
Chapter 5

The basics of Xpress-MP
All problems in this book are formulated using the Xpress-Mosel (for short, Mosel) Language. To run these

models, the user has the choice between using the Mosel Command Line Interpreter or the graphical user

interface Xpress-IVE. To solve the optimization problems in this book we use the Xpress-Optimizer linear

and mixed integer solver by accessing it from the Mosel Language.

All software with reference manuals and the complete set of examples discussed in this book can be

downloaded from

http://www.dashoptimization.com/applications_book.html

In the first section of this chapter we show how to execute the small production planning problem from

Chapter 1 using the Mosel Command Line Interpreter or Xpress-IVE. Section 5.2 introduces the basics of

the Mosel Language.

5.1 Introductory example
A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of machining

on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who

each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of

boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week

can be obtained. When sold, each of the large chess sets yields a profit of $20, and one of the small chess

set has a profit of $5. The problem is to decide how many sets of each kind should be made each week

to so as to maximize profit.

In Chapter 1 the transformation of this description into a mathematical model was discussed in some

detail and will therefore not be repeated here. An implementation of the model has also already been

given (see Section 1.3). We assume that the following Mosel model has been entered into a text file

named chess.mos (mos is the standard file extension expected by Mosel):

model Chess

uses "mmxprs" ! We shall use Xpress-Optimizer

declarations

xs, xl: mpvar ! Decision variables: produced quantities

end-declarations

Profit:= 5*xs + 20*xl ! Objective function

Boxwood:= 1*xs + 3*xl <= 200 ! kg of boxwood

Lathe:= 3*xs + 2*xl <= 160 ! Lathehours

maximize(Profit) ! Solve the problem

writeln("LP Solution:") ! Solution printing

writeln(" Objective: ", getobjval)

writeln("Make ", getsol(xs), " small sets")

writeln("Make ", getsol(xl), " large sets")

end-model

56 Applications of optimization with Xpress-MP

5.1.1 Using Xpress-Mosel
Mosel is an advanced modeling and solving language and environment, where optimization problems

can be specified and solved with the utmost precision and clarity. The modeling component of Mosel

provides an easy to use yet powerful language for describing optimization problems. Through its modular

architecture, Mosel provides access to data in different formats (including spreadsheets and databases)

and gives access to a variety of solvers, which can find optimal or near-optimal solutions to a problem.

Mosel is provided either as a standalone program (the Mosel Command Line Interpreter used in this book)

or in the form of libraries that make it possible to embed a model into a larger application written in a

programming language.

To run the model we have entered into the file chess.mos, we start Mosel at the command prompt, and

type the following sequence of commands

mosel

exec chess

quit

which will start Mosel, compile the model and (if no syntax error has been detected) run the model,

and then quit Mosel. We will see output something like that below, where we have highlighted Mosel’s

output in bold face.

mosel

** Xpress-Mosel **

(c) Copyright Dash Associates 1998-2006

> exec chess

LP Solution:

Objective: 1333.33

Make 0 small sets

Make 66.6667 large sets

Returned value: 0

> quit

Exiting.

The same steps may be done immediately from the command line:

mosel -c "exec chess"

The -c option is followed by a list of commands enclosed in double quotes.

If after having started Mosel you type a command that is not recognized by the Mosel Command Line

Interpreter (for instance: h), Mosel displays the full list of commands (or the possible completions to valid

commands) with short explanations.

The different options that may be used from the operating system’s command line can be obtained by

typing mosel -h.

The distribution of Mosel contains several modules that add extra functionality to the language. A full

list of the functionality of a module can be obtained by using the exam command; for instance to see

what is provided by the Xpress-Optimizer module mmxprs:

mosel -c "exam mmxprs"

For a complete description of the Mosel Language and the Mosel Command Line Interpreter, the reader

is referred to the Mosel Reference Manual, available at

http://www.dashoptimization.com/applications_book.html

From the same address, individual manuals for the Mosel modules can also be downloaded.

5.1.2 Using Xpress-IVE
Xpress-IVE, sometimes called just IVE, is the Xpress Interactive Visual Environment, a complete modeling

and optimization development environment running under Microsoft Windows. It presents Mosel

in an easy-to-use Graphical User Interface (GUI), with a built-in text editor. IVE can be used for the development,

management and execution of multiple models and is ideal for developing and debugging

prototype models.

To execute the model file chess.mos you need to carry out the following steps.

The basics of Xpress-MP 57 Applications of optimization with Xpress-MP

• Start up IVE.

• Open the model file by choosing File > Open. The model source is then displayed in the central

window (the IVE Editor).

• Click the Run button (green triangle) or alternatively, choose Build > Run. The resulting screen

display is shown in Figure 5.1.

The Build pane at the bottom of the workspace is automatically displayed when compilation starts. If

syntax errors are found in the model, they are displayed here, with details of the line and character

position where the error was detected and a description of the problem, if available. Clicking on the

error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace window is selected

to display program output. Any output generated by the model is sent to this window. IVE will also provide

graphical representations of how the solution is obtained, which are generated by default whenever

a problem is optimized. The right hand window contains a number of panes for this purpose, dependent

on the type of problem solved and the particular algorithm used. IVE also allows the user to draw graphs

by embedding subroutines in Mosel models (see the documentation on the website for further detail).

IVE makes all information about the solution available through the Entities pane in the left hand window.

By expanding the list of decision variables in this pane and hovering over one with the mouse pointer, its

solution and reduced cost are displayed. Dual and slack values for constraints may also be obtained.

Figure 5.1: Xpress-IVE display after running model chess.mos

5.2 Modeling with Mosel
Let us now consider a second, slightly larger model which represents the problem faced by a burglar. With

the help of this model we shall explain the basic features of the Mosel language that are used repeatedly

in the implementation of the example problems in the following chapters.

5.2.1 The burglar problem
A burglar sees eight items, of different values and weights. He wants to take the items of greatest total

value whose total weight is not more than the maximum WTMAX he can carry.

We introduce binary variables takei for all i in the set of all items (ITEMS) to represent the decision

whether item i is taken or not. takei has the value 1 if item i is taken and 0 otherwise. Furthermore, let

The basics of Xpress-MP 58 Applications of optimization with Xpress-MP

VALUEi be the value of item i and WEIGHTi its weight. A mathematical formulation of the problem is

then given by:

maximize

X

i2ITEMS

VALUEi · takei (maximize the total value)

X

i2ITEMS

WEIGHTi · takei _ WTMAX (weight restriction)

8i 2 ITEMS : takei 2 {0, 1}

This problem is an example of a knapsack problem. It may be implemented with Mosel as follows:

model "Burglar 1"

uses "mmxprs"

declarations

ITEMS = 1..8 ! Index range for items

WTMAX = 102 ! Maximum weight allowed

VALUE: array(ITEMS) of real ! Value of items

WEIGHT: array(ITEMS) of real ! Weight of items

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise

end-declarations

! Item: 1 2 3 4 5 6 7 8

VALUE := [15, 100, 90, 60, 40, 15, 10, 1]

WEIGHT:= [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value

MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction

sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1

forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution

writeln("Solution:¥n Objective: ", getobjval)

forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

When running this model we get the following output:

Solution:

Objective: 280

take(1): 1

take(2): 1

take(3): 1

take(4): 1

take(5): 0

take(6): 1

take(7): 0

take(8): 0

The structure of this model and Mosel models in general is the following:

• Model: Every Mosel program starts with the keyword model, followed by a name, and terminates

with end-model.

• Declarations: All objects must be declared in a declarations block, unless they are defined unambiguously

through an assignment (e.g. i:=1 defines i as an integer and assigns it the value 1;

in our example the objective function MaxVal is defined by assigning it a linear expression).

There may be several such declarations blocks at different places in a model.

• Problem definition: Typically, a model starts with the specification of the data (here: assignment of

values to VALUE and WEIGHT), followed by the statement of the problem (here: definition of the

objective function MaxVal, definition of one inequality constraint, and restricting the variables to

be binaries)

The basics of Xpress-MP 59 Applications of optimization with Xpress-MP

• Solving: With the procedure maximize, we call Xpress-Optimizer to maximize the objective function

MaxVal. Since there is no ‘default’ solver in Mosel, we specify that Xpress-Optimizer is to be

used with the statement uses "mmxprs" at the beginning of the program.

• Output printing: The last two lines print out the value of the optimal solution and the solution

values for the decision variables.

• Line breaks: It is possible to place several statements on a single line, separating them by semicolons

(like x1 <= 4; x2 >= 7). Conversely, since there are no special ‘line end’ or continuation

characters, every line of a statement that continues over several lines must end with an operator

(+, >= etc.) or characters like , that make it obvious that the statement is not terminated.

• Comments: As shown in the example, the symbol ! signifies the start of a comment, which continues

to the end of the line. Comments over multiple lines start with (! and terminate with

!).

We shall now explain certain features used in this model in more detail:

• Ranges and sets:

ITEMS = 1..8

defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used as an index

set for the data arrays (VALUE and WEIGHT) and for the array of decision variables take.

Instead of using numerical indices, we could, for instance, have defined ITEMS as a set of strings by

replacing the current definition ITEMS = 1..8 with the following definition:

ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video",

"chest", "brick"} ! Index set for items

• Arrays:

VALUE: array(ITEMS) of real

defines a one-dimensional array of real values indexed by the range ITEMS.

Multi-dimensional arrays are declared in the obvious way e.g.

VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar) are declared likewise,

as shown in our example.

All objects (scalars and arrays) declared in Mosel are always initialized with a default value:

real, integer: 0

boolean: false

string: ’’ (i.e. the empty string)

The values of data arrays may either be assigned in the model as we show in the example or

initialized from file (see Section 5.2.2).

• Summations:

MaxVal:= sum(i in Items) VALUE(i)*x(i)

defines a linear expression called MaxVal as the sum

X

i2Items

VALUEi · xi

• Simple looping:

forall(i in ITEMS) take(i) is_binary

illustrates looping over all values in an index range. Recall that the index range ITEMS is 1, ..., 8, so

the statement says that take(1), take(2), ..., take(8) are all binary variables.

There is another example of the use of forall at the penultimate line of the model when writing

out all the solution values.

Other types of loops are used in some of the application examples (see the classification tables at

the beginning of Part II).

• Integer Programming variable types:

To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say

xbinvar is_binary

To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a

MIP problem, we would have

xintvar is_integer

The basics of Xpress-MP 60 Applications of optimization with Xpress-MP

5.2.2 Reading data from text files
The following example illustrates how data may be read into tables from text files. In the Burglar problem

instead of having the item data embedded in the model file we have the data in a file. We might have

the following Mosel model in a file burglar2.mos.

model "Burglar 2"

uses "mmxprs"

declarations

ITEMS: set of string ! Set of items

WTMAX = 102 ! Maximum weight allowed

VALUE: array(ITEMS) of real ! Value of items

WEIGHT: array(ITEMS) of real ! Weight of items

end-declarations

initializations from ’burglar.dat’

VALUE

WEIGHT

end-initializations

declarations

take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise

end-declarations

! Objective: maximize total value

MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction

sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1

forall(i in ITEMS) take(i) is_binary

maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution

writeln("Solution:¥n Objective: ", getobjval)

forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))

end-model

The file burglar.dat contains

VALUE: [("camera") 15 ("necklace") 100 ("vase") 90 ("picture") 60

("tv") 40 ("video") 15 ("chest") 10 ("brick") 1]

WEIGHT:[("camera") 2 ("necklace") 20 ("vase") 20 ("picture") 30

("tv") 40 ("video") 30 ("chest") 60 ("brick") 10]

The initializations block tells Mosel where to get data from to initialize sets and arrays. The order

of the data items in the file does not have to be the same as that in the initializations block. Note

that the contents of the set ITEMS is defined indirectly through the index values of the arrays VALUE and

WEIGHT. We only declare the variables once the data has been initialized and hence, the set ITEMS is

known.

In the application examples, where appropriate, we show how to work with dynamic arrays of data and

decision variables (see the classification tables at the beginning of Part II).

The data may also be given in the form of a single record, say, KNAPSACK. The initialization then takes

the following form:

initializations from ’burglar2.dat’

[VALUE, WEIGHT] as ’KNAPSACK’

end-initializations

and the data file burglar2.dat has the following contents:

KNAPSACK: [("camera") [15 2]

("necklace") [100 20]

The basics of Xpress-MP 61 Applications of optimization with Xpress-MP

("vase") [90 20]

("picture") [60 30]

("tv") [40 40]

("video") [15 30]

("chest") [10 60]

("brick") [1 10]]

In the examples of this book we always read data from text files. However, with Mosel it is also possible to

read and write data from/to other sources (such as spreadsheets and databases) or input data in memory.

For further information, the reader is referred to the documentation on the website.

5.2.3 Reserved words
The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and and

are keywords but not And). Do not use them in a model except with their built-in meaning.

and, array, as

boolean, break

case

declarations, div, do, dynamic

elif, else, end

false, forall, forward, from, function

if, in, include, initialisations, initializations, integer, inter,

is_binary, is_continuous, is_free, is_integer, is_partint, is_semcont,

is_semint, is_sos1, is_sos2

linctr

max, min, mod, model, mpvar

next, not

of, options, or

parameters, procedure, public, prod

range, real, repeat

set, string, sum

then, to, true

union, until, uses

while

The basics of Xpress-MP 62 Applications of optimization with Xpress-MP

