
mod2mos
mp-model to Mosel translator

User Guide

Release 1

c©Copyright Dash Associates 1998-2002

All trademarks referenced in this manual that are not the property of Dash Associates are acknow-
ledged.

All companies, products, names and data contained within this user guide are completely fictitious
and are used solely to illustrate the use of Xpress-MP. Any similarity between these names or data
and reality is purely coincidental.

How to Contact Dash

If you have any questions or comments on the use of Xpress-MP, please contact Dash technical
support at:

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Ltd.
560 Sylvan Avenue Quinton Lodge, Binswood Avenue
Englewood Cliffs Leamington Spa
NJ 07632 Warwickshire CV32 5RX
USA UK
Telephone: (201) 567 9445 Telephone: +44 1926 315862
Fax: (201) 567 9443 Fax: +44 1926 315854
email: support-usa@dashoptimization.com email: support@dashoptimization.com

If you have any sales questions or wish to order Xpress-MP software, please contact your local
sales office, or Dash sales at:

USA, Canada and The Americas Elsewhere
Dash Optimization Inc. Dash Optimization Ltd.
560 Sylvan Avenue Blisworth House, Church Lane
Englewood Cliffs Blisworth
NJ 07632 Northants NN7 3BX
USA UK
Telephone: (201) 567 9445 Telephone: +44 1604 858993
Fax: (201) 567 9443 Fax: +44 1604 858147
email: sales@dashoptimization.com email: sales@dashoptimization.com

For the latest news and Xpress-MP software and documentation updates, please visit the Xpress-
MP website at http://www.dashoptimization.com

mailto:support-usa@dashoptimization.com
mailto:support@dashoptimization.com
mailto:sales@dashoptimization.com
mailto:sales@dashoptimization.com
http://www.dashoptimization.com

Contents

1 Introduction 1

2 Using mod2mos 2
2.1 Processing model source files . 2
2.2 Processing data files . 3

3 Cases requiring modifications 4
3.1 Problems detected during the translation . 4
3.2 Problems detected by Mosel during compilation . 7
3.3 Problems that are not detected . 9

4 Improving the generated code 11

Index 14

ii mod2mos User Guide

Chapter 1

Introduction

The program mod2mos is intended to help in the process of migrating models written for
mp-model to Mosel by translating source files from one syntax to the other.

The translation is operated in a way that as far as possible preserves the structure of the original
file (location of comments, order of instructions).

Although in many cases the resulting file is ready for compilation with the Mosel compiler,
some minor modifications may have to be carried out manually either before (on the original
mp-model source file) or after the conversion.

This document describes the most frequent cases that may lead to difficulties and the corre-
sponding modifications to remedy or prevent these. Many problems are detected either by the
translator itself or by the Mosel Compiler. In addition, one section of this manual is dedicated
to cases that cannot be detected by either one and only show up during the execution of the
translated model. The last chapter contains suggestions as to how a generated Mosel code
may be improved, in terms of readibility and efficiency.

1 mod2mos User Guide

Chapter 2

Using mod2mos

The mp-model to Mosel Translator is started with the command mod2mos. Depending on the
set of parameters, the command may translate a model source file or a data file.

2.1 Processing model source files

mp-model source file: The command mod2mos expects as parameter the name of the file to
be translated. If the file name is given without an extension and no file of this name exists,
the extension .mod is assumed. If no argument is given, the source is taken from the standard
input.

Generated output file: The program writes its result to a file the name of which is deduced
from the input file name with extension .mos (if no filename was given the result is sent to
the standard output).

A typical use of mod2mos is the following (assuming we wish to translate the file myfile.mod
(mp-model syntax) to the file myfile.mos):

mod2mos myfile

The following options may be used with the mod2moscommand:

-h: display a short help message

-V: display version information

-t num: set the size of tabulations to num. The default value for this parameter is 4 under
Windows and 8 for other operating systems.

-e ext: use the extension ext when renaming an identifier. The default value for this parameter
is ‘_’

-in: during the conversion, mod2mos may also replace ‘diskdata’ statements by Mosel initial-
ization blocks and optionally generate the corresponding data files based on the original
mp-model files. The level of conversion is determined by n which is bit encoded as fol-
lows:

bit 1 (1): translate input statements only
bit 2 (2): translate output statements only
bit 3 (4): by default data files are not modified and the command to be executed is dis-

played. If this flag is set, the command is executed
bit 4 (8): disable printing of messages related to this option

-o file: use file as the output filename. If file is ‘-’ the result is sent to the standard output.

Example:

mod2mos -t 6 -e __ -i15 -o newmod.mos oldmod

2 mod2mos User Guide

2.2 Processing data files

mod2mos may also be used to convert a data file suitable for a diskdata statement into an
initialization block file. This mode is activated by the option -d:

-d fmt: if this option is used, mod2mos expects a data file instead of a model file. Since mp-
model data files are not structured, the parameter ’fmt’ is required to indicate the struc-
ture to use and what the label(s) in the resulting file must be:

label1[,label2,... :] the file contains a (list of) scalar(s)
label/0: the file contains an array in dense format
label/i/n: the file contains n array(s) in sparse format and the ith first columns are used

as indices

When the program is used in this mode, the file name produced for the output file is orig-
inal_name_mos.dat. Note that the result of the conversion is appended to the end of the
output file (normally the file is replaced).

Examples:

Assuming we need to translate the file scs.dat that contains the values for scalars E1,E2, E3
and E4. Such a file may look like the following:

10,5,7.8,0

The conversion can be achieved by the following command:

mod2mos -d E1,E2,E3,E4 -o datainit.dat scs.dat

which produces the file:

E1: 10
E2: 5
E3: 7.8
E4: 0

The same scs.dat file may be employed to initialize the mp-model dense table T. In this case
the command should be:

mod2mos -d T/0 -o datainit.dat scs.dat

which gives the file:

T: [
10 5 7.8 0

]

An mp-model data file can also be used to initialize several arrays. In this case, the first columns
of each line of the file are used as indices and the following data are the values to be assigned
to the array cells. Assuming the file mytabs.dat is intended to work with the arrays T1 and
T2 that are of 3 dimensions, the contents of such a file may be:

1,a,1,10,20
1,a,2,30,40
1,b,1,50,60

The conversion can be obtained with the following command:

mod2mos -d T12/3/2 -o datainit.dat mytabs.dat

and produces the following initialization file:

T12: [
(1 a 1) [10 20]
(1 a 2) [30 40]
(1 b 1) [50 60]

]

Using mod2mos 3 mod2mos User Guide

Chapter 3

Cases requiring modifications

3.1 Problems detected during the translation

During the processing of an mp-model file, mod2mos may detect various cases where either
it cannot produce valid code or the generated code is potentially incorrect. Usually a simple
modification in the generated file fixes the problem.

Below we list the mod2mos error messages together with a description of the modifications
required to counter the problem.

• Only ODBC connections are supported.

Currently, database access is achieved using the mmodbcmodule with Mosel (ADO is not
supported).

• Conditional file inclusion is not supported.

mp-model treats its statements one at a time and the result of a statement can be used to
select what to do next, using conditions for choosing the following statement(s), possibly
ignoring a part of the source file. Mosel compiles a source file at once; conditions are
evaluated at run time but file inclusion is performed at compile time.

Example:
IF X=0

INPUT file1.mod
ELSE

INPUT file2.mod
ENDIF

This block of statements cannot be translated to Mosel: file inclusions have to be moved
outside of conditions.

• Declarations in conditions are not supported.

The same restriction as for file inclusion applies to declarations:
IF X=0

TABLES T(10)
ENDIF

In mp-model, if the condition evaluates to false the symbol T is not declared. With Mosel
this decision cannot be taken since the condition will be checked at execution time. A
workaround is to move the condition to the size of the array.

Example:
declarations

T:array(1..if(X=0,10,1)) of real
end-declarations

At execution time, if the condition is not satisfied, only a small array (1 element) is cre-
ated. If the same symbol is used for incompatible objects, this workaround is not sufficient
and it becomes necessary to rename the object.

4 mod2mos User Guide

Example:

IF X=0
TABLES T(10)

ELSE
TABLES T(10,20)

ENDIF

can be rewritten as follows:

declarations
T1:array(1..if(X=0,10,1)) of real
T2:array(1..if(X<>0,10,1),1..if(X<>0,20,1)) of real

end-declarations

As a general rule, such modeling techniques should have been avoided because they are
a likely source of mistakes and make the model harder to read and maintain.

• Condition on declaration of ‘x’ ignored.

An expression of the following type has been encountered:

VARIABLES x(|Z>0)

Since conditions in declarations are not supported, this statement cannot be translated.
To get the corresponding behaviour with Mosel, the condition may be translated into a
constraint:

declarations
x:mpvar

end-declarations
if Z<=0 then x=0; end-if

• ‘diskdata’ cannot be used to initialize scalars (‘a’).

The procedure diskdata of the module mmetc works only with arrays.
The following mp-model code produces this warning:

TABLES a
DISKDATA a=myfile

because it is translated to:

declarations
a: real

end-declarations
diskdata(’myfile’,a)

which produces the following error in Mosel: Incompatible types for parameters of ‘disk-
data’.

To avoid this problem, an auxiliary array may be introduced as an intermediate:

declarations
a: real
a_in: array(1..1) of real

end-declarations
diskdata(’myfile’,a_in)
a:=a_in(1)

In the case of ODBC connections, the preferable solution is to use functions SQLread...; in
our example:

declarations
a: real

end-declarations
a:=SQLreadreal(’select * from T’)

• ‘diskdata’ does not support offset (‘a’).

Statements of the form:

Cases requiring modifications 5 mod2mos User Guide

DISKDATA a(10)=myfile

are not properly converted. Since the Mosel procedure diskdata accepts only arrays as
parameter, either a separate operation is required to shift the data within the table or an
intermediate table needs to be used. The line above may, for instance, be replaced by
the following:

diskdata(ETC_IN,’myfile’,a)
forall(i in 1..10) do

a(i+9):=a(i)
a(i):=0

end-do

• ‘initializations’ does not support offset (‘a’).

This is the same problem as above but when initialisation blocks are generated from
diskdata statements. In this case, the problem may be fixed by adding the offset in the
data file directly:

a: [(10) 1 2 3 4]

• ‘diskdata’ option ‘X’ is ignored.

The implementation of diskdata in mmetc supports only the options d, s, c, a, t, m, u.
Note further that mmodbcsupports none of these.

• ‘select’ must be replaced by ‘insert’ in SQL queries.

When saving data to databases using ODBC (post optimization), select SQL queries have
to be replaced by insert or update queries because of the different way of working of
mmodbccompared to ODBC-connect of mp-model.
Note also that exporting arrays of variables or constraints is not supported by mmodbc:
solution values have to be stored in data arrays for use in SQL queries.

Example:
declarations

sol_x:array(I) of real
end-declarations
forall(i in I) sol_x(i):=getsol(x(i))
SQLupdate(’select * from solutions’,sol_x)

• ‘nodynindex’ has to be replaced by set finalizations.

The dynamic initialization of index sets is controled by the option DYNINDEXin mp-model.
This feature does not exist in Mosel and diskdata behaves as if DYNINDEXwas always
active. Actually, as long as a set I in a Mosel model is dynamic, a request to an unknown
element in I implies an extension of this set. To reproduce the effect of the statement
SET NODYNINDEX, sets that have been initialized must be finalized.

Example:
diskdata(’datafile.dat’,I)
finalize(I) ! ‘I’ is now constant

• Trying to convert macro ‘m’ into a procedure.

Since Mosel does not support macros, the translator tries to generate a procedure in place
of the macro (and modifies the calls to this macro accordingly). This conversion does not
work if the macro uses its parameters for building names or declares new entities (in
Mosel they become local to the procedure).

Example:
MACRO tut a,b

LET a=10
LET my b=0

ENDMACRO

tut aa,bb
PRINT aa
PRINT mybb

Cases requiring modifications 6 mod2mos User Guide

This code cannot be properly converted.

• Symbol ‘a’ (Mosel keyword) is renamed to ‘a_’.

Reserved words in Mosel and mp-model are not the same. Some identifiers that are valid
for mp-model are keywords in Mosel: in such a case, mod2mos renames the identifier
by appending an underscore to the original name (the string to be appended to the
identifier name can be modified by using the option ’-e’ of mod2mos).

Example:

TABLES prod(10)

results in:

declarations
prod_:array(1..10) of real

end-declarations

• SLANG section cannot be handled. Aborting.

There is no one-to-one correspondence between SLANG and Mosel but most of the tasks
programmed with SLANG in mp-model models can quite easily be rewritten directly with
Mosel.

• Statement ‘s’ ignored.

With s = delete, columns, help, pause, show, toasc, save, restore, 123data.

These statements have no direct correspondence in Mosel and are therefore ignored dur-
ing the conversion.

Note that using procedures with locally declared data is a good alternative to deleting
tables.

3.2 Problems detected by Mosel during compilation

Even when the translation has been performed without any problem, the generated code may
not always be a correct Mosel program. Here are some typical cases where Mosel detects syntax
errors that are due to specificities of mp-model.

• Incompatible types for range.

As opposed to mp-model, Mosel does not convert reals to integers implicitly. In many
mp-model models, reals are used to define subscript ranges: in the context of Mosel, it is
important to make sure that the values used to define an index range are indeed of type
integer.

For instance:

TABLES MM
...
ASSIGN C(i=1:MM)=1

The translated code will not work because MM is not an integer. The correction can be
done in the original model:

TABLES -i MM

This error may also be produced when strings are used as range bounds.

Example:

FOR(i="Mon":"Fri")...

Cases requiring modifications 7 mod2mos User Guide

Mosel supports only ranges of integers – in this example a set of strings is required. More-
over, arithmetic on index sets elements is not defined in Mosel since string operations are
supported. For instance: "Sat"-1 is interpreted as ‘the element preceding "Sat" in the
index set’ in mp-model. In Mosel the string difference gets computed (that is, "Sat"-"1"
which gives "Sat").
As a consequence of the previous remarks, the following mp-model statement:

FOR(i="Mon":"Sat"-1)...

has to be rewritten for Mosel (assuming that days has been defined previously as the set
of all days of the week):

forall(i in days-{"Sat","Sun"})...

• Expression cannot be assigned a value.

mod2mos translates LET statements into constants. However, sometimes LET statements
are used in the same way as ASSIGN and the same symbol is assigned different values
using consecutive LET statements. Starting from the second assignment, mod2mos trans-
lates this statement into Mosel assignments: since the symbol was originally defined as a
constant, a compilation error is raised.

Example:

LET a=10
LET a=20

results in the Mosel code:

declarations
a=10

end-declarations
a:=20

In such a case, either the LET statements need to be replaced by ASSIGN statements in
the mp-model source file or in the generated Mosel file the constant declaration must be
replaced by a variable declaration.

Example:

declarations
a:integer

end-declarations
a:=10
a:=20

In certain cases, the Mosel Compiler displays the error message ‘Syntax error’ without being
able to give any more detailed information. This may be due to the following:

• Syntax error related to parameters blocks

mod2mos converts DEFINE statements into model parameters. In mp-model defined ob-
jects are handled like macros, in Mosel they are constants. In some places this difference
implies incorrect translations.

Example:

DEFINE A=tut
TABLES t%A%t(10)

gives:

parameters
A=tut

end-parameters

declarations
tAt: array (1..10) of real

end-declarations

Cases requiring modifications 8 mod2mos User Guide

• Syntax error on ‘diskdata’ or ‘SQLexecute’ statements

If diskdata or ODBC statements that raised error messages during the translation have
not been corrected, the Mosel Compiler is likely to stop with a syntax error on the corre-
sponding statement. See the remarks concerning these topics in Section 3.1.

3.3 Problems that are not detected

It is important to test generated code with different data sets and compare results with the
original model run through mp-model. The translated code may indeed be syntactically correct
(i.e. it is compiled cleanly) without being semantically correct (i.e. it does not define exactly
the same model as the source code). In such a case the generated model does not behave as
expected. Here are some guesses for locating possible causes of the problems.

• No variables are generated in the problem.

mp-model generates variables when they are used in constraints.

Example:

INDICES I(10)
VARIABLES v(I)
...
DISKDATA I= datafile.dat

This example is translated into:

declarations
I: set of string
v:array(I) of mpvar

end-declarations
...
diskdata(’datafile’,I)

Since I is unknown when v is declared, the array is dynamic and no variable is created. To
fix the problem, the declaration of v has to be moved after the initialization of I , possibly
finalizing the set.

Example:

declarations
I: set of string

end-declarations
...
diskdata(’datafile’,I)

finalize(I)
declarations

v:array(I) of mpvar
end-declarations

• Data table not properly initialized through ODBC.

By default, mmodbcexpects that the first columns of a data table represent the indices for
the array to initialize. But in some cases, all columns have to be treated as data.

Example:

T1: 1,2,3
4,5,6
7,8,9

TABLES T(3,3)
DISKDATA -c T=’select * from T1’

Cases requiring modifications 9 mod2mos User Guide

Because of the default behavior of mmodbc, the initialization of T is not performed
properly (we expect: T(1,1)=1, T(1,2)=2, T(1,3)=3, ... – and mmodbc reads:
T(1,2)=3, T(4,5)=6 and produces an out of range error). The correct behavior is ob-
tained by changing the value of the control parameter SQLndxcol before executing the
SQL query.

Example:

setparam(’SQLndxcol’,false)
SQLexecute(’select * from T1’,T)
setparam(’SQLndxcol’,true)

Note that if the option ’d’ is used with diskdata (in the mp-model source), the translator
generates the correct statements. The fix can therefore be done on the original source:

Example:

DISKDATA -cd T=’select * from T1’

• String comparison

In mp-model all strings are 8 characters long, shorter strings are padded with spaces. As
a consequence, the strings "a" and "a " are equal for mp-model but not for Mosel.

Cases requiring modifications 10 mod2mos User Guide

Chapter 4

Improving the generated code

Once an mp-model file has been correctly translated to a Mosel model and the resulting code
has been validated, one may consider the conversion process to be completed. However, by
taking advantage of the facilities provided by Mosel the generated code can be improved in
various ways.

To ease the further use and development of the generated Mosel model, it may be helpful to
take into account the following points:

• Data file format

Data files formatted for being read with diskdata may be translated to the more flexible
native format of Mosel read with initializations (with this format different data
arrays may be contained in a single data file). Options -i and -d of mod2mos may be
useful for this operation.

• Structuring the model

Procedures and functions may be introduced to structure a model. Large model files
could even be split into several files (using the include statement).

• Using the Mosel language for problem solving and programming tasks

Optimization operations, solution heuristics, data preprocessing, evaluation and format-
ed output of results can be included directly in the Mosel model file.

The following two simple modifications may have a dramatic impact on the readability and,
perhaps more importantly, on the efficiency of the model.

• Finalization of sets and dynamic arrays

In Mosel, an array is dynamic if it is indexed by a dynamic set. If an array is used to
represent dense data, one should avoid defining it as a dynamic array that uses more
memory and is slower than the corresponding static array. When translated directly, some
mp-model models imply the use of dynamic arrays where these are not required.

Example:

INDICES I(10)
TABLES A(I)
TABLES B(I)
DISKDATA A = datafile.dat

gives in Mosel:

declarations
I: set of string
A: array(I) of real
B: array(I) of real

end-declarations
diskdata(’datafile.dat’,A)

11 mod2mos User Guide

In this example A and I are initialized using a data file, so A needs to be dynamic (we do
not know in advance its size – note that with mp-model the arrays are of the maximum
size of I , here: 10). However, the second array could be declared static:

declarations
I: set of string
A: array(I) of real

end-declarations
diskdata(’datafile.dat’,A)
finalize(I) ! Fix the size of I

declarations
B: array(I) of real ! Now B is static

end-declarations

As a general rule, the following sequence of actions gives better results (in terms of
memory consumption and efficiency):

1. declare data arrays and sets that are to be initialized from external sources,

2. perform initializations of data

3. finalize all related sets

4. declare any other arrays indexed by these sets (including decision variable arrays).

• Projections are superfluous in Mosel

Projections are frequently used in mp-model files (section PROJECT) in order to improve
the efficiency of models with very sparse data arrays. The major problem of projections
is that their use makes the model source particularly hard to read and maintain.

Mosel provides a project functionality that corresponds to the projections in mp-model
and is used in the generated code. But in Mosel there is no need to use these projections
since the compiler is able to identify sparse loops and optimizes them automatically. It is
therefore good practice to remove the projections once the model has been translated
to Mosel in order to improve its readability (and, in certain cases, its efficiency).

Example:

TABLE A(1000,500) -e100
DISKDATA -s A= datafile.dat
PROJECT p=A
...
CONSTRAINTS C:SUM(i=1..entries(A)) A(p(i,1),p(i,2))*x(p(i,1),p(i,2)) = 0

can be rewritten in Mosel:

declarations
I=1..1000
J=1..500
A:dynamic array(I,J) of real

end-declarations
diskdata(’datafile.dat’,A)
...
C:=sum(i in I,j in J|exists(A(i,j))) A(i,j)*x(i,j) = 0

For efficient use of the function exists , the following rules have to be observed:

1. The arrays have to be indexed by named sets (here I and J).

Example:
A: dynamic array(I,J) of real ! can be optimized
B: dynamic array(1..1000,1..500) of real ! cannot be optimized

2. The same sets have to be used in the loops.

Example:
forall(i in I,j in J | exists(A(i,j))) ! fast
forall(i in I,j in 1..500 | exists(A(i,j))) ! slow

Improving the generated code 12 mod2mos User Guide

3. The order of the sets has to be respected.

Example:
forall(i in I,j in J | exists(A(i,j))) ! fast
forall(j in J,i in I | exists(A(i,j))) ! slow

4. The exists function calls have to be at the beginning of the condition.

Example:
forall(i in I,j in I | exists(A(i,j)) and i+j<>10) ! fast
forall(i in J,j in J | i+j<>10 and exists(A(i,j))) ! slow

5. The optimization does not apply to or conditions.

Example:
forall(i in I,j in J | exists(A(i,j)) and i+j<>10) ! fast
forall(i in I,j in J | exists(A(i,j)) or i+j<>10) ! slow

Improving the generated code 13 mod2mos User Guide

Index

array
constraints, 6
delete, 7
dense, 11
finalize, 11
sparse, 12
static, 11
variables, 6

ASSIGN, 8

comparison
string, 10

condition, 13
declaration, 4
file inclusion, 4

data
initialize, 9

data file format, 11
database access, 4
declaration, 4

constant, 8
variable, 8

DEFINE, 8
delete

array, 7
diskdata , 5, 6, 9–11
dynamic set, 6
DYNINDEX, 6

exists , 12, 13
extension

file, 2
rename identifier, 2

file extension, 2
file inclusion, 4
finalize, 6, 9
format

data file, 11
function, 11

generated code, 2
generated file, 2

help, 2

include , 11
index range, 7
initializations , 11
insert , 6

keyword, 7

LET, 8

loop
sparse, 12

macro, 6
mmetc, 5, 6
mmodbc, 4, 6, 9, 10
model structure, 11
Mosel file, 2
mp-model file, 2

name
output file, 2

NODYNINDEX, 6

ODBC, 4–6, 9
option, 2
or , 13
output file, 2

name, 2

procedure, 6, 11
PROJECT, 12
project , 12
projection, 12

range
type, 7

rename
identifier, 7

rename identifier, 2
reserved word, 7

select , 6
set, 8

dynamic, 6
finalize, 9, 11

size
tabulation, 2

SLANG, 7
source file, 2
sparse

array, 12
loop, 12

SQLndxcol , 10
start, 2
string, 10
string operation, 8
syntax error, 8

table, see array
tabulation size, 2
type

range, 7
type conversion, 7

14 mod2mos User Guide

update , 6

variable
create, 9

version, 2

Index 15 mod2mos User Guide

	Introduction
	Using mod2mos
	Processing model source files
	Processing data files

	Cases requiring modifications
	Problems detected during the translation
	Problems detected by Mosel during compilation
	Problems that are not detected

	Improving the generated code
	Index

