
www.fico.com Make every decision countTM

Mosel: An Overview

FICOTM Xpress Optimization Suite Whitepaper

Last update 24 June, 2008

Hybrid MIP/CP solving

Mosel: An Overview

Y. Colombani and S. Heipcke

Xpress Team, FICO, Leam House, Leamington Spa CV32 5YN, UK
http://www.fico.com/xpress

May 2002, last rev. June 2008

Abstract
This paper introduces the basics of the Mosel language that are required to use the software as a modeling
and solution reporting interface to standard matrix-based solvers. Taking this a step further, it also shows how
Mosel can be used to implement more complex solution algorithms.
Using the Mosel libraries, a model written in the Mosel language can be integrated with and accessed from
application programs implemented in programming languages such as C, C++, Java, C#, Visual Basic.
The open, modular architecture of the Mosel environment for modeling and solving has been designed to be
easily extensible, not being restricted to a particular type of problem or solver. The paper explains how the
user can extend the existing Mosel language to provide new functionality that may be required, for instance,
to access other solvers.

Keywords: Modeling language, programming language, multiple solvers

Contents

1 Introduction . 2
1.1 Solver Modules . 2
1.2 Other modules . 2
1.3 User modules . 3
1.4 Tools . 3
1.5 I/O drivers . 3
1.6 Contents of this paper . 4

2 Overview . 4
2.1 The Mosel language: a simple example . 4
2.2 Extending the example . 5

3 The language . 5
3.1 Types and data structures . 5
3.2 Initialization of data/data file access . 7
3.3 Language constructs . 8

3.3.1 Selections . 8
3.4 Loops . 9
3.5 Example: working with sets . 9
3.6 Subroutines . 10

4 Mosel libraries . 11
5 Modules . 12

5.1 Available modules . 12
5.2 mmxprs: variable fixing heuristic for MIP . 14
5.3 mmquad: defining and solving a QP . 16

6 Packages . 17
6.1 Defining a new subroutine . 18

Contents c©2009 Fair Isaac Corporation. All rights reserved. page 1

Hybrid MIP/CP solving

7 Writing user modules . 19
7.1 Defining a new subroutine . 19
7.2 Creating a new type . 21

7.2.1 Module context . 21
7.2.2 Type creation and deletion . 22
7.2.3 Type transformation to and from string 23
7.2.4 Overloading of arithmetic operators . 23

8 Conclusion . 25

1 Introduction

Mosel is an environment for modeling and solving problems that is provided either in the form of
libraries or as a standalone program. Mosel includes a language that is both a modeling and a
programming language combining the strengths of these two concepts. As opposed to
“traditional” modeling environments like AMPL [Fourer et al., 1993] for which the problem is
described using a “modeling language” and algorithmic operations are written with a “scripting
language” (similarly for OPL [Van Hentenryck, 1998] with OPL-script), in Mosel there is no
separation between a modeling statement (e.g. declaring a decision variable or expressing a
constraint) and a procedure that actually solves a problem (e.g. call to an optimizing command).
Thanks to this synergy, one can program a complex solution algorithm by interlacing modeling
and solving statements.

1.1 Solver Modules

Each category of problem comes with its own particular types of variables and constraints and a
single kind of solver cannot be efficient in all cases. To take this into account, Mosel does not
integrate any solver by default but offers a dynamic interface to external solvers provided as
modules. Each solver module comes with its own set of procedures and functions that directly
extends the vocabulary and capabilities of the language. This architecture guarantees an efficient
link between Mosel and the solver(s) being used. Similar connections are also provided by other
systems (e.g. MPL [Maximal, 2001]) but due to the concept of modules, Mosel is not restricted to
any particular type of solver and each solver may provide its specifics at the user level. For
instance, an LP solver may define the procedure “setcoeff(ctr,var,coeff)” to set the matrix
coefficient of the constraint ‘ctr’ for the variable ‘var’ whilst such a procedure may make no sense
for other types of solvers. Similarly, the module mmquad extends the syntax of the language with
quadratic expressions that can be handled by a suitable solver (like Xpress-Optimizer).

A major advantage of the modular architecture is that there is no need to modify Mosel to
provide access to a new solution technology.

Currently available solver modules for Mosel include mmxprs that gives access to
Xpress-Optimizer for solving Linear, Mixed-Integer and Quadratic Programming problems,
mmxslp for defining and solving problems with non-linear constraints via Sequential Linear
Programming, mmsp for formulating and solving Stochastic Programming problems, and kalis for
Constraint Programming.

1.2 Other modules

It may be noted here that the modular architecture of Mosel can also be used as a means to open
the environment to software other than solvers. For example, one Mosel module (mmodbc)
allows the user to access databases and spreadsheets that define an ODBC interface using
standard SQL commands. Other libraries could be written to provide the functionalities required

Introduction c©2009 Fair Isaac Corporation. All rights reserved. page 2

Hybrid MIP/CP solving

to communicate with a specific database (in addition to ODBC, mmodbc already provides a
software-specific interface for Microsoft Excel).

Another Mosel module (mmjobs) implements facilities for handling multiple models, including
mechanisms for synchronization and data exchange in memory, thus giving way to an
implementation with Mosel of a large range of (decomposition) algorithms. Several examples of
such algorithms are described in the Xpress Whitepaper Multiple models and parallel solving with
Mosel.

With the help of the module mmive the user can create his own graphics in the graphical
environment Xpress-IVE. Taking this even further, the module mmxad (Xpress Application
Developer, XAD) enables the user to define a complete graphical application from within a Mosel
model.

Other modules could be written to provide the functionalities required to communicate with
other applications for which no generic interface is available.

1.3 User modules

Besides the provided modules, Mosel is open to any kind of addition by its users. The
communication between Mosel and its modules uses specific protocols and libraries. This Native
Interface is public and allows the user to implement his own modules. Any programming task
that can be cast into the form of a C program may be turned into a module to be used from the
Mosel language.

Possible uses of user-written modules include, but are not limited to,

• application specific data handling (e.g. definition of composite data types, data input and
output in memory),

• access to external programs,

• access from the model to solution algorithms and heuristics implemented in a programming
language (possibly re-using existing code),

• access to efficient implementations of specific, time-critical programming tasks (such as a
sorting algorithm that needs to be called frequently by some heuristic).

1.4 Tools

The Mosel distribution contains a set of tools, including a preprocessor for models and most
importantly, a debugger (including all standard debugging functionality like stepwise execution
or conditional breakpoints) and a profiler for analyzing Mosel models. Both these tools are
accessed from the Mosel command line and they are also supported by the graphical
development environment Xpress-IVE. For further detail on their use the reader is refered to the
“Mosel User Guide”.

1.5 I/O drivers

The notion of “file” in Mosel has a very general meaning. A “file” may be, for instance,

• a physical file (text or binary)

• a block of memory

• a file descriptor provided by the operating system

Introduction c©2009 Fair Isaac Corporation. All rights reserved. page 3

http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com/home/services/publications/support_papers.html

Hybrid MIP/CP solving

• a function (callback)

• a database

The Mosel distribution includes a set of I/O drivers that provide interfaces to specific data sources
or make it possible to exchange information between the application running the Mosel libraries
and a Mosel model in a very direct way. With the help of the Mosel Native Interface (NI) the user
may also implement his own drivers. Since working with I/O drivers is quite an advanced use of
Mosel this functionality is explained in a separate Xpress Whitepaper entitled Generalized file
handling in Mosel.

1.6 Contents of this paper

The first part of this paper gives an overview on the general architecture of the system and
introduces its language by means of a small example. Certain aspects of the Mosel language are
discussed with some more detail in the second section, accompanied by a number of program
extracts. The following section explains the concept of modules in Mosel and introduces the
currently commercially available modules. Subsequently, we demonstrate how Mosel can be used
to implement more advanced solution algorithms. For software integration purposes, it is
certainly important to know how to access from within a programming language objects that
have been defined in the Mosel language: this is the topic of the next section. The last two
sections describe how a user can implement his own Mosel libraries; these may take the form of
packages (libraries written in the Mosel language) or new modules (C libraries using the Mosel
Native Interface).

2 Overview

2.1 The Mosel language: a simple example

The following two-product (xs is the number of small things to make, xl the number of large
ones), two-resource constraint production planning example shows how to write and solve an
easy mixed integer programming (MIP) problem with Mosel.

General structure: Every Mosel program starts with the keyword model, followed by a name and
terminates with end-model. All objects must be declared in a declarations section, unless they
are defined unambiguously through an assignment (e.g. i:=1 defines i as an integer and assigns
to it the value 1). There may be several such declarations sections at different places in a
model. In the present case, we define two variables xs and xl of type mpvar. The model then
defines two linear inequality constraints on the two variables and constrains xs and xl to take
only integer values.

model Chess
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
xs,xl: mpvar ! Decision variables

end-declarations

3*xs + 2*xl <= 160 ! Constraint: limit on working hours
xs + 3*xl <= 200 ! Constraint: raw material availability

xs is_integer; xl is_integer ! Integrality constraints

maximize(5*xs + 20*xl) ! Objective: maximize the total profit

writeln("Solution: ", getobjval) ! Print objective function value
writeln("small: ", getsol(xs)) ! Print solution values for variables xs
writeln("large: ", getsol(xl)) ! and xl

end-model

Overview c©2009 Fair Isaac Corporation. All rights reserved. page 4

http://www.dashoptimization.com/home/services/publications/support_papers.html
http://www.dashoptimization.com/home/services/publications/support_papers.html

Hybrid MIP/CP solving

Solving: With the procedure maximize, we call Xpress-Optimizer to maximize the linear
expression 5*xs + 20*xl. Since there is no “default” solver in Mosel, we specify that
Xpress-Optimizer is to be used with the statement uses "mmxprs" at the begin of the program.

Output printing: The last three lines print out the value of the optimal solution and the solution
values for the two variables. Instead of writing getsol(xs) we could equally have used the dot
notation style, xs.sol.

Line breaks: Note that it is possible to place several statements on a single line, separating them
by semicolons (like xs is_integer; xl is_integer). On the contrary, since there are no
special “line end” or continuation characters, every line of a statement that continues over
several lines must end with an operator (+, >= etc.) or characters like , that make it obvious that
the statement is not terminated.

Comments: As shown in the example, single line comments in Mosel are preceded by !.
Comments over multiple lines start with (! and terminate with !).

2.2 Extending the example

To demonstrate the expressive power of Mosel, below follows an enhanced version of the
previous model.

Naming constraints: In this example, constraints are named – we no longer use a linear expression
but simply its reference when we call the solver; the references to the two inequalities could, for
instance, be used to access solution information (dual, slack, activity) for these constraints.

Data structures: This second example also introduces the data structures set and array. Here
both array DescrV and its indexing set Allvars are dynamic since their size and contents are not
known at their creation. Their contents is defined by the assignments that succeed the
declarations section.

model Chess2
uses "mmxprs"

declarations
Allvars: set of mpvar ! Set of variables
DescrV: array(Allvars) of string ! Descriptions of variables
xs,xl: mpvar

end-declarations

DescrV(xs):= "Small" ! Define descriptions for variables
DescrV(xl):= "Large"

Profit:= 5*xs + 20*xl ! Name the objective function
Time:= 3*xs + 2*xl <= 160
Wood:= xs + 3*xl <= 200

xs is_integer; xl is_integer

maximize(Profit)

writeln("Solution: ", getobjval)
forall(x in Allvars) ! Print the solutions of all variables

writeln(DescrV(x), ": ", getsol(x)) ! for which a description is defined
end-model

Figure 1 shows the result of an execution of our model in the development environment
Xpress-IVE.

3 The language

3.1 Types and data structures

Mosel provides the basic types that may be expected of any programming language: integer,
real (double precision floating point numbers), boolean (symbols true and false), string

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 5

Hybrid MIP/CP solving

Figure 1: IVE display after model execution

(single character and any text). Together with the MP types mpvar (decision variables) and
linctr (linear constraints) that are provided specifically for mathematical programming, these
form the elementary types of Mosel.

In addition to the elementary types, Mosel defines the structured types set (collection of
elements of a given type), array (collection of labeled objects of a given type), list (ordered
collection of elements of a given type), and record (collection of objects of any type). As
mentioned in the previous section, the data structures (sets and arrays) in Mosel are dynamic if at
their creation their size and/or contents is not known. The following definitions result in constant
sets (R1, S1) and list s(L1) and static arrays (A1, A2):

declarations
R1 = 3..5
S1 = {"red", "green", "blue"}
A1: array(S1) of real
A2: array(R1, -2..1) of mpvar
L1 = [1,2,3,4,5]

end-declarations

Dynamic sets (R2, S2), lists (L2, L3) and arrays (A3, A4) are created with definitions like

declarations
S2: set of string
A3: array(S2,S2) of linctr
A4: array(R2:range) of boolean
L2: list of real
L3: array(set of integer) of list of string

end-declarations

The examples introduce a special type of set: R1 and R2 are ranges (= ordered sets of integers).
3..5 indicates that R1 is the set of all integers from 3 to 5.

The definition of a record has some similarities with the declarations block: it starts with the
keyword record, followed by a list of field names and types, and the keyword end-record
marks the end of the definition. The definition of records must be placed in a declarations

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 6

Hybrid MIP/CP solving

block. The following code extract defines a record with three fields (‘Source’, ’Sink’, and ‘Cost’)
that may be used to represent an arc in a network.

declarations
arc = record

Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
OneArc: arc
ARCS: array(ARCSET:range) of arc

end-declarations

OneArc.Source:= "A"; OneArc.Sink:= "B"
ARCS(1).Cost:= 5.1

The user may define new types that will be treated in the same way as the predefined types of
the Mosel language. The naming of the record ’arc’ above is an example of such a user type
definition for records.

3.2 Initialization of data/data file access

Data structures may be assigned values directly in the Mosel model or they are initialized with
values read in from an external file. Here are some examples of value assignments in a Mosel
model.

declarations
V: real
A1: array(3..5) of real
S: set of string
L: list of integer
A2: array(range,range) of boolean
AL: array(set of string) of list of real

end-declarations

V := 0.5 ! Assign a value to a scalar
A1 :: [1.5, 2.3, 4.5] ! Initialize an array with known index range
A1(3) := 1.8 ! (Re)Assign a single array entry

S := {"A", "BC", "DEF"} ! Assign a set
L := [1, 2, 3, 3, 4, 5, 4] ! Assign a list

A2 :: (1..2 0..2)[true, false, false, ! Initialize a 2-dim. array
true, true, false]

AL :: (["A", "B"])[[3, -6, 1.5], [2, 8.4]] ! Initialize an array of lists
AL("C") := [1, 2.5, 4, -0.5] ! Assign an array entry

When data are read from a file most often dynamic data structures are used, as is the case in this
example extract that illustrates the use of the initializations section in Mosel.

declarations
A: array(1..6) of real ! Static array definition
S: set of string ! Dynamic set
C: array(S) of real ! Dynamic array
L: array(set of integer) of list of string ! Dynamic array of lists
R: array(range) of arc ! Dynamic array of records

end-declarations

initializations from "initdata.dat"
A C S L R

end-initializations

writeln("I = ", I, "\nA = ", A, "\nC = ", C)
writeln("S = ", S, "\nL = ", L, "\nR = ", R)

The data file initdata.dat that is read by this program has the following contents:

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 7

Hybrid MIP/CP solving

I: 10
A: [2 4 6 8]
C: [("red") 3 ("green") 4.5 ("blue") 6 ("yellow") 2.1]
S: ["white" "black"]
L: [(1) ["a" "b"] (3) ["c" "d" "e" "f"] (6) ["i" "i" "i"]]
R: [(1) ["A" "B" 1.2] (2) ["A" "C" 4.5] (3) ["B" "C" 3]]

For the static array A the indices are known, the values may therefore be given as a simple list.
For dynamic arrays, the data file also needs to contain the indices.
With this data file, the program produces the following output:

I = 10
A = [2,4,6,8,0,0]
C = [(‘red’,3),(‘green’,4.5),(‘blue’,6),(‘yellow’,2.1)]
S = {‘red’,‘green’,‘blue’,‘yellow’,‘white’,‘black’}
L = [(1,[‘a’,‘b’]),(3,[‘c’,‘d’,‘e’,‘f’]),(6,[‘i’,‘i’,‘i’])]
R = [(1,[Source=‘A’ Sink=‘B’ Cost=1.2]),(2,[Source=‘A’ Sink=‘C’ Cost=4.5]),
(3,[Source=‘B’ Sink=‘C’ Cost=3])]

In the static array A all entries are defined, hence there is no need to specify the indices. For
dynamic arrays a list of n-tuples is printed where the first n-1 elements are the indices and the last
the value of the array entry.

For more flexibility, it is also possible to use the procedures read/readln, or write/ writeln to
read from or write to text files. To read the data file readdata.dat with the following contents

Data:
A(1) = 5.2
A(2) = 3.4

we may write the following code in a Mosel program:

declarations
j: integer
B: array(range) of real

end-declarations

fopen("readdata.dat", F_INPUT)

fskipline("#") ! Skip lines starting with a ’#’
repeat

readln(’A(’,j,’) =’,B(j)) ! Read the indices and the value on a line
until (getparam("nbread")<4) ! until a line is not properly constructed
fclose(F_INPUT)

3.3 Language constructs

Besides data types, Mosel also provides the typical flow controls (selections and loops) that one
will expect from a programming language.

3.3.1 Selections

The simplest form of a selection is the if-then statement which may be extended to if-then-
else or even if-then-elif-then-else to test two conditions consecutively and execute an
alternative if both fail as in the following example:

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 8

Hybrid MIP/CP solving

declarations
A : integer
x: mpvar

end-declarations

if A >= 20 then
x <= 7

elif A <= 10 then
x >= 35

else
x = 0

end-if

The upper bound 7 is applied to the variable x if the value of A is greater or equal 20, and if the
value of A is less or equal 10 then the lower bound 35 is applied to x. In all other cases (that is, A
is greater than 10 and smaller than 20), x is fixed to 0.

If several mutually exclusive conditions (here: values of A) are tested, the case statement should
preferably be used as in

declarations
A : integer
x: mpvar

end-declarations

case A of
-MAX_INT..10 : x >= 35
20..MAX_INT : x <= 7
12, 15 : x = 1
else x = 0

end-if

3.4 Loops

Loops group actions that need to be repeated a certain number of times, either for all values of
some index or counter (forall) or depending on whether a condition is fulfilled or not (while,
repeat-until). The forall and while loops in Mosel exist in two versions: an inline version
for looping over a single statement as in

declarations
x: array(1..10) of mpvar

end-declarations

forall(i in 1..10) x(i) is_binary

and a second version forall-do (while-do), that may enclose a block of statements, the end of
which is marked by end-do:

declarations
x: array(1..10) of mpvar

end-declarations

forall(i in 1..10) do
x(i) is_integer
x(i) <= 100

end-do

3.5 Example: working with sets

The following example introduces operations on sets and demonstrates the use of different types
of (nested) loops. This program calculates the set of prime numbers between 2 and some given
upper limit using the “Sieve of Eratosthenes” (for every prime number that is found all of its
multiples are deleted from the set of remaining numbers).

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 9

Hybrid MIP/CP solving

model Prime
parameters

LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations

SNumbers:={2..LIMIT}

writeln("Prime numbers between 2 and ", LIMIT, ":")
n:=2
repeat

while (not(n in SNumbers)) n+=1
SPrime += {n}
i:=n
while (i<=LIMIT) do

SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
end-model

Set operators: Subsets may be added or removed from a set using the operators += and -=. (Note
that a set may not decrease in size once it is used as an indexing set.) Mosel also defines the
standard operations on sets: union, intersection and difference (operators +, *, -).

Run-time parameters: This example introduces the parameters section: the value of constants
defined in this section may be reset at the execution of the model, otherwise their given default
value is used. Here we enable the person who runs the program to choose the upper limit of the
set of numbers; another typical use may be to specify the name of data file(s) in the form of
parameters.

3.6 Subroutines

Mosel provides a set of predefined subroutines (e.g. procedures like write / writeln,
arithmetical functions like cos, exp, ln, or subroutines to access certain model objects such as
getsol, reverse, getsize), but it is also possible to define new procedures and functions
according to the needs of a specific program. User defined subroutines in Mosel have to be
marked with procedure / end-procedure and function / end-function respectively. The
return value of a function has to be assigned to returned as shown in the following example. It
is possible to pass parameters into a subroutine. The (list of) parameter(s) is added in parentheses
following the name of the subroutine.

model "Simple subroutines"
function timestwo(b:integer):integer

returned := 2*b
end-function

procedure printstart
writeln("The program starts here.")

end-procedure

printstart
a:=3
writeln("a = ", a)
a:=timestwo(a)
writeln("a = ", a)

end-model

The structure of subroutines is very similar to the one of model: they may include declarations
sections for declaring local parameters that are only valid in the corresponding subroutine.
Subroutine calls may be nested, and they may also be called recursively.

Forward declaration: Mosel enables the user to declare a subroutine separately from its
definition by using the keyword forward.

Mosel language c©2009 Fair Isaac Corporation. All rights reserved. page 10

Hybrid MIP/CP solving

Overloading: In Mosel, it is possible to re-use the names of subroutines, provided that every
version has a different number and/or types of parameters. This functionality is commonly
referred to as overloading. The user may define (additional) overloaded versions of any
subroutines defined by Mosel and also for his own functions and procedures.

4 Mosel libraries

Models written with the Mosel language can be accessed from C through the Mosel C interface
(other interfaces available: Java, C#, Visual Basic). This interface is provided in the form of two
libraries; it may especially be of interest for integrating models and/or solution algorithms
written with Mosel into some larger system, (re)using already existing parts of algorithms written
in C, and for interfacing Mosel with other software.
The Mosel Model Compiler Library needs to be used to compile a model file into a BIM file
(portable Binary Model file). This BIM file is then input with the Mosel Run Time Library for
executing the model.

Using the Mosel libraries, it is not only possible to compile and run models, but also to access
information on the different modeling objects. The following example shows how to compile the
model Prime presented in Section 3.5, execute it with a different value for the parameter LIMIT,
and print the resulting set of prime numbers. (The example actually works with a model Prime2
that contains no output printing because this is done in C).
To print the contents of set SPrime that contains the desired result (prime numbers between 2
and 500), one first needs to retrieve the Mosel reference to this object using function
XPRMfindident. It is then possible to enumerate the elements of the set and obtain their
respective values.

#include <stdio.h>
#include "xprm_mc.h"
#include "xprm_rt.h"

int main()
{

XPRMmodel mod;
XPRMalltypes rvalue, setitem;
XPRMset set;
int result, i, size, first, last;

XPRMinit();
XPRMcompmod(NULL, "prime2.mos", NULL, NULL); /* Compile model Prime2 */
mod=XPRMloadmod("prime2.bim", NULL); /* Load the BIM file */
XPRMrunmod(mod, &result, "LIMIT=500"); /* Run the model */

XPRMfindident(mod, "SPrime", &rvalue); /* Get the object ’SPrime’ */
set = rvalue.set;
size = XPRMgetsetsize(set); /* Get the size of the set */
if(size>0)
{

first = XPRMgetfirstsetndx(set); /* Get number of the first index */
last = XPRMgetlastsetndx(set); /* Get number of the last index */
printf("Prime numbers from 2 to 500:\n");
for(i=first;i<=last;i++) /* Print all set elements */
printf(" %d,", XPRMgetelsetval(set,i,&setitem)->integer);

printf("\n");
}

XPRMfinish();
return 0;

}

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 11

Hybrid MIP/CP solving

5 Modules

An original feature of Mosel is the possibility to extend the language by means of modules
(dynamic libraries written in the C programming language that observe the conventions set out
by the Mosel Native Interface). A module may extend the Mosel language with new

– constant symbols
– subroutines
– types
– I/O drivers
– control parameters

In this list, subroutines and types are certainly the most important items. Subroutines defined by
a module may be entirely new functions or procedures or overload existing subroutines of Mosel.
A module may, for instance, provide a subroutine that calls an algorithm or a solution heuristic
that is readily available in the form of a C or C++ library function.

New types defined by a module are treated exactly like the own types of Mosel (like integer or
mpvar). They can be used in complex data structures (arrays, sets etc.), read in from file in
initializations sections, or appear as parameters of subroutines. The operators in Mosel can
be overloaded to work with new types. The definition of new types may be required to support
solvers such as finite domain constraint solvers.

The Mosel distribution comes with a set of I/O drivers that provide interfaces to specific data
sources (such as ODBC) or serve to exchange information between the application running the
Mosel libraries and a Mosel model in a very direct way by providing various possibilities of passing
data back and forth in memory. The user may define additional drivers, for instance to read/write
compressed or encrypted files.

Constants and control parameters published by a module make little sense on their own. They
will typically be used in conjunction with its types or subroutines.

Modules may be seen as an appropriate means for rapid prototyping of solution algorithms that
involve a combination of solution strategies or solvers originating from different areas of
research. For example, using mmxprs and a module that provides access to a finite domain
constraint solver, such as kalis, it is possible to define a MIP search that at every node in the
branching tree solves subproblem(s) using constraint propagation algorithms and depending on
the results, generates cuts for the MIP problem (for example implementations please see the
Xpress Whitepaper Hybrid MIP/CP solving with Xpress-Optimizer and Xpress-Kalis).

5.1 Available modules

At present, the following modules have been implemented:

Solvers: mmxprs, mmquad, mmnl, mmxslp, mmsp, kalis

Data handling: mmodbc, mmoci, mmetc

System: mmsystem

Model handling: mmjobs

Graphics: mmive, mmxad

In the preceding examples the module mmxprs has already been used to solve problems with
Xpress-Optimizer. Besides making the basic solution tasks and algorithm settings accessible from
the Mosel language, an interesting feature of this module is the possibility to define the callback
functions of the underlying solver C library from within Mosel as is shown in the following

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 12

http://www.dashoptimization.com/home/services/publications/support_papers.html

Hybrid MIP/CP solving

program extract.
The following example defines a function for printing out the current solution that is called
whenever an integer solution is found.

uses "mmxprs"

declarations
x: array(1..10) of mpvar

end-declarations

public procedure printsol
writeln("Solution:", getsol(Objective))
forall(i in 1..10) write("x(",i,")=", getsol(x(i)), "\t")
writeln

end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

With the help of the module mmquad it is possible to formulate and solve Quadratic
Programming problems (see the example in Section 5.3).

A recent addition is the module mmnl for handling non-linear constraints. This module is not a
solver on its own. In combination with mmxprs you can formulate and solve Quadratically
Constrained Quadratic Programming problems and Linearly Constrained Convex Optimization
problems.

General non-linear problems can be formulated and solved with the Successive Linear
Programming module mmxslp.

The module mmsp provides support for Stochastic Programming within Mosel.

The module kalis gives access to the Constraint Programming solver Kalis by Artelys.

Modules may define additional interfaces to data files:

mmetc defines the procedure diskdata that emulates the data in- and output of
mp-model[Dash, 1999];

mmoci defines a specific interface to Oracle databases;

mmodbc provides access to any data source for which an ODBC interface is available, using
Mosel’s initializations blocks or, for larger flexibility, through standard SQL commands.
This module also defines a software-specific interface to Excel.

The following program extract reads a 2-dimensional array and its sizes from an MS-Excel
spreadsheet through an ODBC connection. Notice that switching to a different data source, such
as a database, simply amounts to changing the file name:

model sizes
uses "mmodbc"

declarations
Nprod, Nrm: integer

end-declarations

initializations from ’mmodbc.odbc:ssxmpl.xls’
Nprod Nrm

end-initializations

declarations
PneedsR: array(1..Nprod,1..Nrm) of real

end-declarations

initializations from ’mmodbc.odbc:ssxmpl.xls’
PneedsR as ’USAGE’

end-initializations
end-model

The module mmsystem provides functions like gettime and file handling facilities. It even makes
it possible to use operating system commands from within the Mosel language – the latter quite

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 13

Hybrid MIP/CP solving

obviously at the expense of the portability of the model file.

The module mmive allows users working with Mosel models through the graphical user interface
Xpress-IVE to draw their own graphs, such as the chart in Figure 2.

Figure 2: Gantt chart drawn by mmive

The Xpress Application Designer (module mmxad) lets you create complete graphical applications
with Mosel such as the personnel planning application shown in Figure 3.

Figure 3: XAD application: planning the personnel at a construction site

5.2 mmxprs: variable fixing heuristic for MIP

In this section we give an example of a solution heuristic for solving a mixed integer
programming (MIP) problem using Xpress-Optimizer (module mmxprs). All subroutines, types,
constants and control parameters that are contributed to the Mosel language by this solver
module are highlighted in bold face.

To aid structuring the implementation of this problem, the problem formulation and the solution
algorithm are not only split into several subroutines, but also contained in different files that are
included by the main model file:

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 14

Hybrid MIP/CP solving

model "Fixing binary variables"
uses "mmxprs"

include "fixbv_pb.mos"
include "fixbv_solve.mos"

solution:=solve

writeln("The objective value is: ", solution)
end-model

The following is an extract of the model definition, contained in file fixbv_pb.mos:

declarations
RF=1..2 ! Range of factories (f)
RT=1..4 ! Range of time periods (t)

(...)

open: array(RF,RT) of mpvar
end-declarations

(...)

forall(f in RF,t in RT) open(f,t) is_binary

The model contains binary variables open for which a variable fixing heuristic consisting of the
following steps may be implemented:

– Solve the LP problem.

– Fix the binary variables that are almost 0 or 1 at these values (“rounding”).

– Solve the resulting MIP problem and retrieve the solution value.

– Restore the original MIP problem and solve it using the solution value of the modified
problem as bound (“cutoff” value).

The function solve that implements this solution heuristic is defined in the file
fixbv_solv.mos:

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 15

Hybrid MIP/CP solving

function solve:real
declarations

TOL=5.0E-4
osol: array(RF,RT) of real
bas: basis

end-declarations

setparam("zerotol", TOL) ! Set Mosel comparison tolerance
setparam("XPRS_CUTSTRATEGY", 0)
setparam("XPRS_HEURSTRATEGY", 0)
setparam("XPRS_PRESOLVE", 0)

maximize(XPRS_TOP, MaxProfit) ! Solve the LP problem
savebasis(bas) ! Save the current basis

forall(f in RF, t in RT) do ! "Round" binaries
osol(f,t):= getsol(open(f,t))
if osol(f,t) = 0 then

setub(open(f,t), 0)
elif osol(f,t) = 1 then

setlb(open(f,t), 1)
end-if

end-do

maximize(MaxProfit) ! Solve the modified MIP
ifgsol:=false
if getprobstat=XPRS_OPT then ! If an integer feas. solution was found

ifgsol:=true
solval:=getobjval ! Get the value of the best solution

end-if

forall(f in RF, t in RT) ! Restore the original problem
if ((osol(f,t) = 0) or (osol(f,t) = 1)) then

setlb(open(f,t), 0); setub(open(f,t), 1)
end-if

loadbasis(bas) ! Reload the basis
if ifgsol then ! Set the "cutoff" to the

setparam("XPRS_MIPABSCUTOFF", solval) ! best known solution
end-if
maximize(MaxProfit) ! Solve the original MIP
returned:=if(getprobstat=XPRS_OPT,getobjval,solval)

end-function

5.3 mmquad: defining and solving a QP

As mentioned earlier, the module mmquad can be used to formulate and solve Quadratic
Programming (QP) problems. This module defines a new type qexp, that is accepted as input by
the Xpress QP solver. This means, the extension to the Mosel language provided by the module
mmquad can even be used by other modules (inter-module communication).

In the following example we wish to determine the composition of a portfolio that minimizes the
total cost, subject to upper bounds on the assets and a limit on the total number of values that
may be chosen. The dependencies between the assets under consideration lead to a quadratic
cost function.

Modules c©2009 Fair Isaac Corporation. All rights reserved. page 16

Hybrid MIP/CP solving

model Portfolio
uses "mmxprs","mmquad"

parameters
DATAFILE = "portf.dat" ! Name of the data file
LIMIT = 20 ! Maximum number to be chosen

end-parameters

declarations
NVAL = 30 ! Total number of assets
RV = 1..NVAL
LCOST: array(RV) of real ! Coeff. of linear part of the obj.
QCOST: array(RV,RV) of real ! Coeff. of quadratic part of the obj.
UBND: array(RV) of real ! Upper bound values
n: integer ! Counter for chosen assets

x: array(RV) of mpvar ! Amount taken into the portfolio
y: array(RV) of mpvar ! 1 if asset i is chosen, else 0
Cost: qexp ! Objective function

end-declarations

initializations from DATAFILE
UBND LCOST QCOST

end-initializations

Cost:= sum(i in RV) (LCOST(i)*x(i) + ! Define the (quadratic) cost function
QCOST(i,i)*x(i)ˆ2 +
sum(j in i+1..NVAL) QCOST(i,j)*x(i)*x(j))

sum(i in RV) x(i) = 100 ! Amounts chosen must add up to 100%
sum(i in RV) y(i) <= LIMIT ! Limit on total number of values

forall(i in RV) do
x(i) <= UBND(i)*y(i) ! Upper limits
y(i) is_binary ! Variables are binary

end-do

minimize(Cost) ! Minimize the total cost

writeln("Solution: ", getobjval) ! Solution printing
writeln("(quadratic part: ",

getsol(sum(i in RV) (QCOST(i,i)*x(i)ˆ2 +
sum(j in i+1..NVAL) QCOST(i,j)*x(i)*x(j))), ")")

forall(i in RV)
if(getsol(y(i)) > 0.000001) then

writeln(i, ": ", getsol(x(i)))
n+=1

end-if
writeln("\n", n, " assets have been selected")

end-model

6 Packages

The Mosel language is open to extensions through user-written libraries. These libraries may take
two forms:

• Package – a library written in the Mosel language defining new constants, subroutines and
types for the Mosel language.

• Module – a dynamic library (Dynamic Shared Object, DSO) written in the C programming
language.

In the remainder of this section we shall discuss an example of a user package. Two examples of
user modules are described in the next section.

The structure of packages is similar to models, replacing the keyword model by package.
Packages are included into models with the uses statement, in the same way as this is the case
for modules. Unlike Mosel code that is included into a model with the include statement,
packages are compiled separately, that is, their contents are not visible to the user.

Typical uses of packages include

• development of your personal ‘tool box’

Packages c©2009 Fair Isaac Corporation. All rights reserved. page 17

Hybrid MIP/CP solving

• model parts (e.g., reformulations) or algorithms written in Mosel that you wish to distribute
without disclosing their contents

• add-ons to modules that are more easily written in the Mosel language

6.1 Defining a new subroutine

After solving a problem, users often wish to retrieve the solution and store it. Mosel provides the
function getsol to access solution values one-by-one, but there is no subroutine for accessing
and saving the solution to an array of decision variables all at once. However, such a subroutine
can easily be implemented in the form of a module. In the example from the previous section, we
would then be able to print out the solution as follows:

model Portfolio
uses "solarray", "mmxprs"

... ! Data initialization

declarations
x: array(RV) of mpvar ! Amount taken into the portfolio
sol: array(RV) of real ! Solution values

end-declarations

... ! Formulate and solve the problem

solarray(x,sol) ! Retrieve the solution for all variables
writeln(sol) ! Print the solution

end-model

The following Mosel code produces a package ’solarray’ that may be used in the place of the
module ’solarray’ we have discussed earlier. Whereas the module only defines a single C function
that deals with any type and number of index sets to the arrays, we here need to define explicitly
one overloaded version of the subroutine solarray for every configuration of array index sets
we may wish to use.

package solarraypkg
public procedure solarray(x:array(R:set of integer) of mpvar,

s:array(set of integer) of real)
forall(i in R) s(i):=getsol(x(i))

end-procedure

public procedure solarray(x:array(R1:set of integer,
R2:set of integer) of mpvar,
s:array(set of integer,
set of integer) of real)

forall(i in R1, j in R2) s(i,j):=getsol(x(i,j))
end-procedure

public procedure solarray(x:array(R1:set of integer,
R2:set of integer,
R3:set of integer) of mpvar,
s:array(set of integer,
set of integer,
set of integer) of real)

forall(i in R1, j in R2, k in R3) s(i,j,k):=getsol(x(i,j,k))
end-procedure

end-package

This package code, saved as solarray.mos, is compiled in the same way as any standard Mosel
model to a BIM file (solarray.bim where the filenamne indicates the name of the package). If
it is not included in the working directory, the environment variable MOSEL_DSO needs to be set
to its location.

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 18

Hybrid MIP/CP solving

7 Writing user modules

From the operating system point of view, a module is a dynamic library (Dynamic Shared Object,
DSO) written in the C programming language. The Mosel Native Interface is a set of conventions
that a DSO must respect to be accepted as a module by Mosel. Any functionality that can be
implemented in the form of a C library may be made accessible from within the Mosel language.
In this section, we show how to define (1) a new subroutine and (2) a new type with operators to
work with it.

7.1 Defining a new subroutine

The solarray function of package ’solarray’ described in the previous section may equally be
defined by a module ’solarray’ – without any need for modifications to the Mosel model using
this functionality. The ’solarray’ module defines a single C function that deals with any type and
number of index sets to the arrays, whereas with the Mosel language we need to define explicitly
one overloaded version of the subroutine solarray for every configuration of array index sets
we may wish to use.

Figure 4: Module definition with IVE

The code for implementing a module that provides this new function is shown in the following.
The various interface structures, the initialization function, and also the prototype of the library
function ar_getsol implementing “solarray” can be generated automatically with the module
generation functionality in Xpress-IVE (Figure 4). The only work left over to the user is to fill in
the body of the function ar_getsol. For simplicity’s sake we have left out the error handling
that should be performed by this function, we merely show the required operations:

1. Get the references to the two arrays (one array of decision variables and one array of reals)
from the Mosel stack.

2. Enumerate all defined entries in the array of variables (it may be sparse or dense, with up to
MAXDIM dimensions).

3. Get the solution value for each entry and copy it into the array of reals.

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 19

Hybrid MIP/CP solving

#include <stdlib.h>
#include "xprm_ni.h"

#define MAXDIM 20

static int ar_getsol(XPRMcontext ctx,void *libctx);

/* List of subroutines */
static XPRMdsofct tabfct[]=
{
{"solarray", 1000, XPRM_TYP_NOT, 2, "A.vA.r", ar_getsol}

};

/* Interface structure */
static XPRMdsointer dsointer=
{

0, NULL,
sizeof(tabfct)/sizeof(XPRMdsofct), tabfct,
0, NULL,
0, NULL

};

/* Structure for getting function list from Mosel */
static XPRMnifct mm;

/* Module initialization function */
DSO_INIT solarray_init(XPRMnifct nifct, int *interver, int *libver,

XPRMdsointer **interf)
{

mm=nifct; /* Get the list of Mosel functions */

interver=XPRM_NIVERS; / Mosel NI version */

libver=XPRM_MKVER(0,0,1); / Module version: must be <= Mosel NI version */

interf=&dsointer; / Pass info about module contents to Mosel */

return 0;
}

static int ar_getsol(XPRMcontext ctx,void *libctx)
{

XPRMarray varr, solarr;
XPRMmpvar var;
int indices[MAXDIM];

/* Get variable and solution arrays from stack in the order that they are
used as parameters for ‘getsol’ */
varr=XPRM_POP_REF(ctx);
solarr=XPRM_POP_REF(ctx);

/* Error handling:
- compare the number of array dimensions and the index sets
- make sure the arrays do not exceed the maximum number of dimensions MAXDIM

*/

/* Get the solution values for all variables and copy them into the solution
array */
if(!mm->getfirstarrtruentry(varr,indices))

do
{
mm->getarrval(varr,indices,&var);
mm->setarrvalreal(ctx,solarr,indices,mm->getvsol(ctx,var));

} while(!mm->getnextarrtruentry(varr,indices));

return XPRM_RT_OK;
}

This code needs to be compiled into a dynamic library giving it the extension .dso. Afterwards its
location must be made known to Mosel (by setting the environment variable MOSEL_DSO) and
then it may be used like any module of the Mosel distribution.

As can be seen from this example, there may be a choice whether to implement language
extensions in the form of a module or as a package. Packages behave like standard Mosel models,
modules are written in a lower level language, implying in general a higher development effort
but also a faster execution speed. Certain functionality (such as arbitrary array indices in this
example or the definition of operators in the complex number example below) can only be
provided by modules.

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 20

Hybrid MIP/CP solving

7.2 Creating a new type

In this section we show how to implement a new type complex to represent complex numbers so
as to make possible writing models like the following with Mosel:

model Complex numbers
uses "complex"

declarations
c:complex ! Define a single complex number
t:array(1..10) of complex ! Define an array of complex numbers

end-declarations

forall(j in 1..10)
t(j):=complex(j,10-j) ! Initialize with 2 integers or reals

t(5):=complex("5+5i") ! Initialize with a string

c:=prod(i in 1..5) t(i) ! Aggregate PROD operator
if c<>0 then ! Comparison with an integer or real

writeln("Product: ", c) ! Printing a complex number
end-if

writeln("Sum: ", sum(i in 1..10) t(i)) ! Aggregate SUM operator
! Arithmetic operators

c:=t(1)*t(3)/t(4) + if(t(2)=0, t(10), t(8)) + t(5) - t(9)

initializations to "complex_out.dat" ! Output to a file
c t

end-initializations
end-model

Besides some standardized initialization and type creation functions, the module implementing
this new type defines constructors, basic arithmetic operations, the equality comparison operator
and a printing function.

Once a type is defined, it can automatically be used in Mosel data structures (set, array) as shown
in the example. From given defitions of the basic arithmetic operations Mosel deduces the
definition of aggregate operators like aggregate products or sums, and where applicable,
commutations of the operands or negations. Similarly, the definition of an equality comparison
suffices to derive the inequality and from basic logical operators (none defined in this case) the
definition of aggregate operators is generated. With the definition of a printing function, the
output to a file with initializations to is also available.

Since the complete code of this module1 occupies several pages of text, we shall restrict ourselves
here to highlighting some key features of this module:

• module context

• type creation and deletion

• type transformation to and from string

• overloading of arithmetic operators

As with the previous example, we assume that the module code generation facility of IVE has
been used to create the required interface structures so that we only need to fill in the
corresponding function bodies.

7.2.1 Module context

A module needs to keep track of all objects created during the execution of a model so that all
allocated space may be freed when the execution is terminated. This function is fulfilled by the
module context. In this example, the context may be nothing but a chained list of complex
numbers:

1Complete source code available from the authors.

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 21

Hybrid MIP/CP solving

typedef struct
{

s_complex *firstcomplex;
} s_cxctx;

which assumes that a complex number is represented by the following structure:

typedef struct Complex
{

double re, im;
int refcnt;
struct Complex *next;

} s_complex;

A module context can also be used to store the current values of control parameters or any other
information that needs to be preserved between different calls to the module functions during
the execution of a model.

A reset service function is called at the beginning and the termination of the execution of a
Mosel program that uses the module. At its first call, the reset function creates and initializes a
context for the model, and deletes this context (and any other resources used by the module for
this model) at the second call.

7.2.2 Type creation and deletion

The objective of the type instance creation and deletion functions is to handle (create/initialize or
delete/reset) the C structures that represent the external type and to update correspondingly the
information stored in the module context. In this example we implement just a rudimentary
memory management for the objects (complex numbers) created by the module: every time a
number is created, we allocate the corresponding space and deallocate it when it is deleted.
More realistically, a module may allocate chunks of memory and recycle space that has been
allocated earlier by this module.

We define the creation function for a complex number as follows—if the number already exists
we increase its reference counter otherwise we allocate and initialize a new C structure for this
number:

static void *cx_create(XPRMcontext ctx, void *libctx, void *todup, int typnum)
{

s_cxctx *cxctx;
s_complex *complex;

if(todup!=NULL)
{

((s_complex *)todup)->refcnt++;
return todup;

}
else
{

cxctx=libctx;
complex=(s_complex *)malloc(sizeof(s_complex));
complex->next=cxctx->firstcomplex;
cxctx->firstcomplex=complex;

complex->re=complex->im=0; /* Initialize the complex number */
complex->refcnt=1;
return complex;

}
}

The deletion function frees the space used by a complex number and removes it from the list held
by the module context (unless there still are references to this number, in which case the deletion
function just decreases the reference counter).

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 22

Hybrid MIP/CP solving

7.2.3 Type transformation to and from string

To be able to use initializations blocks with the new type complex we define two functions
for transforming the number into a string and initializing it from a string. The writing function is
also used by the write and writeln procedures for printing this type. The reading function also
gets applied when the type instance creation function is given a string.
The format of the string will obviously depend on the type. In this example the obvious format is
"re+imi". The following function prints a complex number:

static int cx_tostr(XPRMcontext ctx, void *libctx, void *toprt, char *str,
int len, int typnum)

{
s_complex *c;

if(toprt==NULL)
{

strcpy(str, "0+0i");
return 4;

}
else
{

c=toprt;
return sprintf(str, "%g%+gi", c->re, c->im);

}
}

The next function reads in a complex number from a string:

static int cx_fromstr(XPRMcontext ctx, void *libctx, void *toinit, const char *str,
int typnum)

{
double re,im;
s_complex *c;
if(sscanf(str,"%lf%lf",&re,&im)!=2)

return XPRM_RT_ERROR;
else
{

c=toinit;
c->re=re;
c->im=im;
return XPRM_RT_OK;

}
}

7.2.4 Overloading of arithmetic operators

The only type conversion that is carried out automatically by Mosel is from integer to real (but
not the other way round), and no conversions involving external types. It is therefore necessary
to define all the operations between two numbers for two complex numbers and also for a
complex and a real number. However, for commutative operations (addition, multiplication,
comparison) it is only required to define one version combining the two types, the other sense is
deduced by Mosel.

Taking the example of the multiplication, we have to define the multiplication of two complex
numbers: (a + bi) · (c + di) = ac − bd + (ad + bd)i

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 23

Hybrid MIP/CP solving

static int cx_mul(XPRMcontext ctx, void *libctx)
{

s_complex *c1,*c2;
double re,im;

c1=XPRM_POP_REF(ctx);
c2=XPRM_POP_REF(ctx);
if(c1!=NULL)
{

if(c2!=NULL)
{

re=c1->re*c2->re-c1->im*c2->im;
im=c1->re*c2->im+c1->im*c2->re;
c1->re=re;
c1->im=im;

}
else

c1->re=c2->im=0;
}
cx_delete(ctx,libctx,c2,0);
XPRM_PUSH_REF(ctx,c1);
return XPRM_RT_OK;

}

and also the multiplication of a complex with a real: (a + bi) · r = ar + bri

static int cx_mul_r(XPRMcontext ctx, void *libctx)
{

s_complex *c1;
double r;

c1=XPRM_POP_REF(ctx);
r=XPRM_POP_REAL(ctx);
if(c1!=NULL)
{

c1->re*=r;
c1->im*=r;

}
XPRM_PUSH_REF(ctx,c1);
return XPRM_RT_OK;

}

It is not necessary to define the multiplication of a real with a complex since this operation is
commutative and Mosel therefore deduces this case. The addition of two complex numbers and
of a complex and a real number is implemented in a very similar way to multiplication. Once we
have got the two types of addition, we simply need to implement the negation (–complex) in
order for Mosel to be able to deduce subtraction (real – complex and complex – complex). For
division, we need to implement all three cases since this operation is not commutative:
complex/complex, complex/real and real/complex.

Furthermore we need to define the identity elements for addition and multiplication respectively:

static int cx_zero(XPRMcontext ctx, void *libctx)
{

XPRM_PUSH_REF(ctx,cx_create(ctx,libctx,NULL,0));
return XPRM_RT_OK;

}

static int cx_one(XPRMcontext ctx, void *libctx)
{

s_complex *complex;

complex=cx_create(ctx,libctx,NULL,0);
complex->re=1;
XPRM_PUSH_REF(ctx,complex);
return XPRM_RT_OK;

}

Writing user modules c©2009 Fair Isaac Corporation. All rights reserved. page 24

Hybrid MIP/CP solving

Once addition and the 0-element have been defined, Mosel deduces the aggregate operator SUM.
With multiplication and the 1-element, we obtain the aggregate operator PROD for our new type.

Other operators implemented by this module are constructors, the assignment and the
comparison operators.

8 Conclusion

Mosel provides a flexible environment for modeling and solving optimization problems. The
examples discussed in this paper show different possible uses of Mosel: practitioners in
Operations Research typically are interested in implementing their models quickly and in a form
that can easily be maintained. This is delivered by the fact that the formulation of mathematical
models in the Mosel language is close to their algebraic form (see [Guéret et al., 2002] for a
collection of examples). Mosel also provides ample support for data handling making it possible
to read and write data from various sources with just a few lines of code. When models grow
larger the possibility to write solution algorithms and heuristics directly in the Mosel language is
often helpful. Advanced users and researchers appreciate the possibility to add themselves
whatever new feature may be required by their application, such as access to specific external
data sources, new solvers, or external solution algorithms.

The latter relies on an important characteristic of Mosel, its modular architecture: software-
and/or application-specific functionality can easily been added in the form of modules that
extend the Mosel language. This scheme goes so far as to allow modules to publish new data and
variable types which may be required, for instance, to support solvers other than Linear and
Mixed Integer Programming tools. These may be matrix-based solvers (such as for solving
Quadratic Programming problems) or software that uses a different way of representing
problems (like finite domain constraint solvers).

The Mosel environment with the various adjoint products of the FICOTM Xpresssoftware suite
covers the full cycle of application development, moving from the prototype stage (easily realized
within Xpress-IVE) to the implementation of a complete optimization solution (developed,
analyzed, and improved with tools such as the Mosel debugger, profiler, or the Xpress-Tuner) and
its embedding into the company’s information system (library interfaces), including connections
to external data sources (databases, on-line data) or even the development of complete graphical
application interfaces (XAD), without any need for changing the software platform at any point
of the development process.

A comprehensive collection of examples is accessible from the Xpress examples database website:

http://www.dashoptimization.com/home/cgi-bin/example.pl

Bibliography

[Dash, 1999] Dash Associates. XPRESS-MP Reference Manual, 1999.

[Fourer et al., 1993] R. Fourer, D. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. The Scientific Press, San Francisco, CA, 1993.

[Guéret et al., 2002] C. Guéret, S. Heipcke, C. Prins, M. Sevaux (2002). Applications of Optimization with
Xpress-MP. Dash Optimization, Blisworth, UK.

[Maximal, 2001] Maximal Software. MPL for Windows Reference Manual, 2001.

[Van Hentenryck, 1998] P. Van Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, 1998.

Conclusion c©2009 Fair Isaac Corporation. All rights reserved. page 25

http://www.dashoptimization.com/home/cgi-bin/example.pl

	Introduction
	Solver Modules
	Other modules
	User modules
	Tools
	I/O drivers
	Contents of this paper

	Overview
	The Mosel language: a simple example
	Extending the example

	The language
	Types and data structures
	Initialization of data/data file access
	Language constructs
	Selections

	Loops
	Example: working with sets
	Subroutines

	Mosel libraries
	Modules
	Available modules
	mmxprs: variable fixing heuristic for MIP
	mmquad: defining and solving a QP

	Packages
	Defining a new subroutine

	Writing user modules
	Defining a new subroutine
	Creating a new type
	Module context
	Type creation and deletion
	Type transformation to and from string
	Overloading of arithmetic operators

	Conclusion

