
FICOTM Xpress
Optimization Suite Xpress-SLP

Manual

Release version 31.01

Last update 14 April, 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©1983–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

Xpress-SLP

Deliverable Version: A

Last Revised: 14 April, 2017

Version version 31.01

Contents

I Overview 1

1 Introduction 2
1.1 Mathematical programs . 2

1.1.1 Linear programs . 2
1.1.2 Convex quadratic programs . 3
1.1.3 Convex quadratically constrained quadratic programs 3
1.1.4 Second order conic problems . 3
1.1.5 General nonlinear optimization problems . 3
1.1.6 Mixed integer programs . 4

1.2 Technology Overview . 4
1.2.1 The Simplex Method . 4
1.2.2 The Logarithmic Barrier Method . 4
1.2.3 Outer approximation schemes . 4
1.2.4 Successive Linear Programming . 5
1.2.5 Second Order Methods . 5
1.2.6 Mixed Integer Solvers . 5

2 The Problem 6
2.1 Problem Definition . 6
2.2 Problem Formulation . 6

3 Modeling in Mosel 8
3.1 Basic formulation . 8
3.2 Setting up and solving the problem . 9
3.3 Looking at the results . 10
3.4 Parallel evaluation of Mosel user functions . 10

4 Modeling in Extended MPS Format 12
4.1 Basic formulation . 12
4.2 Using the XSLP console-based interface . 17
4.3 Coefficients and terms . 17
4.4 User functions . 18

4.4.1 A user function in an Excel macro . 18
4.4.2 Extending the polygon model . 19

4.5 Using extended variable arrays . 20

5 The Xpress-SLP API Functions 21
5.1 Header files . 21
5.2 Initialization . 21
5.3 Callbacks . 21
5.4 Creating the linear part of the problem . 22
5.5 Adding the non-linear part of the problem . 25
5.6 Adding the non-linear part of the problem using character formulae 27
5.7 Checking the data . 28

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

5.8 Solving and printing the solution . 28
5.9 Closing the program . 29
5.10 Adding initial values . 29
5.11 User functions . 30

5.11.1 A user function in C . 30
5.11.2 Extending the polygon model . 31
5.11.3 Internal user functions . 32
5.11.4 Using extended variable arrays . 32

6 The XSLP Console Program 34
6.1 The Console XSLP . 34

6.1.1 The XSLP console extensions . 34
6.1.2 Common features of the Xpress Optimizer and the Xpress XSLP console 35

II Advanced 37

7 Nonlinear Problems 38
7.1 Coefficients and terms . 38
7.2 SLP variables . 39
7.3 Local and global optimality . 39
7.4 Convexity . 39
7.5 Converged and practical solutions . 40
7.6 The duals of general, nonlinear program . 40

8 Extended MPS file format 42
8.1 Formulae . 42
8.2 COLUMNS . 43
8.3 BOUNDS . 44
8.4 SLPDATA . 44

8.4.1 CV (Character variable) . 44
8.4.2 DC (Delayed constraint) . 45
8.4.3 DR (Determining row) . 45
8.4.4 EC (Enforced constraint) . 46
8.4.5 FR (Free variable) . 46
8.4.6 FX (Fixed variable) . 46
8.4.7 IV (Initial value) . 46
8.4.8 LO (Lower bounded variable) . 47
8.4.9 Rx, Tx (Relative and absolute convergence tolerances) 47
8.4.10 SB (Initial step bound) . 48
8.4.11 UF (User function) . 48
8.4.12 UP (Free variable) . 48
8.4.13 WT (Explicit row weight) . 48
8.4.14 XV (Extended variable array) . 49
8.4.15 DL (variable specific Determining row cascade iteration Limit) 50

9 Xpress-SLP Solution Process 51
9.1 Analyzing the solution process . 52
9.2 The initial point . 52
9.3 Derivatives . 52

9.3.1 Finite Differences . 53
9.3.2 Symbolic Differentiation . 53
9.3.3 Automatic Differentiation . 53

9.4 Points of inflection . 53
9.5 Trust regions . 54

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

10 Handling Infeasibilities 56
10.1 Infeasibility Analysis in the Xpress Optimizer . 56
10.2 Managing Infeasibility with Xpress KNITRO . 56
10.3 Managing Infeasibility with Xpress-SLP . 57
10.4 Penalty Infeasibility Breakers in XSLP . 57

11 Cascading 59
11.1 Determining rows and determining columns . 60

12 Convergence criteria 61
12.1 Convergence criteria . 61
12.2 Convergence overview . 61

12.2.1 Strict Convergence . 61
12.2.2 Extended Convergence . 61
12.2.3 Stopping Criterion . 62
12.2.4 Step Bounding . 63

12.3 Convergence: technical details . 63
12.3.1 Closure tolerance (CTOL) . 66
12.3.2 Delta tolerance (ATOL) . 66
12.3.3 Matrix tolerance (MTOL) . 67
12.3.4 Impact tolerance (ITOL) . 67
12.3.5 Slack impact tolerance (STOL) . 68
12.3.6 Fixed variables due to determining columns smaller than treshold (FX) 68
12.3.7 User-defined convergence . 68
12.3.8 Static objective function (1) tolerance (VTOL) . 69
12.3.9 Static objective function (2) tolerance (OTOL) . 69
12.3.10Static objective function (3) tolerance (XTOL) . 70
12.3.11Extended convergence continuation tolerance (WTOL) 70

13 Xpress-SLP Structures 72
13.1 SLP Matrix Structures . 72

13.1.1 Augmentation of a nonlinear coefficient . 73
13.1.2 Augmentation of a nonlinear term . 74
13.1.3 Augmentation of a user-defined SLP variable . 75
13.1.4 SLP penalty error vectors . 76

13.2 Xpress-SLP Matrix Name Generation . 77
13.3 Xpress-SLP Statistics . 78
13.4 SLP Variable History . 80

14 Xpress-SLP Formulae 81
14.1 Parsed and unparsed formulae . 81
14.2 Example of an arithmetic formula . 83
14.3 Example of a formula involving a simple function . 84
14.4 Example of a formula involving a complicated function 85
14.5 Example of a formula defining a user function . 86
14.6 Example of a formula defining an XV . 86
14.7 Example of a formula defining a DC . 87
14.8 Formula evaluation and derivatives . 87

15 User Functions 88
15.1 Constant Derivatives . 88
15.2 Multi-purpose functions and the dependency matrix 89
15.3 Callbacks and user functions . 89
15.4 User function interface . 90
15.5 Function Declaration in Xpress-SLP . 91

15.5.1 Function declaration in Extended MPS format 91

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

15.5.2 Function declaration through XSLPloaduserfuncs and XSLPadduserfuncs 94
15.5.3 Function declaration through XSLPchguserfunc 96
15.5.4 Function declaration through SLPDATA in Mosel 96

15.6 User Function declaration in native languages . 96
15.6.1 User function declaration in C . 97
15.6.2 User function declaration in Excel (spreadsheet) 97
15.6.3 User function declaration in VBA (Excel macro) 98
15.6.4 User function declaration in Visual Basic . 98
15.6.5 User function declaration in COM . 99
15.6.6 User function declaration in MOSEL . 99

15.7 Simple functions and general functions . 100
15.7.1 Simple user functions . 100
15.7.2 General user functions returning an array of values through a reference 100
15.7.3 General user functions returning an array of values through an argument . . . 101

15.8 Programming Techniques for User Functions . 103
15.8.1 FunctionInfo . 103
15.8.2 InputNames . 103
15.8.3 ReturnNames . 103
15.8.4 Deltas . 104
15.8.5 Return values and ReturnArray . 104
15.8.6 Returning Derivatives . 104
15.8.7 Function Instances . 105
15.8.8 Function Objects . 106
15.8.9 Calling user functions . 109

15.9 Function Derivatives . 111
15.9.1 Analytic Derivatives of Instantiated User Functions not Returning their own

Derivatives . 113

16 Management of zero placeholder entries 114
16.1 The augmented matrix structure . 114
16.2 Derivatives and zero derivatives . 114
16.3 Placeholder management . 115

17 Special Types of Problem 117
17.1 Nonlinear objectives . 117
17.2 Convex Quadratic Programming . 117
17.3 Mixed Integer Nonlinear Programming . 118

17.3.1 Mixed Integer SLP . 118
17.3.2 Heuristics for Mixed Integer SLP . 118
17.3.3 Fixing or relaxing the values of the SLP variables 119
17.3.4 Iterating at each node . 120
17.3.5 Termination criteria at each node . 120
17.3.6 Callbacks . 121

17.4 Integer and semi-continuous delta variables . 121

18 Xpress-SLP multistart 123

III Reference 124

19 Problem Attributes 125
19.1 Double problem attributes . 129

XSLP_CURRENTDELTACOST . 129
XSLP_CURRENTERRORCOST . 129
XSLP_ERRORCOSTS . 129
XSLP_OBJSENSE . 129

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

XSLP_OBJVAL . 130
XSLP_PENALTYDELTATOTAL . 130
XSLP_PENALTYDELTAVALUE . 130
XSLP_PENALTYERRORTOTAL . 130
XSLP_PENALTYERRORVALUE . 130
XSLP_VALIDATIONINDEX_A . 131
XSLP_VALIDATIONINDEX_K . 131
XSLP_VALIDATIONINDEX_R . 131
XSLP_VSOLINDEX . 131

19.2 Integer problem attributes . 132
XSLP_COEFFICIENTS . 132
XSLP_CVS . 132
XSLP_DELTAS . 132
XSLP_ECFCOUNT . 132
XSLP_EXPLOREDELTAS . 132
XSLP_EQUALSCOLUMN . 133
XSLP_IFS . 133
XSLP_IMPLICITVARIABLES . 133
XSLP_INTEGERDELTAS . 133
XSLP_INTERNALFUNCCALLS . 133
XSLP_ITER . 134
XSLP_JOBID . 134
XSLP_MINORVERSION . 134
XSLP_MINUSPENALTYERRORS . 134
XSLP_MIPITER . 134
XSLP_MIPNODES . 135
XSLP_MIPSOLS . 135
XSLP_MODELCOLS . 135
XSLP_MODELROWS . 135
XSLP_MSSTATUS . 136
XSLP_NLPSTATUS . 136
XSLP_NONCONSTANTCOEFF . 136
XSLP_NONLINEARCONSTRAINTS . 136
XSLP_ORIGINALCOLS . 137
XSLP_ORIGINALROWS . 137
XSLP_PENALTYDELTACOLUMN . 137
XSLP_PENALTYDELTAROW . 137
XSLP_PENALTYDELTAS . 137
XSLP_PENALTYERRORCOLUMN . 138
XSLP_PENALTYERRORROW . 138
XSLP_PENALTYERRORS . 138
XSLP_PLUSPENALTYERRORS . 138
XSLP_PRESOLVEDELETEDDELTA . 138
XSLP_PRESOLVEELIMINATIONS . 139
XSLP_PRESOLVEFIXEDCOEF . 139
XSLP_PRESOLVEFIXEDDR . 139
XSLP_PRESOLVEFIXEDNZCOL . 140
XSLP_PRESOLVEFIXEDSLPVAR . 140
XSLP_PRESOLVEFIXEDZCOL . 140
XSLP_PRESOLVEPASSES . 140
XSLP_PRESOLVESTATE . 141
XSLP_PRESOLVETIGHTENED . 141
XSLP_SBXCONVERGED . 141
XSLP_SEMICONTDELTAS . 141
XSLP_SOLVERSELECTED . 142

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

XSLP_STATUS . 142
XSLP_STOPSTATUS . 144
XSLP_TOLSETS . 144
XSLP_UCCONSTRAINEDCOUNT . 144
XSLP_UFINSTANCES . 144
XSLP_UFS . 145
XSLP_UNCONVERGED . 145
XSLP_USEDERIVATIVES . 145
XSLP_USERFUNCCALLS . 145
XSLP_VARIABLES . 145
XSLP_VERSION . 146
XSLP_XVS . 146
XSLP_ZEROESRESET . 146
XSLP_ZEROESRETAINED . 146
XSLP_ZEROESTOTAL . 147

19.3 Reference (pointer) problem attributes . 148
XSLP_MIPPROBLEM . 148
XSLP_SOLUTIONPOOL . 148
XSLP_XPRSPROBLEM . 148
XSLP_XSLPPROBLEM . 148
XSLP_GLOBALFUNCOBJECT . 148

19.4 String problem attributes . 150
XSLP_UNIQUEPREFIX . 150
XSLP_VERSIONDATE . 150

20 Control Parameters 151
20.1 Double control parameters . 161

XSLP_ATOL_A . 161
XSLP_ATOL_R . 161
XSLP_BARSTALLINGTOL . 161
XSLP_CASCADETOL_PA . 162
XSLP_CASCADETOL_PR . 162
XSLP_CDTOL_A . 163
XSLP_CDTOL_R . 163
XSLP_CLAMPSHRINK . 163
XSLP_CLAMPVALIDATIONTOL_A . 164
XSLP_CLAMPVALIDATIONTOL_R . 164
XSLP_CTOL . 164
XSLP_DAMP . 165
XSLP_DAMPEXPAND . 165
XSLP_DAMPMAX . 165
XSLP_DAMPMIN . 166
XSLP_DAMPSHRINK . 166
XSLP_DEFAULTIV . 166
XSLP_DEFAULTSTEPBOUND . 167
XSLP_DELTA_A . 167
XSLP_DELTA_R . 167
XSLP_DELTA_X . 168
XSLP_DELTA_Z . 168
XSLP_DELTA_ZERO . 168
XSLP_DELTACOST . 169
XSLP_DELTACOSTFACTOR . 169
XSLP_DELTAMAXCOST . 169
XSLP_DJTOL . 170
XSLP_DRCOLTOL . 170

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

XSLP_ECFTOL_A . 170
XSLP_ECFTOL_R . 171
XSLP_ENFORCECOSTSHRINK . 171
XSLP_ENFORCEMAXCOST . 172
XSLP_EQTOL_A . 172
XSLP_EQTOL_R . 172
XSLP_ERRORCOST . 173
XSLP_ERRORCOSTFACTOR . 173
XSLP_ERRORMAXCOST . 173
XSLP_ERRORTOL_A . 174
XSLP_ERRORTOL_P . 174
XSLP_ESCALATION . 174
XSLP_ETOL_A . 175
XSLP_ETOL_R . 175
XSLP_EVTOL_A . 175
XSLP_EVTOL_R . 176
XSLP_EXPAND . 176
XSLP_FEASTOLTARGET . 177
XSLP_GRANULARITY . 177
XSLP_INFINITY . 177
XSLP_ITOL_A . 177
XSLP_ITOL_R . 178
XSLP_MATRIXTOL . 179
XSLP_MAXWEIGHT . 179
XSLP_MEMORYFACTOR . 180
XSLP_MERITLAMBDA . 180
XSLP_MINSBFACTOR . 180
XSLP_MINWEIGHT . 181
XSLP_MIPCUTOFF_A . 181
XSLP_MIPCUTOFF_R . 181
XSLP_MIPERRORTOL_A . 182
XSLP_MIPERRORTOL_R . 182
XSLP_MIPOTOL_A . 183
XSLP_MIPOTOL_R . 183
XSLP_MSMAXBOUNDRANGE . 183
XSLP_MTOL_A . 184
XSLP_MTOL_R . 184
XSLP_MVTOL . 185
XSLP_OBJSENSE . 186
XSLP_OBJTOPENALTYCOST . 186
XSLP_OPTIMALITYTOLTARGET . 187
XSLP_OTOL_A . 187
XSLP_OTOL_R . 188
XSLP_PRESOLVEZERO . 188
XSLP_SHRINK . 188
XSLP_SHRINKBIAS . 189
XSLP_STOL_A . 189
XSLP_STOL_R . 190
XSLP_VALIDATIONTARGET_R . 190
XSLP_VALIDATIONTARGET_K . 190
XSLP_VALIDATIONTOL_A . 191
XSLP_VALIDATIONTOL_R . 191
XSLP_VTOL_A . 192
XSLP_VTOL_R . 192
XSLP_WTOL_A . 193

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

XSLP_WTOL_R . 194
XSLP_XTOL_A . 195
XSLP_XTOL_R . 196
XSLP_ZERO . 196

20.2 Integer control parameters . 198
XSLP_ALGORITHM . 198
XSLP_ANALYZE . 200
XSLP_AUGMENTATION . 201
XSLP_AUTOSAVE . 203
XSLP_BARCROSSOVERSTART . 203
XSLP_BARLIMIT . 203
XSLP_BARSTALLINGLIMIT . 204
XSLP_BARSTALLINGOBJLIMIT . 204
XSLP_BARSTARTOPS . 204
XSLP_CALCTHREADS . 205
XSLP_CASCADE . 205
XSLP_CASCADENLIMIT . 206
XSLP_CONTROL . 206
XSLP_CONVERGENCEOPS . 207
XSLP_DAMPSTART . 208
XSLP_DCLIMIT . 208
XSLP_DCLOG . 208
XSLP_DELAYUPDATEROWS . 209
XSLP_DECOMPOSE . 209
XSLP_DECOMPOSEPASSLIMIT . 210
XSLP_DELTAOFFSET . 210
XSLP_DELTAZLIMIT . 210
XSLP_DERIVATIVES . 211
XSLP_DETERMINISTIC . 211
XSLP_ECFCHECK . 212
XSLP_ECHOXPRSMESSAGES . 212
XSLP_ERROROFFSET . 212
XSLP_EVALUATE . 213
XSLP_EXCELVISIBLE . 213
XSLP_EXTRACVS . 214
XSLP_EXTRAUFS . 214
XSLP_EXTRAXVITEMS . 214
XSLP_EXTRAXVS . 215
XSLP_FILTER . 215
XSLP_FINDIV . 216
XSLP_FUNCEVAL . 216
XSLP_GRIDHEURSELECT . 217
XSLP_HEURSTRATEGY . 217
XSLP_HESSIAN . 218
XSLP_INFEASLIMIT . 218
XSLP_ITERLIMIT . 219
XSLP_JACOBIAN . 219
XSLP_LINQUADBR . 219
XSLP_LOG . 220
XSLP_LSITERLIMIT . 220
XSLP_LSPATTERNLIMIT . 220
XSLP_LSSTART . 221
XSLP_LSZEROLIMIT . 221
XSLP_MAXTIME . 221
XSLP_MIPALGORITHM . 222

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

XSLP_MIPCUTOFFCOUNT . 223
XSLP_MIPCUTOFFLIMIT . 223
XSLP_MIPDEFAULTALGORITHM . 224
XSLP_MIPFIXSTEPBOUNDS . 224
XSLP_MIPITERLIMIT . 225
XSLP_MIPLOG . 225
XSLP_MIPOCOUNT . 225
XSLP_MIPRELAXSTEPBOUNDS . 226
XSLP_MULTISTART . 226
XSLP_MULTISTART_MAXSOLVES . 226
XSLP_MULTISTART_MAXTIME . 227
XSLP_MULTISTART_POOLSIZE . 227
XSLP_MULTISTART_SEED . 228
XSLP_MULTISTART_THREADS . 228
XSLP_OCOUNT . 228
XSLP_PENALTYINFOSTART . 229
XSLP_POSTSOLVE . 229
XSLP_PRESOLVE . 229
XSLP_PRESOLVELEVEL . 230
XSLP_PRESOLVEOPS . 230
XSLP_PRESOLVEPASSLIMIT . 231
XSLP_PROBING . 231
XSLP_REFORMULATE . 232
XSLP_SAMECOUNT . 232
XSLP_SAMEDAMP . 233
XSLP_SBROWOFFSET . 233
XSLP_SBSTART . 233
XSLP_SCALE . 234
XSLP_SCALECOUNT . 234
XSLP_SOLVER . 234
XSLP_SLPLOG . 235
XSLP_STOPOUTOFRANGE . 235
XSLP_THREADS . 235
XSLP_TIMEPRINT . 236
XSLP_THREADSAFEUSERFUNC . 236
XSLP_TRACEMASKOPS . 236
XSLP_UNFINISHEDLIMIT . 237
XSLP_UPDATEOFFSET . 238
XSLP_VCOUNT . 238
XSLP_VLIMIT . 239
XSLP_WCOUNT . 239
XSLP_XCOUNT . 240
XSLP_XLIMIT . 241
XSLP_ZEROCRITERION . 242
XSLP_ZEROCRITERIONCOUNT . 242
XSLP_ZEROCRITERIONSTART . 243

20.3 Memory control parameters . 244
XSLP_MEM_CALCSTACK . 244
XSLP_MEM_COEF . 245
XSLP_MEM_COL . 245
XSLP_MEM_CVAR . 245
XSLP_MEM_DERIVATIVES . 245
XSLP_MEM_EXCELDOUBLE . 245
XSLP_MEM_FORMULA . 245
XSLP_MEM_FORMULAHASH . 246

Fair Isaac Corporation Confidential and Proprietary Information ix

Contents

XSLP_MEM_FORMULAVALUE . 246
XSLP_MEM_ITERLOG . 246
XSLP_MEM_RETURNARRAY . 246
XSLP_MEM_ROW . 246
XSLP_MEM_STACK . 246
XSLP_MEM_STRING . 247
XSLP_MEM_TOL . 247
XSLP_MEM_UF . 247
XSLP_MEM_VAR . 247
XSLP_MEM_XF . 247
XSLP_MEM_XFNAMES . 247
XSLP_MEM_XFVALUE . 248
XSLP_MEM_XROW . 248
XSLP_MEM_XV . 248
XSLP_MEM_XVITEM . 248

20.4 String control parameters . 249
XSLP_CVNAME . 249
XSLP_DELTAFORMAT . 249
XSLP_IVNAME . 249
XSLP_MINUSDELTAFORMAT . 250
XSLP_MINUSERRORFORMAT . 250
XSLP_PENALTYCOLFORMAT . 250
XSLP_PENALTYROWFORMAT . 251
XSLP_PLUSDELTAFORMAT . 251
XSLP_PLUSERRORFORMAT . 252
XSLP_SBLOROWFORMAT . 252
XSLP_SBNAME . 252
XSLP_SBUPROWFORMAT . 253
XSLP_TOLNAME . 253
XSLP_TRACEMASK . 253
XSLP_UPDATEFORMAT . 254

20.5 Knitro controls . 254

21 Library functions and the programming interface 255
21.1 Counting . 255
21.2 The Xpress-SLP problem pointer . 255
21.3 The XSLPload... functions . 256
21.4 Library functions . 257

XSLPaddcoefs . 265
XSLPaddcvars . 267
XSLPadddcs . 268
XSLPadddfs . 270
XSLPaddivfs . 271
XSLPaddnames . 273
XSLPaddtolsets . 274
XSLPadduserfuncs . 275
XSLPaddvars . 277
XSLPaddxvs . 279
XSLPcalcslacks . 281
XSLPcalluserfunc . 282
XSLPcascade . 284
XSLPcascadeorder . 285
XSLPchgcascadenlimit . 286
XSLPchgccoef . 287
XSLPchgcoef . 288

Fair Isaac Corporation Confidential and Proprietary Information x

Contents

XSLPchgcvar . 290
XSLPchgdc . 291
XSLPchgdeltatype . 293
XSLPchgdf . 294
XSLPchgfuncobject . 295
XSLPchgivf . 296
XSLPchgrow . 297
XSLPchgrowstatus . 298
XSLPchgrowwt . 299
XSLPchgtolset . 300
XSLPchguserfunc . 302
XSLPchguserfuncaddress . 304
XSLPchguserfuncobject . 305
XSLPchgvar . 306
XSLPchgxv . 308
XSLPchgxvitem . 309
XSLPconstruct . 311
XSLPcopycallbacks . 312
XSLPcopycontrols . 313
XSLPcopyprob . 314
XSLPcreateprob . 315
XSLPdecompose . 316
XSLPdelcoefs . 317
XSLPdelcvars . 318
XSLPdeldcs . 319
XSLPdelivfs . 320
XSLPdeltolsets . 321
XSLPdeluserfuncs . 322
XSLPdelvars . 323
XSLPdelxvs . 324
XSLPdestroyprob . 325
XSLPevaluatecoef . 326
XSLPevaluateformula . 327
XSLPfilesol . 328
XSLPfixpenalties . 329
XSLPformatvalue . 330
XSLPfree . 331
XSLPgetbanner . 332
XSLPgetccoef . 333
XSLPgetcoefformula . 334
XSLPgetcoefs . 335
XSLPgetcolinfo . 336
XSLPgetcvar . 337
XSLPgetdblattrib . 338
XSLPgetdblcontrol . 339
XSLPgetdcformula . 340
XSLPgetdf . 341
XSLPgetdtime . 342
XSLPgetfuncinfo . 343
XSLPgetfuncinfoV . 344
XSLPgetfunctioninstance . 345
XSLPgetfuncobject . 346
XSLPgetfuncobjectV . 347
XSLPgetindex . 348
XSLPgetintattrib . 349

Fair Isaac Corporation Confidential and Proprietary Information xi

Contents

XSLPgetintcontrol . 350
XSLPgetivformula . 351
XSLPgetlasterror . 353
XSLPgetmessagetype . 354
XSLPgetnames . 355
XSLPgetparam . 356
XSLPgetptrattrib . 357
XSLPgetrow . 358
XSLPgetrowinfo . 359
XSLPgetrowstatus . 360
XSLPgetrowwt . 361
XSLPgetslpsol . 362
XSLPgetstrattrib . 363
XSLPgetstrcontrol . 364
XSLPgetstring . 365
XSLPgettime . 366
XSLPgettolset . 367
XSLPgetuserfunc . 368
XSLPgetuserfuncaddress . 370
XSLPgetuserfuncobject . 371
XSLPgetvar . 372
XSLPgetversion . 374
XSLPgetxv . 375
XSLPgetxvitemformula . 376
XSLPglobal . 378
XSLPinit . 379
XSLPinterrupt . 380
XSLPitemname . 381
XSLPloadcoefs . 382
XSLPloadcvars . 384
XSLPloaddcs . 385
XSLPloaddfs . 387
XSLPloadivfs . 388
XSLPloadtolsets . 390
XSLPloaduserfuncs . 391
XSLPloadvars . 393
XSLPloadxvs . 395
XSLPmaxim . 397
XSLPminim . 398
XSLPmsaddcustompreset . 399
XSLPmsaddjob . 400
XSLPmsaddpreset . 401
XSLPmsclear . 402
XSLPopt . 403
XSLPparsecformula . 404
XSLPparseformula . 405
XSLPpostsolve . 406
XSLPpreparseformula . 407
XSLPpresolve . 408
XSLPprintmemory . 409
XSLPprintevalinfo . 410
XSLPprintmsg . 411
XSLPqparse . 412
XSLPreadprob . 413
XSLPremaxim . 414

Fair Isaac Corporation Confidential and Proprietary Information xii

Contents

XSLPreminim . 415
XSLPrestore . 416
XSLPreinitialize . 417
XSLPrevise . 418
XSLProwinfo . 419
XSLPsave . 420
XSLPsaveas . 421
XSLPscaling . 422
XSLPsetcbcascadeend . 423
XSLPsetcbcascadestart . 424
XSLPsetcbcascadevar . 425
XSLPsetcbcascadevarfail . 426
XSLPsetcbcascadevarF . 427
XSLPsetcbcoefevalerror . 429
XSLPsetcbconstruct . 430
XSLPsetcbdestroy . 432
XSLPsetcbdrcol . 433
XSLPsetcbformula . 434
XSLPsetcbintsol . 436
XSLPsetcbiterend . 437
XSLPsetcbiterstart . 438
XSLPsetcbitervar . 439
XSLPsetcbitervarF . 440
XSLPsetcbmessage . 442
XSLPsetcbmessageF . 444
XSLPsetcbmsjobend . 446
XSLPsetcbmsjobstart . 447
XSLPsetcbwinner . 448
XSLPsetcboptnode . 449
XSLPsetcbprenode . 450
XSLPsetcbslpend . 451
XSLPsetcbslpnode . 452
XSLPsetcbslpstart . 453
XSLPsetcurrentiv . 454
XSLPsetdblcontrol . 455
XSLPsetdefaultcontrol . 456
XSLPsetdefaults . 457
XSLPsetfuncobject . 458
XSLPsetfunctionerror . 459
XSLPsetintcontrol . 460
XSLPsetlogfile . 461
XSLPsetparam . 462
XSLPsetstrcontrol . 463
XSLPsetstring . 464
XSLPsetuniqueprefix . 465
XSLPsetuserfuncaddress . 466
XSLPsetuserfuncinfo . 467
XSLPsetuserfuncobject . 468
XSLPtime . 469
XSLPtokencount . 470
XSLPunconstruct . 471
XSLPupdatelinearization . 472
XSLPuprintmemory . 473
XSLPuserfuncinfo . 474
XSLPvalidformula . 475

Fair Isaac Corporation Confidential and Proprietary Information xiii

Contents

XSLPvalidate . 477
XSLPvalidatekkt . 478
XSLPvalidaterow . 479
XSLPvalidatevector . 480
XSLPwriteprob . 481
XSLPwriteslxsol . 482

22 Internal Functions 483
22.1 Trigonometric functions . 485

ARCCOS . 486
ARCSIN . 487
ARCTAN . 488
COS . 489
SIN . 490
TAN . 491

22.2 Other mathematical functions . 492
ABS . 493
EXP . 494
LN . 495
LOG, LOG10 . 496
MAX . 497
MIN . 498
SQRT . 499

22.3 Logical functions . 500
EQ . 501
GE . 502
GT . 503
IF . 504
LE . 505
LT . 506
NE . 507
NOT . 508

22.4 Problem-related functions . 509
ACT . 510
DJ . 511
LO . 512
MATRIX . 513
MV . 514
PARAM . 515
RHS . 516
RHSRANGE . 517
SLACK . 518
UP . 519

22.5 Specialized functions . 520
IAC . 521
INTERP . 522

23 Error Messages 523

IV Appendix 529

24 The Xpress-SLP Log 530
24.0.1 Logging controls . 530
24.0.2 The structure of the log . 530

Fair Isaac Corporation Confidential and Proprietary Information xiv

Contents

25 Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead
of XSLP 533

25.0.1 Convex Quadratic Programs (QPs) . 533
25.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs) 533
25.0.3 Convexity . 534
25.0.4 Characterizing Convexity in Quadratic Constraints 534

26 Files used by Xpress-SLP 536

27 Xpress-SLP Examples 537

Appendix 538

A Contacting FICO 538
Product support . 538
Product education . 538
Product documentation . 538
Sales and maintenance . 539
Related services . 539
About FICO . 539

Index 540

Fair Isaac Corporation Confidential and Proprietary Information xv

I. Overview

CHAPTER 1

Introduction

This part of the manual is intended to provide a general description of the facilities available for
modeling with Xpress-SLP. It is not an exhaustive list of possibilities, and it does not go into very
great depth on some of the more advanced topics. All the functions and formats are given in
more detail in the second part of this manual and the Xpress-Mosel Reference Manual (Xpress-SLP
Section).

Xpress-SLP uses Successive Linear Programming to solve non-linear models. In essence, the
technique involves making a linear approximation of the original problem at a chosen point,
solving the linear approximation and seeing how "far away" the solution point is from the
original chosen point. If it is "sufficiently close" then the solution is said to have converged and
the process stops. Otherwise, a new point is chosen, based on the solution, and a new linear
approximation is made. This process repeats (iterates) until the solution converges. Although this
process will find a solution which is the optimum for the linear approximation, there is no
guarantee that the solution will be the optimum for the original non-linear problem (that is to
say: it may not be the best possible solution to the original problem). Such a solution is called a
"local optimum", because it is a better solution than any others in the immediate
neighbourhood, but may not be better than one a long way away.

The problem of local optima can be thought of as being like trying to find the deepest valley in a
range of mountains. You can find a valley relatively easily (just keep going downhill). However,
when you reach it, you have no idea whether there is a deeper valley somewhere else, because
the mountains block your view. You have found a local optimum, but you do not know whether
it is a global optimum. Indeed, in general, there is no way to find the global optimum except an
exhaustive search (check every valley in the mountain range).

Throughout this Guide, we will be working with a model which is small enough to be quick to
create and interpret, but which has most of the characteristics (apart from size) of full-scale
non-linear models. The original formulation of the problem is due to Francisco J. Prieto of Carlos
III University in Madrid and it appears in the library of non-linear test problems.

1.1 Mathematical programs

There are many specialised forms of model in mathematical programming, and if such a form can
be identified, there are usually much more efficient solution techniques available. This section
describes some of the major types of problem that Xpress-NonLinear can identify automatically.

1.1.1 Linear programs

Linear programming (LP) involves solving problems of the form

minimize cTx
subject to Ax ≤ b

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction Overview

and in practice this encompasses, via transformations, any problem whose objective and
constraints are linear functions.

Such problems were traditionally solved with the simplex method, although recently interior
point methods have come to be favoured for larger instances. Linear programs can be solved
quickly, and solution techniques scale to enormous sizes of the matrix A. However, few
applications are genuinely linear. It was common in the past, however, to approximate general
functions by linear counterparts when LPs were the only class of problem with efficient solution
techniques.

1.1.2 Convex quadratic programs

Convex quadratic programming (QP) involves solving problems of the form

minimize cTx + xTQx
subject to Ax ≤ b

for which the matrix Q is symmetric and positive semi-definite (that is, xTQx ≥ 0 for all x). This
encompasses, via transformations, all problems with a positive semi-definite Q and linear
constraints. Such problems can be solved efficiently by interior point methods, and also by
quadratic variants of the simplex method.

1.1.3 Convex quadratically constrained quadratic programs

Convex quadratically constrained quadratic programming (QCQP) involves solving problems of
the form

minimize cTx + xTQx
subject to Ax ≤ b

qT
j x + xTPjx ≤ dj, ∀j

for which the matrix Q and all matrices Pj are positive semi-definite. The most efficient solution
techniques are based on interior point methods.

1.1.4 Second order conic problems

Second order conic problems is a special form of a convex quadratically constrained quadratic
program, where although the quadratic matrix is not positive semi-definite, the feasible range of
the problem is convex, and there are specialized algorithm to solve them.

minimize cTx + xTQx
subject to Ax ≤ b

x is in Cj, ∀j

for which the matrix Cj is a convex second order cone and Q is positive semi-definite. The standard
form of a second order cone is xT Ix ≤ y ∗ y where y is non-negative, or (a rotated second order
cone) xT Ix ≤ y ∗ z where y and z are non-negative. Many quadratic problems can be formulated
as a second order convex conic problem, including any convex quadratically constrained quadratic
programs. Transformation happens automatically for most convertible problems.

1.1.5 General nonlinear optimization problems

Nonlinear programming (NLP) involves solving problems of the form

minimize f(x)
subject to gj(x) ≤ b, ∀j

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction Overview

where f(x) is an arbitrary function, and g(x) are a set of arbitrary functions. This is the most
general type of problem, and any constrained model can be realised in this form via simple
transformations.

Until recently, few practical techniques existed for tackling such problems, but it is now possible
to solve even large instances using Successive Linear Programming solvers (SLP) or second-order
methods.

1.1.6 Mixed integer programs

Mixed-integer programming (MIP), in the most general case, involves solving problems of the
form

minimize f(x)
subject to gj(x) ≤ b, ∀j

xk integral

It can be combined with any of the previous problem types, giving Mixed-Integer Linear
Programming (MILP), Mixed-Integer Quadratic Programming (MIQP), Mixed-Integer Quadratically
Constrained Quadratic Programming (MIQCQP), Mixed-Integer Second Order Conic Problems
(MISOCP) and Mixed-Integer Nonlinear Programming (MINLP). Efficient solution techniques now
exist for all of these classes of problem.

1.2 Technology Overview

In real-world applications, it is vital to match the right optimization technology to your problem.
The FICO Xpress libraries provide dedicated, high performance implementations of optimization
technologies for the many model classes commonly appearing in practical applications. This
includes solvers for linear programming (LP), mixed integer programming (MIP), convex quadratic
programming (QP), and convex quadratically constrained programming (QCQP), and general
nonlinear programming (NLP).

1.2.1 The Simplex Method

The simplex method is one of the most well-developed and highly studied mathematical
programming tools. The solvers in the FICO Xpress Optimizer are the product of over 30 years of
research, and include high quality, competitive implementations of the primal and dual simplex
methods for both linear and quadratic programs. A key advantage of the simplex method is that
it can very quickly reoptimize a problem after it has been modified, which is an important step in
solving mixed integer programs.

1.2.2 The Logarithmic Barrier Method

The interior point method of the FICO Xpress Optimizer is a state of the art implementation, with
leading performance across a variety of large models. It is capable of solving not only the largest
and most difficult linear and convex quadratic programs, but also convex quadratically
constrained quadratic and second order conic programs. It includes optimized versions of both
infeasible logarithmic barrier methods, and also homogeneous self-dual methods.

1.2.3 Outer approximation schemes

A drawback of the barrier methods is that they are not efficiently warms-tarted. This makes these
methods unattractive for solving several related problems, like the ones arising from a branch
and bound search. While for linear and convex quadratic problems the simplex methods can be

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction Overview

used, there is no immediate such alternative for convex quadratic constrained and second order
methods. To bridge the gap, outer approximation cutting schemes are used, which themselves
may be warm started by a barrier solution.

1.2.4 Successive Linear Programming

For general nonlinear programs which are very large, highly structured, or contain a significant
linear part, the FICO Xpress Sequential Linear Programming solver (XSLP) offers exceptional
performance. Successive linear programming is a first order, iterative approach for solving
nonlinear models. At each iteration, a linear approximation to the original problem is solved at
the current point, and the distance of the result from the the selected point is examined. When
the two points are sufficiently close, the solution is said to have converged and the result is
returned. This technique is thus based upon solving a sequence of linear programming problems
and benefits from the advanced algorithmic and presolving techniques available for linear
problems. This makes XSLP scalable, as well as efficient for large problems. In addition, the
relatively simple core concepts make understanding the solution process and subsequent tuning
comparatively straightforward.

1.2.5 Second Order Methods

Also integrated into the Xpress suite is KNITRO from Ziena Optimization, a second-order method
which is particularly suited to large-scale continuous problems containing high levels of
nonlinearity. Second order methods approximate a problem by examining quadratic programs
fitted to a local region. This can provide information about the curvature of the solution space to
the solver, which first-order methods do not have. Advanced implementations of such methods,
like KNITRO, may as a result be able to produce more resilient solutions. This can be especially
noticeable when the initial point is close to a local optimum.

1.2.6 Mixed Integer Solvers

The FICO Xpress MIP Solver is one of the leading commercial codes for all classes of mixed integer
program. Mixed integer programming forms the basis of many important applications, and the
implementation in the FICO Xpress Suite has proven itself in operation for some of the world’s
largest organizations. Both XSLP and KNITRO are also able to solve mixed integer nonlinear
problems (MINLP).

Fair Isaac Corporation Confidential and Proprietary Information 5

CHAPTER 2

The Problem

2.1 Problem Definition

The diameter of a two-dimensional shape is the greatest distance between any two of its points.
For a circle, this definition corresponds to the normal meaning of "diameter". For a polygon
(with straight sides), it is equivalent to the greatest distance between any two vertices.

What is the greatest area of a polygon with N sides and a diameter of 1?

2.2 Problem Formulation

This formulation is one of two described by Prieto [1]. It is easy to visualize, and has advantages
in later examples. The pentagon is about the smallest model which can reasonably be used – it is
non-trivial but is still just about small enough to be written out in full.

Figure 2.1: Polygon Example

One vertex (the highest-numbered, VN) is chosen as the "base" point, and all the other vertices
are measured from it, using (r, θ) coordinates – that is, the distance ("r") is measured from the
vertex, and the angle or bearing of the vertex (" θ ") is measured from the X-axis.

Fair Isaac Corporation Confidential and Proprietary Information 6

The Problem Overview

We shall use ri and θi as the coordinates of vertex Vi. Then simple geometry and trigonometry
gives:

� The area of the triangle VNViVj: area(VNViVj) = 1
2 · ri · rj · sin(θj − θi)

� The side ViVj is given by: (ViVj)2 = r2
i + r2

j − 2 · ri · rj · cos(θj − θi)

� The total area of the polygon is:
∑N−1

i=2 area(VNViVi−1)

� The maximum diameter of 1 requires that all the sides of all the triangles are ≤ 1 – that is:
ri ≤ 1 for i = 1, . . . , N − 1
and
ViVj ≤ 1 for i = 1, . . . , N − 2, j = i + 1, . . . , N − 1

We have assumed in the diagram 2.1 and in the formulation that θ i ≤ θ i+1 – in other words, the
vertices are in order anti-clockwise. In fact, this is not just an assumption, and we need to include
these constraints as well.

In the diagram, we have assumed that the first angle θ 1 is ≥ 0. This is not an additional
restriction if we use the normal modeling convention that all variables are non-negative. We also
assumed that the last vertex is still "above" the X-axis – that is, θ N−1 is ≤ 180◦ (or π radians).

The requirement is therefore:

maximize
∑N−1

i=2 (ri · ri−1 · sin(θi − θi−1)) ∗ 0. 5 (area of the polygon)

subject to: ri ≤ 1 for i = 1, . . . , N − 1 (distances betweem VN and other vertices)
r2
i + r2

j − 2 · ri · rj · cos(θj − θi ≤ 1 for i = 1, . . . , N − 2, j = i + 1, . . . , N − 1
(distances between other pairs of vertices)

θ1 ≥ 0 (first bearing is non-negative)
θi+1 − θi ≥ 0 for i = 1, . . . , N − 2 (bearings are in order)
θN−1 ≤ π (last vertex is above X-axis)

Reference:
(1) F.J. Prieto. Maximum area for unit-diameter polygon of N sides, first model and second model
(Netlib AMPL programs in ftp://netlib.bell-labs.com/netlib/ampl/models).

Fair Isaac Corporation Confidential and Proprietary Information 7

CHAPTER 3

Modeling in Mosel

3.1 Basic formulation

Nonlinear capabilities in Mosel are provided by the mmxnlp module. Please refer to the module
documentation for more details. This chapter provides a short introduction only.

The model uses the Mosel module mmxnlp which contains the extensions required for modeling
general non-linear expressions. This automatically loads the mmxprs module, so there is no need
to include this explicitly as well.

model "Polygon"

uses "mmxnlp"

We can design the model to work for any number of sides, so one way to do this is to set the
number of sides of the polygon as a parameter.

parameters

N=5

end-parameters

The meanings of most of these declarations will become apparent as the modeling progresses.

declarations

area: nlctr

rho: array(1..N) of mpvar

theta: array(1..N) of mpvar

objdef: mpvar

D: array(1..N,1..N) of nlctr

end-declarations

� The distances are described as "rho", to distinguish them from the default names for the
rows in the generated matrix (which are R1, R2, etc).

� The types nlctr (nonlinear constraint) are defined by the mmxnlp module.

area := sum(i in 2..N-1) (rho(i) * rho(i-1) * sin(theta(i)-theta(i-1)))*0.5

This uses the normal Mosel sum function to calculate the area. Notice that the formula is written
in essentially the same way as normal, including the use of the sin function. Because the
argument to the function is not a constant, Mosel will not try to evaluate the function yet;
instead, it will be evaluated as part of the optimization process.

area is a Mosel object of type nlctr.

objdef = area

objdef is_free

Fair Isaac Corporation Confidential and Proprietary Information 8

Modeling in Mosel Overview

What we really want to do is to maximize area. However, although Xpress-SLP is happy in
principle with a non-linear objective function, the Xpress-Optimizer is not, unless it is handled in
a special way. Xpress-SLP therefore imposes the requirement that the objective function itself
must be linear. This is not really a restriction, because – as in this case – it is easy to reformulate a
non-linear objective function as an apparently linear one. Simply replace the function by a new
mpvar and then maximize the value of the mpvar. In general, because the objective could have a
positive or negative value, we make the variable free, so that it can take any value. In this
example, we say:

objdef = area defining the variable objdef to be equal to the non-linear
expression area

objdef is_free defining objdef to be a free variable

maximize(objdef) maximizing the linear objective

This is firstly setting the standard bounds on the variables rho and theta. To reduce problems
with sides of zero length, we impose a minimum of 0.1 on rho(i) instead of the default
minimum of zero.

forall (i in 1..N-1) do

rho(i) >= 0.1

rho(i) <= 1

setinitval(rho(i), 4*i*(N+1-i)/((N+1)^2))

setinitval(theta(i), M_PI*i/N)

end-do

We also give Xpress-SLP initial values by using the setinitval procedure. The first argument is
the name of the variable, and the second is the initial value to be used. The initial values for
theta are divided equally between 0 and π . The initial values for rho are designed to go from 0
(when i = 0 or N) to 1 (when i is about half way) and back.

forall (i in 1..N-2, j in i+1..N-1) do

D(i,j) := rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <lt/>= 1

end-do

This is creating the general constraints D(i,j) which constrain the other sides of the triangles to
be ≤ 1.

These constraints could be made anonymous – that is, the assignment to an object of type nlctr

could be omitted – but then it would not be possible to report the values.

forall (i in 2..N-1) do

theta(i) >= theta(i-1) + 0.01

end-do

These anonymous constraints put the values of the theta variables in non-decreasing order. To
avoid problems with triangles which have zero angles, we make each bearing at least 0.01
greater than its predecessor.

This is the boundary condition on the bearing of the final vertex.

theta(N-1) <= M_PI

3.2 Setting up and solving the problem

loadprob(objdef)

Fair Isaac Corporation Confidential and Proprietary Information 9

Modeling in Mosel Overview

This procedure loads the currently-defined non-linear problem into the Xpress-SLP optimization
framework. This includes any purely linear part. Where a general constraint has a linear
expression as its left or right hand side, that linear expression will be retained as linear
relationships (constant coefficients) in the matrix. Thus, for example, in the anonymous constraint
defining objdef, the objdef coefficient will be identified as a linear term and will appear as a
separate item in the problem.

maximise

Optimization is carried out with the maximise or minimise procedures. They can take a string
parameter – for example maxmimise("b") – as described in the Xpress-SLP and Xpress-Optimizer
reference manuals.

With the default settings of the parameters, you will see usually nothing from the optimizer. The
following parameters affect what is produced:

xnlp_verbose Normally set to false. If set to true, it produces standard
Xpress-SLP iteration logging.

xprs_verbose Normally set to false. If set to true, then information from
the optimizer will also be output.

xslp_log Normally set to -1. If set to 0, limited information is output
from the SLP iterations. Settings of 1 or greater produce pro-
gressively more information for each SLP iteration.

xslp_slplog If xslp_log is set to 0, this determines the frequency with
which SLP progress is reported. The default is 10, which
means that it prints every 10 SLP iterations.

3.3 Looking at the results

Within Mosel, the values of the variables and named constraints can be obtained using the
getsol, getslack and similar functions. A simple report lists just the area and the positions of
the vertices:

writeln("Area = ", getobjval)

forall (i in 1..N-1) do

writeln("V", i, ": r=", getsol(rho(i)), " theta=", getsol(theta(i)))

end-do

This produces the following result for the case N=5:

Area = 0.657166

V1: r=0.616416 theta=0.703301

V2: r=1 theta=1.33111

V3: r=1 theta=1.96079

V4: r=0.620439 theta=2.58648

3.4 Parallel evaluation of Mosel user functions

It is possible to use parallel evaluations of simple Mosel functions that return a single real value.
These functions may take an arbitrary array of nlctr expressions as input. It is the modeler’s
responsibility to ensure that the user functions to be called in parallel are thread-safe (i.e., they
do not depend upon shared resources). Assuming the name of the user function is MyFunc, the

Fair Isaac Corporation Confidential and Proprietary Information 10

Modeling in Mosel Overview

user function before enabling the parallel version is expected to be declared as
usefuncMosel(’MyFunc’).

In order for mmxnlp to be able to utilize parallel user function evaluations, the user function
must be implemented as a public function in a Mosel package. Any initialization necessary to
enable the evaluation of the user function should be performed as part of the package
initialization (which is the code in in the main body of the package).

To enable parallel evaluations, a parallel enabled version of the user function needs to be
generated using the mmxnlp procedure generateUFparallel, which takes two arguments: the
compiled package .bim name implementing the user function and the name of the user function
within the package. It is good practice to use a separate Mosel model to perform this generation,
keeping it separate from the main model. Multiple generated parallel user functions may be used
within a single model.

The generator will produce a single Mosel file, the Mosel package MyFunc_master. This package
also includes the worker model which will be responsible for the user function evaluations and
will be resident in memory during the execution. The package also implements the parallel
version of the user function, called MyFunc_parallel.

After compiling and including the master package into your model, it is this function that should
be used in the actual model as userfuncMosel(’MyFunc_parallel’,XSLP_DELTAS). In most
cases, no other modifications are necessary, as the parallel function will detect the number of
threads in the system and will start that many worker threads automatically. These will be shut
down when your model finishes. Each worker’s initialization code is performed only once, at the
time of its first execution.

It may be necessary to explicitly start the worker threads, either to control the number of threads
used, or to pass specific parameter settings to the user function package. This can be done by the
procedure MyFunc_StartWorkers(ThreadCount : integer, UfPackageParameters :

string). In case it is necessary to stop the workers, the procedure MyFunc_StopWorkers may
be used.

In case the user functions are computationally very expensive, by modifying the connection string
in the generated module it is possible to utilize distributed/cloud-based computation of the user
functions.

The worker model will only be compiled into memory during execution, but may be modified as
necessary within the master model. For debugging purposes, it may be practical to redirect the
worker to a file.

Fair Isaac Corporation Confidential and Proprietary Information 11

CHAPTER 4

Modeling in Extended MPS Format

4.1 Basic formulation

Standard MPS format uses a fixed format text file to hold the problem information. Extended
MPS format has two main differences from the standard form:

� The records in the file are free-format – that is, the fields are not necessarily in fixed
columns or of fixed size, and each field is delimited by one or more spaces.

� The standard MPS format allows only numbers to be used in the "coefficient" fields –
extended MPS format allows the use of formulae.

� There is an optional extra section in extended MPS format, holding additional data and
structures for Xpress-SLP.

We shall tend to use a fairly fixed format, to aid readability.

NAME POLYGON

The first record of any MPS file is the NAME record, which has the name which may be used to
create file names where no other name is specified, and is also written into the matrix and
solution files.

ROWS

The ROWS record introduces the list of rows of the problem – this includes the objective function
as well as all the constraints.

N OBJ

E OBJEQ

G T2T1

G T3T2

G T4T3

L V1V2

L V1V3

L V2V3

L V2V4

L V3V4

The first character denotes the type of constraint. The possible values are:

Fair Isaac Corporation Confidential and Proprietary Information 12

Modeling in Extended MPS Format Overview

N not constraining (always used for the objective function, but
may be used elsewhere).

E equality: the left hand side (LHS) is equal to the right hand
side (RHS).

L less than or equal to: the LHS is less than or equal to the RHS.

G greater than or equal to: the LHS is greater than or equal to
the RHS.

The second field is the name used for the constraint. In MPS file format, everything has a name.
Therefore, within each type of entity (rows, columns, etc) each name must be unique. In general,
you should try to ensure that names are unique across all entities, to avoid possible confusion.

You should also try to make the names meaningful, so that you can understand what they mean.

In the example:

OBJ is the objective function.

OBJEQ is the "equality" version of the objective function which, as
explained below, is required because we are trying to opti-
mize a non-linear objective.

TiTj is the constraint that will ensure θi ≥ θj(j = i − 1).

ViVj is the constraint that will ensure that the distance between Vi

and Vj is ≤ 1.

COLUMNS

The COLUMNS record introduces the list of columns and coefficients in the matrix. In a normal
linear problem, all the variables will appear explicitly as columns in this section. However, in
non-linear problems, it is possible for variables to appear only in formulae and so they may not
appear explicitly. In the example, the variables THETA1 to THETA4 appear explicitly, the variables
RHO1 to RHO4 appear only in formulae. Constraints which involve only one variable in a linear
way (that is, they limit the value of a variable to a minimum value, a maximum value or both –
possibly equal – values) are usually put in a separate "BOUNDS" section which appears later.

OBJX OBJ 1.0

OBJX OBJEQ -1.0

The first field is the name of the column. All "COLUMNS" records for a column must be together.
The second field is the name of the row (which was defined in the ROWS section). The third field is
the value. It is not necessary to include zero values – only the non-zeros are required

If the coefficients are constant, then it is possible to put two on each record, by putting a second
row name and value after the first (as in the example for THETA2 and THETA3 below).

The constraints putting θ i in order are all linear – that is, the coefficients are all constant.

THETA1 T2T1 -1

THETA2 T2T1 1 T3T2 -1

THETA3 T3T2 1 T4T3 -1

THETA4 T4T3 1

The RHS of any constraint must be constant. Therefore, to write THETA2 ≥ THETA1, we must
actually write THETA2 - THETA1 ≥ 0. The constraint T2T1 has coefficient -1 in THETA1 and +1 in
THETA2.

Fair Isaac Corporation Confidential and Proprietary Information 13

Modeling in Extended MPS Format Overview

We want to maximise the area of the polygon. The formula for this is the sum of the areas of the
triangles with one vertex at V5 – i.e.:

0.5 * RHO1 * RHO2 * SIN (THETA2 - THETA1) +

0.5 * RHO2 * RHO3 * SIN (THETA3 - THETA2) +

0.5 * RHO3 * RHO4 * SIN (THETA4 - THETA3)

– which is a non-linear function. Xpress-SLP does not itself have a problem with non-linear
objective functions, but Xpress distinguishes between the original N-type row which contains the
objective function coefficients when the matrix is read in, and the objective function which is
actually optimized. To avoid any confusion between these two "objectives", Xpress-SLP also
requires that the objective function as passed to Xpress-Optimizer is linear. What we want to do
is:

maximize AREA, where AREA is a non-linear function.

We create a new variable – called in this example OBJX – and write:

OBJX = AREA (or, because the RHS must be constant, AREA− OBJX = 0)

and then: maximize OBJX, where OBJX is just a variable.

The constraint linking OBJX and AREA was defined as the equality constraint OBJEQ in the ROWS

section, and AREA is the formula given above. This is where the coefficient of -1 in column OBJX

comes from.

Every item in the matrix has to be in a coefficient – that is, it is the multiplier of a variable.
However, the formula for area, as written, is not a coefficient of anything. There are several ways
of dealing with this situation. We shall start by breaking the formula up into coefficient form –
that is, to write it as X1*formula1 + X2*formula2 + Our formula could then be:

RHO1 * (0.5 * RHO2 * SIN (THETA2 - THETA1)) +

RHO2 * (0.5 * RHO3 * SIN (THETA3 - THETA2)) +

RHO3 * (0.5 * RHO4 * SIN (THETA4 - THETA3))

which is of the right form and can be written in the COLUMNS section as follows:

RHO1 OBJEQ = 0.5 * RHO2 * SIN (THETA2 - THETA1)

RHO2 OBJEQ = 0.5 * RHO3 * SIN (THETA3 - THETA2)

RHO3 OBJEQ = 0.5 * RHO4 * SIN (THETA4 - THETA3)

Notice that the formula begins with an equals sign. When this is used in the coefficient field, it
always means that a formula is being used rather than a constant. The formula must be written
on one line – it does not matter how long it is – and each token (variable, constant, operator,
bracket or function name) must be delimited by spaces.

When a formula is used, you can only write one coefficient on the record – the option of a second
coefficient only applies when both coefficients are constants.

The constraints for the distances between pairs of vertices are relationships of the form:

RHO1 * RHO1 + RHO2 * RHO2 - 2 * RHO1 * RHO2 * COS (THETA2 - THETA1) <= 1

These can again be split into coefficients, for example:

RHO1 * (RHO1 - 2 * RHO2 * COS (THETA2 - THETA1)) + RHO2 * (RHO2)

This looks a little strange, because RHO2 appears as a coefficient of itself, but that is perfectly all
right. This section of the matrix contains a set of records (one for each of the ViVj constraints)
like this:

Fair Isaac Corporation Confidential and Proprietary Information 14

Modeling in Extended MPS Format Overview

RHO1 V1V2 = RHO1 - 2 * RHO2 * COS (THETA2 - THETA1)

RHO2 V1V2 = RHO2

Note that because the records for each column must all appear together, the coefficients for – for
example – RHO1 in this segment must be merged in with those in the previous (OBJEQ) segment.

RHS

The RHS record introduces the right hand side section.

The RHS section is formatted very much like a COLUMNS section with constant coefficients. There
is a column name – it is actually the name of the right hand side – and then one or two entries
per record. Again, only the non-zero entries are actually required.

RHS1 T2T1 .001 T3T2 .001

RHS1 T4T3 .001 V1V2 1

RHS1 V1V3 1 V1V4 1

RHS1 V2V3 1 V2V4 1

RHS1 V3V4 1

RHS1 is the name we have chosen for the right hand side. It is possible – although beyond the
scope of this guide – to have more than one right hand side, and to select the one you want.
Note that, in order to ensure we do have a polygon with N sides, we have made the relationship
between theta(i) and theta(i-1) a strict inequality by adding 0.001 as the right hand side. If we did
not, then two of the vertices could coincide and so the polygon would effectively lose one of its
sides.

BOUNDS

The BOUNDS record introduces the BOUNDS section which typically holds the values of constraints
which involve single variables.

Like the RHS section, it is possible to have more than one set of BOUNDS, and to select the one you
want to use. There is therefore in each record a bound name which identifies the set of bounds
to which it belongs. We shall be using only ones set of bounds, called BOUND1.

Bounds constrain a variable by providing a lower limit or an upper limit to its value. By providing
a limit of -∞ for the lower bound, it is possible to create a variable which can take on any value –
a "free" variable. The following bound types are provided:

LO a lower bound.

UP an upper bound.

FX a fixed bound (the upper and lower limits are equal).

FR a free variable (no lower or upper limit).

MI a "minus infinity" variable – it can take on any non-positive
value.

There are other types of bound which are used with integer programming, which is beyond the
scope of this guide.

FR BOUND1 OBJX

LO BOUND1 RHO1 0.01

UP BOUND1 RHO1 1

LO BOUND1 RHO2 0.01

UP BOUND1 RHO2 1

Fair Isaac Corporation Confidential and Proprietary Information 15

Modeling in Extended MPS Format Overview

LO BOUND1 RHO3 0.01

UP BOUND1 RHO3 1

LO BOUND1 RHO4 0.01

UP BOUND1 RHO4 1

UP BOUND1 THETA4 3.1415926

A record in a BOUNDS section can contain up to four fields. The first one is the bound type (from
the list above). The second is the name of the BOUNDS set being used (ours is always BOUND1). The
third is the name of the variable or column being bounded. Unless the bound type is FR or MI,
there is a fourth field which contains the value of the bound.

Although we know that the area is always positive (or at least non-negative), a more complicated
problem might have an objective function which could be positive or negative – you could make
a profit or a loss – and so OBJX needs to be able to take on po sitive and negative values. The fact
that it is marked as "free" here does not mean that it can actually take on any value, because it is
still constrained by the rest of the problem.

The upper bounds on RHO1 to RHO4 provide the rest of the restrictions which ensure that the
distances between any two vertices are = 1, and the limit on THETA4 ensures that the whole
polygon is above the X-axis. Just to make sure that we do not "lose" a side because the value of
RHOi becomes zero, we set a lower bound of 0.01 on all the rhos, performing a similar function
to the RHS values of .001 for TiTj.

ENDATA

The last record in the file is the ENDATA record.

Although this is sufficient to define the model, it is usually better to give Xpress-SLP some idea of
where to start – that is, to provide a set of initial values for the variables. You do not have to
provide values for everything, but you should try to provide them for every variable which
appears in a non-linear coefficient, or which has a non-linear coefficient. In our current example,
that means everything except OBJX.

SLPDATA

The SLPDATA record introduces a variety of different special items for Xpress-SLP. It comes as the
last section in the model (before the ENDATA record). We are using it at this stage for defining
initial values. These are done with an IV record.

IV IVSET1 RHO1 0.555

IV IVSET1 RHO2 0.888

IV IVSET1 RHO3 1

IV IVSET1 RHO4 0.888

Just as with the RHS and BOUNDS sections, it is possible to have more than one set of initial values
– perhaps because the same structure is used to solve a whole range of problems where the
answers are so different that it does not make much sense to start always from the same place. In
this example, we are using only one set – IVSET1.

The IV record contains four fields. The first one is IV, which indicates the type of SLPDATA being
provided. The second is the name of the set of initial values. The third is the name of the variable
and the fourth is the value being provided.

In the case of IV records, it is possible – and indeed perhaps necessary – to provide initial values
which are zero. The default value (which is used if no value is provided) is not zero, so if you
want to start with a zero value you must say so.

Fair Isaac Corporation Confidential and Proprietary Information 16

Modeling in Extended MPS Format Overview

4.2 Using the XSLP console-based interface

XSLP is a data-driven console-based interface for operating Xpress-SLP, an extension of the Xpress
Optimzier console.

The example will use screen-based input and output. You can also put the commands into a file
and execute it in batch mode, or use the embedded TCL scripting language.

Commands are not case-sensitive except where the case is important (for example, the name of
the objective function). We shall use upper case for commands and lower case for the arguments
which would change for other models. Each parameter in a command must be separated by at
least one space from the preceding parameter or command.

XSLP

This starts the XSLP program. This checks for the existence of the Xpress-Optimizer and
Xpress-SLP DLLs. If you are using an OEM version of the Xpress DLL, you may need a special
password or license file from your usual supplier.

READPROB polygon

This reads a non-linear problem from the file polygon.mat.

MAXIM

This form of the maximize command does a non-linear optimization with the default settings of
all the parameters (it will recognise the problem as an SLP one automatically).

WRITEPRTSOL

This will use the normal Xpress function to write to solution in a text form to a file with the same
name as the input, but with a ".prt" suffix.

Q

This (the abbreviation for the QUIT command) terminates the XSLP console program.

4.3 Coefficients and terms

So far we have managed to express the formulae as coefficients. However, there are constraints –
for example SIN(A) ≤ 0.5 – which cannot be expressed directly using coefficients. The
extended MPS format has a special reserved column name – the equals sign – which is effectively
a variable with a fixed value of 1.0, and which can be used to hold formulae of any type, whether
they can be expressed as coefficients or not. The area formula and distance constraints could all
be written in a more readable form by using the "equals column". The area formula is rather
long to write in this guide, but the distance constraints look like this:

= V1V2 RHO1 * RHO1 + RHO2 * RHO2 - 2 * RHO1 * RHO2 * COS (THETA2 - THETA1)

= V1V3 RHO1 * RHO1 + RHO3 * RHO3 - 2 * RHO1 * RHO3 * COS (THETA3 - THETA1)

Fair Isaac Corporation Confidential and Proprietary Information 17

Modeling in Extended MPS Format Overview

4.4 User functions

In this example, the most complicated function is the area calculation, and it is not a problem to
model it explicitly as a formula. However, there are cases when it is not possible to do so, or when
it is undesirable to do so – for example, when the formula is very large or contains conditional
evaluations, or when it is simply easier to write it as an iterative calculation (in a do-loop) rather
than explicitly. This section of the User Guide shows how to extend the Polygon model to
calculate the area using a "user function".

A user function is essentially a function which is not built in to Xpress-SLP. It can be written in a
language such as C or Fortran, and compiled into a DLL; it can be written as a set of formulae in
an Excel spreadsheet (with or without a macro as well); it can be written entirely within an Excel
macro. This example shows the area function written as an Excel macro.

4.4.1 A user function in an Excel macro

This is a function written as an Excel macro, in the sheet Sheet1 of the Excel workbook
C:\xpressmp\examples\slp\spreadsheet\Polygon.xls.

Function Area(Values() As Variant, nArgs() As Variant) As Double

n = nArgs(0)

i = 3

Total = 0

For Count = 1 To n

Rho1 = Values(i - 3)

Theta1 = Values(i - 2)

Rho2 = Values(i - 1)

Theta2 = Values(i)

Total = Total + 0.5 * Rho1 * Rho2 * Sin(Theta2 - Theta1)

i = i + 2

If i > n Then Exit For

Next Count

Area = Total

End Function

It takes two arguments, both arrays of type Variant (a general-purpose type which can contain
any type of data). It returns a single value of type Double.

This calculates the area for a polygon with any number of sides, by iterating through all the
adjacent triangles. The array Values contains pairs of items in the order RHO1, THETA1, RHO2,
THETA2, etc. The first loop calculates the area between (RHO2,THETA2) and (RHO1,THETA1).
Subsequent loops then add the area of the next triangle.

Notice that all the arrays which communicate with Xpress-SLP count from zero.

In this example, we are calculating only one value, and so there is only one item to return. A
more complicated function might calculate and return more than one value (for example, the
circumference and the area). In such a case, the function must return an array of type Double, as
in the abbreviated example below:

Dim DArray(1) As Double

Function ArrayArea(Values() As Variant, nArgs() As Variant) As Double()

...

DArray(0) = Total

DArray(1) = Circum

Area = DArray

End Function

Fair Isaac Corporation Confidential and Proprietary Information 18

Modeling in Extended MPS Format Overview

4.4.2 Extending the polygon model

The model needs to be modified slightly in order to use the new function. There are two parts –
using the function in the model; and declaring the function and explaining how the interface
works.

To use the function in the model, we give it a name – say "PolyArea". We can then use it like
any other function.

PolyArea (RHO1 , THETA1 , RHO2 , THETA2 , RHO3 , THETA3 , RHO4 , THETA4)

The arguments RHO1 up to THETA4 are in the order that the function expects.

If the function returns an array, then we have to specify which item in the array is the one we
want. In our case, there is only one value, and it is the first. The formula for the area would then
become:

PolyArea (RHO1 , THETA1 , RHO2 , THETA2 , RHO3 , THETA3 , RHO4 , THETA4 : 1)

The colon (":") indicates that the next item specifies which array value is required. The number
"1" indicates the first item.

The OBJEQ constraint will now have only two items – the OBJX entry and the new PolyArea

function, which will be a coefficient of the special equals column. The relevant piece of the MPS
file is:

OBJX OBJEQ -1

= OBJEQ = PolyArea (RHO1 , THETA1 , RHO2 , THETA2 , RHO3 , THETA3 , RHO4 , THETA4)

The function declaration is made in the SLPDATA section, using a record of type UF. There are
several fields which can be used, but not all of them are necessary in this case.

UF PolyArea = Area (VARIANT , VARIANT) XLF = C:\Xpress...\Polygon.xls = Sheet1

The fields we have are as follows:

UF indicates this is a user function declaration.

PolyArea the name of the function as used within the model.

Area the name of the function as used in the spreadsheet. If it
is the same as that used in the model, it can be omitted (in
which case the "=" sign is omitted as well).

VARIANT the arguments in brackets indicate the number and type of
the arguments. For Excel macros, the type is always VARIANT,
and the first two arguments are the array of values and the
number of items in the array.

XLF indicates an Excel macro function (as opposed to spreadsheet
formulae or a DLL).

C:\Xpress.. the name of the spreadsheet containing the macro (we’ve
had to abbreviate the full path to fit on the page – the full
name is in the file in the examples.

Sheet1 the name of the sheet containing the macro.

Notice that the declaration does not itself say whether the function returns an array or a single
item. Xpress-SLP deduces this from the form of the function reference itself (whether or not
there is a return item number).

Fair Isaac Corporation Confidential and Proprietary Information 19

Modeling in Extended MPS Format Overview

The model can now be run using the Excel macro to calculate the values instead of using a
formula inside the model itself.

4.5 Using extended variable arrays

The extended variable array (XV) is a special type of entity in Xpress-SLP which can be used to
simplify the calling of complicated functions. The complete XV structure is really beyond the
scope of this guide, and we shall be using it here just to declare an array of variables for use in
the function. However, the full functionality of XVs allows them to be used with functions that
can take a variable number of arguments and to simplify the setting up of complicated formulae.

An XV is declared in the SLPDATA section as a list of items, one per record, which are taken as the
members of the XV in the order in which they are provided.

XV rTheta RHO1

XV rTheta THETA1

XV rTheta RHO2

XV rTheta THETA2

XV rTheta RHO3

XV rTheta THETA3

XV rTheta RHO4

XV rTheta THETA4

The first field on the record is XV, which indicates that this defines an item in an XV array. The
second field is the name of the XV. This can be anything you like, but it must be different from
the name of any variable. The third item is the name of the variable which occupies this position
in the array.

It is possible to use constants within an XV. In such a case, the field containing the name of the
variable is blank, as is the next field (which contains the name of the argument as it is known to
the function) and the value goes in the next field – for example:

XV AnotherXV = = 42

Notice the use of the equals sign as the delimiter.

Once the XV has been declared, it can be used as an argument to a function. It will be replaced
by its list of members. The OBJEQ constraint therefore becomes just:

OBJX OBJEQ -1

= OBJEQ = PolyArea (rTheta : 1)

Fair Isaac Corporation Confidential and Proprietary Information 20

CHAPTER 5

The Xpress-SLP API Functions

Instead of writing an extended MPS file and reading in the model from the file, it is possible to
embed Xpress-SLP directly into your application, and to create the problem, solve it and analyze
the solution entirely by using the Xpress-SLP API functions. This example uses the C header files
and API calls. We shall assume you have some familiarity with the Xpress-Optimizer API functions
in XPRS.DLL.

The structure of the model and the naming system will follow that used in the previous section,
so you should read the chapter 4 first.

5.1 Header files

The header file containing the Xpress-SLP definitions is xslp.h. This must be included together
with the Xpress-Optimizer header xprs.h. xprs.h must come first.

#include "xprs.h"

#include "xslp.h"

5.2 Initialization

Xpress-SLP and Xpress-Optimizer both need to be initialized, and an empty problem created. All
Xpress-SLP functions return a code indicating whether the function completed successfully. A
non-zero value indicates an error. For ease of reading, we have for the most part omitted the
tests on the return codes, but a well-written program should always test the values.

XPRSprob mprob

XSLPprob sprob

if (ReturnValue=XPRSinit(NULL)) goto ErrorReturn;

if (ReturnValue=XSLPinit()) goto ErrorReturn;

if (ReturnValue=XPRScreateprob(&mprob)) goto ErrorReturn;

if (ReturnValue=XSLPcreateprob(&sprob, &mprob)) goto ErrorReturn;

5.3 Callbacks

It is good practice to set up at least a message callback, so that any messages produced by the
system appear on the screen or in a file. The XSLPsetcbmessage function sets both the
Xpress-SLP and Xpress-Optimizer callbacks, so that all messages appear in the same place.

XSLPsetcbmessage(sprob, XSLPMessage, NULL);

Fair Isaac Corporation Confidential and Proprietary Information 21

The Xpress-SLP API Functions Overview

void XPRS_CC XSLPMessage(XSLPprob my_prob, void *my_object, char *msg, int len,

int msg_type)

{

switch (msg_type) {

case 4: /* error */

case 3: /* warning */

case 2: /* dialogue */

case 1: /* information */

printf("%s\n", msg);

break;

default: /* exiting */

fflush(stdout);

break;

}

}

This is a simple callback routine, which prints any message to standard output.

5.4 Creating the linear part of the problem

The linear part of the problem, and the definitions of the rows and columns of the problem are
carried out using the normal Xpress-Optimizer functions.

#define MAXROW 20

#define MAXCOL 20

#define MAXELT 50

int nRow, nCol, nSide, nRowName, nColName;

int Sin, Cos;

char RowType[MAXROW];

double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT];

double Lower[MAXCOL], Upper[MAXCOL];

int ColStart[MAXCOL+1], RowIndex[MAXELT];

char RowNames[500], ColNames[500];

In this example, we have set the dimensions by using #define statements, rather than working
out the actual sizes required from the number of sides and then allocating the space dynamically.

nSide = 5;

nRowName = 0;

nColName = 0;

By making the number of sides a variable (nSide) we can create other polygons by changing its
value.

It is useful – at least while building a model – to be able to see what has been created. We will
therefore create meaningful names for the rows and columns. nRowName and nColName count
along the character buffers RowNames and ColNames.

nRow = nSide-2 + (nSide-1)*(nSide-2)/2 + 1;

nCol = (nSide-1)*2 + 2;

for (i=0; i<nRow; i++) RHS[i] = 0;

The number of constraints is:

nSide-2 for the relationships between adjacent thetas.

(nSide-1)*(nSide-2)/2 for the distances between pairs of vertices.

1 for the OBJEQ non-linear "objective function".

The number of columns is:

Fair Isaac Corporation Confidential and Proprietary Information 22

The Xpress-SLP API Functions Overview

nSide-1 for the thetas.

nSide-1 for the rhos.

1 for the OBJX objective function column.

1 for the "equals column".

We are using "C"-style numbering for rows and columns, so the counting starts from zero.

nRow = 0;

RowType[nRow++] = ’E’; /* OBJEQ */

nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "OBJEQ");

for (i=1; i<nSide-1; i++) {

RowType[nRow++] = ’G’; /* T2T1 .. T4T3 */

RHS[i] = 0.001;

nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "T%dT%d", i+1, i);

}

This sets the row type indicator for OBJEQ and the theta relationships, with a right hand side of
0.001. We also create row names in the RowNames buffer. Each name is terminated by a NULL

character (automatically placed there by the sprintf function). sprintf returns the length of
the string written, excluding the terminating NULL character.

for (i=1; i<nSide-1; i++) {

for (j=i+1; j<nSide; j++) {

RowType[nRow] = ’L’;

RHS[nRow++] = 1.0;

nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "V%dV%d", i, j);

}

}

This defines the L-type rows which constrain the distances between pairs of vertices. The right
hand side is 1.0 (the maximum value) and the names are of the form ViVj.

for (i=0; i<nCol; i++) {

OBJ[i] = 0; /* objective function */

Lower[i] = 0; /* lower bound normally zero */

Upper[i] = XPRS_PLUSINFINITY; /* upper bound = infinity */

}

This sets up the standard column data, with objective function entries of zero, and default
bounds of zero to plus infinity. We shall change these for the individual items as required.

nCol = 0;

nElement = 0;

ColStart[nCol] = nElement;

OBJ[nCol] = 1.0;

Lower[nCol++] = XPRS_MINUSINFINITY; /* free column */

Element[nElement] = -1.0;

RowIndex[nElement++] = 0;

nColName = nColName + 1 + sprintf(&ColNames[nColName], "OBJX");

This starts the construction of the matrix elements. nElement counts through the Element and
RowIndex arrays, nCol counts through the ColStart, OBJ, Lower and Upper arrays. The first
column, OBJX, has the objective function value of +1 and a value of -1 in the OBJEQ row. It is also
defined to be "free", by making its lower bound equal to minus infinity.

iRow = 0

for (i=1; i<nSide; i++) {

nColName = nColName + 1 + sprintf(&ColNames[nColName], "THETA%d", i);

ColStart[nCol++] = nElement;

Fair Isaac Corporation Confidential and Proprietary Information 23

The Xpress-SLP API Functions Overview

if (i < nSide-1) {

Element[nElement] = -1;

RowIndex[nElement++] = iRow+1;

}

if (i > 1) {

Element[nElement] = 1;

RowIndex[nElement++] = iRow;

}

iRow++;

}

This creates the relationships between adjacent thetas. The tests on i are to deal with the first
and last thetas which do not have relationships with both their predecessor and successor.

Upper[nCol-1] = 3.1415926;

This sets the bound on the final theta to be π . The column index is nCol-1 because nCol has
already been incremented.

nColName = nColName + 1 + sprintf(&ColNames[nColName], "=");

ColStart[nCol] = nElement;

Lower[nCol] = Upper[nCol] = 1.0; /* fixed at 1.0 */

nCol++;

This creates the "equals column" – its name is "=" and it is fixed at a value of 1.0.

for (i=1; i<nSide; i++) {

Lower[nCol] = 0.01; /* lower bound */

Upper[nCol] = 1;

ColStart[nCol++] = nElement;

nColName = nColName + 1 + sprintf(&ColNames[nColName], "RHO%d", i);

}

ColStart[nCol] = nElement;

The remaining columns – the rho variables – have only non-linear coefficients and so they do not
appear in the linear section except as empty columns. They are bounded between 0.01 and 1.0
but have no entries. The final entry in ColStart is one after the end of the last column.

XPRSsetintcontrol(mprob, XPRS_MPSNAMELENGTH, 16);

If you are creating your own names – as we are here – then you need to make sure that
Xpress-Optimizer can handle both the names you have created and the names that will be
created by Xpress-SLP. Typically, Xpress-SLP will create names which are three characters longer
than the names you have used. If the longest name would be more than 8 characters, you should
set the Xpress-Optimizer name length to be larger – it comes in multiples of 8, so we have used 16
here. If you do not make the name length sufficiently large, then the XPRSaddnames function
will return an error either here or during the Xpress-SLP "construct" phase.

XPRSloadlp(mprob, "Polygon", nCol, nRow, RowType, RHS, NULL,

OBJ, ColStart, NULL, RowIndex, Element, Lower, Upper);

This actually loads the model into Xpress-Optimizer. We are not using ranges or column element
counts, which is why the two arguments are NULL.

XPRSaddnames(mprob, 1, RowNames, 0, nRow-1);

XPRSaddnames(mprob, 2, ColNames, 0, nCol-1);

The row and column names can now be added.

Fair Isaac Corporation Confidential and Proprietary Information 24

The Xpress-SLP API Functions Overview

5.5 Adding the non-linear part of the problem

Be warned – this section is complicated, but it is the most efficient way – from SLP’s point of view
– to input formulae. See the next section for a much easier (but less efficient) way of inputting
the formulae directly.

#define MAXTOKEN 200

#define MAXCOEF 20

...

int Sin, Cos;

ColIndex[MAXCOL];

FormulaStart[MAXCOEF];

Type[MAXTOKEN];

double Value[MAXTOKEN], Factor[MAXCOEF];

The arrays for the non-linear part can often be re-used from the linear part. The new arrays are
ColIndex (for the column index of the coefficients), FormulaStart and Factor for the
coefficients, and Type and Value to hold the internal forms of the formulae.

XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "SIN", &Sin);

XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "COS", &Cos);

We will be using the Xpress-SLP internal functions SIN and COS. The XSLPgetindex function
finds the index of an Xpress-SLP entity (XV, character variable, internal or user function).

nToken = 0;

nCoef = 0;

RowIndex[nCoef] = 0;

ColIndex[nCoef] = nSide;

Factor[nCoef] = 0.5;

FormulaStart[nCoef++] = nToken;

For each coefficient, the following information is required:

RowIndex the index of the row.

ColIndex the index of the column.

FormulaStart the beginning of the internal formula array for the coeffi-
cient.

Factor this is optional. If used, it holds a constant multiplier for the
formula. This is particularly useful where the same formula
appears in several coefficients, but with different signs or scal-
ing. The formula can be used once, with different factors.

for (i=1; i<nSide-1; i++) {

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+i+1;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+i;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MULTIPLY;

Type[nToken] = XSLP_RB;

Value[nToken++] = 0;

Type[nToken] = XSLP_COL;

Value[nToken++] = i+1;

Type[nToken] = XSLP_COL;

Value[nToken++] = i;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MINUS;

Type[nToken] = XSLP_IFUN;

Fair Isaac Corporation Confidential and Proprietary Information 25

The Xpress-SLP API Functions Overview

Value[nToken++] = Sin;

Type[nToken] = XSLP_OP

Value[nToken++] = XSLP_MULTIPLY;

if (i>1) {

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_PLUS;

}

}

This looks very complicated, but it is really just rather large. We are using the "reverse Polish" or
"parsed" form of the formula for area. The original formula, written in the normal way, would
look like this:
RHO2 * RHO1 * SIN (THETA2 - THETA1) +

In reverse Polish notation, tokens are pushed onto the stack or popped from it. Typically, this
means that a binary operation A x B is written as A B x (push A, push B, pop A and B and push the
result). The first term of our area formula then becomes:
RHO2 RHO1 *) THETA2 THETA1 - SIN *

Notice that the right hand bracket appears as an explicit token. This allows the SIN function to
identify where its argument list starts – and incidentally allows functions to have varying numbers
of arguments.

Each token of the formula is written as two items – Type and Value.
Type is an integer and is one of the defined types of token, as given in the xslp.h header file.
XSLP_CON, for example, is a constant; XSLP_COL is a column.
Value is a double precision value, and its meaning depends on the corresponding Type. For a
Type of XSLP_CON, Value is the constant value; for XSLP_COL, Value is the column number; for
XSLP_OP (arithmetic operation), Value is the operand number as defined in xslp.h; for a
function (type XSLP_IFUN for internal functions, XSLP_FUN for user functions), Value is the
function number.
A list of tokens for a formula is always terminated by a token of type XSLP_EOF.

The loop writes each term in order, and adds terms (using the XSLP_PLUS operator) after the first
pass through the loop.

for (i=1; i<nSide-1; i++) {

for (j=i+1; j<nSide; j++) {

RowIndex[nCoef] = iRow++;

ColIndex[nCoef] = nSide;

Factor[nCoef] = 1.0;

FormulaStart[nCoef++] = nToken;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+i;

Type[nToken] = XSLP_CON;

Value[nToken++] = 2;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_EXPONENT;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+j;

Type[nToken] = XSLP_CON;

Value[nToken++] = 2;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_PLUS;

Type[nToken] = XSLP_CON;

Value[nToken++] = 2;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+i;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MULTIPLY;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+j;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MULTIPLY;

Type[nToken] = XSLP_RB;

Fair Isaac Corporation Confidential and Proprietary Information 26

The Xpress-SLP API Functions Overview

Value[nToken++] = 0;

Type[nToken] = XSLP_COL;

Value[nToken++] = j;

Type[nToken] = XSLP_COL;

Value[nToken++] = i;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MINUS;

Type[nToken] = XSLP_IFUN;

Value[nToken++] = Cos;

Type[nToken] = XSLP_OP

Value[nToken++] = XSLP_MULTIPLY;

Type[nToken] = XSLP_OP;

Value[nToken++] = XSLP_MINUS;

Type[nToken] = XSLP_EOF;

Value[nToken++] = 0;

}

}

This writes the formula for the distances between pairs of vertices. It follows the same principle
as the previous formula, writing the formula in parsed form as:
RHOi 2 RHOj 2 + 2 RHOi * RHOj *) THETAj THETAi - COS * -

XSLPloadcoefs(sprob, nCoef, RowIndex, ColIndex, Factor,

FormulaStart, 1, Type, Value);

The XSLPloadcoefs is the most efficient way of loading non-linear coefficients into a problem.
There is an XSLPaddcoefs function which is identical except that it does not delete any existing
coefficients first. There is also an XSLPchgcoef function, which can be used to change individual
coefficients one at a time. Because we are using internal parsed format, the "Parsed" flag in the
argument list is set to 1.

5.6 Adding the non-linear part of the problem using character formulae

Provided that all entities – in particular columns, XVs and user functions – have explicit and
unique names, the non-linear part can be input by writing the formulae as character strings. This
is not as efficient as using the XSLPloadcoefs() function but is generally easier to understand.

/* Build up nonlinear coefficients */

/* Allow space for largest formula - approx 50 characters per side for area */

CoefBuffer = (char *) malloc(50*nSide);

We shall be using large formulae, so we need a character buffer large enough to hold the largest
formula we are using. The estimate here is 50 characters per side of the polygon for the area
formula, which is the largest we are using.

/* Area */

Factor = 0.5;

BufferPos = 0;

for (i=1; i<nSide-1; i++) {

if (i > 1) {

BufferPos = BufferPos + sprintf(&CoefBuffer[BufferPos], " + ");

}

BufferPos = BufferPos + sprintf(&CoefBuffer[BufferPos], "RHO%d * RHO%d *

SIN (THETA%d - THETA%d)", i+1, i, i+1, i);

}

XSLPchgccoef(sprob, 0, nSide, &Factor, CoefBuffer);

The area formula is of the form:

Fair Isaac Corporation Confidential and Proprietary Information 27

The Xpress-SLP API Functions Overview

(RHO2*RHO1*SIN(THETA2-THETA1) + RHO3*RHO2*SIN(THETA3-THETA2) + ...) / 2

The loop writes the product for each consecutive pair of vertices and also puts in the "+" sign
after the first one.

The XSLPchgccoef function is a variation of XSLPchgcoef but uses a character string for the
formula instead of passing it as arrays of tokens. The arguments to the function are:

RowIndex the index of the row.

ColIndex the index of the column.

Factor this is optional. If used, it holds the address of a constant mul-
tiplier for the formula. This is particularly useful where the
same formula appears in several coefficients, but with differ-
ent signs or scaling. The formula can be used once, but with
different factors. To omit it, use a NULL argument.

CoefBuffer the formula, written in character form.

In this case, RowIndex is zero and ColIndex is nSide (the "equals" column).

/* Distances */

Factor = 1.0;

for (i=1; i<nSide-1; i++) {

for (j=i+1; j<nSide; j++) {

sprintf(CoefBuffer, "RHO%d ^ 2 + RHO%d ^ 2 - 2 * RHO%d * RHO%d *

COS (THETA%d - THETA%d)", j, i, j, i, j, i);

XSLPchgccoef(sprob, iRow, nSide, &Factor, CoefBuffer);

iRow++;

}

This creates the formula for the distance between pairs of vertices and writes each into a new
row in the "equals" column.

Provided you have given names to any user functions in your program, you can use them in a
formula in exactly the same way as SIN and COS have been used above.

5.7 Checking the data

Xpress-SLP includes the function XSLPwriteprob which writes out a non-linear problem in text
form which can then be checked manually. Indeed, the problem can then be run using the XSLP
console program, provided there are no user functions which refer back into your compiled
program. In particular, this facility does allow small versions of a problem to be checked before
moving on to the full size ones.

XSLPwriteprob(sprob, "testmat", "");

The first argument is the Xpress-SLP problem pointer; the second is the name of the matrix to be
produced (the suffix ".mat" will be added automatically). The last argument allows various
different types of output including "scrambled" names – that is, internally-generated names will
be used rather than those you have provided. For checking purposes, this is obviously not a good
idea.

5.8 Solving and printing the solution

XSLPmaxim(sprob, "");

Fair Isaac Corporation Confidential and Proprietary Information 28

The Xpress-SLP API Functions Overview

The XSLPmaxim and XSLPminim functions perform a non-linear maximization or minimization on
the current problem. The second argument can be used to pass flags as defined in the Xpress-SLP
Reference Manual.

XPRSwriteprtsol(mprob);

The standard Xpress-Optimizer solution print can be obtained by using the XPRSwriteprtsol

function. The row and column activities and dual values can be obtained using the XPRSgetsol

function.

In addition, you can use the XSLPgetvar function to obtain the values of SLP variables – that is,
of variables which are in non-linear coefficients, or which have non-linear coefficients. If you are
using cascading (see the Xpress-SLP reference manual for more details) so that Xpress-SLP
recalculates the values of the dependent SLP variables at each SLP iteration, then the value from
XSLPgetvar will be the recalculated value, whereas the value from XPRSgetsol will be the
value from the LP solution (before recalculation).

5.9 Closing the program

The XSLPdestroyprob function frees any system resources allocated by Xpress-SLP for the
specific problem. The problem pointer is then no longer valid. XPRSdestroyprob performs a
similar function for the underlying linear problem mprob. The XSLPfree function frees any
system resources allocated by Xpress-SLP. You must then call XPRSfree to perform a similar
operation for the optimizer.

XSLPdestroyprob(sprob);

XPRSdestroyprob(mprob);

XSLPfree();

XPRSfree();

If these functions are not called, the program may appear to have worked and terminated
correctly. However, in such a case there may be areas of memory which are not returned to the
system when the program terminates and so repeated executions of the program will result in
progressive loss of available memory to the system, which will manifest iself in poorer
performance and could ultimately produce a system crash.

5.10 Adding initial values

So far, Xpress-SLP has started by using values which it estimates for itself. Because most of the
variables are bounded, these initial values are fairly reasonable, and the model will solve.
However, in general, you will need to provide initial values for at least some of the variables.
Initial values, and other information for SLP variables, are provided using the XSLPloadvars

function.

int VarType[MAXCOL];

double InitialValue[MAXCOL];

To load initial values using XSLPloadvars, we need an array (InitialValue) to hold the initial
values, and a VarType array which is a bitmap to describe what information is being set for each
variable.

for(i=1; i<nSide; i++) {

...

Fair Isaac Corporation Confidential and Proprietary Information 29

The Xpress-SLP API Functions Overview

InitialValue[nCol] = 3.14159*((double)i) / ((double)nSide);

VarType[nCol] = 4;

...

}

...

for(i=1; i<nSide; i++) {

InitialValue[nCol] = 1;

VarType[nCol] = 4;

}

These sections extend the loops for the columns in the earlier example. We set initial values for
the thetas so that the vertices are spaced at equal angles; the rhos are all started at 1. We do not
need to set a value for the equals column, because it is fixed at one. However, it is good practice
to do so. In each case we set VarType to 4 because (as described in the Xpress-SLP Reference
Manual) Bit 2 of the type indicates that the initial value is being set.

for(i=0; i<nCol; i++) ColIndex[i] = i

XSLPloadvars(sprob, nCol-1, &ColIndex[1], &VarType[1], NULL, NULL, NULL,

&InitialValue[1], NULL);

XSLPloadvars can take several other arguments apart from the initial value. It is a general
principle in Xpress-SLP that using NULL for an argument means that there is no information being
provided, and the current or default value will not be changed.

Because we built up the initial values as we went, the VarType and InitialValue arrays include
column 0, which is OBJX and is not an SLP variable. As all the rest are SLP variables, we can simply
start these arrays at the second item, and reduce the variable count by 1.

5.11 User functions

The most complicated formula in this model is the area calculation. With only 5 sides, it is still
possible to write it out explicitly, but it becomes large (and perhaps inefficient) if the number of
sides increases. The alternative is to calculate the formula in a function and then use the function
within the model.

A user function is essentially a function which is not built in to Xpress-SLP. It can be written in a
language such as C or Fortran, and compiled into a DLL; it can be written as a set of formulae in
an Excel spreadsheet (with or without a macro as well); it can be written entirely within an Excel
macro. This example shows the area function written as a compiled C function.

5.11.1 A user function in C

This function calculates the area from an array of values, ordered as (RHO1, THETA1, RHO2,

THETA2, ...). The number of items in the Values array is given as the first item in nArg.

double XPRS_CC MyFunc(double *Values, int *nArg) {

int i;

double Area;

Area = 0;

for(i=3; i<nArg[0]; i=i+2) {

Area = Area + Values[i-3]*Values[i-1]*sin(Values[i]-Values[i-2]);

}

return Area*0.5;

}

This is the standard interface for a user function in Xpress-SLP. The first argument is an array of
double precision values holding the values of the arguments for the Xpress-SLP function in order;
the second argument is an array of integers, the first of which contains the size of the first array.

Fair Isaac Corporation Confidential and Proprietary Information 30

The Xpress-SLP API Functions Overview

The function must be declared using XPRS_CC as shown, to ensure that the correct function
linkage is created.

This function can be compiled into a DLL. To make use of it, we also need to be able to access the
formula from outside, so you may need to add suitable externalization definitions. In Visual C++
under Microsoft Windows, you can use a Definition File, containing an EXPORTS section, such as:

EXPORTS

MyFunc=_MyFunc@8

5.11.2 Extending the polygon model

We can now declare this function in the model and use it instead of the explicit area formula.

nToken = 0;

XSLPsetstring(sprob, &i, "MyFunc");

Type[nToken] = XSLP_STRING;

Value[nToken++] = (double) i;

Type[nToken] = XSLP_UFEXETYPE;

Value[nToken++] = (double) 0x01;

Type[nToken] = XSLP_UFARGTYPE;

Value[nToken++] = (double) 023;

XSLPsetstring(sprob, &i, "MyDLL.DLL");

Type[nToken] = XSLP_STRING;

Value[nToken++] = (double) i;

Type[nToken] = XSLP_EOF;

XSLPloaduserfuncs(sprob, 1, Type, Value);

XSLPaddnames(sprob, XSLP_USERFUNCNAMES, "MyArea", 1, 1);

User functions are declared using XSLPloaduserfuncs. The definition of the function is stored
in parsed arrays similar to the ones used for defining formulae. There are two special token types
used here; see the Xpress-SLP Reference Manual for full details about the corresponding values.

XSLP_UFEXETYPE is the type of function. We are defining this to be a DLL func-
tion.

XSLP_UFARGTYPE is the type and number of the arguments to the function.
Each 3 bits (octal digit) represents one argument. The least
significant digit is the first argument and so on. In this case,
"3" means a double array, "2" means an integer array, and
the rest are all zero, which means they do not exist.

We must also define the name of the function. This is a character string, and it is the first item in
the array of tokens. To pass a character string to Xpress-SLP, use the XSLPsetstring function to
store the string and return an index to the string. Then use the index with the XSLP_STRING

token type.

Because this is a DLL function, we must also define the name of the DLL. This is the first string
after the tokens defining the function and argument types. For other types of function (for
example, Excel spreadsheets or macros), other string parameters may be needed as well.

The XSLPaddnames function creates a name for the function to be used inside Xpress-SLP when
the function is referenced. It is what you will see if you write the problem out using
XSLPwriteprob. It can be the same name as the function name in the DLL, but it does not have
to be. If you are not writing the problem out, then you do not need to set a name at all.

Type[nToken] = XSLP_RB;

Value[nToken++] = 0;

for (i=nSide-1; i>0; i--) {

Fair Isaac Corporation Confidential and Proprietary Information 31

The Xpress-SLP API Functions Overview

Type[nToken] = XSLP_COL;

Value[nToken++] = i;

Type[nToken] = XSLP_COL;

Value[nToken++] = nSide+i;

}

Type[nToken] = XSLP_FUN;

Value[nToken++] = 1;

Type[nToken] = XSLP_EOF;

Value[nToken++] = 0;

In reverse Polish, the arguments to the function must appear in reverse order, so the items start
with THETA4 and work down to RHO1. The arguments are preceded by a right bracket token and
followed by the user function token for function number 1.

5.11.3 Internal user functions

The example above used a function written in a DLL. If the function is compiled into something
else – for example, the main executable program – or is not externalized, then you will need to
define its address explicitly.

void *Func;

Func = MyFunc;

XSLPchguserfuncaddress(sprob, 1, &Func);

XSLPchguserfuncaddress takes as its arguments the number of the function, and a pointer to
its address. As usual, if the pointer is NULL, the data is left unaltered. The main use of the routine
is to define the address of a user function directly, without relying on Xpress-SLP to find it.

5.11.4 Using extended variable arrays

The argument list to the function is quite large, but it is only used once. If the same arguments
are used for several different functions, then it may become inefficient or difficult to keep
writing out the full list. Also, there are functions which can take varying numbers of arguments
and which identify the arguments by name rather than position. If any of these circumstances
apply, then an extended variable array (XV) may be useful.

nToken = 0;

XVStart[0] = nToken;

for(i=1; i<nSide; i++) {

Type[nToken] = XSLP_XVVARTYPE;

Value[nToken++] = XSLP_VAR;

Type[nToken] = XSLP_XVVARINDEX;

Value[nToken++] = nSide+i+1;

Type[nToken] = XSLP_EOF;

Value[nToken++] = 0;

Type[nToken] = XSLP_XVVARTYPE;

Value[nToken++] = XSLP_VAR;

Type[nToken] = XSLP_XVVARINDEX;

Value[nToken++] = i+1;

Type[nToken] = XSLP_EOF;

Value[nToken++] = 0;

}

XVStart[1] = nToken;

XSLPloadxvs(sprob, 1, XVStart, 1, Type, Value);

XSLPaddnames(sprob, XSLP_XVNAMES, "rTheta", 1, 1);

An XV can be regarded as an array of items (called XVitems) each of which can be any one of a
variety of different entities: variables, constants, formulae or other XVs. Each XVitem can also
have a name which would be passed to a function which receives its arguments by name rather
than by position. In the example, we shall make a simple XV which is just an array of variables.

Fair Isaac Corporation Confidential and Proprietary Information 32

The Xpress-SLP API Functions Overview

The order of the items in the array is significant, because it is the order in which they will be
passed to the function. Our function expects the order RHO1, THETA1, RHO2, THETA2, ...,
so we define the XVitems in the same order. XVitems are defined using the same sort of token
array as formulae or user functions. The full list of possibilities is in the Xpress-SLP Reference
Manual. In the example, we are using two new token types:

XSLP_XVVARTYPE describes the type of entity. The corresponding Value is the
type number. In the example, we are using XSLP_VAR. This
is similar to XSLP_COL but it always counts from 1, whereas
XSLP_COL counts from zero. You must always use XSLP_VAR

when defining XVs.

XSLP_XVVARINDEX defines the index of the entity – in this case, it is the variable
number.

Each XVitem is terminated with an XSLP_EOF token. XV number n is the set of XVitems between
XVStart[n] and XVStart[n+1].

XSLPloadxvs loads the XVs. The XSLPaddnames function can be used to give the XVs names, to
aid readability if the problem is printed out.

Once the XV has been defined, it can used in functions just like any other argument.

Type[nToken] = XSLP_RB;

Value[nToken++] = 0;

Type[nToken] = XSLP_XV;

Value[nToken++] = 1;

Type[nToken] = XSLP_FUN;

Value[nToken++] = 1;

Type[nToken] = XSLP_EOF;

Value[nToken++] = 0;

The function is now just MyArea(rTheta).

Fair Isaac Corporation Confidential and Proprietary Information 33

CHAPTER 6

The XSLP Console Program

6.1 The Console XSLP

XSLP is an extension to the FICO Xpress Optimizer interactive console.

Console XSLP is started from the command line using the following syntax:

C:\> xslp [problem_name] [@filename]

6.1.1 The XSLP console extensions

The XSLP console is an extension of the Xpress optimizer console. All the optimizer console
commands work the same way as in the normal optimizer console. The active working problem
for those commands is the actual linearization after augmentation, and the linear part of the
problem before augmentation.

Optimizer console commands with an extended effect:

readprob Read in an MPS/MAT or LP file
minim Minimize an LP, a MIP or an SLP problem
maxim Maximize an LP, a MIP or an SLP problem
lpoptimize Minimize or maximize a problem
mipoptimize Sovle the problem to MIP optimality
xpglobal Initiate the global search
writeprob Export the problem into file
dumpcontrols Display controls which are at a non default value

The MPS file can be an extended MPS file containing an SLP model. The minim and maxim

commands will call XPRSminim or XPRSmaxim for LP and MIP problems, and XSLPminim and
XSLPmaxim for SLP problems respectively; with the same applying to lpoptimize, mipoptimize

and xpglobal (which is refering to global, but is called xpglobal to distinguish it from the TCL
global qualifier). All these commands accept the same flags as the corresponding library function

New commands:

Fair Isaac Corporation Confidential and Proprietary Information 34

The XSLP Console Program Overview

cascade Perform cascading
cascadeorder Recalculate the cascading order
construct Construct the augmented problem
dumpattributes Display problem attributes
reinitialize Reinitialize an augmented problem
setcurrentiv Copy the current solution as initial value
slp_save XSLPsave
slp_scaling Display scaling statistics
startexcel Start the work Excel instance
unconstruct Remove the augmentation
validate Validate the current solution

Commands provided for compatibility with the legacy XSLP console:

slpinput Old name for readprob
slpmaxim Old name for minim
slpminim Old name for maxim
slpoutout Old name for writeprob

In order to separate XSLP controls and attributes for the XPRS ones, all XSLP controls and
attributes are pretagged as _XSLP or _SLP, for example XSLP_ALGORITHM.

6.1.2 Common features of the Xpress Optimizer and the Xpress XSLP console

All features of the Xpress optimizer console program is supported. For a full description, please
refer to the Xpress optimizer reference manual.

From the command line an initial problem name can be optionally specified together with an
optional second argument specifying a text "script" file from which the console input will be read
as if it had been typed interactively.

Note that the syntax example above shows the command as if it were input from the Windows
Command Prompt (i.e., it is prefixed with the command prompt string C:\>). For Windows users
Console XSLP can also be started by typing xslp into the "Run ..." dialog box in the Start menu.

The Console XSLP provides a quick and convenient interface for operating on a single problem
loaded into XSLP. The Console XSLP problem contains the problem data as well as (i) control
variables for handling and solving the problem and (ii) attributes of the problem and its solution
information.

The Console SLP auto–completion feature is a useful way of reducing key strokes when issuing
commands. To use the auto–completion feature, type the first part of an optimizer command
name followed by the Tab key. For example, by typing "CONST" followed by the Tab key Console
Xpress will complete to the "CONSTRUCT". Note that once you have finished inputting the
command name portion of your command line, Console Xpress can also auto–complete on file
names. Note that the auto–completion of file names is case–sensitive.

Console XSLP also features integration with the operating system’s shell commands. For example,
by typing "dir" (or "ls" under Unix) you will directly run the operating system’s directory listing
command. Using the "cd" command will change the working directory, which will be indicated in
the prompt string:

[xpress bin] cd \

[xpress C:\]

Finally, note that when the Console XSLP is first started it will attempt to read in an initialization
file named optimizer.ini from the current working directory. This is an ASCII "script" file that

Fair Isaac Corporation Confidential and Proprietary Information 35

The XSLP Console Program Overview

may contain commands to be run at start up, which are intended to setup a customized default
Console Xpress environment for the user (e.g., defining custom controls settings on the Console
Xpress problem).

The Console XSLP interactive command line hosts a TCL script parser (http://www.tcl.tk). With TCL
scripting the user can program flow control into their optimizer scripts. Also TCL scripting
provides the user with programmatic access to a powerful suite of functionality in the TCL library.
With scripting support the Console Xpress provides a high level of control and flexibility well
beyond that which can be achieved by combining operating system batch files with simple piped
script files. Indeed, with scripting support the Console XSLP is ideal for (i) early application
development, (ii) tuning of model formulations and solving performance and (iii) analyzing
difficulties and bugs in models.

Note that the TCL parser has been customized and simplified to handle intuitive access to the
controls and attributes of the Optimizer and XSLP. The following example shows how to proceed
with write and read access to the XSLP_ALGROITHM control:

[xpress C:\] xslp_algorithm=166

[xpress C:\] xslp_algorithm

166

The following shows how this would usually be achieved using TCL syntax:

[xpress C:\] set xslp_algorithm 166

166

[xpress C:\] $miplog

166

For examples on how TCL can be used for scripting, tuning and testing models, please refer to the
Xpress Optimizer reference manual.

Console XSLP users may interrupt the running of the commands (e.g., minim) by typing Ctrl–C.
Once interrupted Console Xpress will return to its command prompt. If an optimization algorithm
has been interrupted in this way, any solution process will stop at the first ’safe’ place before
returning to the prompt.

When Console XSLP is being run with script input then Ctrl–C will not return to the command
prompt and the Console Xpress process will simply stop.

Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl–C
input to fail on some operating systems.

The XSLP console program can be used as a direct substitute for the Xpress-Optimizer console
program. The one exception is the fixed format MPS files, which is not supported by XSLP and
thus neither by the XSLP console.

Fair Isaac Corporation Confidential and Proprietary Information 36

http://www.tcl.tk/

II. Advanced

CHAPTER 7

Nonlinear Problems

Xpress-SLP will solve nonlinear problems. In this context, a nonlinear problem is one in which
there are nonlinear relationships between variables or where there are nonlinear terms in the
objective function. There is no such thing as a nonlinear variable — all variables are effectively
the same — but there are nonlinear constraints and formulae. A nonlinear constraint contains
terms which are not linear. A nonlinear term is one which is not a constant and is not a variable
with a constant coefficient. A nonlinear constraint can contain any number of nonlinear terms.

Xpress-SLP will also solve linear problems — that is, if the problem presented to Xpress-SLP does
not contain any nonlinear terms, then Xpress-SLP will still solve it, using the normal optimizer
library.

The solution mechanism used by Xpress-SLP is Successive (or Sequential) Linear Programming. This
involves building a linear approximation to the original nonlinear problem, solving this
approximation (to an optimal solution) and attempting to validate the result against the original
problem. If the linear optimal solution is sufficiently close to a solution to the original problem,
then the SLP is said to have converged, and the procedure stops. Otherwise, a new approximation
is created and the process is repeated. Xpress-SLP has a number of features which help to create
good approximations to the original problem and therefore help to produce a rapid solution.

Note that although the solution is the result of an optimization of the linear approximation,
there is no guarantee that it will be an optimal solution to the original nonlinear problem. It may
be a local optimum — that is, it is a better solution than any points in its immediate
neighborhood, but there is a better solution rather further away. However, a converged SLP
solution will always be (to within defined tolerances) a self-consistent — and therefore practical
— solution to the original problem.

7.1 Coefficients and terms

Later in this manual, it will be helpful to distinguish between formulae written as coefficients and
those written as terms.

If X is a variable, then in the formula X ∗ f(Y), f(Y) is the coefficient of X.

If f(X) appears in a nonlinear constraint, then f(X) is a term in the nonlinear constraint.

If X ∗ f(Y) appears in a nonlinear constraint, then the entity X ∗ f(Y) is a term in the nonlinear
constraint.

As this implies, a formula written as a variable multiplied by a coefficient can always be viewed as
a term, but there are terms which cannot be viewed as variables multiplied by coefficients. For
example, in the constraint
X − SIN(Y) = 0,
SIN(Y) is a term and cannot be written as a coefficient.

Fair Isaac Corporation Confidential and Proprietary Information 38

Nonlinear Problems Advanced

7.2 SLP variables

A variable which appears in a nonlinear coefficient or term is described as an SLP variable.

Normally, any variable which has a nonlinear coefficient will also be treated as an SLP variable.
However, it is possible to set options so that variables which do not appear in nonlinear
coefficients or terms are not treated as SLP variables.

Any variable, whether it is related to a nonlinear term or not, can be defined by the user as an
SLP variable. This is most easily achieved by setting an initial value for the variable.

7.3 Local and global optimality

A globally optimal solution is a feasible solution with the best possible objective value. In general,
the global optimum for a problem is not unique. By contrast, a locally optimal solution has the
best possible objective value within an open neighbourhood around it. For a convex problem,
every local optimum is a global optimum, but for general nonlinear problems, this is not the case.

For convex problems, which include linear, convex quadratic and convex quadratically constrained
programs, solvers in the FICO Xpress library will always provide a globally optimal solution when
one exists. This also holds true for mixed integer problems whose continuous relaxation is convex.

When a problem is of a more general nonlinear type, there will typically be many local optima,
which are potentially widely spaced, or even in parts of the feasible region which are not
connected. For these problems, both XSLP and KNITRO guarantee only that they will return a
locally optimal solution. That is, the result of optimization will be a solution which is better than
any others in its immediate neighborhood, but there might exist other solutions which are far
distant which have a better objective value.

Finding a guaranteed global optimum for an arbitrary nonlinear function requires an exhaustive
search, which may be orders of magnitude more expensive. To use an analogy, it is the difference
between finding a valley in a range of mountains, and finding the deepest valley. When standing
in a particular valley, there is no way to know whether there is a deeper valley somewhere else.

Neither local nor global optima are typically unique. The solution returned by a solver will
depend on the control settings used and, particularly for non-convex problems, on the initial
values provided. A connected set of initial points yielding the same locally optimal solutions is
sometimes referred to as a region of attraction for the solution. These regions are typically both
algorithm and setting dependent.

7.4 Convexity

Convex problems have many desirable characteristics from the perspective of mathematical
optimization. Perhaps the most significant of these is that should both the objective and the
feasible region be convex, any local optimally solutions found are also known immediately to be
globally optimal.

A constraint f(x) ≤ 0 is convex if the matrix of second derivatives of f , that is to say its Hessian, is
positive semi-definite at every point at which it exists. This requirement can be understood
geometrically as requiring every point on every line segment which connects two points satisfying
the constraint to also satisfy the constraint. It follows trivially that linear functions always lead to
convex constraints, and that a nonlinear equality constraint is never convex.

For regions, a similar property must hold. If any two points of the region can be connected by a

Fair Isaac Corporation Confidential and Proprietary Information 39

Nonlinear Problems Advanced

Figure 7.1: Two convex functions on the left, and two non-convex functions on the right.

line segment which lies fully in the region itself, the region is convex. This extension is
straightforward when the the properties of convex functions are considered.

Figure 7.2: A convex region on the left and a non-convex region on the right.

It is important to note that convexity is necessary for some solution techniques and not for
others. In particular, some solvers require convexity of the constraints and objective function to
hold only in the feasible region, whilst others may require convexity to hold across the entire
space, including infeasible points. In the special case of quadratic and quadratically constrained
programs, Xpress-NonLinear seamlessly migrates problems to solvers whose convexity
requirements match the convexity of the problem.

7.5 Converged and practical solutions

In a strict mathematical sense, an algorithm is said to have converged if repeated iterations do
not alter the coordinates of its solution significantly. A more practical view of convergence, as
used in the nonlinear solvers of the Xpress suite, is to also consider the algorithm to have
converged if repeated iterations have no significant effect on either the objective value or upon
feasibility. This will be called extended convergence to distinguish it from the strict sense.

For some problems, a solver may visit points at which the local neighborhood is very complex, or
even malformed due to numerical issues. In this situation, the best results may be obtained when
convergence of some of the variables is forced. This leads to practical solutions, which are feasible
and converged in most variables, but the remaining variables have had their convergence forced
by the solver, for example by means of a trust region. Although these solutions are not locally
optimal in a strict sense, they provide meaningful, useful results for difficult problems in practice.

7.6 The duals of general, nonlinear program

The dual of a mathematical program plays a fundamental role in the theory of continuous

Fair Isaac Corporation Confidential and Proprietary Information 40

Nonlinear Problems Advanced

optimization. Each variable in a problem has a corresponding partner in that problem’s dual, and
the values of those variables are called the reduced costs and dual multipliers (shadow prices).
Xpress-NonLinear makes estimates of these values available. These are normally defined in a
similar way to the usual linear programming case, so that each value represents the rate of
change of the objective when either increasing the corresponding primal variable or relaxing the
corresponding primal constraint.

From an algorithmic perspective, one of the most important roles of the dual variables is to
characterize local optimality. In this context, the dual multipliers and reduced costs are called
Lagrange multipliers, and a solution with both primal and dual feasible variables satisfies the
Karush-Kuhn-Tucker conditions. However, it is important to note that for general nonlinear
problems, there exist situations in which there are no such multipliers. Geometrically, this means
that the slope of the objective function is orthogonal to the linearization of the active
constraints, but that their curvature still prevents any movement in the improving direction.

As a simple example, consider:

minimize y
subject to x2 + y2 ≤ 1

(x − 2)2 + y2 ≤ 1

which is shown graphically in figure 7.3.

Figure 7.3: A problem admitting no dual values

This problem has a single feasible solution at (1,0). Reduced costs and dual multipliers could
never be meaningful indicators of optimality, and indeed are not well-defined for this problem.
Intuitively, this arises because the feasible region lacks an interior, and the existence of an interior
(also referred to as the Slater condition) is one of several alternative conditions which can be
enforced to ensure that such situations do not occur. The other common condition for
well-defined duals is that the gradients of the active constraints are linearly independent.

Problems without valid duals do not often arise in practice, but it is important to be aware of the
possibility. Analytic detection of such issues is difficult, and they manifest instead in the form of
unexpectedly large or otherwise implausible dual values.

Fair Isaac Corporation Confidential and Proprietary Information 41

CHAPTER 8

Extended MPS file format

One method of inputting a problem to Xpress-SLP is from a text file which is similar to the normal
MPS format matrix file. The Xpress-SLP file uses free format MPS-style data. All the features of
normal free-format MPS are supported. There are no changes to the sections except as indicated
below.

Note: the use of free-format requires that no name in the matrix contains any leading or
embedded spaces and that no name could be interpreted as a number. Therefore, the following
names are invalid:

B 02 because it contains an embedded space;

1E02 because it could be interpreted as 100 (the scientific or floating-point format
number, 1.0E02).

It is possible to use column and row names inlcuding mathematical operators. A variable name
a+b is valid. However, as an expression a + b would be interpreted as the addition of variables a
and b - note the spaces between the variable names - it is best practice to avoid such names when
possible. SLP will produce a warning if such names are encountered in the MPS file.

8.1 Formulae

One new feature of the Extended MPS format is the formula. A formula is written in much the
same way as it would be in any programming language or spreadsheet. It is made up of (for
example) constants, functions, the names of variables, and mathematical operators. The formula
always starts with an equals sign, and each item (or token) is separated from its neighbors by one
or more spaces.

Tokens may be one of the following:

� A constant;

� The name of a variable;

� An arithmetic operator "+", "-", "*", "/";

� The exponentiation operator "**" or "̂";

� An opening or closing bracket "(" or ")";

� A comma "," separating a list of function arguments;

� The name of a supported internal function such as LOG, SIN, EXP;

� The name of a user-supplied function;

Fair Isaac Corporation Confidential and Proprietary Information 42

Extended MPS file format Advanced

� A colon ":" preceding the return argument indicator of a multi-valued function;

� The name of a return argument from a multi-valued function.

The following are valid formulae:

= SIN (A / B) SIN is a recognized internal function which takes one argument and returns
one result (the sin of its argument).

= A ˆ B ˆ is the exponentiation symbol. Note that the formula may have valid syntax but it
still may not be possible to evaluate it (for example if A = −1 and B = 0. 5).

= MyFunc1 (C1 , − C2 , C3 : 1) MyFunc1 must be a function which can take three
arguments and which returns an array of results. This formula is asking for the first
item in the array.

= MyFunc2 (C1 , − C2 , C3 : RVP) MyFunc1 must be a function which can take three
arguments and which returns an array of results. This formula is asking for the item
in the array which is named RVP.

The following are not valid formulae:

SIN (A) Missing the equals sign at the start

= SIN(A) No spaces between adjacent tokens

= A ∗ ∗ B "**" is exponentiation, "* *" (with an embedded space) is not a recognized
operation.

= MyFunc1 (C1 , − C2 , C3 , 1) If MyFunc1 is as shown in the previous set of
examples, it returns an array of results. The last argument to the function must be
delimited by a colon, not a comma, and is the name or number of the item to be
returned as the value of the function.

There is no limit in principle to the length of a formula. However, there is a limit on the length of
a record read by XSLPreadprob, which is 31000 characters. Parsing very long records can be slow,
and consideration should be given to pre-parsing them and passing the parsed formula to
Xpress-SLP rather than asking it to parse the formula itself.

8.2 COLUMNS

Normal MPS-style records of the form

column row1 value1 [row2 value2]

are supported. Non-linear relationships are modeled by using a formula instead of a constant in
the value1 field. If a formula is used, then only one coefficient can be described in the record
(that is, there can be no row2 value2). The formula begins with an equals sign ("=") and is as
described in the previous section.

A formula must be contained entirely on one record. The maximum record length for files read
by XSLPreadprob is 31000. Note that there are limits applied by the Optimizer to the lengths of
the names of rows and columns.

Fair Isaac Corporation Confidential and Proprietary Information 43

Extended MPS file format Advanced

Variables used in formulae may be included in the COLUMNS section as variables, or may exist only
as items within formulae. A variable which exists only within formulae is called an implicit
variable.

Sometimes the non-linearity cannot be written as a coefficient. For example, in the constraint
Y − LOG(X) = 0,
LOG(X) cannot be written in the form of a coefficient. In such a case, the reserved column name
"=" may be used in the first field of the record as shown:

Y MyRow 1

= MyRow = − LOG (X)

Effectively, "=" is a column with a fixed activity of 1.0 .

When a file is read by XSLPreadprob, more than one coefficient can be defined for the same
column/row intersection. As long as there is at most one constant coefficient (one not written as
a formula), the coefficients will be added together. If there are two or more constant coefficients
for the same intersection, they will be handled by the Optimizer according to its own rules
(normally additive, but the objective function retains only the last coefficient).

8.3 BOUNDS

Bounds can be included for variables which are not defined explicitly in the COLUMNS section of
the matrix. If they are not in the COLUMNS section, they must appear as variables within formulae
(implicit variables). A BOUNDS entry for an item which is not a column or a variable will produce a
warning message and will be ignored.

Global entities (such as integer variables and members of Special Ordered Sets) must be defined
explicitly in the COLUMNS section of the matrix. If a variable would otherwise appear only in
formulae in coefficients, then it should be included in the COLUMNS section with a zero entry in a
row (for example, the objective function) which will not affect the result.

8.4 SLPDATA

SLPDATA is a new section which holds additional information for solving the non-linear problem
using SLP.

Many of the data items have a setname. This works in the same way as the BOUND, RANGE or RHS

name, in that a number of different values can be given, each with a different set name, and the
one which is actually used is then selected by specifying the appropriate setname before reading
the problem.

Record type IV and the tolerance records Tx, Rx can have "=" as the variable name. This provides
a default value for the record type, which will be used if no specific information is given for a
particular variable.

Note that only linear BOUND types can be included in the SLPDATA section. Bound types for global
entities (discrete variables and special ordered sets) must be provided in the normal BOUNDS

section and the variables must also appear explicitly in the COLUMNS section.

All of the items in the SLPDATA section can be loaded into a model using Xpress-SLP function calls.

8.4.1 CV (Character variable)

CV setname variable value

Fair Isaac Corporation Confidential and Proprietary Information 44

Extended MPS file format Advanced

The CV record defines a character variable. This is only required for user functions which have
character arguments (for example, file names). The value field begins with the first non-blank
character after the variable name, and the value of the variable is made up of all the characters
from that point to the end of the record. The normal free-format rules do not apply in the value
field, and all spacing will be retained exactly as in the original record.

Examples:

CV CVSET1 MyCV1 Program Files\MyLibs\MyLib1

This defines the character variable named MyCV1. It is required because there is an embedded
space in the path name which it holds.

CV CVSET1 MyCV1 Program Files\MyLibs\MyLib1

CV CVSET2 MyCV1 Program Files\MyLibs\MyLib2

This defines the character variable named MyCV1. There are two definitions, and the appropriate
one is selected by setting the string control variable XSLP_CVNAME before calling XSLPreadprob

to load the problem.

8.4.2 DC (Delayed constraint)

DC rowname [value] [= formula]

The DC record defines a delayed constraint. This allows a constraint defined in the matrix to be
made non-constraining for the first few SLP iterations, before reverting to its original type (L, G,
E).

The value field is the number of SLP iterations by which the constraint will be delayed (i.e. the
number of SLP iterations during which it will be non-constraining). If a formula is used as well,
then the delay will start from the time that the formula becomes nonzero.

A formula can be included as well as or instead of the value. If a formula is provided, then the
constraint will be delayed until the formula evaluates to non-zero. At this point, the constraint
will be delayed further in accordance with the value field.

If value is zero or is omitted, then the value of XSLP_DCLIMIT will be used for the value; to start
immediately after the formula evaluates to nonzero, set value to 1.

DCs are normally checked at the end of each SLP iteration, so it is possible that a solution will be
converged but activation of additional DCs will force optimization to continue. A negative value
may be given, in which case the absolute value is used but the DC is not checked at the end of the
optimization.

Examples:

DC Row1 3 = MV (Row99)

This defines Row1 as a delayed constraint. When the SLP optimization starts, it will not be
constraining, even though it has been defined with a constraint type in the ROWS section. When
the marginal value of Row99 becomes nonzero, the countdown begins, and will last for 3 further
iterations. After that, the row will revert to its original constraint type.

DC Row1 = GT (MV (Row99) , 5)

This defines Row1 as a delayed constraint. When the SLP optimization starts, it will not be
constraining, even though it has been defined with a constraint type in the ROWS section. When
the marginal value of Row99 is greater than 5, the countdown begins, and will last for
XSLP_DCLIMIT further iterations. After that, the row will revert to its original constraint type.

8.4.3 DR (Determining row)

DR variable rowname [weighting]

Fair Isaac Corporation Confidential and Proprietary Information 45

Extended MPS file format Advanced

The DR record defines the determining row for a variable.

In most non-linear problems, there are some variables which are effectively defined by means of
an equation in terms of other variables. Such an equation is called a determining row. If
Xpress-SLP knows the determining rows for the variables which appear in coefficients, then it can
provide better linear approximations for the problem and can then solve it more quickly.
Optionally, a non-zero integer value can be included in the weighting field. Variables which have
weights will generally be evaluated in order of increasing weight. Variables without weights will
generally be evaluated after those which do have weights. However, if a variable A (with or
without a weight) is dependent through its determining row on another variable B, then B will
always be evaluated first.

Example:

DR X Row1

This defines Row1 as the determining row for the variable X. If Row1 is
X − Y ∗ Z = 6
then Y and Z will be recalculated first before X is recalculated as Y ∗ Z + 6.

8.4.4 EC (Enforced constraint)

EC rowname

The EC record defines an enforced constraint. Penalty error vectors are never added to enforced
constraints, so the effect of such constraints is maintained at all times.

Note that this means the linearized version of the enforced constraint will be active, so it is
important to appreciate that enforcing too many constraints can easily lead to infeasible
linearizations which will make it hard to solve the original nonlinear problem.

Example:

EC Row1

This defines Row1 as an enforced constraint. When the SLP is augmented, no penalty error vectors
will be added to the constraint, so the linearized version of Row1 will constrain the linearized
problem in the same sense (L, G or E) as the nonlinear version of Row1 constrains the original
nonlinear problem.

8.4.5 FR (Free variable)

FR boundname variable

An FR record performs the same function in the SLPDATA section as it does in the BOUNDS section.
It can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.6 FX (Fixed variable)

FX boundname variable value

An FX record performs the same function in the SLPDATA section as it does in the BOUNDS section.
It can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.7 IV (Initial value)

IV setname variable [value | = formula]

An IV record specifies the initial value for a variable. All variables which appear in coefficients or
terms, or which have non-linear coefficients, should have an IV record.

A formula provided as the initial value for a variable can contain references to other variables. It

Fair Isaac Corporation Confidential and Proprietary Information 46

Extended MPS file format Advanced

will be evaluated based on the initial values of those variables (which may themselves be
calculated by formula). It is the user’s responsibility to ensure that there are no circular references
within the formulae. Formulae are typically used to calculate consistent initial values for
dependent variables based on the values of independent variables.

If an IV record is provided for the equals column (the column whose name is "=" and which has a
fixed value of 1.0), the value provided will be used for all SLP variables which do not have an
explicit initial value of their own.

If there is no explicit or implied initial value for an SLP variable, the value of control parameter
XSLP_DEFAULTIV will be used.

If the initial value is greater than the upper bound of the variable, the upper bound will be used;
if the initial value is less than the lower bound of the variable, the lower bound will be used.

If both a formula and a value are provided, then the explicit value will be used.

Example:

IV IVSET1 Col99 1.4971

IV IVSET2 Col99 2.5793

This sets the initial value of column Col99. The initial value to be used is selected using control
parameter XSLP_IVNAME. If no selection is made, the first initial value set found will be used.

If Col99 is bounded in the range 1 ≤ Col99 ≤ 2 then in the second case (when IVSET2 is
selected), an initial value of 2 will be used because the value given is greater than the upper
bound.

IV IVSET2 Col98 = Col99 * 2

This sets the value of Col98 to twice the initial value of Col99 when IVSET2 is the selected initial
value set.

8.4.8 LO (Lower bounded variable)

LO boundname variable value

A LO record performs the same function in the SLPDATA section as it does in the BOUNDS section.
It can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.9 Rx, Tx (Relative and absolute convergence tolerances)

Rx setname variable value

Tx setname variable value

The Tx and Rx records (where "x" is one of the defined tolerance types) define specific tolerances
for convergence of the variable. See the section "convergence criteria" for a list of convergence
tolerances. The same tolerance set name (setname) is used for all the tolerance records.

Example:

RA TOLSET1 Col99 0.005

TA TOLSET1 Col99 0.05

RI TOLSET1 Col99 0.015

RA TOLSET1 Col01 0.01

RA TOLSET2 Col01 0.015

These records set convergence tolerances for variables Col99 and Col01. Tolerances RA (relative
convergence tolerance), TA (absolute convergence tolerance) and RI (relative impact tolerance)
are set for Col99 using the tolerance set named TOLSET1.
Tolerance RA is set for variable Col01 using tolerance sets named TOLSET1 and TOLSET2.
If control parameter XSLP_TOLNAME is set to the name of a tolerance set before the problem is

Fair Isaac Corporation Confidential and Proprietary Information 47

Extended MPS file format Advanced

read using XSLPreadprob, then only the tolerances on records with that tolerance set will be
used. If XSLP_TOLNAME is blank or not set, then the name of the set on the first tolerance record
will be used.

8.4.10 SB (Initial step bound)

SB setname variable value

An SB record defines the initial step bounds for a variable. Step bounds are symmetric (i.e. the
bounds on the delta are −SB ≤ delta ≤ +SB). If a value of 1.0E+20 is used (equivalent to
XPRS_PLUSINFINITY in programming), the delta will never have step bounds applied, and will
almost always be regarded as converged.

If there is no explicit initial step bound for an SLP variable, a value will be estimated either from
the size of the coefficients in the initial linearization, or from the values of the variable during
the early SLP iterations. The value of control parameter XSLP_DEFAULTSTEPBOUND provides a
lower limit for the step bounds in such cases.

If there is no explicit initial step bound, then the closure convergence tolerance cannot be applied
to the variable.

Example:

SB SBSET1 Col99 1.5

SB SBSET2 Col99 7.5

This sets the initial step bound of column Col99. The value to be used is selected using control
parameter XSLP_SBNAME. If no selection is made, the first step bound set found will be used.

8.4.11 UF (User function)

UF funcname [= extname] (arguments) linkage [= [param1] [= [param2] [= [param3]]]]

A UF record defines a user function.
The definition includes the list of required arguments, and the linkage or calling mechanism. For
details of the fields, see the section on Function Declaration in Xpress-SLP.

Example:

UF MyFunc (DOUBLE , INTEGER) DLL = UserLib

This defines a user function called MyFunc. It takes two arguments (an array of type double
precision and an array of type integer). The linkage is DLL (free-standing user library or DLL) and
the function is in file UserLib.

8.4.12 UP (Free variable)

UP boundname variable value

An UP record performs the same function in the SLPDATA section as it does in the BOUNDS section.
It can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.13 WT (Explicit row weight)

WT rowname value

The WT record is a way of setting the initial penalty weighting for a row. If value is positive, then
the default initial weight is multiplied by the value given. If value is negative, then the absolute
value will be used instead of the default weight.

Increasing the penalty weighting of a row makes it less attractive to violate the constraint during
the SLP iterations.

Fair Isaac Corporation Confidential and Proprietary Information 48

Extended MPS file format Advanced

Examples:

WT Row1 3

This changes the initial weighting on Row1 by multiplying by 3 the default weight calculated by
Xpress-SLP during problem augmentation.

WT Row1 -3

This sets the initial weighting on Row1 to 3.

8.4.14 XV (Extended variable array)

XV XVname [variable] [= [inputname] [= [value]]]

The XV record defines one item of an extended variable array. With the usual abuse of notation,
we shall use XV as a shorthand for "extended variable array". XVs are typically used to provide a
list of arguments to a function, but can be used in other ways.

The meanings of the fields are as follows:

XVname The name of the XV. This must be unique and must not be the same as the name of
a variable or a character variable (CV).

variable The name of the variable. This can be any one of the following:

� a variable in the COLUMNS section
� a variable implied in the coefficients within the COLUMNS section
� another XV

The name must be omitted if the value is provided in the value field

inputname This field is used when the XV is providing arguments to a function which takes its
arguments by name rather than by position. In this case, the field holds the name
of the variable as known to the function. If the function takes its arguments in a
fixed order, this field is not required.

value The value of the item. This is not used if variable has been provided, but must be
provided in other cases. The value can be a constant or a formula. If it is a formula,
then it must conform to the normal rules for formulae (starting with an equals
sign, each token separated by spaces).

Example:

XV XV1 QN2ARFD

XV XV1 QSEVREF

XV XV2 QSULCCD = CI7

XV XV2 QCONCCD = CI8

XV XV2 = CI21 = 0.6

XV XV2 = CI47 = = QRVPCCD ˆ 1.25

XV1 contains two items. If used in a function call such as MyFunc(XV1) it is equivalent to
MyFunc(QN2ARFD,QSEVREF).
XV2 contains four items. All are given input names, so that a user function can identify the inputs
by name instead of by position (so the order is no longer important). The third item is a constant
(0.6). The fourth item is a formula (QRVPCCD ˆ 1.25).

The main purpose of an XV is to provide a list of arguments to a function where it is inappropriate
simply to list the arguments themselves. It also provides a convenient method of recording a set
of arguments which is used in different functions, or in a single function which returns multiple
arguments. The XV also provides functionality which is not available in simple argument lists.

The following should be noted:

Fair Isaac Corporation Confidential and Proprietary Information 49

Extended MPS file format Advanced

� Any XV record can have an input name (even if it is used in a function which does not use or
dies not accept named arguments).

� Every XV record must have either a variable or value field but not both.
It is incorrect to provide both the variable and value fields, because either the item is a
variable (in which case the variable name is required) or it is not (in which case the value
field is required).
It is incorrect to omit both the variable and value fields because there is then no way to
obtain a value for the item.

� All the records for an XV must appear together.

� The order in which the records appear in an XV will be the order in which they are used.

8.4.15 DL (variable specific Determining row cascade iteration Limit)

DL columnname limit

A DL record specififies a variable specific iteration limit to be emposed on the number of
iterations when cascading the variable. This can be used to overwrite the setting of
XSLP_CASCADENLIMIT for a specific variable.

Fair Isaac Corporation Confidential and Proprietary Information 50

CHAPTER 9

Xpress-SLP Solution Process

This section gives a brief overview of the sequence of operations within Xpress-SLP once the data
has been set up. The positions of the possible user callbacks are also shown.

Check if problem is an SLP problem or not. Call the appropriate XPRS library fucntion if not, and DONE.

[Call out to user callback if set by XSLPsetcbslpstart]

Augment the matrix (create the linearized structure) if not already done

If determining row data supplied, calculate cascading order and detect determining columns

DO

[Call out to user callback if set by XSLPsetcbiterstart]

If previous solution available, pre-process solution

Execute line search

[Call out to user callback if set by XSLPsetcbcascadestart]

Sequentially update values of SLP variables (cascading) and re-calculate coefficients

For each variable (in a suitable evaluation order):

Update solution value (cascading) and re-calculate coefficients

[Call out to user callback if set by XSLPsetcbcascadevar]

[Call out to user callback if set by XSLPsetcbcascadeend]

Update penalties

Update coefficients, bounds and RHS in linearized matrix

Solve linearized problem using the Xpress Optimizer

Recover SLP variable and delta solution values

Test convergence against specified tolerances and other criteria

For each variable:

Test convergence against specified tolerances

[Call out to user callback if set by XSLPsetcbitervar]

For each variable with a determining column:

Check value of determining column and fix variable when necessary, or

[Call out to user callback if set by XSLPsetcbdrcol]

Reset variable convergence status if a change is made to a variable

If not all variables have converged, check for other extended convergence criteria

If the solution has converged, then BREAK

For each SLP variable:

Update history

Reset step bounds

[Call out to user callback if set by XSLPsetcbiterend]

Change row types for DC rows as required

If SLP iteration limit is reached, then BREAK

ENDDO

[Call out to user callback if set by XSLPsetcbslpend]

For MISLP (mixed-integer SLP) problems, the above solution process is normally repeated at each

Fair Isaac Corporation Confidential and Proprietary Information 51

Xpress-SLP Solution Process Advanced

node. The standard procedure for each node is as follows:

Initialize node

[Call out to user callback if set by XSLPsetcbprenode]

Solve node using SLP procedure

If an optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcboptnode]

If an integer optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcbintsol]

When node is completed

[Call out to user callback if set by XSLPsetcbslpnode]

When a problem is destroyed, there is a call out to the user callback set by XSLPsetcbdestroy.

9.1 Analyzing the solution process

Xpress-SLP provides a comprehensive set of callbacks to interact with, and to analyze the solution
process. However, there are a set of purpose build options that are intended to assist and make
the analysis more efficient.

For infeasible problems, it often helps to identify the source of conflict by running XPRESS’
Irreducible Infeasibiliy Set (IIS) finder tool. The set found by IIS often helps to either point to a
problem in the original model formulation, or if the infeasibility is a result of conflicting step
bounds or linearization updates; please see control XSLP_ANALYZE.

Xpress-SLP can collect the various solutions it generates during the solution pool to an XPRS
solution pool object. The solution pool is accessible using the XSLP_SOLUTIONPOOL pointer
attribute. The solutions to collect are defined by XSLP_ANALYZE. It is also possible to let XSLP
write the collected solutions to disk for easier access.

It is often advantageous to trace a certain variable, constraint or a certain property through the
solution process. XSLP_TRACEMASK and XSLP_TRACEMASKOPS allows for collecting detailed
information during the solution process, without the need to stop XSLP between iterations.

For in depth debugging purposes or support requests, it is possible to create XSLP save files and
linearizations at verious iterations, controlled by XSLP_AUTOSAVE and XSLP_ANALYZE.

9.2 The initial point

The solution process is sensitive to the initial values which are selected for variables in the
problem, and particularly so for non-convex problems. It is not uncommon for a general
nonlinear problem to have a feasible region which is not connected, and in this case the starting
point may largely determine which region, connected set, or basin of attraction the final solution
belongs to.

Note that it may not always be beneficial to completely specify an initial point, as the solvers
themselves may be able to detect suitable starting values for some or all of the variables.

9.3 Derivatives

Both XSLP and KNITRO require the availability of derivative information for the constraints and
objective function in order to solve a problem. In the Xpress-NonLinear framework, several

Fair Isaac Corporation Confidential and Proprietary Information 52

Xpress-SLP Solution Process Advanced

advanced approaches to the production of both first and second order derivatives (the Jacobian
and Hessian matrices) are available, and which approach is used can be controlled by the user.

9.3.1 Finite Differences

The simplest such method is the use of finite differences, sometimes called numerical derivatives.
This is a relatively coarse approximation, in which the function is evaluated in a small
neighborhood of the point in question. The standard argument from calculus indicates that an
increasingly accurate approximation to the derivative of the function will be found as the size of
the neighborhood decreases. This argument ignores the effects of floating point arithmetic,
however, which can make it difficult to select values sufficiently small to give a good
approximation to the function, and yet sufficiently large to avoid substantial numerical error.

The high performance implementation in XSLP makes use of subexpression caching to improve
performance, but finite differences are inherently inefficient. They may however be necessary
when the function itself is not known in closed form. When analytic approaches cannot be used,
due to the use of expensive black box functions which do not provide derivatives (note that XSLP
does allow user functions to provide their own derivatives), the cost of function evaluations may
become a dominant factor in solve time. It is important to note that each second order numerical
derivative costs twice as much as a first order numerical derivative, and this can make XSLP more
attractive than KNITRO for such problems.

9.3.2 Symbolic Differentiation

Xpress-NonLinear will instead provide analytic derivatives where possible, which are both more
accurate and more efficient. There are two major approaches to such calculations, and high
quality implementations of both are available in this framework.

A symbolic differentiation engine calculates the derivative of an expression in closed form, using
its formula representation. This is a very efficient way of recalculating individual entries of the
Jacobian, and is the default approach to providing derivative information to XSLP.

9.3.3 Automatic Differentiation

An automatic differentiation engine in contrast can simultaneously compute multiple derivatives
by repeated application of the chain rule. This is a very efficient means of calculating large
numbers of Hessian entries, and is the default approach to providing derivative information to
KNITRO.

9.4 Points of inflection

A point of inflection in a given variable occurs when the first and second order partial derivatives
with respect to that variable become zero, but there exist nonzero derivatives of higher order. At
such points, the approximations the iterative nonlinear methods create do not encapsulate
enough information about the behavior of the function, and both first and second order
methods may experience difficulties. For example, consider the following problem

minimize x3

subject to −1 ≤ x ≤ 1

for which the optimal solution is -1.

When the initial value of x is varied, XSLP and KNITRO produce the solutions presented in Table
9.1 for this problem:

Fair Isaac Corporation Confidential and Proprietary Information 53

Xpress-SLP Solution Process Advanced

Figure 9.1: Effect of an inflection point on solution values.

As a second order method, KNITRO examines a local quadratic approximation to the function.
Starting at both 0 and 1, this approximation will closely resemble the x2 function, and so the
solution will be attracted to zero. For XSLP, which is a first order method, the approximation at 0
will have a zero gradient. However, XSLP can detect this situation and will perform the analysis
required to substitute an appropriate small nonzero (placeholder) value for the derivative during
the first iterations. As can be seen, this allows XSLP find an optimal solution in all three cases.

This is only one example of the behaviour of these solvers without further tuning. The long steps
which XSLP often takes can be both beneficial and harmful in different contexts. For example, if
the function to be optimized includes many local minima, it is possible to see the opposite
pattern for XSLP and KNITRO. Consider

minimize x sin(100x2)
subject to −1 ≤ x ≤ 1

which has many local minima. For this problem, the results obtained are presented in Table 9.2:

Figure 9.2: Local solutions for a function with several local optima

In this case the same long steps made by XSLP lead to it finding the an identical, but unfortunate,
local optimum no matter which initial point it begins from.

9.5 Trust regions

In a second order method like KNITRO, there is a well-defined merit function which can be used
to compare solutions, and which provides a measure of the progress being made by the
algorithm. This is a significant advantage over first order methods, in which there is generally no
such function.

Despite their speed and resilience to points of inflection, first order methods can also experience
difficulties at points in which the current approximation is not well posed. Consider

minimize x2

subject to x free

at x = 1. A naive linearization is simply

minimize 2x
subject to x free

Fair Isaac Corporation Confidential and Proprietary Information 54

Xpress-SLP Solution Process Advanced

which is unbounded. To address such situations, XSLP will introduce trust regions to model the
neighborhood in which the current approximation is believed to be applicable. When coupled
with the use of derivative placeholders described in the previous section, this can lead XSLP to
initially make large moves from its starting position.

Fair Isaac Corporation Confidential and Proprietary Information 55

CHAPTER 10

Handling Infeasibilities

By default, Xpress-SLP will include penalty error vectors in the augmented SLP structure. This
feature adds explicit positive and negative slack vectors to all constraints (or, optionally, just to
equality constraints) which include nonlinear coefficients. In many cases, this is itself enough to
retain feasibility. There is also an opportunity to add penalty error vectors to all constraints, but
this is not normally required.

During cascading (see next section), Xpress-SLP will ensure that the value of a cascaded variable is
never set outside its lower and upper bounds (if these have been specified).

10.1 Infeasibility Analysis in the Xpress Optimizer

For problems which can be solved using the Xpress Optimizer, that is LP, convex QP and QCQP and
their MIP counterparts, there is normally no difficulty with establishing feasilbity. This is because
for these convex problem classes, Xpress can produce global solutions, and any problem declared
infeasible is globally infeasible. The concept of local infeasibility is primarily of use in the case of
nonlinear problems, and in particular non-convex, nonlinear problems.

When the Xpress Optimizer declares a problem to be infeasible, the tools provided with the
Xpress Optimizer console can be used to analyse the infeasibility, and hence to subsequently alter
the model to overcome it. One important step in this respect is the ability to retrieve an
irreducible infeasible set (using the iis command). This a statement of a particular conflict in the
model between a set of constraints and bounds, which make the problem certainly infeasible. An
IIS is minimal in the sense that if any constraint or bound was to be removed from it, the
remaining problem would be feasible. The Xpress Optimizer also contains a tool to identify the
minimum weighted violations of constraints or bounds that would make the problem feasible
(called repairinfeas).

Both iis and repairinfeas can be applied to any LP, convex QP, or convex QCQP problem, as
well as to their mixed integer counterparts. Please refer to the Xpress Optimizer and Mosel
reference manuals for more information.

10.2 Managing Infeasibility with Xpress KNITRO

Xpress KNITRO has three major controls which govern feasibility.

XKTR_PARAM_FEASTOL This is the relative feasibility tolerance applied to a problem.

XKTR_PARAM_FEASTOLABS This is the corresponding absolute feasibility tolerance.

XKTR_PARAM_INFEASTOL This is the tolerance for declaring a problem infeasible.

Fair Isaac Corporation Confidential and Proprietary Information 56

Handling Infeasibilities Advanced

The feasibility emphasis control, XKTR_PARAM_BAR_FEASIBLE, can be set for models on which
KNITRO has encountered difficulties in finding a feasible solution. If it is set to get or get_stay,
particular emphasis will be placed upon obtaining feasibility, rather than balancing progress
toward feasibility and optimality as is the default.

If one of the built-in interior point methods is used, as determined by XKTR_PARAM_ARGORITHM,
the feasibility emphasis control can force the iterates to strictly satisfy inequalities. It does not,
however, require KNITRO to satisfy all equality constraints at intermediate iterates.

The control XKTR_PARAM_HONORBOUNDS can be used when some or all functions are undefined
outside of the region defined by inequality constraints. It is important to note, however, that the
initial point must satisfy all inequalities to a sufficient degree when using this option. If it does
not, KNITRO will be forced to generate infeasible iterates in any case, until a feasible point is
found, with potentially unexpected consequences.

The migration between a pure search for feasibility, and a balanced approach to feasibility and
optimality, may be further fine tuned by using the XKTR_PARAM_BAR_SWITCHRULE control.
Should a model still fail to converge to a feasible solution, the XKTR_PARAM_BAR_PENCOLS

control may be used to instruct KNITRO to introduce penalty breakers of its own. This option has
similar behaviour to the corresponding option in XSLP.

10.3 Managing Infeasibility with Xpress-SLP

There are two sources of infeasiblity when XSLP is used

1. Infeasibility introduced by the error of the approximation, most noticeable when significant
steps are made in the linearization.

2. Infeasibility introduced by the activation of penalty breakers, where it was not otherwise
possible to make a meaningful step in the linearization.

The infeasiblity induced by the former diminishes as the solution converges, provided mild
assumptions regarding the continuity of the functions describing the model are satisfied. The
focus of any analysis of infeasibility in XSLP must therefore most often be on the penalty breakers
(also called error vectors).

For some problems, Xpress-SLP may terminate with a solution which is not sufficiently feasible for
use in a desired application. The first controls to use to try to resolve such an issue are

XSLP_ECFTOL_A The absolute linearization feasibility tolerance is compared for each
constraint in the original, nonlinear problem to its violation by the current
solution.

XSLP_ECFTOL_R The relative linearization feasibility tolerance is compared for each constraint
in the original, nonlinear problem to its violation by the current solution,
relative to the maximum absolute value of the positive and negative
contributions to the constraint.

10.4 Penalty Infeasibility Breakers in XSLP

Convergence will automatically address any errors introduced by movement within the
linearization. When only small movements occur in the solution, then for differentiable functions
the drift resulting from motion on the linearization is also limited.

Fair Isaac Corporation Confidential and Proprietary Information 57

Handling Infeasibilities Advanced

However, it is not always possible to stay within the linearization and still make an improving
step. XSLP is often able to resolve such situations automatically by the introduction of penalty
infeasibility breakers. These allow the solver to violate the linearized constraints by a small
amount. Such variables are associated with large cost penalties in the linearized problems, which
prevents the solution process from straying too far from the approximated feasible region.

Note that if penalty breakers are required, the solution process may be very sensitive to the
choice of cost penalties placed on the breakers. In most cases, XSLP’s constraint analysis will
automatically identify appropriate penalties as needed for each row, but for some problems
additional tuning might be required.

Xpress-SLP will attempt to force all penalty breakers to zero in the limit by associating a
substantial cost with them in the objective function. Such costs will be increased repeatedly
should the penalty breaker remain non-zero over a period of time. The current penalty cost for
all such variables is available as XSLP_CURRENTERRORCOST. The control XSLP_ERRORCOST

determines the initial value for this cost, while the XSLP_ERRORCOSTFACTOR controls the factor
by which it increases if active error vectors remain. The maximum value of the penalty is
determined by the control XSLP_ERRORMAXCOST. If the maximum error cost is reached, it is
unlikely that XSLP will converge. It is possible in this situation to terminate the solve, by setting
bit 11 of XSLP_ALGORITHM.

Some problems may be sensitive to the initial value of XSLP_ERRORCOST. If this value is too small
relative to the original objective in the model, feasibility will not be sufficiently strongly
encouraged during the solution process. This can cause SLP to explore highly infeasible solutions
in the early stages, since the original objective will dominate any consideration of feasibility. It is
even possible in this case for unboundedness of the linearizations to occur, although SLP is
capable of automatic recovery from such a situation.

When the initial penalty cost is too high, the penalty term will dominate the objective. This in
turn will may lead to initially low quality solutions being explored, with the attendant possibility
of numerical errors accumulating. The control XSLP_OBJTOPENALTYCOST guides the process
which selects an automatic value for XSLP_ERRORCOST, but determining such a value analytically
can be difficult. For some difficult problems, there may be significant benefits to selecting the
value directly.

Often for infeasible problems, the contribution of the individual constraints to the overall
infeasibility is non-uniform. XSLP can automatically associate a weight with each row based upon
the magnitude of the terms in the constraint. It is both possible to refine these weights, or
alternatively to allow XSLP update them dynamically. The latter case is called escalation, and is
controlled by bit 8 of XSLP_ALGORITHM.

Devising appropriate weights manually can be difficult, and in most cases it is preferable to leave
the identification of these values to Xpress-SLP. However if it is necessary to do, the output of
XSLP may provide hints as to appropriate values if detailed logging is enabled. This can be turned
on with XSLP_LOG. The most important points in such output are the active error vectors at each
iteration, where the most attractive constraints to modify are those which occur regularly in the
log in association with non-zero error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 58

CHAPTER 11

Cascading

Cascading is the process of recalculating the values of SLP variables to be more consistent with
each other. The procedure involves sequencing the designated variables in order of dependence
and then, starting from the current solution values, successively recalculating values for the
variables, and modifying the stored solution values as required. Normal cascading is only possible
if a determining row can be identified for each variable to be recalculated. A determining row is
an equality constraint which uniquely determines the value of a variable in terms of other
variables whose values are already known. Any variable for which there is no determining row
will retain its original solution value. Defining a determining row for a column automatically
makes the column into an SLP variable.

In extended MPS format, the SLPDATA record type "DR" is used to provide information about
determining rows.

In the Xpress-SLP function library, functions XSLPaddvars, XSLPloadvars, and XSLPchgvar

allow the definition of a determining row for a column.

The cascading procedure is as follows:

� Produce an order of evaluation to ensure that variables are cascaded after any variables on
which they are dependent.

� After each SLP iteration, evaluate the columns in order, updating coefficients only as
required. If a determining row cannot calculate a new value for the SLP variable (for
example, because the coefficient of the variable evaluates to zero), then the current value
may be left unchanged, or (optionally) the previous value can be used instead.

� If a feedback loop is detected (that is, a determining row for a variable is dependent
indirectly on the value of the variable), the evaluation sequence is carried out in the order in
which the variables are weighted, or the order in which they are encountered if there is no
explicit weighting.

� Check the step bounds, individual bounds and cascaded values for consistency. Adjust the
cascaded result to ensure it remains within any explicit or implied bounds.

Normally, the solution value of a variable is exactly equal to its assumed value plus the solution
value of its delta. Occasionally, this calculation is not exact (it may vary by up to the LP feasibility
tolerance) and the difference may cause problems with the SLP solution path. This is most likely
to occur in a quadratic problem when the quadratic part of the objective function contains SLP
variables. Xpress-SLP can re-calculate the value of an SLP variable to be equal to its assumed value
plus its delta, rather than using the solution value itself.

XSLP_CASCADE is a bitmap which determines whether cascading takes place and whether the
recalculation of solution values is extended from the use of determining rows to recalculation of
the solution values for all SLP variables, based on the assumed value and the solution value of the
delta.

Fair Isaac Corporation Confidential and Proprietary Information 59

Cascading Advanced

In the following table, in the definitions under Category, error means the difference between the
solution value and the assumed value plus the delta value. Bit settings in XSLP_CASCADE are used
to determine which category of variable will have its value recalculated as follows:

Bit Constant name Category

0 XSLP_CASCADE_ALL SLP variables with determining rows

1 XSLP_CASCADE_COEF_VAR Variables appearing in coefficients where the er-
ror is greater than the feasibility tolerance

2 XSLP_CASCADE_ALL_COEF_VAR Variables appearing in coefficients where the er-
ror is greater than 1.0E-14

3 XSLP_CASCADE_STRUCT_VAR Variables not appearing in coefficients where the
error is greater than the feasibility tolerance

4 XSLP_CASCADE_ALL_STRUCT_VAR Variables not appearing in coefficients where the
error is greater than 1.0E-14

In the presence of determining rows that include instantiated functions, SLP can attempt to group
the corresponding variables together in the cascading order. This can be achieved by setting

Bit Constant name Effect

0 XSLP_CASCADE_SECONDARY_GROUPS Create secondary order groupping DR rows with
instantiated user functions together in the order

11.1 Determining rows and determining columns

Normally, Xpress-SLP automatically identifies if the constraint selected as determining row for a
variable defines the value of the SLP variable which it determines or not. However, in certain
situations, the value of a single another column determines if the determing row defines the
variable or not; such a column is called the determining column for the variable.

This situation is typical when the determined and determining column form a bilienar term: x * y
+ F(Z) = 0 where y is the determined variable, Z is a set of other variables not including x or y,
and F is an arbitrary function; in this case x is the determining column. These variable pairs are
detected automatically. In case the absolute value of x is smaller than XSLP_DRCOLTOL, then
variable y will not be cascaded, instead its value will be fixed and kept at its current value until
the value of x becomes larger than the treshold.

Alternatively, the handling of variables for which a determining column has been identified can
be customized by using a callback, see XSLPsetcbdrcol.

Fair Isaac Corporation Confidential and Proprietary Information 60

CHAPTER 12

Convergence criteria

12.1 Convergence criteria

In Xpress-SLP there are two levels of convergence criteria. On the higher level, convergence is
driven by the target relative feasibility / validation control XSLP_VALIDATIONTARGET_R, and the
target fist order validation tolerance XSLP_VALIDATIONTARGET_K. These high level targets drive
the traditional SLP convergence measures, of which there are three types for testing test
convergence:

� Strict convergence tests on variables

� Extended convergence tests on variables

� Convergence tests on the solution overall

12.2 Convergence overview

12.2.1 Strict Convergence

Three tolerances in XSLP are used to determine whether an individual variable has strictly
converged, that is they describe the numerical behaviour of convergence in the formal,
mathematical sense.

XSLP_CTOL The closure tolerance is compared against the movement of a variable relative
to its initial step bound.

XSLP_ATOL_A The absolute delta tolerance is compared against the absolute movement of a
variable.

XSLP_ATOL_R The relative delta tolerance is compared against the movement of a variable
relative to its initial value.

12.2.2 Extended Convergence

There are six tolerances in XSLP used to determine whether an individual variable has converged
according to the extended definition. These tests essentially measure the quality of the
linearization, including the effect of changes to the nonlinear terms that contribute to a variable
in the linearization. In order to be deemed to have converged in the extended sense, all terms in
which it appears must satisfy at least one of the following:

XSLP_MTOL_A The absolute matrix tolerance is compared against the approximation error
relative only to the absolute value of the variable.

Fair Isaac Corporation Confidential and Proprietary Information 61

Convergence criteria Advanced

XSLP_MTOL_R The relative matrix tolerance is compared against the approximation error
relative to the size of the nonlinear term before any step is taken.

XSLP_ITOL_A The absolute impact tolerance is compared against the approximation error of
the nonlinear term.

XSLP_ITOL_R The relative impact tolerance is compared against the approximation error
relative to the positive and negative contributions to each constraint.

XSLP_STOL_A The absolute slack impact tolerance is compared against the approximation
error, but only for non-binding constraints, which is to say those for which the
marginal value is small (as defined by XSLP_MVTOL).

XSLP_STOL_R The relative slack impact tolerance is compared against the approximation error
relative to the term’s contribution to its constraints, but only for non-binding
constraints, which is to say those for which the marginal value is small (as
defined by XSLP_MVTOL).

12.2.3 Stopping Criterion

The stopping criterion requires that all variables in the problem have converged in one of the
three senses. Detailed information regarding the conditions under which XSLP has terminated
can be obtained from the XSLP_STATUS solver attribute. Note that a solution is deemed to have
fully converged if all variables have converged in the strict sense. If all variables have converged
either in the strict or extended sense, and there are no active step bounds, then the solution is
called a practical solution. In contrast, the solution may be called converged if it is feasible and
the objective is no longer improving.

The following four control sets can be applied by XSLP to determine whether the objective is
stationary, depending on the convergence control parameter XSLP_CONVERGENCEOPS:

VTOL This is the baseline static objective function tolerance, which is compared against the
change in the objective over a given number of iterations, relative to the average
objective value. Satisfaction of VTOL does not imply convergence of the variables.

XSLP_VCOUNT This is the number of iterations over which to apply this measure
of static objective convergence.

XSLP_VLIMIT The static objective function test is applied only after at least
XSLP_VLIMIT + XSLP_SBSTART XSLP iterations have taken place.

XSLP_VTOL_A This is the absolute tolerance which is compared to the range of
the objective over the last XSLP_VLIMIT iterations.

XSLP_VTOL_R This is the used for a scaled version of the absolute test which
considers the average size of the absolute value of the objective
over the previous XSLP_VLIMIT iterations.

OTOL This static objective function tolerance is applied when there are no unconverged
variables in active constraints, although some variables with active step bounds might
remain. It is compared to the change in the objective over a given number of
iterations, relative to the average objective value.

XSLP_OCOUNT This is the number of iterations over which to apply this measure
of static objective convergence.

XSLP_OTOL_A This is the absolute tolerance which is compared to the range of
the objective over the last XSLP_OLIMIT iterations.

Fair Isaac Corporation Confidential and Proprietary Information 62

Convergence criteria Advanced

XSLP_OTOL_R This is used for a scaled version of the absolute test which
considers the average size of the absolute value of the objective
over the previous XSLP_OLIMIT iterations.

XTOL This static objective function tolerance is applied when a practical solution has been
found. It is compared against the change in the objective over a given number of
iterations, relative to the average objective value.

XSLP_XCOUNT This is the number of iterations over which to apply this measure
of static objective convergence.

XSLP_XLIMIT This is the maximum number of iterations which can have
occurred for this static objective function test to be applied. Once
this number is exceeded, the solution is deemed to have
converged if all the variables have converged by the strict or
extended criteria.

XSLP_XTOL_A This is the absolute tolerance which is compared to the range of
the objective function over the last XSLP_XLIMIT iterations.

XSLP_XTOL_R This is used for a scaled version of the absolute test which
considers the average size of the absolute value of the objective
over the last XSLP_XLIMIT iterations.

WTOL The extended convergence continuation tolerance is applied when a practical solution
has been found. It is compared to the change in the objective during the previous
iteration.

XSLP_WCOUNT This is number of iterations over which to calculate this measure
of static objective convergence in the relative version of the test.

XSLP_WTOL_A This is the absolute tolerance which is compared to the change in
the objective in the previous iteration.

XSLP_WTOL_R This is used for a scaled version of the test which considers the
average size of the absolute value of the objective over the last
XSLP_WCOUNT iterations.

12.2.4 Step Bounding

Step bounding in XSLP can be activated in two cases. It may be enabled adaptively in response to
variable oscillation, or it may be enabled by after XSLP_SBSTART iterations, by setting
XSLP_ALGORITHM appropriately. Two major controls define the behaviour of step bounds:

XSLP_SBSTART This defines the number of iterations which must occur before XSLP
may apply non-essential step bounding. When a linearization is
unbounded, XSLP will introduce step bounding regardless of the
value of this control.

XSLP_DEFAULTSTEPBOUND This is the initial size of the step bounds introduced. Depending
upon the value of XSLP_ALGORITHM, XSLP may use the iterations
before XSLP_SBSTART to refine this initial value on a per variable
basis.

12.3 Convergence: technical details

In the following sections we shall use the subscript 0 to refer to values used to build the linear
approximation (the assumed value) and the subscript 1 to refer to values in the solution to the

Fair Isaac Corporation Confidential and Proprietary Information 63

Convergence criteria Advanced

linear approximation (the actual value). We shall also use δ to indicate the change between the
assumed and the actual values, so that for example:
δX = X1 − X0.

The tests are described in detail later in this section. Tests are first carried out on each variable in
turn, according to the following sequence:

Strict convergence criteria:

1. Closure tolerance (CTOL).
This tests δX against the initial step bound of X.

2. Delta tolerance (ATOL)
This tests δX against X0.

If the strict convergence tests fail for a variable, it is tested against the extended convergence
criteria:

3. Matrix tolerance (MTOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization. It tests the error against the magnitude of the effect.

4. Impact tolerance (ITOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization. It tests the error against the magnitude of the contributions to the constraint.

5. Slack impact tolerance (STOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization and is applied only if the constraint has a negligible marginal value (that is, it is
regarded as "not constraining"). The test is the same as for the impact tolerance, but the
tolerance values may be different.

The three extended convergence tests are applied simultaneously to all coefficients involving the
variable, and each coefficient must pass at least one of the tests if the variable is to be regarded
as converged. If any coefficient fails the test, the variable has not converged.

Regardless of whether the variable has passed the system convergence tests or not, if a
convergence callback function has been set using XSLPsetcbitervar then it is called to allow
the user to determine the convergence status of the variable.

6. User convergence test
This test is entirely in the hands of the user and can return one of three conditions: the
variable has converged on user criteria; the variable has not converged; or the convergence
status of the variable is unchanged from that determined by the system.

Once the tests have been completed for all the variables, there are several possibilities for the
convergence status of the solution:

(a) All variables have converged on strict criteria or user criteria.

(b) All variables have converged, some on extended criteria, and there are no active step
bounds (that is, there is no delta vector which is at its bound and has a significant reduced
cost).

(c) All variables have converged, some on extended criteria, and there are active step bounds
(that is, there is at least one delta vector which is at its bound and has a significant reduced
cost).

Fair Isaac Corporation Confidential and Proprietary Information 64

Convergence criteria Advanced

(d) Some variables have not converged, but these have non-constant coefficients only in
constraints which are not active (that is, the constraints do not have a significant marginal
value);

(e) Some variables have not converged, and at least one has a non-constant coefficient in an
active constraint (that is, the constraint has a significant marginal value);

If (a) is true, then the solution has converged on strict convergence criteria.

If (b) is true, then the solution has converged on extended convergence criteria.

If (c) is true, then the solution is a practical solution. That is, the solution is an optimal solution to
the linearization and, within the defined tolerances, it is a solution to the original nonlinear
problem. It is possible to accept this as the solution to the nonlinear problem, or to continue
optimizing to see if a better solution can be obtained.

If (d) or (e) is true, then the solution has not converged. Nevertheless, there are tests which can
be applied to establish whether the solution can be regarded as converged, or at least whether
there is benefit in continuing with more iterations.

The first convergence test on the solution simply tests the variation in the value of the objective
function over a number of SLP iterations:

7. Objective function convergence test 1 (VTOL)
This test measures the range of the objective function (the difference between the
maximum and minimum values) over a number of SLP iterations, and compares this against
the magnitude of the average objective function value. If the range is small, then the
solution is deemed to have converged.

Notice that this test says nothing about the convergence of the variables. Indeed, it is almost
certain that the solution is not in any sense a practical solution to the original nonlinear problem.
However, experience with a particular type of problem may show that the objective function
does settle into a narrow range quickly, and is a good indicator of the ultimate value obtained.
This test can therefore be used in circumstances where only an estimate of the solution value is
required, not how it is made up. One example of this is where a set of schedules is being
evaluated. If a quick estimate of the value of each schedule can be obtained, then only the most
profitable or economical ones need be examined further.

If the convergence status of the variables is as in (d) above, then it may be that the solution is
practical and can be regarded as converged:

8. Objective function convergence test 2 (XTOL)
If there are no unconverged values in active constraints, then the inaccuracies in the
linearization (at least for small errors) are not important. If a constraint is not active, then
deleting the constraint does not change the feasibility or optimality of the solution. The
convergence test measures the range of the objective function (the difference between the
maximum and minimum values) over a number of SLP iterations, and compares this against
the magnitude of the average objective function value. If the range is small, then the
solution is deemed to have converged.

The difference between this test and the previous one is the requirement for the convergence
status of the variables to be (d).

Unless test 7 (VTOL) is being applied, if the convergence status of the variables is (e) then the
solution has not converged and another SLP iteration will be carried out.

If the convergence status is (c), then the solution is practical. Because there are active step bounds
in the solution, a "better" solution would be obtained to the linearization if the step bounds

Fair Isaac Corporation Confidential and Proprietary Information 65

Convergence criteria Advanced

were relaxed. However, the linearization becomes less accurate the larger the step bounds
become, so it might not be the case that a better solution would also be achieved for the
nonlinear problem. There are two convergence tests which can be applied to decide whether it is
worth continuing with more SLP iterations in the hope of improving the solution:

9. Objective function convergence test 3 (OTOL)
If all variables have converged (even if some are converged on extended criteria only, and
some of those have active step bounds), the solution is a practical one. If the objective
function has not changed significantly over the last few iterations, then it is reasonable to
suppose that the solution will not be significantly improved by continuing with more SLP
iterations. The convergence test measures the range of the objective function (the
difference between the maximum and minimum values) over a number of SLP iterations,
and compares this against the magnitude of the average objective function value. If the
range is small, then the solution is deemed to have converged.

10. Extended convergence continuation test (WTOL)
Once a solution satisfying (c) has been found, we have a practical solution against which to
compare solution values from later SLP iterations. As long as there has been a significant
improvement in the objective function, then it is worth continuing. If the objective function
over the last few iterations has failed to improve over the practical solution, then the
practical solution is restored and the solution is deemed to have converged.

The difference between tests 9 and 10 is that 9 (OTOL) tests for the objective function being
stable, whereas 10 (WTOL) tests whether it is actually improving. In either case, if the solution is
deemed to have converged, then it has converged to a practical solution.

12.3.1 Closure tolerance (CTOL)

If an initial step bound is provided for a variable, then the closure test measures the significance
of the magnitude of the delta compared to the magnitude of the initial step bound. More
precisely:

Closure test:
ABS(δX) ≤ B ∗ XSLP_CTOL

where B is the initial step bound for X. If no initial step bound is given for a particular variable,
the closure test is not applied to that variable, even if automatic step bounds are applied to it
during the solution process.

If a variable passes the closure test, then it is deemed to have converged.

12.3.2 Delta tolerance (ATOL)

The simplest tests for convergence measure whether the actual value of a variable in the solution
is significantly different from the assumed value used to build the linear approximation.

The absolute test measures the significance of the magnitude of the delta; the relative test
measures the significance of the magnitude of the delta compared to the magnitude of the
assumed value. More precisely:

Absolute delta test:
ABS(δX) ≤ XSLP_ATOL_A

Relative delta test:
ABS(δX) ≤ X0 ∗ XSLP_ATOL_R

If a variable passes the absolute or relative delta tests, then it is deemed to have converged.

Fair Isaac Corporation Confidential and Proprietary Information 66

Convergence criteria Advanced

12.3.3 Matrix tolerance (MTOL)

The matrix tests for convergence measure the linearization error in the effect of a coefficient.
The effect of a coefficient is its value multiplied by the activity of the column in which it appears.

E = V ∗ C

where V is the activity of the matrix column in which the coefficient appears, and C is the value
of the coefficient. The linearization approximates the effect of the coefficient as

E = V ∗ C0 + δX ∗ C′0

where V is as before, C0 is the value of the coefficient C calculated using the assumed values for
the variables and C′0 is the value of ∂C

∂X calculated using the assumed values for the variables.

The error in the effect of the coefficient is given by

δE = V1 ∗ C1 − (V1 ∗ C0 + δX ∗ C′0)

Absolute matrix test:
ABS(δE) ≤ XSLP_MTOL_A

Relative matrix test:
ABS(δE) ≤ V0 ∗ X0 ∗ XSLP_MTOL_R

If all the coefficients which involve a given variable pass the absolute or relative matrix tests, then
the variable is deemed to have converged.

12.3.4 Impact tolerance (ITOL)

The impact tests for convergence also measure the linearization error in the effect of a
coefficient. The effect of a coefficient was described in the previous section. Whereas the matrix
test compares the error against the magnitude of the coefficient itself, the impact test compares
the error against a measure of the magnitude of the constraint in which it appears. All the
elements of the constraint are examined: for each, the contribution to the constraint is evaluated
as the element multiplied by the activity of the vector in which it appears; it is then included in a
total positive contribution or total negative contribution depending on the sign of the
contribution. If the predicted effect of the coefficient is positive, it is tested against the total
positive contribution; if the effect of the coefficient is negative, it is tested against the total
negative contribution.

As in the matrix tests, the predicted effect of the coefficient is

V ∗ C0 + δX ∗ C′0

and the error is
δE = V1 ∗ C1 − (V1 ∗ C0 + δX ∗ C′0)

Absolute impact test:
ABS(δE) ≤ XSLP_ITOL_A

Relative impact test:
ABS(δE) ≤ T0 ∗ XSLP_ITOL_R

where
T0 = ABS(

∑
v∈V

v0 ∗ c0)

Fair Isaac Corporation Confidential and Proprietary Information 67

Convergence criteria Advanced

c is the value of the constraint coefficient in the vector v; V is the set of vectors such that
v0 ∗ c0 > 0 if E is positive, or the set of vectors such that v0 ∗ c0 < 0 if E is negative.

If a coefficient passes the matrix test, then it is deemed to have passed the impact test as well. If
all the coefficients which involve a given variable pass the absolute or relative impact tests, then
the variable is deemed to have converged.

12.3.5 Slack impact tolerance (STOL)

This test is identical in form to the impact test described in the previous section, but is applied
only to constraints whose marginal value is less than XSLP_MVTOL. This allows a weaker test to be
applied where the constraint is not, or is almost not, binding.

Absolute slack impact test:
ABS(δE) ≤ XSLP_STOL_A

Relative slack impact test:
ABS(δE) ≤ T0 ∗ XSLP_STOL_R

where the items in the expressions are as described in the previous section, and the tests are
applied only when

ABS(πi) < XSLP_MVTOL

where πi is the marginal value of the constraint.

If all the coefficients which involve a given variable pass the absolute or relative matrix, impact or
slack impact tests, then the variable is deemed to have converged.

12.3.6 Fixed variables due to determining columns smaller than treshold (FX)

Variables having a determining column, that are temporarily fixed due to the absolute value of
the determining column being smaller than the treshold XSLP_DRCOLTOL are regarded as
converged.

12.3.7 User-defined convergence

Regardless of what the Xpress-SLP convergence tests have said about the status of an individual
variable, it is possible for the user to set the convergence status for a variable by using a function
defined through the XSLPsetcbitervar callback registration procedure. The callback function
returns an integer result S which is interpreted as follows:

S < 0 mark variable as unconverged

S = 0 leave convergence status of variable unchanged

S ≥ 11 mark variable as converged with status S

Values of S in the range 1 to 10 are interpreted as meaning convergence on the standard
system-defined criteria.

If a variable is marked by the user as converged, it is treated as if it has converged on strict
criteria.

Fair Isaac Corporation Confidential and Proprietary Information 68

Convergence criteria Advanced

12.3.8 Static objective function (1) tolerance (VTOL)

This test does not measure convergence of individual variables, and in fact does not in any way
imply that the solution has converged. However, it is sometimes useful to be able to terminate an
optimization once the objective function appears to have stabilized. One example is where a set
of possible schedules are being evaluated and initially only a good estimate of the likely objective
function value is required, to eliminate the worst candidates.

The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (3) test:

ABS(δObj) ≤ XSLP_VTOL_A

Relative static objective function (3) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_R

The static objective function (3) test is applied only after at least XSLP_VLIMIT +

XSLP_SBSTART SLP iterations have taken place. Where step bounding is being applied, this
ensures that the test is not applied until after step bounding has been introduced.

If the objective function passes the relative or absolute static objective function (3) test then the
solution will be deemed to have converged.

12.3.9 Static objective function (2) tolerance (OTOL)

This test does not measure convergence of individual variables. Instead, it measures the
significance of the changes in the objective function over recent SLP iterations. It is applied when
all the variables interacting with active constraints (those that have a marginal value of at least
XSLP_MVTOL) have converged. The rationale is that if the remaining unconverged variables are
not involved in active constraints and if the objective function is not changing significantly
between iterations, then the solution is more-or-less practical.

The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_OCOUNT most recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (2) test:

ABS(δObj) ≤ XSLP_OTOL_A

Relative static objective function (2) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_R

The static objective function (2) test is applied only after at least XSLP_OLIMIT SLP iterations
have taken place.

If the objective function passes the relative or absolute static objective function (2) test then the
solution is deemed to have converged.

Fair Isaac Corporation Confidential and Proprietary Information 69

Convergence criteria Advanced

12.3.10 Static objective function (3) tolerance (XTOL)

It may happen that all the variables have converged, but some have converged on extended
criteria (MTOL, ITOL or STOL) and at least one of these is at its step bound. It is therefore possible
that an improved result could be obtained by taking another SLP iteration. However, if the
objective function has already been stable for several SLP iterations, then there is less likelihood
of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables have converged, but some
have converged on extended criteria (MTOL, ITOL or STOL) and at least one of these is at its step
bound. Because all the variables have converged, the solution is already converged but the fact
that some variables are at their step bound limit suggests that the objective function could be
improved by going further.

The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (1) test:

ABS(δObj) ≤ XSLP_XTOL_A

Relative static objective function (1) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have taken
place. After that, if all the variables have converged on strict or extended criteria, the solution is
deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then the
solution is deemed to have converged.

12.3.11 Extended convergence continuation tolerance (WTOL)

This test is applied after a converged solution has been found where at least one variable has
converged on extended criteria and is at its step bound limit. As described under XTOL above, it is
possible that by continuing with additional SLP iterations, the objective function might improve.
The extended convergence continuation test measures whether any improvement is being
achieved. If not, then the last converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:

δObj = Obj − ConvergedObj

(for a minimization problem, the sign is reversed).

Absolute extended convergence continuation test:

δObj > XSLP_WTOL_A

Relative extended convergence continuation test:

δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 70

Convergence criteria Advanced

A solution is deemed to have a significantly better objective function value than the converged
solution if δObj passes the relative and absolute extended convergence continuation tests.

When a solution is found which converges on extended criteria and with active step bounds, the
solution is saved and SLP optimization continues until one of the following:

� a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution

� a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution

� none of the XSLP_WCOUNT most recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops

Fair Isaac Corporation Confidential and Proprietary Information 71

CHAPTER 13

Xpress-SLP Structures

13.1 SLP Matrix Structures

Xpress-SLP augments the original matrix to include additional rows and columns to model some
or all of the variables involved in nonlinear relationships, together with first-order derivatives.

The amount and type of augmentation is determined by the bit map control variable
XSLP_AUGMENTATION:

Bit 0 Minimal augmentation. All SLP variables appearing in coefficients or matrix entries
are provided with a corresponding update row and delta vector.

Bit 1 Even-handed augmentation. All nonlinear expressions are converted into terms.
All SLP variables are provided with a corresponding update row and delta vector.

Bit 2 Create penalty error vectors (+ and -) for each equality row of the original problem
containing a nonlinear coefficient or term. This can also be implied by the setting
of bit 3.

Bit 3 Create penalty error vectors (+ and/or - as required) for each row of the original
problem containing a nonlinear coefficient or term. Setting bit 3 to 1 implies the
setting of bit 2 to 1 even if it is not explicitly carried out.

Bit 4 Create additional penalty delta vectors to allow the solution to exceed the step
bounds at a suitable penalty.

Bit 8 Implement step bounds as constraint rows.

Bit 9 Create error vectors (+ and/or - as required) for each constraining row of the
original problem.

If Bits 0-1 are not set, then Xpress-SLP will use standard augmentation: all SLP variables
(appearing in coefficients or matrix entries, or variables with non constant coefficients) are
provided with a corresponding update row and delta vector.

To avoid too many levels of super- and sub- scripting, we shall use X, Y and Z as variables, F() as a
function, and R as the row name. In the matrix structure, column and row names are shown in
italics.

X0 is the current estimate ("assumed value") of X. F′x(. . .) is the first derivative of F with respect to
X.

Fair Isaac Corporation Confidential and Proprietary Information 72

Xpress-SLP Structures Advanced

13.1.1 Augmentation of a nonlinear coefficient

Original matrix structure

X
R F(Y, Z)

Matrix structure: minimal augmentation (XSLP_AUGMENTATION=1)

X Y Z dY dZ
R F(Y0, Z0) X0 ∗ F′y(Y0, Z0) X0 ∗ F′z(Y0, Z0)

uY 1 −1 = Y0

uZ 1 −1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of
the independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are
created if they do not already exist.

The new vectors are:

� The SLP variable (e.g. Y)

� The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in
the update row are the +1 and -1 for the SLP variable and delta variable respectively. The right
hand side is the assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order
partial derivative of the implied term X ∗ F(Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

Matrix structure: standard augmentation (XSLP_AUGMENTATION=0)

X Y Z dX dY dZ
R F(Y0, Z0) X0 ∗ F′y(Y0, Z0) X0 ∗ F′z(Y0, Z0)

uX 1 −1 = X0

uY 1 −1 = Y0

uZ 1 −1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of
the independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are
created if they do not already exist.

The new vectors are:

� The SLP variable (e.g. Y)

� The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in
the update row are the +1 and -1 for the SLP variable and delta variable respectively. The right
hand side is the assumed value for the SLP variable.

Fair Isaac Corporation Confidential and Proprietary Information 73

Xpress-SLP Structures Advanced

The entry in the original nonlinear constraint row for each independent variable is the first-order
partial derivative of the implied term X ∗ F(Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

One new vector and one new equality constraint are created for the variable containing the
nonlinear coefficient.

The new vector is:

� The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in
the update row are the +1 and -1 for the original variable and delta variable respectively. The
right hand side is the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Matrix structure: even-handed augmentation (XSLP_AUGMENTATION=2)

= X Y Z dX dY dZ
R X0 ∗ F(Y0, Z0) F(Y0, Z0) X0 ∗ F′y(Y0, Z0) X0 ∗ F′z(Y0, Z0)

uX 1 −1 = X0

uY 1 −1 = Y0

uZ 1 −1 = Z0

The coefficient is treated as if it was the term X ∗ F(Y, Z) and is expanded in the same way as a
nonlinear term.

13.1.2 Augmentation of a nonlinear term

Original matrix structure

=
R F(X, Y, Z)

The column name = is a reserved name for a column which has a fixed activity of 1.0 and can
conveniently be used to hold nonlinear terms, particularly those which cannot be expressed as
coefficients of variables.

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(X0, Y0, Z0) F′x(X0, Y0, Z0) F′y(X0, Y0, Z0) F′z(X0, Y0, Z0)

uX 1 −1 = X0

uY 1 −1 = Y0

uZ 1 −1 = Z0

The original nonlinear coefficient (=,R) is replaced by its evaluation using the assumed values of
the independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are
created if they do not already exist.

The new vectors are:

� The SLP variable (e.g. Y)

� The SLP delta variable (e.g. dY)

Fair Isaac Corporation Confidential and Proprietary Information 74

Xpress-SLP Structures Advanced

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in
the update row are the +1 and -1 for the SLP variable and delta variable respectively. The right
hand side is the assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order
partial derivative of the term F(X, Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

One new vector and one new equality constraint are created for the variable containing the
nonlinear coefficient.

The new vector is:

� The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in
the update row are the +1 and -1 for the original variable and delta variable respectively. The
right hand side is the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Note that if F(X,Y,Z) = X*F(Y,Z) then this translation is exactly equivalent to that for the nonlinear
coefficient described earlier.

13.1.3 Augmentation of a user-defined SLP variable

Typically, this will arise when a variable represents the result of a nonlinear function, and is
required to converge, or to be constrained by step-bounding to force convergence. In essence, it
would arise from a relationship of the form
X = F(Y, Z)

Original matrix structure

= X
R F(Y, Z) −1

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(Y0, Z0) −1 F′y(Y0, Z0) F′z(Y0, Z0)

uX 1 −1 = X0

uY 1 −1 = Y0

uZ 1 −1 = Z0

The Y,Z structures are identical to those which would result from a nonlinear term or coefficient.
The X, dX and uX structures effectively define dX as the deviation of X from X0 which can be
controlled with step bounds.

The augmented and even-handed structures include more delta vectors, and so allow for more
measurement and control of convergence.

Fair Isaac Corporation Confidential and Proprietary Information 75

Xpress-SLP Structures Advanced

Type of structure Minimal Standard Even-handed
Type of variable
Variables in nonlinear coefficients Y Y Y
Variables with nonlinear coefficients N Y Y
User-defined SLP variable Y Y Y
Nonlinear term Y Y Y

Y SLP variable has a delta vector which can be measured and/or controlled for
convergence.

N SLP variable does not have a delta and cannot be measured and/or controlled for
convergence.

There is no mathematical difference between the augmented and even-handed structures.

The even-handed structure is more elegant because it treats all variables in an identical way.
However, the original coefficients are lost, because their effect is transferred to the "=" column as
a term and so it is not possible to look up the coefficient value in the matrix after the SLP solution
process has finished (whether because it has converged or because it has terminated for some
other reason). The values of the SLP variables are still accessible in the usual way.

Some of the extended convergence criteria will be less effective because the effects of the
individual coefficients may be amalgamated into one term (so, for example, the total positive and
negative contributions to a constraint are no longer available).

13.1.4 SLP penalty error vectors

Bits 2, 3 and 9 of control variable XSLP_AUGMENTATION determine whether SLP penalty error
vectors are added to constraints. Bit 9 applies penalty error vectors to all constraints; bits 2 and 3
apply them only to constraints containing nonlinear terms. When bit 2 or bit 3 is set, two penalty
error vectors are added to each such equality constraint; when bit 3 is set, one penalty error
vector is also added to each such inequality constraint. The general form is as follows:

Original matrix structure

=
R F(Y, Z)

Matrix structure with error vectors

X R+ R-
R F(Y, Z) +1 −1
P_ERROR +Weight +Weight

For equality rows, two penalty error vectors are added. These have penalty weights in the
penalty error row PERROR, whose total is transferred to the objective with a cost of
XSLP_CURRENTERRORCOST. For inequality rows, only one penalty error vector is added — the one
corresponding to the slack is omitted. If any error vectors are used in a solution, the transfer cost
from the cost penalty error row will be increased by a factor of XSLP_ERRORCOSTFACTOR up to a
maximum of XSLP_ERRORMAXCOST.

Error vectors are ignored when calculating cascaded values.

The presence of error vectors at a non-zero level in an SLP solution normally indicates that the
solution is not self-consistent and is therefore not a solution to the nonlinear problem.

Control variable XSLP_ERRORTOL_A is a zero tolerance on error vectors. Any error vector with a
value less than XSLP_ERRORTOL_A will be regarded as having a value of zero.

Fair Isaac Corporation Confidential and Proprietary Information 76

Xpress-SLP Structures Advanced

Bit 9 controls whether error vectors are added to all constraints. If bit 9 is set, then error vectors
are added in the same way as for the setting of bit 3, but to all constraints regardless of whether
or not they have nonlinear coefficients.

13.2 Xpress-SLP Matrix Name Generation

Xpress-SLP adds rows and columns to the nonlinear problem in order to create a linear
approximation. The new rows and columns are given names derived from the row or column to
which they are related as follows:

Row or column type Control parameter containing
format

Default format

Update row XSLP_UPDATEFORMAT pU_r
Delta vector XSLP_DELTAFORMAT pD_c
Penalty delta (below step
bound)

XSLP_MINUSDELTAFORMAT pD-c

Penalty delta (above step
bound)

XSLP_PLUSDELTAFORMAT pD+c

Penalty error (below RHS) XSLP_MINUSERRORFORMAT pE-r
Penalty error (above RHS) XSLP_PLUSERRORFORMAT pE+r
Row for total of all penalty
vectors (error or delta)

XSLP_PENALTYROWFORMAT pPR_x

Column for standard penalty
cost (error or delta)

XSLP_PENALTYCOLFORMAT pPC_x

LO step bound formulated as
a row

XSLP_SBLOROWFORMAT pSB-c

UP step bound formulated as
a row

XSLP_SBUPROWFORMAT pSB+c

In the default formats:

p a unique prefix (one or more characters not used as the beginning of any name in
the problem).

r the original row name.

c the original column name.

x The penalty row and column vectors are suffixed with "ERR" or "DELT" (for error
and delta respectively).

Other characters appear "as is".

The format of one of these generated names can be changed by setting the corresponding
control parameter to a formatting string using standard "C"-style conventions. In these cases, the
unique prefix is not available and the only obvious choices, apart from constant names, use "%s"
to include the original name — for example:

U_%s would create names like U_abcdefghi

U_%-8s would create names like U_abcdefgh (always truncated to 8 characters).

You can use a part of the name by using the XSLP_*OFFSET control parameters (such as
XSLP_UPDATEOFFSET) which will offset the start of the original name by the number of
characters indicated (so, setting XSLP_UPDATEOFFSET to 1 would produce the name
U_bcdefghi).

Fair Isaac Corporation Confidential and Proprietary Information 77

Xpress-SLP Structures Advanced

13.3 Xpress-SLP Statistics

When a matrix is read in using XSLPreadprob, statistics on the model are produced. They should
be interpreted as described in the numbered footnotes:

Reading Problem xxx (1)

Problem Statistics

1920 (0 spare) rows (2)

899 (0 spare) structural columns (3)

6683 (3000 spare) non-zero elements (4)

Global Statistics

0 entities 0 sets 0 set members (5)

Xpress-SLP Statistics:

3632 coefficients (6)

14 extended variable arrays (7)

1 user functions (8)

1011 SLP variables (9)

Notes:

1. Standard output from XPRSreadprob reading the linear part of the problem

2. Number of rows declared in the ROWS section

3. Number of columns with at least one constant coefficient

4. Number of constant elements

5. Integer and SOS statistics if appropriate

6. Number of non-constant coefficients

7. Number of XVs defined

8. Number of user functions defined

9. Number of variables identified as SLP variables (interacting with a non-linear coefficient)

When the original problem is SLP-presolved prior to augmentation, the following statistics are
produced:

Xpress-SLP Presolve:

3 presolve passes (10)

247 SLP variables newly identified as fixed (11)

425 determining rows fixed (12)

32 coefficients identified as fixed (13)

58 columns fixed to zero (56 SLP variables) (14)

367 columns fixed to nonzero (360 SLP variables) (15)

139 column deltas deleted (16)

34 column bounds tightened (6 SLP variables) (17)

Notes:

10. Presolve is an iterative process. Each iteration refines the problem until no further progress
is made. The number of iterations (presolve passes) can be limited by using
XSLP_PRESOLVEPASSES

11. SLP variables which are deduced to be fixed by virtue of constraints in the model (over and
above any which are fixed by bounds in the original problem)

12. Number of determining rows which have fixed variables and constant coefficients

Fair Isaac Corporation Confidential and Proprietary Information 78

Xpress-SLP Structures Advanced

13. Number of coefficients which are fixed because they are functions of constants and fixed
variables

14. Total number of columns fixed to zero (number of fixed SLP variables shown in brackets)

15. Total number of columns fixed to nonzero values (number of fixed SLP variables shown in
brackets)

16. Total number of deltas deleted because the SLP variable is fixed

17. Total number of bounds tightened by virtue of constraints in the model.

If any of these items is zero, it will be omitted. Unless specifically requested by setting additional
bits of control XSLP_PRESOLVE, newly fixed variables and tightened bounds are not actually
applied to the model. However, they are used in the initial augmentation and during cascading
to ensure that the starting points for each iteration are within the tighter bounds.

When the original problem is augmented prior to optimization, the following statistics are
produced:

Xpress-SLP Augmentation Statistics:

Columns:

754 implicit SLP variables (18)

1010 delta vectors (19)

2138 penalty error vectors (1177 positive, 961 negative) (20)

Rows:

1370 nonlinear constraints (21)

1010 update rows (22)

1 penalty error rows (23)

Coefficients:

11862 non-constant coefficients (24)

Notes:

18. SLP variables appearing only in coefficients and having no constant elements

19. Number of delta vectors created

20. Numbers of penalty error vectors

21. Number of constraints containing nonlinear terms

22. Number of update rows (equals number of delta vectors)

23. Number of rows totaling penalty vectors (error or delta)

24. Number of non-constant coefficients in the linear augmented matrix

� The total number of rows in the augmented matrix is (2) + (22) + (23)

� The total number of columns in the augmented matrix is (3) + (18) + (19) + (20) + (23)

� The total number of elements in the original matrix is (4) + (6)

� The total number of elements in the augmented matrix is (4) + (24) + (19) + 2*(20) + 2*(23)

If the matrix is read in using the XPRSloadxxx and XSLPloadxxx functions then these statistics
may not be produced. However, most of the values are accessible through Xpress-SLP integer
attributes using the XSLPgetintattrib function.

Fair Isaac Corporation Confidential and Proprietary Information 79

Xpress-SLP Structures Advanced

13.4 SLP Variable History

Xpress-SLP maintains a history value for each SLP variable. This value indicates the direction in
which the variable last moved and the number of consecutive times it moved in the same
direction. All variables start with a history value of zero.

Current History Change in activity
of variable

New History

0 >0 1
0 <0 -1
>0 >0 No change unless delta vector is at its bound. If

it is, then new value is Current History + 1
>0 <0 -1
<0 <0 No change unless delta vector is at its bound. If

it is, then new value is Current History - 1
<0 >0 1
anything 0 No change

Tests of variable movement are based on comparison with absolute and relative (and, if set,
closure) tolerances. Any movement within tolerance is regarded as zero.

If the new absolute value of History exceeds the setting of XSLP_SAMECOUNT, then the step
bound is reset to a larger value (determined by XSLP_EXPAND) and History is reset as if it had
been zero.

If History and the change in activity are of opposite signs, then the step bound is reset to a
smaller value (determined by XSLP_SHRINK) and History is reset as if it had been zero.

With the default settings, History will normally be in the range -1 to -3 or +1 to +3.

Fair Isaac Corporation Confidential and Proprietary Information 80

CHAPTER 14

Xpress-SLP Formulae

Xpress-SLP can handle formulae described in three different ways:

Character strings The formula is written exactly as it would appear in, for example, the
Extended MPS format used for text file input.

Internal unparsed format The tokens within the formula are replaced by a
{tokentype, tokenvalue} pair. The list of types and values is in the table below.

Internal parsed format The tokens are converted as in the unparsed format, but the order
is changed so that the resulting array forms a reverse-Polish execution stack for
direct evaluation by the system.

14.1 Parsed and unparsed formulae

All formulae input into Xpress-SLP are parsed into a reverse-Polish execution stack. Tokens are
identified by their type and a value. The table below shows the values used in interface functions.

All formulae are provided in the interface functions as two parallel arrays:
an integer array of token types;
a double array of token values.

The last token type in the array should be an end-of-formula token (XSLP_EOF, which evaluates
to zero).

If the value required is an integer, it should still be provided in the array of token values as a
double precision value.

Even if a token type requires no token value, it is best practice to initialize such values as zeros.

Fair Isaac Corporation Confidential and Proprietary Information 81

Xpress-SLP Formulae Advanced

Type Description Value
XSLP_COL column index of matrix column.
XSLP_CON constant (double) value.
XSLP_CONSTRAINT constraint index of constraint. Note that constraints count

from 1, so that the index of matrix row n is n +

1.
XSLP_CV character variable index of character variable.
XSLP_DEL delimiter XSLP_COMMA (1) = comma (",")

XSLP_COLON (2) = colon (":")
XSLP_EOF end of formula not required: use zero
XSLP_FUN user function index of function
XSLP_IFUN internal function index of function
XSLP_LB left bracket not required: use zero
XSLP_OP operator XSLP_UMINUS (1) = unary minus ("-")

XSLP_EXPONENT (2) = exponent ("**" or "̂")
XSLP_MULTIPLY (3) = multiplication ("*")
XSLP_DIVIDE (4) = division ("/")
XSLP_PLUS (5) = addition ("+")
XSLP_MINUS (6) = subtraction ("-")

XSLP_RB right bracket not required: use zero
XSLP_ROW row index of matrix row.
XSLP_STRING character string internal index of character string
XSLP_UNKNOWN unidentified token internal index of character string
XSLP_VAR variable index of variable. Note that variables count from

1, so that the index of matrix column n is n + 1.
XSLP_VARREF reference to vari-

able
index of variable. Note that variables count from
1, so that the index of matrix column n is n + 1.

XSLP_XV extended variable
array

index of XV

XSLP_UFARGTYPE requirements and
types of argument
for a user function

bitmap of types (see below).

XSLP_UFEXETYPE linkage of a user
function

bitmap of linkage information (see below).

XSLP_XVVARTYPE type of variable in
XV

XSLP_VAR or XSLP_XV

XSLP_XVINTINDEX index of XV item
name

index of name in Xpress-SLP string table

Argument types for user function definition are stored as a bit map. Each type is stored in 3 bits:
bits 0-2 for argument 1, bits 3-5 for argument 2 and so on. The possible values for each argument
are as follows:

0 omitted
1 NULL
2 INTEGER
3 DOUBLE
4 VARIANT
6 CHAR

The linkage type and other function information are stored as a bit map as follows:

Fair Isaac Corporation Confidential and Proprietary Information 82

Xpress-SLP Formulae Advanced

Bits 0-2 type of linkage:
1 = User library or DLL
2 = Excel spreadsheet
3 = Excel macro
5 = MOSEL
7 = COM

Bits 3-4 re-evaluation flags:
0 = default
1 (Bit 3) = re-evaluation at each SLP iteration
2 (Bit 4) = re-evaluation when independent variables are outside tolerance

Bits 6-7 derivative flags:
0 = default
1 (Bit 6) = tangential derivatives
2 (Bit 7) = forward derivatives

Bit 8 calling mechanism:
0 = standard
1 = CDECL (Windows only)

Bit 24 set if the function is multi-valued
Bit 28 set if the function is not differentiable

Token types XSLP_ROW and XSLP_COL are used only when passing formulae into Xpress-SLP. Any
formulae recovered from Xpress-SLP will use the XSLP_CONSTRAINT and XSLP_VAR token types
which always count from 1.

When a formula is passed to Xpress-SLP in "internal unparsed format" — that is, with the formula
already converted into tokens — the full range of token types is permitted.

When a formula is passed to Xpress-SLP in "parsed format" — that is, in reverse Polish — the
following rules apply:
XSLP_DEL comma is optional.
XSLP_FUN implies a following left-bracket, which is not included explicitly.
XSLP_IFUN implies a following left-bracket, which is not included explicitly.
XSLP_LB never used.
XSLP_RB only used to terminate the list of arguments to a function.
Brackets are not used in the reverse Polish representation of the formula: the order of evaluation
is determined by the order of the items on the stack. Functions which need the brackets — for
example XSLPgetccoef — fill in brackets as required to achieve the correct evaluation order.
The result may not match the formula as originally provided.

Token type XSLP_UNKNOWN is returned by the parsing routines when a string cannot be identified
as any other type of token. Token type XSLP_STRING is returned by the parsing routine where
the token has been specifically identified as being a character string: the only case where this
occurs at present is in the names of return arguments from user-defined multi-valued functions.
The "value" field for both these token types is an index into the Xpress-SLP string table and can
be accessed using the XSLPgetstring function.

14.2 Example of an arithmetic formula

x2 + 4y(z− 3)

Written as an unparsed formula, each token is directly transcribed as follows:

Fair Isaac Corporation Confidential and Proprietary Information 83

Xpress-SLP Formulae Advanced

Type Value
XSLP_VAR index of x

XSLP_OP XSLP_EXPONENT

XSLP_CON 2
XSLP_OP XSLP_PLUS

XSLP_CON 4
XSLP_OP XSLP_MULTIPLY

XSLP_VAR index of y

XSLP_OP XSLP_MULTIPLY

XSLP_LB 0
XSLP_VAR index of z

XSLP_OP XSLP_MINUS

XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for
example:

x 2 ˆ 4 y ∗ z 3 − ∗ +

and this is then transcribed as follows:

Type Value
XSLP_VAR index of x

XSLP_CON 2
XSLP_OP XSLP_EXPONENT

XSLP_CON 4
XSLP_VAR index of y

XSLP_OP XSLP_MULTIPLY

XSLP_VAR index of z

XSLP_CON 3
XSLP_OP XSLP_MINUS

XSLP_OP XSLP_MULTIPLY

XSLP_OP XSLP_PLUS

XSLP_EOF 0

Notice that the brackets used to establish the order of evaluation in the unparsed formula are
not required in the parsed form.

14.3 Example of a formula involving a simple function

y ∗MyFunc(z, 3)

Written as an unparsed formula, each token is directly transcribed as follows:

Type Value
XSLP_VAR index of y

XSLP_OP XSLP_MULTIPLY

XSLP_FUN index of MyFunc

XSLP_LB 0
XSLP_VAR index of z

XSLP_DEL XSLP_COMMA

XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for

Fair Isaac Corporation Confidential and Proprietary Information 84

Xpress-SLP Formulae Advanced

example:

y) 3 , z MyFunc(∗

and this is then transcribed as follows:

Type Value
XSLP_VAR index of y

XSLP_RB 0
XSLP_CON 3
XSLP_DEL XSLP_COMMA

XSLP_VAR index of z

XSLP_FUN index of MyFunc

XSLP_OP XSLP_MULTIPLY

XSLP_EOF 0

Notice that the function arguments are in reverse order, and that a right bracket is used as a
delimiter to indicate the end of the argument list. The left bracket indicating the start of the
argument list is implied by the XSLP_FUN token.

14.4 Example of a formula involving a complicated function

This example uses a function which takes two arguments and returns an array of results, which
are identified by name. In the formula, the return value named VAL1 is being retrieved.

y ∗MyFunc(z, 3 : VAL1)

Written as an unparsed formula, each token is directly transcribed as follows:

Type Value
XSLP_VAR index of y

XSLP_OP XSLP_MULTIPLY

XSLP_FUN index of MyFunc

XSLP_LB 0
XSLP_VAR index of z

XSLP_DEL XSLP_COMMA

XSLP_CON 3
XSLP_DEL XSLP_COLON

XSLP_STRING index of VAL1 in string table
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for
example:

y) VAL1 : 3 , z MyFunc(∗

and this is then transcribed as follows:

Type Value
XSLP_VAR index of y

XSLP_RB 0
XSLP_STRING index of VAL1 in string table
XSLP_DEL XSLP_COLON

XSLP_CON 3
XSLP_DEL XSLP_COMMA

XSLP_VAR index of z

XSLP_FUN index of MyFunc

XSLP_OP XSLP_MULTIPLY

XSLP_EOF 0

Fair Isaac Corporation Confidential and Proprietary Information 85

Xpress-SLP Formulae Advanced

Notice that the function arguments are in reverse order, including the name of the return value
and the colon delimiter, and that a right bracket is used as a delimiter to indicate the end of the
argument list.

14.5 Example of a formula defining a user function

User function definitions in XSLPadduserfuncs and XSLPloaduserfuncs are provided through
the formula structure. Assume we wish to add the function defined in Extended MPS format as

MyFunc = Func1 (DOUBLE, INTEGER) MOSEL = MyModel = MyArray

We also want to evaluate the function only when its arguments have changed outside tolerances.
This also requires function instances. In the definition of a user function, there is no distinction
made between parsed and unparsed format: the tokens provide information and are interpreted
in the order in which they are encountered. The function definition is as follows:

Type Value
XSLP_STRING index of Func1 in string table
XSLP_UFARGTYPE 26 (octal 32)
XSLP_UFEXETYPE 21 (Bit 4 set, and Bits 0-2 = 5)
XSLP_STRING index of MyModel in string table
XSLP_STRING index of MyArray in string table
XSLP_EOF 0

The string arguments are interpreted in the order in which they appear. Therefore, if any of the
function parameters (param1 to param3 in Extended MPS format) is required, there must be
entries for the internal function name and any preceding function parameters. If the fields are
blank, use an XSLP_STRING token with a zero value.

The name of the function itself (MyFunc in this case) is provided through the function
XSLPaddnames.

14.6 Example of a formula defining an XV

An XV (extended variable array) is defined by its individual items. XV definitions in XSLPaddxvs

and XSLPloadxvs are provided through the formula structure. Assume we wish to add the XV
defined in Extended MPS format as:

MyXV x
MyXV y = VAR1
MyXV = = = x ∗ 2

Then the definition in parsed format is as follows:

Type Value
XSLP_XVVARTYPE XSLP_VAR

XSLP_XVVARINDEX index of x

XSLP_EOF 0
XSLP_XVVARTYPE XSLP_VAR

XSLP_XVVARINDEX index of y

XSLP_XVINTINDEX index of VAR1 in string table
XSLP_EOF 0
XSLP_VAR index of x

XSLP_CON 2
XSLP_OP XSLP_MULTIPLY

XSLP_EOF 0

Fair Isaac Corporation Confidential and Proprietary Information 86

Xpress-SLP Formulae Advanced

Parsed or unparsed format is only relevant where formulae are being provided (as in the third
item above).

14.7 Example of a formula defining a DC

A DC (delayed constraint) can be activated when a certain condition is met by the solution of a
preceding linear approximation. The condition is described in a formula which evaluates to zero
(if the condition is not met) or nonzero (if the condition is met). Assume we wish to add the DCs
described in Extended MPS format as follows:

DC ROW1 = GT(x, 1)
DC ROW2 = MV(ROW99)

Then the definition in parsed format is as follows:

Type Value
XSLP_RB 0
XSLP_CON 1
XSLP_DEL XSLP_COMMA

XSLP_VAR index of x

XSLP_IFUN index of GT

XSLP_EOF 0
XSLP_RB 0
XSLP_ROW index of ROW99

XSLP_IFUN index of MV

XSLP_EOF 0

14.8 Formula evaluation and derivatives

In many applications, the same function is used in several matrix entries. Indeed, often the only
difference between the entries is the sign of the entry or a difference in (constant) scaling factor.
Xpress-SLP separates any constant factor from the formula, and stores a non-linear coefficient as
factor ∗ formula. In this way, when a formula has been evaluated once, its value can be used
repeatedly without the need for re-evaluation.

Xpress-SLP needs partial derivatives of all formulae in order to create the linear approximations
to the problem. In the absence of any other information, derivatives are calculated numerically,
by making small perturbations of the independent variables and re-evaluating the formulae.

Analytic derivatives will be used if XSLP_DERIVATIVES is set to 1. The mathematical operators
and the internal functions are differentiated automatically. User functions must provide their
own derivatives; if they do not, then derivatives for the functions will be evaluated numerically.

Analytic derivatives need more time to set up, but evaluation of the derivatives is then faster
particularly for formulae like:

N∑
i=1

f(xi)

Fair Isaac Corporation Confidential and Proprietary Information 87

CHAPTER 15

User Functions

15.1 Constant Derivatives

If a user function has constant derivatives with respect to one or more of its arguments, then it is
possible to arrange that Xpress-SLP bypasses the repeated evaluation of the function when
calculating numerical derivatives for such arguments. There is no benefit in using this feature if
the function offers analytic derivatives.

There are two ways of providing constant derivative information to Xpress-SLP:

� Implicit constant derivatives.
In this case, Xpress-SLP will initially calculate derivatives as normal. However, if it finds for a
particular argument that the "upward" numerical derivative and the "downward"
numerical derivative around a point are the same within tolerances, then the derivative for
the argument will be marked as constant and will not be re-evaluated. The tolerances
XSLP_CDTOL_A and XSLP_CDTOL_R are used to decide constancy.

� Interrogate for constant derivatives.
In this case, Xpress-SLP will call the user function in a special way for each of the arguments
in turn. The user function must recognize the special nature of the call and return a value
indicating whether the derivative is constant. If the derivative is constant, it will be
calculated once in the usual way (numerically), and the result will be used unchanged
thereafter.

If a function is marked for interrogation for constant derivatives, then Xpress-SLP will issue a
series of special calls the first time that derivatives are required. The only difference from a
normal call is that the number of derivatives requested (FunctionInfo[2]) will be negative; the
absolute value of this number is the number of the argument for which information is required
(counting from 1). The single value returned by the function (or in the first element of the return
array, depending on the type of function) is zero if the derivative is not constant, or nonzero
(normally 1) if the derivative is constant.

The following simple example in C shows how interrogation might be handled:

double XPRS_CC MyUserFunc(double *InputValues, int *FunctionInfo) {

int iArg;

if ((iArg=FunctionInfo[2]) < 0) { /* interrogation */

switch (-iArg) {

case 1: /* constant with respect to first argument */

case 4: /* constant with respect to fourth argument */

return 1.0; /* constant derivative */

default:

return 0.0; /* not constant derivative */

}

}

Fair Isaac Corporation Confidential and Proprietary Information 88

User Functions Advanced

/* normal call for evaluation */

return MyCalc(InputValues);

}

15.2 Multi-purpose functions and the dependency matrix

If a complicated function taking multiple variables as input and capable of calculating different
expressions as return values is used, it can be beneficial to explicitly declare the dependency
relationship between the input variables and the various return values (in other words, defining
which derivatives will always be zero). Even when a function would return its own derivatives,
this feature can help to reduce the number of small perturbations appearing in the matrix (see
XSLP_DELTA_Z). A complicated function is called multi-purpose if it can provide a dependency
matrix.

To mark a user function multi-purposed, XSLP_UFEXETYPE needs to be specified to have bit
XSLP_MULTIPURPOSE defined, or the appropriate field in the MPS file must have the ’P’ identifier.

A user function being marked as multi-purpose will be called in a special way during
augmentation (XSLPconstruct). This call will have the number of derivatives required ("nDelta"
in XSLPgetfuncinfo) set to be a negative number, signaling that the nature of the call is to
retrieve the dependency matrix. Assuming a user function with n input variables, and m output
values, the value of nDelta will be (n+1)*m. For each return value, there will be n+1 values
expected in the following order: the first value indicates whether for that specific return value, a
dependency matrix is provided or not; 0 meaning no dependency matrix, nonzero meaning a
dependency matrix is supplied. The following n values indicating whether the expression
depends on the corresponding input value or not.

The following simple example shows how the dependency matrix is filled out:

Consider the following user function:

MyFunc(x, y, z : ret1) := x + y

MyFunc(x, y, z : ret2) := z * z

The dependency matrix for MyFunc would be

[1, 1,1,0, 1, 0,0,1]

15.3 Callbacks and user functions

Callbacks and user functions both provide mechanisms for connecting user-written functions to
Xpress-SLP. However, they have different capabilities and are not interchangeable.

A callback is called at a specific point in the SLP optimization process (for example, at the start of
each SLP iteration). It has full access to all the problem data and can, in principle, change the
values of any items — although not all such changes will necessarily be acted upon immediately
or at all.

A user function is essentially the same as any other mathematical function, used in a formula to
calculate the current value of a coefficient. The function is called when a new value is needed; for
efficiency, user functions are not usually called if the value is already known (for example, when
the function arguments are the same as on the previous call). Therefore, there is no guarantee
that a user function will be called at any specific point in the optimization procedure or at all.

Although a user function is normally free-standing and needs no access to problem or other data
apart from that which it receives through its argument list, there are facilities to allow it to access
the problem and its data if required. The following limitations should be observed:

1. The function should not make use of any variable data which is not in its list of arguments;

Fair Isaac Corporation Confidential and Proprietary Information 89

User Functions Advanced

2. The function should not change any of the problem data.

The reasons for these restrictions are as follows:

1. Xpress-SLP determines which variables are linked to a formula by examining the list of
variables and arguments to functions in the formula. If a function were to access and use
the value of a variable not in this list, then incorrect relationships would be established, and
incorrect or incomplete derivatives would be calculated. The predicted and actual values of
the coefficient would then always be open to doubt.

2. Xpress-SLP generally allows problem data to be changed between function calls, and also by
callbacks called from within an Xpress-SLP function. However, user functions are called at
various points during the optimization and no checks are generally made to see if any
problem data has changed. The effects of any such changes will therefore at best be
unpredictable.

For a description of how to access the problem data from within a user function, see the section
on "More complicated user functions" later in this chapter.

15.4 User function interface

In its simplest form, a user function is exactly the same as any other mathematical function: it
takes a set of arguments (constants or values of variables) and returns a value as its result. In this
form, which is the usual implementation, the function needs no information apart from the
values of its arguments. It is possible to create more complicated functions which do use external
data in some form: these are discussed at the end of this section.

Xpress-SLP supports two basic forms of user function. The simple form of function returns a single
value, and is treated in essentially the same way as a normal mathematical function. The general
form of function returns an array of values and may also perform automatic differentiation.

The main difference between the simple and general form of a user function is in the way the
value is returned.

� The simple function calculates and returns one value and is declared as such (for example,
double in C).

� The general function calculates an array of values. It can either return the array itself (and is
declared as such: for example, double * in C), or it can return the results in one of the
function arguments, in which case the function itself returns a single (double precision)
status value (and is declared as such: for example double in C).

Values are passed to and from the function in a format dependent on the type of the function
and the type of the argument.

� NULL format provides a place-holder for the argument but it is a null or empty argument
which cannot be used to access or return data. This differs from the omitted argument
which does not appear at all.

� INTEGER format is used only for the Function Information array (the second argument to
the function).

� DOUBLE format is used for passing and returning all other numeric values

Fair Isaac Corporation Confidential and Proprietary Information 90

User Functions Advanced

� CHAR format is used for passing character information to the function (input and return
variable names)

� VARIANT format is used for user functions written in Microsoft Excel, COM. All arguments in
Xpress-SLP are then of type VARIANT, which is the same as the Variant type in COM and
Excel VBA. In the function source code, the function itself is declared with all its arguments
and return value(s) as Variant. VARIANT is not available for user functions called through
other linkage mechanisms.

15.5 Function Declaration in Xpress-SLP

User functions are declared through the XSLPloaduserfuncs, XSLPadduserfuncs and
XSLPchguserfunc functions, or in the SLPDATA section of the Extended MPS file format in UF

type records. These declarations define which of the arguments will actually be made available to
the function and (by implication) whether the function can perform automatic differentiation.
Simple functions and general functions are declared in the same way. Xpress-SLP recognizes the
difference because of the way in which the functions are referenced in formulae.

15.5.1 Function declaration in Extended MPS format

In the SLPDATA section of Extended MPS format, the full UF record format is:

UF Function [= Extname] (InputValues , FunctionInfo ,

InputNames , ReturnNames , Deltas , ReturnArray)
Linkage = Param1 [[= Param2] = Param3]

The fields are as follows:

Function The name of the user function. This is used in the formulae within the problem.
A function which returns only one value must return it as a double-precision
value. A function which returns multiple values must return a double-precision
array, or return the values in the ReturnArray argument. In the latter case, the
function must return a single double-precision status value.

Extname This field is optional. If it is used, then it is the external name of the function or
program when it is called. If the field is omitted, then the same name is used for
the internal and external function name. If the name matches the name of a
character variable, then the value of the character variable will be used instead.
This allows the definition of external names which contain spaces.

InputValues DOUBLE or VARIANT or NULL. This is the data type for the input argument list.
Use NULL or omit the argument if the data is not required.

FunctionInfo INTEGER or VARIANT or NULL. This is the data type for the array of function
and argument information. Use NULL or omit the argument if the data is not
required. Note that this argument is required if function objects are used by the
function.

InputNames CHAR or VARIANT or NULL. This is the data type for the names of the input
arguments. Use NULL or omit the argument if the data is not required.

ReturnNames CHAR or VARIANT or NULL. This is the data type for the names of the return
arguments. Use NULL or omit the argument if the data is not required.

Deltas DOUBLE or VARIANT or NULL. This is the data type for the perturbations (or
differentiation flags). Use NULL or omit the argument if the data is not required.

Fair Isaac Corporation Confidential and Proprietary Information 91

User Functions Advanced

ReturnArray DOUBLE or VARIANT or NULL. This is the data type for the array of results from a
multi-valued function. Use NULL or omit the argument if the results are
returned directly by the function.

Linkage This defines the linkage type and calling mechanism. The following are
supported:

DLL The function is compiled in a user library or DLL. The name of the file is
in the Param1 field.

XLS The function is in an Excel workbook and communicates through a
sheet within the workbook. The name of the workbook is in the
Param1 field and the name of the sheet is in the Param2 field.
If Extname is non-blank, it is the name of a macro on the workbook
which is to be executed after the data is loaded.

XLF The function is in an Excel workbook and communicates directly with
Xpress-SLP. The name of the workbook is in the Param1 field and the
name of the sheet containing the function is in the Param2 field.

MOSEL This can only be used in conjunction with Xpress-Mosel. See the Xpress
Mosel User Guide (Xpress-SLP section) for more information.

COM This is used for a function compiled into an ActiveX DLL. The PROGID

(typically of the form file.class) is in the Param1 field.

Optionally, the type can be suffixed with additional characters, indicating when
the function is to be re-evaluated, what sort of numerical derivatives are to be
calculated and what sort of calling mechanism is to be used. The possible types
for re-evaluation are:

A Function is re-evaluated when input variables change outside strict
tolerance

R Function is re-evaluated every time that input variables change

I Function always generates function instances.

M Function is multi-valued.

N Function is non-differentiable

P Function is multi-purpose, and can provide its dependency matrix.

V Function can be interrogated to provide some constant derivatives

W Function may have constant derivatives, which can be deduced by the
calling program

If no re-evaluation suffix is provided, then re-evaluation will be determined
from the setting of XSLP_FUNCEVAL, and function instances will be generated
only if the function is "complicated". See the section on "More complicated
user functions" for further details.
Normally, a user function is identified as multi-valued from the context in which
it is used, and so the M suffix is not required. It must be used if the user function
being defined is not used directly in any formulae.
Any formulae involving a non-differentiable function will always be evaluated
using numerical derivatives.
The possible types for numerical derivatives are:

1 Forward derivatives

2 Tangential derivatives (calculated from forward and backward
perturbation)

Fair Isaac Corporation Confidential and Proprietary Information 92

User Functions Advanced

The suffix for numerical derivatives is not used if the function is defined as
calculating its own derivatives. If no suffix is provided, then the method of
calculating derivatives will be determined from the setting of XSLP_FUNCEVAL.
The possible types for the calling mechanism are:

S STDCALL (the default under Windows)

C CDECL (the alternative mechanism under Windows)

The setting of the calling mechanism has no effect on platforms other than
Windows.

Param1 See Linkage

Param2 See Linkage

Param3 Name of return array for MOSEL linkage

Notes:

1. If an argument is declared as NULL, then Xpress-SLP will provide a dummy argument of the
correct type, but it will contain no useful information.

2. Arguments can be omitted entirely. This is achieved by leaving the space for the declaration
of the argument empty (for example, by having two consecutive commas). In this case,
Xpress-SLP will omit the argument altogether. Trailing empty declarations can be omitted
(that is, the closing bracket can immediately follow the last required argument).

3. COM, XLS and XLF require VARIANT types for their arguments. A declaration of any other
type will be treated as VARIANT for these linkage types. VARIANT cannot be used for other
linkage types.

4. Functions which do not perform their own differentiation must declare Deltas as NULL or
omit it altogether.

5. The Extname, Param1, Param2 and Param3 fields can contain the names of character
variables (defined on CV records). This form is required if the data to go in the field contains
spaces. If the data does not contain spaces, the data can be provided directly in the field.

If a function has a constant derivative with respect to any of its variables, Xpress-SLP can save
some time by not repeatedly evaluating the function to obtain the same result. Provided that
there are no circumstances in which the function might return values which imply derivatives
identical to within about 1.0E-08 over a range of ±0.0001 or so for a derivative which is not
constant, then the suffix W can be used so that Xpress-SLP will assume that where a derivative
appears to be constant within tolerances XSLP_CDTOL_A or XSLP_CDTOL_R it is actually constant
and does not need further re-evaluation. If there are some derivatives which might falsely appear
to be constant, then it is better to use the suffix V and write the function so that it can be
interrogated for constant derivatives.

See Constant Derivatives for a detailed explanation of constant derivatives.

Examples:

UF MyLog (DOUBLE) DLL = MyFuncs

This declares a simple function called MyLog which only needs the input arguments. Because
FunctionInfo is omitted, the number of arguments is probably fixed, or can be determined
from the input argument list itself. The function is compiled as a user function in the library file
MyFuncs (depending on the platform, the file may have an extension).

Fair Isaac Corporation Confidential and Proprietary Information 93

User Functions Advanced

UF MyCalc = Simulator (VARIANT , VARIANT) XLS = MyTests.xls = XSLPInOut

This declares a function called MyCalc in Xpress-SLP formulae. It is implemented as an Excel
macro called Simulator in the workbook MyTests.xls. Xpress-SLP will place the input data in
sheet XSLPInOut in columns A and B; this is because only the first two arguments are declared to
be in use. Xpress-SLP will expect the results in column I of the same sheet. Note that although
the arguments are respectively of type DOUBLE and INTEGER, they are both declared as VARIANT

because the linkage mechanism uses only VARIANT types.

UF MyFunc = AdvancedFunction (VARIANT , VARIANT , VARIANT , VARIANT) XLF = MyTests.xls =
XSLPFunc

This declares a function called MyFunc in Xpress-SLP formulae. It is implemented as an Excel
function on sheet XSLPFunc in the Excel workbook MyTests.xls. It will take values from and
return values directly to Xpress-SLP without using a sheet as an intermediary.

UF MyFunc = CFunc (DOUBLE , INTEGER , CHAR , , DOUBLE , DOUBLE) DLL = MyLib

This declares a function called MyFunc in Xpress-SLP formulae. It is implemented as the function
CFunc compiled in the user library MyLib. It takes a list of input names as the third argument, so
it can identify arguments by name instead of by position. The fourth argument in the declaration
is empty, meaning that the ReturnNames argument is not used. The fourth argument to the
function is therefore the Deltas array of perturbations. Because Deltas is specified, the
function must produce its own array of derivatives if required. It returns the array of results into
the array defined by its fifth argument. The function itself will return a single status value.

15.5.2 Function declaration through XSLPloaduserfuncs and XSLPadduserfuncs

The method for declaring a user function is the same for XSLPloaduserfuncs and
XSLPadduserfuncs. In each case the user function declaration is made using a variant of the
parsed formula structure. Given the UF record described in the previous section:

UF Function = Extname (InputValues , FunctionInfo ,

InputNames , ReturnNames , Deltas , ReturnArray)
Linkage = Param1 = Param2 = Param3

the equivalent formula sequence is:

Type Value
XSLP_STRING index of Extname in string table
XSLP_UFARGTYPE bit map representing the number and type of the arguments (see

below)
XSLP_UFEXETYPE bitmap representing the linkage type, calling mechanism, derivative

and evaluation options (see below)
XSLP_STRING index of Param1 in string table
XSLP_STRING index of Param2 in string table
XSLP_STRING index of Param3 in string table
XSLP_EOF 0

Notes:

1. The value of the XSLP_UFARGTYPE token holds the information for the existence and type
of each of the 6 possible arguments. Bits 0-2 represent the first argument (InputValues),
bits 3-5 represent the second argument (FunctionInfo) and so on. Each 3-bit field takes
one of the following values, describing the existence and type of the argument:

0 argument is omitted

1 NULL (argument is present but has no information content

2 INTEGER

Fair Isaac Corporation Confidential and Proprietary Information 94

User Functions Advanced

3 DOUBLE

4 VARIANT

6 CHAR

2. The value of the XSLP_UFEXETYPE token holds the linkage type, the calling mechanism,
and the options for evaluation and for calculating derivatives:

Bits 0-2 type of linkage:

1 DLL (User library or DLL)
2 XLS (Excel spreadsheet)
3 XLF (Excel macro)
5 MOSEL
7 COM

Bits 3-4 evaluation flags:

0 default
1 (Bit 3) re-evaluation at each SLP iteration
2 (Bit 4) re-evaluation when independent variables have changed outside

tolerance

Bits 6-7 derivative flags:

0 default
1 (Bit 6) tangential derivatives
2 (Bit 7) forward derivatives

Bit 8 calling mechanism:

0 standard
1 CDECL (Windows only)

Bit 13 set if the function multi-purposed and can provide its dependency matrix

Bit 24 set if the function is multi-valued

Bit 28 set if the function is not differentiable

Bits 11-12 constant derivative flags:

0 default: no known constant derivatives

1 (Bit 11) assume that derivatives which do not change outside the tolerance are
constant

2 (Bit 12) interrogate function for constant derivatives

The following constants are provided for setting these bits:

Setting bit 11 XSLP_DEDUCECONSTDERIVS

Setting bit 12 XSLP_SOMECONSTDERIVS

See Constant Derivatives for a detailed explanation of constant derivatives.

3. The string arguments are interpreted in the order in which they appear. Therefore, if any of
the function parameters Param1 to Param3 is required, there must be entries for the
internal function name and any preceding function parameters. If the fields are blank, use
an XSLP_STRING token with a zero value.

4. The name of the function itself (Function in this case) is provided through the function
XSLPaddnames.

Fair Isaac Corporation Confidential and Proprietary Information 95

User Functions Advanced

15.5.3 Function declaration through XSLPchguserfunc

Functions can be declared individually using XSLPchguserfunc. The function information is
passed in separate variables, rather than in an array of tokens. Given the UF record described
earlier in Extended MPS format:

UF Function = Extname (InputValues , FunctionInfo ,

InputNames , ReturnNames , Deltas , ReturnArray)
Linkage = Param1 = Param2 = Param3

the equivalent declaration is:

XSLPchguserfunc(Prob, 0, Extname, &ArgType, &ExeType,

Param1, Param2, Param3)

where: Extname, Param1, Param2 and Param3 are character strings; ArgType and ExeType are
integers.

An unused character string can be represented by an empty string or a NULL argument.

ArgType and ExeType are bitmaps with the same meaning as in the previous section.

Using zero as the second argument to XSLPchguserfunc forces the creation of a new user
function definition. A positive integer will change the definition of an existing user function. In
that case, a NULL argument means "no change".

15.5.4 Function declaration through SLPDATA in Mosel

In Mosel, a user function is declared to Xpress-SLP using the SLPDATA function which mirrors the
Extended MPS format declaration for file-based definitions.

SLPDATA(UF:string, Function:string, Extname:string, ArgList:string,

ArgType:string [,Param1:string [,Param2:string [,Param3:string]]])

Arguments:

UF string containing UF, indicating the SLPDATA type.

Function name of the function (as used within a Func() expression)

Extname name of the function to be used when it is called. This may be different from
Function (for example, it may be decorated or have a special prefix).

ArgList list of the argument types to the function, as described in Extended MPS format.
Effectively, it is the same as the list of argument types within the brackets in an
Extended MPS format declaration: for example "DOUBLE,INTEGER". The
argument types must match exactly the declaration of the function in its native
language.

ArgType the function type as described in Extended MPS format.

Param1-3 optional strings giving additional parameter information as required by the
particular function type. Details are in Extended MPS format.

15.6 User Function declaration in native languages

This section describes how to declare a user function in C, Fortran and so on. The general shape
of the declaration is shown. Not all the possible arguments will necessarily be used by any
particular function, and the actual arguments required will depend on the way the function is
declared to Xpress-SLP.

Fair Isaac Corporation Confidential and Proprietary Information 96

User Functions Advanced

15.6.1 User function declaration in C

The XPRS_CC calling convention (equivalent to __stdcall under Windows) must be used for the
function. For example:

type XPRS_CC MyFunc(double *InputValues, int *FunctionInfo,

char *InputNames, char *ReturnNames

double *Deltas, double *ReturnArray);

where type is double or double* depending on the nature of the function.

In C++, the function should be declared as having a standard C-style linkage. For example, with
Microsoft C++ under Windows:

extern "C" type _declspec(dllexport) XPRS_CC

MyFunc(double *InputValues, int *FunctionInfo,

char *InputNames, char *ReturnNames

double *Deltas, double *ReturnArray);

If the function is placed in a library, the function name may need to be externalized. If the
compiler adds "decoration" to the name of the function, the function may also need to be given
an alias which is the original name. For example, with the Microsoft compiler, a definition file can
be used, containing the following items:

EXPORTS

MyFunc=_MyFunc@12

where the name after the equals sign is the original function name preceded by an underscore
and followed by the @ sign and the number of bytes in the arguments. As all arguments in
Xpress-SLP external function calls are pointers, each argument represents 4 bytes on a 32-bit
platform, and 8 bytes on a 64-bit platform.

A user function can be included in the executable program which calls Xpress-SLP. In such a case,
the user function is declared as usual, but the address of the program is provided using
XSLPchguserfuncaddress or XSLPsetuserfuncaddress. The same technique can also be
used when the function has been loaded by the main program and, again, its address is already
known.

The InputNames and ReturnNames arrays, if used, contain a sequence of character strings which
are the names, each terminated by a null character.

Any argument omitted from the declaration in Xpress-SLP will be omitted from the function call.

Any argument declared in Xpress-SLP as of type NULL will generally be passed as a null pointer to
the program.

15.6.2 User function declaration in Excel (spreadsheet)

A user function written in formulae in a spreadsheet does not have a declaration as such. Instead,
the values of the arguments supplied are placed in the sheet named in the Xpress-SLP declaration
as follows:

Column A InputValues

Column B FunctionInfo

Column C InputNames

Column D ReturnNames

Column E Deltas

The results are returned in the same sheet as follows:

Fair Isaac Corporation Confidential and Proprietary Information 97

User Functions Advanced

Column I Return values
Column J Derivatives w.r.t. first required variable
Column K Derivatives w.r.t. second required variable
...

An Excel macro can also be executed as part of the calculation. If one is required, its name is gives
as Extname in the Xpress-SLP declaration of the user function.

Any argument omitted from the declaration in Xpress-SLP will be omitted from the function call.

Any argument declared in Xpress-SLP as of type NULL or omitted from the declaration will leave
an empty column.

15.6.3 User function declaration in VBA (Excel macro)

All arguments to VBA functions are passed as arrays of type Variant. This includes integer or
double precision arrays, which are handled as Variant arrays of integers or doubles. The
following style of function declaration should be used:

Function MyFunc (InputValues() as Variant, FunctionInfo() as Variant, _

InputNames() as Variant, ReturnNames as Variant, _

Deltas as Variant(), ReturnArray as Variant()) as Variant

For compatibility with earlier versions of Xpress-SLP, a return type of Double (or Double() for a
multi-valued function) is also accepted. The return should be set to the value or to the array of
values. For example:

Dim myDouble as Double

...

MyFunc = myDouble

or

Dim myDouble(10) as Double

...

MyFunc = myDouble

The return type is always Variant, regardless of whether the function returns one value or an
array of values. The return should be set to the value or to the array of values as described in the
VBA (Excel) section above.

All arrays are indexed from zero.

Any argument omitted from the declaration in Xpress-SLP will be omitted from the function call.

Any argument declared in Xpress-SLP as of type NULL will generally be passed as an empty
Variant.

15.6.4 User function declaration in Visual Basic

All arguments to VB functions are passed as arrays of type Variant. This includes integer or
double precision arrays, which are handled as Variant arrays of integers or doubles. The
following style of function declaration should be used:

Public Function MyFunc (InputValues() as Variant, FunctionInfo() as Variant,

InputNames() as Variant, ReturnNames as Variant, _

Deltas as Variant(), ReturnArray as Variant()) as Variant

The return type is always Variant, regardless of whether the function returns one value or an

Fair Isaac Corporation Confidential and Proprietary Information 98

User Functions Advanced

array of values. The return should be set to the value or to the array of values as described in the
VBA (Excel) section above.

All arrays are indexed from zero.

Any argument omitted from the declaration in Xpress-SLP will be omitted from the function call.

Any argument declared in Xpress-SLP as of type NULL will generally be passed as an empty
Variant.

15.6.5 User function declaration in COM

This example uses Visual Basic. All arguments to COM functions are passed as arrays of type
Variant. This includes integer or double precision arrays, which are handled as Variant arrays
of integers or doubles. The function must be stored in a class module, whose name will be
needed to make up the PROGID for the function. The PROGID is typically of the form
file.class where file is the name of the ActiveX DLL which has been created, and class is
the name of the class module in which the function has been stored. If you are not sure of the
name, check the registry. The following style of function declaration should be used:

Public Function MyFunc (InputValues() as Variant, FunctionInfo() as Variant,

InputNames() as Variant, ReturnNames as Variant, _

Deltas as Variant(), ReturnArray as Variant()) as Variant

The return type is always Variant, regardless of whether the function returns one value or an
array of values. The return should be set to the value or to the array of values as described in the
VBA (Excel) section above.

All arrays are indexed from zero.

Any argument omitted from the declaration in Xpress-SLP will be omitted from the function call.

Any argument declared in Xpress-SLP as of type NULL will generally be passed as an empty
Variant.

15.6.6 User function declaration in MOSEL

A simple function taking one or more input values and returning a single result can be declared
in Mosel using the following form:

function MyFunc (InputValues:array(aRange:range) of real, Num:integer) : real

where Num will hold the number of values in the array InputValues.
The single result is placed in the reserved returned variable.

If the function returns more than one value, or calculates derivatives, then the full form of the
function is used:

function MyFunc (InputValues:array(vRange:range) of real,

FunctionInfo:(array(fRange:range) of integer,

InputNames:(array(iRange:range) of string,

ReturnNames:(array(rRange:range) of string,

Deltas:(array(dRange:range) of real,

ReturnArray:(array(aRange:range) of real) : real

The SLPDATA declaration of the function references an array (the transfer array) which is a string
array containing the names of the arrays used as arguments to the function.

The results are placed in ReturnArray and the function should return zero for success or 1 for
failure.

Fair Isaac Corporation Confidential and Proprietary Information 99

User Functions Advanced

For more details about user functions in Mosel, see the Xpress Mosel SLP Reference Manual.

15.7 Simple functions and general functions

A simple function is one which returns a single value calculated from its arguments, and does not
provide derivatives. A general function returns more than one value, because it calculates an
array of results, or because it calculates derivatives, or both.

Because of restrictions in the various types of linkage, not all types of function can be declared
and used in all languages. Any limitations are described in the appropriate sections.

For simplicity, the functions will be described using only examples in C. Implementation in other
languages follows the same rules.

15.7.1 Simple user functions

A simple user function returns only one value and does not calculate derivatives. It therefore
does not use the ReturnNames, Deltas or ReturnArray arguments.

The full form of the declaration is:

double XPRS_CC MyFunc(double *InputValues, int *FunctionInfo,

char *InputNames);

FunctionInfo can be omitted if the number of arguments is not required, and access to
problem information and function objects is not required.
InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

The function supplies its single result as the return value of the function.

There is no provision for indicating that an error has occurred, so the function must always be
able to calculate a value.

15.7.2 General user functions returning an array of values through a reference

General user functions calculate more than one value, and the results are returned as an array. In
the first form of a general function, the values are supplied by returning the address of an array
which holds the values. See the notes below for restrictions on the use of this method.

The full form of the declaration is:

double * XPRS_CC MyFunc(double *InputValues, int *FunctionInfo,

char *InputNames, char *ReturnNames

double *Deltas);

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are
being calculated, the number of return values is fixed, and access to problem information and
function objects is not required. However, it is recommended that FunctionInfo is always
included.

InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

ReturnNames can be omitted if the return values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

Deltas must be omitted if no derivatives are calculated.

Fair Isaac Corporation Confidential and Proprietary Information 100

User Functions Advanced

The function supplies the address of an array of results. This array must be available after the
function has returned to its caller, and so is normally a static array. This may mean that the
function cannot be called from a multi-threaded optimization, or where multiple instances of the
function are required, because the single copy of the array may be overwritten by another call to
the function. An alternative method is to use a function object which refers to an array specific to
the thread or problem being optimized.

Deltas is an array with the same number of items as InputValues. It is used as an indication of
which derivatives (if any) are required on a particular function call. If Deltas[i] is zero then a
derivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero
then a derivative for input variable i is required and must be returned. The total number of
nonzero entries in Deltas is given in FunctionInfo[2]. In particular, if it is zero, then no
derivatives are required at all.

When no derivatives are calculated, the array of return values simply contains the results (in the
order specified by ReturnNames if used).
When derivatives are calculated, the array contains the values and the derivatives as follows (DVi

is the ith variable for which derivatives are required, which may not be the same as the ith input
value):

Result1

Derivative of Result1 w.r.t. DV1

Derivative of Result1 w.r.t. DV2

...

Derivative of Result1 w.r.t. DVn

Result2

Derivative of Result2 w.r.t. DV1

Derivative of Result2 w.r.t. DV2

...

Derivative of Result2 w.r.t. DVn

...

Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.

This form must be used by user functions which are called through OLE automation (VBA (Excel)
and COM) because they cannot directly access the memory areas of the main program.

This form cannot be used by Fortran programs because Fortran functions can only return a single
value, not an array.

This form cannot be used by Mosel programs because Mosel functions can only return a single
value, not an array.

15.7.3 General user functions returning an array of values through an argument

General user functions calculate more than one value, and the results are returned as an array. In
the second form of a general function, the values are supplied by returning the values in an array
provided as an argument to the function by the calling program. See the notes below for
restrictions on the use of this method.

The full form of the declaration is:

double XPRS_CC MyFunc(double *InputValues, int *FunctionInfo,

char *InputNames, char *ReturnNames

double *Deltas, double *ReturnArray);

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are
being calculated, the number of return values is fixed, and access to problem information and
function objects is not required. However, it is recommended that FunctionInfo is always

Fair Isaac Corporation Confidential and Proprietary Information 101

User Functions Advanced

included.

InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

ReturnNames can be omitted if the return values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

Deltas must be omitted if no derivatives are calculated.

The function must supply the results in the array ReturnArray. This array is guaranteed to be
large enough to hold all the values requested by the calling program. No guarantee is given that
the results will be retained between function calls.

Deltas is an array with the same number of items as InputValues. It is used as an indication of
which derivatives (if any) are required on a particular function call. If Deltas[i] is zero then a
derivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero
then a derivative for input variable i is required and must be returned. The total number of
nonzero entries in Deltas is given in FunctionInfo[2]. In particular, if it is zero, then no
derivatives are required at all.

When no derivatives are calculated, the array of return values simply contains the results (in the
order specified by ReturnNames if used).
When derivatives are calculated, the array contains the values and the derivatives as follows (DVi

is the ith variable for which derivatives are required, which may not be the same as the ith input
value):

Result1

Derivative of Result1 w.r.t. DV1

Derivative of Result1 w.r.t. DV2

...

Derivative of Result1 w.r.t. DVn

Result2

Derivative of Result2 w.r.t. DV1

Derivative of Result2 w.r.t. DV2

...

Derivative of Result2 w.r.t. DVn

...

Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.

The return value of the function is a status code indicating whether the function has completed
normally. Possible values are:

0 No errors: the function has completed normally.

1 The function has encountered an error. This will terminate the optimization.

-1 The calling function must estimate the function value from the last set of values
calculated. This will cause an error if no values are available.

This form must be not used by user functions which are called through OLE automation (VBA
(Excel) and COM) because they cannot directly access the memory areas (in particular
ReturnArray) in the main program.

This form must be used by Fortran programs because Fortran functions can only return a single
value, not an array. An array of values must therefore be returned through ReturnArray.

This form must be used by Mosel programs because Mosel functions can only return a single
value, not an array. An array of values must therefore be returned through ReturnArray.

Fair Isaac Corporation Confidential and Proprietary Information 102

User Functions Advanced

15.8 Programming Techniques for User Functions

This section is principally concerned with the programming of large or complicated user
functions, perhaps taking a potentially large number of input values and calculating a large
number of results. However, some of the issues raised are also applicable to simpler functions.

The first part describes in more detail some of the possible arguments to the function. The
remainder of the section looks at function instances, function objects and direct calls to user
functions.

15.8.1 FunctionInfo

The array FunctionInfo is primarily used to provide the sizes of the arrays used as arguments to
the functions, and to indicate how many derivatives are required.

In particular:
FunctionInfo[0] holds the number of input values supplied
FunctionInfo[1] holds the number of return values required
FunctionInfo[2] holds the number of sets of derivatives to be calculated.

In addition, it contains problem-specific information which allows the user function to access
problem data such as control parameters and attributes, matrix elements and solution values. It
also holds information about function objects and function instances.

See XSLPgetfuncobject for a more detailed description.

15.8.2 InputNames

The function may have the potential to take a very large number of input values but in practice,
within a particular problem, not all of them are used. For example, a function representing the
model of a distillation unit may have input values relating to external air temperature and
pressure which are not known or which cannot be controlled by the optimization. In general,
therefore, these will take default values except for very specialized studies.

Although it would be possible to require that every function call had every input value specified,
it would be wasteful in processing time to do so. In such cases, it is worth considering using
named input variables, so that only those which are not at default values are included. The user
function then picks up the input values by name, and assigns default values to the remainder.
InputNames is an array of character strings which contains the names of the input variables. The
order of the input values is then determined by the order in InputNames. This may be different
for each instance of the function (that is, for each different formula in which it appears) and so it
is necessary for the function to check the order of the input values. If function instances are used,
then it may be necessary to check only when the function instance is called for the first time,
provided that the order can be stored for future calls to the same instance.

Unless the user function is being called directly from a program, InputNames can only be used
with input values defined in XVs, so that names can be assigned to the values.

15.8.3 ReturnNames

The function may have the potential to calculate a very large number of results but in practice,
within a particular problem, not all of them are used. For example, a detailed model of a process
unit might calculate yields and qualities of streams, but also internal flow rates and catalyst usage
which are not required for a basic planning problem (although they are very important for
detailed engineering investigations).

Although it would be possible to calculate every value and pass it back to the calling function

Fair Isaac Corporation Confidential and Proprietary Information 103

User Functions Advanced

every time, it could be wasteful in processing time to do so. In such cases, it is worth considering
using named return values, so that only those which are actually required are included. The user
function then identifies which values are required and only passes those values to its caller
(possibly, therefore, omitting some of the calculations in the process).

ReturnNames is an array of character strings which contains the names of the return variables.
The order of the values is then determined by the order in ReturnNames. This order may be
different for different instances of the function (that is, for different formulae in which it is used).
If the function does use named return values, it must check the order. If function instances are
used for the function, then it may be necessary to check the order only when the function
instance is called for the first time, if the order can be stored for subsequent use.

If the user function is being called by Xpress-SLP to calculate values during matrix generation or
optimization, the list of return values required is created dynamically and the names will appear
in the order in which they are first encountered. It is possible, therefore, that changes in the
structure of a problem may change the order in which the names appear.

15.8.4 Deltas

The Deltas array has the same dimension as InputValues and is used to indicate which of the
input variables should be used to calculate derivatives. If Deltas[i] is zero, then no derivative
should be returned for input variable i. If Deltas[i] is nonzero, then a derivative is required for
input variable i. The value of Deltas[i] can be used as a suggested perturbation for numerical
differentiation (a negative sign indicates that if a one-sided derivative is calculated, then a
backward one is preferred). If derivatives are calculated analytically, or without requiring a
specific perturbation, then Deltas can be interpreted simply as an array of flags indicating which
derivatives are required.

15.8.5 Return values and ReturnArray

The ReturnArray array is provided for those user functions which return more than one value,
either because they do calculate more than one result, or because they also calculate derivatives.
The function must either return the address of an array which holds the values, or pass the values
to the calling program through the ReturnArray array.

The total number of values returned depends on whether derivatives are being calculated. The
FunctionInfo array holds details of the number of input values supplied, the number of return
values required (nRet) and the number of sets derivatives required (nDeriv). The total number
of values (and hence the minimum size of the array) is nRet ∗ (nDeriv + 1). Xpress-SLP guarantees
that ReturnArray will be large enough to hold the total number of values requested.

A function which calculates and returns a single value can use the ReturnArray array provided
that the declarations of the function in Xpress-SLP and in the native language both include the
appropriate argument definition.

functions which use the ReturnArray array must also return a status code as their return value.
Zero is the normal return value. A value of 1 or greater is an error code which will cause any
formula evaluation to stop and will normally interrupt any optimization or other procedure. A
value of -1 asks Xpress-SLP to estimate the function values from the last calculation of the values
and partial derivatives. This will produce an error if there is no such set of values.

15.8.6 Returning Derivatives

A multi-valued function which does not calculate its own derivatives will return its results as a
one-dimensional array.

As already described, when derivatives are calculated as well, the order is changed, so that the

Fair Isaac Corporation Confidential and Proprietary Information 104

User Functions Advanced

required derivatives follow the value for each result. That is, the order becomes:
A, ∂A

∂X1
, ∂A
∂X2

, . . . ∂A
∂Xn

, B, ∂B
∂X1

, ∂B
∂X2

, . . . ∂B
∂Xn

, . . . ∂Z
∂Xn

where A, B, Z are the return values, and X1, X2, Xn, are the input (independent) variables (in
order) for which derivatives have been requested.

Not all calls to a user function necessarily require derivatives to be calculated. Check
FunctionInfo for the number of derivatives required (it will be zero if only a value calculation is
needed), and Deltas for the indications as to which independent variables are required to
produce derivatives. Xpress-SLP will not ask for, nor will it expect to receive, derivatives for
function arguments which are actually constant in a particular problem. A function which
provides uncalled-for derivatives will cause errors in subsequent calculations and may cause other
unexpected side-effects if it stores values outside the expected boundaries of the return array.

15.8.7 Function Instances

Xpress-SLP defines an instance of a user function to be a unique combination of function and
arguments. For functions which return an array of values, the specific return argument is ignored
when determining instances. Thus, given the following formulae:

f(x) + f(y) + g(x, y : 1)
f(y) ∗ f(x) ∗ g(x, y : 2)
f(z)

the following instances are created:
f(x)
f(y)
f(z)
g(x, y)
(A function reference of the form g(x, y : n) means that g is a multi-valued function of x and y,
and we want the nth return value.)

Xpress-SLP regards as complicated any user function which returns more than one value, which
uses input or return names, or which calculates its own derivatives. All complicated functions give
rise to function instances, so that each function is called only once for each distinct combination
of arguments.

Functions which are not regarded as complicated are normally called each time a value is
required. A function of this type can still be made to generate instances by defining its ExeType

as creating instances (set bit 9 when using the normal library functions, or use the "I" suffix when
using file-based input through XSLPreadprob or when using SLPDATA in Mosel).

Note that conditional re-evaluation of the function is only possible if it generates function
instances.

Using function instances can improve the performance of a problem, because the function is
called only once for each combination of arguments, and is not re-evaluated if the values have
not changed significantly. If the function is computationally intensive, the improvement can be
significant.

There are reasons for not wanting to use function instances:

� When the function is fast. It may be as fast to recalculate the value as to work out if
evaluation is required.

� When the function is discontinuous. Small changes are estimated by using derivatives. These
behave badly across a discontinuity and so it is usually better to evaluate the derivative of a
formula by using the whole formula, rather than to calculate it from estimates of the
derivatives of each term.

� Function instances do use more memory. Each instance holds a full copy of the last input
and output values, and a full set of first-order derivatives. However, the only time when

Fair Isaac Corporation Confidential and Proprietary Information 105

User Functions Advanced

function instances are optional is when there is only one return value, so the extra space is
not normally significant.

15.8.8 Function Objects

Normally, a user function is effectively a free-standing program: that is, it requires only its
argument list in order to calculate its result(s). However, there may be circumstances where a user
function requires access to additional data, as in the following examples:

1. The function is actually a simulator which needs access to specific (named) external files. In
this case, the function needs to access a list of file names (or file handles if the files have
been opened externally).

2. The function uses named input or output values and, having established the order once,
needs to save the order for future calls. In this case, the function needs to use an array
which is external to the function, so that it is not destroyed when the function exits.

3. The function returns an array of results and so the array must remain accessible after the
function has returned. In this case, the function needs to use an array which is external to
the function, so that it is not destroyed when the function exits.

4. The function determines whether it needs to re-evaluate its results when the values of the
arguments have not changed significantly, and so it needs to keep a copy of the previous
input and output values. In this case, the function needs to use an array which is external to
the function, so that it is not destroyed when the function exits.

5. The function has to perform an initialization the first time it is called. In this case, the
function needs to keep a reference to indicate whether it has been called before. It may be
that a single initialization is required for the function, or it may be that it has to be
initialized separately for each instance.

There is a potential difference between examples (3) and (4) above. In example (3), the array is
needed only because Xpress-SLP will pick up the values when the function has returned and so
the array still needs to exist. However, once the values have been obtained, the array is no longer
required, and so the next call to the same function can use the same array. In example (4), the
argument values are really required for each instance of the function: for example, if f(x) and
f(y) are both used in formulae, where f() is a user function and x and y are distinct variables,
then it only makes sense to compare input argument values for f(x) (that is, the value of x)
against the previous value for x; it does not make sense to compare against the previous value
for y. In this case, a separate array is needed for each function instance.

Xpress-SLP provides three levels of user function object. These are:

� The Global Function Object. There is only one of these for each problem, which is accessible
to all user functions.

� The User Function Object. There is one of these for each defined user function.

� The Instance Function Object. There is one of these for each instance of a function.

The library functions XSLPsetuserfuncobject, XSLPchguserfuncobject and
XSLPgetuserfuncobject can be used to set, change and retrieve the values from a program or
function which has access to the Xpress-SLP problem pointer.
The library functions XSLPsetfuncobject, XSLPchgfuncobject and XSLPgetfuncobject can
be used by a user function to set, change or retrieve the Global Function Object, the User Function
Object for the function, and the Instance Function Object for the instance of the function.

Fair Isaac Corporation Confidential and Proprietary Information 106

User Functions Advanced

XSLPgetfuncobject can also be used to obtain the Xpress-SLP and Xpress Optimizer problem
pointers. These can then be used to obtain any problem data, or to execute any allowable library
function from within the user function.

Example:

A function which uses input or return names is regarded as a complicated function, and will
therefore generate function instances. All the calls for a particular instance have the same set of
inputs in the same order. It is therefore necessary to work out the order of the names only once,
as long as the information can be retained for subsequent use. Because each instance may have a
different order, as well as different variables, for its inputs, the information should be retained
separately for each instance.

The following example shows the use of the Instance Function Object to retain the order of input
values

NOTE

1 typedef struct tagMyStruct {

int InputFromArg[5];

} MyStruct;

static char *MyNames[] = {"SUL", "RVP", "ARO", "OLE", "BEN"};

static double Defaults[] = {0, 8, 4, 1, 0.5};

double XPRS_CC MyUserFunc(double *InputValues, int *FunctionInfo,

char *InputNames) {

MyStruct *InstanceObject;

void *Object;

char *NextName;

int i, iArg, nArg;

double Inputs[5], Results[10];

2 XSLPgetfuncobject(FunctionInfo,XSLP_INSTANCEFUNCOBJECT,&Object);

3 if (Object == NULL) {

Object = calloc(1,sizeof(MyStruct));

4 XSLPsetfuncobject(FunctionInfo,XSLP_INSTANCEFUNCOBJECT,Object);

InstanceObject = (MyStruct *) Object;

NextName = InputNames;

nArg = FunctionInfo[0];

5 for (iArg = 1;iArg<=nArg;iArg++) {

for (i=0;i<5;i++) {

if (strcmp(NextName,MyNames[i])) continue;

InstanceObject->InputFromArg[i] = iArg;

break;

}

NextName = &NextName[strlen(NextName)+1];

}

}

InstanceObject = (MyStruct *) Object;

6 if (InstanceObject == NULL) {

7 XSLPgetfuncobject(FunctionInfo,XSLP_XSLPPROBLEM,&Object);

8 XSLPsetfunctionerror(Prob);

return(1);

}

9 for (i=0;i<5;i++) {

iArg=InstanceObject->InputFromArg[i];

if (iArg) Inputs[i] = InputValues[iArg-1];

else Inputs[i] = Defaults[i];

}

MyCalc(Inputs, Results);

.....

}

Notes:

Fair Isaac Corporation Confidential and Proprietary Information 107

User Functions Advanced

1. A structure for the instance function object is defined. This is a convenient way of starting,
because it is easy to expand it if more information (such as results) needs to be retained.

2. XSLPgetfuncobject recovers the instance function object reference from the
FunctionInfo data.

3. On the first call to the function, the object is NULL.

4. After the object has been created, its address is stored as the instance function object.

5. The names in InputNames are in a continuous sequence, each separated from the next by a
null character. This section tests each name against the ordered list of internal names. When
there is a match, the correspondence is stored in the InputFromArg array. A more
sophisticated version might fault erroneous or duplicate input names.

6. If InstanceObject is NULL then the initialization must have failed in some way.
Depending on the circumstances, the user function may be able to proceed, or it may have
to terminate in error. We will assume that it has to terminate.

7. XSLPgetfuncobject recovers the Xpress-SLP problem.

8. XSLPsetfunctionerror sets the error flag for the problem which will stop the
optimization.

9. If the initialization was successful, the correspondence in InputFromArg is now available on
each call to the function, because on subsequent calls, Object is not NULL and contains the
address of the object for this particular instance.

If there are different instances for this function, or if several problems are in use simultaneously,
each distinct call to the function will have its own object.

A similar method can be used to set up and retain a correspondence between the calculated
results and those requested by the calling program.

The User Function Object can be used in a similar way, but there is only one such object for each
function (not for each instance), so it is only appropriate for saving information which does not
have to be kept separate at an instance level. One particular use for the User Function Object is
to provide a return array which is not destroyed after the user function returns (an alternative is
to use the ReturnArray argument to the function).

Note that one or more arrays may be allocated dynamically by each function using this type of
approach. It may be necessary to release the memory if the problem is destroyed before the main
program terminates. There is no built-in mechanism for this, because Xpress-SLP cannot know
how the objects are structured. However, there is a specific callback (XSLPsetcbdestroy) which
is called when a problem is about to be destroyed. As a simple example, if each non-null object is
the address of an allocated array, and there are no other arrays that need to be freed, the
following code fragment will free the memory:

int i, n;

void *Object;

XSLPgetintattrib(Prob, XSLP_UFINSTANCES, &n);

for (i=1;i<=n;i++) {

XSLPgetuserfuncobject(Prob, -i, &Object);

if (Object) free(Object);

XSLPsetuserfuncobject(Prob, -i, NULL);

}

When used in the "destroy" callback, it is not necessary to set the instance function object to
NULL. However, if an object is being freed at some other time, then it should be reset to NULL so
that any subsequent call that requires it will not try to use an unallocated area of memory.

Fair Isaac Corporation Confidential and Proprietary Information 108

User Functions Advanced

15.8.9 Calling user functions

A user function written in a particular language (such as C) can be called directly from another
function written in the same language, using the normal calling mechanism. All that is required is
for the calling routine to provide the arguments in the form expected by the user function.

Xpress-SLP provides a set of functions for calling between different languages so that, for
example, it is possible for a program written in Mosel to call a user function written in C. Not all
combinations of language are possible. The following table shows which are available:

User function Calling program

Mosel C/Fortran VBA (Excel)

Mosel 1 3 3 3

C/Fortran 1 1 1 1

VBA (Excel macro) 2 2 2 2

Excel spreadsheet 2 2 2 2

COM 2 2 2 2

1: User functions available with full functionality
2: User functions available, but with reduced functionality
3: User functions available if Mosel model is executed from main program
X: User functions not available.

In general, those user functions which are called using OLE automation (Excel macro, Excel
spreadsheet and COM) do not have the full functionality of user functions as described below,
because the calling mechanism works with a copy of the data from the calling program rather
than the original. Mosel user functions can only be called from problems which are created in the
same Mosel model; however, because Mosel can itself be called from another program, Mosel
functions may still be accessible to programs written in other languages.

XSLPcalluserfunc provides the mechanism for calling user functions. The user function is
declared to Xpress-SLP as described earlier, so that its location, linkage and arguments are
defined. In this section, we shall use three example user functions, defined in Extended MPS
format as follows:

UF MyRealFunc (DOUBLE , INTEGER)

UF MyArrayFunc (DOUBLE , INTEGER) DLLM

UF MyRetArrayFunc (DOUBLE , INTEGER , , , , DOUBLE)

These all take as arguments an array of input values and the FunctionInfo array. MyArrayFunc

is declared as multi-valued (using the suffix M on the linkage). MyRetArrayFunc returns its results
in ReturnArray; thus usually means that it is multi-valued, or calculates its own derivatives.

double Values[100];

double ReturnArray[200];

integer FunctionInfo[XSLP_FUNCINFOSIZE];

integer RealFunc, ArrayFunc, RetArrayFunc;

double ReturnValue;

The calling program has to provide its own arrays for the function calls, which must be sufficient
to hold the largest amount of data required for any call. In particular, ReturnArray may need to
allow space for derivatives.
FunctionInfo should always be declared as shown.

XSLPgetindex(Prob, XSLP_USERFUNCNAMES, "MyRealFunc", RealFunc);

Fair Isaac Corporation Confidential and Proprietary Information 109

User Functions Advanced

XSLPgetindex(Prob, XSLP_USERFUNCNAMES, "MyArrayFunc", ArrayFunc);

XSLPgetindex(Prob, XSLP_USERFUNCNAMES, "MyRetArrayFunc", RetArrayFunc);

As XSLPcalluserfunc needs the function number, we get this for each function by using the
function XSLPgetindex. If you are not sure of the upper- or lower-case, then use
XSLP_USERFUNCNAMESNOCASE instead. If the functions are set up using library functions, the
function indices can be obtained at that time.

...

/*... set up Values array*/

...

XSLPsetuserfuncinfo(Prob,ArgInfo,1,n,1,0,0,0);

The input data for the function call is set up. The contents of the input array Values obviously
depend on the nature of the function being called, so we do not include them here. The function
information array FunctionInfo must be set up. XSLPsetuserfuncinfo will fill in the array
with the items shown. The arguments after FunctionInfo are:

� CallerFlag. This is always zero when the function is called directly by Xpress-SLP, and so if
set nonzero it indicates a call from the user application; its value can be used for any
purpose in the calling and called functions.

� The number of input variables: this is the number of elements used in the input array
Values.

� The number of return values required for each calculation.

� The number of sets of partial derivatives required.

� The number of items in the array of input argument names.

� The number of items in the array of return value names.

This structure actually allows more flexibility than is used when the function is called directly by
Xpress-SLP because, for example, there is no requirement for the number of input names to be
the same as the number of input arguments. However, such usage is beyond the scope of this
manual.

ReturnValue = XSLPcalluserfunc(Prob,RealFunc,Values,FunctionInfo,

NULL,NULL,NULL,NULL);

XSLPcalluserfunc calls the function using the appropriate linkage and calling mechanism. The
arguments to XSLPcalluserfunc are:

� The Xpress-SLP problem.

� The index of the function being called.

� Six arguments corresponding to the six possible arguments to a user function. If the user
function requires an argument, then the corresponding argument in the call must contain
the appropriate data in the correct format. If the user function does not require an
argument, then it can be NULL in the call (in any case, it will be omitted from the call). The
FunctionInfo argument is always required for function calls using XSLPcalluserfunc.

ReturnValue will contain the single value returned by the user function.

ReturnValue = XSLPcalluserfunc(Prob,ArrayFunc,Values,FunctionInfo,

NULL,NULL,NULL,NULL);

Fair Isaac Corporation Confidential and Proprietary Information 110

User Functions Advanced

This time, ReturnValue will contain the first value in the array of results returned by the
function. This is because the function is multi-valued and there is nowhere for the other values to
go.

Multi-valued functions must be called using the ReturnArray argument. Even if the user
function itself does not recognize it, XSLPcalluserfunc does, and will transfer the results into
it.

ReturnValue = XSLPcalluserfunc(Prob,ArrayFunc,Values,FunctionInfo,

NULL,NULL,NULL,ReturnArray);

The difference between this call and the previous one is the presence of the additional argument
ReturnArray. This will be used to hold all the values returned by the function. The function will
behave in exactly the same way as in the previous example, and ReturnValue will also be the
same, but ReturnArray will be filled in with the values from the function.

ReturnValue = XSLPcalluserfunc(Prob,RetArrayFunc,Values,FunctionInfo,

NULL,NULL,NULL,ReturnArray);

As MyRetArrayFunc is defined as returning its results in an array, the ReturnArray argument is
a required argument for the function anyway. In this case, ReturnValue is the value returned by
the function, which indicates success (zero), failure (1) or not calculated (-1).

15.9 Function Derivatives

Xpress-SLP normally expects to obtain a set of partial derivatives from a user function at a
particular base-point and then to use them as required, depending on the evaluation settings for
the various functions. If for any reason this is not appropriate, then the integer control
parameter XSLP_EVALUATE can be set to 1, which will force re-evaluation every time.
A function instance is not re-evaluated if all of its arguments are unchanged.
A simple function which does not have a function instance is evaluated every time.

If XSLP_EVALUATE is not set, then it is still possible to by-pass the re-evaluation of a function if
the values have not changed significantly since the last evaluation. If the input values to a
function have all converged to within their strict convergence tolerance (CTOL, ATOL_A, ATOL_R),
and bit 4 of XSLP_FUNCEVAL is set to 1, then the existing values and derivatives will continue to
be used. At the option of the user, an individual function, or all functions, can be re-evaluated in
this way or at each SLP iteration. If a function is not re-evaluated, then all the required values will
be calculated from the base point and the partial derivatives; the input and return values used in
making the original function calculation are unchanged.

Bits 3-5 of integer control parameter XSLP_FUNCEVAL determine the nature of function
evaluations. The meaning of each bit is as follows:

Bit 3 evaluate functions whenever independent variables change.

Bit 4 evaluate functions when independent variables change outside tolerances.

Bit 5 apply evaluation mode to all functions.

If bits 3-4 are zero, then the settings for the individual functions are used.
If bit 5 is zero, then the settings in bits 3-4 apply only to functions which do not have their own
specific evaluation modes set.

Examples:

Fair Isaac Corporation Confidential and Proprietary Information 111

User Functions Advanced

Bits 3-5 = 1 (set bit 3) Evaluate functions whenever their input arguments (independent
variables) change, unless the functions already have their own evaluation options
set.

Bits 3-5 = 5 (set bits 3 and 5) Evaluate all functions whenever their input arguments
(independent variables) change.

Bits 3-5 = 6 (set bits 4 and 5) Evaluate functions whenever input arguments (independent
variables) change outside tolerance. Use existing calculation to estimate values
otherwise.

Bits 6-8 of integer control parameter XSLP_FUNCEVAL determine the nature of derivative
calculations. The meaning of each bit is as follows:

Bit 6 tangential derivatives.

Bit 7 forward derivatives.

Bit 8 apply evaluation mode to all functions.

If bits 6-7 are zero, then the settings for the individual functions are used.
If bit 8 is zero, then the settings in bits 6-7 apply only to functions which do not have their own
specific derivative calculation modes set.

Examples:

Bits 6-8 = 1 (set bit 6) Use tangential derivatives for all functions which do not already have
their own derivative options set.

Bits 6-8 = 5 (set bits 6 and 8) Use tangential derivatives for all functions.

Bits 6-8 = 6 (set bits 7 and 8) Use forward derivatives for all functions.

The following constants are provided for setting these bits:

Setting bit 3 XSLP_RECALC

Setting bit 4 XSLP_TOLCALC

Setting bit 5 XSLP_ALLCALCS

Setting bit 6 XSLP_2DERIVATIVE

Setting bit 7 XSLP_1DERIVATIVE

Setting bit 8 XSLP_ALLDERIVATIVES

A function can make its own determination of whether to re-evaluate. If the function has already
calculated and returned a full set of values and partial derivatives, then it can request Xpress-SLP
to estimate the values required from those already provided.

The function must be defined as using the ReturnArray argument, so that the return value from
the function itself is a double precision status value as follows:

0 normal return. The function has calculated the values and they are in ReturnArray.

1 error return. The function has encountered an unrecoverable error. The values in
ReturnArray are ignored and the optimization will normally terminate.

-1 no calculation. Xpress-SLP should recalculate the values from the previous results. The
values in ReturnArray are ignored.

Fair Isaac Corporation Confidential and Proprietary Information 112

User Functions Advanced

15.9.1 Analytic Derivatives of Instantiated User Functions not Returning their own Deriva-
tives

When analytical derivatives are used, SLP will calculate approximated derivatives using finite
differences for instantiated functions and use these values when deriving analytical derivatives.
Functions returning multiple arguments will always be instantiated, otherwise functions can be
forced to be instantiated on a per function basis.

Fair Isaac Corporation Confidential and Proprietary Information 113

CHAPTER 16

Management of zero placeholder entries

16.1 The augmented matrix structure

During the augmentation process, Xpress-SLP builds additional matrix structure to represent the
linear approximation of the nonlinear constraints within the problem (see Xpress-SLP Structures).
In effect, it adds a generic structure which approximates the effect of changes to variables in
nonlinear expressions, over and above that which would apply if the variables were simply
replaced by their current values.

As a very simple example, consider the nonlinear constraint (R1, say)
X ∗ Y ≤ 10

The variables X and Y are replaced by X0 + δX and Y0 + δY respectively, where X0 and Y0 are the
values of X and Y at which the approximation will be made.

The original constraint is therefore
(X0 + δX) ∗ (Y0 + δY) ≤ 10

Expanding this into individual terms, we have
X0 ∗ Y0 + X0 ∗ δY + Y0 ∗ δX + δX ∗ δY ≤ 10

The first term is constant, the next two terms are linear in δY and δX respectively, and the last
term is nonlinear.

The augmented structure deletes the nonlinear term, so that the remaining structure is a linear
approximation to the original constraint. The justification for doing this is that if δX or δY (or
both) are small, then the error involved in ignoring the term is also small.

The resulting matrix structure has entries of Y0 in the delta variable δX and X0 in the delta
variable δY . The constant entry X0 ∗ Y0 is placed in the special "equals" column which has a fixed
activity of 1. All these entries are updated at each SLP iteration as the solution process proceeds
and the problem is linearized at a new point. The positions of these entries – (R1, δX), (R1, δY)
and (R1, =) – are known as placeholders.

16.2 Derivatives and zero derivatives

At each SLP iteration, the values of the placeholders are re-calculated. In the example in the
previous section, the values X0 in the delta variable δY and Y0 in the delta variable δX were
effectively determined by analytic methods – that is, we differentiated the original formula to
determine what values would be required in the placeholders.

In general, analytic differentiation may not be possible: the formula may contain functions which
cannot be differentiated (because, for example, they are not smooth or not continuous), or for
which the analytic derivatives are not known (because, for example, they are functions providing
values from "black boxes" such as databases or simulators). In such cases, Xpress-SLP

Fair Isaac Corporation Confidential and Proprietary Information 114

Management of zero placeholder entries Advanced

approximates the differentiation process by numerical methods. The example in the previous
section would have approximate derivatives calculated as follows:

The current value of X (X0) is perturbed by a small amount (dX), and the value of the formula is
recalculated in each case.

fd = (X0 − dX) ∗ Y0

fu = (X0 + dX) ∗ Y0

derivative = (fu − fd) / (2 ∗ dX)

In this particular example, the value obtained by numerical methods is the same as the analytic
derivative. For more complex functions, there may be a slight difference, depending on the
magnitude of dX.

This derivative represents the effect on the constraint of a change in the value of X. Obviously, if
Y changes as well, then the combined effect will not be fully represented although, in general, it
will be directionally correct.

The problem comes when Y0 is zero. In such a case, the derivative is calculated as zero, meaning
that changing X has no effect on the value of the formula. This can impact in one of two ways:
either the value of X never changes because there is no incentive to do so, or it changes by
unreasonably large amounts because there is no effect from doing so. If X and Y are linked in
some other way, so that Y becomes nonzero when X changes, the approximation using zero as
the derivative can cause the optimization process to behave badly.

Xpress-SLP tries to avoid the problem of zero derivatives by using small nonzero values for
variables which are in fact zero. In most cases this gives a small nonzero value for the derivative,
and hence for the placeholder entry. The model then contains some effect for the change in a
variable, even if instantaneously the effect is zero.

The same principle is applied to analytic derivatives, so that the values obtained by either method
are broadly similar.

16.3 Placeholder management

The default action of Xpress-SLP is to retain all the calculated values for all the placeholder
entries. This includes values which would be zero without the special handling described in the
previous section. We will call such values "zero placeholders".

Although retaining all the values gives the best chance of finding a good optimum, the presence
of a large dense area of small values often gives rise to considerable numerical instability which
adversely affects the optimization process. Xpress-SLP therefore offers a way of deleting small
values which is less likely to affect the final outcome whilst improving numerical stability.

Most of the candidate placeholders are in the delta variables (represented by the δX and δY
variables above). Various criteria can be selected for deletion of zero placeholder entries without
affecting the validity of the basis (and so making the next SLP iteration more costly in time and
stability). The criteria are selected using the control parameter XSLP_ZEROCRITERION as follows:

� Bit 0 (=1) Remove placeholders in nonbasic SLP variables
This criterion applies to placeholders which are in the SLP variable (not the delta). Any value
can be deleted from a nonbasic variable without upsetting the basis, so all eligible zero
placeholders can be deleted.

� Bit 1 (=2) Remove placeholders in nonbasic delta variables
Any value can be deleted from a nonbasic variable without upsetting the basis, so all
eligible zero placeholders can be deleted.

Fair Isaac Corporation Confidential and Proprietary Information 115

Management of zero placeholder entries Advanced

� Bit 2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
If the update row is nonbasic, then generally the basic SLP variable can be pivoted in the
update row, so the basis is still valid if other entries are deleted. The entry in the update
row is always 1.0 and will never be deleted.

� Bit 3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and the
corresponding SLP variable is nonbasic
If the delta is basic and the corresponding SLP variable is nonbasic, then the delta will pivot
in the update row (the delta and the SLP variable are the only two variables in the update
row), so the basis is still valid if other entries are deleted. The entry in the update row is
always -1.0 and will never be deleted.

� Bit 4 (=16) Remove placeholders in a basic delta variable if the determining row for the
corresponding SLP variable is nonbasic
If the delta variable is basic and the determining row for the corresponding SLP variable is
nonbasic then it is generally possible (although not 100% guaranteed) to pivot the delta
variable in the determining row. so the basis is still valid if other entries are deleted. The
entry in the determining row is never deleted even if it is otherwise eligible.

The following constants are provided for setting these bits:

Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVAR

Setting bit 1 XSLP_ZEROCRTIERION_NBDELTA

Setting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW

Setting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROW

Setting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROW

There are two additional control parameters used in this procedure:

� XSLP_ZEROCRITERIONSTART

This is the first SLP iteration at which zero placeholders will be examined for eligibility. Use
of this parameter allows a balance to be made between optimality and numerical stability.

� XSLP_ZEROCRITERIONCOUNT

This is the number of consecutive SLP iterations that a placeholder is a zero placeholder
before it is deleted. So, if in the earlier example XSLP_ZEROCRITERIONCOUNT is 2, the entry
in the delta variable dX will be deleted only if Y was also zero on the previous SLP iteration.

Regardless of the basis status of a variable, its delta, update row and determining row, if a zero
placeholder was deleted on the previous SLP iteration, it will always be deleted in the current SLP
iteration (keeping a zero matrix entry at zero does not upset the basis).

If the optimization method is barrier, or the basis is not being used, then the bit settings of
XSLP_ZEROCRITERION are not used as such: if XSLP_ZEROCRITERION is nonzero, all zero
placeholders will be deleted subject to XSLP_ZEROCRITERIONCOUNT and
XSLP_ZEROCRITERIONSTART.

Fair Isaac Corporation Confidential and Proprietary Information 116

CHAPTER 17

Special Types of Problem

17.1 Nonlinear objectives

Xpress-SLP works with nonlinear constraints. If a nonlinear objective is required (except for the
special case of a quadratic objective — see below) then the objective should be provided using a
constraint in the problem. For example, to optimize f(x) where f is a nonlinear function and x is
a set of one or more variables, create the constraint

f(x)− X = 0

where X is a new variable, and then optimize X.

In general, X should be made a free variable, so that the problem does not converge prematurely
on the basis of an unchanging objective function. It is generally important that the objective is
not artificially constrained (for example, by bounding X) because this can distort the solution
process. Also, as such an objective transfer row is not a real constraint, no error vectors should be
added (row can be enforced); feasibility should be provided by the transfer variable X being free.

17.2 Convex Quadratic Programming

Convex quadratic programming (QP) is a special case of nonlinear programming where the
constraints are linear but the objective is quadratic (that is, it contains only terms which are
constant, variables multiplied by a constant, or products of two variables multiplied by a
constant) and convex (convexity is checked by the Xpress Optimizer). It is possible to solve convex
quadratic problems using SLP, but it is not usually the best way. The reason is that the solution to
a convex QP problem is typically not at a vertex. In SLP a non-vertex solution is achieved by
applying step bounds to create additional constraints which surround the solution point, so that
ultimately the solution has been obtained within suitable tolerances. Because of the nature of
the problem, successive solutions will often swing from one step bound to the other; in such
circumstances, the step bounds are reduced on each SLP iteration but it will still take a long time
before convergence. In addition, unless the linear approximation is adequately constrained, it
will be unbounded because the linear approximation will not recognize the change in direction
of the relationship with the derivative as the variable passes through a stationary point. The
easiest way to ensure that the linear problem is constrained is to provide realistic upper and
lower bounds on all variables.

In Xpress-SLP, convex quadratic problems can be solved using the quadratic optimizer within the
Xpress optimizer package. For pure QP (or MIQP) problems, therefore, SLP is not required.
However, the SLP algorithm can be used together with QP to solve problems with a quadratic
objective and also nonlinear constraints. The constraints are handled using the normal SLP
techniques; the objective is handled by the QP optimizer. If the objective is not convex (not

Fair Isaac Corporation Confidential and Proprietary Information 117

Special Types of Problem Advanced

semi-definite), the QP optimizer may not give a solution (with default settings, it will produce an
error message); SLP will find a solution but — as always — it may be a local optimum.

If a QP problem is to be solved, then the quadratic component should be input in the normal way
(using QMATRIX or QUADOBJ in MPS file format, or the library functions XPRSloadqp or
XPRSloadqglobal). Xpress-SLP will then automatically use the QP optimizer. If the problem is to
be solved using the SLP routines throughout, then the objective should be provided via a
constraint as described in the previous section.

This applies to quadratically constrained (QCQP and MIQCQP) problems as well.

For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP
problems, please see Selecting the right algorithm for a nonlinear problem - when to use the
XPRS library instead of XSLP.

17.3 Mixed Integer Nonlinear Programming

Mixed Integer Non-Linear Programming (MINLP) is the application of mixed integer techniques to
the solution of problems including non-linear relationships. Xpress-SLP offers a set of
components to implement MINLP using Mixed Integer Successive Linear Programming (MISLP).

17.3.1 Mixed Integer SLP

The mixed integer successive linear programming (MISLP) solver is a generalization of the
traditional branch and bound procedure to nonlinear programming. The MIP engine is used to
control the branch-and-bound algorithm, with each node being evaluated using SLP. MIP then
compares the SLP solutions at each node to decide which node to explore next, and to decide
when an integer feasible and ultimately optimal solution have been obtained.

MISLP, also known as SLP within MIP, offers nonlinear specific root heuristics controlled by control
XSLP_HEURSTRATEGY.

Other generic heuristics are controlled by the respective XPRS heuristics controls.

The branch and bound tree exploration is executed in parallel. Use the XPRS control MIPTHREADS
to limit the number of threads used.

Normally, the relaxed problem is solved first, using XSLPminim or XSLPmaxim with the -l flag to
ignore the integer elements of the problem. It is possible to go straight into the XSLPglobal

routine and allow it to do the initial SLP optimization as well. In that case, ensure that the control
parameter XSLP_OBJSENSE is set to +1 (minimization) or -1 (maximization) before calling
XSLPglobal.

The actual algorithm employed is controlled by a number of control parameters, as well as
offering the possibility of direct user interaction through call-backs at key points in the solution
process.

17.3.2 Heuristics for Mixed Integer SLP

For hard MINLP problems, or where a solution must quickly be generated, the root heuristics of
MISLP can be executed as stand alone methods. These approaches can be used by changing the
value of the control parameter XSLP_MIPALGORITHM.

there are two MISLP heuristics:

1. MIP within SLP. In this, each SLP iteration is optimized using MIP to obtain an integer
optimal solution to the linear approximation of the original problem. SLP then compares

Fair Isaac Corporation Confidential and Proprietary Information 118

Special Types of Problem Advanced

this MIP solution to the MIP solution of the previous SLP iteration and determines
convergence based on the differences between the successive MIP solutions.

2. SLP then MIP. In this, SLP is used to find a converged solution to the relaxed problem. The
resulting linearization is then fixed (i.e. the base point and the partial derivatives do not
change) and MIP is run to find an integer optimum. SLP is then run again to find a
converged solution to the original problem with these integer settings.

The approach described in (1) seems potentially dangerous, in that changes in the integer
variables could have disproportionate effects on the solution and on the values of the SLP
variables. There are also question-marks over the use of step-bounding to control convergence,
particularly if any of the integer variables are also SLP variables.

The approach described in (2) has the big advantage that MIP is working on a linear problem and
so can take advantage of all of the special attributes of such a problem. This means that the
solution time is likely to be much faster than the alternatives. However, if the real problem is
significantly non-linear, the integer solution to the initial SLP solution may not be a good integer
solution to the original problem and so a false optimum may occur.

17.3.3 Fixing or relaxing the values of the SLP variables

The solution process may involve step-bounding to obtain the converged solution. Some MIP
solution strategies may want to fix the values of some of the SLP variables before moving on to
the MIP part of the process, or they may want to allow the child nodes more freedom than would
be allowed by the final settings of the step bounds. Control parameters XSLP_MIPALGORITHM,
XSLP_MIPFIXSTEPBOUNDS and XSLP_MIPRELAXSTEPBOUNDS can be used to free, or fix to zero,
various categories of step bounds, thus effectively freeing the SLP variables or fixing them to
their values in the initial solution.

At each node, step bounds may again be fixed to zero or relaxed or left in the same state as in
the solution to the parent node.

XSLP_MIPALGORITHM uses bits 2-3 (for the root node) and 4-5 (for other nodes) to determine
which step bounds are fixed to zero (thus fixing the values of the corresponding variables) or
freed (thus allowing the variables to change, possibly beyond the point they were restricted to in
the parent node).
Set bit 2 (4) of XSLP_MIPALGORITHM to implement relaxation of defined categories of step
bounds as determined by XSLP_MIPRELAXSTEPBOUNDS at the root node (at each node).
Set bit 3 (5) of XSLP_MIPALGORITHM to implement fixing of defined categories of step bounds as
determined by XSLP_MIPFIXSTEPBOUNDS at the root node (at each node).

Alternatively, specific actions on setting bounds can be carried out by the user callback defined by
XSLPsetcbprenode.

The default setting of XSLP_MIPALGORITHM is 17 which relaxes step bounds at all nodes except
the root node. The step bounds from the initial SLP optimization are retained for the root node.

XSLP_MIPRELAXSTEPBOUNDS and XSLP_MIPFIXSTEPBOUNDS are bitmaps which determine
which categories of SLP variables are processed.

Bit 1 Process SLP variables which do not appear in coefficients but which do have
coefficients (constant or variable) in the original problem.

Bit 2 Process SLP variables which have coefficients (constant or variable) in the original
problem.

Bit 3 Process SLP variables which appear in coefficients but which do not have coefficients
(constant or variable) in the original problem.

Fair Isaac Corporation Confidential and Proprietary Information 119

Special Types of Problem Advanced

Bit 4 Process SLP variables which appear in coefficients.

In most cases, the default settings (XSLP_MIPFIXSTEPBOUNDS=0,
XSLP_MIPRELAXSTEPBOUNDS=15) are appropriate.

17.3.4 Iterating at each node

Any number of SLP iterations can be carried out at each node. The maximum number is set by
control parameter XSLP_MIPITERLIMIT and is activated by XSLP_MIPALGORITHM. The
significant values for XSLP_MIPITERLIMIT are:

0 Perform an LP optimization with the current linearization. This means that, subject to the
step bounds, the SLP variables can take on other values, but the coefficients are not
updated.

1 As for 0, but the model is updated after each iteration, so that each node starts with a
new linearization based on the solution of its parent.

n> 1 Perform up to n SLP iterations, but stop when a termination criterion is satisfied. If no
other criteria are set, the SLP will terminate on XSLP_ITERLIMIT or
XSLP_MIPITERLIMIT iterations, or when the SLP converges.

After the last MIP node has been evaluated and the MIP procedure has terminated, the final
solution can be re-optimized using SLP to obtain a converged solution. This is only necessary if
the individual nodes are being terminated on a criterion other than SLP convergence.

17.3.5 Termination criteria at each node

Because the intention at each node is to get a reasonably good estimate for the SLP objective
function rather than to obtain a fully converged solution (which is only required at the optimum),
it may be possible to set looser but practical termination criteria. The following are provided:

Testing for movement of the objective function
This functions in a similar way to the extended convergence criteria for ordinary SLP convergence,
but does not require the SLP variables to have converged in any way. The test is applied once step
bounding has been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is
not being used). The node will be terminated at the current iteration if the range of the objective
function values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or
within XSLP_MIPOTOL_R ∗OBJ where OBJ is the average value of the objective function over
those iterations.

Related control parameters:

XSLP_MIPOTOL_A Absolute tolerance
XSLP_MIPOTOL_R Relative tolerance
XSLP_MIPOCOUNT Number of SLP iterations over which the movement is measured

Testing the objective function against a cutoff
If the objective function is worse by a defined amount than the best integer solution obtained so
far, then the SLP will be terminated (and the node will be cut off). The node will be cut off at the
current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP iterations
are all worse than the best obtained so far, and the difference is greater than XSLP_MIPCUTOFF_A
and XSLP_MIPCUTOFF_R ∗OBJ where OBJ is the best integer solution obtained so far.

Related control parameters:

Fair Isaac Corporation Confidential and Proprietary Information 120

Special Types of Problem Advanced

XSLP_MIPCUTOFF_A Absolute amount by which the objective function is worse
XSLP_MIPCUTOFF_R Relative amount by which the objective function is worse
XSLP_MIPCUTOFFCOUNT Number of SLP iterations checked
XSLP_MIPCUTOFFLIMIT Number of SLP iterations before which the cutoff takes effect

17.3.6 Callbacks

User callbacks are provided as follows:

XSLPsetcbintsol(XSLPprob Prob,

int (*UserFunc)(XSLPprob myProb, void *myObject),

void *Object);

UserFunc is called when an integer solution has been obtained. The return value is ignored.

XSLPsetcboptnode(XSLPprob Prob,

int (*UserFunc)(XSLPprob myProb, void *myObject, int *feas),

void *Object);

UserFunc is called when an optimal solution is obtained at a node.
If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then further
processing of the node will be terminated (it is declared infeasible).

XSLPsetcbprenode(XSLPprob Prob,

int (*UserFunc)(XSLPprob myProb, void *myObject, int *feas),

void *Object);

UserFunc is called at the beginning of each node after the SLP problem has been set up but
before any SLP iterations have taken place.
If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then the
node will be declared infeasible and cut off. In particular, the SLP optimization at the node will
not be performed.

XSLPsetcbslpnode(XSLPprob Prob,

int (*UserFunc)(XSLPprob myProb, void *myObject, int *feas),

void *Object);

UserFunc is called after each SLP iteration at each node, after the SLP iteration, and after the
convergence and termination criteria have been tested.
If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then the
node will be declared infeasible and cut off.

17.4 Integer and semi-continuous delta variables

Functions implementing piecewise linear expressions often lead to local stalling due to the partial
derivatives not capturing the true nature of the behaviour of the function. Such functions are
often implemented as user functions or expressions using the abs function. To provide the Xpress
with a better way of evaluating such expressions, it is possible to mark variables (typically the key
dependencies of the expression) as having a semi-continuous delta variable with a minimum
perturbation size associated, which means the value of any expression that involves this variable
is expected to meaningfully change if the variable’s value in the current solution is changed by at
least of the semi-continuous value of the delta. If a minimum meaningful perturbation is not
known, the variable’s delta may be set up to being of type explore, when SLP will trial several
values up to the provided maximum in case of zero partials are detected. Using exploration
deltas may significantly increase the number the formulas the variable is used in are evaluated.

Fair Isaac Corporation Confidential and Proprietary Information 121

Special Types of Problem Advanced

It is important to note that the value with a semi-continuous delta will still be allowed to take
any value and make arbitrary steps between iterations, the extra information of the delta
variable is solely used as a means of better evaluating the effect of change per variable.

User functions that can only be evaluated at given values (e.g. lookup tables or simulations over
integer input) may be modelled with variables with an integer delta variable. If a variable’s delta
variable is flagged as being integer, with a step value of ’delta’, then assuming the variable has
an initial value of ’x0’, the possible values of the variable are ’x0 + i * delta’ where ’i’ is an integer
number. If no initial value is provided, the lower bound (or zero if no lover bound) is used to start
the possible values from.

Variables with a semi-continuous delta are not expected to be harder than the problem without,
in fact, the extra information usually aids the solve noticeably.

A model with variables with integer deltas is considered to be hard. An integer delta is expected
to be used to model the domain of user function, and should not be used to otherwise model
integrality of the original variable. Variables with an integer delta used in constraints tend to
make the problem difficult to solve unless their use is balanced by the presence of infeasibility
breaker variables (penalty slacks).

To change the type of a delta variable, use ’XSLPchgdeltatype’ in the API and the ’setdeltatype’
method in Mosel.

If variables with integer deltas are present in the problem, then SLP will run a number of
heuristics as part of the solve, please refer to XSLP_GRIDHEURSELECT.

Fair Isaac Corporation Confidential and Proprietary Information 122

CHAPTER 18

Xpress-SLP multistart

The feature is an additive feature that minimizes the development overhead and effort of
implementing parallel multistart searches. The purpose of multistart is two-fold. Traditionally,
multistart is a so called globalization feature. It is important to correctly understand what this
technology offers, and what it does not. It offers a convenient and efficient way of exploring a
larger feasible space building on top of existing local solver algorithms by the means of
perturbing initial points and/or parameters or even the problem statement itself. Multistart can
also be viewed as a left-alone feature. In a typical situation, versions of a model react favourably
to a set of control settings, dependent on data. Multistart allows for a simple way of combining
different control setting scenarios, increasing the robustness of the model.

The base problem is defined as the baseline: as the model is normally loaded it without any
multistart information, including problem description, callbacks and controls. A run or a job is
defined as a problem instance that needs to be solved as part of multistart.

On completion, the current problem is set up to match that of the winner, allowing examination
of the winning strategy and solution using the normal means.

The original prob object is not reused, all runs are mode on a copy of the problem, allowing full
customization from the callbacks, including changes to structre.

Callbacks are inherited to the multistart jobs from the master problem and can be customized
from the the multistart callbacks. XSLinterrupt has a global scope, and a calling it terminates the
multistart search.

Although not intended as the primary use, multistart allows the execution of all supported
problem classes, so for example alternate MIP strategies can be used in parallel.

The mutistart job pool is maintained and can be extended until the first maxim / minim with
XSLP_MULTISTART on. This allows for doing optimizations runs aimed at generating multistart
jobs. The multistart pool is dynamic and new jobs can be added on the fly from the jobstart and
jobend callbacks.

Fair Isaac Corporation Confidential and Proprietary Information 123

III. Reference

CHAPTER 19

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and
made available to users of the Xpress-SLP Libraries in the form of problem attributes. These can
be accessed in much the same manner as the controls. Examples of problem attributes include the
sizes of arrays, for which library users may need to allocate space before the arrays themselves are
retrieved. A full list of the attributes available and their types may be found in this chapter.

Library users are provided with the following functions for obtaining the values of attributes:

XSLPgetintattrib XSLPgetdblattrib

XSLPgetptrattrib XSLPgetstrattrib

The attributes listed in this chapter are all prefixed with XSLP_. It is possible to use the above
functions with attributes for the Xpress Optimizer (attributes prefixed with XPRS_). For details of
the Optimizer attributes, see the Optimizer manual.

Example of the usage of the functions:

XSLPgetintattrib(Prob, XSLP_ITER, &nIter);

printf("The number of SLP iterations is %d\n", nIter);

XSLPgetdblattrib(Prob, XSLP_ERRORCOSTS, &Errors);

printf("and the total error cost is %lg\n", Errors);

The following is a list of all the Xpress-SLP attributes:

XSLP_COEFFICIENTS Number of nonlinear coefficients p. 132

XSLP_CURRENTDELTACOST Current value of penalty cost multiplier for penalty delta vectors
p. 129

XSLP_CURRENTERRORCOST Current value of penalty cost multiplier for penalty error vectors
p. 129

XSLP_CVS Number of character variables p. 132

XSLP_DELTAS Number of delta vectors created during augmentation p. 132

XSLP_ECFCOUNT Number of infeasible constraints found at the point of linearization
p. 132

XSLP_EQUALSCOLUMN Index of the reserved "=" column p. 133

XSLP_ERRORCOSTS Total penalty costs in the solution p. 129

XSLP_EXPLOREDELTAS Number of variables with an exploration-type delta set up in the
problem p. 132

Fair Isaac Corporation Confidential and Proprietary Information 125

Problem Attributes Reference

XSLP_GLOBALFUNCOBJECT The user-defined global function object p. 148

XSLP_IFS Number of internal functions p. 133

XSLP_IMPLICITVARIABLES Number of SLP variables appearing only in coefficients p. 133

XSLP_INTEGERDELTAS Number of variables set up with an integer delta in the problem p. 133

XSLP_INTERNALFUNCCALLS Number of calls made to internal functions p. 133

XSLP_ITER SLP iteration count p. 134

XSLP_JOBID Unique identifier for the current job p. 134

XSLP_MINORVERSION Xpress-SLP minor version number p. 134

XSLP_MINUSPENALTYERRORS Number of negative penalty error vectors p. 134

XSLP_MIPITER Total number of SLP iterations in MISLP p. 134

XSLP_MIPNODES Number of nodes explored in MISLP. This includes any nodes for which
a non-linear solve has been carried out. p. 135

XSLP_MIPPROBLEM The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a
reference of type XPRSprob, and should be used in MISLP callbacks to
access MIP-specific Optimizer values (such as node and parent
numbers). p. 148

XSLP_MIPSOLS Number of integer solutions found in MISLP. This includes solutions
found during the tree search or any heuristics. p. 135

XSLP_MODELCOLS Number of model columns in the problem p. 135

XSLP_MODELROWS Number of model rows in the problem p. 135

XSLP_MSSTATUS Status of the mutlistart search p. 136

XSLP_NLPSTATUS The solution status of the problem. p. 136

XSLP_NONCONSTANTCOEFF Number of coefficients in the augmented problem that might
change between SLP iterations p. 136

XSLP_NONLINEARCONSTRAINTS Number of nonlinear constraints in the problem p. 136

XSLP_OBJSENSE Objective function sense p. 186

XSLP_OBJVAL Objective function value excluding any penalty costs p. 130

XSLP_ORIGINALCOLS Number of model columns in the problem p. 137

XSLP_ORIGINALROWS Number of model rows in the problem p. 137

XSLP_PENALTYDELTACOLUMN Index of column costing the penalty delta row p. 137

XSLP_PENALTYDELTAROW Index of equality row holding the penalties for delta vectors p. 137

XSLP_PENALTYDELTAS Number of penalty delta vectors p. 137

XSLP_PENALTYDELTATOTAL Total activity of penalty delta vectors p. 130

XSLP_PENALTYDELTAVALUE Total penalty cost attributed to penalty delta vectors p. 130

XSLP_PENALTYERRORCOLUMN Index of column costing the penalty error row p. 138

XSLP_PENALTYERRORROW Index of equality row holding the penalties for penalty error vectors
p. 138

Fair Isaac Corporation Confidential and Proprietary Information 126

Problem Attributes Reference

XSLP_PENALTYERRORS Number of penalty error vectors p. 138

XSLP_PENALTYERRORTOTAL Total activity of penalty error vectors p. 130

XSLP_PENALTYERRORVALUE Total penalty cost attributed to penalty error vectors p. 130

XSLP_PLUSPENALTYERRORS Number of positive penalty error vectors p. 138

XSLP_PRESOLVEDELETEDDELTA Number of potential delta variables deleted by XSLPpresolve
p. 138

XSLP_PRESOLVEELIMINATIONS Number of SLP variables eliminated by XSLPpresolve p. 139

XSLP_PRESOLVEFIXEDCOEF Number of SLP coefficients fixed by XSLPpresolve p. 139

XSLP_PRESOLVEFIXEDDR Number of determining rows fixed by XSLPpresolve p. 139

XSLP_PRESOLVEFIXEDNZCOL Number of variables fixed to a nonzero value by XSLPpresolve
p. 140

XSLP_PRESOLVEFIXEDSLPVAR Number of SLP variables fixed by XSLPpresolve p. 140

XSLP_PRESOLVEFIXEDZCOL Number of variables fixed at zero by XSLPpresolve p. 140

XSLP_PRESOLVEPASSES Number of passes made by the SLP nonlinear presolve procedure p. 140

XSLP_PRESOLVESTATE Indicates if the problem is presolved p. 141

XSLP_PRESOLVETIGHTENED Number of bounds tightened by XSLPpresolve p. 141

XSLP_SBXCONVERGED Number of step-bounded variables converged only on extended
criteria p. 141

XSLP_SEMICONTDELTAS Number of variables with a minimum perturbation step set up in the
problem p. 141

XSLP_SOLUTIONPOOL The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of
type XPRSmipsolpool. Change control XSLP_ANALYZE to record the
solutions into the pool. p. 148

XSLP_SOLVERSELECTED Includes information of which Xpress solver has been used to solve the
problem p. 142

XSLP_STATUS Bitmap holding the problem convergence status p. 142

XSLP_STOPSTATUS Status of the optimization process. p. 144

XSLP_TOLSETS Number of tolerance sets p. 144

XSLP_UCCONSTRAINEDCOUNT Number of unconverged variables with coefficients in
constraining rows p. 144

XSLP_UFINSTANCES Number of user function instances p. 144

XSLP_UFS Number of user functions p. 145

XSLP_UNCONVERGED Number of unconverged values p. 145

XSLP_UNIQUEPREFIX Unique prefix for generated names p. 150

XSLP_USEDERIVATIVES Indicates whether numeric or analytic derivatives were used to create
the linear approximations and solve the problem p. 145

XSLP_USERFUNCCALLS Number of calls made to user functions p. 145

Fair Isaac Corporation Confidential and Proprietary Information 127

Problem Attributes Reference

XSLP_VALIDATIONINDEX_A Absolute validation index p. 131

XSLP_VALIDATIONINDEX_K Relative first order optimality validation index p. 131

XSLP_VALIDATIONINDEX_R Relative validation index p. 131

XSLP_VARIABLES Number of SLP variables p. 145

XSLP_VERSION Xpress-SLP major version number p. 146

XSLP_VERSIONDATE Date of creation of Xpress-SLP p. 150

XSLP_VSOLINDEX Vertex solution index p. 131

XSLP_XPRSPROBLEM The underlying Optimizer problem p. 148

XSLP_XSLPPROBLEM The Xpress-SLP problem p. 148

XSLP_XVS Number of extended variable arrays p. 146

XSLP_ZEROESRESET Number of placeholder entries set to zero p. 146

XSLP_ZEROESRETAINED Number of potentially zero placeholders left untouched p. 146

XSLP_ZEROESTOTAL Number of potential zero placeholder entries p. 147

Fair Isaac Corporation Confidential and Proprietary Information 128

Problem Attributes Reference

19.1 Double problem attributes

XSLP_CURRENTDELTACOST

Description Current value of penalty cost multiplier for penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTERRORCOST

XSLP_CURRENTERRORCOST

Description Current value of penalty cost multiplier for penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTDELTACOST

XSLP_ERRORCOSTS

Description Total penalty costs in the solution

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_OBJSENSE

Description Objective function sense

Type Double

Values -1 Maximize

1 Minimize

Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 129

Problem Attributes Reference

XSLP_OBJVAL

Description Objective function value excluding any penalty costs

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTATOTAL

Description Total activity of penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTAVALUE

Description Total penalty cost attributed to penalty delta vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYERRORTOTAL

Description Total activity of penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYERRORVALUE

Description Total penalty cost attributed to penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 130

Problem Attributes Reference

XSLP_VALIDATIONINDEX_A

Description Absolute validation index

Type Double

Set by routines XSLPvalidate

XSLP_VALIDATIONINDEX_K

Description Relative first order optimality validation index

Type Double

Set by routines XSLPvalidatekkt

XSLP_VALIDATIONINDEX_R

Description Relative validation index

Type Double

Set by routines XSLPvalidate

XSLP_VSOLINDEX

Description Vertex solution index

Type Double

Notes The vertex solution index (VSOLINDEX) is a measure of how nearly the converged
solution to a problem is at a vertex (that is, at the intersection of a set of constraints) of
the feasible region.

Where the solution is in the middle of a face, the solution will in general have been
achieved through the use of step bounds. The VSOLINDEX is the fraction of delta vectors
which are not at a bound in the solution. Therefore, a value of 1.0 means that no delta
is at a step bound and therefore the solution is at a vertex of the feasible region.
Smaller values indicate that there are deltas at step bounds and so the solution is further
from being a vertex solution.

Fair Isaac Corporation Confidential and Proprietary Information 131

Problem Attributes Reference

19.2 Integer problem attributes

XSLP_COEFFICIENTS

Description Number of nonlinear coefficients

Type Integer

Set by routines XSLPaddcoefs, XSLPchgcoef, XSLPloadcoefs, XSLPreadprob

XSLP_CVS

Description Number of character variables

Type Integer

Set by routines XSLPaddcvars, XSLPchgcvar, XSLPloadcvars, XSLPreadprob

XSLP_DELTAS

Description Number of delta vectors created during augmentation

Type Integer

Set by routines XSLPconstruct

XSLP_ECFCOUNT

Description Number of infeasible constraints found at the point of linearization

Type Integer

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ECFCHECK, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_EXPLOREDELTAS

Description Number of variables with an exploration-type delta set up in the problem

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 132

Problem Attributes Reference

XSLP_EQUALSCOLUMN

Description Index of the reserved "=" column

Type Integer

Note If there had been no "=" column present, it will be assumed that the user needs the
index to add nonlinear terms into the problem that are not coefficients, and an "="
columns will be added to the problem, whose index is then returned. Please note, that
this means that a call to XSLPgetintattrib with this attribute might make a slight
modification to the problem itself.

Set by routines XSLPconstruct, XSLPreadprob

XSLP_IFS

Description Number of internal functions

Type Integer

Set by routines XSLPcreateprob

XSLP_IMPLICITVARIABLES

Description Number of SLP variables appearing only in coefficients

Type Integer

Set by routines XSLPconstruct

XSLP_INTEGERDELTAS

Description Number of variables set up with an integer delta in the problem

Type Integer

Set by routines XSLPconstruct

XSLP_INTERNALFUNCCALLS

Description Number of calls made to internal functions

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 133

Problem Attributes Reference

Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,
XSLPmaxim, XSLPminim

XSLP_ITER

Description SLP iteration count

Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_JOBID

Description Unique identifier for the current job

Type Integer

Note Assigned when a job is created, and can be used to identify jobs in callbacks. Note that
all callback receives an optional job name that can be assigned at job creation time.

Set by routines XSLPmaxim, XSLPminim

XSLP_MINORVERSION

Description Xpress-SLP minor version number

Type Integer

Set by routines XSLPinit

XSLP_MINUSPENALTYERRORS

Description Number of negative penalty error vectors

Type Integer

Set by routines XSLPconstruct

XSLP_MIPITER

Description Total number of SLP iterations in MISLP

Type Integer

Set by routines XSLPglobal

Fair Isaac Corporation Confidential and Proprietary Information 134

Problem Attributes Reference

XSLP_MIPNODES

Description Number of nodes explored in MISLP. This includes any nodes for which a non-linear solve
has been carried out.

Type Integer

Set by routines XSLPglobal

XSLP_MIPSOLS

Description Number of integer solutions found in MISLP. This includes solutions found during the
tree search or any heuristics.

Type Integer

Set by routines XSLPglobal

XSLP_MODELCOLS

Description Number of model columns in the problem

Type Integer

Note This is the number of columns currently in the problem without any augmentation, i.e.
the number of columns that describe the algebraic definition of the problem. These
columns always precede the augmentation columns in order. If the problem is presolved,
this may be smaller than the number of original columns in the problem. To access the
number of original columns, use XSLP_ORIGINALCOLS.

XSLP_MODELROWS

Description Number of model rows in the problem

Type Integer

Note This is the number of rows currently in the problem without any augmentation, i.e. the
number of rows that describe the algebraic definition of the problem. These rows
always precede the augmentation rows in order. If the problem is presolved, this may be
smaller than the number of original rows in the problem. To access the number of
original rows, use XSLP_ORIGINALROWS.

Fair Isaac Corporation Confidential and Proprietary Information 135

Problem Attributes Reference

XSLP_MSSTATUS

Description Status of the mutlistart search

Type Integer

Note The value matches that of the winner job if the multistart search completes and a
feasible solution has been found. If no solution is found, it is set to
XSLP_NLPSTATUS_INFEASIBLE. If the search is terminated early, it is set to
XSLP_NLPSTATUS_UNFINISHED (thought in which case the winner if any is still
synchronized to the base problem and the solution and XSLP_NLPSTATUS is available).

XSLP_NLPSTATUS

Description The solution status of the problem.

Type Integer

Values 0 Optimization unstarted

1 Locally optimal

2 Optimal

3 Locally infeasible

4 Infeasible

5 Unbounded

6 Unfinished

Default value 0

Set by routines XSLPminim, XSLPmaxim, XSLPglobal

XSLP_NONCONSTANTCOEFF

Description Number of coefficients in the augmented problem that might change between SLP
iterations

Type Integer

Set by routines XSLPconstruct

XSLP_NONLINEARCONSTRAINTS

Description Number of nonlinear constraints in the problem

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 136

Problem Attributes Reference

XSLP_ORIGINALCOLS

Description Number of model columns in the problem

Type Integer

Note The number of columns in the original matrix before presolveing without any
augmentation columns.

XSLP_ORIGINALROWS

Description Number of model rows in the problem

Type Integer

Note The number of rows in the original matric before presolveing without any
augmentation rows.

XSLP_PENALTYDELTACOLUMN

Description Index of column costing the penalty delta row

Type Integer

Note This index always counts from 1. It is zero if there is no penalty delta row.

Set by routines XSLPconstruct

XSLP_PENALTYDELTAROW

Description Index of equality row holding the penalties for delta vectors

Type Integer

Note This index always counts from 1. It is zero if there are no penalty delta vectors.

Set by routines XSLPconstruct

XSLP_PENALTYDELTAS

Description Number of penalty delta vectors

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 137

Problem Attributes Reference

XSLP_PENALTYERRORCOLUMN

Description Index of column costing the penalty error row

Type Integer

Note This index always counts from 1. It is zero if there is no penalty error row.

Set by routines XSLPconstruct

XSLP_PENALTYERRORROW

Description Index of equality row holding the penalties for penalty error vectors

Type Integer

Note This index always counts from 1. It is zero if there are no penalty error vectors.

Set by routines XSLPconstruct

XSLP_PENALTYERRORS

Description Number of penalty error vectors

Type Integer

Set by routines XSLPconstruct

XSLP_PLUSPENALTYERRORS

Description Number of positive penalty error vectors

Type Integer

Set by routines XSLPconstruct

XSLP_PRESOLVEDELETEDDELTA

Description Number of potential delta variables deleted by XSLPpresolve

Type Integer

Note A potential delta variable is deleted when an SLP variable is identified as not interacting
in a nonlinear way with any constraints (that is, it appears only in linear constraints, or is
fixed).

Fair Isaac Corporation Confidential and Proprietary Information 138

Problem Attributes Reference

Set by routines XSLPpresolve

See also XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEELIMINATIONS

Description Number of SLP variables eliminated by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED

XSLP_PRESOLVEFIXEDCOEF

Description Number of SLP coefficients fixed by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDDR

Description Number of determining rows fixed by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

Fair Isaac Corporation Confidential and Proprietary Information 139

Problem Attributes Reference

XSLP_PRESOLVEFIXEDNZCOL

Description Number of variables fixed to a nonzero value by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDSLPVAR

Description Number of SLP variables fixed by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDZCOL

Description Number of variables fixed at zero by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEPASSES

Description Number of passes made by the SLP nonlinear presolve procedure

Type Integer

Set by routines XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 140

Problem Attributes Reference

XSLP_PRESOLVESTATE

Description Indicates if the problem is presolved

Type Integer

Values 0 The problem is not presolved

1 The problem is presolved, but no columns or rows have been removed from the
problem

2 The problem is fully presolved, and the column and row indices do not match
the original problem

Set by routines XSLPmaxim, XSLPminim, XSLPpresolve

XSLP_PRESOLVETIGHTENED

Description Number of bounds tightened by XSLPpresolve

Type Integer

Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVEELIMINATIONS

XSLP_SBXCONVERGED

Description Number of step-bounded variables converged only on extended criteria

Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_SEMICONTDELTAS

Description Number of variables with a minimum perturbation step set up in the problem

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 141

Problem Attributes Reference

XSLP_SOLVERSELECTED

Description Includes information of which Xpress solver has been used to solve the problem

Type Integer

Values -1 Unset

0 Xpress-SLP

1 Knitro (Ziena Optimization)

2 Xpress-Optimizer

Default value -1

Set by routines XSLPmaxim, XSLPminim

Note The following constants are provided:

0 XSLP_SOLVER_XSLP

1 XSLP_SOLVER_KNITRO

2 XSLP_SOLVER_OPTIMIZER

XSLP_STATUS

Description Bitmap holding the problem convergence status

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 142

Problem Attributes Reference

Values Bit Meaning

0 Converged on objective function with no unconverged values in active
constraints.

1 Converged on objective function with some variables converged on extended
criteria only.

2 LP solution is infeasible.

3 LP solution is unfinished (not optimal or infeasible).

4 SLP terminated on maximum SLP iterations.

5 SLP is integer infeasible.

6 SLP converged with residual penalty errors.

7 Converged on objective.

9 SLP terminated on max time.

10 SLP terminated by user.

11 Some variables are linked to active constraints.

12 No unconverged values in active constraints.

13 OTOL is satisfied - range of objective change small, active step bounds.

14 VTOL is satisfied - range of objective change is small.

15 XTOL is satisfied - range of objective change small, no unconverged in active.

16 WTOL is satisfied - convergence continuation.

17 ERRORTOL satisfied - penalties not increased further.

18 EVTOL satisfied - penalties not increased further.

19 There were iterations where the solution had to be polished.

20 There were iterations where the solution polishing failed.

21 There were iterations where rows were enforced.

22 Terminated due to XSLP_INFEASLIMIT.

Note A value of zero after SLP optimization means that the solution is fully converged.

The following constants are provided for checking these bits:

Setting bit 0 XSLP_STATUS_CONVERGEDOBJUCC

Setting bit 1 XSLP_STATUS_CONVERGEDOBJSBX

Setting bit 2 XSLP_STATUS_LPINFEASIBLE

Setting bit 3 XSLP_STATUS_LPUNFINISHED

Setting bit 4 XSLP_STATUS_MAXSLPITERATIONS

Setting bit 5 XSLP_STATUS_INTEGERINFEASIBLE

Setting bit 6 XSLP_STATUS_RESIDUALPENALTIES

Setting bit 7 XSLP_STATUS_CONVERGEDOBJOBJ

Setting bit 9 XSLP_STATUS_MAXTIME

Setting bit 10 XSLP_STATUS_USER

Setting bit 11 XSLP_STATUS_VARSLINKEDINACTIVE

Setting bit 12 XSLP_STATUS_NOVARSINACTIVE

Setting bit 13 XSLP_STATUS_OTOL

Setting bit 14 XSLP_STATUS_VTOL

Setting bit 15 XSLP_STATUS_XTOL

Setting bit 16 XSLP_STATUS_WTOL

Setting bit 17 XSLP_STATUS_ERROTOL

Setting bit 18 XSLP_STATUS_EVTOL

Setting bit 19 XSLP_STATUS_POLISHED

Setting bit 20 XSLP_STATUS_POLISH_FAILURE

Setting bit 21 XSLP_STATUS_ENFORCED

Setting bit 22 XSLP_STATUS_CONSECUTIVE_INFEAS

Fair Isaac Corporation Confidential and Proprietary Information 143

Problem Attributes Reference

Set by routines XSLPmaxim, XSLPminim

XSLP_STOPSTATUS

Description Status of the optimization process.

Type Integer

Note Possible values are:

Value Description

XSLP_STOP_NONE no interruption - the solve completed normally

XSLP_STOP_TIMELIMIT time limit hit

XSLP_STOP_CTRLC control C hit

XSLP_STOP_NODELIMIT node limit hit

XSLP_STOP_ITERLIMIT iteration limit hit

XSLP_STOP_MIPGAP MIP gap is sufficiently small

XSLP_STOP_SOLLIMIT solution limit hit

XSLP_STOP_USER user interrupt.

Set by routines XPRSlpoptimize (LPOPTIMIZE), XPRSmipoptimize (MIPOPTIMIZE).

XSLP_TOLSETS

Description Number of tolerance sets

Type Integer

Set by routines XSLPaddtolsets, XSLPchgtolset, XSLPloadtolsets, XSLPreadprob

XSLP_UCCONSTRAINEDCOUNT

Description Number of unconverged variables with coefficients in constraining rows

Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_UFINSTANCES

Description Number of user function instances

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 144

Problem Attributes Reference

XSLP_UFS

Description Number of user functions

Type Integer

Set by routines XSLPadduserfuncs, XSLPchguserfunc, XSLPloaduserfuncs, XSLPreadprob

XSLP_UNCONVERGED

Description Number of unconverged values

Type Integer

Note Prior to the first iteration this will return -1.

Set by routines XSLPmaxim, XSLPminim

XSLP_USEDERIVATIVES

Description Indicates whether numeric or analytic derivatives were used to create the linear
approximations and solve the problem

Type Integer

Values 0 numeric derivatives.

1 analytic derivatives for all formulae unless otherwise specified.

Set by routines XSLPconstruct

XSLP_USERFUNCCALLS

Description Number of calls made to user functions

Type Integer

Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,
XSLPmaxim, XSLPminim

XSLP_VARIABLES

Description Number of SLP variables

Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 145

Problem Attributes Reference

XSLP_VERSION

Description Xpress-SLP major version number

Type Integer

Set by routines XSLPinit

XSLP_XVS

Description Number of extended variable arrays

Type Integer

Set by routines XSLPaddxvs, XSLPchgxv, XSLPloadxvs, XSLPreadprob

XSLP_ZEROESRESET

Description Number of placeholder entries set to zero

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRETAINED,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESRETAINED

Description Number of potentially zero placeholders left untouched

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 146

Problem Attributes Reference

XSLP_ZEROESTOTAL

Description Number of potential zero placeholder entries

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESRETAINED, Management of zero placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 147

Problem Attributes Reference

19.3 Reference (pointer) problem attributes

The reference attributes are void pointers whose size (32 or 64 bit) depends on the platform.

XSLP_MIPPROBLEM

Description The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a reference of type
XPRSprob, and should be used in MISLP callbacks to access MIP-specific Optimizer values
(such as node and parent numbers).

Type Reference

Set by routines XSLPglobal

XSLP_SOLUTIONPOOL

Description The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of type
XPRSmipsolpool. Change control XSLP_ANALYZE to record the solutions into the pool.

Type Reference

Set by routines XSLPminim, XSLPmaxim

XSLP_XPRSPROBLEM

Description The underlying Optimizer problem

Type Reference

Set by routines XSLPcreateprob

XSLP_XSLPPROBLEM

Description The Xpress-SLP problem

Type Reference

Set by routines XSLPcreateprob

XSLP_GLOBALFUNCOBJECT

Description The user-defined global function object

Fair Isaac Corporation Confidential and Proprietary Information 148

Problem Attributes Reference

Type Reference

Set by routines XSLPchgfuncobject, XSLPchguserfuncobject, XSLPsetfuncobject,
XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 149

Problem Attributes Reference

19.4 String problem attributes

XSLP_UNIQUEPREFIX

Description Unique prefix for generated names

Type String

Set by routines XSLPsetuniqueprefix

XSLP_VERSIONDATE

Description Date of creation of Xpress-SLP

Type String

Note The format of the date is dd mmm yyyy.

Set by routines XSLPinit

Fair Isaac Corporation Confidential and Proprietary Information 150

CHAPTER 20

Control Parameters

Various controls exist within Xpress-SLP to govern the solution procedure and the form of the
output. Some of these take integer values and act as switches between various types of behavior.
Many are tolerances on values related to the convergence criteria; these are all double precision.
There are also a few controls which are character strings, setting names for structures. Any of
these may be altered by the user to enhance performance of the SLP algorithm. In most cases, the
default values provided have been found to work well in practice over a range of problems and
caution should be exercised if they are changed.

Users of the Xpress-SLP function library are provided with the following set of functions for
setting and obtaining control values:

XSLPgetintcontrol XSLPgetdblcontrol XSLPgetstrcontrol

XSLPsetintcontrol XSLPsetdblcontrol XSLPsetstrcontrol

All the controls as listed in this chapter are prefixed with XSLP_. It is possible to use the above
functions with control parameters for the Xpress Optimizer (controls prefixed with XPRS_). For
details of the Optimizer controls, see the Optimizer manual.

Example of the usage of the functions:

XSLPgetintcontrol(Prob, XSLP_PRESOLVE, &presolve);

printf("The value of PRESOLVE was %d\n", presolve);

XSLPsetintcontrol(Prob, XSLP_PRESOLVE, 1-presolve);

printf("The value of PRESOLVE is now %d\n", 1-presolve);

The following is a list of all the Xpress-SLP controls:

XSLP_ALGORITHM Bit map describing the SLP algorithm(s) to be used p. 198

XSLP_ANALYZE Bit map activating additional options supporting model / solution path
analyzis p. 200

XSLP_ATOL_A Absolute delta convergence tolerance p. 161

XSLP_ATOL_R Relative delta convergence tolerance p. 161

XSLP_AUGMENTATION Bit map describing the SLP augmentation method(s) to be used p. 201

XSLP_AUTOSAVE Frequency with which to save the model p. 203

XSLP_BARCROSSOVERSTART Default crossover activation behaviour for barrier start p. 203

XSLP_BARLIMIT Number of initial SLP iterations using the barrier method p. 203

XSLP_BARSTALLINGLIMIT Number of iterations to allow numerical failures in barrier before
switching to dual p. 204

Fair Isaac Corporation Confidential and Proprietary Information 151

Control Parameters Reference

XSLP_BARSTALLINGOBJLIMIT Number of iterations over which to measure the objective
change for barrier iterations with no crossover p. 204

XSLP_BARSTALLINGTOL Required change in the objective when progress is measured in barrier
iterations without crossover p. 161

XSLP_BARSTARTOPS Controls behaviour when the barrier is used to solve the linearizations
p. 204

XSLP_CALCTHREADS Number of threads used for formula and derivatives evaluations p. 205

XSLP_CASCADE Bit map describing the cascading to be used p. 205

XSLP_CASCADENLIMIT Maximum number of iterations for cascading with non-linear
determining rows p. 206

XSLP_CASCADETOL_PA Absolute cascading print tolerance p. 162

XSLP_CASCADETOL_PR Relative cascading print tolerance p. 162

XSLP_CDTOL_A Absolute tolerance for deducing constant derivatives p. 163

XSLP_CDTOL_R Relative tolerance for deducing constant derivatives p. 163

XSLP_CLAMPSHRINK Shrink ratio used to impose strict convergence on variables converged
in extended criteria only p. 163

XSLP_CLAMPVALIDATIONTOL_A Absolute validation tolerance for applying
XSLP_CLAMPSHRINK p. 164

XSLP_CLAMPVALIDATIONTOL_R Relative validation tolerance for applying XSLP_CLAMPSHRINK
p. 164

XSLP_CONTROL Bit map describing which Xpress-SLP functions also activate the
corresponding Optimizer Library function p. 206

XSLP_CONVERGENCEOPS Bit map describing which convergence tests should be carried out
p. 207

XSLP_CTOL Closure convergence tolerance p. 164

XSLP_CVNAME Name of the set of character variables to be used p. 249

XSLP_DAMP Damping factor for updating values of variables p. 165

XSLP_DAMPEXPAND Multiplier to increase damping factor during dynamic damping p. 165

XSLP_DAMPMAX Maximum value for the damping factor of a variable during dynamic
damping p. 165

XSLP_DAMPMIN Minimum value for the damping factor of a variable during dynamic
damping p. 166

XSLP_DAMPSHRINK Multiplier to decrease damping factor during dynamic damping p. 166

XSLP_DAMPSTART SLP iteration at which damping is activated p. 208

XSLP_DCLIMIT Default iteration delay for delayed constraints p. 208

XSLP_DCLOG Amount of logging information for activcation of delayed constraints
p. 208

XSLP_DECOMPOSE Bitmap controlling the action of function XSLPdecompose p. 209

Fair Isaac Corporation Confidential and Proprietary Information 152

Control Parameters Reference

XSLP_DECOMPOSEPASSLIMIT Maximum number of repeats of presolve+decompose p. 210

XSLP_DEFAULTIV Default initial value for an SLP variable if none is explicitly given p. 166

XSLP_DEFAULTSTEPBOUND Minimum initial value for the step bound of an SLP variable if none
is explicitly given p. 167

XSLP_DELAYUPDATEROWS Number of SLP iterations before update rows are fully activated
p. 209

XSLP_DELTA_A Absolute perturbation of values for calculating numerical derivatives
p. 167

XSLP_DELTA_R Relative perturbation of values for calculating numerical derivatives
p. 167

XSLP_DELTA_X Minimum absolute value of delta coefficients to be retained p. 168

XSLP_DELTA_Z Zero tolerance used when calculating derivatives p. 168

XSLP_DELTA_ZERO Absolute zero acceptance tolerance used when calculating derivatives
p. 168

XSLP_DELTACOST Initial penalty cost multiplier for penalty delta vectors p. 169

XSLP_DELTACOSTFACTOR Factor for increasing cost multiplier on total penalty delta vectors
p. 169

XSLP_DELTAFORMAT Formatting string for creation of names for SLP delta vectors p. 249

XSLP_DELTAMAXCOST Maximum penalty cost multiplier for penalty delta vectors p. 169

XSLP_DELTAOFFSET Position of first character of SLP variable name used to create name of
delta vector p. 210

XSLP_DELTAZLIMIT Number of SLP iterations during which to apply XSLP_DELTA_Z p. 210

XSLP_DERIVATIVES Bitmap describing the method of calculating derivatives p. 211

XSLP_DETERMINISTIC Determines if the parallel features of SLP should be guaranteed to be
deterministic p. 211

XSLP_DJTOL Tolerance on DJ value for determining if a variable is at its step bound
p. 170

XSLP_DRCOLTOL The minimum absolute magnitude of a determining column, for which
the determined variable is still regarded as well defined p. 170

XSLP_ECFCHECK Check feasibility at the point of linearization for extended
convergence criteria p. 212

XSLP_ECFTOL_A Absolute tolerance on testing feasibility at the point of linearization
p. 170

XSLP_ECFTOL_R Relative tolerance on testing feasibility at the point of linearization
p. 171

XSLP_ECHOXPRSMESSAGES Controls if the XSLP message callback should relay messages from
the XPRS library. p. 212

XSLP_ENFORCECOSTSHRINK Factor by which to decrease the current penalty multiplier when
enforcing rows. p. 171

Fair Isaac Corporation Confidential and Proprietary Information 153

Control Parameters Reference

XSLP_ENFORCEMAXCOST Maximum penalty cost in the objective before enforcing most violating
rows p. 172

XSLP_EQTOL_A Absolute tolerance on equality testing in logical functions p. 172

XSLP_EQTOL_R Relative tolerance on equality testing in logical functions p. 172

XSLP_ERRORCOST Initial penalty cost multiplier for penalty error vectors p. 173

XSLP_ERRORCOSTFACTOR Factor for increasing cost multiplier on total penalty error vectors
p. 173

XSLP_ERRORMAXCOST Maximum penalty cost multiplier for penalty error vectors p. 173

XSLP_ERROROFFSET Position of first character of constraint name used to create name of
penalty error vectors p. 212

XSLP_ERRORTOL_A Absolute tolerance for error vectors p. 174

XSLP_ERRORTOL_P Absolute tolerance for printing error vectors p. 174

XSLP_ESCALATION Factor for increasing cost multiplier on individual penalty error vectors
p. 174

XSLP_ETOL_A Absolute tolerance on penalty vectors p. 175

XSLP_ETOL_R Relative tolerance on penalty vectors p. 175

XSLP_EVALUATE Evaluation strategy for user functions p. 213

XSLP_EVTOL_A Absolute tolerance on total penalty costs p. 175

XSLP_EVTOL_R Relative tolerance on total penalty costs p. 176

XSLP_EXCELVISIBLE Display of Excel when evaluating user functions written in Excel p. 213

XSLP_EXPAND Multiplier to increase a step bound p. 176

XSLP_EXTRACVS Expansion number for character variables p. 214

XSLP_EXTRAUFS Expansion number for user functions p. 214

XSLP_EXTRAXVITEMS Expansion number for XV items p. 214

XSLP_EXTRAXVS Expansion number for XVs p. 215

XSLP_FEASTOLTARGET When set, this defines a target feasibility tolerance to which the
linearizations are solved to p. 177

XSLP_FILTER Bit map for controlling solution updates p. 215

XSLP_FINDIV Option for running a heuristic to find a feasible initial point p. 216

XSLP_FUNCEVAL Bit map for determining the method of evaluating user functions and
their derivatives p. 216

XSLP_GRANULARITY Base for calculating penalty costs p. 177

XSLP_GRIDHEURSELECT Bit map selectin which heuristics to run if the problem has variable
with an integer delta p. 217

XSLP_HESSIAN Second order differentiation mode when using analytical derivatives
p. 218

Fair Isaac Corporation Confidential and Proprietary Information 154

Control Parameters Reference

XSLP_HEURSTRATEGY Branch and Bound: This specifies the MINLP heuristic strategy. On
some problems it is worth trying more comprehensive heuristic
strategies by setting HEURSTRATEGY to 2 or 3. p. 217

XSLP_INFEASLIMIT The maximum number of consecutive infeasible SLP iterations which
can occur before Xpress-SLP terminates p. 218

XSLP_INFINITY Value returned by a divide-by-zero in a formula p. 177

XSLP_ITERLIMIT The maximum number of SLP iterations p. 219

XSLP_ITOL_A Absolute impact convergence tolerance p. 177

XSLP_ITOL_R Relative impact convergence tolerance p. 178

XSLP_IVNAME Name of the set of initial values to be used p. 249

XSLP_JACOBIAN First order differentiation mode when using analytical derivatives
p. 219

XSLP_LINQUADBR Use linear and quadratic constraints and objective function to further
reduce bounds on all variables p. 219

XSLP_LOG Level of printing during SLP iterations p. 220

XSLP_LSITERLIMIT Number of iterations in the line search p. 220

XSLP_LSPATTERNLIMIT Number of iterations in the pattern search preceding the line search
p. 220

XSLP_LSSTART Iteration in which to active the line search p. 221

XSLP_LSZEROLIMIT Maximum number of zero length line search steps before line search is
deactivated p. 221

XSLP_MATRIXTOL Provides an override value for XPRS_MATRIXTOL, which controls the
smallest magnitude of matrix coefficents p. 179

XSLP_MAXTIME The maximum time in seconds that the SLP optimization will run
before it terminates p. 221

XSLP_MAXWEIGHT Maximum penalty weight for delta or error vectors p. 179

XSLP_MEM_CALCSTACK Memory allocation for formula calculations p. 244

XSLP_MEM_COEF Memory allocation for nonlinear coefficients p. 245

XSLP_MEM_COL Memory allocation for additional information on matrix columns
p. 245

XSLP_MEM_CVAR Memory allocation for character variables p. 245

XSLP_MEM_DERIVATIVES Memory allocation for analytic derivatives p. 245

XSLP_MEM_EXCELDOUBLE Memory allocation for return values from Excel user functions p. 245

XSLP_MEM_FORMULA Memory allocation for formulae p. 245

XSLP_MEM_FORMULAHASH Memory allocation for internal formula array p. 246

XSLP_MEM_FORMULAVALUE Memory allocation for formula values and derivatives p. 246

XSLP_MEM_ITERLOG Memory allocation for SLP iteration summary p. 246

Fair Isaac Corporation Confidential and Proprietary Information 155

Control Parameters Reference

XSLP_MEM_RETURNARRAY Memory allocation for return values from multi-valued user function
p. 246

XSLP_MEM_ROW Memory allocation for additional information on matrix rows p. 246

XSLP_MEM_STACK Memory allocation for parsed formulae, analytic derivatives p. 246

XSLP_MEM_STRING Memory allocation for strings of all types p. 247

XSLP_MEM_TOL Memory allocation for tolerance sets p. 247

XSLP_MEM_UF Memory allocation for user functions p. 247

XSLP_MEM_VAR Memory allocation for SLP variables p. 247

XSLP_MEM_XF Memory allocation for complicated functions p. 247

XSLP_MEM_XFNAMES Memory allocation for complicated function input and return names
p. 247

XSLP_MEM_XFVALUE Memory allocation for complicated function values p. 248

XSLP_MEM_XROW Memory allocation for extended row information p. 248

XSLP_MEM_XV Memory allocation for XVs p. 248

XSLP_MEM_XVITEM Memory allocation for individual XV entries p. 248

XSLP_MEMORYFACTOR Factor for expanding size of dynamic arrays in memory p. 180

XSLP_MERITLAMBDA Factor by which the net objective is taken into account in the merit
function p. 180

XSLP_MINSBFACTOR Factor by which step bounds can be decreased beneath XSLP_ATOL_A
p. 180

XSLP_MINUSDELTAFORMAT Formatting string for creation of names for SLP negative penalty
delta vectors p. 250

XSLP_MINUSERRORFORMAT Formatting string for creation of names for SLP negative penalty
error vectors p. 250

XSLP_MINWEIGHT Minimum penalty weight for delta or error vectors p. 181

XSLP_MIPALGORITHM Bitmap describing the MISLP algorithms to be used p. 222

XSLP_MIPCUTOFF_A Absolute objective function cutoff for MIP termination p. 181

XSLP_MIPCUTOFF_R Absolute objective function cutoff for MIP termination p. 181

XSLP_MIPCUTOFFCOUNT Number of SLP iterations to check when considering a node for cutting
off p. 223

XSLP_MIPCUTOFFLIMIT Number of SLP iterations to check when considering a node for cutting
off p. 223

XSLP_MIPDEFAULTALGORITHM Default algorithm to be used during the global search in MISLP
p. 224

XSLP_MIPERRORTOL_A Absolute penalty error cost tolerance for MIP cut-off p. 182

XSLP_MIPERRORTOL_R Relative penalty error cost tolerance for MIP cut-off p. 182

XSLP_MIPFIXSTEPBOUNDS Bitmap describing the step-bound fixing strategy during MISLP
p. 224

Fair Isaac Corporation Confidential and Proprietary Information 156

Control Parameters Reference

XSLP_MIPITERLIMIT Maximum number of SLP iterations at each node p. 225

XSLP_MIPLOG Frequency with which MIP status is printed p. 225

XSLP_MIPOCOUNT Number of SLP iterations at each node over which to measure
objective function variation p. 225

XSLP_MIPOTOL_A Absolute objective function tolerance for MIP termination p. 183

XSLP_MIPOTOL_R Relative objective function tolerance for MIP termination p. 183

XSLP_MIPRELAXSTEPBOUNDS Bitmap describing the step-bound relaxation strategy during
MISLP p. 226

XSLP_MSMAXBOUNDRANGE Defines the maximum range inside which initial points are generated
by multistart presets p. 183

XSLP_MTOL_A Absolute effective matrix element convergence tolerance p. 184

XSLP_MTOL_R Relative effective matrix element convergence tolerance p. 184

XSLP_MULTISTART The multistart master control. Defines if the multistart search is to be
initiated, or if only the baseline model is to be solved. p. 226

XSLP_MULTISTART_MAXSOLVES The maximum number of jobs to create during the multistart
search. p. 226

XSLP_MULTISTART_MAXTIME The maximum total time to be spent in the mutlistart search.
p. 227

XSLP_MULTISTART_POOLSIZE The maximum number of problem objects allowed to pool up
before synchronization in the deterministic multistart. p. 227

XSLP_MULTISTART_SEED Random seed used for the automatic generation of initial point when
loading multistart presets p. 228

XSLP_MULTISTART_THREADS The maximum number of threads to be used in multistart p. 228

XSLP_MVTOL Marginal value tolerance for determining if a constraint is slack p. 185

XSLP_OBJSENSE Objective function sense p. 186

XSLP_OBJTOPENALTYCOST Factor to estimate initial penalty costs from objective function p. 186

XSLP_OCOUNT Number of SLP iterations over which to measure objective function
variation for static objective (2) convergence criterion p. 228

XSLP_OPTIMALITYTOLTARGET When set, this defines a target optimality tolerance to which the
linearizations are solved to p. 187

XSLP_OTOL_A Absolute static objective (2) convergence tolerance p. 187

XSLP_OTOL_R Relative static objective (2) convergence tolerance p. 188

XSLP_PENALTYCOLFORMAT Formatting string for creation of the names of the SLP penalty
transfer vectors p. 250

XSLP_PENALTYINFOSTART Iteration from which to record row penalty information p. 229

XSLP_PENALTYROWFORMAT Formatting string for creation of the names of the SLP penalty rows
p. 251

XSLP_PLUSDELTAFORMAT Formatting string for creation of names for SLP positive penalty delta
vectors p. 251

Fair Isaac Corporation Confidential and Proprietary Information 157

Control Parameters Reference

XSLP_PLUSERRORFORMAT Formatting string for creation of names for SLP positive penalty error
vectors p. 252

XSLP_POSTSOLVE This control determines whether postsolving should be performed
automatically p. 229

XSLP_PRESOLVE This control determines whether presolving should be performed prior
to starting the main algorithm p. 229

XSLP_PRESOLVELEVEL This control determines the level of changes presolve may carry out on
the problem p. 230

XSLP_PRESOLVEOPS Bitmap indicating the SLP presolve actions to be taken p. 230

XSLP_PRESOLVEPASSLIMIT Maximum number of passes through the problem to improve SLP
bounds p. 231

XSLP_PRESOLVEZERO Minimum absolute value for a variable which is identified as nonzero
during SLP presolve p. 188

XSLP_PROBING This control determines whether probing on a subset of variables
should be performed prior to starting the main algorithm. Probing
runs multiple times bound reduction in order to further tighten the
bounding box. p. 231

XSLP_REFORMULATE Controls the problem reformulations carried out before augmentation.
This allows SLP to take advantage of dedicated algorithms for special
problem classes. p. 232

XSLP_SAMECOUNT Number of steps reaching the step bound in the same direction before
step bounds are increased p. 232

XSLP_SAMEDAMP Number of steps in same direction before damping factor is increased
p. 233

XSLP_SBLOROWFORMAT Formatting string for creation of names for SLP lower step bound rows
p. 252

XSLP_SBNAME Name of the set of initial step bounds to be used p. 252

XSLP_SBROWOFFSET Position of first character of SLP variable name used to create name of
SLP lower and upper step bound rows p. 233

XSLP_SBSTART SLP iteration after which step bounds are first applied p. 233

XSLP_SBUPROWFORMAT Formatting string for creation of names for SLP upper step bound rows
p. 253

XSLP_SCALE When to re-scale the SLP problem p. 234

XSLP_SCALECOUNT Iteration limit used in determining when to re-scale the SLP matrix
p. 234

XSLP_SHRINK Multiplier to reduce a step bound p. 188

XSLP_SHRINKBIAS Defines an overwrite / adjustment of step bounds for improving
iterations p. 189

XSLP_SLPLOG Frequency with which SLP status is printed p. 235

XSLP_SOLVER First order differentiation mode when using analytical derivatives
p. 234

Fair Isaac Corporation Confidential and Proprietary Information 158

Control Parameters Reference

XSLP_STOL_A Absolute slack convergence tolerance p. 189

XSLP_STOL_R Relative slack convergence tolerance p. 190

XSLP_STOPOUTOFRANGE Stop optimization and return error code if internal function argument
is out of range p. 235

XSLP_THREADS Default number of threads to be used p. 235

XSLP_THREADSAFEUSERFUNC Defines if user functions are allowed to be called in parallel p. 236

XSLP_TIMEPRINT Print additional timings during SLP optimization p. 236

XSLP_TOLNAME Name of the set of tolerance sets to be used p. 253

XSLP_TRACEMASK Mask of variable or row names that are to be traced through the SLP
iterates p. 253

XSLP_TRACEMASKOPS Controls the information printed for XSLP_TRACEMASK. The order in
which the information is printed is determined by the order of bits in
XSLP_TRACEMASKOPS. p. 236

XSLP_UNFINISHEDLIMIT Number of times within one SLP iteration that an unfinished LP
optimization will be continued p. 237

XSLP_UPDATEFORMAT Formatting string for creation of names for SLP update rows p. 254

XSLP_UPDATEOFFSET Position of first character of SLP variable name used to create name of
SLP update row p. 238

XSLP_VALIDATIONTARGET_K Optimality target tolerance p. 190

XSLP_VALIDATIONTARGET_R Feasiblity target tolerance p. 190

XSLP_VALIDATIONTOL_A Absolute tolerance for the XSLPvalidate procedure p. 191

XSLP_VALIDATIONTOL_R Relative tolerance for the XSLPvalidate procedure p. 191

XSLP_VCOUNT Number of SLP iterations over which to measure static objective (3)
convergence p. 238

XSLP_VLIMIT Number of SLP iterations after which static objective (3) convergence
testing starts p. 239

XSLP_VTOL_A Absolute static objective (3) convergence tolerance p. 192

XSLP_VTOL_R Relative static objective (3) convergence tolerance p. 192

XSLP_WCOUNT Number of SLP iterations over which to measure the objective for the
extended convergence continuation criterion p. 239

XSLP_WTOL_A Absolute extended convergence continuation tolerance p. 193

XSLP_WTOL_R Relative extended convergence continuation tolerance p. 194

XSLP_XCOUNT Number of SLP iterations over which to measure static objective (1)
convergence p. 240

XSLP_XLIMIT Number of SLP iterations up to which static objective (1) convergence
testing starts p. 241

XSLP_XTOL_A Absolute static objective function (1) tolerance p. 195

XSLP_XTOL_R Relative static objective function (1) tolerance p. 196

Fair Isaac Corporation Confidential and Proprietary Information 159

Control Parameters Reference

XSLP_ZERO Absolute zero tolerance p. 196

XSLP_ZEROCRITERION Bitmap determining the behavior of the placeholder deletion
procedure p. 242

XSLP_ZEROCRITERIONCOUNT Number of consecutive times a placeholder entry is zero before
being considered for deletion p. 242

XSLP_ZEROCRITERIONSTART SLP iteration at which criteria for deletion of placeholder entries
are first activated. p. 243

Fair Isaac Corporation Confidential and Proprietary Information 160

Control Parameters Reference

20.1 Double control parameters

XSLP_ATOL_A

Description Absolute delta convergence tolerance

Type Double

Note The absolute delta convergence criterion assesses the change in value of a variable (δX)
against the absolute delta convergence tolerance. If
δX < XSLP_ATOL_A
then the variable has converged on the absolute delta convergence criterion. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_R

XSLP_ATOL_R

Description Relative delta convergence tolerance

Type Double

Note The relative delta convergence criterion assesses the change in value of a variable (δX)
relative to the value of the variable (X), against the relative delta convergence
tolerance. If
δX < X ∗ XSLP_ATOL_R
then the variable has converged on the relative delta convergence criterion. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_A

XSLP_BARSTALLINGTOL

Description Required change in the objective when progress is measured in barrier iterations
without crossover

Type Integer

Note Minumum objective variability change required in relation to control
XSLP_BARSTALLINGOBJLIMIT for the iterations to be regarded as making progress.
The net objective, error cost and error sum are taken into account.

Fair Isaac Corporation Confidential and Proprietary Information 161

Control Parameters Reference

Default value 0.05

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGOBJLIMIT

XSLP_CASCADETOL_PA

Description Absolute cascading print tolerance

Type Double

Note The change to the value of a variable as a result of cascading is only printed if the
change is deemed significant. The change is tested against: absolute and relative
convergence tolerance and absolute and relative cascading print tolerance. The change
is printed only if all tests fail. The absolute cascading print criterion measures the
change in value of a variable (δX) against the absolute cascading print tolerance. If
δX < XSLP_CASCADETOL_PA
then the change is within the absolute cascading print tolerance and will not be printed.

Default value 0.01

See also Cascading, XSLP_CASCADETOL_PR

Affects routines XSLPcascade

XSLP_CASCADETOL_PR

Description Relative cascading print tolerance

Type Double

Note The change to the value of a variable as a result of cascading is only printed if the
change is deemed significant. The change is tested against: absolute and relative
convergence tolerance and absolute and relative cascading print tolerance. The change
is printed only if all tests fail. The relative cascading print criterion measures the change
in value of a variable (δX) relative to the value of the variable (X), against the relative
cascading print tolerance. If
δX < X ∗ XSLP_CASCADETOL_PR
then the change is within the relative cascading print tolerance and will not be printed.

Default value 0.01

See also Cascading, XSLP_CASCADETOL_PA

Affects routines XSLPcascade

Fair Isaac Corporation Confidential and Proprietary Information 162

Control Parameters Reference

XSLP_CDTOL_A

Description Absolute tolerance for deducing constant derivatives

Type Double

Note The absolute tolerance test for constant derivatives is used as follows:
If the value of the user function at point X0 is Y0 and the values at (X0 − δX) and
(X0 + δX) are Yd and Yu respectively, then the numerical derivatives at X0 are:
"down" derivative Dd = (Y0 − Yd) / δX
"up" derivative Du = (Yu − Y0) / δX

If abs(Dd − Du) ≤ XSLP_CDTOL_A
then the derivative is regarded as constant.

Default value 1.0e-08

See also XSLP_CDTOL_R

XSLP_CDTOL_R

Description Relative tolerance for deducing constant derivatives

Type Double

Note The relative tolerance test for constant derivatives is used as follows:
If the value of the user function at point X0 is Y0 and the values at (X0 − δX) and
(X0 + δX) are Yd and Yu respectively, then the numerical derivatives at X0 are:
"down" derivative Dd = (Y0 − Yd) / δX
"up" derivative Du = (Yu − Y0) / δX

If abs(Dd − Du) ≤ XSLP_CDTOL_R ∗ abs(Yd + Yu) / 2
then the derivative is regarded as constant.

Default value 1.0e-08

See also XSLP_CDTOL_A

XSLP_CLAMPSHRINK

Description Shrink ratio used to impose strict convergence on variables converged in extended
criteria only

Type Double

Note If the solution has converged but there are variables converged on extended criteria
only, the XSLP_CLAMPSHRINK acts as a shrinking ratio on the step bounds and the
problem is optimized (if necessary multiple times), with the purpose of expediting strict
convergence on all variables. XSLP_ALGORITHM controls if this shrinking is applied at all,
and if shrinking is applied to of the variables converged on extended criteria only with
active step bounds only, or if on all variables.

Fair Isaac Corporation Confidential and Proprietary Information 163

Control Parameters Reference

Default value 0.3

See also XSLP_ALGORITHM, XSLP_CLAMPVALIDATIONTOL_A, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_A

Description Absolute validation tolerance for applying XSLP_CLAMPSHRINK

Type Double

Note If set and the absolute validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

Default value 0.0 (not set)

See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_R

Description Relative validation tolerance for applying XSLP_CLAMPSHRINK

Type Double

Note If set and the relative validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

Default value 0.0 (not set)

See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_A

XSLP_CTOL

Description Closure convergence tolerance

Type Double

Notes The closure convergence criterion measures the change in value of a variable (δX)
relative to the value of its initial step bound (B), against the closure convergence
tolerance. If
δX < B ∗ XSLP_CTOL
then the variable has converged on the closure convergence criterion.
If no explicit initial step bound is provided, then the test will not be applied and the
variable can never converge on the closure criterion. When the value is set to be
negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_A, XSLP_ATOL_R

Fair Isaac Corporation Confidential and Proprietary Information 164

Control Parameters Reference

XSLP_DAMP

Description Damping factor for updating values of variables

Type Double

Note The damping factor sets the next assumed value for a variable based on the previous
assumed value (X0) and the actual value (X1). The new assumed value is given by
X1 ∗ XSLP_DAMP + X0 ∗ (1− XSLP_DAMP)

Default value 1

See also Xpress-SLP Solution Process, XSLP_DAMPEXPAND XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPEXPAND

Description Multiplier to increase damping factor during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if
successive changes are in the same direction. More precisely, if there are
XSLP_SAMEDAMP successive changes in the same direction for a variable, then the
damping factor (D) for the variable will be reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1− XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPMAX

Description Maximum value for the damping factor of a variable during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if
successive changes are in the same direction. More precisely, if there are
XSLP_SAMEDAMP successive changes in the same direction for a variable, then the
damping factor (D) for the variable will be reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1− XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 165

Control Parameters Reference

XSLP_DAMPMIN

Description Minimum value for the damping factor of a variable during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D)
for the variable will be reset to
D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1− XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPSHRINK, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPSHRINK

Description Multiplier to decrease damping factor during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D)
for the variable will be reset to
D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1− XSLP_DAMPEXPAND)

Default value 1

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPMIN, XSLP_DAMPSTART

Affects routines XSLPmaxim, XSLPminim

XSLP_DEFAULTIV

Description Default initial value for an SLP variable if none is explicitly given

Type Double

Note If no initial value is given for an SLP variable, then the initial value provided for the
"equals column" will be used. If no such value has been provided, then
XSLP_DEFAULTIV will be used. If this is above the upper bound for the variable, then
the upper bound will be used; if it is below the lower bound for the variable, then the
lower bound will be used.

Default value 100

Affects routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 166

Control Parameters Reference

XSLP_DEFAULTSTEPBOUND

Description Minimum initial value for the step bound of an SLP variable if none is explicitly given

Type Double

Notes If no initial step bound value is given for an SLP variable, this will be used as a minimum
value. If the algorithm is estimating step bounds, then the step bound actually used for
a variable may be larger than the default.
A default initial step bound is ignored when testing for the closure tolerance
XSLP_CTOL: if there is no specific value, then the test will not be applied.

Default value 16

See also XSLP_CTOL

Affects routines XSLPconstruct

XSLP_DELTA_A

Description Absolute perturbation of values for calculating numerical derivatives

Type Double

Note First-order derivatives are calculated by perturbing the value of each variable in turn by
a small amount. The amount is determined by the absolute and relative delta factors as
follows:
XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_R
where (X) is the current value of the variable. If the perturbation takes the variable
outside a bound, then the perturbation normally made only in the opposite direction.

Default value 0.001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_R

XSLP_DELTA_R

Description Relative perturbation of values for calculating numerical derivatives

Type Double

Note First-order derivatives are calculated by perturbing the value of each variable in turn by
a small amount. The amount is determined by the absolute and relative delta factors as
follows:
XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_R
where (X) is the current value of the variable. If the perturbation takes the variable
outside a bound, then the perturbation normally made only in the opposite direction.

Default value 0.001

Fair Isaac Corporation Confidential and Proprietary Information 167

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_A

XSLP_DELTA_X

Description Minimum absolute value of delta coefficients to be retained

Type Double

Notes If the value of a coefficient in a delta column is less than this value, it will be reset to
zero.
Larger values of XSLP_DELTA_X will result in matrices with fewer elements, which may
be easier to solve. However, there will be increased likelihood of local optima as some of
the small relationships between variables and constraints are deleted. There may also be
increased difficulties with singular bases resulting from deletion of pivot elements from
the matrix.

Default value 1.0e-6

Affects routines XSLPmaxim, XSLPminim

XSLP_DELTA_Z

Description Zero tolerance used when calculating derivatives

Type Double

Notes If the absolute value of a variable is less than this value, then a value of XSLP_DELTA_Z

will be used instead for calculating derivatives.
If a nonzero derivative is calculated for a formula which always results in a matrix
coefficient less than XSLP_DELTA_Z, then a larger value will be substituted so that at
least one of the coefficients is XSLP_DELTA_Z in magnitude.
If XSLP_DELTAZLIMIT is set to a positive number, then when that number of iterations
have passed, values smaller than XSLP_DELTA_Z will be set to zero.

Default value 0.00001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTAZLIMIT, XSLP_DELTA_ZERO

XSLP_DELTA_ZERO

Description Absolute zero acceptance tolerance used when calculating derivatives

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 168

Control Parameters Reference

Notes Provides an override value for the XSLP_DELTA_Z behavior. Derivatives smaller than
XSLP_DELTA_ZERO will not be substituted by XSLP_DELTA_Z, defining a range in which
derivatives are deemed nonzero and are affected by XSLP_DELTA_Z.
A negative value means that this tolerance will not be applied.

Default value -1.0 (not applied)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTAZLIMIT, XSLP_DELTA_Z

XSLP_DELTACOST

Description Initial penalty cost multiplier for penalty delta vectors

Type Double

Note If penalty delta vectors are used, this parameter sets the initial cost factor. If there are
active penalty delta vectors, then the penalty cost may be increased.

Default value 200

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOSTFACTOR, XSLP_DELTAMAXCOST,
XSLP_ERRORCOST

XSLP_DELTACOSTFACTOR

Description Factor for increasing cost multiplier on total penalty delta vectors

Type Double

Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased
by a factor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST

Default value 1.3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTAMAXCOST, XSLP_ERRORCOST

XSLP_DELTAMAXCOST

Description Maximum penalty cost multiplier for penalty delta vectors

Type Double

Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased
by a factor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST

Fair Isaac Corporation Confidential and Proprietary Information 169

Control Parameters Reference

Default value infinite

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTACOSTFACTOR, XSLP_ERRORCOST

XSLP_DJTOL

Description Tolerance on DJ value for determining if a variable is at its step bound

Type Double

Note If a variable is at its step bound and within the absolute delta tolerance XSLP_ATOL_A

or closure tolerance XSLP_CTOL then the step bounds will not be further reduced. If the
DJ is greater in magnitude than XSLP_DJTOL then the step bound may be relaxed if it
meets the necessary criteria.

Default value 1.0e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ATOL_A, XSLP_CTOL

XSLP_DRCOLTOL

Description The minimum absolute magnitude of a determining column, for which the determined
variable is still regarded as well defined

Type Double

Notes This control affects the cascading procedure. Please see Chapter Cascading for more
information.

Default value 0

See also XSLP_CASCADE

Affects routines XSLPconstruct XSLPcascade

XSLP_ECFTOL_A

Description Absolute tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation
— in particular, that it should be reasonably close to feasibility. Each constraint is tested
at the point of linearization, and the total positive and negative contributions to the
constraint from the columns in the problem are calculated. A feasibility tolerance is
calculated as the largest of XSLPECFTOLA and

Fair Isaac Corporation Confidential and Proprietary Information 170

Control Parameters Reference

max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_R
If the calculated infeasibility is greater than the tolerance, the point of linearization is
regarded as infeasible and the extended convergence criteria will not be applied. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-1 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_R

XSLP_ECFTOL_R

Description Relative tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true
problem. They depend on the point of linearization being a reasonable approximation
— in particular, that it should be reasonably close to feasibility. Each constraint is tested
at the point of linearization, and the total positive and negative contributions to the
constraint from the columns in the problem are calculated. A feasibility tolerance is
calculated as the largest of XSLPECFTOLA and
max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_R
If the calculated infeasibility is greater than the tolerance, the point of linearization is
regarded as infeasible and the extended convergence criteria will not be applied. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-1 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_A

XSLP_ENFORCECOSTSHRINK

Description Factor by which to decrease the current penalty multiplier when enforcing rows.

Type Double

Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its error
variable, removing the variable (fixing it to zero) can force the row to be satisfied, as set
by XSLP_ENFORCEMAXCOST. After the error variables have been removed (which is
equivalent to setting to row to be enforced) the penalties on the remaining error
variables are rebalanced to allow for a reduction in the size of the penalties in the
objetcive in order to achive better numerical behaviour.

Default value 0.00001

Fair Isaac Corporation Confidential and Proprietary Information 171

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ENFORCEMAXCOST

XSLP_ENFORCEMAXCOST

Description Maximum penalty cost in the objective before enforcing most violating rows

Type Double

Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its error
variable, removing the variable (fixing it to zero) can force the row to be satisfied. After
the error variables have been removed (which is equivalent to setting to row to be
enforced) the penalties on the remaining error variables are rebalanced to allow for a
reduction in the size of the penalties in the objetcive in order to achive better numerical
behaviour, controlled by XSLP_ENFORCECOSTSHRINK.

Default value 10000000000

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ENFORCECOSTSHRINK

XSLP_EQTOL_A

Description Absolute tolerance on equality testing in logical functions

Type Double

Note If two values A and B are within XSLP_EQTOLA and abs(A) ∗ XSLP_EQTOL_R then they
are regarded as equal by the logical functions.

Default value 0.00001

Affects routines EQ, GE, GT, NE, LE, LT

See also XSLP_EQTOL_R

XSLP_EQTOL_R

Description Relative tolerance on equality testing in logical functions

Type Double

Note If two values A and B are within XSLP_EQTOLA and abs(A) ∗ XSLP_EQTOL_R then they
are regarded as equal by the logical functions.

Default value 0.00001

Affects routines EQ, GE, GT, NE, LE, LT

See also XSLP_EQTOL_A

Fair Isaac Corporation Confidential and Proprietary Information 172

Control Parameters Reference

XSLP_ERRORCOST

Description Initial penalty cost multiplier for penalty error vectors

Type Double

Note If penalty error vectors are used, this parameter sets the initial cost factor. If there are
active penalty error vectors, then the penalty cost may be increased.

Default value 200

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOSTFACTOR,
XSLP_ERRORMAXCOST

XSLP_ERRORCOSTFACTOR

Description Factor for increasing cost multiplier on total penalty error vectors

Type Double

Note If there are active penalty error vectors, then the penalty cost multiplier will be increased
by a factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST

Default value 1.3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORMAXCOST

XSLP_ERRORMAXCOST

Description Maximum penalty cost multiplier for penalty error vectors

Type Double

Note If there are active penalty error vectors, then the penalty cost multiplier will be increased
by a factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST

Default value infinite

Affects routines XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORCOSTFACTOR

Fair Isaac Corporation Confidential and Proprietary Information 173

Control Parameters Reference

XSLP_ERRORTOL_A

Description Absolute tolerance for error vectors

Type Double

Note The solution will be regarded as having no active error vectors if one of the following
applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_R ∗Obj where Obj is the current objective function value.

Default value 0.00001

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EVTOL_A, XSLP_EVTOL_R

XSLP_ERRORTOL_P

Description Absolute tolerance for printing error vectors

Type Double

Note The solution log includes a print of penalty delta and penalty error vectors with an
activity greater than XSLP_ERRORTOL_P.

Default value 0.0001

Affects routines XSLPmaxim, XSLPminim

XSLP_ESCALATION

Description Factor for increasing cost multiplier on individual penalty error vectors

Type Double

Note If penalty cost escalation is activated in XSLP_ALGORITHM then the penalty cost
multiplier will be increased by a factor of XSLP_ESCALATION for any active error vector
up to a maximum of XSLP_MAXWEIGHT.

Default value 1.25

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_MAXWEIGHT

Fair Isaac Corporation Confidential and Proprietary Information 174

Control Parameters Reference

XSLP_ETOL_A

Description Absolute tolerance on penalty vectors

Type Double

Note For each penalty error vector, the contribution to its constraint is calculated, together
with the total positive and negative contributions to the constraint from other vectors.
If its contribution is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less
than abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not
have its penalty increased. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ETOL_R XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_ETOL_R

Description Relative tolerance on penalty vectors

Type Double

Note For each penalty error vector, the contribution to its constraint is calculated, together
with the total positive and negative contributions to the constraint from other vectors.
If its contribution is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less
than abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not
have its penalty increased. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ETOL_A XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_EVTOL_A

Description Absolute tolerance on total penalty costs

Type Double

Note The solution will be regarded as having no active error vectors if one of the following
applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;

Fair Isaac Corporation Confidential and Proprietary Information 175

Control Parameters Reference

the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_R ∗Obj where Obj is the current objective function value. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-2 and 1e-6, but normally a magnitude larger than XSLP_ETOL_A.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ERRORTOL_A, XSLP_EVTOL_R

XSLP_EVTOL_R

Description Relative tolerance on total penalty costs

Type Double

Note The solution will be regarded as having no active error vectors if one of the following
applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_A;
the sum of the cost contributions from all the penalty error and penalty delta vectors is
less than XSLP_EVTOL_R ∗Obj where Obj is the current objective function value. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-2 and 1e-6, but normally a magnitude larger than XSLP_ETOL_R.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ERRORTOL_A, XSLP_EVTOL_A

XSLP_EXPAND

Description Multiplier to increase a step bound

Type Double

Note If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMECOUNT

successive changes reaching the step bound and in the same direction for a variable,
then the step bound (B) for the variable will be reset to
B ∗ XSLP_EXPAND.

Default value 2

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SHRINK, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

Fair Isaac Corporation Confidential and Proprietary Information 176

Control Parameters Reference

XSLP_FEASTOLTARGET

Description When set, this defines a target feasibility tolerance to which the linearizations are
solved to

Type Double

Note This is a soft version of XPRS_FEASTOL, and will dynamically revert back to
XPRS_FEASTOL if the desired accuracy could not be achieved.

Default value 0 (ignored, not set)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OPTIMALITYTOLTARGET,

XSLP_GRANULARITY

Description Base for calculating penalty costs

Type Double

Note If XSLP_GRANULARITY >1, then initial penalty costs will be powers of
XSLP_GRANULARITY.

Default value 4

Affects routines XSLPconstruct

See also XSLP_MAXWEIGHT, XSLP_MINWEIGHT

XSLP_INFINITY

Description Value returned by a divide-by-zero in a formula

Type Double

Default value 1.0e+10

XSLP_ITOL_A

Description Absolute impact convergence tolerance

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 177

Control Parameters Reference

Note The absolute impact convergence criterion assesses the change in the effect of a
coefficient in a constraint. The effect of a coefficient is its value multiplied by the
activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is
the value of the coefficient. The linearization approximates the effect of the coefficient
as

E1 = X ∗ C0 + δX ∗ C′0

where X is as before, C0 is the value of the coefficient C calculated using the assumed
values for the variables and C′0 is the value of ∂C

∂X calculated using the assumed values for
the variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables,
then the error in the effect of the coefficient is given by

δE = X ∗ C1 − (X ∗ C0 + δX ∗ C′0)

If δE < XSLP_ITOL_A
then the variable has passed the absolute impact convergence criterion for this
coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears,
then it is deemed to have converged. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_ITOL_R

Description Relative impact convergence tolerance

Type Double

Note The relative impact convergence criterion assesses the change in the effect of a
coefficient in a constraint in relation to the magnitude of the constituents of the
constraint. The effect of a coefficient is its value multiplied by the activity of the column
in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is
the value of the coefficient. The linearization approximates the effect of the coefficient
as

E1 = X ∗ C0 + δX ∗ C′0

Fair Isaac Corporation Confidential and Proprietary Information 178

Control Parameters Reference

where X is as before, C0 is the value of the coefficient C calculated using the assumed
values for the variables and C′0 is the value of ∂C

∂X calculated using the assumed values for
the variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables,
then the error in the effect of the coefficient is given by

δE = X ∗ C1 − (X ∗ C0 + δX ∗ C′0)

All the elements of the constraint are examined, excluding delta and error vectors: for
each, the contribution to the constraint is evaluated as the element multiplied by the
activity of the vector in which it appears; it is then included in a total positive
contribution or total negative contribution depending on the sign of the contribution.
If the predicted effect of the coefficient is positive, it is tested against the total positive
contribution; if the effect of the coefficient is negative, it is tested against the total
negative contribution. If T0 is the total positive or total negative contribution to the
constraint (as appropriate)
and δE < T0 ∗ XSLP_ITOL_R
then the variable has passed the relative impact convergence criterion for this
coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears,
then it is deemed to have converged. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_MATRIXTOL

Description Provides an override value for XPRS_MATRIXTOL, which controls the smallest magnitude
of matrix coefficents

Type Double

Note Any value smaller than XSLP_MATRIXTOL in magnitude will not be loaded into the
linearization. This only applies to the matrix coefficients; bounds, right hand sides and
objectives are not affected.

Default value 1e-30

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

XSLP_MAXWEIGHT

Description Maximum penalty weight for delta or error vectors

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 179

Control Parameters Reference

Note When penalty vectors are created, or when their weight is increased by escalation, the
maximum weight that will be used is given by XSLP_MAXWEIGHT.

Default value 100

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_AUGMENTATION, XSLP_ESCALATION, XSLP_MINWEIGHT

XSLP_MEMORYFACTOR

Description Factor for expanding size of dynamic arrays in memory

Type Double

Note When a dynamic array has to be increased in size, the new space allocated will be
XSLP_MEMORYFACTOR times as big as the previous size. A larger value may result in
improved performance because arrays need to be re-sized and moved less frequently;
however, more memory may be required under such circumstances because not all of
the previous memory area can be re-used efficiently.

Default value 1.6

See also Memory control variables XSLP_MEM* Memory control variables XSLP_MEM*

XSLP_MERITLAMBDA

Description Factor by which the net objective is taken into account in the merit function

Type Double

Note The merit function is evaluated in the original, non-augmented / linearized space of the
problem. A solution is deemed improved, if either feasibility improved, or if feasibility is
not deteriorated but the net objective is improved, or if the combination of the two is
improved, where the value of the XSLP_MERITLAMBDA control is used to combine the
two measures. A nonpositive value indicates that the combined effect should not be
checked.

Default value 0.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_FILTER XSLP_LSITERLIMIT XSLP_LSPATTERNLIMIT

XSLP_MINSBFACTOR

Description Factor by which step bounds can be decreased beneath XSLP_ATOL_A

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 180

Control Parameters Reference

Note Normally, step bounds are not decreased beneath XSLP_ATOL_A, as such variables are
treated as converged. However, it may be beneficial to decrease step bounds further, as
individual variable value changes might affect the convergence of other variables in the
model, even if the variablke itself is deemed converged.

Default value 1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ATOL_A

XSLP_MINWEIGHT

Description Minimum penalty weight for delta or error vectors

Type Double

Note When penalty vectors are created, the minimum weight that will be used is given by
XSLP_MINWEIGHT.

Default value 0.01

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_MAXWEIGHT

XSLP_MIPCUTOFF_A

Description Absolute objective function cutoff for MIP termination

Type Double

Note If the objective function is worse by a defined amount than the best integer solution
obtained so far, then the SLP will be terminated (and the node will be cut off). The node
will be cut off at the current SLP iteration if the objective function for the last
XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than the best obtained so far, and
the difference is greater than XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where
OBJ is the best integer solution obtained so far.
The MIP cutoff tests are only applied after XSLP_MIPCUTOFF_LIMIT SLP iterations at
the current node.

Default value 0.0001

Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_COUNT, XSLP_MIPCUTOFF_LIMIT, XSLP_MIPCUTOFF_R

XSLP_MIPCUTOFF_R

Description Absolute objective function cutoff for MIP termination

Fair Isaac Corporation Confidential and Proprietary Information 181

Control Parameters Reference

Type Double

Note If the objective function is worse by a defined amount than the best integer solution
obtained so far, then the SLP will be terminated (and the node will be cut off). The node
will be cut off at the current SLP iteration if the objective function for the last
XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than the best obtained so far, and
the difference is greater than XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where
OBJ is the best integer solution obtained so far.
The MIP cutoff tests are only applied after XSLP_MIPCUTOFF_LIMIT SLP iterations at
the current node.

Default value 0.0001

Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_COUNT, XSLP_MIPCUTOFF_LIMIT, XSLP_MIPCUTOFF_A

XSLP_MIPERRORTOL_A

Description Absolute penalty error cost tolerance for MIP cut-off

Type Double

Note The penalty error cost test is applied at each node where there are active penalties in
the solution. If XSLP_MIPERRORTOL_A is nonzero and the absolute value of the penalty
costs is greater than XSLP_MIPERRORTOL_A, the node will be declared infeasible. If
XSLP_MIPERRORTOL_A is zero then no test is made and the node will not be declared
infeasible on this criterion.

Default value 0 (inactive)

Affects routines XSLPglobal

See also XSLP_MIPERRORTOL_R

XSLP_MIPERRORTOL_R

Description Relative penalty error cost tolerance for MIP cut-off

Type Double

Note The penalty error cost test is applied at each node where there are active penalties in
the solution. If XSLP_MIPERRORTOL_R is nonzero and the absolute value of the penalty
costs is greater than XSLP_MIPERRORTOL_R ∗ abs(Obj) where Obj is the value of the
objective function, then the node will be declared infeasible. If XSLP_MIPERRORTOL_R is
zero then no test is made and the node will not be declared infeasible on this criterion.

Default value 0 (inactive)

Affects routines XSLPglobal

See also XSLP_MIPERRORTOL_A

Fair Isaac Corporation Confidential and Proprietary Information 182

Control Parameters Reference

XSLP_MIPOTOL_A

Description Absolute objective function tolerance for MIP termination

Type Double

Note The objective function test for MIP termination is applied only when step bounding has
been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not
being used). The node will be terminated at the current SLP iteration if the range of the
objective function values over the last XSLP_MIPOCOUNT SLP iterations is within
XSLP_MIPOTOL_A or within OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of
the objective function over those iterations.

Default value 0.00001

Affects routines XSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_R XSLP_SBSTART

XSLP_MIPOTOL_R

Description Relative objective function tolerance for MIP termination

Type Double

Note The objective function test for MIP termination is applied only when step bounding has
been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not
being used). The node will be terminated at the current SLP iteration if the range of the
objective function values over the last XSLP_MIPOCOUNT SLP iterations is within
XSLP_MIPOTOL_A or within OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of
the objective function over those iterations.

Default value 0.00001

Affects routines XSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_A XSLP_SBSTART

XSLP_MSMAXBOUNDRANGE

Description Defines the maximum range inside which initial points are generated by multistart
presets

Type Double

Note The is the maximum range in which initial points are generated; the actual range is
expected to be smaller as bounds are domains are also considered.

Default value 1000

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

Fair Isaac Corporation Confidential and Proprietary Information 183

Control Parameters Reference

XSLP_MTOL_A

Description Absolute effective matrix element convergence tolerance

Type Double

Note The absolute effective matrix element convergence criterion assesses the change in the
effect of a coefficient in a constraint. The effect of a coefficient is its value multiplied by
the activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is
the value of the coefficient. The linearization approximates the effect of the coefficient
as

E = X ∗ C0 + δX ∗ C′0

where V is as before, C0 is the value of the coefficient C calculated using the assumed
values for the variables and C′0 is the value of ∂C

∂X calculated using the assumed values for
the variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables,
then the error in the effect of the coefficient is given by

δE = X ∗ C1 − (X ∗ C0 + δX ∗ C′0)

If δE < X ∗ XSLP_MTOL_A
then the variable has passed the absolute effective matrix element convergence
criterion for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears,
then it is deemed to have converged. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_MTOL_R

Description Relative effective matrix element convergence tolerance

Type Double

Note The relative effective matrix element convergence criterion assesses the change in the
effect of a coefficient in a constraint relative to the magnitude of the coefficient. The
effect of a coefficient is its value multiplied by the activity of the column in which it
appears.

Fair Isaac Corporation Confidential and Proprietary Information 184

Control Parameters Reference

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is
the value of the coefficient. The linearization approximates the effect of the coefficient
as

E1 = X ∗ C0 + δX ∗ C′0

where V is as before, C0 is the value of the coefficient C calculated using the assumed
values for the variables and C′0 is the value of ∂C

∂X calculated using the assumed values for
the variables.
If C1 is the value of the coefficient C calculated using the actual values for the variables,
then the error in the effect of the coefficient is given by

δE = X ∗ C1 − (X ∗ C0 + δX ∗ C′0)

If δE < E1 ∗ XSLP_MTOL_R
then the variable has passed the relative effective matrix element convergence criterion
for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the
(relative or absolute) impact or matrix criteria for all the coefficients in which it appears,
then it is deemed to have converged. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_STOL_A, XSLP_STOL_R

XSLP_MVTOL

Description Marginal value tolerance for determining if a constraint is slack

Type Double

Note If the absolute value of the marginal value of a constraint is less than XSLP_MVTOL, then
(1) the constraint is regarded as not constraining for the purposes of the slack tolerance
convergence criteria;
(2) the constraint is not regarded as an active constraint when identifying unconverged
variables in active constraints. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_STOL_A, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 185

Control Parameters Reference

XSLP_OBJSENSE

Description Objective function sense

Type Double

Note XSLP_OBJSENSE is set to +1 for minimization and to -1 for maximization. It is
automatically set by XSLPmaxim and XSLPminim; it must be set by the user before
calling XSLPopt.

Set by routines XSLPmaxim, XSLPminim

Default value +1

Affects routines XSLPmaxim, XSLPminim, XSLPopt

XSLP_OBJTOPENALTYCOST

Description Factor to estimate initial penalty costs from objective function

Type Double

Notes The setting of initial penalty error costs can affect the path of the optimization and,
indeed, whether a solution is achieved at all. If the penalty costs are too low, then
unbounded solutions may result although Xpress-SLP will increase the costs in an
attempt to recover. If the penalty costs are too high, then the requirement to achieve
feasibility of the linearized constraints may be too strong to allow the system to explore
the nonlinear feasible region. Low penalty costs can result in many SLP iterations, as
feasibility of the nonlinear constraints is not achieved until the penalty costs become
high enough; high penalty costs force feasibility of the linearizations, and so tend to
find local optima close to an initial feasible point. Xpress-SLP can analyze the problem
to estimate the size of penalty costs required to avoid an initial unbounded solution.
XSLP_OBJTOPENALTYCOST can be used in conjunction with this procedure to scale the
costs and give an appropriate initial value for balancing the requirements of feasibility
and optimality.
Not all models are amenable to the Xpress-SLP analysis. As the analysis is initially
concerned with establishing a cost level to avoid unboundedness, a model which is
sufficiently constrained will never show unboundedness regardless of the cost. Also, as
the analysis is done at the start of the optimization to establish a penalty cost,
significant changes in the coefficients, or a high degree of nonlinearity, may invalidate
the initial analysis.
A setting for XSLP_OBJTOPENALTYCOST of zero disables the analysis. A setting of 3 or 4
has proved successful for many models. If XSLP_OBJTOPENALTYCOST cannot be used
because of the problem structure, its effect can still be emulated by some initial
experiments to establish the cost required to avoid unboundedness, and then manually
applying a suitable factor. If the problem is initially unbounded, then the penalty cost
will be increased until either it reaches its maximum or the problem becomes bounded.

Default value 0

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 186

Control Parameters Reference

XSLP_OPTIMALITYTOLTARGET

Description When set, this defines a target optimality tolerance to which the linearizations are
solved to

Type Double

Note This is a soft version of XPRS_OPTIMALITYTOL, and will dynamically revert back to
XPRS_OPTIMALITYTOL if the desired accuracy could not be achieved.

Default value 0 (ignored, not set)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_FEASTOLTARGET,

XSLP_OTOL_A

Description Absolute static objective (2) convergence tolerance

Type Double

Note The static objective (2) convergence criterion does not measure convergence of
individual variables. Instead, it measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables interacting with
active constraints (those that have a marginal value of at least XSLP_MVTOL) have
converged. The rationale is that if the remaining unconverged variables are not
involved in active constraints and if the objective function is not changing significantly
between iterations, then the solution is more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_OTOL_A
then the problem has converged on the absolute static objective (2) convergence
criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 187

Control Parameters Reference

XSLP_OTOL_R

Description Relative static objective (2) convergence tolerance

Type Double

Note The static objective (2) convergence criterion does not measure convergence of
individual variables. Instead, it measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables interacting with
active constraints (those that have a marginal value of at least XSLP_MVTOL) have
converged. The rationale is that if the remaining unconverged variables are not
involved in active constraints and if the objective function is not changing significantly
between iterations, then the solution is more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_R
then the problem has converged on the relative static objective (2) convergence
criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When
the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_A

XSLP_PRESOLVEZERO

Description Minimum absolute value for a variable which is identified as nonzero during SLP
presolve

Type Double

Note During the SLP (nonlinear)presolve, a variable may be identified as being nonzero (for
example, because it is used as a divisor). A bound of plus or minus XSLP_PRESOLVEZERO

will be applied to the variable if it is identified as non-negative or non-positive.

Default value 1.0E-09

Affects routines XSLPpresolve

XSLP_SHRINK

Description Multiplier to reduce a step bound

Fair Isaac Corporation Confidential and Proprietary Information 188

Control Parameters Reference

Type Double

Note If step bounding is enabled, the step bound for a variable will be decreased if successive
changes are in opposite directions. The step bound (B) for the variable will be reset to
B ∗ XSLP_SHRINK.
If the step bound is already below the strict (delta or closure) tolerances, it will not be
reduced further.

Default value 0.5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EXPAND, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_SHRINKBIAS

Description Defines an overwrite / adjustment of step bounds for improving iterations

Type Double

Note Positive values overwrite XSLP_SHRINK only if the objective is improving. A negative
value is used to scale all step bounds in improving iterations.

Default value 0 (ignored, not set)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_SHRINK, XSLP_EXPAND, XSLP_SAMECOUNT

XSLP_STOL_A

Description Absolute slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except
that the tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R

(instead of XSLP_ITOL_R). See XSLP_ITOL_A for a description of the test. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 189

Control Parameters Reference

XSLP_STOL_R

Description Relative slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except
that the tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R

(instead of XSLP_ITOL_R). See XSLP_ITOL_R for a description of the test. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the
feasibility target XSLP_VALIDATIONTARGET_R. Good values for the control are usually
fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A

XSLP_VALIDATIONTARGET_R

Description Feasiblity target tolerance

Type Double

Note Primary optimality control for SLP. When the relevant optimality based convergence
controls are left at their default values, SLP will adjust their value to match the target.
The control defines a target value, that may not necessarily be attainable for problem
with no strong constraint qualifications.

Default value 1e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_VALIDATIONTARGET_K

XSLP_VALIDATIONTARGET_K

Description Optimality target tolerance

Type Double

Note Primary feasiblity control for SLP. When the relevant feasibility based convergence
controls are left at their default values, SLP will adjust their value to match the target.
The control defines a target value, that may not necessarily be attainable.

Default value 1e-6

Affects routines XSLPmaxim, XSLPminim

See also XSLP_VALIDATIONTARGET_R

Fair Isaac Corporation Confidential and Proprietary Information 190

Control Parameters Reference

XSLP_VALIDATIONTOL_A

Description Absolute tolerance for the XSLPvalidate procedure

Type Double

Note XSLPvalidate checks the feasibility of a converged solution against relative and
absolute tolerances for each constraint. The left hand side and the right hand side of
the constraint are calculated using the converged solution values. If the calculated
values imply that the constraint is infeasible, then the difference (D) is tested against the
absolute and relative validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos)
and negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos), ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_A
then the constraint is within the relative validation tolerance. For each constraint which
is outside both the absolute and relative validation tolerances, validation factors are
calculated which are the factors by which the infeasibility exceeds the corresponding
validation tolerance; the smaller factor is printed in the validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is
an absolute validation factor multiplied by the absolute validation tolerance; the
validation index XSLP_VALIDATIONINDEX_R is the largest of these factors which is a
relative validation factor multiplied by the relative validation tolerance.

Default value 0.00001

Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_R

XSLP_VALIDATIONTOL_R

Description Relative tolerance for the XSLPvalidate procedure

Type Double

Note XSLPvalidate checks the feasibility of a converged solution against relative and
absolute tolerances for each constraint. The left hand side and the right hand side of
the constraint are calculated using the converged solution values. If the calculated
values imply that the constraint is infeasible, then the difference (D) is tested against the
absolute and relative validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos)
and negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos), ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which
is outside both the absolute and relative validation tolerances, validation factors are
calculated which are the factors by which the infeasibility exceeds the corresponding
validation tolerance; the smaller factor is printed in the validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is
an absolute validation factor multiplied by the absolute validation tolerance; the

Fair Isaac Corporation Confidential and Proprietary Information 191

Control Parameters Reference

validation index XSLP_VALIDATIONINDEX_R is the largest of these factors which is a
relative validation factor multiplied by the relative validation tolerance.

Default value 0.00001

Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A

XSLP_VTOL_A

Description Absolute static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of
individual variables, and in fact does not in any way imply that the solution has
converged. However, it is sometimes useful to be able to terminate an optimization
once the objective function appears to have stabilized. One example is where a set of
possible schedules are being evaluated and initially only a good estimate of the likely
objective function value is required, to eliminate the worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after
step bounding has been introduced. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the optimality target
XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_R

XSLP_VTOL_R

Description Relative static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of
individual variables, and in fact does not in any way imply that the solution has
converged. However, it is sometimes useful to be able to terminate an optimization

Fair Isaac Corporation Confidential and Proprietary Information 192

Control Parameters Reference

once the objective function appears to have stabilized. One example is where a set of
possible schedules are being evaluated and initially only a good estimate of the likely
objective function value is required, to eliminate the worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_R
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after
step bounding has been introduced. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the optimality target
XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between 1e-3
and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_A

XSLP_WTOL_A

Description Absolute extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution
has been found where at least one variable has converged on extended criteria and is at
its step bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not,
then the last converged solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current
iteration compared to the objective function at the last converged solution is given by:
δObj = Obj − LastConvergedObj
For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a
significantly better objective function value than the converged solution.

When a solution is found which converges on extended criteria and with active step
bounds, the solution is saved and SLP optimization continues until one of the following:
(1) a new solution is found which converges on some other criterion, in which case the
SLP optimization stops with this new solution;

Fair Isaac Corporation Confidential and Proprietary Information 193

Control Parameters Reference

(2) a new solution is found which converges on extended criteria and with active step
bounds, and which has a significantly better objective function, in which case this is
taken as the new saved solution;
(3) none of the XSLP_WCOUNT most recent SLP iterations has a significantly better
objective function than the saved solution, in which case the saved solution is restored
and the SLP optimization stops.

When the value is set to be negative, the value is adjusted automatically by SLP, based
on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are
usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WCOUNT, XSLP_WTOL_R

XSLP_WTOL_R

Description Relative extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution
has been found where at least one variable has converged on extended criteria and is at
its step bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not,
then the last converged solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current
iteration compared to the objective function at the last converged solution is given by:
δObj = Obj − LastConvergedObj
For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a
significantly better objective function value than the converged solution.

If XSLP_WCOUNT is greater than zero, and a solution is found which converges on
extended criteria and with active step bounds, the solution is saved and SLP
optimization continues until one of the following:
(1) a new solution is found which converges on some other criterion, in which case the
SLP optimization stops with this new solution;
(2) a new solution is found which converges on extended criteria and with active step
bounds, and which has a significantly better objective function, in which case this is
taken as the new saved solution;
(3) none of the XSLP_WCOUNT most recent SLP iterations has a significantly better
objective function than the saved solution, in which case the saved solution is restored
and the SLP optimization stops.

Fair Isaac Corporation Confidential and Proprietary Information 194

Control Parameters Reference

When the value is set to be negative, the value is adjusted automatically by SLP, based
on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are
usually fall between 1e-4 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WCOUNT, XSLP_WTOL_A

XSLP_XTOL_A

Description Absolute static objective function (1) tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration. However, if the objective function has already been
stable for several SLP iterations, then there is less likelihood of an improved result, and
the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these
variables is at its step bound. Because all the variables have converged, the solution is
already converged but the fact that some variables are at their step bound limit suggests
that the objective function could be improved by going further.

The variation in the objective function is defined as
δObj = MAXIter(Obj)−MINIter(Obj)
where Iter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static
objective function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static
objective function (1) criterion.

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations
have taken place. After that, if all the variables have converged on strict or extended
criteria, the solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test
then the solution is deemed to have converged.

When the value is set to be negative, the value is adjusted automatically by SLP, based
on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are
usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 195

Control Parameters Reference

XSLP_XTOL_R

Description Relative static objective function (1) tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration. However, if the objective function has already been
stable for several SLP iterations, then there is less likelihood of an improved result, and
the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these
variables is at its step bound. Because all the variables have converged, the solution is
already converged but the fact that some variables are at their step bound limit suggests
that the objective function could be improved by going further.

The variation in the objective function is defined as
δObj = MAXIter(Obj)−MINIter(Obj)
where Iter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static
objective function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static
objective function (1) criterion.

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations
have taken place. After that, if all the variables have converged on strict or extended
criteria, the solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test
then the solution is deemed to have converged.

When the value is set to be negative, the value is adjusted automatically by SLP, based
on the optimality target XSLP_VALIDATIONTARGET_K. Good values for the control are
usually fall between 1e-4 and 1e-6.

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_A

XSLP_ZERO

Description Absolute zero tolerance

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 196

Control Parameters Reference

Note If a value is below XSLP_ZERO in magnitude, then it will be regarded as zero in certain
formula calculations:
an attempt to divide by such a value will give a "divide by zero" error;
an exponent of a negative number will produce a "negative number, fractional
exponent" error if the exponent differs from an integer by more than XSLP_ZERO.

Default value 1.0E-10

Affects routines XSLPevaluatecoef, XSLPevaluateformula

Fair Isaac Corporation Confidential and Proprietary Information 197

Control Parameters Reference

20.2 Integer control parameters

XSLP_ALGORITHM

Description Bit map describing the SLP algorithm(s) to be used

Type Integer

Values Bit Meaning

0 Do not apply step bounds.

1 Apply step bounds to SLP delta vectors only when required.

2 Estimate step bounds from early SLP iterations.

3 Use dynamic damping.

4 Do not update values which are converged within strict tolerance.

5 Retain previous value when cascading if determining row is zero.

6 Reset XSLP_DELTA_Z to zero when converged and continue SLP.

7 Quick convergence check.

8 Escalate penalties.

9 Use the primal simplex algorithm when all error vectors become inactive.

11 Continue optimizing after penalty cost reaches maximum.

12 Accept a solution which has converged even if there are still significant active
penalty error vectors.

13 Skip the solution polishing step if the LP postsolve returns a slightly infeasible,
but claimed optimal solution.

14 Step bounds are updated to accomodate cascaded values (otherwise cascaded
values are pushed to respect step bounds).

15 Apply clamping when converged on extended criteria only with some variables
having active step bounds.

16 Apply clamping when converged on extended criteria only.

Notes Bit 0: Do not apply step bounds. The default algorithm uses step bounds to force
convergence. Step bounds may not be appropriate if dynamic damping is used.

Bit 1: Apply step bounds to SLP delta vectors only when required. Step bounds can be
applied to all vectors simultaneously, or applied only when oscillation of the delta vector
(change in sign between successive SLP iterations) is detected.

Bit 2: Estimate step bounds from early SLP iterations. If initial step bounds are not
being explicitly provided, this gives a good method of calculating reasonable values.
Values will tend to be larger rather than smaller, to reduce the risk of infeasibility
caused by excessive tightness of the step bounds.

Bit 3: Use dynamic damping. Dynamic damping is sometimes an alternative to step
bounding as a means of encouraging convergence, but it does not have the same power
to force convergence as do step bounds.

Bit 4: Do not update values which are converged within strict tolerance. Models
which are numerically unstable may benefit from this setting, which does not update
values which have effectively hardly changed. If a variable subsequently does move
outside its strict convergence tolerance, it will be updated as usual.

Bit 5: Retain previous value when cascading if determining row is zero. If the
determining row is zero (that is, all the coefficients interacting with it are either zero or

Fair Isaac Corporation Confidential and Proprietary Information 198

Control Parameters Reference

in columns with a zero activity), then it is impossible to calculate a new value for the
vector being cascaded. The choice is to use the solution value as it is, or to revert to the
assumed value

Bit 6: Reset XSLP_DELTA_Z to zero when converged and continue SLP. One of the
mechanisms to avoid local optima is to retain small non-zero coefficients between delta
vectors and constraints, even when the coefficient should strictly be zero. If this option
is set, then a converged solution will be continued with zero coefficients as appropriate.

Bit 7: Quick convergence check. Normally, each variable is checked against all
convergence criteria until either a criterion is found which it passes, or it is declared "not
converged". Later (extended convergence) criteria are more expensive to test and, once
an unconverged variable has been found, the overall convergence status of the solution
has been established. The quick convergence check carries out checks on the strict
criteria, but omits checks on the extended criteria when an unconverged variable has
been found.

Bit 8: Escalate penalties. Constraint penalties are increased after each SLP iteration
where penalty vectors are present in the solution. Escalation applies an additional
scaling factor to the penalty costs for active errors. This helps to prevent successive
solutions becoming "stuck" because of a particular constraint, because its cost will be
raised so that other constraints may become more attractive to violate instead and thus
open up a new region to explore.

Bit 9: Use the primal simplex algorithm when all error vectors become inactive. The
primal simplex algorithm often performs better than dual during the final stages of SLP
optimization when there are relatively few basis changes between successive solutions.
As it is impossible to establish in advance when the final stages are being reached, the
disappearance of error vectors from the solution is used as a proxy.

Bit 11: Continue optimizing after penalty cost reaches maximum. Normally if the
penalty cost reaches its maximum (by default the value of XPRS_PLUSINFINITY), the
optimization will terminate with an unconverged solution. If the maximum value is set
to a smaller value, then it may make sense to continue, using other means to determine
when to stop.

Bit 12: Accept a solution which has converged even if there are still significant active
penalty error vectors. Normally, the optimization will continue if there are active
penalty vectors in the solution. However, it may be that there is no feasible solution
(and so active penalties will always be present). Setting bit 12 means that, if other
convergence criteria are met, then the solution will be accepted as converged and the
optimization will stop.

Bit 13: Due to the nature of the SLP linearizations, and in particular because of the
large differences in the objective function (model objective against penalty costs) some
dual reductions in the linear presolver might introduce numerically instable reductions
that cause slight infeasibilities to appear in postsolve. It is typically more efficient to
remove these infeasibilities with an extra call to the linear optimizer; compared to
switching these reductions off, which usually has a significant cost in performance. This
bit is provided for numerically very hard problems, when the polishing step proves to be
too expensive (XSLP will report these if any in the final log summary).

Bit 14: Normally, cascading will respect the step bounds of the SLP variable being
cascaded. However, allowing the cascaded value to fall outside the step bounds (i.e.
expanding the step bounds) can lead to better linearizations, as cascading will set better
values for the SLP variables regarding their determining rows; note, that this later
strategy might interfere with convergence of the cascaded variables.

Bit 15: When clamping is applied, then in any iteration when the solution would
normally be deemed converged on extended criteria only, an extra step bound shrinking
step is applied to help imposing strict convergence. In this variant, clamping is only

Fair Isaac Corporation Confidential and Proprietary Information 199

Control Parameters Reference

applied on variables that have converged on extended criteria only and have active step
bounds.

Bit 16: When clamping is applied, then in any iteration when the solution would
normally be deemed converged on extended criteria only, an extra step bound shrinking
step is applied to help imposing strict convergence. In this variant, clamping is applied
on all variables that have converged on extended criteria only.

The following constants are provided for setting these bits:

Setting bit 0 XSLP_NOSTEPBOUNDS

Setting bit 1 XSLP_STEPBOUNDSASREQUIRED

Setting bit 2 XSLP_ESTIMATESTEPBOUNDS

Setting bit 3 XSLP_DYNAMICDAMPING

Setting bit 4 XSLP_HOLDVALUES

Setting bit 5 XSLP_RETAINPREVIOUSVALUE

Setting bit 6 XSLP_RESETDELTAZ

Setting bit 7 XSLP_QUICKCONVERGENCECHECK

Setting bit 8 XSLP_ESCALATEPENALTIES

Setting bit 9 XSLP_SWITCHTOPRIMAL

Setting bit 11 XSLP_MAXCOSTOPTION

Setting bit 12 XSLP_RESIDUALERRORS

Setting bit 13 XSLP_NOLPPOLISHING

Setting bit 14 XSLP_CASCADEDBOUNDS

Setting bit 15 XSLP_CLAMPEXTENDEDACTIVESB

Setting bit 16 XSLP_CLAMPEXTENDEDALL

Recommended setting: Bits 1, 2, 5, 7 and usually bits 8 and 9.

Default value 166 (sets bits 1, 2, 5, 7)

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_Z, XSLP_ERRORMAXCOST, XSLP_ESCALATION, XSLP_CLAMPSHRINK

XSLP_ANALYZE

Description Bit map activating additional options supporting model / solution path analyzis

Type Integer

Values Bit Meaning

0 Add solutions of the linearizations to the solution pool.

1 Add cascaded solutions to the solution pool.

2 Add line search solutions to the solution pool.

3 Include an extended iteration summary.

4 Run infeasibility analysis on infeasible iterations.

5 Save the solutions collected in the pool to disk.

6 Write the linearizations to disk at every XSLP_AUTOSAVE iterations.

7 Write the initial basis of the linearizations to disk at every XSLP_AUTOSAVE
iterations.

8 Create an XSLP save file at every XSLP_AUTOSAVE iterations.

Note The solution pool can be accessed using the memory attribute XSLP_SOLUTIONPOOL.
Normally, the values of this control does not affect the solution process itself. However,

Fair Isaac Corporation Confidential and Proprietary Information 200

Control Parameters Reference

bit 3 (extended summary) will cause SLP to do more fucntion evaluations, and the
presence of non-deterministic user functions might case changes in the solution process.
These options are off by default due to performance considerations. The following
constants are provided for setting these bits:

Setting bit 0 XSLP_ANALYZE_RECORDLINEARIZATION

Setting bit 1 XSLP_ANALYZE_RECORDCASCADE

Setting bit 2 XSLP_ANALYZE_RECORDLINESEARCH

Setting bit 3 XSLP_ANALYZE_EXTENDEDFINALSUMMARY

Setting bit 4 XSLP_ANALYZE_INFEASIBLE_ITERATION

Setting bit 5 XSLP_ANALYZE_AUTOSAVEPOOL

Setting bit 6 XSLP_ANALYZE_SAVELINEARIZATIONS

Setting bit 7 XSLP_ANALYZE_SAVEITERBASIS

Setting bit 8 XSLP_ANALYZE_SAVEFILE

Default value 0

See also XSLP_AUTOSAVE

XSLP_AUGMENTATION

Description Bit map describing the SLP augmentation method(s) to be used

Type Integer

Values Bit Meaning

0 Minimum augmentation.

1 Even handed augmentation.

2 Penalty error vectors on all non-linear equality constraints.

3 Penalty error vectors on all non-linear inequality constraints.

4 Penalty vectors to exceed step bounds.

5 Use arithmetic means to estimate penalty weights.

6 Estimate step bounds from values of row coefficients.

7 Estimate step bounds from absolute values of row coefficients.

8 Row-based step bounds.

9 Penalty error vectors on all constraints.

10 Intial values do not imply an SLP variable.

Notes Bit 0: Minimum augmentation. Standard augmentation includes delta vectors for all
variables involved in nonlinear terms (in non-constant coefficients or as vectors
containing non-constant coefficients). Minimum augmentation includes delta vectors
only for variables in non-constant coefficients. This produces a smaller linearization, but
there is less control on convergence, because convergence control (for example, step
bounding) cannot be applied to variables without deltas.

Bit 1: Even handed augmentation. Standard augmentation treats variables which
appear in non-constant coefficients in a different way from those which contain
non-constant coefficients. Even-handed augmentation treats them all in the same way
by replacing each non-constant coefficient C in a vector V by a new coefficient C ∗ V in
the "equals" column (which has a fixed activity of 1) and creating delta vectors for all
types of variable in the same way.

Bit 2: Penalty error vectors on all non-linear equality constraints. The linearization of a
nonlinear equality constraint is inevitably an approximation and so will not generally be

Fair Isaac Corporation Confidential and Proprietary Information 201

Control Parameters Reference

feasible except at the point of linearization. Adding penalty error vectors allows the
linear approximation to be violated at a cost and so ensures that the linearized
constraint is feasible.

Bit 3: Penalty error vectors on all non-linear inequality constraints. The linearization of
a nonlinear constraint is inevitably an approximation and so may not be feasible except
at the point of linearization. Adding penalty error vectors allows the linear
approximation to be violated at a cost and so ensures that the linearized constraint is
feasible.

Bit 4: Penalty vectors to exceed step bounds. Although it has rarely been found
necessary or desirable in practice, Xpress-SLP allows step bounds to be violated at a cost.
This may help with feasibility but it generally slows down or prevents convergence, so it
should be used only if found absolutely necessary.

Bit 5: Use arithmetic means to estimate penalty weights. Penalty weights are
estimated from the magnitude of the elements in the constraint or interacting rows.
Geometric means are normally used, so that a few excessively large or small values do
not distort the weights significantly. Arithmetic means will value the coefficients more
equally.

Bit 6: Estimate step bounds from values of row coefficients. If step bounds are to be
imposed from the start, the best approach is to provide explicit values for the bounds.
Alternatively, Xpress-SLP can estimate the values from the range of estimated coefficient
sizes in the relevant rows.

Bit 7: Estimate step bounds from absolute values of row coefficients. If step bounds
are to be imposed from the start, the best approach is to provide explicit values for the
bounds. Alternatively, Xpress-SLP can estimate the values from the largest estimated
magnitude of the coefficients in the relevant rows.

Bit 8: Row-based step bounds. Step bounds are normally applied as bounds on the
delta variables. Some applications may find that using explicit rows to bound the delta
vectors gives better results.

Bit 9: Penalty error vectors on all constraints. If the linear portion of the underlying
model may actually be infeasible, then applying penalty vectors to all rows may allow
identification of the infeasibility and may also allow a useful solution to be found.

Bit 10: Having an initial value will not cause the augmentation to include the
corresponding delta variable; i.e. treat the variable as an SLP variable. Useful to provide
initial values necessary in the first linearization in case of a minimal augmentation, or as
a convenience option when it’s easiest to set an initial value for all variables for some
reason.

The following constants are provided for setting these bits:

Setting bit 0 XSLP_MINIMUMAUGMENTATION

Setting bit 1 XSLP_EVENHANDEDAUGMENTATION

Setting bit 2 XSLP_EQUALITYERRORVECTORS

Setting bit 3 XSLP_ALLERRORVECTORS

Setting bit 4 XSLP_PENALTYDELTAVECTORS

Setting bit 5 XSLP_AMEANWEIGHT

Setting bit 6 XSLP_SBFROMVALUES

Setting bit 7 XSLP_SBFROMABSVALUES

Setting bit 8 XSLP_STEPBOUNDROWS

Setting bit 9 XSLP_ALLROWERRORVECTORS

Setting bit 10 XSLP_NOUPDATEIFONLYIV

The recommended setting is bits 2 and 3 (penalty vectors on all nonlinear constraints).

Default value 12 (sets bits 2 and 3)

Affects routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 202

Control Parameters Reference

XSLP_AUTOSAVE

Description Frequency with which to save the model

Type Integer

Note A value of zero means that the model will not automatically be saved. A positive value
of n will save model information at every nth SLP iteration as requested by
XSLP_ANALYZIS.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ANALYZE

XSLP_BARCROSSOVERSTART

Description Default crossover activation behaviour for barrier start

Type Integer

Note When XSLP_BARLIMIT is set, XSLP_BARCROSSOVERSTART offers an overwrite control
on when crossover is applied. A positive value indicates that crossover should be
disabled in iterations smaller than XSLP_BARCROSSOVERSTART and should be enabled
afterwards, or when stalling is detected as described in XSLP_BARSTARTOPS. A value of
0 indicates to respect the value of XPRS_CROSSOVER and only overwrite its value when
stalling is detected. A value of -1 indicates to always rely on the value of
XPRS_CROSSOVER.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARLIMIT, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARLIMIT

Description Number of initial SLP iterations using the barrier method

Type Integer

Note Particularly for larger models, using the Newton barrier method is faster in the earlier
SLP iterations. Later on, when the basis information becomes more useful, a simplex
method generally performs better. XSLP_BARLIMIT sets the number of SLP iterations
which will be performed using the Newton barrier method.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

Fair Isaac Corporation Confidential and Proprietary Information 203

Control Parameters Reference

XSLP_BARSTALLINGLIMIT

Description Number of iterations to allow numerical failures in barrier before switching to dual

Type Integer

Note On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver as specified by XSLP_BARLIMIT. On some numerically
difficult problems, the barrier may stop prematurely due to numerical issues. Such solves
can sometimes be finished if crossover is applied. After XSLP_BARSTALLINGLIMIT such
attempts, SLP will automatically switch to use the dual simplex.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTALLINGOBJLIMIT

Description Number of iterations over which to measure the objective change for barrier iterations
with no crossover

Type Integer

Note On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver without crossover by setting XSLP_BARLIMIT to a
positive value and setting XPRS_CROSSOVER to 0. A potential drawback is slower
convergence due to the interior point provided by the barrier solve keeping a higher
number of variables active. This may lead to stalling in progress, negating the benefit of
using the barrier. When in the last XSLP_BARSTALLINGOBJLIMIT iterations no
significant progress has been made, crossover is automatically enabled.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTARTOPS

Description Controls behaviour when the barrier is used to solve the linearizations

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 204

Control Parameters Reference

Values Bit Meaning

0 Check objective progress when no crossover is applied.

1 Fall back to dual simplex if too many numerical problems are reported by the
barrier.

2 If a non-vertex converged solution found by barrier without crossover can be
returned as a final solution.

Note The following constants are provided for setting these bits:

Setting bit 0 BARSTARTOPS_STALLING_OBJECTIVE

Setting bit 1 BARSTARTOPS_STALLING_NUMERICAL

Setting bit 2 BARSTARTOPS_ALLOWINTERIORSOLUTION

Default value -1

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_CALCTHREADS

Description Number of threads used for formula and derivatives evaluations

Type Integer

Note When beneficial, SLP can calculate formula values and partial derivative information in
parallel.

Default value -1 (automatically determined)

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_THREADS,

XSLP_CASCADE

Description Bit map describing the cascading to be used

Type Integer

Values Bit Meaning

0 Apply cascading to all variables with determining rows.

1 Apply cascading to SLP variables which appear in coefficients and which would
change by more than XPRS_FEASTOL.

2 Apply cascading to all SLP variables which appear in coefficients.

3 Apply cascading to SLP variables which are structural and which would change
by more than XPRS_FEASTOL.

4 Apply cascading to all SLP variables which are structural.

5 Create secondary order groupping DR rows with instantiated user functions
together in the order.

Fair Isaac Corporation Confidential and Proprietary Information 205

Control Parameters Reference

Note Normal cascading (bit 0) uses determining rows to recalculate the values of variables to
be consistent with values already available or already recalculated.
Other bit settings are normally required only in quadratic programming where some of
the SLP variables are in the objective function. The values of such variables may need to
be corrected if the corresponding update row is slightly infeasible. The following
constants are provided for setting these bits:

Setting bit 0 XSLP_CASCADE_ALL

Setting bit 1 XSLP_CASCADE_COEF_VAR

Setting bit 2 XSLP_CASCADE_ALL_COEF_VAR

Setting bit 3 XSLP_CASCADE_STRUCT_VAR

Setting bit 4 XSLP_CASCADE_ALL_STRUCT_VAR

Setting bit 5 XSLP_CASCADE_SECONDARY_GROUPS

Default value 1

Affects routines XSLPcascade

XSLP_CASCADENLIMIT

Description Maximum number of iterations for cascading with non-linear determining rows

Type Integer

Note Re-calculation of the value of a variable uses a modification of the Newton-Raphson
method. The maximum number of steps in the method is set by XSLP_CASCADENLIMIT.
If the maximum number of steps is taken without reaching a converged value, the best
value found will be used.

Default value 10

Affects routines XSLPcascade

See also XSLP_CASCADE

XSLP_CONTROL

Description Bit map describing which Xpress-SLP functions also activate the corresponding Optimizer
Library function

Type Integer

Values Bit Meaning

0 Xpress-SLP problem management functions do NOT invoke the corresponding
Optimizer Library function for the underlying linear problem.

1 XSLPcopycontrols does NOT invoke XPRScopycontrols.

2 XSLPcopycallbacks does NOT invoke XPRScopycallbacks.

3 XSLPcopyprob does NOT invoke XPRScopyprob.

4 XSLPsetdefaults does NOT invoke XPRSsetdefaults.

5 XSLPsave does NOT invoke XPRSsave.

6 XSLPrestore does NOT invoke XPRSrestore.

Fair Isaac Corporation Confidential and Proprietary Information 206

Control Parameters Reference

Note The problem management functions are:
XSLPcopyprob to copy from an existing problem;
XSLPcopycontrols and XSLPcopycallbacks to copy the current controls and
callbacks from an existing problem;
XSLPsetdefaults to reset the controls to their default values;
XSLPsave and XSLPrestore for saving and restoring a problem.

Default value 0 (no bits set)

Affects routines XSLPcopycontrols, XSLPcopycallbacks, XSLPcopyprob, XSLPrestore, XSLPsave,
XSLPsetdefaults

XSLP_CONVERGENCEOPS

Description Bit map describing which convergence tests should be carried out

Type Integer

Values Bit Meaning

0 Execute the closure tolerance checks.

1 Execute the delta tolerance checks.

2 Execute the matrix tolerance checks.

3 Execute the impact tolerance checks.

4 Execute the slack impact tolerance checks.

5 Check for user provided convergence.

6 Execute the objetcive range checks.

7 Execute the objetcive range + constraint activity check.

8 Execute the objective range + active step bound check.

9 Execute the convergence continuation check.

10 Take scaling of individual variables / rows into account.

11 Execute the validation target convergence checks.

12 Execute the first order optimality target convergence checks.

Note Provides fine tuned control (over setting the related convergence tolerances) of which
convergence checks are carried out.

The following constants are provided for setting these bits:

Setting bit 0 XSLP_CONVERGEBIT_CTOL

Setting bit 1 XSLP_CONVERGEBIT_ATOL

Setting bit 2 XSLP_CONVERGEBIT_MTOL

Setting bit 3 XSLP_CONVERGEBIT_ITOL

Setting bit 4 XSLP_CONVERGEBIT_STOL

Setting bit 5 XSLP_CONVERGEBIT_USER

Setting bit 6 XSLP_CONVERGEBIT_VTOL

Setting bit 7 XSLP_CONVERGEBIT_XTOL

Setting bit 8 XSLP_CONVERGEBIT_OTOL

Setting bit 9 XSLP_CONVERGEBIT_WTOL

Setting bit 10 XSLP_CONVERGEBIT_EXTENDEDSCALING

Setting bit 11 CONVERGEBIT_VALIDATION

Setting bit 12 CONVERGEBIT_VALIDATION_K

Default value 7167 (bits 0-9 and 11-12 are set)

Fair Isaac Corporation Confidential and Proprietary Information 207

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPSTART

Description SLP iteration at which damping is activated

Type Integer

Note If damping is used as part of the SLP algorithm, it can be delayed until a specified SLP
iteration. This may be appropriate when damping is used to encourage convergence
after an un-damped algorithm has failed to converge.

Default value 0

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_ALGORITHM, XSLP_DAMPEXPAND, XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK

XSLP_DCLIMIT

Description Default iteration delay for delayed constraints

Type Integer

Note If a delayed constraint does not have an explicit delay, then the value of XSLP_DCLIMIT

will be used.

Default value 5

Affects routines XSLPmaxim, XSLPminim

XSLP_DCLOG

Description Amount of logging information for activcation of delayed constraints

Type Integer

Note If XSLP_DCLOG is set to 1, then a message will be produced for each DC as it is activated.

Default value 0

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 208

Control Parameters Reference

XSLP_DELAYUPDATEROWS

Description Number of SLP iterations before update rows are fully activated

Type Integer

Notes Update rows are an integral part of the augmented matrix used to create linear
approximations of the nonlinear problem. However, if determining rows are present,
then it is possible for some updated values to be calculated during cascading, and the
corresponding update rows are then not required. When SLP variables have explicit
bounds, and particularly when step bounding is enforced, update rows become
important to the solutions actually obtained. It is therefore normal practice to delay
update rows for only a few initial SLP iterations.
Update rows can only be delayed for variables which are not structural (that is, they do
not have explicit coefficients in the original problem) and for which determining rows
are provided.

Default value 2

Affects routines XSLPmaxim, XSLPminim

XSLP_DECOMPOSE

Description Bitmap controlling the action of function XSLPdecompose

Type Integer

Values Bit Meaning

0 (=1) Set to 1 to activate automatic decomposition during problem augmentation

1 (=2) Only decompose formulae which are entirely linear (default is to extract
any linear constituents)

2 (=4) Decompose formulae in any fixed column (default is to decompose only
formulae in the "equals column")

3 (=8) Only extract structural columns – that is, columns which already have
coefficients in the problem (default is to extract any column which appears
linearly)

4 (=16) Treat fixed variables as constants when deciding linearity (default is to
treat all variables as non-constant)

5 (=32) Do not decompose coefficients in columns which are fixed to zero (default
is to decompose coefficients in all eligible columns)

Notes Bit 0 of XSLP_DECOMPOSE must be set for automatic decomposition during problem
augmentation (XSLPconstruct). This decomposition happens after SLP presolving
(XSLPpresolve). XSLP_PRESOLVE can be set to fix any variables that it finds, which
may allow more decomposition to take place.

The remaining bits of XSLP_DECOMPOSE apply whether decomposition is automatic or
called explicitly through XSLPdecompose.

Default value 0

Affects routines XSLPconstruct, XSLPdecompose

Fair Isaac Corporation Confidential and Proprietary Information 209

Control Parameters Reference

XSLP_DECOMPOSEPASSLIMIT

Description Maximum number of repeats of presolve+decompose

Type Integer

Notes If XSLP_DECOMPOSEPASSLIMIT is set to a positive integer, and formula decomposition is
activated (either by setting XSLP_DECOMPOSE or by calling XSLPdecompose directly),
then the SLP presolve procedure will be activated after decomposition is completed. If
any changes are made to the problem as a result of presolving, then decomposition +
presolve will be repeated (up to XSLP_DECOMPOSEPASSLIMIT times) as long as the
problem continues to be changed.

Default value 0

Affects routines XSLPdecompose

See also XSLP_DECOMPOSE, XSLP_PRESOLVE,

XSLP_DELTAOFFSET

Description Position of first character of SLP variable name used to create name of delta vector

Type Integer

Note During augmentation, a delta vector, and possibly penalty delta vectors, are created for
each SLP variable. They are created with names derived from the corresponding SLP
variable. Customized naming is possible using XSLP_DELTAFORMAT etc to define a
format and XSLP_DELTAOFFSET to define the first character (counting from zero) of the
variable name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_DELTAFORMAT, XSLP_MINUSDELTAFORMAT, XSLP_PLUSDELTAFORMAT

XSLP_DELTAZLIMIT

Description Number of SLP iterations during which to apply XSLP_DELTA_Z

Type Integer

Note XSLP_DELTA_Z is used to retain small derivatives which would otherwise be regarded as
zero. This is helpful in avoiding local optima, but may make the linearized problem
more difficult to solve because of the number of small nonzero elements in the resulting
matrix. XSLP_DELTAZLIMIT can be set to a nonzero value, which is then the number of
iterations for which XSLP_DELTA_Z will be used. After that, small derivatives will be set
to zero. A negative value indicates no automatic perturbations to the derivatives in any
situation.

Fair Isaac Corporation Confidential and Proprietary Information 210

Control Parameters Reference

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_DELTA_Z

XSLP_DERIVATIVES

Description Bitmap describing the method of calculating derivatives

Type Integer

Values Bit Meaning

0 analytic derivatives where possible

1 avoid embedding numerical derivatives of instantiated functions into analytic
derivatives

Notes If no bits are set then numerical derivatives are calculated using finite differences.
Analytic derivatives cannot be used for formulae involving discontinuous functions (such
as the logical functions EQ, LT, etc). They may not work well with functions which are
not smooth (such as MAX), or where the derivative changes very quickly with the value of
the variable (such as LOG of small values).
Both first and second order analytic derivatives can either be calculated as symbolic
formulas, or by the means of auto-differentiation, with the exception that the second
order symbolic derivatives require that the first order derivatives are also calculated
using the symbolic method.

Default value 1

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_JACOBIAN, XSLP_HESSIAN

XSLP_DETERMINISTIC

Description Determines if the parallel features of SLP should be guaranteed to be deterministic

Type Integer

Note Determinism can only be guaranteed if no callbacks are used, or if in the presence of
callbacks the effect of the callbacks only depend on local information provided by SLP.

Default value 1

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART_POOLSIZE,

Fair Isaac Corporation Confidential and Proprietary Information 211

Control Parameters Reference

XSLP_ECFCHECK

Description Check feasibility at the point of linearization for extended convergence criteria

Type Integer

Values 0 no check (extended criteria are always used);

1 check until one infeasible constraint is found;

2 check all constraints.

Notes The extended convergence criteria measure the accuracy of the solution of the linear
approximation compared to the solution of the original nonlinear problem. For this to
work, the linear approximation needs to be reasonably good at the point of
linearization. In particular, it needs to be reasonably close to feasibility.
XSLP_ECFCHECK is used to determine what checking of feasibility is carried out at the
point of linearization. If the point of linearization at the start of an SLP iteration is
deemed to be infeasible, then the extended convergence criteria are not used to decide
convergence at the end of that SLP iteration.
If all that is required is to decide that the point of linearization is not feasible, then the
search can stop after the first infeasible constraint is found (parameter is set to 1). If the
actual number of infeasible constraints is required, then XSLP_ECFCHECK should be set
to 2, and all constraints will be checked.
The number of infeasible constraints found at the point of linearization is returned in
XSLP_ECFCOUNT.

Default value 1

Affects routines Convergence criteria, XSLPmaxim, XSLPminim

See also XSLP_ECFCOUNT, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_ECHOXPRSMESSAGES

Description Controls if the XSLP message callback should relay messages from the XPRS library.

Type Integer

Note In case the XSLP and XPRS logs are handled the same way by an application, setting this
control to 1 makes it sufficient to implement the XSLP messaging callback only.

Default value 0

XSLP_ERROROFFSET

Description Position of first character of constraint name used to create name of penalty error
vectors

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 212

Control Parameters Reference

Note During augmentation, penalty error vectors may be created for some or all of the
constraints. The vectors are created with names derived from the corresponding
constraint name. Customized naming is possible using XSLP_MINUSERRORFORMAT and
XSLP_PLUSERRORFORMAT to define a format and XSLP_ERROROFFSET to define the first
character (counting from zero) of the constraint name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_MINUSERRORFORMAT, XSLP_PLUSERRORFORMAT

XSLP_EVALUATE

Description Evaluation strategy for user functions

Type Integer

Values 0 use derivatives where possible;

1 always re-evaluate.

Note If a user function returns derivatives or returns more than one value, then it is possible
for Xpress-SLP to estimate the value of the function from its derivatives if the new point
of evaluation is sufficiently close to the original. Setting XSLP_EVALUATE to 1 will force
re-evaluation of all functions regardless of how much or little the point of evaluation
has changed.

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula

See also XSLP_FUNCEVAL

XSLP_EXCELVISIBLE

Description Display of Excel when evaluating user functions written in Excel

Type Integer

Values 0 do not display;

1 display.

Notes Normally, Excel is hidden when used as the source of user functions. This is generally
more efficient because (for example) no screen updating is required. During model
development, or if Excel is being used for visualization, it may be appropriate to have
Excel displayed.
XSLP_EXCELVISIBLE must be set before any user function written in Excel is called.

Default value 0

Affects routines XSLPevaluatecoef XSLPevaluateformula, XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 213

Control Parameters Reference

XSLP_EXTRACVS

Description Expansion number for character variables

Type Integer

Note The expansion number is the number of additional items for which space is provided in
memory. Before any items are loaded, it is the initial space available. After any items
have been loaded, it is the amount by which the space will be expanded if required. The
expansion number may be increased by the system beyond any value set by the user.
Setting the expansion number is one way of increasing efficiency during loading or
adding character variables.

Set by routines XSLPaddcvars, XSLPchgcvar, XSLPloadcvars

Default value 10

Affects routines XSLPaddcvars, XSLPchgcvar, XSLPloadcvars, XSLPreadprob

See also XSLP_MEM_CVAR, XSLP_MEMORYFACTOR

XSLP_EXTRAUFS

Description Expansion number for user functions

Type Integer

Note The expansion number is the number of additional items for which space is provided in
memory. Before any items are loaded, it is the initial space available. After any items
have been loaded, it is the amount by which the space will be expanded if required. The
expansion number may be increased by the system beyond any value set by the user.
Setting the expansion number is one way of increasing efficiency during loading or
adding user function definitions.

Set by routines XSLPadduserfuncs, XSLPchguserfunc, XSLPloaduserfuncs

Default value 10

Affects routines XSLPadduserfuncs, XSLPchguserfunc, XSLPloaduserfuncs XSLPreadprob

See also XSLP_MEM_UF, XSLP_MEMORYFACTOR

XSLP_EXTRAXVITEMS

Description Expansion number for XV items

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 214

Control Parameters Reference

Note The expansion number is the number of additional items for which space is provided in
memory. Before any items are loaded, it is the initial space available. After any items
have been loaded, it is the amount by which the space will be expanded if required. The
expansion number may be increased by the system beyond any value set by the user.
Setting the expansion number is one way of increasing efficiency during loading or
adding XVs or XV items.

Set by routines XSLPaddxvs, XSLPchgxvitem, XSLPloadxvs

Default value 100

Affects routines XSLPaddxvs, XSLPchgxvitem, XSLPloadxvs XSLPreadprob

See also XSLP_MEM_XVITEM, XSLP_MEMORYFACTOR

XSLP_EXTRAXVS

Description Expansion number for XVs

Type Integer

Note The expansion number is the number of additional items for which space is provided in
memory. Before any items are loaded, it is the initial space available. After any items
have been loaded, it is the amount by which the space will be expanded if required. The
expansion number may be increased by the system beyond any value set by the user.
Setting the expansion number is one way of increasing efficiency during loading or
adding XVs.

Set by routines XSLPaddxvs, XSLPchgxv, XSLPloadxvs

Default value 100

Affects routines XSLPaddxvs, XSLPchgxv, XSLPloadxvs XSLPreadprob

See also XSLP_MEM_XV, XSLP_MEMORYFACTOR

XSLP_FILTER

Description Bit map for controlling solution updates

Type Integer

Values Bit Meaning

0 retrain solution best according to the merit function.

1 check cascaded solutions against improvements in the merit function.

2 force minimum step sizes in line search.

3 accept the trust region step is the line search returns a zero step size.

Notes Bits 0 determine if XSLPgetslpsol should return the final converged solution, or the
solution which had the best value according to the merit function.
If bit 1 is set, a cascaded solution which does not improve the merit function will be
rejected (XSLP will revert to the solution of the linearization).

Fair Isaac Corporation Confidential and Proprietary Information 215

Control Parameters Reference

Bits 2-3 determine the strategy for when the step direction is not improving according
to the merit function.
The following constants are provided for setting these bits:

Setting bit 0 XSLP_FILTER_KEEPBEST

Setting bit 1 XSLP_FILTER_CASCADE

Setting bit 2 XSLP_FILTER_ZEROLINESEARCH

Setting bit 3 XSLP_FILTER_ZEROLINESEARCHTR

Default value 10 (bit 1,3)

Affects routines XSLPmaxim, XSLPminim, XSLPcascade

See also XSLP_MERITLAMBDA, XSLP_CASCADE, XSLP_LSSTART, XSLP_LSITERLIMIT,
XSLP_LSPATTERNLIMIT

XSLP_FINDIV

Description Option for running a heuristic to find a feasible initial point

Type Integer

Values -1 Automatic (default).

0 Disable the heuristic.

1 Enable the heuristic.

Notes The procedure uses bound reduction (and, up to an extent, probing) to obtain a point in
the initial bounding box that is feasible for the bound reduction techniques.
If an initial point is already specified and is found not to violate bound reduction, then
the heuristic is not run and the given point is used as the initial solution.

Default value -1

Affects routines XSLPmaxim, XSLPminim

XSLP_FUNCEVAL

Description Bit map for determining the method of evaluating user functions and their derivatives

Type Integer

Values Bit Meaning

3 evaluate function whenever independent variables change.

4 evaluate function when independent variables change outside tolerances.

5 application of bits 3-4: 0 = functions which do not have a defined re-evaluation
mode;1 = all functions.

6 tangential derivatives.

7 forward derivatives

8 application of bits 6-7: 0 = functions which do not have a defined derivative
mode;1 = all functions.

Fair Isaac Corporation Confidential and Proprietary Information 216

Control Parameters Reference

Notes Bits 3-4 determine the type of function re-evaluation. If both bits are zero, then the
settings for each individual function are used.
If bit 3 or bit 4 is set, then bit 5 defines which functions the setting applies to. If it is set
to 1, then it applies to all functions. Otherwise, it applies only to functions which do not
have an explicit setting of their own.
Bits 6-7 determine the type of calculation for numerical derivatives. If both bits are zero,
then the settings for each individual function are used.
If bit 6 or bit 7 is set, then bit 8 defines which functions the setting applies to. If it is set
to 1, then it applies to all functions. Otherwise, it applies only to functions which do not
have an explicit setting of their own.

The following constants are provided for setting these bits:

Setting bit 3 XSLP_RECALC

Setting bit 4 XSLP_TOLCALC

Setting bit 5 XSLP_ALLCALCS

Setting bit 6 XSLP_2DERIVATIVE

Setting bit 7 XSLP_1DERIVATIVE

Setting bit 8 XSLP_ALLDERIVATIVES

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula

See also XSLP_EVALUATE

XSLP_GRIDHEURSELECT

Description Bit map selectin which heuristics to run if the problem has variable with an integer delta

Type Integer

Values Bit Meaning

0 Enumeration: try all combinations.

1 Simple search heuristics.

2 Simulated annealing.

Note A value of 0 indicates that integer deltas are only taken into consideration during the
SLP iterations.

Note The enumeration option can be useful for cases where the number of possible values of
the variables with an integer delta is small.

Default value 3 (bits 1-2 are set)

Affects routines XSLPmaxim, XSLPminim

XSLP_HEURSTRATEGY

Description Branch and Bound: This specifies the MINLP heuristic strategy. On some problems it is
worth trying more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or
3.

Fair Isaac Corporation Confidential and Proprietary Information 217

Control Parameters Reference

Type Integer

Values -1 Automatic selection of heuristic strategy.

0 No heuristics.

1 Basic heuristic strategy.

2 Enhanced heuristic strategy.

3 Extensive heuristic strategy.

Default value -1

Affects routines XSLPminim,XSLPmaxim.

XSLP_HESSIAN

Description Second order differentiation mode when using analytical derivatives

Type Integer

Values -1,0 automatic selection

1 numerical derivatives (finite difference)

2 symbolic differentiation

3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is also set to symbolic mode.

Default value -1

See also XSLP_DERIVATIVES, XSLP_JACOBIAN

XSLP_INFEASLIMIT

Description The maximum number of consecutive infeasible SLP iterations which can occur before
Xpress-SLP terminates

Type Integer

Note An infeasible solution to an SLP iteration means that is likely that Xpress-SLP will create
a poor linear approximation for the next SLP iteration. Sometimes, small infeasibilities
arise because of numerical difficulties and do not seriously affect the solution process.
However, if successive solutions remain infeasible, it is unlikely that Xpress-SLP will be
able to find a feasible converged solution. XSLP_INFEASLIMIT sets the number of
successive SLP iterations which must take place before Xpress-SLP terminates with a
status of "infeasible solution".

Default value 3

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 218

Control Parameters Reference

XSLP_ITERLIMIT

Description The maximum number of SLP iterations

Type Integer

Note If Xpress-SLP reaches XSLP_ITERLIMIT without finding a converged solution, it will
stop. For MISLP, the limit is on the number of SLP iterations at each node.

Default value 1000

Affects routines XSLPglobal, XSLPmaxim, XSLPminim

XSLP_JACOBIAN

Description First order differentiation mode when using analytical derivatives

Type Integer

Values -1,0 automatic selection

1 numerical derivatives (finite difference)

2 symbolic differentiation

3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is set to symbolic mode.

Default value -1

See also XSLP_DERIVATIVES, XSLP_HESSIAN

XSLP_LINQUADBR

Description Use linear and quadratic constraints and objective function to further reduce bounds on
all variables

Type Integer

Values -1 automatic selection

0 disable

1 enable

Note While bound reduction is effective when performed on nonlinear, nonquadratic
constraints and objective function, it can be useful to obtain tightened bounds from
linear and quadratic constraints, as the corresponding variables may appear in other
nonlinear constraints. This option then allows for a slightly more expensive bound
reduction procedure, at the benefit of further reduction in the problem’s bounds.

Default value -1

See also XSLP_PRESOLVEOPS, XSLP_PROBING

Fair Isaac Corporation Confidential and Proprietary Information 219

Control Parameters Reference

XSLP_LOG

Description Level of printing during SLP iterations

Type Integer

Values -1 none

0 minimal

1 normal: iteration, penalty vectors

2 omit from convergence log any variables which have converged

3 omit from convergence log any variables which have already converged (except
variables on step bounds)

4 include all variables in convergence log

5 include user function call communications in the log

Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_LSITERLIMIT

Description Number of iterations in the line search

Type Integer

Notes The line search attempts to refine the step size suggested by the trust region step
bounds. The line search is a local method; the control sets a maximum on the number of
model evaluations during the line search.

Default value 0

See also XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSPATTERNLIMIT

Description Number of iterations in the pattern search preceding the line search

Type Integer

Notes When positive, defines the number of samples taken along the step size suggested by
the trust region step bounds before initiating the line search. Useful for highly
non-convex problems.

Default value 0

See also XSLP_LSITERLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 220

Control Parameters Reference

XSLP_LSSTART

Description Iteration in which to active the line search

Type Integer

Notes

Default value 8

See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSZEROLIMIT

Description Maximum number of zero length line search steps before line search is deactivated

Type Integer

Notes When the line search repeatedly returns a zero step size, counteracted by bits set on
XSLP_FILTER, the effort spent in line search is redundant, and line search will be
deactivated after XSLP_LSZEROLIMIT consecutive such iteration.

Default value 5

See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_MAXTIME

Description The maximum time in seconds that the SLP optimization will run before it terminates

Type Integer

Notes The (elapsed) time is measured from the beginning of the first SLP optimization.
If XSLP_MAXTIME is negative, Xpress-SLP will terminate after (-XSLP_MAXTIME) seconds.
If it is positive, Xpress-SLP will terminate in MISLP after XSLP_MAXTIME seconds or as
soon as an integer solution has been found thereafter.

Default value 0

Affects routines XSLPglobal, XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 221

Control Parameters Reference

XSLP_MIPALGORITHM

Description Bitmap describing the MISLP algorithms to be used

Type Integer

Values Bit Meaning

0 Solve initial SLP to convergence.

1 Re-solve final SLP to convergence.

2 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after initial node.

3 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after initial node.

4 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS at each node.

5 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS at each node.

6 Limit iterations at each node to XSLP_MIPITERLIMIT.

7 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after MIP solution
is found.

8 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after MIP solution is
found.

9 Use MIP at each SLP iteration instead of SLP at each node.

10 Use MIP on converged SLP solution and then SLP on the resulting MIP solution.

Notes XSLP_MIPALGORITHM determines the strategy of XSLPglobal for solving MINLP
problems. The recommended approach is to solve the problem first without reference to
the global variables. This can be handled automatically by setting bit 0 of
XSLP_MIPALGORITHM; if done manually, then optimize using the "l" option to prevent
the Optimizer presolve from changing the problem.
Some versions of the optimizer re-run the initial node as part of the global search; it is
possible to initiate a new SLP optimization at this point by relaxing or fixing step bounds
(use bits 2 and 3). If step bounds are fixed for a class of variable, then the variables in
that class will not change their value in any child node.
At each node, it is possible to relax or fix step bounds. It is recommended that step
bounds are relaxed, so that the new problem can be solved starting from its parent, but
without undue restrictions cased by step bounding (use bit 4). Exceptionally, it may be
preferable to restrict the freedom of child nodes by relaxing fewer types of step bound
or fixing the values of some classes of variable (use bit 5).
When the optimal node has been found, it is possible to fix the global variables and
then re-optimize with SLP. Step bounds can be relaxed or fixed for this optimization as
well (use bits 7 and 8).
Although it is ultimately necessary to solve the optimal node to convergence, individual
nodes can be truncated after XSLP_MIPITERLIMIT SLP iterations. Set bit 6 to activate
this feature.
The normal MISLP algorithm uses SLP at each node. One alternative strategy is to use
the MIP optimizer for solving each SLP iteration. Set bit 9 to implement this strategy
("MIP within SLP").
Another strategy is to solve the problem to convergence ignoring the nature of the
global variables. Then, fixing the linearization, use MIP to find the optimal setting of
the global variables. Then, fixing the global variables, but varying the linearization,
solve to convergence. Set bit 10 to implement this strategy ("SLP then MIP").
For mode details about MISLP algorithms and strategies, see the separate section.

The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 222

Control Parameters Reference

Setting bit 0 XSLP_MIPINITIALSLP

Setting bit 1 XSLP_MIPFINALSLP

Setting bit 2 XSLP_MIPINITIALRELAXSLP

Setting bit 3 XSLP_MIPINITIALFIXSLP

Setting bit 4 XSLP_MIPNODERELAXSLP

Setting bit 5 XSLP_MIPNODEFIXSLP

Setting bit 6 XSLP_MIPNODELIMITSLP

Setting bit 7 XSLP_MIPFINALRELAXSLP

Setting bit 8 XSLP_MIPFINALFIXSLP

Setting bit 9 XSLP_MIPWITHINSLP

Setting bit 10 XSLP_SLPTHENMIP

Default value 17 (bits 0 and 4)

Affects routines XSLPglobal

See also XSLP_ALGORITHM, XSLP_MIPFIXSTEPBOUNDS, XSLP_MIPITERLIMIT,
XSLP_MIPRELAXSTEPBOUNDS

XSLP_MIPCUTOFFCOUNT

Description Number of SLP iterations to check when considering a node for cutting off

Type Integer

Notes If the objective function is worse by a defined amount than the best integer solution
obtained so far, then the SLP will be terminated (and the node will be cut off). The node
will be cut off at the current SLP iteration if the objective function for the last
XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than the best obtained so far, and
the difference is greater than XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where
OBJ is the best integer solution obtained so far.
The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have been
carried out at the current node.

Default value 5

Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFLIMIT

XSLP_MIPCUTOFFLIMIT

Description Number of SLP iterations to check when considering a node for cutting off

Type Integer

Notes If the objective function is worse by a defined amount than the best integer solution
obtained so far, then the SLP will be terminated (and the node will be cut off). The node
will be cut off at the current SLP iteration if the objective function for the last
XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than the best obtained so far, and
the difference is greater than XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where
OBJ is the best integer solution obtained so far.

Fair Isaac Corporation Confidential and Proprietary Information 223

Control Parameters Reference

The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have been
carried out at the current node.

Default value 10

Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFCOUNT

XSLP_MIPDEFAULTALGORITHM

Description Default algorithm to be used during the global search in MISLP

Type Integer

Note The default algorithm used within SLP during the MISLP optimization can be set using
XSLP_MIPDEFAULTALGORITHM. It will not necessarily be the same as the one best suited
to the initial SLP optimization.

Default value 3 (primal simplex)

Affects routines XSLPglobal

See also XPRS_DEFAULTALG, XSLP_MIPALGORITHM

XSLP_MIPFIXSTEPBOUNDS

Description Bitmap describing the step-bound fixing strategy during MISLP

Type Integer

Values Bit Meaning

0 Fix step bounds on structural SLP variables which are not in coefficients.

1 Fix step bounds on all structural SLP variables.

2 Fix step bounds on SLP variables appearing only in coefficients.

3 Fix step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to fix the step bounds
of classes of variables so that the variables themselves will not change. This may help
with convergence, but it does increase the chance of a local optimum because of
excessive artificial restrictions on the variables.

Default value 0

Affects routines XSLPglobal

See also XSLP_MIPALGORITHM, XSLP_MIPRELAXSTEPBOUNDS

Fair Isaac Corporation Confidential and Proprietary Information 224

Control Parameters Reference

XSLP_MIPITERLIMIT

Description Maximum number of SLP iterations at each node

Type Integer

Note If bit 6 of XSLP_MIPALGORITHM is set, then the number of iterations at each node will
be limited to XSLP_MIPITERLIMIT.

Default value 0

Affects routines XSLPglobal

See also XSLP_ITERLIMIT, XSLP_MIPALGORITHM

XSLP_MIPLOG

Description Frequency with which MIP status is printed

Type Integer

Note By default (zero or negative value) the MIP status is printed after syncronization points.
If XSLP_MIPLOG is set to a positive integer, then the current MIP status (node number,
best value, best bound) is printed every XSLP_MIPLOG nodes.

Default value 0 (deterministic logging)

Affects routines XSLPglobal

See also XSLP_LOG, XSLP_SLPLOG

XSLP_MIPOCOUNT

Description Number of SLP iterations at each node over which to measure objective function
variation

Type Integer

Note The objective function test for MIP termination is applied only when step bounding has
been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not
being used). The node will be terminated at the current SLP iteration if the range of the
objective function values over the last XSLP_MIPOCOUNT SLP iterations is within
XSLP_MIPOTOL_A or within OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of
the objective function over those iterations.

Default value 5

Affects routines XSLPglobal

See also XSLP_MIPOTOL_A XSLP_MIPOTOL_R XSLP_SBSTART

Fair Isaac Corporation Confidential and Proprietary Information 225

Control Parameters Reference

XSLP_MIPRELAXSTEPBOUNDS

Description Bitmap describing the step-bound relaxation strategy during MISLP

Type Integer

Values Bit Meaning

0 Relax step bounds on structural SLP variables which are not in coefficients.

1 Relax step bounds on all structural SLP variables.

2 Relax step bounds on SLP variables appearing only in coefficients.

3 Relax step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to relax the step
bounds of classes of variables so that the variables themselves are completely free to
change. This may help with finding a global optimum, but it may also increase the
solution time, because more SLP iterations are necessary at each node to obtain a
converged solution.

Default value 15 (relax all types)

Affects routines XSLPglobal

See also XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS

XSLP_MULTISTART

Description The multistart master control. Defines if the multistart search is to be initiated, or if only
the baseline model is to be solved.

Type Integer

Values -1 Depends on if any multistart jobs have been added.

0 Multistart is off.

1 Multistart is on.

Note By default, the multistart search will always be initiated if multistart jobs have been
added to the problem. The (original) base problem is not part of the multisearch job
pool. To make it so, add an job with no extra settings (template job). It might be useful
to load multiple template jobs, and customize them from callbacks.

Default value -1

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MUTISTART_MAXSOLVES, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXSOLVES

Description The maximum number of jobs to create during the multistart search.

Fair Isaac Corporation Confidential and Proprietary Information 226

Control Parameters Reference

Type Integer

Note This control can be increased on the fly during the mutlistart search: for example, if a
job gets refused by a user callback, the callback may increase this limit to account for the
rejected job.

Default value 0 (no upper limit)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXTIME

Description The maximum total time to be spent in the mutlistart search.

Type Integer

Note XSLP_MAXTIME applies on a per job instance basis. There will be some time spent even
after XSLP_MULTISTART_MAXTIME has elapsed, while the running jobs get terminated
and their results collected.

Default value 0 (no upper limit)

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_MUTISTART_MAXSOLVES

XSLP_MULTISTART_POOLSIZE

Description The maximum number of problem objects allowed to pool up before synchronization in
the deterministic multistart.

Type Integer

Default value 2

Note Deterministic multistart is ensured by guaranteeing that the multistart solve results are
evaluated in the same order every time. Solves that finish too soon can be pooled until
all earlier started solves finish, allowing the system to start solving other multistart
instances in the meantime on idle threads. Larger pool sizes will provide better
speedups, but will require larger amounts of memory. Positive values are interpreted as
a multiplier on the maximum number of active threads used, while negative values are
interpreted as an absolute limit (and the absolute value is used). A value of zero will
mean no result pooling.

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART, XSLP_DETERMINISTIC

Fair Isaac Corporation Confidential and Proprietary Information 227

Control Parameters Reference

XSLP_MULTISTART_SEED

Description Random seed used for the automatic generation of initial point when loading multistart
presets

Type Integer

Default value 0

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_MULTISTART_THREADS

Description The maximum number of threads to be used in multistart

Type Integer

Default value -1

Note The current hard upper limit on the number of threads to be sued in multistart is 64.

Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_OCOUNT

Description Number of SLP iterations over which to measure objective function variation for static
objective (2) convergence criterion

Type Integer

Note The static objective (2) convergence criterion does not measure convergence of
individual variables. Instead, it measures the significance of the changes in the objective
function over recent SLP iterations. It is applied when all the variables interacting with
active constraints (those that have a marginal value of at least XSLP_MVTOL) have
converged. The rationale is that if the remaining unconverged variables are not
involved in active constraints and if the objective function is not changing significantly
between iterations, then the solution is more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_OTOL_A
then the problem has converged on the absolute static objective (2) convergence
criterion.
The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2.

Fair Isaac Corporation Confidential and Proprietary Information 228

Control Parameters Reference

Default value 5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_OTOL_A XSLP_OTOL_R

XSLP_PENALTYINFOSTART

Description Iteration from which to record row penalty information

Type Integer

Note Information about the size (current and total) of active penalties of each row and the
number of times a penalty vector has been active is recorded starting at the SLP
iteration number given by XSLP_PENALTYINFOSTART.

Default value 3

Affects routines XSLProwinfo

XSLP_POSTSOLVE

Description This control determines whether postsolving should be performed automatically

Type Integer

Values 0 Do not automatically postsolve.

1 Postsolve automatically.

Default value 0

See also XSLP_PRESOLVE

XSLP_PRESOLVE

Description This control determines whether presolving should be performed prior to starting the
main algorithm

Type Integer

Values 0 Disable SLP presolve.

1 Activate SLP presolve.

2 Low memory presolve. Original problem is not restored by postsolve and dual
solution may not be completely postsolved.

Note The Xpress-SLP nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).

Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 229

Control Parameters Reference

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,
XSLP_PRESOLVEPASSLIMIT

XSLP_PRESOLVELEVEL

Description This control determines the level of changes presolve may carry out on the problem

Type Integer

Values XSLP_PRESOLVELEVEL_LOCALIZED Individual rows only presolve, no nonlinear
transformations.

XSLP_PRESOLVELEVEL_BASIC Individual rows and bounds only presolve, no nonlinear
transformations.

XSLP_PRESOLVELEVEL_LINEAR Presolve allowing changing problem dimension, no
nonlinear transformations.

XSLP_PRESOLVELEVEL_FULL Full presolve.

Note XSLP_PRESOLVEOPS and XSLP_REFORMULATE controls the operations carried out in
presolve. XSLP_PRESOLVELEVEL controls how those operations may change the problem.

Default value XSLP_PRESOLVELEVEL_FULL

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVE, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,
XSLP_PRESOLVEPASSLIMIT

XSLP_PRESOLVEOPS

Description Bitmap indicating the SLP presolve actions to be taken

Type Integer

Values Bit Meaning

0 Generic SLP presolve.

1 Explicitly fix columns identified as fixed to zero.

2 Explicitly fix all columns identified as fixed.

3 SLP bound tightening.

4 MISLP bound tightening.

5 Bound tightening based on function domains.

8 Do not presolve coefficients.

9 Do not remove delta variables.

10 Avoid reductions that can not be dual postsolved.

11 Allow eliminations on determined variables.

Note The Xpress-SLP nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).

Fair Isaac Corporation Confidential and Proprietary Information 230

Control Parameters Reference

Default value 24

Affects routines XSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVE, XSLP_PRESOLVEOPS,
XSLP_PRESOLVEPASSLIMIT, XSLP_REFORMULATE

XSLP_PRESOLVEPASSLIMIT

Description Maximum number of passes through the problem to improve SLP bounds

Type Integer

Note The Xpress-SLP nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).
The procedure carries out a number of passes through the SLP problem, seeking to
tighten implied bounds or to identify fixed values. XSLP_PRESOLVEPASSLIMIT can be
used to change the maximum number of passes carried out.

Default value 20

Affects routines XSLPpresolve

See also XSLP_PRESOLVE

XSLP_PROBING

Description This control determines whether probing on a subset of variables should be performed
prior to starting the main algorithm. Probing runs multiple times bound reduction in
order to further tighten the bounding box.

Type Integer

Values -1 Automatic.

0 Disable SLP probing.

1 Activate SLP probing only on binary variables.

2 Activate SLP probing only on binary or unbounded integer variables.

3 Activate SLP probing only on binary or integer variables.

4 Activate SLP probing only on binary, integer variables, and unbounded
continuous variables.

5 Activate SLP probing on any variable.

Default value -1: XSLP sets the probing level based on the problem size

Note The Xpress-SLP nonlinear probing, which is carried out once, is independent of the
Optimizer presolve (which is carried out during each SLP iteration). The probing level
allows for probing on an expanding set of variables, allowing for probing on all
variables (level 5) or only those for which probing is more likely to be useful (binary
variables).

Affects routines XSLPpresolve

See also XSLP_PRESOLVEOPS,

Fair Isaac Corporation Confidential and Proprietary Information 231

Control Parameters Reference

XSLP_REFORMULATE

Description Controls the problem reformulations carried out before augmentation. This allows SLP
to take advantage of dedicated algorithms for special problem classes.

Type Integer

Values Bit Meaning

0 Solve convex quadratic objectives using the XPRS library .

1 Convert non-convex quadratic objectives to SLP constructs .

2 Solve convex quadratic constraints using the XPRS library.

3 Convert non-convex QCQP constraints to SLP constructs.

4 Convexity of a quadratic only problem may be checked by calling the optimizer
to solve the instance.

Default value -1: All structures are checked against reformulation

Note The reformulation is part of XSLP presolve, and is only carried out if XSLP_PRESOLVE is
nonzero. The following constants are provided for setting these bits:

Setting bit 0 XSLP_REFORMULATE_SLP2QP

Setting bit 1 XSLP_REFORMULATE_QP2SLP

Setting bit 2 XSLP_REFORMULATE_SLP2QCQP

Setting bit 3 XSLP_REFORMULATE_QCQP2SLP

Setting bit 4 XSLP_REFORMULATE_QPSOLVE

Affects routines XSLPconstruct, XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPopt,
XSLPglobal

XSLP_SAMECOUNT

Description Number of steps reaching the step bound in the same direction before step bounds are
increased

Type Integer

Note If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_SAMECOUNT

successive changes reaching the step bound and in the same direction for a variable,
then the step bound (B) for the variable will be reset to
B ∗ XSLP_EXPAND.

Default value 3

Affects routines XSLPmaxim, XSLPminim

See also XSLP_EXPAND

Fair Isaac Corporation Confidential and Proprietary Information 232

Control Parameters Reference

XSLP_SAMEDAMP

Description Number of steps in same direction before damping factor is increased

Type Integer

Note If dynamic damping is enabled, the damping factor for a variable will be increased if
successive changes are in the same direction. More precisely, if there are
XSLP_SAMEDAMP successive changes in the same direction for a variable, then the
damping factor (D) for the variable will be reset to
D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1− XSLP_DAMPEXPAND)

Default value 3

See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX

Affects routines XSLPmaxim, XSLPminim

XSLP_SBROWOFFSET

Description Position of first character of SLP variable name used to create name of SLP lower and
upper step bound rows

Type Integer

Note During augmentation, a delta vector is created for each SLP variable. Step bounds are
provided for each delta variable, either using explicit bounds, or by using rows to
provide lower and upper bounds. If such rows are used, they are created with names
derived from the corresponding SLP variable. Customized naming is possible using
XSLP_SBLOROWFORMAT and XSLP_SBUPROWFORMAT to define a format and
XSLP_SBROWOFFSET to define the first character (counting from zero) of the variable
name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_SBLOROWFORMAT, XSLP_SBUPROWFORMAT

XSLP_SBSTART

Description SLP iteration after which step bounds are first applied

Type Integer

Note If step bounds are used, they can be applied for the whole of the SLP optimization
process, or started after a number of SLP iterations. In general, it is better not to apply
step bounds from the start unless one of the following applies:
(1) the initial estimates are known to be good, and explicit values can be provided for
initial step bounds on all variables; or
(2) the problem is unbounded unless all variables are step-bounded.

Fair Isaac Corporation Confidential and Proprietary Information 233

Control Parameters Reference

Default value 8

Affects routines XSLPmaxim, XSLPminim

XSLP_SCALE

Description When to re-scale the SLP problem

Type Integer

Values 0 No re-scaling.

1 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations after the end of
barrier optimization.

2 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations in total.

3 Re-scale every SLP iteration until primal simplex is automatically invoked.

4 Re-scale every SLP iteration.

5 Re-scale every XSLP_SCALECOUNT SLP iterations.

6 Re-scale every XSLP_SCALECOUNT SLP iterations after the end of barrier
optimization.

Note During the SLP optimization, matrix entries can change considerably in magnitude, even
when the formulae in the coefficients are not very nonlinear. Re-scaling of the matrix
can reduce numerical errors, but may increase the time taken to achieve convergence.

Default value 1

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SCALECOUNT

XSLP_SCALECOUNT

Description Iteration limit used in determining when to re-scale the SLP matrix

Type Integer

Notes If XSLP_SCALE is set to 1 or 2, then XSLP_SCALECOUNT determines the number of
iterations (after the end of barrier optimization or in total) in which the matrix is
automatically re-scaled.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SCALE

XSLP_SOLVER

Description First order differentiation mode when using analytical derivatives

Fair Isaac Corporation Confidential and Proprietary Information 234

Control Parameters Reference

Type Integer

Values -1 automatic selection, based on model characteristics and solver availability

0 use Xpress-SLP (always available)

1 use Knitro if available

Note The presence of Knitro is detected automatically. Knitro can be used to solve any
problem loaded into XSLP, independently from how the problem was loaded.
XSLP_SOLVER is set to automatic, XSLP will be selected if any SLP specific construct has
been loaded (these are ignored if Knitro is selcetd manually).

Default value -1

XSLP_SLPLOG

Description Frequency with which SLP status is printed

Type Integer

Note If XSLP_LOG is set to zero (minimal logging) then a nonzero value for XSLP_SLPLOG

defines the frequency (in SLP iterations) when summary information is printed out.

Default value 1

Affects routines XSLPglobal, XSLPmaxim, XSLPminim

See also XSLP_LOG, XSLP_MIPLOG

XSLP_STOPOUTOFRANGE

Description Stop optimization and return error code if internal function argument is out of range

Type Integer

Note If XSLP_STOPOUTOFRANGE is set to 1, then if an internal function receives an argument
which is out of its allowable range (for example, LOG of a negative number), an error
code is set and the optimization is terminated.

Default value 0

Affects routines XSLPevaluatecoef, XSLPevaluateformula XSLPmaxim, XSLPminim

XSLP_THREADS

Description Default number of threads to be used

Type Integer

Note Overall thread control value, used to determine the number of threads used where
parallel calculations are possible.

Fair Isaac Corporation Confidential and Proprietary Information 235

Control Parameters Reference

Default value -1 (automatically determined)

Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_CALCTHREADS, XSLP_MULTISTART_THREADS,

XSLP_TIMEPRINT

Description Print additional timings during SLP optimization

Type Integer

Note Date and time printing can be useful for identifying slow procedures during the SLP
optimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during the
optimization.

Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_THREADSAFEUSERFUNC

Description Defines if user functions are allowed to be called in parallel

Type Integer

Note Date and time printing can be useful for identifying slow procedures during the SLP
optimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during the
optimization.

Values 0 user function are not thread safe, and will not be called in parallel

1 user functions are thread safe, and may be called in parallel

Default value 0 (no parallel user function calls)

Affects routines XSLPmaxim, XSLPminim

XSLP_TRACEMASKOPS

Description Controls the information printed for XSLP_TRACEMASK. The order in which the
information is printed is determined by the order of bits in XSLP_TRACEMASKOPS.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 236

Control Parameters Reference

Values Bit Meaning

0 The variable name is used as a mask, not as an exact fit.

1 Use mask to trace rows.

2 Use mask to trace columns.

3 Use mask to trace cascaded SLP variables.

4 Show row / column category.

5 Trace slack values.

6 Trace dual values.

7 Trace row penalty multiplier.

8 Trace variable values (as returned by the lineariation).

9 Trace reduced costs.

10 Trace slp value (value used in linearization and cascaded).

11 Trace step bounds.

12 Trace convergence status.

13 Trace line search.

Default value -1: all bits are set

Note The following constants are provided for setting these bits:

Setting bit 0 XSLP_TRACEMASK_GENERALFIT

Setting bit 1 XSLP_TRACEMASK_ROWS

Setting bit 2 XSLP_TRACEMASK_COLS

Setting bit 3 XSLP_TRACEMASK_CASCADE

Setting bit 4 XSLP_TRACEMASK_TYPE

Setting bit 5 XSLP_TRACEMASK_SLACK

Setting bit 6 XSLP_TRACEMASK_DUAL

Setting bit 7 XSLP_TRACEMASK_WEIGHT

Setting bit 8 XSLP_TRACEMASK_SOLUTION

Setting bit 9 XSLP_TRACEMASK_REDUCEDCOST

Setting bit 10 XSLP_TRACEMASK_SLPVALUE

Setting bit 11 XSLP_TRACEMASK_STEPBOUND

Setting bit 12 XSLP_TRACEMASK_CONVERGE

Setting bit 13 XSLP_TRACEMASK_LINESEARCH

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPopt, XSLPglobal

XSLP_UNFINISHEDLIMIT

Description Number of times within one SLP iteration that an unfinished LP optimization will be
continued

Type Integer

Note If the optimization of the current linear approximation terminates with an "unfinished"
status (for example, because it has reached maximum iterations), Xpress-SLP will
attempt to continue using the primal simplex algorithm. This process will be repeated
for up to XSLP_UNFINISHEDLIMIT successive LP optimizations within any one SLP
iteration. If the limit is reached, Xpress-SLP will terminate with XSLP_STATUS set to
XSLP_LPUNFINISHED

Default value 3

Fair Isaac Corporation Confidential and Proprietary Information 237

Control Parameters Reference

Affects routines XSLPglobal, XSLPmaxim, XSLPminim

XSLP_UPDATEOFFSET

Description Position of first character of SLP variable name used to create name of SLP update row

Type Integer

Note During augmentation, one or more delta vectors are created for each SLP variable. The
values of these are linked to that of the variable through an update row which is
created as part of the augmentation procedure. Update rows are created with names
derived from the corresponding SLP variable. Customized naming is possible using
XSLP_UPDATEFORMAT to define a format and XSLP_UPDATEOFFSET to define the first
character (counting from zero) of the variable name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_UPDATEFORMAT

XSLP_VCOUNT

Description Number of SLP iterations over which to measure static objective (3) convergence

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of
individual variables, and in fact does not in any way imply that the solution has
converged. However, it is sometimes useful to be able to terminate an optimization
once the objective function appears to have stabilized. One example is where a set of
possible schedules are being evaluated and initially only a good estimate of the likely
objective function value is required, to eliminate the worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after
step bounding has been introduced.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VLIMIT, XSLP_VTOL_A, XSLP_VTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 238

Control Parameters Reference

XSLP_VLIMIT

Description Number of SLP iterations after which static objective (3) convergence testing starts

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of
individual variables, and in fact does not in any way imply that the solution has
converged. However, it is sometimes useful to be able to terminate an optimization
once the objective function appears to have stabilized. One example is where a set of
possible schedules are being evaluated and initially only a good estimate of the likely
objective function value is required, to eliminate the worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj)−MINIter(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.
If ABS(δObj) ≤ XSLP_VTOL_A
then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after
step bounding has been introduced.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_WCOUNT

Description Number of SLP iterations over which to measure the objective for the extended
convergence continuation criterion

Type Integer

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution
has been found where at least one variable has converged on extended criteria and is at
its step bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not,
then the last converged solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current
iteration compared to the objective function at the last converged solution is given by:
δObj = Obj − LastConvergedObj

Fair Isaac Corporation Confidential and Proprietary Information 239

Control Parameters Reference

For a minimization problem, the sign is reversed.
If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a
significantly better objective function value than the converged solution.

When a solution is found which converges on extended criteria and with active step
bounds, the solution is saved and SLP optimization continues until one of the following:
(1) a new solution is found which converges on some other criterion, in which case the
SLP optimization stops with this new solution;
(2) a new solution is found which converges on extended criteria and with active step
bounds, and which has a significantly better objective function, in which case this is
taken as the new saved solution;
(3) none of the XSLP_WCOUNT most recent SLP iterations has a significantly better
objective function than the saved solution, in which case the saved solution is restored
and the SLP optimization stops.

If XSLP_WCOUNT is zero, then the extended convergence continuation criterion is
disabled.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_WTOL_A, XSLP_WTOL_R

XSLP_XCOUNT

Description Number of SLP iterations over which to measure static objective (1) convergence

Type Integer

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration. However, if the objective function has already been
stable for several SLP iterations, then there is less likelihood of an improved result, and
the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these
variables is at its step bound. Because all the variables have converged, the solution is
already converged but the fact that some variables are at their step bound limit suggests
that the objective function could be improved by going further.

The variation in the objective function is defined as
δObj = MAXIter(Obj)−MINIter(Obj)
where Iter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static
objective function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 240

Control Parameters Reference

then the objective function is deemed to be static according to the relative static
objective function (1) criterion.

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations
have taken place. After that, if all the variables have converged on strict or extended
criteria, the solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test
then the solution is deemed to have converged.

Default value 5

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XLIMIT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_XLIMIT

Description Number of SLP iterations up to which static objective (1) convergence testing starts

Type Integer

Note It may happen that all the variables have converged, but some have converged on
extended criteria and at least one of these variables is at its step bound. This means
that, at least in the linearization, if the variable were to be allowed to move further the
objective function would improve. This does not necessarily imply that the same is true
of the original problem, but it is still possible that an improved result could be obtained
by taking another SLP iteration. However, if the objective function has already been
stable for several SLP iterations, then there is less likelihood of an improved result, and
the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these
variables is at its step bound. Because all the variables have converged, the solution is
already converged but the fact that some variables are at their step bound limit suggests
that the objective function could be improved by going further.

The variation in the objective function is defined as
δObj = MAXIter(Obj)−MINIter(Obj)
where Iter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(δObj) ≤ XSLP_XTOL_A
then the objective function is deemed to be static according to the absolute static
objective function (1) criterion.
If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
then the objective function is deemed to be static according to the relative static
objective function (1) criterion.

The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations
have taken place. After that, if all the variables have converged on strict or extended
criteria, the solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test
then the solution is deemed to have converged.

Default value 100

Fair Isaac Corporation Confidential and Proprietary Information 241

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_ZEROCRITERION

Description Bitmap determining the behavior of the placeholder deletion procedure

Type Integer

Values Bit Meaning

0 (=1) Remove placeholders in nonbasic SLP variables

1 (=2) Remove placeholders in nonbasic delta variables

2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic

3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic
and the corresponding SLP variable is nonbasic

4 (=16) Remove placeholders in a basic delta variable if the determining row for
the corresponding SLP variable is nonbasic

5 (=32) Print information about zero placeholders

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

The following constants are provided for setting these bits:
Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVAR

Setting bit 1 XSLP_ZEROCRTIERION_NBDELTA

Setting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW

Setting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROW

Setting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROW

Setting bit 5 XSLP_ZEROCRTIERION_PRINT

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, Management of zero
placeholder entries

XSLP_ZEROCRITERIONCOUNT

Description Number of consecutive times a placeholder entry is zero before being considered for
deletion

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONSTART, Management of zero
placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 242

Control Parameters Reference

XSLP_ZEROCRITERIONSTART

Description SLP iteration at which criteria for deletion of placeholder entries are first activated.

Type Integer

Note For an explanation of deletion of placeholder entries in the matrix see Management of
zero placeholder entries.

Default value 0

Affects routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONCOUNT, Management of zero
placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 243

Control Parameters Reference

20.3 Memory control parameters

Memory control parameters are integer controls which can be used to define a minimum number
of items for which space should be provided. For example, to allow space for at least 5000
coefficients, set XSLP_MEM_COEF to 5000.

Normally, Xpress-SLP will expand the memory required for items as the number grows. However,
this process can be inefficient in the use of available memory and can, in any case, take time. If
the system runs out of memory, then an error message will be produced and normally a list of
current memory requirements will be printed. Alternatively, the library function
XSLPuprintmemory can be used to print the memory currently in use. The following is an
example of the information produced:

Arrays and dimensions:

Array Item Used Max Allocated Memory

Size Items Items Memory Control

MemList 28 103 129 4K

String 1 206891 219888 215K XSLP_MEM_STRING

Xv 16 1282 2000 32K XSLP_MEM_XV

Xvitem 48 1382 1600 75K XSLP_MEM_XVITEM

UserFunc 80 2 1000 79K XSLP_MEM_UF

IntlFunc 80 45 48 4K

Vars 136 1685 2000 266K XSLP_MEM_VAR

Coef 40 4631 4633 181K XSLP_MEM_COEF

Formula 48 1415 2000 94K XSLP_MEM_FORMULA

ToknStak 16 10830 13107 205K XSLP_MEM_STACK

Cols 48 8163 8192 384K XSLP_MEM_COL

Rows 40 4596 5120 200K XSLP_MEM_ROW

Xrows 48 1607 2000 94K XSLP_MEM_XROW

FormValu 16 3182 3184 50K XSLP_MEM_FORMULAVALUE

XPRSrow 4 12883 13155 52K

XPRScol 4 12883 13155 52K

XPRScoef 8 12883 13155 103K

XPRSetyp 1 12883 13155 13K

CalcStak 24 1 1000 24K XSLP_MEM_CALCSTACK

XPRSrhrw 4 1492 1494 6K

XPRSrhel 8 1492 1494 12K

Used Items is the number of items actually in use; Max Items is the number currently allocated,
which is reflected in the Allocated Memory figure. Where there is an option to change the size of
the allocation, the name of the memory control parameter is given. So, for example, to set the
initial size of the Xrows array to 1650, use the following:

XSLPsetintcontrol(Prob, XSLP_MEM_XROW, 1650);

This will have two effects: the array will be allocated from the start with 1650 items, so there will
be no need to expand the array as items are loaded or created; the array will be large enough to
hold the items required but will have less unused space, so there will be more memory available
for other arrays if necessary.

The following is a list of the memory control parameters that can be set with an indication of the
type of array for which they are used. The current value can be retrieved using
XSLPgetintcontrol, or the full set can be listed using XSLPuprintmemory.

XSLP_MEM_CALCSTACK

Description Memory allocation for formula calculations

Fair Isaac Corporation Confidential and Proprietary Information 244

Control Parameters Reference

Type Integer

XSLP_MEM_COEF

Description Memory allocation for nonlinear coefficients

Type Integer

XSLP_MEM_COL

Description Memory allocation for additional information on matrix columns

Type Integer

XSLP_MEM_CVAR

Description Memory allocation for character variables

Type Integer

XSLP_MEM_DERIVATIVES

Description Memory allocation for analytic derivatives

Type Integer

XSLP_MEM_EXCELDOUBLE

Description Memory allocation for return values from Excel user functions

Type Integer

XSLP_MEM_FORMULA

Description Memory allocation for formulae

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 245

Control Parameters Reference

XSLP_MEM_FORMULAHASH

Description Memory allocation for internal formula array

Type Integer

XSLP_MEM_FORMULAVALUE

Description Memory allocation for formula values and derivatives

Type Integer

XSLP_MEM_ITERLOG

Description Memory allocation for SLP iteration summary

Type Integer

XSLP_MEM_RETURNARRAY

Description Memory allocation for return values from multi-valued user function

Type Integer

XSLP_MEM_ROW

Description Memory allocation for additional information on matrix rows

Type Integer

XSLP_MEM_STACK

Description Memory allocation for parsed formulae, analytic derivatives

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 246

Control Parameters Reference

XSLP_MEM_STRING

Description Memory allocation for strings of all types

Type Integer

XSLP_MEM_TOL

Description Memory allocation for tolerance sets

Type Integer

XSLP_MEM_UF

Description Memory allocation for user functions

Type Integer

XSLP_MEM_VAR

Description Memory allocation for SLP variables

Type Integer

XSLP_MEM_XF

Description Memory allocation for complicated functions

Type Integer

XSLP_MEM_XFNAMES

Description Memory allocation for complicated function input and return names

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 247

Control Parameters Reference

XSLP_MEM_XFVALUE

Description Memory allocation for complicated function values

Type Integer

XSLP_MEM_XROW

Description Memory allocation for extended row information

Type Integer

XSLP_MEM_XV

Description Memory allocation for XVs

Type Integer

XSLP_MEM_XVITEM

Description Memory allocation for individual XV entries

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 248

Control Parameters Reference

20.4 String control parameters

XSLP_CVNAME

Description Name of the set of character variables to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more
than one set of character variables in the file. If no name is set, then the first set of
character variables will be used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where character
variables are included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_IVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_DELTAFORMAT

Description Formatting string for creation of names for SLP delta vectors

Type String

Note This control can be used to create a specific naming structure for delta vectors. The
structure follows the normal C-style printf form, and can contain printing characters plus
one %s string. This will be replaced by sequential characters from the name of the
variable starting at position XSLP_DELTAOFFSET.

Default value pD_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_IVNAME

Description Name of the set of initial values to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more
than one set of initial values in the file. If no name is set, then the first set of initial
values will be used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where initial values
are included in the problem. If it is not set, then a default name will be used.

Fair Isaac Corporation Confidential and Proprietary Information 249

Control Parameters Reference

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_CVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_MINUSDELTAFORMAT

Description Formatting string for creation of names for SLP negative penalty delta vectors

Type String

Note This control can be used to create a specific naming structure for negative penalty delta
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XSLP_DELTAOFFSET.

Default value pD-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_MINUSERRORFORMAT

Description Formatting string for creation of names for SLP negative penalty error vectors

Type String

Note This control can be used to create a specific naming structure for negative penalty error
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XSLP_ERROROFFSET.

Default value pE-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_ERROROFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_PENALTYCOLFORMAT

Description Formatting string for creation of the names of the SLP penalty transfer vectors

Type String

Fair Isaac Corporation Confidential and Proprietary Information 250

Control Parameters Reference

Note This control can be used to create a specific naming structure for the penalty transfer
vectors which transfer penalty costs into the objective. The structure follows the normal
C-style printf form, and can contain printing characters plus one %s string. This will be
replaced by "DELT" for the penalty delta transfer vector and "ERR" for the penalty error
transfer vector.

Default value pPC_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_PENALTYROWFORMAT

Description Formatting string for creation of the names of the SLP penalty rows

Type String

Note This control can be used to create a specific naming structure for the penalty rows which
total the penalty costs for the objective. The structure follows the normal C-style printf
form, and can contain printing characters plus one %s string. This will be replaced by
"DELT" for the penalty delta row and "ERR" for the penalty error row.

Default value pPR_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_PLUSDELTAFORMAT

Description Formatting string for creation of names for SLP positive penalty delta vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty delta
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XSLP_DELTAOFFSET.

Default value pD+%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

Fair Isaac Corporation Confidential and Proprietary Information 251

Control Parameters Reference

XSLP_PLUSERRORFORMAT

Description Formatting string for creation of names for SLP positive penalty error vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty error
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XSLP_ERROROFFSET.

Default value pE+%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_ERROROFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_SBLOROWFORMAT

Description Formatting string for creation of names for SLP lower step bound rows

Type String

Note This control can be used to create a specific naming structure for lower limits on step
bounds modeled as rows. The structure follows the normal C-style printf form, and can
contain printing characters plus one %s string. This will be replaced by sequential
characters from the name of the variable starting at position XSLP_SBROWOFFSET.

Default value pSB-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_SBNAME

Description Name of the set of initial step bounds to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more
than one set of initial step bounds in the file. If no name is set, then the first set of
initial step bounds will be used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where initial step
bounds are included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Fair Isaac Corporation Confidential and Proprietary Information 252

Control Parameters Reference

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_CVNAME, XSLP_IVNAME, XSLP_TOLNAME

XSLP_SBUPROWFORMAT

Description Formatting string for creation of names for SLP upper step bound rows

Type String

Note This control can be used to create a specific naming structure for upper limits on step
bounds modeled as rows. The structure follows the normal C-style printf form, and can
contain printing characters plus one %s string. This will be replaced by sequential
characters from the name of the variable starting at position XSLP_SBROWOFFSET.

Default value pSB+%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

XSLP_TOLNAME

Description Name of the set of tolerance sets to be used

Type String

Notes This variable may be required for input from a file using XSLPreadprob if there is more
than one set of tolerance sets in the file. If no name is set, then the first set of tolerance
sets will be used, and the name will be set accordingly.
This variable may also be required for output using XSLPwriteprob where tolerance
sets are included in the problem. If it is not set, then a default name will be used.

Set by routines XSLPreadprob

Default value none

Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_CVNAME, XSLP_IVNAME, XSLP_SBNAME

XSLP_TRACEMASK

Description Mask of variable or row names that are to be traced through the SLP iterates

Type String

Fair Isaac Corporation Confidential and Proprietary Information 253

Control Parameters Reference

Notes If the mask is nonempty, variables and rows matching the mask are listed after each SLP
iteration and each cascade, allowing for a convinient means to observe how certain
variables change through the iterates. This feasture is provided for tuning and model
debugging purposes. The actual information printed is controlled by
XSLP_TRACEMASKOPS.
The string in the tracmask may contain several variable or row names, separated by a
whitespace. Wildcards may also be used.

Default value none: no tracing

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPopt, XSLPglobal

See also XSLP_TRACEMASKOPS

XSLP_UPDATEFORMAT

Description Formatting string for creation of names for SLP update rows

Type String

Note This control can be used to create a specific naming structure for update rows. The
structure follows the normal C-style printf form, and can contain printing characters plus
one %s string. This will be replaced by sequential characters from the name of the
variable starting at position XSLP_UPDATEOFFSET.

Default value pU_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_UPDATEOFFSET, XSLP_UNIQUEPREFIX XSLPsetuniqueprefix

20.5 Knitro controls

All Knitro controls are available with an ’X’ pre-tag. For example the Knitro integer control
’KTR_PARAM_ALGORITHM’ can be set using XSLPsetintcontrol using the control ID defined as
’XKTR_PARAM_ALGORITHM’. Please refer to the Xpress Knitro manual for the description of the
Knitro controls.

Fair Isaac Corporation Confidential and Proprietary Information 254

CHAPTER 21

Library functions and the programming in-
terface

21.1 Counting

All Xpress-SLP entities are numbered from 1. The 0th item is defined, and is an empty entity of the
appropriate type. Therefore, whenever an Xpress-SLP function returns a zero value, it means that
there is no data of that type.

In parsed and unparsed function arrays, the indices always count from 1. This includes types
XSLP_VAR and XSLP_CONSTRAINT: the index is the matrix column or row index +1.

Note that for input of function arrays, types XSLP_COL and XSLP_ROW can be used, but will be
converted into standard XSLP_VAR or XSLP_CONSTRAINT references. When a function array is
returned from Xpress-SLP, the XSLP_VAR or XSLP_CONSTRAINT type will always be used.

21.2 The Xpress-SLP problem pointer

Xpress-SLP uses the same concept as the Optimizer library, with a "pointer to a problem". The
optimizer problem must be initialized first in the normal way. Then the corresponding Xpress-SLP
problem must be initialized, including a pointer to the underlying optimizer problem. For
example:

{

...

XPRSprob prob=NULL;

XSLPprob SLPprob=NULL;

XPRSinit("");

XSLPinit();

XPRScreateprob(&prob);

XSLPcreateprob(&SLPprob,&prob);

...

}

At the end of the program, the Xpress-SLP problem should be destroyed. You are responsible for
destroying the underlying XPRSprob linear problem afterwards. For example:

{

...

XSLPdestroyprob(SLPprob);

XPRSdestroyprob(prob);

XSLPfree();

XPRSfree();

Fair Isaac Corporation Confidential and Proprietary Information 255

Library functions and the programming interface Reference

...

}

The following functions are provided to manage Xpress-SLP problems. See the documentation
below on the individual functions for more details.

XSLPcopycontrols(XSLPprob prob1, XSLPprob prob2)

Copy the settings of control variables

XSLPcopycallbacks(XSLPprob prob1, XSLPprob prob2)

Copy the callback settings

XSLPcopyprob(XSLPprob prob1, XSLPprob prob2, char *ProbName)

Copy a problem completely

XSLPcreateprob(XSLPprob *prob1, XPRSprob *prob2)

Create an Xpress-SLP problem

XSLPdestroyprob(XSLPprob prob1)

Delete an Xpress-SLP problem from memory

XSLPrestore(XSLPprob prob1)

Restore Xpress-SLP data structures from file

XSLPsave(XSLPprob prob1)

Save Xpress-SLP data structures to file

21.3 The XSLPload... functions

The XSLPload... functions can be used to load an Xpress-SLP problem directly into the Xpress
data structures. Because there are so many additional items which can be loaded apart from the
basic (linear) matrix, the loading process is divided into several functions.

The best practice is to load the linear part of the problem irst, using the normal Optimizer Library
functions XPRSloadlp or XPRSloadglobal. Then the appropriate parts of the Xpress-SLP
problem can be loaded. After all the XSLPload... functions have been called, XSLPconstruct

should be called to create the SLP matrix and data structures. If XSLPconstruct is not invoked
before a call to one of the Xpress-SLP optimization routines, then it will be called by the
optimization routine itself.

All of these functions initialize their data areas. Therefore, if a second call is made to the same
function for the same problem, the previous data will be deleted. If you want to include
additional data of the same type, then use the corresponding XSLPadd... function.

It is possible to remove parts of the SLP strcutures with the various XSLPdel functions, and
XSLPunconstruct can also be used to remove the augmentation.

Xpress-SLP is compatible with the Xpress quadratic programming optimizer. XPRSloadqp and
XPRSloadqglobal can be used to load quadratic problems (or quadratically constrained
problmes using XPRSloadqcqp and XPRSloadqcqpglobal). The quadratic objective will be
optimized using the Xpress quadratic optimizer; the nonlinear constraints will be handled with
the normal SLP procedures. Please note, that this separation is only useful for a convex quadratic
objective and convex quadratic inequality constraints. All nonconvex quadratic matrices should
be handled as SLP strctures.

For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP
problems, please see Selecting the right algorithm for a nonlinear problem - when to use the
XPRS library instead of XSLP.

Fair Isaac Corporation Confidential and Proprietary Information 256

Library functions and the programming interface Reference

21.4 Library functions

A large number of routines are available for Library users of Xpress-SLP, ranging from simple
routines for the input and solution of problems from matrix files to sophisticated callback
functions and greater control over the solution process. Library users have access to a set of
functions providing advanced control over their program’s interaction with the SLP module and
catering for more complicated problem development.

XSLPaddcoefs Add non-linear coefficients to the SLP problem p. 265

XSLPaddcvars Add character variables (CVs) to the SLP problem p. 267

XSLPadddcs Add delayed constraints (DCs) to the SLP problem p. 268

XSLPadddfs Add a set of distribution factors p. 270

XSLPaddivfs Add a set of initial value formulae p. 271

XSLPaddnames Set the names of a set of SLP entities in an SLP problem. p. 273

XSLPaddtolsets Add sets of standard tolerance values to an SLP problem p. 274

XSLPadduserfuncs Add user function definitions to an SLP problem. p. 275

XSLPaddvars Add SLP variables defined as matrix columns to an SLP problem p. 277

XSLPaddxvs Add a set of extended variable arrays (XVs) to an SLP problem p. 279

XSLPcalcslacks Calculate the slack values for the provided solution in the non-linear
problem p. 281

XSLPcalluserfunc Call a user function from a program or from within another user
function p. 282

XSLPcascade Re-calculate consistent values for SLP variables. based on the current
values of the remaining variables p. 284

XSLPcascadeorder Establish a re-calculation sequence for SLP variables with determining
rows. p. 285

XSLPchgcascadenlimit Set a variable specific cascade iteration limit p. 286

XSLPchgccoef Add or change a single matrix coefficient using a character string for
the formula p. 287

XSLPchgcoef Add or change a single matrix coefficient using a parsed or unparsed
formula p. 288

XSLPchgcvar Add or change the value of the character string corresponding to an
SLP character variable p. 290

XSLPchgdc Add or change the settings for a delayed constraint (DC) p. 291

XSLPchgdeltatype Changes the type of the delta assigned to a nonlinear variable p. 293

XSLPchgdf Set or change a distribution factor p. 294

XSLPchgfuncobject Change the address of one of the objects which can be accessed by the
user functions p. 295

XSLPchgivf Set or change the initial value formula for a variable p. 296

Fair Isaac Corporation Confidential and Proprietary Information 257

Library functions and the programming interface Reference

XSLPchgrow This function is deprecated and may be removed in future releases.
Please use XSLPchgrowstatus instead. Change the status setting of a
constraint p. 297

XSLPchgrowstatus Change the status setting of a constraint p. 298

XSLPchgrowwt Set or change the initial penalty error weight for a row p. 299

XSLPchgtolset Add or change a set of convergence tolerances used for SLP variables
p. 300

XSLPchguserfunc Add or change a user function in an SLP problem after the problem has
been input p. 302

XSLPchguserfuncaddress Change the address of a user function p. 304

XSLPchguserfuncobject Change or define one of the objects which can be accessed by the
user functions p. 305

XSLPchgvar Define a column as an SLP variable or change the characteristics and
values of an existing SLP variable p. 306

XSLPchgxv Add or change an extended variable array (XV) in an SLP problem
p. 308

XSLPchgxvitem Add or change an item of an existing XV in an SLP problem p. 309

XSLPconstruct Create the full augmented SLP matrix and data structures, ready for
optimization p. 311

XSLPcopycallbacks Copy the user-defined callbacks from one SLP problem to another
p. 312

XSLPcopycontrols Copy the values of the control variables from one SLP problem to
another p. 313

XSLPcopyprob Copy an existing SLP problem to another p. 314

XSLPcreateprob Create a new SLP problem p. 315

XSLPdecompose Decompose nonlinear constraints into linear and nonlinear parts p. 316

XSLPdelcoefs Delete coefficients from the current problem p. 317

XSLPdelcvars Delete character variables from the current problem p. 318

XSLPdeldcs Delete delyed constraint markers -convert delayed rows to normal
ones- from the current problem p. 319

XSLPdelivfs Delete initial value formulae from the current problem p. 320

XSLPdeltolsets Delete tolerance sets from the current problem p. 321

XSLPdeluserfuncs Delete user functions from the current problem p. 322

XSLPdelvars Convert SLP variables to normal columns. Variables must not appear in
SLP sttructures p. 323

XSLPdelxvs Delete extended variable arrays from the problem p. 324

XSLPdestroyprob Delete an SLP problem and release all the associated memory p. 325

XSLPevaluatecoef Evaluate a coefficient using the current values of the variables p. 326

Fair Isaac Corporation Confidential and Proprietary Information 258

Library functions and the programming interface Reference

XSLPevaluateformula Evaluate a formula using the current values of the variables p. 327

XSLPfilesol Prints the last SLP iterations solution to file p. 328

XSLPfixpenalties Fixe the values of the error vectors p. 329

XSLPformatvalue Format a double-precision value in the style of Xpress-SLP p. 330

XSLPfree Free any memory allocated by Xpress-SLP and close any open
Xpress-SLP files p. 331

XSLPgetbanner Retrieve the Xpress-SLP banner and copyright messages p. 332

XSLPgetccoef Retrieve a single matrix coefficient as a formula in a character string
p. 333

XSLPgetcoefformula Retrieve a single matrix coefficient as a formula split into tokens p. 334

XSLPgetcoefs Retrieve the list of positions of the nonlinear coefficients in the
problem p. 335

XSLPgetcolinfo Get current column information. p. 336

XSLPgetcvar Retrieve the value of the character string corresponding to an SLP
character variable p. 337

XSLPgetdblattrib Retrieve the value of a double precision problem attribute p. 338

XSLPgetdblcontrol Retrieve the value of a double precision problem control p. 339

XSLPgetdcformula Retrieve information about a delayed constraint in an SLP problem
p. 340

XSLPgetdf Get a distribution factor p. 341

XSLPgetdtime Retrieve a double precision time stamp in seconds p. 342

XSLPgetfuncinfo Retrieve the argument information for a user function p. 343

XSLPgetfuncinfoV Retrieve the argument information for a user function p. 344

XSLPgetfuncobject Retrieve the address of one of the objects which can be accessed by the
user functions p. 346

XSLPgetfuncobjectV Retrieve the address of one of the objects which can be accessed by the
user functions p. 347

XSLPgetfunctioninstance Retrieve the base signature of a user function instance p. 345

XSLPgetindex Retrieve the index of an Xpress-SLP entity with a given name p. 348

XSLPgetintattrib Retrieve the value of an integer problem attribute p. 349

XSLPgetintcontrol Retrieve the value of an integer problem control p. 350

XSLPgetivformula Get the initial value formula for a variable p. 351

XSLPgetlasterror Retrieve the error message corresponding to the last Xpress-SLP error
during an SLP run p. 353

XSLPgetmessagetype Retrieve the message type corresponding to a message number p. 354

XSLPgetnames Retrieve the names of a set of Xpress-SLP entities p. 355

XSLPgetparam Retrieve the value of a control parameter or attribute by name p. 356

Fair Isaac Corporation Confidential and Proprietary Information 259

Library functions and the programming interface Reference

XSLPgetptrattrib Retrieve the value of a problem pointer attribute p. 357

XSLPgetrow This function is deprecated and may be removed in future releases.
Please use XSLPgetrowstatus instead. Retrieve the status setting of a
constraint p. 358

XSLPgetrowinfo Get current row information. p. 359

XSLPgetrowstatus Retrieve the status setting of a constraint p. 360

XSLPgetrowwt Get the initial penalty error weight for a row p. 361

XSLPgetslpsol Obtain the solution values for the most recent SLP iteration p. 362

XSLPgetstrattrib Retrieve the value of a string problem attribute p. 363

XSLPgetstrcontrol Retrieve the value of a string problem control p. 364

XSLPgetstring Retrieve the value of a string in the Xpress-SLP string table p. 365

XSLPgettime Retrieve an integer time stamp in seconds and/or milliseconds p. 366

XSLPgettolset Retrieve the values of a set of convergence tolerances for an SLP
problem p. 367

XSLPgetuserfunc Retrieve the type and parameters for a user function p. 368

XSLPgetuserfuncaddress Retrieve the address of a user function p. 370

XSLPgetuserfuncobject Retrieve the address of one of the objects which can be accessed by
the user functions p. 371

XSLPgetvar Retrieve information about an SLP variable p. 372

XSLPgetversion Retrieve the Xpress-SLP major and minor version numbers p. 374

XSLPgetxv Retrieve information about an extended variable array p. 375

XSLPgetxvitemformula Retrieve information about an item in an extended variable array
p. 376

XSLPglobal Initiate the Xpress-SLP mixed integer SLP (MISLP) algorithm p. 378

XSLPinit Initializes the Xpress-SLP system p. 379

XSLPinterrupt Interrupts the current SLP optimization p. 380

XSLPitemname Retrieves the name of an Xpress-SLP entity or the value of a function
token as a character string. p. 381

XSLPloadcoefs Load non-linear coefficients into the SLP problem p. 382

XSLPloadcvars Load character variables (CVs) into the SLP problem p. 384

XSLPloaddcs Load delayed constraints (DCs) into the SLP problem p. 385

XSLPloaddfs Load a set of distribution factors p. 387

XSLPloadivfs Load a set of initial value formulae p. 388

XSLPloadtolsets Load sets of standard tolerance values into an SLP problem p. 390

XSLPloaduserfuncs Load user function definitions into an SLP problem. p. 391

XSLPloadvars Load SLP variables defined as matrix columns into an SLP problem
p. 393

Fair Isaac Corporation Confidential and Proprietary Information 260

Library functions and the programming interface Reference

XSLPloadxvs Load a set of extended variable arrays (XVs) into an SLP problem p. 395

XSLPmaxim Maximize an SLP problem p. 397

XSLPminim Minimize an SLP problem p. 398

XSLPmsaddcustompreset A combined version of XSLPmsaddjob and XSLPmsaddpreset. The
preset described is loaded, topped up with the specific settings
supplied p. 399

XSLPmsaddjob Adds a multistart job to the multistart pool p. 400

XSLPmsaddpreset Loads a preset of jobs into the multistart job pool. p. 401

XSLPmsclear Removes all scheduled jobs from the multistart job pool p. 402

XSLPopt Maximize or minimize an SLP problem p. 403

XSLPparsecformula Parse a formula written as a character string into internal parsed
(reverse Polish) format p. 404

XSLPparseformula Parse a formula written as an unparsed array of tokens into internal
parsed (reverse Polish) format p. 405

XSLPpostsolve Restores the problem to its pre-solve state p. 406

XSLPpreparseformula Perform an initial scan of a formula written as a character string,
identifying the operators but not attempting to identify the types of
the individual tokens p. 407

XSLPpresolve Perform a nonlinear presolve on the problem p. 408

XSLPprintevalinfo Print a summary of any evaluation errors that may have occurred
during solving a problem p. 410

XSLPprintmemory Print the dimensions and memory allocations for a problem p. 409

XSLPprintmsg Print a message string according to the current settings for Xpress-SLP
output p. 411

XSLPqparse Perform a quick parse on a free-format character string, identifying
where each token starts p. 412

XSLPreadprob Read an Xpress-SLP extended MPS format matrix from a file into an
SLP problem p. 413

XSLPreinitialize Reset the SLP problem to match a just augmented system p. 417

XSLPremaxim Continue the maximization of an SLP problem p. 414

XSLPreminim Continue the minimization of an SLP problem p. 415

XSLPrestore Restore the Xpress-SLP problem from a file created by XSLPsave p. 416

XSLPrevise Revise the unaugmented SLP matrix with data from a file p. 418

XSLProwinfo This function is deprecated and may be removed in future releases.
Please use XSLPgetrowinfot instead. Get or set row information p. 419

XSLPsave Save the Xpress-SLP problem to file p. 420

XSLPsaveas Save the Xpress-SLP problem to a named file p. 421

XSLPscaling Analyze the current matrix for largest/smallest coefficients and ratios
p. 422

Fair Isaac Corporation Confidential and Proprietary Information 261

Library functions and the programming interface Reference

XSLPsetcbcascadeend Set a user callback to be called at the end of the cascading process,
after the last variable has been cascaded p. 423

XSLPsetcbcascadestart Set a user callback to be called at the start of the cascading process,
before any variables have been cascaded p. 424

XSLPsetcbcascadevar Set a user callback to be called after each column has been cascaded
p. 425

XSLPsetcbcascadevarF Set a user callback to be called after each column has been cascaded
(parameters as references version) p. 427

XSLPsetcbcascadevarfail Set a user callback to be called after cascading a column was not
successful p. 426

XSLPsetcbcoefevalerror Set a user callback to be called when an evaluation of a coefficient
fails during the solve p. 429

XSLPsetcbconstruct Set a user callback to be called during the Xpress-SLP augmentation
process p. 430

XSLPsetcbdestroy Set a user callback to be called when an SLP problem is about to be
destroyed p. 432

XSLPsetcbdrcol Set a user callback used to override the update of variables with small
determining column p. 433

XSLPsetcbformula Set a callback to be used in formula evaluation when an unknown
token is found p. 434

XSLPsetcbintsol Set a user callback to be called during MISLP when an integer solution
is obtained p. 436

XSLPsetcbiterend Set a user callback to be called at the end of each SLP iteration p. 437

XSLPsetcbiterstart Set a user callback to be called at the start of each SLP iteration p. 438

XSLPsetcbitervar Set a user callback to be called after each column has been tested for
convergence p. 439

XSLPsetcbitervarF Set a user callback to be called after each column has been tested for
convergence (parameters as references version) p. 440

XSLPsetcbmessage Set a user callback to be called whenever Xpress-SLP outputs a line of
text p. 442

XSLPsetcbmessageF Set a user callback to be called whenever Xpress-SLP outputs a line of
text (parameters as references version) p. 444

XSLPsetcbmsjobend Set a user callback to be called every time a new multistart job finishes.
Can be used to overwrite the default solution ranking function p. 446

XSLPsetcbmsjobstart Set a user callback to be called every time a new multistart job is
created, and the pre-loaded settings are applied p. 447

XSLPsetcboptnode Set a user callback to be called during MISLP when an optimal SLP
solution is obtained at a node p. 449

XSLPsetcbprenode Set a user callback to be called during MISLP after the set-up of the SLP
problem to be solved at a node, but before SLP optimization p. 450

XSLPsetcbslpend Set a user callback to be called at the end of the SLP optimization
p. 451

Fair Isaac Corporation Confidential and Proprietary Information 262

Library functions and the programming interface Reference

XSLPsetcbslpnode Set a user callback to be called during MISLP after the SLP optimization
at each node. p. 452

XSLPsetcbslpstart Set a user callback to be called at the start of the SLP optimization
p. 453

XSLPsetcbwinner Set a user callback to be called every time a new multistart job is
created, and the pre-loaded settings are applied p. 448

XSLPsetcurrentiv Transfer the current solution to initial values p. 454

XSLPsetdblcontrol Set the value of a double precision problem control p. 455

XSLPsetdefaultcontrol Set the values of one SLP control to its default value p. 456

XSLPsetdefaults Set the values of all SLP controls to their default values p. 457

XSLPsetfuncobject Change the address of one of the objects which can be accessed by the
user functions p. 458

XSLPsetfunctionerror Set the function error flag for the problem p. 459

XSLPsetintcontrol Set the value of an integer problem control p. 460

XSLPsetlogfile Define an output file to be used to receive messages from Xpress-SLP
p. 461

XSLPsetparam Set the value of a control parameter by name p. 462

XSLPsetstrcontrol Set the value of a string problem control p. 463

XSLPsetstring Set a value in the Xpress-SLP string table p. 464

XSLPsetuniqueprefix Find a prefix character string which is different from all the names
currently in use within the SLP problem p. 465

XSLPsetuserfuncaddress Change the address of a user function p. 466

XSLPsetuserfuncinfo Set up the argument information array for a user function call p. 467

XSLPsetuserfuncobject Set or define one of the objects which can be accessed by the user
functions p. 468

XSLPtime Print the current date and time p. 469

XSLPtokencount Count the number of tokens in a free-format character string p. 470

XSLPunconstruct Reset the SLP problem and removes the augmentation structures p. 471

XSLPupdatelinearization Updates the current linearization p. 472

XSLPuprintmemory Print the dimensions and memory allocations for a problem p. 473

XSLPuserfuncinfo Get or set user function declaration information p. 474

XSLPvalidate Validate the feasibility of constraints in a converged solution p. 477

XSLPvalidatekkt Validates the first order optimality conditions also known as the
Karush-Kuhn-Tucker (KKT) conditions versus the currect solution p. 478

XSLPvalidaterow Prints an excessive analysis on a given constraint of the SLP problem
p. 479

XSLPvalidatevector Validate the feasibility of constraints for a given solution p. 480

Fair Isaac Corporation Confidential and Proprietary Information 263

Library functions and the programming interface Reference

XSLPvalidformula Check a formula in internal (parsed or unparsed) format for unknown
tokens p. 475

XSLPwriteprob Write the current problem to a file in extended MPS or text format
p. 481

XSLPwriteslxsol Write the current solution to an MPS like file format p. 482

Fair Isaac Corporation Confidential and Proprietary Information 264

Library functions and the programming interface Reference

XSLPaddcoefs

Purpose
Add non-linear coefficients to the SLP problem

Synopsis
int XPRS_CC XSLPaddcoefs(XSLPprob Prob, int nSLPCoef, int *RowIndex,

int *ColIndex, double *Factor, int *FormulaStart, int Parsed,

int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPCoef Number of non-linear coefficients to be added.

RowIndex Integer array holding index of row for the coefficient.

ColIndex Integer array holding index of column for the coefficient.

Factor Double array holding factor by which formula is scaled. If this is NULL, then a value
of 1.0 will be used.

FormulaStart Integer array of length nSLPCoef+1 holding the start position in the arrays
Type and Value of the formula for the coefficients. FormulaStart[nSLPCoef]

should be set to the next position after the end of the last formula.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the formula for each coefficient.

Value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The
following example adds coefficients representing:
Col2 * Col3 + Col6 * Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Type[8];

int n, nSLPCoef;

double Value[8];

RowIndex[0] = 1; ColIndex[0] = 2;

RowIndex[1] = 1; ColIndex[1] = 6;

RowIndex[2] = 3; ColIndex[2] = 2;

n = nSLPCoef = 0;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 3;

Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;

Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 265

Library functions and the programming interface Reference

FormulaStart[nSLPCoef] = n;

XSLPaddcoefs(Prob, nSLPCoef, RowIndex, ColIndex,

NULL, FormulaStart, 1, Type, Value);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 * Col3.

The second coefficient in Row1 is in Col6 and has the formula Col2 * Col2 so it represents Col6

* Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 *

rather than the unparsed form
Col2 * Col2

The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 * Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress-SLP can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated. Formula is made up of a list of tokens in Type and Value starting at
FormulaStart[j]. The tokens follow the rules for parsed or unparsed formulae as indicated by
the setting of Parsed. The formula must be terminated with an XSLP_EOF token. If several
coefficients share the same formula, they can have the same value in FormulaStart. For possible
token types and values see the chapter on "Formula Parsing".

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

The behaviour for existing coefficients is additive: the formula defined in the parameters are
added to any existing formula coefficients. However, due to performance considerations, such
duplications should be avoided when possible.

Related topics
XSLPchgcoef, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 266

Library functions and the programming interface Reference

XSLPaddcvars

Purpose
Add character variables (CVs) to the SLP problem

Synopsis
int XPRS_CC XSLPaddcvars(XSLPprob Prob, int nSLPCVar, char *cValue);

Arguments
Prob The current SLP problem.

nSLPCVar Number of character variables to be added.

cValue Character buffer holding the values of the character variables; each one must be
terminated by a null character.

Example
The following example adds three character variables to the problem, which contain "The first
string", "String 2" and "A third set of characters" respectively

char *cValue="The first string\0"

"String 2\0"

"A third set of characters";

XSLPaddcvars(Prob,3,cValue);

Further information
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgcvar, XSLPdelcoefs, XSLPgetcvar, XSLPloadcvars

Fair Isaac Corporation Confidential and Proprietary Information 267

Library functions and the programming interface Reference

XSLPadddcs

Purpose
Add delayed constraints (DCs) to the SLP problem

Synopsis
int XPRS_CC XSLPadddcs(XSLPprob Prob, int nSLPDC, int *RowIndex,

int *Delay, int *DCStart, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPDC Number of DCs to be added.

RowIndex Integer array of the row indices of the DCs.

Delay Integer array of length nSLPDC holding the delay after initiation for each DC (see
below).

DCStart Integer array of length nSLPDC holding the start position in the arrays Type and
Value of the formula for each DC. The DCStart entry should be negative for any
DC which does not have a formula to determine the DC initiation.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the description and formula for each item.

Value Array of values corresponding to the types in Type.

Example
The following example adds rows 3 and 5 to the list of delayed constraints. Row 3 is delayed until
2 SLP iterations after column 12 becomes nonzero; row 5 is delayed for 10 SLP iterations from the
start (that is, until SLP iteration 11).

int RowIndex[2], Delay[2], DCStart[2], Type[2];

double Value[2];

RowIndex[0] = 3; Delay[0] = 2; DCStart[0] = 0;

Type[0] = XSLP_COL; Value[0] = 12;

Type[1] = XSLP_EOF;

RowIndex[1] = 5; Delay[1] = 10; DCStart[1] = -1;

XSLPadddcs(Prob, 2, RowIndex, Delay, DCStart, 1, Type, Value);

Note that the entry for row 5 has a negative DCStart because there is no specific initiation
formula (the countdown is started when the SLP optimization starts).

Further information
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

If a formula is provided, then the DC will be initiated when the formula first becomes nonzero. If
no formula (or an empty formula) is given, the DC is initiated immediately.

The value of Delay is used to determine when a DC becomes active. If the value is zero then the
value of XSLP_DCLIMIT is used instead. A value of 1 means that the DC becomes active
immediately it is initiated; a value of 2 means that the DC will become active after 1 more
iteration and so on. DCs are normally checked at the end of each SLP iteration, so it is possible

Fair Isaac Corporation Confidential and Proprietary Information 268

Library functions and the programming interface Reference

that a solution will be converged but activation of additional DCs will force optimization to
continue. A negative value may be given for Delay, in which case the absolute value is used but
the DC is not checked at the end of the optimization.

Related topics
XSLPchgdc, XSLPdeldcs, XSLPgetdcformula, XSLPloaddcs

Fair Isaac Corporation Confidential and Proprietary Information 269

Library functions and the programming interface Reference

XSLPadddfs

Purpose
Add a set of distribution factors

Synopsis
int XSLP_CC XSLPadddfs(XSLPprob Prob, int nDF, const int *ColIndex,

const int *RowIndex, const double *Value)

Arguments
Prob The current SLP problem.

nDF The number of distribution factors.

ColIndex Array of indices of columns whose distribution factor is to be changed.

RowIndex Array of indices of the rows where each distribution factor applies.

Value Array of double precision variables holding the new values of the distribution
factors.

Example
The following example adds distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.

int ColIndex[3], RowIndex[3];

double Value[3];

ColIndex[0] = 282; RowIndex[0] = 134; Value[0] = 0.1;

ColIndex[1] = 282; RowIndex[1] = 136; Value[1] = 0.15;

ColIndex[2] = 285; RowIndex[2] = 133; Value[2] = 1.0;

XSLPadddfs(prob,3,ColIndex,RowIndex,Value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress-SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgdf, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 270

Library functions and the programming interface Reference

XSLPaddivfs

Purpose
Add a set of initial value formulae

Synopsis
int XSLP_CC XSLPaddivfs(XSLPprob Prob, int nIVF, const int *ColIndex,

const int *IVFStart, int Parsed, const int *Type,

const double *Value)

Arguments
Prob The current SLP problem.

nIVF The number of initial value formulae.

ColIndex Array of indices of columns whose initial value formula is to be added.

IVStart Array of start positions in the Type and Value arrays where the formula for a the
corresponding column starts.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types for each formula.

Value Array of values corresponding to the types in Type.

Example
The following example adds initial value formulae for the following:
column 282 = column 281 * 2
column 283 = column 281 * 2
column 285 = column 282 + 101

int ColIndex[3], IVStart[3];

int Type[20];

double Value[20];

int n;

n = 0

ColIndex[0] = 282; IVStart[0] = n;

Type[n] = XSLP_COL; Value[n++] = 281;

Type[n] = XSLP_CON; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;

Type[n] = XSLP_EOF; Value[n++] = 0;

/* Use the same formula for column 283 */

ColIndex[1] = 283; IVStart[1] = IVStart[0];

ColIndex[2] = 285; IVStart[2] = n;

Type[n] = XSLP_COL; Value[n++] = 282;

Type[n] = XSLP_CON; Value[n++] = 101;

Type[n] = XSLP_OP; Value[n++] = XSLP_PLUS;

Type[n] = XSLP_EOF; Value[n++] = 0;

XSLPaddivfs(prob,3,ColIndex,IVStart,1,Type,Value);

Further information
For more details on initial value formulae see the "IV" part of the SLPDATA section in Extended
MPS format.

A formula which starts with XSLP_EOF is empty and will not create an initial value formula.

Fair Isaac Corporation Confidential and Proprietary Information 271

Library functions and the programming interface Reference

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgivf, XSLPdelivfs, XSLPgetivformula, XSLPloadivfs

Fair Isaac Corporation Confidential and Proprietary Information 272

Library functions and the programming interface Reference

XSLPaddnames

Purpose
Set the names of a set of SLP entities in an SLP problem.

Synopsis
int XPRS_CC XSLPaddnames(XSLPprob Prob, int Type, char *cNames, int First,

int Last);

Arguments
Prob The current SLP problem.

Type Type of entity. This can be one of the Xpress-SLP constants XSLP_CVNAMES,
XSLP_XVNAMES, XSLP_USERFUNCNAMES.

cNames Character array holding the names, each one terminated by a null character.

First Index of first item whose name is to be set. All entities count from 1.

Last Index of last item whose name is to be set.

Example
The following example sets the name of user function 1 to MyProfit and of user function 2 to
ProfitCalcs

char *cNames = "MyProfit\0ProfitCalcs";

XSLPaddnames(Prob, XSLP_USERFUNCNAMES, cNames, 1, 2);

Further information
It is not necessary to set names for Xpress-SLP entities because all entities can be referred to by
their index. However, if a model is being output (for example by XSLPwriteprob) then any
entities without names will have internally-generated names which may not be very meaningful.

Related topics
XSLPgetnames

Fair Isaac Corporation Confidential and Proprietary Information 273

Library functions and the programming interface Reference

XSLPaddtolsets

Purpose
Add sets of standard tolerance values to an SLP problem

Synopsis
int XPRS_CC XSLPaddtolsets(XSLPprob Prob, int nSLPTol, double *SLPTol);

Arguments
Prob The current SLP problem.

nSLPTol The number of tolerance sets to be added.

SLPTol Double array of (nSLPTol * 9) items containing the 9 tolerance values for each
set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances;
the second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for
absolute tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double SLPTol[18];

for (i=0;i<9;i++) SLPTol[i] = 0.005;

SLPTol[9] = 0;

for (i=10;i<18;i=i+2) SLPTol[i] = 0.01;

for (i=11;i<18;i=i+2) SLPTol[i] = 0.001;

XSLPaddtolsets(Prob, 2, SLPTol);

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC

1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA

2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM

5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI

6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI

7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS

8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used
for a given SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable.

If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a
zero tolerance, use the XSLPchgtolset function and set the Status variable appropriately.

See the section Convergence criteria for a fuller description of tolerances and their uses.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgtolset, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 274

Library functions and the programming interface Reference

XSLPadduserfuncs

Purpose
Add user function definitions to an SLP problem.

Synopsis
int XPRS_CC XSLPadduserfuncs(XSLPprob Prob, int nSLPUserFunc, int *Type,

double *Value);

Arguments
Prob The current SLP problem.

nSLPUserFunc Number of SLP user functions to be added.

Type Integer array of token types.

Value Double array of token values corresponding to the types in Type.

Example
Suppose we have the following user functions written in C in a library lib01:
Func1 which takes two arguments and returns two values
Func2 which takes one argument and returns the value and (optionally) the derivative of the
function. Although the function is referred to as Func2 in the problem, we are actually using the
function NewFunc2 from the library.

The following example adds the two functions to the SLP problem:

int nUserFuncs, ExtName, LibName, Type[10];

double Value[10];

XSLPsetstring(Prob,&LibName,"lib01");

Type[0] = XSLP_UFARGTYPE; Value[0] = (double) 023;

Type[1] = XSLP_UFEXETYPE; Value[1] = (double) 1;

Type[2] = XSLP_STRING; Value[2] = 0;

Type[3] = XSLP_STRING; Value[3] = LibName;

Type[4] = XSLP_EOF;

XSLPsetstring(Prob,&ExtName,"NewFunc2");

Type[5] = XSLP_UFARGTYPE; Value[5] = (double) 010023;

Type[6] = XSLP_UFEXETYPE; Value[6] = (double) 1;

Type[7] = XSLP_STRING; Value[7] = ExtName;

Type[8] = XSLP_STRING; Value[8] = LibName;

Type[9] = XSLP_EOF;

XSLPgetintattrib(Prob,XSLP_UFS,&nUserFuncs);

XSLPadduserfuncs(Prob,2,Type,Value);

XSLPaddnames(Prob,XSLP_USERFUNCNAMES,"Func1\0Func2",

nUserFuncs+1,nUserFuncs+2);

Note that the values for XSLP_UFARGTYPE are in octal

XSLP_UFEXETYPE describes the functions as taking a double array of values and an integer array
of function information.

The remaining tokens hold the values for the external name and the three optional parameters
(file, item and template). Func01 has the same internal name (in the problem) and external
name (in the library), so the library name is not required. A zero string index is used as a place
holder, so that the next item is correctly recognized as the library name. Func2 has a different
external name, so this appears as the first string token, followed by the library name. As neither
function needs the item or template names, these have been omitted.

Fair Isaac Corporation Confidential and Proprietary Information 275

Library functions and the programming interface Reference

The number of user functions already in the problem is in the integer problem attribute
XSLP_UFS. The new internal names are added using XSLPaddnames.

Further information
The token type and value arrays Type and Value are formatted in a similar way to the unparsed
internal format function stack. For possible token types and values see the chapter on "Formula
Parsing". Each formula must be terminated by an XSLP_EOF token.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
Function Declaration in Xpress-SLP, XSLPchguserfunc, XSLPdeluserfuncs,
XSLPgetuserfunc, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 276

Library functions and the programming interface Reference

XSLPaddvars

Purpose
Add SLP variables defined as matrix columns to an SLP problem

Synopsis
int XPRS_CC XSLPaddvars(XSLPprob Prob, int nSLPVar, int *ColIndex,

int *VarType, int *DetRow, int *SeqNum, int *TolIndex,

double *InitValue, double *StepBound);

Arguments
Prob The current SLP problem.

nSLPVar The number of SLP variables to be added.

ColIndex Integer array holding the index of the matrix column corresponding to each SLP
variable.

VarType Bitmap giving information about the SLP variable as follows:
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a
negative value means there is no determining row)
May be NULL if not required.

SeqNum Integer array holding the index sequence number for cascading for each SLP
variable (a zero value means there is no pre-defined order for this variable)
May be NULL if not required.

TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero
value means the default tolerances are used)
May be NULL if not required.

InitValue Double array holding the initial value for each SLP variable (use the VarType bit
map to indicate if a value is being provided)
May be NULL if not required.

StepBound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have
step bounds applied, and will almost always be regarded as converged.
May be NULL if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23
and 25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no
specific initial value

int ColIndex[2], VarType[2];

double InitValue[2];

ColIndex[0] = 23; VarType[0] = 0;

ColIndex[1] = 25; Vartype[1] = 2; InitValue[1] = 1.42;

XSLPaddvars(Prob, 2, ColIndex, VarType, NULL, NULL,

NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType

is set for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 277

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used
at all, and so have been passed to the function as NULL.

Further information
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgvar, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 278

Library functions and the programming interface Reference

XSLPaddxvs

Purpose
Add a set of extended variable arrays (XVs) to an SLP problem

Synopsis
int XPRS_CC XSLPaddxvs(XSLPprob Prob, int nSLPXV, int *XVStart, int Parsed,

int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPXV Number of XVs to be added.

XVStart Integer array of length nSLPXV+1 holding the start position in the arrays Type and
Value of the formula or value data for the XVs. XVStart[nSLPXV] should be set
to one after the end of the last XV.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the description and formula for each XV item.

Value Array of values corresponding to the types in Type.

Example
The following example adds two XVs to the current problem. The first XV contains two items:
columns 3 and 6, named "Temperature" and "Pressure" respectively. The second XV has four
items: column 1, the constant 1.42, the square of column 3, and column 2.

int n, CType, TempIndex, PressIndex, XVStart[3], Type[10];

double Value[10];

XSLPgetintcontrol(Prob,XSLP_CTYPE,CType);

n = 0;

XSLPsetstring(Prob,&TempIndex,"Temperature");

XSLPsetstring(Prob,&PressIndex,"Pressure");

XVStart[0] = n;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 3 + CType;

Type[n] = XSLP_XVINTINDEX; Value[n++] = TempIndex;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 6 + CType;

Type[n] = XSLP_XVINTINDEX; Value[n++] = TempIndex;

Type[n++] = XSLP_EOF;

XVStart[1] = n;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 1 + CType;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_CON; Value[n++] = 1.42;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_VAR; Value[n++] = 3 + CType;

Type[n] = XSLP_CON; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_EXPONENT;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_VAR; Value[n++] = 2 + CType;

Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 279

Library functions and the programming interface Reference

XVStart[2] = n;

XSLPaddxvs(Prob, 2, XVStart, 1, Type, Value);

When a variable is used directly as an item in an XV, it is described by two tokens:
XSLP_XVVARTYPE and XSLP_VARINDEX. When used in a formula, it appears as XSLP_VAR or
XSLP_COL.

Note that XSLP_COL cannot be used in an XSLP_XVVARINDEX; instead, use the setting of
XPRS_CTYPE to convert it to a value which counts from 1, and use XSLP_VAR.

Because Parsed is set to 1, the formulae are written in internal parsed (reverse Polish) form.

Further information
The token type and value arrays Type and Value are formatted in a similar way to the unparsed
internal format function stack. For possible token types and values see the chapter on "Formula
Parsing". Each formula must be terminated by an XSLP_EOF token.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgxv, XSLPgetxv, XSLPloadxvs

Fair Isaac Corporation Confidential and Proprietary Information 280

Library functions and the programming interface Reference

XSLPcalcslacks

Purpose
Calculate the slack values for the provided solution in the non-linear problem

Synopsis
int XPRS_CC XSLPcalcslacks(XSLPprob Prob, const double * dSol,

double * Slacks);

Arguments
Prob The current SLP problem.

dSol The solution for which the slacks are requested for.

Slacks Vector of length NROWS to return the slack in.

Related topics
XSLPvalidate, XSLPvalidaterow

Fair Isaac Corporation Confidential and Proprietary Information 281

Library functions and the programming interface Reference

XSLPcalluserfunc

Purpose
Call a user function from a program or from within another user function

Synopsis
double XPRS_CC XSLPcalluserfunc(XSLPprob Prob, int FuncNumber, void *Arg1,

void *Arg2, void *Arg3, void *Arg4, void *Arg5, void *Arg6)

Arguments
Prob The current SLP problem.

FuncNumber The internal number of the function to be called.

Arg1 address of an array of double precision values holding the input values for the
function. May be NULL if not required.

Arg2 address of an array of integer values. This must be dimensioned at least
XSLP_FUNCINFOSIZE and is normally populated by using XSLPsetuserfuncinfo.
This array must always be provided, even if the user function does not use it.

Arg3 address of a string buffer, normally used to hold the names of the input variables.
May be NULL if not required.

Arg4 address of a string buffer, normally used to hold the names of the return variables.
May be NULL if not required.

Arg5 address of an array of double precision values, normally used to hold the array of
perturbations or flags for calculating first derivatives. May be NULL if not required.

Arg6 address of an array of double precision values, used to hold the array of return
values from the function. This argument can always be provided and, if not null,
will be used to hold the return value(s) from the function. May be NULL if not
required.

Return value
If the called function returns a single value, the return value of XSLPcalluserfunc is the called
function value; if the called function returns the address of array of values, the return value of
XSLPcalluserfunc is the value of the first item in the array.

Example
The following example sets up the data to call user function number 2 with three input values,
and prints the first return value from the function.

double InputArray[3], ReturnArray[4];

double FuncInfo[XSLP_FUNCINFOSIZE];

InputArray[0] = 1.42; InputArray[1] = 5;

InputArray[2] = -99;

XSLPsetuserfuncinfo(Prob, FuncInfo, 0, 3, 1, 0, 0, 0);

XSLPcalluserfunc(Prob, 2, InputArray, FuncInfo,

NULL, NULL, NULL, ReturnArray);

printf("Result = %lg\n",ReturnArray[0]);

Further information
Apart from Arg2 (which is always required) and Arg6 (which will always be used if it is provided),
any argument required by the function must not be NULL. So, for example, if the function expects
an array of input names then Arg3 must be provided.

It is the user’s responsibility to ensure that any arrays used are large enough to hold the data.

The function is provided as a means to call user functions in a uniform way; e.g. this allows for
calling fucntions defined as external from the API (like Excel macros).

Fair Isaac Corporation Confidential and Proprietary Information 282

Library functions and the programming interface Reference

Related topics
XSLPsetuserfuncinfo

Fair Isaac Corporation Confidential and Proprietary Information 283

Library functions and the programming interface Reference

XSLPcascade

Purpose
Re-calculate consistent values for SLP variables. based on the current values of the remaining
variables

Synopsis
int XPRS_CC XSLPcascade(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example changes the solution value for column 91, and then re-calculates the
values of those dependent on it.

int ColNum;

double Value;

ColNum = 91;

XSLPgetvar(Prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL);

Value = Value + 1.42;

XSLPchgvar(Prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,

NULL);

XSLPcascade(Prob);

XSLPgetvar and XSLPchgvar are being used to get and change the current value of a single
variable.

Provided no other values have been changed since the last execution of XSLPcascade, values will
be changed only for variables which depend on column 91.

Further information
See the section on cascading for an extended discussion of the types of cascading which can be
performed.

XSLPcascade is called automatically during the SLP iteration process and so it is not normally
necessary to perform an explicit cascade calculation.

The variables are re-calculated in accordance with the order generated by XSLPcascadeorder.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 284

Library functions and the programming interface Reference

XSLPcascadeorder

Purpose
Establish a re-calculation sequence for SLP variables with determining rows.

Synopsis
int XPRS_CC XSLPcascadeorder(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
Assuming that all variables are SLP variables, the following example sets default values for the
variables, creates the re-calculation order and then calls XSLPcascade to calculate consistent
values for the dependent variables.

int ColNum;

for (ColNum=1;ColNum<=nCol;ColNum++)

XSLPchgvar(Prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &DefaultValue[ColNum], NULL, NULL, NULL,

NULL);

XSLPcascadeorder(Prob);

XSLPcascade(Prob);

Further information
XSLPcascadeorder is called automatically at the start of the SLP iteration process and so it is not
normally necessary to perform an explicit cascade ordering.

Related topics
XSLPcascade

Fair Isaac Corporation Confidential and Proprietary Information 285

Library functions and the programming interface Reference

XSLPchgcascadenlimit

Purpose
Set a variable specific cascade iteration limit

Synopsis
int XPRS_CC XSLPchgcascadenlimit(XSLPprob Prob, int iCol,

int CascadeNLimit);

Arguments
Prob The current SLP problem.

iCol The index of the column corresponding to the SLP variable for which the cascading
limit is to be emposed.

CascadeNLimit The new cascading iteration limit.

Further information
A value set by this function will overwrite the value of XSLP_CASCADENLIMIT for this variable.
To remove any previous value set by this function, use an iteration limit of 0.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 286

Library functions and the programming interface Reference

XSLPchgccoef

Purpose
Add or change a single matrix coefficient using a character string for the formula

Synopsis
int XPRS_CC XSLPchgccoef(XSLPprob Prob, int RowIndex, int ColIndex,

double *Factor, char *Formula);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row for the coefficient.

ColIndex The index of the matrix column for the coefficient.

Factor Address of a double precision variable holding the constant multiplier for the
formula. If Factor is NULL, a value of 1.0 will be used.

Formula Character string holding the formula with the tokens separated by spaces.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts
the formula 2.5*sin(Col1) into the coefficient in row 1, column 3.

char *Formula="sin (Col1)";

double Factor;

Factor = 2.5;

XSLPchgccoef(Prob, 1, 3, &Factor, Formula);

Note that all the tokens in the formula (including mathematical operators and separators) are
separated by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new
coefficient. If it does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier
which can be provided in the Factor variable. If Xpress-SLP can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated.

This function can only be used if all the operands in the formula can be correctly identified as
constants, existing columns, XVs, character variables or functions. Therefore, if a formula refers to
a new column or XV, that new item must be added to the Xpress-SLP problem first.

Related topics
XSLPaddcoefs, XSLPdelcoef, XSLPchgcoef, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 287

Library functions and the programming interface Reference

XSLPchgcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula

Synopsis
int XPRS_CC XSLPchgcoef(XSLPprob Prob, int RowIndex, int ColIndex,

double *Factor, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row for the coefficient.

ColIndex The index of the matrix column for the coefficient.

Factor Address of a double precision variable holding the constant multiplier for the
formula. If Factor is NULL, a value of 1.0 will be used.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the description and formula for each item.

Value Array of values corresponding to the types in Type.

Example
Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts
the formula 2.5*sin(Col1) into the coefficient in row 1, column 3.

int n, iSin, Type[4];

double Value[4];

double Factor;

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"sin", &iSin);

n = 0;

Type[n] = XSLP_IFUN; Value[n++] = iSin;

Type[n] = XSLP_VAR; Value[n++] = 1;

Type[n++] = XSLP_RB;

Type[n++] = XSLP_EOF;

Factor = 2.5;

XSLPchgcoef(Prob, 1, 3, &Factor, 0, Type, Value);

XSLPgetindex is used to retrieve the index for the internal function sin. The "nocase" version
matches the function name regardless of the (upper or lower) case of the name.

Token type XSLP_VAR always counts from 1, so Col1 is always 1.

The formula is written in unparsed form (Parsed = 0) and so it is provided as tokens in the same
order as they would appear if the formula were written in character form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new
coefficient. If it does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier
which can be provided in the Factor variable. If Xpress-SLP can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated.

Fair Isaac Corporation Confidential and Proprietary Information 288

Library functions and the programming interface Reference

Related topics
XSLPaddcoefs, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 289

Library functions and the programming interface Reference

XSLPchgcvar

Purpose
Add or change the value of the character string corresponding to an SLP character variable

Synopsis
int XPRS_CC XSLPchgcvar(XSLPprob Prob, int nSLPCVar, char *cValue);

Arguments
Prob The current SLP problem.

nSLPCVar The index of the character variable being changed. An index of zero will create a
new variable.

cValue Character buffer holding the value of the character variable (not its name, which is
created by XSLPaddnames if required).

Example
Assuming that character variable 7 has already been created, the following example changes its
value to "new value" and creates a new character variable called BoxName with the value "Jewel
box"

XSLPchgcvar(Prob,7,"new value");

XSLPchgcvar(Prob,0,"Jewel box");

XSLPgetintattrib(Prob,XSLP_CVS,&n);

XSLPaddnames(Prob,XSLP_CVNAMES,"BoxName",n,n);

Integer attribute XSLP_CVS holds the number of character variables in the problem.

Further information
Character variables can be used in formulae instead of strings, and are required in certain cases
where the strings contain embedded spaces.

Related topics
XSLPaddcvars, XSLPdelcvars, XSLPgetcvar, XSLPloadcvars

Fair Isaac Corporation Confidential and Proprietary Information 290

Library functions and the programming interface Reference

XSLPchgdc

Purpose
Add or change the settings for a delayed constraint (DC)

Synopsis
int XPRS_CC XSLPchgdc(XSLPprob Prob, int RowIndex, char *RowType,

int *Delay, int *IterCount, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

RowIndex Index of row whose DC status is to be changed.

RowType Character buffer holding the type of the row when it is constraining. May be NULL

if not required.

Delay Address of an integer holding the delay after the DC is initiated (see below). May
be NULL if not required.

IterCount Address of an integer holding the number of SLP iterations since the DC was
initiated. May be NULL if not required.

Parsed integer indicating whether the formula is in internal unparsed (Parsed=0) or
internal parsed reverse Polish (Parsed=1) format.

Type Integer array of token types (see the section on Formula Parsing for a full list). May
be NULL if not required.

Value Array of values corresponding to the types in Type. May be NULL if not required.

Example
The following example delays row 3 until 2 SLP iterations after column 12 becomes nonzero

int Delay, Type[2];

double Value[2];

Delay = 2;

Type[0] = XSLP_COL; Value[0] = 12;

Type[1] = XSLP_EOF;

XSLPchgdc(Prob, 3, NULL, 2, &Delay, NULL, 0 Type, Value);

Further information
The formula is used to determine when the DC is initiated. If a formula is given, the DC is
initiated when the formula first beocmes nonzero. An empty formula and Delay = 1 means that
the DC is initiated after the first SLP iteration.

If any of the addresses is NULL then the current information for the DC will be left unaltered. For
a new DC, the defaults will be left unchanged.

The array of formula tokens must be terminated by an XSLP_EOF token.

If RowType is not given, the type of the row in the current matrix will be used.

If Delay is not given or is zero, the default delay from XSLP_DCLIMIT will be used. The DC is
initiated when the formula (if given) first becomes nonzero. To activate a DC immediately, set
Delay to 1 and provide an empty formula.

If IterCount is less than Delay, then the DC is inactive. A nonzero value for IterCount implies
that the DC is initiated, and IterCount will be incremented at each subsequent SLP iteration.

If Type and/or Value is NULL the existing formula will not be changed.

If an empty formula (Type[0] = XSLP_EOF) is given, then the DC will be initiated after the delay;
Delay = 1 means after the first SLP iteration.

Fair Isaac Corporation Confidential and Proprietary Information 291

Library functions and the programming interface Reference

Related topics
XSLPadddcs, XSLPgetdcformula, XSLPloaddcs,

Fair Isaac Corporation Confidential and Proprietary Information 292

Library functions and the programming interface Reference

XSLPchgdeltatype

Purpose
Changes the type of the delta assigned to a nonlinear variable

Synopsis
int XPRS_CC XSLPchgdeltatype(XSLPprob Prob, int nVar, int Vars[],

int DeltaTypes[], double Values);

Arguments
Prob The current SLP problem.

nVar The number of SLP variables to change the delta type for.

Vars Indices of the variables to change the deltas for.

DeltaTypes Type if the delta variable:
0 Differentiable variable, default.
1 Variable defined over the grid size given in Values.
2 Variable where a minimum perturbation size given in Values may be

required before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be

detected, with an upper limit given in Values.
Values Grid or minimum step sizes for the variables.

Further information
Changing the delta type of a variables makes the variable nonlinear.

Related topics
XSLP_SEMICONTDELTAS, XSLP_INTEGERDELTAS, XSLP_EXPLOREDELTAS

Fair Isaac Corporation Confidential and Proprietary Information 293

Library functions and the programming interface Reference

XSLPchgdf

Purpose
Set or change a distribution factor

Synopsis
int XSLP_CC XSLPchgdf(XSLPprob Prob, int ColIndex, int RowIndex,

const double *Value)

Arguments
Prob The current SLP problem.

ColIndex The index of the column whose distribution factor is to be set or changed.

RowIndex The index of the row where the distribution applies.

Value Address of a double precision variable holding the new value of the distribution
factor. May be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134
and changes it to be twice as large.

double Value;

XSLPgetdf(prob,282,134,&Value);

Value = Value * 2;

XSLPchgdf(prob,282,134,&Value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress-SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

Related topics
XSLPadddfs, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 294

Library functions and the programming interface Reference

XSLPchgfuncobject

Purpose
Change the address of one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPchgfuncobject(int *ArgInfo, int ObjType, void **Address)

Arguments
ArgInfo The array of argument information for the user function.

ObjType An integer indicating which object is to be changed
XSLP_GLOBALFUNCOBJECT The Global Function Object;
XSLP_USERFUNCOBJECT The User Function Object for the function;
XSLP_INSTANCEFUNCOBJECT The Instance Function Object for the instance of

the function.
Address Pointer holding the address of the object.

Example
The following example from within a user function checks if there is a function instance. If so, it
gets the Instance Function Object. If it is NULL an array is allocated and its address is saved as the
new Instance Function Object.

int Instance;

XSLPgetfuncinfo(ArgInfo, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, &Instance);

if (Instance) {

XSLPgetfuncobject(ArgInfo, XSLP_INSTANCEFUNCOBJECT,

&Object);

if (Object == NULL) {

Object = calloc(4*3, sizeof(double));

XSLPchgfuncobject(ArgInfo, XSLP_INSTANCEFUNCOBJECT,

&Object);

}

}

Further information
This function changes the address of one of the objects which can be accessed by any user
function. It requires the ArgInfo array of argument information. This is normally provided as
one of the arguments to a user function, or it can be created by using the function
XSLPsetuserfuncinfo

The identity of the function and the instance are obtained from the ArgInfo array. Within a user
function, therefore, using the ArgInfo array passed to the user function will change the objects
accessible to that function.

If, instead, XSLPchgfuncobject is used with an array which has been populated by
XSLPsetuserfuncinfo, the Global Function Object can be set as usual. The User Function
Object cannot be set (use XSLPchguserfuncobject for this purpose). There is no Instance
Function Object as such; however, a value can be set by XSLPchgfuncobject which can be used
by the function subsequently called by XSLPcalluserfunc. It is the user’s responsibility to
manage the object and save and restore the address as necessary, because Xpress-SLP will not
retain the information itself.

If Address is NULL, then the corresponding information will be unchanged.

Related topics
XSLPchguserfuncobject, XSLPgetfuncobject, XSLPgetuserfuncobject,
XSLPsetfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 295

Library functions and the programming interface Reference

XSLPchgivf

Purpose
Set or change the initial value formula for a variable

Synopsis
int XSLP_CC XSLPchgivf(XSLPprob Prob, int ColIndex, int Parsed,

const int *Type, const double *Value)

Arguments
Prob The current SLP problem.

ColIndex The index of the column whose initial value formula is to be set or changed.

Parsed Integer indicating the whether the token array is formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types for the formula.

Value Array of values corresponding to the types in Type.

Example
The following example sets the initial value formula for column 282 to be
column 281 * 2

int Type[20];

double Value[20];

int n;

n = 0

Type[n] = XSLP_COL; Value[n++] = 281;

Type[n] = XSLP_CON; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;

Type[n] = XSLP_EOF; Value[n++] = 0;

XSLPchgivf(prob,282,1,Type,Value);

Further information
For more details on initial value formulae see the "IV" part of the SLPDATA section in Extended
MPS format.

If the first token in Type is XSLP_EOF, any existing initial value formula will be deleted.

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

Related topics
XSLPaddivfs, XSLPdelivfs, XSLPgetivformula, XSLPloadivfs

Fair Isaac Corporation Confidential and Proprietary Information 296

Library functions and the programming interface Reference

XSLPchgrow

Purpose
This function is deprecated and may be removed in future releases. Please use
XSLPchgrowstatus instead. Change the status setting of a constraint

Synopsis
int XPRS_CC XSLPchgrow(XSLPprob Prob, int RowIndex, int *Status);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row to be changed.

Status Address of an integer holding a bitmap with the new status settings. If the status is
to be changed, always get the current status first (use XSLPgetrow) and then
change settings as required. The only settings likely to be changed are:
Bit 11 Set if row must not have a penalty error vector. This is the equivalent

of an enforced constraint (SLPDATA type EC).

Further information
This function is depricated, please use XSLPchgrowstatus instead.

Related topics
XSLPchgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 297

Library functions and the programming interface Reference

XSLPchgrowstatus

Purpose
Change the status setting of a constraint

Synopsis
int XPRS_CC XSLPchgrow(XSLPprob Prob, int RowIndex, int *Status);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row to be changed.

Status Address of an integer holding a bitmap with the new status settings. If the status is
to be changed, always get the current status first (use XSLPgetrow) and then
change settings as required. The only settings likely to be changed are:
Bit 11 Set if row must not have a penalty error vector. This is the equivalent

of an enforced constraint (SLPDATA type EC).

Example
The following example changes the status of row 9 to be an enforced constraint.

int RowIndex, Status;

RowIndex = 9;

XSLPgetrowstatus(Prob,RowIndex,&Status);

Status = Status | (1<<11);

XSLPchgrowstatus(Prob,RowIndex,&Status);

Further information
If Status is NULL the current status will remain unchanged.

Related topics
XSLPgetrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 298

Library functions and the programming interface Reference

XSLPchgrowwt

Purpose
Set or change the initial penalty error weight for a row

Synopsis
int XSLP_CC XSLPchgrowwt(XSLPprob Prob, int RowIndex, const double *Value)

Arguments
Prob The current SLP problem.

RowIndex The index of the row whose weight is to be set or changed.

Value Address of a double precision variable holding the new value of the weight. May
be NULL if not required.

Example
The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the
initial weight of row 4 to a value twice the calculated default value.

double Value;

Value = -3.6;

XSLPchgrowwt(Prob,2,&Value);

Value = 2.0;

XSLPchgrowwt(Prob,4,&Value);

Further information
A positive value is interpreted as a multiplier of the default row weight calculated by Xpress-SLP.

A negative value is interpreted as a fixed value: the absolute value is used directly as the row
weight.

The initial row weight is used only when the augmented structure is created. After that, the
current weighting can be accessed and changed using XSLProwinfo.

Related topics
XSLPgetrowwt, XSLProwinfo

Fair Isaac Corporation Confidential and Proprietary Information 299

Library functions and the programming interface Reference

XSLPchgtolset

Purpose
Add or change a set of convergence tolerances used for SLP variables

Synopsis
int XPRS_CC XSLPchgtolset(XSLPprob Prob, int nSLPTol, int *Status,

double *Tols);

Arguments
Prob The current SLP problem.

nSLPTol Tolerance set for which values are to be changed. A zero value for nSLPTol will
create a new set.

Status Address of an integer holding a bitmap describing which tolerances are active in
this set. See below for the settings.

Tols Array of 9 double precision values holding the values for the corresponding
tolerances.

Example
The following example creates a new tolerance set with the default values for all tolerances
except the relative delta tolerance, which is set to 0.005. It then changes the value of the
absolute delta and absolute impact tolerances in tolerance set 6 to 0.015

int Status;

double Tols[9];

Tols[2] = 0.005;

Status = 1<<2;

XSLPchgtolset(Prob, 0, Status, Tols);

Tols[1] = Tols[5] = 0.015;

Status = 1<<1 | 1<<5;

XSLPchgtolset(Prob, 6, Status, Tols);

Further information
The bits in Status are set to indicate that the corresponding tolerance is to be changed in the
tolerance set. The meaning of the bits is as follows:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC

1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA

2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM

5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI

6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI

7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS

8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used
for a given SLP variable. The members of the Tols array corresponding to nonzero bit settings in
Status will be used to change the tolerance set. So, for example, if bit 3 is set in Status, then
Tols[3] will replace the current value of the absolute coefficient tolerance. If a bit is not set in
Status, the value of the corresponding element of Tols is unimportant.

Fair Isaac Corporation Confidential and Proprietary Information 300

Library functions and the programming interface Reference

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 301

Library functions and the programming interface Reference

XSLPchguserfunc

Purpose
Add or change a user function in an SLP problem after the problem has been input

Synopsis
int XPRS_CC XSLPchguserfunc(XSLPprob Prob, int nSLPUF, char *xName,

int *ArgType, int *ExeType, char *Param1, char *Param2,

char *Param3);

Arguments
Prob The current SLP problem.

nSLPUF The number of the user function. This always counts from 1. A value of zero will
create a new function.

xName Character string containing the null-terminated external name of the user
function. Note that this is not the name used in written formulae, which is created
by the XSLPaddnames function if required.

ArgType bitmap specifying existence and type of arguments:
Bits 0-2 Type of DVALUE. 0=omitted, 1=NULL, 3=DOUBLE, 4=VARIANT;
Bits 3-5 Type of ARGINFO. 0=omitted, 1=NULL, 2=INTEGER, 4=VARIANT;
Bits 6-8 Type of ARGNAME. 0=omitted, 4=VARIANT, 6=CHAR;
Bits 9-11 Type of RETNAME. 0=omitted, 4=VARIANT, 6=CHAR;
Bits 12-14 Type of DELTA. 0=omitted, 1=NULL, 3=DOUBLE, 4=VARIANT;
Bits 15-17 Type of RESULTS. 0=omitted, 1=NULL, 3=DOUBLE.

ExeType type of function:
Bits 0-2 determine the type of linkage: 1 = User library or DLL; 2 = Excel

spreadsheet XLS; 3 = Excel macro XLF; 5 = MOSEL; 7 = COM
Bits 3-7 re-evaluation and derivatives flags:
Bit 3-4 re-evaluation setting:

0: default;
Bit 3 = 1: re-evaluation at each SLP iteration;
Bit 4 = 1: re-evaluation when independent variables are outside
tolerance;

Bit 5 RESERVED
Bit 6-7 derivatives setting:

0: default;
Bit 6 = 1: tangential derivatives;
Bit 7 = 1: forward derivatives

Bit 8 calling mechanism: 0= standard, 1=CDECL (Windows only)
Bit 9 instance setting: 0=standard, 1=function calls are grouped by

instance
Bit 24 multi-valued function
Bit 28 non-differentiable function

Param1 null-terminated character string for first parameter (FILE).

Param2 null-terminated character string for second parameter (ITEM).

Param3 null-terminated character string for third parameter (HEADER).

Example
Suppose we have the following user functions written in C in a library lib01:
Func1 which takes two arguments and returns two values
Func2 which takes one argument and returns the value and (optionally) the derivative of the
function. Although the function is referred to as Func2 in the problem, we are actually using the
function NewFunc2 from the library.

The following example adds the two functions to the SLP problem:

Fair Isaac Corporation Confidential and Proprietary Information 302

Library functions and the programming interface Reference

int nUF;

XSLPgetintattrib(Prob,XSLP_UFS,&nUF);

XSLPchguserfunc(Prob, 0, NULL, 023, 1,

"lib01", NULL, NULL);

XSLPchguserfunc(Prob, 0, "NewFunc2", 010023, 1,

"lib01", NULL, NULL);

XSLPaddnames(Prob,XSLP_USERFUNCNAMES,"Func1\0Func2",

nUF+1,nUF+2);

Note the use of zero as the number of the user function in order to create a new user function. A
value of NULL for xName means that the internal and external function names are the same.

Further information
A NULL value for any of the arguments leaves the existing value (if any) unchanged. If the call is
defining a new user function, a NULL value will leave the default value unchanged.

The following constants are provided for setting evaluation and derivative bits in ExeType:
Setting bit 3: XSLP_RECALC

Setting bit 4: XSLP_TOLCALC

Setting bit 6: XSLP_2DERIVATIVE

Setting bit 7: XSLP_1DERIVATIVE

Setting bit 9: XSLP_INSTANCEFUNCTION

Setting bit 24: XSLP_MULTIVALUED

Setting bit 28: XSLP_NODERIVATIVES

If bit 9 (XSLP_INSTANCEFUNCTION) is set, then calls to the function will be grouped according to
the argument list, so that the function is called only once for each unique set of arguments. This
happens automatically if the function is "complicated" (see the section on "User function
interface" for more details).

Bit 24 (XSLP_MULTIVALUED) does not have to be set if the function is multi-valued and it requires
RETNAME, DELTA or RESULTS. It must be set if the function is multi-valued, does not use any of
those arrays, and may be called directly by the user application using XSLPcalluserfunc.

If bit 28 (XSLP_NODERIVATIVES) is set, then formulae involving the function will always be
evaluated using numerical derivatives.

Related topics
XSLPadduserfuncs, XSLPdeluserfuncs, XSLPgetuserfunc, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 303

Library functions and the programming interface Reference

XSLPchguserfuncaddress

Purpose
Change the address of a user function

Synopsis
int XPRS_CC XSLPchguserfuncaddress(XSLPprob Prob, int nSLPUF,

void **Address);

Arguments
Prob The current SLP problem.

nSLPUF The index of the user function.

Address Pointer holding the address of the user function.

Example
The following example defines a user function via XSLPchguserfunc and then re-defines the
address.

double InternalFunc(double *, int *);

int nUF;

XSLPchguserfunc(Prob, 0, NULL, 023, 1,

NULL, NULL, NULL);

XSLPgetintattrib(Prob,XSLP_UFS,&nUF);

XSLPaddnames(Prob,XSLP_USERFUNCNAMES,"Func1",

nUF,nUF);

XSLPchguserfuncaddress(Prob, nUF, &InternalFunc);

Note that InternalFunc is defined as taking two arguments (double* and int*). This matches
the ArgType setting in XSLPchguserfunc. The external function name is NULL because it is not
required when the address is given.

Further information
nSLPUF is an Xpress-SLP index and always counts from 1.

If Address is NULL, then the corresponding information will be left unaltered.

The address of the function is changed to the one provided. XSLPchguserfuncaddress should
only be used for functions declared as of type DLL. Its main use is where a user function is actually
internal to the system rather than being provided in an external library. In such a case, the
function is initially defined as an external function using XSLPloaduserfuncs,
XSLPadduserfuncs or XSLPchguserfunc and the address of the function is then provided
using XSLPchguserfuncaddress.

Related topics
XSLPadduserfuncs XSLPchguserfunc, XSLPgetuserfunc, XSLPloaduserfuncs,
XSLPsetuserfuncaddress

Fair Isaac Corporation Confidential and Proprietary Information 304

Library functions and the programming interface Reference

XSLPchguserfuncobject

Purpose
Change or define one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPchguserfuncobject(XSLPprob Prob, int Entity,

void **Address);

Arguments
Prob The current SLP problem.

Entity An integer indicating which object is to be defined. The value is interpreted as
follows:
0 The Global Function Object;
n > 0 The User Function Object for user function number n;
n < 0 The Instance Function Object for user function instance number -n.

Address The address of a pointer to the object. If Address is NULL, then any setting of the
user function object is left unaltered.

Example
The following example sets the Global Function Object. It then sets the User Function Object for
the function ProfitCalcs.

double *GlobObj;

void *ProfitObj;

int iUF;

XSLPchguserfuncobject(Prob, 0, &GlobObj);

if (!XSLPgetindex(Prob, XSLP_USERFUNCNAMESNOCASE,

"ProfitCalcs", &iUF)) {

XSLPchguserfuncobject(Prob, iUF, &ProfitObj);

}

The function objects can be of any type. The index of the user function is obtained using the
case-insensitive search for names. If the name is not found, XSLPgetindex returns a nonzero
value.

Further information
As instance numbers are not normally meaningful, this function should only be used with a
negative value of n to reset all Instance Function Objects to NULL when a model is being
re-optimized within the same program execution.

Related topics
XSLPchgfuncobject, XSLPsetfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 305

Library functions and the programming interface Reference

XSLPchgvar

Purpose
Define a column as an SLP variable or change the characteristics and values of an existing SLP
variable

Synopsis
int XPRS_CC XSLPchgvar(XSLPprob Prob, int ColIndex, int *DetRow,

double *InitStepBound, double *StepBound, double *Penalty,

double *Damp, double *InitValue, double *Value, int *TolSet,

int *History, int *Converged, int *VarType);

Arguments
Prob The current SLP problem.

ColIndex The index of the matrix column.

DetRow Address of an integer holding the index of the determining row. Use -1 if there is
no determining row. May be NULL if not required.

InitStepBound Address of a double precision variable holding the initial step bound size. May
be NULL if not required.

StepBound Address of a double precision variable holding the current step bound size. Use
zero to disable the step bounds. May be NULL if not required.

Penalty Address of a double precision variable holding the weighting of the penalty cost
for exceeding the step bounds. May be NULL if not required.

Damp Address of a double precision variable holding the damping factor for the variable.
May be NULL if not required.

InitValue Address of a double precision variable holding the initial value for the variable.
May be NULL if not required.

Value Address of a double precision variable holding the current value for the variable.
May be NULL if not required.

TolSet Address of an integer holding the index of the tolerance set for this variable. Use
zero if there is no specific tolerance set. May be NULL if not required.

History Address of an integer holding the history value for this variable. May be NULL if
not required.

Converged Address of an integer holding the convergence status for this variable. May be
NULL if not required.

VarType Address of an integer holding a bitmap defining the existence of certain properties
for this variable:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
May be NULL if not required.

Example
The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the
matrix.

double InitialValue;

int VarType, TolSet;

InitialValue = 1.42;

TolSet = 2;

VarType = 1<<1 | 1<<2;

Fair Isaac Corporation Confidential and Proprietary Information 306

Library functions and the programming interface Reference

XSLPchgvar(Prob, 25, NULL, NULL, NULL, NULL,

NULL, &InitialValue, NULL, &TolSet,

NULL, NULL, &VarType);

Note that bits 1 and 2 of VarType are set, indicating that the variable has a delta vector and an
initial value. For columns already defined as SLP variables, use XSLPgetvar to obtain the current
value of VarType because other bits may already have been set by the system.

Further information
If any of the arguments is NULL then the corresponding information for the variable will be left
unaltered. If the information is new (i.e. the column was not previously defined as an SLP
variable) then the default values will be used.

Changing Value, History or Converged is only effective during SLP iterations.

Changing InitValue and InitStepBound is only effective before XSLPconstruct.

If a value of XPRS_PLUSINFINITY is used in the value for StepBound or InitStepBound, the
delta will never have step bounds applied, and will almost always be regarded as converged.

Related topics
XSLPaddvars, XSLPdelvar, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 307

Library functions and the programming interface Reference

XSLPchgxv

Purpose
Add or change an extended variable array (XV) in an SLP problem

Synopsis
int XPRS_CC XSLPchgxv(XSLPprob Prob, int nSLPXV, int *nXVitems);

Arguments
Prob The current SLP problem.

nSLPXV integer holding the index of the XV. A zero index will create a new XV.

nXVitems Address of an integer holding the number of items in the XV.

Example
The following example creates a new XV, and deletes the last item from XV number 4.

int nXVitem;

XSLPchgxv(Prob, 0, NULL);

XSLPgetxv(Prob, 4, &nXVitem);

nXVitem--;

XSLPchgxv(Prob, 4, &nXVitem);

Note the use of XSLPgetxv to find the current number of items in the XV.

Further information
If nXVitems is NULL then the existing value is retained. For a new XV, nXVitems should always
be zero or NULL. For an existing XV, nXVitems can be less than or equal to the current number of
items in the XV. If it is less, then items will be deleted from the end of the XV.

XSLPchgxvitem is used to add items to an existing or newly-created XV.

Related topics
XSLPaddxvs, XSLPchgxvitem, XSLPdelxvs, XSLPgetxv, XSLPgetxvitemformula,
XSLPloadxvs

Fair Isaac Corporation Confidential and Proprietary Information 308

Library functions and the programming interface Reference

XSLPchgxvitem

Purpose
Add or change an item of an existing XV in an SLP problem

Synopsis
int XPRS_CC XSLPchgxvitem(XSLPprob Prob, int nSLPXV, int nXVitem,

int Parsed, int *VarType, int *VarIndex, int *IntIndex,

double *Reserved1, double *Reserved2, int *Reserved3, int *Type,

double *Value);

Arguments
Prob The current SLP problem.

nSLPXV index of the XV.

nXVitem index of the item in the XV. If this is zero then a new item will be added to the end
of the XV.

Parsed integer indicating whether the formula of the item is in internal unparsed format
(Parsed=0) or internal parsed (reverse Polish) format (Parsed=1).

VarType Address of an integer holding the token type of the XV variable. This can be zero
(there is no variable), XSLP_VAR, XSLP_CVAR or XSLP_XV.

VarIndex Address of an integer holding the index within the VarType of the XV variable.

IntIndex Address of an integer holding the index within the Xpress-SLP string table of the
internal variable name. Zero means there is no internal name.

Reserved1 Reserved for future use.

Reserved2 Reserved for future use.

Reserved3 Reserved for future use.

Type Integer array of token types to describe the value or formula for the XVitem.

Value Double array of values corresponding to Type, describing the value or formula for
the XVitem.

Example
The following example adds two items to XV number 4. The first is column number 25, the
second is named "SQ" and is the square root of column 19.

int n, CType, VarType, VarIndex, IntIndex, Type[4];

double Value[4];

VarType = XSLP_VAR;

VarIndex = 25;

XSLPchgxvitem(Prob, 4, 0, 1, &VarType, &VarIndex,

NULL, NULL, NULL, NULL, NULL, NULL);

n = 0;

Type[n] = XSLP_COL; Var[n++] = 19;

Type[n] = XSLP_CON; Var[n++] = 0.5;

Type[n] = XSLP_OP; Var[n++] = XSLP_EXPONENT;

Type[n++] = XSLP_EOF;

VarType = 0;

XSLPsetstring(Prob,"SQ",&IntIndex);

XSLPchgxvitem(Prob, 4, 0, 1, &VarType, NULL,

&IntIndex, NULL, NULL, NULL,

Type, Value);

Fair Isaac Corporation Confidential and Proprietary Information 309

Library functions and the programming interface Reference

Note that columns used as XVitems are specified as XSLP_VAR which always counts from 1.
XSLP_COL can be used within formulae. The formula is provided in parsed (reverse Polish) format
(Parsed=1) which is more efficient than the unparsed form.

Further information
The XVitems for an XV will always be used in the order in which they are added.

A NULL value for any of the addresses will leave the existing value unchanged. If the XVitem is
new, the default value will be used.

If VarType is zero (meaning that the XVitem is not a variable), then VarIndex is not used. If the
variable is a column, do not use a VarType of XSLP_COL — use XSLP_VAR instead, and adjust the
index if necessary.

The formula in Type and Value must be terminated by an XSLP_EOF token.

Related topics
XSLPaddxvs, XSLPdelxvs, XSLPgetxvitemformula, XSLPloadxvs

Fair Isaac Corporation Confidential and Proprietary Information 310

Library functions and the programming interface Reference

XSLPconstruct

Purpose
Create the full augmented SLP matrix and data structures, ready for optimization

Synopsis
int XPRS_CC XSLPconstruct(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example constructs the augmented matrix and then outputs the result in MPS
format to a file called augment.mat

/* creation and/or loading of data */

/* precedes this segment of code */

...

XSLPconstruct(Prob);

XSLPwriteprob(Prob,"augment","l");

The "l" flag causes output of the current linear problem (which is now the augmented structure
and the current linearization) rather than the original nonlinear problem.

Further information
XSLPconstruct adds new rows and columns to the SLP matrix and calculates initial values for
the non-linear coefficients. Which rows and columns are added will depend on the setting of
XSLP_AUGMENTATION. Names for the new rows and columns are generated automatically, based
on the existing names and the string control variables XSLP_xxxFORMAT.

Once XSLPconstruct has been called, no new rows, columns or non-linear coefficients can be
added to the problem. Any rows or columns which will be required must be added first.
Non-linear coefficients must not be changed; constant matrix elements can generally be changed
after XSLPconstruct, but not after XSLPpresolve if used.

XSLPconstruct is called automatically by the SLP optimization procedure, and so only needs to
be called explicitly if changes need to be made between the augmentation and the optimization.

Related topics
XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 311

Library functions and the programming interface Reference

XSLPcopycallbacks

Purpose
Copy the user-defined callbacks from one SLP problem to another

Synopsis
int XPRS_CC XSLPcopycallbacks(XSLPprob NewProb, XSLPprob OldProb);

Arguments
NewProb The SLP problem to receive the callbacks.

OldProb The SLP problem from which the callbacks are to be copied.

Example
The following example creates a new problem and copies only the Xpress-SLP callbacks from the
existing problem (not the Optimizer library ones).

XSLPprob nProb;

XPRSprob xProb;

int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<2;

XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);

XSLPcopycallbacks(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.

Further information
Normally XSLPcopycallbacks copies both the Xpress-SLP callbacks and the Optimizer Library
callbacks for the underlying problem. If only the Xpress-SLP callbacks are required, set the integer
control variable XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 312

Library functions and the programming interface Reference

XSLPcopycontrols

Purpose
Copy the values of the control variables from one SLP problem to another

Synopsis
int XPRS_CC XSLPcopycontrols(XSLPprob NewProb, XSLPprob OldProb);

Arguments
NewProb The SLP problem to receive the controls.

OldProb The SLP problem from which the controls are to be copied.

Example
The following example creates a new problem and copies only the Xpress-SLP controls from the
existing problem (not the Optimizer library ones).

XSLPprob nProb;

XPRSprob xProb;

int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<1;

XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);

XSLPcopycontrols(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.

Further information
Normally XSLPcopycontrols copies both the Xpress-SLP controls and the Optimizer Library
controls for the underlying problem. If only the Xpress-SLP controls are required, set the integer
control variable XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 313

Library functions and the programming interface Reference

XSLPcopyprob

Purpose
Copy an existing SLP problem to another

Synopsis
int XPRS_CC XSLPcopyprob(XSLPprob NewProb, XSLPprob OldProb,

char *ProbName);

Arguments
NewProb The SLP problem to receive the copy.

OldProb The SLP problem from which to copy.

ProbName The name to be given to the problem.

Example
The following example creates a new Xpress-SLP problem and then copies an existing problem to
it. The new problem is named "ANewProblem".

XSLPprob nProb;

XPRSprob xProb;

XSLPcreateprob(&nProb, &xProb);

XSLPcopyprob(nProb, Prob, "ANewProblem");

Further information
Normally XSLPcopyprob copies both the Xpress-SLP problem and the underlying Optimizer
Library problem. If only the Xpress-SLP problem is required, set the integer control variable
XSLP_CONTROL appropriately.

This function does not copy controls or callbacks. These must be copied separately using
XSLPcopycontrols and XSLPcopycallbacks if required.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 314

Library functions and the programming interface Reference

XSLPcreateprob

Purpose
Create a new SLP problem

Synopsis
int XPRS_CC XSLPcreateprob(XSLPprob *Prob, XPRSprob *xProb);

Arguments
Prob The address of the SLP problem variable.

xProb The address of the underlying Optimizer Library problem variable.

Example
The following example creates an optimizer problem, and then a new Xpress-SLP problem.

XSLPprob nProb;

XPRSprob xProb;

XPRScreateprob(&xProb);

XSLPcreateprob(&nProb, &xProb);

Further information
An Xpress-SLP problem includes an underlying optimizer problem which is used to solve the
successive linear approximations. The user is responsible for creating and destroying the
underlying linear problem, and can also access it using the normal optimizer library functions.
When an SLP problem is to be created, the underlying problem is created first, and the SLP
problem is then created, knowing the address of the underlying problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 315

Library functions and the programming interface Reference

XSLPdecompose

Purpose
Decompose nonlinear constraints into linear and nonlinear parts

Synopsis
int XSLP_CC XSLPdecompose(XSLPprob Prob, int nItems, const int *Index)

Arguments
Prob The current SLP problem.

nItems The number of entries in the array Index

Index Integer array holding the indices of the constraints to be processed. This array may
be NULL, in which case all eligible constraints in the problem will be processed

Further information
This function is depricated and is maintained for compatibility reasons. It will be removed in
future XSLP releases, the functionality being moved to the presolver.

Related topics
XSLP_DECOMPOSE, XSLP_DECOMPOSEPASSLIMIT

Fair Isaac Corporation Confidential and Proprietary Information 316

Library functions and the programming interface Reference

XSLPdelcoefs

Purpose
Delete coefficients from the current problem

Synopsis
int XPRS_CC XSLPdelcoefs(XSLPprob Prob, in nSLPCoef, int *RowIndex,

int *ColIndex);

Arguments
Prob The current SLP problem.

nSLPCoef Number of SLP coefficients to delete.

RowIndex Row indices of the SLP coefficients to delete.

ColIndex Column indices of the SLP coefficients to delete.

Related topics
XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 317

Library functions and the programming interface Reference

XSLPdelcvars

Purpose
Delete character variables from the current problem

Synopsis
int XPRS_CC XSLPdelcvars(XSLPprob Prob, int nCV, int *CVIndex);

Arguments
Prob The current SLP problem.

nCV Number of character variables to delete.

CVIndex Indices of character variables to delete.

Further information
The character variables to be deleted must not be in use in any formula (e.g. coefficients, initial
value formula); use the appropriate deletion or change routines first.

Related topics
XSLPaddcvars, XSLPchgcvar, XSLPgetcvar, XSLPloadcvars

Fair Isaac Corporation Confidential and Proprietary Information 318

Library functions and the programming interface Reference

XSLPdeldcs

Purpose
Delete delyed constraint markers -convert delayed rows to normal ones- from the current
problem

Synopsis
int XPRS_CC XSLPdeldcs(XSLPprob Prob, int nRow, int *RowIndex);

Arguments
Prob The current SLP problem.

nRow Number of delayed constraints to delete.

RowIndex Row indices of the delayed constraint markers to delete.

Further information
The constraints are converted to normal rows. Use the appropriate XSLP and XRPS functions to
remove the constraints themselves.

Related topics
XSLPadddcs, XSLPchgdc, XSLPdeldcs, XSLPgetdcformula, XSLPloaddcs

Fair Isaac Corporation Confidential and Proprietary Information 319

Library functions and the programming interface Reference

XSLPdelivfs

Purpose
Delete initial value formulae from the current problem

Synopsis
int XPRS_CC XSLPdelivfs(XSLPprob Prob, int nCol, int *ColIndex);

Arguments
Prob The current SLP problem.

nCol Number of columns for which to remove initial value formulae.

ColIndex Indices of columns to remove the initial formulae from.

Related topics
XSLPaddivfs, XSLPchgivf, XSLPgetivformula, XSLPloadivfs

Fair Isaac Corporation Confidential and Proprietary Information 320

Library functions and the programming interface Reference

XSLPdeltolsets

Purpose
Delete tolerance sets from the current problem

Synopsis
int XPRS_CC XSLPdeltolsets(XSLPprob Prob, int nTolSet, int *TolSetIndex);

Arguments
Prob The current SLP problem.

nTolSet Number of tolerance sets to delete.

TolSetIndex Indices of tolerance sets to delete.

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 321

Library functions and the programming interface Reference

XSLPdeluserfuncs

Purpose
Delete user functions from the current problem

Synopsis
int XPRS_CC XSLPdeluserfuncs(XSLPprob prob, int nUserFunction,

int *UserFunctionIndex);

Arguments
Prob The current SLP problem.

nUserFunction Number of user functions to delete.

UserFunctionIndex Indices of user functions to delete.

Related topics
XSLPadduserfuncs, XSLPchguserfunc, XSLPgetuserfunc, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 322

Library functions and the programming interface Reference

XSLPdelvars

Purpose
Convert SLP variables to normal columns. Variables must not appear in SLP sttructures

Synopsis
int XPRS_CC XSLPdelvars(XSLPprob prob, int nCol, int *ColIndex);

Arguments
Prob The current SLP problem.

nCol Number SLP variables to be converted to linear columns.

ColIndex Column indices of the SLP vars to be converted to linear ones.

Further information
The SLP variables to be converted to linear, non SLP columns must not be in use by any other SLP
structure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or
change functions to remove them first.

Related topics
XSLPaddvars, XSLPchgvar, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 323

Library functions and the programming interface Reference

XSLPdelxvs

Purpose
Delete extended variable arrays from the problem

Synopsis
int XPRS_CC XSLPdelxvs(XSLPprob prob, int nXV, int *XVIndex);

Arguments
Prob The current SLP problem.

nXV Number extended variable arrays to be deleted.

XVIndex Indices of the extended variable arrays to be deleted.

Further information
The extended variable arrays to be be delted must not be in use by any other SLP structure
(Coefficients, delayed row formulae, initial value formulae). Use the appropriate deletion or
change functions to remove them first.

Related topics
XSLPaddxv, XSLPchgxv, XSLPgetxv, XSLPloadxvs

Fair Isaac Corporation Confidential and Proprietary Information 324

Library functions and the programming interface Reference

XSLPdestroyprob

Purpose
Delete an SLP problem and release all the associated memory

Synopsis
int XPRS_CC XSLPdestroyprob(XSLPprob Prob);

Argument
Prob The SLP problem.

Example
The following example creates an SLP problem and then destroys it together with the underlying
optimizer problem.

XSLPprob nProb;

XPRSprob xProb;

XPRScreateprob(&xProb);

XSLPcreateprob(&nProb, &xProb);

...

XSLPdestroyprob(nProb);

XPRSdestroyprob(xProb);

Further information
When you have finished with the SLP problem, it should be "destroyed" so that the memory used
by the problem can be released. Note that this does not destroy the underlying optimizer
problem, so a call to XPRSdestroyprob should follow XSLPdestroyprob as and when you have
finished with the underlying optimizer problem.

Related topics
XSLPcreateprob

Fair Isaac Corporation Confidential and Proprietary Information 325

Library functions and the programming interface Reference

XSLPevaluatecoef

Purpose
Evaluate a coefficient using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluatecoef(XSLPprob Prob, int RowIndex, int ColIndex,

double *dValue);

Arguments
Prob The current SLP problem.

RowIndex Integer index of the row.

ColIndex Integer index of the column.

Value Address of a double precision value to receive the result of the calculation.

Example
The following example sets the value of column 5 to 1.42 and then calculates the coefficient in
row 2, column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the
calculation.

double Value, dValue;

Value = 1.42;

XSLPchgvar(Prob, 5, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,

NULL);

XSLPevaluatecoef(Prob, 2, 3, &dValue);

Further information
The values of the variables are obtained from the solution, or from the Value setting of an SLP
variable (see XSLPchgvar and XSLPgetvar).

Related topics
XSLPchgvar, XSLPevaluateformula XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 326

Library functions and the programming interface Reference

XSLPevaluateformula

Purpose
Evaluate a formula using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluateformula(XSLPprob Prob, int Parsed, int *Type,

double *Value, double *dValue);

Arguments
Prob The current SLP problem.

Parsed integer indicating whether the formula of the item is in internal unparsed format
(Parsed=0) or parsed (reverse Polish) format (Parsed=1).

Type Integer array of token types for the formula.

Value Double array of values corresponding to Type.

dValue Address of a double precision value to receive the result of the calculation.

Example
The following example calculates the value of column 3 divided by column 6.

int n, Type[10];

double dValue, Value[10];

n = 0;

Type[n] = XSLP_COL; Value[n++] = 3;

Type[n] = XSLP_COL; Value[n++] = 6;

Type[n] = XSLP_OP; Value[n++] = XSLP_DIVIDE;

Type[n++] = XSLP_EOF;

XSLPevaluateformula(Prob, 1, Type, Value, &dValue);

Further information
The formula in Type and Value must be terminated by an XSLP_EOF token.

The formula cannot include "complicated" functions, such as user functions which return more
than one value

Related topics
XSLPevaluatecoef

Fair Isaac Corporation Confidential and Proprietary Information 327

Library functions and the programming interface Reference

XSLPfilesol

Purpose
Prints the last SLP iterations solution to file

Synopsis
int XPRS_CC XSLPfilesol(XSLPprob Prob, char *FileName);

Arguments
Prob The current SLP problem.

FileName Name of the file to write the solution into

Further information
For SLP variables, the initial values are also printed.

Related topics
XSLPwriteprob

Fair Isaac Corporation Confidential and Proprietary Information 328

Library functions and the programming interface Reference

XSLPfixpenalties

Purpose
Fixe the values of the error vectors

Synopsis
int XPRS_CC XSLPfixpenalties(XSLPprob Prob, int *Status);

Arguments
Prob The current SLP problem.

Status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further information
The function fixes the values of all error vectors on their current values. It also removes their
objective cost contribution.

The function is intended to support post optimization analysis, by removing any possible direct
effect of the error vectors from the dual and reduced cost values.

The XSLPfixpenalties will automatically reoptimize the linearization. However, as the XSLP
convergence and infeasibility checks (regarding the original non-linear problem) will not be
carried out, this function will not update the SLP solution itself. The updated values will be
accessible using XPRSgetlpsolution instead.

Fair Isaac Corporation Confidential and Proprietary Information 329

Library functions and the programming interface Reference

XSLPformatvalue

Purpose
Format a double-precision value in the style of Xpress-SLP

Synopsis
int XPRS_CC XSLPformatvalue(double dValue, char *Buffer);

Arguments
dValue Double precision value to be formatted.

Buffer Character buffer to hold the formatted result. The result will never be more than
15 characters in length including the terminating null character.

Example
The following example formats the powers of 16 from -6 to +6 and prints the results:

int i;

double Value;

char Buffer[16];

Value = 1;

for (i=0;i<=6;i++) {

XSLPformatvalue(Value,Buffer);

printf("\n16^%d = %s",i,Buffer);

Value = Value * 16;

}

Value = 1.0/16.0;

for (i=1;i<=6;i++) {

XSLPformatvalue(Value,Buffer);

printf("\n16^-%d = %s",i,Buffer);

Value = Value / 16;

}

The results are as follows:

16^0 = 1

16^1 = 16

16^2 = 256

16^3 = 4096

16^4 = 65536

16^5 = 1.048576e+006

16^6 = 1.677722e+007

16^-1 = 0.0625

16^-2 = 0.00390625

16^-3 = 0.00024414063

16^-4 = 1.525879e-005

16^-5 = 9.536743e-007

16^-6 = 5.960464e-008

Further information
Trailing zeroes are removed. The decimal point is removed for integers. Numbers with absolute
value less than 1.0e-04 or greater than 1.0e+06 are printed in scientific format.

Fair Isaac Corporation Confidential and Proprietary Information 330

Library functions and the programming interface Reference

XSLPfree

Purpose
Free any memory allocated by Xpress-SLP and close any open Xpress-SLP files

Synopsis
int XPRS_CC XSLPfree(void);

Example
The following code frees the Xpress-SLP memory and then frees the optimizer memory:

XSLPfree();

XPRSfree();

Further information
A call to XSLPfree only frees the items specific to Xpress-SLP. XPRSfree must be called after
XSLPfree to free the optimizer structures.

Related topics
XSLPinit

Fair Isaac Corporation Confidential and Proprietary Information 331

Library functions and the programming interface Reference

XSLPgetbanner

Purpose
Retrieve the Xpress-SLP banner and copyright messages

Synopsis
int XPRS_CC XSLPgetbanner(char *Banner);

Argument
Banner Character buffer to hold the banner. This will be at most 256 characters including

the null terminator.

Example
The following example retrieves the Xpress-SLP banner and prints it

char Buffer[260];

XSLPgetbanner(Buffer];

printf("%s\n",Buffer);

Further information
Note that XSLPgetbanner does not take the normal Prob argument.

If XSLPgetbanner is called before XPRSinit, then it will return only the Xpress-SLP information;
otherwise it will include the XPRSgetbanner information as well.

Fair Isaac Corporation Confidential and Proprietary Information 332

Library functions and the programming interface Reference

XSLPgetccoef

Purpose
Retrieve a single matrix coefficient as a formula in a character string

Synopsis
int XPRS_CC XSLPgetccoef(XSLPprob Prob, int RowIndex, int ColIndex,

double *Factor, char *Formula, int fLen);

Arguments
Prob The current SLP problem.

RowIndex Integer holding the row index for the coefficient.

ColIndex Integer holding the column index for the coefficient.

Factor Address of a double precision variable to receive the value of the constant factor
multiplying the formula in the coefficient.

Formula Character buffer in which the formula will be placed in the same format as used for
input from a file. The formula will be null terminated.

fLen Maximum length of returned formula.

Return value
0 Normal return.

1 Formula is too long for the buffer and has been truncated.

other Error.

Example
The following example displays the formula for the coefficient in row 2, column 3:

char Buffer[60];

double Factor;

int Code;

Code = XSLPgetccoef(Prob, 2, 3, &Factor, Buffer, 60);

switch (Code) {

case 0: printf("\nFormula is %s",Buffer);

printf("\nFactor = %lg",Factor);

break;

case 1: printf("\nFormula is too long for the buffer");

break;

default: printf("\nError accessing coefficient");

break;

}

Further information
If the requested coefficient is constant, then Factor will be set to 1.0 and the value will be
formatted in Formula.

If the length of the formula would exceed fLen-1, the formula is truncated to the last token that
will fit, and the (partial) formula is terminated with a null character.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 333

Library functions and the programming interface Reference

XSLPgetcoefformula

Purpose
Retrieve a single matrix coefficient as a formula split into tokens

Synopsis
int XPRS_CC XSLPgetcoefformula(XSLPprob Prob, int RowIndex, int ColIndex,

double *Factor, int Parsed, int BufferSize, int *TokenCount,

int *Type, double *Value);

Synopsis
Deprecated version included for backward compatibility:

int XPRS_CC XSLPgetcoef(XSLPprob Prob, int RowIndex, int ColIndex,

double *Factor, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

RowIndex Integer holding the row index for the coefficient.

ColIndex Integer holding the column index for the coefficient.

Factor Address of a double precision variable to receive the value of the constant factor
multiplying the formula in the coefficient.

Parsed Integer indicating whether the formula of the item is to be returned in internal
unparsed format (Parsed=0) or parsed (reverse Polish) format (Parsed=1).

BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

TokenCount Number of tokens returned in Type and Value.

Type Integer array to hold the token types for the formula.

Value Double array of values corresponding to Type.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed
form:

int n, Type[10];

double Value[10];

int TokenCount;

XSLPgetcoefformula(Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);

for (n=0;Type[n] != XSLP_EOF;n++)

printf("\nType=%-3d Value=%lg",Type[n],Value[n]);

Further information
The Type and Value arrays are terminated by an XSLP_EOF token.

If the requested coefficient is constant, then Factor will be set to 1.0 and the value will be
returned with token type XSLP_CON.

XSLPgetcoef is deprecated and included for compatibility reasons. XSLPgetcoef relies on the user
making sure that the token arrays Type and Value are large enough.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 334

Library functions and the programming interface Reference

XSLPgetcoefs

Purpose
Retrieve the list of positions of the nonlinear coefficients in the problem

Synopsis
int XPRS_CC XSLPgetcoefs(XSLPprob Prob, int *nCoef, int *RowIndices,

int *ColIndices);

Arguments
Prob The current SLP problem.

nCoef Integer used to return the total number of nonlinear coefficients in the problem.

RowIndices Integer array used for returning the row positions of the coefficients. May be
NULL if not required.

ColIndices Integer array used for returning the column positions of the coefficients. May be
NULL if not required.

Related topics
XSLPgetccoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 335

Library functions and the programming interface Reference

XSLPgetcolinfo

Purpose
Get current column information.

Synopsis
int XSLP_CC XSLPgetcolinfo(XSLPprob Prob, int InfoType, int ColIndex,

XSLPalltype *Info);

Arguments
Prob The current SLP problem

InfoType Type of information (see below)

ColIndex Index of the column whose information is to be handled

Info Address of information to be set or retrieved

Further information
If the data is not available, the type of the returned Info is set to XSLPtype_undefined.

Please refer to the header file xslp.h for the definition of XSLPalltype.

The following constants are provided for column information handling:

XSLP_COLINFO_VALUE Get the current value of the column

XSLP_COLINFO_RDJ Get the current reduced cost of the column

XSLP_COLINFO_DELTAINDEX Get the delta variable index associated to the column

XSLP_COLINFO_DELTA Get the delta value (change since previous value) of the column

XSLP_COLINFO_DELTADJ Get the delta variables reduced cost

XSLP_COLINFO_UPDATEROW Get the index of the update (or step bound) row associated to
the column

XSLP_COLINFO_SB Get the step bound on the variable

XSLP_COLINFO_SBDUAL Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Confidential and Proprietary Information 336

Library functions and the programming interface Reference

XSLPgetcvar

Purpose
Retrieve the value of the character string corresponding to an SLP character variable

Synopsis
int XPRS_CC XSLPgetcvar(XSLPprob Prob, int nSLPCV, char *cValue);

Arguments
Prob The current SLP problem.

nSLPCV Integer holding the index of the requested character variable.

cValue Character buffer to receive the value of the variable. The buffer must be large
enough to hold the character string, which will be terminated by a null character.

Example
The following example retrieves the string stored in the character variable named BoxType:

int iCVar;

char Buffer[200];

XSLPgetindex(Prob, XSLP_CVNAMES, "BoxType", &iCVar);

XSLPgetcvar(Prob, iCVar, Buffer);

Further information

Related topics
XSLPaddcvars, XSLPchgcvar, XSLPdelcvars, XSLPloadcvars

Fair Isaac Corporation Confidential and Proprietary Information 337

Library functions and the programming interface Reference

XSLPgetdblattrib

Purpose
Retrieve the value of a double precision problem attribute

Synopsis
int XPRS_CC XSLPgetdblattrib(XSLPprob Prob, int Param, double *dValue);

Arguments
Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

dValue Address of a double precision variable to receive the value.

Example
The following example retrieves the value of the Xpress-SLP attribute XSLP_CURRENTDELTACOST

and of the optimizer attribute XPRS_LPOBJVAL:

double DeltaCost, ObjVal;

XSLPgetdblattrib(Prob, XSLP_CURRENTDELTACOST, &DeltaCost);

XSLPgetdblattrib(Prob, XPRS_LPOBJVAL, &ObjVal);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetdblattrib.

Related topics
XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 338

Library functions and the programming interface Reference

XSLPgetdblcontrol

Purpose
Retrieve the value of a double precision problem control

Synopsis
int XPRS_CC XSLPgetdblcontrol(XSLPprob Prob, int Param, double *dValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

dValue Address of a double precision variable to receive the value.

Example
The following example retrieves the value of the Xpress-SLP control XSLP_CTOL and of the
optimizer control XPRS_FEASTOL:

double CTol, FeasTol;

XSLPgetdblcontrol(Prob, XSLP_CTOL, &CTol);

XSLPgetdblcontrol(Prob, XPRS_FEASTOL, &FeasTol);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetdblcontrol.

Related topics
XSLPgetintcontrol, XSLPgetstrcontrol, XSLPsetdblcontrol

Fair Isaac Corporation Confidential and Proprietary Information 339

Library functions and the programming interface Reference

XSLPgetdcformula

Purpose
Retrieve information about a delayed constraint in an SLP problem

Synopsis
int XPRS_CC XSLPgetdcformula(XSLPprob Prob, int RowIndex, char *RowType,

int *Delay, int *IterCount, int Parsed, int BufferSize,

int *TokenCount, int *Type, double *Value);

Synopsis
Deprecated version included for backward compatibility:

int XPRS_CC XSLPgetdc(XSLPprob Prob, int RowIndex, char *RowType,

int *Delay, int *IterCount, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row .

RowType Address of character buffer to receive the type of the row when it is constraining.
May be NULL if not required. May be NULL if not required.

Delay Address of an integer to receive the delay after the DC is initiated. May be NULL if
not required.

IterCount Address of an integer to receive the number of SLP iterations since the DC was
initiated. May be NULL if not required.

Parsed Integer indicating whether the formula is to be in internal unparsed (Parsed=0) or
parsed reverse Polish (Parsed=1) format.

BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

TokenCount Number of tokens returned in Type and Value.

Type Integer array to receive the token types. May be NULL if not required.

Value Array of values corresponding to the types in Type. May be NULL if not required.

Example
The following example gets the formula for the delayed constraint row 3:

int Type[10];

double Value[10];

int TokenCount;

XSLPgetdcformula(Prob, 3, NULL, NULL, 0, 10, &TokenCount, Type, Value);

The formula is returned as tokens in unparsed form.

Further information
If RowType is returned as zero, then the row is not currently a delayed constraint.

The formula is used to determine when the DC is initiated. An empty formula means that the DC
is initiated after the first SLP iteration.

If any of the addresses is NULL then the corresponding information for the DC will not be
provided.

The array of formula tokens will be terminated by an XSLP_EOF token.

XSLPgetdc is deprecated and included for compatibility reasons. XSLPgetdc relies on the user
making sure that the token arrays Type and Value are large enough.

Related topics
XSLPadddcs, XSLPchgdc, XSLPdeldc, XSLPloaddcs

Fair Isaac Corporation Confidential and Proprietary Information 340

Library functions and the programming interface Reference

XSLPgetdf

Purpose
Get a distribution factor

Synopsis
int XSLP_CC XSLPgetdf(XSLPprob Prob, int ColIndex, int RowIndex,

double *Value)

Arguments
Prob The current SLP problem.

ColIndex The index of the column whose distribution factor is to be retrieved.

RowIndex The index of the row from which the distribution factor is to be taken.

Value Address of a double precision variable to receive the value of the distribution
factor. May be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134
and changes it to be twice as large.

double Value;

XSLPgetdf(prob,282,134,&Value);

Value = Value * 2;

XSLPchgdf(prob,282,134,&Value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress-SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

Related topics
XSLPadddfs, XSLPchgdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 341

Library functions and the programming interface Reference

XSLPgetdtime

Purpose
Retrieve a double precision time stamp in seconds

Synopsis
int XPRS_CC XSLPgetdtime(XSLPprob Prob, double *Seconds);

Arguments
Prob The current SLP problem.

Seconds Address of double precision variable of the time in seconds.

Example
The following example measures the elapsed time to read a problem:

double Start, Finish;

XSLPgetdtime(Prob, &Start);

XSLPreadprob(Prob, "NewMat","");

XSLPgetdtime(Prob, &Finish);

printf("\nElapsed time to read = %lg secs",Finish-Start);

Further information
If Seconds is NULL, then the information will not be returned.

The timing information returned is provided by the operating system and is typically accurate to
no more than 1 millisecond.

The clock is not initialized when Xpress-SLP starts, so it is necessary to save an initial time and
then measure all times by difference.

Related topics
XSLPgettime

Fair Isaac Corporation Confidential and Proprietary Information 342

Library functions and the programming interface Reference

XSLPgetfuncinfo

Purpose
Retrieve the argument information for a user function

Synopsis
int XPRS_CC XSLPgetfuncinfo(int *ArgInfo, int *CallFlag, int *nInput,

int *nOutput, int *nDelta, int *nInStr, int *nOutStr, int *nSLPUF,

int *nInst)

Arguments
ArgInfo The array of argument information for the user function.

CallFlag The address of an integer to receive the caller flag value. May be NULL if not
required.

nInput The address of an integer to receive the number of input values. May be NULL if
not required.

nOutput The address of an integer to receive the number of return values. May be NULL if
not required.

nDelta The address of an integer to receive the number of deltas (first derivatives)
required. May be NULL if not required.

nInStr The address of an integer to receive the number of strings in the ARGNAME array.
May be NULL if not required.

nOutStr The address of an integer to receive the number of strings in the RETNAME array.
May be NULL if not required.

nSLPUF The address of an integer to receive the number of the function. May be NULL if
not required.

nInst The address of an integer to receive the instance number for the call. May be NULL

if not required.

Example
The following example retrieves the number of the function and the problem pointer. It then
retrieves the internal name by which the function is known.

char fName[60];

int fNum;

XSLPprob Prob;

void *Object;

XSLPgetfuncinfo(ArgInfo, NULL, NULL,

NULL, NULL, NULL, NULL,

&fNum, NULL);

XSLPgetfuncobject(ArgInfo, XSLP_XSLPPROBLEM, &Object);

Prob = (XSLPprob) Object;

XSLPgetnames(Prob, XSLP_USERFUNCNAMES, fName, fNum, fNum);

Further information
If any of the addresses is NULL the corresponding information will not be returned.

Related topics
XSLPgetfuncinfoV, XSLPsetuserfuncinfo

Fair Isaac Corporation Confidential and Proprietary Information 343

Library functions and the programming interface Reference

XSLPgetfuncinfoV

Purpose
Retrieve the argument information for a user function

Synopsis
int XPRS_CC XSLPgetfuncinfoV(VARIANT *ArgInfo, int *CallFlag, int *nInput,

int *nOutput, int *nDelta, int *nInStr, int *nOutStr, int *nSLPUF,

int *nInst)

Arguments
ArgInfo The array of argument information for the user function.

CallFlag The address of an integer to receive the caller flag value. May be NULL if not
required.

nInput The address of an integer to receive the number of input values. May be NULL if
not required.

nOutput The address of an integer to receive the number of return values. May be NULL if
not required.

nDelta The address of an integer to receive the number of deltas (first derivatives)
required. May be NULL if not required.

nInStr The address of an integer to receive the number of strings in the ARGNAME array.
May be NULL if not required.

nOutStr The address of an integer to receive the number of strings in the RETNAME array.
May be NULL if not required.

nSLPUF The address of an integer to receive the number of the function. May be NULL if
not required.

nInst The address of an integer to receive the instance number for the call. May be NULL

if not required.

Example
The following example retrieves the number of the function and the problem pointer. It then
retrieves the internal name by which the function is known.

char fName[60];

int fNum;

XSLPprob Prob;

void *Object;

XSLPgetfuncinfo(ArgInfo, NULL, NULL,

NULL, NULL, NULL, NULL,

&fNum, NULL);

XSLPgetfuncobjectV(ArgInfo, XSLP_XSLPPROBLEM, &Object);

Prob = (XSLPprob) Object;

XSLPgetnames(Prob, XSLP_USERFUNCNAMES, fName, fNum, fNum);

Further information
This function is identical to XSLPgetfuncinfo except that ArgInfo is of type VARIANT rather
than int. It is used in COM functions when the argument information array is passed as one of
the arguments. To use this version of the function, pass the first member of array as the first
argument to the function — e.g.
XSLPgetfuncinfoV(ArgInfo(0),......)

If any of the addresses is NULL the corresponding information will not be returned.

Related topics
XSLPgetfuncinfo, XSLPsetuserfuncinfo

Fair Isaac Corporation Confidential and Proprietary Information 344

Library functions and the programming interface Reference

XSLPgetfunctioninstance

Purpose
Retrieve the base signature of a user function instance

Synopsis
int XPRS_CC XSLPgetfunctioninstance(XSLPprob Prob, int Instance,

int *nSLPUF, int BufferSize, int *TokenCount, int *Type,

double *Value)

Arguments
Prob The current SLP problem.

Instance The fucntion instance to retrieve.

nSLPUF The base user function the instance has been instanciated from.

BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

TokenCount Number of tokens returned in Type and Value.

Type Array to receive token types for the formula.

Value Array to receive values corresponding to the types in Type.

Further information
If any of the addresses is NULL the corresponding information will not be returned.

Instances are counted from 1 to XSLP_XSLP_UFINSTANCES.

Functions are instantiated by XSLPconstruct, and are only available for interrogation after the
problem has been augmented.

The array of Tokens are return in reversed Polish order.

Always the full signature will be returned. Please note, that for functions returning named
returns, a colon and a corresponding return string will also be returned, but only one of the
possible returns (i.e. the different types of occurrences of the same instance are not collected).

The function can be used to identify the different function instances that are created.

Related topics
XSLPsetuserfuncobject, XSLPgetfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 345

Library functions and the programming interface Reference

XSLPgetfuncobject

Purpose
Retrieve the address of one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPgetfuncobject(int *ArgInfo, int ObjType, void **Address)

Arguments
ArgInfo The array of argument information for the user function.

ObjType An integer indicating which object is to be returned. The following values are
defined:
XSLP_XSLPPROBLEM The Xpress-SLP problem pointer;
XSLP_XPRSPROBLEM The Xpress Optimizer problem pointer;
XSLP_GLOBALFUNCOBJECT The Global Function Object;
XSLP_USERFUNCOBJECT The User Function Object for the current function;
XSLP_INSTANCEFUNCOBJECT The Instance Function Object for the current

instance;
Address Pointer to hold the address of the object.

Example
The following example retrieves the number of the function and the problem pointer. It then
retrieves the internal name by which the function is known.

char fName[60];

int fNum;

XSLPprob Prob;

void *Object;

XSLPgetfuncinfo(ArgInfo, NULL, NULL,

NULL, NULL, NULL, NULL,

&fNum, NULL);

XSLPgetfuncobject(ArgInfo, XSLP_XSLPPROBLEM, &Object);

Prob = (XSLPprob) Object;

XSLPgetnames(Prob, XSLP_USERFUNCNAMES, fName, fNum, fNum);

Further information
For functions which have no current instance because the function does not have instances, the
Instance Function Object will be NULL.

For functions which have no current instance because the function was called directly from
another user function, the Instance Function Object will be that set by the calling function.

Related topics
XSLPchgfuncobject, XSLPchguserfuncobject, XSLPgetfuncobjectV,
XSLPgetuserfuncobject, XSLPsetfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 346

Library functions and the programming interface Reference

XSLPgetfuncobjectV

Purpose
Retrieve the address of one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPgetfuncobjectV(VARIANT *ArgInfo, int ObjType,

void **Address)

Arguments
ArgInfo The array of argument information for the user function.

ObjType An integer indicating which object is to be returned. The following values are
defined:
XSLP_XSLPPROBLEM The Xpress-SLP problem pointer;
XSLP_XPRSPROBLEM The Xpress Optimizer problem pointer;
XSLP_GLOBALFUNCOBJECT The Global Function Object;
XSLP_USERFUNCOBJECT The User Function Object for the current function;
XSLP_INSTANCEFUNCOBJECT The Instance Function Object for the current

instance;
Address Pointer to hold the address of the object.

Example
The following example retrieves the number of the function and the problem pointer. It then
retrieves the internal name by which the function is known.

char fName[60];

int fNum;

XSLPprob Prob;

void *Object;

XSLPgetfuncinfoV(ArgInfo, NULL, NULL,

NULL, NULL, NULL, NULL,

&fNum, NULL);

XSLPgetfuncobjectV(ArgInfo, XSLP_XSLPPROBLEM, &Object);

Prob = (XSLPprob) Object;

XSLPgetnames(Prob, XSLP_USERFUNCNAMES, fName, fNum, fNum);

Further information
This function is identical to XSLPgetfuncobject except that ArgInfo is of type VARIANT rather
than int. It is used in COM functions when the argument information array is passed as one of
the arguments. To use this version of the function, pass the first member of array as the first
argument to the function — e.g.
XSLPgetfuncobjectV(ArgInfo(0),......)

For functions which have no current instance because the function does not have instances, the
Instance Function Object will be NULL.

For functions which have no current instance because the function was called directly from
another user function, the Instance Function Object will be that set by the calling function.

Related topics
XSLPchgfuncobject, XSLPchguserfuncobject, XSLPgetfuncobject,
XSLPgetuserfuncobject, XSLPsetfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 347

Library functions and the programming interface Reference

XSLPgetindex

Purpose
Retrieve the index of an Xpress-SLP entity with a given name

Synopsis
int XPRS_CC XSLPgetindex(XSLPprob Prob, int Type, char *cName, int *Index);

Arguments
Prob The current SLP problem.

Type Type of entity. The following are defined:
XSLP_CVNAMES (=3) Character variables;
XSLP_XVNAMES (=4) Extended variable arrays;
XSLP_USERFUNCNAMES (=5) User functions;
XSLP_INTERNALFUNCNAMES (=6) Internal functions;
XSLP_USERFUNCNAMESNOCASE (=7) User functions, case insensitive;
XSLP_INTERNALFUNCNAMESNOCASE (=8) Internal functions, case insensitive;
The constants 1 (for row names) and 2 (for column names) may also be used.

cName Character string containing the name, terminated by a null character.

Index Integer to receive the index of the item.

Example
The following example retrieves the index of the internal SIN function using both an upper-case
and a lower case version of the name.

int UpperIndex, LowerIndex;

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"SIN", &UpperIndex);

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"sin", &LowerIndex);

UpperIndex and LowerIndex will contain the same value because the search was made using
case-insensitive matching.

Further information
All entities count from 1. This includes the use of 1 or 2 (row or column) for Type. A value of zero
returned in Index means there is no matching item. The case-insensitive types will find the first
match regardless of the case of cName or of the defined function.

Related topics
XSLPgetnames

Fair Isaac Corporation Confidential and Proprietary Information 348

Library functions and the programming interface Reference

XSLPgetintattrib

Purpose
Retrieve the value of an integer problem attribute

Synopsis
int XPRS_CC XSLPgetintattrib(XSLPprob Prob, int Param, int *iValue);

Arguments
Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

iValue Address of an integer variable to receive the value.

Example
The following example retrieves the value of the Xpress-SLP attribute XSLP_CVS and of the
optimizer attribute XPRS_COLS:

int nCV, nCol;

XSLPgetintattrib(Prob, XSLP_CVS, &nCV);

XSLPgetintattrib(Prob, XPRS_COLS, &nCol);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetintattrib.

Related topics
XSLPgetdblattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 349

Library functions and the programming interface Reference

XSLPgetintcontrol

Purpose
Retrieve the value of an integer problem control

Synopsis
int XPRS_CC XSLPgetintcontrol(XSLPprob Prob, int Param, int *iValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

iValue Address of an integer variable to receive the value.

Example
The following example retrieves the value of the Xpress-SLP control XSLP_ALGORITHM and of the
optimizer control XPRS_DEFAULTALG:

int Algorithm, DefaultAlg;

XSLPgetintcontrol(Prob, XSLP_ALGORITHM, &Algorithm);

XSLPgetintcontrol(Prob, XPRS_DEFAULTALG, &DefaultAlg);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetintcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetstrcontrol, XSLPsetintcontrol

Fair Isaac Corporation Confidential and Proprietary Information 350

Library functions and the programming interface Reference

XSLPgetivformula

Purpose
Get the initial value formula for a variable

Synopsis
int XSLP_CC XSLPgetivformula(XSLPprob Prob, int ColIndex, int BufferSize,

int *TokenCount, int Parsed,int *Type, double *Value);

Synopsis
Deprecated version included for backward compatibility:

int XSLP_CC XSLPgetivf(XSLPprob Prob, int ColIndex, int Parsed,int *Type,

double *Value);

Arguments
Prob The current SLP problem.

ColIndex The index of the column whose initial value formula is to be retrieved.

Parsed Integer indicating the whether the token array is formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

TokenCount Number of tokens returned in Type and Value.

Type Array to receive token types for the formula.

Value Array to receive values corresponding to the types in Type.

Example
The following example gets the initial value formula for column 282 in unparsed form and then
prints it:

int Type[100];

double Value[100];

char Buffer[256];

int TokenCount, i;

XSLPgetivformula(prob,282,0,10,&TokenCount,Type,Value);

for (i=0;Type[i];i++) {

XSLPitemname(prob,&Type[i],&Value[i],Buffer);

printf("%s ",Buffer);

}

printf("\n");

Further information
For more details on initial value formulae see the "IV" part of the SLPDATA section in Extended
MPS format.

If there is no formula for the initial value but there is a constant initial value, then a formula
containing the constant value will be returned. That is:
XSLP_CON value

XSLP_EOF 0

If there is no initial value formula and no constant initial value, an empty formula will be
returned. That is:
XSLP_EOF 0

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

Fair Isaac Corporation Confidential and Proprietary Information 351

Library functions and the programming interface Reference

XSLPgetivf is deprecated and included for compatibility reasons. XSLPgetivf relies on the user
making sure that the token arrays Type and Value are large enough.

Related topics
XSLPaddivfs, XSLPchgivf, XSLPdelivfs, XSLPloadivfs

Fair Isaac Corporation Confidential and Proprietary Information 352

Library functions and the programming interface Reference

XSLPgetlasterror

Purpose
Retrieve the error message corresponding to the last Xpress-SLP error during an SLP run

Synopsis
int XPRS_CC XSLPgetlasterror(XSLPprob Prob, int *Code, char *Buffer);

Arguments
Prob The current SLP problem.

Code Address of an integer to receive the message number of the last error. May be
NULL if not required.

Buffer Character buffer to receive the error message. The error message will never be
longer than 256 characters. May be NULL if not required.

Example
The following example checks the return code from reading a matrix. If the code is nonzero then
an error has occurred, and the error number is retrieved for further processing.

int Error, Code;

if (Error=XSLPreadprob(Prob, "Matrix", "")) {

XSLPgetlasterror(Prob, &Code, NULL);

MyErrorHandler(Code);

}

Further information
In general, Xpress-SLP functions return a value of 32 to indicate a non-recoverable error.
XSLPgetlasterror can retrieve the actual error number and message. In case no SLP error code
was retuned, the function will check the underlying XPRS libary for any errors reported.

Related topics
XSLPgetmessagetype

Fair Isaac Corporation Confidential and Proprietary Information 353

Library functions and the programming interface Reference

XSLPgetmessagetype

Purpose
Retrieve the message type corresponding to a message number

Synopsis
int XPRS_CC XSLPgetmessagetype(int Code, int *Type);

Arguments
Code Integer holding the message number.

Type Integer to receive the message type.

Example
The following example retrieves the last error message and finds its type.

int Code, Type;

XSLPgetlasterror(Prob, &Code, NULL);

XSLPgetlasterror(Code, &Type);

printf("\nError %d is of type %d", Code, Type);

Further information
The possible values returned in Type are:

0 no such message number
1 information
3 warning
4 error

Related topics
XSLPgetlasterror

Fair Isaac Corporation Confidential and Proprietary Information 354

Library functions and the programming interface Reference

XSLPgetnames

Purpose
Retrieve the names of a set of Xpress-SLP entities

Synopsis
int XPRS_CC XSLPgetnames(XSLPprob Prob, int Type, char *cNames, int First,

int Last);

Arguments
Prob The current SLP problem.

Type Type of entity. The following are defined:
XSLP_CVNAMES (=3) Character variables
XSLP_XVNAMES (=4) Extended variable arrays
XSLP_USERFUNCNAMES (=5) User functions
XSLP_INTERNALFUNCNAMES (=6) Internal functions
For compatibility with XSLPgetindex, values for Type of 1 (rows) and 2 (columns)
are also possible.

cNames Character buffer to receive the names. Each name will be terminated by a null
character.

First Index of first item to be returned.

Last Index of last item to be returned.

Example
The following example retrieves the names of internal function numbers 3 and 4.

char ch, Buffer[60];

XSLPgetnames(Prob, XSLP_INTERNALNAMES, Buffer, 3, 4);

ch = Buffer;

printf("\nFunction #3 is %s",ch);

for (;;ch++) if (*ch == ’\0’) break;

ch++;

printf("\nFunction #4 is %s",ch);

Names are returned in Buffer separated by null characters. ch finds the null character and hence
the start of the next name.

Further information
First and Last always count from 1.

Related topics
XSLPgetindex

Fair Isaac Corporation Confidential and Proprietary Information 355

Library functions and the programming interface Reference

XSLPgetparam

Purpose
Retrieve the value of a control parameter or attribute by name

Synopsis
int XPRS_CC XSLPgetparam(XSLPprob Prob, const char *Param, char *cValue);

Arguments
Prob The current SLP problem.

Param Name of the control or attribute whose value is to be returned.

cValue Character buffer to receive the value.

Example
The following example retrieves the value of the Xpress-SLP pointer attribute
XSLP_XPRSPROBLEM which is the underlying optimizer problem pointer:

XSLPprob Prob;

XPRSprob xprob;

char Buffer[32];

XSLPgetparam(Prob, "XSLP_XPRSPROBLEM", Buffer);

xprob = (XPRSprob) strtol(Buffer,NULL,16);

Further information
This function can be used to retrieve any Xpress-SLP or Optimizer attribute or control. The value
is always returned as a character string and the receiving buffer must be large enough to hold it.
It is the user’s responsibility to convert the character string into an appropriate value.

Related topics
XSLPgetdblattrib, XSLPgetdblcontrol, XSLPgetintattrib, XSLPgetintcontrol

XSLPgetstrattrib, XSLPgetstrcontrol, XSLPsetparam

Fair Isaac Corporation Confidential and Proprietary Information 356

Library functions and the programming interface Reference

XSLPgetptrattrib

Purpose
Retrieve the value of a problem pointer attribute

Synopsis
int XPRS_CC XSLPgetptrattrib(XSLPprob Prob, int Param, void **Value);

Arguments
Prob The current SLP problem.

Param attribute whose value is to be returned.

Value Address of a pointer to receive the value.

Example
The following example retrieves the value of the Xpress-SLP pointer attribute
XSLP_XPRSPROBLEM which is the underlying optimizer problem pointer:

XPRSprob xprob;

XSLPgetptrattrib(Prob, XSLP_XPRSPROBLEM, &xprob);

Further information
This function is normally used to retrieve the underlying optimizer problem pointer, as shown in
the example.

Related topics
XSLPgetdblattrib, XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 357

Library functions and the programming interface Reference

XSLPgetrow

Purpose
This function is deprecated and may be removed in future releases. Please use
XSLPgetrowstatus instead. Retrieve the status setting of a constraint

Synopsis
int XPRS_CC XSLPgetrow(XSLPprob Prob, int RowIndex, int *Status);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row whose data is to be obtained.

Status Address of an integer holding a bitmap to receive the status settings.

Further information
The function is depricated, please use XSLPgetrowstatus instead.

Related topics
XSLPgetrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 358

Library functions and the programming interface Reference

XSLPgetrowinfo

Purpose
Get current row information.

Synopsis
int XSLP_CC XSLPgetrowinfo(XSLPprob Prob, int InfoType, int RowIndex,

XSLPalltype *Info);

Arguments
Prob The current SLP problem

InfoType Type of information (see below)

RowIndex Index of the row whose information is to be handled

Info Address of information to be set or retrieved

Further information
If the data is not available, the type of the returned Info is set to XSLPtype_undefined.

Please refer to the header file xslp.h for the definition of XSLPalltype.

The following constants are provided for row information handling:

XSLP_ROWINFO_SLACK Get the current slack value of the row

XSLP_ROWINFO_DUAL Get the current dual multiplier of the row

XSLP_ROWINFO_NUMPENALTYERRORS Get the number of times the penalty error vector has
been active for the row

XSLP_ROWINFO_MAXPENALTYERROR Get the maximum size of the penalty error vector activity
for the row

XSLP_ROWINFO_TOTALPENALTYERROR Get the total size of the penalty error vector activity for
the row

XSLP_ROWINFO_CURRENTPENALTYERROR Get the size of the penalty error vector activity in the
current iteration for the row

XSLP_ROWINFO_CURRENTPENALTYFACTOR Set the size of the penalty error factor for the
current iteration for the row

XSLP_ROWINFO_PENALTYCOLUMNPLUS Get the index of the positive penalty column for the row
(+)

XSLP_ROWINFO_PENALTYCOLUMNPLUSVALUE Get the value of the positive penalty column for
the row (+)

XSLP_ROWINFO_PENALTYCOLUMNPLUSDJ Get the reduced cost of the positive penalty column
for the row (+)

XSLP_ROWINFO_PENALTYCOLUMNMINUS Get the index of the negative penalty column for the
row (-)

XSLP_ROWINFO_PENALTYCOLUMNMINUSVALUE Get the value of the negative penalty column for
the row (-)

XSLP_ROWINFO_PENALTYCOLUMNMINUSDJ Get the reduced cost of the negative penalty column
for the row (-)

Fair Isaac Corporation Confidential and Proprietary Information 359

Library functions and the programming interface Reference

XSLPgetrowstatus

Purpose
Retrieve the status setting of a constraint

Synopsis
int XPRS_CC XSLPgetrow(XSLPprob Prob, int RowIndex, int *Status);

Arguments
Prob The current SLP problem.

RowIndex The index of the matrix row whose data is to be obtained.

Status Address of an integer holding a bitmap to receive the status settings.

Example
This recovers the status of the rows of the matrix of the current problem and reports those which
are flagged as enforced constraints.

int iRow, nRow, Status;

XSLPgetintattrib(Prob, XPRS_ROWS, &nRow);

for (iRow=0;iRow<nRow;iRow++) {

XSLPgetrowstatus(Prob, iRow, &Status);

if (Status & 0x800) printf("\nRow %d is enforced");

}

Further information
See the section on bitmap settings for details on the possible information in Status.

Related topics
XSLPchgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 360

Library functions and the programming interface Reference

XSLPgetrowwt

Purpose
Get the initial penalty error weight for a row

Synopsis
int XSLP_CC XSLPgetrowwt(XSLPprob Prob, int RowIndex, double *Value)

Arguments
Prob The current SLP problem.

RowIndex The index of the row whose weight is to be retrieved.

Value Address of a double precision variable to receive the value of the weight.

Example
The following example gets the initial weight of row number 2.

double Value;

XSLPgetrowwt(Prob,2,&Value)

Further information
The initial row weight is used only when the augmented structure is created. After that, the
current weighting can be accessed using XSLPgetrowinfo.

Related topics
XSLPchgrowwt, XSLPgetrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 361

Library functions and the programming interface Reference

XSLPgetslpsol

Purpose
Obtain the solution values for the most recent SLP iteration

Synopsis
int XPRS_CC XSLPgetslpsol(XSLPprob Prob, double *x, double *slack,

double *dual, double *dj);

Arguments
Prob The current SLP problem.

x Double array of length XSLP_ORIGINALCOLS to hold the values of the primal
variables. May be NULL if not required.

slack Double array of length XSLP_ORIGINALROWS to hold the values of the slack
variables. May be NULL if not required.

dual Double array of length XSLP_ORIGINALROWS to hold the values of the dual
variables. May be NULL if not required.

dj Double array of length XSLP_ORIGINALCOLS to hold the recuded costs of the
primal variables. May be NULL if not required.

Example
The following code fragment recovers the values and reduced costs of the primal variables from
the most recent SLP iteration:

XSLPprob prob;

int nCol;

double *val, *dj;

XSLPgetintattrib(prob,XSLP_ORIGINALCOLS,&nCol);

val = malloc(nCol*sizeof(double));

dj = malloc(nCol*sizeof(double));

XSLPgetslpsol(prob,val,NULL,NULL,dj);

Further information
XSLPgetslpsol can be called at any time after an SLP iteration has completed, and will return
the same values even if the problem is subsequently changed. XSLPgetslpsol returns values for
the columns and rows originally in the problem and not for any augmentation rows or columns.
To access the values of any augmentation columns or rows, use XPRSgetlpsol; accessing the
augmented solution is only recommended if XSLP_PRESOLVELEVEL indicates that the problem
dimensions should not be changed in presolve.

Fair Isaac Corporation Confidential and Proprietary Information 362

Library functions and the programming interface Reference

XSLPgetstrattrib

Purpose
Retrieve the value of a string problem attribute

Synopsis
int XPRS_CC XSLPgetstrattrib(XSLPprob Prob, int Param, char *cValue);

Arguments
Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

cValue Character buffer to receive the value.

Example
The following example retrieves the value of the Xpress-SLP attribute XSLP_VERSIONDATE and of
the optimizer attribute XPRS_MATRIXNAME:

char VersionDate[200], MatrixName[200];

XSLPgetstrattrib(Prob, XSLP_VERSIONDATE, VersionDate);

XSLPgetstrattrib(Prob, XPRS_MATRIXNAME, MatrixName);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetstrattrib.

Related topics
XSLPgetdblattrib, XSLPgetintattrib

Fair Isaac Corporation Confidential and Proprietary Information 363

Library functions and the programming interface Reference

XSLPgetstrcontrol

Purpose
Retrieve the value of a string problem control

Synopsis
int XPRS_CC XSLPgetstrcontrol(XSLPprob Prob, int Param, char *cValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

cValue Character buffer to receive the value.

Example
The following example retrieves the value of the Xpress-SLP control XSLP_CVNAME and of the
optimizer control XPRS_MPSOBJNAME:

char CVName[200], ObjName[200];

XSLPgetstrcontrol(Prob, XSLP_CVNAME, CVName);

XSLPgetstrcontrol(Prob, XPRS_MPSOBJNAME, ObjName);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetstrcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 364

Library functions and the programming interface Reference

XSLPgetstring

Purpose
Retrieve the value of a string in the Xpress-SLP string table

Synopsis
int XPRS_CC XSLPgetstring(XSLPprob Prob, int Param, char *cValue);

Arguments
Prob The current SLP problem.

Param Index of the string whose value is to be returned.

cValue Character buffer to receive the value.

Example
The following example retrieves string number 3

char Buffer[60];

XSLPgetstring(Prob, 3, Buffer);

Further information
The value will be terminated by a null character. The buffer must be long enough to hold the
string including the null terminator.

Strings are placed in the Xpress-SLP string table by XSLPsetstring and also by the formula
parsing routines for the XSLP_UNKNOWN token type.

Related topics
XSLPsetstring

Fair Isaac Corporation Confidential and Proprietary Information 365

Library functions and the programming interface Reference

XSLPgettime

Purpose
Retrieve an integer time stamp in seconds and/or milliseconds

Synopsis
int XPRS_CC XSLPgettime(XSLPprob Prob, int *Seconds, int *MSeconds);

Arguments
Prob The current SLP problem.

Seconds Address of integer to receive the number of seconds.

MSeconds Address of integer to receive the number of milliseconds. May be NULL if not
required.

Example
The following example prints the time elapsed in milliseconds for reading a matrix.

int Secs, MSecs, StartSecs, StartMSecs, Elapsed;

XSLPgettime(Prob, &StartSecs, &StartMSecs);

XSLPreadprob(Prob, "Matrix", "");

XSLPgettime(Prob, &Secs, &MSecs);

Elapsed = (Secs-StartSecs)*1000

+ (MSecs - StartMSecs);

printf("\nElapsed time = %d",Elapsed);

Further information
If Seconds or MilliSeconds is NULL, then the corresponding information will not be returned.

This routine relies on the accuracy of the system clock.

The clock is not initialized when Xpress-SLP starts, so it is necessary to save an initial time and
then measure all times by difference.

Related topics
XSLPgetdtime

Fair Isaac Corporation Confidential and Proprietary Information 366

Library functions and the programming interface Reference

XSLPgettolset

Purpose
Retrieve the values of a set of convergence tolerances for an SLP problem

Synopsis
int XPRS_CC XSLPgettolset(XSLPprob Prob, int nSLPTol, int *Status,

double *Tols);

Arguments
Prob The current SLP problem.

nSLPTol The index of the tolerance set.

Status Address of integer to receive the bit-map of status settings. May be NULL if not
required.

Tols Array of 9 double-precision values to hold the tolerances. May be NULL if not
required.

Example
The following example retrieves the values for tolerance set 3 and prints those which are set:

double Tols[9];

int i, Status;

XSLPgettolset(Prob, 3, &Status, Tols);

for (i=0;i<9;i++)

if (Status & (1<<i))

printf("\nTolerance %d = %lg",i,Tols[i]);

Further information
If Status or Tols is NULL, then the corresponding information will not be returned.

If Tols is not NULL, then a set of 9 values will always be returned. Status indicates which of
these values is active as follows. Bit n of Status is set if Tols[n] is active, where n is:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC

1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA

2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM

5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI

6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI

7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS

8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used
for a given SLP variable.

Related topics

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPdeltolsets, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 367

Library functions and the programming interface Reference

XSLPgetuserfunc

Purpose
Retrieve the type and parameters for a user function

Synopsis
int XPRS_CC XSLPgetuserfunc(XSLPprob Prob, int nSLPUF, char *xName,

int *ArgType, int *ExeType, char *Param1, char *Param2,

char *Param3);

Arguments
Prob The current SLP problem.

nSLPUF The number of the user function. This always counts from 1.

xName Character string to receive the null-terminated external name of the user function.
May be NULL if not required. Note that the external name is not the name used in
written formulae, which is created by the XSLPaddnames function if required.

ArgType Address of an integer to receive the bitmap specifying existence and type of
arguments:
Bits 0-2 Type of DVALUE. 0=omitted, 1=NULL, 3=DOUBLE, 4=VARIANT;
Bits 3-5 Type of ARGINFO. 0=omitted, 1=NULL, 2=INTEGER, 4=VARIANT;
Bits 6-8 Type of ARGNAME. 0=omitted, 4=VARIANT, 6=CHAR;
Bits 9-11 Type of RETNAME. 0=omitted, 4=VARIANT, 6=CHAR;
Bits 12-14 Type of DELTA. 0=omitted, 1=NULL, 3=DOUBLE, 4=VARIANT;
Bits 15-17 Type of RESULTS. 0=omitted, 1=NULL, 3=DOUBLE.
May be NULL if not required.

ExeType Address of an integer to receive the bitmap holding the type of function:
Bits 0-2 determine the type of linkage: 1 = User library or DLL; 2 = Excel

spreadsheet XLS; 3 = Excel macro XLF; 5 = MOSEL; 7 = COM
Bits 3-7 re-evaluation and derivatives flags:
Bit 3-4 re-evaluation setting:

0: default;
Bit 3 = 1: re-evaluation at each SLP iteration;
Bit 4 = 1: re-evaluation when independent variables are outside
tolerance;

Bit 5 RESERVED
Bit 6-7 derivatives setting:

0: default;
Bit 6 = 1: tangential derivatives;
Bit 7 = 1: forward derivatives

Bit 8 calling mechanism: 0= standard, 1=CDECL (Windows only)
Bit 9 instance setting: 0=standard, 1=function calls are grouped by

instance
Bit 24 multi-valued function
Bit 28 non-differentiable function
May be NULL if not required.

Param1 Character buffer to hold the first parameter (FILE). May be NULL if not required.

Param2 Character buffer to hold the second parameter (ITEM). May be NULL if not
required.

Param3 Character buffer to hold the third parameter (HEADER). May be NULL if not
required.

Example
The following example retrieves the argument type and external name for user function number
3 and prints a simplified description of the function prototype.

Fair Isaac Corporation Confidential and Proprietary Information 368

Library functions and the programming interface Reference

int ArgType;

char ExtName[60];

XSLPgetuserfunc(Prob, 1, ExtName, &ArgType, NULL,

NULL, NULL, NULL);

printf("\nFunction is %s(",ExtName);

for (i=0;i<6;i++) {

if (i) printf(",");

if (ArgType & (07 << i*3))

printf("Arg%d",i+1);

}

printf(")");;

Further information
The following constants are provided for setting evaluation and derivative bits in ExeType:
Setting bit 3: XSLP_RECALC

Setting bit 4: XSLP_TOLCALC

Setting bit 6: XSLP_2DERIVATIVE

Setting bit 7: XSLP_1DERIVATIVE

Setting bit 9: XSLP_INSTANCEFUNCTION

Setting bit 24: XSLP_MULTIVALUED

Setting bit 28: XSLP_NODERIVATIVES

Related topics
XSLPadduserfuncs, XSLPchguserfunc, XSLPdeluserfuncs, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 369

Library functions and the programming interface Reference

XSLPgetuserfuncaddress

Purpose
Retrieve the address of a user function

Synopsis
int XPRS_CC XSLPgetuserfuncaddress(XSLPprob Prob, int nSLPUF,

void **Address);

Arguments
Prob The current SLP problem.

nSLPUF The number of the user function. This always counts from 1.

Address Pointer to hold the address of the user function.

Example
The following example retrieves the addresses of user functions 3 and 5 and checks if they are the
same.

void *Func3, *Func5;

XSLPgetuserfuncaddress(Prob, 3, &Func3);

XSLPgetuserfuncaddress(Prob, 5, &Func5);

if (Func3 && (Func3 == Func5))

printf("\nFunctions are the same");

Further information
The address returned is the address in memory of the function for functions of type DLL. It will be
NULL for functions of other types.

Related topics
XSLPadduserfuncs, XSLPchguserfunc, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 370

Library functions and the programming interface Reference

XSLPgetuserfuncobject

Purpose
Retrieve the address of one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPgetuserfuncobject(XSLPprob prob, int Entity,

void **Address);

Arguments
Prob The current SLP problem.

Entity An integer indicating which object is to be defined. The value is interpreted as
follows:
0 The Global Function Object;
n > 0 The User Function Object for user function number n;
n < 0 The Instance Function Object for user function instance number -n.

Address Pointer to hold the address of the object.

Example
The following example retrieves the Function Object for user function number 3.

void *Obj;

XSLPgetuserfuncobject(Prob, 3, &Obj);

Further information
This function returns the address of one of the objects previously defined by
XSLPsetuserfuncobject or XSLPchguserfuncobject . As instance numbers are not normally
meaningful, this function should only be used to get the values of all Instance Function Objects in
order, for example, to free any allocated memory.

Related topics
XSLPgetfuncobject, XSLPsetfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 371

Library functions and the programming interface Reference

XSLPgetvar

Purpose
Retrieve information about an SLP variable

Synopsis
int XPRS_CC XSLPgetvar(XSLPprob prob, int ColIndex, int *DetRow,

double *InitStepBound, double *StepBound, double *Penalty,

double *Damp, double *InitValue, double *Value, int *TolSet,

int *History, int *Converged, int *VarType, int *Delta,

int *PenaltyDelta, int *UpdateRow, double *OldValue);

Arguments
Prob The current SLP problem.

ColIndex The index of the column.

DetRow Address of an integer to receive the index of the determining row. May be NULL if
not required.

InitStepBound Address of a double precision variable to receive the value of the initial step
bound of the variable. May be NULL if not required.

StepBound Address of a double precision variable to receive the value of the current step
bound of the variable. May be NULL if not required.

Penalty Address of a double precision variable to receive the value of the penalty delta
weighting of the variable. May be NULL if not required.

Damp Address of a double precision variable to receive the value of the current damping
factor of the variable. May be NULL if not required.

InitValue Address of a double precision variable to receive the value of the initial value of
the variable. May be NULL if not required.

Value Address of a double precision variable to receive the current activity of the
variable. May be NULL if not required.

TolSet Address of an integer to receive the index of the tolerance set of the variable. May
be NULL if not required.

History Address of an integer to receive the SLP history of the variable. May be NULL if not
required.

Converged Address of an integer to receive the convergence status of the variable as defined
in the "Convergence Criteria" section (The returned value will match the
numbering of the tolerances). May be NULL if not required.

VarType Address of an integer to receive the status settings (a bitmap defining the
existence of certain properties for this variable). The following bits are defined:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" column
Other bits are reserved for internal use. May be NULL if not required.

Delta Address of an integer to receive the index of the delta vector for the variable. May
be NULL if not required.

PenaltyDelta Address of an integer to receive the index of the first penalty delta vector for
the variable. The second penalty delta immediately follows the first. May be NULL

if not required.

UpdateRow Address of an integer to receive the index of the update row for the variable. May
be NULL if not required.

OldValue Address of a double precision variable to receive the value of the variable at the
previous SLP iteration. May be NULL if not required.

Fair Isaac Corporation Confidential and Proprietary Information 372

Library functions and the programming interface Reference

Example
The following example retrieves the current value, convergence history and status for column 3.

int Status, History;

double Value;

XSLPgetvar(Prob, 3, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,

NULL, &History, &Converged,

NULL, NULL, NULL, NULL, NULL);

Further information
If ColIndex refers to a column which is not an SLP variable, then all the return values will
indicate that there is no corresponding data.

DetRow will be set to -1 if there is no determining row.

Delta, PenaltyDelta and UpdateRow will be set to -1 if there is no corresponding item.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 373

Library functions and the programming interface Reference

XSLPgetversion

Purpose
Retrieve the Xpress-SLP major and minor version numbers

Synopsis
int XPRS_CC XSLPgetversion(int *Major, int *Minor);

Arguments
Major Address of integer to receive the major version number. May be NULL if not

required.

Minor Address of integer to receive the minor version number. May be NULL if not
required.

Example
The following example retrieves the major version number of Xpress-SLP

int Num;

XSLPgetversion(&Num, NULL);

Further information
XSLPgetversion can be called before XSLPinit.

Fair Isaac Corporation Confidential and Proprietary Information 374

Library functions and the programming interface Reference

XSLPgetxv

Purpose
Retrieve information about an extended variable array

Synopsis
int XPRS_CC XSLPgetxv(XSLPprob Prob, int nSLPXV, int *nXVitems);

Arguments
Prob The current SLP problem.

nSLPXV The index of the XV.

nXVitems Address of integer to receive the number of items in the XV.

Example
The following example retrieves the number of items in extended variable array number 3.

int nItems;

XSLPgetxv(Prob, 3, &nItems);

Further information
To obtain information on the individual items in an XV, use XSLPgetxvitemformula.

Related topics
XSLPaddxvs, XSLPchgxv, XSLPdelxvs, XSLPgetxvitemformula, XSLPloadxvs,

Fair Isaac Corporation Confidential and Proprietary Information 375

Library functions and the programming interface Reference

XSLPgetxvitemformula

Purpose
Retrieve information about an item in an extended variable array

Synopsis
int XPRS_CC XSLPgetxvitemformula(XSLPprob Prob, int nSLPXV, int nXVitem,

int Parsed, int *VarType, int *VarIndex, int *IntIndex,

double *Reserved1, double *Reserved2, int *Reserved3, int BufferSize,

int *TokenCount, int *Type, double *Value);

Synopsis
Deprecated version included for backward compatibility:

int XPRS_CC XSLPgetxvitem(XSLPprob Prob, int nSLPXV, int nXVitem,

int Parsed, int *VarType, int *VarIndex, int *IntIndex,

double *Reserved1, double *Reserved2, int *Reserved3, int *Type,

double *Value);

Arguments
Prob The current SLP problem.

nSLPXV index of the XV.

nXVitem index of the item in the XV. This always counts from 1.

Parsed integer indicating whether the formula of the item is to be retrieved in internal
unparsed format (Parsed=0) or internal parsed (reverse Polish) format (Parsed=1).

VarType Address of an integer holding the token type of the XV variable. This can be zero
(there is no variable), XSLP_VAR, XSLP_CVAR or XSLP_XV. May be NULL if not
required.

VarIndex Address of an integer holding the index within the VarType of the XV variable.
May be NULL if not required.

IntIndex Address of an integer holding the index within the Xpress-SLP string table of the
internal variable name. Zero means there is no internal name. May be NULL if not
required.

Reserved1 Reserved for future use.

Reserved2 Reserved for future use.

Reserved3 Reserved for future use.

BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.

TokenCount Number of tokens returned in Type and Value.

Type Integer array of token types to describe the value or formula for the XVitem. May
be NULL if not required.

Value Double array of values corresponding to Type, describing the value or formula for
the XVitem. May be NULL if not required.

Example
The following example retrieves the information for the second item in XV number 3.

int VarType, VarIndex, IntIndex, Type[10];

double Value[10];

char Buffer[60];

int TokenCount;

XSLPgetxvitemformula(Prob, 3, 2, 0,

&VarType, &VarIndex, &IntIndex,

NULL, NULL, NULL,

Fair Isaac Corporation Confidential and Proprietary Information 376

Library functions and the programming interface Reference

10, &TokenCount; Type, Value);

if (VarType)

printf("\nVariable type %d index %d", VarType, VarIndex);

if (IntIndex) {

XSLPgetstring(Prob, IntIndex, Buffer);

printf("\nName %s",Buffer);

}

if (!VarType)

for (i=0;Type[i] != XSLP_EOF;i++) {

printf("\nType=%d Value=%lg", Type[i], Value[i]);

}

The formula is retrieved in unparsed format. It is assumed that there will never be more than 10
tokens in the formula, including the terminator.

Further information
If VarType is zero (meaning that the XVitem is not a variable), then VarIndex is not used.

The formula in Type and Value will be terminated by an XSLP_EOF token. Type and Value must
be large enough to hold the formula.

XSLPgetxvitem is deprecated and included for compatibility reasons. XSLPgetxvitem relies on the
user making sure that the token arrays Type and Value are large enough.

Related topics
XSLPaddxvs, XSLPdelxvs, XSLPgetxvitemformula, XSLPloadxvs

Fair Isaac Corporation Confidential and Proprietary Information 377

Library functions and the programming interface Reference

XSLPglobal

Purpose
Initiate the Xpress-SLP mixed integer SLP (MISLP) algorithm

Synopsis
int XPRS_CC XSLPglobal(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example optimizes the problem and then finds the integer solution.

XSLPmaxim(Prob,"");

XSLPglobal(Prob);

Further information
The current Xpress-SLP mixed integer problem will be maximized or minimized using the
algorithm defined by the control variable XSLP_MIPALGORITHM.

It is recommended that XSLPminim or XSLPmaxim is used first to obtain a converged solution to
the relaxed problem. If this is not done, ensure that XSLP_OBJSENSE is set appropriately.

See the chapter on Mixed Integer Non-Linear Programming for more information about the
Xpress-SLP MISLP algorithms.

Related topics
XSLPmaxim, XSLPminim, XSLP_MIPALGORITHM, XSLP_OBJSENSE

Fair Isaac Corporation Confidential and Proprietary Information 378

Library functions and the programming interface Reference

XSLPinit

Purpose
Initializes the Xpress-SLP system

Synopsis
int XPRS_CC XSLPinit();

Argument
none

Example
The following example initiates the Xpress-SLP system and prints the banner.

char Buffer[256];

XPRSinit();

XSLPinit();

XSLPgetbanner(Buffer);

XPRSinit initializes the Xpress optimizer; XSLPinit then initializes the SLP module, so that the
banner contains information from both systems.

Further information
XSLPinit must be the first call to the Xpress-SLP system except for XSLPgetbanner and
XSLPgetversion. It initializes any global parts of the system if required. The call to XSLPinit

must be preceded by a call to XPRSinit to initialize the Optimizer Library part of the system first.

Related topics
XSLPfree

Fair Isaac Corporation Confidential and Proprietary Information 379

Library functions and the programming interface Reference

XSLPinterrupt

Purpose
Interrupts the current SLP optimization

Synopsis
int XPRS_CC XSLPinterrupt(int Reason);

Arguments
Prob The current SLP problem.

Reason Interrupt code to be propagated.

Further information
Provides functionality to stop the SLP optimization process from inside a callback. The following
constants are provided for the paramter value:

Value 1 XSLP_STOP_TIMELIMIT

Value 2 XSLP_STOP_CTRLC

Value 3 XSLP_STOP_NODELIMIT

Value 4 XSLP_STOP_ITERLIMIT

Value 5 XSLP_STOP_MIPGAP

Value 6 XSLP_STOP_SOLLIMIT

Value 9 XSLP_STOP_USER

Fair Isaac Corporation Confidential and Proprietary Information 380

Library functions and the programming interface Reference

XSLPitemname

Purpose
Retrieves the name of an Xpress-SLP entity or the value of a function token as a character string.

Synopsis
int XPRS_CC XSLPitemname(XSLPprob Prob, int Type, double Value,

char *Buffer);

Arguments
Prob The current SLP problem.

Type Integer holding the type of Xpress-SLP entity. This can be any one of the token
types described in the section on Formula Parsing.

Value Double precision value holding the index or value of the token. The use and
meaning of the value is as described in the section on Formula Parsing.

Buffer Character buffer to hold the result, which will be terminated with a null character.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed
form:

int n, Type[10];

double Value[10];

char Buffer[60];

int TokenCount;

XSLPgetcoefformula(Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);

printf("\n");

for (n=0;Type[n] != XSLP_EOF;n++) {

XSLPitemname(Prob, Type[n], Value[n], Buffer);

printf(" %s", Buffer);

}

Further information
If a name has not been provided for an Xpress-SLP entity, then an internally-generated name will
be used.

Numerical values will be formatted as fixed-point or floating-point depending on their size.

Related topics
XSLPformatvalue

Fair Isaac Corporation Confidential and Proprietary Information 381

Library functions and the programming interface Reference

XSLPloadcoefs

Purpose
Load non-linear coefficients into the SLP problem

Synopsis
int XPRS_CC XSLPloadcoefs(XSLPprob Prob, int nSLPCoef, int *RowIndex,

int *ColIndex, double *Factor, int *FormulaStart, int Parsed,

int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPCoef Number of non-linear coefficients to be loaded.

RowIndex Integer array holding index of row for the coefficient.

ColIndex Integer array holding index of column for the coefficient.

Factor Double array holding factor by which formula is scaled. If this is NULL, then a value
of 1.0 will be used.

FormulaStart Integer array of length nSLPCoef+1 holding the start position in the arrays
Type and Value of the formula for the coefficients. FormulaStart[nSLPCoef]

should be set to the next position after the end of the last formula.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the formula for each coefficient.

Value Array of values corresponding to the types in Type.

Example
Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The
following example loads coefficients representing:
Col2 * Col3 + Col6 * Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Type[8];

int n, nSLPCoef;

double Value[8];

RowIndex[0] = 1; ColIndex[0] = 2;

RowIndex[1] = 1; ColIndex[1] = 6;

RowIndex[2] = 3; ColIndex[2] = 2;

n = nSLPCoef = 0;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 3;

Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;

Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 382

Library functions and the programming interface Reference

FormulaStart[nSLPCoef] = n;

XSLPloadcoefs(Prob, nSLPCoef, RowIndex, ColIndex,

NULL, FormulaStart, 1, Type, Value);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 * Col3.

The second coefficient in Row1 is in Col6 and has the formula Col2 * Col2 so it represents Col6

* Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 *

rather than the unparsed form
Col2 * Col2

The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 * Col2.

Further information
The jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress-SLP can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be
calculated. Formula is made up of a list of tokens in Type and Value starting at
FormulaStart[j]. The tokens follow the rules for parsed or unparsed formulae as indicated by
the setting of Parsed. The formula must be terminated with an XSLP_EOF token. If several
coefficients share the same formula, they can have the same value in FormulaStart. For possible
token types and values see the chapter on "Formula Parsing".

The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 383

Library functions and the programming interface Reference

XSLPloadcvars

Purpose
Load character variables (CVs) into the SLP problem

Synopsis
int XPRS_CC XSLPloadcvars(XSLPprob Prob, int nSLPCVar, char *cValue);

Arguments
Prob The current SLP problem.

nSLPCVar Number of character variables to be loaded.

cValue Character buffer holding the values of the character variables; each one must be
terminated by a null character.

Example
The following example loads three character variables into the problem, which contain "The first
string", "String 2" and "A third set of characters" respectively

char *cValue="The first string\0"

"String 2\0"

"A third set of characters";

XSLPloadcvars(Prob,3,cValue);

Further information
The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPaddcvars, XSLPchgcvar, XSLPdelcvars, XSLPgetcvar

Fair Isaac Corporation Confidential and Proprietary Information 384

Library functions and the programming interface Reference

XSLPloaddcs

Purpose
Load delayed constraints (DCs) into the SLP problem

Synopsis
int XPRS_CC XSLPloaddcs(XSLPprob Prob, int nSLPDC, int *RowIndex,

int *Delay, int *DCStart, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPDC Number of DCs to be loaded.

RowIndex Integer array of the row indices of the DCs.

Delay Integer array of length nSLPDC holding the delay after initiation for each DC (see
below).

DCStart Integer array of length nSLPDC holding the start position in the arrays Type and
Value of the formula for each DC. The DCStart entry should be negative for any
DC which does not have a formula to determine the DC initiation.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the description and formula for each item.

Value Array of values corresponding to the types in Type.

Example
The following example loads rows 3 and 5 as the list of delayed constraints. Row 3 is delayed
until 2 SLP iterations after column 12 becomes nonzero; row 5 is delayed for 10 SLP iterations
from the start (that is, until SLP iteration 11).

int RowIndex[2], Delay[2], DCStart[2], Type[2];

double Value[2];

RowIndex[0] = 3; Delay[0] = 2; DCStart[0] = 0;

Type[0] = XSLP_COL; Value[0] = 12;

Type[1] = XSLP_EOF;

RowIndex[1] = 5; Delay[1] = 10; DCStart[1] = -1;

XSLPloaddcs(Prob, 2, RowIndex, Delay, DCStart, 1, Type, Value);

Note that the entry for row 5 has a negative DCStart because there is no specific initiation
formula (the countdown is started when the SLP optimization starts).

Further information
The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

If a formula is provided, then the DC will be initiated when the formula first becomes nonzero. If
no formula (or an empty formula) is given, the DC is initiated immediately.

The value of Delay is used to determine when a DC becomes active. If the value is zero then the
value of XSLP_DCLIMIT is used instead. A value of 1 means that the DC becomes active
immediately it is initiated; a value of 2 means that the DC will become active after 1 more

Fair Isaac Corporation Confidential and Proprietary Information 385

Library functions and the programming interface Reference

iteration and so on. DCs are normally checked at the end of each SLP iteration, so it is possible
that a solution will be converged but activation of additional DCs will force optimization to
continue. A negative value may be given for Delay, in which case the absolute value is used but
the DC is not checked at the end of the optimization.

Related topics
XSLPadddcs, XSLPchgdc, XSLPdeldcs, XSLPgetdcformula

Fair Isaac Corporation Confidential and Proprietary Information 386

Library functions and the programming interface Reference

XSLPloaddfs

Purpose
Load a set of distribution factors

Synopsis
int XSLP_CC XSLPloaddfs(XSLPprob Prob, int nDF, const int *ColIndex,

const int *RowIndex, const double *Value)

Arguments
Prob The current SLP problem.

nDF The number of distribution factors.

ColIndex Array of indices of columns whose distribution factor is to be changed.

RowIndex Array of indices of the rows where each distribution factor applies.

Value Array of double precision variables holding the new values of the distribution
factors.

Example
The following example loads distribution factors as follows:
column 282 in row 134 = 0.1
column 282 in row 136 = 0.15
column 285 in row 133 = 1.0.
Any other first-order derivative placeholders are set to XSLP_DELTA_Z.

int ColIndex[3], RowIndex[3];

double Value[3];

ColIndex[0] = 282; RowIndex[0] = 134; Value[0] = 0.1;

ColIndex[1] = 282; RowIndex[1] = 136; Value[1] = 0.15;

ColIndex[2] = 285; RowIndex[2] = 133; Value[2] = 1.0;

XSLPloaddfs(prob,3,ColIndex,RowIndex,Value);

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta
vector in the row. Distribution factors are used in conventional recursion models, and are
essentially normalized first-order derivatives. Xpress-SLP can accept distribution factors instead of
initial values, provided that the values of the variables involved can all be calculated after
optimization using determining rows, or by a callback.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPadddfs, XSLPchgdf, XSLPgetdf

Fair Isaac Corporation Confidential and Proprietary Information 387

Library functions and the programming interface Reference

XSLPloadivfs

Purpose
Load a set of initial value formulae

Synopsis
int XSLP_CC XSLPloadivfs(XSLPprob Prob, int nIVF, const int *ColIndex,

const int *IVFStart, int Parsed, const int *Type,

const double *Value)

Arguments
Prob The current SLP problem.

nIVF The number of initial value formulae.

ColIndex Array of indices of columns whose initial value formulae are to be loaded.

IVStart Array of start positions in the Type and Value arrays where the formula for a the
corresponding column starts.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types for each formula.

Value Array of values corresponding to the types in Type.

Example
The following example loads initial value formulae for the following:
column 282 = column 281 * 2
column 283 = column 281 * 2
column 285 = column 282 + 101
Any existing initial value formulae (for any variables) will be deleted.

int ColIndex[3], IVStart[3];

int Type[20];

double Value[20];

int n;

n = 0

ColIndex[0] = 282; IVStart[0] = n;

Type[n] = XSLP_COL; Value[n++] = 281;

Type[n] = XSLP_CON; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;

Type[n] = XSLP_EOF; Value[n++] = 0;

/* Use the same formula for column 283 */

ColIndex[1] = 283; IVStart[1] = IVStart[0];

ColIndex[2] = 285; IVStart[2] = n;

Type[n] = XSLP_COL; Value[n++] = 282;

Type[n] = XSLP_CON; Value[n++] = 101;

Type[n] = XSLP_OP; Value[n++] = XSLP_PLUS;

Type[n] = XSLP_EOF; Value[n++] = 0;

XSLPloadivfs(prob,3,ColIndex,IVStart,1,Type,Value);

Further information
For more details on initial value formulae see the "IV" part of the SLPDATA section in Extended
MPS format.

A formula which starts with XSLP_EOF is empty and will not create an initial value formula.

Fair Isaac Corporation Confidential and Proprietary Information 388

Library functions and the programming interface Reference

The token type and value arrays Type and Value follow the rules for parsed or unparsed
formulae. For possible token types and values see the chapter on "Formula Parsing". Each
formula must be terminated by an XSLP_EOF token.

The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPaddivfs, XSLPchgivf, XSLPdelivf, XSLPgetivformula

Fair Isaac Corporation Confidential and Proprietary Information 389

Library functions and the programming interface Reference

XSLPloadtolsets

Purpose
Load sets of standard tolerance values into an SLP problem

Synopsis
int XPRS_CC XSLPloadtolsets(XSLPprob Prob, int nSLPTol, double *SLPTol);

Arguments
Prob The current SLP problem.

nSLPTol The number of tolerance sets to be loaded.

SLPTol Double array of (nSLPTol * 9) items containing the 9 tolerance values for each
set in order.

Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances;
the second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for
absolute tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double SLPTol[18];

for (i=0;i<9;i++) SLPTol[i] = 0.005;

SLPTol[9] = 0;

for (i=10;i<18;i=i+2) SLPTol[i] = 0.01;

for (i=11;i<18;i=i+2) SLPTol[i] = 0.001;

XSLPloadtolsets(Prob, 2, SLPTol);

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC

1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA

2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA

3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM

4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM

5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI

6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI

7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS

8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays,
while the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used
for a given SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable.

If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a
zero tolerance, use the XSLPchgtolset function and set the Status variable appropriately.

See the section "Convergence Criteria" for a fuller description of tolerances and their uses.

The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPchgtolset, XSLPgettolset

Fair Isaac Corporation Confidential and Proprietary Information 390

Library functions and the programming interface Reference

XSLPloaduserfuncs

Purpose
Load user function definitions into an SLP problem.

Synopsis
int XPRS_CC XSLPloaduserfuncs(XSLPprob Prob, int nSLPUserFunc, int *Type,

double *Value);

Arguments
Prob The current SLP problem.

nSLPUserFunc Number of SLP user functions to be loaded.

Type Integer array of token types.

Value Double array of token values corresponding to the types in Type.

Example
Suppose we have the following user functions written in C in a library lib01:
Func1 which takes two arguments and returns two values
Func2 which takes one argument and returns the value and (optionally) the derivative of the
function. Although the function is referred to as Func2 in the problem, we are actually using the
function NewFunc2 from the library.

The following example loads the two functions into the SLP problem:

int ExtName, LibName, Type[10];

double Value[10];

XSLPsetstring(Prob,&LibName,"lib01");

Type[0] = XSLP_UFARGTYPE; Value[0] = (double) 023;

Type[1] = XSLP_UFEXETYPE; Value[1] = (double) 1;

Type[2] = XSLP_STRING; Value[2] = 0;

Type[3] = XSLP_STRING; Value[3] = LibName;

Type[4] = XSLP_EOF;

XSLPsetstring(Prob,&ExtName,"NewFunc2");

Type[5] = XSLP_UFARGTYPE; Value[5] = (double) 010023;

Type[6] = XSLP_UFEXETYPE; Value[6] = (double) 1;

Type[7] = XSLP_STRING; Value[7] = ExtName;

Type[8] = XSLP_STRING; Value[8] = LibName;

Type[9] = XSLP_EOF;

XSLPloaduserfuncs(Prob,2,Type,Value);

XSLPaddnames(Prob,XSLP_USERFUNCNAMES,"Func1\0Func2",

1,2);

Note that the values for XSLP_UFARGTYPE are in octal

XSLP_UFEXETYPE describes the functions as taking a double array of values and an integer array
of function information.

The remaining tokens hold the values for the external name and the three optional parameters
(file, item and template). Func01 has the same internal name (in the problem) and external
name (in the library), so the library name is not required. A zero string index is used as a place
holder, so that the next item is correctly recognized as the library name. Func2 has a different
external name, so this appears as the first string token, followed by the library name. As neither
function needs the item or template names, these have been omitted.

The number of user functions already in the problem is in the integer problem attribute
XSLP_UFS. The new internal names are added using XSLPaddnames.

Fair Isaac Corporation Confidential and Proprietary Information 391

Library functions and the programming interface Reference

Further information
The token type and value arrays Type and Value are formatted in a similar way to the unparsed
internal format function stack. For possible token types and values see the chapter on "Formula
Parsing". Each formula must be terminated by an XSLP_EOF token.

The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPadduserfuncs, XSLPchguserfunc, XSLPgetuserfunc

Fair Isaac Corporation Confidential and Proprietary Information 392

Library functions and the programming interface Reference

XSLPloadvars

Purpose
Load SLP variables defined as matrix columns into an SLP problem

Synopsis
int XPRS_CC XSLPloadvars(XSLPprob Prob, int nSLPVar, int *ColIndex,

int *VarType, int *DetRow, int *SeqNum, int *TolIndex,

double *InitValue, double *StepBound);

Arguments
Prob The current SLP problem.

nSLPVar The number of SLP variables to be loaded.

ColIndex Integer array holding the index of the matrix column corresponding to each SLP
variable.

VarType Bitmap giving information about the SLP variable as follows:
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a
negative value means there is no determining row)
May be NULL if not required.

SeqNum Integer array holding the index sequence number for cascading for each SLP
variable (a zero value means there is no pre-defined order for this variable)
May be NULL if not required.

TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero
value means the default tolerances are used)
May be NULL if not required.

InitValue Double array holding the initial value for each SLP variable (use the VarType bit
map to indicate if a value is being provided)
May be NULL if not required.

StepBound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have
step bounds applied, and will almost always be regarded as converged.
May be NULL if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23
and 25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no
specific initial value

int ColIndex[2], VarType[2];

double InitValue[2];

ColIndex[0] = 23; VarType[0] = 0;

ColIndex[1] = 25; Vartype[1] = 2; InitValue[1] = 1.42;

XSLPloadvars(Prob, 2, ColIndex, VarType, NULL, NULL,

NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType

is set for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 393

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used
at all, and so have been passed to the function as NULL.

Further information
The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 394

Library functions and the programming interface Reference

XSLPloadxvs

Purpose
Load a set of extended variable arrays (XVs) into an SLP problem

Synopsis
int XPRS_CC XSLPloadxvs(XSLPprob Prob, int nSLPXV, int *XVStart,

int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.

nSLPXV Number of XVs to be loaded.

XVStart Integer array of length nSLPXV+1 holding the start position in the arrays Type and
Value of the formula or value data for the XVs. XVStart[nSLPXV] should be set
to one after the end of the last XV.

Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).

Type Array of token types providing the description and formula for each XV item.

Value Array of values corresponding to the types in Type.

Example
The following example loads two XVs into the current problem. The first XV contains two items:
columns 3 and 6, named "Temperature" and "Pressure" respectively. The second XV has four
items: column 1, the constant 1.42, the square of column 3, and column 2.

int n, CType, TempIndex, PressIndex, XVStart[3], Type[10];

double Value[10];

XSLPgetintcontrol(Prob,XSLP_CTYPE,CType);

n = 0;

XSLPsetstring(Prob,&TempIndex,"Temperature");

XSLPsetstring(Prob,&PressIndex,"Pressure");

XVStart[0] = n;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 3 + CType;

Type[n] = XSLP_XVINTINDEX; Value[n++] = TempIndex;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 6 + CType;

Type[n] = XSLP_XVINTINDEX; Value[n++] = TempIndex;

Type[n++] = XSLP_EOF;

XVStart[1] = n;

Type[n] = XSLP_XVVARTYPE; Value[n++] = XSLP_VAR;

Type[n] = XSLP_XVVARINDEX; Value[n++] = 1 + CType;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_CON; Value[n++] = 1.42;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_VAR; Value[n++] = 3 + CType;

Type[n] = XSLP_CON; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_EXPONENT;

Type[n++] = XSLP_EOF;

Type[n] = XSLP_VAR; Value[n++] = 2 + CType;

Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 395

Library functions and the programming interface Reference

XVStart[2] = n;

XSLPloadxvs(Prob, 2, XVStart, 1, Type, Value);

When a variable is used directly as an item in an XV, it is described by two tokens:
XSLP_XVVARTYPE and XSLP_VARINDEX. When used in a formula, it appears as XSLP_VAR or
XSLP_COL.

Note that XSLP_COL cannot be used in an XSLP_XVVARINDEX; instead, use the setting of
XPRS_CTYPE to convert it to a value which counts from 1, and use XSLP_VAR.

Because Parsed is set to 1, the formulae are written in internal parsed (reverse Polish) form.

Further information
The token type and value arrays Type and Value are formatted in a similar way to the unparsed
internal format function stack. For possible token types and values see the chapter on "Formula
Parsing". Each formula must be terminated by an XSLP_EOF token.

The XSLPload... functions load items into the SLP problem. Any existing items of the same
type are deleted first. The corresponding XSLPadd... functions add or replace items leaving
other items of the same type unchanged.

Related topics
XSLPaddxvs, XSLPchgxv, XSLPchgxvitem, XSLPdelxvs, XSLPgetxv

Fair Isaac Corporation Confidential and Proprietary Information 396

Library functions and the programming interface Reference

XSLPmaxim

Purpose
Maximize an SLP problem

Synopsis
int XPRS_CC XSLPmaxim(XSLPprob Prob, char *Flags);

Arguments
Prob The current SLP problem.

Flags These have the same meaning as for XPRSmaxim.

Example
The following example reads an SLP problem from file and then maximizes it using the primal
simplex optimizer.

XSLPreadprob("Matrix","");

XSLPmaxim(Prob,"p");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the
linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable
values) used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
If XSLPconstruct has not already been called, it will be called first, using the augmentation
defined by the control variable XSLP_AUGMENTATION. If determining rows are provided, then
cascading will be invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPminim, XSLPopt, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 397

Library functions and the programming interface Reference

XSLPminim

Purpose
Minimize an SLP problem

Synopsis
int XPRS_CC XSLPminim(XSLPprob Prob, char *Flags);

Arguments
Prob The current SLP problem.

Flags These have the same meaning as for XPRSminim.

Example
The following example reads an SLP problem from file and then minimizes it using the Newton
barrier optimizer.

XSLPreadprob("Matrix","");

XSLPminim(Prob,"b");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the
linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable
values) used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
If XSLPconstruct has not already been called, it will be called first, using the augmentation
defined by the control variable XSLP_AUGMENTATION. If determining rows are provided, then
cascading will be invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPopt, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 398

Library functions and the programming interface Reference

XSLPmsaddcustompreset

Purpose
A combined version of XSLPmsaddjob and XSLPmsaddpreset. The preset described is loaded,
topped up with the specific settings supplied

Synopsis
int XSLP_CC XSLPmsaddjob(XSLPprob Prob, const char *sDescription,

const int Preset, const int Count, const int nIVs, const int *IVCols,

const double *IVValues, const int nIntControls,

const int *IntControlIndices, const int *IntControlValues,

const int nDblControls, const int *DblControlIndices,

const double *DblControlValues, void *pJobObject);

Arguments
Prob The current SLP problem.

sDescription Text description of the job. Used for messaging, may be NULL if not required.

sDescription Text description of the preset. Used for messaging, may be NULL if not required.

Preset Which preset to load.

nIVs Number of initial values to set.

IVCols Indices of the variables for which to set an initial value. May be NULL if nIVs is zero.

IVValues Initial values for the variables for which to set an initial value. May be NULL if nIVs
is zero.

nIntControls Number of integer controls to set.

IntControlIndices The indices of the integer controls to be set. May be NULL if nIntControls
is zero.

IntControlValues The values of the integer controls to be set. May be NULL if nIntControls is
zero.

nDblControls Number of double controls to set.

DblControlIndices The indices of the double controls to be set. May be NULL if nDblControls
is zero.

DblControlValues The values of the double controls to be set. May be NULL if nDblControls is
zero.

pJobObject Job specific user context pointer to passed to the multistart callbacks.

Further information
This function allows for repeatedly calling the same multistart preset (e.g. initial values) using
different basic controls.

Related topics
XSLPmsaddpreset, XSLPmsaddjob, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 399

Library functions and the programming interface Reference

XSLPmsaddjob

Purpose
Adds a multistart job to the multistart pool

Synopsis
int XSLP_CC XSLPmsaddjob(XSLPprob Prob, const char *sDescription,

const int nIVs, const int *IVCols, const double *IVValues,

const int nIntControls, const int *IntControlIndices,

const int *IntControlValues, const int nDblControls,

const int *DblControlIndices, const double *DblControlValues,

void *pJobObject);

Arguments
Prob The current SLP problem.

sDescription Text description of the job. Used for messaging, may be NULL if not required.

nIVs Number of initial values to set.

IVCols Indices of the variables for which to set an initial value. May be NULL if nIVs is zero.

IVValues Initial values for the variables for which to set an initial value. May be NULL if nIVs
is zero.

nIntControls Number of integer controls to set.

IntControlIndices The indices of the integer controls to be set. May be NULL if nIntControls
is zero.

IntControlValues The values of the integer controls to be set. May be NULL if nIntControls is
zero.

nDblControls Number of double controls to set.

DblControlIndices The indices of the double controls to be set. May be NULL if nDblControls
is zero.

DblControlValues The values of the double controls to be set. May be NULL if nDblControls is
zero.

pJobObject Job specific user context pointer to passed to the multistart callbacks.

Further information
Adds a mutistart job, applying the specified initial point and option combinations on top of the
base problem, i.e. the options and initial values specified to the function is applied on top of the
existing settigns.

This function allows for loading empty template jobs, that can then be identified using the
pJobObject variable.

Related topics
XSLPmsaddpreset, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 400

Library functions and the programming interface Reference

XSLPmsaddpreset

Purpose
Loads a preset of jobs into the multistart job pool.

Synopsis
int XSLP_CC XSLPmsaddpreset(XSLPprob Prob, const char *sDescription,

const int Preset, const int Count, void *pJobObject);

Arguments
Prob The current SLP problem.

sDescription Text description of the preset. Used for messaging, may be NULL if not required.

Preset Which preset to load.

Count Maximum number of jobs to be added to the multistart pool.

pJobObject Job specific user context pointer to passed to the multistart callbacks.

Further information
The following presets are defined:

XSLP_MSSET_INITIALVALUES: generate Count number of random base points.

XSLP_MSPRESET_SOLVERS: load all solvers.

XSLP_MSPRESET_SLPCONTROLSBASIC: load the most typical SLP tuning settings. A maximum of
Count jobs are loaded.

XSLP_MSPRESET_SLPCONROLSEXTENSIVE: load a comprehensive set of SLP tuning settings. A
maximum of Count jobs are loaded.

XSLP_MSPRESET_KNITROBASIC: load the most typical Knitro tuning settings. A maximum of
Count jobs are loaded.

XSLP_MSPRESET_KNITROEXTENSIVE: load a comprehensive set of Knitro tuning settings. A
maximum of Count jobs are loaded.

XSLP_MSSET_INITIALFILTERED: generate Count number of random base points, filtered by a
merit function centred on initial feasibility.

XSLP_MSSET_INITIALDYNAMIC: generate Count number of random base points, that are then
refined and combined further by any solution found during the search.

See XSLP_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
XSLPmsaddjob, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 401

Library functions and the programming interface Reference

XSLPmsclear

Purpose
Removes all scheduled jobs from the multistart job pool

Synopsis
int XSLP_CC XSLPmsclear(XSLPprob Prob);

Argument
Prob The current SLP problem.

Related topics
XSLPmsaddjob, XSLPmsaddpreset, XSLPmsaddcustompreset

Fair Isaac Corporation Confidential and Proprietary Information 402

Library functions and the programming interface Reference

XSLPopt

Purpose
Maximize or minimize an SLP problem

Synopsis
int XPRS_CC XSLPopt(XSLPprob Prob, char *Flags);

Arguments
Prob The current SLP problem.

Flags These have the same meaning as for XPRSmaxim and XPRSminim.

Example
The following example reads an SLP problem from file and then maximizes it using the primal
simplex optimizer.

XSLPreadprob("Matrix","");

XSLPsetdblcontrol(Prob, XSLP_OBJSENSE, -1);

XSLPopt(Prob,"p");

Related controls
Double

XSLP_OBJSENSE Determines the direction of optimization: +1 is for minimization, -1 is for
maximization.

Integer
XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the
linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable
values) used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
XSLPopt is equivalent to XSLPmaxim (if XSLP_OBJSENSE = -1) or XSLPminim (if XSLP_OBJSENSE

= +1).

If XSLPconstruct has not already been called, it will be called first, using the augmentation
defined by the control variable XSLP_AUGMENTATION. If determining rows are provided, then
cascading will be invoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPminim, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 403

Library functions and the programming interface Reference

XSLPparsecformula

Purpose
Parse a formula written as a character string into internal parsed (reverse Polish) format

Synopsis
int XPRS_CC XSLPparsecformula(XSLPprob Prob, char *Formula, int *nToken,

int *Type, double *Value);

Arguments
Prob The current SLP problem.

Formula Character string containing the formula, written in the same free-format style as
used in formulae in Extended MPS format, with spaces separating tokens.

nToken Address of an integer to receive the number of tokens in the parsed formula (not
counting the terminating XSLP_EOF token). May be NULL if not required.

Type Array of token types providing the parsed formula.

Value Array of values corresponding to the types in Type.

Example
Assuming that x and y are already defined as columns, the following example converts the
formula "sin(x+y)" into internal parsed format, and then writes it out as a sequence of tokens.

int n, Type[20];

double Value[20];

XSLPparsecformula(Prob, "sin (x + y)", NULL, Type, Value);

printf("\n");

for (n=0;Type[n] != XSLP_EOF;n++) {

XSLPitemname(Prob, Type[n], Value[n], Buffer);

printf(" %s", Buffer);

}

Further information
Tokens are identified by name, so any columns or user functions which appear in the formula
must already have been defined. Unidentified tokens will appear as type XSLP_UNKNOWN.

Related topics
XSLPparseformula, XSLPpreparseformula

Fair Isaac Corporation Confidential and Proprietary Information 404

Library functions and the programming interface Reference

XSLPparseformula

Purpose
Parse a formula written as an unparsed array of tokens into internal parsed (reverse Polish)
format

Synopsis
int XPRS_CC XSLPparseformula(XSLPprob Prob, int *inType, double *inValue,

int *nToken, int *Type, double *Value);

Arguments
Prob The current SLP problem.

inType Array of token types providing the unparsed formula.

inValue Array of values corresponding to the types in inType.

nToken Address of an integer to receive the number of tokens in the parsed formula (not
counting the terminating XSLP_EOF token). May be NULL if not required.

Type Array of token types providing the parsed formula.

Value Array of values corresponding to the types in Type.

Example
Assuming that x and y are already defined as columns with index iX and iY respectively, the
following example converts the formula "sin(x+y)" into internal parsed format, and then writes it
out as a sequence of tokens.

int n, iSin, iX, iY;

int inType[7], Type[20];

double inValue[7], Value[20];

n = 0;

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"SIN", &iSin);

Type[n] = XSLP_IFUN; Value[n++] = iSin;

Type[n++] = XSLP_LB;

Type[n] = XSLP_COL; Value[n++] = iX;

Type[n] = XSLP_OP; Value[n++] = XSLP_PLUS;

Type[n] = XSLP_COL; Value[n++] = iY;

Type[n++] = XSLP_RB;

Type[n++] = XSLP_EOF;

XSLPparseformula(Prob, inType, inValue,

NULL, Type, Value);

printf("\n");

for (n=0;Type[n] != XSLP_EOF;n++) {

XSLPitemname(Prob, Type[n], Value[n], Buffer);

printf(" %s", Buffer);

}

Further information
For possible token types and values see the chapter on "Formula Parsing".

Related topics
XSLPparsecformula, XSLPpreparseformula

Fair Isaac Corporation Confidential and Proprietary Information 405

Library functions and the programming interface Reference

XSLPpostsolve

Purpose
Restores the problem to its pre-solve state

Synopsis
int XPRS_CC XSLPpostsolve(XSLPprob Prob);

Argument
Prob The current SLP problem.

Related controls
Integer

XSLP_POSTSOLVE Determines if postsolve is applied automatically.

Further information
If Xpress-SLP was used to solve the problem, postsolve will unconstruct the problem before
postsolving (including any reformulation that might have been applied).

Related topics
XSLP_POSTSOLVE

Fair Isaac Corporation Confidential and Proprietary Information 406

Library functions and the programming interface Reference

XSLPpreparseformula

Purpose
Perform an initial scan of a formula written as a character string, identifying the operators but
not attempting to identify the types of the individual tokens

Synopsis
int XPRS_CC XSLPpreparseformula(XSLPprob Prob, char *Formula, int *nToken,

int *Type, double *Value, char *StringTable, int *SizeTable);

Arguments
Prob The current SLP problem.

Formula Character string containing the formula, written in the same free-format style as
formulae in Extended MPS format, with spaces separating tokens.

nToken Address of an integer to receive the number of tokens in the parsed formula (not
counting the terminating XSLP_EOF token). May be NULL if not required.

Type Array of token types providing the parsed formula.

Value Array of values corresponding to the types in Type.

StringTable Character buffer to receive the names of the unidentified tokens.

SizeTable Address of an integer variable to hold the size of StringTable actually used. May
be NULL if not required.

Example
The following example converts the formula "sin(x+y)" into internal parsed format without
trying to identify the tokens apart from operands and numbers, and then writes it out as a
sequence of tokens.

int n, Type[20];

double Value[20];

char Strings[200];

XSLPpreparseformula(Prob, "sin (x + y)", NULL,

Type, Value, Strings, NULL);

printf("\n");

for (n=0;Type[n] != XSLP_EOF;n++) {

if (Type[n] == XSLP_UNKNOWN)

printf("\n? %s",Strings[(int)Value[n]]);

else {

XSLPitemname(Prob, Type[n], Value[n], Buffer);

printf(" %s", Buffer);

}

}

Further information
Only operands and numbers are identified by XSLPpreparseformula. All other operands,
including names of variables, functions and XVs, are left as strings of type XSLP_UNKNOWN. The
Value of such a type is the index in StringTable of the start of the token name.

The parsed formula can be converted into a calculable formula by replacing the XSLP_UNKNOWN

tokens by the correct types and values.

Related topics
XSLPparsecformula, XSLPparseformula

Fair Isaac Corporation Confidential and Proprietary Information 407

Library functions and the programming interface Reference

XSLPpresolve

Purpose
Perform a nonlinear presolve on the problem

Synopsis
int XPRS_CC XSLPpresolve(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example reads a problem from file, sets the presolve control, presolves the
problem and then maximizes it.

XSLPreadprob(Prob, "Matrix", "");

XSLPsetintcontrol(Prob, XSLP_PRESOLVE, 1);

XSLPpresolve(Prob);

XSLPmaximize(Prob,"");

Related controls
Integer

XSLP_PRESOLVE Bitmap containing nonlinear presolve options.

Further information
If bit 1 of XSLP_PRESOLVE is not set, no nonlinear presolve will be performed. Otherwise, the
presolve will be performed in accordance with the bit settings.. XSLPpresolve is called
automatically by XSLPconstruct, so there is no need to call it explicitly unless there is a
requirement to interrupt the process between presolve and optimization. XSLPpresolve must
be called before XSLPconstruct or any of the SLP optimization procedures..

Related topics
XSLP_PRESOLVE

Fair Isaac Corporation Confidential and Proprietary Information 408

Library functions and the programming interface Reference

XSLPprintmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis
int XPRS_CC XSLPuprintmemory(XSLPprob prob);

Argument
Prob The current SLP problem.

Example
The following example loads a problem from file and then prints the dimensions of the arrays.

XSLPreadprob(Prob, "Matrix1", "");

XSLPuprintmemory(Prob);

The output is similar to the following:

Arrays and dimensions:

Array Item Used Max Allocated Memory

Size Items Items Memory Control

MemList 28 103 129 4K

String 1 8779 13107 13K XSLP_MEM_STRING

Xv 16 2 1000 16K XSLP_MEM_XV

Xvitem 48 11 1000 47K XSLP_MEM_XVITEM

....

Further information
XSLPuprintmemory lists the current sizes and amounts used of the variable arrays in the current
problem. For each array, the size of each item, the number used and the number allocated are
shown, together with the size of memory allocated and, where appropriate, the name of the
memory control variable to set the array size. Loading and execution of some problems can be
speeded up by setting the memory controls immediately after the problem is created. If an array
has to be moved to re-allocate it with a larger size, there may be insufficient memory to hold
both the old and new versions; pre-setting the memory controls reduces the number of such
re-allocations which take place and may allow larger problems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 409

Library functions and the programming interface Reference

XSLPprintevalinfo

Purpose
Print a summary of any evaluation errors that may have occurred during solving a problem

Synopsis
int XPRS_CC XSLPprintevalinfo(XSLPprob prob);

Argument
Prob The current SLP problem.

Related topics
XSLPsetcbcoefevalerror

Fair Isaac Corporation Confidential and Proprietary Information 410

Library functions and the programming interface Reference

XSLPprintmsg

Purpose
Print a message string according to the current settings for Xpress-SLP output

Synopsis
int XPRS_CC XSLPprintmsg(XSLPprob Prob, int MsgType, char *Msg);

Arguments
Prob The current SLP problem.

MsgType Integer containing the message type. The following types are system-defined:
1 Information message
3 Warning message
4 Error message
Other message types can be used and passed to a user-supplied message handler.

Msg Character string containing the message.

Example
The following example checks the SLP optimization status and prints an informative message for
some of the possible values.

int Status;

XSLPgetintattrib(Prob, XSLP_STATUS, &Status);

if (!Status)

XSLPprintmsg(Prob, 1, "Fully converged solution");

if (Status & XSLP_MAXTIME)

XSLPprintmsg(Prob, 3, "Max time exceeded");

if (Status & XSLP_CONVERGEDOBJUCC)

XSLPprintmsg(Prob, 1, "Solution with unimportant "

"unconverged values");

Further information
If MsgType is outside the range 1 to 4, any message handler written to handle the standard
message types may not print the message correctly. One of the uses of the fucntion is to provide
a unified means of logging from the XSLP callbacks.

Fair Isaac Corporation Confidential and Proprietary Information 411

Library functions and the programming interface Reference

XSLPqparse

Purpose
Perform a quick parse on a free-format character string, identifying where each token starts

Synopsis
int XPRS_CC XSLPqparse(char *Record, char *Token[], int NumFields);

Arguments
Record Character string to be parsed. Each token must be separated by one or more spaces

from the next one.

Token Array of character pointers to receive the start address of each token.

NumFields Maximum number of fields to be parsed.

Return value
The number of fields processed.

Example
The following example does a quick parse of the formula "sin(x+y)" to identify where the tokens
start, and then prints the first character of each token.

char *Token[20];

int i, n;

n = XSLPqparse("sin (x + y)",Token,20);

for (i=0;i<n;i++)

printf("\nToken[%d] starts with %c",i,Token[i][0]);

Further information
XSLPqparse does not change Record in any way. Although Token[i] will contain the address
of the start of the ith token, the end of the token is still indicated by a space or the end of the
record.

The return value of XSLPqparse is the number of fields processed. This will be less than
NumFields if there are fewer fields in the record.

Fair Isaac Corporation Confidential and Proprietary Information 412

Library functions and the programming interface Reference

XSLPreadprob

Purpose
Read an Xpress-SLP extended MPS format matrix from a file into an SLP problem

Synopsis
int XPRS_CC XSLPreadprob(XSLPprob Prob, char *Probname, char *Flags);

Arguments
Prob The current SLP problem.

Probname Character string containing the name of the file from which the matrix is to be
read.

Flags Character string containing any flags needed for the input routine. No flag settings
are currently recognized.

Example
The following example reads the problem from file "Matrix.mat".

XSLPreadprob(Prob, "Matrix", "");

Further information
XSLPreadprob tries to open the file with an extension of "mat" or, failing that, an extension of
"mps". If both fail, the file name will be tried with no extension.

XSLPreadprob is capable to read most Ampl .nl files. To specify that a .nl file is to be read,
provide the full filename including the .nl extension.

For details of the format of the file, see the section on Extended MPS format.

Related topics
Extended MPS format, XSLPwriteprob

Fair Isaac Corporation Confidential and Proprietary Information 413

Library functions and the programming interface Reference

XSLPremaxim

Purpose
Continue the maximization of an SLP problem

Synopsis
int XPRS_CC XSLPremaxim(XSLPprob Prob, char *Flags);

Arguments
Prob The current SLP problem.

Flags These have the same meaning as for XSLPmaxim.

Example
The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not
converged, it saves the file and continues for another 10.

int Status;

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 10);

XSLPmaxim(Prob,"");

XSLPgetintattrib(Prob, XSLP_STATUS, &Status);

if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(Prob);

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 20);

XSLPremaxim(Prob,"");

}

Further information
This allows Xpress-SLP to continue the maximization of a problem after it has been terminated,
without re-initializing any of the parameters. In particular, the iteration count will resume at the
point where it previously stopped, and not at 1.

Related topics
XSLPmaxim, XSLPreminim

Fair Isaac Corporation Confidential and Proprietary Information 414

Library functions and the programming interface Reference

XSLPreminim

Purpose
Continue the minimization of an SLP problem

Synopsis
int XPRS_CC XSLPreminim(XSLPprob Prob, char *Flags);

Arguments
Prob The current SLP problem.

Flags These have the same meaning as for XSLPminim.

Example
The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not
converged, it saves the file and continues for another 10.

int Status;

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 10);

XSLPminim(Prob,"");

XSLPgetintattrib(Prob, XSLP_STATUS, &Status);

if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(Prob);

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 20);

XSLPreminim(Prob,"");

}

Further information
This allows Xpress-SLP to continue the minimization of a problem after it has been terminated,
without re-initializing any of the parameters. In particular, the iteration count will resume at the
point where it previously stopped, and not at 1.

Related topics
XSLPminim, XSLPremaxim

Fair Isaac Corporation Confidential and Proprietary Information 415

Library functions and the programming interface Reference

XSLPrestore

Purpose
Restore the Xpress-SLP problem from a file created by XSLPsave

Synopsis
int XPRS_CC XSLPrestore(XSLPprob Prob, char *Filename);

Arguments
Prob The current SLP problem.

Filename Character string containing the name of the problem which is to be restored.

Example
The following example restores a problem originally saved on file "MySave"

XSLPrestore(Prob, "MySave");

Further information
Normally XSLPrestore restores both the Xpress-SLP problem and the underlying optimizer
problem. If only the Xpress-SLP problem is required, set the integer control variable
XSLP_CONTROL appropriately.

The problem is saved into two files save.svf which is the optimizer save file, and save.svx which is
the SLP save file. Both files are required for a full restore; only the svx file is required when the
underlying optimizer problem is not being restored.

Related topics
XSLP_CONTROL, XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 416

Library functions and the programming interface Reference

XSLPreinitialize

Purpose
Reset the SLP problem to match a just augmented system

Synopsis
int XPRS_CC XSLPreinitialize(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Can be used to rerun the SLP optimization process with updated parameters, penalties or initial
values, but unchanged augmentation.

Related topics
XSLPcreateprob, XSLPdestroyprob, XSLPunconstruct, XSLPsetcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 417

Library functions and the programming interface Reference

XSLPrevise

Purpose
Revise the unaugmented SLP matrix with data from a file

Synopsis
int XPRS_CC XSLPrevise(XSLPprob Prob, char *Filename);

This function is deprecated, and is provided for compatibility purpuses.

Arguments
Prob The current SLP problem.

Filename Character string containing the name of the file with the revise data.

Example
The following example reads a matrix from file and then revises it according to the data in file
"ReviseData.dat".

XSLPreadprob(Prob, "Matrix", "");

XSLPrevise(Prob, "ReviseData.dat");

Further information
XSLPrevise does not implement a full revise facility. In particular, there is no provision for
adding or deleting rows or columns. However, coefficients can be deleted with an explicit zero
entry.

The data in the revise file is written in Extended MPS format and can change ROWS, COLUMNS, RHS,
BOUNDS and RANGES data. The MODIFY, BEFORE and AFTER keywords are recognized but ignored.

XSLPrevise must be called before the matrix is augmented by XSLPconstruct.

Fair Isaac Corporation Confidential and Proprietary Information 418

Library functions and the programming interface Reference

XSLProwinfo

Purpose
This function is deprecated and may be removed in future releases. Please use XSLPgetrowinfot

instead. Get or set row information

Synopsis
int XSLP_CC XSLProwinfo(XSLPprob Prob, int RowIndex, int InfoType,

void *Info);

Arguments
Prob The current SLP problem.

RowIndex Index of the row whose information is to be handled.

InfoType Type of information (see below)

Info Address of information to be set or retrieved

Example
The following example retrieves the number of times that the penalty error vector has been
active, and the total of the error activities, for row number 4:

int NumError;

double TotalError;

XSLProwinfo(Prob,4,XSLP_GETROWNUMPENALTYERRORS,&NumError);

XSLProwinfo(Prob,4,XSLP_GETROWTOTALPENALTYERROR,&TotalError);

Further information
The following constants are provided for row information handling:

XSLP_GETROWNUMPENALTYERRORS Get the number of times (over all iterations) the penalty
error vector has been active

XSLP_GETROWMAXPENALTYERROR Get the maximum size (over all iterations) of the penalty error
vector activity

XSLP_GETROWTOTALPENALTYERROR Get the total (over all iterations) of the penalty error vector
activities

XSLP_GETROWAVERAGEPENALTYERROR Get the average size (over all iterations) of the penalty
error vector activity

XSLP_GETROWCURRENTPENALTYERROR Get the size of the penalty error vector activity in the
current iteration. The value is negative for constraints of type L

and for equalities where the left hand side is greater than the
right hand side.

XSLP_GETROWCURRENTPENALTYFACTOR Get the size of the penalty error factor for the current
iteration

XSLP_SETROWPENALTYFACTOR Set the size of the penalty error factor for the next iteration

XSLP_GETROWPENALTYCOLUMN1 Get the index of the penalty column for the row (the error
column with a positive entry for an equality row)

XSLP_GETROWPENALTYCOLUMN2 Get the index of the second penalty column for an equality
row (the error column with a negative entry

Related topics
XSLP_PENALTYINFOSTART

Fair Isaac Corporation Confidential and Proprietary Information 419

Library functions and the programming interface Reference

XSLPsave

Purpose
Save the Xpress-SLP problem to file

Synopsis
int XPRS_CC XSLPsave(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example saves the current problem to files named prob1.svf and prob1.svx.

XPRSprob xprob;

XSLPgetptrattrib(Prob, XSLP_XPRSPROBLEM, &xprob);

XPRSsetprobname(xprob, "prob1");

XSLPsave(Prob);

Further information
The problem is saved into two files prob.svf which is the optimizer save file, and prob.svx which is
the SLP save file, where prob is the name of the problem. Both files are used in a full save; only
the svx file is required when the underlying optimizer problem is not being saved.

Normally XSLPsave saves both the Xpress-SLP problem and the underlying optimizer problem. If
only the Xpress-SLP problem is required, set the integer control variable XSLP_CONTROL

appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsaveas

Fair Isaac Corporation Confidential and Proprietary Information 420

Library functions and the programming interface Reference

XSLPsaveas

Purpose
Save the Xpress-SLP problem to a named file

Synopsis
int XPRS_CC XSLPsaveas(XSLPprob Prob, const char *Filename);

Arguments
Prob The current SLP problem.

Filename The name of the file (without extension) in which the problem is to be saved.

Example
The following example saves the current problem to files named MyProb.svf and MyProb.svx.

XSLPsaveas(Prob,"MyProb");

Further information
The problem is saved into two files filename.svf which is the optimizer save file, and filename.svx
which is the SLP save file, where filename is the second argument to the function. Both files are
used in a full save; only the svx file is required when the underlying optimizer problem is not
being saved.

Normally XSLPsaveas saves both the Xpress-SLP problem and the underlying optimizer problem.
If only the Xpress-SLP problem is required, set the integer control variable XSLP_CONTROL

appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 421

Library functions and the programming interface Reference

XSLPscaling

Purpose
Analyze the current matrix for largest/smallest coefficients and ratios

Synopsis
int XPRS_CC XSLPscaling(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example analyzes the matrix

XSLPscaling(Prob);

Further information
The current matrix (including augmentation if it has been carried out) is scanned for the absolute
and relative sizes of elements. The following information is reported:

� Largest and smallest elements in the matrix;

� Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between
1.0E+01 and 1.0E+02);

� List of the rows (with largest and smallest elements) which appear in the highest range;

� Counts of the ranges of column ratios in powers of 10 (e.g. number of columns with ratio
between 1.0E+01 and 1.0E+02);

� List of the columns (with largest and smallest elements) which appear in the highest range;

� Element ranges in powers of 10 (e.g. number of elements between 1.0E+01 and 1.0E+02).

Where any of the reported items (largest or smallest element in the matrix or any reported row
or column element) is in a penalty error vector, the results are repeated, excluding all penalty
error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 422

Library functions and the programming interface Reference

XSLPsetcbcascadeend

Purpose
Set a user callback to be called at the end of the cascading process, after the last variable has
been cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadeend(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of the cascading process. UserFunc returns an
integer value. The return value is noted by Xpress-SLP but it has no effect on the
optimization.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadeend.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the end of the cascading process
which checks if any of the values have been changed significantly:

double *cSol;

XSLPsetcbcascadeend(Prob, CBCascEnd, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBCascEnd(XSLPprob MyProb, void *Obj) {

int iCol, nCol;

double *cSol, Value;

cSol = * (double **) Obj;

XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);

for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL);

if (fabs(Value-cSol[iCol]) > .01)

printf("\nCol %d changed from %lg to %lg",

iCol, cSol[iCol], Value);

}

return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume has
been populated with the original solution values.

Further information
This callback can be used at the end of the cascading, when all the solution values have been
recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadestart, XSLPsetcbcascadevar,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 423

Library functions and the programming interface Reference

XSLPsetcbcascadestart

Purpose
Set a user callback to be called at the start of the cascading process, before any variables have
been cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadestart(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of the cascading process. UserFunc returns
an integer value. If the return value is nonzero, the cascading process will be
omitted for the current SLP iteration, but the optimization will continue.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadestart.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the start of the cascading process to
save the current values of the variables:

double *cSol;

XSLPsetcbcascadestart(Prob, CBCascStart, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBCascStart(XSLPprob MyProb, void *Obj) {

int iCol, nCol;

double *cSol;

cSol = * (double **) Obj;

XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);

for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &cSol[iCol],

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL);

}

return 0;

}

The Object argument is used here to hold the address of the array cSol which we populate with
the solution values.

Further information
This callback can be used at the start of the cascading, before any of the solution values have
been recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadevar, XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 424

Library functions and the programming interface Reference

XSLPsetcbcascadevar

Purpose
Set a user callback to be called after each column has been cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadevar(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been cascaded. UserFunc returns
an integer value. If the return value is nonzero, the cascading process will be
omitted for the remaining variables during the current SLP iteration, but the
optimization will continue.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadevar.

ColIndex The number of the column which has been cascaded.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed after each variable has been cascaded:

double *cSol;

XSLPsetcbcascadevar(Prob, CBCascVar, &cSol);

The following sample callback function resets the value of the variable if the cascaded value is of
the opposite sign to the original value:

int XPRS_CC CBCascVar(XSLPprob MyProb, void *Obj, int iCol) {

double *cSol, Value;

cSol = * (double **) Obj;

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL);

if (Value * cSol[iCol] < 0) {

Value = cSol[iCol];

XSLPchgvar(MyProb, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,

NULL);

}

return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume has
been populated with the original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been
calculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 425

Library functions and the programming interface Reference

XSLPsetcbcascadevarfail

Purpose
Set a user callback to be called after cascading a column was not successful

Synopsis
int XPRS_CC XSLPsetcbcascadevarfail(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after cascading a column was not successful. UserFunc

returns an integer value. If the return value is nonzero, the cascading process will
be omitted for the remaining variables during the current SLP iteration, but the
optimization will continue.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadevarfail.

ColIndex The number of the column which has been cascaded.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Further information
This callback can be used to provide user defined updates for SLP variables having a determining
row that were not successfully cascaded due to the determining row being close to singular
around the current values. This callback will always be called in place of the cascadevar callback
in such cases, and in no situation will both the cascadevar and the cascadevarfail callback be
called in the same iteration for the same variable.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart, XSLPsetcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 426

Library functions and the programming interface Reference

XSLPsetcbcascadevarF

Purpose
Set a user callback to be called after each column has been cascaded (parameters as references
version)

Synopsis
int XPRS_CC XSLPsetcbcascadevarF(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int *ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been cascaded. UserFunc returns
an integer value. If the return value is nonzero, the cascading process will be
omitted for the remaining variables during the current SLP iteration, but the
optimization will continue.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadevarF.

ColIndex Address of an integer containing the number of the column which has been
cascaded.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed after each variable has been cascaded:

double *cSol;

XSLPsetcbcascadevarF(Prob, CBCascVar, &cSol);

The following sample callback function resets the value of the variable if the cascaded value is of
the opposite sign to the original value:

int XPRS_CC CBCascVar(XSLPprob MyProb, void *Obj, int *pCol) {

int iCol;

double *cSol, Value;

cSol = * (double **) Obj;

iCol = *pCol;

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL);

if (Value * cSol[iCol] < 0) {

Value = cSol[iCol];

XSLPchgvar(MyProb, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,

NULL);

}

return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume has
been populated with the original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been
calculated.

Fair Isaac Corporation Confidential and Proprietary Information 427

Library functions and the programming interface Reference

XSLPsetcbcascadevarF is identical to XSLPsetcbcascadevar except that the column number
is passed by reference rather than by value.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart, XSLPsetcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 428

Library functions and the programming interface Reference

XSLPsetcbcoefevalerror

Purpose
Set a user callback to be called when an evaluation of a coefficient fails during the solve

Synopsis
int XPRS_CC XSLPsetcbcoefevalerror(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int RowIndex, int ColIndex),

void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when an evaluation fails.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcoefevalerror.

RowIndex The row position of the coefficient.

ColIndex The column position of the coefficient.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Further information
This callback can be used to capture when an evaluation of a coefficient fails. The callback is
called only once for each coefficient.

Related topics
XSLPprintevalinfo

Fair Isaac Corporation Confidential and Proprietary Information 429

Library functions and the programming interface Reference

XSLPsetcbconstruct

Purpose
Set a user callback to be called during the Xpress-SLP augmentation process

Synopsis
int XPRS_CC XSLPsetcbconstruct(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called during problem augmentation. UserFunc returns an
integer value. See below for an explanation of the values.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbconstruct.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed during the Xpress-SLP problem
augmentation:

double *cValue;

cValue = NULL;

XSLPsetcbconstruct(Prob, CBConstruct, &cValue);

The following sample callback function sets values for the variables the first time the function is
called and returns to XSLPconstruct to recalculate the initial matrix. The second time it is called
it frees the allocated memory and returns to XSLPconstruct to proceed with the rest of the
augmentation.

int XPRS_CC CBConstruct(XSLPprob MyProb, void *Obj) {

double *cValue;

int i, n;

/* if Object is NULL, this is first-time entry */

if (*(void**)Obj == NULL) {

XSLPgetintattrib(MyProb,XPRS_COLS,&n);

cValue = malloc(n*sizeof(double));

/* ... initialize with values (not shown here) and then ... */

for (i=0;i<n;i++)

/* store into SLP structures */

XSLPchgvar(MyProb, n, NULL, NULL, NULL, NULL,

NULL, NULL, &cValue[n], NULL, NULL, NULL,

NULL);

/* set Object non-null to indicate we have processed data */

*(void**)Obj = cValue;

return -1;

}

else {

/* free memory, clear marker and continue */

free(*(void**)Obj);

*(void**)Obj = NULL;

}

return 0;

}

Fair Isaac Corporation Confidential and Proprietary Information 430

Library functions and the programming interface Reference

Further information
This callback can be used during the problem augmentation, generally (although not exclusively)
to change the initial values for the variables.

The following return codes are accepted:

0 Normal return: augmentation continues

-1 Return to recalculate matrix values

-2 Return to recalculate row weights and matrix entries

other Error return: augmentation terminates, XSLPconstruct terminates with a
nonzero error code.

The return values -1 and -2 will cause the callback to be called a second time after the matrix has
been recalculated. It is the responsibility of the callback to ensure that it does ultimately exit with
a return value of zero.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 431

Library functions and the programming interface Reference

XSLPsetcbdestroy

Purpose
Set a user callback to be called when an SLP problem is about to be destroyed

Synopsis
int XPRS_CC XSLPsetcbdestroy(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when the SLP problem is about to be destroyed.
UserFunc returns an integer value. At present the return value is ignored.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbdestroy.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed before the SLP problem is destroyed:

double *cSol;

XSLPsetcbdestroy(Prob, CBDestroy, &cSol);

The following sample callback function frees the memory associated with the user-defined object:

int XPRS_CC CBDestroy(XSLPprob MyProb, void *Obj) {

if (*(void**)Obj) free(*(void**)Obj);

return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume was
assigned using one of the malloc functions.

Further information
This callback can be used when the problem is about to be destroyed to free any user-defined
resources which were allocated during the life of the problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 432

Library functions and the programming interface Reference

XSLPsetcbdrcol

Purpose
Set a user callback used to override the update of variables with small determining column

Synopsis
int XPRS_CC XSLPsetcbdrcol(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int ColIndex, int DrColIndex,

double DrColValue, double * NewValue, double VLB, double VUB),

void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been cascaded. UserFunc returns
an integer value. If the return value is positive, it will indicate that the value has
been fixed, and cascading should be omitted for the variable. A negative value
indicates that a previously fixed value has been relaxed. If no action is taken, a 0
return value should be used.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadevar.

ColIndex The index of the column for which the determining columns is checked.

DrColIndex The index of the determining column for the column that is being updated.

DrColValue The value of the determining column in the current SLP iteration.

NewValue Used to return the new value for column ColIndex, should it need to be updated,
in which case the callback must return a positive value to indicate that this value
should be used.

VLB The original lower bound of column ColIndex. The callback provides this value as
a reference, should the bound be updated or changed during the solution process.

VUB The original upper bound of column ColIndex. The callback provides this value as
a reference, should the bound be updated or changed during the solution process.

Object Address of a user-defined object, which can be used for any purpose. by the
function. Object is passed to UserFunc as myObject.

Further information
If set, this callback is called as part of the cascading procedure. Please see Chapter Cascading for
more information.

Related topics
XSLP_DRCOLTOL, XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart

Fair Isaac Corporation Confidential and Proprietary Information 433

Library functions and the programming interface Reference

XSLPsetcbformula

Purpose
Set a callback to be used in formula evaluation when an unknown token is found

Synopsis
int XPRS_CC XSLPsetcbformula(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, double Value, double *Result),

void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called during formula evaluation. UserFunc returns an integer
value. At present the value is ignored.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbformula.

Value The Value of the unknown token.

Result Address of a double precision value to hold the result of the calculation.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets a callback to process unknown tokens in formulae. It then creates a
formula with an unknown token, and evaluates it.

int XPRS_CC MyCB(XSLPprob MyProb, void *MyObject, double MyValue, double *Result) {

union { char *p; double d;} z;

z.d = MyValue;

if (z.p != NULL) *Result = atof(z.p);

else *Result = 0;

return(0);

}

...

int Type[10];

double Value[10];

int nToken;

double Answer;

union { char *p; double d;} z;

XSLPsetcbformula(prob,MyCB,NULL);

nToken = 0;

Type[nToken] = XSLP_CON; Value[nToken++] = 10;

Type[nToken] = XSLP_UNKNOWN; z.p = "25.2"; Value[nToken++] = z.d;

Type[nToken] = XSLP_OP; Value[nToken++] = XSLP_PLUS;

Type[nToken] = XSLP_EOF; Value[nToken++] = 0;

XSLPevaluateformula(prob,1,Type,Value,&Answer);

printf("Answer = %lg",Answer);

This demonstrates how the Value of an unknown token can be set in any way, as long as the
routine that sets the token up and the callback agree on how it is to be interpreted.

In this case, the value actually contains the address of a character string, which is converted by
the callback into a real number.

Fair Isaac Corporation Confidential and Proprietary Information 434

Library functions and the programming interface Reference

Related topics
XSLPevaluateformula

Fair Isaac Corporation Confidential and Proprietary Information 435

Library functions and the programming interface Reference

XSLPsetcbintsol

Purpose
Set a user callback to be called during MISLP when an integer solution is obtained

Synopsis
int XPRS_CC XSLPsetcbintsol(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when an integer solution is obtained. UserFunc returns
an integer value. At present, the return value is ignored.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbintsol.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed whenever an integer solution is found
during MISLP:

double *cSol;

XSLPsetcbintsol(Prob, CBIntSol, &cSol);

The following sample callback function saves the solution values for the integer solution just
found:

int XPRS_CC CBIntSol(XSLPprob MyProb, void *Obj) {

XPRSprob xprob;

double *cSol;

cSol = * (double **) Obj;

XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);

XPRSgetsol(xprob, cSol, NULL, NULL, NULL);

return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume was
assigned using one of the malloc functions.

Further information
This callback must be used during MISLP instead of the XPRSsetcbintsol callback which is used
for MIP problems.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 436

Library functions and the programming interface Reference

XSLPsetcbiterend

Purpose
Set a user callback to be called at the end of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterend(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of each SLP iteration. UserFunc returns an
integer value. If the return value is nonzero, the SLP iterations will stop.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbiterend.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the end of each SLP iteration. It
records the number of LP iterations in the latest optimization and stops if there were fewer than
10:

XSLPsetcbiterend(Prob, CBIterEnd, NULL);

A suitable callback function might resemble this:

int XPRS_CC CBIterEnd(XSLPprob MyProb, void *Obj) {

int nIter;

XPRSprob xprob;

XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);

XSLPgetintattrib(xprob, XPRS_SIMPLEXITER, &nIter);

if (nIter < 10) return 1;

return 0;

}

The Object argument is not used here, and so is passed as NULL.

Further information
This callback can be used at the end of each SLP iteration to carry out any further processing
and/or stop any further SLP iterations.

Related topics
XSLPsetcbiterstart, XSLPsetcbitervar, XSLPsetcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 437

Library functions and the programming interface Reference

XSLPsetcbiterstart

Purpose
Set a user callback to be called at the start of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterstart(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of each SLP iteration. UserFunc returns an
integer value. If the return value is nonzero, the SLP iterations will stop.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbiterstart.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the start of the optimization to save
to save the values of the variables from the previous iteration:

double *cSol;

XSLPsetcbiterstart(Prob, CBIterStart, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBIterStart(XSLPprob MyProb, void *Obj) {

XPRSprob xprob;

double *cSol;

int nIter;

cSol = * (double **) Obj;

XSLPgetintattrib(MyProb, XSLP_ITER, &nIter);

if (nIter == 0) return 0; /* no previous solution */

XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);

XPRSgetsol(xprob, cSol, NULL, NULL, NULL);

return 0;

}

The Object argument is used here to hold the address of the array cSol which we populate with
the solution values.

Further information
This callback can be used at the start of each SLP iteration before the optimization begins.

Related topics
XSLPsetcbiterend, XSLPsetcbitervar, XSLPsetcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 438

Library functions and the programming interface Reference

XSLPsetcbitervar

Purpose
Set a user callback to be called after each column has been tested for convergence

Synopsis
int XPRS_CC XSLPsetcbitervar(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int ColIndex), void *Object);

Arguments

Prob The current SLP problem.

UserFunc The function to be called after each column has been tested for convergence.
UserFunc returns an integer value. The return value is interpreted as a
convergence status. The possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion

(these values should not normally be returned);
> 10 The variable has converged on user criteria.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbitervar.

ColIndex The number of the column which has been tested for convergence.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and
holds a flag for each variable indicating whether it is important that it converges.

int *Important;

XSLPsetcbitervar(Prob, CBIterVar, &Important);

The following sample callback function tests if the variable is already converged. If not, then it
checks if the variable is important. If it is not important, the function returns a convergence
status of 99.

int XPRS_CC CBIterVar(XSLPprob MyProb, void *Obj, int iCol) {

int *Important, Converged;

Important = *(int **) Obj;

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, &Converged, NULL,

NULL, NULL, NULL, NULL);

if (Converged) return 0;

if (!Important[iCol]) return 99;

return -1;

}

The Object argument is used here to hold the address of the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Related topics
XSLPsetcbiterend, XSLPsetcbiterstart, XSLPsetcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 439

Library functions and the programming interface Reference

XSLPsetcbitervarF

Purpose
Set a user callback to be called after each column has been tested for convergence (parameters as
references version)

Synopsis
int XPRS_CC XSLPsetcbitervarF(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int *ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been tested for convergence.
UserFunc returns an integer value. The return value is interpreted as a
convergence status. The possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 9 The column has converged on a system-defined convergence criterion

(these values should not normally be returned);
> 9 The variable has converged on user criteria.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbitervarF.

ColIndex Address of an integer holding the number of the column which has been tested for
convergence.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and
holds a flag for each variable indicating whether it is important that it converges.

int *Important;

XSLPsetcbitervarF(Prob, CBIterVar, &Important);

The following sample callback function tests if the variable is already converged. If not, then it
checks if the variable is important. If it is not important, the function returns a convergence
status of 99.

int XPRS_CC CBIterVar(XSLPprob MyProb, void *Obj, int *pCol) {

int *Important, Converged, iCol;

Important = *(int **) Obj;

iCol = *pCol;

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, &Converged, NULL,

NULL, NULL, NULL, NULL);

if (Converged) return 0;

if (!Important[iCol]) return 99;

return -1;

}

The Object argument is used here to hold the address of the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Fair Isaac Corporation Confidential and Proprietary Information 440

Library functions and the programming interface Reference

XSLPsetcbitervarF is identical to XSLPsetcbitervar except that the column number is
passed by reference rather than by value.

Related topics
XSLPsetcbiterend, XSLPsetcbiterstart, XSLPsetcbitervarF

Fair Isaac Corporation Confidential and Proprietary Information 441

Library functions and the programming interface Reference

XSLPsetcbmessage

Purpose
Set a user callback to be called whenever Xpress-SLP outputs a line of text

Synopsis
int XPRS_CC XSLPsetcbmessage(XSLPprob Prob, void (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, char *msg, int len, int msgtype),

void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called whenever Xpress-SLP outputs a line of text. UserFunc

does not return a value.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbmessage.

msg Character buffer holding the string to be output.

len Length in characters of msg excluding the null terminator.

msgtype Type of message. The following are system-defined:
1 Information message
3 Warning message
4 Error message
A negative value indicates that the Optimizer is about to finish and any buffers
should be flushed at this time.
User-defined values are also possible for msgtype which can be passed using
XSLPprintmsg

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example creates a log file into which all messages are placed. System messages are
also printed on standard output:

FILE *logfile;

logfile = fopen("myLog","w");

XSLPsetcbmessage(Prob, CBMessage, logfile);

A suitable callback function could resemble the following:

void XPRS_CC CBMessage(XSLPprob Prob, void *Obj,

char *msg, int len, int msgtype) {

FILE *logfile;

logfile = (FILE *) Obj;

if (msgtype < 0) {

fflush(stdout);

if (logfile) fflush(logfile);

return;

}

switch (msgtype) {

case 1: /* information */

case 3: /* warning */

case 4: /* error */

printf("%s\n",msg);

default: /* user */

if (logfile)

Fair Isaac Corporation Confidential and Proprietary Information 442

Library functions and the programming interface Reference

fprintf(logfile,"%s\n",msg);

break;

}

return;

}

Further information
If a user message callback is defined then screen output is automatically disabled.

Output can be directed into a log file by using XSLPsetlogfile.

Related topics
XSLPsetcbmessageF, XSLPsetlogfile,

Fair Isaac Corporation Confidential and Proprietary Information 443

Library functions and the programming interface Reference

XSLPsetcbmessageF

Purpose
Set a user callback to be called whenever Xpress-SLP outputs a line of text (parameters as
references version)

Synopsis
int XPRS_CC XSLPsetcbmessageF(XSLPprob Prob, void (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, char *msg, int *len, int *msgtype),

void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called whenever Xpress-SLP outputs a line of text. UserFunc

does not return a value.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbmessage.

msg Character buffer holding the string to be output.

len Address of an integer holding the length in characters of msg excluding the null
terminator.

msgtype Address of an integer holding the type of message. The following are
system-defined:
1 Information message
3 Warning message
4 Error message
A negative value indicates that the Optimizer is about to finish and any buffers
should be flushed at this time.
User-defined values are also possible for msgtype which can be passed using
XSLPprintmsg

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example creates a log file into which all messages are placed. System messages are
also printed on standard output:

FILE *logfile;

logfile = fopen("myLog","w");

XSLPsetcbmessage(Prob, CBMessage, logfile);

A suitable callback function could resemble the following:

void XPRS_CC CBMessage(XSLPprob Prob, void *Obj,

char *msg, int *plen, int *pmsgtype) {

FILE *logfile;

int len, msgtype;

logfile = (FILE *) Obj;

len = *plen;

msgtype = *pmsgtype;

if (msgtype < 0) {

fflush(stdout);

if (logfile) fflush(logfile);

return;

}

switch (msgtype) {

Fair Isaac Corporation Confidential and Proprietary Information 444

Library functions and the programming interface Reference

case 1: /* information */

case 3: /* warning */

case 4: /* error */

printf("%s\n",msg);

default: /* user */

if (logfile)

fprintf(logfile,"%s\n",msg);

break;

}

return;

}

Further information
If a user message callback is defined then screen output is automatically disabled.

Output can be directed into a log file by using XSLPsetlogfile.

XSLPsetcbmessageF is identical to XSLPsetcbmessage except that the callback function
receives the message length and type by reference rather than by value.

Related topics
XSLPsetcbmessage, XSLPsetlogfile,

Fair Isaac Corporation Confidential and Proprietary Information 445

Library functions and the programming interface Reference

XSLPsetcbmsjobend

Purpose
Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite
the default solution ranking function

Synopsis
int XSLP_CC XSLPsetcbmsjobend(XSLPprob Prob, int

(XSLP_CC *UserFunc)(XSLPprob myProb, void *myObject,void

*pJobObject,const char *JobDescription,int *Status), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when a new multistart job is created

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbmsjobend.

pJobObject Job specific user-defined object, as specified in by the multistart job creating API
functions.

JobDescription The description of the problem as specified in by the multistart job creating
API functions.

Status User return status variable:
0 - use the default evaluation of the finished job
1 - disregard the result and continue
2 - stop the multistart search

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 446

Library functions and the programming interface Reference

XSLPsetcbmsjobstart

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded
settings are applied

Synopsis
int XSLP_CC XSLPsetcbmsjobstart(XSLPprob Prob, int

(XSLP_CC *UserFunc)(XSLPprob myProb, void *myObject,void

*pJobObject,const char *JobDescription,int *Status), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when a new multistart job is created

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbmsjobstart.

pJobObject Job specific user-defined object, as specified in by the multistart job creating API
functions.

JobDescription The description of the problem as specified in by the multistart job creating
API functions.

Status User return status variable:
0 - normal return, solve the job,
1 - disregard this job and continue,
2 - Stop multistart.

Further information
All mulit-start jobs operation on an independent copy of the original problem, and any
modification to the problem is allowed, including structural changes. Please note however, that
any modification will be carried over to the base problem, should a modified problem be
declared the winner prob.

Related topics
XSLPsetcbmsjobend, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 447

Library functions and the programming interface Reference

XSLPsetcbwinner

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded
settings are applied

Synopsis
int XSLP_CC XSLPsetcbwinner(XSLPprob Prob, int

(XSLP_CC *UserFunc)(XSLPprob myProb, void *myObject,void

*pJobObject,const char *JobDescription,int *Status), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when a new multistart job is created

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbwinner.

pJobObject Job specific user-defined object, as specified in by the multistart job creating API
functions.

JobDescription The description of the problem as specified in by the multistart job creating
API functions.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbmsjobend

Fair Isaac Corporation Confidential and Proprietary Information 448

Library functions and the programming interface Reference

XSLPsetcboptnode

Purpose
Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node

Synopsis
int XPRS_CC XSLPsetcboptnode(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int *feas), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when an optimal SLP solution is obtained at a node.
UserFunc returns an integer value. If the return value is nonzero, or if the
feasibility flag is set nonzero, then further processing of the node will be
terminated (it is declared infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcboptnode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag
nonzero, the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example defines a callback function to be executed at each node when an SLP
optimal solution is found. If there are significant penalty errors in the solution, the node is
declared infeasible.

XSLPsetcboptnode(Prob, CBOptNode, NULL);

A suitable callback function might resemble the following:

int XPRS_CC CBOptNode(XSLPprob myProb, void *Obj, int *feas) {

double Total, ObjVal;

XSLPgetdblattrib(myProb, XSLP_ERRORCOSTS, &Total);

XSLPgetdblattrib(myProb, XSLP_OBJVAL, &ObjVal);

if (fabs(Total) > fabs(ObjVal) * 0.001 &&

fabs(Total) > 1) *feas = 1;

return 0;

Further information
If a node is declared infeasible from the callback function, the cost of exploring the node further
will be avoided.

This callback must be used in place of XPRSsetcboptnode when optimizing with MISLP.

Related topics
XSLPsetcbprenode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 449

Library functions and the programming interface Reference

XSLPsetcbprenode

Purpose
Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at a
node, but before SLP optimization

Synopsis
int XPRS_CC XSLPsetcbprenode(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int *feas), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after the set-up of the SLP problem to be solved at a
node. UserFunc returns an integer value. If the return value is nonzero, or if the
feasibility flag is set nonzero, then further processing of the node will be
terminated (it is declared infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbprenode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag
nonzero, the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback function to be executed at each node before the SLP
optimization starts. The array IntList contains a list of integer variables, and the function prints
the bounds on these variables.

int *IntList;

XSLPsetcbprenode(Prob, CBPreNode, IntList);

A suitable callback function might resemble the following:

int XPRS_CC CBPreNode(XSLPprob myProb, void *Obj, int *feas) {

XPRSprob xprob;

int i, *IntList;

double LO, UP;

IntList = (int *) Obj;

XSLPgetptrattrib(myProb, XSLP_XPRSPROBLEM, &xprob);

for (i=0; IntList[i]>=0; i++) {

XPRSgetlb(xprob,&LO,IntList[i],IntList[i]);

XPRSgetub(xprob,&UP,IntList[i],IntList[i]);

if (LO > 0 || UP < XPRS_PLUSINFINITY)

printf("\nCol %d: %lg <= %lg",LO,UP);

}

return 0;

}

Further information
If a node can be identified as infeasible by the callback function, then the initial optimization at
the current node is avoided, as well as further exploration of the node.

This callback must be used in place of XPRSsetcbprenode when optimizing with MISLP.

Related topics
XSLPsetcboptnode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 450

Library functions and the programming interface Reference

XSLPsetcbslpend

Purpose
Set a user callback to be called at the end of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpend(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of the SLP optimization. UserFunc returns an
integer value. If the return value is nonzero, the optimization will return an error
code and the "User Return Code" error will be set.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbslpend.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the end of the SLP optimization. It
frees the memory allocated to the object created when the optimization began:

void *ObjData;

ObjData = NULL;

XSLPsetcbslpend(Prob, CBSlpEnd, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpEnd(XSLPprob MyProb, void *Obj) {

void *ObjData;

ObjData = * (void **) Obj;

if (ObjData) free(ObjData);

* (void **) Obj = NULL;

return 0;

}

Further information
This callback can be used at the end of the SLP optimization to carry out any further processing or
housekeeping before the optimization function returns.

Related topics
XSLPsetcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 451

Library functions and the programming interface Reference

XSLPsetcbslpnode

Purpose
Set a user callback to be called during MISLP after the SLP optimization at each node.

Synopsis
int XPRS_CC XSLPsetcbslpnode(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject, int *feas), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after the set-up of the SLP problem to be solved at a
node. UserFunc returns an integer value. If the return value is nonzero, or if the
feasibility flag is set nonzero, then further processing of the node will be
terminated (it is declared infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbslpnode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag
nonzero, the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback function to be executed at each node after the SLP
optimization finishes. If the solution value is worse than a target value (referenced through the
user object), the node is cut off (it is declared infeasible).

double OBJtarget;

XSLPsetcbslpnode(Prob, CBSLPNode, &OBJtarget);

A suitable callback function might resemble the following:

int XPRS_CC CBSLPNode(XSLPprob myProb, void *Obj, int *feas) {

double TargetValue, LPValue;

XSLPgetdblattrib(prob, XPRS_LPOBJVAL, &LPValue);

TargetValue = * (double *) Obj;

if (LPValue < TargetValue) *feas = 1;

return 0;

}

Further information
If a node can be cut off by the callback function, then further exploration of the node is avoided.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 452

Library functions and the programming interface Reference

XSLPsetcbslpstart

Purpose
Set a user callback to be called at the start of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpstart(XSLPprob Prob, int (XPRS_CC *UserFunc)

(XSLPprob myProb, void *myObject), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of the SLP optimization. UserFunc returns an
integer value. If the return value is nonzero, the optimization will not be carried
out.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbslpstart.

Object Address of a user-defined object, which can be used for any purpose by the
function. Object is passed to UserFunc as myObject.

Example
The following example sets up a callback to be executed at the start of the SLP optimization. It
allocates memory to a user-defined object to be used during the optimization:

void *ObjData;

ObjData = NULL;

XSLPsetcbslpstart(Prob, CBSlpStart, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpStart(XSLPprob MyProb, void *Obj) {

void *ObjData;

ObjData = * (void **) Obj;

if (ObjData) free(ObjData);

* (void **) Obj = malloc(99*sizeof(double));

return 0;

}

Further information
This callback can be used at the start of the SLP optimization to carry out any housekeeping
before the optimization actually starts. Note that a nonzero return code from the callback will
terminate the optimization immediately.

Related topics
XSLPsetcbslpend

Fair Isaac Corporation Confidential and Proprietary Information 453

Library functions and the programming interface Reference

XSLPsetcurrentiv

Purpose
Transfer the current solution to initial values

Synopsis
int XPRS_CC XSLPsetcurrentiv(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Provides a way to set the current iterates solution as initial values, make changes to parameters
or to the underlying nonlinear problem and then rerun the SLP optimization process.

Related topics
XSLPreinitialize, XSLPunconstruct

Fair Isaac Corporation Confidential and Proprietary Information 454

Library functions and the programming interface Reference

XSLPsetdblcontrol

Purpose
Set the value of a double precision problem control

Synopsis
int XPRS_CC XSLPsetdblcontrol(XSLPprob Prob, int Param, double dValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

dValue Double precision value to be set.

Example
The following example sets the value of the Xpress-SLP control XSLP_CTOL and of the optimizer
control XPRS_FEASTOL:

XSLPsetdblcontrol(Prob, XSLP_CTOL, 0.001);

XSLPgetdblcontrol(Prob, XPRS_FEASTOL, 0.005);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is set, the
return value will be the same as that from XPRSsetdblcontrol.

Related topics
XSLPgetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 455

Library functions and the programming interface Reference

XSLPsetdefaultcontrol

Purpose
Set the values of one SLP control to its default value

Synopsis
int XPRS_CC XSLPsetdefaultcontrol(XSLPprob Prob, int Param);

Arguments
Prob The current SLP problem.

Param The number of the control to be reset to its default.

Example
The following example reads a problem from file, sets the XSLP_LOG control, optimizes the
problem and then reads and optimizes another problem using the default setting.

XSLPreadprob(Prob, "Matrix1", "");

XSLPsetintcontrol(Prob, XSLP_LOG, 4);

XSLPmaxim(Prob, "");

XSLPsetdefaultcontrol(Prob,XSLP_LOG);

XSLPreadprob(Prob, "Matrix2", "");

XSLPmaxim(Prob, "");

Further information
This function cannot reset the optimizer controls. Use XPRSsetdefaults or
XPRSsetdefaultcontrolas well to reset optimizer controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetdefaults, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 456

Library functions and the programming interface Reference

XSLPsetdefaults

Purpose
Set the values of all SLP controls to their default values

Synopsis
int XPRS_CC XSLPsetdefaults(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example reads a problem from file, sets some controls, optimizes the problem and
then reads and optimizes another problem using the default settings.

XSLPreadprob(Prob, "Matrix1", "");

XSLPsetintcontrol(Prob, XSLP_LOG, 4);

XSLPsetdblcontrol(Prob, XSLP_CTOL, 0.001);

XSLPsetdblcontrol(Prob, XSLP_ATOL_A, 0.005);

XSLPmaxim(Prob, "");

XSLPsetdefaults(Prob);

XSLPreadprob(Prob, "Matrix2", "");

XSLPmaxim(Prob, "");

Further information
This function does not reset the optimizer controls. Use XPRSsetdefaults as well to reset all the
controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 457

Library functions and the programming interface Reference

XSLPsetfuncobject

Purpose
Change the address of one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPsetfuncobject(int *ArgInfo, int ObjType, void *Address)

Arguments
ArgInfo The array of argument information for the user function.

ObjType An integer indicating which object is to be changed
XSLP_GLOBALFUNCOBJECT The Global Function Object;
XSLP_USERFUNCOBJECT The User Function Object for the function;
XSLP_INSTANCEFUNCOBJECT The Instance Function Object for the instance of

the function.
Address The address of the object.

Example
The following example from within a user function checks if there is a function instance. If so, it
gets the Instance Function Object. If it is NULL an array is allocated and its address is saved as the
new Instance Function Object.

int Instance;

XSLPgetfuncinfo(ArgInfo, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, &Instance);

if (Instance) {

XSLPgetfuncobject(ArgInfo, XSLP_INSTANCEFUNCOBJECT,

&Object);

if (Object == NULL) {

Object = calloc(4*3, sizeof(double));

XSLPsetfuncobject(ArgInfo, XSLP_INSTANCEFUNCOBJECT,

Object);

}

}

Further information
This function changes the address of one of the objects which can be accessed by any user
function. It requires the ArgInfo array of argument information. This is normally provided as
one of the arguments to a user function, or it can be created by using the function
XSLPsetuserfuncinfo

The identity of the function and the instance are obtained from the ArgInfo array. Within a user
function, therefore, using the ArgInfo array passed to the user function will change the objects
accessible to that function.

If, instead, XSLPsetfuncobject is used with an array which has been populated by
XSLPsetuserfuncinfo, the Global Function Object can be set as usual. The User Function
Object cannot be set (use XSLPchguserfuncobject for this purpose). There is no Instance
Function Object as such; however, a value can be set by XSLPsetfuncobject which can be used
by the function subsequently called by XSLPcalluserfunc. It is the user’s responsibility to
manage the object and save and restore the address as necessary, because Xpress-SLP will not
retain the information itself.

If Address is NULL, then the corresponding information will be unchanged.

Related topics
XSLPchgfuncobject, XSLPchguserfuncobject, XSLPgetfuncobject,
XSLPgetuserfuncobject, XSLPsetuserfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 458

Library functions and the programming interface Reference

XSLPsetfunctionerror

Purpose
Set the function error flag for the problem

Synopsis
int XPRS_CC XSLPsetfunctionerror(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example from within a user function sets the function error flag if there is an error
during the function evaluation:

double XPRS_CC ProfitCalc(double *Value, int *ArgInfo) {

XSLPprob Prob;

double Factor, Size;

Factor = Value[0];

Size = Value[1];

if (Factor < 0) {

XSLPgetfuncobject(ArgInfo, XSLP_XSLPPROBLEM, &Prob);

XSLPsetfunctionerror(Prob);

return 0.0;

}

return pow(Factor,Size);

}

Note the use of XSLPgetfuncobject to retrieve the Xpress-SLP problem.

Further information
Once the function error has been set, calculations generally stop and the routines will return to
their caller with a nonzero return code.

Fair Isaac Corporation Confidential and Proprietary Information 459

Library functions and the programming interface Reference

XSLPsetintcontrol

Purpose
Set the value of an integer problem control

Synopsis
int XPRS_CC XSLPsetintcontrol(XSLPprob Prob, int Param, int iValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

iValue The value to be set.

Example
The following example sets the value of the Xpress-SLP control XSLP_ALGORITHM and of the
optimizer control XPRS_DEFAULTALG:

XSLPsetintcontrol(Prob, XSLP_ALGORITHM, 934);

XSLPsetintcontrol(Prob, XPRS_DEFAULTALG, 3);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSsetintcontrol.

Related topics
XSLPgetintcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 460

Library functions and the programming interface Reference

XSLPsetlogfile

Purpose
Define an output file to be used to receive messages from Xpress-SLP

Synopsis
int XPRS_CC XSLPsetlogfile(XSLPprob Prob, char *Filename, int Option);

Arguments
Prob The current SLP problem.

FileName Character string containing the name of the file to be used for output.

Option Option to indicate whether the output is directed to the file only (Option=0) or (in
console mode) to the console as well (Option=1).

Example
The following example defines a log file "MyLog1" and directs output to the file and to the
console:

XSLPsetlogfile(Prob, "MyLog1", 1);

Further information
If Filename is NULL, the current log file (if any) will be closed, and message handling will revert
to the default mechanism.

Related topics
XSLPsetcbmessage, XSLPsetcbmessageF

Fair Isaac Corporation Confidential and Proprietary Information 461

Library functions and the programming interface Reference

XSLPsetparam

Purpose
Set the value of a control parameter by name

Synopsis
int XPRS_CC XSLPsetparam(XSLPprob Prob, const char *Param,

const char *cValue);

Arguments
Prob The current SLP problem.

Param Name of the control or attribute whose value is to be returned.

cValue Character buffer containing the value.

Example
The following example sets the value of XSLP_ALGORITHM:

XSLPprob Prob;

int Algorithm;

char Buffer[32];

Algorithm = 934;

sprintf(Buffer,"%d",Algorithm);

XSLPsetparam(Prob, "XSLP_ALGORITHM", Buffer);

Further information
This function can be used to set any Xpress-SLP or Optimizer control. The value is always passed
as a character string. It is the user’s responsibility to create the character string in an appropriate
format.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetparam, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 462

Library functions and the programming interface Reference

XSLPsetstrcontrol

Purpose
Set the value of a string problem control

Synopsis
int XPRS_CC XSLPsetstrcontrol(XSLPprob Prob, int Param,

const char *cValue);

Arguments
Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

cValue Character buffer containing the value.

Example
The following example sets the value of the Xpress-SLP control XSLP_CVNAME and of the
optimizer control XPRS_MPSOBJNAME:

XSLPsetstrcontrol(Prob, XSLP_CVNAME, "CharVars");

XSLPsetstrcontrol(Prob, XPRS_MPSOBJNAME, "_OBJ_");

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSsetstrcontrol.

Related topics
XSLPgetstrcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 463

Library functions and the programming interface Reference

XSLPsetstring

Purpose
Set a value in the Xpress-SLP string table

Synopsis
int XPRS_CC XSLPsetstring(XSLPprob Prob, int *Param, const char *cValue);

Arguments
Prob The current SLP problem.

Param Address of an integer to receive the index of the string in the Xpress-SLP string
table.

cValue Value to be set.

Example
The following example puts the current date and time into the Xpress-SLP string table and later
recovers and prints it:

int iTime;

char *Buffer[200];

time_t Time;

time(&Time);

XSLPsetstring(Prob, &iTime, ctime(Time));

...

XSLPgetstring(Prob, iTime, Buffer);

printf("\nStarted at %s",Buffer);

Further information
XSLPsetstring provides a convenient way of passing string information between routines by
means of integer indices.

Related topics
XSLPgetstring

Fair Isaac Corporation Confidential and Proprietary Information 464

Library functions and the programming interface Reference

XSLPsetuniqueprefix

Purpose
Find a prefix character string which is different from all the names currently in use within the SLP
problem

Synopsis
int XPRS_CC XSLPsetuniqueprefix(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example reads a problem from file and then finds a unique prefix so that new
names can be added without fear of duplications:

char Prefix[20];

XSLPreadprob(Prob, "Matrix", "");

XSLPsetuniqueprefix(Prob);

XSLPgetstrattrib(Prob, XSLP_UNIQUEPREFIX, Prefix);

printf("\nNo names start with %s",Prefix);

Further information
The unique prefix may be more than one character in length, and may change if new names are
added to the problem. The value of the unique prefix can be obtained from the string attribute
XSLP_UNIQUEPREFIX.

Fair Isaac Corporation Confidential and Proprietary Information 465

Library functions and the programming interface Reference

XSLPsetuserfuncaddress

Purpose
Change the address of a user function

Synopsis
int XPRS_CC XSLPsetuserfuncaddress(XSLPprob Prob, int nSLPUF,

void *Address);

Arguments
Prob The current SLP problem.

nSLPUF The index of the user function.

Address The address of the user function.

Example
The following example defines a user function via XSLPchguserfunc and then re-defines the
address.

double InternalFunc(double *, int *);

int nUF;

XSLPchguserfunc(Prob, 0, NULL, 023, 1,

NULL, NULL, NULL);

XSLPgetintattrib(Prob,XSLP_UFS,&nUF);

XSLPaddnames(Prob,XSLP_USERFUNCNAMES,"Func1",

nUF,nUF);

XSLPsetuserfuncaddress(Prob, nUF, InternalFunc);

Note that InternalFunc is defined as taking two arguments (double* and int*). This matches
the ArgType setting in XSLPchguserfunc. The external function name is NULL because it is not
required when the address is given.

Further information
nSLPUF is an Xpress-SLP index and always counts from 1.

The address of the function is changed to the one provided. XSLPsetuserfuncaddress should
only be used for functions declared as of type DLL. Its main use is where a user function is actually
internal to the system rather than being provided in an external library. In such a case, the
function is initially defined as an external function using XSLPloaduserfuncs,
XSLPadduserfuncs or XSLPchguserfunc and the address of the function is then provided
using XSLPsetuserfuncaddress.

Related topics
XSLPadduserfuncs XSLPchguserfunc, XSLPchguserfuncaddress XSLPgetuserfunc,
XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 466

Library functions and the programming interface Reference

XSLPsetuserfuncinfo

Purpose
Set up the argument information array for a user function call

Synopsis
int XPRS_CC XSLPsetuserfuncinfo(XSLPprob Prob, int *ArgInfo,

int CallerFlag, int nInput, int nReturn, int nDelta, int nInString,

int nOutString);

Arguments
Prob The current SLP problem.

ArgInfo The array to be set up. This must be dimensioned at least XSLP_FUNCINFOSIZE.

CallerFlag An integer which can be used for any purpose to communicate between the
calling and called program. This value will always be zero for user functions which
are called directly by Xpress-SLP.

nInput The number of input values.

nReturn The number of return values required.

nDelta The number of sets of partial derivatives required.

nInString The number of strings contained in the ARGNAME argument to the user function.

nOutString The number of strings contained in the RETNAME argument to the user function .

Example
The following example sets up the argument information array and then calls the user function
ProfitCalc:

int ArgInfo[XSLP_FUNCINFOSIZE];

double Values[3];

int iFunc;

XSLPsetuserfuncinfo(Prob, ArgInfo, 99, 3, 1,

0, 0, 0);

XSLPgetindex(Prob, XSLP_USERFUNCNAMESNOCASE,

"PackCalcs", &iFunc);

Result = XSLPcalluserfunc(Prob, iFunc, Values,

ArgInfo, NULL, NULL, NULL, NULL);

The function is called with 3 values in Value and expects 1 return value. There are no names
expected by the function.

Further information
The total number of values returned will be (nReturn)*(nDelta+1).

Related topics
XSLPchgfuncobject, XSLPgetfuncobject, XSLPsetfuncobject, XSLPcalluserfunc

Fair Isaac Corporation Confidential and Proprietary Information 467

Library functions and the programming interface Reference

XSLPsetuserfuncobject

Purpose
Set or define one of the objects which can be accessed by the user functions

Synopsis
int XPRS_CC XSLPsetuserfuncobject(XSLPprob Prob, int Entity,

void *Address);

Arguments
Prob The current SLP problem.

Entity An integer indicating which object is to be defined. The value is interpreted as
follows:
0 The Global Function Object;
n > 0 The User Function Object for user function number n;
n < 0 The Instance Function Object for user function instance number -n.

Address The address of the object.

Example
The following example sets the Global Function Object. It then sets the User Function Object for
the function ProfitCalcs.

double *GlobObj;

void *ProfitObj;

int iUF;

XSLPsetuserfuncobject(Prob, 0, GlobObj);

if (!XSLPgetindex(Prob, XSLP_USERFUNCNAMESNOCASE,

"ProfitCalcs", &iUF)) {

XSLPsetuserfuncobject(Prob, iUF, ProfitObj);

}

The function objects can be of any type. The index of the user function is obtained using the
case-insensitive search for names. If the name is not found, XSLPgetindex returns a nonzero
value.

Further information
As instance numbers are not normally meaningful, this function should only be used with a
negative value of n to reset all Instance Function Objects to NULL when a model is being
re-optimized within the same program execution.

Related topics
XSLPchgfuncobject, XSLPchguserfuncobject, XSLPsetfuncobject

Fair Isaac Corporation Confidential and Proprietary Information 468

Library functions and the programming interface Reference

XSLPtime

Purpose
Print the current date and time

Synopsis
int XPRS_CC XSLPtime(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example prints the date and time before and after reading a problem from file:

XSLPtime(Prob);

XSLPreadprob(Prob, "Matrrix1", "");

XSLPtime(Prob);

Further information
The current date and time are output in accordance with the current settings from
XSLPsetlogfile and any user message callback function.

Related topics
XSLPgetdtime, XSLPgettime, XSLPsetcbmessage, XSLPsetcbmessageF, XSLPsetlogfile

Fair Isaac Corporation Confidential and Proprietary Information 469

Library functions and the programming interface Reference

XSLPtokencount

Purpose
Count the number of tokens in a free-format character string

Synopsis
int XPRS_CC XSLPtokencount(const char *Record);

Argument
Record The character string to be processed. This must be terminated with a null character.

Return value
The number of tokens (strings separated by one or more spaces) in Record.

Example
The following example counts the number of tokens in the string "sin (x + y)":

int nToken;

nToken = XSLPcounttokens("sin (x + y)");

Further information
Record should follow the conventions for Extended MPS Format, with each token being
separated by one or more spaces from the previous token.

Related topics
XSLPqparse

Fair Isaac Corporation Confidential and Proprietary Information 470

Library functions and the programming interface Reference

XSLPunconstruct

Purpose
Reset the SLP problem and removes the augmentation structures

Synopsis
int XPRS_CC XSLPunconstruct(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Can be used to rerun the SLP optimization process with changed parameters or underlying lienar
/ nonlienar strcutures.

Related topics
XSLPcreateprob, XSLPdestroyprob, XSLPreinitialize, XSLPsetcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 471

Library functions and the programming interface Reference

XSLPupdatelinearization

Purpose
Updates the current linearization

Synopsis
int XPRS_CC XSLPupdatelinearization(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Updates the augmented probem (the linearization) to match the current base point. The base
point is the current SLP solution. The values of the SLP variables can be changed using
XSLPchgvar.

The linearization must be present, and this function can only be called after the problem has
been augmented by XSLPconstruct.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 472

Library functions and the programming interface Reference

XSLPuprintmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis
int XPRS_CC XSLPuprintmemory(XSLPprob prob);

Argument
Prob The current SLP problem.

Example
The following example loads a problem from file and then prints the dimensions of the arrays.

XSLPreadprob(Prob, "Matrix1", "");

XSLPuprintmemory(Prob);

The output is similar to the following:

Arrays and dimensions:

Array Item Used Max Allocated Memory

Size Items Items Memory Control

MemList 28 103 129 4K

String 1 8779 13107 13K XSLP_MEM_STRING

Xv 16 2 1000 16K XSLP_MEM_XV

Xvitem 48 11 1000 47K XSLP_MEM_XVITEM

....

Further information
XSLPuprintmemory lists the current sizes and amounts used of the variable arrays in the current
problem. For each array, the size of each item, the number used and the number allocated are
shown, together with the size of memory allocated and, where appropriate, the name of the
memory control variable to set the array size. Loading and execution of some problems can be
speeded up by setting the memory controls immediately after the problem is created. If an array
has to be moved to re-allocate it with a larger size, there may be insufficient memory to hold
both the old and new versions; pre-setting the memory controls reduces the number of such
re-allocations which take place and may allow larger problems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 473

Library functions and the programming interface Reference

XSLPuserfuncinfo

Purpose
Get or set user function declaration information

Synopsis
int XSLP_CC XSLPuserfuncinfo(XSLPprob prob, int iFunc, int InfoType,

void *Info);

Arguments
Prob The current SLP problem.

iFunc Index of the user function

InfoType Type of information to be set or retrieved

Info Address of information to be set or retrieved

Example
The following example sets the external name of user function number 4 to "ANewFunc":

XSLPuserfuncinfo(Prob,4,XSLP_SETUFNAME,"ANewFunc");

Further information
This function allows the setting or retrieving of individual items for a user function. The
following constants are provided for user function handling:

XSLP_GETUFNAME Retrieve the external name of the user function

XSLP_GETUFPARAM1 Retrieve the first string parameter

XSLP_GETUFPARAM2 Retrieve the second string parameter

XSLP_GETUFPARAM3 Retrieve the third string parameter

XSLP_GETUFARGTYPE Retrieve the argument types

XSLP_GETUFEXETYPE Retrieve the linkage type

XSLP_SETUFNAME Set the external name of the user function

XSLP_SETUFPARAM1 Set the first string parameter

XSLP_SETUFPARAM2 Set the second string parameter

XSLP_SETUFPARAM3 Set the third string parameter

XSLP_SETUFARGTYPE Set the argument types

XSLP_SETUFEXETYPE Set the linkage type

For information which sets or retrieves character string information, Info is the string to be used
or a buffer large enough to hold the string to be retrieved.
For other information, Info is the address of an integer containing the information or to receive
the information.

Related topics
XSLPadduserfuncs, XSLPchguserfunc, XSLPgetuserfuncs, XSLPloaduserfuncs

Fair Isaac Corporation Confidential and Proprietary Information 474

Library functions and the programming interface Reference

XSLPvalidformula

Purpose
Check a formula in internal (parsed or unparsed) format for unknown tokens

Synopsis
int XPRS_CC XSLPvalidformula(int *inType, double *inValue, int *nToken,

char *Name, char *StringTable);

Arguments
inType Array of token types providing the formula.

inValue Array of values corresponding to the types in inType

nToken Number of the first invalid token in the formula. A value of zero means that the
formula is valid. May be NULL if not required.

Name Character buffer to hold the name of the first invalid token. May be NULL if not
required.

StringTable Character buffer holding the names of the unidentified tokens (this can be
created by XSLPpreparseformula).

Example
The following example pre-parses the formula "sin (x + y)" and then tries to identify the
unknown tokens:

int n, Index, NewType, Type[20];

double Value[20];

char Strings[200], Name[20];

XSLPpreparseformula(Prob, "sin (x + y)", NULL,

Type, Value, Strings, NULL);

for (;;) {

XSLPvalidformula(&Type[n], &Value[n], &n, Name, Strings);

if (n == 0) break;

Index = 0;

if (Type[n+1] == XSLP_LB) { /* function */

NewType = XSLP_IFUN;

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

Name, &Index);

}

else { /* try for column */

NewType = XSLP_VAR;

XSLPgetindex(Prob, 2, Name, &Index);

}

if (Index) {

Type[n] = NewType; Value[n] = Index;

}

else {

printf("\nUnidentified token %s",Name);

break;

}

}

XSLPpreparseformula converts the formula into unparsed internal format.
XSLPvalidformula then checks forward from the last invalid token and tries to identify it as an
internal function (followed by a left bracket) or as a column (otherwise). If it cannot be
identified, the checking stops with an error message. Otherwise, the token type and value are
updated and the procedure continues.

Fair Isaac Corporation Confidential and Proprietary Information 475

Library functions and the programming interface Reference

Related topics
XSLPpreparseformula

Fair Isaac Corporation Confidential and Proprietary Information 476

Library functions and the programming interface Reference

XSLPvalidate

Purpose
Validate the feasibility of constraints in a converged solution

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example
The following example sets the validation tolerance parameters, validates the converged solution
and retrieves the validation indices.

double IndexA, IndexR;

XSLPsetdblcontrol(Prob, XSLP_VALIDATIONTOL_A, 0.001);

XSLPsetdblcontrol(Prob, XSLP_VALIDATIONTOL_R, 0.001);

XSLPvalidate(Prob);

XSLPgetdblattrib(Prob, XSLP_VALIDATIONINDEX_A, &IndexA);

XSLPgetdblattrib(Prob, XSLP_VALIDATIONINDEX_R, &IndexA);

Further information
XSLPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the constraint
is infeasible, then the difference (D) is tested against the absolute and relative validation
tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos), ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is outside
both the absolute and relative validation tolerances, validation factors are calculated which are
the factors by which the infeasibility exceeds the corresponding validation tolerance; the smallest
factor is printed in the validation report.
The validation index XSLP_VALIDATIONINDEX_A is the largest absolute validation factor
multiplied by the absolute validation tolerance; the validation index XSLP_VALIDATIONINDEX_R

is the largest relative validation factor multiplied by the relative validation tolerance.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 477

Library functions and the programming interface Reference

XSLPvalidatekkt

Purpose
Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT)
conditions versus the currect solution

Synopsis
int XPRS_CC XSLPvalidatekkt(XSLPprob Prob, int iCalculationMode,

int iRespectBasisStatus, int iUpdateMultipliers,

double dKKTViolationTarget);

Arguments
Prob The current SLP problem.

iCalculationMode The calculation mode can be:
0 recalculate the reduced costs at the current solution using the current

dual solution.
1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

iRespectBasisStatus The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus XSLP_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

iUpdateMultipliers The calculated values can be:
0 only used to calculate the XSLP_VALIDATIONINDEX_K measure.
1 used to update the current dual solution and reduced costs.

dKKTViolationTarget When calculating the best KKT multipliers, it is possible to enforce an
even distribution of reduced costs violations by enforcing a bound on them.

Further information
The bounds enforced by dKKTViolationTarget are automatically relaxed if the desired accuracy
cannot be achieved.

Fair Isaac Corporation Confidential and Proprietary Information 478

Library functions and the programming interface Reference

XSLPvalidaterow

Purpose
Prints an excessive analysis on a given constraint of the SLP problem

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob Prob, int Row);

Arguments
Prob The current SLP problem.

Row The index of the row to be analyzed

Further information
The analysis will include the readable format of the original constraint and the augmented
constraint. For infeasible constraints, the absolute and relative infeasibility is calculated. Variables
in the constraints are listed including their value in the solution of the last linearization, the
internal value (e.g. cascaded), reduced cost, step bound and convergence status. Scaling analysis
is also provided.

Fair Isaac Corporation Confidential and Proprietary Information 479

Library functions and the programming interface Reference

XSLPvalidatevector

Purpose
Validate the feasibility of constraints for a given solution

Synopsis
int XPRS_CC XSLPvalidate(XSLPprob Prob, double *Vector, double *SumInf,

double *SumScaledInf, double *Objective);

Arguments
Prob The current SLP problem.

Vector A vector of length XPRS_COLS containing the solution vector to be checked.

SumInf Pointer to double in which the sum of infeasibility will be returned. May be NULL if
not required.

SumScaledInf Pointer to double in which the sum of scaled (relative) infeasibility will be
returned. May be NULL if not required.

Objective Pointer to double in which the net objective will be returned. May be NULL if not
required.

Further information
XSLPvalidatevector works the same way as XSLPvalidate, and will update
XSLP_VALIDATIONINDEX_A and XSLP_VALIDATIONINDEX_R.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 480

Library functions and the programming interface Reference

XSLPwriteprob

Purpose
Write the current problem to a file in extended MPS or text format

Synopsis
int XPRS_CC XSLPwriteprob(XSLPprob Prob, char *Filename, char *Flags);

Arguments
Prob The current SLP problem.

Filename Character string holding the name of the file to receive the output. The extension
".mat" will automatically be appended to the file name, except for "text" format
when ".txt" will be appended.

Flags The following flags can be used:
a write the current approximation (linearized) matrix (the default is to

write the non-linear matrix including formulae);
o one coefficient per line (the default is up to two numbers or one

formula per line);
l write the matrix in the tradition LP like format. Similar to the "text"

format, with more SLP specific information
s "scrambled" names (the default is to use the names provided on

input);
t write the matrix in "text" (the default is to write extended MPS

format).
x use hexadecimal numbers in the mps output (eliminate floating point

representation error).

Example
The following example reads a problem from file, augments it and writes the augmented
(linearized) matrix in text form to file "output.txt":

XSLPreadprob(Prob, "Matrix", "");

XSLPconstruct(Prob);

XSLPwriteprob(Prob, "output", "lt");

Further information
The t flag is used to produce a "human-readable" form of the problem. It is similar to the lp

format of XPRSwriteprob, but does not contain all the potential complexities of the Extended
MPS Format, so the resulting file cannot be used for input. A quadratic objective is written with
its true coefficients (not scaled by 2 as in the equivalent lp format).

Related topics
XSLPreadprob

Fair Isaac Corporation Confidential and Proprietary Information 481

Library functions and the programming interface Reference

XSLPwriteslxsol

Purpose
Write the current solution to an MPS like file format

Synopsis
int XPRS_CC XSLPwriteslxsol(XSLPprob Prob, char *Filename, char *Flags);

Arguments
Prob The current SLP problem.

Filename Character string holding the name of the file to receive the output. The extension
".slx" will automatically be appended to the file name, unless an extension is
already specified in the filename.

Flags The following flags can be used:
p Use double precision numbers

Fair Isaac Corporation Confidential and Proprietary Information 482

CHAPTER 22

Internal Functions

Xpress-SLP provides a set of standard functions for use in formulae. Many are standard
mathematical functions; there are a few which are intended for specialized applications.

The following is a list of all the Xpress-SLP internal functions:

ABS Absolute value p. 493

ACT Activity (left hand side) of a row p. 510

ARCCOS Arc cosine trigonometric function p. 486

ARCSIN Arc sine trigonometric function p. 487

ARCTAN Arc tangent trigonometric function p. 488

COS Cosine trigonometric function p. 489

DJ Reduced cost (DJ) of a column p. 511

EQ Equality test p. 501

EXP Exponential function (e raised to the power) p. 494

GE Greater than or equal test p. 502

GT Greater than test p. 503

IAC Gasoline blending interaction coefficients p. 521

IF Zero/nonzero test p. 504

INTERP General-purpose interpolation p. 522

LE Less than or equal test p. 505

LN Natural logarithm p. 495

LO Lower bound of a column p. 512

LOG, LOG10 Logarithm to base 10 p. 496

LT Less than test p. 506

MATRIX Current matrix entry p. 513

MAX Maximum value of an arbitrary number of items p. 497

MIN Minimum value of an arbitrary number of items p. 498

MV Marginal value of a row p. 514

Fair Isaac Corporation Confidential and Proprietary Information 483

Internal Functions Reference

NE Inequality test p. 507

NOT Logical inversion p. 508

PARAM Value of a numeric attribute or control p. 515

RHS Right hand side of a row p. 516

RHSRANGE Range (upper limit minus lower limit of the right side) of a row p. 517

SIN Sine trigonometric function p. 490

SLACK Slack activity of a row p. 518

SQRT Square root p. 499

TAN Tangent trigonometric function p. 491

UP Upper bound of a column p. 519

Fair Isaac Corporation Confidential and Proprietary Information 484

Internal Functions Reference

22.1 Trigonometric functions

The trigonometric functions SIN, COS and TAN return the value corresponding to their argument
in radians. SIN and COS are well-defined, continuous and differentiable for all values of their
arguments; care must be exercised when using TAN because it is discontinuous.

The inverse trigonometric functions ARCSIN and ARCCOS are undefined for arguments outside
the range -1 to +1 and special care is required to ensure that no attempt is made to evaluate
them outside this range. Derivatives for the inverse trigonometric functions are always calculated
numerically.

Fair Isaac Corporation Confidential and Proprietary Information 485

Internal Functions Reference

ARCCOS

Purpose
Arc cosine trigonometric function

Synopsis
ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Return value
A value in the range 0 to +π.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

ARCCOS(0.99)

ARCCOS(A)

ARCCOS(B^2)

ARCCOS(SQRT(A))

ARCCOS(XVA)

ARCCOS(XVB)

Further information
value must be in the range -1 to +1. Values outside the range will return zero and produce an
appropriate error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be
set.

Fair Isaac Corporation Confidential and Proprietary Information 486

Internal Functions Reference

ARCSIN

Purpose
Arc sine trigonometric function

Synopsis
ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Return value
A value in the range −π / 2 to +π / 2.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

ARCSIN(0.99)

ARCSIN(A)

ARCSIN(B^2)

ARCSIN(SQRT(A))

ARCSIN(XVA)

ARCSIN(XVB)

Further information
value must be in the range -1 to +1. Values outside the range will return zero and produce an
appropriate error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be
set.

Fair Isaac Corporation Confidential and Proprietary Information 487

Internal Functions Reference

ARCTAN

Purpose
Arc tangent trigonometric function

Synopsis
ARCTAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Return value
A value in the range −π / 2 to +π / 2.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

ARCTAN(99)

ARCTAN(A)

ARCTAN(B^2)

ARCTAN(SQRT(A))

ARCTAN(XVA)

ARCTAN(XVB)

Fair Isaac Corporation Confidential and Proprietary Information 488

Internal Functions Reference

COS

Purpose
Cosine trigonometric function

Synopsis
COS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

COS(99)

COS(A)

COS(B^2)

COS(SQRT(A))

COS(XVA)

COS(XVB)

Fair Isaac Corporation Confidential and Proprietary Information 489

Internal Functions Reference

SIN

Purpose
Sine trigonometric function

Synopsis
SIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

SIN(99)

SIN(A)

SIN(B^2)

SIN(SQRT(A))

SIN(XVA)

SIN(XVB)

Fair Isaac Corporation Confidential and Proprietary Information 490

Internal Functions Reference

TAN

Purpose
Tangent trigonometric function

Synopsis
TAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

TAN(99)

TAN(A)

TAN(B^2)

TAN(SQRT(A))

TAN(XVA)

TAN(XVB)

Fair Isaac Corporation Confidential and Proprietary Information 491

Internal Functions Reference

22.2 Other mathematical functions

Most of the mathematical functions are differentiable, although care should be taken in using
analytic derivatives where the derivative is changing rapidly.

Fair Isaac Corporation Confidential and Proprietary Information 492

Internal Functions Reference

ABS

Purpose
Absolute value

Synopsis
ABS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

ABS(99)

ABS(A)

ABS(B^2)

ABS(SQRT(A))

ABS(XVA)

ABS(XVB)

Further information
ABS is not always differentiable and so alternative modeling approaches should be used where
possible.

Fair Isaac Corporation Confidential and Proprietary Information 493

Internal Functions Reference

EXP

Purpose
Exponential function (e raised to the power)

Synopsis
EXP(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

EXP(99)

EXP(A)

EXP(B^2)

EXP(SQRT(A))

EXP(XVA)

EXP(XVB)

Fair Isaac Corporation Confidential and Proprietary Information 494

Internal Functions Reference

LN

Purpose
Natural logarithm

Synopsis
LN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

LN(99)

LN(A)

LN(B^2)

LN(SQRT(A))

LN(XVA)

LN(XVB)

Further information
value must be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 495

Internal Functions Reference

LOG, LOG10

Purpose
Logarithm to base 10

Synopsis
LOG(value)

LOG10(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

LOG(99)

LOG10(99)

LOG(A)

LOG10(A)

LOG(B^2)

LOG10(B^2)

LOG(SQRT(A))

LOG10(SQRT(A))

LOG(XVA)

LOG10(XVA)

LOG(XVB)

LOG10(XVB)

Further information
value must be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 496

Internal Functions Reference

MAX

Purpose
Maximum value of an arbitrary number of items

Synopsis
MAX(value1, value2, ...)

Argument
value1, ... Each argument is one of the following: a constant; a variable; a formula

evaluating to a single value; or an XV

Example
Given the following matrix items:

Column: A

Column: B

XV : XVB: = = = B ^ 2

= = = A * B

then the following are all valid uses of the function:

MAX(A,99)

MAX(A,B,99)

MAX(A,B^2)

MAX(SQRT(A),B)

MAX(XVB)

Further information
MAX is not always differentiable and so alternative modeling approaches should be used where
possible.

If an XV is used as an argument to the function, then all members of the XV will be included.

Fair Isaac Corporation Confidential and Proprietary Information 497

Internal Functions Reference

MIN

Purpose
Minimum value of an arbitrary number of items

Synopsis
MIN(value1, value2, ...)

Argument
value1, ... Each argument is one of the following: a constant; a variable; a formula

evaluating to a single value; or an XV

Example
Given the following matrix items:

Column: A

Column: B

XV : XVB: = = = B ^ 2

= = = A * B

then the following are all valid uses of the function:

MIN(A,99)

MIN(A,B,99)

MIN(A,B^2)

MIN(SQRT(A),B)

MIN(XVB)

Further information
MIN is not always differentiable and so alternative modeling approaches should be used where
possible.

If an XV is used as an argument to the function, then all members of the XV will be included.

Fair Isaac Corporation Confidential and Proprietary Information 498

Internal Functions Reference

SQRT

Purpose
Square root

Synopsis
SQRT(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

SQRT(99)

SQRT(A)

SQRT(B^2)

SQRT(SQRT(A))

SQRT(XVA)

SQRT(XVB)

Further information
value must be non-negative.

Fair Isaac Corporation Confidential and Proprietary Information 499

Internal Functions Reference

22.3 Logical functions

The logical functions all return 0 for "false" and 1 for "true". They are implemented so that
complementary functions are never both true or both false.

For example:
exactly one of EQ(X, Y) and NE(X, Y) is true;
exactly one of LT(X, Y) and GE(X, Y) is true;
exactly one of IF(X) and NOT(X) is true;
if LE(X, Y) is true, then exactly one of LT(X, Y) and EQ(X, Y) is true.

Equality tests are carried out using the tolerances XSLP_EQTOL_A and XSLP_EQTOL_R. If
abs(X − Y) < XSLP_EQTOL_A or
abs(X − Y) < abs(X) ∗ XSLP_EQTOL_R
then X and Y are regarded as equal.

Functions IF and NOT test for zero using tolerance XSLP_EQTOL_A.

Because of these tolerances, it is possible that EQ(X, Y) and EQ(Y, Z) are both true, but EQ(X, Z) is
false. Where multiple tests of this type are being carried out, they should all test against the same
value if possible.

Logical functions are not continuous or differentiable, and should be used with care in
coefficients. Alternative modeling approaches should be used where possible.

Fair Isaac Corporation Confidential and Proprietary Information 500

Internal Functions Reference

EQ

Purpose
Equality test

Synopsis
EQ(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is not equal to value2 within tolerance;
1 ("true") if value1 is equal to value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

EQ(A,99)

EQ(A,B)

EQ(A,B^2)

EQ(XVB,SQRT(A))

EQ(XVA,XVB)

EQ(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 501

Internal Functions Reference

GE

Purpose
Greater than or equal test

Synopsis
GE(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is not greater than or equal to value2 within tolerance;
1 ("true") if value1 is greater than or equal to value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

GE(A,99)

GE(A,B)

GE(A,B^2)

GE(XVB,SQRT(A))

GE(XVA,XVB)

GE(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 502

Internal Functions Reference

GT

Purpose
Greater than test

Synopsis
GT(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is not greater than value2 within tolerance;
1 ("true") if value1 is greater than value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

GT(A,99)

GT(A,B)

GT(A,B^2)

GT(XVB,SQRT(A))

GT(XVA,XVB)

GT(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 503

Internal Functions Reference

IF

Purpose
Zero/nonzero test

Synopsis
IF(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Return value
0 ("false") if value1 is equal to zero within tolerance;
1 ("true") if value1 is not equal to zero within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

IF(99)

IF(B)

IF(XVB)

IF(EQ(XVA,XVB)+EQ(A,B))

IF(A-99)

Fair Isaac Corporation Confidential and Proprietary Information 504

Internal Functions Reference

LE

Purpose
Less than or equal test

Synopsis
LE(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is not less than or equal to value2 within tolerance;
1 ("true") if value1 is less than or equal to value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

LE(A,99)

LE(A,B)

LE(A,B^2)

LE(XVB,SQRT(A))

LE(XVA,XVB)

LE(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 505

Internal Functions Reference

LT

Purpose
Less than test

Synopsis
LT(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is not less than value2 within tolerance;
1 ("true") if value1 is less than value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

LT(A,99)

LT(A,B)

LT(A,B^2)

LT(XVB,SQRT(A))

LT(XVA,XVB)

LT(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 506

Internal Functions Reference

NE

Purpose
Inequality test

Synopsis
NE(value1, value2)

Arguments
value1 One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

value2 One of the following: a constant; a variable; a formula evaluating to a single value;
or an XV with only one item

Return value
0 ("false") if value1 is equal to value2 within tolerance;
1 ("true") if value1 is not equal to value2 within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

NE(A,99)

NE(A,B)

NE(A,B^2)

NE(XVB,SQRT(A))

NE(XVA,XVB)

NE(99,XVB)

Fair Isaac Corporation Confidential and Proprietary Information 507

Internal Functions Reference

NOT

Purpose
Logical inversion

Synopsis
NOT(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value;

or an XV with only one item

Return value
0 ("false") if value1 is not equal to zero within tolerance;
1 ("true") if value1 is equal to zero within tolerance.

Example
Given the following matrix items:

Column: A

Column: B

XV : XVA: A

XV : XVB: = = = B ^ 2

then the following are all valid uses of the function:

NOT(99)

NOT(B)

NOT(XVB)

NOT(EQ(XVA,XVB)+EQ(A,B))

NOT(A-99)

Fair Isaac Corporation Confidential and Proprietary Information 508

Internal Functions Reference

22.4 Problem-related functions

The problem-related functions allow access to a limited range of problem and solution data. If
they are used in formulae for coefficients they will be regarded as constants (their derivatives will
be zero).

Row and column indices used as arguments to the functions always count from 1.

Fair Isaac Corporation Confidential and Proprietary Information 509

Internal Functions Reference

ACT

Purpose
Activity (left hand side) of a row

Synopsis
ACT(RowIndex)

Argument
RowIndex The index of a row

Example
The following formula starts a delayed constraint when the activity of row 99 becomes greater
than 5:

DC MyRow 0 = GT (ACT (99) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the row can be
used instead, and will be translated internally into the row index.

Fair Isaac Corporation Confidential and Proprietary Information 510

Internal Functions Reference

DJ

Purpose
Reduced cost (DJ) of a column

Synopsis
DJ(ColIndex)

Argument
ColIndex The index of a column

Example
The following formula starts a delayed constraint when the DJ of column 99 becomes greater
than 5:

DC MyRow 0 = GT (DJ (99) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the column can
be used instead, and will be translated internally into the column index.

Fair Isaac Corporation Confidential and Proprietary Information 511

Internal Functions Reference

LO

Purpose
Lower bound of a column

Synopsis
LO(ColIndex)

Argument
ColIndex The index of a column

Example
The following formula starts a delayed constraint when the activity of column MyCol (with index
99) is within 5 of its lower bound:

DC MyRow 0 = LT (MyCol - LO (99) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the column can
be used instead, and will be translated internally into the column index.

Fair Isaac Corporation Confidential and Proprietary Information 512

Internal Functions Reference

MATRIX

Purpose
Current matrix entry

Synopsis
MATRIX(RowIndex, ColIndex)

Arguments
RowIndex The index of a row

ColIndex The index of a column

Example
The following formula starts a delayed constraint when the value of the coefficient in row 99,
column 7 is greater than 5:

DC MyRow 0 = GT (MATRIX (99 , 7) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the names of the row and
column can be used instead, and will be translated internally into the corresponding indices.

Fair Isaac Corporation Confidential and Proprietary Information 513

Internal Functions Reference

MV

Purpose
Marginal value of a row

Synopsis
MV(RowIndex)

Argument
RowIndex The index of a row

Example
The following formula starts a delayed constraint when the marginal value of row 99 becomes
greater than 5:

DC MyRow 0 = GT (MV (99) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the row can be
used instead, and will be translated internally into the row index.

Fair Isaac Corporation Confidential and Proprietary Information 514

Internal Functions Reference

PARAM

Purpose
Value of a numeric attribute or control

Synopsis
PARAM(value)

Argument
value One of the following: a constant; a formula evaluating to a constant; or an XV

with only one item which is a constant

Example
The following formula starts a delayed constraint when the SLP iteration count is greater than 5:

DC MyRow 0 = GT (PARAM (12001) , 5)

Further information
XSLP_ITER is number 12001 (see the header file xslp.h for the full list of parameters and values.
The example shows the use of the formula in Extended MPS format; the same information can
also be provided in internal parsed or unparsed format.

Fair Isaac Corporation Confidential and Proprietary Information 515

Internal Functions Reference

RHS

Purpose
Right hand side of a row

Synopsis
RHS(RowIndex)

Argument
RowIndex The index of a row

Example
The following formula starts a delayed constraint when the slack (right hand side minus left hand
side) of row 99 becomes greater than 5:

DC MyRow 0 = GT (RHS (99) - ACT (99) , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the row can be
used instead, and will be translated internally into the row index.

Fair Isaac Corporation Confidential and Proprietary Information 516

Internal Functions Reference

RHSRANGE

Purpose
Range (upper limit minus lower limit of the right side) of a row

Synopsis
RHSRANGE(RowIndex)

Argument
RowIndex The index of a row

Example
The following formula starts a delayed constraint when the slack of row 99 becomes greater than
half the RHS range:

DC MyRow 0 = GT (ACT (99) , 0.5 * RHSRANGE (99))

Further information
When Extended MPS format is used for input of a problem from file, the name of the row can be
used instead, and will be translated internally into the row index.

Fair Isaac Corporation Confidential and Proprietary Information 517

Internal Functions Reference

SLACK

Purpose
Slack activity of a row

Synopsis
SLACK(RowIndex)

Argument
RowIndex The index of a row

Example
The following formula starts a delayed constraint when the slack of row 99 becomes less than 0.5:

DC MyRow 0 = LT (SLACK (99) , 0.5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the row can be
used instead, and will be translated internally into the row index.

Fair Isaac Corporation Confidential and Proprietary Information 518

Internal Functions Reference

UP

Purpose
Upper bound of a column

Synopsis
UP(ColIndex)

Argument
ColIndex The index of a column

Example
The following formula starts a delayed constraint when the activity of column MyCol (with index
99) is within 5 of its upper bound:

DC MyRow 0 = LT (UP (99) - MyCol , 5)

Further information
When Extended MPS format is used for input of a problem from file, the name of the column can
be used instead, and will be translated internally into the column index.

Fair Isaac Corporation Confidential and Proprietary Information 519

Internal Functions Reference

22.5 Specialized functions

The specialized functions are designed for use in particular applications, to reduce the need for
custom-built user functions. Notes about their use will be found under the individual functions.

Fair Isaac Corporation Confidential and Proprietary Information 520

Internal Functions Reference

IAC

Purpose
Gasoline blending interaction coefficients

Synopsis
IAC(X, V1, ..., Vn, C12, C13, ..., C1n, C23, ..., C2n, ..., Cn−1n)

Arguments
X Total quantity.

Vi Quantities of components 1 to n.

Cij Interaction coefficient between component i and component j (i <j).

Example
Typically X and Vi will be variables (although the Vi could be provided in an XV), and the
interaction coefficients Cij are given in an XV. Given the following matrix items:

Column: TotalGas

Columns: Comp1, Comp2, Comp3, Comp4

XV : XVIA: = = 2.2

= = 1.1

= = 0

= = -1

= = 0

= = 2

then the following formula calculates the interaction adjustment for the blend:

= IAC (TotalGas , Comp1 , Comp2 , Comp3 , Comp4 , XVIA)

Further information
IAC is always differentiated using numerical methods.

Fair Isaac Corporation Confidential and Proprietary Information 521

Internal Functions Reference

INTERP

Purpose
General-purpose interpolation

Synopsis
INTERP(X, X1, Y1, X2, Y2, ..., Xn, Yn)

Arguments
X X-value to be interpolated.

Xi, Yi Pairs of values for the interpolation. The Xi must be in increasing order.

Example
Typically X will be a variable and the interpolation pairs (Xi,Yi) are given in an XV. Given the
following matrix items:

Column: Total

XV : XVI: = = 0

= = 0

= = 1

= = 1

= = 2

= = 4

= = 3

= = 9

then the following formula interpolates X:

= INTERP (X, XVI)

Further information
In the above example, if X has a current value of 1.5, then the function will be evaluated as 2.5 (X
is halfway between X = 1 and X = 2, so the result is halfway between Y = 1 and Y = 4). As can be
seen, the points in this case are the squares of the integers, so the function is approximating the
square of X by interpolation.

Fair Isaac Corporation Confidential and Proprietary Information 522

CHAPTER 23

Error Messages

If the optimization procedure or some other library function encounters an error, then the
procedure normally terminates with a nonzero return code and sets an error code. For most
functions, the return code is 32 for an error; those functions which can return Optimizer return
codes (such as the functions for accessing attributes and controls) will return the Optimizer code
in such circumstances.

If an error message is produced, it will normally be output to the message handler; for
console-based output, it will appear on the console. The error message and the error code can
also be obtained using the function XSLPgetlasterror. This allows the user to retrieve the
message number and/or the message text. The format is:

XSLPgetlasterror(Prob, &ErrorCode, &ErrorMessage);

The following is a list of the error codes and an explanation of the message. In the list, error
numbers are prefixed by E- and warnings by W-. The printed messages are generally prefixed by
Xpress-SLP error and Xpress-SLP warning respectively.

E-12001 invalid parameter number num

This message is produced by the functions which access SLP or Optimizer controls and
attributes. The parameter numbers for SLP are given in the header file xslp.h. The
parameter is of the wrong type for the function, or cannot be changed by the user.

E-12002 internal hash error
This is a non-recoverable program error. If this error is encountered, please contact
your local Xpress support office.

E-12003 XSLPprob problem pointer is NULL
The problem pointer has not been initialized and contains a zero address. Initialize
the problem using XSLPcreateprob.

E-12004 XSLPprob is corrupted or is not a valid problem
The problem pointer is not the address of a valid problem. The problem pointer has
been corrupted, and no longer contains the correct address; or the problem has not
been initialized correctly; or the problem has been corrupted in memory. Check that
your program is using the correct pointer and is not overwriting part of the memory
area.

E-12005 memory manager error - allocation error
This message normally means that the system has run out of memory when trying to
allocate or reallocate arrays. Use XSLPuprintmemory to obtain a list of the arrays and
amounts of memory allocated by the system. Ensure that any memory allocated by
user programs is freed at the appropriate time.

Fair Isaac Corporation Confidential and Proprietary Information 523

Error Messages Reference

E-12006 memory manager error - Array expansion size (num) ≤ 0
This may be caused by incorrect setting of the XSLP_EXTRA* control parameters to
negative numbers. Use XSLPuprintmemory to obtain a list of the arrays and amounts
of memory allocated by the system for the specified array. If the problem persists,
please contact your local Xpress support office.

E-12007 memory manager error - object Obj size not defined
This is a non-recoverable program error. If this error is encountered, please contact
your local Xpress support office.

E-12008 cannot open file name

This message appears when Xpress-SLP is required to open a file of any type and
encounters an error while doing so. Check that the file name is spelt correctly
(including the path, directory or folder) and that it is accessible (for example, not
locked by another application).

E-12009 cannot open problem file name

This message is produced by XSLPreadprob if it cannot find name.mat, name.mps or
name. Note that "lp" format files are not accepted for SLP input.

E-12010 internal I/O error
This error is produced by XSLPreadprob if it is unable to read or write intermediate
files required for input.

E-12011 XSLPreadprob unknown record type name

This error is produced by XSLPreadprob if it encounters a record in the file which is
not identifiable. It may be out of place (for example, a matrix entry in the BOUNDS
section), or it may be a completely invalid record type.

E-12012 XSLPreadprob invalid function argument type name

This error is produced by XSLPreadprob if it encounters a user function definition
with an argument type that is not one of NULL, DOUBLE, INTEGER, CHAR or VARIANT.

E-12013 XSLPreadprob invalid function linkage type name

This error is produced by XSLPreadprob if it encounters a user function with a
linkage type that is not one of DLL, XLS, XLF, MOSEL or COM.

E-12014 XSLPreadprob unrecognized function name

This error is produced by XSLPreadprob if it encounters a function reference in a
formula which is not a pre-defined internal function nor a defined user function.
Check the formula and the function name, and define the function if required.

E-12015 func: item num out of range
This message is produced by the Xpress-SLP function func which is referencing the SLP
item (row, column variable, XV, etc). The index provided is out of range (less than 1
unless zero is explicitly allowed, or greater than the current number of items of that
type). Remember that most Xpress-SLP items count from 1.

E-12016 missing left bracket in formula
This message is produced during parsing of formulae provided in character or
unparsed internal format. A right bracket is not correctly paired with a corresponding
left bracket. Check the formulae.

E-12017 missing left operand in formula
This message is produced during parsing of formulae provided in character or
unparsed internal format. An operator which takes two operands is missing the left
hand one (and so immediately follows another operator or a bracket). Check the
formulae.

Fair Isaac Corporation Confidential and Proprietary Information 524

Error Messages Reference

E-12018 missing right operand in formula
This message is produced during parsing of formulae provided in character or
unparsed internal format. An operator is missing the right hand (following) operand
(and so is immediately followed by another operator or a bracket). Check the
formulae.

E-12019 missing right bracket in formula
This message is produced during parsing of formulae provided in character or
unparsed internal format. A left bracket is not correctly paired with a corresponding
right bracket. Check the formulae.

E-12020 column #n is defined more than once as an SLP variable
This message is produced by XSLPaddvars or XSLPloadvars if the same column
appears more than once in the list, or has already been defined as an SLP variable.
Although XSLPchgvar is less efficient, it can be used to set the properties of an SLP
variable whether or not it has already been declared.

E-12021 row #num is defined more than once as an SLP delayed constraint
This message is produced by XSLPadddcs or XSLPloaddcs if the same row appears
more than once in the list, or has already been defined as a delayed constraint.
Although XSLPchgdc is less efficient, it can be used to set the properties of an SLP
delayed constraint whether or not it has already been declared.

E-12022 undefined tolerance type name

This error is produced by XSLPreadprob if it encounters a tolerance which is not one
of the 9 defined types (TC, TA, TM, TI, TS, RA, RM, RI, RS). Check the two-character
code for the tolerance.

W-12023 name has been given a tolerance but is not an SLP variable
This error is produced by XSLPreadprob if it encounters a tolerance for a variable
which is not an SLP variable (it is not in a coefficient, it does not have a non-constant
coefficient and it has not been given an initial value). If the tolerance is required (that
is, if the variable is to be monitored for convergence) then give it an initial value so
that it becomes an SLP variable. Otherwise, the tolerance will be ignored.

W-12024 name has been given SLP data of type ty but is not an SLP variable
This error is produced by XSLPreadprob if it encounters SLPDATA for a variable which
has not been defined as an SLP variable. Typically, this is because the variable would
only appear in coefficients, and the relevant coefficients are missing. The data item
will be ignored.

E-12025 func has the same source and destination problems
This message is produced by XSLPcopycallbacks, XSLPcopycontrols and
XSLPcopyprob if the source and destination problems are the same. If they are the
same, then there is no point in copying them.

E-12026 invalid or corrupt SAVE file
This message is produced by XSLPrestore if the SAVE file header is not valid, or if
internal consistency checks fail. Check that the file exists and was created by
XSLPsave.

E-12027 SAVE file version is too old
This message is produced by XSLPrestore if the SAVE file was produced by an earlier
version of Xpress-SLP. In general, it is not possible to restore a file except with the
same version of the program as the one which SAVEd it.

W-12028 problem already has augmented SLP structure
This message is produced by XSLPconstruct if it is called for a second time for the
same problem. The problem can only be augmented once, which must be done after

Fair Isaac Corporation Confidential and Proprietary Information 525

Error Messages Reference

all the variables and coefficients have been loaded. XSLPconstruct is called
automatically by XSLPmaxim and XSLPminim if it has not been called earlier.

E-12029 zero divisor
This message is produced by the formula evaluation routines if an attempt is made to
divide by a value less than XSLP_ZERO. A value of +/-XSLP_INFINITY is returned as
the result and the calculation continues.

E-12030 negative number, fractional exponent - truncated to integer
This message is produced by the formula evaluation routines if an attempt is made to
raise a negative number to a non-integer exponent. The exponent is truncated to an
integer value and the calculation continues.

E-12031 binary search failed
This is a non-recoverable program error. If this error is encountered, please contact
your local Xpress support office.

E-12032 wrong number (num) of arguments to function func

This message is produced by the formula evaluation routines if a formula contains the
wrong number of arguments for an internal function (for example, SIN(A, B)). Correct
the formula.

E-12033 argument value out of range in function func

This message is produced by the formula evaluation routines if an internal function is
called with an argument outside the allowable range (for example, LOG of a negative
number). The function will normally return zero as the result and, if
XSLP_STOPOUTOFRANGE is set, will set the function error flag.

W-12034 terminated following user return code num

This message is produced by XSLPmaxim and XSLPminim if a nonzero value is
returned by the callback defined by XSLPsetcbiterend or XSLPsetcbslpend.

W-12036 the number of items in XV #num cannot be increased
This message is produced by XSLPchgxv if the number of XVitems specified is larger
than the current number. XSLPchgxv can only reduce the number of items; use
XSLPchgxvitem to add new items.

E-12037 failed to load library/file/program "name" containing function "func"
This message is produced if a user function is defined to be in a file, but Xpress-SLP
cannot the specified file. Check that the correct file name is specified (also check the
search paths such as $PATH and %path% if necessary).
This message may also be produced if the specified library exists but is dependent on
another library which is missing.

E-12038 function "func" is not correctly defined or is not in the specified location
This message is produced if a user function is defined to be in a file, but Xpress-SLP
cannot find it in the file. Check that the number and type of the arguments is correct,
and that the (external) name of the user function matches the name by which it is
known in the file.

E-12039 incorrect OLE version
This message is produced if a user function is specified using an OLE linkage (Excel or
COM) but the OLE version is not compatible with the version used by Xpress-SLP. If this
error is encountered, please contact your local Xpress support office.

E-12040 unable to initialize OLE - code num

This message is produced if the OLE initialization failed. The initialization error code is
printed in hexadecimal. Consult the appropriate OLE documentation to establish the
cause of the error.

Fair Isaac Corporation Confidential and Proprietary Information 526

Error Messages Reference

E-12041 unable to open Excel/COM - code num

This message is printed if the initialization of Excel or COM failed after OLE was
initialized successfully. The error code is printed in hexadecimal. Consult the
appropriate documentation to establish the cause of the error.

E-12042 OLE/Excel/COM error: msg

This message is produced if OLE automation produces an error during transfer of data
to or from Excel or COM. The message text gives more information about the specific
error.

E-12084 Xpress-SLP has not been initialized
An attempt has been made to use Xpress-SLP functions without a previous call to
XSLPinit. Only a very few functions can be called before initialization. Check the
sequence of calls to ensure that XSLPinit is called first, and that it completed
successfully. This error message normally produces return code 279.

E-12085 Xpress-SLP has not been licensed for use here
Either Xpress-SLP is not licensed at all (although the Xpress-Optimizer may be
licensed), or the particular feature (such as MISLP) is not licensed. Check the license
and contact the local Fair Isaac sales office if necessary. This error message normally
produces return code 352.

E-12105 Xpress-SLP error: I/O error on file

The message is produced by XSLPsave or XSLPwriteprob if there is an I/O error
when writing the output file (usually because there is insufficient space to write the
file).

E-12107 Xpress-SLP error: user function type name not supported on this platform
This message is produced if a user function defined as being of type XLS, XLF or COM
and is run on a non-Windows platform.

E-12121 Xpress-SLP error: bad return code num from user function func

This message is produced during evaluation of a complicated user function if it returns
a value (-1) indicating that the system should estimate the result from a previous
function call, but there has been no previous function call.

E-12124 Xpress-SLP error: augmented problem not set up
The message is produced by XSLPvalidate if an attempt is made to validate the
problem without a preceding call to XSLPconstruct. In fact, unless a solution to the
linearized problem is available, XSLPvalidate will not be able to give useful results.

E-12125 Xpress-SLP error: user function func terminated with errors
This message is produced during evaluation of a user function if it sets the function
error flag (see XSLPsetfunctionerror).

W-12142 Xpress-SLP warning: invalid record: text

This error is produced by XSLPreadprob if it encounters a record in the file which is
identifiable but invalid (for example, a BOUNDS record without a bound set name).
The record is ignored.

E-12147 Xpress-SLP error: incompatible arguments in user function func

This message is produced if a user function is called by XSLPcalluserfunc but the
function call does not provide the arguments required by the function.

E-12148 Xpress-SLP error: user function func should return an array not a single value
This message is produced if a user function is defined within Xpress-SLP as returning
an array, but the function is returning a single value. This message is produced only
when it is possible to identify the type of value being returned by the function (for
example, the value from an Excel macro).

Fair Isaac Corporation Confidential and Proprietary Information 527

Error Messages Reference

E-12158 Xpress-SLP error: unknown parameter name name

This message is produced if an attempt is made to set or retrieve a value for a control
parameter or attribute given by name (XSLPgetparam or XSLPsetparam where the
name is incorrect.

E-12159 Xpress-SLP error: parameter number is not writable
This message is produced if an attempt is made to set a value for an attribute.

E-12160 Xpress-SLP error: parameter num is not available
This message is produced if an attempt is made to retrieve a value for a control or
attribute which is not readable

Fair Isaac Corporation Confidential and Proprietary Information 528

IV. Appendix

CHAPTER 24

The Xpress-SLP Log

The Xpress-SLP log consists of log lines of two different types: the output of the underlying XPRS
optimizer, and the log of XSLP itself.

Output is sent to the screen (stdout) by default, but may be intercepted by a user function using
the user output callback; see XSLPsetcbmessage. However, under Windows, no output from the
Optimizer DLL is sent to the screen. The user must define a callback function and print messages
to the screen them self if they wish output to be displayed.

24.0.1 Logging controls

General SLP logging

XPRS_OUTPUTLOG Logging level of the underlying XPRS problem
XPRS_LPLOG Logging frequency for solving the linearization
XPRS_MIPLOG Logging frequency for the MIP solver

Logging for the underlying XPRS problem

XSLP_LOG Level of SLP logging (iteration, penalty, convergence)
XSLP_SLPLOG Logging frequency for SLP iterations
XSLP_MIPLOG MI-SLP specific logging

Special logging settings

XPRS_DCLOG Logging of delayed constraint activation
XSLP_ERRORTOL_P Absolute tolerance for printing error vectors

24.0.2 The structure of the log

The typical log with the default settings starts with statistics about the problem sizes. On the
polygon1.mps example, using the XSLP console program this looks like

[xpress mps] readprob Polygon1.mat

Reading Problem Polygon

Problem Statistics

11 (0 spare) rows

10 (4 spare) structural columns

8 (0 spare) non-zero elements

Global Statistics

0 entities 0 sets 0 set members

PV: 0 DC: 0 DR: 0 EC: 0

IV: 0 RX: 0 TX: 0 SB: 0

UF: 0 WT: 0 XV: 0 Total: 0

Xpress-SLP Statistics:

7 coefficients

9 SLP variables

Fair Isaac Corporation Confidential and Proprietary Information 530

The Xpress-SLP Log Appendix

The standard XPRS optimizer problem loading statistics is extended with a report about the
special structures possibly present in the problem, including DC (delayed constraints), DR
(determining rows), EC (enforced constraints), IV (initial values), RX/TX (relative and absolute
tolerances), SB (initial step bounds), UF (user functions), WT (initial row weights), XV (extended
variables), followed by a statistics about the number of SLP coefficients and variables.

SLP iteration 1, 0s

Minimizing LP Polygon

Original problem has:

20 rows 27 cols 68 elements

Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time

0 828864.7136 D 0 0 .000000 0

Uncrunching matrix

0 828864.7136 D 0 0 .000000 0

Optimal solution found

8 unconverged values (at least 1 in active constraints)

Total feasibility error costs 829100.765742

Penalty Error Vectors - Penalties scaled by 200

Variable Activity Penalty

BE-V1V4 1381.836001 1.000000

BE-V2V4 1381.834610 1.000000

BE-V3V4 1381.833218 1.000000

Total: 4145.503829

Error Costs: 829100.765742 Penalty Delta Costs: 0.000000 Net Objective: -236.052107

SLP iteration 2, 0s

Minimizing LP Polygon

Original problem has:

20 rows 27 cols 73 elements

Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time

0 -3.13860E-05 D 0 0 .000000 0

Uncrunching matrix

0 -3.13860E-05 D 0 0 .000000 0

Optimal solution found

4 unconverged values (at least 1 in active constraints)

SLP iteration 3, 0s

Minimizing LP Polygon

Original problem has:

20 rows 27 cols 72 elements

Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time

0 -1.56933E-05 D 0 0 .000000 0

Uncrunching matrix

0 -1.56933E-05 D 0 0 .000000 0

Optimal solution found

The default solution log consists of the optimizer output of solving the linearizations, followed
by statistics of the nonlinear infeasibilities, the penalty and the objective, and the convergence
status.

Iteration summary

Fair Isaac Corporation Confidential and Proprietary Information 531

The Xpress-SLP Log Appendix

Itr. LPS NetObj ErrorSum ErrorCost Unconv. Extended Action

1 O -236.052107 4145.503829 829100.7657 8 0

2 O -3.13860E-05 .000000 .000000 4 0

3 O -1.56932E-05 .000000 .000000 0 0

Xpress-SLP stopped after 3 iterations. 0 unconverged items

No unconverged values in active constraints

The final iteration summary contains the following fields:

Itr: The iteration number.

LPS: The LP status of the linearization, which can take the following values:
O Linearization is optimal
I Linearization is infeasible
U Linearization is unbounded
X Solving the linearization was interupted

NetObj: The net objective of the SLP iteration.

ErrorSum: Sum of the error delta variables. A measure of infeasibility.

ErrorCost: The value of the weighted error delta variables in the objetcive. A measure of the
effort needed to push the model towards feasiblity.

Unconv: The number of SLP variables that are not converged.

Extended: The number of SLP variables that are converged, but only by extended criteria

Action: The special actions that happened in the iteration. These can be
0 Failed line search (non-improving)
B Enforcing step bounds
E Some infeasible rows were enforced
G Global variables were fixed
P The solution needed polishing, postsolve instability
P! Solution polishing failed
R Penalty error vectors were removed
V Feasiblity validation induces further iterations
K Optimality validation induces further iterations

The presence of a P! suggests that the problem is particularly hard to solve without postsolve,
and the model might benefit from setting XSLP_NOLPPOLISHING on XSLP_ALGORITHM (please
note, that this should only be considered if the solution polishing features is very slow or fails, as
the numerical inaccuracies it aims to remove can cause other problems to the solution process).

Fair Isaac Corporation Confidential and Proprietary Information 532

CHAPTER 25

Selecting the right algorithm for a nonlin-
ear problem - when to use the XPRS library
instead of XSLP

This chapter focuses on the nonlinear capabilities of the Xpress XPRS optimizer. As a general rule
of thumb, problems that can be handled by the XPRS library do not require the use of XSLP; while
Xpress XSLP is able to efficiently solve most nonlinear problems, there are subclasses of nonlinear
problems for which the Xpress optimizer features specialized algorithms that are able to solve
those problems more efficiently and in larger sizes. These are notably the convex quadratic
programming and the convex quadratically constrained problems and their mixed integer
counterparts.

It is also possible to separate the convex quadratic information from the rest of XSLP, and let the
Xpress XPRS optimizer handle those directly. Doing so is good modelling practice, but emphasis
must be placed on that the optimizer can only handle convex quadratic constraints.

25.0.1 Convex Quadratic Programs (QPs)

Convex Quadratic Programming (QP) problems are an extension of Linear Programming (LP)
problems where the objective function may include a second order polynomial. The FICO Xpress
Optimizer can be used directly for solving QP problems (and the Mixed Integer version MIQP).

If there are no other nonlinearities in the problem, the XPRS library povides specialized
algorithms for the solution of convex QP (MIQP) problems, that are much more efficient than
solving the problem as a general nonlinear problem with XSLP.

25.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs)

Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the Quadratic
Programming (QP) problem where the constraints may also include second order polynomials.

A QCQP problem may be written as:

minimize: c1x1+...+cnxn+xTQ0x

subject to: a11x1+...+a1nxn+xTQ1x ≤ b1

...

am1x1+...+amnxn+xTQmx ≤ bm

l1 ≤ x1 ≤ u1,...,ln ≤ xn ≤ un

where any of the lower or upper bounds li or ui may be infinite.

Fair Isaac Corporation Confidential and Proprietary Information 533

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Appendix

If there are no other nonlinearities in the problem, the XPRS library povides specialized
algorithms for the solution of convex QCQP (and the integer counterpart MIQCQP) problems,
that are much more efficient than solving the problem as a general nonlinear problem with XSLP.

25.0.3 Convexity

A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity.
A region is called convex, if for any two points from the region the connecting line segment is
also part of the region.

The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in
the objective may introduce the phenomenon of locally optimal solutions that are not global
ones (a local optimal solution is one for which a neighborhood in the feasible region exists in
which that solution is the best). While the lack of convexity in constraints can also give rise to
local optimums, they may even introduce non–connected feasible regions as shown in Figure 25.1.

Figure 25.1: Non-connected feasible regions

In this example, the feasible region is divided into two parts. Over feasible region B, the objective
function has two alterative local optimal solutions, while over feasible region A the objective is
not even bounded.

For convex problems, each locally optimal solution is a global one, making the characterization of
the optimal solution efficient.

25.0.4 Characterizing Convexity in Quadratic Constraints

A quadratic constraint of form
a1x1+. . . +anxn + xTQx ≤ b

defines a convex region if and only if Q is a so–called positive semi–definite (PSD) matrix.

A rectangular matrix Q is PSD by definition, if for any vector (not restricted to the feasible set of a
problem) x it holds that xTQx ≥ 0.

It follows that for greater or equal constraints

a1x1+. . . +anxn − xTQx ≥ b

the negative of Q shall be PSD.

Fair Isaac Corporation Confidential and Proprietary Information 534

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Appendix

A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always
defines a nonconvex region, therefore those must be modelled as XSLP structures.

There is no straightforward way of checking if a matrix is PSD or not. An intuitive way of
checking this property, is that the quadratic part shall always only make a constraint harder to
satisfy (i.e. taking the quadratic part away shall always be a relaxation of the original problem).

There are certain constructs however, that can easily be recognized as being non convex:

1. the product of two variables say xy without having both x2 and y2 defined;

2. having −x2 in any quadratic expression in a less or equal, or having x2 in any greater or
equal row.

As a general rule, a convex quadratic objective and convex quadratic constraints are best handled
by the XPRS library; while all nonconvex counterparts should be modelled as XSLP structures.

Fair Isaac Corporation Confidential and Proprietary Information 535

CHAPTER 26

Files used by Xpress-SLP

Most of the data used by Xpress-SLP is held in memory. However, there are a few files which are
written, either automatically or on demand, in addition to those created by the Xpress Optimizer.

LOGFILE Created by: XSLPsetlogfile

The file name and location are user-defined.

NAME.mat Created by: XSLPwriteprob

This is the matrix file in extended MPS format. The name is user-defined.
The extension .mat is appended automatically.

NAME.txt Created by: XSLPwriteprob

This is the matrix file in human-readable "text". The name is user-defined.
The extension .txt is appended automatically.

PROBNAME.svx Created by: XSLPsave

This is the SLP part of the save file (the linear part is in probname.svf).
Used by XSLPrestore.

Fair Isaac Corporation Confidential and Proprietary Information 536

CHAPTER 27

Xpress-SLP Examples

On the Xpress website there are two small demonstrations for the XSLP console program, as well
as sample models for the Polygon problem used in this guide.

The Polygon examples are as follows:

Xpress-SLP User Guide: Mosel examples
Polygon1.mos — Basic Polygon model
Polygon2.mos — Polygon with Mosel single-valued user function
Polygon3.mos — Polygon with Mosel multi-valued user function
Polygon4.mos — Polygon, with Excel spreadsheet function
Polygon5.mos — Polygon, with Excel macro function
Polygon6.mos — Polygon, with Excel macro multi-valued function

Xpress-SLP User Guide: Extended MPS Format examples
Polygon0.mat — Basic Polygon, using coefficients
Polygon1.mat — Polygon, using "equals column"
Polygon2.mat — Polygon with initial values
Polygon3.mat — Polygon, with Excel macro single-valued user function
Polygon4.mat — Polygon, with Excel macro multi-valued user function and XV
Polygon5.mat — Polygon, with Excel spreadsheet function returning derivatives
Polygon6.mat — Polygon, with DLL user function

Xpress-SLP User Guide: Xpress-SLP library API examples
Polygon1.cpp — Basic Polygon model
Polygon2.cpp — Polygon with initial values
Polygon3.cpp — Polygon, with internal C user function
Polygon4.cpp — Polygon, with internal C user function and XV
Polygon5.cpp — Polygon, with C user function in a DLL and XV
Polygon1c.cpp — As Polygon1.cpp but using XSLPccoef() to load coefficient structures

For information about using these examples, see the relevant sections in this User Guide.

Xpress-SLP console examples
demo.mat — demonstration non-linear matrix (minimisation)
demo.cm — XSLP batch command file for demo.mat
integer.mat — demonstration non-linear integer problem (minimisation)
integer.cm — XSLP batch command file for integer.mat

Note that if you are using console-based input for these examples, they are both MINIMIZATION
problems.

Fair Isaac Corporation Confidential and Proprietary Information 537

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 538

Contacting FICO Appendix

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 539

Index

Symbols
= column, 44

A
ABS, 493
Absolute tolerance record

Tx, 47
ACT, 510
ARCCOS, 486
ARCSIN, 487
ARCTAN, 488
Attributes, Problem, 125
Augmentation, 72

B
BOUNDS, 15
BOUNDS section in file, 44

C
Callbacks and user functions, 89
Callbacks in MISLP, 121
Calling user functions, 109
Cascading, 59
Character Variable record, 45
Closure convergence tolerance, 66
Coefficients

and terms, 38
COLUMNS, 13
COLUMNS section in file, 43
Control parameters, 151
Convergence

closure, 66
delta, 66
extended convergence continuation, 70
impact, 67
matrix, 67
slack impact, 68
static objective (1), 69
static objective (2), 69
static objective (3), 70
user-defined, 68

Convergence criteria, 61
convex region, 534
COS, 489
Counting, 255
CV record in SLPDATA, 45

D
DC record in SLPDATA, 45
Delayed Constraint

add, 268
change, 291

Extended MPS record, 45
get, 340
load, 385

Delta convergence tolerance, 66
Derivatives

returning from user function, 104
user function, 111

Determining Row record, 46
DJ, 511
DR record in SLPDATA, 46

E
E-12001, 523
E-12002, 523
E-12003, 523
E-12004, 523
E-12005, 523
E-12006, 524
E-12007, 524
E-12008, 524
E-12009, 524
E-12010, 524
E-12011, 524
E-12012, 524
E-12013, 524
E-12014, 524
E-12015, 524
E-12016, 524
E-12017, 524
E-12018, 525
E-12019, 525
E-12020, 525
E-12021, 525
E-12022, 525
E-12025, 525
E-12026, 525
E-12027, 525
E-12029, 526
E-12030, 526
E-12031, 526
E-12032, 526
E-12033, 526
E-12037, 526
E-12038, 526
E-12039, 526
E-12040, 526
E-12041, 527
E-12042, 527
E-12084, 527
E-12085, 527
E-12105, 527
E-12107, 527

Fair Isaac Corporation Confidential and Proprietary Information 540

Index Appendix

E-12121, 527
E-12124, 527
E-12125, 527
E-12147, 527
E-12148, 527
E-12158, 528
E-12159, 528
E-12160, 528
EC record in SLPDATA, 46
ENDATA, 16
Enforced Constraint record, 46
EQ, 501
Equals column, 44
Error Messages, 523
Error vectors, penalty, 76
EXP, 494
Extended convergence continuation tolerance, 70
Extended MPS file format, 42

F
files

.ini, 35
Files used by Xpress-SLP, 536
Fixing values of SLP variables in MISLP, 119
Formula

Initial Value record, 46
Formulae, 42, 81
Function object, 106
Functions, internal, 483
Functions, library, 255
Functions, user, 89

G
GE, 502
getslack, 10
getsol, 10
Global Function Object, 106
GT, 503

H
Handling Infeasibilities, 56
History, 80

I
IAC, 521
IF, 504
Impact convergence tolerance, 67
Implicit variable, 44
Infeasibilities, handling, 56
Initial Value formula, 46
Initial Value record, 46
Instance

user function, 105
Instance Function Object, 106
Internal Functions, 483
INTERP, 522
Iterating at each node in MISLP, 120
IV, 16
IV record in SLPDATA, 46

L
LE, 505
Library functions, 255, 257
LN, 495
LO, 512
loadprob, 10
LOG, 496
LOG10, 496
LT, 506

M
MATRIX, 513
Matrix convergence tolerance, 67
Matrix Name Generation, 77
Matrix Structures, 72
MAX, 497
MAXIM, 17
maximise, 10
MIN, 498
minimise, 10
MINLP, 118
MISLP

Callbacks, 121
Fixing or relaxing values of SLP variables, 119
Iterating at each node, 120
Termination criteria at each node, 120

Mixed Integer Non-Linear Programming, 118
mmxnlp, 8
mutlistart, 123
MV, 514

N
NAME, 12
Name Generation, 77
NE, 507
nlctr, 8
Nonlinear objectives, 117
Nonlinear problems, 38
NOT, 508

O
Object

user function, 106
Objectives, nonlinear, 117
Objectives, quadratic, 117

P
PARAM, 515
Parsed formula format, 81
Penalty error vectors, 76
Pointer (reference) attribute, 148
positive semi-definite matrix, 534
Problem attributes, 125
Problem pointer, 255

Q
Quadratic objectives, 117
QUIT, 17

R
Relative tolerance record Rx, 47

Fair Isaac Corporation Confidential and Proprietary Information 541

Index Appendix

Relaxing values of SLP variables in MISLP, 119
RHS, 15, 516
RHSRANGE, 517
Row weight

Extended MPS record, 48
ROWS, 12
Rx record in SLPDATA, 47

S
SB record in SLPDATA, 48
Sequential Linear Programming, see Successive

Linear Programming
setinitval, 9
SIN, 490
SLACK, 518
Slack impact convergence tolerance, 68
SLP problem pointer, 255
SLP variable, 39
SLPDATA

CV record, 45
DC record, 45
DR record, 46
EC record, 46
IV record, 46
Rx record, 47
SB record, 48
Tx record, 47
UF record, 48
WT record, 48
XV record, 49

SLPDATA, 16
SLPDATA section in file, 44
solution, 533
Solution Process, 51
Special Types of Problem, see Problem, special

types
Mixed Integer Non-Linear Programming, 118
Nonlinear objectives, 117
Quadratic objectives, 117

SQRT, 499
Static objective (1) convergence tolerance, 69
Static objective (2) convergence tolerance, 69
Static objective (3) convergence tolerance, 70
Statistics, Xpress-SLP, 78
Step Bound record, 48
Structures, SLP matrix, 72
Successive Linear Programming, 38

T
TAN, 491
Termination criteria at each node in MISLP, 120
Terms

and coefficients, 38
Tolerance record

Rx, 47
Tolerance record Tx, 47
Tolerances, convergence, 61
Tx record in SLPDATA, 47

U
UF record in SLPDATA, 48

Unparsed formula format, 81
UP, 519
User function, 89

calling, 109
declaration in COM, 99
declaration in Excel macro (VBA), 98
declaration in Excel spreadsheet, 97
declaration in Extended MPS format, 91
declaration in MOSEL, 99
declaration in native languages, 96
declaration in SLPDATA section, 91
declaration in Visual Basic, 98
declaration in XSLPchguserfunc, 96
declaration in XSLPloaduserfuncs, 94
Deltas, 104
FunctionInfo, 103
general, returning array by reference, 100
general, returning array through argument,

101
InputNames, 103
instance, 105
object, 106
programming techniques, 103
ReturnArray, 104
returning derivatives, 104
ReturnNames, 103
simple, 100

User function Derivatives, 111
User function interface, 90
User Function Object, 106
User Function record, 48
User Functions, 89
User-defined convergence, 68

V
Values of SLP variables in MISLP, fixing or

relaxing, 119
Variable

implicit, 44
SLP, 39

W
W-12023, 525
W-12024, 525
W-12028, 525
W-12034, 526
W-12036, 526
W-12142, 527
WRITEPRTSOL, 17
WT record in SLPDATA, 48

X
xnlp_verbose, 10
Xpress-SLP problem pointer, 255
Xpress-SLP Statistics, 78
XPRSdestroyprob, 29
XPRSfree, 29
XPRSgetsol, 29
xprs_verbose, 10
XPRSwriteprtsol, 29

Fair Isaac Corporation Confidential and Proprietary Information 542

Index Appendix

XSLP, 17
XSLP_ALGORITHM, 198
XSLP_ANALYZE, 200
XSLP_ATOL_A, 161
XSLP_ATOL_R, 161
XSLP_AUGMENTATION, 201
XSLP_AUTOSAVE, 203
XSLP_BARCROSSOVERSTART, 203
XSLP_BARLIMIT, 203
XSLP_BARSTALLINGLIMIT, 204
XSLP_BARSTALLINGOBJLIMIT, 204
XSLP_BARSTALLINGTOL, 161
XSLP_BARSTARTOPS, 204
XSLP_CALCTHREADS, 205
XSLP_CASCADE, 205
XSLP_CASCADENLIMIT, 206
XSLP_CASCADETOL_PA, 162
XSLP_CASCADETOL_PR, 162
XSLP_CDTOL_A, 163
XSLP_CDTOL_R, 163
XSLP_CLAMPSHRINK, 163
XSLP_CLAMPVALIDATIONTOL_A, 164
XSLP_CLAMPVALIDATIONTOL_R, 164
XSLP_COEFFICIENTS, 132
XSLP_CONTROL, 206
XSLP_CONVERGENCEOPS, 207
XSLP_CTOL, 164
XSLP_CURRENTDELTACOST, 129
XSLP_CURRENTERRORCOST, 129
XSLP_CVNAME, 249
XSLP_CVS, 132
XSLP_DAMP, 165
XSLP_DAMPEXPAND, 165
XSLP_DAMPMAX, 165
XSLP_DAMPMIN, 166
XSLP_DAMPSHRINK, 166
XSLP_DAMPSTART, 208
XSLP_DCLIMIT, 208
XSLP_DCLOG, 208
XSLP_DECOMPOSE, 209
XSLP_DECOMPOSEPASSLIMIT, 210
XSLP_DEFAULTIV, 166
XSLP_DEFAULTSTEPBOUND, 167
XSLP_DELAYUPDATEROWS, 209
XSLP_DELTA_A, 167
XSLP_DELTA_R, 167
XSLP_DELTA_X, 168
XSLP_DELTA_Z, 168
XSLP_DELTA_ZERO, 168
XSLP_DELTACOST, 169
XSLP_DELTACOSTFACTOR, 169
XSLP_DELTAFORMAT, 249
XSLP_DELTAMAXCOST, 169
XSLP_DELTAOFFSET, 210
XSLP_DELTAS, 132
XSLP_DELTAZLIMIT, 210
XSLP_DERIVATIVES, 211
XSLP_DETERMINISTIC, 211
XSLP_DJTOL, 170
XSLP_DRCOLTOL, 170

XSLP_ECFCHECK, 212
XSLP_ECFCOUNT, 132
XSLP_ECFTOL_A, 170
XSLP_ECFTOL_R, 171
XSLP_ECHOXPRSMESSAGES, 212
XSLP_ENFORCECOSTSHRINK, 171
XSLP_ENFORCEMAXCOST, 172
XSLP_EQTOL_A, 172
XSLP_EQTOL_R, 172
XSLP_EQUALSCOLUMN, 133
XSLP_ERRORCOST, 173
XSLP_ERRORCOSTFACTOR, 173
XSLP_ERRORCOSTS, 129
XSLP_ERRORMAXCOST, 173
XSLP_ERROROFFSET, 212
XSLP_ERRORTOL_A, 174
XSLP_ERRORTOL_P, 174
XSLP_ESCALATION, 174
XSLP_ETOL_A, 175
XSLP_ETOL_R, 175
XSLP_EVALUATE, 213
XSLP_EVTOL_A, 175
XSLP_EVTOL_R, 176
XSLP_EXCELVISIBLE, 213
XSLP_EXPAND, 176
XSLP_EXPLOREDELTAS, 132
XSLP_EXTRACVS, 214
XSLP_EXTRAUFS, 214
XSLP_EXTRAXVITEMS, 214
XSLP_EXTRAXVS, 215
XSLP_FEASTOLTARGET, 177
XSLP_FILTER, 215
XSLP_FINDIV, 216
XSLP_FUNCEVAL, 216
XSLP_GLOBALFUNCOBJECT, 148
XSLP_GRANULARITY, 177
XSLP_GRIDHEURSELECT, 217
XSLP_HESSIAN, 218
XSLP_HEURSTRATEGY, 217
XSLP_IFS, 133
XSLP_IMPLICITVARIABLES, 133
XSLP_INFEASLIMIT, 218
XSLP_INFINITY, 177
XSLP_INTEGERDELTAS, 133
XSLP_INTERNALFUNCCALLS, 133
XSLP_ITER, 134
XSLP_ITERLIMIT, 219
XSLP_ITOL_A, 177
XSLP_ITOL_R, 178
XSLP_IVNAME, 249
XSLP_JACOBIAN, 219
XSLP_JOBID, 134
XSLP_LINQUADBR, 219
XSLP_LOG, 220
XSLP_LSITERLIMIT, 220
XSLP_LSPATTERNLIMIT, 220
XSLP_LSSTART, 221
XSLP_LSZEROLIMIT, 221
XSLP_MATRIXTOL, 179
XSLP_MAXTIME, 221

Fair Isaac Corporation Confidential and Proprietary Information 543

Index Appendix

XSLP_MAXWEIGHT, 179
XSLP_MEM_CALCSTACK, 244
XSLP_MEM_COEF, 245
XSLP_MEM_COL, 245
XSLP_MEM_CVAR, 245
XSLP_MEM_DERIVATIVES, 245
XSLP_MEM_EXCELDOUBLE, 245
XSLP_MEM_FORMULA, 245
XSLP_MEM_FORMULAHASH, 246
XSLP_MEM_FORMULAVALUE, 246
XSLP_MEM_ITERLOG, 246
XSLP_MEM_RETURNARRAY, 246
XSLP_MEM_ROW, 246
XSLP_MEM_STACK, 246
XSLP_MEM_STRING, 247
XSLP_MEM_TOL, 247
XSLP_MEM_UF, 247
XSLP_MEM_VAR, 247
XSLP_MEM_XF, 247
XSLP_MEM_XFNAMES, 247
XSLP_MEM_XFVALUE, 248
XSLP_MEM_XROW, 248
XSLP_MEM_XV, 248
XSLP_MEM_XVITEM, 248
XSLP_MEMORYFACTOR, 180
XSLP_MERITLAMBDA, 180
XSLP_MINORVERSION, 134
XSLP_MINSBFACTOR, 180
XSLP_MINUSDELTAFORMAT, 250
XSLP_MINUSERRORFORMAT, 250
XSLP_MINUSPENALTYERRORS, 134
XSLP_MINWEIGHT, 181
XSLP_MIPALGORITHM, 222
XSLP_MIPCUTOFF_A, 181
XSLP_MIPCUTOFF_R, 181
XSLP_MIPCUTOFFCOUNT, 223
XSLP_MIPCUTOFFLIMIT, 223
XSLP_MIPDEFAULTALGORITHM, 224
XSLP_MIPERRORTOL_A, 182
XSLP_MIPERRORTOL_R, 182
XSLP_MIPFIXSTEPBOUNDS, 224
XSLP_MIPITER, 134
XSLP_MIPITERLIMIT, 225
XSLP_MIPLOG, 225
XSLP_MIPNODES, 135
XSLP_MIPOCOUNT, 225
XSLP_MIPOTOL_A, 183
XSLP_MIPOTOL_R, 183
XSLP_MIPPROBLEM, 148
XSLP_MIPRELAXSTEPBOUNDS, 226
XSLP_MIPSOLS, 135
XSLP_MODELCOLS, 135
XSLP_MODELROWS, 135
XSLP_MSMAXBOUNDRANGE, 183
XSLP_MSSTATUS, 136
XSLP_MTOL_A, 184
XSLP_MTOL_R, 184
XSLP_MULTISTART, 226
XSLP_MULTISTART_MAXSOLVES, 226
XSLP_MULTISTART_MAXTIME, 227

XSLP_MULTISTART_POOLSIZE, 227
XSLP_MULTISTART_SEED, 228
XSLP_MULTISTART_THREADS, 228
XSLP_MVTOL, 185
XSLP_NLPSTATUS, 136
XSLP_NONCONSTANTCOEFF, 136
XSLP_NONLINEARCONSTRAINTS, 136
XSLP_OBJSENSE, 129, 186
XSLP_OBJTOPENALTYCOST, 186
XSLP_OBJVAL, 130
XSLP_OCOUNT, 228
XSLP_OPTIMALITYTOLTARGET, 187
XSLP_ORIGINALCOLS, 137
XSLP_ORIGINALROWS, 137
XSLP_OTOL_A, 187
XSLP_OTOL_R, 188
XSLP_PENALTYCOLFORMAT, 250
XSLP_PENALTYDELTACOLUMN, 137
XSLP_PENALTYDELTAROW, 137
XSLP_PENALTYDELTAS, 137
XSLP_PENALTYDELTATOTAL, 130
XSLP_PENALTYDELTAVALUE, 130
XSLP_PENALTYERRORCOLUMN, 138
XSLP_PENALTYERRORROW, 138
XSLP_PENALTYERRORS, 138
XSLP_PENALTYERRORTOTAL, 130
XSLP_PENALTYERRORVALUE, 130
XSLP_PENALTYINFOSTART, 229
XSLP_PENALTYROWFORMAT, 251
XSLP_PLUSDELTAFORMAT, 251
XSLP_PLUSERRORFORMAT, 252
XSLP_PLUSPENALTYERRORS, 138
XSLP_POSTSOLVE, 229
XSLP_PRESOLVE, 229
XSLP_PRESOLVEDELETEDDELTA, 138
XSLP_PRESOLVEELIMINATIONS, 139
XSLP_PRESOLVEFIXEDCOEF, 139
XSLP_PRESOLVEFIXEDDR, 139
XSLP_PRESOLVEFIXEDNZCOL, 140
XSLP_PRESOLVEFIXEDSLPVAR, 140
XSLP_PRESOLVEFIXEDZCOL, 140
XSLP_PRESOLVELEVEL, 230
XSLP_PRESOLVEOPS, 230
XSLP_PRESOLVEPASSES, 140
XSLP_PRESOLVEPASSLIMIT, 231
XSLP_PRESOLVESTATE, 141
XSLP_PRESOLVETIGHTENED, 141
XSLP_PRESOLVEZERO, 188
XSLP_PROBING, 231
XSLP_REFORMULATE, 232
XSLP_SAMECOUNT, 232
XSLP_SAMEDAMP, 233
XSLP_SBLOROWFORMAT, 252
XSLP_SBNAME, 252
XSLP_SBROWOFFSET, 233
XSLP_SBSTART, 233
XSLP_SBUPROWFORMAT, 253
XSLP_SBXCONVERGED, 141
XSLP_SCALE, 234
XSLP_SCALECOUNT, 234

Fair Isaac Corporation Confidential and Proprietary Information 544

Index Appendix

XSLP_SEMICONTDELTAS, 141
XSLP_SHRINK, 188
XSLP_SHRINKBIAS, 189
XSLP_SLPLOG, 235
XSLP_SOLUTIONPOOL, 148
XSLP_SOLVER, 234
XSLP_SOLVERSELECTED, 142
XSLP_STATUS, 142
XSLP_STOL_A, 189
XSLP_STOL_R, 190
XSLP_STOPOUTOFRANGE, 235
XSLP_STOPSTATUS, 144
XSLP_THREADS, 235
XSLP_THREADSAFEUSERFUNC, 236
XSLP_TIMEPRINT, 236
XSLP_TOLNAME, 253
XSLP_TOLSETS, 144
XSLP_TRACEMASK, 253
XSLP_TRACEMASKOPS, 236
XSLP_UCCONSTRAINEDCOUNT, 144
XSLP_UFINSTANCES, 144
XSLP_UFS, 145
XSLP_UNCONVERGED, 145
XSLP_UNFINISHEDLIMIT, 237
XSLP_UNIQUEPREFIX, 150
XSLP_UPDATEFORMAT, 254
XSLP_UPDATEOFFSET, 238
XSLP_USEDERIVATIVES, 145
XSLP_USERFUNCCALLS, 145
XSLP_VALIDATIONINDEX_A, 131
XSLP_VALIDATIONINDEX_K, 131
XSLP_VALIDATIONINDEX_R, 131
XSLP_VALIDATIONTARGET_K, 190
XSLP_VALIDATIONTARGET_R, 190
XSLP_VALIDATIONTOL_A, 191
XSLP_VALIDATIONTOL_R, 191
XSLP_VARIABLES, 145
XSLP_VCOUNT, 238
XSLP_VERSION, 146
XSLP_VERSIONDATE, 150
XSLP_VLIMIT, 239
XSLP_VSOLINDEX, 131
XSLP_VTOL_A, 192
XSLP_VTOL_R, 192
XSLP_WCOUNT, 239
XSLP_WTOL_A, 193
XSLP_WTOL_R, 194
XSLP_XCOUNT, 240
XSLP_XLIMIT, 241
XSLP_XPRSPROBLEM, 148
XSLP_XSLPPROBLEM, 148
XSLP_XTOL_A, 195
XSLP_XTOL_R, 196
XSLP_XVS, 146
XSLP_ZERO, 196
XSLP_ZEROCRITERION, 242
XSLP_ZEROCRITERIONCOUNT, 242
XSLP_ZEROCRITERIONSTART, 243
XSLP_ZEROESRESET, 146
XSLP_ZEROESRETAINED, 146

XSLP_ZEROESTOTAL, 147
XSLP_ATOL, 66
XSLP_CTOL, 66
XSLP_ITOL, 67
XSLP_MTOL, 67
XSLP_OCOUNT, 69
XSLP_OLIMIT, 69
XSLP_OTOL, 69
XSLP_STOL, 68
XSLP_VCOUNT, 69
XSLP_VLIMIT, 69
XSLP_VTOL, 69
XSLP_WCOUNT, 71
XSLP_WTOL, 70
XSLP_XCOUNT, 70
XSLP_XLIMIT, 70
XSLP_XTOL, 70
XSLPaddcoefs, 265
XSLPaddcvars, 267
XSLPadddcs, 268
XSLPadddfs, 270
XSLPaddivfs, 271
XSLPaddnames, 31, 33, 273
XSLPaddtolsets, 274
XSLPadduserfuncs, 275
XSLPaddvars, 277
XSLPaddxvs, 279
XSLPcalcslacks, 281
XSLPcalluserfunc, 282
XSLPcascade, 284
XSLPcascadeorder, 285
XSLPchgcascadenlimit, 286
XSLPchgccoef, 287
XSLPchgcoef, 27, 288
XSLPchgcvar, 290
XSLPchgdc, 291
XSLPchgdeltatype, 293
XSLPchgdf, 294
XSLPchgfuncobject, 295
XSLPchgivf, 296
XSLPchgrow, 297
XSLPchgrowstatus, 298
XSLPchgrowwt, 299
XSLPchgtolset, 300
XSLPchguserfunc, 302
XSLPchguserfuncaddress, 32, 304
XSLPchguserfuncobject, 305
XSLPchgvar, 306
XSLPchgxv, 308
XSLPchgxvitem, 309
XSLP_COL, 26
XSLP_CON, 26
XSLPconstruct, 311
XSLPcopycallbacks, 312
XSLPcopycontrols, 313
XSLPcopyprob, 314
XSLPcreateprob, 315
XSLPdecompose, 316
XSLPdelcoefs, 317
XSLPdelcvars, 318

Fair Isaac Corporation Confidential and Proprietary Information 545

Index Appendix

XSLPdeldcs, 319
XSLPdelivfs, 320
XSLPdeltolsets, 321
XSLPdeluserfuncs, 322
XSLPdelvars, 323
XSLPdelxvs, 324
XSLPdestroyprob, 29, 325
XSLP_EOF, 26, 33
XSLPevaluatecoef, 326
XSLPevaluateformula, 327
XSLPfilesol, 328
XSLPfixpenalties, 329
XSLPformatvalue, 330
XSLPfree, 29, 331
XSLP_FUN, 26
XSLPgetbanner, 332
XSLPgetccoef, 333
XSLPgetcoef, 334
XSLPgetcoefformula, 334
XSLPgetcoefs, 335
XSLPgetcolinfo, 336
XSLPgetcvar, 337
XSLPgetdblattrib, 338
XSLPgetdblcontrol, 339
XSLPgetdc, 340
XSLPgetdcformula, 340
XSLPgetdf, 341
XSLPgetdtime, 342
XSLPgetfuncinfo, 343
XSLPgetfuncinfoV, 344
XSLPgetfuncobject, 346
XSLPgetfuncobjectV, 347
XSLPgetfunctioninstance, 345
XSLPgetindex, 348
XSLPgetintattrib, 349
XSLPgetintcontrol, 350
XSLPgetivf, 352
XSLPgetivformula, 351
XSLPgetlasterror, 353
XSLPgetmessagetype, 354
XSLPgetnames, 355
XSLPgetparam, 356
XSLPgetptrattrib, 357
XSLPgetrow, 358
XSLPgetrowinfo, 359
XSLPgetrowstatus, 360
XSLPgetrowwt, 361
XSLPgetslpsol, 362
XSLPgetstrattrib, 363
XSLPgetstrcontrol, 364
XSLPgetstring, 365
XSLPgettime, 366
XSLPgettolset, 367
XSLPgetuserfunc, 368
XSLPgetuserfuncaddress, 370
XSLPgetuserfuncobject, 371
XSLPgetvar, 29, 372
XSLPgetversion, 374
XSLPgetxv, 375
XSLPgetxvitem, 377

XSLPgetxvitemformula, 376
XSLPglobal, 378
XSLP_IFUN, 26
XSLPinit, 379
XSLPinterrupt, 380
XSLPitemname, 381
XSLPload... functions, 256
XSLPloadcoefs, 27, 382
XSLPloadcvars, 384
XSLPloaddcs, 385
XSLPloaddfs, 387
XSLPloadivfs, 388
XSLPloadtolsets, 390
XSLPloaduserfuncs, 31, 391
XSLPloadvars, 29, 393
XSLPloadxvs, 33, 395
xslp_log, 10
XSLPmaxim, 29, 397
XSLPminim, 29, 398
XSLPmsaddcustompreset, 399
XSLPmsaddjob, 400
XSLPmsaddpreset, 401
XSLPmsclear, 402
XSLP_OP, 26
XSLPopt, 403
XSLPparsecformula, 404
XSLPparseformula, 405
XSLPpostsolve, 406
XSLPpreparseformula, 407
XSLPpresolve, 408
XSLPprintevalinfo, 410
XSLPprintmemory, 409
XSLPprintmsg, 411
XSLPprob, 255
XSLPqparse, 412
XSLPreadprob, 413
XSLPreinitialize, 417
XSLPremaxim, 414
XSLPreminim, 415
XSLPrestore, 416
XSLPrevise, 418
XSLProwinfo, 419
XSLPsave, 420
XSLPsaveas, 421
XSLPscaling, 422
XSLPsetcbcascadeend, 423
XSLPsetcbcascadestart, 424
XSLPsetcbcascadevar, 425
XSLPsetcbcascadevarF, 427
XSLPsetcbcascadevarfail, 426
XSLPsetcbcoefevalerror, 429
XSLPsetcbconstruct, 430
XSLPsetcbdestroy, 432
XSLPsetcbdrcol, 433
XSLPsetcbformula, 434
XSLPsetcbintsol, 436
XSLPsetcbiterend, 437
XSLPsetcbiterstart, 438
XSLPsetcbitervar, 439
XSLPsetcbitervarF, 440

Fair Isaac Corporation Confidential and Proprietary Information 546

Index Appendix

XSLPsetcbmessage, 21, 442
XSLPsetcbmessageF, 444
XSLPsetcbmsjobend, 446
XSLPsetcbmsjobstart, 447
XSLPsetcboptnode, 449
XSLPsetcbprenode, 450
XSLPsetcbslpend, 451
XSLPsetcbslpnode, 452
XSLPsetcbslpstart, 453
XSLPsetcbwinner, 448
XSLPsetcurrentiv, 454
XSLPsetdblcontrol, 455
XSLPsetdefaultcontrol, 456
XSLPsetdefaults, 457
XSLPsetfuncobject, 458
XSLPsetfunctionerror, 459
XSLPsetintcontrol, 460
XSLPsetlogfile, 461
XSLPsetparam, 462
XSLPsetstrcontrol, 463
XSLPsetstring, 31, 464
XSLPsetuniqueprefix, 465
XSLPsetuserfuncaddress, 466
XSLPsetuserfuncinfo, 467
XSLPsetuserfuncobject, 468
xslp_slplog, 10
XSLP_STRING, 31
XSLPtime, 469
XSLPtokencount, 470
XSLP_UFARGTYPE, 31
XSLP_UFEXETYPE, 31
XSLPunconstruct, 471
XSLPupdatelinearization, 472
XSLPuprintmemory, 473
XSLPuserfuncinfo, 474
XSLPvalidate, 477
XSLPvalidatekkt, 478
XSLPvalidaterow, 479
XSLPvalidatevector, 480
XSLPvalidformula, 475
XSLPwriteprob, 28, 481
XSLPwriteslxsol, 482
XSLP_XVVARINDEX, 33
XSLP_XVVARTYPE, 33
XV record in SLPDATA, 49

Fair Isaac Corporation Confidential and Proprietary Information 547

	I Overview
	Introduction
	Mathematical programs
	Linear programs
	Convex quadratic programs
	Convex quadratically constrained quadratic programs
	Second order conic problems
	General nonlinear optimization problems
	Mixed integer programs

	Technology Overview
	The Simplex Method
	The Logarithmic Barrier Method
	Outer approximation schemes
	Successive Linear Programming
	Second Order Methods
	Mixed Integer Solvers

	The Problem
	Problem Definition
	Problem Formulation

	Modeling in Mosel
	Basic formulation
	Setting up and solving the problem
	Looking at the results
	Parallel evaluation of Mosel user functions

	Modeling in Extended MPS Format
	Basic formulation
	Using the XSLP console-based interface
	Coefficients and terms
	User functions
	A user function in an Excel macro
	Extending the polygon model

	Using extended variable arrays

	The Xpress-SLP API Functions
	Header files
	Initialization
	Callbacks
	Creating the linear part of the problem
	Adding the non-linear part of the problem
	Adding the non-linear part of the problem using character formulae
	Checking the data
	Solving and printing the solution
	Closing the program
	Adding initial values
	User functions
	A user function in C
	Extending the polygon model
	Internal user functions
	Using extended variable arrays

	The XSLP Console Program
	The Console XSLP
	The XSLP console extensions
	Common features of the Xpress Optimizer and the Xpress XSLP console

	II Advanced
	Nonlinear Problems
	Coefficients and terms
	SLP variables
	Local and global optimality
	Convexity
	Converged and practical solutions
	The duals of general, nonlinear program

	Extended MPS file format
	Formulae
	COLUMNS
	BOUNDS
	SLPDATA
	CV (Character variable)
	DC (Delayed constraint)
	DR (Determining row)
	EC (Enforced constraint)
	FR (Free variable)
	FX (Fixed variable)
	IV (Initial value)
	LO (Lower bounded variable)
	Rx, Tx (Relative and absolute convergence tolerances)
	SB (Initial step bound)
	UF (User function)
	UP (Free variable)
	WT (Explicit row weight)
	XV (Extended variable array)
	DL (variable specific Determining row cascade iteration Limit)

	Xpress-SLP Solution Process
	Analyzing the solution process
	The initial point
	Derivatives
	Finite Differences
	Symbolic Differentiation
	Automatic Differentiation

	Points of inflection
	Trust regions

	Handling Infeasibilities
	Infeasibility Analysis in the Xpress Optimizer
	Managing Infeasibility with Xpress KNITRO
	Managing Infeasibility with Xpress-SLP
	Penalty Infeasibility Breakers in XSLP

	Cascading
	Determining rows and determining columns

	Convergence criteria
	Convergence criteria
	Convergence overview
	Strict Convergence
	Extended Convergence
	Stopping Criterion
	Step Bounding

	Convergence: technical details
	Closure tolerance (CTOL)
	Delta tolerance (ATOL)
	Matrix tolerance (MTOL)
	Impact tolerance (ITOL)
	Slack impact tolerance (STOL)
	Fixed variables due to determining columns smaller than treshold (FX)
	User-defined convergence
	Static objective function (1) tolerance (VTOL)
	Static objective function (2) tolerance (OTOL)
	Static objective function (3) tolerance (XTOL)
	Extended convergence continuation tolerance (WTOL)

	Xpress-SLP Structures
	SLP Matrix Structures
	Augmentation of a nonlinear coefficient
	Augmentation of a nonlinear term
	Augmentation of a user-defined SLP variable
	SLP penalty error vectors

	Xpress-SLP Matrix Name Generation
	Xpress-SLP Statistics
	SLP Variable History

	Xpress-SLP Formulae
	Parsed and unparsed formulae
	Example of an arithmetic formula
	Example of a formula involving a simple function
	Example of a formula involving a complicated function
	Example of a formula defining a user function
	Example of a formula defining an XV
	Example of a formula defining a DC
	Formula evaluation and derivatives

	User Functions
	Constant Derivatives
	Multi-purpose functions and the dependency matrix
	Callbacks and user functions
	User function interface
	Function Declaration in Xpress-SLP
	Function declaration in Extended MPS format
	Function declaration through XSLPloaduserfuncs and XSLPadduserfuncs
	Function declaration through XSLPchguserfunc
	Function declaration through SLPDATA in Mosel

	User Function declaration in native languages
	User function declaration in C
	User function declaration in Excel (spreadsheet)
	User function declaration in VBA (Excel macro)
	User function declaration in Visual Basic
	User function declaration in COM
	User function declaration in MOSEL

	Simple functions and general functions
	Simple user functions
	General user functions returning an array of values through a reference
	General user functions returning an array of values through an argument

	Programming Techniques for User Functions
	FunctionInfo
	InputNames
	ReturnNames
	Deltas
	Return values and ReturnArray
	Returning Derivatives
	Function Instances
	Function Objects
	Calling user functions

	Function Derivatives
	Analytic Derivatives of Instantiated User Functions not Returning their own Derivatives

	Management of zero placeholder entries
	The augmented matrix structure
	Derivatives and zero derivatives
	Placeholder management

	Special Types of Problem
	Nonlinear objectives
	Convex Quadratic Programming
	Mixed Integer Nonlinear Programming
	Mixed Integer SLP
	Heuristics for Mixed Integer SLP
	Fixing or relaxing the values of the SLP variables
	Iterating at each node
	Termination criteria at each node
	Callbacks

	Integer and semi-continuous delta variables

	Xpress-SLP multistart

	III Reference
	Problem Attributes
	Double problem attributes
	XSLP_CURRENTDELTACOST
	XSLP_CURRENTERRORCOST
	XSLP_ERRORCOSTS
	XSLP_OBJSENSE
	XSLP_OBJVAL
	XSLP_PENALTYDELTATOTAL
	XSLP_PENALTYDELTAVALUE
	XSLP_PENALTYERRORTOTAL
	XSLP_PENALTYERRORVALUE
	XSLP_VALIDATIONINDEX_A
	XSLP_VALIDATIONINDEX_K
	XSLP_VALIDATIONINDEX_R
	XSLP_VSOLINDEX

	Integer problem attributes
	XSLP_COEFFICIENTS
	XSLP_CVS
	XSLP_DELTAS
	XSLP_ECFCOUNT
	XSLP_EXPLOREDELTAS
	XSLP_EQUALSCOLUMN
	XSLP_IFS
	XSLP_IMPLICITVARIABLES
	XSLP_INTEGERDELTAS
	XSLP_INTERNALFUNCCALLS
	XSLP_ITER
	XSLP_JOBID
	XSLP_MINORVERSION
	XSLP_MINUSPENALTYERRORS
	XSLP_MIPITER
	XSLP_MIPNODES
	XSLP_MIPSOLS
	XSLP_MODELCOLS
	XSLP_MODELROWS
	XSLP_MSSTATUS
	XSLP_NLPSTATUS
	XSLP_NONCONSTANTCOEFF
	XSLP_NONLINEARCONSTRAINTS
	XSLP_ORIGINALCOLS
	XSLP_ORIGINALROWS
	XSLP_PENALTYDELTACOLUMN
	XSLP_PENALTYDELTAROW
	XSLP_PENALTYDELTAS
	XSLP_PENALTYERRORCOLUMN
	XSLP_PENALTYERRORROW
	XSLP_PENALTYERRORS
	XSLP_PLUSPENALTYERRORS
	XSLP_PRESOLVEDELETEDDELTA
	XSLP_PRESOLVEELIMINATIONS
	XSLP_PRESOLVEFIXEDCOEF
	XSLP_PRESOLVEFIXEDDR
	XSLP_PRESOLVEFIXEDNZCOL
	XSLP_PRESOLVEFIXEDSLPVAR
	XSLP_PRESOLVEFIXEDZCOL
	XSLP_PRESOLVEPASSES
	XSLP_PRESOLVESTATE
	XSLP_PRESOLVETIGHTENED
	XSLP_SBXCONVERGED
	XSLP_SEMICONTDELTAS
	XSLP_SOLVERSELECTED
	XSLP_STATUS
	XSLP_STOPSTATUS
	XSLP_TOLSETS
	XSLP_UCCONSTRAINEDCOUNT
	XSLP_UFINSTANCES
	XSLP_UFS
	XSLP_UNCONVERGED
	XSLP_USEDERIVATIVES
	XSLP_USERFUNCCALLS
	XSLP_VARIABLES
	XSLP_VERSION
	XSLP_XVS
	XSLP_ZEROESRESET
	XSLP_ZEROESRETAINED
	XSLP_ZEROESTOTAL

	Reference (pointer) problem attributes
	XSLP_MIPPROBLEM
	XSLP_SOLUTIONPOOL
	XSLP_XPRSPROBLEM
	XSLP_XSLPPROBLEM
	XSLP_GLOBALFUNCOBJECT

	String problem attributes
	XSLP_UNIQUEPREFIX
	XSLP_VERSIONDATE

	Control Parameters
	Double control parameters
	XSLP_ATOL_A
	XSLP_ATOL_R
	XSLP_BARSTALLINGTOL
	XSLP_CASCADETOL_PA
	XSLP_CASCADETOL_PR
	XSLP_CDTOL_A
	XSLP_CDTOL_R
	XSLP_CLAMPSHRINK
	XSLP_CLAMPVALIDATIONTOL_A
	XSLP_CLAMPVALIDATIONTOL_R
	XSLP_CTOL
	XSLP_DAMP
	XSLP_DAMPEXPAND
	XSLP_DAMPMAX
	XSLP_DAMPMIN
	XSLP_DAMPSHRINK
	XSLP_DEFAULTIV
	XSLP_DEFAULTSTEPBOUND
	XSLP_DELTA_A
	XSLP_DELTA_R
	XSLP_DELTA_X
	XSLP_DELTA_Z
	XSLP_DELTA_ZERO
	XSLP_DELTACOST
	XSLP_DELTACOSTFACTOR
	XSLP_DELTAMAXCOST
	XSLP_DJTOL
	XSLP_DRCOLTOL
	XSLP_ECFTOL_A
	XSLP_ECFTOL_R
	XSLP_ENFORCECOSTSHRINK
	XSLP_ENFORCEMAXCOST
	XSLP_EQTOL_A
	XSLP_EQTOL_R
	XSLP_ERRORCOST
	XSLP_ERRORCOSTFACTOR
	XSLP_ERRORMAXCOST
	XSLP_ERRORTOL_A
	XSLP_ERRORTOL_P
	XSLP_ESCALATION
	XSLP_ETOL_A
	XSLP_ETOL_R
	XSLP_EVTOL_A
	XSLP_EVTOL_R
	XSLP_EXPAND
	XSLP_FEASTOLTARGET
	XSLP_GRANULARITY
	XSLP_INFINITY
	XSLP_ITOL_A
	XSLP_ITOL_R
	XSLP_MATRIXTOL
	XSLP_MAXWEIGHT
	XSLP_MEMORYFACTOR
	XSLP_MERITLAMBDA
	XSLP_MINSBFACTOR
	XSLP_MINWEIGHT
	XSLP_MIPCUTOFF_A
	XSLP_MIPCUTOFF_R
	XSLP_MIPERRORTOL_A
	XSLP_MIPERRORTOL_R
	XSLP_MIPOTOL_A
	XSLP_MIPOTOL_R
	XSLP_MSMAXBOUNDRANGE
	XSLP_MTOL_A
	XSLP_MTOL_R
	XSLP_MVTOL
	XSLP_OBJSENSE
	XSLP_OBJTOPENALTYCOST
	XSLP_OPTIMALITYTOLTARGET
	XSLP_OTOL_A
	XSLP_OTOL_R
	XSLP_PRESOLVEZERO
	XSLP_SHRINK
	XSLP_SHRINKBIAS
	XSLP_STOL_A
	XSLP_STOL_R
	XSLP_VALIDATIONTARGET_R
	XSLP_VALIDATIONTARGET_K
	XSLP_VALIDATIONTOL_A
	XSLP_VALIDATIONTOL_R
	XSLP_VTOL_A
	XSLP_VTOL_R
	XSLP_WTOL_A
	XSLP_WTOL_R
	XSLP_XTOL_A
	XSLP_XTOL_R
	XSLP_ZERO

	Integer control parameters
	XSLP_ALGORITHM
	XSLP_ANALYZE
	XSLP_AUGMENTATION
	XSLP_AUTOSAVE
	XSLP_BARCROSSOVERSTART
	XSLP_BARLIMIT
	XSLP_BARSTALLINGLIMIT
	XSLP_BARSTALLINGOBJLIMIT
	XSLP_BARSTARTOPS
	XSLP_CALCTHREADS
	XSLP_CASCADE
	XSLP_CASCADENLIMIT
	XSLP_CONTROL
	XSLP_CONVERGENCEOPS
	XSLP_DAMPSTART
	XSLP_DCLIMIT
	XSLP_DCLOG
	XSLP_DELAYUPDATEROWS
	XSLP_DECOMPOSE
	XSLP_DECOMPOSEPASSLIMIT
	XSLP_DELTAOFFSET
	XSLP_DELTAZLIMIT
	XSLP_DERIVATIVES
	XSLP_DETERMINISTIC
	XSLP_ECFCHECK
	XSLP_ECHOXPRSMESSAGES
	XSLP_ERROROFFSET
	XSLP_EVALUATE
	XSLP_EXCELVISIBLE
	XSLP_EXTRACVS
	XSLP_EXTRAUFS
	XSLP_EXTRAXVITEMS
	XSLP_EXTRAXVS
	XSLP_FILTER
	XSLP_FINDIV
	XSLP_FUNCEVAL
	XSLP_GRIDHEURSELECT
	XSLP_HEURSTRATEGY
	XSLP_HESSIAN
	XSLP_INFEASLIMIT
	XSLP_ITERLIMIT
	XSLP_JACOBIAN
	XSLP_LINQUADBR
	XSLP_LOG
	XSLP_LSITERLIMIT
	XSLP_LSPATTERNLIMIT
	XSLP_LSSTART
	XSLP_LSZEROLIMIT
	XSLP_MAXTIME
	XSLP_MIPALGORITHM
	XSLP_MIPCUTOFFCOUNT
	XSLP_MIPCUTOFFLIMIT
	XSLP_MIPDEFAULTALGORITHM
	XSLP_MIPFIXSTEPBOUNDS
	XSLP_MIPITERLIMIT
	XSLP_MIPLOG
	XSLP_MIPOCOUNT
	XSLP_MIPRELAXSTEPBOUNDS
	XSLP_MULTISTART
	XSLP_MULTISTART_MAXSOLVES
	XSLP_MULTISTART_MAXTIME
	XSLP_MULTISTART_POOLSIZE
	XSLP_MULTISTART_SEED
	XSLP_MULTISTART_THREADS
	XSLP_OCOUNT
	XSLP_PENALTYINFOSTART
	XSLP_POSTSOLVE
	XSLP_PRESOLVE
	XSLP_PRESOLVELEVEL
	XSLP_PRESOLVEOPS
	XSLP_PRESOLVEPASSLIMIT
	XSLP_PROBING
	XSLP_REFORMULATE
	XSLP_SAMECOUNT
	XSLP_SAMEDAMP
	XSLP_SBROWOFFSET
	XSLP_SBSTART
	XSLP_SCALE
	XSLP_SCALECOUNT
	XSLP_SOLVER
	XSLP_SLPLOG
	XSLP_STOPOUTOFRANGE
	XSLP_THREADS
	XSLP_TIMEPRINT
	XSLP_THREADSAFEUSERFUNC
	XSLP_TRACEMASKOPS
	XSLP_UNFINISHEDLIMIT
	XSLP_UPDATEOFFSET
	XSLP_VCOUNT
	XSLP_VLIMIT
	XSLP_WCOUNT
	XSLP_XCOUNT
	XSLP_XLIMIT
	XSLP_ZEROCRITERION
	XSLP_ZEROCRITERIONCOUNT
	XSLP_ZEROCRITERIONSTART

	Memory control parameters
	XSLP_MEM_CALCSTACK
	XSLP_MEM_COEF
	XSLP_MEM_COL
	XSLP_MEM_CVAR
	XSLP_MEM_DERIVATIVES
	XSLP_MEM_EXCELDOUBLE
	XSLP_MEM_FORMULA
	XSLP_MEM_FORMULAHASH
	XSLP_MEM_FORMULAVALUE
	XSLP_MEM_ITERLOG
	XSLP_MEM_RETURNARRAY
	XSLP_MEM_ROW
	XSLP_MEM_STACK
	XSLP_MEM_STRING
	XSLP_MEM_TOL
	XSLP_MEM_UF
	XSLP_MEM_VAR
	XSLP_MEM_XF
	XSLP_MEM_XFNAMES
	XSLP_MEM_XFVALUE
	XSLP_MEM_XROW
	XSLP_MEM_XV
	XSLP_MEM_XVITEM

	String control parameters
	XSLP_CVNAME
	XSLP_DELTAFORMAT
	XSLP_IVNAME
	XSLP_MINUSDELTAFORMAT
	XSLP_MINUSERRORFORMAT
	XSLP_PENALTYCOLFORMAT
	XSLP_PENALTYROWFORMAT
	XSLP_PLUSDELTAFORMAT
	XSLP_PLUSERRORFORMAT
	XSLP_SBLOROWFORMAT
	XSLP_SBNAME
	XSLP_SBUPROWFORMAT
	XSLP_TOLNAME
	XSLP_TRACEMASK
	XSLP_UPDATEFORMAT

	Knitro controls

	Library functions and the programming interface
	Counting
	The Xpress-SLP problem pointer
	The XSLPload... functions
	Library functions
	XSLPaddcoefs
	XSLPaddcvars
	XSLPadddcs
	XSLPadddfs
	XSLPaddivfs
	XSLPaddnames
	XSLPaddtolsets
	XSLPadduserfuncs
	XSLPaddvars
	XSLPaddxvs
	XSLPcalcslacks
	XSLPcalluserfunc
	XSLPcascade
	XSLPcascadeorder
	XSLPchgcascadenlimit
	XSLPchgccoef
	XSLPchgcoef
	XSLPchgcvar
	XSLPchgdc
	XSLPchgdeltatype
	XSLPchgdf
	XSLPchgfuncobject
	XSLPchgivf
	XSLPchgrow
	XSLPchgrowstatus
	XSLPchgrowwt
	XSLPchgtolset
	XSLPchguserfunc
	XSLPchguserfuncaddress
	XSLPchguserfuncobject
	XSLPchgvar
	XSLPchgxv
	XSLPchgxvitem
	XSLPconstruct
	XSLPcopycallbacks
	XSLPcopycontrols
	XSLPcopyprob
	XSLPcreateprob
	XSLPdecompose
	XSLPdelcoefs
	XSLPdelcvars
	XSLPdeldcs
	XSLPdelivfs
	XSLPdeltolsets
	XSLPdeluserfuncs
	XSLPdelvars
	XSLPdelxvs
	XSLPdestroyprob
	XSLPevaluatecoef
	XSLPevaluateformula
	XSLPfilesol
	XSLPfixpenalties
	XSLPformatvalue
	XSLPfree
	XSLPgetbanner
	XSLPgetccoef
	XSLPgetcoefformula
	XSLPgetcoefs
	XSLPgetcolinfo
	XSLPgetcvar
	XSLPgetdblattrib
	XSLPgetdblcontrol
	XSLPgetdcformula
	XSLPgetdf
	XSLPgetdtime
	XSLPgetfuncinfo
	XSLPgetfuncinfoV
	XSLPgetfunctioninstance
	XSLPgetfuncobject
	XSLPgetfuncobjectV
	XSLPgetindex
	XSLPgetintattrib
	XSLPgetintcontrol
	XSLPgetivformula
	XSLPgetlasterror
	XSLPgetmessagetype
	XSLPgetnames
	XSLPgetparam
	XSLPgetptrattrib
	XSLPgetrow
	XSLPgetrowinfo
	XSLPgetrowstatus
	XSLPgetrowwt
	XSLPgetslpsol
	XSLPgetstrattrib
	XSLPgetstrcontrol
	XSLPgetstring
	XSLPgettime
	XSLPgettolset
	XSLPgetuserfunc
	XSLPgetuserfuncaddress
	XSLPgetuserfuncobject
	XSLPgetvar
	XSLPgetversion
	XSLPgetxv
	XSLPgetxvitemformula
	XSLPglobal
	XSLPinit
	XSLPinterrupt
	XSLPitemname
	XSLPloadcoefs
	XSLPloadcvars
	XSLPloaddcs
	XSLPloaddfs
	XSLPloadivfs
	XSLPloadtolsets
	XSLPloaduserfuncs
	XSLPloadvars
	XSLPloadxvs
	XSLPmaxim
	XSLPminim
	XSLPmsaddcustompreset
	XSLPmsaddjob
	XSLPmsaddpreset
	XSLPmsclear
	XSLPopt
	XSLPparsecformula
	XSLPparseformula
	XSLPpostsolve
	XSLPpreparseformula
	XSLPpresolve
	XSLPprintmemory
	XSLPprintevalinfo
	XSLPprintmsg
	XSLPqparse
	XSLPreadprob
	XSLPremaxim
	XSLPreminim
	XSLPrestore
	XSLPreinitialize
	XSLPrevise
	XSLProwinfo
	XSLPsave
	XSLPsaveas
	XSLPscaling
	XSLPsetcbcascadeend
	XSLPsetcbcascadestart
	XSLPsetcbcascadevar
	XSLPsetcbcascadevarfail
	XSLPsetcbcascadevarF
	XSLPsetcbcoefevalerror
	XSLPsetcbconstruct
	XSLPsetcbdestroy
	XSLPsetcbdrcol
	XSLPsetcbformula
	XSLPsetcbintsol
	XSLPsetcbiterend
	XSLPsetcbiterstart
	XSLPsetcbitervar
	XSLPsetcbitervarF
	XSLPsetcbmessage
	XSLPsetcbmessageF
	XSLPsetcbmsjobend
	XSLPsetcbmsjobstart
	XSLPsetcbwinner
	XSLPsetcboptnode
	XSLPsetcbprenode
	XSLPsetcbslpend
	XSLPsetcbslpnode
	XSLPsetcbslpstart
	XSLPsetcurrentiv
	XSLPsetdblcontrol
	XSLPsetdefaultcontrol
	XSLPsetdefaults
	XSLPsetfuncobject
	XSLPsetfunctionerror
	XSLPsetintcontrol
	XSLPsetlogfile
	XSLPsetparam
	XSLPsetstrcontrol
	XSLPsetstring
	XSLPsetuniqueprefix
	XSLPsetuserfuncaddress
	XSLPsetuserfuncinfo
	XSLPsetuserfuncobject
	XSLPtime
	XSLPtokencount
	XSLPunconstruct
	XSLPupdatelinearization
	XSLPuprintmemory
	XSLPuserfuncinfo
	XSLPvalidformula
	XSLPvalidate
	XSLPvalidatekkt
	XSLPvalidaterow
	XSLPvalidatevector
	XSLPwriteprob
	XSLPwriteslxsol

	Internal Functions
	Trigonometric functions
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	SIN
	TAN

	Other mathematical functions
	ABS
	EXP
	LN
	LOG, LOG10
	MAX
	MIN
	SQRT

	Logical functions
	EQ
	GE
	GT
	IF
	LE
	LT
	NE
	NOT

	Problem-related functions
	ACT
	DJ
	LO
	MATRIX
	MV
	PARAM
	RHS
	RHSRANGE
	SLACK
	UP

	Specialized functions
	IAC
	INTERP

	Error Messages

	IV Appendix
	The Xpress-SLP Log
	Logging controls
	The structure of the log

	Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP
	Convex Quadratic Programs (QPs)
	Convex Quadratically Constrained Quadratic Programs (QCQPs)
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Files used by Xpress-SLP
	Xpress-SLP Examples

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

