Error occurred in a subproblem")
exit(4)
end-if
end-do

! **** Solution algorithm ****

start_solution ! 0. Initial solution for cont. var.s
ct:= 1
repeat
writeln("\n**** Iteration: ", ct)
solve_primal_int(ct) ! 1. Solve problem with fixed cont.
solve_cont ! 2. Solve problem with fixed int.
ct+=1
until eval_solution ! Test for optimality
print_solution ! 3. Retrieve and display the solution

The subroutines starting the different submodels send a ‘start solving’ event and retrieve the
solution once the submodel solving has finished. For the generation of the start solution we need
to choose the right submodel, according to the settings of the parameter ALG. If this problem is
found to be infeasible, then the whole problem is infeasible and we stop the execution of the
model.

! Produce an initial solution for the dual problem using a dummy objective
procedure start_solution
if ALG=1 then ! Start the problem solving
send(stepmod(2), STEP_0, 0)
else
send(stepmod(0), STEP_0, 0)
end-if
wait ! Wait for the solution
ev:=getnextevent
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if getclass(ev)=EVENT_INFEAS then
writeln("Problem is infeasible")
exit(6)
end-if
end-procedure

!-----------------------------------------------------------
! Solve a modified version of the primal problem, replacing continuous
! variables by the solution of the dual
procedure solve_primal_int(ct: integer)
send(stepmod(1), STEP_1, ct) ! Start the problem solving
wait ! Wait for the solution
ev:=getnextevent
sol_obj:= getvalue(ev) ! Store objective function value

initializations from "raw:noindex" ! Retrieve the solution
sol_y as "shmem:y"
end-initializations
end-procedure

!-----------------------------------------------------------
! Solve the Step 2 problem (dual or primal depending on value of ALG)
! for given solution values of y
procedure solve_cont
send(stepmod(2), STEP_2, 0) ! Start the problem solving
wait ! Wait for the solution
dropnextevent

initializations from "raw:noindex" ! Retrieve the solution
sol_u as "shmem:u"
end-initializations
end-procedure

The master model also tests whether the termination criterion is fulfilled (function
eval_solution) and prints out the final solution (procedure print_solution). The latter
procedure also stops all submodels:

function eval_solution: boolean
write("Test optimality: ", sol_obj - sum(i in IntVars) D(i)*sol_y(i),

" = ", sum(j in Ctrs) sol_u(j)* (b(j) -
sum(i in IntVars) B(j,i)*sol_y(i)) )

returned:= ( sol_obj - sum(i in IntVars) D(i)*sol_y(i) =
sum(j in Ctrs) sol_u(j)* (b(j) - sum(i in IntVars) B(j,i)*sol_y(i)) )

writeln(if(returned, " : true", " : false"))
end-function

!-----------------------------------------------------------
procedure print_solution
! Retrieve results
initializations from "raw:noindex"
sol_x as "shmem:x"
end-initializations

forall(m in RM) stop(stepmod(m)) ! Stop all submodels

write("\n**** Solution (Benders): ", sol_obj, "\n x: ")
forall(i in CtVars) write(sol_x(i), " ")
write(" y: ")
forall(i in IntVars) write(sol_y(i), " ")
writeln
end-procedure
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6.2.2 Submodel 1: fixed continuous variables

In the first step of the decomposition algorithm we need to solve a pure integer problem. When
the execution of this model is started it reads in the invariant data and sets up the variables. It
then halts at the wait statement (first line of the repeat-until loop) until the master model
sends it a (solving) event. At each invocation of solving this problem, the solution values of the
previous run of the continuous problem—read from memory—are used to define a new
constraint MC(k) for the integer problem. The whole model, and with it the endless loop into
which the solving is embedded, will be terminated only by the ‘stop model’ command from the
master model. The complete source of this submodel (file benders_int.mos) is listed below.

model "Benders (integer problem)"
uses "mmxprs", "mmjobs"

parameters
NINTVAR = 3
NC = 4
BIGM = 1000
end-parameters

declarations
STEP_0=2 ! Event codes sent to submodels
STEP_1=3
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_READY=8

IntVars = 1..NINTVAR ! Discrete variables
Ctrs = 1..NC ! Set of constraints (orig. problem)

B: array(Ctrs,IntVars) of integer ! Coeff.s of discrete variables
b: array(Ctrs) of integer ! RHS values
D: array(IntVars) of integer ! Obj. coeff.s of discrete variables
MC: array(range) of linctr ! Constraints generated by alg.

sol_u: array(Ctrs) of real ! Solution of dual problem
sol_y: array(IntVars) of real ! Solution of primal prob.

y: array(IntVars) of mpvar ! Discrete variables
z: mpvar ! Objective function variable
end-declarations

initializations from "raw:noindex"
B as "shmem:B" b as "shmem:b" D as "shmem:D"
end-initializations

z is_free ! Objective is a free variable
forall(i in IntVars) y(i) is_integer ! Integrality condition
forall(i in IntVars) y(i) <= BIGM ! Set (large) upper bound

send(EVENT_READY,0) ! Model is ready (= running)

repeat
wait
ev:= getnextevent
ct:= integer(getvalue(ev))

initializations from "raw:noindex"
sol_u as "shmem:u"
end-initializations

! Add a new constraint
MC(ct):= z >= sum(i in IntVars) D(i)*y(i) +

sum(j in Ctrs) sol_u(j)*(b(j) - sum(i in IntVars) B(j,i)*y(i))
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minimize(z)

! Store solution values of y
forall(i in IntVars) sol_y(i):= getsol(y(i))

initializations to "raw:noindex"
sol_y as "shmem:y"
end-initializations

send(EVENT_SOLVED, getobjval)

write("Step 1: ", getobjval, "\n y: ")
forall(i in IntVars) write(sol_y(i), " ")

write("\n Slack: ")
forall(j in 1..ct) write(getslack(MC(j)), " ")
writeln
fflush

until false

end-model

Since the problems we are solving differ only by a single constraint from one iteration to the next,
it may be worthwhile to save the basis of the solution to the root LP-relaxation (not the basis to
the MIP solution) and reload it for the next optimization run. However, for our small test case we
did not observe any improvements in terms of execution speed. For saving and re-reading the
basis, the call to minimize needs to be replaced by the following sequence of statements:

declarations
bas: basis
end-declarations

loadprob(z)
loadbasis(bas)
minimize(XPRS_TOP, z)
savebasis(bas)
minimize(XPRS_GLB, z)

6.2.3 Submodel 2: fixed integer variables

The second step of our decomposition algorithm consists in solving a subproblem where all
integer variables are fixed to their solution values found in the first step. The structure of the
model implementing this step is quite similar to the previous submodel. When the model is run, it
reads the invariant data from memory and sets up the objective function. It then halts at the line
wait at the beginning of the loop to wait for a step 2 solving event sent by the master model. At
every solving iteration the constraints CTR are redefined using the coefficients read from memory
and the solution is written back to memory. Below follows the source of this model (file
benders_cont.mos).

model "Benders (continuous problem)"
uses "mmxprs", "mmjobs"

parameters
NCTVAR = 3
NINTVAR = 3
NC = 4
BIGM = 1000
end-parameters

declarations
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STEP_0=2 ! Event codes sent to submodels
STEP_2=4
STEP_3=5
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_READY=8

CtVars = 1..NCTVAR ! Continuous variables
IntVars = 1..NINTVAR ! Discrete variables
Ctrs = 1..NC ! Set of constraints (orig. problem)

A: array(Ctrs,CtVars) of integer ! Coeff.s of continuous variables
B: array(Ctrs,IntVars) of integer ! Coeff.s of discrete variables
b: array(Ctrs) of integer ! RHS values
C: array(CtVars) of integer ! Obj. coeff.s of continuous variables
Ctr: array(Ctrs) of linctr ! Constraints of orig. problem

sol_u: array(Ctrs) of real ! Solution of dual problem
sol_x: array(CtVars) of real ! Solution of primal prob. (cont.)
sol_y: array(IntVars) of real ! Solution of primal prob. (integers)

x: array(CtVars) of mpvar ! Continuous variables
end-declarations

initializations from "raw:noindex"
A as "shmem:A" B as "shmem:B"
b as "shmem:b" C as "shmem:C"
end-initializations

Obj:= sum(i in CtVars) C(i)*x(i)

send(EVENT_READY,0) ! Model is ready (= running)

! (Re)solve this model until it is stopped by event "STEP_3"
repeat
wait
dropnextevent

initializations from "raw:noindex"
sol_y as "shmem:y"
end-initializations

forall(j in Ctrs)
Ctr(j):= sum(i in CtVars) A(j,i)*x(i) +

sum(i in IntVars) B(j,i)*sol_y(i) >= b(j)

minimize(Obj) ! Solve the problem

! Store values of u and x
forall(j in Ctrs) sol_u(j):= getdual(Ctr(j))
forall(i in CtVars) sol_x(i):= getsol(x(i))

initializations to "raw:noindex"
sol_u as "shmem:u" sol_x as "shmem:x"
end-initializations

send(EVENT_SOLVED, getobjval)

write("Step 2: ", getobjval, "\n u: ")
forall(j in Ctrs) write(sol_u(j), " ")
write("\n x: ")
forall(i in CtVars) write(getsol(x(i)), " ")
writeln
fflush

until false

end-model
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6.2.4 Submodel 0: start solution

To start the decomposition algorithm we need to generate an initial set of values for the
continuous variables. This can be done by solving the dual problem in the continuous variables
with a dummy objective function. A second use of the dual problem is for Step 2 of the
algorithm, replacing the primal model we have seen in the previous section. The implementation
of this submodel takes into account these two cases: within the solving loop we test for the type
(class) of event that has been sent by the master problem and choose the problem to be solved
accordingly.

The main part of this model is implemented by the following Mosel code (file
benders_dual.mos).

model "Benders (dual problem)"
uses "mmxprs", "mmjobs"

parameters
NCTVAR = 3
NINTVAR = 3
NC = 4
BIGM = 1000
end-parameters

forward procedure save_solution

declarations
STEP_0=2 ! Event codes sent to submodels
STEP_2=4
EVENT_SOLVED=6 ! Event codes sent by submodels
EVENT_INFEAS=7
EVENT_READY=8

CtVars = 1..NCTVAR ! Continuous variables
IntVars = 1..NINTVAR ! Discrete variables
Ctrs = 1..NC ! Set of constraints (orig. problem)

A: array(Ctrs,CtVars) of integer ! Coeff.s of continuous variables
B: array(Ctrs,IntVars) of integer ! Coeff.s of discrete variables
b: array(Ctrs) of integer ! RHS values
C: array(CtVars) of integer ! Obj. coeff.s of continuous variables

sol_u: array(Ctrs) of real ! Solution of dual problem
sol_x: array(CtVars) of real ! Solution of primal prob. (cont.)
sol_y: array(IntVars) of real ! Solution of primal prob. (integers)

u: array(Ctrs) of mpvar ! Dual variables
end-declarations

initializations from "raw:noindex"
A as "shmem:A" B as "shmem:B"
b as "shmem:b" C as "shmem:C"
end-initializations

forall(i in CtVars) CtrD(i):= sum(j in Ctrs) u(j)*A(j,i) <= C(i)

send(EVENT_READY,0) ! Model is ready (= running)

! (Re)solve this model until it is stopped by event "STEP_3"
repeat
wait
ev:= getnextevent
Alg:= getclass(ev)

if Alg=STEP_0 then ! Produce an initial solution for the
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! dual problem using a dummy objective
maximize(sum(j in Ctrs) u(j))
if(getprobstat = XPRS_INF) then
writeln("Problem is infeasible")
send(EVENT_INFEAS,0) ! Problem is infeasible
else
write("**** Start solution: ")
save_solution
end-if

else ! STEP 2: Solve the dual problem for
! given solution values of y

initializations from "raw:noindex"
sol_y as "shmem:y"
end-initializations

Obj:= sum(j in Ctrs) u(j)* (b(j) - sum(i in IntVars) B(j,i)*sol_y(i))
maximize(XPRS_PRI, Obj)

if(getprobstat=XPRS_UNB) then
BigM:= sum(j in Ctrs) u(j) <= BIGM
maximize(XPRS_PRI, Obj)
end-if

write("Step 2: ")
save_solution ! Write solution to memory
BigM:= 0 ! Reset the ’BigM’ constraint
end-if

until false

This model is completed by the definition of the subroutine save_solution that writes the
solution to memory and informs the master model of it being available by sending the
EVENT_SOLVED message.

! Process solution data
procedure save_solution
! Store values of u and x
forall(j in Ctrs) sol_u(j):= getsol(u(j))
forall(i in CtVars) sol_x(i):= getdual(CtrD(i))

initializations to "raw:noindex"
sol_u as "shmem:u" sol_x as "shmem:x"
end-initializations

send(EVENT_SOLVED, getobjval)

write(getobjval, "\n u: ")
forall(j in Ctrs) write(sol_u(j), " ")
write("\n x: ")
forall(i in CtVars) write(getdual(CtrD(i)), " ")
writeln
fflush
end-procedure

end-model

6.3 Results

The optimal solution to our small test problem has the objective function value 18.1852. Our
program produces the following output, showing that the problem is solved to optimality with 3
iterations (looping around steps 1 and 2) of the decomposition algorithm:

**** Start solution: 4.05556
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u: 0.740741 1.18519 2.12963 0
x: 0.611111 0.166667 0.111111

**** Iteration: 1
Step 1: -1146.15
y: 1000 0 0
Slack: 0

Step 2: 1007
u: 0 1 0 0
x: 0 251.75 0

Test optimality: -3146.15 = 1007 : false

**** Iteration: 2
Step 1: 17.0185
y: 3 0 0
Slack: 0 -1.01852

Step 2: 12.5
u: 0 1 2.5 0
x: 0.5 2.5 0

Test optimality: 11.0185 = 12.5 : false

**** Iteration: 3
Step 1: 18.1852
y: 2 0 0
Slack: 0 -5.18519 -0.185185

Step 2: 14.1852
u: 0.740741 1.18519 2.12963 0
x: 1.03704 2.22222 0.037037

Test optimality: 14.1852 = 14.1852 : true

**** Solution (Benders): 18.1852
x: 1.03704 2.22222 0.037037 y: 2 0 0

7 Summary

The examples in this white paper show how to use the functionality provided by the mmjobs
module. Without giving an exhaustive overview of the technical possibilities they provide starting
points for implementation of, and experimentation with, parallel solving and other
multi-problem solution approaches.

Any solver module available for Mosel may be used in conjunction with mmjobs. However,
parallel solving of multiple problems with the same solver is only possible if the underlying solver
can work in a multi-threaded environment. This is the case for Xpress-Optimizer and its derivates
(QP, SLP, SP) as well as for Xpress-Kalis.
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