FICO®Xpress Optimization

Last update 20 March 2020

version 36.01

FICO® Xpress Nonlinear

Manual

©1983-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICQ"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation
purposes to determine whether to purchase a license to the software described in this documentation, or
as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).
Use of this documentation and the software described in it must conform strictly to the foregoing
permitted uses, and no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except
as may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a
particular purpose. Portions of this documentation and the software described in it may contain copyright
of various authors and may be licensed under certain third-party licenses identified in the software,
documentation, or both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and
its affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Xpress Nonlinear

Deliverable Version: A

Last Revised: 20 March 2020
Version version 36.01

Contents

I Overview 1
1 Introduction 2
1.1 Mathematical programs e e e 2
11T Linearprograms o v v vt e e e e e e e e e e e e e e 3

1.1.2 Convexquadraticprograms o i i i i e e 3

1.1.3 Convex quadratically constrained quadratic programs 3

1.1.4 Secondorderconicproblems 3

1.1.5 General nonlinear optimizationproblems 4

1.1.6 Mixed integer programs o i it e e e e e e e e 4

1.2 Technology Overview e 4
121 TheSimplexMethod 4

1.2.2 The Logarithmic BarrierMethod 4

1.2.3 Outerapproximationschemes 5

1.2.4 Successive Linear Programming e 5

1.2.5 SecondOrderMethods e 5

1.2.6 MixedIntegerSolvers 5

1.3 APlnamingconvention e e e e 5

2 The Problem 7
2.1 Problem Definition e 7
2.2 Problem Formulation e 7

3 Modeling in Mosel 9
3.1 Basicformulation e 9
3.2 Settingup and solvingtheproblem, 10
3.3 Lookingattheresults e 1
3.4 Parallel evaluation of Mosel user functions 1

4 Modeling in Extended MPS Format 13
41 Basicformulation e e 13
4.2 Using the nonlinear optimizer console-based interface 17
4.3 Coefficientsandterms e 18

5 The Xpress NonLinear API Functions 19
51 Headerfiles. e 19
5.2 nitialization e e 19
5.3 Callbacks e e e 19
5.4 Creatingthe linear part of theproblem 20
5.5 Adding the non-linear part of theproblem 23
5.6 Adding the non-linear part of the problem using character formulae 25
5.7 Checkingthedata e 26
5.8 Solvingand printingthe solution 26
5.9 Closingtheprogram e 27
5.10 Addinginitialvalues e e 27

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

10

1

12

The Nonlinear Console Program 29
6.1 TheConsole Nonlinear i i i 29
6.1.1 The nonlinear consoleextensions 29

6.1.2 Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer con-
sole . . e 30
Advanced 32
Nonlinear Problems 33
7.1 Coefficientsandterms 33
7.2 SlLPvariables 34
7.3 Localandglobaloptimality 34
7.4 Convexily e e e e e e e 34
7.5 Converged and practical solutions 35
7.6 The duals of general, nonlinearprogram, 35
Extended MPS file format 37
8.1 Formulae e e 37
8.2 COLUMNS . . . e 38
8.3 BOUNDS e 39
8.4 SLPDATA . . . e 39
8.4.1 CV (Charactervariable) e 39
8.4.2 DR (Determining rOW) v v vt e e e e e e e 40
8.4.3 EC(Enforcedconstraint) 40
8.4.4 FR(Freevariable) e 40
8.4.5 FX(Fixedvariable). 1
8.4.6 IV(Initialvalue) e 411
8.4.7 LO (Lowerboundedvariable) 41
8.4.8 Rx, Tx (Relative and absolute convergence tolerances) 41
8.4.9 SB(Initial stepbound) 42
8.4.10 UF (Userfunction) e 42
8.4.11 UP (Freevariable) e 43
8.4.12 WT (Explicitrow weight) 43
8.4.13 DL (variable specific Determining row cascade iteration Limit) 43
Xpress-SLP Solution Process 44
9.1 Analyzingthe solutionprocess 45
9.2 Theinitialpoint. e e e 45
0.3 Derivatives e e e e 45
9.3.1 Finite Differences 46
9.3.2 Symbolic Differentiation 46
9.3.3 Automatic Differentiation 46
9.4 Pointsofinflection. e 46
9.5 Trustregions e e e e e 47
Handling Infeasibilities 48
10.1 Infeasibility Analysis in the Xpress Optimizer 48
10.2 Managing Infeasibility with XpressKnitro, 48
10.3 Managing Infeasibility with Xpress-SLP 49
10.4 Penalty Infeasibility Breakersin XSLP 49
Cascading 51
11.1 Determining rows and determiningcolumns 52
Convergence criteria 53

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

13

14

15

16

12.1 Convergencecriteria. o i i e e e e e e e e e e e e e 53
12.2 CONVErgenCe OVEIVIEW o v v i i e 53
12.2.1 StrictConvergence i e e e e e e e 53
12.2.2 Extended Convergence i i i e e 53
12.2.3 Stopping Criterion e e e e e 54
12.2.4 StepBounding 55
12.3 Convergence: technicaldetails 55
12.3.1 Closuretolerance (CTOL) o o it e e e e e e e e 58
12.3.2 Deltatolerance (ATOL) i i e e 58
12.3.3 Matrixtolerance (MTOL) i e e 58
12.3.4 Impacttolerance (ITOL) i e e e e e 59
12.3.5 Slackimpacttolerance (STOL) i it i e e 60
12.3.6 Fixed variables due to determining columns smaller than threshold (FX) 60
12.3.7 User-defined convergence i 60
12.3.8 Static objective function (1) tolerance (VTOL) 60
12.3.9 Static objective function (2) tolerance (OTOL) 61
12.3.10 Static objective function (3) tolerance (XTOL) 61
12.3.11 Extended convergence continuation tolerance (WTOL) 62
Xpress-SLP Structures 64
13.1 SLP Matrix Structures o e e e e e e 64
13.1.1 Augmentation of a nonlinear coefficient 64
13.1.2 Augmentationof anonlinearterm L L. 66
13.1.3 Augmentation of a user-defined SLPvariable 67
13.1.4 SLPpenaltyerrorvectors e 68
13.2 Xpress-SLP Matrix Name Generation 68
13.3 Xpress-SLP Statistics 69
13.4 SLP Variable History e e e e e 71
Xpress NonLinear Formulae 73
141 Parsedandunparsed formulae e 73
14.2 Example of an arithmeticformula 74
14.3 Example of a formula involving a simple function 75
User Functions 77
15.1 Callbacksand userfunctions e 77
15.2 User functioninterface e 78
15.3 User Function declarationin nativelanguages 78
15.3.1 User functiondeclarationinC 78
15.4 Simple functions and general functions L L. 79
15.4.1 Simpleuserfunctions 79
15.4.2 General user functions returning an array of values through a reference 79
15.4.3 General user functions returning an array of values through an argument 80
15.5 Programming Techniques for User Functions 81
15.5.1 Deltas o o e 82
15.5.2 Returnvalues and RetUrnArray v v v v v v v o e e e e e et e e e 82
15.5.3 Returning Derivatives e 82
15.5.4 FunctionInstances e 82
15.6 Function Derivatives e e e e e 83
15.6.1 Analytic Derivatives of Instantiated User Functions not Returning their own Deriva-

TIVeS . o e e 85
Management of zero placeholder entries 86
16.1 The augmented matrix structure e 86
16.2 Derivatives and zero derivatives 86
16.3 Placeholder management. 87

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

17 Special Types of Problem
17.1 Nonlinear objectives
17.2 Convex Quadratic Programming
17.3 Mixed Integer Nonlinear Programming

17.3.1 Mixed Integer SLP

17.3.2
17.3.3
17.3.4
17.3.5
17.3.6

Heuristics for Mixed Integer SLP

Fixing or relaxing the values of the SLP variables

Iterating at each node
Termination criteria at each node

Callbacks

17.4 Integer and semi-continuous delta variables

18 Xpress NonLinear multistart

Il Reference

19 Problem Attributes
19.1 Double problem attributes
XSLP_CURRENTDELTACOST
XSLP_CURRENTERRORCOST
XSLP_ERRORCOSTS
XSLP_OBJVAL
XSLP_PENALTYDELTATOTAL
XSLP_PENALTYDELTAVALUE

XSLP_PENALTYERRORVALUE .
XSLP_PRIMALINTEGRAL
XSLP_VALIDATIONINDEX_A
XSLP_VALIDATIONINDEX_K
XSLP_VALIDATIONINDEX_R
XSLP_VSOLINDEX
Integer problem attributes
XSLP_COEFFICIENTS
XSLP_CVS
XSLP_DELTAS
XSLP_ECFCOUNT
XSLP_EXPLOREDELTAS
XSLP_EQUALSCOLUMN
XSLP_IFS
XSLP_IMPLICITVARIABLES
XSLP_INTEGERDELTAS
XSLP_INTERNALFUNCCALLS .
XSLP_ITER

XSLP_JOBID
XSLP_KEEPBESTITER
XSLP_MINORVERSION
XSLP_MINUSPENALTYERRORS
XSLP_MIPITER
XSLP_MIPNODES
XSLP_MIPSOLS
XSLP_MODELCOLS
XSLP_MODELROWS
XSLP_MSSTATUS
XSLP_NLPSTATUS

19.2

XSLP_PENALTYERRORTOTAL .

89
89
89
90
90
90
91
92
92
92
93

95

Fair Isaac Corporation Confidential and Proprietary Information

Contents

XSLP_NONCONSTANTCOEFF e s e e e e e 108
XSLP_NONLINEARCONSTRAINTS e e e e e e e e 109
XSLP_ORIGINALCOLS e e e e e e e 109
XSLP_ORIGINALROWS 109
XSLP_PENALTYDELTACOLUMN e e e 109
XSLP_PENALTYDELTAROW e e e e e e e e e e 109
XSLP_PENALTYDELTAS o e e e e e e e e e e e e e e 110
XSLP_PENALTYERRORCOLUMN e e e e e 110
XSLP_PENALTYERRORROW et e 110
XSLP_PENALTYERRORS e 110
XSLP_PLUSPENALTYERRORS e e e e e e 110
XSLP_PRESOLVEDELETEDDELTA e e e e e e m
XSLP_PRESOLVEELIMINATIONS e e e e e e e m
XSLP_PRESOLVEFIXEDCOEF e e it e m
XSLP_PRESOLVEFIXEDDR e e m
XSLP_PRESOLVEFIXEDNZCOL e e e e 112
XSLP_PRESOLVEFIXEDSLPVAR e e s e e e 112
XSLP_PRESOLVEFIXEDZCOL e e e e e e e e e e e e e e e 112
XSLP_PRESOLVEPASSES e 112
XSLP_PRESOLVESTATE e e e e e e e 113
XSLP_PRESOLVETIGHTENED e et e 113
XSLP_SBXCONVERGED e e e e e e e 113
XSLP_SEMICONTDELTAS e e e e e e e e e e 13
XSLP_SOLVERSELECTED e e e e e e e e e e e e 14
XSLP_SOLSTATUS e e e 114
XSLP_STATUS 114
XSLP_STOPSTATUS o e e e e s e e e e e e 116
XSLP_TOLSETS e e e e e 116
XSLP_TOTALEVALUATIONERRORS e e 116
XSLP_UCCONSTRAINEDCOUNT e e e e e e e 116
XSLP_UFINSTANCES 17
XSLP_UFS . o 17
XSLP_UNCONVERGED e e e e e e e e 17
XSLP_USEDERIVATIVES e e e e e e e 17
XSLP_USERFUNCCALLS e e e e e e e 118
XSLP_VARIABLES e 118
XSLP_VERSION . . . 118
XSLP_ZEROESRESET e e e e e e e e 118
XSLP_ZEROESRETAINED s e e e e e e e e 118
XSLP_ZEROESTOTAL e e e e e e e e e e e e e e 119
19.3 Reference (pointer) problem attributes 120
XSLP_MIPPROBLEM e 120
XSLP_SOLUTIONPOOL e e e e s e e e e e e e 120
XSLP_XPRSPROBLEM e e e e e e 120
XSLP_XSLPPROBLEM e 120
19.4 String problem attributes 121
XSLP_VERSIONDATE 121
20 Control Parameters 122
20.1 Double control parameters e e e e e 130
XSLP_ATOL_A . . . e 130
XSLP_ATOL_R 130
XSLP_BARSTALLINGTOL e e e e e e e e e e 130
XSLP_CASCADETOL_PA e e e 131
XSLP_CASCADETOL_PR e 131

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

XSLP_CDTOL_A . . . e e 131
XSLP_CDTOL_R e 132
XSLP_CLAMPSHRINK o e 132
XSLP_CLAMPVALIDATIONTOL_A e 133
XSLP_CLAMPVALIDATIONTOL_Ro e 133
XSLP_CTOL e 133
XSLP_DAMP . . e 134
XSLP_DAMPEXPAND o e 134
XSLP_DAMPMAX . . . e 134
XSLP_DAMPMIN e 135
XSLP_DAMPSHRINK . . . e 135
XSLP_DEFAULTIV . . o 135
XSLP_DEFAULTSTEPBOUND e 136
XSLP_DELTA_A .« . o e 136
XSLP_DELTA_R e 136
XSLP_DELTA_X e 137
XSLP_DELTA_Z e 137
XSLP_DELTA_ZERO o e 137
XSLP_DELTACOST e 138
XSLP_DELTACOSTFACTOR e 138
XSLP_DELTAMAXCOST e e 138
XSLP_DJTOL e 139
XSLP_DRCOLTOL . . . o e e e e e e 139
XSLP_ECFTOL_A . . . o e 139
XSLP_ECFTOL_R e 140
XSLP_ENFORCECOSTSHRINK e 140
XSLP_ENFORCEMAXCOST e e e e e e e e 141
XSLP_ERRORCOST o e e e 141
XSLP_ERRORCOSTFACTOR e e e e e 141
XSLP_ERRORMAXCOST e 142
XSLP_ERRORTOL_A e 142
XSLP_ERRORTOL_P e 142
XSLP_ESCALATION e e e e e e 143
XSLP_ETOL_A . o e e 143
XSLP_ETOL_R e 143
XSLP_EVTOL_A . . o e 144
XSLP_EVTOL_R e 144
XSLP_EXPAND 145
XSLP_FEASTOLTARGET o e e e e e 145
XSLP_GRANULARITY . . . o e 145
XSLP_INFINITY . . . e 146
XSLP_ITOL_A . . o o e 146
XSLP_ITOLR . . . o e 147
XSLP_MATRIXTOL o e e e e e 147
XSLP_MAXWEIGHT e 148
XSLP_MEMORYFACTOR e 148
XSLP_MERITLAMBDA e 148
XSLP_MINSBFACTOR e 149
XSLP_MINWEIGHT o e e e 149
XSLP_MIPCUTOFF_A e e e 149
XSLP_MIPCUTOFF_R o e 150
XSLP_MIPERRORTOL_A e 150
XSLP_MIPERRORTOL_R e 150
XSLP_MIPOTOL_A e e e e e 151
XSLP_MIPOTOL_R e e e 151

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

XSLP_MSMAXBOUNDRANGE e 152
XSLP_MTOL_A . . . e e 152
XSLP_MTOL_R e e e 153
XSLP_MVTOL e e e e 153
XSLP_OBJSENSE e e 154
XSLP_OBJTOPENALTYCOST et e e e e e e e e e e e e e e e 154
XSLP_OPTIMALITYTOLTARGET e et 155
XSLP _OTOL_A e e e 155
XSLP_OTOL_R e e e 155
XSLP_PRESOLVEZERO e e e e e e s e e e e 156
XSLP_PRIMALINTEGRALREF e e e e 156
XSLP_SHRINK . . . e e 157
XSLP_SHRINKBIAS . . . e 157
XSLP_STOL_A e e e 157
XSLP_STOL_R e e e 158
XSLP_VALIDATIONTARGET_R e e e e e e e e 158
XSLP_VALIDATIONTARGET_K e e s e e e 158
XSLP_VALIDATIONTOL_A . . . o e e e e e e e e e 159
XSLP_VALIDATIONTOL_R e e e e e e e 159
XSLP _VTOL A . . . e e 160
XSLP_VTOL_R e 160
XSLP_WTOL_A . . . e e e e e 161
XSLP_WTOLLR e e 162
XSLP _XTOL_A e e e 163
XSLP_XTOL_R e e 163
XSLP_ZERO e e e e 164
20.2 Integer control parameters e e e e e 166
XSLP_ALGORITHM . . . e e e e e e s e 166
XSLP_ANALYZE . . . o e e e e 168
XSLP_AUGMENTATION e e e e e e e e e e 169
XSLP_AUTOSAVE e e e e e 170
XSLP_BARCROSSOVERSTART e e e e e e e e e e e e e e e 171
XSLP_BARLIMIT . . . o e e e 171
XSLP_BARSTALLINGLIMIT e et e e 172
XSLP_BARSTALLINGOBJLIMIT e e e e e e e e 172
XSLP_BARSTARTOPS e e e e e e 172
XSLP_CALCTHREADS e e e e e e e e e e e 173
XSLP_CASCADE 173
XSLP_CASCADENLIMIT o e e e e e e e e 174
XSLP_CONTROL e e e e e 174
XSLP_CONVERGENCEOPS et e 175
XSLP_DAMPSTART . . . o e e e e e 176
XSLP_DCLIMIT o e e e e e e e 176
XSLP_DCLOG o e e e e 176
XSLP_DELAYUPDATEROWS e e 176
XSLP_DELTAOFFSET e e e e e e e e e e s e e 177
XSLP_DELTAZLIMIT . . . o e e e e e e e e e e e e e e 177
XSLP_DERIVATIVES e e e e 178
XSLP_DETERMINISTIC e e e e e e e e e e e e 178
XSLP_ECFCHECK e e e e e e e 178
XSLP_ECHOXPRSMESSAGES e e e e e 179
XSLP_ERROROFFSET o e e e e e e e e e e e e e e 179
XSLP_EVALUATE e e e e e e 180
XSLP_FILTER o e e e e e 180
XSLP_FINDIV . . . e e e e e 181

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

XSLP_FUNCEVAL e 181
XSLP_GRIDHEURSELECT et 182
XSLP_HEURSTRATEGY e 182
XSLP_HESSIAN . . . e 183
XSLP_INFEASLIMIT o e 183
XSLP_ITERLIMIT . . . o e e e e e e 183
XSLP_JACOBIAN o e 184
XSLP_LINQUADBR e 184
XSLP_LOG e 184
XSLP_LSITERLIMIT o e 185
XSLP_LSPATTERNLIMIT . . . o oo e e e 185
XSLP_LSSTART . . . 185
XSLP_LSZEROLIMIT o e 186
XSLP_MAXTIME 186
XSLP_MIPALGORITHM o e 186
XSLP_MIPCUTOFFCOUNT e e e 188
XSLP_MIPCUTOFFLIMIT o o e e e e e 188
XSLP_MIPDEFAULTALGORITHM e e e 189
XSLP_MIPFIXSTEPBOUNDS e 189
XSLP_MIPITERLIMIT oo e 190
XSLP_MIPLOG e 190
XSLP_MIPOCOUNT . . . e e e e e e e 190
XSLP_MIPRELAXSTEPBOUNDS e e e 191
XSLP_MULTISTART o e e 191
XSLP_MULTISTART_MAXSOLVES oo 191
XSLP_MULTISTART_MAXTIME e 192
XSLP_MULTISTART_POOLSIZE e e 192
XSLP_MULTISTART_SEED e 193
XSLP_MULTISTART_THREADS it 193
XSLP_OCOUNT 193
XSLP_PENALTYINFOSTART e 194
XSLP_POSTSOLVE e 194
XSLP_PRESOLVE 194
XSLP_PRESOLVELEVEL e e e 195
XSLP_PRESOLVEOPS e 195
XSLP_PRESOLVEPASSLIMIT 196
XSLP_PROBING e 196
XSLP_REFORMULATE o e e e e e e 196
XSLP_SAMECOUNT e e e e e 197
XSLP_SAMEDAMP e 197
XSLP_SBROWOFFSET e 198
XSLP_SBSTART e 198
XSLP_SCALE 198
XSLP_SCALECOUNT o e e e e e 199
XSLP_SOLVER e 199
XSLP_SLPLOG e 200
XSLP_STOPOUTOFRANGE oo 200
XSLP_THREADS e 200
XSLP_TIMEPRINT o e 200
XSLP_THREADSAFEUSERFUNC it i 201
XSLP_TRACEMASKOPS e 201
XSLP_UNFINISHEDLIMIT e e 202
XSLP_UPDATEOFFSET e 202
XSLP_VCOUNT e e e e e 203
XSLP_VLIMIT . . o e e 203

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

XSLP_WCOUNT . . . e e e e e e 204
XSLP_XCOUNT o e e e e e e e e 205
XSLP_XLIMIT e e e e e e 205
XSLP_ZEROCRITERION e e e e e e e e e 206
XSLP_ZEROCRITERIONCOUNT e e e e e e e e e e e 207
XSLP_ZEROCRITERIONSTART e e e e e e e e e e 207
20.3 String control parameters e e e e e e e 208
XSLP_CVNAME e e e 208
XSLP_DELTAFORMAT e e e e e e e e e e 208
XSLP_ITERFALLBACKOPS e e e e e e e 208
XSLP_IVNAME e e e 209
XSLP_MINUSDELTAFORMAT e e e e e e e e e e e 209
XSLP_MINUSERRORFORMAT e e e e e e e e e 210
XSLP_PENALTYCOLFORMAT e e e e e e e e s e e 210
XSLP_PENALTYROWFORMAT e e e e e e e e e e 210
XSLP_PLUSDELTAFORMAT e e e e e e e e e e e e e 211
XSLP_PLUSERRORFORMAT e e e e e e e e e e 211
XSLP_SBLOROWFORMAT o e e e e e e e e e e e 211
XSLP_SBNAME e e e 212
XSLP_SBUPROWFORMAT e e e e e e e e e e e 212
XSLP_TOLNAME e e 212
XSLP_TRACEMASK e e e 213
XSLP_UPDATEFORMAT e e e e e e e e e e e e e e 213
20.4 Knitrocontrols 213
21 Library functions and the programming interface 214
211 Counting e e e e e e e 214
21.2 The Xpress NonLinear problem pointer 214
21.3 ThexsLPload... functions 215
21.4 Library functions e 215
XSLPaddcoefs e e 221
XSLPadddfs e 223
XSLPaddtolsets e 224
XSLPadduserfunction 225
XSLPaddvars e e 226
XSLPcalcslacks e 228
XSLPcascade e e 229
XSLPcascadeorder e 230
XSLPchgcascadenlimit 231
XSLPchgccoef 232
XSLPchgcoef 233
XSLPchgdeltatype e 234
XSLPchgdf 235
XSLPchgrowstatus 236
XSLPchgrowwt e 237
XSLPchgtolset e e 238
XSLPchgvar e 240
XSLPconstruct e e 242
XSLPcopycallbacks 243
XSLPcopycontrols e e e 244
XSLPCOpYpProb e e e e 245
XSLPcreateprob e 246
XSLPdelcoefs e 247
XSLPdeltolsets e 248
XSLPdeluserfunction 249

Fair Isaac Corporation Confidential and Proprietary Information ix

Contents

XSLPdelvars e e e e 250
XSLPdestroyprob e 251
XSLPevaluatecoef e 252
XSLPevaluateformula e 253
XSLPfixpenalties e e e 254
XSLPfree . . . o e e e 255
XSLPgetbanner. e 256
XSLPgetccoef e 257
XSLPgetcoefformula 258
XSLPgetcoefs e 259
XSLPgetcolinfo. 260
XSLPgetdblattrib e 261
XSLPgetdblcontrol e 262
XSLPgetdf 263
XSLPgetindex L e 264
XSLPgetintattrib 265
XSLPgetintcontrol e 266
XSLPgetlasterror e 267
XSLPgetptrattrib e 268
XSLPgetrowinfo 269
XSLPgetrowstatus L e e 270
XSLPgetrowwt e e e e e 271
XSLPgetslpsol e e e 272
XSLPgetstrattrib e 273
XSLPgetstrcontrol e 274
XSLPgettolset e 275
XSLPgetvar e e e e e e 276
XSLPglobal e 278
XSLPimportlibfunc e 279
XSLPINit e e 280
XSLPinterrupt e e e e 281
XSLPitemname e e 282
XSLPloadcoefs e e 283
XSLPloaddfs e e e e e 285
XSLPloadtolsets e e 286
XSLPloadvars e e 287
XSLPmaxim e e e 289
XSLPMINIM e e e e e 290
XSLPmsaddcustompreset e e 291
XSLPmsaddjob e 292
XSLPmsaddpreset e 293
XSLPmMSsclear e e e 294
XSLPnlpoptimize e 295
XSLPpostsolve e e 296
XSLPpresolve e e e 297
XSLPprintmemory e e e e e e e e e e 298
XSLPprintevalinfo 299
XSLPreadprob e 300
XSLPremaxim e e e 301
XSLPreminim L o e e e e e e 302
XSLPrestore e e e e 303
XSLPreinitialize e 304
XSLPsave e e e 305
XSLPsaveas e 306
XSLPscaling e e e 307

Fair Isaac Corporation Confidential and Proprietary Information X

Contents

XSLPsetcbcascadeend 308
XSLPsetcbcascadestart. e 309
XSLPsetcbcascadevar 310
XSLPsetcbcascadevarfail e 311
XSLPsetcbcoefevalerror. e e 312
XSLPsetcbconstruct e e 313
XSLPsetcbdestroy e 315
XSLPsetcbdrcol e 316
XSLPsetcbintsol 317
XSLPsetcbiterend 318
XSLPsetcbiterstart e e 319
XSLPsetcbitervar e e e 320
XSLPsetcbmessage o o 321
XSLPsetcbmsjobend e 323
XSLPsetcbmsjobstart 324
XSLPsetcbmswinner e e e 325
XSLPsetcboptnode e 326
XSLPsetcbprenode 327
XSLPsetcbpreupdatelinearization 328
XSLPsetcbslpend 329
XSLPsetcbslpnode e 330
XSLPsetcbslpstart 331
XSLPsetcurrentiv. e e e e 332
XSLPsetdblcontrol 333
XSLPsetdefaultcontrol 334
XSLPsetdefaults e e e 335
XSLPsetfunctionerror e e 336
XSLPsetintcontrol e e e 337
XSLPsetlogfile e 338
XSLPsetparam e e e e e 339
XSLPsetstrcontrol e 340
XSLPunconstruct e e e 341
XSLPupdatelinearization 342
XSLPvalidate e 343
XSLPvalidatekkt e 344
XSLPvalidateprob e 345
XSLPvalidaterow e e e 346
XSLPvalidatevector e e 347
XSLPwriteprob e 348
XSLPwritesIxsol e 349
22 Internal Functions 350
22.1 Trigonometric functions e 351
ARCCOS . . . e, 352
ARCSIN . . . e, 353
ARCTAN . . . e 354
COS . o e 355
SIN e 356
TAN e 357
22.2 Other mathematical functions 358
ABS . 359
ERF . e 360
ERFC . . . e 361
EXP . e 362
LN o e 363

Fair Isaac Corporation Confidential and Proprietary Information Xi

Contents

LOG,LOGTO e e e e e e e e e 364
MAX e e 365
MIN e 366
PWL . e 367
SIGN . . e e e 368
SQRT . e e 369
23 Error Messages 370
24 Xpress Knitro Control Parameters 376
24.1 Double control parameters e e e e e e 379
XKTR_PARAM_BAR_FEASMODETOL e e e e e 379
XKTR_LPARAM_BARLINITMU e e e e e s e e e e e e e 379
XKTR_LPARAM_DELTA e e e e e e e e e 379
XKTR_LPARAM_FEASTOL e e e s s et 379
XKTR_PARAM_FEASTOLABS e e e e e e e e e e e e e e 380
XKTR_PARAM_INFEASTOL e e e e e e e e e e e e e e e 380
XKTR_PARAM_MIP_INTEGERTOL et e e 380
XKTR_PARAM_MIP_INTGAPABS e e e e et e 380
XKTR_PARAM_MIP_INTGAPREL e e e e e e et 380
XKTR_LPARAM_OBJRANGE e e s e e e 381
XKTR_LPARAM_OPTTOL oo e e e e e e e e e e e e e e e e e 381
XKTR_PARAM_OPTTOLABS e e e e e e e e 381
XKTR_PARAM_PRESOLVE_TOL e e e e e e e e e e e e 381
XKTR_PARAM_XTOL e e e e e e s s e 382
24.2 Integer control parameters L. 383
XKTR_PARAM_ALGORITHM e e e e e e e e 383
XKTR_PARAM_BAR_DIRECTINTERVAL e e 383
XKTR_PARAM_BAR_FEASIBLE e 383
XKTR_PARAM_BARL_INITPT e s e e e e e e e e e e e 384
XKTR_PARAM_BAR_MAXBACKTRACK e e et 384
XKTR_PARAM_BAR_MAXCROSSIT e e e e e e e e 384
XKTR_PARAM_BAR_MAXREFACTOR et 385
XKTR_PARAM_BAR_MURULE e e e 385
XKTR_PARAM_BAR_PENCONS e e e e e et 386
XKTR_PARAM_BAR_PENRULE e et 386
XKTR_PARAM_BAR_SWITCHRULE e e 386
XKTR_PARAM_GRADOPT e e e e e e s e s e e e e e e 387
XKTR_PARAM_HESSOPT e e e e e e e e e 387
XKTR_LPARAM_HONORBNDS e e e e 387
XKTR_LPARAM_LMSIZE e e e e e e e e e 388
XKTR_PARAM_MAXCGIT e e e e e e e e e e e e e 388
XKTR_PARAM_MAXIT . . . e e e e e e e s s e e 388
XKTR_PARAM_MIP_BRANCHRULE e 389
XKTR_PARAM_MIP_GUB_BRANCH e et 389
XKTR_PARAM_MIP_HEURISTIC e e e e e e e 389
XKTR_PARAM_MIP_HEURISTIC_MAXIT e e e e et 389
XKTR_PARAM_MIP_IMPLICATNS e e e e e e e 390
XKTR_PARAM_MIP_KNAPSACK e e s e e e e e 390
XKTR_LPARAM_MIP_LPALG e e e s e e e e e e e e 390
XKTR_PARAM_MIP_MAXNODES e e e e e 391
XKTR_PARAM_MIP_MAXSOLVES e e e e e e et 391
XKTR_PARAM_MIP_METHOD e e e e e e 391
XKTR_PARAM_MIP_OUTINTERVAL e e e 391
XKTR_LPARAM_MIP_OUTLEVEL e e e e e 392
Fair Isaac Corporation Confidential and Proprietary Information Xii

Contents

XKTR_PARAM_MIP_PSEUDOINIT e e e e e e e 392
XKTR_PARAM_MIP_ROOTALG e e e e e e e e e e e e e 392
XKTR_PARAM_MIP_ROUNDING e e e e e 392
XKTR_PARAM_MIP_SELECTRULE e i e e 393
XKTR_PARAM_MIP_STRONG_CANDLIM i e 393
XKTR_PARAM_MIP_STRONG_LEVEL e e 393
XKTR_PARAM_MIP_STRONG_MAXIT e e e e e et 393
XKTR_LPARAM_MIP_TERMINATE e e e e e e e e e 393
XKTR_PARAM_OUTLEV e e e e e e e e e 394
XKTR_PARAM_PRESOLVE e e e e e e e e e e 394
XKTR_PARAM_SCALE e e e e e e e 394
XKTR_PARAM_SOC e e e e e e e 395
Appendix 396
A The Xpress-SLP Log 397
A.0.T Loggingcontrols. e e 397
A.0.2 Thestructureofthelog 397

B Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP 400
B.0.1 Convex Quadratic Programs (QPs) 400
B.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs) 400
B.0.3 Convexity e e e 401
B.0.4 Characterizing Convexity in Quadratic Constraints 401
C Files used by Xpress NonLinear 403
D Contacting FICO 404
Product support e e e e 404
Producteducation e 404
Productdocumentation 404
Salesand maintenance e e e e e e 405
Related services e e e 405
FICO Community e e e e e e e e e e 405
AboUt FICO e 405
Index 406

Fair Isaac Corporation Confidential and Proprietary Information xiii

l. Overview

CHAPTER 1
Introduction

This part of the manual is intended to provide a general description of the facilities available for
modeling with Xpress NonLinear. It is not an exhaustive list of possibilities, and it does not go into very
great depth on some of the more advanced topics. All the functions and formats are given in more
detail in the second part of this manual and the Xpress-Mosel Reference Manual (Module mmxnlp
section).

Xpress Nonlinear consists of the Xpress Optimizer to solve linear, mixed integer linear, and convex
quadratic problems, Xpress-SLP which uses Successive Linear Programming to solve non-linear
models, and as an plugin Knitro.

The functionalities of Xpres NonLinear extend those of the Xpress Optimizer. Almost any problem that
fits into the problem types supported by the Xpress Optimizer are automatically detected and
converted into the appropriate format to take advantage of the power of the optimizer’'s purpose written
algorithms.

Xpress-SLP is in essence, is a technique which involves making a linear approximation of the original
problem at a chosen point, solving the linear approximation and seeing how "far away" the solution
point is from the original chosen point. If it is "sufficiently close" then the solution is said to have
converged and the process stops. Otherwise, a new point is chosen, based on the solution, and a new
linear approximation is made. This process repeats (iterates) until the solution converges. Although
this process will find a solution which is the optimum for the linear approximation, there is no guarantee
that the solution will be the optimum for the original non-linear problem (that is to say: it may not be the
best possible solution to the original problem). Such a solution is called a "local optimum’, because it is
a better solution than any others in the immediate neighbourhood, but may not be better than one a
long way away.

The problem of local optima can be thought of as being like trying to find the deepest valley in a range
of mountains. You can find a valley relatively easily (just keep going downhill). However, when you
reach it, you have no idea whether there is a deeper valley somewhere else, because the mountains
block your view. You have found a local optimum, but you do not know whether it is a global optimum.
Indeed, in general, there is no way to find the global optimum except an exhaustive search (check every
valley in the mountain range).

While Xpress-SLP is most powerful for large or integer nonlinear problems, Knitro which can take
advantage of using second order partial derivative information can be more beneficial for hihgly
nonlinear models.

1.1 Mathematical programs

There are many specialised forms of model in mathematical programming, and if such a form can be
identified, there are usually much more efficient solution techniques available. This section describes
some of the major types of problem that Xpress NonLinear can identify automatically.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction Overview

1.1.1 Linear programs

Linear programming (LP) involves solving problems of the form

minimize ¢'x
subjectto Ax<b

and in practice this encompasses, via transformations, any problem whose objective and constraints
are linear functions.

Such problems were traditionally solved with the simplex method, although recently interior point
methods have come to be favoured for larger instances. Linear programs can be solved quickly, and
solution techniques scale to enormous sizes of the matrix A. However, few applications are genuinely
linear. It was common in the past, however, to approximate general functions by linear counterparts
when LPs were the only class of problem with efficient solution techniques.

1.1.2 Convex quadratic programs

Convex quadratic programming (QP) involves solving problems of the form

minimize ¢'x+x7Qx
subjectto Ax<b

for which the matrix Q is symmetric and positive semi-definite (that is, x Qx > 0 for all x). This
encompasses, via transformations, all problems with a positive semi-definite Q and linear constraints.
Such problems can be solved efficiently by interior point methods, and also by quadratic variants of the
simplex method.

1.1.3 Convex quadratically constrained quadratic programs

Convex quadratically constrained quadratic programming (QCQP) involves solving problems of the
form
minimize ¢'x+x7Qx
subjectto Ax<b
qux + XTPjX < dj, vj

for which the matrix Q and all matrices P; are positive semi-definite. The most efficient solution
techniques are based on interior point methods.

1.1.4 Second order conic problems

Second order conic problems is a special form of a convex quadratically constrained quadratic
program, where although the quadratic matrix is not positive semi-definite, the feasible range of the
problem is convex, and there are specialized algorithm to solve them.

minimize c¢’x+x7Qx
subjectto Ax<b
xisin Cj, vj

for which the matrix Cj is a convex second order cone and Q is positive semi-definite. The standard

form of a second order cone is x”Ix < y x y where y is non-negative, or (a rotated second order cone)
xTIx < y » z where y and z are non-negative. Many quadratic problems can be formulated as a second
order convex conic problem, including any convex quadratically constrained quadratic programs.
Transformation happens automatically for most convertible problems.

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction Overview

1.1.5 General nonlinear optimization problems

Nonlinear programming (NLP) involves solving problems of the form

minimize f(x)
subjectto gj(x) < b,Vj

where f(x) is an arbitrary function, and g(x) are a set of arbitrary functions. This is the most general type
of problem, and any constrained model can be realised in this form via simple transformations.

Until recently, few practical techniques existed for tackling such problems, but it is now possible to
solve even large instances using Successive Linear Programming solvers (SLP) or second-order
methods.

1.1.6 Mixed integer programs

Mixed-integer programming (MIP), in the most general case, involves solving problems of the form

minimize f(x)
subjectto gj(x) < b, V|
X integral

It can be combined with any of the previous problem types, giving Mixed-Integer Linear Programming
(MILP), Mixed-Integer Quadratic Programming (MIQP), Mixed-Integer Quadratically Constrained
Quadratic Programming (MIQCQP), Mixed-Integer Second Order Conic Problems (MISOCP) and
Mixed-Integer Nonlinear Programming (MINLP). Efficient solution techniques now exist for all of these
classes of problem.

1.2 Technology Overview

In real-world applications, it is vital to match the right optimization technology to your problem. The
FICO Xpress libraries provide dedicated, high performance implementations of optimization
technologies for the many model classes commonly appearing in practical applications. This includes
solvers for linear programming (LP), mixed integer programming (MIP), convex quadratic programming
(QP), and convex quadratically constrained programming (QCQP), and general nonlinear programming
(NLP).

1.2.1 The Simplex Method

The simplex method is one of the most well-developed and highly studied mathematical programming
tools. The solvers in the FICO Xpress Optimizer are the product of over 30 years of research, and include
high quality, competitive implementations of the primal and dual simplex methods for both linear and
quadratic programs. A key advantage of the simplex method is that it can very quickly reoptimize a
problem after it has been modified, which is an important step in solving mixed integer programs.

1.2.2 The Logarithmic Barrier Method

The interior point method of the FICO Xpress Optimizer is a state of the art implementation, with
leading performance across a variety of large models. It is capable of solving not only the largest and
most difficult linear and convex quadratic programs, but also convex quadratically constrained
quadratic and second order conic programs. It includes optimized versions of both infeasible
logarithmic barrier methods, and also homogeneous self-dual methods.

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction Overview

1.2.3 Outer approximation schemes

A drawback of the barrier methods is that they are not efficiently warms-tarted. This makes these
methods unattractive for solving several related problems, like the ones arising from a branch and
bound search. While for linear and convex quadratic problems the simplex methods can be used, there
is no immediate such alternative for convex quadratic constrained and second order methods. To
bridge the gap, outer approximation cutting schemes are used, which themselves may be warm started
by a barrier solution.

1.2.4 Successive Linear Programming

For general nonlinear programs which are very large, highly structured, or contain a significant linear
part, the FICO Xpress Sequential Linear Programming solver (XSLP) offers exceptional performance.
Successive linear programming is a first order, iterative approach for solving nonlinear models. At each
iteration, a linear approximation to the original problem is solved at the current point, and the distance
of the result from the the selected point is examined. When the two points are sufficiently close, the
solution is said to have converged and the result is returned. This technique is thus based upon solving
a sequence of linear programming problems and benefits from the advanced algorithmic and
presolving techniques available for linear problems. This makes XSLP scalable, as well as efficient for
large problems. In addition, the relatively simple core concepts make understanding the solution
process and subsequent tuning comparatively straightforward.

1.2.5 Second Order Methods

Also integrated into the Xpress suite is Knitro from Artelys, a second-order method which is particularly
suited to large-scale continuous problems containing high levels of nonlinearity. Second order methods
approximate a problem by examining quadratic programs fitted to a local region. This can provide
information about the curvature of the solution space to the solver, which first-order methods do not
have. Advanced implementations of such methods, like Knitro, may as a result be able to produce more
resilient solutions. This can be especially noticeable when the initial point is close to a local optimum.

1.2.6 Mixed Integer Solvers

The FICO Xpress MIP Solver is a highly scalable parallel branch and bound framework for all classes of
mixed integer programs. It is based on a branch and bound search utilizing continuous solvers,
advanced cutting planes in-tree presolving and multiple heuristics, for discovering primal solutions and
tightening best bounds. The search is guided by advanced methods for selecting branching variables
and estimating sub-tree sizes/efforts. Mixed integer programming forms the basis of many important
applications, and the implementation in the FICO Xpress Suite has proven itself in operation for some
of the world’s largest organizations. Both XSLP and Knitro are also able to solve mixed integer
nonlinear problems (MINLP).

1.3 API naming convention

Xpress Nonlinear has been developed as an extension to the XPRS library building on the SLP solver
technology, which is reflected in the naming convention. All XPRS API functions are used the same way
as normal to build the linear part of the problem, while the API functions prefixed with XSLP are used
for all nonlinear aspects, independently of how the problem is solved afterwards (convex quadratic
problems by a dedicated solver or Knitro instead of SLP). Some controls have both an XPRS and an
XSLP counterpart, for example "XPRS_PRESOLVE" and "XSLP_PRESOLVE". In such cases,
"XSLP_PRESOLVE" refers to the nonlinear presolver (even if another solver than SLP is used to solve the
problem afterwards) and "XPRS_PRESOLVE" refers to problems that are not deemed as general

Fair Isaac Corporation Confidential and Proprietary Information 5

Introduction Overview

nonlinear (LP, MIP or convex quadratic); in such cases, if SLP solves one of such problems as part of its
iterative process, the XPRS control is respected for such sub-solves.

Fair Isaac Corporation Confidential and Proprietary Information 6

CHAPTER 2

The Problem

2.1 Problem Definition

The diameter of a two-dimensional shape is the greatest distance between any two of its points. For a
circle, this definition corresponds to the normal meaning of "diameter". For a polygon (with straight
sides), it is equivalent to the greatest distance between any two vertices.

What is the greatest area of a polygon with N sides and a diameter of 1?

2.2 Problem Formulation

This formulation is one of two described by Prieto [1]. It is easy to visualize, and has advantages in later
examples. The pentagon is about the smallest model which can reasonably be used - it is non-trivial
but is still just about small enough to be written out in full.

V3

V4

v

Figure 2.1: Polygon Example

One vertex (the highest-numbered, V)) is chosen as the "base" point, and all the other vertices are
measured from it, using (r, #) coordinates — that is, the distance ("r") is measured from the vertex, and
the angle or bearing of the vertex (" 6 ") is measured from the X-axis.

Fair Isaac Corporation Confidential and Proprietary Information 7

The Problem Overview

We shall use r; and 6; as the coordinates of vertex V;. Then simple geometry and trigonometry gives:

m The area of the triangle VyV;V;: area(VyV;V)) = % ~rj - rj - sin(6; = 6;)
m The side V;V; is given by: (V;V})? = r? + rj2 =2.r1j-1;-cos(6; - 6)

m The total area of the polygon is: >N, area(VyV;V;_q)

m The maximum diameter of 1 requires that all the sides of all the triangles are < 1 - that is:
ri<ifori=1,.,N-1
and
ViV <ifori=1,.,N=2j=i+1,.,N-1

We have assumed in the diagram 2.1 and in the formulation that 6 ; < 6 41 — in other words, the vertices
are in order anti-clockwise. In fact, this is not just an assumption, and we need to include these
constraints as well.

In the diagram, we have assumed that the first angle 6 1 is > 0. This is not an additional restriction if we
use the normal modeling convention that all variables are non-negative. We also assumed that the last
vertex is still "above" the X-axis - that is, # y—1 is < 180° (or 7 radians).

The requirement is therefore:
maximize Zf\z’? (rj-ri—1-sin(9; — 6;-1)) * 0.5 (area of the polygon)
subjectto: r;<1fori=1,..,N-1 (distances betweem V) and other vertices)

r+r?=2.r-rp-cos(f;— 6; <1fori=1,.,N=2j=i+1,..,N-1
(distances between other pairs of vertices)

61 >0 (first bearing is non-negative)
Ois7—6; >0fori=1,..,N-2 (bearings are in order)
On-1 < (last vertex is above X-axis)

Reference:
(1) F.J. Prieto. Maximum area for unit-diameter polygon of N sides, first model and second model (Netlib
AMPL programs in ftp://netlib.bell-labs.com/netlib/ampl/models).

Fair Isaac Corporation Confidential and Proprietary Information 8

CHAPTER 3
Modeling in Mosel

3.1 Basic formulation

Nonlinear capabilities in Mosel are provided by the mmxn1p module. Please refer to the module
documentation for more details. This chapter provides a short introduction only.

The model uses the Mosel module mmxn1p which contains the extensions required for modeling
general non-linear expressions. This automatically loads the mmxprs module, so there is no need to
include this explicitly as well.

model "Polygon"
uses "mmxnlp"

We can design the model to work for any number of sides, so one way to do this is to set the number of
sides of the polygon as a parameter.

parameters
N=5
end-parameters

The meanings of most of these declarations will become apparent as the modeling progresses.

declarations
area: nlctr
rho: array(l..N) of mpvar
theta: array(l..N) of mpvar
objdef: mpvar
D: array(l..N,1..N) of nlctr
end-declarations

m The distances are described as "rho", to distinguish them from the default names for the rows in
the generated matrix (which are R1, R2, etc).

m The types nlctr (nonlinear constraint) are defined by the mmxn1lp module.

area := sum(i in 2..N-1) (rho(i) * rho(i-1) * sin(theta(i)-theta(i-1)))=*0.5

This uses the normal Mosel sum function to calculate the area. Notice that the formula is written in
essentially the same way as normal, including the use of the sin function. Because the argument to
the function is not a constant, Mosel will not try to evaluate the function yet; instead, it will be evaluated
as part of the optimization process.

area is a Mosel object of type nlctr.

objdef = area
objdef is_free

Fair Isaac Corporation Confidential and Proprietary Information 9

Modeling in Mosel Overview

What we really want to do is to maximize area. However, although Xpress NonLinear is happy in
principle with a non-linear objective function, the Xpress Optimizer is not, unless it is handled in a
special way. Xpress NonLinear therefore imposes the requirement that the objective function itself
must be linear. This is not really a restriction, because — as in this case - it is easy to reformulate a
non-linear objective function as an apparently linear one. Simply replace the function by a new mpvar
and then maximize the value of the mpvar. In general, because the objective could have a positive or
negative value, we make the variable free, so that it can take any value. In this example, we say:

objdef = area defining the variable objdef to be equal to the non-linear expres-
sion area
objdef is_free defining objdef to be a free variable

maximize (objdef) maximizing the linear objective

This is firstly setting the standard bounds on the variables rho and theta. To reduce problems with
sides of zero length, we impose a minimum of 0.1 on rho (i) instead of the default minimum of zero.

forall (i in 1..N-1) do
rho(i) >= 0.1
rho(i) <=1
setinitval (rho (i), 4*ix (N+1-1i)/ ((N+1)"*2))
setinitval (theta (i), M_PI*i/N)
end-do

We also give Xpress NonLinear initial values by using the setinitval procedure. The first argument
is the name of the variable, and the second is the initial value to be used. The initial values for theta
are divided equally between 0 and = . The initial values for rho are designed to go from 0 (wheni =0 or
N) to 1 (when i is about half way) and back.

forall (i in 1..N-2, j in i+1..N-1) do
D(i,j) := rho(i)”"2 + rho(j)”"2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <lt/>=1
end-do

This is creating the general constraints D (i, j) which constrain the other sides of the triangles to be <
1.

These constraints could be made anonymous - that is, the assignment to an object of type nlctr
could be omitted — but then it would not be possible to report the values.

forall (i in 2..N-1) do
theta (i) >= theta(i-1) + 0.01
end-do

These anonymous constraints put the values of the theta variables in non-decreasing order. To avoid
problems with triangles which have zero angles, we make each bearing at least 0.01 greater than its
predecessor.

This is the boundary condition on the bearing of the final vertex.

theta (N-1) <= M _PI

3.2 Setting up and solving the problem

loadprob (objdef)

This procedure loads the currently-defined non-linear problem into the Xpress NonLinear optimization
framework. This includes any purely linear part. Where a general constraint has a linear expression as

Fair Isaac Corporation Confidential and Proprietary Information 10

Modeling in Mosel Overview

its left or right hand side, that linear expression will be retained as linear relationships (constant
coefficients) in the matrix. Thus, for example, in the anonymous constraint defining objdef, the
objdef coefficient will be identified as a linear term and will appear as a separate item in the problem.

maximise

Optimization is carried out with the maximise or minimise procedures. They can take a string
parameter — for example maxmimise ("b") — as described in the Xpress NonLinear and Xpress
Optimizer reference manuals.

With the default settings of the parameters, you will see usually nothing from the optimizer. The
following parameters affect what is produced:

xnlp_verbose Normally set to false. If set to true, it produces standard Xpress
NonLinear iteration logging.

xprs_verbose Normally set to false. If set to true, then information from the
optimizer will also be output.

xslp_log Normally set to -1. If set to 0, limited information is output from

the SLP iterations. Settings of 1 or greater produce progressively
more information for each SLP iteration.

xslp_slplog If xslp_log is set to 0, this determines the frequency with which
SLP progress is reported. The default is 10, which means that it
prints every 10 SLP iterations.

3.3 Looking at the results

Within Mosel, the values of the variables and named constraints can be obtained using the getsol,
getslack and similar functions. A simple report lists just the area and the positions of the vertices:

writeln("Area = ", getobjval)
forall (i in 1..N-1) do

writeln("v", i, ": r=", getsol(rho(i)), " theta=", getsol(theta(i)))
end-do

This produces the following result for the case N=5:

Area = 0.657166

Vl: r=0.616416 theta=0.703301
V2: r=1 theta=1.33111

V3: r=1 theta=1.96079

V4: r=0.620439 theta=2.58648

3.4 Parallel evaluation of Mosel user functions

It is possible to use parallel evaluations of simple Mosel functions that return a single real value. These
functions may take an arbitrary array of nlctr expressions as input. It is the modeler’s responsibility to
ensure that the user functions to be called in parallel are thread-safe (i.e., they do not depend upon
shared resources). Assuming the name of the user function is MyFunc, the user function before
enabling the parallel version is expected to be declared as usefuncMosel (' MyFunc’).

In order for mmxnlp to be able to utilize parallel user function evaluations, the user function must be
implemented as a public function in a Mosel package. Any initialization necessary to enable the

Fair Isaac Corporation Confidential and Proprietary Information 1

Modeling in Mosel Overview

evaluation of the user function should be performed as part of the package initialization (which is the
code in in the main body of the package).

To enable parallel evaluations, a parallel enabled version of the user function needs to be generated
using the mmxnlp procedure generateUFparallel, which takes two arguments: the compiled
package .bim name implementing the user function and the name of the user function within the
package. It is good practice to use a separate Mosel model to perform this generation, keeping it
separate from the main model. Multiple generated parallel user functions may be used within a single
model.

The generator will produce a single Mosel file, the Mosel package MyFunc_master. This package also
includes the worker model which will be responsible for the user function evaluations and will be
resident in memory during the execution. The package also implements the parallel version of the user
function, called MyFunc_parallel.

After compiling and including the master package into your model, it is this function that should be
used in the actual model as userfuncMosel (' MyFunc_parallel’, XSLP_DELTAS). In most
cases, no other modifications are necessary, as the parallel function will detect the number of threads
in the system and will start that many worker threads automatically. These will be shut down when your
model finishes. Each worker’s initialization code is performed only once, at the time of its first
execution.

It may be necessary to explicitly start the worker threads, either to control the number of threads used,
or to pass specific parameter settings to the user function package. This can be done by the procedure
MyFunc_StartWorkers (ThreadCount : integer, UfPackageParameters : string).
In case it is necessary to stop the workers, the procedure MyFunc_StopWorkers may be used.

In case the user functions are computationally very expensive, by modifying the connection string in the
generated module it is possible to utilize distributed/cloud-based computation of the user functions.

The worker model will only be compiled into memory during execution, but may be modified as
necessary within the master model. For debugging purposes, it may be practical to redirect the worker
to afile.

Fair Isaac Corporation Confidential and Proprietary Information 12

CHAPTER 4

Modeling in Extended MPS Format

4.1 Basic formulation

Standard MPS format uses a fixed format text file to hold the problem information. Extended MPS
format has two main differences from the standard form:

m The records in the file are free-format — that is, the fields are not necessarily in fixed columns or
of fixed size, and each field is delimited by one or more spaces.

m The standard MPS format allows only numbers to be used in the "coefficient" fields — extended
MPS format allows the use of formulae.

m There is an optional extra section in extended MPS format, holding additional data and structures
for Xpress NonLinear.

We shall tend to use a fairly fixed format, to aid readability.

NAME POLYGON

The first record of any MPS file is the NAME record, which has the name which may be used to create
file names where no other name is specified, and is also written into the matrix and solution files.

ROWS

The rROWS record introduces the list of rows of the problem - this includes the objective function as
well as all the constraints.

OBJ
OBJEQ
T2T1
T3T2
T4T3
v1iva
v1iv3
v2v3
v2v4
v3v4

[e e I D I I I 5 1

The first character denotes the type of constraint. The possible values are:

Fair Isaac Corporation Confidential and Proprietary Information 13

Modeling in Extended MPS Format Overview

N not constraining (always used for the objective function, but may
be used elsewhere).

E equality: the left hand side (LHS) is equal to the right hand side
(RHS).
L lessthan or equal to: the LHS is less than or equal to the RHS.

G greater than or equal to: the LHS is greater than or equal to the
RHS.

The second field is the name used for the constraint. In MPS file format, everything has a name.
Therefore, within each type of entity (rows, columns, etc) each name must be unique. In general, you
should try to ensure that names are unique across all entities, to avoid possible confusion.

You should also try to make the names meaningful, so that you can understand what they mean.

In the example:
OBJ is the objective function.

OBJEQ is the "equality" version of the objective function which, as ex-
plained below, is required because we are trying to optimize a
non-linear objective.

TiT] is the constraint that will ensure 6; > 6;(j =i - 1).

ViVj is the constraint that will ensure that the distance between V; and
Viis<1.

COLUMNS

The cOLUMNS record introduces the list of columns and coefficients in the matrix. In a normal linear
problem, all the variables will appear explicitly as columns in this section. However, in non-linear
problems, it is possible for variables to appear only in formulae and so they may not appear explicitly. In
the example, the variables THETA1 to THETA4 appear explicitly, the variables RHO1 to RHO4 appear only
in formulae. Constraints which involve only one variable in a linear way (that is, they limit the value of a
variable to a minimum value, a maximum value or both — possibly equal — values) are usually put in a
separate "BOUNDS" section which appears later.

OBJX OBJ 1.0
OBJX OBJEQ -1.0

The first field is the name of the column. All "cOLUMNS" records for a column must be together. The
second field is the name of the row (which was defined in the ROWS section). The third field is the value.
It is not necessary to include zero values - only the non-zeros are required

If the coefficients are constant, then it is possible to put two on each record, by putting a second row
name and value after the first (as in the example for THETA2 and THETA3 below).

The constraints putting 0 ; in order are all linear — that is, the coefficients are all constant.

THETA1 T2T1 -1
THETA2 T2T1 1 T3T2 -1
THETA3 T3T2 1 T4T3 -1
THETA4 TA4T3 1

The RHS of any constraint must be constant. Therefore, to write THETA2 > THETA1, we must actually
write THETA2 - THETA1 > 0. The constraint T2T1 has coefficient -1in THETA1 and +1in THETA2.

We want to maximise the area of the polygon. The formula for this is the sum of the areas of the
triangles with one vertex at V5 —i.e.

Fair Isaac Corporation Confidential and Proprietary Information 14

Modeling in Extended MPS Format Overview

0.5 » RHO1 * RHO2 x SIN (THETA2 - THETAl) +
0.5 * RHO2 * RHO3 * SIN (THETA3 - THETA2) +
0.5 * RHO3 * RHO4 * SIN (THETA4 - THETA3)

— which is a non-linear function. Xpress NonLinear does not itself have a problem with non-linear
objective functions, but Xpress distinguishes between the original N-type row which contains the
objective function coefficients when the matrix is read in, and the objective function which is actually
optimized. To avoid any confusion between these two "objectives”, Xpress NonLinear also requires that
the objective function as passed to Xpress Optimizer is linear. What we want to do is:

maximize AREA, where AREA is a non-linear function.

We create a new variable — called in this example 0BJX — and write:

OBJX = AREA (or, because the RHS must be constant, AREA — OBJX = 0)

and then: maximize OBJX, where OBJX is just a variable.

The constraint linking 0BJX and AREA was defined as the equality constraint OBJEQ in the ROWS
section, and AREA is the formula given above. This is where the coefficient of -1in column 0BJX comes
from.

Every item in the matrix has to be in a coefficient — that is, it is the multiplier of a variable. However, the
formula for area, as written, is not a coefficient of anything. There are several ways of dealing with this
situation. We shall start by breaking the formula up into coefficient form - that is, to write it as
X1*formulal + X2*formula2 + Our formula could then be:

RHOl % (0.5 % RHO2 * SIN (THETA2 - THETAL))
RHO2 * (0.5 % RHO3 * SIN (THETA3 - THETA2))
RHO3 % (0.5 * RHO4 * SIN (THETA4 — THETA3))

+
+

which is of the right form and can be written in the COLUMNS section as follows:

RHO1 OBJEQ = 0.5 x* RHO2 * SIN (THETA2 - THETAl)
RHO2 OBJEQ 0.5 *» RHO3 * SIN (THETA3 - THETA2)
RHO3 OBJEQ = 0.5 * RHO4 * SIN (THETA4 - THETA3)

Notice that the formula begins with an equals sign. When this is used in the coefficient field, it always
means that a formula is being used rather than a constant. The formula must be written on one line - it
does not matter how long it is — and each token (variable, constant, operator, bracket or function name)
must be delimited by spaces.

When a formula is used, you can only write one coefficient on the record — the option of a second
coefficient only applies when both coefficients are constants.

The constraints for the distances between pairs of vertices are relationships of the form:
RHO1 * RHOl + RHO2 * RHO2 - 2 x RHOl * RHO2 * COS (THETA2 - THETAl) <=1

These can again be split into coefficients, for example:

RHOl % (RHOl - 2 * RHO2 * COS (THETA2 — THETAL)) + RHO2 % (RHO2)

This looks a little strange, because RHO2 appears as a coefficient of itself, but that is perfectly all right.
This section of the matrix contains a set of records (one for each of the viv3 constraints) like this:

RHO1 v1iv2z RHOl - 2 * RHO2 * COS (THETA2 - THETAl)
RHO2 V1v2 = RHO2

Fair Isaac Corporation Confidential and Proprietary Information 15

Modeling in Extended MPS Format Overview

Note that because the records for each column must all appear together, the coefficients for — for
example — RHO1 in this segment must be merged in with those in the previous (OBJEQ) segment.

RHS

The RHS record introduces the right hand side section.

The RHS section is formatted very much like a COLUMNS section with constant coefficients. There is a
column name - it is actually the name of the right hand side — and then one or two entries per record.
Again, only the non-zero entries are actually required.

RHS1 T2T1 .001 T3T2 .001
RHS1 T4T3 .001 vVviv2 1
RHS1 V1v3 1 vivd 1
RHS1 v2v3 1 va2v4 1
RHS1 Vv3v4 1

RHS1 is the name we have chosen for the right hand side. It is possible — although beyond the scope of
this guide - to have more than one right hand side, and to select the one you want. Note that, in order to
ensure we do have a polygon with N sides, we have made the relationship between theta(i) and
theta(i-1) a strict inequality by adding 0.001 as the right hand side. If we did not, then two of the vertices
could coincide and so the polygon would effectively lose one of its sides.

BOUNDS

The BOUNDS record introduces the BOUNDS section which typically holds the values of constraints
which involve single variables.

Like the RHS section, it is possible to have more than one set of BOUNDS, and to select the one you want
to use. There is therefore in each record a bound name which identifies the set of bounds to which it
belongs. We shall be using only ones set of bounds, called BOUND1.

Bounds constrain a variable by providing a lower limit or an upper limit to its value. By providing a limit
of - co for the lower bound, it is possible to create a variable which can take on any value — a "free"
variable. The following bound types are provided:

L0 alowerbound.

UP an upper bound.

FX afixed bound (the upper and lower limits are equal).

FR a free variable (no lower or upper limit).

MI a"minus infinity" variable - it can take on any non-positive value.

There are other types of bound which are used with integer programming, which is beyond the scope of
this guide.

FR BOUND1 OBJX
LO BOUND1 RHO1
UP BOUND1 RHO1
LO BOUND1 RHO2
UP BOUND1 RHO2

0.01
1
0
1
LO BOUND1 RHO3 0.01
1
0
1
3

.01

UP BOUND1 RHO3
LO BOUND1 RHO4
UP BOUND1 RHO4
UP BOUND1 THETA4

.01

.1415926

Fair Isaac Corporation Confidential and Proprietary Information 16

Modeling in Extended MPS Format Overview

A record in a BOUNDS section can contain up to four fields. The first one is the bound type (from the list
above). The second is the name of the BOUNDS set being used (ours is always BOUND1). The third is
the name of the variable or column being bounded. Unless the bound type is FR or MI, there is a fourth
field which contains the value of the bound.

Although we know that the area is always positive (or at least non-negative), a more complicated
problem might have an objective function which could be positive or negative — you could make a profit
or a loss — and so OBJX needs to be able to take on po sitive and negative values. The fact that it is
marked as "free" here does not mean that it can actually take on any value, because it is still
constrained by the rest of the problem.

The upper bounds on RHO1 to RHO4 provide the rest of the restrictions which ensure that the distances
between any two vertices are = 1, and the limit on THETA4 ensures that the whole polygon is above the
X-axis. Just to make sure that we do not "lose" a side because the value of RHOi becomes zero, we set
a lower bound of 0.01 on all the rhos, performing a similar function to the RHS values of .001 for TiT3.

ENDATA

The last record in the file is the ENDATA record.

Although this is sufficient to define the model, it is usually better to give Xpress NonLinear some idea of
where to start - that is, to provide a set of initial values for the variables. You do not have to provide
values for everything, but you should try to provide them for every variable which appears in a non-linear
coefficient, or which has a non-linear coefficient. In our current example, that means everything except
OBJX.

SLPDATA

The sSLPDATA record introduces a variety of different special items for Xpress NonLinear. It comes as
the last section in the model (before the ENDATA record). We are using it at this stage for defining initial
values. These are done with an Iv record.

IV IVSET1 RHOl 0.555
IV IVSET1 RHO2 0.888
IV IVSET1 RHO3 1

IV IVSET1 RHO4 0.888

Just as with the RHS and BOUNDS sections, it is possible to have more than one set of initial values -
perhaps because the same structure is used to solve a whole range of problems where the answers are
so different that it does not make much sense to start always from the same place. In this example, we
are using only one set — IVSET1.

The 1V record contains four fields. The first one is 1v, which indicates the type of SLPDATA being
provided. The second is the name of the set of initial values. The third is the name of the variable and
the fourth is the value being provided.

In the case of IV records, it is possible — and indeed perhaps necessary - to provide initial values
which are zero. The default value (which is used if no value is provided) is not zero, so if you want to
start with a zero value you must say so.

4.2 Using the nonlinear optimizer console-based interface

The nonlinear console is a data-driven console-based interface for operating Xpress NonLinear, an
extension of the Xpress Optimizer console. The optimizer console switches to nonlinear is a valid
nonlinear license is detected.

Fair Isaac Corporation Confidential and Proprietary Information 17

Modeling in Extended MPS Format Overview

The example will use screen-based input and output. You can also put the commands into a file and
execute it in batch mode, or use the embedded TCL scripting language.

Commands are not case-sensitive except where the case is important (for example, the name of the
objective function). We shall use upper case for commands and lower case for the arguments which
would change for other models. Each parameter in a command must be separated by at least one
space from the preceding parameter or command.

optimizer

This starts the optimizer program. This checks for the existence of the Xpress Optimizer DLLs. If you
are using an OEM version of the Xpress DLL, you may need a special password or license file from your
usual supplier.

READPROB polygon

This reads a non-linear problem from the file polygon.mat.

MAXIM

This form of the maximize command does a non-linear optimization with the default settings of all the
parameters (it will recognise the problem as an SLP one automatically).

WRITEPRTSOL

This will use the normal Xpress function to write to solution in a text form to a file with the same name
as the input, but with a ".prt" suffix.

Q

This (the abbreviation for the QUIT command) terminates the optimizer console program.

4.3 Coefficients and terms

So far we have managed to express the formulae as coefficients. However, there are constraints — for
example SIN (A) < 0.5 — which cannot be expressed directly using coefficients. The extended MPS
format has a special reserved column name - the equals sign — which is effectively a variable with a
fixed value of 1.0, and which can be used to hold formulae of any type, whether they can be expressed
as coefficients or not. The area formula and distance constraints could all be written in a more
readable form by using the "equals column". The area formula is rather long to write in this guide, but
the distance constraints look like this:

V1V2 RHO1l * RHOl1l + RHO2Z * RHO2 - 2 * RHOl * RHO2 * COS (THETA2 - THETAl)
V1v3 RHO1 * RHOl + RHO3 * RHO3 - 2 * RHOl1l * RHO3 * COS (THETA3 - THETAL)

Fair Isaac Corporation Confidential and Proprietary Information 18

CHAPTER 5
The Xpress NonLinear API Functions

Instead of writing an extended MPS file and reading in the model from the file, it is possible to embed
Xpress NonLinear directly into your application, and to create the problem, solve it and analyze the
solution entirely by using the Xpress NonLinear API functions. This example uses the C header files and
API calls. We shall assume you have some familiarity with the Xpress Optimizer API functions in
XPRS.DLL.

The structure of the model and the naming system will follow that used in the previous section, so you
should read the chapter 4 first.

5.1 Header files

The header file containing the Xpress NonLinear definitions is xs1p.h. This must be included together
with the Xpress Optimizer header xprs.h. xprs.h must come first.

#include "xprs.h"
#include "xslp.h"

5.2 Initialization

Xpress NonLinear and Xpress Optimizer both need to be initialized, and an empty problem created. All
Xpress NonLinear functions return a code indicating whether the function completed successfully. A
non-zero value indicates an error. For ease of reading, we have for the most part omitted the tests on
the return codes, but a well-written program should always test the values.

XPRSprob mprob;
XSLPprob sprob;

if (ReturnValue=XPRSinit (NULL)) goto ErrorReturn;

if (ReturnValue=XSLPinit()) goto ErrorReturn;

if (ReturnValue=XPRScreateprob (&mprob)) goto ErrorReturn;

if (ReturnValue=XSLPcreateprob (&sprob, &mprob)) goto ErrorReturn;

5.3 Callbacks

It is good practice to set up at least a message callback, so that any messages produced by the system
appear on the screen or in a file. The XSLPsetcbmessage function sets both the Xpress NonLinear
and Xpress Optimizer callbacks, so that all messages appear in the same place.

XSLPsetcbmessage (sprob, XSLPMessage, NULL);

Fair Isaac Corporation Confidential and Proprietary Information 19

The Xpress NonLinear API Functions Overview

void XPRS_CC XSLPMessage (XSLPprob my_prob, void *my_object, char *msg, int len,
int msg_type)
{
switch (msg_type) {
case 4: /x error */
case 3: /* warning */
case 2: /x dialogue */
case 1: /* information x/
printf ("$s\n", msg);
break;
default: /* exiting =/
fflush (stdout) ;
break;

}

This is a simple callback routine, which prints any message to standard output.

5.4 Creating the linear part of the problem

The linear part of the problem, and the definitions of the rows and columns of the problem are carried
out using the normal Xpress Optimizer functions.

#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
int nRow, nCol, nSide, nRowName, nColName;
int Sin, Cos;
char RowType [MAXROW] ;
double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT];
double Lower [MAXCOL], Upper [MAXCOL];
int ColStart[MAXCOL+1l], RowIndex[MAXELT];
char RowNames[500], ColNames[500];

In this example, we have set the dimensions by using #define statements, rather than working out the
actual sizes required from the number of sides and then allocating the space dynamically.

nSide = 5;
nRowName = 0;
nColName = 0;

By making the number of sides a variable (nside) we can create other polygons by changing its value.

It is useful — at least while building a model - to be able to see what has been created. We will
therefore create meaningful names for the rows and columns. nRowName and nCol1Name count along
the character buffers RowNames and ColNames.

nRow = nSide-2 + (nSide-1)=* (nSide-2)/2 + 1;
nCol = (nSide-1)*2 + 2;
for (i=0; i<nRow; i++) RHS[i] = 0;

The number of constraints is:

nSide-2 for the relationships between adjacent thetas.
(nSide-1) * (nSide-2) /2 for the distances between pairs of vertices.
1 for the OBJEQ non-linear "objective function".

The number of columns is:

Fair Isaac Corporation Confidential and Proprietary Information 20

The Xpress NonLinear API Functions Overview

nSide-1 for the thetas.

nSide-1 forthe rhos.

1 for the 0BJX objective function column.
1 for the "equals column”.

We are using "C"-style numbering for rows and columns, so the counting starts from zero.

nRow = 0;
RowType [nRow++] = 'E'; /* OBJEQ */
nRowName = nRowName + 1 + sprintf (&RowNames[nRowName], "OBJEQ");
for (i=1; i<nSide-1; i++) {
RowType [nRow++] = 'G'; /x T2T1 .. T4T3 x/
RHS[i] = 0.001;
nRowName = nRowName + 1 + sprintf (¢§RowNames[nRowName], "T%dT%d", i+1l, 1i);

This sets the row type indicator for 0BJEQ and the theta relationships, with a right hand side of 0.001.
We also create row names in the RowNames buffer. Each name is terminated by a NULL character
(automatically placed there by the sprintf function). sprintf returns the length of the string written,
excluding the terminating NULL character.

for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {
RowType [nRow] = 'L';
RHS [nRow++] = 1.0;
nRowName = nRowName + 1 + sprintf (¢§RowNames[nRowName], "Vv%dvsd", i, 3J);

This defines the L-type rows which constrain the distances between pairs of vertices. The right hand
side is 1.0 (the maximum value) and the names are of the form viv3.

for (i=0; i<nCol; i++) {

OBJ[i] = O; /* objective function */
Lower[i] = 0; /* lower bound normally zero */
Upper[i] = XPRS_PLUSINFINITY; /* upper bound = infinity =/

}

This sets up the standard column data, with objective function entries of zero, and default bounds of
zero to plus infinity. We shall change these for the individual items as required.

nCol = 0;

nElement = 0;

ColStart[nCol] = nElement;

OBJ[nCol] = 1.0;

Lower [nCol++] = XPRS_MINUSINFINITY; /* free column */
Element [nElement] = -1.0;

RowIndex[nElement++] = 0;

nColName = nColName + 1 + sprintf (&ColNames[nColName], "OBJX");

This starts the construction of the matrix elements. nElement counts through the Element and
RowIndex arrays, nCol counts through the Colstart, OBJ, Lower and Upper arrays. The first

column, OBJY, has the objective function value of +1 and a value of -1in the OBJEQ row. It is also
defined to be "free", by making its lower bound equal to minus infinity.

iRow = 0

for (i=1; i<nSide; i++) {
nColName = nColName + 1 + sprintf (&ColNames[nColName], "THETA%d", 1i);
ColStart[nCol++] = nElement;

Fair Isaac Corporation Confidential and Proprietary Information 21

The Xpress NonLinear API Functions Overview

if (i < nSide-1) {
Element [nElement] = -1;
RowIndex[nElement++] = iRow+1l;
}
if (1 > 1) |
Element [nElement] = 1;
RowIndex[nElement++] = iRow;

}

iRow++;

This creates the relationships between adjacent thetas. The tests on i are to deal with the first and last
thetas which do not have relationships with both their predecessor and successor.

Upper [nCol-1] = 3.1415926;

This sets the bound on the final theta to be = . The column index is nCo1-1 because nCol has already
been incremented.

nColName = nColName + 1 + sprintf (&ColNames[nColName], "=");

ColStart[nCol] = nElement;
Lower [nCol] = Upper[nCol] = 1.0; /* fixed at 1.0 */
nCol++;

This creates the "equals column” - its name is "=" and it is fixed at a value of 1.0.
for (i=1; i<nSide; i++) {

Lower [nCol] = 0.01; /* lower bound x/

Upper [nCol] = 1;

ColStart[nCol++] = nElement;

nColName = nColName + 1 + sprintf (&ColNames[nColName], "RHO%d", i);
}
ColStart[nCol] = nElement;

The remaining columns - the rho variables — have only non-linear coefficients and so they do not
appear in the linear section except as empty columns. They are bounded between 0.01 and 1.0 but have
no entries. The final entry in ColStart is one after the end of the last column.

XPRSsetintcontrol (mprob, XPRS_MPSNAMELENGTH, 16);

If you are creating your own names — as we are here — then you need to make sure that Xpress
Optimizer can handle both the names you have created and the names that will be created by Xpress
NonLinear. Typically, Xpress NonLinear will create names which are three characters longer than the
names you have used. If the longest name would be more than 8 characters, you should set the Xpress
Optimizer name length to be larger — it comes in multiples of 8, so we have used 16 here. If you do not
make the name length sufficiently large, then the XPRSaddnames function will return an error either
here or during the Xpress NonLinear "construct" phase.

XPRSloadlp (mprob, "Polygon", nCol, nRow, RowType, RHS, NULL,
OBJ, ColStart, NULL, RowIndex, Element, Lower, Upper);

This actually loads the model into Xpress Optimizer. We are not using ranges or column element
counts, which is why the two arguments are NULL.

XPRSaddnames (mprob, 1, RowNames, 0, nRow-1);
XPRSaddnames (mprob, 2, ColNames, 0, nCol-1);

The row and column names can now be added.

Fair Isaac Corporation Confidential and Proprietary Information 22

The Xpress NonLinear API Functions

Overview

5.5 Adding the non-linear part of the problem

Be warned - this section is complicated, but it is the most efficient way — from SLP’s point of view — to
input formulae. See the next section for a much easier (but less efficient) way of inputting the formulae

directly.

#define MAXTOKEN 200
#define MAXCOEF 20

int Sin, Cos;

ColIndex [MAXCOL];

FormulaStart [MAXCOEF];

Type [MAXTOKEN] ;

double Value[MAXTOKEN], Factor[MAXCOEF];

The arrays for the non-linear part can often be re-used from the linear part. The new arrays are

ColIndex (for the column index of the coefficients), FormulaStart and Factor for the coefficients,

and Type and value to hold the internal forms of the formulae.

XSLPgetindex (sprob, XSLP_INTERNALFUNCNAMES, "SIN", &Sin);
XSLPgetindex (sprob, XSLP_INTERNALFUNCNAMES, "COS", &Cos);

We will be using the Xpress NonLinear internal functions SIN and c0s. The XSLPgetindex function

finds the index of an Xpress NonLinear entity (character variable, internal or user function).

nToken = 0;

nCoef = 0;

RowIndex [nCoef] 0;
ColIndex[nCoef] = nSide;
Factor[nCoef] = 0.5;
FormulaStart [nCoef++] = nToken;

For each coefficient, the following information is required:

RowIndex the index of the row.

ColIndex the index of the column.

FormulaStart the beginning of the internal formula array for the coefficient.
Factor this is optional. If used, it holds a constant multiplier for the for-

mula. This is particularly useful where the same formula appears
in several coefficients, but with different signs or scaling. The for-
mula can be used once, with different factors.

for (i=1; i<nSide-1; i++) {
Type [nToken] = XSLP_COL;
Value[nToken++] = nSide+i+1l;
Type [nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type [nToken] = XSLP_RB;
Value [nToken++] = 0;
Type [nToken] = XSLP_COL;
Value [nToken++] = i+1;

Type [nToken] = XSLP_COL;
Value [nToken++] = i;
Type [nToken] = XSLP_OP;

Value[nToken++] = XSLP_MINUS;
Type [nToken] = XSLP_IFUN;
Value[nToken++] = Sin;

Fair Isaac Corporation Confidential and Proprietary Information

23

The Xpress NonLinear API Functions Overview

Type [nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
if (i>1) {

Type [nToken] = XSLP_OP;

Value [nToken++] = XSLP_PLUS;
}

This looks very complicated, but it is really just rather large. We are using the "reverse Polish" or "parsed"
form of the formula for area. The original formula, written in the normal way, would look like this:

RHO2 * RHOl * SIN (THETA2 - THETAl) +

In reverse Polish notation, tokens are pushed onto the stack or popped from it. Typically, this means
that a binary operation A x B is written as A B x (push A, push B, pop A and B and push the result). The
first term of our area formula then becomes:

RHO2 RHO1l *) THETA2 THETAl - SIN *

Notice that the right hand bracket appears as an explicit token. This allows the SIN function to identify
where its argument list starts — and incidentally allows functions to have varying numbers of
arguments.

Each token of the formula is written as two items — Type and value.

Type is an integer and is one of the defined types of token, as given in the xs1p.h header file.
XSLP_CON, for example, is a constant; XSLP_COL is a column.

Value is a double precision value, and its meaning depends on the corresponding Type. For a Type of
XSLP_CON, Value is the constant value; for XSLP_COL, Value is the column number; for xsLp_oP
(arithmetic operation), value is the operand number as defined in xs1p.h; for a function (type
XSLP_IFUN for internal functions, XSLP_FUN for user functions), value is the function number.

A list of tokens for a formula is always terminated by a token of type XSLP_EOF.

The loop writes each term in order, and adds terms (using the XSLP_PLUS operator) after the first pass
through the loop.

for (i=1; i<nSide-1; i++) {
for (j=i+1; Jj<nSide; j++) {
RowIndex[nCoef] = iRow++;
ColIndex[nCoef] = nSide;
Factor[nCoef] = 1.0;
FormulaStart[nCoef++] = nToken;

Type [nToken] = XSLP_COL;

Value [nToken++] = nSide+i;

Type [nToken] = XSLP_CON;

Value [nToken++] = 2;

Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_EXPONENT;
Type [nToken] = XSLP_COL;

Value [nToken++] = nSide+j;

Type [nToken] = XSLP_CON;
Value[nToken++] = 2;

Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_PLUS;
Type [nToken] = XSLP_CON;

Value [nToken++] = 2;

Type [nToken] = XSLP_COL;

Value [nToken++] = nSide+i;

Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type [nToken] = XSLP_COL;

Value [nToken++] = nSide+j;

Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type [nToken] = XSLP_RB;
Value[nToken++] = 0;

Type [nToken] = XSLP_COL;

Value [nToken++] = j;

Fair Isaac Corporation Confidential and Proprietary Information 24

The Xpress NonLinear API Functions Overview

Type [nToken] = XSLP_COL;
Value [nToken++] = 1i;

Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type [nToken] = XSLP_IFUN;
Value[nToken++] = Cos;

Type [nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
Type [nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type [nToken] = XSLP_EOF;
Value [nToken++] = 0;

This writes the formula for the distances between pairs of vertices. It follows the same principle as the
previous formula, writing the formula in parsed form as:
RHOi 2 RHOj 2 + 2 RHOi * RHOj *) THETAj THETAi - COS * -

XSLPloadcoefs (sprob, nCoef, RowIndex, ColIndex, Factor,
FormulaStart, 1, Type, Value);

The XSLPloadcoefs is the most efficient way of loading non-linear coefficients into a problem. There
is an xsLPaddcoefs function which is identical except that it does not delete any existing coefficients
first. There is also an XSLPchgcoef function, which can be used to change individual coefficients one
at a time. Because we are using internal parsed format, the "Parsed" flag in the argument list is setto 1.

5.6 Adding the non-linear part of the problem using character formulae

Provided that all entities — in particular columns and user functions — have explicit and unique names,
the non-linear part can be input by writing the formulae as character strings. This is not as efficient as
using the xsLPloadcoefs () function but is generally easier to understand.

/* Build up nonlinear coefficients */
/* Allow space for largest formula - approx 50 characters per side for area */
CoefBuffer = (char *) malloc (50*nSide);

We shall be using large formulae, so we need a character buffer large enough to hold the largest
formula we are using. The estimate here is 50 characters per side of the polygon for the area formula,
which is the largest we are using.

/* Area x/
Factor = 0.5;

BufferPos = 0;
for (i=1; i<nSide-1; i++) {

if (1 > 1) {

BufferPos = BufferPos + sprintf (&CoefBuffer[BufferPos], " + ");
}
BufferPos = BufferPos + sprintf (&CoefBuffer[BufferPos], "RHO%d * RHO%d *
SIN (THETA%d - THETAS%d)", i+1, i, i+1, i);

}
XSLPchgccoef (sprob, 0, nSide, &Factor, CoefBuffer);

The area formula is of the form:

(RHO2*RHO1+SIN (THETA2-THETAl) + RHO3*RHO2*SIN(THETA3-THETA2) + ...) / 2
The loop writes the product for each consecutive pair of vertices and also puts in the "+" sign after the
first one.

Fair Isaac Corporation Confidential and Proprietary Information 25

The Xpress NonLinear API Functions Overview

The XSLPchgccoef function is a variation of XSLPchgcoef but uses a character string for the
formula instead of passing it as arrays of tokens. The arguments to the function are:

RowIndex the index of the row.
ColIndex the index of the column.
Factor this is optional. If used, it holds the address of a constant multi-

plier for the formula. This is particularly useful where the same
formula appears in several coefficients, but with different signs or
scaling. The formula can be used once, but with different factors.
To omit it, use a NULL argument.

CoefBuffer the formula, written in character form.

In this case, RowIndex is zero and ColIndex is nSide (the "equals” column).

/* Distances x/
Factor = 1.0;
for (i=1; i<nSide-1; i++) {
for (j=i+1; Jj<nSide; Jj++) {
sprintf (CoefBuffer, "RHO%d ~ 2 + RHO%d ~ 2 - 2 * RHO%d * RHO%d =*
COS (THETA%d - THETA%d)", 3, i, j, i, 3J, 1);
XSLPchgccoef (sprob, iRow, nSide, &Factor, CoefBuffer);
iRow++;

}

This creates the formula for the distance between pairs of vertices and writes each into a new row in
the "equals" column.

Provided you have given names to any user functions in your program, you can use them in a formula in
exactly the same way as SIN and cOs have been used above.

5.7 Checking the data

Xpress NonLinear includes the function XxsLPwriteprob which writes out a non-linear problem in text
form which can then be checked manually. Indeed, the problem can then be run using the XSLP console
program, provided there are no user functions which refer back into your compiled program. In
particular, this facility does allow small versions of a problem to be checked before moving on to the
full size ones.

XSLPwriteprob (sprob, "testmat", "");

The first argument is the Xpress NonLinear problem pointer; the second is the name of the matrix to be
produced (the suffix ".mat" will be added automatically). The last argument allows various different
types of output including "scrambled” names - that is, internally-generated names will be used rather
than those you have provided. For checking purposes, this is obviously not a good idea.

5.8 Solving and printing the solution

XSLPmaxim (sprob, "");

The XSLPmaxim and XSLPminim functions perform a non-linear maximization or minimization on the
current problem. The second argument can be used to pass flags as defined in the Xpress NonLinear
Reference Manual.

Fair Isaac Corporation Confidential and Proprietary Information 26

The Xpress NonLinear API Functions Overview

XPRSwriteprtsol (mprob) ;

The standard Xpress Optimizer solution print can be obtained by using the XPRSwriteprtsol
function. The row and column activities and dual values can be obtained using the XxPRSgetsol
function.

In addition, you can use the xSLPgetvar function to obtain the values of SLP variables - that is, of
variables which are in non-linear coefficients, or which have non-linear coefficients. If you are using
cascading (see the Xpress NonLinear reference manual for more details) so that Xpress NonLinear
recalculates the values of the dependent SLP variables at each SLP iteration, then the value from
XSLPgetvar Will be the recalculated value, whereas the value from XPRSgetsol will be the value
from the LP solution (before recalculation).

5.9 Closing the program

The XsLPdestroyprob function frees any system resources allocated by Xpress NonLinear for the
specific problem. The problem pointer is then no longer valid. XPRSdestroyprob performs a similar
function for the underlying linear problem mprob. The XSLPfree function frees any system resources
allocated by Xpress NonLinear. You must then call XPRSfree to perform a similar operation for the
optimizer.

XSLPdestroyprob (sprob) ;
XPRSdestroyprob (mprob) ;
XSLPfree();
XPRSfree();

If these functions are not called, the program may appear to have worked and terminated correctly.
However, in such a case there may be areas of memory which are not returned to the system when the
program terminates and so repeated executions of the program will result in progressive loss of
available memory to the system, which will manifest iself in poorer performance and could ultimately
produce a system crash.

5.10 Adding initial values

So far, Xpress NonLinear has started by using values which it estimates for itself. Because most of the
variables are bounded, these initial values are fairly reasonable, and the model will solve. However, in
general, you will need to provide initial values for at least some of the variables. Initial values, and other
information for SLP variables, are provided using the XSLPloadvars function.

int VarType[MAXCOL];
double InitialValue[MAXCOL];

To load initial values using XSLP1loadvars, we need an array (InitialvValue) to hold the initial
values, and a varType array which is a bitmap to describe what information is being set for each
variable.

for (i=1; i<nSide; i++) {

InitialValue[nCol] = 3.14159* ((double)i) / ((double)nSide);
VarType[nCol] = 4;

}

for (i=1; i<nSide; i++) {

Fair Isaac Corporation Confidential and Proprietary Information 27

The Xpress NonLinear API Functions Overview

InitialValue[nCol] = 1;
VarType[nCol] = 4;
}

These sections extend the loops for the columns in the earlier example. We set initial values for the
thetas so that the vertices are spaced at equal angles; the rhos are all started at 1. We do not need to
set a value for the equals column, because it is fixed at one. However, it is good practice to do so. In
each case we set VarType to 4 because (as described in the Xpress NonLinear Reference Manual) Bit
2 of the type indicates that the initial value is being set.

for (i=0; i<nCol; i++) ColIndex[i] = i
XSLPloadvars (sprob, nCol-1, &ColIndex[l], &VarType[l], NULL, NULL, NULL,
&Initialvalue[l], NULL);

XSLPloadvars can take several other arguments apart from the initial value. It is a general principle in
Xpress NonLinear that using NULL for an argument means that there is no information being provided,
and the current or default value will not be changed.

Because we built up the initial values as we went, the VarType and InitialValue arrays include
column 0, which is 0BJX and is not an SLP variable. As all the rest are SLP variables, we can simply
start these arrays at the second item, and reduce the variable count by 1.

Fair Isaac Corporation Confidential and Proprietary Information 28

CHAPTER 6
The Nonlinear Console Program

6.1 The Console Nonlinear

The nonlinear optimizer is an extension to the FICO Xpress Optimizer interactive console.

The console for nonlinear is started from the command line using the following syntax:

C:\> optimizer [problem_name] [@filename]

6.1.1 The nonlinear console extensions

The nonlinear console is an extension of the Xpress optimizer console. The optimizer automatically
switches to nonlinear mode if a nonlinear license is detected. All the optimizer console commands
work the same way as in the normal optimizer console. The active working problem for those
commands is the actual linearization after augmentation, and the linear part of the problem before
augmentation.

Optimizer console commands with an extended effect:

readprob Read in an MPS/MAT or LP file

minim Minimize an LP, a MIP or an SLP problem
maxim Maximize an LP, a MIP or an SLP problem
lpoptimize Minimize or maximize a problem
mipoptimize Solve the problem to MIP optimality
writeprob Export the problem into file

dumpcontrols Display controls which are at a non default value

The MPS file can be an extended MPS file containing an NLP model. The minim and maxim commands
will call XPRSminim or XPRSmaxim for LP and MIP problems, and xSLPminim and XSLPmaxim for
SLP problems respectively; with the same applying to 1poptimize and mipoptimize. All these
commands accept the same flags as the corresponding library function

New commands:

Fair Isaac Corporation Confidential and Proprietary Information 29

The Nonlinear Console Program Overview

cascade Perform cascading

cascadeorder Recalculate the cascading order
construct Construct the augmented problem
dumpattributes Display problem attributes
reinitialize Reinitialize an augmented problem
setcurrentiv Copy the current solution as initial value
slp_save XSLPsave

slp_scaling Display scaling statistics
unconstruct Remove the augmentation

validate Validate the current solution
validatekkt Validate the kkt conditions for the current solution

In order to separate XSLP controls and attributes for the XPRS ones, all XSLP controls and attributes
are pretagged as XSLP_ or SLP_, for example XSL.P_ATL.GORITHM.

6.1.2 Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer console

All features of the Xpress optimizer console program is supported. For a full description, please refer to
the Xpress optimizer reference manual.

From the command line an initial problem name can be optionally specified together with an optional
second argument specifying a text "script" file from which the console input will be read as if it had
been typed interactively.

Note that the syntax example above shows the command as if it were input from the Windows
Command Prompt (i.e., it is prefixed with the command prompt string C: \>). For Windows users
Console XSLP can also be started by typing xs1p into the "Run ..." dialog box in the Start menu.

The Console XSLP provides a quick and convenient interface for operating on a single problem loaded
into XSLP. The Console XSLP problem contains the problem data as well as (i) control variables for
handling and solving the problem and (ii) attributes of the problem and its solution information.

The Console SLP auto—completion feature is a useful way of reducing key strokes when issuing
commands. To use the auto—completion feature, type the first part of an optimizer command name
followed by the Tab key. For example, by typing "coNST" followed by the Tab key Console Xpress will
complete to the "CONSTRUCT". Note that once you have finished inputting the command name portion
of your command line, Console Xpress can also auto—complete on file names. Note that the
auto—completion of file names is case-sensitive.

Console XSLP also features integration with the operating system’s shell commands. For example, by
typing "dir" (or "1s" under Unix) you will directly run the operating system’s directory listing command.
Using the "cd" command will change the working directory, which will be indicated in the prompt string:

[xpress bin] cd \
[xpress C:\]

Finally, note that when the Console XSLP is first started it will attempt to read in an initialization file
named optimizer.ini from the current working directory. This is an ASCII "script" file that may
contain commands to be run at start up, which are intended to setup a customized default Console
Xpress environment for the user (e.g., defining custom controls settings on the Console Xpress
problem).

The Console XSLP interactive command line hosts a TCL script parser (http://www.tcl.tk). With TCL
scripting the user can program flow control into their optimizer scripts. Also TCL scripting provides the
user with programmatic access to a powerful suite of functionality in the TCL library. With scripting
support the Console Xpress provides a high level of control and flexibility well beyond that which can be
achieved by combining operating system batch files with simple piped script files. Indeed, with

Fair Isaac Corporation Confidential and Proprietary Information 30

http://www.tcl.tk/

The Nonlinear Console Program Overview

scripting support the Console XSLP is ideal for (i) early application development, (ii) tuning of model
formulations and solving performance and (iii) analyzing difficulties and bugs in models.

Note that the TCL parser has been customized and simplified to handle intuitive access to the controls
and attributes of the Optimizer and XSLP. The following example shows how to proceed with write and
read access to the XSLP_ALGROITHM control:

[xpress C:\] xslp_algorithm=166
[xpress C:\] xslp_algorithm
166

The following shows how this would usually be achieved using TCL syntax:

[xpress C:\] set xslp_algorithm 166
166

[xpress C:\] $miplog

166

For examples on how TCL can be used for scripting, tuning and testing models, please refer to the
Xpress Optimizer reference manual.

Console XSLP users may interrupt the running of the commands (e.g., minim) by typing Ctrl-C. Once
interrupted Console Xpress will return to its command prompt. If an optimization algorithm has been
interrupted in this way, any solution process will stop at the first 'safe’ place before returning to the
prompt.

When Console XSLP is being run with script input then Ctrl-C will not return to the command prompt
and the Console Xpress process will simply stop.

Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl-C input to
fail on some operating systems.

The XSLP console program can be used as a direct substitute for the Xpress Optimizer console
program. The one exception is the fixed format MPS files, which is not supported by XSLP and thus
neither by the XSLP console.

Fair Isaac Corporation Confidential and Proprietary Information 31

Il. Advanced

CHAPTER 7/
Nonlinear Problems

Xpress NonLinear will solve nonlinear problems. In this context, a nonlinear problem is one in which
there are nonlinear relationships between variables or where there are nonlinear terms in the objective
function. There is no such thing as a nonlinear variable — all variables are effectively the same — but
there are nonlinear constraints and formulae. A nonlinear constraint contains terms which are not
linear. A nonlinear term is one which is not a constant and is not a variable with a constant coefficient.
A nonlinear constraint can contain any number of nonlinear terms.

Xpress NonLinear will also solve linear problems — that is, if the problem presented to Xpress
NonLinear does not contain any nonlinear terms, then Xpress NonLinear will still solve it, using the
normal optimizer library.

The solution mechanism used by Xpress-SLP is Successive (or Sequential) Linear Programming. This
involves building a linear approximation to the original nonlinear problem, solving this approximation
(to an optimal solution) and attempting to validate the result against the original problem. If the linear
optimal solution is sufficiently close to a solution to the original problem, then the SLP is said to have
converged, and the procedure stops. Otherwise, a new approximation is created and the process is
repeated. Xpress-SLP has a number of features which help to create good approximations to the
original problem and therefore help to produce a rapid solution.

When license, Xpress NonLinear may also utilize Knitro to solve nonlinear problems.

Note that although the solution is the result of an optimization of the linear approximation, there is no
guarantee that it will be an optimal solution to the original nonlinear problem. It may be a local optimum
— that is, it is a better solution than any points in its immediate neighborhood, but there is a better
solution rather further away. However, a converged SLP solution will always be (to within defined
tolerances) a self-consistent — and therefore practical — solution to the original problem.

7.1 Coefficients and terms

Later in this manual, it will be helpful to distinguish between formulae written as coefficients and those
written as terms.

If X is a variable, then in the formula X * f(Y), f(Y) is the coefficient of X.
If f(X) appears in a nonlinear constraint, then f(X) is a term in the nonlinear constraint.
If X * f(Y) appears in a nonlinear constraint, then the entity X = f(Y) is a term in the nonlinear constraint.

As this implies, a formula written as a variable multiplied by a coefficient can always be viewed as a
term, but there are terms which cannot be viewed as variables multiplied by coefficients. For example,
in the constraint

X = SIN(Y) =0,

SIN(Y) is a term and cannot be written as a coefficient.

Fair Isaac Corporation Confidential and Proprietary Information 33

Nonlinear Problems Advanced

7.2 SLP variables

A variable which appears in a nonlinear coefficient or term is described as an SLP variable.

Normally, any variable which has a nonlinear coefficient will also be treated as an SLP variable.
However, it is possible to set options so that variables which do not appear in nonlinear coefficients or
terms are not treated as SLP variables.

Any variable, whether it is related to a nonlinear term or not, can be defined by the user as an SLP
variable. This is most easily achieved by setting an initial value for the variable.

7.3 Local and global optimality

A globally optimal solution is a feasible solution with the best possible objective value. In general, the
global optimum for a problem is not unique. By contrast, a locally optimal solution has the best
possible objective value within an open neighbourhood around it. For a convex problem, every local
optimum is a global optimum, but for general nonlinear problems, this is not the case.

For convex problems, which include linear, convex quadratic and convex quadratically constrained
programs, solvers in the FICO Xpress library will always provide a globally optimal solution when one
exists. This also holds true for mixed integer problems whose continuous relaxation is convex.

When a problem is of a more general nonlinear type, there will typically be many local optima, which are
potentially widely spaced, or even in parts of the feasible region which are not connected. For these
problems, both XSLP and Knitro guarantee only that they will return a locally optimal solution. That is,
the result of optimization will be a solution which is better than any others in its immediate
neighborhood, but there might exist other solutions which are far distant which have a better objective
value.

Finding a guaranteed global optimum for an arbitrary nonlinear function requires an exhaustive search,
which may be orders of magnitude more expensive. To use an analogy, it is the difference between
finding a valley in a range of mountains, and finding the deepest valley. When standing in a particular
valley, there is no way to know whether there is a deeper valley somewhere else.

Neither local nor global optima are typically unique. The solution returned by a solver will depend on the
control settings used and, particularly for non-convex problems, on the initial values provided. A
connected set of initial points yielding the same locally optimal solutions is sometimes referred to as a
region of attraction for the solution. These regions are typically both algorithm and setting dependent.

7.4 Convexity

Convex problems have many desirable characteristics from the perspective of mathematical
optimization. Perhaps the most significant of these is that should both the objective and the feasible
region be convex, any local optimally solutions found are also known immediately to be globally
optimal.

A constraint f(x) < 0 is convex if the matrix of second derivatives of f, that is to say its Hessian, is
positive semi-definite at every point at which it exists. This requirement can be understood
geometrically as requiring every point on every line segment which connects two points satisfying the
constraint to also satisfy the constraint. It follows trivially that linear functions always lead to convex
constraints, and that a nonlinear equality constraint is never convex.

For regions, a similar property must hold. If any two points of the region can be connected by a line
segment which lies fully in the region itself, the region is convex. This extension is straightforward

Fair Isaac Corporation Confidential and Proprietary Information 34

Nonlinear Problems Advanced

D
~__/

Figure 7.1: Two convex functions on the left, and two non-convex functions on the right.

when the the properties of convex functions are considered.

D

Figure 7.2: A convex region on the left and a non-convex region on the right.

It is important to note that convexity is necessary for some solution techniques and not for others. In
particular, some solvers require convexity of the constraints and objective function to hold only in the
feasible region, whilst others may require convexity to hold across the entire space, including infeasible
points. In the special case of quadratic and quadratically constrained programs, Xpress NonLinear
seamlessly migrates problems to solvers whose convexity requirements match the convexity of the
problem.

7.5 Converged and practical solutions

In a strict mathematical sense, an algorithm is said to have converged if repeated iterations do not alter
the coordinates of its solution significantly. A more practical view of convergence, as used in the
nonlinear solvers of the Xpress suite, is to also consider the algorithm to have converged if repeated
iterations have no significant effect on either the objective value or upon feasibility. This will be called
extended convergence to distinguish it from the strict sense.

For some problems, a solver may visit points at which the local neighborhood is very complex, or even
malformed due to numerical issues. In this situation, the best results may be obtained when
convergence of some of the variables is forced. This leads to practical solutions, which are feasible
and converged in most variables, but the remaining variables have had their convergence forced by the
solver, for example by means of a trust region. Although these solutions are not locally optimal in a
strict sense, they provide meaningful, useful results for difficult problems in practice.

7.6 The duals of general, nonlinear program

The dual of a mathematical program plays a fundamental role in the theory of continuous optimization.
Each variable in a problem has a corresponding partner in that problem'’s dual, and the values of those

Fair Isaac Corporation Confidential and Proprietary Information 35

Nonlinear Problems Advanced

variables are called the reduced costs and dual multipliers (shadow prices). Xpress NonLinear makes
estimates of these values available. These are normally defined in a similar way to the usual linear
programming case, so that each value represents the rate of change of the objective when either
increasing the corresponding primal variable or relaxing the corresponding primal constraint.

From an algorithmic perspective, one of the most important roles of the dual variables is to
characterize local optimality. In this context, the dual multipliers and reduced costs are called Lagrange
multipliers, and a solution with both primal and dual feasible variables satisfies the Karush-Kuhn-Tucker
conditions. However, it is important to note that for general nonlinear problems, there exist situations in
which there are no such multipliers. Geometrically, this means that the slope of the objective function is
orthogonal to the linearization of the active constraints, but that their curvature still prevents any
movement in the improving direction.

As a simple example, consider:
minimize y
subjectto x2+y2 <1
(x=2)%+y? <1

which is shown graphically in figure 7.3.

Figure 7.3: A problem admitting no dual values

This problem has a single feasible solution at (1,0). Reduced costs and dual multipliers could never be
meaningful indicators of optimality, and indeed are not well-defined for this problem. Intuitively, this
arises because the feasible region lacks an interior, and the existence of an interior (also referred to as
the Slater condition) is one of several alternative conditions which can be enforced to ensure that such
situations do not occur. The other common condition for well-defined duals is that the gradients of the
active constraints are linearly independent.

Problems without valid duals do not often arise in practice, but it is important to be aware of the
possibility. Analytic detection of such issues is difficult, and they manifest instead in the form of
unexpectedly large or otherwise implausible dual values.

Fair Isaac Corporation Confidential and Proprietary Information 36

CHAPTER 8

Extended MPS file format

One method of inputting a problem to Xpress NonLinear is from a text file which is similar to the normal
MPS format matrix file. The Xpress NonLinear file uses free format MPS-style data. All the features of
normal free-format MPS are supported. There are no changes to the sections except as indicated
below.

Note: the use of free-format requires that no name in the matrix contains any leading or embedded
spaces and that no name could be interpreted as a number. Therefore, the following names are invalid:

B 02 because it contains an embedded space;
1E02 because it could be interpreted as 100 (the scientific or floating-point format number,
1.0E02).

It is possible to use column and row names inlcuding mathematical operators. A variable name a+b is
valid. However, as an expression a + b would be interpreted as the addition of variables a and b - note
the spaces between the variable names - it is best practice to avoid such names when possible. SLP
will produce a warning if such names are encountered in the MPS file.

8.1 Formulae

One new feature of the Extended MPS format is the formula. A formula is written in much the same way
as it would be in any programming language or spreadsheet. It is made up of (for example) constants,
functions, the names of variables, and mathematical operators. The formula always starts with an
equals sign, and each item (or token) is separated from its neighbors by one or more spaces.

Tokens may be one of the following:

m A constant;

The name of a variable;

m An arithmetic operator "+", "-", "*", "/";

The exponentiation operator "**" or ",

An opening or closing bracket "(" or ")";

m A comma ", separating a list of function arguments;
m The name of a supported internal function such as LOG, SIN, EXP;

m The name of a user-supplied function;

Fair Isaac Corporation Confidential and Proprietary Information 37

Extended MPS file format Advanced

m A colon "" preceding the return argument indicator of a multi-valued function;

m The name of a return argument from a multi-valued function.

The following are valid formulae:

SIN (A/ B) siINisarecognized internal function which takes one argument and returns one
result (the sin of its argument).

= A"B “is the exponentiation symbol. Note that the formula may have valid syntax but it still
may not be possible to evaluate it (for example if A = =1 and B = 0.5).

= MyFuncl (C1, - C2, C3 : 1) MyFuncl mustbe afunction which can take three
arguments and which returns an array of results. This formula is asking for the first item
in the array.

= MyFunc2 (C1, - C2, C3 : RVP) MyFuncl mustbe afunction which can take three

arguments and which returns an array of results. This formula is asking for the item in
the array which is named RvP.

The following are not valid formulae:

SIN (A) Missing the equals sign at the start

SIN(A) No spaces between adjacent tokens

A x x B "*"is exponentiation, "* *" (with an embedded space) is not a recognized operation.

MyFuncl (C1, - C2, C3, 1) IfMyFuncl is as shown inthe previous set of examples, it
returns an array of results. The last argument to the function must be delimited by a
colon, not a comma, and is the name or number of the item to be returned as the value
of the function.

There is no limit in principle to the length of a formula. However, there is a limit on the length of a record
read by xsLPreadprob, which is 31000 characters. Parsing very long records can be slow, and
consideration should be given to pre-parsing them and passing the parsed formula to Xpress
NonLinear rather than asking it to parse the formula itself.

8.2 COLUMNS

Normal MPS-style records of the form
column row1 valuel [row2 value2 |

are supported. Non-linear relationships are modeled by using a formula instead of a constant in the
valueT field. If a formula is used, then only one coefficient can be described in the record (that is, there

can be no row2 value2). The formula begins with an equals sign ("=") and is as described in the
previous section.

A formula must be contained entirely on one record. The maximum record length for files read by
XSLPreadprob is 31000. Note that there are limits applied by the Optimizer to the lengths of the
names of rows and columns.

Variables used in formulae may be included in the COLUMNS section as variables, or may exist only as
items within formulae. A variable which exists only within formulae is called an implicit variable.

Fair Isaac Corporation Confidential and Proprietary Information 38

Extended MPS file format Advanced

Sometimes the non-linearity cannot be written as a coefficient. For example, in the constraint

Y - LOG(X) =0,

LOG (X) cannot be written in the form of a coefficient. In such a case, the reserved column name "="
may be used in the first field of the record as shown:

Y MyRow 1
= MyRow = - LOG(X)

Effectively, "=" is a column with a fixed activity of 1.0 .

When a file is read by xsL.preadprob, more than one coefficient can be defined for the same
column/row intersection. As long as there is at most one constant coefficient (one not written as a
formula), the coefficients will be added together. If there are two or more constant coefficients for the
same intersection, they will be handled by the Optimizer according to its own rules (normally additive,
but the objective function retains only the last coefficient).

8.3 BOUNDS

Bounds can be included for variables which are not defined explicitly in the COLUMNS section of the
matrix. If they are not in the COLUMNS section, they must appear as variables within formulae (implicit
variables). A BOUNDS entry for an item which is not a column or a variable will produce a warning
message and will be ignored.

Global entities (such as integer variables and members of Special Ordered Sets) must be defined
explicitly in the coLUMNS section of the matrix. If a variable would otherwise appear only in formulae in
coefficients, then it should be included in the COLUMNS section with a zero entry in a row (for example,
the objective function) which will not affect the result.

8.4 SLPDATA

SLPDATA is a new section which holds additional information for solving the non-linear problem using
SLP.

Many of the data items have a setname. This works in the same way as the BOUND, RANGE or RHS hame,
in that a number of different values can be given, each with a different set name, and the one which is
actually used is then selected by specifying the appropriate setname before reading the problem.

Record type IV and the tolerance records Tx, Rx can have "=" as the variable name. This provides a
default value for the record type, which will be used if no specific information is given for a particular
variable.

Note that only linear BOUND types can be included in the SLPDATA section. Bound types for global
entities (discrete variables and special ordered sets) must be provided in the normal BOUNDS section
and the variables must also appear explicitly in the COLUMNS section.

All of the items in the SLPDATA section can be loaded into a model using Xpress NonLinear function
calls.

8.4.1 CV (Character variable)

CV setname variable value

The cv record defines a character variable. This is only required for user functions which have
character arguments (for example, file names). The value field begins with the first non-blank character
after the variable name, and the value of the variable is made up of all the characters from that point to

Fair Isaac Corporation Confidential and Proprietary Information 39

Extended MPS file format Advanced

8.4.2

8.4.3

8.4.4

the end of the record. The normal free-format rules do not apply in the value field, and all spacing will
be retained exactly as in the original record.

Examples:

CV CVSET1l MyCVl Program Files\MyLibs\MyLibl
This defines the character variable named MyCV1. It is required because there is an embedded space in
the path name which it holds.

CV CVSET1l MyCV1l Program Files\MyLibs\MyLibl

CV CVSET2 MyCVl Program Files\MyLibs\MyLib2

This defines the character variable named Mycv1. There are two definitions, and the appropriate one is
selected by setting the string control variable xs1.p_cvname before calling xSsL.Preadprob to load the
problem.

DR (Determining row)

DR variable rowname [weighting] [limit]
The DR record defines the determining row for a variable.

In most non-linear problems, there are some variables which are effectively defined by means of an
equation in terms of other variables. Such an equation is called a determining row. If Xpress NonLinear
knows the determining rows for the variables which appear in coefficients, then it can provide better
linear approximations for the problem and can then solve it more quickly. Optionally, a non-zero integer
value can be included in the weighting field. Variables which have weights will generally be evaluated in
order of increasing weight. Variables without weights will generally be evaluated after those which do
have weights. However, if a variable A (with or without a weight) is dependent through its determining
row on another variable B, then B will always be evaluated first. The optional limit field provides a
variable specific value for xS1.P_CASCADENLIMIT.

Example:

DR X Rowl

This defines Rowl as the determining row for the variable X. If Rowl is
X-YxZ=6

then Y and Z will be recalculated first before X is recalculated as Y « Z + 6.

EC (Enforced constraint)

EC rowname

The EC record defines an enforced constraint. Penalty error vectors are never added to enforced
constraints, so the effect of such constraints is maintained at all times.

Note that this means the linearized version of the enforced constraint will be active, so it is important to
appreciate that enforcing too many constraints can easily lead to infeasible linearizations which will
make it hard to solve the original nonlinear problem.

Example:

EC Rowl

This defines Row1 as an enforced constraint. When the SLP is augmented, no penalty error vectors will
be added to the constraint, so the linearized version of Row1 will constrain the linearized problem in the
same sense (L, G or E) as the nonlinear version of Row1 constrains the original nonlinear problem.

FR (Free variable)

FR boundname variable

Fair Isaac Corporation Confidential and Proprietary Information 40

Extended MPS file format Advanced

An FR record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.5 FX (Fixed variable)

FX boundname variable value

An FX record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.6 IV (Initial value)

IV setname variable [value | = formula]

An 1V record specifies the initial value for a variable. All variables which appear in coefficients or terms,
or which have non-linear coefficients, should have an IV record.

A formula provided as the initial value for a variable can contain references to other variables. It will be
evaluated based on the initial values of those variables (which may themselves be calculated by
formula). It is the user’s responsibility to ensure that there are no circular references within the
formulae. Formulae are typically used to calculate consistent initial values for dependent variables
based on the values of independent variables.

If an 1V record is provided for the equals column (the column whose name is "=" and which has a fixed
value of 1.0), the value provided will be used for all SLP variables which do not have an explicit initial
value of their own.

If there is no explicit or implied initial value for an SLP variable, the value of control parameter
XSLP_DEFAULTIV will be used.

If the initial value is greater than the upper bound of the variable, the upper bound will be used; if the
initial value is less than the lower bound of the variable, the lower bound will be used.

If both a formula and a value are provided, then the explicit value will be used.
Example:

IV IVSET1 Col99 1.4971

IV IVSET2 Col99 2.5793

This sets the initial value of column Co199. The initial value to be used is selected using control
parameter xs1.p_ TVNAME. If no selection is made, the first initial value set found will be used.

If Co199is boundedintherangel < Co0199 < 2 theninthe second case (when IVSET2 is
selected), an initial value of 2 will be used because the value given is greater than the upper bound.

IV IVSET2 Col98 = Col99 * 2
This sets the value of Co198 to twice the initial value of Co199 when IVSET2 is the selected initial
value set.

8.4.7 LO (Lower bounded variable)

LO boundname variable value

A Lo record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

8.4.8 Rx, Tx (Relative and absolute convergence tolerances)

Rx setname variable value

Fair Isaac Corporation Confidential and Proprietary Information 41

Extended MPS file format Advanced

Tx setname variable value

The Tx and Rx records (where "x" is one of the defined tolerance types) define specific tolerances for
convergence of the variable. See the section "convergence criteria"” for a list of convergence tolerances.
The same tolerance set name (setname) is used for all the tolerance records.

Example:

RA TOLSET1 Col99 0.005
TA TOLSET1 Col99 0.05
RI TOLSET1 Col99 0.015
RA TOLSET1 Col0l 0.01
RA TOLSET2 Col0l 0.015

These records set convergence tolerances for variables Co199 and Co101. Tolerances Ra (relative
convergence tolerance), TA (absolute convergence tolerance) and R1I (relative impact tolerance) are set
for Co199 using the tolerance set named TOLSET1.

Tolerance RA is set for variable Co101 using tolerance sets named TOLSET1 and TOLSET2.

If control parameter XS1.P_ TOLNAME is set to the name of a tolerance set before the problem is read
using xsLPreadprob, then only the tolerances on records with that tolerance set will be used. If
XSLP_TOLNAME is blank or not set, then the name of the set on the first tolerance record will be used.

8.4.9 SB (Initial step bound)

8.4.10

SB setname variable value

An sB record defines the initial step bounds for a variable. Step bounds are symmetric (i.e. the bounds
on the delta are —SB < delta < +SB). If a value of 1.0E+20 is used (equivalent to XxPRS_PLUSINFINITY
in programming), the delta will never have step bounds applied, and will almost always be regarded as
converged.

If there is no explicit initial step bound for an SLP variable, a value will be estimated either from the size
of the coefficients in the initial linearization, or from the values of the variable during the early SLP
iterations. The value of control parameter xSLP_DEFAULTSTEPBOUND provides a lower limit for the
step bounds in such cases.

If there is no explicit initial step bound, then the closure convergence tolerance cannot be applied to the
variable.

Example:

SB SBSET1 Col99 1.5

SB SBSET2 Col99 7.5

This sets the initial step bound of column co199. The value to be used is selected using control
parameter xs1.p_ SBNAME. If no selection is made, the first step bound set found will be used.

UF (User function)

UF funcname [= extname] (arguments) linkage [=[param1] [=[param2] [=[param3]]]]

A UF record defines a user function.
The definition includes the list of required arguments, and the linkage or calling mechanism. For details
of the fields, see the section on Function Declaration in Xpress NonLinear.

Example:

UF MyFunc (DOUBLE , INTEGER) DLL = UserLib

This defines a user function called MyFunc. It takes two arguments (an array of type double precision
and an array of type integer). The linkage is DLL (free-standing user library or DLL) and the function is in
file UserLib.

Fair Isaac Corporation Confidential and Proprietary Information 42

Extended MPS file format

Advanced

8.4.11

8.4.12

8.4.13

UP (Free variable)

UP boundname variable value

An P record performs the same function in the SLPDATA section as it does in the BOUNDS section. It
can be used for bounding variables which do not appear as explicit columns in the matrix.

WT (Explicit row weight)

WT rowname value

The WT record is a way of setting the initial penalty weighting for a row. If value is positive, then the
default initial weight is multiplied by the value given. If value is negative, then the absolute value will
be used instead of the default weight.

Increasing the penalty weighting of a row makes it less attractive to violate the constraint during the
SLP iterations.

Examples:

WT Rowl 3
This changes the initial weighting on Row1 by multiplying by 3 the default weight calculated by
Xpress-SLP during problem augmentation.

WT Rowl -3
This sets the initial weighting on Row1 to 3.

DL (variable specific Determining row cascade iteration Limit)

DL columnname limit

A DL record specififies a variable specific iteration limit to be emposed on the number of iterations

when cascading the variable. This can be used to overwrite the setting of XSL.P_ CASCADENLIMIT for a

specific variable.

Fair Isaac Corporation Confidential and Proprietary Information

43

CHAPTER 9
Xpress-SLP Solution Process

This section gives a brief overview of the sequence of operations within Xpress-SLP once the data has
been set up. The positions of the possible user callbacks are also shown.

Check if problem is an SLP problem or not. Call the appropriate XPRS library function if not, and DONE.
[Call out to user callback if set by xsT.Psetcbslpstart]
Augment the matrix (create the linearized structure) if not already done
If determining row data supplied, calculate cascading order and detect determining columns
DO
[Call out to user callback if set by xsL.psetcbiterstart]
If previous solution available, pre-process solution
Execute line search
[Call out to user callback if set by xST.Psetcbcascadestart]
Sequentially update values of SLP variables (cascading) and re-calculate coefficients
For each variable (in a suitable evaluation order):
Update solution value (cascading) and re-calculate coefficients
[Call out to user callback if set by xsT.Psetcbcascadevar]
[Call out to user callback if set by xs1.Psetcbcascadeend]
Update penalties
Update coefficients, bounds and RHS in linearized matrix
Solve linearized problem using the Xpress Optimizer
Recover SLP variable and delta solution values
Test convergence against specified tolerances and other criteria
For each variable:
Test convergence against specified tolerances
[Call out to user callback if set by xST.psetcbitervar]
For each variable with a determining column:
Check value of determining column and fix variable when necessary, or
[Call out to user callback if set by xsT.psetcbdrcol]
Reset variable convergence status if a change is made to a variable
If not all variables have converged, check for other extended convergence criteria
If the solution has converged, then BREAK
For each SLP variable:
Update history
Reset step bounds
[Call out to user callback if set by xST.Psetcbiterend]
Change row types for DC rows as required
If SLP iteration limit is reached, then BREAK
ENDDO
[Call out to user callback if set by xST.Psetcbslpend]

For MISLP (mixed-integer SLP) problems, the above solution process is normally repeated at each

Fair Isaac Corporation Confidential and Proprietary Information 44

Xpress-SLP Solution Process Advanced

node. The standard procedure for each node is as follows:

Initialize node
[Call out to user callback if set by xs1.Psetcbprenode]
Solve node using SLP procedure
If an optimal solution is obtained for the node then
[Call out to user callback if set by xSL.Psetcboptnode]
If an integer optimal solution is obtained for the node then
[Call out to user callback if set by xST.Psetcbintsol]
When node is completed
[Call out to user callback if set by xST.Psetcbslpnode]

When a problem is destroyed, there is a call out to the user callback set by xs1.psetcbdestroy.

9.1 Analyzing the solution process

Xpress-SLP provides a comprehensive set of callbacks to interact with, and to analyze the solution
process. However, there are a set of purpose build options that are intended to assist and make the
analysis more efficient.

For infeasible problems, it often helps to identify the source of conflict by running XPRESS' Irreducible
Infeasibiliy Set (1IS) finder tool. The set found by IIS often helps to either point to a problem in the
original model formulation, or if the infeasibility is a result of conflicting step bounds or linearization
updates; please see control XSLP_ANALYZE.

Xpress-SLP can collect the various solutions it generates during the solution pool to an XPRS solution
pool object. The solution pool is accessible using the xsLP_SOLUTIONPOOL pointer attribute. The
solutions to collect are defined by xs1.p_ ANALYZE. It is also possible to let XSLP write the collected
solutions to disk for easier access.

It is often advantageous to trace a certain variable, constraint or a certain property through the solution
process. XSLP_TRACEMASK and XSLP_TRACEMASKOPS allows for collecting detailed information
during the solution process, without the need to stop XSLP between iterations.

For in depth debugging purposes or support requests, it is possible to create XSLP save files and
linearizations at verious iterations, controlled by XxS1.p_ AUTOSAVE and XSLP_ANALYZE.

9.2 The initial point

The solution process is sensitive to the initial values which are selected for variables in the problem,
and particularly so for non-convex problems. It is not uncommon for a general nonlinear problem to
have a feasible region which is not connected, and in this case the starting point may largely determine
which region, connected set, or basin of attraction the final solution belongs to.

Note that it may not always be beneficial to completely specify an initial point, as the solvers
themselves may be able to detect suitable starting values for some or all of the variables.

9.3 Derivatives

Both XSLP and Knitro require the availability of derivative information for the constraints and objective
function in order to solve a problem. In the Xpress NonLinear framework, several advanced approaches

Fair Isaac Corporation Confidential and Proprietary Information 45

Xpress-SLP Solution Process Advanced

to the production of both first and second order derivatives (the Jacobian and Hessian matrices) are
available, and which approach is used can be controlled by the user.

9.3.1 Finite Differences

The simplest such method is the use of finite differences, sometimes called numerical derivatives. This
is a relatively coarse approximation, in which the function is evaluated in a small neighborhood of the
point in question. The standard argument from calculus indicates that an increasingly accurate
approximation to the derivative of the function will be found as the size of the neighborhood decreases.
This argument ignores the effects of floating point arithmetic, however, which can make it difficult to
select values sufficiently small to give a good approximation to the function, and yet sufficiently large
to avoid substantial numerical error.

The high performance implementation in XSLP makes use of subexpression caching to improve
performance, but finite differences are inherently inefficient. They may however be necessary when the
function itself is not known in closed form. When analytic approaches cannot be used, due to the use
of expensive black box functions which do not provide derivatives (note that XSLP does allow user
functions to provide their own derivatives), the cost of function evaluations may become a dominant
factor in solve time. It is important to note that each second order numerical derivative costs twice as
much as a first order numerical derivative, and this can make XSLP more attractive than Knitro for such
problems.

9.3.2 Symbolic Differentiation

Xpress NonLinear will instead provide analytic derivatives where possible, which are both more
accurate and more efficient. There are two major approaches to such calculations, and high quality
implementations of both are available in this framework.

A symbolic differentiation engine calculates the derivative of an expression in closed form, using its
formula representation. This is a very efficient way of recalculating individual entries of the Jacobian,
and is the default approach to providing derivative information to XSLP.

9.3.3 Automatic Differentiation

An automatic differentiation engine in contrast can simultaneously compute multiple derivatives by
repeated application of the chain rule. This is a very efficient means of calculating large numbers of
Hessian entries, and is the default approach to providing derivative information to Knitro.

9.4 Points of inflection

A point of inflection in a given variable occurs when the first and second order partial derivatives with
respect to that variable become zero, but there exist nonzero derivatives of higher order. At such points,
the approximations the iterative nonlinear methods create do not encapsulate enough information
about the behavior of the function, and both first and second order methods may experience
difficulties. For example, consider the following problem

minimize x3
subjectto -1<x<1
for which the optimal solution is -1.

When the initial value of x is varied, XSLP and Knitro produce the solutions presented in Table 9.1 for
this problem:

Fair Isaac Corporation Confidential and Proprietary Information 46

Xpress-SLP Solution Process Advanced

Starting point: -1] 1
Enitro : -1 0 7.34639e-011
SLP : -1 -1 -1

Figure 9.1: Effect of an inflection point on solution values.

As a second order method, Knitro examines a local quadratic approximation to the function. Starting at
both 0 and 1, this approximation will closely resemble the x2 function, and so the solution will be
attracted to zero. For XSLP, which is a first order method, the approximation at 0 will have a zero
gradient. However, XSLP can detect this situation and will perform the analysis required to substitute
an appropriate small nonzero (placeholder) value for the derivative during the first iterations. As can be
seen, this allows XSLP find an optimal solution in all three cases.

This is only one example of the behaviour of these solvers without further tuning. The long steps which
XSLP often takes can be both beneficial and harmful in different contexts. For example, if the function
to be optimized includes many local minima, it is possible to see the opposite pattern for XSLP and
Knitro. Consider

minimize x sin(100x2)

subjectto -1<x<1

which has many local minima. For this problem, the results obtained are presented in Table 9.2:

Starting point: -1 a 1
Enitro : -0.978883 u} -0.720008
SLP : 0.5063466 0.5063686 0.5063686

Figure 9.2: Local solutions for a function with several local optima

In this case the same long steps made by XSLP lead to it finding the an identical, but unfortunate, local
optimum no matter which initial point it begins from.

9.5 Trustregions

In a second order method like Knitro, there is a well-defined merit function which can be used to
compare solutions, and which provides a measure of the progress being made by the algorithm. This is
a significant advantage over first order methods, in which there is generally no such function.

Despite their speed and resilience to points of inflection, first order methods can also experience
difficulties at points in which the current approximation is not well posed. Consider

minimize x?

subjectto x free

at x = 1. A naive linearization is simply

minimize 2x
subjectto x free

which is unbounded. To address such situations, XSLP will introduce trust regions to model the
neighborhood in which the current approximation is believed to be applicable. When coupled with the
use of derivative placeholders described in the previous section, this can lead XSLP to initially make
large moves from its starting position.

Fair Isaac Corporation Confidential and Proprietary Information 47

CHAPTER 10
Handling Infeasibilities

10.1

10.2

By default, Xpress-SLP will include penalty error vectors in the augmented SLP structure. This feature
adds explicit positive and negative slack vectors to all constraints (or, optionally, just to equality
constraints) which include nonlinear coefficients. In many cases, this is itself enough to retain
feasibility. There is also an opportunity to add penalty error vectors to all constraints, but this is not
normally required.

During cascading (see next section), Xpress-SLP will ensure that the value of a cascaded variable is
never set outside its lower and upper bounds (if these have been specified).

Infeasibility Analysis in the Xpress Optimizer

For problems which can be solved using the Xpress Optimizer, that is LP, convex QP and QCQP and
their MIP counterparts, there is normally no difficulty with establishing feasibility. This is because for
these convex problem classes, Xpress can produce global solutions, and any problem declared
infeasible is globally infeasible. The concept of local infeasibility is primarily of use in the case of
nonlinear problems, and in particular non-convex, nonlinear problems.

When the Xpress Optimizer declares a problem to be infeasible, the tools provided with the Xpress
Optimizer console can be used to analyse the infeasibility, and hence to subsequently alter the model to
overcome it. One important step in this respect is the ability to retrieve an irreducible infeasible set (IIS)
(using the iis command). An IIS is a statement of a particular conflict in the model between a set of
constraints and bounds, which make the problem certainly infeasible. An IS is minimal in the sense
that if any constraint or bound of the IIS were removed from the subproblem represented by the IIS, the
resulting (relaxed) subproblem would be feasible. The Xpress Optimizer also contains a tool to identify
the minimum weighted violations of constraints or bounds that would make the problem feasible
(called repairinfeas).

Both iis and repairinfeas can be applied to any LP, convex QP, or convex QCQP problem, as well
as to their mixed integer counterparts. Please refer to the Xpress Optimizer and Mosel reference
manuals for more information.

Managing Infeasibility with Xpress Knitro
Xpress Knitro has three major controls which govern feasibility.

XKTR_PARAM_FEASTOL This is the relative feasibility tolerance applied to a problem.
XKTR_PARAM_FEASTOLABS This is the corresponding absolute feasibility tolerance.

XKTR_PARAM_INFEASTOL This is the tolerance for declaring a problem infeasible.

Fair Isaac Corporation Confidential and Proprietary Information 48

Handling Infeasibilities Advanced

10.3

10.4

The feasibility emphasis control, XKTR_PARAM_ BAR_FEASIBLE, can be set for models on which Knitro
has encountered difficulties in finding a feasible solution. If it is set to get or get_stay, particular
emphasis will be placed upon obtaining feasibility, rather than balancing progress toward feasibility and
optimality as is the default.

If one of the built-in interior point methods is used, as determined by XK TR_PARAM_ALGORITHY, the
feasibility emphasis control can force the iterates to strictly satisfy inequalities. It does not, however,
require Knitro to satisfy all equality constraints at intermediate iterates.

The migration between a pure search for feasibility, and a balanced approach to feasibility and
optimality, may be further fine tuned by using the XKTR_PARAM BAR_SWITCHRULE control. Should a
model still fail to converge to a feasible solution, the XKTR_PARAM BAR_PENCONS control may be used
to instruct Knitro to introduce penalty breakers of its own. This option has similar behaviour to the
corresponding option in XSLP.

Managing Infeasibility with Xpress-SLP
There are two sources of infeasibility when XSLP is used

1. Infeasibility introduced by the error of the approximation, most noticeable when significant steps
are made in the linearization.

2. Infeasibility introduced by the activation of penalty breakers, where it was not otherwise possible
to make a meaningful step in the linearization.

The infeasibility induced by the former diminishes as the solution converges, provided mild
assumptions regarding the continuity of the functions describing the model are satisfied. The focus of
any analysis of infeasibility in XSLP must therefore most often be on the penalty breakers (also called
error vectors).

For some problems, Xpress-SLP may terminate with a solution which is not sufficiently feasible for use
in a desired application. The first controls to use to try to resolve such an issue are

XSLP_ECFTOIL_A The absolute linearization feasibility tolerance is compared for each constraint in
the original, nonlinear problem to its violation by the current solution.

XSLP_ECFTOL_R The relative linearization feasibility tolerance is compared for each constraint in
the original, nonlinear problem to its violation by the current solution, relative to
the maximum absolute value of the positive and negative contributions to the
constraint.

Penalty Infeasibility Breakers in XSLP

Convergence will automatically address any errors introduced by movement within the linearization.
When only small movements occur in the solution, then for differentiable functions the drift resulting
from motion on the linearization is also limited.

However, it is not always possible to stay within the linearization and still make an improving step.
XSLP is often able to resolve such situations automatically by the introduction of penalty infeasibility
breakers. These allow the solver to violate the linearized constraints by a small amount. Such variables
are associated with large cost penalties in the linearized problems, which prevents the solution process
from straying too far from the approximated feasible region.

Note that if penalty breakers are required, the solution process may be very sensitive to the choice of
cost penalties placed on the breakers. In most cases, XSLP’s constraint analysis will automatically

Fair Isaac Corporation Confidential and Proprietary Information 49

Handling Infeasibilities Advanced

identify appropriate penalties as needed for each row, but for some problems additional tuning might
be required.

Xpress-SLP will attempt to force all penalty breakers to zero in the limit by associating a substantial
cost with them in the objective function. Such costs will be increased repeatedly should the penalty
breaker remain non-zero over a period of time. The current penalty cost for all such variables is
available as XSLP_CURRENTERRORCOST. The control XxSLP_ERRORCOST determines the initial value
for this cost, while the xs1.p_ ERRORCOSTFACTOR controls the factor by which it increases if active
error vectors remain. The maximum value of the penalty is determined by the control
XSLP_ERRORMAXCOST. If the maximum error cost is reached, it is unlikely that XSLP will converge. It is
possible in this situation to terminate the solve, by setting bit 11 of XSL.P_ALGORITHM.

Some problems may be sensitive to the initial value of xs1.p_ ERRORCOST. If this value is too small
relative to the original objective in the model, feasibility will not be sufficiently strongly encouraged
during the solution process. This can cause SLP to explore highly infeasible solutions in the early
stages, since the original objective will dominate any consideration of feasibility. It is even possible in
this case for unboundedness of the linearizations to occur, although SLP is capable of automatic
recovery from such a situation.

When the initial penalty cost is too high, the penalty term will dominate the objective. This in turn will
may lead to initially low quality solutions being explored, with the attendant possibility of numerical
errors accumulating. The control XSLP_OBJTOPENALTYCOST guides the process which selects an
automatic value for xsL.P_ ERRORCOST, but determining such a value analytically can be difficult. For
some difficult problems, there may be significant benefits to selecting the value directly.

Often for infeasible problems, the contribution of the individual constraints to the overall infeasibility is
non-uniform. XSLP can automatically associate a weight with each row based upon the magnitude of
the terms in the constraint. It is both possible to refine these weights, or alternatively to allow XSLP
update them dynamically. The latter case is called escalation, and is controlled by bit 8 of
XSLP_ALGORITHM.

Devising appropriate weights manually can be difficult, and in most cases it is preferable to leave the
identification of these values to Xpress-SLP. However if it is necessary to do, the output of XSLP may
provide hints as to appropriate values if detailed logging is enabled. This can be turned on with
XSLP_LOG. The most important points in such output are the active error vectors at each iteration,
where the most attractive constraints to modify are those which occur regularly in the log in
association with non-zero error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 50

CHAPTER 11
Cascading

Cascading is the process of recalculating the values of SLP variables to be more consistent with each
other. The procedure involves sequencing the designated variables in order of dependence and then,
starting from the current solution values, successively recalculating values for the variables, and
modifying the stored solution values as required. Normal cascading is only possible if a determining
row can be identified for each variable to be recalculated. A determining row is an equality constraint
which uniquely determines the value of a variable in terms of other variables whose values are already
known. Any variable for which there is no determining row will retain its original solution value. Defining
a determining row for a column automatically makes the column into an SLP variable.

In extended MPS format, the SLPDATA record type "DR" is used to provide information about
determining rows.

In the Xpress NonLinear function library, functions xsL.paddvars, XSLPloadvars, and XSLPchgvar
allow the definition of a determining row for a column.

The cascading procedure is as follows:

m Produce an order of evaluation to ensure that variables are cascaded after any variables on which
they are dependent.

m After each SLP iteration, evaluate the columns in order, updating coefficients only as required. If a
determining row cannot calculate a new value for the SLP variable (for example, because the
coefficient of the variable evaluates to zero), then the current value may be left unchanged, or
(optionally) the previous value can be used instead.

m If a feedback loop is detected (that is, a determining row for a variable is dependent indirectly on
the value of the variable), the evaluation sequence is carried out in the order in which the variables
are weighted, or the order in which they are encountered if there is no explicit weighting.

m Check the step bounds, individual bounds and cascaded values for consistency. Adjust the
cascaded result to ensure it remains within any explicit or implied bounds.

Normally, the solution value of a variable is exactly equal to its assumed value plus the solution value of
its delta. Occasionally, this calculation is not exact (it may vary by up to the LP feasibility tolerance) and
the difference may cause problems with the SLP solution path. This is most likely to occurin a
quadratic problem when the quadratic part of the objective function contains SLP variables. Xpress
NonLinear can re-calculate the value of an SLP variable to be equal to its assumed value plus its delta,
rather than using the solution value itself.

XSLP_CASCADE is a bitmap which determines whether cascading takes place and whether the
recalculation of solution values is extended from the use of determining rows to recalculation of the
solution values for all SLP variables, based on the assumed value and the solution value of the delta.

In the following table, in the definitions under Category, error means the difference between the
solution value and the assumed value plus the delta value. Bit settings in XSLP_CASCADE are used to
determine which category of variable will have its value recalculated as follows:

Fair Isaac Corporation Confidential and Proprietary Information 51

Cascading Advanced

Bit Constant name Category

0 XSLP_CASCADE_ALL SLP variables with determining rows

1 XSLP_CASCADE_COEF_VAR Variables appearing in coefficients where the error
is greater than the feasibility tolerance

2 XSLP_CASCADE_ALL_COEF_VAR Variables appearing in coefficients where the error
is greater than 1.0E-14

3 XSLP_CASCADE_STRUCT_VAR Variables not appearing in coefficients where the er-
ror is greater than the feasibility tolerance

4 XSLP_CASCADE_ALIL_STRUCT_VAR Variables not appearing in coefficients where the er-

ror is greater than 1.0E-14

In the presence of determining rows that include instantiated functions, SLP can attempt to group the
corresponding variables together in the cascading order. This can be achieved by setting

Bit Constant name Effect

0 XSLP_CASCADE_SECONDARY_GROUPS Create secondary order groupping DR rows with in-
stantiated user functions together in the order

11.1 Determining rows and determining columns

Normally, Xpress-SLP automatically identifies if the constraint selected as determining row for a
variable defines the value of the SLP variable which it determines or not. However, in certain situations,
the value of a single another column determines if the determing row defines the variable or not; such a
column is called the determining column for the variable.

This situation is typical when the determined and determining column form a bilinear term: x*y + F(Z)
= 0 where y is the determined variable, Z is a set of other variables not including x or y, and F is an
arbitrary function; in this case x is the determining column. These variable pairs are detected
automatically. In case the absolute value of x is smaller than xsT.p_DRCOLTOL, then variable y will not
be cascaded, instead its value will be fixed and kept at its current value until the value of x becomes
larger than the threshold.

Alternatively, the handling of variables for which a determining column has been identified can be
customized by using a callback, see xST.Psetcbdrcol.

Fair Isaac Corporation Confidential and Proprietary Information 52

CHAPTER 12
Convergence criteria

12.1

12.2

12.2.1

12.2.2

Convergence criteria

In Xpress-SLP there are two levels of convergence criteria. On the higher level, convergence is driven by
the target relative feasibility / validation control XxSLP_VALIDATIONTARGET_R, and the target first
order validation tolerance xsL.p_ VALIDATIONTARGET_ K. These high level targets drive the traditional
SLP convergence measures, of which there are three types for testing test convergence:

m Strict convergence tests on variables

m Extended convergence tests on variables

m Convergence tests on the solution overall

Convergence overview

Strict Convergence

Three tolerances in XSLP are used to determine whether an individual variable has strictly converged,
that is they describe the numerical behaviour of convergence in the formal, mathematical sense.

XSLP_CTOL The closure tolerance is compared against the movement of a variable relative to its
initial step bound.

XSLP_ATOL_A The absolute delta tolerance is compared against the absolute movement of a
variable.

XSLP_ATOL_R The relative delta tolerance is compared against the movement of a variable relative
to its initial value.

Extended Convergence

There are six tolerances in XSLP used to determine whether an individual variable has converged
according to the extended definition. These tests essentially measure the quality of the linearization,
including the effect of changes to the nonlinear terms that contribute to a variable in the linearization.
In order to be deemed to have converged in the extended sense, all terms in which it appears must
satisfy at least one of the following:

XSLP_MTOIL_A The absolute matrix tolerance is compared against the approximation error relative
only to the absolute value of the variable.

Fair Isaac Corporation Confidential and Proprietary Information 53

Convergence criteria

Advanced

XSLP_MTOL_R

XSLP_ITOL_A

XSLP_ITOL_R

XSLP_STOL_A

XSLP_STOL_R

The relative matrix tolerance is compared against the approximation error relative to
the size of the nonlinear term before any step is taken.

The absolute impact tolerance is compared against the approximation error of the
nonlinear term.

The relative impact tolerance is compared against the approximation error relative to
the positive and negative contributions to each constraint.

The absolute slack impact tolerance is compared against the approximation error,
but only for non-binding constraints, which is to say those for which the marginal
value is small (as defined by xs.p_MVTOL).

The relative slack impact tolerance is compared against the approximation error
relative to the term’s contribution to its constraints, but only for non-binding
constraints, which is to say those for which the marginal value is small (as defined by
XSLP_MVTOL).

12.2.3 Stopping Criterion

The stopping criterion requires that all variables in the problem have converged in one of the three
senses. Detailed information regarding the conditions under which XSLP has terminated can be
obtained from the xs1.p_STATUS solver attribute. Note that a solution is deemed to have fully
converged if all variables have converged in the strict sense. If all variables have converged either in the
strict or extended sense, and there are no active step bounds, then the solution is called a practical
solution. In contrast, the solution may be called converged if it is feasible and the objective is no longer

improving.

The following four control sets can be applied by XSLP to determine whether the objective is stationary,
depending on the convergence control parameter XSLP_ CONVERGENCEOP S:

VTOL This is the baseline static objective function tolerance, which is compared against the
change in the objective over a given number of iterations, relative to the average objective
value. Satisfaction of VTOL does not imply convergence of the variables.

XSLP_VCOUNT This is the number of iterations over which to apply this measure of

static objective convergence.

XSLP_VLIMIT The static objective function test is applied only after at least

XSLP_VLIMIT + XSLP_SBSTART XSLP iterations have taken place.

XSLP_VTOL_A This is the absolute tolerance which is compared to the range of the

objective over the last xSTL.p_VLIMIT iterations.

XSLP_VTOL_R This is the used for a scaled version of the absolute test which

considers the average size of the absolute value of the objective over
the previous xSLP_VLIMIT iterations.

OTOL This static objective function tolerance is applied when there are no unconverged variables
in active constraints, although some variables with active step bounds might remain. It is
compared to the change in the objective over a given number of iterations, relative to the
average objective value.

XSLP_OCOUNT This is the number of iterations over which to apply this measure of

static objective convergence.

XSLP_OTOL_A This is the absolute tolerance which is compared to the range of the

objective over the last xS1L.P_OCOUNT iterations.

Fair Isaac Corporation Confidential and Proprietary Information 54

Convergence criteria

Advanced

XSLP_OTOL_R

This is used for a scaled version of the absolute test which considers
the average size of the absolute value of the objective over the
previous XsSLP_OCOUNT iterations.

XTOL This static objective function tolerance is applied when a practical solution has been found.
It is compared against the change in the objective over a given number of iterations, relative
to the average objective value.

XSLP_XCOUNT

XSLP_XLIMIT

XSLP_XTOL_A

XSLP_XTOL_R

This is the number of iterations over which to apply this measure of
static objective convergence.

This is the maximum number of iterations which can have occurred
for this static objective function test to be applied. Once this number
is exceeded, the solution is deemed to have converged if all the
variables have converged by the strict or extended criteria.

This is the absolute tolerance which is compared to the range of the
objective function over the last xs1.p_XLIMIT iterations.

This is used for a scaled version of the absolute test which considers
the average size of the absolute value of the objective over the last
XSLP_XLIMIT iterations.

WTOL The extended convergence continuation tolerance is applied when a practical solution has
been found. It is compared to the change in the objective during the previous iteration.

XSLP_WCOUNT

XSLP_WTOL_A

XSLP_WTOL_R

12.2.4 Step Bounding

12.3

This is number of iterations over which to calculate this measure of
static objective convergence in the relative version of the test.

This is the absolute tolerance which is compared to the change in the
objective in the previous iteration.

This is used for a scaled version of the test which considers the
average size of the absolute value of the objective over the last
XSLP_WCOUNT iterations.

Step bounding in XSLP can be activated in two cases. It may be enabled adaptively in response to
variable oscillation, or it may be enabled by after xs.p_SBSTART iterations, by setting
XSLP_ALGORITHM appropriately. Two major controls define the behaviour of step bounds:

XSLP_SBSTART

XSLP_DEFAULTSTEPBOUND

This defines the number of iterations which must occur before XSLP
may apply non-essential step bounding. When a linearization is
unbounded, XSLP will introduce step bounding regardless of the value
of this control.

This is the initial size of the step bounds introduced. Depending upon
the value of xs1.p_ALGORITHM, XSLP may use the iterations before
XSLP_SBSTART to refine this initial value on a per variable basis.

Convergence: technical details

In the following sections we shall use the subscript 0 to refer to values used to build the linear
approximation (the assumed value) and the subscript 7 to refer to values in the solution to the linear
approximation (the actual value). We shall also use ¢ to indicate the change between the assumed and
the actual values, so that for example:

5X = X1 - Xo.

Fair Isaac Corporation Confidential and Proprietary Information 55

Convergence criteria Advanced

The tests are described in detail later in this section. Tests are first carried out on each variable in turn,
according to the following sequence:

Strict convergence criteria:

1. Closure tolerance (CTOL).
This tests 6X against the initial step bound of X.

2. Delta tolerance (ATOL)
This tests 6X against Xj.

If the strict convergence tests fail for a variable, it is tested against the extended convergence criteria:

3. Matrix tolerance (MTOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization. It tests the error against the magnitude of the effect.

4. Impact tolerance (ITOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization. It tests the error against the magnitude of the contributions to the constraint.

5. Slack impact tolerance (STOL)
This tests whether the effect of a matrix coefficient is adequately approximated by the
linearization and is applied only if the constraint has a negligible marginal value (that is, it is
regarded as "not constraining"). The test is the same as for the impact tolerance, but the
tolerance values may be different.

The three extended convergence tests are applied simultaneously to all coefficients involving the
variable, and each coefficient must pass at least one of the tests if the variable is to be regarded as
converged. If any coefficient fails the test, the variable has not converged.

Regardless of whether the variable has passed the system convergence tests or not, if a convergence
callback function has been set using xs1.Psetcbitervar thenitis called to allow the user to
determine the convergence status of the variable.

6. User convergence test
This test is entirely in the hands of the user and can return one of three conditions: the variable
has converged on user criteria; the variable has not converged; or the convergence status of the
variable is unchanged from that determined by the system.

Once the tests have been completed for all the variables, there are several possibilities for the
convergence status of the solution:
(a) All variables have converged on strict criteria or user criteria.

(b) All variables have converged, some on extended criteria, and there are no active step bounds (that
is, there is no delta vector which is at its bound and has a significant reduced cost).

(c) All variables have converged, some on extended criteria, and there are active step bounds (that is,
there is at least one delta vector which is at its bound and has a significant reduced cost).

(d) Some variables have not converged, but these have non-constant coefficients only in constraints
which are not active (that is, the constraints do not have a significant marginal value);

(e) Some variables have not converged, and at least one has a non-constant coefficient in an active
constraint (that is, the constraint has a significant marginal value);

Fair Isaac Corporation Confidential and Proprietary Information 56

Convergence criteria Advanced

If (a) is true, then the solution has converged on strict convergence criteria.
If (b) is true, then the solution has converged on extended convergence criteria.

If (c) is true, then the solution is a practical solution. That is, the solution is an optimal solution to the
linearization and, within the defined tolerances, it is a solution to the original nonlinear problem. It is
possible to accept this as the solution to the nonlinear problem, or to continue optimizing to see if a
better solution can be obtained.

If (d) or (e) is true, then the solution has not converged. Nevertheless, there are tests which can be
applied to establish whether the solution can be regarded as converged, or at least whether there is
benefit in continuing with more iterations.

The first convergence test on the solution simply tests the variation in the value of the objective
function over a number of SLP iterations:

7. Objective function convergence test 1 (VTOL)
This test measures the range of the objective function (the difference between the maximum and
minimum values) over a number of SLP iterations, and compares this against the magnitude of
the average objective function value. If the range is small, then the solution is deemed to have
converged.

Notice that this test says nothing about the convergence of the variables. Indeed, it is almost certain
that the solution is not in any sense a practical solution to the original nonlinear problem. However,
experience with a particular type of problem may show that the objective function does settle into a
narrow range quickly, and is a good indicator of the ultimate value obtained. This test can therefore be
used in circumstances where only an estimate of the solution value is required, not how it is made up.
One example of this is where a set of schedules is being evaluated. If a quick estimate of the value of
each schedule can be obtained, then only the most profitable or economical ones need be examined
further.

If the convergence status of the variables is as in (d) above, then it may be that the solution is practical
and can be regarded as converged:

8. Objective function convergence test 2 (XTOL)
If there are no unconverged values in active constraints, then the inaccuracies in the linearization
(at least for small errors) are not important. If a constraint is not active, then deleting the
constraint does not change the feasibility or optimality of the solution. The convergence test
measures the range of the objective function (the difference between the maximum and minimum
values) over a number of SLP iterations, and compares this against the magnitude of the average
objective function value. If the range is small, then the solution is deemed to have converged.

The difference between this test and the previous one is the requirement for the convergence status of
the variables to be (d).

Unless test 7 (VTOL) is being applied, if the convergence status of the variables is (e) then the solution
has not converged and another SLP iteration will be carried out.

If the convergence status is (c), then the solution is practical. Because there are active step bounds in
the solution, a "better" solution would be obtained to the linearization if the step bounds were relaxed.
However, the linearization becomes less accurate the larger the step bounds become, so it might not
be the case that a better solution would also be achieved for the nonlinear problem. There are two
convergence tests which can be applied to decide whether it is worth continuing with more SLP
iterations in the hope of improving the solution:

9. Objective function convergence test 3 (OTOL)
If all variables have converged (even if some are converged on extended criteria only, and some of
those have active step bounds), the solution is a practical one. If the objective function has not

Fair Isaac Corporation Confidential and Proprietary Information 57

Convergence criteria Advanced

12.3.1

12.3.2

12.3.3

changed significantly over the last few iterations, then it is reasonable to suppose that the solution
will not be significantly improved by continuing with more SLP iterations. The convergence test
measures the range of the objective function (the difference between the maximum and minimum
values) over a number of SLP iterations, and compares this against the magnitude of the average
objective function value. If the range is small, then the solution is deemed to have converged.

10. Extended convergence continuation test (\WTOL)
Once a solution satisfying (c) has been found, we have a practical solution against which to
compare solution values from later SLP iterations. As long as there has been a significant
improvement in the objective function, then it is worth continuing. If the objective function over
the last few iterations has failed to improve over the practical solution, then the practical solution
is restored and the solution is deemed to have converged.

The difference between tests 9 and 10 is that 9 (OTOL) tests for the objective function being stable,
whereas 10 (WTOL) tests whether it is actually improving. In either case, if the solution is deemed to
have converged, then it has converged to a practical solution.

Closure tolerance (CTOL)
If an initial step bound is provided for a variable, then the closure test measures the significance of the
magnitude of the delta compared to the magnitude of the initial step bound. More precisely:

Closure test:
ABS(6X) < B x XSLP_CTOL

where B is the initial step bound for X. If no initial step bound is given for a particular variable, the
closure test is not applied to that variable, even if automatic step bounds are applied to it during the
solution process.

If a variable passes the closure test, then it is deemed to have converged.

Delta tolerance (ATOL)
The simplest tests for convergence measure whether the actual value of a variable in the solution is
significantly different from the assumed value used to build the linear approximation.

The absolute test measures the significance of the magnitude of the delta; the relative test measures
the significance of the magnitude of the delta compared to the magnitude of the assumed value. More
precisely:

Absolute delta test:
ABS(6X) < XSLP_ATOL_A

Relative delta test:
ABS(6X) < Xg * XSLP_ATOL_R

If a variable passes the absolute or relative delta tests, then it is deemed to have converged.

Matrix tolerance (MTOL)
The matrix tests for convergence measure the linearization error in the effect of a coefficient. The
effect of a coefficient is its value multiplied by the activity of the column in which it appears.
E=VxC
where V is the activity of the matrix column in which the coefficient appears, and C is the value of the
coefficient. The linearization approximates the effect of the coefficient as
E=V=xCy + 60X xCj

Fair Isaac Corporation Confidential and Proprietary Information 58

Convergence criteria Advanced

where V is as before, Cy is the value of the coefficient C calculated using the assumed values for the
variables and Cj is the value of % calculated using the assumed values for the variables.

The error in the effect of the coefficient is given by

(5E=V—|>I<C1_(V1*CO + (5X*C6)

Absolute matrix test:
ABS(SE) < XSLP_MTOL_A

Relative matrix test:
ABS(6E) < Vg % Xg * XSLP_MTOL_R

If all the coefficients which involve a given variable pass the absolute or relative matrix tests, then the
variable is deemed to have converged.

12.3.4 Impact tolerance (ITOL)

The impact tests for convergence also measure the linearization error in the effect of a coefficient. The
effect of a coefficient was described in the previous section. Whereas the matrix test compares the
error against the magnitude of the coefficient itself, the impact test compares the error against a
measure of the magnitude of the constraint in which it appears. All the elements of the constraint are
examined: for each, the contribution to the constraint is evaluated as the element multiplied by the
activity of the vector in which it appears; it is then included in a total positive contribution or total
negative contribution depending on the sign of the contribution. If the predicted effect of the coefficient
is positive, it is tested against the total positive contribution; if the effect of the coefficient is negative, it
is tested against the total negative contribution.

As in the matrix tests, the predicted effect of the coefficient is

VxCq + 6X * Cy

and the error is
(5E=V1*C1_(V1>(<CO + 6X*06)

Absolute impact test:
ABS(6E) < XSLP_ITOL_A

Relative impact test:
ABS(6E) < To x XSLP_ITOL_R

where

To = ABS(> " vg *)
veV

c is the value of the constraint coefficient in the vector v; V is the set of vectors such that vy « cg > 0 if E
is positive, or the set of vectors such that vy x cg < 0 if E is negative.

If a coefficient passes the matrix test, then it is deemed to have passed the impact test as well. If all
the coefficients which involve a given variable pass the absolute or relative impact tests, then the
variable is deemed to have converged.

Fair Isaac Corporation Confidential and Proprietary Information 59

Convergence criteria Advanced

12.3.5

12.3.6

12.3.7

12.3.8

Slack impact tolerance (STOL)

This test is identical in form to the impact test described in the previous section, but is applied only to
constraints whose marginal value is less than XxsLp_MVTOL. This allows a weaker test to be applied
where the constraint is not, or is almost not, binding.

Absolute slack impact test:
ABS(SE) < XSLP_STOL_A

Relative slack impact test:
ABS(6E) < Ty x XSLP_STOL_R

where the items in the expressions are as described in the previous section, and the tests are applied
only when
ABS(;) < XSLP_MVTOL

where 7; is the marginal value of the constraint.

If all the coefficients which involve a given variable pass the absolute or relative matrix, impact or slack
impact tests, then the variable is deemed to have converged.

Fixed variables due to determining columns smaller than threshold (FX)

Variables having a determining column, that are temporarily fixed due to the absolute value of the
determining column being smaller than the threshold xs1.p_DRCOLTOL are regarded as converged.

User-defined convergence

Regardless of what the Xpress-SLP convergence tests have said about the status of an individual
variable, it is possible for the user to set the convergence status for a variable by using a function
defined through the XSLPsetcbitervar callback registration procedure. The callback function
returns an integer result S which is interpreted as follows:

S<0 mark variable as unconverged
S=0 leave convergence status of variable unchanged
S>M1 mark variable as converged with status S

Values of S in the range 1to 10 are interpreted as meaning convergence on the standard
system-defined criteria.

If a variable is marked by the user as converged, it is treated as if it has converged on strict criteria.

Static objective function (1) tolerance (VTOL)

This test does not measure convergence of individual variables, and in fact does not in any way imply
that the solution has converged. However, it is sometimes useful to be able to terminate an
optimization once the objective function appears to have stabilized. One example is where a set of
possible schedules are being evaluated and initially only a good estimate of the likely objective function
value is required, to eliminate the worst candidates.

The variation in the objective function is defined as

30bj = MAXi1er(0bj) = MINj1(Obj)

Fair Isaac Corporation Confidential and Proprietary Information 60

Convergence criteria Advanced

where lter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (3) test:

ABS(50bj) < XSLP_VTOL_A

Relative static objective function (3) test:

ABS(50bj) < AVGj4er(Obj) + XSLP_VTOL_R

The static objective function (3) test is applied only after at least XSLP_VLIMIT + XSLP_SBSTART
SLP iterations have taken place. Where step bounding is being applied, this ensures that the test is not
applied until after step bounding has been introduced.

If the objective function passes the relative or absolute static objective function (3) test then the
solution will be deemed to have converged.

12.3.9 Static objective function (2) tolerance (OTOL)

This test does not measure convergence of individual variables. Instead, it measures the significance
of the changes in the objective function over recent SLP iterations. It is applied when all the variables
interacting with active constraints (those that have a marginal value of at least xS1L.P_MvVTOL) have
converged. The rationale is that if the remaining unconverged variables are not involved in active
constraints and if the objective function is not changing significantly between iterations, then the
solution is more-or-less practical.

The variation in the objective function is defined as

50bj = MAXter(Obj) = MiNjser (Ob))

where lter is the XSLP_OCOUNT most recent SLP iterations and Obj is the corresponding objective
function value.

Absolute static objective function (2) test:

ABS(00bj) < XSLP_OTOL_A

Relative static objective function (2) test:

ABS(50bj) < AVGj4e,(Obj) * XSLP_OTOL_R

If the objective function passes the relative or absolute static objective function (2) test then the
solution is deemed to have converged.

12.3.10 Static objective function (3) tolerance (XTOL)

It may happen that all the variables have converged, but some have converged on extended criteria
(MTOL, ITOL or STOL) and at least one of these is at its step bound. It is therefore possible that an
improved result could be obtained by taking another SLP iteration. However, if the objective function
has already been stable for several SLP iterations, then there is less likelihood of an improved result,
and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the objective function
over recent SLP iterations. It is applied when all the variables have converged, but some have converged
on extended criteria (MTOL, ITOL or STOL) and at least one of these is at its step bound. Because all

Fair Isaac Corporation Confidential and Proprietary Information 61

Convergence criteria Advanced

12.3.11

the variables have converged, the solution is already converged but the fact that some variables are at
their step bound limit suggests that the objective function could be improved by going further.

The variation in the objective function is defined as
d0bj = MAXiter(Obj) = MINjter(Obj)
where lter is the XSLP_XCOUNT most recent SLP iterations and Obj is the corresponding objective

function value.

Absolute static objective function (1) test:

ABS(30bj) < XSLP_XTOL_A

Relative static objective function (1) test:

ABS(50bj) < AVGj4e;(Obj) + XSLP_XTOL_R

The static objective function (1) test is applied only until xSLP_XLIMIT SLP iterations have taken
place. After that, if all the variables have converged on strict or extended criteria, the solution is
deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then the
solution is deemed to have converged.

Extended convergence continuation tolerance (WTOL)

This test is applied after a converged solution has been found where at least one variable has
converged on extended criteria and is at its step bound limit. As described under XTOL above, it is
possible that by continuing with additional SLP iterations, the objective function might improve. The
extended convergence continuation test measures whether any improvement is being achieved. If not,
then the last converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:

00bj = Obj — ConvergedObj
(for a minimization problem, the sign is reversed).
Absolute extended convergence continuation test:

50bj > XSLP_WTOL_A

Relative extended convergence continuation test:

50bj > ABS(ConvergedObj) x XSLP_WTOL_R

A solution is deemed to have a significantly better objective function value than the converged solution
if 60bj passes the relative and absolute extended convergence continuation tests.

When a solution is found which converges on extended criteria and with active step bounds, the
solution is saved and SLP optimization continues until one of the following:

m a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution

Fair Isaac Corporation Confidential and Proprietary Information 62

Convergence criteria Advanced

m a new solution is found which converges on extended criteria and with active step bounds, and
which has a significantly better objective function, in which case this is taken as the new saved
solution

m none of the XSLP_WCOUNT most recent SLP iterations has a significantly better objective function
than the saved solution, in which case the saved solution is restored and the SLP optimization
stops

Fair Isaac Corporation Confidential and Proprietary Information 63

CHAPTER 13

Xpress-SLP Structures

13.1

13.1.1

SLP Matrix Structures

Xpress-SLP augments the original matrix to include additional rows and columns to model some or all
of the variables involved in nonlinear relationships, together with first-order derivatives.

The amount and type of augmentation is determined by the bit map control variable
XSLP_AUGMENTATION:

Bit 0 Minimal augmentation. All SLP variables appearing in coefficients or matrix entries are
provided with a corresponding update row and delta vector.

Bit 1 Even-handed augmentation. All nonlinear expressions are converted into terms. All SLP
variables are provided with a corresponding update row and delta vector.

Bit 2 Create penalty error vectors (+ and -) for each equality row of the original problem
containing a nonlinear coefficient or term. This can also be implied by the setting of bit
3.

Bit 3 Create penalty error vectors (+ and/or - as required) for each row of the original problem

containing a nonlinear coefficient or term. Setting bit 3 to 1implies the setting of bit 2 to
1 even if it is not explicitly carried out.

Bit 4 Create additional penalty delta vectors to allow the solution to exceed the step bounds
at a suitable penalty.

Bit 8 Implement step bounds as constraint rows.

Bit 9 Create error vectors (+ and/or - as required) for each constraining row of the original
problem.

If Bits 0-1 are not set, then Xpress-SLP will use standard augmentation: all SLP variables (appearing in
coefficients or matrix entries, or variables with non constant coefficients) are provided with a
corresponding update row and delta vector.

To avoid too many levels of super- and sub- scripting, we shall use X, Y and Z as variables, F() as a
function, and R as the row name. In the matrix structure, column and row names are shown in italics.

Xo is the current estimate ("assumed value") of X. Fy(...) is the first derivative of F with respect to X.

Augmentation of a nonlinear coefficient

Original matrix structure

X
R F(V,2)

Fair Isaac Corporation Confidential and Proprietary Information 64

Xpress-SLP Structures Advanced

Matrix structure: minimal augmentation (XSLP_AUGMENTATION=1)

X Y Z dy dz
R F(Yo,Zo) Xo x Fy(Y0,Z0) Xo * F2(Yo,Z0)
uy 1 > = v
uz 1 ~1 = 7,

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

® The SLP variable (e.g. Y)
m The SLP delta variable (e.g. dY)
The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the

update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is
the assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the implied term X x F(Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

Matrix structure: standard augmentation (XSLP_AUGMENTATION=0)

X Y Z dX dY dz
R F(Yo,Zo) Xo * Fy(Yo,Zo) Xo * Fz(Y0,20)
uxX 1 -1 — XO
uy 1 -1 = Y,
4 1 1 = 7,

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

m The SLP variable (e.g. Y)
m The SLP delta variable (e.g. dY)
The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the

update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is
the assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the implied term X x F(Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

One new vector and one new equality constraint are created for the variable containing the nonlinear
coefficient.

The new vector is:

Fair Isaac Corporation Confidential and Proprietary Information 65

Xpress-SLP Structures Advanced

13.1.2

m The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in the
update row are the +1 and -1 for the original variable and delta variable respectively. The right hand side
is the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Matrix structure: even-handed augmentation (XSLP_AUGMENTATION=2)

= XY Z dxX dY dz
R XoxF(Yo.2Z0) F(Yo,Z0) Xo*Fy(Yo.Zo) Xo *Fz(Yo,Z0)
ux 1 ~1 = X
uy 1 -1 = v,
4 1 -1 = 2,

The coefficient is treated as if it was the term X x F(Y,Z) and is expanded in the same way as a
nonlinear term.

Augmentation of a nonlinear term
Original matrix structure

R F(X,Y,2)

The column name = is a reserved name for a column which has a fixed activity of 1.0 and can
conveniently be used to hold nonlinear terms, particularly those which cannot be expressed as
coefficients of variables.

Matrix structure: all augmentations

= XY Z dX dY dz
R F(Xo,Y0,20) Fx(Xo,Y0,Z0) Fy(Xo,Y0,Z0) Fz(Xo, Y0, 20)
uX 1 -1 - XO
uy 1 -1 = Y,
4 1 -1 = 7,

The original nonlinear coefficient (=,R) is replaced by its evaluation using the assumed values of the
independent variables.

Two vectors and one equality constraint for each independent variable in the coefficient are created if
they do not already exist.

The new vectors are:

m The SLP variable (e.g. Y)
m The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in the
update row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side is
the assumed value for the SLP variable.

The entry in the original nonlinear constraint row for each independent variable is the first-order partial
derivative of the term F(X, Y, Z), evaluated at the assumed values.

The delta variables are bounded by the current values of the corresponding step bounds.

Fair Isaac Corporation Confidential and Proprietary Information 66

Xpress-SLP Structures Advanced

13.1.3

One new vector and one new equality constraint are created for the variable containing the nonlinear
coefficient.

The new vector is:
m The SLP delta variable (e.g. dX)

The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in the
update row are the +1 and -1 for the original variable and delta variable respectively. The right hand side
is the assumed value for the original variable.

The delta variable is bounded by the current values of the corresponding step bounds.

Note that if F(X,Y,Z) = X*F(Y,Z) then this translation is exactly equivalent to that for the nonlinear
coefficient described earlier.

Augmentation of a user-defined SLP variable

Typically, this will arise when a variable represents the result of a nonlinear function, and is required to
converge, or to be constrained by step-bounding to force convergence. In essence, it would arise from a
relationship of the form

X=F(Y,2)

Original matrix structure

= X
R F(Y,2) -1

Matrix structure: all augmentations

= X Y Z dX dY dz
R F(Yo,Zp) -1 Fy(Yo.Zo) Fz(Yo.2Z0)
ux 1 -1 = X
uy 1 -1 = Y
4 1 1 =z

The Y,Z structures are identical to those which would result from a nonlinear term or coefficient. The X,
dX and uX structures effectively define dX as the deviation of X from X0 which can be controlled with
step bounds.

The augmented and even-handed structures include more delta vectors, and so allow for more
measurement and control of convergence.

Type of structure Minimal Standard Even-handed
Type of variable
Variables in nonlinear coefficients Y Y Y
Variables with nonlinear coefficients N Y Y
User-defined SLP variable Y Y Y
Nonlinear term Y Y Y
Y SLP variable has a delta vector which can be measured and/or controlled for
convergence.
N SLP variable does not have a delta and cannot be measured and/or controlled for
convergence.

Fair Isaac Corporation Confidential and Proprietary Information 67

Xpress-SLP Structures Advanced

13.1.4

13.2

There is no mathematical difference between the augmented and even-handed structures.

The even-handed structure is more elegant because it treats all variables in an identical way. However,
the original coefficients are lost, because their effect is transferred to the "=" column as a term and so it
is not possible to look up the coefficient value in the matrix after the SLP solution process has finished
(whether because it has converged or because it has terminated for some other reason). The values of
the SLP variables are still accessible in the usual way.

Some of the extended convergence criteria will be less effective because the effects of the individual
coefficients may be amalgamated into one term (so, for example, the total positive and negative
contributions to a constraint are no longer available).

SLP penalty error vectors

Bits 2, 3 and 9 of control variable xs1.p_AUGMENTATION determine whether SLP penalty error vectors
are added to constraints. Bit 9 applies penalty error vectors to all constraints; bits 2 and 3 apply them
only to constraints containing nonlinear terms. When bit 2 or bit 3 is set, two penalty error vectors are
added to each such equality constraint; when bit 3 is set, one penalty error vector is also added to each
such inequality constraint. The general form is as follows:

Original matrix structure

R F(Y.2)

Matrix structure with error vectors

X R+ R-
R F(Y,2) +1 -1
P_ERROR +Weight +Weight

For equality rows, two penalty error vectors are added. These have penalty weights in the penalty error
row PERROR, whose total is transferred to the objective with a cost of XSLP_ CURRENTERRORCOST. For
inequality rows, only one penalty error vector is added — the one corresponding to the slack is omitted.
If any error vectors are used in a solution, the transfer cost from the cost penalty error row will be
increased by a factor of XSLP_ERRORCOSTFACTOR up to @ maximum of XSLP_ERRORMAXCOST.

Error vectors are ignored when calculating cascaded values.

The presence of error vectors at a non-zero level in an SLP solution normally indicates that the solution
is not self-consistent and is therefore not a solution to the nonlinear problem.

Control variable xs1.p_ERRORTOL_A is a tolerance on error vectors. Any error vector with a value less
than xsLp_ERRORTOL_A will be regarded as having a value of zero.

Bit 9 controls whether error vectors are added to all constraints. If bit 9 is set, then error vectors are
added in the same way as for the setting of bit 3, but to all constraints regardless of whether or not they
have nonlinear coefficients.

Xpress-SLP Matrix Name Generation

Xpress-SLP adds rows and columns to the nonlinear problem in order to create a linear approximation.
The new rows and columns are given names derived from the row or column to which they are related
as follows:

Fair Isaac Corporation Confidential and Proprietary Information 68

Xpress-SLP Structures Advanced

13.3

Row or column type Control parameter containing Default format
format

Update row XSLP_UPDATEFORMAT puU_r

Delta vector XSLP_DELTAFORMAT pD_c

Penalty delta (below step XSLP MINUSDELTAFORMAT pD-c

bound)

Penalty delta (above step XSLP PLUSDELTAFORMAT pD+c

bound)

Penalty error (below RHS) XSLP_MINUSERRORFORMAT pE-r

Penalty error (above RHS) XSLP_PLUSERRORFORMAT pE+r

Row for total of all penalty vec- XSLP_PENALTYROWEORMAT pPR_x

tors (error or delta)

Column for standard penalty XSLP_PENALTYCOLFORMAT pPC_x

cost (error or delta)

LO step bound formulated as a XSLP_SBLOROWEORMAT pSB-c

row

UP step bound formulated as a xSLP_SBUPROWFORMAT pSB+c

row

In the default formats:

P a unique prefix (one or more characters not used as the beginning of any name in the
problem).

r the original row name.

c the original column name.

x The penalty row and column vectors are suffixed with "ERR" or "DELT" (for error and

delta respectively).

Other characters appear "as is".

The format of one of these generated names can be changed by setting the corresponding control
parameter to a formatting string using standard "C"-style conventions. In these cases, the unique prefix
is not available and the only obvious choices, apart from constant names, use "%s" to include the
original name — for example:

U_%s would create names like U_abcdefghi
U_%-8s would create names like U_abcdefgh (always truncated to 8 characters).

You can use a part of the name by using the XSLP_*OFFSET control parameters (such as
XSLP_UPDATEOFFSET) which will offset the start of the original name by the number of characters
indicated (so, setting xsL.p_UPDATEOFFSET to 1 would produce the name U_bcdefghi).

Xpress-SLP Statistics

When a matrix is read in using XxSLPreadprob, statistics on the model are produced. They should be
interpreted as described in the numbered footnotes:

Reading Problem xxx (1)
Problem Statistics
1920 (0 spare) rows (2)
899 (0 spare) structural columns (3)
6683 (3000 spare) non-zero elements (4)
Global Statistics
0 entities 0 sets 0 set members (5)

Fair Isaac Corporation Confidential and Proprietary Information 69

Xpress-SLP Structures

Advanced

Xpress—-SLP Statistics:

3632 coefficients (6)
14 extended variable arrays (7)
1 user functions (8)
1011 SLP variables (9)
Notes:
1. Standard output from XPRSreadprob reading the linear part of the problem

© o N o M W N

Number of rows declared in the ROWS section

Number of columns with at least one constant coefficient
Number of constant elements

Integer and SOS statistics if appropriate

Number of non-constant coefficients

Number of XVs defined

Number of user functions defined

Number of variables identified as SLP variables (interacting with a non-linear coefficient)

When the original problem is SLP-presolved prior to augmentation, the following statistics are
produced:

Xpress—SLP Presolve:

3 presolve passes (10)
247 SLP variables newly identified as fixed (11)
425 determining rows fixed (12)

32 coefficients identified as fixed (13)
58 columns fixed to zero (56 SLP variables) (14)
367 columns fixed to nonzero (360 SLP variables) (15)
139 column deltas deleted (16)
34 column bounds tightened (6 SLP variables) (17)

Notes:

10. Presolve is an iterative process. Each iteration refines the problem until no further progress is

1.

12.
13.

14.
15.

16.
17.

made. The number of iterations (presolve passes) can be limited by using
XSLP_PRESOLVEPASSES

SLP variables which are deduced to be fixed by virtue of constraints in the model (over and above

any which are fixed by bounds in the original problem)
Number of determining rows which have fixed variables and constant coefficients

Number of coefficients which are fixed because they are functions of constants and fixed
variables

Total number of columns fixed to zero (number of fixed SLP variables shown in brackets)

Total number of columns fixed to nonzero values (number of fixed SLP variables shown in
brackets)

Total number of deltas deleted because the SLP variable is fixed

Total number of bounds tightened by virtue of constraints in the model.

Fair Isaac Corporation Confidential and Proprietary Information

70

Xpress-SLP Structures Advanced

13.4

If any of these items is zero, it will be omitted. Unless specifically requested by setting additional bits of
control xs1.p_PRESOLVE, newly fixed variables and tightened bounds are not actually applied to the
model. However, they are used in the initial augmentation and during cascading to ensure that the
starting points for each iteration are within the tighter bounds.

When the original problem is augmented prior to optimization, the following statistics are produced:

Xpress—SLP Augmentation Statistics:

Columns:
754 implicit SLP variables (18)
1010 delta vectors (19)
2138 penalty error vectors (1177 positive, 961 negative) (20)
Rows:
1370 nonlinear constraints (21)
1010 update rows (22)
1 penalty error rows (23)
Coefficients:
11862 non-constant coefficients (24)

Notes:

18. SLP variables appearing only in coefficients and having no constant elements
19. Number of delta vectors created

20. Numbers of penalty error vectors

21. Number of constraints containing nonlinear terms

22. Number of update rows (equals number of delta vectors)

23. Number of rows totaling penalty vectors (error or delta)

24. Number of non-constant coefficients in the linear augmented matrix

m The total number of rows in the augmented matrix is (2) + (22) + (23)
m The total number of columns in the augmented matrix is (3) + (18) + (19) + (20) + (23)
m The total number of elements in the original matrix is (4) + (6)
m The total number of elements in the augmented matrix is (4) + (24) + (19) + 2*(20) + 2*(23)
If the matrix is read in using the XPRS1oadxxx and XSLPloadxxx functions then these statistics may

not be produced. However, most of the values are accessible through Xpress NonLinear integer
attributes using the xsL.pgetintattrib function.

SLP Variable History

Xpress-SLP maintains a history value for each SLP variable. This value indicates the direction in which
the variable last moved and the number of consecutive times it moved in the same direction. All
variables start with a history value of zero.

Fair Isaac Corporation Confidential and Proprietary Information 71

Xpress-SLP Structures

Advanced

Current History Change in activity of New History
variable

0 >0 1

0 <0 -1

>0 >0 No change unless delta vector is at its bound. If it is,
then new value is Current History + 1

>0 <0 -1

<0 <0 No change unless delta vector is at its bound. If it is,
then new value is Current History - 1

<0 >0 1

anything 0 No change

Tests of variable movement are based on comparison with absolute and relative (and, if set, closure)
tolerances. Any movement within tolerance is regarded as zero.

If the new absolute value of History exceeds the setting of xs1.p_sAMECOUNT, then the step bound is
reset to a larger value (determined by xs1.p_ExPAND) and History is reset as if it had been zero.

If History and the change in activity are of opposite signs, then the step bound is reset to a smaller
value (determined by xs1.p_SHRINK) and History is reset as if it had been zero.

With the default settings, History will normally be in the range -1to -3 or +1 to +3.

Fair Isaac Corporation Confidential and Proprietary Information

72

CHAPTER 14

Xpress NonLinear Formulae

Xpress NonLinear can handle formulae described in three different ways:

Character strings The formula is written exactly as it would appear in, for example, the Extended
MPS format used for text file input.

Internal unparsed format The tokens withinthe formula are replaced by a
{tokentype, tokenvalue} pair. The list of types and values is in the table below.

Internal parsed format The tokens are converted as in the unparsed format, but the order is

changed so that the resulting array forms a reverse-Polish execution stack for direct
evaluation by the system.

14.1 Parsed and unparsed formulae

All formulae input into Xpress NonLinear are parsed into a reverse-Polish execution stack. Tokens are
identified by their type and a value. The table below shows the values used in interface functions.

All formulae are provided in the interface functions as two parallel arrays:
an integer array of token types;
a double array of token values.

The last token type in the array should be an end-of-formula token (XsLP_EOF, which evaluates to zero).

If the value required is an integer, it should still be provided in the array of token values as a double
precision value.

Even if a token type requires no token value, it is best practice to initialize such values as zeros.

Fair Isaac Corporation Confidential and Proprietary Information 73

Xpress NonLinear Formulae

Advanced

Type Description Value

XSLP_COL column index of matrix column.

XSLP_CON constant (double) value.

XSLP_DEL delimiter XSLP_COMMA (1) = comma (",")
XSLP_COLON (2) = colon (":")

XSLP_EOF end of formula not required: use zero

XSLP_FUN user function index of function

XSLP_IFUN internal function index of function

XSLP_LB left bracket not required: use zero

XSLP_OP operator XSLP_UMINUS (1) = unary minus ("-")
XSLP_EXPONENT (2) = exponent ("**" or ™
XSLP_MULTIPLY (3) = multiplication ("*")
XSLP_DIVIDE (4) = division ("/")
XSLP_PLUS (5) = addition ("+")
XSLP_MINUS (6) = subtraction ("-")

XSLP_RB right bracket not required: use zero

XSLP_VAR variable index of variable. Note that variables count from 1,

so that the index of matrix columnnisn + 1.

Token type xSLP_COL is used only when passing formulae into Xpress NonLinear. Any formulae
recovered from Xpress NonLinear will use the XSLP_ VAR token type which always count from 1.

When a formula is passed to Xpress NonLinear in "internal unparsed format" — that is, with the formula
already converted into tokens — the full range of token types is permitted.

When a formula is passed to Xpress NonLinear in "parsed format" — that is, in reverse Polish — the

following rules apply:
XSLP_DEL
XSLP_FUN
XSLP_IFUN
XSLP_LB

XSLP_RB

14.2 Example of an arithmetic formula

X2 +4y(z-3)

comma is optional.

implies a following left-bracket, which is not included explicitly.
implies a following left-bracket, which is not included explicitly.

never used.

only used to terminate the list of arguments to a function.

Brackets are not used in the reverse Polish representation of the formula: the order of evaluation is
determined by the order of the items on the stack. Functions which need the brackets — for example
xsLpgetccoef — fill in brackets as required to achieve the correct evaluation order. The result may
not match the formula as originally provided.

Written as an unparsed formula, each token is directly transcribed as follows:

Fair Isaac Corporation Confidential and Proprietary Information

74

Xpress NonLinear Formulae

Advanced

14.3

Type
XSLP_VAR
XSLP_OP
XSLP_CON
XSLP_OP
XSLP_CON
XSLP_OP
XSLP_VAR
XSLP_OP
XSLP_LB
XSLP_VAR
XSLP_OP
XSLP_CON
XSLP_RB
XSLP_EOF

Value

index of x
XSLP_EXPONENT
2

XSLP_PLUS

4
XSLP_MULTIPLY
index of y
XSLP_MULTIPLY
0

index of z
XSLP_MINUS

3

0

0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:

X 2 " 4y

and this is then transcribed as follows:

Type
XSLP_VAR
XSLP_CON
XSLP_OP
XSLP_CON
XSLP_VAR
XSLP_OP
XSLP_VAR
XSLP_CON
XSLP_OP
XSLP_OP
XSLP_OP
XSLP_EOF

x z 3 -

Value

index of x

2
XSLP_EXPONENT
4

index of y
XSLP_MULTIPLY
index of z

3

XSLP_MINUS
XSLP_MULTIPLY
XSLP_PLUS

0

*

+

Notice that the brackets used to establish the order of evaluation in the unparsed formula are not
required in the parsed form.

Example of a formula involving a simple function

y * MyFunc(z, 3)

Written as an unparsed formula, each token is directly transcribed as follows:

Type
XSLP_VAR
XSLP_OP
XSLP_FUN
XSLP_LB
XSLP_VAR
XSLP_DEL
XSLP_CON
XSLP_RB
XSLP_EOF

Value

index of y
XSLP_MULTIPLY
index of MyFunc
0

index of z
XSLP_COMMA

3

0

0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:

Fair Isaac Corporation Confidential and Proprietary Information

75

Xpress NonLinear Formulae Advanced

y) 3 , z MyFunc(x

and this is then transcribed as follows:

Type Value

XSLP_VAR indexof y
XSILP_RB O

XSLP_CON 3

XSLP_DEL XSLP_COMMA
XSLP_VAR index of z
XSLP_FUN index of MyFunc
XSLP_OP XSLP_MULTIPLY
XSLP_EOF 0

Notice that the function arguments are in reverse order, and that a right bracket is used as a delimiter to
indicate the end of the argument list. The left bracket indicating the start of the argument list is implied
by the XSLP_FUN token.

Fair Isaac Corporation Confidential and Proprietary Information 76

CHAPTER 15
User Functions

15.1

Callbacks and user functions

Callbacks and user functions both provide mechanisms for connecting user-written functions to
Xpress NonLinear. However, they have different capabilities and are not interchangeable.

A callback is called at a specific point in the SLP optimization process (for example, at the start of each
SLP iteration). It has full access to all the problem data and can, in principle, change the values of any
items — although not all such changes will necessarily be acted upon immediately or at all.

A user function is essentially the same as any other mathematical function, used in a formula to
calculate the current value of a coefficient. The function is called when a new value is needed; for
efficiency, user functions are not usually called if the value is already known (for example, when the
function arguments are the same as on the previous call). Therefore, there is no guarantee that a user
function will be called at any specific point in the optimization procedure or at all.

Although a user function is normally free-standing and needs no access to problem or other data apart
from that which it receives through its argument list, there are facilities to allow it to access the
problem and its data if required. The following limitations should be observed:

1. The function should not make use of any variable data which is not in its list of arguments;

2. The function should not change any of the problem data.
The reasons for these restrictions are as follows:

1. Xpress NonLinear determines which variables are linked to a formula by examining the list of
variables and arguments to functions in the formula. If a function were to access and use the
value of a variable not in this list, then incorrect relationships would be established, and incorrect
or incomplete derivatives would be calculated. The predicted and actual values of the coefficient
would then always be open to doubt.

2. Xpress NonLinear generally allows problem data to be changed between function calls, and also
by callbacks called from within an Xpress NonLinear function. However, user functions are called
at various points during the optimization and no checks are generally made to see if any problem
data has changed. The effects of any such changes will therefore at best be unpredictable.

For a description of how to access the problem data from within a user function, see the section on
"More complicated user functions" later in this chapter.

Fair Isaac Corporation Confidential and Proprietary Information 77

User Functions Advanced

15.2

15.3

15.3.1

User function interface

In its simplest form, a user function is exactly the same as any other mathematical function: it takes a
set of arguments (constants or values of variables) and returns a value as its result. In this form, which
is the usual implementation, the function needs no information apart from the values of its arguments.
It is possible to create more complicated functions which do use external data in some form: these are
discussed at the end of this section.

Xpress NonLinear supports two basic forms of user function. The simple form of function returns a
single value, and is treated in essentially the same way as a normal mathematical function. The general
form of function returns an array of values and may also perform automatic differentiation.

The main difference between the simple and general form of a user function is in the way the value is
returned.

m The simple function calculates and returns one value and is declared as such (for example,
double in C).

m The general function calculates an array of values. It can either return the array itself (and is
declared as such: double =), or it can return the results in one of the function arguments, in
which case the function itself returns a single (double precision) status value (and is declared as
such: double).

User Function declaration in native languages

This section describes how to declare a user function in C, Fortran and so on. The general shape of the
declaration is shown. Not all the possible arguments will necessarily be used by any particular function,
and the actual arguments required will depend on the way the function is declared to Xpress NonLinear.

User function declaration in C

The xPRS_CC calling convention (equivalent to __stdcall under Windows) must be used for the
function. For example:

type XPRS_CC MyFunc (double *InputValues, int *FunctionInfo,
char *InputNames, char *ReturnNames
double *Deltas, double *ReturnArray);

where type is double or double* depending on the nature of the function.

In C++, the function should be declared as having a standard C-style linkage. For example, with
Microsoft C++ under Windows:

extern "C" type _declspec(dllexport) XPRS_CC
MyFunc (double *InputValues, int *FunctionInfo,
char *InputNames, char *ReturnNames
double #*Deltas, double *ReturnArray);

If the function is placed in a library, the function name may need to be externalized. If the compiler adds
"decoration” to the name of the function, the function may also need to be given an alias which is the
original name. For example, with the Microsoft compiler, a definition file can be used, containing the
following items:

EXPORTS
MyFunc=_MyFunc@12

Fair Isaac Corporation Confidential and Proprietary Information 78

User Functions Advanced

15.4

15.4.1

15.4.2

where the name after the equals sign is the original function name preceded by an underscore and
followed by the @ sign and the number of bytes in the arguments. As all arguments in Xpress
NonLinear external function calls are pointers, each argument represents 4 bytes on a 32-bit platform,
and 8 bytes on a 64-bit platform.

A user function can be included in the executable program which calls Xpress NonLinear. In such a
case, the user function is declared as usual, but the address of the program is provided using
XSLPchguserfuncaddress or XSLPsetuserfuncaddress. The same technique can also be used
when the function has been loaded by the main program and, again, its address is already known.

The InputNames and ReturnNames arrays, if used, contain a sequence of character strings which are
the names, each terminated by a null character.

Any argument omitted from the declaration in Xpress NonLinear will be omitted from the function call.

Any argument declared in Xpress NonLinear as of type NULL will generally be passed as a null pointer
to the program.

Simple functions and general functions

A simple function is one which returns a single value calculated from its arguments, and does not
provide derivatives. A general function returns more than one value, because it calculates an array of
results, or because it calculates derivatives, or both.

Because of restrictions in the various types of linkage, not all types of function can be declared and
used in all languages. Any limitations are described in the appropriate sections.

For simplicity, the functions will be described using only examples in C. Implementation in other
languages follows the same rules.

Simple user functions

A simple user function returns only one value and does not calculate derivatives. It therefore does not
use the ReturnNames, Deltas Or ReturnArray arguments.

The full form of the declaration is:

double XPRS_CC MyFunc (double *InputValues, int *FunctionInfo,
char *InputNames);

FunctionInfo can be omitted if the number of arguments is not required, and access to problem
information and function objects is not required.

InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

The function supplies its single result as the return value of the function.

There is no provision for indicating that an error has occurred, so the function must always be able to
calculate a value.

General user functions returning an array of values through a reference

General user functions calculate more than one value, and the results are returned as an array. In the
first form of a general function, the values are supplied by returning the address of an array which holds
the values. See the notes below for restrictions on the use of this method.

The full form of the declaration is:

Fair Isaac Corporation Confidential and Proprietary Information 79

User Functions Advanced

15.4.3

double * XPRS_CC MyFunc (double xInputValues, int *FunctionInfo,
char *InputNames, char *ReturnNames
double *Deltas);

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are being
calculated, the number of return values is fixed, and access to problem information and function
objects is not required. However, it is recommended that FunctionInfo is always included.

InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

ReturnNames can be omitted if the return values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

Deltas must be omitted if no derivatives are calculated.

The function supplies the address of an array of results. This array must be available after the function
has returned to its caller, and so is normally a static array. This may mean that the function cannot be
called from a multi-threaded optimization, or where multiple instances of the function are required,
because the single copy of the array may be overwritten by another call to the function. An alternative
method is to use a function object which refers to an array specific to the thread or problem being
optimized.

Deltas is an array with the same number of items as Inputvalues. It is used as an indication of
which derivatives (if any) are required on a particular function call. If Deltas[i] is zero then a
derivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero then a
derivative for input variable 1 is required and must be returned. The total number of nonzero entries in
Deltas is givenin FunctionInfo[2]. In particular, if it is zero, then no derivatives are required at all.

When no derivatives are calculated, the array of return values simply contains the results (in the order
specified by ReturnNames if used).
When derivatives are calculated, the array contains the values and the derivatives as follows (DVi is the
it variable for which derivatives are required, which may not be the same as the i input value):
Resultl
Derivative of Resultl w.r.t. DV1
Derivative of Resultl w.r.t. DV2

Derivative of Resultl w.r.t. DVn
Result2

Derivative of Result2 w.r.t. DV1
Derivative of Result2 w.r.t. DV2

Derivative of Result2 w.r.t. Dvn

Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.

General user functions returning an array of values through an argument

General user functions calculate more than one value, and the results are returned as an array. In the
second form of a general function, the values are supplied by returning the values in an array provided
as an argument to the function by the calling program. See the notes below for restrictions on the use
of this method.

The full form of the declaration is:
double XPRS_CC MyFunc (double *InputValues, int *FunctionInfo,

char *InputNames, char *ReturnNames
double *Deltas, double *ReturnArray);

Fair Isaac Corporation Confidential and Proprietary Information 80

User Functions Advanced

15.5

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are being
calculated, the number of return values is fixed, and access to problem information and function
objects is not required. However, it is recommended that FunctionInfo is always included.

InputNames can be omitted if the input values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

ReturnNames can be omitted if the return values are identified by position and not by name (see
"Programming Techniques for User Functions" below).

Deltas must be omitted if no derivatives are calculated.

The function must supply the results in the array ReturnArray. This array is guaranteed to be large
enough to hold all the values requested by the calling program. No guarantee is given that the results
will be retained between function calls.

Deltas is an array with the same number of items as InputValues. It is used as an indication of
which derivatives (if any) are required on a particular function call. If Deltas[i] is zero then a
derivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero then a
derivative for input variable i is required and must be returned. The total number of nonzero entries in
Deltasis givenin FunctionInfo[2]. In particular, if it is zero, then no derivatives are required at all.

When no derivatives are calculated, the array of return values simply contains the results (in the order
specified by ReturnNames if used).
When derivatives are calculated, the array contains the values and the derivatives as follows (DVi is the
it variable for which derivatives are required, which may not be the same as the it” input value):
Resultl
Derivative of Resultl w.r.t. DV1
Derivative of Resultl w.r.t. DV2

Derivative of Resultl w.r.t. DVn
Result2

Derivative of Result2 w.r.t. DV1
Derivative of Result2 w.r.t. DV2

Derivative of Result2 w.r.t. DVn

Derivative of Resultm w.r.t. DVn
It is therefore important to check whether derivatives are required and, if so, how many.

The return value of the function is a status code indicating whether the function has completed
normally. Possible values are:

0 No errors: the function has completed normally.
1 The function has encountered an error. This will terminate the optimization.
-1 The calling function must estimate the function value from the last set of values calculated.

This will cause an error if no values are available.

Programming Techniques for User Functions

This section is principally concerned with the programming of large or complicated user functions,
perhaps taking a potentially large number of input values and calculating a large number of results.
However, some of the issues raised are also applicable to simpler functions.

The first part describes in more detail some of the possible arguments to the function. The remainder
of the section looks at function instances, function objects and direct calls to user functions.

Fair Isaac Corporation Confidential and Proprietary Information 81

User Functions Advanced

15.5.1

15.5.2

15.5.3

15.5.4

Deltas

The Deltas array has the same dimension as InputValues and is used to indicate which of the input
variables should be used to calculate derivatives. If Deltas[i] is zero, then no derivative should be
returned for input variable i. If Deltas[i] is nonzero, then a derivative is required for input variable i.
The value of Deltas[i] can be used as a suggested perturbation for numerical differentiation (a
negative sign indicates that if a one-sided derivative is calculated, then a backward one is preferred). If
derivatives are calculated analytically, or without requiring a specific perturbation, then Deltas can be
interpreted simply as an array of flags indicating which derivatives are required.

Return values and ReturnArray

The ReturnArray array is provided for those user functions which return more than one value, either
because they do calculate more than one result, or because they also calculate derivatives. The
function must either return the address of an array which holds the values, or pass the values to the
calling program through the ReturnArray array.

The total number of values returned depends on whether derivatives are being calculated. The
Functioninfo array holds details of the number of input values supplied, the number of return values
required (nRet) and the number of sets derivatives required (nDeriv). The total number of values (and
hence the minimum size of the array) is nRet x (nDeriv + 1). Xpress NonLinear guarantees that
ReturnArray will be large enough to hold the total number of values requested.

A function which calculates and returns a single value can use the ReturnArray array provided that
the declarations of the function in Xpress NonLinear and in the native language both include the
appropriate argument definition.

functions which use the ReturnArray array must also return a status code as their return value. Zero
is the normal return value. A value of 1 or greater is an error code which will cause any formula
evaluation to stop and will normally interrupt any optimization or other procedure. A value of -1 asks
Xpress NonLinear to estimate the function values from the last calculation of the values and partial
derivatives. This will produce an error if there is no such set of values.

Returning Derivatives

A multi-valued function which does not calculate its own derivatives will return its results as a
one-dimensional array.

As already described, when derivatives are calculated as well, the order is changed, so that the required

derivatives follow the value for each result. That is, the order becomes:
AOA OA OA p OB OB 9B 0Z

10X, DXy OXn' P OXy DX DXy T DX
where A, B, Z are the return values, and X7, X, Xp, are the input (independent) variables (in order) for

which derivatives have been requested.

Not all calls to a user function necessarily require derivatives to be calculated. Check FunctionInfo
for the number of derivatives required (it will be zero if only a value calculation is needed), and Deltas
for the indications as to which independent variables are required to produce derivatives. Xpress
NonLinear will not ask for, nor will it expect to receive, derivatives for function arguments which are
actually constant in a particular problem. A function which provides uncalled-for derivatives will cause
errors in subsequent calculations and may cause other unexpected side-effects if it stores values
outside the expected boundaries of the return array.

Function Instances

Xpress NonLinear defines an instance of a user function to be a unique combination of function and
arguments. For functions which return an array of values, the specific return argument is ignored when
determining instances. Thus, given the following formulae:

Fair Isaac Corporation Confidential and Proprietary Information 82

User Functions Advanced

15.6

fx)+f(y)+gx,y:1)
f(y) « f(x) = g(x,y : 2)
f(z)
the following instances are created:
f(x)
f(y)
f(2)
a(x,y)
(A function reference of the form g(x, y : n) means that g is a multi-valued function of x and y, and we
want the nf" return value.)

Xpress NonLinear regards as complicated any user function which returns more than one value, which
uses input or return names, or which calculates its own derivatives. All complicated functions give rise
to function instances, so that each function is called only once for each distinct combination of
arguments.

Functions which are not regarded as complicated are normally called each time a value is required. A
function of this type can still be made to generate instances by defining its ExeType as creating
instances (set bit 9 when using the normal library functions, or use the "I" suffix when using file-based
input through XxSLPreadprob or when using SLPDATA in Mosel).

Note that conditional re-evaluation of the function is only possible if it generates function instances.

Using function instances can improve the performance of a problem, because the function is called
only once for each combination of arguments, and is not re-evaluated if the values have not changed
significantly. If the function is computationally intensive, the improvement can be significant.

There are reasons for not wanting to use function instances:

m When the function is fast. It may be as fast to recalculate the value as to work out if evaluation is
required.

m When the function is discontinuous. Small changes are estimated by using derivatives. These
behave badly across a discontinuity and so it is usually better to evaluate the derivative of a
formula by using the whole formula, rather than to calculate it from estimates of the derivatives of
each term.

m Function instances do use more memory. Each instance holds a full copy of the last input and
output values, and a full set of first-order derivatives. However, the only time when function
instances are optional is when there is only one return value, so the extra space is not normally
significant.

Function Derivatives

Xpress NonLinear normally expects to obtain a set of partial derivatives from a user function at a
particular base-point and then to use them as required, depending on the evaluation settings for the
various functions. If for any reason this is not appropriate, then the integer control parameter
XSLP_EVALUATE can be set to 1, which will force re-evaluation every time.

A function instance is not re-evaluated if all of its arguments are unchanged.

A simple function which does not have a function instance is evaluated every time.

If xsLP_EVALUATE is not set, then it is still possible to by-pass the re-evaluation of a function if the
values have not changed significantly since the last evaluation. If the input values to a function have all
converged to within their strict convergence tolerance (CTOL, ATOL_A, ATOL_R), and bit 4 of
XSLP_FUNCEVAL is set to 1, then the existing values and derivatives will continue to be used. At the
option of the user, an individual function, or all functions, can be re-evaluated in this way or at each SLP
iteration. If a function is not re-evaluated, then all the required values will be calculated from the base

Fair Isaac Corporation Confidential and Proprietary Information 83

User Functions Advanced

point and the partial derivatives; the input and return values used in making the original function
calculation are unchanged.

Bits 3-5 of integer control parameter xsL.p_FUNCEVAL determine the nature of function evaluations.
The meaning of each bit is as follows:

Bit 3 evaluate functions whenever independent variables change.
Bit 4 evaluate functions when independent variables change outside tolerances.
Bit 5 apply evaluation mode to all functions.

If bits 3-4 are zero, then the settings for the individual functions are used.
If bit 5 is zero, then the settings in bits 3-4 apply only to functions which do not have their own specific
evaluation modes set.

Examples:
Bits 3-5 =1 (set bit 3) Evaluate functions whenever their input arguments (independent variables)
change, unless the functions already have their own evaluation options set.

Bits 3-5 = 5 (set bits 3 and 5) Evaluate all functions whenever their input arguments (independent
variables) change.

Bits 3-5 = 6 (set bits 4 and 5) Evaluate functions whenever input arguments (independent variables)
change outside tolerance. Use existing calculation to estimate values otherwise.

Bits 6-8 of integer control parameter xsL.p_FUNCEVAL determine the nature of derivative calculations.
The meaning of each bit is as follows:

Bit 6 tangential derivatives.
Bit 7 forward derivatives.
Bit 8 apply evaluation mode to all functions.

If bits 6-7 are zero, then the settings for the individual functions are used.
If bit 8 is zero, then the settings in bits 6-7 apply only to functions which do not have their own specific
derivative calculation modes set.

Examples:

Bits 6-8 = 1 (set bit 6) Use tangential derivatives for all functions which do not already have their own
derivative options set.

Bits 6-8 = 5 (set bits 6 and 8) Use tangential derivatives for all functions.

Bits 6-8 = 6 (set bits 7 and 8) Use forward derivatives for all functions.

The following constants are provided for setting these bits:

Setting bit3 XSLP_RECALC

Setting bit4 XSLP_TOLCALC

Setting bit 5 XSLP_ALLCALCS

Setting bit6 XSLP_2DERIVATIVE
Setting bit7 XSLP_1DERIVATIVE
Setting bit8 XSLP_ALLDERIVATIVES

Fair Isaac Corporation Confidential and Proprietary Information 84

User Functions Advanced

A function can make its own determination of whether to re-evaluate. If the function has already
calculated and returned a full set of values and partial derivatives, then it can request Xpress NonLinear
to estimate the values required from those already provided.

The function must be defined as using the ReturnArray argument, so that the return value from the
function itself is a double precision status value as follows:

0 normal return. The function has calculated the values and they are in ReturnArray.

1 error return. The function has encountered an unrecoverable error. The values in
ReturnArray are ignored and the optimization will normally terminate.

-1 no calculation. Xpress NonLinear should recalculate the values from the previous results. The
values in ReturnArray are ignored.

15.6.1 Analytic Derivatives of Instantiated User Functions not Returning their own Deriva-
tives

When analytical derivatives are used, SLP will calculate approximated derivatives using finite
differences for instantiated functions and use these values when deriving analytical derivatives.
Functions returning multiple arguments will always be instantiated, otherwise functions can be forced
to be instantiated on a per function basis.

Fair Isaac Corporation Confidential and Proprietary Information 85

CHAPTER 16
Management of zero placeholder entries

16.1

16.2

The augmented matrix structure

During the augmentation process, Xpress-SLP builds additional matrix structure to represent the linear
approximation of the nonlinear constraints within the problem (see Xpress-SLP Structures). In effect, it
adds a generic structure which approximates the effect of changes to variables in nonlinear
expressions, over and above that which would apply if the variables were simply replaced by their
current values.

As a very simple example, consider the nonlinear constraint (R1, say)
XxY <10

The variables X and Y are replaced by Xy + 6X and Y + dY respectively, where X and Y are the values
of X and Y at which the approximation will be made.

The original constraint is therefore
(XO + (5X) * (YO + (5Y) <10

Expanding this into individual terms, we have
XO*Y0+X0*(5Y+Y0*(5X+5X*5Y§10

The first term is constant, the next two terms are linear in §Y and §X respectively, and the last term is
nonlinear.

The augmented structure deletes the nonlinear term, so that the remaining structure is a linear
approximation to the original constraint. The justification for doing this is that if X or 6Y (or both) are
small, then the error involved in ignoring the term is also small.

The resulting matrix structure has entries of Y in the delta variable X and X in the delta variable §Y.
The constant entry Xg x Y is placed in the special "equals" column which has a fixed activity of 1. All
these entries are updated at each SLP iteration as the solution process proceeds and the problem is
linearized at a new point. The positions of these entries — (R1, X), (R1,8Y) and (R1,=) — are known as
placeholders.

Derivatives and zero derivatives

At each SLP iteration, the values of the placeholders are re-calculated. In the example in the previous
section, the values Xj in the delta variable 6Y and Y{ in the delta variable §X were effectively
determined by analytic methods - that is, we differentiated the original formula to determine what
values would be required in the placeholders.

In general, analytic differentiation may not be possible: the formula may contain functions which
cannot be differentiated (because, for example, they are not smooth or not continuous), or for which
the analytic derivatives are not known (because, for example, they are functions providing values from

Fair Isaac Corporation Confidential and Proprietary Information 86

Management of zero placeholder entries Advanced

16.3

"black boxes" such as databases or simulators). In such cases, Xpress-SLP approximates the
differentiation process by numerical methods. The example in the previous section would have
approximate derivatives calculated as follows:

The current value of X (Xg) is perturbed by a small amount (dX), and the value of the formula is
recalculated in each case.

fd = (XO - dX) * YO
fu = (XO +dX) * YO

derivative = (fy — f4)/(2 * dX)

In this particular example, the value obtained by numerical methods is the same as the analytic
derivative. For more complex functions, there may be a slight difference, depending on the magnitude
of dX.

This derivative represents the effect on the constraint of a change in the value of X. Obviously, if Y
changes as well, then the combined effect will not be fully represented although, in general, it will be
directionally correct.

The problem comes when Y is zero. In such a case, the derivative is calculated as zero, meaning that
changing X has no effect on the value of the formula. This can impact in one of two ways: either the
value of X never changes because there is no incentive to do so, or it changes by unreasonably large
amounts because there is no effect from doing so. If X and Y are linked in some other way, so that Y
becomes nonzero when X changes, the approximation using zero as the derivative can cause the
optimization process to behave badly.

Xpress-SLP tries to avoid the problem of zero derivatives by using small nonzero values for variables
which are in fact zero. In most cases this gives a small nonzero value for the derivative, and hence for
the placeholder entry. The model then contains some effect for the change in a variable, even if
instantaneously the effect is zero.

The same principle is applied to analytic derivatives, so that the values obtained by either method are
broadly similar.

Placeholder management

The default action of Xpress-SLP is to retain all the calculated values for all the placeholder entries.
This includes values which would be zero without the special handling described in the previous
section. We will call such values "zero placeholders”.

Although retaining all the values gives the best chance of finding a good optimum, the presence of a
large dense area of small values often gives rise to considerable numerical instability which adversely
affects the optimization process. Xpress-SLP therefore offers a way of deleting small values which is
less likely to affect the final outcome whilst improving numerical stability.

Most of the candidate placeholders are in the delta variables (represented by the 6X and 6Y variables
above). Various criteria can be selected for deletion of zero placeholder entries without affecting the
validity of the basis (and so making the next SLP iteration more costly in time and stability). The criteria
are selected using the control parameter XxSLP_ZEROCRITERION as follows:

m Bit 0 (=1) Remove placeholders in nonbasic SLP variables
This criterion applies to placeholders which are in the SLP variable (not the delta). Any value can
be deleted from a nonbasic variable without upsetting the basis, so all eligible zero placeholders
can be deleted.

m Bit 1 (=2) Remove placeholders in nonbasic delta variables
Any value can be deleted from a nonbasic variable without upsetting the basis, so all eligible zero
placeholders can be deleted.

Fair Isaac Corporation Confidential and Proprietary Information 87

Management of zero placeholder entries Advanced

m Bit 2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
If the update row is nonbasic, then generally the basic SLP variable can be pivoted in the update
row, so the basis is still valid if other entries are deleted. The entry in the update row is always 1.0
and will never be deleted.

m Bit 3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and the
corresponding SLP variable is nonbasic
If the delta is basic and the corresponding SLP variable is nonbasic, then the delta will pivot in the
update row (the delta and the SLP variable are the only two variables in the update row), so the
basis is still valid if other entries are deleted. The entry in the update row is always -1.0 and will
never be deleted.

m Bit 4 (=16) Remove placeholders in a basic delta variable if the determining row for the
corresponding SLP variable is nonbasic
If the delta variable is basic and the determining row for the corresponding SLP variable is
nonbasic then it is generally possible (although not 100% guaranteed) to pivot the delta variable in
the determining row. so the basis is still valid if other entries are deleted. The entry in the
determining row is never deleted even if it is otherwise eligible.

The following constants are provided for setting these bits:

Setting bit 0
Setting bit 1
Setting bit 2
Setting bit 3
Setting bit 4

XSLP_ZEROCRTIERION_NBSLPVAR
XSLP_ZEROCRTIERION_NBDELTA
XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW
XSLP_ZEROCRTIERION_DELTANBUPSATEROW
XSLP_ZEROCRTIERION_DELTANBDRROW

There are two additional control parameters used in this procedure:

B XSLP_ZEROCRITERIONSTART
This is the first SLP iteration at which zero placeholders will be examined for eligibility. Use of this
parameter allows a balance to be made between optimality and numerical stability.

B XSLP_ZEROCRITERIONCOUNT
This is the number of consecutive SLP iterations that a placeholder is a zero placeholder before it
is deleted. So, if in the earlier example xSL.P_ ZEROCRITERIONCOUNT is 2, the entry in the delta
variable dX will be deleted only if Y was also zero on the previous SLP iteration.

Regardless of the basis status of a variable, its delta, update row and determining row, if a zero
placeholder was deleted on the previous SLP iteration, it will always be deleted in the current SLP
iteration (keeping a zero matrix entry at zero does not upset the basis).

If the optimization method is barrier, or the basis is not being used, then the bit settings of
XSLP_ZEROCRITERION are not used as such: if XSL.P_ ZEROCRITERION is honzero, all zero
placeholders will be deleted subject to XSL.P_ZEROCRITERIONCOUNT and
XSLP_ZEROCRITERIONSTART.

Fair Isaac Corporation Confidential and Proprietary Information 88

CHAPTER 17

Special Types of Problem

17.1 Nonlinear objectives

Xpress NonLinear works with nonlinear constraints. If a nonlinear objective is required (except for the
special case of a quadratic objective — see below) then the objective should be provided using a
constraint in the problem. For example, to optimize £ (x) where £ is a nonlinear function and x is a set
of one or more variables, create the constraint

fx)-X=0

where X is a new variable, and then optimize x.

In general, X should be made a free variable, so that the problem does not converge prematurely on the
basis of an unchanging objective function. It is generally important that the objective is not artificially
constrained (for example, by bounding x) because this can distort the solution process. Also, as such
an objective transfer row is not a real constraint, no error vectors should be added (row can be
enforced); feasibility should be provided by the transfer variable X being free.

17.2 Convex Quadratic Programming

Convex quadratic programming (QP) is a special case of nonlinear programming where the constraints
are linear but the objective is quadratic (that is, it contains only terms which are constant, variables
multiplied by a constant, or products of two variables multiplied by a constant) and convex (convexity is
checked by the Xpress Optimizer). It is possible to solve convex quadratic problems using SLP, but it is
not usually the best way. The reason is that the solution to a convex QP problem is typically not at a
vertex. In SLP a non-vertex solution is achieved by applying step bounds to create additional
constraints which surround the solution point, so that ultimately the solution has been obtained within
suitable tolerances. Because of the nature of the problem, successive solutions will often swing from
one step bound to the other; in such circumstances, the step bounds are reduced on each SLP iteration
but it will still take a long time before convergence. In addition, unless the linear approximation is
adequately constrained, it will be unbounded because the linear approximation will not recognize the
change in direction of the relationship with the derivative as the variable passes through a stationary
point. The easiest way to ensure that the linear problem is constrained is to provide realistic upper and
lower bounds on all variables.

In Xpress NonLinear, convex quadratic problems can be solved using the quadratic optimizer within the
Xpress optimizer package. For pure QP (or MIQP) problems, therefore, SLP is not required. However,
the SLP algorithm can be used together with QP to solve problems with a quadratic objective and also
nonlinear constraints. The constraints are handled using the normal SLP techniques; the objective is
handled by the QP optimizer. If the objective is not convex (not semi-definite), the QP optimizer may not
give a solution (with default settings, it will produce an error message); SLP will find a solution but — as
always — it may be a local optimum.

Fair Isaac Corporation Confidential and Proprietary Information 89

Special Types of Problem Advanced

17.3

17.3.1

17.3.2

If a QP problem is to be solved, then the quadratic component should be input in the normal way (using
QMATRIX or QUADOBJ in MPS file format, or the library functions XPRS1oadqgp or XPRSloadgglobal).
Xpress NonLinear will then automatically use the QP optimizer. If the problem is to be solved using the
SLP routines throughout, then the objective should be provided via a constraint as described in the
previous section.

This applies to quadratically constrained (QCQP and MIQCQP) problems as well.

For a description on when it's more beneficial to use the XPRS library to solve QP or QCQP problems,
please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

Mixed Integer Nonlinear Programming

Mixed Integer Non-Linear Programming (MINLP) is the application of mixed integer techniques to the
solution of problems including non-linear relationships. Xpress NonLinear offers a set of components
to implement MINLP using Mixed Integer Successive Linear Programming (MISLP).

Mixed Integer SLP

The mixed integer successive linear programming (MISLP) solver is a generalization of the traditional
branch and bound procedure to nonlinear programming. The MIP engine is used to control the
branch-and-bound algorithm, with each node being evaluated using SLP. MIP then compares the SLP
solutions at each node to decide which node to explore next, and to decide when an integer feasible
and ultimately optimal solution have been obtained.

MISLP, also known as SLP within MIP, offers nonlinear specific root heuristics controlled by control
XSLP_HEURSTRATEGY.

Other generic heuristics are controlled by the respective XPRS heuristics controls.

The branch and bound tree exploration is executed in parallel. Use the XPRS control MIPTHREADS to
limit the number of threads used.

Normally, the relaxed problem is solved first, using XxSLPminim or XxSLPmaxim with the -1 flag to
ignore the integer elements of the problem. It is possible to go straight into the xsT.pglobal routine
and allow it to do the initial SLP optimization as well. In that case, ensure that the control parameter
XSLP_OBJSENSE is set to +1 (minimization) or -1 (maximization) before calling xsL.Pglobal.

The actual algorithm employed is controlled by a number of control parameters, as well as offering the
possibility of direct user interaction through call-backs at key points in the solution process.

Heuristics for Mixed Integer SLP

For hard MINLP problems, or where a solution must quickly be generated, the root heuristics of MISLP
can be executed as stand alone methods. These approaches can be used by changing the value of the
control parameter XSLP_MIPALGORITHM.

there are two MISLP heuristics:

1. MIP within SLP. In this, each SLP iteration is optimized using MIP to obtain an integer optimal
solution to the linear approximation of the original problem. SLP then compares this MIP solution
to the MIP solution of the previous SLP iteration and determines convergence based on the
differences between the successive MIP solutions.

2. SLP then MIP. In this, SLP is used to find a converged solution to the relaxed problem. The
resulting linearization is then fixed (i.e. the base point and the partial derivatives do not change)

Fair Isaac Corporation Confidential and Proprietary Information 90

Special Types of Problem Advanced

17.3.3

and MIP is run to find an integer optimum. SLP is then run again to find a converged solution to
the original problem with these integer settings.

The approach described in (1) seems potentially dangerous, in that changes in the integer variables
could have disproportionate effects on the solution and on the values of the SLP variables. There are
also question-marks over the use of step-bounding to control convergence, particularly if any of the
integer variables are also SLP variables.

The approach described in (2) has the big advantage that MIP is working on a linear problem and so
can take advantage of all of the special attributes of such a problem. This means that the solution time
is likely to be much faster than the alternatives. However, if the real problem is significantly non-linear,
the integer solution to the initial SLP solution may not be a good integer solution to the original problem
and so a false optimum may occur.

Fixing or relaxing the values of the SLP variables

The solution process may involve step-bounding to obtain the converged solution. Some MIP solution
strategies may want to fix the values of some of the SLP variables before moving on to the MIP part of
the process, or they may want to allow the child nodes more freedom than would be allowed by the final
settings of the step bounds. Control parameters XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS
and xSLP_MIPRELAXSTEPBOUNDS can be used to free, or fix to zero, various categories of step
bounds, thus effectively freeing the SLP variables or fixing them to their values in the initial solution.

At each node, step bounds may again be fixed to zero or relaxed or left in the same state as in the
solution to the parent node.

XSLP_MIPALGORITHM uses bits 2-3 (for the root node) and 4-5 (for other nodes) to determine which
step bounds are fixed to zero (thus fixing the values of the corresponding variables) or freed (thus
allowing the variables to change, possibly beyond the point they were restricted to in the parent node).
Set bit 2 (4) of xsLp_MIPALGORITHM to implement relaxation of defined categories of step bounds as
determined by xSLp_MIPRELAXSTEPBOUNDS at the root node (at each node).

Set bit 3 (5) of xsL.P_MIPALGORITHM to implement fixing of defined categories of step bounds as
determined by XxSL.P_MIPFIXSTEPBOUNDS at the root node (at each node).

Alternatively, specific actions on setting bounds can be carried out by the user callback defined by
XSLPsetcbprenode.

The default setting of xsL.p_MIPALGORITHM is 17 which relaxes step bounds at all nodes except the
root node. The step bounds from the initial SLP optimization are retained for the root node.

XSLP_MIPRELAXSTEPBOUNDS and XSLP_MIPFIXSTEPBOUNDS are bitmaps which determine which
categories of SLP variables are processed.

Bit 1 Process SLP variables which do not appear in coefficients but which do have coefficients
(constant or variable) in the original problem.

Bit 2 Process SLP variables which have coefficients (constant or variable) in the original
problem.

Bit 3 Process SLP variables which appear in coefficients but which do not have coefficients

(constant or variable) in the original problem.

Bit 4 Process SLP variables which appear in coefficients.

In most cases, the default settings (XSLP_MIPFIXSTEPBOUNDS=0,
XSLP_MIPRELAXSTEPBOUNDS=15) are appropriate.

Fair Isaac Corporation Confidential and Proprietary Information 91

Special Types of Problem Advanced

17.3.4

17.3.5

17.3.6

Iterating at each node

Any number of SLP iterations can be carried out at each node. The maximum number is set by control
parameter XSLP_MIPITERLIMIT and is activated by xs.p_ MIPALGORITHM. The significant values for
XSLP_MIPITERLIMIT are;

0 Perform an LP optimization with the current linearization. This means that, subject to the step
bounds, the SLP variables can take on other values, but the coefficients are not updated.

1 As for 0, but the model is updated after each iteration, so that each node starts with a new
linearization based on the solution of its parent.

n>1 Perform up to n SLP iterations, but stop when a termination criterion is satisfied. If no other
criteria are set, the SLP will terminate on XSL.P_ ITERLIMIT Or XSLP_MIPITERLIMIT
iterations, or when the SLP converges.

After the last MIP node has been evaluated and the MIP procedure has terminated, the final solution
can be re-optimized using SLP to obtain a converged solution. This is only necessary if the individual
nodes are being terminated on a criterion other than SLP convergence.

Termination criteria at each node

Because the intention at each node is to get a reasonably good estimate for the SLP objective function
rather than to obtain a fully converged solution (which is only required at the optimum), it may be
possible to set looser but practical termination criteria. The following are provided:

Testing for movement of the objective function

This functions in a similar way to the extended convergence criteria for ordinary SLP convergence, but
does not require the SLP variables to have converged in any way. The test is applied once step
bounding has been applied (or xsL.p_SBSTART SLP iterations have taken place if step bounding is not
being used). The node will be terminated at the current iteration if the range of the objective function
values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within
XSLP_MIPOTOL_R = OBJ where OBJ is the average value of the objective function over those iterations.

Related control parameters:

XSLP_MIPOTOL_A Absolute tolerance
XSLP_MIPOTOL_R Relative tolerance
XSLP_MIPOCOUNT Number of SLP iterations over which the movement is measured

Testing the objective function against a cutoff

If the objective function is worse by a defined amount than the best integer solution obtained so far,
then the SLP will be terminated (and the node will be cut off). The node will be cut off at the current SLP
iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP iterations are all worse than
the best obtained so far, and the difference is greater than XSLP_MIPCUTOFF_A and
XSLP_MIPCUTOFF_R x OBJ where OBJ is the best integer solution obtained so far.

Related control parameters:

XSLP_MIPCUTOFF_A Absolute amount by which the objective function is worse
XSLP_MIPCUTOFF_R Relative amount by which the objective function is worse
XSLP_MIPCUTOFFCOUNT Number of SLP iterations checked

XSLP_MIPCUTOFFLIMIT Number of SLP iterations before which the cutoff takes effect

Callbacks

User callbacks are provided as follows:

Fair Isaac Corporation Confidential and Proprietary Information 92

Special Types of Problem Advanced

17.4

XSLPsetcbintsol (XSLPprob Prob,
int (*UserFunc) (XSLPprob myProb, void *myObject),
void *Object) ;

UserFunc is called when an integer solution has been obtained. The return value is ignored.

XSLPsetcboptnode (XSLPprob Prob,
int (*UserFunc) (XSLPprob myProb, void *myObject, int =*feas),
void *Object);

UserFunc is called when an optimal solution is obtained at a node.
If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then further
processing of the node will be terminated (it is declared infeasible).

XSLPsetcbprenode (XSLPprob Prob,
int (*UserFunc) (XSLPprob myProb, void *myObject, int =*feas),
void *Object);

UserFunc is called at the beginning of each node after the SLP problem has been set up but before
any SLP iterations have taken place.

If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then the node will
be declared infeasible and cut off. In particular, the SLP optimization at the node will not be performed.

XSLPsetcbslpnode (XSLPprob Prob,
int (*UserFunc) (XSLPprob myProb, void *myObject, int =*feas),
void *Object);

UserFunc is called after each SLP iteration at each node, after the SLP iteration, and after the
convergence and termination criteria have been tested.

If the feasibility flag *feas is set nonzero or if the function returns a nonzero value, then the node will
be declared infeasible and cut off.

Integer and semi-continuous delta variables

Functions implementing piecewise linear expressions often lead to local stalling due to the partial
derivatives not capturing the true nature of the behaviour of the function. Such functions are often
implemented as user functions or expressions using the abs function. To provide the Xpress with a
better way of evaluating such expressions, it is possible to mark variables (typically the key
dependencies of the expression) as having a semi-continuous delta variable with a minimum
perturbation size associated, which means the value of any expression that involves this variable is
expected to meaningfully change if the variable’s value in the current solution is changed by at least of
the semi-continuous value of the delta. If a minimum meaningful perturbation is not known, the
variable’s delta may be set up to being of type explore, when SLP will trial several values up to the
provided maximum in case of zero partials are detected. Using exploration deltas may significantly
increase the number the formulas the variable is used in are evaluated.

It is important to note that the value with a semi-continuous delta will still be allowed to take any value
and make arbitrary steps between iterations, the extra information of the delta variable is solely used as
a means of better evaluating the effect of change per variable.

User functions that can only be evaluated at given values (e.g. lookup tables or simulations over integer
input) may be modelled with variables with an integer delta variable. If a variable’s delta variable is
flagged as being integer, with a step value of 'delta’, then assuming the variable has an initial value of
'x0’, the possible values of the variable are 'x0 + i * delta’ where 'i’ is an integer number. If no initial value
is provided, the lower bound (or zero if no lover bound) is used to start the possible values from.

Fair Isaac Corporation Confidential and Proprietary Information 93

Special Types of Problem Advanced

Variables with a semi-continuous delta are not expected to be harder than the problem without, in fact,
the extra information usually aids the solve noticeably.

A model with variables with integer deltas is considered to be hard. An integer delta is expected to be
used to model the domain of user function, and should not be used to otherwise model integrality of the
original variable. Variables with an integer delta used in constraints tend to make the problem difficult
to solve unless their use is balanced by the presence of infeasibility breaker variables (penalty slacks).

To change the type of a delta variable, use 'XSLPchgdeltatype’ in the API and the 'setdeltatype’ method
in Mosel.

If variables with integer deltas are present in the problem, then SLP will run a number of heuristics as
part of the solve, please refer to XSLP_GRIDHEURSELECT.

Fair Isaac Corporation Confidential and Proprietary Information 94

CHAPTER 18
Xpress NonLinear multistart

The feature is an additive feature that minimizes the development overhead and effort of implementing
parallel multistart searches. The purpose of multistart is two-fold. Traditionally, multistart is a so called
globalization feature. It is important to correctly understand what this technology offers, and what it
does not. It offers a convenient and efficient way of exploring a larger feasible space building on top of
existing local solver algorithms by the means of perturbing initial points and/or parameters or even the
problem statement itself. Multistart can also be viewed as a left-alone feature. In a typical situation,
versions of a model react favourably to a set of control settings, dependent on data. Multistart allows
for a simple way of combining different control setting scenarios, increasing the robustness of the
model.

The base problem is defined as the baseline: as the model is normally loaded it without any multistart
information, including problem description, callbacks and controls. A run or a job is defined as a
problem instance that needs to be solved as part of multistart.

On completion, the current problem is set up to match that of the winner, allowing examination of the
winning strategy and solution using the normal means.

The original prob object is not reused, all runs are mode on a copy of the problem, allowing full
customization from the callbacks, including changes to structre.

Callbacks are inherited to the multistart jobs from the master problem and can be customized from the
the multistart callbacks. XSLinterrupt has a global scope, and a calling it terminates the multistart
search.

Although not intended as the primary use, multistart allows the execution of all supported problem
classes, so for example alternate MIP strategies can be used in parallel.

The mutistart job pool is maintained and can be extended until the first maxim / minim with
XSLP_MULTISTART on. This allows for doing optimizations runs aimed at generating multistart jobs.
The multistart pool is dynamic and new jobs can be added on the fly from the jobstart and jobend
callbacks.

Fair Isaac Corporation Confidential and Proprietary Information 95

Ill. Reference

CHAPTER 19

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and made
available to users of the Xpress NonLinear Libraries in the form of problem attributes. These can be
accessed in much the same manner as the controls. Examples of problem attributes include the sizes
of arrays, for which library users may need to allocate space before the arrays themselves are retrieved.

A full list of the attributes available and their types may be found in this chapter.

Library users are provided with the following functions for obtaining the values of attributes:

XSLPgetintattrib XSLPgetdblattrib
XSLPgetptrattrib XSLPgetstrattrib

The attributes listed in this chapter are all prefixed with XxsLp_. It is possible to use the above functions
with attributes for the Xpress Optimizer (attributes prefixed with XPRS_). For details of the Optimizer

attributes, see the Optimizer manual.

Example of the usage of the functions:
XSLPgetintattrib (Prob, XSLP_ITER, &nIter);
printf ("The number of SLP iterations is %d\n", nIter);

XSLPgetdblattrib (Prob, XSLP_ERRORCOSTS, &Errors);
printf ("and the total error cost is %1lg\n", Errors);

The following is a list of all the Xpress NonLinear attributes:

XSLP_COEFFICIENTS Number of nonlinear coefficients p. 104
XSLP_CURRENTDELTACOST Current value of penalty cost multiplier for penalty delta vectors p. 101
XSLP_CURRENTERRORCOST Current value of penalty cost multiplier for penalty error vectors p. 101
XSLP_CVS Number of character variables p. 104
XSLP_DELTAS Number of delta vectors created during augmentation p. 104
XSLP_ECFCOUNT Number of infeasible constraints found at the point of linearization p. 104
XSLP_EQUALSCOLUMN Index of the reserved "=" column p. 105
XSLP_ERRORCOSTS Total penalty costs in the solution p. 107
XSLP_EXPLOREDELTAS Number of variables with an exploration-type delta set up in the problem
p. 104
XSLP_IFS Number of internal functions p. 105
XSLP_IMPLICITVARIABLES Number of SLP variables appearing only in coefficients p. 105
Fair Isaac Corporation Confidential and Proprietary Information 97

Problem Attributes Reference

XSLP_INTEGERDELTAS Number of variables set up with an integer delta in the problem p. 105
XSLP_INTERNALFUNCCALLS Number of calls made to internal functions p. 105
XSLP_ITER SLP iteration count p. 106
XSLP_JOBID Unique identifier for the current job p. 106
XSLP_KEEPBESTITER The iteration in which the returned solution has been found. p. 106
XSLP_MINORVERSION Xpress NonLinear minor version number p. 106
XSLP_MINUSPENALTYERRORS Number of negative penalty error vectors p. 106
XSLP_MIPITER Total number of SLP iterations in MISLP p. 107
XSLP_MIPNODES Number of nodes explored in MISLP. This includes any nodes for which a
non-linear solve has been carried out. p. 107
XSLP_MIPPROBLEM The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a reference
of type XPRSprob, and should be used in MISLP callbacks to access
MIP-specific Optimizer values (such as node and parent numbers). p. 120
XSLP_MIPSOLS Number of integer solutions found in MISLP. This includes solutions found
during the tree search or any heuristics. p. 107
XSLP_MODELCOLS Number of model columns in the problem p. 107
XSLP_MODELROWS Number of model rows in the problem p. 107
XSLP_MSSTATUS Status of the mutlistart search p. 108
XSLP_NLPSTATUS The solution status of the problem. p. 108

XSLP_NONCONSTANTCOEFF Number of coefficients in the augmented problem that might change

between SLP iterations p. 108
XSLP_NONLINEARCONSTRAINTS Number of nonlinear constraints in the problem p. 109
XSLP_OBJVAL Objective function value excluding any penalty costs p. 101
XSLP_ORIGINALCOLS Number of model columns in the problem p. 109
XSLP_ORIGINALROWS Number of model rows in the problem p. 109
XSLP_PENALTYDELTACOLUMN Index of column costing the penalty delta row p. 109
XSLP_PENALTYDELTAROW Index of equality row holding the penalties for delta vectors p. 109
XSLP_PENALTYDELTAS Number of penalty delta vectors p. 110
XSLP_PENALTYDELTATOTAL Total activity of penalty delta vectors p. 101
XSLP_PENALTYDELTAVALUE Total penalty cost attributed to penalty delta vectors p. 102
XSLP_PENALTYERRORCOLUMN Index of column costing the penalty error row p. 110
XSLP_PENALTYERRORROW Index of equality row holding the penalties for penalty error vectors p. 110
XSLP_PENALTYERRORS Number of penalty error vectors p. 110
XSLP_PENALTYERRORTOTAL Total activity of penalty error vectors p. 102
XSLP_PENALTYERRORVALUE Total penalty cost attributed to penalty error vectors p. 102
XSLP_PLUSPENALTYERRORS Number of positive penalty error vectors p. 110

Fair Isaac Corporation Confidential and Proprietary Information 98

Problem Attributes

Reference

XSLP_PRESOLVEDELETEDDELTA Number of potential delta variables deleted by XSLPpresolve p. 111

XSLP_PRESOLVEELIMINATIONS Number of SLP variables eliminated by XSLPpresolve p. 111
XSLP_PRESOLVEFIXEDCOEF Number of SLP coefficients fixed by XSLPpresolve p. 111
XSLP_PRESOLVEFIXEDDR Number of determining rows fixed by XSLPpresolve p. 111

XSLP_PRESOLVEFIXEDNZCOL Number of variables fixed to a nonzero value by XSLPpresolve p. 112

XSLP_PRESOLVEFIXEDSLPVAR Number of SLP variables fixed by XSLPpresolve p. 112

XSLP_PRESOLVEFIXEDZCOL Number of variables fixed at zero by XSLPpresolve p. 112

XSLP_PRESOLVEPASSES

Number of passes made by the SLP nonlinear presolve procedure p. 112

XSLP_PRESOLVESTATE Indicates if the problem is presolved p. 113
XSLP_PRESOLVETIGHTENED Number of bounds tightened by XSLPpresolve p. 113
XSLP_PRIMALINTEGRAL Local primal integral of the solve p. 102

XSLP_SBXCONVERGED

XSLP_SEMICONTDELTAS

XSLP_SOLSTATUS

XSLP_SOLUTIONPOOL

Number of step-bounded variables converged only on extended criteria
p. 113

Number of variables with a minimum perturbation step set up in the
problem p. 113

Indicates the type of solution returned by the solver. p. 114

The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of type
XPRSmipsolpool. Change control XSLP_ANALYZE to record the solutions

into the pool. p. 120
XSLP_SOLVERSELECTED Includes information of which Xpress solver has been used to solve the
problem p. 114
XSLP_STATUS Bitmap holding the problem convergence status p. 114
XSLP_STOPSTATUS Status of the optimization process. p. 116
XSLP_TOLSETS Number of tolerance sets p. 116
XSLP_TOTALEVALUATIONERRORS The total number of evaluation errors during the solve p. 116
XSLP_UCCONSTRAINEDCOUNT Number of unconverged variables with coefficients in constraining
rows p. 116
XSLP_UFINSTANCES Number of user function instances p. 117
XSLP_UFS Number of user functions p. 117
XSLP_UNCONVERGED Number of unconverged values p. 117
XSLP_USEDERIVATIVES Indicates whether numeric or analytic derivatives were used to create the
linear approximations and solve the problem p. 117
XSLP_USERFUNCCALLS Number of calls made to user functions p. 118
XSLP_VALIDATIONINDEX A Absolute validation index p. 102
XSLP_VALIDATIONINDEX_ K Relative first order optimality validation index p. 103
XSLP_VALIDATIONINDEX R Relative validation index p. 103

Fair Isaac Corporation Confidential and Proprietary Information 99

Problem Attributes Reference
XSLP_VARIABLES Number of SLP variables p. 118
XSLP_VERSION Xpress NonLinear major version number p. 118
XSLP_VERSIONDATE Date of creation of Xpress NonLinear p. 121
XSLP_VSOLINDEX Vertex solution index p. 103
XSLP_XPRSPROBLEM The underlying Optimizer problem p. 120
XSLP_XSLPPROBLEM The Xpress NonLinear problem p. 120
XSLP_ZEROESRESET Number of placeholder entries set to zero p. 118
XSLP_ZEROESRETAINED Number of potentially zero placeholders left untouched p. 118
XSLP_ZEROESTOTAL Number of potential zero placeholder entries p. 119

Fair Isaac Corporation Confidential and Proprietary Information 100

Problem Attributes Reference

19.1 Double problem attributes

XSLP_CURRENTDELTACOST

Description Current value of penalty cost multiplier for penalty delta vectors
Type Double
Set by routines XSLPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTERRORCOST

XSLP_CURRENTERRORCOST

Description Current value of penalty cost multiplier for penalty error vectors
Type Double
Set by routines XSILPmaxim, XSLPminim

See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTDELTACOST

XSLP_ERRORCOSTS

Description Total penalty costs in the solution
Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_OBJVAL

Description Objective function value excluding any penalty costs
Type Double

Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTATOTAL

Description Total activity of penalty delta vectors
Type Double

Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 101

Problem Attributes Reference
XSLP_PENALTYDELTAVALUE

Description Total penalty cost attributed to penalty delta vectors
Type Double

Set by routines XSLPmaxim, XSLPminim
XSLP_PENALTYERRORTOTAL

Description Total activity of penalty error vectors

Type Double

Set by routines XSLPmaxim, XSLPminim
XSLP_PENALTYERRORVALUE

Description Total penalty cost attributed to penalty error vectors
Type Double

Set by routines XSLPmaxim, XSLPminim
XSLP_PRIMALINTEGRAL

Description Local primal integral of the solve

Type Double

Set by routines XSLPmaxim, XSLPminim
XSLP_VALIDATIONINDEX_A

Description Absolute validation index

Type Double

Set by routines xsLpPvalidate

Fair Isaac Corporation Confidential and Proprietary Information 102

Problem Attributes Reference

XSLP_VALIDATIONINDEX_K

Description Relative first order optimality validation index
Type Double

Set by routines XSLPvalidatekkt

XSLP_VALIDATIONINDEX_R

Description Relative validation index
Type Double

Set by routines xSLpPvalidate

XSLP_VSOLINDEX

Description Vertex solution index

Type Double

Notes The vertex solution index (VSOLINDEX) is a measure of how nearly the converged solution to
a problem is at a vertex (that is, at the intersection of a set of constraints) of the feasible
region.

Where the solution is in the middle of a face, the solution will in general have been achieved
through the use of step bounds. The VSOLINDEX is the fraction of delta vectors which are not
at a bound in the solution. Therefore, a value of 1.0 means that no delta is at a step bound and
therefore the solution is at a vertex of the feasible region. Smaller values indicate that there
are deltas at step bounds and so the solution is further from being a vertex solution.

Fair Isaac Corporation Confidential and Proprietary Information 103

Problem Attributes Reference

19.2 Integer problem attributes

XSLP_COEFFICIENTS

Description Number of nonlinear coefficients
Type Integer

Set by routines XSLPaddcoefs, XSLPchgcoef, XSLPloadcoefs, XSLPreadprob

XSLP_CVS
Description Number of character variables
Type Integer

Set by routines XSLPreadprob

XSLP_DELTAS

Description Number of delta vectors created during augmentation
Type Integer

Set by routines XSLPconstruct

XSLP_ECFCOUNT

Description Number of infeasible constraints found at the point of linearization
Type Integer
Set by routines XSLPmaxim, XSLPminim

See also XSLP_ECFCHECK, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_EXPLOREDELTAS

Description Number of variables with an exploration-type delta set up in the problem
Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 104

Problem Attributes Reference

XSLP_EQUALSCOLUMN

Description Index of the reserved "=" column

Type Integer

Note If there had been no "=" column present, it will be assumed that the user needs the index to

add nonlinear terms into the problem that are not coefficients, and an "=" columns will be
added to the problem, whose index is then returned. Please note, that this means that a call to
XSLPgetintattrib with this attribute might make a slight modification to the problem itself.

Set by routines

XSLPconstruct, XSLPreadprob

XSLP_IFS

Description Number of internal functions
Type Integer

Set by routines XSLPcreateprob

XSLP_IMPLICITVARIABLES

Description

Type

Set by routines

Number of SLP variables appearing only in coefficients
Integer

XSLPconstruct

XSLP_INTEGERDELTAS

Description

Type
Set by routines

Number of variables set up with an integer delta in the problem
Integer

XSLPconstruct

XSLP_INTERNALFUNCCALLS

Description

Type

Set by routines

Number of calls made to internal functions
Integer

XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,
XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information

Problem Attributes Reference

XSLP_ITER
Description SLP iteration count
Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_JOBID

Description Unique identifier for the current job

Type Integer

Note Assigned when a job is created, and can be used to identify jobs in callbacks. Note that all

callback receives an optional job name that can be assigned at job creation time.

Set by routines XSLPmaxim, XSLPminim

XSLP_KEEPBESTITER

Description The iteration in which the returned solution has been found.

Type Integer

Note A zero value indicates no solution or the filter option is off. A value of -1 indicates the initial

solution has been returned.

Set by routines XSILPmaxim, XSLPminim

XSLP_MINORVERSION

Description Xpress NonLinear minor version number
Type Integer

Set by routines XsSLPinit

XSLP_MINUSPENALTYERRORS

Description Number of negative penalty error vectors
Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 106

Problem Attributes Reference

XSLP_MIPITER

Description Total number of SLP iterations in MISLP
Type Integer

Set by routines XsLPglobal

XSLP_MIPNODES

Description Number of nodes explored in MISLP. This includes any nodes for which a non-linear solve has
been carried out.

Type Integer

Set by routines xSLPglobal

XSLP_MIPSOLS

Description Number of integer solutions found in MISLP. This includes solutions found during the tree
search or any heuristics.

Type Integer

Set by routines XsSLPglobal

XSLP_MODELCOLS

Description Number of model columns in the problem
Type Integer
Note This is the number of columns currently in the problem without any augmentation, i.e. the

number of columns that describe the algebraic definition of the problem. These columns
always precede the augmentation columns in order. If the problem is presolved, this may be
smaller than the number of original columns in the problem. To access the number of original
columns, use XSLP_ORIGINALCOLS.

XSLP_MODELROWS

Description Number of model rows in the problem

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 107

Problem Attributes Reference

Note This is the number of rows currently in the problem without any augmentation, i.e. the number
of rows that describe the algebraic definition of the problem. These rows always precede the
augmentation rows in order. If the problem is presolved, this may be smaller than the number
of original rows in the problem. To access the number of original rows, use
XSLP_ORIGINALROWS.

XSLP_MSSTATUS

Description Status of the mutlistart search
Type Integer
Note The value matches that of the winner job if the multistart search completes and a feasible

solution has been found. If no solution is found, it is set to XSLP_NLPSTATUS_INFEASIBLE. If
the search is terminated early, it is set to XSLP_NLPSTATUS_UNFINISHED (thought in which
case the winner if any is still synchronized to the base problem and the solution and
XSLP_NLPSTATUS is available).

XSLP_NLPSTATUS

Description The solution status of the problem.
Type Integer
Values 0 Optimization unstarted (XSLP_NLPSTATUS_UNSTARTED)
1 Solution found (XSLP_NLPSTATUS_SOLUTION)
2 Globally optimal (XSLP_NLPSTATUS_OPTIMAL)
3 No solution found (XSLP_NLPSTATUS_NOSOLUTION)
4 Proven infeasible (XSLP_NLPSTATUS_INFEASIBLE)
5 Locally unbounded (XSLP_NLPSTATUS_UNBOUNDED)
6 Problem could not be solved due to numerical issues.

(XSLP_NLPSTATUS_UNFINISHED)
Unsolved (XSLP_NLPSTATUS_UNSOLVED)

~J

Default value 0

Set by routines XSLPminim, XSLPmaxim, XSLPglobal

XSLP_NONCONSTANTCOEFF

Description Number of coefficients in the augmented problem that might change between SLP iterations
Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 108

Problem Attributes Reference

XSLP_NONLINEARCONSTRAINTS

Description Number of nonlinear constraints in the problem
Type Integer

Set by routines XSLPconstruct

XSLP_ORIGINALCOLS

Description Number of model columns in the problem

Type Integer

Note The number of columns in the original matrix before presolveing without any augmentation
columns.

XSLP_ORIGINALROWS

Description Number of model rows in the problem
Type Integer
Note The number of rows in the original matric before presolveing without any augmentation rows.

XSLP_PENALTYDELTACOLUMN

Description Index of column costing the penalty delta row
Type Integer
Note This index always counts from 1. It is zero if there is no penalty delta row.

Set by routines XSLPconstruct

XSLP_PENALTYDELTAROW

Description Index of equality row holding the penalties for delta vectors
Type Integer
Note This index always counts from 1. It is zero if there are no penalty delta vectors.

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 109

Problem Attributes

Reference

XSLP_PENALTYDELTAS
Description Number of penalty delta vectors
Type Integer

Set by routines XSLPconstruct

XSLP_PENALTYERRORCOLUMN

Description Index of column costing the penalty error row
Type Integer
Note This index always counts from 1. It is zero if there is no penalty error row.

Set by routines XSLPconstruct

XSLP_PENALTYERRORROW

Description Index of equality row holding the penalties for penalty error vectors

Type Integer

Note This index always counts from 1. It is zero if there are no penalty error vectors.

Set by routines XSLPconstruct

XSLP_PENALTYERRORS
Description Number of penalty error vectors
Type Integer

Set by routines XSLPconstruct

XSLP_PLUSPENALTYERRORS

Description Number of positive penalty error vectors
Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information

110

Problem Attributes Reference

XSLP_PRESOLVEDELETEDDELTA

Description Number of potential delta variables deleted by xsLpPpresolve
Type Integer
Note A potential delta variable is deleted when an SLP variable is identified as not interacting in a

nonlinear way with any constraints (that is, it appears only in linear constraints, or is fixed).
Set by routines xXSLPpresolve

See also XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEELIMINATIONS

Description Number of SLP variables eliminated by xs1.pPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEF IXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED

XSLP_PRESOLVEFIXEDCOEF

Description Number of SLP coefficients fixed by xsLpPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEF IXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDDR

Description Number of determining rows fixed by XSLPpresolve
Type Integer

Set by routines XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 11

Problem Attributes Reference

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDNZCOL

Description Number of variables fixed to a nonzero value by xs1.ppresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDSLPVAR

Description Number of SLP variables fixed by xsL.Ppresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDZCOL

Description Number of variables fixed at zero by xsL.Ppresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEPASSES

Description Number of passes made by the SLP nonlinear presolve procedure
Type Integer

Set by routines XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 112

Problem Attributes Reference

XSLP_PRESOLVESTATE

Description Indicates if the problem is presolved
Type Integer
Values 0 The problem is not presolved
The problem is presolved, but no columns or rows have been removed from the
problem
2 The problem is fully presolved, and the column and row indices do not match the

original problem

Set by routines XSLPmaxim, XSLPminim, XSLPpresolve

XSLP_PRESOLVETIGHTENED

Description Number of bounds tightened by xsL.pPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVEELIMINATIONS

XSLP_SBXCONVERGED

Description Number of step-bounded variables converged only on extended criteria
Type Integer

Set by routines XSLPmaxim, XSLPminim

XSLP_SEMICONTDELTAS

Description Number of variables with a minimum perturbation step set up in the problem
Type Integer

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 113

Problem Attributes Reference

XSLP_SOLVERSELECTED

Description Includes information of which Xpress solver has been used to solve the problem
Type Integer
Values -1 Unset

Xpress-SLP

Knitro (Artelys)
Xpress Optimizer

Default value -1
Set by routines XSLPmaxim, XSLPminim

Note The following constants are provided:

0 XSLP_SOLVER_XSLP
1T XSLP_SOLVER_KNITRO
2 XSLP_SOLVER_OPTIMIZER

XSLP_SOLSTATUS

Description Indicates the type of solution returned by the solver.
Type Integer
Values No solution available.

0
1 A solution with no dual information.

2 A locally optimal solution with dual information.

3 A globally optimal solution without dual information.
4 A globally optimal solution with dual information.

0

Default value

Set by routines XSLPminim, XSLPmaxim, XSLPglobal

XSLP_STATUS

Description Bitmap holding the problem convergence status

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 14

Problem Attributes

Reference

Values

Note

14
15
16
17
18
19
20
21
22

Meaning

Converged on objective function with no unconverged values in active constraints.

Converged on objective function with some variables converged on extended criteria

only.

LP solution is infeasible.

LP solution is unfinished (not optimal or infeasible).
SLP terminated on maximum SLP iterations.

SLP is integer infeasible.

SLP converged with residual penalty errors.
Converged on objective.

SLP terminated on max time.

SLP terminated by user.

Some variables are linked to active constraints.

No unconverged values in active constraints.

OTOL is satisfied - range of objective change small, active step bounds.
VTOL is satisfied - range of objective change is small.

XTOL is satisfied - range of objective change small, no unconverged in active.

WTOL is satisfied - convergence continuation.

ERRORTOL satisfied - penalties not increased further.
EVTOL satisfied - penalties not increased further.

There were iterations where the solution had to be polished.
There were iterations where the solution polishing failed.
There were iterations where rows were enforced.
Terminated due to XSLP_INFEASLIMIT.

A value of zero after SLP optimization means that the solution is fully converged.

The following constants are provided for checking these bits:

Setting bit 0
Setting bit 1
Setting bit 2
Setting bit 3
Setting bit 4
Setting bit 5
Setting bit 6
Setting bit 7
Setting bit 9
Setting bit 10
Setting bit 11
Setting bit 12
Setting bit 13
Setting bit 14
Setting bit 15
Setting bit 16
Setting bit 17
Setting bit 18
Setting bit 19
Setting bit 20
Setting bit 21
Setting bit 22

XSLP_STATUS_CONVERGEDOBJUCC
XSLP_STATUS_CONVERGEDOBJSBX
XSLP_STATUS_LPINFEASIBLE
XSLP_STATUS_LPUNFINISHED
XSLP_STATUS_MAXSLPITERATIONS
XSLP_STATUS_INTEGERINFEASIBLE
XSLP_STATUS_RESIDUALPENALTIES
XSLP_STATUS_CONVERGEDOBJOBJ
XSLP_STATUS_MAXTIME
XSLP_STATUS_USER
XSLP_STATUS_VARSLINKEDINACTIVE
XSLP_STATUS_NOVARSINACTIVE
XSLP_STATUS_OTOL
XSLP_STATUS_VTOL
XSLP_STATUS_XTOL
XSLP_STATUS_WTOL
XSLP_STATUS_ERROTOL
XSLP_STATUS_EVTOL
XSLP_STATUS_POLISHED
XSLP_STATUS_POLISH_FAILURE
XSLP_STATUS_ENFORCED
XSLP_STATUS_CONSECUTIVE_INFEAS

Fair Isaac Corporation Confidential and Proprietary Information

115

Problem Attributes Reference

Set by routines XSILPmaxim, XSLPminim

XSLP_STOPSTATUS

Description Status of the optimization process.
Type Integer
Note Possible values are:
Value Description
XSLP_STOP_NONE no interruption - the solve completed normally
XSLP_STOP_TIMELIMIT time limit hit
XSLP_STOP_CTRLC control C hit

XSLP_STOP_NODELIMIT node limit hit
XSLP_STOP_ITERLIMIT iteration limit hit
XSLP_STOP_MIPGAP MIP gap is sufficiently small
XSLP_STOP_SOLLIMIT solution limit hit
XSLP_STOP_USER user interrupt.

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim, XSLPglobal.

XSLP_TOLSETS

Description Number of tolerance sets
Type Integer

Set by routines XSLPaddtolsets, XSLPchgtolset, XSLPloadtolsets, XSLPreadprob

XSLP_TOTALEVALUATIONERRORS

Description The total number of evaluation errors during the solve
Type Integer
Set by routines

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim, XSLPglobal.

XSLP_UCCONSTRAINEDCOUNT

Description Number of unconverged variables with coefficients in constraining rows

Fair Isaac Corporation Confidential and Proprietary Information 116

Problem Attributes

Reference

Type

Set by routines

Integer

XSLPmaxim, XSLPminim

XSLP_UFINSTANCES

Description

Type

Set by routines

Number of user function instances
Integer

XSLPconstruct

XSLP_UFS
Description Number of user functions
Type Integer

Set by routines

XSLPadduserfunction, XSLPdeluserfunction, XSLPreadprob

XSLP_UNCONVERGED

Description
Type
Note

Set by routines

Number of unconverged values
Integer
Prior to the first iteration this will return -1.

XSLPmaxim, XSLPminim

XSLP_USEDERIVATIVES

Description Indicates whether numeric or analytic derivatives were used to create the linear
approximations and solve the problem

Type Integer

Values 0 numeric derivatives.
1 analytic derivatives for all formulae unless otherwise specified.

Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information

117

Problem Attributes Reference

XSLP_USERFUNCCALLS
Description Number of calls made to user functions
Type Integer

Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,
XSLPmaxim, XSLPminim

XSLP_VARIABLES
Description Number of SLP variables
Type Integer

Set by routines XSLPconstruct

XSLP_VERSION
Description Xpress NonLinear major version number
Type Integer

Set by routines XsSLPinit

XSLP_ZEROESRESET

Description Number of placeholder entries set to zero
Type Integer
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
Set by routines XSLPmaxim, XSLPminim

See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRETAINED,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESRETAINED
Description Number of potentially zero placeholders left untouched
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 118

Problem Attributes

Reference

Note

Set by routines

See also

For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

XSLPmaxim, XSLPminim

XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESTOTAL

Description
Type
Note

Set by routines

See also

Number of potential zero placeholder entries
Integer

For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

XSLPmaxim, XSLPminim

XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,
XSLP_ZEROESRETAINED, Management of zero placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 119

Problem Attributes Reference

19.3 Reference (pointer) problem attributes

The reference attributes are void pointers whose size (32 or 64 bit) depends on the platform.

XSLP_MIPPROBLEM

Description The underlying Optimizer MIP problem. XSL.P_ MIPPROBLEM is a reference of type XPRSprob,
and should be used in MISLP callbacks to access MIP-specific Optimizer values (such as
node and parent numbers).

Type Reference

Set by routines XsLPglobal

XSLP_SOLUTIONPOOL

Description The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of type XPRSmipsolpool.
Change control xsT.p_ANALYZE to record the solutions into the pool.

Type Reference

Set by routines XSLPminim, XSLPmaxim

XSLP_XPRSPROBLEM

Description The underlying Optimizer problem
Type Reference

Set by routines = XSLPcreateprob

XSLP_XSLPPROBLEM

Description The Xpress NonLinear problem
Type Reference

Set by routines XSLPcreateprob

Fair Isaac Corporation Confidential and Proprietary Information 120

Problem Attributes

Reference

19.4 String problem attributes

XSLP_VERSIONDATE

Description Date of creation of Xpress NonLinear
Type String
Note The format of the date is dd mmm yyyy.

Set by routines xsSLPinit

Fair Isaac Corporation Confidential and Proprietary Information

121

CHAPTER 20
Control Parameters

Various controls exist within Xpress NonLinear to govern the solution procedure and the form of the
output. Some of these take integer values and act as switches between various types of behavior.
Many are tolerances on values related to the convergence criteria; these are all double precision. There
are also a few controls which are character strings, setting names for structures. Any of these may be
altered by the user to enhance performance of the SLP algorithm. In most cases, the default values
provided have been found to work well in practice over a range of problems and caution should be
exercised if they are changed.

Users of the Xpress NonLinear function library are provided with the following set of functions for
setting and obtaining control values:

XSLPgetintcontrol XSLPgetdblcontrol XSLPgetstrcontrol
XSLPsetintcontrol XSLPsetdblcontrol XSLPsetstrcontrol

All the controls as listed in this chapter are prefixed with XsLp_. It is possible to use the above
functions with control parameters for the Xpress Optimizer (controls prefixed with XPRS_). For details
of the Optimizer controls, see the Optimizer manual.

Example of the usage of the functions:

XSLPgetintcontrol (Prob, XSLP_PRESOLVE, &presolve);
printf ("The value of PRESOLVE was %d\n", presolve);
XSLPsetintcontrol (Prob, XSLP_PRESOLVE, l-presolve);
printf ("The value of PRESOLVE is now %d\n", l-presolve);

The following is a list of all the Xpress NonLinear controls:

XSLP_ALGORITHM Bit map describing the SLP algorithm(s) to be used p. 166
XSLP_ANALYZE Bit map activating additional options supporting model / solution path
analyzis p. 168
XSLP_ATOL_A Absolute delta convergence tolerance p. 130
XSLP_ATOL_R Relative delta convergence tolerance p. 130
XSLP_AUGMENTATION Bit map describing the SLP augmentation method(s) to be used p. 169
XSLP_AUTOSAVE Frequency with which to save the model p. 170
XSLP_BARCROSSOVERSTART Default crossover activation behaviour for barrier start p. 171
XSLP_BARLIMIT Number of initial SLP iterations using the barrier method p. 171

XSLP_BARSTALLINGLIMIT Number of iterations to allow numerical failures in barrier before
switching to dual p. 172

Fair Isaac Corporation Confidential and Proprietary Information 122

Control Parameters

Reference

XSLP_BARSTALLINGOBJLIMIT Number of iterations over which to measure the objective change

XSLP_BARSTALLINGTOL

XSLP_BARSTARTOPS

XSLP_CALCTHREADS
XSLP_CASCADE

XSLP_CASCADENLIMIT

XSLP_CASCADETOL_PA
XSLP_CASCADETOL_PR
XSLP_CDTOL_A
XSLP_CDTOL_R

XSLP_CLAMPSHRINK

for barrier iterations with no crossover p. 172

Required change in the objective when progress is measured in barrier
iterations without crossover p. 130

Controls behaviour when the barrier is used to solve the linearizations
p. 172

Number of threads used for formula and derivatives evaluations p. 173
Bit map describing the cascading to be used p. 173
Maximum number of iterations for cascading with non-linear determining

rows p. 174
Absolute cascading print tolerance p. 131
Relative cascading print tolerance p. 131
Absolute tolerance for deducing constant derivatives p. 131
Relative tolerance for deducing constant derivatives p. 132

Shrink ratio used to impose strict convergence on variables converged in
extended criteria only p. 132

XSLP_CLAMPVALIDATIONTOL_A Absolute validation tolerance for applying XSLP_CLAMPSHRINK

XSLP_CONTROL

XSLP_CONVERGENCEOPS
XSLP_CTOL
XSLP_CVNAME
XSLP_DAMP
XSLP_DAMPEXPAND

XSLP_DAMPMAX

XSLP_DAMPMIN

XSLP_DAMPSHRINK

XSLP_DAMPSTART

p. 133

XSLP_CLAMPVALIDATIONTOL_R Relative validation tolerance for applying XSLP_CLAMPSHRINK
p. 133
Bit map describing which Xpress NonLinear functions also activate the
corresponding Optimizer Library function p. 174
Bit map describing which convergence tests should be carried out p. 175
Closure convergence tolerance p. 133
Name of the set of character variables to be used p. 208
Damping factor for updating values of variables p. 134
Multiplier to increase damping factor during dynamic damping p. 134
Maximum value for the damping factor of a variable during dynamic
damping p. 134
Minimum value for the damping factor of a variable during dynamic
damping p. 135
Multiplier to decrease damping factor during dynamic damping p. 135
SLP iteration at which damping is activated p. 176
Default iteration delay for delayed constraints p. 176

XSLP_DCLIMIT
XSLP_DCLOG

XSLP_DEFAULTIV

Amount of logging information for activcation of delayed constraints p. 176

Default initial value for an SLP variable if none is explicitly given p. 135

XSLP_DEFAULTSTEPBOUND Minimum initial value for the step bound of an SLP variable if none is

explicitly given p. 136

Fair Isaac Corporation Confidential and Proprietary Information 123

Control Parameters

Reference

XSLP_DELAYUPDATEROWS Number of SLP iterations before update rows are fully activated p. 176
XSLP_DELTA_A Absolute perturbation of values for calculating numerical derivatives p. 136
XSLP_DELTA_R Relative perturbation of values for calculating numerical derivatives p. 136
XSLP_DELTA_X Minimum absolute value of delta coefficients to be retained p. 137
XSLP_DELTA_Z Tolerance used when calculating derivatives p. 137
XSLP_DELTA_ZERO Absolute zero acceptance tolerance used when calculating derivatives
p. 137
XSLP_DELTACOST Initial penalty cost multiplier for penalty delta vectors p. 138

XSLP_DELTACOSTFACTOR Factor for increasing cost multiplier on total penalty delta vectors p. 138

XSLP_DELTAFORMAT Formatting string for creation of names for SLP delta vectors p. 208
XSLP_DELTAMAXCOST Maximum penalty cost multiplier for penalty delta vectors p. 138
XSLP_DELTAOFFSET Position of first character of SLP variable name used to create name of
delta vector p. 177
XSLP_DELTAZLIMIT Number of SLP iterations during which to apply XSLP_DELTA_Z p. 177
XSLP_DERIVATIVES Bitmap describing the method of calculating derivatives p. 178
XSLP_DETERMINISTIC Determines if the parallel features of SLP should be guaranteed to be
deterministic p. 178
XSLP_DJTOL Tolerance on DJ value for determining if a variable is at its step bound
p. 139
XSLP_DRCOLTOL The minimum absolute magnitude of a determining column, for which the
determined variable is still regarded as well defined p. 139
XSLP_ECFCHECK Check feasibility at the point of linearization for extended convergence
criteria p. 178
XSLP_ECFTOL_A Absolute tolerance on testing feasibility at the point of linearization p. 139
XSLP_ECFTOL_R Relative tolerance on testing feasibility at the point of linearization p. 140
XSLP_ECHOXPRSMESSAGES Controls if the XSLP message callback should relay messages from the
XPRS library. p. 179
XSLP_ENFORCECOSTSHRINK Factor by which to decrease the current penalty multiplier when
enforcing rows. p. 140

XSLP_ENFORCEMAXCOST Maximum penalty cost in the objective before enforcing most violating

rows p. 141

XSLP_ERRORCOST Initial penalty cost multiplier for penalty error vectors p. 141

XSLP_ERRORCOSTFACTOR Factor for increasing cost multiplier on total penalty error vectors p. 141

XSLP_ERRORMAXCOST Maximum penalty cost multiplier for penalty error vectors p. 142
XSLP_ERROROFFSET Position of first character of constraint name used to create name of

penalty error vectors p. 179

XSLP_ERRORTOL_A Absolute tolerance for error vectors p. 142

XSLP_ERRORTOL_P Absolute tolerance for printing error vectors p. 142

Fair Isaac Corporation Confidential and Proprietary Information 124

Control Parameters

Reference

XSLP_ESCALATION

XSLP_ETOL_A
XSLP_ETOL_R
XSLP_EVALUATE
XSLP_EVTOL_A
XSLP_EVTOL_R
XSLP_EXPAND

XSLP_FEASTOLTARGET

XSLP_FILTER
XSLP_FINDIV

XSLP_FUNCEVAL

XSLP_GRANULARITY

XSLP_GRIDHEURSELECT

XSLP_HESSIAN

XSLP_HEURSTRATEGY

XSLP_INFEASLIMIT

XSLP_INFINITY

XSLP_ITERFALLBACKOPS

XSLP_ITERLIMIT
XSLP_ITOL_A
XSLP_ITOL_R
XSLP_IVNAME
XSLP_JACOBIAN

XSLP_LINQUADBR

XSLP_LOG
XSLP_LSITERLIMIT
XSLP_LSPATTERNLIMIT

XSLP_LSSTART

Factor for increasing cost multiplier on individual penalty error vectors
p. 143

Absolute tolerance on penalty vectors p. 143
Relative tolerance on penalty vectors p. 143
Evaluation strategy for user functions p. 180
Absolute tolerance on total penalty costs p. 144
Relative tolerance on total penalty costs p. 144
Multiplier to increase a step bound p. 145
When set, this defines a target feasibility tolerance to which the

linearizations are solved to p. 145
Bit map for controlling solution updates p. 180
Option for running a heuristic to find a feasible initial point p. 181

Bit map for determining the method of evaluating user functions and their

derivatives p. 181
Base for calculating penalty costs p. 145

Bit map selectin which heuristics to run if the problem has variable with an
integer delta p. 182

Second order differentiation mode when using analytical derivatives p. 183

Branch and Bound: This specifies the MINLP heuristic strategy. On some
problems it is worth trying more comprehensive heuristic strategies by
setting HEURSTRATEGY to 2 or 3. p. 182

The maximum number of consecutive infeasible SLP iterations which can

occur before Xpress-SLP terminates p. 183
Value returned by a divide-by-zero in a formula p. 146

Alternative LP level control values for numerically challengeing problems
p. 208

The maximum number of SLP iterations p. 183
Absolute impact convergence tolerance p. 146
Relative impact convergence tolerance p. 147
Name of the set of initial values to be used p. 209
First order differentiation mode when using analytical derivatives p. 184

Use linear and quadratic constraints and objective function to further

reduce bounds on all variables p. 184
Level of printing during SLP iterations p. 184
Number of iterations in the line search p. 185

Number of iterations in the pattern search preceding the line search p. 185

Iteration in which to active the line search p. 185

Fair Isaac Corporation Confidential and Proprietary Information

125

Control Parameters

Reference

XSLP_LSZEROLIMIT

XSLP_MATRIXTOL

XSLP_MAXTIME

XSLP_MAXWEIGHT
XSLP_MEMORYFACTOR

XSLP_MERITLAMBDA

XSLP_MINSBFACTOR

Maximum number of zero length line search steps before line search is

deactivated p. 186
Provides an override value for XPRS_MATRIXTOL, which controls the
smallest magnitude of matrix coefficents p. 147
The maximum time in seconds that the SLP optimization will run before it
terminates p. 186
Maximum penalty weight for delta or error vectors p. 148
Factor for expanding size of dynamic arrays in memory p. 148

Factor by which the net objective is taken into account in the merit function
p. 148

Factor by which step bounds can be decreased beneath XSLP_ATOL_A
p. 149

XSLP_MINUSDELTAFORMAT Formatting string for creation of names for SLP negative penalty delta

XSLP_MINWEIGHT
XSLP_MIPALGORITHM

XSLP_MIPCUTOFF_A

vectors p. 209
XSLP_MINUSERRORFORMAT Formatting string for creation of names for SLP negative penalty error
vectors p. 210
Minimum penalty weight for delta or error vectors p. 149
Bitmap describing the MISLP algorithms to be used p. 186
Absolute objective function cutoff for MIP termination p. 149
Absolute objective function cutoff for MIP termination p. 150

XSLP_MIPCUTOFF_R

XSLP_MIPCUTOFFCOUNT

XSLP_MIPCUTOFFLIMIT

Number of SLP iterations to check when considering a node for cutting off
p. 188

Number of SLP iterations to check when considering a node for cutting off
p. 188

XSLP_MIPDEFAULTALGORITHM Default algorithm to be used during the global search in MISLP

XSLP_MIPERRORTOL_A

XSLP_MIPERRORTOL_R

p. 189
Absolute penalty error cost tolerance for MIP cut-off p. 150
Relative penalty error cost tolerance for MIP cut-off p. 150

XSLP_MIPFIXSTEPBOUNDS Bitmap describing the step-bound fixing strategy during MISLP p. 189

XSLP_MIPITERLIMIT
XSLP_MIPLOG

XSLP_MIPOCOUNT

XSLP_MIPOTOL_A

XSLP_MIPOTOL_R

Maximum number of SLP iterations at each node p. 190
Frequency with which MIP status is printed p. 190
Number of SLP iterations at each node over which to measure objective

function variation p. 190
Absolute objective function tolerance for MIP termination p. 151
Relative objective function tolerance for MIP termination p. 151

XSLP_MIPRELAXSTEPBOUNDS Bitmap describing the step-bound relaxation strategy during MISLP

p. 197

XSLP_MSMAXBOUNDRANGE Defines the maximum range inside which initial points are generated by

multistart presets p. 152

Fair Isaac Corporation Confidential and Proprietary Information 126

Control Parameters Reference
XSLP_MTOL_A Absolute effective matrix element convergence tolerance p. 152
XSLP_MTOL_R Relative effective matrix element convergence tolerance p. 153

XSLP_MULTISTART

The multistart master control. Defines if the multistart search is to be
initiated, or if only the baseline model is to be solved. p. 191

XSLP_MULTISTART_MAXSOLVES The maximum number of jobs to create during the multistart

search. p. 191

XSLP_MULTISTART_MAXTIME The maximum total time to be spent in the mutlistart search. p. 192

XSLP_MULTISTART_POOLSIZE The maximum number of problem objects allowed to pool up before

XSLP_MULTISTART_SEED

XSLP_MVTOL

XSLP_OBJSENSE

XSLP_OCOUNT

synchronization in the deterministic multistart. p. 192
Random seed used for the automatic generation of initial point when
loading multistart presets p. 193
XSLP_MULTISTART_THREADS The maximum number of threads to be used in multistart p. 193
Marginal value tolerance for determining if a constraint is slack p. 153
Objective function sense p. 154
XSLP_OBJTOPENALTYCOST Factor to estimate initial penalty costs from objective function p. 154
Number of SLP iterations over which to measure objective function
variation for static objective (2) convergence criterion p. 193

XSLP_OPTIMALITYTOLTARGET When set, this defines a target optimality tolerance to which the

linearizations are solved to p. 155
XSLP_OTOL_A Absolute static objective (2) convergence tolerance p. 155
XSLP_OTOL_R Relative static objective (2) convergence tolerance p. 155
XSLP_PENALTYCOLFORMAT Formatting string for creation of the names of the SLP penalty transfer
vectors p. 210
XSLP_PENALTYINFOSTART Iteration from which to record row penalty information p. 194
XSLP_PENALTYROWFORMAT Formatting string for creation of the names of the SLP penalty rows
p. 210
XSLP_PLUSDELTAFORMAT Formatting string for creation of names for SLP positive penalty delta
vectors p. 211
XSLP_PLUSERRORFORMAT Formatting string for creation of names for SLP positive penalty error
vectors p. 211
XSLP_POSTSOLVE This control determines whether postsolving should be performed
automatically p. 194
XSLP_PRESOLVE This control determines whether presolving should be performed prior to
starting the main algorithm p. 194
XSLP_PRESOLVELEVEL This control determines the level of changes presolve may carry out on the
problem p. 195
XSLP_PRESOLVEOPS Bitmap indicating the SLP presolve actions to be taken p. 195

XSLP_PRESOLVEPASSLIMIT Maximum number of passes through the problem to improve SLP

bounds p. 196

Fair Isaac Corporation Confidential and Proprietary Information 127

Control Parameters

Reference

XSLP_PRESOLVEZERO

Minimum absolute value for a variable which is identified as nonzero
during SLP presolve p. 156

XSLP_PRIMALINTEGRALREF Reference solution value to take into account when calculating the

XSLP_PROBING

XSLP_REFORMULATE

XSLP_SAMECOUNT

XSLP_SAMEDAMP

XSLP_SBLOROWFORMAT

XSLP__SBNAME

XSLP_SBROWOFFSET

XSLP_SBSTART

XSLP_SBUPROWFORMAT

XSLP_SCALE
XSLP_SCALECOUNT
XSLP_SHRINK

XSLP_SHRINKBIAS

XSLP_SLPLOG
XSLP_SOLVER
XSLP_STOL_A
XSLP_STOL_R

XSLP_STOPOUTOFRANGE

primal integral p. 156

This control determines whether probing on a subset of variables should
be performed prior to starting the main algorithm. Probing runs multiple
times bound reduction in order to further tighten the bounding box. p. 196

Controls the problem reformulations carried out before augmentation. This
allows SLP to take advantage of dedicated algorithms for special problem
classes. p. 196

Number of steps reaching the step bound in the same direction before step
bounds are increased p. 197

Number of steps in same direction before damping factor is increased
p. 197

Formatting string for creation of names for SLP lower step bound rows
p. 211

Name of the set of initial step bounds to be used p. 212
Position of first character of SLP variable name used to create name of

SLP lower and upper step bound rows p. 198
SLP iteration after which step bounds are first applied p. 198

Formatting string for creation of names for SLP upper step bound rows
p. 212

When to re-scale the SLP problem p. 198
Iteration limit used in determining when to re-scale the SLP matrix p. 199
Multiplier to reduce a step bound p. 157

Defines an overwrite / adjustment of step bounds for improving iterations
p. 157

Frequency with which SLP status is printed p. 200
First order differentiation mode when using analytical derivatives p. 199
Absolute slack convergence tolerance p. 157
Relative slack convergence tolerance p. 158

Stop optimization and return error code if internal function argument is out

of range p. 200
XSLP_THREADS Default number of threads to be used p. 200
XSLP_THREADSAFEUSERFUNC Defines if user functions are allowed to be called in parallel p. 201
XSLP_TIMEPRINT Print additional timings during SLP optimization p. 200
XSLP_TOLNAME Name of the set of tolerance sets to be used p. 212

XSLP_TRACEMASK

Mask of variable or row names that are to be traced through the SLP
iterates p. 213

Fair Isaac Corporation Confidential and Proprietary Information 128

Control Parameters

Reference

XSLP_TRACEMASKOPS

Controls the information printed for XSLP_TRACEMASK. The order in
which the information is printed is determined by the order of bits in

XSLP_TRACEMASKOPS. p. 201
XSLP_UNFINISHEDLIMIT Number of times within one SLP iteration that an unfinished LP

optimization will be continued p. 202
XSLP_UPDATEFORMAT Formatting string for creation of names for SLP update rows p. 213
XSLP_UPDATEOFFSET Position of first character of SLP variable name used to create name of

SLP update row p. 202
XSLP_VALIDATIONTARGET_K Optimality target tolerance p. 158
XSLP_VALIDATIONTARGET R Feasiblity target tolerance p. 158
XSLP_VALIDATIONTOL_A Absolute tolerance for the XSLPvalidate procedure p. 159
XSLP_VALIDATIONTOL_R Relative tolerance for the XSLPvalidate procedure p. 159

XSLP_VCOUNT

XSLP_VLIMIT

XSLP_VTOL_A
XSLP_VTOL_R

XSLP_WCOUNT

XSLP_WTOL_A
XSLP_WTOL_R

XSLP_XCOUNT

XSLP_XLIMIT

XSLP_XTOL_A
XSLP_XTOL_R
XSLP_ZERO

XSLP_ZEROCRITERION

Number of SLP iterations over which to measure static objective (3)
convergence p. 203

Number of SLP iterations after which static objective (3) convergence

testing starts p. 203
Absolute static objective (3) convergence tolerance p. 160
Relative static objective (3) convergence tolerance p. 160
Number of SLP iterations over which to measure the objective for the
extended convergence continuation criterion p. 204
Absolute extended convergence continuation tolerance p. 161
Relative extended convergence continuation tolerance p. 162
Number of SLP iterations over which to measure static objective (1)
convergence p. 205
Number of SLP iterations up to which static objective (1) convergence
testing starts p. 205
Absolute static objective function (1) tolerance p. 163
Relative static objective function (1) tolerance p. 163
Absolute tolerance p. 164

Bitmap determining the behavior of the placeholder deletion procedure
p. 206

XSLP_ZEROCRITERIONCOUNT Number of consecutive times a placeholder entry is zero before being

considered for deletion p. 207

XSLP_ZEROCRITERIONSTART SLP iteration at which criteria for deletion of placeholder entries are

first activated. p. 207

Fair Isaac Corporation Confidential and Proprietary Information 129

Control Parameters Reference

20.1 Double control parameters

XSLP_ATOL_A

Description Absolute delta convergence tolerance

Type Double

Note The absolute delta convergence criterion assesses the change in value of a variable (6X)

against the absolute delta convergence tolerance. If

dX < XSLP_ATOL_A

then the variable has converged on the absolute delta convergence criterion. When the value

is set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and

Te-6.
Default value -1.0
See also Convergence Criteria, XSLP_ATOL_R
XSLP_ATOL_R
Description Relative delta convergence tolerance
Type Double
Note The relative delta convergence criterion assesses the change in value of a variable (5X)

relative to the value of the variable (X), against the relative delta convergence tolerance. If

dX < X« XSLP_ATOL_R

then the variable has converged on the relative delta convergence criterion. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and

Te-6.

Default value -1.0

See also Convergence Criteria, XSLP_ATOL_A

XSLP_BARSTALLINGTOL

Description Required change in the objective when progress is measured in barrier iterations without
crossover

Type Double

Note Minumum objective variability change required in relation to control

XSLP_BARSTALLINGOBJLIMIT for the iterations to be regarded as making progress. The
net objective, error cost and error sum are taken into account.

Default value 0.05

Fair Isaac Corporation Confidential and Proprietary Information 130

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim

See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGOBJLIMIT

XSLP_CASCADETOL_PA

Description Absolute cascading print tolerance
Type Double
Note The change to the value of a variable as a result of cascading is only printed if the change is

deemed significant. The change is tested against: absolute and relative convergence
tolerance and absolute and relative cascading print tolerance. The change is printed only if all
tests fail. The absolute cascading print criterion measures the change in value of a variable
(6X) against the absolute cascading print tolerance. If

0X < XSLP_CASCADETOL_PA

then the change is within the absolute cascading print tolerance and will not be printed.
XSLP_LOG must be at least 5 for this control to have an effect.

Default value 0.01
See also Cascading, XSLP_CASCADETOI,_PR

Affects routines XSLPcascade

XSLP_CASCADETOL_PR

Description Relative cascading print tolerance
Type Double
Note The change to the value of a variable as a result of cascading is only printed if the change is

deemed significant. The change is tested against: absolute and relative convergence
tolerance and absolute and relative cascading print tolerance. The change is printed only if all
tests fail. The relative cascading print criterion measures the change in value of a variable
(0X) relative to the value of the variable (X), against the relative cascading print tolerance. If
dX < X x XSLP_CASCADETOL_PR

then the change is within the relative cascading print tolerance and will not be printed.
XSLP_LOG must be at least 5 for this control to have an effect.

Default value 0.01
See also Cascading, XSLP_CASCADETOI,_PA

Affects routines XSLPcascade

XSLP_CDTOL_A

Description Absolute tolerance for deducing constant derivatives

Fair Isaac Corporation Confidential and Proprietary Information 131

Control Parameters

Reference

Type
Note

Default value

See also

Double

The absolute tolerance test for constant derivatives is used as follows:

If the value of the user function at point Xj is Yy and the values at (X — 6X) and (Xg + 6X) are
Y4 and Y, respectively, then the numerical derivatives at Xy are:

"down" derivative Dy = (Yo — Yq)/6X

"up" derivative Dy = (Yy = Yg)/6X

If abs(Dy — Dy) < XSLP_CDTOL_A

then the derivative is regarded as constant.

1.0e-08

XSLP_CDTOL_R

XSLP_CDTOL_R

Description

Type
Note

Default value

See also

Relative tolerance for deducing constant derivatives
Double

The relative tolerance test for constant derivatives is used as follows:

If the value of the user function at point Xj is Yy and the values at (X — 6X) and (Xg + 6X) are
Y4 and Y, respectively, then the numerical derivatives at X are:

"down" derivative Dy = (Yo — Y4)/6X

"up" derivative Dy = (Yy = Yg)/0X

If abs(Dy — Dy) < XSLP_CDTOL_R + abs(Y4 + Yy)/2

then the derivative is regarded as constant.

1.0e-08

XSLP_CDTOL_A

XSLP_CLAMPSHRINK

Description

Type
Note

Default value

See also

Shrink ratio used to impose strict convergence on variables converged in extended criteria
only

Double

If the solution has converged but there are variables converged on extended criteria only, the
XSLP_CLAMPSHRINK acts as a shrinking ratio on the step bounds and the problem is
optimized (if necessary multiple times), with the purpose of expediting strict convergence on
all variables. xs1.p_ AL.GORITHM controls if this shrinking is applied at all, and if shrinking is
applied to of the variables converged on extended criteria only with active step bounds only,
or if on all variables.

0.3

XSLP_ALGORITHM, XSLP_CLAMPVALIDATIONTOL_A, XSLP_CLAMPVALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 132

Control Parameters

Reference

XSLP_CLAMPVALIDATIONTOL_A

Description

Type
Note

Default value

See also

Absolute validation tolerance for applying XSLP_ CLAMP SHRINK
Double

If set and the absolute validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

0.0 (not set)

XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_R

Description

Type
Note

Default value

Relative validation tolerance for applying XSLP_CLAMP SHRINK
Double

If set and the relative validation value is larger than this value, then control
XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variables
converged on extended criteria only.

0.0 (not set)

See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_A

Description Closure convergence tolerance

Type Double

Notes The closure convergence criterion measures the change in value of a variable (6X) relative to

Default value

See also

the value of its initial step bound (B), against the closure convergence tolerance. If

0X < B XSLP_CTOL

then the variable has converged on the closure convergence criterion.

If no explicit initial step bound is provided, then the test will not be applied and the variable
can never converge on the closure criterion. When the value is set to be negative, the value is
adjusted automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R.
Good values for the control are usually fall between 1e-3 and 1e-6.

-1.0

Convergence Criteria, XSLP_ATOL_A, XSLP_ATOL_R

Fair Isaac Corporation Confidential and Proprietary Information 133

Control Parameters

Reference

XSLP_DAMP

Description Damping factor for updating values of variables

Type Double

Note The damping factor sets the next assumed value for a variable based on the previous

Default value

See also

Affects routines

assumed value (Xg) and the actual value (X7). The new assumed value is given by
Xq * XSLP_DAMP + Xg * (1 = XSLP_DAMP)

1

Xpress-SLP Solution Process, XS1L.P_ DAMPEXPAND XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK, XSLP_DAMPSTART

XSLPmaxim, XSLPminim

XSLP_DAMPEXPAND

Description Multiplier to increase damping factor during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if

Default value

See also

Affects routines

successive changes are in the same direction. More precisely, if there are XxSL.P_SAMEDAMP
successive changes in the same direction for a variable, then the damping factor (D) for the
variable will be reset to

D x XSLP_DAMPEXPAND + XSLP_DAMPMAX x (1 - XSLP_DAMPEXPAND)

1

Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAY,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

XSLPmaxim, XSLPminim

XSLP_DAMPMAX

Description Maximum value for the damping factor of a variable during dynamic damping

Type Double

Note If dynamic damping is enabled, the damping factor for a variable will be increased if

Default value

See also

Affects routines

successive changes are in the same direction. More precisely, if there are xSL.P_SAMEDAMP
successive changes in the same direction for a variable, then the damping factor (D) for the
variable will be reset to

D x XSLP_DAMPEXPAND + XSLP_DAMPMAX x (1 — XSLP_DAMPEXPAND)

1

Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP

XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 134

Control Parameters

Reference

XSLP_DAMPMIN

Description

Type
Note

Default value

See also

Affects routines

Minimum value for the damping factor of a variable during dynamic damping
Double

If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D) for
the variable will be reset to

D x XSLP_DAMPSHRINK + XSLP_DAMPMIN = (1 = XSLP_DAMPEXPAND)

1

Xpress-SLP Solution Process, XxSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPSHRINK, XSLP_DAMPSTART

XSLPmaxim, XSLPminim

XSLP_DAMPSHRINK

Description

Type
Note

Default value

See also

Affects routines

Multiplier to decrease damping factor during dynamic damping
Double

If dynamic damping is enabled, the damping factor for a variable will be decreased if
successive changes are in the opposite direction. More precisely, the damping factor (D) for
the variable will be reset to

D x XSLP_DAMPSHRINK + XSLP_DAMPMIN x (1 — XSLP_DAMPEXPAND)

1

Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,
XSLP_DAMPMAX, XSLP_DAMPMIN, XSLP_DAMPSTART

XSLPmaxim, XSLPminim

XSLP_DEFAULTIV

Description

Type
Note

Default value

Affects routines

Default initial value for an SLP variable if none is explicitly given
Double

If no initial value is given for an SLP variable, then the initial value provided for the "equals
column” will be used. If no such value has been provided, then xSLP_DEFAULTIV will be
used. If this is above the upper bound for the variable, then the upper bound will be used; if it
is below the lower bound for the variable, then the lower bound will be used.

100

XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 135

Control Parameters

Reference

XSLP_DEFAULTSTEPBOUND

Description

Type

Notes

Minimum initial value for the step bound of an SLP variable if none is explicitly given
Double

If no initial step bound value is given for an SLP variable, this will be used as a minimum
value. If the algorithm is estimating step bounds, then the step bound actually used for a
variable may be larger than the default.

A default initial step bound is ignored when testing for the closure tolerance xs1.p_cTOL: if
there is no specific value, then the test will not be applied.

Default value 16

See also XSLP_CTOL

Affects routines XSLPconstruct

XSLP_DELTA_A

Description Absolute perturbation of values for calculating numerical derivatives

Type Double

Note First-order derivatives are calculated by perturbing the value of each variable in turn by a small

Default value
Affects routines

See also

amount. The amount is determined by the absolute and relative delta factors as follows:
XSLP_DELTA_A + abs(X) « XSLP_DELTA_R

where (X) is the current value of the variable. If the perturbation takes the variable outside a
bound, then the perturbation normally made only in the opposite direction.

0.001
XSLPmaxim, XSLPminim

XSLP_DELTA_R

XSLP_DELTA_R

Description

Type
Note

Default value
Affects routines

See also

Relative perturbation of values for calculating numerical derivatives
Double

First-order derivatives are calculated by perturbing the value of each variable in turn by a small
amount. The amount is determined by the absolute and relative delta factors as follows:
XSLP_DELTA_A + abs(X) « XSLP_DELTA_R

where (X) is the current value of the variable. If the perturbation takes the variable outside a
bound, then the perturbation normally made only in the opposite direction.

0.001
XSLPmaxim, XSLPminim

XSLP_DELTA_A

Fair Isaac Corporation Confidential and Proprietary Information 136

Control Parameters

Reference

XSLP_DELTA_X

Description Minimum absolute value of delta coefficients to be retained

Type Double

Notes If the value of a coefficient in a delta column is less than this value, it will be reset to zero.

Default value

Affects routines

Larger values of XsLpP_DELTA_X will result in matrices with fewer elements, which may be
easier to solve. However, there will be increased likelihood of local optima as some of the
small relationships between variables and constraints are deleted. There may also be
increased difficulties with singular bases resulting from deletion of pivot elements from the
matrix.

1.0e-6

XSLPmaxim, XSLPminim

XSLP_DELTA_Z

Description Tolerance used when calculating derivatives

Type Double

Notes If the absolute value of a variable is less than this value, then a value of XSLP_DELTA_Z will

Default value

Affects routines

be used instead for calculating derivatives.

If a nonzero derivative is calculated for a formula which always results in a matrix coefficient
less than XSLP_DELTA_ Z, then a larger value will be substituted so that at least one of the
coefficients is XSLP_DELTA_Z in magnitude.

If XSLP_DELTAZLIMIT is set to a positive number, then when that number of iterations have
passed, values smaller than xsL.p_DELTA_Z will be set to zero.

0.00001

XSLPmaxim, XSLPminim

See also XSLP_DELTAZLIMIT, XSLP_DELTA_ZERO

XSLP_DELTA_ZERO

Description Absolute zero acceptance tolerance used when calculating derivatives

Type Double

Notes Provides an override value for the XSLP_DELTA_Z behavior. Derivatives smaller than

Default value
Affects routines

See also

XSLP_DELTA_ZERO will not be substituted by XSLP_DELTA_Z, defining a range in which
derivatives are deemed nonzero and are affected by XSLP_DELTA_Z.
A negative value means that this tolerance will not be applied.

-1.0 (not applied)
XSLPmaxim, XSLPminim

XSLP_DELTAZLIMIT, XSLP_DELTA_Z

Fair Isaac Corporation Confidential and Proprietary Information 137

Control Parameters

Reference

XSLP_DELTACOST

Description

Type
Note

Default value
Affects routines

See also

Initial penalty cost multiplier for penalty delta vectors
Double

If penalty delta vectors are used, this parameter sets the initial cost factor. If there are active
penalty delta vectors, then the penalty cost may be increased.

200
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOSTFACTOR, XSLP_DELTAMAXCOST,
XSLP_ERRORCOST

XSLP_DELTACOSTFACTOR

Description

Type
Note

Default value
Affects routines

See also

Factor for increasing cost multiplier on total penalty delta vectors
Double

If there are active penalty delta vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_DELTACOSTFACTOR up to @ maximum of XSLP_ DELTAMAXCOST

1.3
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTAMAXCOST, XSLP_ERRORCOST

XSLP_DELTAMAXCOST

Description

Type
Note

Default value
Affects routines

See also

Maximum penalty cost multiplier for penalty delta vectors
Double

If there are active penalty delta vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_DELTACOSTFACTOR up to @ maximum of XSLP_ DELTAMAXCOST

infinite
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTACOSTFACTOR, XSLP_ERRORCOST

Fair Isaac Corporation Confidential and Proprietary Information 138

Control Parameters

Reference

XSLP_DJTOL

Description Tolerance on DJ value for determining if a variable is at its step bound

Type Double

Note If a variable is at its step bound and within the absolute delta tolerance xs1.p_ATOL_A or

Default value

Affects routines

closure tolerance xs1.p_cTOL then the step bounds will not be further reduced. If the DJ is
greater in magnitude than XxsL.p_DJTOL then the step bound may be relaxed if it meets the
necessary criteria.

1.0e-6

XSLPmaxim, XSLPminim

See also XSLP_ATOL_A, XSLP_CTOL

XSLP_DRCOLTOL

Description The minimum absolute magnitude of a determining column, for which the determined
variable is still regarded as well defined

Type Double

Notes This control affects the cascading procedure. Please see Chapter Cascading for more

Default value
See also

Affects routines

information.
0
XSLP_CASCADE

XSLPconstruct XSLPcascade

XSLP_ECFTOL_A

Description Absolute tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true

problem. They depend on the point of linearization being a reasonable approximation — in
particular, that it should be reasonably close to feasibility. Each constraint is tested at the
point of linearization, and the total positive and negative contributions to the constraint from
the columns in the problem are calculated. A feasibility tolerance is calculated as the largest
of XSLPgCFTOL, and

max(abs(Positive), abs(Negative)) x XSLP_ECFTOL_R

If the calculated infeasibility is greater than the tolerance, the point of linearization is
regarded as infeasible and the extended convergence criteria will not be applied. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the feasibility
target XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between
Te-1 and 1e-6.

Fair Isaac Corporation Confidential and Proprietary Information 139

Control Parameters Reference

Default value -1.0

Affects routines XSLPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_R
XSLP_ECFTOL_R

Description Relative tolerance on testing feasibility at the point of linearization

Type Double

Notes The extended convergence criteria test how well the linearization approximates the true

problem. They depend on the point of linearization being a reasonable approximation — in
particular, that it should be reasonably close to feasibility. Each constraint is tested at the
point of linearization, and the total positive and negative contributions to the constraint from
the columns in the problem are calculated. A feasibility tolerance is calculated as the largest
of XSLPgCFTOL 4 and

max(abs(Positive), abs(Negative)) x XSLP_ECFTOL_R

If the calculated infeasibility is greater than the tolerance, the point of linearization is
regarded as infeasible and the extended convergence criteria will not be applied. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the feasibility
target XxSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between
Te-1 and 1e-6.

Default value -1.0
Affects routines XSILPmaxim, XSLPminim

See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_A

XSLP_ENFORCECOSTSHRINK

Description Factor by which to decrease the current penalty multiplier when enforcing rows.
Type Double
Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its error

variable, removing the variable (fixing it to zero) can force the row to be satisfied, as set by
XSLP_ENFORCEMAXCOST. After the error variables have been removed (which is equivalent to
setting to row to be enforced) the penalties on the remaining error variables are rebalanced to
allow for a reduction in the size of the penalties in the objective in order to achive better
numerical behaviour.

Default value 0.00001
Affects routines XSILPmaxim, XSLPminim

See also XSLP_ENFORCEMAXCOST

Fair Isaac Corporation Confidential and Proprietary Information 140

Control Parameters

Reference

XSLP_ENFORCEMAXCOST

Description

Type

Notes

Default value
Affects routines

See also

Maximum penalty cost in the objective before enforcing most violating rows
Double

When feasiblity of a row cannot be achieved by increasing the penalty cost on its error
variable, removing the variable (fixing it to zero) can force the row to be satisfied. After the
error variables have been removed (which is equivalent to setting to row to be enforced) the
penalties on the remaining error variables are rebalanced to allow for a reduction in the size
of the penalties in the objective in order to achive better numerical behaviour, controlled by
XSLP_ENFORCECOSTSHRINK.

10000000000
XSLPmaxim, XSLPminim

XSLP_ENFORCECOSTSHRINK

XSLP_ERRORCOST

Description

Type
Note

Default value
Affects routines

See also

Initial penalty cost multiplier for penalty error vectors
Double

If penalty error vectors are used, this parameter sets the initial cost factor. If there are active
penalty error vectors, then the penalty cost may be increased.

200
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOSTFACTOR,
XSLP_ERRORMAXCOST

XSLP_ERRORCOSTFACTOR

Description

Type
Note

Default value
Affects routines

See also

Factor for increasing cost multiplier on total penalty error vectors
Double

If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_ERRORCOSTFACTOR Up to @ maximum of XSLP_ ERRORMAXCOST

1.3
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORMAXCOST

Fair Isaac Corporation Confidential and Proprietary Information 141

Control Parameters

Reference

XSLP_ERRORMAXCOST

Description

Type
Note

Default value
Affects routines

See also

Maximum penalty cost multiplier for penalty error vectors
Double

If there are active penalty error vectors, then the penalty cost multiplier will be increased by a
factor of XSLP_ ERRORCOSTFACTOR up to @ maximum of XSL.P_ ERRORMAXCOST

infinite
XSLPmaxim, XSLPminim

XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORCOSTFACTOR

XSLP_ERRORTOL_A

Description

Type
Note

Default value
Affects routines

See also

Absolute tolerance for error vectors
Double

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A,;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R = Obj where Obj is the current objective function value.

0.00001
XSLPmaxim, XSLPminim

XSLP_EVTOL_A, XSLP_EVTOL_R

XSLP_ERRORTOL_P

Description

Type
Note

Default value

Affects routines

Absolute tolerance for printing error vectors
Double

The solution log includes a print of penalty delta and penalty error vectors with an activity
greater than XSLP_ERRORTOL_P.

0.0001

XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 142

Control Parameters

Reference

XSLP_ESCALATION

Description

Type
Note

Default value

Affects routines

Factor for increasing cost multiplier on individual penalty error vectors
Double

If penalty cost escalation is activated in xs1.p_AL.GORITHM then the penalty cost multiplier
will be increased by a factor of XSLP_ESCALATION for any active error vector up to a
maximum of XSLP_MAXWEIGHT.

1.25

XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_MAXWEIGHT
XSLP_ETOL_A

Description Absolute tolerance on penalty vectors

Type Double

Note For each penalty error vector, the contribution to its constraint is calculated, together with the

Default value

Affects routines

total positive and negative contributions to the constraint from other vectors. If its
contribution is less than XSLP_ETOL_A or less than Positive « XSLP_ETOL_R or less than
abs(Negative) « XSLP_ETOL_R then it will be regarded as insignificant and will not have its
penalty increased. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target xs1.p_ VALIDATIONTARGET_R. Good values for the
control are usually fall between 1e-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_ETOL_R XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION
XSLP_ETOL_R

Description Relative tolerance on penalty vectors

Type Double

Note For each penalty error vector, the contribution to its constraint is calculated, together with the

Default value

total positive and negative contributions to the constraint from other vectors. If its
contribution is less than XSLP_ETOL_A or less than Positive « XSLP_ETOL_R or less than
abs(Negative) « XSLP_ETOL_R then it will be regarded as insignificant and will not have its
penalty increased. When the value is set to be negative, the value is adjusted automatically by
SLP, based on the feasibility target XxSLP_VALIDATIONTARGET_R. Good values for the
control are usually fall between 1e-3 and 1e-6.

-1.0

Fair Isaac Corporation Confidential and Proprietary Information 143

Control Parameters

Reference

Affects routines

See also

XSLPmaxim, XSLPminim

XSLP_ETOL_A XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_EVTOL_A

Description

Type
Note

Default value
Affects routines

See also

Absolute tolerance on total penalty costs
Double

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R = Obj where Obj is the current objective function value. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and
1e-6, but normally a magnitude larger than xsL.p_ETOL_A.

-1.0
XSLPmaxim, XSLPminim

XSLP_ERRORTOL_A, XSLP_EVTOL_R

XSLP_EVTOL_R

Description

Type
Note

Default value
Affects routines

See also

Relative tolerance on total penalty costs
Double

The solution will be regarded as having no active error vectors if one of the following applies:
every penalty error vector and penalty delta vector has an activity less than
XSLP_ERRORTOL_A;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_A;

the sum of the cost contributions from all the penalty error and penalty delta vectors is less
than XSLP_EVTOL_R = Obj where Obj is the current objective function value. When the value is
set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and
1e-6, but normally a magnitude larger than xs1.p_ETOL_R.

-1.0
XSLPmaxim, XSLPminim

XSLP_ERRORTOL_A, XSLP_EVTOL_A

Fair Isaac Corporation Confidential and Proprietary Information 144

Control Parameters

Reference

XSLP_EXPAND

Description

Type
Note

Default value
Affects routines

See also

Multiplier to increase a step bound
Double

If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_ SAMECOUNT successive
changes reaching the step bound and in the same direction for a variable, then the step
bound (B) for the variable will be reset to

B« XSLP_EXPAND.

2
XSLPmaxim, XSLPminim

XSLP_SHRINK, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_FEASTOLTARGET

Description

Type
Note

Default value
Affects routines

See also

When set, this defines a target feasibility tolerance to which the linearizations are solved to
Double

This is a soft version of XPRS_FEASTOL, and will dynamically revert back to XPRS_FEASTOL
if the desired accuracy could not be achieved.

0 (ignored, not set)
XSLPmaxim, XSLPminim

XSLP_OPTIMALITYTOLTARGET,

XSLP_GRANULARITY

Description
Type

Note

Default value
Affects routines

See also

Base for calculating penalty costs

Double

If XSLP_GRANULARITY >1, then initial penalty costs will be powers of XSLP_GRANULARITY.
4

XSLPconstruct

XSLP_MAXWEIGHT, XSLP_MINWEIGHT

Fair Isaac Corporation Confidential and Proprietary Information 145

Control Parameters

Reference

XSLP_INFINITY

Description Value returned by a divide-by-zero in a formula

Type Double

Default value 1.0e+10

XSLP_ITOL_A

Description Absolute impact convergence tolerance

Type Double

Note The absolute impact convergence criterion assesses the change in the effect of a coefficient

Default value
Affects routines

See also

in a constraint. The effect of a coefficient is its value multiplied by the activity of the column
in which it appears.

E=XxC

where X is the activity of the matrix column in which the coefficient appears, and C is the
value of the coefficient. The linearization approximates the effect of the coefficient as

E1=X*CO +§X*06

where X is as before, Cg is the value of the coefficient C calculated using the assumed values
for the variables and Cj is the value of % calculated using the assumed values for the
variables.

If Cq is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

SE=X*xCq—-(XxCq + 5X*C6)

If 6E < XSLP_ITOL_A

then the variable has passed the absolute impact convergence criterion for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative
or absolute) impact or matrix criteria for all the coefficients in which it appears, then it is
deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xSL.P_ VALIDATIONTARGET_ R. Good
values for the control are usually fall between 1e-3 and 1e-6.

-1.0
XSLPmaxim, XSLPminim

XSLP_ITOL_R, XSLP_MTOIL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 146

Control Parameters Reference

XSLP_ITOL_R

Description Relative impact convergence tolerance

Type Double

Note The relative impact convergence criterion assesses the change in the effect of a coefficient in

a constraint in relation to the magnitude of the constituents of the constraint. The effect of a
coefficient is its value multiplied by the activity of the column in which it appears.

E=XxC

where X is the activity of the matrix column in which the coefficient appears, and C is the
value of the coefficient. The linearization approximates the effect of the coefficient as

E-|=X>)<CO +5X>I<C6

where X is as before, C is the value of the coefficient C calculated using the assumed values
for the variables and Cj is the value of % calculated using the assumed values for the
variables.

If Cq is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

SE=X*xCq—-(X*xCq + 6X*C6)

All the elements of the constraint are examined, excluding delta and error vectors: for each,
the contribution to the constraint is evaluated as the element multiplied by the activity of the
vector in which it appears; it is then included in a total positive contribution or total negative
contribution depending on the sign of the contribution. If the predicted effect of the
coefficient is positive, it is tested against the total positive contribution; if the effect of the
coefficient is negative, it is tested against the total negative contribution. If Ty is the total
positive or total negative contribution to the constraint (as appropriate)

and 0E < T * XSLP_ITOL_R

then the variable has passed the relative impact convergence criterion for this coefficient.
If a variable which has not converged on strict (closure or delta) criteria passes the (relative
or absolute) impact or matrix criteria for all the coefficients in which it appears, then it is
deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xsL.P_ VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSILPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R
XSLP_MATRIXTOL
Description Provides an override value for XPRS_MATRIXTOL, which controls the smallest magnitude of

matrix coefficents

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 147

Control Parameters Reference

Note Any value smaller than XSLP_MATRIXTOL in magnitude will not be loaded into the
linearization. This only applies to the matrix coefficients; bounds, right hand sides and
objectives are not affected.

Default value 1e-30

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

XSLP_MAXWEIGHT

Description Maximum penalty weight for delta or error vectors

Type Double

Note When penalty vectors are created, or when their weight is increased by escalation, the

maximum weight that will be used is given by XSLP_MAXWEIGHT.
Default value 100

Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_ALGORITHM, XSLP_AUGMENTATION, XSLP_ESCALATION, XSLP_MINWEIGHT
XSLP_MEMORYFACTOR

Description Factor for expanding size of dynamic arrays in memory

Type Double

Note When a dynamic array has to be increased in size, the new space allocated will be

XSLP_MEMORYFACTOR times as big as the previous size. A larger value may result in
improved performance because arrays need to be re-sized and moved less frequently;
however, more memory may be required under such circumstances because not all of the
previous memory area can be re-used efficiently.

Default value 1.6

See also Memory control variables XxSLP_MEMx Memory control variables XSLP_MEMx*
XSLP_MERITLAMBDA

Description Factor by which the net objective is taken into account in the merit function

Type Double

Note The merit function is evaluated in the original, non-augmented / linearized space of the

problem. A solution is deemed improved, if either feasibility improved, or if feasibility is not
deteriorated but the net objective is improved, or if the combination of the two is improved,
where the value of the XSLP_MERITLAMBDA control is used to combine the two measures. A
nonpositive value indicates that the combined effect should not be checked.

Fair Isaac Corporation Confidential and Proprietary Information 148

Control Parameters Reference

Default value 0.0
Affects routines XSLPmaxim, XSLPminim

See also XSLP_FILTER XSLP_LSITERLIMIT XSLP_LSPATTERNLIMIT

XSLP_MINSBFACTOR

Description Factor by which step bounds can be decreased beneath XSLP_ATOL_A
Type Double
Note Normally, step bounds are not decreased beneath xs1.p_ATOL_A3, as such variables are

treated as converged. However, it may be beneficial to decrease step bounds further, as
individual variable value changes might affect the convergence of other variables in the
model, even if the variablke itself is deemed converged.

Default value 1.0
Affects routines XSLPmaxim, XSLPminim

See also XSLP_ATOL_A

XSLP_MINWEIGHT

Description Minimum penalty weight for delta or error vectors
Type Double
Note When penalty vectors are created, the minimum weight that will be used is given by

XSLP_MINWEIGHT.
Default value 0.01
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_AUGMENTATION, XSLP_MAXWEIGHT

XSLP_MIPCUTOFF_A

Description Absolute objective function cutoff for MIP termination
Type Double
Note If the objective function is worse by a defined amount than the best integer solution obtained

so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off
at the current SLP iteration if the objective function for the last xsT.p_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ x XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.

The MIP cutoff tests are only applied after xs.p_ MIPCUTOFFLIMIT SLP iterations at the
current node.

Fair Isaac Corporation Confidential and Proprietary Information 149

Control Parameters

Reference

Default value
Affects routines

See also

0.0001
XSLPglobal

XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_R

XSLP_MIPCUTOFF_R

Description

Type
Note

Default value
Affects routines

See also

Absolute objective function cutoff for MIP termination
Double

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off
at the current SLP iteration if the objective function for the last xsL.p_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_A and OBJ x XSLP_MIPCUTOFF_R where OBJ is the best integer solution
obtained so far.

The MIP cutoff tests are only applied after xs.p_MIPCUTOFFLIMIT SLP iterations at the
current node.

0.0001
XSLPglobal

XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_A

XSLP_MIPERRORTOL_A

Description

Type
Note

Default value
Affects routines

See also

Absolute penalty error cost tolerance for MIP cut-off
Double

The penalty error cost test is applied at each node where there are active penalties in the
solution. If XSLP_MIPERRORTOL_A is nonzero and the absolute value of the penalty costs is
greater than XSLP_MIPERRORTOL_A, the node will be declared infeasible. If
XSLP_MIPERRORTOL_A is zero then no test is made and the node will not be declared
infeasible on this criterion.

0 (inactive)
XSLPglobal

XSLP_MIPERRORTOL_R

XSLP_MIPERRORTOL_R

Description

Type

Relative penalty error cost tolerance for MIP cut-off

Double

Fair Isaac Corporation Confidential and Proprietary Information 150

Control Parameters Reference

Note The penalty error cost test is applied at each node where there are active penalties in the
solution. If XSLP_MIPERRORTOL_R is nonzero and the absolute value of the penalty costs is
greater than XSLP_MIPERRORTOL _R x abs(Obj) where Obj is the value of the objective
function, then the node will be declared infeasible. If XSLP_MIPERRORTOL_R is zero then no
test is made and the node will not be declared infeasible on this criterion.

Default value 0 (inactive)
Affects routines xSLPglobal

See also XSLP_MIPERRORTOL_A

XSLP_MIPOTOL_A

Description Absolute objective function tolerance for MIP termination
Type Double
Note The objective function test for MIP termination is applied only when step bounding has been

applied (or xsL.p_sBSTART SLP iterations have taken place if step bounding is not being
used). The node will be terminated at the current SLP iteration if the range of the objective
function values over the last xsLp_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or
within OBJ x XSLP_MIPOTOL_R where OBJ is the average value of the objective function over
those iterations.

Default value 0.00001
Affects routines xSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_R XSLP_SBSTART

XSLP_MIPOTOL_R

Description Relative objective function tolerance for MIP termination
Type Double
Note The objective function test for MIP termination is applied only when step bounding has been

applied (or xsT.p_sBSTART SLP iterations have taken place if step bounding is not being
used). The node will be terminated at the current SLP iteration if the range of the objective
function values over the last xs1.p_M1POCOUNT SLP iterations is within XSLP_MIPOTOL_A or
within OBJ x XSLP_MIPOTOL_R where OBJ is the average value of the objective function over
those iterations.

Default value 0.00001
Affects routines xSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_A XSLP_SBSTART

Fair Isaac Corporation Confidential and Proprietary Information 151

Control Parameters

Reference

XSLP_MSMAXBOUNDRANGE

Description Defines the maximum range inside which initial points are generated by multistart presets
Type Double

Note The is the maximum range in which initial points are generated; the actual range is expected

Default value

Affects routines

to be smaller as bounds are domains are also considered.
1000

XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_MTOL_A

Description Absolute effective matrix element convergence tolerance

Type Double

Note The absolute effective matrix element convergence criterion assesses the change in the

Default value
Affects routines

See also

effect of a coefficient in a constraint. The effect of a coefficient is its value multiplied by the
activity of the column in which it appears.

E=XxC

where X is the activity of the matrix column in which the coefficient appears, and C is the
value of the coefficient. The linearization approximates the effect of the coefficient as

E=X=xCy +5X*C6

where V is as before, C is the value of the coefficient C calculated using the assumed values
for the variables and Cj is the value of % calculated using the assumed values for the
variables.

If Cq is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

SE=X%Cq—(XxCq + 6X = Cp)

If 6E < X x XSLP_MTOL_A

then the variable has passed the absolute effective matrix element convergence criterion for
this coefficient.

If a variable which has not converged on strict (closure or delta) criteria passes the (relative
or absolute) impact or matrix criteria for all the coefficients in which it appears, then it is
deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xS.P_ VALIDATIONTARGET_ R. Good
values for the control are usually fall between 1e-3 and 1e-6.

-1.0
XSLPmaxim, XSLPminim

XSLP_ITOL_A, XSLP_ITOIL_R,XSLP_MTOIL_R,XSLP_STOL_A, XSLP_STOIL_R

Fair Isaac Corporation Confidential and Proprietary Information 152

Control Parameters

Reference

XSLP_MTOL_R

Description Relative effective matrix element convergence tolerance

Type Double

Note The relative effective matrix element convergence criterion assesses the change in the effect

Default value

Affects routines

of a coefficient in a constraint relative to the magnitude of the coefficient. The effect of a
coefficient is its value multiplied by the activity of the column in which it appears.

E=XxC

where X is the activity of the matrix column in which the coefficient appears, and C is the
value of the coefficient. The linearization approximates the effect of the coefficient as

E;=XxCy +(5X>|<CE)

where V is as before, Cy is the value of the coefficient C calculated using the assumed values
for the variables and Cj is the value of % calculated using the assumed values for the
variables.

If Cq is the value of the coefficient C calculated using the actual values for the variables, then
the error in the effect of the coefficient is given by

5E=X*C1—(X*CO + 5X*C/O)

If 0E < E; x XSLP_MTOL_R

then the variable has passed the relative effective matrix element convergence criterion for
this coefficient.

If a variable which has not converged on strict (closure or delta) criteria passes the (relative
or absolute) impact or matrix criteria for all the coefficients in which it appears, then it is
deemed to have converged. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xS1.p_ VALIDATIONTARGET_R. Good
values for the control are usually fall between 1e-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_STOL_A, XSLP_STOL_R
XSLP_MVTOL

Description Marginal value tolerance for determining if a constraint is slack

Type Double

Note If the absolute value of the marginal value of a constraint is less than XSLP_MVTOL, then

(1) the constraint is regarded as not constraining for the purposes of the slack tolerance
convergence criteria;

(2) the constraint is not regarded as an active constraint when identifying unconverged
variables in active constraints. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the feasibility target xSL.P_ VALIDATIONTARGET_ R. Good
values for the control are usually fall between 1e-3 and 1e-6.

Fair Isaac Corporation Confidential and Proprietary Information 153

Control Parameters

Reference

Default value

Affects routines

-1.0

XSLPmaxim, XSLPminim

See also XSLP_STOL_A, XSLP_STOL_R

XSLP_OBJSENSE

Description Objective function sense

Type Double

Note XSLP_OBJSENSE is set to +1 for minimization and to -1 for maximization. It is automatically

Set by routines
Default value

Affects routines

set by xsLPmaxim and XxSLPminim; it must be set by the user before calling
XSLPnlpoptimize.

XSLPmaxim, XSLPminim
+1

XSLPmaxim, XSLPminim, XSLPnlpoptimize

XSLP_OBJTOPENALTYCOST

Description

Type
Notes

Default value

Affects routines

Factor to estimate initial penalty costs from objective function
Double

The setting of initial penalty error costs can affect the path of the optimization and, indeed,
whether a solution is achieved at all. If the penalty costs are too low, then unbounded
solutions may result although Xpress-SLP will increase the costs in an attempt to recover. If
the penalty costs are too high, then the requirement to achieve feasibility of the linearized
constraints may be too strong to allow the system to explore the nonlinear feasible region.
Low penalty costs can result in many SLP iterations, as feasibility of the nonlinear constraints
is not achieved until the penalty costs become high enough; high penalty costs force
feasibility of the linearizations, and so tend to find local optima close to an initial feasible
point. Xpress-SLP can analyze the problem to estimate the size of penalty costs required to
avoid an initial unbounded solution. XSLP_OBJTOPENALTYCOST can be used in conjunction
with this procedure to scale the costs and give an appropriate initial value for balancing the
requirements of feasibility and optimality.

Not all models are amenable to the Xpress-SLP analysis. As the analysis is initially concerned
with establishing a cost level to avoid unboundedness, a model which is sufficiently
constrained will never show unboundedness regardless of the cost. Also, as the analysis is
done at the start of the optimization to establish a penalty cost, significant changes in the
coefficients, or a high degree of nonlinearity, may invalidate the initial analysis.

A setting for XSLP_OBJTOPENALTYCOST of zero disables the analysis. A setting of 3 or 4 has
proved successful for many models. If XSLP_OBJTOPENALTYCOST cannot be used because
of the problem structure, its effect can still be emulated by some initial experiments to
establish the cost required to avoid unboundedness, and then manually applying a suitable
factor. If the problem is initially unbounded, then the penalty cost will be increased until either
it reaches its maximum or the problem becomes bounded.

0

XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 154

Control Parameters

Reference

XSLP_OPTIMALITYTOLTARGET

Description

Type
Note

Default value

Affects routines

When set, this defines a target optimality tolerance to which the linearizations are solved to
Double

This is a soft version of XPRS_OPTIMALITYTOL, and will dynamically revert back to
XPRS_OPTIMALITYTOL if the desired accuracy could not be achieved.

0 (ignored, not set)

XSLPmaxim, XSLPminim

See also XSLP_FEASTOLTARGET,

XSLP_OTOL_A

Description Absolute static objective (2) convergence tolerance

Type Double

Note The static objective (2) convergence criterion does not measure convergence of individual

Default value

Affects routines

variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xsL.p_MvTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.

The variation in the objective function is defined as

d0bj = MAXiter(Obj) = MiNjter(Ob))

where lter is the xSLP_OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_OTOL_A

then the problem has converged on the absolute static objective (2) convergence criterion.
The static objective function (2) test is applied only if xSL.P_0OCOUNT is at least 2. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the optimality
target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between
1e-3 and T1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_R
XSLP_OTOL_R
Description Relative static objective (2) convergence tolerance

Fair Isaac Corporation Confidential and Proprietary Information 155

Control Parameters

Reference

Type
Note

Default value

Affects routines

Double

The static objective (2) convergence criterion does not measure convergence of individual
variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xsL.p_MvTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.

The variation in the objective function is defined as

00bj = MAXiter(0bj) = MIN e, (Obj)

where Iter is the xSLP_0OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < AVGer(Obj) x XSLP_OTOL_R

then the problem has converged on the relative static objective (2) convergence criterion.
The static objective function (2) test is applied only if xSL.p_0OCOUNT is at least 2. When the
value is set to be negative, the value is adjusted automatically by SLP, based on the optimality
target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between
Te-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_OCOUNT, XSLP_OTOL_A

XSLP_PRESOLVEZERO

Description Minimum absolute value for a variable which is identified as nonzero during SLP presolve
Type Double

Note During the SLP (nonlinear)presolve, a variable may be identified as being nonzero (for

Default value

Affects routines

example, because it is used as a divisor). A bound of plus or minus XSLP_PRESOLVEZERO
will be applied to the variable if it is identified as non-negative or non-positive.

1.0E-09

XSLPpresolve

XSLP_PRIMALINTEGRALREF

Description

Type
Note

Default value

Affects routines

Reference solution value to take into account when calculating the primal integral
Double

When a global optimum is known, this can used to calculate a globally valid primal integral. It
can also be used to indicate the target objective value still to be taken into account in the
integral.

XPRS_PLUSINFINITY

XSLPminim, XSLPmaxim

Fair Isaac Corporation Confidential and Proprietary Information 156

Control Parameters

Reference

XSLP_SHRINK

Description

Type
Note

Default value
Affects routines

See also

Multiplier to reduce a step bound
Double

If step bounding is enabled, the step bound for a variable will be decreased if successive
changes are in opposite directions. The step bound (B) for the variable will be reset to

B x XSLP_SHRINK.

If the step bound is already below the strict (delta or closure) tolerances, it will not be reduced
further.

0.5
XSLPmaxim, XSLPminim

XSLP_EXPAND, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_SHRINKBIAS

Description

Type
Note

Default value

Affects routines

Defines an overwrite / adjustment of step bounds for improving iterations
Double

Positive values overwrite XSLP_SHRINK only if the objective is improving. A negative value is
used to scale all step bounds in improving iterations.

0 (ignored, not set)

XSLPminim, XSLPmaxim

See also XSLP_SHRINK, XSLP_EXPAND, XSLP_SAMECOUNT

XSLP_STOL_A

Description Absolute slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except that

Default value
Affects routines

See also

the tolerances used are XSLP_STOL_A (instead of xs.p_1TOIL_A) and XSLP_STOL_R
(instead of xsT.p_TTOIL_R). See xs1.p_1TOL_A for a description of the test. When the value
is set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_ R. Good values for the control are usually fall between 1e-3 and
Te-6.

-1.0
XSLPmaxim, XSLPminim

XSLP_TITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 157

Control Parameters

Reference

XSLP_STOL_R

Description Relative slack convergence tolerance

Type Double

Note The slack convergence criterion is identical to the impact convergence criterion, except that

Default value
Affects routines

See also

the tolerances used are XSLP_STOL_A (instead of xs.p_1TOL_A) and XSLP_STOL_R
(instead of xsT.p_TTOIL,_R). See xsL.p_TTOL_R for a description of the test. When the value
is set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and
Te-6.

-1.0
XSLPmaxim, XSLPminim

XSLP_TITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A

XSLP_VALIDATIONTARGET_R

Description

Type
Note

Default value
Affects routines

See also

Feasiblity target tolerance
Double

Primary feasiblity control for SLP. When the relevant feasibility based convergence controls
are left at their default values, SLP will adjust their value to match the target. The control
defines a target value, that may not necessarily be attainable.

Te-6
XSLPmaxim, XSLPminim

XSLP_VALIDATIONTARGET_K

XSLP_VALIDATIONTARGET_K

Description

Type
Note

Default value
Affects routines

See also

Optimality target tolerance
Double

Primary optimality control for SLP. When the relevant optimality based convergence controls
are left at their default values, SLP will adjust their value to match the target. The control
defines a target value, that may not necessarily be attainable for problem with no strong
constraint qualifications.

Te-6
XSLPmaxim, XSLPminim

XSLP_VALIDATIONTARGET_R

Fair Isaac Corporation Confidential and Proprietary Information 158

Control Parameters

Reference

XSLP_VALIDATIONTOL_A

Description

Type
Note

Default value
Affects routines

See also

Absolute tolerance for the XSLPvalidate procedure
Double

xsLPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the
constraint is infeasible, then the difference (D) is tested against the absolute and relative
validation tolerances.

If D < XSLP_VALIDATIONTOL_A

then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.

If D < MAX(ABS(TPos), ABS(TNeg)) = XSLP_VALIDATIONTOL_A

then the constraint is within the relative validation tolerance. For each constraint which is
outside both the absolute and relative validation tolerances, validation factors are calculated
which are the factors by which the infeasibility exceeds the corresponding validation
tolerance; the smaller factor is printed in the validation report.

The validation index xs1.p_VALIDATIONINDEX_A is the largest of these factors which is an
absolute validation factor multiplied by the absolute validation tolerance; the validation index
XSLP_VALIDATIONINDEX_R is the largest of these factors which is a relative validation
factor multiplied by the relative validation tolerance.

0.00001
XSLPvalidate

XSLP_VALIDATIONINDEX A,XSLP_VALIDATIONINDEX_ R,XSLP_VALIDATIONTOL_R

XSLP_VALIDATIONTOL_R

Description

Type
Note

Relative tolerance for the XSLPvalidate procedure
Double

xsLpPvalidate checks the feasibility of a converged solution against relative and absolute
tolerances for each constraint. The left hand side and the right hand side of the constraint are
calculated using the converged solution values. If the calculated values imply that the
constraint is infeasible, then the difference (D) is tested against the absolute and relative
validation tolerances.

If D < XSLP_VALIDATIONTOL_A

then the constraint is within the absolute validation tolerance. The total positive (TPos) and
negative contributions (TNeg) to the left hand side are also calculated.

If D < MAX(ABS(TPos), ABS(TNeg)) + XSLP_VALIDATIONTOL_R

then the constraint is within the relative validation tolerance. For each constraint which is
outside both the absolute and relative validation tolerances, validation factors are calculated
which are the factors by which the infeasibility exceeds the corresponding validation
tolerance; the smaller factor is printed in the validation report.

The validation index xSL.P_VALIDATIONINDEX_A is the largest of these factors which is an
absolute validation factor multiplied by the absolute validation tolerance; the validation index

Fair Isaac Corporation Confidential and Proprietary Information 159

Control Parameters Reference

XSLP_VALIDATIONINDEX_ R is the largest of these factors which is a relative validation
factor multiplied by the relative validation tolerance.

Default value 0.00001

Affects routines xSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R,XSLP_VALIDATIONTOL_A
Description Absolute static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of individual

variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.

The variation in the objective function is defined as

50bj = MAXjter(Ob}) ~ MiNjger (Obj)

where lter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(00bj) < XSLP_VTOL_A

then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least xsL.P_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if xS1.p_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after step
bounding has been introduced. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the optimality target XSL.P_ VALIDATIONTARGET K. Good
values for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0

Affects routines XSILPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_R

XSLP_VTOL_R

Description Relative static objective (3) convergence tolerance

Type Double

Note The static objective (3) convergence criterion does not measure convergence of individual

variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and

Fair Isaac Corporation Confidential and Proprietary Information 160

Control Parameters

Reference

Default value

Affects routines

initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.
The variation in the objective function is defined as

50bj = MAXiter(0bj) =~ MiNjzer(Ob))

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(50bj) < AVGje(Obj) * XSLP_VTOL_R

then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least xsL.P_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSL.pP_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after step
bounding has been introduced. When the value is set to be negative, the value is adjusted
automatically by SLP, based on the optimality target XxSL.P_ VALIDATIONTARGET K. Good
values for the control are usually fall between 1e-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_A

XSLP_WTOL_A

Description Absolute extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended

criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution has
been found where at least one variable has converged on extended criteria and is at its step
bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not, then the
last converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:

00bj = Obj — LastConvergedObj

For a minimization problem, the sign is reversed.

If 60bj > XSLP_WTOL_A and

50bj > ABS(ConvergedObj) x XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.

When a solution is found which converges on extended criteria and with active step bounds,
the solution is saved and SLP optimization continues until one of the following:

(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;

(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;

Fair Isaac Corporation Confidential and Proprietary Information 161

Control Parameters

Reference

Default value

Affects routines

(3) none of the xs1.p_WCOUNT most recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.

When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target xSLP_VALIDATIONTARGET K. Good values for the control are usually fall
between 1e-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_WCOUNT, XSLP_WTOL_R

XSLP_WTOL_R

Description Relative extended convergence continuation tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended

Default value

Affects routines

criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution has
been found where at least one variable has converged on extended criteria and is at its step
bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not, then the
last converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:

00bj = Obj — LastConvergedObj

For a minimization problem, the sign is reversed.

If 60bj > XSLP_WTOL_A and

50bj > ABS(ConvergedObj) » XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.

If XSLP_WCOUNT is greater than zero, and a solution is found which converges on extended
criteria and with active step bounds, the solution is saved and SLP optimization continues
until one of the following:

(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;

(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;

(3) none of the xs.p_wWCOUNT most recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.

When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target xs1L.pP_VALIDATIONTARGET K. Good values for the control are usually fall
between 1e-4 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 162

Control Parameters

Reference

See also XSLP_WCOUNT, XSLP_WTOL_A

XSLP_XTOL_A

Description Absolute static objective function (1) tolerance

Type Double

Note It may happen that all the variables have converged, but some have converged on extended

Default value

Affects routines

criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these variables
is at its step bound. Because all the variables have converged, the solution is already
converged but the fact that some variables are at their step bound limit suggests that the
objective function could be improved by going further.

The variation in the objective function is defined as

d0bj = MAXjter(Obj) = MINjter(Ob))

where Iter is the XSLP_xXCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(50bj) < XSLP_XTOL_A

then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.

If ABS(50bj) < AVGje(Obj) x XSLP_XTOL_R

then the objective function is deemed to be static according to the relative static objective
function (1) criterion.

The static objective function (1) test is applied only until xsL.p_x1.IMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target xs1.pP_VALIDATIONTARGET K. Good values for the control are usually fall
between 1e-3 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_R
XSLP_XTOL_R
Description Relative static objective function (1) tolerance

Fair Isaac Corporation Confidential and Proprietary Information 163

Control Parameters

Reference

Type
Note

Default value

Affects routines

Double

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these variables
is at its step bound. Because all the variables have converged, the solution is already
converged but the fact that some variables are at their step bound limit suggests that the
objective function could be improved by going further.

The variation in the objective function is defined as

d0bj = MAXiter(Obj) = MIN 1 (Obj)

where Iter is the xSLP_xCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_XTOL_A

then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.

If ABS(60bj) < AVGpe-(Obj) ¥ XSLP_XTOL_R

then the objective function is deemed to be static according to the relative static objective
function (1) criterion.

The static objective function (1) test is applied only until xsL.p_xL.IMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

When the value is set to be negative, the value is adjusted automatically by SLP, based on the
optimality target xS1.P_ VALIDATIONTARGET_K. Good values for the control are usually fall
between 1e-4 and 1e-6.

-1.0

XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_A

XSLP_ZERO

Description Absolute tolerance

Type Double

Note If a value is below XSLP_ZERO in magnitude, then it will be regarded as zero in certain

Default value

formula calculations:

an attempt to divide by such a value will give a "divide by zero" error;

an exponent of a negative number will produce a "negative number, fractional exponent” error
if the exponent differs from an integer by more than XsLp_ZERO.

1.0E-10

Fair Isaac Corporation Confidential and Proprietary Information 164

Control Parameters Reference

Affects routines XxSLPevaluatecoef,XSLPevaluateformula

Fair Isaac Corporation Confidential and Proprietary Information 165

Control Parameters Reference

20.2 Integer control parameters

XSLP_ALGORITHM
Description Bit map describing the SLP algorithm(s) to be used
Type Integer
Values Bit Meaning
0 Do not apply step bounds.
1 Apply step bounds to SLP delta vectors only when required.
2 Estimate step bounds from early SLP iterations.
3 Use dynamic damping.
4 Do not update values which are converged within strict tolerance.
5 Retain previous value when cascading if determining row is zero.
6 Reset XSLP_DELTA_Z to zero when converged and continue SLP.
7 Quick convergence check.
8 Escalate penalties.
9 Use the primal simplex algorithm when all error vectors become inactive.
11 Continue optimizing after penalty cost reaches maximum.
12 Accept a solution which has converged even if there are still significant active
penalty error vectors.
13 Skip the solution polishing step if the LP postsolve returns a slightly infeasible, but
claimed optimal solution.
14 Step bounds are updated to accomodate cascaded values (otherwise cascaded
values are pushed to respect step bounds).
15 Apply clamping when converged on extended criteria only with some variables
having active step bounds.
16 Apply clamping when converged on extended criteria only.
Notes Bit 0: Do not apply step bounds. The default algorithm uses step bounds to force

convergence. Step bounds may not be appropriate if dynamic damping is used.

Bit 1: Apply step bounds to SLP delta vectors only when required. Step bounds can be
applied to all vectors simultaneously, or applied only when oscillation of the delta vector
(change in sign between successive SLP iterations) is detected.

Bit 2: Estimate step bounds from early SLP iterations. If initial step bounds are not being
explicitly provided, this gives a good method of calculating reasonable values. Values will
tend to be larger rather than smaller, to reduce the risk of infeasibility caused by excessive
tightness of the step bounds.

Bit 3: Use dynamic damping. Dynamic damping is sometimes an alternative to step
bounding as a means of encouraging convergence, but it does not have the same power to
force convergence as do step bounds.

Bit 4: Do not update values which are converged within strict tolerance. Models which are
numerically unstable may benefit from this setting, which does not update values which have
effectively hardly changed. If a variable subsequently does move outside its strict
convergence tolerance, it will be updated as usual.

Bit 5: Retain previous value when cascading if determining row is zero. If the determining
row is zero (that is, all the coefficients interacting with it are either zero or in columns with a

Fair Isaac Corporation Confidential and Proprietary Information 166

Control Parameters Reference

zero activity), then it is impossible to calculate a new value for the vector being cascaded.
The choice is to use the solution value as it is, or to revert to the assumed value

Bit 6: Reset xSLpP_DELTA_7 to zero when converged and continue SLP. One of the
mechanisms to avoid local optima is to retain small non-zero coefficients between delta
vectors and constraints, even when the coefficient should strictly be zero. If this option is set,
then a converged solution will be continued with zero coefficients as appropriate.

Bit 7: Quick convergence check. Normally, each variable is checked against all
convergence criteria until either a criterion is found which it passes, or it is declared "not
converged". Later (extended convergence) criteria are more expensive to test and, once an
unconverged variable has been found, the overall convergence status of the solution has
been established. The quick convergence check carries out checks on the strict criteria, but
omits checks on the extended criteria when an unconverged variable has been found.

Bit 8: Escalate penalties. Constraint penalties are increased after each SLP iteration where
penalty vectors are present in the solution. Escalation applies an additional scaling factor to
the penalty costs for active errors. This helps to prevent successive solutions becoming
"stuck" because of a particular constraint, because its cost will be raised so that other
constraints may become more attractive to violate instead and thus open up a new region to
explore.

Bit 9: Use the primal simplex algorithm when all error vectors become inactive. The primal
simplex algorithm often performs better than dual during the final stages of SLP optimization
when there are relatively few basis changes between successive solutions. As it is
impossible to establish in advance when the final stages are being reached, the
disappearance of error vectors from the solution is used as a proxy.

Bit 11: Continue optimizing after penalty cost reaches maximum. Normally if the penalty
cost reaches its maximum (by default the value of XPRS_PLUSINFINITY), the optimization
will terminate with an unconverged solution. If the maximum value is set to a smaller value,
then it may make sense to continue, using other means to determine when to stop.

Bit 12: Accept a solution which has converged even if there are still significant active
penalty error vectors. Normally, the optimization will continue if there are active penalty
vectors in the solution. However, it may be that there is no feasible solution (and so active
penalties will always be present). Setting bit 12 means that, if other convergence criteria are
met, then the solution will be accepted as converged and the optimization will stop.

Bit 13: Due to the nature of the SLP linearizations, and in particular because of the large
differences in the objective function (model objective against penalty costs) some dual
reductions in the linear presolver might introduce numerically instable reductions that cause
slight infeasibilities to appear in postsolve. It is typically more efficient to remove these
infeasibilities with an extra call to the linear optimizer; compared to switching these
reductions off, which usually has a significant cost in performance. This bit is provided for
numerically very hard problems, when the polishing step proves to be too expensive (XSLP
will report these if any in the final log summary).

Bit 14: Normally, cascading will respect the step bounds of the SLP variable being
cascaded. However, allowing the cascaded value to fall outside the step bounds (i.e.
expanding the step bounds) can lead to better linearizations, as cascading will set better
values for the SLP variables regarding their determining rows; note, that this later strategy
might interfere with convergence of the cascaded variables.

Bit 15: When clamping is applied, then in any iteration when the solution would normally
be deemed converged on extended criteria only, an extra step bound shrinking step is applied
to help imposing strict convergence. In this variant, clamping is only applied on variables that
have converged on extended criteria only and have active step bounds.

Bit 16: When clamping is applied, then in any iteration when the solution would normally
be deemed converged on extended criteria only, an extra step bound shrinking step is applied

Fair Isaac Corporation Confidential and Proprietary Information 167

Control Parameters Reference

to help imposing strict convergence. In this variant, clamping is applied on all variables that
have converged on extended criteria only.

The following constants are provided for setting these bits:

Setting bit 0
Setting bit 1
Setting bit 2
Setting bit 3
Setting bit 4
Setting bit 5
Setting bit 6
Setting bit 7
Setting bit 8
Setting bit 9
Setting bit 11
Setting bit 12
Setting bit 13
Setting bit 14

XSLP_NOSTEPBOUNDS
XSLP_STEPBOUNDSASREQUIRED
XSLP_ESTIMATESTEPBOUNDS
XSLP_DYNAMICDAMPING
XSLP_HOLDVALUES
XSLP_RETAINPREVIOUSVALUE
XSLP_RESETDELTAZ
XSLP_QUICKCONVERGENCECHECK
XSLP_ESCALATEPENALTIES
XSLP_SWITCHTOPRIMAL
XSLP_MAXCOSTOPTION
XSLP_RESIDUALERRORS
XSLP_NOLPPOLISHING
XSLP_CASCADEDBOUNDS

Setting bit15 XSLP_CLAMPEXTENDEDACTIVESB
Setting bit16 XSLP_CLAMPEXTENDEDALL

Recommended setting: Bits 1, 2, 5, 7 and usually bits 8 and 9.

Default value 166 (sets bits 1,2, 5,7)

Affects routines XSILPmaxim, XSLPminim

See also XSLP_DELTA_Z, XSLP_ERRORMAXCOST, XSLP_ESCALATION, XSLP_CLAMPSHRINK
XSLP_ANALYZE
Description Bit map activating additional options supporting model / solution path analyzis
Type Integer
Values Bit Meaning

0 Add solutions of the linearizations to the solution pool.

1 Add cascaded solutions to the solution pool.

2 Add line search solutions to the solution pool.

3 Include an extended iteration summary.

4 Run infeasibility analysis on infeasible iterations.

5 Save the solutions collected in the pool to disk.

6 Write the linearizations to disk at every XSLP_AUTOSAVE iterations.

7 Write the initial basis of the linearizations to disk at every XSLP_AUTOSAVE

iterations.

8 Create an XSLP save file at every XSLP_AUTOSAVE iterations.

Note The solution pool can be accessed using the memory attribute XSL.P_ SOLUTIONPOOL.

Normally, the value of this control does not affect the solution process itself. However, bit 3
(extended summary) will cause SLP to do more function evaluations, and the presence of
non-deterministic user functions might cause changes in the solution process. These options
are off by default due to performance considerations. The following constants are provided
for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 168

Control Parameters

Reference

Setting bit0 XSLP_ANALYZE_RECORDLINEARIZATION
Setting bit1 XSLP_ANALYZE_RECORDCASCADE

Setting bit2 XSLP_ANALYZE_RECORDLINESEARCH
Setting bit3 XSLP_ANALYZE_EXTENDEDFINALSUMMARY
Setting bit4 XSLP_ANALYZE_INFEASIBLE_ITERATION
Setting bit5 XSLP_ANALYZE_AUTOSAVEPOOL

Setting bit6 XSLP_ANALYZE_SAVELINEARIZATIONS
Setting bit7 XSLP_ANALYZE_SAVEITERBASIS

Setting bit8 XSLP_ANALYZE_SAVEFILE

Default value 0
See also XSLP_AUTOSAVE
XSLP_AUGMENTATION
Description Bit map describing the SLP augmentation method(s) to be used
Type Integer
Values Bit Meaning
0 Minimum augmentation.
1 Even handed augmentation.
2 Penalty error vectors on all non-linear equality constraints.
3 Penalty error vectors on all non-linear inequality constraints.
4 Penalty vectors to exceed step bounds.
5 Use arithmetic means to estimate penalty weights.
6 Estimate step bounds from values of row coefficients.
7 Estimate step bounds from absolute values of row coefficients.
8 Row-based step bounds.
9 Penalty error vectors on all constraints.
10 Intial values do not imply an SLP variable.
Notes Bit 0: Minimum augmentation. Standard augmentation includes delta vectors for all

variables involved in nonlinear terms (in non-constant coefficients or as vectors containing
non-constant coefficients). Minimum augmentation includes delta vectors only for variables
in non-constant coefficients. This produces a smaller linearization, but there is less control on
convergence, because convergence control (for example, step bounding) cannot be applied
to variables without deltas.

Bit 1: Even handed augmentation. Standard augmentation treats variables which appear in
non-constant coefficients in a different way from those which contain non-constant
coefficients. Even-handed augmentation treats them all in the same way by replacing each
non-constant coefficient C in a vector V by a new coefficient C x V in the "equals" column
(which has a fixed activity of 1) and creating delta vectors for all types of variable in the same
way.

Bit 2:Penalty error vectors on all non-linear equality constraints. The linearization of a
nonlinear equality constraint is inevitably an approximation and so will not generally be
feasible except at the point of linearization. Adding penalty error vectors allows the linear
approximation to be violated at a cost and so ensures that the linearized constraint is feasible.

Bit 3: Penalty error vectors on all non-linear inequality constraints. The linearization of a
nonlinear constraint is inevitably an approximation and so may not be feasible except at the

Fair Isaac Corporation Confidential and Proprietary Information 169

Control Parameters

Reference

Default value

Affects routines

point of linearization. Adding penalty error vectors allows the linear approximation to be
violated at a cost and so ensures that the linearized constraint is feasible.

Bit 4:Penalty vectors to exceed step bounds. Although it has rarely been found necessary
or desirable in practice, Xpress-SLP allows step bounds to be violated at a cost. This may
help with feasibility but it generally slows down or prevents convergence, so it should be used
only if found absolutely necessary.

Bit 5: Use arithmetic means to estimate penalty weights. Penalty weights are estimated
from the magnitude of the elements in the constraint or interacting rows. Geometric means
are normally used, so that a few excessively large or small values do not distort the weights
significantly. Arithmetic means will value the coefficients more equally.

Bit 6: Estimate step bounds from values of row coefficients. If step bounds are to be
imposed from the start, the best approach is to provide explicit values for the bounds.
Alternatively, Xpress-SLP can estimate the values from the range of estimated coefficient
sizes in the relevant rows.

Bit 7: Estimate step bounds from absolute values of row coefficients. If step bounds are to
be imposed from the start, the best approach is to provide explicit values for the bounds.
Alternatively, Xpress-SLP can estimate the values from the largest estimated magnitude of
the coefficients in the relevant rows.

Bit 8: Row-based step bounds. Step bounds are normally applied as bounds on the delta
variables. Some applications may find that using explicit rows to bound the delta vectors
gives better results.

Bit 9: Penalty error vectors on all constraints. If the linear portion of the underlying model
may actually be infeasible, then applying penalty vectors to all rows may allow identification
of the infeasibility and may also allow a useful solution to be found.

Bit 10: Having an initial value will not cause the augmentation to include the corresponding
delta variable; i.e. treat the variable as an SLP variable. Useful to provide initial values
necessary in the first linearization in case of a minimal augmentation, or as a convenience
option when it's easiest to set an initial value for all variables for some reason.

The following constants are provided for setting these bits:

Setting bit0 XSLP_MINIMUMAUGMENTATION
Setting bit 1 XSLP_EVENHANDEDAUGMENTATION
Setting bit2 XSLP_EQUALITYERRORVECTORS
Setting bit3 XSLP_ALLERRORVECTORS
Setting bit4 XSLP_PENALTYDELTAVECTORS
Setting bit5 XSLP_AMEANWEIGHT

Setting bit6 XSLP_SBFROMVALUES

Setting bit7 XSLP_SBFROMABSVALUES
Setting bit8 XSLP_STEPBOUNDROWS

Setting bit9 XSLP_ALLROWERRORVECTORS
Setting bit 10 XSLP_NOUPDATEIFONLYIV

The recommended setting is bits 2 and 3 (penalty vectors on all nonlinear constraints).
12 (sets bits 2 and 3)

XSLPconstruct

XSLP_AUTOSAVE

Description

Frequency with which to save the model

Fair Isaac Corporation Confidential and Proprietary Information 170

Control Parameters

Reference

Type
Note

Default value
Affects routines

See also

Integer

A value of zero means that the model will not automatically be saved. A positive value of n
will save model information at every nth SLP iteration as requested by XSLP_ANALYZIS.

0
XSLPmaxim, XSLPminim

XSLP_ANALYZE

XSLP_BARCROSSOVERSTART

Description

Type
Note

Default value
Affects routines

See also

Default crossover activation behaviour for barrier start
Integer

When XSLP_BARLIMIT is set, XSLP_BARCROSSOVERSTART offers an overwrite control on
when crossover is applied. A positive value indicates that crossover should be disabled in
iterations smaller than XSLP_BARCROSSOVERSTART and should be enabled afterwards, or
when stalling is detected as described in XSLP_BARSTARTOPS. A value of 0 indicates to
respect the value of XPRS_CROSSOVER and only overwrite its value when stalling is detected.
A value of -1 indicates to always rely on the value of XPRS_CROSSOVER.

0
XSLPmaxim, XSLPminim

XSLP_BARLIMIT, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARLIMIT

Description

Type
Note

Default value
Affects routines

See also

Number of initial SLP iterations using the barrier method
Integer

Particularly for larger models, using the Newton barrier method is faster in the earlier SLP
iterations. Later on, when the basis information becomes more useful, a simplex method
generally performs better. XSLP_BARLIMIT sets the number of SLP iterations which will be
performed using the Newton barrier method.

0
XSLPmaxim, XSLPminim

XSLP_BARCROSSOVERSTART, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

Fair Isaac Corporation Confidential and Proprietary Information 171

Control Parameters

Reference

XSLP_BARSTALLINGLIMIT

Description

Type
Note

Default value
Affects routines

See also

Number of iterations to allow numerical failures in barrier before switching to dual
Integer

On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver as specified by XSLP_BARLIMIT. On some numerically
difficult problems, the barrier may stop prematurely due to numerical issues. Such solves can
sometimes be finished if crossover is applied. After XSLP_ BARSTALLINGLIMIT such
attempts, SLP will automatically switch to use the dual simplex.

3
XSLPmaxim, XSLPminim

XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTALLINGOBJLIMIT

Description

Type
Note

Default value
Affects routines

See also

Number of iterations over which to measure the objective change for barrier iterations with no
crossover

Integer

On large problems, it may be beneficial to warm start progress by running a number of
iterations with the barrier solver without crossover by setting XSLP_BARLIMIT to a positive
value and setting XPRS_CROSSOVER to 0. A potential drawback is slower convergence due to
the interior point provided by the barrier solve keeping a higher number of variables active.
This may lead to stalling in progress, negating the benefit of using the barrier. When in the last
XSLP_BARSTALLINGOBJLIMIT iterations no significant progress has been made, crossover
is automatically enabled.

3
XSLPmaxim, XSLPminim

XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,
XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTARTOPS

Description

Type
Values

Controls behaviour when the barrier is used to solve the linearizations
Integer

Bit Meaning
Check objective progress when no crossover is applied.
Fall back to dual simplex if too many numerical problems are reported by the barrier.

If a non-vertex converged solution found by barrier without crossover can be
returned as a final solution.

Fair Isaac Corporation Confidential and Proprietary Information 172

Control Parameters

Reference

Note

Default value
Affects routines

See also

The following constants are provided for setting these bits:

Setting bit 0 BARSTARTOPS_STALLING_OBJECTIVE
Setting bit1 BARSTARTOPS_STALLING_NUMERICAL
Setting bit2 BARSTARTOPS_ALLOWINTERIORSOLUTION

1
XSLPmaxim, XSLPminim

XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTALLINGLIMIT,
XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_CALCTHREADS

Description

Type
Note

Default value
Affects routines

See also

Number of threads used for formula and derivatives evaluations
Integer

When beneficial, SLP can calculate formula values and partial derivative information in
parallel.

-1 (automatically determined)
XSLPmaxim, XSLPmaxim

XSLP_THREADS,

XSLP_CASCADE

Description

Type

Values

Note

Bit map describing the cascading to be used
Integer

Bit Meaning

0 Apply cascading to all variables with determining rows.

1 Apply cascading to SLP variables which appear in coefficients and which would
change by more than XPRS_FEASTOL.

2 Apply cascading to all SLP variables which appear in coefficients.

Apply cascading to SLP variables which are structural and which would change by
more than XPRS_FEASTOL.

Apply cascading to all SLP variables which are structural.

Create secondary order groupping DR rows with instantiated user functions together
in the order.

Normal cascading (bit 0) uses determining rows to recalculate the values of variables to be
consistent with values already available or already recalculated.

Other bit settings are normally required only in quadratic programming where some of the
SLP variables are in the objective function. The values of such variables may need to be
corrected if the corresponding update row is slightly infeasible. The following constants are
provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 173

Control Parameters

Reference

Default value

Affects routines

Setting bit0 XSLP_CASCADE_ALL

Setting bit1 XSLP_CASCADE_COEF_VAR

Setting bit2 XSLP_CASCADE_ALIL_COEF_VAR
Setting bit3 XSLP_CASCADE_STRUCT_VAR

Setting bit4 XSLP_CASCADE_ALL_STRUCT_VAR
Setting bit5 XSLP_CASCADE_SECONDARY_GROUPS

1

XSLPcascade

XSLP_CASCADENLIMIT

Description

Type
Note

Default value
Affects routines

See also

Maximum number of iterations for cascading with non-linear determining rows
Integer

Re-calculation of the value of a variable uses a modification of the Newton-Raphson method.
The maximum number of steps in the method is set by XSLP_CASCADENLIMIT. If the
maximum number of steps is taken without reaching a converged value, the best value found
will be used.

10
XSLPcascade

XSLP_CASCADE

XSLP_CONTROL

Description

Type

Values

Note

Bit map describing which Xpress NonLinear functions also activate the corresponding
Optimizer Library function

Integer

Bit Meaning

0 Xpress NonLinear problem management functions do NOT invoke the corresponding
Optimizer Library function for the underlying linear problem.

XSLPcopycontrols does NOT invoke XPRScopycontrols.
XSLPcopycallbacks does NOT invoke XPRScopycallbacks.
XSLPcopyprob does NOT invoke XPRScopyprob.
XSLPsetdefaults does NOT invoke XPRSsetdefaults.
¥sLpsave does NOT invoke XPRSsave.

¥SLPrestore does NOT invoke XPRSrestore.

(<) TG 2 B~ UV O

The problem management functions are:

XSLPcopyprob to copy from an existing problem;

XSLPcopycontrols and XSLPcopycallbacks to copy the current controls and callbacks
from an existing problem;

XSLPsetdefaults to reset the controls to their default values;

XSLPsave and XSLPrestore for saving and restoring a problem.

Fair Isaac Corporation Confidential and Proprietary Information 174

Control Parameters Reference

Default value 0 (no bits set)

Affects routines XSILPcopycontrols, XSLPcopycallbacks, XSLPcopyprob, XSLPrestore, XSLPsave,
XSLPsetdefaults

XSLP_CONVERGENCEOPS

Description Bit map describing which convergence tests should be carried out
Type Integer
Values Bit Meaning

0 Execute the closure tolerance checks.

1 Execute the delta tolerance checks.

2 Execute the matrix tolerance checks.

3 Execute the impact tolerance checks.

4 Execute the slack impact tolerance checks.

5 Check for user provided convergence.

6 Execute the objective range checks.

7 Execute the objective range + constraint activity check.

8 Execute the objective range + active step bound check.

9 Execute the convergence continuation check.

10 Take scaling of individual variables / rows into account.

11 Execute the validation target convergence checks.

12 Execute the first order optimality target convergence checks.
Note Provides fine tuned control (over setting the related convergence tolerances) of which

convergence checks are carried out.
The following constants are provided for setting these bits:

Setting bit0 XSLP_CONVERGEBIT_CTOL
Setting bit 1 XSLP_CONVERGEBIT_ATOL
Setting bit2 XSLP_CONVERGEBIT_MTOL
Setting bit3 XSLP_CONVERGEBIT_ITOL
Setting bit4 XSLP_CONVERGEBIT_STOL
Settingbit5 XSLP_CONVERGEBIT_USER
Setting bit6 XSLP_CONVERGEBIT_VTOL
Setting bit7 XSLP_CONVERGEBIT_XTOL
Setting bit8 XSLP_CONVERGEBIT_OTOL
Setting bit9 XSLP_CONVERGEBIT_WTOL
Setting bit 10 XSLP_CONVERGEBIT_EXTENDEDSCALING
Setting bit 11 CONVERGEBIT_VALIDATION
Setting bit 12 CONVERGEBIT_VALIDATION_K

Default value 7167 (bits 0-9 and 11-12 are set)

Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 175

Control Parameters Reference

XSLP_DAMPSTART

Description SLP iteration at which damping is activated
Type Integer
Note If damping is used as part of the SLP algorithm, it can be delayed until a specified SLP

iteration. This may be appropriate when damping is used to encourage convergence after an
un-damped algorithm has failed to converge.

Default value 0
Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_ALGORITHM, XSLP_DAMPEXPAND, XSLP_DAMPMAX, XSLP_DAMPMIN,
XSLP_DAMPSHRINK

XSLP_DCLIMIT

Description Default iteration delay for delayed constraints

Type Integer

Note If a delayed constraint does not have an explicit delay, then the value of XxSL.P_DCLIMIT will
be used.

Default value 5

Affects routines XSLPmaxim, XSLPminim

XSLP_DCLOG

Description Amount of logging information for activcation of delayed constraints

Type Integer

Note If XSL.P_DCLOG is set to 1, then a message will be produced for each DC as it is activated.
Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_DELAYUPDATEROWS

Description Number of SLP iterations before update rows are fully activated

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 176

Control Parameters

Reference

Notes

Default value

Affects routines

Update rows are an integral part of the augmented matrix used to create linear
approximations of the nonlinear problem. However, if determining rows are present, then it is
possible for some updated values to be calculated during cascading, and the corresponding
update rows are then not required. When SLP variables have explicit bounds, and particularly
when step bounding is enforced, update rows become important to the solutions actually
obtained. It is therefore normal practice to delay update rows for only a few initial SLP
iterations.

Update rows can only be delayed for variables which are not structural (that is, they do not
have explicit coefficients in the original problem) and for which determining rows are
provided.

2

XSLPmaxim, XSLPminim

XSLP_DELTAOFFSET

Description Position of first character of SLP variable name used to create name of delta vector

Type Integer

Note During augmentation, a delta vector, and possibly penalty delta vectors, are created for each

Default value
Affects routines

See also

SLP variable. They are created with names derived from the corresponding SLP variable.
Customized naming is possible using xsL.P_DELTAFORMAT etc to define a format and
XSLP_DELTAOFFSET to define the first character (counting from zero) of the variable name
to be used.

0
XSLPconstruct

XSLP_DELTAFORMAT, XSLP_MINUSDELTAFORMAT, XSLP_PLUSDELTAFORMAT

XSLP_DELTAZLIMIT

Description

Type
Note

Default value
Affects routines

See also

Number of SLP iterations during which to apply XSLP_DELTA_Z
Integer

XSLP_DELTA_ 7 is used to retain small derivatives which would otherwise be regarded as
zero. This is helpful in avoiding local optima, but may make the linearized problem more
difficult to solve because of the number of small nonzero elements in the resulting matrix.
XSLP_DELTAZLIMIT can be set to a nonzero value, which is then the number of iterations for
which xs1.p_DELTA_Z will be used. After that, small derivatives will be set to zero. A negative
value indicates no automatic perturbations to the derivatives in any situation.

0
XSLPmaxim, XSLPminim

XSLP_DELTA_Z

Fair Isaac Corporation Confidential and Proprietary Information 177

Control Parameters Reference

XSLP_DERIVATIVES

Description Bitmap describing the method of calculating derivatives
Type Integer
Values Bit Meaning
0 analytic derivatives where possible
1 avoid embedding numerical derivatives of instantiated functions into analytic
derivatives
Notes If no bits are set then numerical derivatives are calculated using finite differences.

Analytic derivatives cannot be used for formulae involving discontinuous functions. They may
not work well with functions which are not smooth (such as M2x), or where the derivative
changes very quickly with the value of the variable (such as 1.0G of small values).

Both first and second order analytic derivatives can either be calculated as symbolic
formulas, or by the means of auto-differentiation, with the exception that the second order
symbolic derivatives require that the first order derivatives are also calculated using the
symbolic method.

Default value 1
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

See also XSLP_JACOBIAN, XSLP_HESSIAN

XSLP_DETERMINISTIC

Description Determines if the parallel features of SLP should be guaranteed to be deterministic
Type Integer
Note Determinism can only be guaranteed if no callbacks are used, or if in the presence of

callbacks the effect of the callbacks only depend on local information provided by SLP.
Default value 1
Affects routines XSLPminim, XSLPmaxim

See also XSLP_MULTISTART_POOLSIZE,

XSLP_ECFCHECK

Description Check feasibility at the point of linearization for extended convergence criteria
Type Integer
Values 0 no check (extended criteria are always used);

1 check until one infeasible constraint is found;

2 check all constraints.

Fair Isaac Corporation Confidential and Proprietary Information 178

Control Parameters

Reference

Notes

Default value
Affects routines

See also

The extended convergence criteria measure the accuracy of the solution of the linear
approximation compared to the solution of the original nonlinear problem. For this to work,
the linear approximation needs to be reasonably good at the point of linearization. In
particular, it needs to be reasonably close to feasibility.

XSLP_ECFCHECK is used to determine what checking of feasibility is carried out at the point
of linearization. If the point of linearization at the start of an SLP iteration is deemed to be
infeasible, then the extended convergence criteria are not used to decide convergence at the
end of that SLP iteration.

If all that is required is to decide that the point of linearization is not feasible, then the search
can stop after the first infeasible constraint is found (parameter is set to 1). If the actual
number of infeasible constraints is required, then XsLP_ECFCHECK should be set to 2, and all
constraints will be checked.

The number of infeasible constraints found at the point of linearization is returned in
XSLP_ECFCOUNT.

1
Convergence criteria, XSLPmaxim, XSLPminim

XSLP_ECFCOUNT, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_ECHOXPRSMESSAGES

Description

Type
Note

Default value

Controls if the XSLP message callback should relay messages from the XPRS library.
Integer

In case the XSLP and XPRS logs are handled the same way by an application, setting this
control to 1 makes it sufficient to implement the XSLP messaging callback only.

0

XSLP_ERROROFFSET

Description

Type
Note

Default value
Affects routines

See also

Position of first character of constraint name used to create name of penalty error vectors
Integer

During augmentation, penalty error vectors may be created for some or all of the constraints.
The vectors are created with names derived from the corresponding constraint name.
Customized naming is possible using XSLP_MINUSERRORFORMAT and
XSLP_PLUSERRORFORMAT to define a format and XSLP_ERROROFFSET to define the first
character (counting from zero) of the constraint name to be used.

0
XSLPconstruct

XSLP_MINUSERRORFORMAT, XSLP_PLUSERRORFORMAT

Fair Isaac Corporation Confidential and Proprietary Information 179

Control Parameters Reference

XSLP_EVALUATE

Description Evaluation strategy for user functions
Type Integer
Values 0 use derivatives where possible;
1 always re-evaluate.
Note If a user function returns derivatives or returns more than one value, then it is possible for

Xpress NonLinear to estimate the value of the function from its derivatives if the new point of
evaluation is sufficiently close to the original. Setting XSLP_EVALUATE to 1 will force
re-evaluation of all functions regardless of how much or little the point of evaluation has
changed.

Default value 0
Affects routines XSLPevaluatecoef,XSLPevaluateformula

See also XSLP_FUNCEVAL

XSLP_FILTER

Description Bit map for controlling solution updates
Type Integer
Values Bit Meaning
0 retrain solution best according to the merit function.
1 check cascaded solutions against improvements in the merit function.
2 force minimum step sizes in line search.
3 accept the trust region step is the line search returns a zero step size.
Notes Bits 0 determine if XxST.Pgetslpsol should return the final converged solution, or the

solution which had the best value according to the merit function.

If bit 1is set, a cascaded solution which does not improve the merit function will be rejected
(XSLP will revert to the solution of the linearization).

Bits 2-3 determine the strategy for when the step direction is not improving according to the
merit function.

The following constants are provided for setting these bits:

Setting bit0 XSLP_FILTER_KEEPBEST

Setting bit1 XSLP_FILTER_CASCADE

Setting bit2 XSLP_FILTER_ZEROLINESEARCH
Setting bit3 XSLP_FILTER_ZEROLINESEARCHTR

Default value 11 (bit 0,1,3)
Affects routines XSLPmaxim, XSLPminim, XSLPcascade

See also XSLP_MERITLAMBDA, XSLP_CASCADE, XSLP_LSSTART, XSLP_LSITERLIMIT,
XSLP_LSPATTERNLIMIT

Fair Isaac Corporation Confidential and Proprietary Information 180

Control Parameters

Reference

XSLP_FINDIV
Description Option for running a heuristic to find a feasible initial point
Type Integer
Values -1 Automatic (default).
0 Disable the heuristic.
1 Enable the heuristic.
Notes The procedure uses bound reduction (and, up to an extent, probing) to obtain a point in the

Default value

Affects routines

initial bounding box that is feasible for the bound reduction techniques.
If an initial point is already specified and is found not to violate bound reduction, then the
heuristic is not run and the given point is used as the initial solution.

-1

XSLPmaxim, XSLPminim

XSLP_FUNCEVAL

Description

Type

Values

Notes

Bit map for determining the method of evaluating user functions and their derivatives
Integer

Bit Meaning
evaluate function whenever independent variables change.
evaluate function when independent variables change outside tolerances.

application of bits 3-4: 0 = functions which do not have a defined re-evaluation
mode;1 = all functions.

tangential derivatives.
forward derivatives

application of bits 6-7: 0 = functions which do not have a defined derivative mode;1 =
all functions.

Bits 3-4 determine the type of function re-evaluation. If both bits are zero, then the settings for
each individual function are used.

If bit 3 or bit 4 is set, then bit 5 defines which functions the setting applies to. If it is setto 1,
then it applies to all functions. Otherwise, it applies only to functions which do not have an
explicit setting of their own.

Bits 6-7 determine the type of calculation for numerical derivatives. If both bits are zero, then
the settings for each individual function are used.

If bit 6 or bit 7 is set, then bit 8 defines which functions the setting applies to. If it is set to 1,
then it applies to all functions. Otherwise, it applies only to functions which do not have an
explicit setting of their own.

The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 181

Control Parameters

Reference

Default value
Affects routines

See also

Setting bit3 XSLP_RECALC

Setting bit4 XSLP_TOLCALC

Setting bit5 XSLP_ALLCALCS

Setting bit6 XSLP_2DERIVATIVE
Setting bit7 XSLP_1DERIVATIVE
Setting bit8 XSLP_ALLDERIVATIVES

0
XSLPevaluatecoef, XSLPevaluateformula

XSLP_EVALUATE

XSLP_GRIDHEURSELECT

Description

Type

Values

Note

Note

Default value

Affects routines

Bit map selectin which heuristics to run if the problem has variable with an integer delta
Integer

Bit Meaning

0 Enumeration: try all combinations.
1 Simple search heuristics.
2 Simulated annealing.

A value of 0 indicates that integer deltas are only taken into consideration during the SLP
iterations.

The enumeration option can be useful for cases where the number of possible values of the
variables with an integer delta is small.

3 (bits 1-2 are set)

XSLPmaxim, XSLPminim

XSLP_HEURSTRATEGY

Description

Type

Values

Default value

Affects routines

Branch and Bound: This specifies the MINLP heuristic strategy. On some problems it is worth
trying more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.

Integer

-1 Automatic selection of heuristic strategy.
0 No heuristics.

1 Basic heuristic strategy.

2 Enhanced heuristic strategy.

3 Extensive heuristic strategy.

4 Run all heuristics without effort limits.

-1

XSLPminim, XSLPmaxim.

Fair Isaac Corporation Confidential and Proprietary Information 182

Control Parameters Reference

XSLP_HESSIAN

Description Second order differentiation mode when using analytical derivatives

Type Integer

Values -1,0 automatic selection
1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is also set to symbolic mode.

Default value -1

See also XSLP_DERIVATIVES, XSLP_JACOBIAN

XSLP_INFEASLIMIT

Description The maximum number of consecutive infeasible SLP iterations which can occur before
Xpress-SLP terminates

Type Integer

Note An infeasible solution to an SLP iteration means that is likely that Xpress-SLP will create a

poor linear approximation for the next SLP iteration. Sometimes, small infeasibilities arise
because of numerical difficulties and do not seriously affect the solution process. However, if
successive solutions remain infeasible, it is unlikely that Xpress-SLP will be able to find a
feasible converged solution. XSLP_INFEASLIMIT sets the number of successive SLP
iterations which must take place before Xpress-SLP terminates with a status of "infeasible
solution”.

Default value 3

Affects routines XSLPmaxim, XSLPminim

XSLP_ITERLIMIT

Description The maximum number of SLP iterations

Type Integer

Note If Xpress-SLP reaches XxSLP_ITERLIMIT without finding a converged solution, it will stop.

For MISLP, the limit is on the number of SLP iterations at each node.
Default value 1000

Affects routines xSLPglobal, XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 183

Control Parameters

Reference

XSLP_JACOBIAN
Description First order differentiation mode when using analytical derivatives
Type Integer
Values -1,0 automatic selection
1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation
Note Symbolic mode differentiation for the second order derivatives is only available when

Default value

XSLP_JACOBIAN is set to symbolic mode.

1

See also XSLP_DERIVATIVES, XSLP_HESSIAN

XSLP_LINQUADBR

Description Use linear and quadratic constraints and objective function to further reduce bounds on all
variables

Type Integer

Values -1 automatic selection
0 disable
1 enable

Note While bound reduction is effective when performed on nonlinear, nonquadratic constraints

Default value

and objective function, it can be useful to obtain tightened bounds from linear and quadratic
constraints, as the corresponding variables may appear in other nonlinear constraints. This
option then allows for a slightly more expensive bound reduction procedure, at the benefit of
further reduction in the problem’s bounds.

T

See also XSLP_PRESOLVEOPS, XSLP_PROBING
XSLP_LOG

Description Level of printing during SLP iterations
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 184

Control Parameters Reference

Values -1 none
0 minimal
1 normal: iteration, penalty vectors
2 omit from convergence log any variables which have converged
3

omit from convergence log any variables which have already converged (except
variables on step bounds)

4 include all variables in convergence log
5 include user function call communications in the log
Default value 0

Affects routines XSLPmaxim, XSLPminim

XSLP_LSITERLIMIT

Description Number of iterations in the line search
Type Integer
Notes The line search attempts to refine the step size suggested by the trust region step bounds.

The line search is a local method; the control sets a maximum on the number of model
evaluations during the line search.

Default value 0
See also XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSPATTERNLIMIT

Description Number of iterations in the pattern search preceding the line search

Type Integer

Notes When positive, defines the number of samples taken along the step size suggested by the
trust region step bounds before initiating the line search. Useful for highly non-convex
problems.

Default value 0

See also XSLP_LSITERLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_LSSTART

Description Iteration in which to active the line search

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 185

Control Parameters Reference

Notes
Default value 8
See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSZEROLIMIT, XSLP_FILTER

Affects routines XSILPmaxim, XSLPminim

XSLP_LSZEROLIMIT

Description Maximum number of zero length line search steps before line search is deactivated
Type Integer

Notes When the line search repeatedly returns a zero step size, counteracted by bits set on

XSLP_FILTER, the effort spentin line search is redundant, and line search will be deactivated
after XSLP_LSZEROLIMIT consecutive such iteration.

Default value 5
See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_FILTER

Affects routines XSLPmaxim, XSLPminim

XSLP_MAXTIME

Description The maximum time in seconds that the SLP optimization will run before it terminates
Type Integer

Notes The (elapsed) time is measured from the beginning of the first SLP optimization.

If XSLP_MAXTIME is negative, Xpress NonLinear will terminate after (-XSLP_MAXTIME)
seconds. If it is positive, Xpress NonLinear will terminate in MISLP after XSLP_MAXTIME
seconds or as soon as an integer solution has been found thereafter.

Default value 0

Affects routines xSILPglobal,XSLPmaxim, XSLPminim

XSLP_MIPALGORITHM
Description Bitmap describing the MISLP algorithms to be used
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 186

Control Parameters

Reference

Values

Notes

Bit Meaning

0 Solve initial SLP to convergence.

2 Relax step bounds according to XxS1.p_ MIPRELAXSTEPBOUNDS after initial node.

3 Fix step bounds according to XxSLP_MIPFIXSTEPBOUNDS after initial node.

4 Relax step bounds according to XSL.P_ MIPRELAXSTEPBOUNDS at each node.

5 Fix step bounds according to XxS1.P_ MIPFIXSTEPBOUNDS at each node.

6 Limit iterations at each node to XSLP_MIPITERLIMIT.

7 Relax step bounds according to XxST.p_ MIPRELAXSTEPBOUNDS after MIP solution is
found.

8 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after MIP solution is
found.

9 Use MIP at each SLP iteration instead of SLP at each node.

10 Use MIP on converged SLP solution and then SLP on the resulting MIP solution.

XSLP_MIPALGORITHM determines the strategy of xs1.Pglobal for solving MINLP problems.
The recommended approach is to solve the problem first without reference to the global
variables. This can be handled automatically by setting bit 0 of XSL.P_MIPALGORITHY,; if
done manually, then optimize using the "I" option to prevent the Optimizer presolve from
changing the problem.

Some versions of the optimizer re-run the initial node as part of the global search; it is
possible to initiate a new SLP optimization at this point by relaxing or fixing step bounds (use
bits 2 and 3). If step bounds are fixed for a class of variable, then the variables in that class
will not change their value in any child node.

At each node, it is possible to relax or fix step bounds. It is recommended that step bounds
are relaxed, so that the new problem can be solved starting from its parent, but without undue
restrictions cased by step bounding (use bit 4). Exceptionally, it may be preferable to restrict
the freedom of child nodes by relaxing fewer types of step bound or fixing the values of some
classes of variable (use bit 5).

When the optimal node has been found, it is possible to fix the global variables and then
re-optimize with SLP. Step bounds can be relaxed or fixed for this optimization as well (use
bits 7 and 8).

Although it is ultimately necessary to solve the optimal node to convergence, individual nodes
can be truncated after xst.p_ MIPITERLIMIT SLP iterations. Set bit 6 to activate this feature.
The normal MISLP algorithm uses SLP at each node. One alternative strategy is to use the
MIP optimizer for solving each SLP iteration. Set bit 9 to implement this strategy ("MIP within
SLP").

Another strategy is to solve the problem to convergence ignoring the nature of the global
variables. Then, fixing the linearization, use MIP to find the optimal setting of the global
variables. Then, fixing the global variables, but varying the linearization, solve to convergence.
Set bit 10 to implement this strategy ("SLP then MIP").

For mode details about MISLP algorithms and strategies, see the separate section.

The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 187

Control Parameters

Reference

Default value
Affects routines

See also

Setting bit0 XSLP_MIPINITIALSLP
Setting bit 1 XSLP_MIPFINALSLP
Setting bit2 XSLP_MIPINITIALRELAXSLP
Setting bit3 XSLP_MIPINITIALFIXSLP
Setting bit4 XSLP_MIPNODERELAXSLP
Setting bit5 XSLP_MIPNODEFIXSLP
Setting bit6 XSLP_MIPNODELIMITSLP
Setting bit7 XSLP_MIPFINALRELAXSLP
Setting bit8 XSLP_MIPFINALFIXSLP
Setting bit9 XSLP_MIPWITHINSLP
Setting bit 10 XSLP_SLPTHENMIP

Setting bit 11 XSLP_NOFINALROUNDING

17 (bits 0 and4 are set)
XSLPglobal

XSLP_ALGORITHM, XSLP_MIPFIXSTEPBOUNDS, XSLP_MIPITERLIMIT,
XSLP_MIPRELAXSTEPBOUNDS

XSLP_MIPCUTOFFCOUNT

Description

Type

Notes

Default value
Affects routines

See also

Number of SLP iterations to check when considering a node for cutting off
Integer

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off
at the current SLP iteration if the objective function for the last xs.p_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_4 and OBJ x XSLP_MIPCUTOFF_g where OBJ is the best integer solution
obtained so far.

The test is not applied until at least xsL.p_MIPCUTOFFLIMIT SLP iterations have been
carried out at the current node.

5
XSLPglobal

XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFLIMIT

XSLP_MIPCUTOFFLIMIT

Description

Type

Notes

Number of SLP iterations to check when considering a node for cutting off
Integer

If the objective function is worse by a defined amount than the best integer solution obtained
so far, then the SLP will be terminated (and the node will be cut off). The node will be cut off
at the current SLP iteration if the objective function for the last xs1.p_MIPCUTOFFCOUNT SLP
iterations are all worse than the best obtained so far, and the difference is greater than
XSLP_MIPCUTOFF_, and OBJ x XSLP_MIPCUTOFF_g where OBJ is the best integer solution
obtained so far.

Fair Isaac Corporation Confidential and Proprietary Information 188

Control Parameters

Reference

Default value
Affects routines

See also

The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have been
carried out at the current node.

10
XSLPglobal

XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFCOUNT

XSLP_MIPDEFAULTALGORITHM

Description

Type
Note

Default value
Affects routines

See also

Default algorithm to be used during the global search in MISLP

Integer

The default algorithm used within SLP during the MISLP optimization can be set using
XSLP_MIPDEFAULTALGORITHM. It will not necessarily be the same as the one best suited to
the initial SLP optimization.

3 (primal simplex)

XSLPglobal

XPRS_DEFAULTALG, XSLP_MIPALGORITHM

XSLP_MIPFIXSTEPBOUNDS

Description

Type

Values

Note

Default value
Affects routines

See also

Bitmap describing the step-bound fixing strategy during MISLP
Integer

Bit Meaning

Fix step bounds on structural SLP variables which are not in coefficients.
Fix step bounds on all structural SLP variables.

Fix step bounds on SLP variables appearing only in coefficients.

Fix step bounds on SLP variables appearing in coefficients.

w N O

At any node (including the initial and optimal nodes) it is possible to fix the step bounds of
classes of variables so that the variables themselves will not change. This may help with
convergence, but it does increase the chance of a local optimum because of excessive
artificial restrictions on the variables.

0
XSLPglobal

XSLP_MIPALGORITHM, XSLP_MIPRELAXSTEPBOUNDS

Fair Isaac Corporation Confidential and Proprietary Information

189

Control Parameters

Reference

XSLP_MIPITERLIMIT

Description

Type
Note

Default value
Affects routines

See also

Maximum number of SLP iterations at each node
Integer

If bit 6 of xSL.P_ MIPALGORITHM is set, then the number of iterations at each node will be
limited to XSLP_MIPITERLIMIT.

0
XSLPglobal

XSLP_ITERLIMIT, XSLP_MIPALGORITHM

XSLP_MIPLOG

Description

Type
Note

Default value
Affects routines

See also

Frequency with which MIP status is printed
Integer

By default (zero or negative value) the MIP status is printed after syncronization points. If
XSLP_MIPLOG is set to a positive integer, then the current MIP status (node number, best
value, best bound) is printed every XSLP_MIPLOG nodes.

0 (deterministic logging)
XSLPglobal

XSLP_LOG, XSLP_SLPLOG

XSLP_MIPOCOUNT

Description

Type
Note

Default value
Affects routines

See also

Number of SLP iterations at each node over which to measure objective function variation
Integer

The objective function test for MIP termination is applied only when step bounding has been
applied (or xs1.p_SBSTART SLP iterations have taken place if step bounding is not being
used). The node will be terminated at the current SLP iteration if the range of the objective
function values over the last xsL.p_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or
within OBJ x XSLP_MIPOTOL_R where OBJ is the average value of the objective function over
those iterations.

5
XSLPglobal

XSLP_MIPOTOL_A XSLP_MIPOTOL_R XSLP_SBSTART

Fair Isaac Corporation Confidential and Proprietary Information 190

Control Parameters

Reference

XSLP_MIPRELAXSTEPBOUNDS

Description

Type

Values

Note

Default value
Affects routines

See also

Bitmap describing the step-bound relaxation strategy during MISLP
Integer

Bit Meaning

Relax step bounds on structural SLP variables which are not in coefficients.
Relax step bounds on all structural SLP variables.

Relax step bounds on SLP variables appearing only in coefficients.

Relax step bounds on SLP variables appearing in coefficients.

w N » O

At any node (including the initial and optimal nodes) it is possible to relax the step bounds of
classes of variables so that the variables themselves are completely free to change. This may
help with finding a global optimum, but it may also increase the solution time, because more
SLP iterations are necessary at each node to obtain a converged solution.

15 (relax all types)
XSLPglobal

XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS

XSLP_MULTISTART

Description
Type

Values

Note

Default value
Affects routines

See also

The multistart master control. Defines if the multistart search is to be initiated, or if only the
baseline model is to be solved.

Integer

-1 Depends on if any multistart jobs have been added.
0 Multistart is off.

1 Multistart is on.

By default, the multistart search will always be initiated if multistart jobs have been added to
the problem. The (original) base problem is not part of the multisearch job pool. To make it
so, add an job with no extra settings (template job). It might be useful to load multiple
template jobs, and customize them from callbacks.

-1
XSLPminim, XSLPmaxim

XSLP_MULTISTART_MAXSOLVES, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXSOLVES

Description

The maximum number of jobs to create during the multistart search.

Fair Isaac Corporation Confidential and Proprietary Information 191

Control Parameters

Reference

Type
Note

Default value
Affects routines

See also

Integer

This control can be increased on the fly during the mutlistart search: for example, if a job gets
refused by a user callback, the callback may increase this limit to account for the rejected job.

0 (no upper limit)
XSLPminim, XSLPmaxim

XSLP_MULTISTART, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXTIME

Description

Type
Note

Default value
Affects routines

See also

The maximum total time to be spent in the mutlistart search.
Integer

XSLP_MAXTIME applies on a per job instance basis. There will be some time spent even after
XSLP_MULTISTART_MAXTIME has elapsed, while the running jobs get terminated and their
results collected.

0 (no upper limit)
XSLPminim, XSLPmaxim

XSLP_MULTISTART, XSLP_MULTISTART_MAXSOLVES

XSLP_MULTISTART_POOLSIZE

Description

Type
Default value

Note

Affects routines

See also

The maximum number of problem objects allowed to pool up before synchronization in the
deterministic multistart.

Integer
2

Deterministic multistart is ensured by guaranteeing that the multistart solve results are
evaluated in the same order every time. Solves that finish too soon can be pooled until all
earlier started solves finish, allowing the system to start solving other multistart instances in
the meantime on idle threads. Larger pool sizes will provide better speedups, but will require
larger amounts of memory. Positive values are interpreted as a multiplier on the maximum
number of active threads used, while negative values are interpreted as an absolute limit (and
the absolute value is used). A value of zero will mean no result pooling.

XSLPminim, XSLPmaxim

XSLP_MULTISTART, XSLP_DETERMINISTIC

Fair Isaac Corporation Confidential and Proprietary Information 192

Control Parameters

Reference

XSLP_MULTISTART_SEED

Description

Type
Default value
Affects routines

See also

Random seed used for the automatic generation of initial point when loading multistart
presets

Integer
0
XSLPminim, XSLPmaxim

XSLP_MULTISTART

XSLP_MULTISTART_THREADS

Description
Type

Default value
Note

Affects routines

The maximum number of threads to be used in multistart

Integer

-1

The current hard upper limit on the number of threads to be sued in multistart is 64.

XSLPminim, XSLPmaxim

See also XSLP_MULTISTART

XSLP_OCOUNT

Description Number of SLP iterations over which to measure objective function variation for static
objective (2) convergence criterion

Type Integer

Note The static objective (2) convergence criterion does not measure convergence of individual

variables. Instead, it measures the significance of the changes in the objective function over
recent SLP iterations. It is applied when all the variables interacting with active constraints
(those that have a marginal value of at least xs.p_MvTOL) have converged. The rationale is
that if the remaining unconverged variables are not involved in active constraints and if the
objective function is not changing significantly between iterations, then the solution is
more-or-less practical.

The variation in the objective function is defined as

60bj = MAXi1e(0bj) = MIN 1 (Obj)

where Iter is the xSLP_0OCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_OTOL_A

then the problem has converged on the absolute static objective (2) convergence criterion.
The static objective function (2) test is applied only if xSL.P_OCOUNT is at least 2.

Fair Isaac Corporation Confidential and Proprietary Information 193

Control Parameters Reference

Default value 5
Affects routines XSLPmaxim, XSLPminim

See also XSLP_OTOL_A XSLP_OTOL_R

XSLP_PENALTYINFOSTART

Description Iteration from which to record row penalty information
Type Integer
Note Information about the size (current and total) of active penalties of each row and the number

of times a penalty vector has been active is recorded starting at the SLP iteration number
given by XSLP_PENALTYINFOSTART.

Default value 3

XSLP_POSTSOLVE

Description This control determines whether postsolving should be performed automatically
Type Integer
Values 0 Do not automatically postsolve.
1 Postsolve automatically.
Default value 0
See also XSLP_PRESOLVE

XSLP_PRESOLVE

Description This control determines whether presolving should be performed prior to starting the main
algorithm

Type Integer

Values 0 Disable SLP presolve.

Activate SLP presolve.

Low memory presolve. Original problem is not restored by postsolve and dual
solution may not be completely postsolved.

Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration).

Default value 1
Affects routines xSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,
XSLP_PRESOLVEPASSLIMIT

Fair Isaac Corporation Confidential and Proprietary Information 194

Control Parameters Reference

XSLP_PRESOLVELEVEL

Description This control determines the level of changes presolve may carry out on the problem
Type Integer
Values XSLP_PRESOLVELEVEL_LOCALIZED Individual rows only presolve, no nonlinear

transformations.

XSLP_PRESOLVELEVEL_BASIC Individual rows and bounds only presolve, no nonlinear
transformations.

XSLP_PRESOLVELEVEL_LINEAR Presolve allowing changing problem dimension, no
nonlinear transformations.

XSLP_PRESOLVELEVEL_FULL Full presolve.

Note XSLP_PRESOLVEOPS and XSLP_REFORMULATE controls the operations carried out in
presolve. XSLP_PRESOLVELEVEL controls how those operations may change the problem.

Default value XSLP_PRESOLVELEVEL_FULL
Affects routines xSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVE, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,
XSLP_PRESOLVEPASSLIMIT

XSLP_PRESOLVEOPS

Description Bitmap indicating the SLP presolve actions to be taken
Type Integer
Values Bit Meaning

0 Generic SLP presolve.

1 Explicitly fix columns identified as fixed to zero.
2 Explicitly fix all columns identified as fixed.

3 SLP bound tightening.

4 MISLP bound tightening.

5 Bound tightening based on function domains.
8 Do not presolve coefficients.

9 Do not remove delta variables.
10 Avoid reductions that can not be dual postsolved.
11 Allow eliminations on determined variables.
Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is

independent of the Optimizer presolve (which is carried out during each SLP iteration).
Default value 24
Affects routines xSLPconstruct, XSLPpresolve

See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVE, XSLP_PRESOLVEOPS,
XSLP_PRESOLVEPASSLIMIT, XSLP_REFORMULATE

Fair Isaac Corporation Confidential and Proprietary Information 195

Control Parameters

Reference

XSLP_PRESOLVEPASSLIMIT

Description

Type
Note

Default value

Affects routines

Maximum number of passes through the problem to improve SLP bounds
Integer

The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) is
independent of the Optimizer presolve (which is carried out during each SLP iteration). The
procedure carries out a number of passes through the SLP problem, seeking to tighten
implied bounds or to identify fixed values. XSLP_PRESOLVEPASSLIMIT can be used to
change the maximum number of passes carried out.

20

XSLPpresolve

See also XSLP_PRESOLVE
XSLP_PROBING
Description This control determines whether probing on a subset of variables should be performed prior
to starting the main algorithm. Probing runs multiple times bound reduction in order to further
tighten the bounding box.
Type Integer
Values -1 Automatic.
0 Disable SLP probing.
1 Activate SLP probing only on binary variables.
2 Activate SLP probing only on binary or unbounded integer variables.
3 Activate SLP probing only on binary or integer variables.
4 Activate SLP probing only on binary, integer variables, and unbounded continuous
variables.
5 Activate SLP probing on any variable.

Default value

Note

Affects routines

See also

-1: XSLP sets the probing level based on the problem size

The Xpress NonLinear nonlinear probing, which is carried out once, is independent of the
Optimizer presolve (which is carried out during each SLP iteration). The probing level allows
for probing on an expanding set of variables, allowing for probing on all variables (level 5) or
only those for which probing is more likely to be useful (binary variables).

XSLPpresolve

XSLP_PRESOLVEOPS,

XSLP_REFORMULATE

Description

Controls the problem reformulations carried out before augmentation. This allows SLP to
take advantage of dedicated algorithms for special problem classes.

Fair Isaac Corporation Confidential and Proprietary Information 196

Control Parameters

Reference

Type
Values

Default value

Note

Affects routines

Integer

Bit Meaning

Solve convex quadratic objectives using the XPRS library .
Convert non-convex quadratic objectives to SLP constructs .
Solve convex quadratic constraints using the XPRS library.
Convert non-convex QCQP constraints to SLP constructs.

Convexity of a quadratic only problem may be checked by calling the optimizer to
solve the instance.

S w N r O

-1: All structures are checked against reformulation

The reformulation is part of XSLP presolve, and is only carried out if XSLP_PRESOLVE is
nonzero. The following constants are provided for setting these bits:

Setting bit0 XSLP_REFORMULATE_SLP2QP
Setting bit1 XSLP_REFORMULATE_QP2SLP
Setting bit2 XSLP_REFORMULATE_SLP2QCQP
Setting bit3 XSLP_REFORMULATE_QCQP2SLP
Setting bit4 XSLP_REFORMULATE_QPSOLVE

XSLPconstruct, XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim,
XSLPnlpoptimize, XSLPglobal

XSLP_SAMECOUNT

Description

Type
Note

Default value
Affects routines

See also

Number of steps reaching the step bound in the same direction before step bounds are
increased

Integer

If step bounding is enabled, the step bound for a variable will be increased if successive
changes are in the same direction. More precisely, if there are XSLP_ SAMECOUNT successive
changes reaching the step bound and in the same direction for a variable, then the step
bound (B) for the variable will be reset to

B« XSLP_EXPAND.

3
XSLPmaxim, XSLPminim

XSLP_EXPAND

XSLP_SAMEDAMP

Description

Type
Note

Number of steps in same direction before damping factor is increased
Integer

If dynamic damping is enabled, the damping factor for a variable will be increased if
successive changes are in the same direction. More precisely, if there are XSLP_SAMEDAMP
successive changes in the same direction for a variable, then the damping factor (D) for the
variable will be reset to

D * XSLP_DAMPEXPAND + XSLP_DAMPMAX x (1 - XSLP_DAMPEXPAND)

Fair Isaac Corporation Confidential and Proprietary Information 197

Control Parameters Reference

Default value 3
See also Xpress-SLP Solution Process, XSL.P_ ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX

Affects routines XSLPmaxim, XSLPminim

XSLP_SBROWOFFSET

Description Position of first character of SLP variable name used to create name of SLP lower and upper
step bound rows

Type Integer

Note During augmentation, a delta vector is created for each SLP variable. Step bounds are
provided for each delta variable, either using explicit bounds, or by using rows to provide
lower and upper bounds. If such rows are used, they are created with names derived from the
corresponding SLP variable. Customized naming is possible using xSL.P_ SBLOROWEORMAT
and XSLP_SBUPROWFORMAT to define a format and XSLP_ SBROWOFFSET to define the first
character (counting from zero) of the variable name to be used.

Default value 0

Affects routines XSLPconstruct

See also XSLP_SBLOROWFORMAT, XSLP_SBUPROWFORMAT

XSLP_SBSTART

Description SLP iteration after which step bounds are first applied

Type Integer

Note If step bounds are used, they can be applied for the whole of the SLP optimization process, or

started after a number of SLP iterations. In general, it is better not to apply step bounds from
the start unless one of the following applies:

(7) the initial estimates are known to be good, and explicit values can be provided for initial
step bounds on all variables; or

(2) the problem is unbounded unless all variables are step-bounded.

Default value 8

Affects routines XSILPmaxim, XSLPminim

XSLP_SCALE
Description When to re-scale the SLP problem
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 198

Control Parameters

Reference

Values

Note

Default value

Affects routines

No re-scaling.

Re-scale every SLP iteration up to XxSL.P_SCALECOUNT iterations after the end of
barrier optimization.

Re-scale every SLP iteration up to XSLP_ SCALECOUNT iterations in total.
Re-scale every SLP iteration until primal simplex is automatically invoked.
Re-scale every SLP iteration.

Re-scale every xSL.p_SCALECOUNT SLP iterations.

Re-scale every xsL.p_ SCALECOUNT SLP iterations after the end of barrier
optimization.

= O

o O WD

During the SLP optimization, matrix entries can change considerably in magnitude, even when
the formulae in the coefficients are not very nonlinear. Re-scaling of the matrix can reduce
numerical errors, but may increase the time taken to achieve convergence.

1

XSLPmaxim, XSLPminim

See also XSLP_SCALECOUNT

XSLP_SCALECOUNT

Description Iteration limit used in determining when to re-scale the SLP matrix

Type Integer

Notes If XSLP_SCALE is setto 1 or 2, then XSLP_SCALECOUNT determines the number of iterations

Default value
Affects routines

See also

(after the end of barrier optimization or in total) in which the matrix is automatically re-scaled.
0
XSLPmaxim, XSLPminim

XSLP_SCALE

XSLP_SOLVER

Description

Type

Values

Note

Default value

First order differentiation mode when using analytical derivatives

Integer

-1 automatic selection, based on model characteristics and solver availability
0 use Xpress-SLP (always available)

1 use Knitro if available

The presence of Knitro is detected automatically. Knitro can be used to solve any problem
loaded into XSLP, independently from how the problem was loaded. XSLP_SOLVER is set to
automatic, XSLP will be selected if any SLP specific construct has been loaded (these are
ignored if Knitro is selcetd manually).

1

Fair Isaac Corporation Confidential and Proprietary Information 199

Control Parameters Reference

XSLP_SLPLOG

Description Frequency with which SLP status is printed

Type Integer

Note If xsLP_LOG is set to zero (minimal logging) then a nonzero value for XSLP_SLPLOG defines

the frequency (in SLP iterations) when summary information is printed out.
Default value 1

Affects routines xSILPglobal, XSLPmaxim, XSLPminim

See also XSLP_LOG, XSLP_MIPLOG

XSLP_STOPOUTOFRANGE

Description Stop optimization and return error code if internal function argument is out of range

Type Integer

Note If XSLP_STOPOUTOFRANGE is set to 1, then if an internal function receives an argument which

is out of its allowable range (for example, LOG of a negative number), an error code is set and
the optimization is terminated.

Default value 0

Affects routines xSLPevaluatecoef,XSLPevaluateformula XSLPmaxim, XSLPminim

XSLP_THREADS

Description Default number of threads to be used

Type Integer

Note Overall thread control value, used to determine the number of threads used where parallel

calculations are possible.
Default value -1 (automatically determined)
Affects routines XSLPmaxim, XSLPmaxim

See also XSLP_CALCTHREADS, XSLP_MULTISTART_THREADS,

XSLP_TIMEPRINT

Description Print additional timings during SLP optimization

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 200

Control Parameters

Reference

Note

Default value

Affects routines

Date and time printing can be useful for identifying slow procedures during the SLP
optimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during the
optimization.

0

XSLPmaxim, XSLPminim

XSLP_THREADSAFEUSERFUNC

Description

Type
Note

Values

Default value

Affects routines

Defines if user functions are allowed to be called in parallel
Integer

Date and time printing can be useful for identifying slow procedures during the SLP
optimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during the
optimization.

0 user function are not thread safe, and will not be called in parallel
1 user functions are thread safe, and may be called in parallel

0 (no parallel user function calls)

XSLPmaxim, XSLPminim

XSLP_TRACEMASKOPS
Description Controls the information printed for xS1.p_ TRACEMASK. The order in which the information is
printed is determined by the order of bits in XSLP_ TRACEMASKOPS.
Type Integer
Values Bit Meaning
0 The variable name is used as a mask, not as an exact fit.
1 Use mask to trace rows.
2 Use mask to trace columns.
3 Use mask to trace cascaded SLP variables.
4 Show row / column category.
5 Trace slack values.
6 Trace dual values.
7 Trace row penalty multiplier.
8 Trace variable values (as returned by the lineariation).
9 Trace reduced costs.
10 Trace slp value (value used in linearization and cascaded).
11 Trace step bounds.
12 Trace convergence status.
13 Trace line search.

Default value

-1: all bits are set

Fair Isaac Corporation Confidential and Proprietary Information 201

Control Parameters

Reference

Note

The following constants are provided for setting these bits:

Setting bit0 XSLP_TRACEMASK_GENERALFIT
Setting bit1 XSLP_TRACEMASK_ROWS

Setting bit2 XSLP_TRACEMASK_COLS

Setting bit3 XSLP_TRACEMASK_CASCADE
Setting bit4 XSLP_TRACEMASK_TYPE

Setting bit5 XSLP_TRACEMASK_SLACK

Setting bit6 XSLP_TRACEMASK_DUAL

Setting bit7 XSLP_TRACEMASK_WEIGHT
Setting bit8 XSLP_TRACEMASK_SOLUTION
Setting bit9 XSLP_TRACEMASK_REDUCEDCOST

Setting bit 10
Setting bit 11
Setting bit 12
Setting bit 13

XSLP_TRACEMASK_SLPVALUE
XSLP_TRACEMASK_STEPBOUND
XSLP_TRACEMASK_CONVERGE
XSLP_TRACEMASK_LINESEARCH

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize, XSLPglobal

XSLP_UNFINISHEDLIMIT

Description Number of times within one SLP iteration that an unfinished LP optimization will be continued

Type Integer

Note If the optimization of the current linear approximation terminates with an "unfinished" status
(for example, because it has reached maximum iterations), Xpress-SLP will attempt to
continue using the primal simplex algorithm. This process will be repeated for up to
XSLP_UNFINISHEDLIMIT successive LP optimizations within any one SLP iteration. If the
limit is reached, Xpress-SLP will terminate with XxS1.P_STATUS set to XSLP_LPUNFINISHED

Default value 3

Affects routines xSILPglobal, XSLPmaxim, XSLPminim

XSLP_UPDATEOFFSET

Description Position of first character of SLP variable name used to create name of SLP update row

Type Integer

Note During augmentation, one or more delta vectors are created for each SLP variable. The values
of these are linked to that of the variable through an update row which is created as part of
the augmentation procedure. Update rows are created with names derived from the
corresponding SLP variable. Customized naming is possible using XSLP_UPDATEFORMAT t0
define a format and XxSLP_UPDATEOFFSET to define the first character (counting from zero)
of the variable name to be used.

Default value 0
Affects routines XSLPconstruct

See also XSLP_UPDATEFORMAT

Fair Isaac Corporation Confidential and Proprietary Information 202

Control Parameters

Reference

XSLP_VCOUNT

Description Number of SLP iterations over which to measure static objective (3) convergence

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of individual

Default value

Affects routines

variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.

The variation in the objective function is defined as

50bj = MAXjter(Ob}) ~ MiNjger(Obj)

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_VTOL_A

then the problem has converged on the absolute static objective function (3) criterion.
The static objective function (3) test is applied only if after at least xsL.p_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if xS1.p_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after step
bounding has been introduced.

0

XSLPmaxim, XSLPminim

See also XSLP_SBSTART, XSLP_VLIMIT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_VLIMIT

Description Number of SLP iterations after which static objective (3) convergence testing starts

Type Integer

Note The static objective (3) convergence criterion does not measure convergence of individual

variables, and in fact does not in any way imply that the solution has converged. However, it is
sometimes useful to be able to terminate an optimization once the objective function appears
to have stabilized. One example is where a set of possible schedules are being evaluated and
initially only a good estimate of the likely objective function value is required, to eliminate the
worst candidates.

The variation in the objective function is defined as

50bj = MAXite;(0bj) = MiNjter(Ob))

where Iter is the XSLP_VCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_VTOL_A

then the problem has converged on the absolute static objective function (3) criterion.

Fair Isaac Corporation Confidential and Proprietary Information 203

Control Parameters

Reference

Default value
Affects routines

See also

The static objective function (3) test is applied only if after at least xSL.P_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XST.P_VCOUNT is at least 2.
Where step bounding is being used, this ensures that the test is not applied until after step
bounding has been introduced.

0
XSLPmaxim, XSLPminim

XSLP_SBSTART, XSLP_VCOUNT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_WCOUNT

Description

Type
Note

Default value
Affects routines

See also

Number of SLP iterations over which to measure the objective for the extended convergence
continuation criterion

Integer

It may happen that all the variables have converged, but some have converged on extended
criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution has
been found where at least one variable has converged on extended criteria and is at its step
bound limit. The extended convergence continuation test measures whether any
improvement is being achieved when additional SLP iterations are carried out. If not, then the
last converged solution will be restored and the optimization will stop.

For a maximization problem, the improvement in the objective function at the current iteration
compared to the objective function at the last converged solution is given by:

d0bj = Obj — LastConvergedObj

For a minimization problem, the sign is reversed.

If 60bj > XSLP_WTOL_A and

50bj > ABS(ConvergedObj) x XSLP_WTOL_R then the solution is deemed to have a significantly
better objective function value than the converged solution.

When a solution is found which converges on extended criteria and with active step bounds,
the solution is saved and SLP optimization continues until one of the following:

(1) a new solution is found which converges on some other criterion, in which case the SLP
optimization stops with this new solution;

(2) a new solution is found which converges on extended criteria and with active step bounds,
and which has a significantly better objective function, in which case this is taken as the new
saved solution;

(3) none of the xs.p_WCOUNT most recent SLP iterations has a significantly better objective
function than the saved solution, in which case the saved solution is restored and the SLP
optimization stops.

If xs.pP_WCOUNT is zero, then the extended convergence continuation criterion is disabled.
0
XSLPmaxim, XSLPminim

XSLP_WTOL_A, XSLP_WTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 204

Control Parameters

Reference

XSLP_XCOUNT

Description Number of SLP iterations over which to measure static objective (1) convergence

Type Integer

Note It may happen that all the variables have converged, but some have converged on extended

Default value

Affects routines

criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would
improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these variables
is at its step bound. Because all the variables have converged, the solution is already
converged but the fact that some variables are at their step bound limit suggests that the
objective function could be improved by going further.

The variation in the objective function is defined as

d0bj = MAXiter(Obj) = MINjter(Obj)

where lter is the xs1.p_xCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_XTOL_A

then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.

If ABS(60bj) < AVGpe(Obj) * XSLP_XTOL_R

then the objective function is deemed to be static according to the relative static objective
function (1) criterion.

The static objective function (1) test is applied only until xs.p_xL.IMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

5

XSLPmaxim, XSLPminim

See also XSLP_XLIMIT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_XLIMIT

Description Number of SLP iterations up to which static objective (1) convergence testing starts

Type Integer

Note It may happen that all the variables have converged, but some have converged on extended

criteria and at least one of these variables is at its step bound. This means that, at least in the
linearization, if the variable were to be allowed to move further the objective function would

Fair Isaac Corporation Confidential and Proprietary Information 205

Control Parameters

Reference

Default value

Affects routines

improve. This does not necessarily imply that the same is true of the original problem, but it is
still possible that an improved result could be obtained by taking another SLP iteration.
However, if the objective function has already been stable for several SLP iterations, then
there is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in the
objective function over recent SLP iterations. It is applied when all the variables have
converged, but some have converged on extended criteria and at least one of these variables
is at its step bound. Because all the variables have converged, the solution is already
converged but the fact that some variables are at their step bound limit suggests that the
objective function could be improved by going further.

The variation in the objective function is defined as

50bj = MAXjter(0bj) = MiNjzer(Obj)

where Iter is the xSLP_xCOUNT most recent SLP iterations and Obj is the corresponding
objective function value.

If ABS(60bj) < XSLP_XTOL_A

then the objective function is deemed to be static according to the absolute static objective
function (1) criterion.

If ABS(60bj) < AVGj1e,(0bj) * XSLP_XTOL_R

then the objective function is deemed to be static according to the relative static objective
function (1) criterion.

The static objective function (1) test is applied only until xsT.p_x1.TMIT SLP iterations have
taken place. After that, if all the variables have converged on strict or extended criteria, the
solution is deemed to have converged.

If the objective function passes the relative or absolute static objective function (1) test then
the solution is deemed to have converged.

100

XSLPmaxim, XSLPminim

See also XSLP_XCOUNT, XSLP_XTOL_A, XSLP_XTOL_R
XSLP_ZEROCRITERION
Description Bitmap determining the behavior of the placeholder deletion procedure
Type Integer
Values Bit Meaning
0 (=1) Remove placeholders in nonbasic SLP variables
1 (=2) Remove placeholders in nonbasic delta variables
2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and
the corresponding SLP variable is nonbasic
4 (=16) Remove placeholders in a basic delta variable if the determining row for the
corresponding SLP variable is nonbasic
5 (=32) Print information about zero placeholders
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 206

Control Parameters

Reference

Default value
Affects routines

See also

Setting bit0 XSLP_ZEROCRTIERION_NBSLPVAR

Setting bit1 XSLP_ZEROCRTIERION_NBDELTA

Setting bit2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROW
Setting bit3 XSLP_ZEROCRTIERION_DELTANBUPSATEROW
Setting bit4 XSLP_ZEROCRTIERION_DELTANBDRROW
Setting bit5 XSLP_ZEROCRTIERION_PRINT

0
XSLPmaxim, XSLPminim

XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, Management of zero
placeholder entries

XSLP_ZEROCRITERIONCOUNT

Description

Type
Note

Default value
Affects routines

See also

Number of consecutive times a placeholder entry is zero before being considered for deletion
Integer

For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

0
XSLPmaxim, XSLPminim

XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONSTART, Management of zero placeholder
entries

XSLP_ZEROCRITERIONSTART

Description

Type
Note

Default value
Affects routines

See also

SLP iteration at which criteria for deletion of placeholder entries are first activated.
Integer

For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

0
XSLPmaxim, XSLPminim

XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONCOUNT, Management of zero placeholder
entries

Fair Isaac Corporation Confidential and Proprietary Information 207

Control Parameters

Reference

20.3 String control parameters

XSLP_CVNAME

Description

Type

Notes

Set by routines
Default value

Affects routines

Name of the set of character variables to be used
String

This variable may be required for input from a file using XxsL.Preadprob if there is more than
one set of character variables in the file. If no name is set, then the first set of character
variables will be used, and the name will be set accordingly.

This variable may also be required for output using xsL.Pwriteprob where character
variables are included in the problem. If it is not set, then a default name will be used.

XSLPreadprob
none

XSLPreadprob, XSLPwriteprob

See also XSLP_IVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_DELTAFORMAT

Description Formatting string for creation of names for SLP delta vectors

Type String

Note This control can be used to create a specific naming structure for delta vectors. The structure

Default value

Affects routines

follows the normal C-style printf form, and can contain printing characters plus one %s string.
This will be replaced by sequential characters from the name of the variable starting at
position XSLP_DELTAOFFSET.

pD_%s
where p is a unique prefix for names in the current problem

XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_ITERFALLBACKOPS

Description Alternative LP level control values for numerically challengeing problems

Type String

Notes When set, this control provides alternative ways of solving a linearization called adaptive

iteration solves. This can be useful for numerically challenging problems that either solve to a
non-satisfactory accuracy (relative to xS1.p_ FEASTOLTARGET) with the default solves, or that
can incorrectly report infeasibility or unboundedness. In such cases, the solve will try the

Fair Isaac Corporation Confidential and Proprietary Information 208

Control Parameters

Reference

Default value
Affects routines

See also

controls listed by xsLp_ ITERFALLBACKOPS until a satisfactory solution is found or all
options are exhausted.

The individual controls for each solve are separated by a comma (,), while the set of controls
for an attepmt by a colon (') . Example: 'XPRS_DEFAULTALG=3 : XPRS_BARORDER = 2,
XPRS_PRESOVLE = 0’ will try primal in one solve, and the homogenous barrier with presolve
turned off in an other. Optimizer flags are not inherited by the solve, so use
XPRS_DEFAULTALG for selecting an LP solver to use.

The resulting LP solves are carried out in a parallel manner, using
XSLP_MULTISTART_THREADS number of threads.

The result of the adaptive solves are always deterministic.

Once a satisfactory solution is found, remaining solves are progressed only as far as
necessary to guarantee determinism, so it is beneficial to list more promising control sets
first.

none
XSLPminim, XSLPmaxim, XSLPnlpoptimize

XSLP_FEASTOLTARGET,

XSLP_IVNAME

Description

Type

Notes

Set by routines
Default value
Affects routines

See also

Name of the set of initial values to be used
String

This variable may be required for input from a file using XsLPreadprob if there is more than
one set of initial values in the file. If no name is set, then the first set of initial values will be
used, and the name will be set accordingly.

This variable may also be required for output using XST.Pwriteprob where initial values are
included in the problem. If it is not set, then a default name will be used.

XSLPreadprob
none
XSLPreadprob, XSLPwriteprob

XSLP_CVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_MINUSDELTAFORMAT

Description

Type
Note

Default value

Formatting string for creation of names for SLP negative penalty delta vectors
String

This control can be used to create a specific naming structure for negative penalty delta
vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name
of the variable starting at position XS1.P_ DELTAOFFSET.

pD-%s
where p is a unique prefix for names in the current problem

Fair Isaac Corporation Confidential and Proprietary Information 209

Control Parameters Reference

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_MINUSERRORFORMAT

Description Formatting string for creation of names for SLP negative penalty error vectors
Type String
Note This control can be used to create a specific naming structure for negative penalty error

vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name
of the variable starting at position XSL.P_ERROROFFSET.

Default value pE-%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_PENALTYCOLFORMAT

Description Formatting string for creation of the names of the SLP penalty transfer vectors
Type String
Note This control can be used to create a specific naming structure for the penalty transfer vectors

which transfer penalty costs into the objective. The structure follows the normal C-style printf
form, and can contain printing characters plus one %s string. This will be replaced by "DELT"
for the penalty delta transfer vector and "ERR" for the penalty error transfer vector.

Default value pPC_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

XSLP_PENALTYROWFORMAT

Description Formatting string for creation of the names of the SLP penalty rows
Type String
Note This control can be used to create a specific naming structure for the penalty rows which

total the penalty costs for the objective. The structure follows the normal C-style printf form,
and can contain printing characters plus one %s string. This will be replaced by "DELT" for the
penalty delta row and "ERR" for the penalty error row.

Default value pPR_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 210

Control Parameters

Reference

XSLP_PLUSDELTAFORMAT

Description Formatting string for creation of names for SLP positive penalty delta vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty delta

Default value

Affects routines

vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name
of the variable starting at position XS1.P_ DELTAOFFSET.

pD+%s
where p is a unique prefix for names in the current problem

XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_PLUSERRORFORMAT

Description Formatting string for creation of names for SLP positive penalty error vectors

Type String

Note This control can be used to create a specific naming structure for positive penalty error

Default value

Affects routines

vectors. The structure follows the normal C-style printf form, and can contain printing
characters plus one %s string. This will be replaced by sequential characters from the name
of the variable starting at position XSLP_ ERROROFFSET.

pE+%s
where p is a unique prefix for names in the current problem

XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_SBLOROWFORMAT

Description Formatting string for creation of names for SLP lower step bound rows

Type String

Note This control can be used to create a specific naming structure for lower limits on step bounds

Default value

Affects routines

See also

modeled as rows. The structure follows the normal C-style printf form, and can contain
printing characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XxS1.p_ SBROWOFFSET.

pSB-%s
where p is a unique prefix for names in the current problem

XSLPconstruct

XSLP_SBROWOFFSET

Fair Isaac Corporation Confidential and Proprietary Information 211

Control Parameters

Reference

XSLP_SBNAME

Description Name of the set of initial step bounds to be used

Type String

Notes This variable may be required for input from a file using xsL.Preadprob if there is more than

Set by routines
Default value

Affects routines

one set of initial step bounds in the file. If no name is set, then the first set of initial step
bounds will be used, and the name will be set accordingly.

This variable may also be required for output using XSL.Pwriteprob where initial step
bounds are included in the problem. If it is not set, then a default name will be used.

XSLPreadprob
none

XSLPreadprob, XSLPwriteprob

See also XSLP_CVNAME, XSLP_IVNAME, XSLP_TOLNAME

XSLP_SBUPROWFORMAT

Description Formatting string for creation of names for SLP upper step bound rows

Type String

Note This control can be used to create a specific naming structure for upper limits on step bounds

Default value

Affects routines

See also

modeled as rows. The structure follows the normal C-style printf form, and can contain
printing characters plus one %s string. This will be replaced by sequential characters from the
name of the variable starting at position XSL.P_ SBROWOFFSET.

pSB+%s
where p is a unique prefix for names in the current problem

XSLPconstruct

XSLP_SBROWOFFSET

XSLP_TOLNAME

Description

Type

Notes

Set by routines

Name of the set of tolerance sets to be used
String

This variable may be required for input from a file using XxsLPreadprob if there is more than
one set of tolerance sets in the file. If no name is set, then the first set of tolerance sets will be
used, and the name will be set accordingly.

This variable may also be required for output using xsLPwriteprob where tolerance sets
are included in the problem. If it is not set, then a default name will be used.

XSLPreadprob

Fair Isaac Corporation Confidential and Proprietary Information 212

Control Parameters Reference

Default value none
Affects routines XSLPreadprob, XSLPwriteprob

See also XSLP_CVNAME, XSLP__IVNAME, XSLP__ SBNAME

XSLP_TRACEMASK

Description Mask of variable or row names that are to be traced through the SLP iterates
Type String
Notes If the mask is nonempty, variables and rows matching the mask are listed after each SLP

iteration and each cascade, allowing for a convenient means to observe how certain variables
change through the iterates. This feasture is provided for tuning and model debugging
purposes. The actual information printed is controlled by xS1.p_ TRACEMASKOPS.

The string in the tracemask may contain several variable or row names, separated by a
whitespace. Wildcards may also be used.

Default value none: no tracing

Affects routines XSILPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize, XSLPglobal

See also XSLP_TRACEMASKOPS

XSLP_UPDATEFORMAT

Description Formatting string for creation of names for SLP update rows

Type String

Note This control can be used to create a specific naming structure for update rows. The structure

follows the normal C-style printf form, and can contain printing characters plus one %s string.
This will be replaced by sequential characters from the name of the variable starting at
position XSLP_UPDATEOFFSET.

Default value pU_%s
where p is a unique prefix for names in the current problem

Affects routines XSLPconstruct

See also XSLP_UPDATEOFFSET

20.4 Kbnitro controls

All Knitro controls are available with an "X’ pre-tag. For example the Knitro integer control
'KTR_PARAM_ALGORITHM'’ can be set using XSLPsetintcontrol using the control ID defined as
"XKTR_PARAM_ALGORITHM'. Please refer to the Xpress Knitro manual for the description of the Knitro
controls.

Fair Isaac Corporation Confidential and Proprietary Information 213

CHAPTER 21

Library functions and the programming inter-
face

21.1

21.2

Counting

All Xpress NonLinear entities are numbered from 1. The 0 item is defined, and is an empty entity of
the appropriate type. Therefore, whenever an Xpress NonLinear function returns a zero value, it means
that there is no data of that type.

In parsed and unparsed function arrays, the indices always count from 1. This includes types
XSLP_VAR and XSLP_CONSTRAINT: the index is the matrix column or row index +1.

Note that for input of function arrays, types XSLP_COL and XSLP_ROW can be used, but will be
converted into standard XSLP_VAR or XSLP_CONSTRAINT references. When a function array is
returned from Xpress NonLinear, the XSLP_VAR or XSLP_CONSTRAINT type will always be used.

The Xpress NonLinear problem pointer

Xpress NonLinear uses the same concept as the Optimizer library, with a "pointer to a problem". The
optimizer problem must be initialized first in the normal way. Then the corresponding Xpress NonLinear
problem must be initialized, including a pointer to the underlying optimizer problem. For example:

{

XPRSprob prob=NULL;
XSLPprob SLPprob=NULL;

XPRSinit ("");

XSLPinit () ;

XPRScreateprob (&prob) ;
XSLPcreateprob (&SLPprob, &prob) ;

At the end of the program, the Xpress NonLinear problem should be destroyed. You are responsible for
destroying the underlying XPRSprob linear problem afterwards. For example:
{
.%SLPdestroyprob(SLPprob);
XPRSdestroyprob (prob) ;

XSLPfree();
XPRSfree();

Fair Isaac Corporation Confidential and Proprietary Information 214

Library functions and the programming interface Reference

21.3

21.4

The following functions are provided to manage Xpress NonLinear problems. See the documentation
below on the individual functions for more details.

XSLPcopycontrols (XSLPprob probl, XSLPprob prob2)
Copy the settings of control variables

XSLPcopycallbacks (XSLPprob probl, XSLPprob prob2)
Copy the callback settings

XSLPcopyprob (XSLPprob probl, XSLPprob prob2, char *ProbName)
Copy a problem completely

XSLPcreateprob (XSLPprob *probl, XPRSprob *prob2)
Create an Xpress NonLinear problem

XSLPdestroyprob (XSLPprob probl)
Delete an Xpress NonLinear problem from memory

XSLPrestore (XSLPprob probl)
Restore Xpress NonLinear data structures from file

XSLPsave (XSLPprob probl)
Save Xpress NonLinear data structures to file

The XSLPload. .. functions

The XSLPload. .. functions can be used to load an Xpress NonLinear problem directly into the Xpress
data structures. Because there are so many additional items which can be loaded apart from the basic
(linear) matrix, the loading process is divided into several functions.

The best practice is to load the linear part of the problem irst, using the normal Optimizer Library
functions XPRS1loadlp or XPRSloadglobal. Then the appropriate parts of the Xpress NonLinear
problem can be loaded. After all the XSLP1oad. .. functions have been called, xS1.Pconstruct
should be called to create the SLP matrix and data structures. If x<SLPconstruct is notinvoked before
a call to one of the Xpress NonLinear optimization routines, then it will be called by the optimization
routine itself.

All of these functions initialize their data areas. Therefore, if a second call is made to the same function
for the same problem, the previous data will be deleted. If you want to include additional data of the
same type, then use the corresponding XsL.padd. . . function.

It is possible to remove parts of the SLP strcutures with the various xsL.pdel functions, and
XSLPunconstruct can also be used to remove the augmentation.

Xpress NonLinear is compatible with the Xpress quadratic programming optimizer. XPRS1oadqgp and
XPRSloadgglobal can be used to load quadratic problems (or quadratically constrained problmes
using XPRS1loadgcgp and XPRS1loadgcgpglobal). The quadratic objective will be optimized using
the Xpress quadratic optimizer; the nonlinear constraints will be handled with the normal SLP
procedures. Please note, that this separation is only useful for a convex quadratic objective and convex
quadratic inequality constraints. All nonconvex quadratic matrices should be handled as SLP strctures.

For a description on when it's more beneficial to use the XPRS library to solve QP or QCQP problems,
please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

Library functions

A large number of routines are available for Library users of Xpress NonLinear, ranging from simple

Fair Isaac Corporation Confidential and Proprietary Information 215

Library functions and the programming interface Reference

routines for the input and solution of problems from matrix files to sophisticated callback functions
and greater control over the solution process. Library users have access to a set of functions providing
advanced control over their program’s interaction with the SLP module and catering for more
complicated problem development.

XSLPaddcoefs Add non-linear coefficients to the SLP problem p. 221
XSLPadddfs Add a set of distribution factors p. 223
XSLPaddtolsets Add sets of standard tolerance values to an SLP problem p. 224
XSLPadduserfunction Add user function definitions to an SLP problem. p. 225
XSLPaddvars Add SLP variables defined as matrix columns to an SLP problem p. 226
XSLPcalcslacks Calculate the slack values for the provided solution in the non-linear
problem p. 228
XSLPcascade Re-calculate consistent values for SLP variables based on the current
values of the remaining variables. p. 229
XSLPcascadeorder Establish a re-calculation sequence for SLP variables with determining
rows. p. 230
XSLPchgcascadenlimit Set a variable specific cascade iteration limit p. 231

XSLPchgccoef Add or change a single matrix coefficient using a character string for the
formula p. 232
XSLPchgcoef Add or change a single matrix coefficient using a parsed or unparsed
formula p. 233
XSLPchgdeltatype Changes the type of the delta assigned to a nonlinear variable p. 234
XSLPchgdf Set or change a distribution factor p. 235
XSLPchgrowstatus Change the status setting of a constraint p. 236
XSLPchgrowwt Set or change the initial penalty error weight for a row p. 237
XSLPchgtolset Add or change a set of convergence tolerances used for SLP variables
p. 238
XSLPchgvar Define a column as an SLP variable or change the characteristics and
values of an existing SLP variable p. 240
XSLPconstruct Create the full augmented SLP matrix and data structures, ready for
optimization p. 242
XSLPcopycallbacks Copy the user-defined callbacks from one SLP problem to another p. 243
XSLPcopycontrols Copy the values of the control variables from one SLP problem to another
p. 244
XSLPcopyprob Copy an existing SLP problem to another p. 245
XSLPcreateprob Create a new SLP problem p. 246
XSLPdelcoefs Delete coefficients from the current problem p. 247
XSLPdeltolsets Delete tolerance sets from the current problem p. 248
xSLPdeluserfunction Delete a user function from the current problem p. 249

Fair Isaac Corporation Confidential and Proprietary Information 216

Library functions and the programming interface

Reference

XSLPdelvars

XSLPdestroyprob

XSLPevaluatecoef

XSLPevaluateformula

XSLPfixpenalties

XSLPfree

XSLPgetbanner

XSLPgetccoef

XSLPgetcoefformula

XSLPgetcoefs

XSLPgetcolinfo
XSLPgetdblattrib
XSLPgetdblcontrol
XSLPgetdf
XSLPgetindex
XSLPgetintattrib
XSLPgetintcontrol

XSLPgetlasterror

XSLPgetptrattrib
XSLPgetrowinfo
XSLPgetrowstatus
XSLPgetrowwt
XSLPgetslpsol
XSLPgetstrattrib
XSLPgetstrcontrol

XSLPgettolset

XSLPgetvar
XSLPglobal
XSLPimportlibfunc
XSLPinit

XSLPinterrupt

Convert SLP variables to normal columns. Variables must not appear in

SLP structures p. 250
Delete an SLP problem and release all the associated memory p. 251
Evaluate a coefficient using the current values of the variables p. 252
Evaluate a formula using the current values of the variables p. 253
Fixe the values of the error vectors p. 254

Free any memory allocated by Xpress NonLinear and close any open

Xpress NonLinear files p. 255

Retrieve the Xpress NonLinear banner and copyright messages p. 256
Retrieve a single matrix coefficient as a formula in a character string p. 257
Retrieve a single matrix coefficient as a formula split into tokens p. 258

Retrieve the list of positions of the nonlinear coefficients in the problem
p. 259

Get current column information. p. 260
Retrieve the value of a double precision problem attribute p. 261
Retrieve the value of a double precision problem control p. 262
Get a distribution factor p. 263

Retrieve the index of an Xpress NonLinear entity with a given name p. 264
Retrieve the value of an integer problem attribute p. 265
Retrieve the value of an integer problem control p. 266

Retrieve the error message corresponding to the last Xpress NonLinear

error during an SLP run p. 267
Retrieve the value of a problem pointer attribute p. 268
Get current row information. p. 269
Retrieve the status setting of a constraint p. 270
Get the initial penalty error weight for a row p. 271
Obtain the solution values for the most recent SLP iteration p. 272
Retrieve the value of a string problem attribute p. 273
Retrieve the value of a string problem control p. 274

Retrieve the values of a set of convergence tolerances for an SLP problem
p. 275

Retrieve information about an SLP variable p. 276
Initiate the Xpress NonLinear mixed integer SLP (MISLP) algorithm p. 278
Imports a function from a library file to be called as a user function p. 279
p. 280

p. 281

Initializes the Xpress NonLinear system

Interrupts the current SLP optimization

Fair Isaac Corporation Confidential and Proprietary Information 217

Library functions and the programming interface Reference

XSLPitemname

XSLPloadcoefs

XSLPloaddfs

XSLPloadtolsets

XSLPloadvars

XSLPmaxim

XSLPminim

Retrieves the name of an Xpress NonLinear entity or the value of a function

token as a character string. p. 282
Load non-linear coefficients into the SLP problem p. 283
Load a set of distribution factors p. 285
Load sets of standard tolerance values into an SLP problem p. 286

Load SLP variables defined as matrix columns into an SLP problem p. 287
Maximize an SLP problem p. 289
Minimize an SLP problem p. 290

XSLPmsaddcustompreset A combined version of XSLPmsaddjob and XSLPmsaddpreset. The

XSLPmsaddjob
XSLPmsaddpreset
XSLPmsclear
XSLPnlpoptimize
XSLPpostsolve
XSLPpresolve

XSLPprintevalinfo

XSLPprintmemory

XSLPreadprob

XSLPreinitialize
XSLPremaxim
XSLPreminim

XSLPrestore

XSLPsave
XSLPsaveas

XSLPscaling

XSLPsetcbcascadeend

preset described is loaded, topped up with the specific settings supplied
p. 297

Adds a multistart job to the multistart pool p. 292
Loads a preset of jobs into the multistart job pool. p. 293
Removes all scheduled jobs from the multistart job pool p. 294
Maximize or minimize an SLP problem p. 295
Restores the problem to its pre-solve state p. 296
Perform a nonlinear presolve on the problem p. 297
Print a summary of any evaluation errors that may have occurred during
solving a problem p. 299
Print the dimensions and memory allocations for a problem p. 298
Read an Xpress NonLinear extended MPS format matrix from a file into an
SLP problem p. 300
Reset the SLP problem to match a just augmented system p. 304
Continue the maximization of an SLP problem p. 301
Continue the minimization of an SLP problem p. 302

Restore the Xpress NonLinear problem from a file created by XSLPsave
p. 303

Save the Xpress NonLinear problem to file p. 305
Save the Xpress NonLinear problem to a named file p. 306

Analyze the current matrix for largest/smallest coefficients and ratios
p. 307

Set a user callback to be called at the end of the cascading process, after
the last variable has been cascaded p. 308

XSLPsetcbcascadestart Seta user callback to be called at the start of the cascading process,

XSLPsetcbcascadevar

before any variables have been cascaded p. 309

Set a user callback to be called after each column has been cascaded
p. 310

Fair Isaac Corporation Confidential and Proprietary Information 218

Library functions and the programming interface

Reference

XSLPsetcbcascadevarfail Set a user callback to be called after cascading a column was not

successful p. 311

XSLPsetcbcoefevalerror Setauser callback to be called when an evaluation of a coefficient

XSLPsetcbconstruct

XSLPsetcbdestroy

XSLPsetcbdrcol

XSLPsetcbintsol

XSLPsetcbiterend
XSLPsetcbiterstart

XSLPsetcbitervar

XSLPsetcbmessage

XSLPsetcbmsjobend

XSLPsetcbmsjobstart

XSLPsetcbmswinner

XSLPsetcboptnode

XSLPsetcbprenode

fails during the solve p. 312

Set a user callback to be called during the Xpress-SLP augmentation

process p. 313
Set a user callback to be called when an SLP problem is about to be
destroyed p. 315

Set a user callback used to override the update of variables with small
determining column p. 316

Set a user callback to be called during MISLP when an integer solution is

obtained p. 317
Set a user callback to be called at the end of each SLP iteration p. 318
Set a user callback to be called at the start of each SLP iteration p. 319

Set a user callback to be called after each column has been tested for
convergence p. 320

Set a user callback to be called whenever Xpress NonLinear outputs a line
of text p. 321

Set a user callback to be called every time a new multistart job finishes.
Can be used to overwrite the default solution ranking function p. 323

Set a user callback to be called every time a new multistart job is created,
and the pre-loaded settings are applied p. 324

Set a user callback to be called every time a new multistart job is created,

and the pre-loaded settings are applied p. 325
Set a user callback to be called during MISLP when an optimal SLP
solution is obtained at a node p. 326

Set a user callback to be called during MISLP after the set-up of the SLP
problem to be solved at a node, but before SLP optimization p. 327

XSLPsetcbpreupdatelinearization Seta user callback to be called before the linearization is

updated p. 328

XSLPsetcbslpend Set a user callback to be called at the end of the SLP optimization p. 329
XSLPsetcbslpnode Set a user callback to be called during MISLP after the SLP optimization at
each node. p. 330

XSLPsetcbslpstart Set a user callback to be called at the start of the SLP optimization p. 331
XSLPsetcurrentiv Transfer the current solution to initial values p. 332
XSLPsetdblcontrol Set the value of a double precision problem control p. 333
XSLPsetdefaultcontrol Setthe values of one SLP control to its default value p. 334
XSLPsetdefaults Set the values of all SLP controls to their default values p. 335
XSLPsetfunctionerror Setthe function error flag for the problem p. 336
XSLPsetintcontrol Set the value of an integer problem control p. 337
Fair Isaac Corporation Confidential and Proprietary Information 219

Library functions and the programming interface Reference

XSLPsetlogfile Define an output file to be used to receive messages from Xpress
NonLinear p. 338
XSLPsetparam Set the value of a control parameter by name p. 339
XSLPsetstrcontrol Set the value of a string problem control p. 340
XSLPunconstruct Removes the augmentation and returns the problem to its pre-linearization
state p. 341
XSLPupdatelinearization Updates the current linearization p. 342
XSLPvalidate Validate the feasibility of constraints in a converged solution p. 343
XSLPvalidatekkt Validates the first order optimality conditions also known as the
Karush-Kuhn-Tucker (KKT) conditions versus the currect solution p. 344
XSLPvalidateprob Validates the current problem formulation and statement p. 345
XSLPvalidaterow Prints an extensive analysis on a given constraint of the SLP problem p. 346
XSLpvalidatevector Validate the feasibility of constraints for a given solution p. 347
XSLPwriteprob Write the current problem to a file in extended MPS or text format p. 348
XSLPwriteslxsol Write the current solution to an MPS like file format p. 349

Fair Isaac Corporation Confidential and Proprietary Information 220

Library functions and the programming interface Reference

XSLPaddcoefs

Purpose
Add non-linear coefficients to the SLP problem

Synopsis
int XPRS_CC XSLPaddcoefs (XSLPprob Prob, int nSLPCoef, int *RowIndex, int
*ColIndex, double *Factor, int *FormulaStart, int Parsed, int *Type,
double *Value);

Arguments
Prob The current SLP problem.
nSLPCoef Number of non-linear coefficients to be added.
RowIndex Integer array holding index of row for the coefficient.
ColIndex Integer array holding index of column for the coefficient.

Factor Double array holding factor by which formula is scaled. If this is NULL, then a value of
1.0 will be used.

FormulaStart Integer array of length nsLPCoef+1 holding the start position in the arrays Type
and value of the formula for the coefficients. FormulaStart [nSLPCoef] should be
set to the next position after the end of the last formula.

Parsed Integer indicating whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the formula for each coefficient.
Value Array of values corresponding to the types in Type.
Example

Assume that the rows and columns of Prob are named Rowl, Row2 ..., Coll, Col2 ... The following
example adds coefficients representing:

Col2 * Col3 + Col6 * Col2"2into Rowl and

Col2 ~ 2into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Typel8];
int n, nSLPCoef;
double Value[8];

RowIndex[0]
RowIndex[1]
RowIndex[2]

1l; ColIndex[0] = 2;
1l; ColIndex[1]
3; CollIndex[2] = 2;

|
o
~

n = nSLPCoef = 0;

FormulaStart [nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 3;
Type [n++] = XSLP_EOF;

FormulaStart [nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;
Type[n++] = XSLP_EOF;

FormulaStart [nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type [n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 221

Library functions and the programming interface Reference

FormulaStart [nSLPCoef] = n;

XSLPaddcoefs (Prob, nSLPCoef, RowIndex, ColIndex,
NULL, FormulaStart, 1, Type, Value);

The first coefficient in Rowl is in Co12 and has the formula Co13, so it represents Col2 * Col3.

The second coefficient in Rowl is in Col6 and has the formula Co12 * Col2 so it represents Col6 *
Col2"2. The formulae are described as parsed (Parsed=1), so the formula is written as

Col2 Col2 +*

rather than the unparsed form

Col2 * Col2

The last coefficient, in Row3, is in Co12 and has the formula Co12, so it represents Co12 * Col2.

Further information
The ji coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formula
must be terminated with an xSLP_EOF token. If several coefficients share the same formula, they can
have the same value in FormulaStart. For possible token types and values see the chapter on
"Formula Parsing".

The XsLPadd. . . functions load additional items into the SLP problem. The corresponding
XSLPload. .. functions delete any existing items first.

The behaviour for existing coefficients is additive: the formula defined in the parameters are added to
any existing formula coefficients. However, due to performance considerations, such duplications
should be avoided when possible.

Related topics
XSLPchgcoef, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 222

Library functions and the programming interface Reference

XSLPadddfs

Purpose
Add a set of distribution factors

Synopsis

int XSLP_CC XSLPadddfs (XSLPprob Prob, int nDF, const int *ColIndex, const

int *RowIndex, const double *Value)

Arguments

Prob The current SLP problem.

nDF The number of distribution factors.

ColIndex Array of indices of columns whose distribution factor is to be changed.

RowIndex Array of indices of the rows where each distribution factor applies.

Value Array of double precision variables holding the new values of the distribution factors.
Example

The following example adds distribution factors as follows:
column 282 in row 134 = 0.1

column 282 in row 136 = 0.15

column 285 in row 133 = 1.0.

int ColIndex[3], RowIndex[3];

double Value[3];

ColIndex[0] = 282; RowIndex[0] = 134; Value[O0]
ColIndex|[1] 282; RowIndex[l] = 136; Value[l]
ColIndex[2] 285; RowlIndex[2] = 133; Value[2]
XSLPadddfs (prob, 3, ColIndex, RowIndex, Value) ;

I
I
= oo
or K
Gr ~
<~

~.

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or
by a callback.

The XsLPadd. . . functions load additional items into the SLP problem. The corresponding
XSLPload. .. functions delete any existing items first.

Related topics
XSLPchgdf, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 223

Library functions and the programming interface

Reference

XSLPaddtolsets

Purpose
Add sets of standard tolerance values to an SLP problem

Synopsis

int XPRS_CC XSLPaddtolsets (XSLPprob Prob, int nSLPTol, double *SLPTol);
Arguments

Prob The current SLP problem.

nSLPTol The number of tolerance sets to be added.

SLPTol Double array of (nSLPTol * 9)items containing the 9 tolerance values for each set in

order.

Example

The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double SLPTol[1l8];

for (i=0;i<9;i++) SLPTol[i] = 0.005;
SLPTol[9] = 0;

for (i=10;i<18;i=i+2) SLPTol[i]
for (i=11;i<18;i=i+2) SLPTol[i]
XSLPaddtolsets (Prob, 2, SLPTol);

0.01;
0.001;

Further information

A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while
the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given

SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable.

If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a
tolerance, use the xs1.Pchgtolset function and set the Status variable appropriately.

See the section Convergence criteria for a fuller description of tolerances and their uses.

The XsLPadd. . . functions load additional items into the SLP problem. The corresponding

XSLPload. .. functions delete any existing items first.

Related topics

XSLPchgtolset, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information

224

Library functions and the programming interface Reference

XSLPadduserfunction

Purpose
Add user function definitions to an SLP problem.

Synopsis
int XPRS_CC XSLPadduserfunction (XSLPprob Prob, const char * FunctionName,
int FunctionType, int nInput, int nOutput, int Options, void =*
FunctionPointer,void * UserContext, int * FunctionTokenId);
Arguments
Prob The current SLP problem.
FunctionName The name of the function as it appears in text formula expressions.
FunctionType The type of the user function, one of

1 (XSLP_USERFUNCTION_MAP) function takes double, returns
double.

2 (XSLP_USERFUNCTION_VECMAP) function takes double array, returns
double.

3 (XSLP_USERFUNCTION_MULTIMAP) function takes double array, returns
double array.

4 (XSLP_USERFUNCTION_MAPDELTA) function takes double, returns
double and delta.

5 (XSLP_USERFUNCTION_VECMAPDELTA) function takes double array, returns

double and deltas.
6 (XSLP_USERFUNCTION_MULTIMAPDELTA) function takes double array, returns
double array and deltas.

nInput Number of arguments the user function takes.
nOutput Number of return arguments for the function.
Options Options as a bitmap to the user function

XSLP_INSTANCEFUNCTION always istantiate the function.
FunctionPointer Pointer of the suer function to call.
UserContext Context pointer to provide the user function with.
FunctionTokenId The token id of the user function added, to be used in the Value array when
defining formulas and using with XSLP_USERFUNCTION.
Further information
The function declarations expected for the user functions are defined by the FunctionType argument.

The function of type XSLP_USERFUNCTION_MAP expects a function in the form of 'double XPRS_CC
F(double Value, void *Context)'.

The function of type XSLP_USERFUNCTION_VECMAP expects a function in the form of ‘double
XPRS_CC F(double *Value, void *Context)’.

The function of type XSLP_USERFUNCTION_MULTIMAP expects a function in the form of 'int XPRS_CC
F(double *Value, double *Out, void *Context)'.

The function of type XSLP_USERFUNCTION_MAPDELTA expects a function in the form of 'int XPRS_CC
F(double Value, double Delta, double *Evaluation, double *Partial, void *Context)'.

The function of type XSLP_USERFUNCTION_VECMAPDELTA expects a function in the form of ‘int
XPRS_CC F(double *Value, double *Deltas, double *Evaluation, double *Partials, void *Context)'.

The function of type XSLP_USERFUNCTION_MULTIMAPDELTA expects a function in the form of ‘int
XPRS_CC F(double *Value, double *Deltas, double *Out, void *Context)’.

Related topics
Function Declaration in Xpress NonLinear, xSL.Pdeluserfunction, XSLPimportlibfunc

Fair Isaac Corporation Confidential and Proprietary Information 225

Library functions and the programming interface Reference

XSLPaddvars

Purpose
Add SLP variables defined as matrix columns to an SLP problem

Synopsis
int XPRS_CC XSLPaddvars (XSLPprob Prob, int nSLPVar, int *ColIndex, int
*VarType, int *DetRow, int *SeqgNum, int *TolIndex, double *InitValue,
double *StepBound) ;

Arguments
Prob The current SLP problem.
nSLPVar The number of SLP variables to be added.
ColIndex Integer array holding the index of the matrix column corresponding to each SLP variable.
VarType Bitmap giving information about the SLP variable as follows:
Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;

Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be NULL if not required.

SegNum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be NULL if not required.

TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be NULL if not required.

Initvalue Double array holding the initial value for each SLP variable (use the varType bit map to
indicate if a value is being provided)
May be NULL if not required.

StepBound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have step
bounds applied, and will almost always be regarded as converged.

May be NULL if not required.

Example
The following example loads two SLP variables into the problem. They correspond to columns 23 and
25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific
initial value

int ColIndex[2], VarTypel[2];
double InitValue[2];

ColIndex[0] = 23; VarType[0] = O;
ColIndex[1] 25; Vartypel[l] 2; InitvValue[l] = 1.42;

XSLPaddvars (Prob, 2, ColIndex, VarType, NULL, NULL,
NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of varType is
set for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 226

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used at
all, and so have been passed to the function as NULL.

Further information
The XSLPadd. . . functions load additional items into the SLP problem. The corresponding
XSLPload. .. functions delete any existing items first.

Related topics
XSLPchgvar, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 227

Library functions and the programming interface Reference

XSLPcalcslacks

Purpose
Calculate the slack values for the provided solution in the non-linear problem

Synopsis
int XPRS_CC XSLPcalcslacks (XSLPprob Prob, const double * dSol, double =*
Slacks);
Arguments
Prob The current SLP problem.
dsol The solution for which the slacks are requested for.
Slacks Vector of length NROWS to return the slack in.

Related topics
XSLPvalidate, XSLPvalidaterow

Fair Isaac Corporation Confidential and Proprietary Information 228

Library functions and the programming interface Reference

XSLPcascade

Purpose
Re-calculate consistent values for SLP variables based on the current values of the remaining variables.

Synopsis

int XPRS_CC XSLPcascade (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example changes the solution value for column 91, and then re-calculates the values of
those dependent on it.

int ColNum;
double Value;

ColNum = 91;

XSLPgetvar (Prob, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &Value, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL);

Value = Value + 1.42;

XSLPchgvar (Prob, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &Value, NULL, NULL, NULL,
NULL) ;

XSLPcascade (Prob) ;

XSLPgetvar and XxSLPchgvar are being used to get and change the current value of a single variable.
Provided no other values have been changed since the last execution of XSLPcascade, values will be
changed only for variables which depend on column 91.

Further information
See the section on cascading for an extended discussion of the types of cascading which can be
performed.

XSLPcascade is called automatically during the SLP iteration process and so it is not normally
necessary to perform an explicit cascade calculation.

The variables are re-calculated in accordance with the order generated by XSL.Pcascadeorder.
Related topics

XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 229

Library functions and the programming interface Reference

XSLPcascadeorder

Purpose
Establish a re-calculation sequence for SLP variables with determining rows.

Synopsis

int XPRS_CC XSLPcascadeorder (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

Assuming that all variables are SLP variables, the following example sets default values for the
variables, creates the re-calculation order and then calls xS1.Pcascade to calculate consistent values
for the dependent variables.

int ColNum;
for (ColNum=1l;ColNum<=nCol; ColNum++)
XSLPchgvar (Prob, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &DefaultValue[ColNum], NULL, NULL, NULL,
NULL) ;
XSLPcascadeorder (Prob) ;
XSLPcascade (Prob) ;

Further information
XSLPcascadeorder is called automatically at the start of the SLP iteration process and so it is not
normally necessary to perform an explicit cascade ordering.

Related topics
XSLPcascade

Fair Isaac Corporation Confidential and Proprietary Information 230

Library functions and the programming interface Reference

XSLPchgcascadenlimit

Purpose
Set a variable specific cascade iteration limit

Synopsis
int XPRS_CC XSLPchgcascadenlimit (XSLPprob Prob, int iCol, int
CascadeNLimit) ;

Arguments
Prob The current SLP problem.

iCol The index of the column corresponding to the SLP variable for which the cascading limit
is to be imposed.

CascadeNLimit The new cascading iteration limit.

Further information
A value set by this function will overwrite the value of xs.p_CASCADENLIMIT for this variable. To
remove any previous value set by this function, use an iteration limit of 0.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 231

Library functions and the programming interface Reference

XSLPchgccoef

Purpose
Add or change a single matrix coefficient using a character string for the formula

Synopsis
ynop int XPRS_CC XSLPchgccoef (XSLPprob Prob, int RowIndex, int ColIndex, double
*Factor, char *Formula);
Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row for the coefficient.
ColIndex The index of the matrix column for the coefficient.

Factor Address of a double precision variable holding the constant multiplier for the formula. If
Factor is NULL, a value of 1.0 will be used.
Formula Character string holding the formula with the tokens separated by spaces.
Example

Assuming that the columns of the matrix are named co11, Co12, etc, the following example puts the
formula 2.5*sin (Coll) into the coefficient in row 1, column 3.

char *Formula="sin (Coll)";
double Factor;

Factor = 2.5;
XSLPchgccoef (Prob, 1, 3, &Factor, Formula);

Note that all the tokens in the formula (including mathematical operators and separators) are
separated by one or more spaces.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which
can be provided in the Factor variable. If Xpress NonLinear can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.

This function can only be used if all the operands in the formula can be correctly identified as
constants, existing columns, character variables or functions. Therefore, if a formula refers to a new
column, that new item must be added to the Xpress NonLinear problem first.

Related topics
XSLPaddcoefs, XSLPdelcoefs, XSLPchgcoef, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 232

Library functions and the programming interface Reference

XSLPchgcoef

Purpose
Add or change a single matrix coefficient using a parsed or unparsed formula
Synopsis
int XPRS_CC XSLPchgcoef (XSLPprob Prob, int RowIndex, int ColIndex, double
*Factor, int Parsed, int *Type, double *Value);

Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row for the coefficient.
ColIndex The index of the matrix column for the coefficient.

Factor Address of a double precision variable holding the constant multiplier for the formula. If
Factor is NULL, a value of 1.0 will be used.
Parsed Integer indicating the whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the description and formula for each item.
Value Array of values corresponding to the types in Type.
Example

Assuming that the columns of the matrix are named Co11, Col2, etc, the following example puts the
formula 2.5+sin (Col1l) into the coefficient in row 1, column 3.

int n, iSin, Typel4];
double Value[4];
double Factor;

XSLPgetindex (Prob, XSLP_INTERNALFUNCNAMESNOCASE,
"sin", &iSin);

n = 0;

Type[n] = XSLP_IFUN; Value[n++] = iSin;
Type[n] = XSLP_VAR; Value[n++] = 1;
Type [n++] = XSLP_RB;

Type[n++] = XSLP_EOF;

Factor = 2.5;
XSLPchgcoef (Prob, 1, 3, &Factor, 0, Type, Value);

XSLPgetindex is used to retrieve the index for the internal function sin. The "nocase" version
matches the function name regardless of the (upper or lower) case of the name.

Token type XSLP_VAR always counts from 1, so Col1 is always 1.

The formula is written in unparsed form (Parsed = 0) and so it is provided as tokens in the same order
as they would appear if the formula were written in character form.

Further information
If the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If it
does not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier which
can be provided in the Factor variable. If Xpress NonLinear can identify a constant factor in the
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.

Related topics
XSLPaddcoefs, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 233

Library functions and the programming interface Reference

XSLPchgdeltatype

Purpose
Changes the type of the delta assigned to a nonlinear variable

Synopsis
int XPRS_CC XSLPchgdeltatype (XSLPprob Prob, int nVar, int Vars[], int
DeltaTypes[], double Values|[]);
Arguments
Prob The current SLP problem.
nvVar The number of SLP variables to change the delta type for.
Vars Indices of the variables to change the deltas for.
DeltaTypes Type if the delta variable:
0 Differentiable variable, default.
1 Variable defined over the grid size given in values.
2 Variable where a minimum perturbation size given in values may be
required before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be detected,
with an upper limit given in values.
Values Grid or minimum step sizes for the variables.

Further information
Changing the delta type of a variables makes the variable nonlinear.

Related topics
XSLP_SEMICONTDELTAS, XSLP_INTEGERDELTAS, XSLP_EXPLOREDELTAS

Fair Isaac Corporation Confidential and Proprietary Information

234

Library functions and the programming interface Reference

XSLPchgdf

Purpose
Set or change a distribution factor

Synopsis
int XSLP_CC XSLPchgdf (XSLPprob Prob, int ColIndex, int RowIndex, const
double *Value)

Arguments
Prob The current SLP problem.
ColIndex The index of the column whose distribution factor is to be set or changed.
RowIndex The index of the row where the distribution applies.

Value Address of a double precision variable holding the new value of the distribution factor.
May be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and
changes it to be twice as large.

double Value;
XSLPgetdf (prob, 282,134, &Value) ;
Value = Value * 2;
XSLPchgdf (prob, 282,134, &Value) ;

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress NonLinear can accept distribution factors instead of initial values,
provided that the values of the variables involved can all be calculated after optimization using
determining rows, or by a callback.

Related topics
XSLPadddfs, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 235

Library functions and the programming interface Reference

XSLPchgrowstatus

Purpose

Change the status setting of a constraint

Synopsis

int XPRS_CC XSLPchgrowstatus (XSLPprob Prob, int RowIndex, int =*Status);

Arguments
Prob

The current SLP problem.

RowIndex The index of the matrix row to be changed.

Status

Example

Address of an integer holding a bitmap with the new status settings. If the status is to

be changed, always get the current status first (use XxSLPgetrowstatus) and then

change settings as required. The only settings likely to be changed are:

Bit 11 Setif row must not have a penalty error vector. This is the equivalent of an
enforced constraint (SLPDATA type EC).

The following example changes the status of row 9 to be an enforced constraint.

int RowIndex, Status;

RowIndex = 9;
XSLPgetrowstatus (Prob, RowIndex, &Status) ;
Status = Status | (1<<11);
XSLPchgrowstatus (Prob, RowIndex, &Status) ;

Further information
If Status is NULL the current status will remain unchanged.

Related topics

XSLPgetrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 236

Library functions and the programming interface Reference

XSLPchgrowwt

Purpose
Set or change the initial penalty error weight for a row

Synopsis

int XSLP_CC XSLPchgrowwt (XSLPprob Prob, int RowIndex, const double *Value)
Arguments

Prob The current SLP problem.

RowIndex The index of the row whose weight is to be set or changed.

Value Address of a double precision variable holding the new value of the weight. May be

NULL if not required.

Example

The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the initial
weight of row 4 to a value twice the calculated default value.

double Value;
Value = -3.6;
XSLPchgrowwt (Prob, 2, &Value) ;
Value = 2.0;
XSLPchgrowwt (Prob, 4, &Value) ;

Further information
A positive value is interpreted as a multiplier of the default row weight calculated by Xpress-SLP.
A negative value is interpreted as a fixed value: the absolute value is used directly as the row weight.
The initial row weight is used only when the augmented structure is created.

Related topics
XSLPgetrowwt

Fair Isaac Corporation Confidential and Proprietary Information 237

Library functions and the programming interface

Reference

XSLPchgtolset

Purpose
Add or change a set of convergence tolerances used for SLP variables

Synopsis
int XPRS_CC XSLPchgtolset (XSLPprob Prob, int nSLPTol, int *Status, double
*Tols) ;
Arguments
Prob The current SLP problem.
nSLPTol Tolerance set for which values are to be changed. A zero value for nSLPTo1l will create
a new set.
Status Address of an integer holding a bitmap describing which tolerances are active in this
set. See below for the settings.
Tols Array of 9 double precision values holding the values for the corresponding tolerances.
Example

The following example creates a new tolerance set with the default values for all tolerances except the
relative delta tolerance, which is set to 0.005. It then changes the value of the absolute delta and

absolute impact tolerances in tolerance set 6 to 0.015

int Status;
double Tols[9];

Tols[2] = 0.005;

Status = 1<<2;

XSLPchgtolset (Prob, 0, &Status, Tols);
Tols[1l] = Tols[5] = 0.015;

Status = 1<<1 | 1<<5;

XSLPchgtolset (Prob, 6, &Status, Tols);

Further information

The bits in Status are set to indicate that the corresponding tolerance is to be changed in the

tolerance set. The meaning of the bits is as follows:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while
the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given
SLP variable. The members of the Tols array corresponding to nonzero bit settings in Status will be
used to change the tolerance set. So, for example, if bit 3 is set in status, then Tols[3] will replace

the current value of the absolute coefficient tolerance. If a bit is not set in Status, the value of the

corresponding element of Tols is unimportant.

Fair Isaac Corporation Confidential and Proprietary Information

238

Library functions and the programming interface Reference

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 239

Library functions and the programming interface Reference

XSLPchgvar

Purpose
Define a column as an SLP variable or change the characteristics and values of an existing SLP variable

Synopsis
int XPRS_CC XSLPchgvar (XSLPprob Prob, int ColIndex, int *DetRow, double
*InitStepBound, double *StepBound, double *Penalty, double *Damp,
double *InitValue, double *Value, int *TolSet, int *History, int
*Converged, int *VarType);

Arguments
Prob The current SLP problem.
ColIndex The index of the matrix column.
DetRow Address of an integer holding the index of the determining row. Use -1 if there is no

determining row. May be NULL if not required.

InitStepBound Address of a double precision variable holding the initial step bound size. May be
NULL if not required.

StepBound Address of a double precision variable holding the current step bound size. Use zero to
disable the step bounds. May be NULL if not required.

Penalty Address of a double precision variable holding the weighting of the penalty cost for
exceeding the step bounds. May be NULL if not required.
Damp Address of a double precision variable holding the damping factor for the variable. May

be NULL if not required.

Initvalue Address of a double precision variable holding the initial value for the variable. May be
NULL if not required.

Value Address of a double precision variable holding the current value for the variable. May be
NULL if not required.

TolSet Address of an integer holding the index of the tolerance set for this variable. Use zero if
there is no specific tolerance set. May be NULL if not required.

History Address of an integer holding the history value for this variable. May be NULL if not
required.

Converged Address of an integer holding the convergence status for this variable. May be NULL if
not required.

VarType Address of an integer holding a bitmap defining the existence of certain properties for
this variable:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variableis the reserved "=" column
May be NULL if not required.

Example
The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the matrix.

double InitialValue;
int VarType, TolSet;

InitialValue = 1.42;
TolSet = 2;
VarType = 1<<1 | 1<<2;

XSLPchgvar (Prob, 25, NULL, NULL, NULL, NULL,
NULL, &InitialValue, NULL, &TolSet,

Fair Isaac Corporation Confidential and Proprietary Information 240

Library functions and the programming interface Reference

NULL, NULL, &VarType);

Note that bits 1 and 2 of varType are set, indicating that the variable has a delta vector and an initial
value. For columns already defined as SLP variables, use xSLpPgetvar to obtain the current value of
VarType because other bits may already have been set by the system.

Further information
If any of the arguments is NULL then the corresponding information for the variable will be left
unaltered. If the information is new (i.e. the column was not previously defined as an SLP variable) then
the default values will be used.

Changing value, History or Converged is only effective during SLP iterations.

Changing Initvalue and InitStepBound is only effective before xSLPconstruct.

If a value of XPRS_PLUSINFINITY is used in the value for StepBound or InitStepBound, the delta
will never have step bounds applied, and will almost always be regarded as converged.

Related topics
XSLPaddvars, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 241

Library functions and the programming interface Reference

XSLPconstruct

Purpose
Create the full augmented SLP matrix and data structures, ready for optimization

Synopsis

int XPRS_CC XSLPconstruct (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example constructs the augmented matrix and then outputs the result in MPS format to
a file called augment.mat

/* creation and/or loading of data =*/
/* precedes this segment of code */

XSLPconstruct (Prob) ;
XSLPwriteprob (Prob, "augment", "1");

The "I" flag causes output of the current linear problem (which is now the augmented structure and the
current linearization) rather than the original nonlinear problem.

Further information
XSLPconstruct adds new rows and columns to the SLP matrix and calculates initial values for the
non-linear coefficients. Which rows and columns are added will depend on the setting of
XSLP_AUGMENTATION. Names for the new rows and columns are generated automatically, based on
the existing names and the string control variables XSLP_xxxFORMAT.

Once XsLPconstruct has been called, no new rows, columns or non-linear coefficients can be added
to the problem. Any rows or columns which will be required must be added first. Non-linear coefficients
must not be changed; constant matrix elements can generally be changed after XSLPconstruct, but
not after xsT.ppresolve if used.

XSLPconstruct is called automatically by the SLP optimization procedure, and so only needs to be
called explicitly if changes need to be made between the augmentation and the optimization.

Related topics
XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 242

Library functions and the programming interface Reference

XSLPcopycallbacks

Purpose
Copy the user-defined callbacks from one SLP problem to another

Synopsis

int XPRS_CC XSLPcopycallbacks (XSLPprob NewProb, XSLPprob OldProb);
Arguments

NewProb The SLP problem to receive the callbacks.

0ldProb The SLP problem from which the callbacks are to be copied.
Example

The following example creates a new problem and copies only the Xpress NonLinear callbacks from
the existing problem (not the Optimizer library ones).

XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob (&nProb, &xProb);

Control = 1<<2;
XSLPsetintcontrol (Prob, XSLP_CONTROL, Control);
XSLPcopycallbacks (nProb, Prob);

Note that xSL.P_ CONTROL is set in the old problem, not the new one.

Further information
Normally xsL.Pcopycallbacks copies both the Xpress NonLinear callbacks and the Optimizer Library
callbacks for the underlying problem. If only the Xpress NonLinear callbacks are required, set the
integer control variable XST.P_CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 243

Library functions and the programming interface Reference

XSLPcopycontrols

Purpose
Copy the values of the control variables from one SLP problem to another

Synopsis

int XPRS_CC XSLPcopycontrols (XSLPprob NewProb, XSLPprob OldProb);
Arguments

NewProb The SLP problem to receive the controls.

0ldProb The SLP problem from which the controls are to be copied.
Example

The following example creates a new problem and copies only the Xpress NonLinear controls from the
existing problem (not the Optimizer library ones).

XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob (&nProb, &xProb);

Control = 1<<1;
XSLPsetintcontrol (Prob, XSLP_CONTROL, Control);
XSLPcopycontrols (nProb, Prob);

Note that xSL.P_ CONTROL is set in the old problem, not the new one.

Further information
Normally XxsL.Pcopycontrols copies both the Xpress NonLinear controls and the Optimizer Library
controls for the underlying problem. If only the Xpress NonLinear controls are required, set the integer
control variable XxsL.p_ CONTROL appropriately.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 244

Library functions and the programming interface Reference

XSLPcopyprob

Purpose
Copy an existing SLP problem to another

Synopsis
int XPRS_CC XSLPcopyprob (XSLPprob NewProb, XSLPprob 0OldProb, char
*ProbName) ;

Arguments
NewProb The SLP problem to receive the copy.
0ldProb The SLP problem from which to copy.

ProbName The name to be given to the problem.

Example
The following example creates a new Xpress NonLinear problem and then copies an existing problem

to it. The new problem is named "ANewProblem".

XSLPprob nProb;
XPRSprob xProb;

XSLPcreateprob (&nProb, &xProb);
XSLPcopyprob (nProb, Prob, "ANewProblem");

Further information
Normally XxsL.Pcopyprob copies both the Xpress NonLinear problem and the underlying Optimizer
Library problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.
This function does not copy controls or callbacks. These must be copied separately using
XSLPcopycontrols and XSLPcopycallbacks if required.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 245

Library functions and the programming interface Reference

XSLPcreateprob

Purpose
Create a new SLP problem

Synopsis

int XPRS_CC XSLPcreateprob (XSLPprob *Prob, XPRSprob *xProb);
Arguments

Prob The address of the SLP problem variable.

xProb The address of the underlying Optimizer Library problem variable.
Example

The following example creates an optimizer problem, and then a new Xpress NonLinear problem.

XSLPprob nProb;
XPRSprob xProb;

XPRScreateprob (&xProb) ;
XSLPcreateprob (&nProb, &xProb);

Further information
An Xpress NonLinear problem includes an underlying optimizer problem which is used to solve the
successive linear approximations. The user is responsible for creating and destroying the underlying
linear problem, and can also access it using the normal optimizer library functions. When an SLP
problem is to be created, the underlying problem is created first, and the SLP problem is then created,
knowing the address of the underlying problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 246

Library functions and the programming interface Reference

XSLPdelcoefs

Purpose
Delete coefficients from the current problem

Synopsis
int XPRS_CC XSLPdelcoefs (XSLPprob Prob, in nSLPCoef, int *RowIndex, int
*ColIndex) ;
Arguments
Prob The current SLP problem.
nSLPCoef Number of SLP coefficients to delete.
RowIndex Row indices of the SLP coefficients to delete.
ColIndex Column indices of the SLP coefficients to delete.

Related topics

XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 247

Library functions and the programming interface Reference

XSLPdeltolsets
Purpose
Delete tolerance sets from the current problem
Synopsis
int XPRS_CC XSLPdeltolsets (XSLPprob Prob, int nTolSet, int *TolSetIndex);
Arguments
Prob The current SLP problem.
nTolSet Number of tolerance sets to delete.

TolSetIndex Indices of tolerance sets to delete.

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 248

Library functions and the programming interface Reference

XSLPdeluserfunction

Purpose
Delete a user function from the current problem

Synopsis

int XPRS_CC XSLPdeluserfunction (XSLPprob prob, int FunctionTokenId);
Arguments

Prob The current SLP problem.

FunctionTokenId The identifier of the user function as returned by XSL.Padduserfunction.

Related topics
XSLPadduserfunction, XSLPimportlibfunc

Fair Isaac Corporation Confidential and Proprietary Information 249

Library functions and the programming interface Reference

XSLPdelvars

Purpose
Convert SLP variables to normal columns. Variables must not appear in SLP structures

Synopsis

int XPRS_CC XSLPdelvars (XSLPprob prob, int nCol, int *ColIndex);
Arguments

Prob The current SLP problem.

nCol Number SLP variables to be converted to linear columns.

ColIndex Column indices of the SLP vars to be converted to linear ones.

Further information
The SLP variables to be converted to linear, non SLP columns must not be in use by any other SLP
structure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or change
functions to remove them first.

Related topics
XSLPaddvars, XSLPchgvar, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 250

Library functions and the programming interface Reference

XSLPdestroyprob

Purpose
Delete an SLP problem and release all the associated memory

Synopsis

int XPRS_CC XSLPdestroyprob (XSLPprob Prob);
Argument

Prob The SLP problem.
Example

The following example creates an SLP problem and then destroys it together with the underlying
optimizer problem.

XSLPprob nProb;
XPRSprob xProb;

XPRScreateprob (&xProb) ;
XSLPcreateprob (&nProb, &xProb);

XSLPdestroyprob (nProb) ;
XPRSdestroyprob (xProb) ;

Further information
When you have finished with the SLP problem, it should be "destroyed” so that the memory used by the
problem can be released. Note that this does not destroy the underlying optimizer problem, so a call to
XPRSdestroyprob should follow XSLPdestroyprob as and when you have finished with the
underlying optimizer problem.

Related topics
XSLPcreateprob

Fair Isaac Corporation Confidential and Proprietary Information 251

Library functions and the programming interface Reference

XSLPevaluatecoef

Purpose
Evaluate a coefficient using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluatecoef (XSLPprob Prob, int RowIndex, int ColIndex,
double =*dValue);

Arguments
Prob The current SLP problem.
RowIndex Integer index of the row.
ColIndex Integer index of the column.
Value Address of a double precision value to receive the result of the calculation.

Example
The following example sets the value of column 5 to 1.42 and then calculates the coefficient in row 2,
column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the calculation.

double Value, dValue;

Value = 1.42;

XSLPchgvar (Prob, 5, NULL, NULL, NULL, NULL,
NULL, NULL, &Value, NULL, NULL, NULL,
NULL) ;

XSLPevaluatecoef (Prob, 2, 3, &dValue);

Further information
The values of the variables are obtained from the solution, or from the value setting of an SLP variable
(see xsLPchgvar and XSLPgetvar).

Related topics
XSLPchgvar, XSLPevaluateformula XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 252

Library functions and the programming interface Reference

XSLPevaluateformula

Purpose
Evaluate a formula using the current values of the variables

Synopsis
int XPRS_CC XSLPevaluateformula (XSLPprob Prob, int Parsed, int *Type,
double *Value, double =*dValue);

Arguments

Prob The current SLP problem.

Parsed integer indicating whether the formula of the item is in internal unparsed format

(Parsed=0) or parsed (reverse Polish) format (Parsed=1).

Type Integer array of token types for the formula.

Value Double array of values corresponding to Type.

dvalue Address of a double precision value to receive the result of the calculation.
Example

The following example calculates the value of column 3 divided by column 6.

int n, Type[l0];
double dValue, Value[l0];

n = 0;

Type[n] = XSLP_COL; Value[n++] = 3;

Type[n] = XSLP_COL; Value[nt++] = 6;

Type[n] = XSLP_OP; Value[nt++] = XSLP_DIVIDE;
Type[n++] = XSLP_EOF;

XSLPevaluateformula (Prob, 1, Type, Value, &dValue);
Further information
The formula in Type and value must be terminated by an XSLP_EOF token.

The formula cannot include "complicated" functions, such as user functions which return more than
one value

Related topics
XSLPevaluatecoef

Fair Isaac Corporation Confidential and Proprietary Information 253

Library functions and the programming interface Reference

XSLPfixpenalties

Purpose
Fixe the values of the error vectors

Synopsis
int XPRS_CC XSLPfixpenalties (XSLPprob Prob, int =*Status);
Arguments
Prob The current SLP problem.
Status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further information
The function fixes the values of all error vectors on their current values. It also removes their objective
cost contribution.

The function is intended to support post optimization analysis, by removing any possible direct effect
of the error vectors from the dual and reduced cost values.

The XSLPfixpenalties will automatically reoptimize the linearization. However, as the XSLP
convergence and infeasibility checks (regarding the original non-linear problem) will not be carried out,
this function will not update the SLP solution itself. The updated values will be accessible using
XPRSgetlpsolution instead.

Fair Isaac Corporation Confidential and Proprietary Information 254

Library functions and the programming interface Reference

XSLPfree

Purpose
Free any memory allocated by Xpress NonLinear and close any open Xpress NonLinear files

Synopsis
int XPRS_CC XSLPfree (void);

Example
The following code frees the Xpress NonLinear memory and then frees the optimizer memory:

XSLPfree () ;
XPRSfree();

Further information
A call to xsLPfree only frees the items specific to Xpress NonLinear. XPRSfree must be called after
XSLPfree to free the optimizer structures.

Related topics
XSLPinit

Fair Isaac Corporation Confidential and Proprietary Information 255

Library functions and the programming interface Reference

XSLPgetbanner

Purpose
Retrieve the Xpress NonLinear banner and copyright messages

Synopsis
int XPRS_CC XSLPgetbanner (char *Banner);
Argument
Banner Character buffer to hold the banner. This will be at most 256 characters including the
null terminator.
Example

The following example retrieves the Xpress NonLinear banner and prints it

char Buffer[260];
XSLPgetbanner (Buffer];
printf ("$s\n",Buffer);

Further information
Note that XSLPgetbanner does not take the normal Prob argument.

If XSLPgetbanner is called before XxPRSinit, then it will return only the Xpress NonLinear
information; otherwise it will include the XPRSgetbanner information as well.

Fair Isaac Corporation Confidential and Proprietary Information 256

Library functions and the programming interface Reference

XSLPgetccoef

Purpose
Retrieve a single matrix coefficient as a formula in a character string

Synopsis
ynop int XPRS_CC XSLPgetccoef (XSLPprob Prob, int RowIndex, int ColIndex, double
*Factor, char *Formula, int fLen);
Arguments
Prob The current SLP problem.
RowIndex Integer holding the row index for the coefficient.
ColIndex Integer holding the column index for the coefficient.

Factor Address of a double precision variable to receive the value of the constant factor
multiplying the formula in the coefficient.

Formula Character buffer in which the formula will be placed in the same format as used for
input from a file. The formula will be null terminated.

flen Maximum length of returned formula.

Return value
0 Normal return.
1 Formula is too long for the buffer and has been truncated.
other Error.

Example
The following example displays the formula for the coefficient in row 2, column 3:

char Buffer[60];
double Factor;
int Code;

Code = XSLPgetccoef (Prob, 2, 3, &Factor, Buffer, 60);
switch (Code) {
case 0: printf("\nFormula is %s",Buffer);

printf ("\nFactor = %1lg",Factor);

break;

case 1: printf("\nFormula is too long for the buffer");
break;

default: printf ("\nError accessing coefficient");
break;

}

Further information
If the requested coefficient is constant, then Factor will be set to 1.0 and the value will be formatted in
Formula.

If the length of the formula would exceed £Len-1, the formula is truncated to the last token that will fit,
and the (partial) formula is terminated with a null character.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 257

Library functions and the programming interface Reference

XSLPgetcoefformula

Purpose
Retrieve a single matrix coefficient as a formula split into tokens

Synopsis
int XPRS_CC XSLPgetcoefformula (XSLPprob Prob, int RowIndex, int ColIndex,
double *Factor, int Parsed, int BufferSize, int xTokenCount, int
*Type, double *Value);

Arguments
Prob The current SLP problem.
RowIndex Integer holding the row index for the coefficient.
ColIndex Integer holding the column index for the coefficient.
Factor Address of a double precision variable to receive the value of the constant factor
multiplying the formula in the coefficient.
Parsed Integer indicating whether the formula of the item is to be returned in internal unparsed

format (Parsed=0) or parsed (reverse Polish) format (Parsed=1).
BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.
TokenCount Number of tokens returned in Type and Value.
Type Integer array to hold the token types for the formula.
Value Double array of values corresponding to Type.

Example
The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:

int n, Typel[l0];
double Value[1l0];
int TokenCount;

XSLPgetcoefformula (Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);
for (n=0;Typel[n] != XSLP_EOF;n++)
printf ("\nType=%-3d Value=%1lg",Typel[n],Value[n]);

Further information
The Type and Value arrays are terminated by an XSLP_EOF token.
If the requested coefficient is constant, then Factor will be set to 1.0 and the value will be returned
with token type XSLP_CON.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 258

Library functions and the programming interface Reference

XSLPgetcoefs

Purpose
Retrieve the list of positions of the nonlinear coefficients in the problem

Synopsis
int XPRS_CC XSLPgetcoefs (XSLPprob Prob, int *nCoef, int *RowIndices, int
*ColIndices);

Arguments
Prob The current SLP problem.
nCoef Integer used to return the total number of nonlinear coefficients in the problem.

RowIndices Integer array used for returning the row positions of the coefficients. May be NULL if
not required.

ColIndices Integer array used for returning the column positions of the coefficients. May be NULL
if not required.

Related topics
XSLPgetccoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 259

Library functions and the programming interface Reference

XSLPgetcolinfo

Purpose
Get current column information.

Synopsis
int XSLP_CC XSLPgetcolinfo (XSLPprob Prob, int InfoType, int ColIndex,
XSLPalltype *Info);

Arguments
Prob The current SLP problem
InfoType Type of information (see below)
ColIndex Index of the column whose information is to be handled
Info Address of information to be set or retrieved
Further information
If the data is not available, the type of the returned Info is set to XSLPtype_undefined.
Please refer to the header file xs1p.h for the definition of XSLPalltype.
The following constants are provided for column information handling:

XSLP_COLINFO_VALUE Get the current value of the column
XSLP_COLINFO_RDJ Get the current reduced cost of the column
XSLP_COLINFO_DELTAINDEX Get the delta variable index associated to the column

XSLP_COLINFO_DELTA Get the delta value (change since previous value) of the column

XSLP_COLINFO_DELTADJ Get the delta variables reduced cost

XSLP_COLINFO_UPDATEROW Get the index of the update (or step bound) row associated to the
column

XSLP_COLINFO_SB Get the step bound on the variable

XSLP_COLINFO_SBDUAL Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Confidential and Proprietary Information 260

Library functions and the programming interface Reference

XSLPgetdblattrib

Purpose
Retrieve the value of a double precision problem attribute

Synopsis

int XPRS_CC XSLPgetdblattrib (XSLPprob Prob, int Param, double =*dValue);
Arguments

Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

dvalue Address of a double precision variable to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear attribute
XSLP_CURRENTDELTACOST and of the optimizer attribute XPRS_L.POBJVAL:

double DeltaCost, Objval;
XSLPgetdblattrib (Prob, XSLP_CURRENTDELTACOST, &DeltaCost);
XSLPgetdblattrib (Prob, XPRS_LPOBJVAL, &Oijal) ;

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetdblattrib.

Related topics
XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 261

Library functions and the programming interface Reference

XSLPgetdbicontrol

Purpose
Retrieve the value of a double precision problem control

Synopsis

int XPRS_CC XSLPgetdblcontrol (XSLPprob Prob, int Param, double =*dValue);
Arguments

Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

dvalue Address of a double precision variable to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear control xs.p_cTOL and of the
optimizer control XPRS_FEASTOL:

double CTol, FeasTol;
XSLPgetdblcontrol (Prob, XSLP_CTOL, &CTol);
XSLPgetdblcontrol (Prob, XPRS_FEASTOL, &FeasTol);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetdblcontrol.

Related topics
XSLPgetintcontrol, XSLPgetstrcontrol, XSLPsetdblcontrol

Fair Isaac Corporation Confidential and Proprietary Information 262

Library functions and the programming interface Reference

XSLPgetdf

Purpose
Get a distribution factor

Synopsis
int XSLP_CC XSLPgetdf (XSLPprob Prob, int ColIndex, int RowIndex, double
*Value)
Arguments
Prob The current SLP problem.

ColIndex The index of the column whose distribution factor is to be retrieved.
RowIndex The index of the row from which the distribution factor is to be taken.

Value Address of a double precision variable to receive the value of the distribution factor.
May be NULL if not required.

Example
The following example retrieves the value of the distribution factor for column 282 in row 134 and

changes it to be twice as large.

double Value;
XSLPgetdf (prob, 282,134, &Value) ;
Value = Value * 2;
XSLPchgdf (prob, 282,134, &Value) ;

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or
by a callback.

Related topics
XSLPadddfs, XSLPchgdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 263

Library functions and the programming interface Reference

XSLPgetindex

Purpose
Retrieve the index of an Xpress NonLinear entity with a given name

Synopsis
int XPRS_CC XSLPgetindex (XSLPprob Prob, int Type, char *cName, int *Index);
Arguments
Prob The current SLP problem.
Type Type of entity. The following are defined:
XSLP_CVNAMES (=3) Character variables;
XSLP_USERFUNCNAMES (=5) User functions;
XSLP_INTERNALFUNCNAMES (=6) Internal functions;
XSLP_USERFUNCNAMESNOCASE (=7) User functions, case insensitive;
XSLP_INTERNALFUNCNAMESNOCASE (=8) Internal functions, case insensitive;
The constants 1 (for row names) and 2 (for column names) may also be used.
cName Character string containing the name, terminated by a null character.
Index Integer to receive the index of the item.
Example

The following example retrieves the index of the internal SIN function using both an upper-case and a
lower case version of the name.

int UpperIndex, LowerIndex;

XSLPgetindex (Prob, XSLP_INTERNALFUNCNAMESNOCASE,
"SIN", &UpperIndex);

XSLPgetindex (Prob, XSLP_INTERNALFUNCNAMESNOCASE,
"sin", &LowerIndex);

UpperIndex and LowerIndex will contain the same value because the search was made using
case-insensitive matching.

Further information
All entities count from 1. This includes the use of 1 or 2 (row or column) for Type. A value of zero
returned in Index means there is no matching item. The case-insensitive types will find the first match
regardless of the case of cName or of the defined function.

Fair Isaac Corporation Confidential and Proprietary Information 264

Library functions and the programming interface Reference

XSLPgetintattrib

Purpose
Retrieve the value of an integer problem attribute

Synopsis

int XPRS_CC XSLPgetintattrib (XSLPprob Prob, int Param, int =*iValue);
Arguments

Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

ivalue Address of an integer variable to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear attribute xs.p_cvs and of the
optimizer attribute XPRS_COLS:

int nCV, nCol;
XSLPgetintattrib (Prob, XSLP_CVS, &nCV);
XSLPgetintattrib (Prob, XPRS_COLS, &nCol);

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetintattrib.

Related topics
XSLPgetdblattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 265

Library functions and the programming interface Reference

XSLPgetintcontrol

Purpose
Retrieve the value of an integer problem control

Synopsis

int XPRS_CC XSLPgetintcontrol (XSLPprob Prob, int Param, int =*iValue);
Arguments

Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

ivalue Address of an integer variable to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear control xs1.p_ ALGORITHM and of
the optimizer control XPRS_DEFAULTALG:

int Algorithm, DefaultAlg;
XSLPgetintcontrol (Prob, XSLP_ALGORITHM, &Algorithm);
XSLPgetintcontrol (Prob, XPRS_DEFAULTALG, &DefaultAlg);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetintcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetstrcontrol, XSLPsetintcontrol

Fair Isaac Corporation Confidential and Proprietary Information 266

Library functions and the programming interface Reference

XSLPgetlasterror

Purpose
Retrieve the error message corresponding to the last Xpress NonLinear error during an SLP run

Synopsis
int XPRS_CC XSLPgetlasterror (XSLPprob Prob, int *Code, char *Buffer);
Arguments
Prob The current SLP problem.
Code Address of an integer to receive the message number of the last error. May be NULL if
not required.
Buffer Character buffer to receive the error message. The error message will never be longer
than 256 characters. May be NULL if not required.
Example

The following example checks the return code from reading a matrix. If the code is nonzero then an
error has occurred, and the error number is retrieved for further processing.

int Error, Code;

if (Error=XSLPreadprob (Prob, "Matrix", "")) {
XSLPgetlasterror (Prob, &Code, NULL);
MyErrorHandler (Code) ;

}

Further information
In general, Xpress NonLinear functions return a value of 32 to indicate a non-recoverable error.
XSLPgetlasterror can retrieve the actual error number and message. In case no SLP error code
was retuned, the function will check the underlying XPRS libary for any errors reported.

Fair Isaac Corporation Confidential and Proprietary Information 267

Library functions and the programming interface Reference

XSLPgetptrattrib

Purpose
Retrieve the value of a problem pointer attribute

Synopsis

int XPRS_CC XSLPgetptrattrib (XSLPprob Prob, int Param, void **Value);
Arguments

Prob The current SLP problem.

Param attribute whose value is to be returned.

Value Address of a pointer to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear pointer attribute
XSLP_XPRSPROBLEM which is the underlying optimizer problem pointer:

XPRSprob xprob;
XSLPgetptrattrib (Prob, XSLP_XPRSPROBLEM, &xprob);

Further information
This function is normally used to retrieve the underlying optimizer problem pointer, as shown in the
example.

Related topics
XSLPgetdblattrib, XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 268

Library functions and the programming interface Reference

XSLPgetrowinfo

Purpose
Get current row information.

Synopsis
int XSLP_CC XSLPgetrowinfo (XSLPprob Prob, int InfoType, int RowIndex,
XSLPalltype *Info);

Arguments
Prob The current SLP problem
InfoType Type of information (see below)
RowIndex Index of the row whose information is to be handled
Info Address of information to be set or retrieved
Further information
If the data is not available, the type of the returned Info is set to XSLPtype_undefined.
Please refer to the header file xs1p.h for the definition of XSLPalltype.
The following constants are provided for row information handling:

XSLP_ROWINFO_SLACK Get the current slack value of the row
XSLP_ROWINFO_DUAL Get the current dual multiplier of the row

XSLP_ROWINFO_NUMPENALTYERRORS Get the number of times the penalty error vector has been
active for the row

XSLP_ROWINFO_MAXPENALTYERROR Get the maximum size of the penalty error vector activity for
the row

XSLP_ROWINFO_TOTALPENALTYERROR Get the total size of the penalty error vector activity for the
row

XSLP_ROWINFO_CURRENTPENALTYERROR Get the size of the penalty error vector activity in the
current iteration for the row

XSLP_ROWINFO_CURRENTPENALTYFACTOR Set the size of the penalty error factor for the current
iteration for the row

XSLP_ROWINFO_PENALTYCOLUMNPLUS Get the index of the positive penalty column for the row (+)

XSLP_ROWINFO_PENALTYCOLUMNPLUSVALUE Get the value of the positive penalty column for the
row (+)

XSLP_ROWINFO_PENALTYCOLUMNPLUSDJ Get the reduced cost of the positive penalty column for
the row (+)

XSLP_ROWINFO_PENALTYCOLUMNMINUS Get the index of the negative penalty column for the row (-)

XSLP_ROWINFO_PENALTYCOLUMNMINUSVALUE Get the value of the negative penalty column for the
row (-)

XSLP_ROWINFO_PENALTYCOLUMNMINUSDJ Get the reduced cost of the negative penalty column for
the row (-)

Fair Isaac Corporation Confidential and Proprietary Information 269

Library functions and the programming interface Reference

XSLPgetrowstatus

Purpose
Retrieve the status setting of a constraint

Synopsis

int XPRS_CC XSLPgetrowstatus (XSLPprob Prob, int RowIndex, int =*Status);
Arguments

Prob The current SLP problem.

RowIndex The index of the matrix row whose data is to be obtained.

Status Address of an integer holding a bitmap to receive the status settings.
Example

This recovers the status of the rows of the matrix of the current problem and reports those which are
flagged as enforced constraints.

int iRow, nRow, Status;

XSLPgetintattrib (Prob, XPRS_ROWS, &nRow) ;

for (iRow=0; iRow<nRow; iRow++) {
XSLPgetrowstatus (Prob, iRow, &Status);
if (Status & 0x800) printf ("\nRow %d is enforced");

}

Further information
See the section on bitmap settings for details on the possible information in status.

Related topics
XSLPchgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 270

Library functions and the programming interface Reference

XSLPgetrowwt

Purpose
Get the initial penalty error weight for a row

Synopsis

int XSLP_CC XSLPgetrowwt (XSLPprob Prob, int RowIndex, double *Value)
Arguments

Prob The current SLP problem.

RowIndex The index of the row whose weight is to be retrieved.

Value Address of a double precision variable to receive the value of the weight.
Example

The following example gets the initial weight of row number 2.

double Value;
XSLPgetrowwt (Prob, 2, &Value)

Further information
The initial row weight is used only when the augmented structure is created. After that, the current
weighting can be accessed using xs1.Pgetrowinfo.

Related topics
XSLPchgrowwt, XSLPgetrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 271

Library functions and the programming interface Reference

XSLPgetslpsol

Purpose
Obtain the solution values for the most recent SLP iteration

Synopsis
int XPRS_CC XSLPgetslpsol (XSLPprob Prob, double *x, double *slack, double
*dual, double *dj);

Arguments
Prob The current SLP problem.
x Double array of length XSLP_ORIGINALCOLS to hold the values of the primal variables.
May be NULL if not required.
slack Double array of length XxSLP_ORIGINALROWS to hold the values of the slack variables.
May be NULL if not required.
dual Double array of length XSLP_ORIGINALROWS to hold the values of the dual variables.
May be NULL if not required.
dj Double array of length XSLP_ ORIGINALCOLS to hold the recuded costs of the primal
variables. May be NULL if not required.
Example

The following code fragment recovers the values and reduced costs of the primal variables from the
most recent SLP iteration:

XSLPprob prob;

int nCol;

double =*val, *dj;
XSLPgetintattrib (prob, XSLP_ORIGINALCOLS, &nCol) ;
val = malloc (nCol*sizeof (double));

dj = malloc (nColxsizeof (double));

XSLPgetslpsol (prob,val,NULL,NULL, dj) ;

Further information
XSLPgetslpsol can be called at any time after an SLP iteration has completed, and will return the
same values even if the problem is subsequently changed. xSL.Pgetslpsol returns values for the
columns and rows originally in the problem and not for any augmentation rows or columns. To access
the values of any augmentation columns or rows, use XPRSget1psol; accessing the augmented
solution is only recommended if xS1.P_PRESOLVELEVEL indicates that the problem dimensions
should not be changed in presolve.

Fair Isaac Corporation Confidential and Proprietary Information 272

Library functions and the programming interface Reference

XSLPgetstrattrib

Purpose
Retrieve the value of a string problem attribute

Synopsis

int XPRS_CC XSLPgetstrattrib (XSLPprob Prob, int Param, char *cValue);
Arguments

Prob The current SLP problem.

Param attribute (SLP or optimizer) whose value is to be returned.

cValue Character buffer to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear attribute xs1.p_ VERSTONDATE and
of the optimizer attribute XPRS_MATRIXNAME:

char VersionDate[200], MatrixName[200];
XSLPgetstrattrib (Prob, XSLP_VERSIONDATE, VersionDate);
XSLPgetstrattrib (Prob, XPRS_MATRIXNAME, MatrixName) ;

Further information
Both SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute is
requested, the return value will be the same as that from XPRSgetstrattrib.

Related topics
XSLPgetdblattrib, XSLPgetintattrib

Fair Isaac Corporation Confidential and Proprietary Information 273

Library functions and the programming interface Reference

XSLPgetstrcontrol

Purpose
Retrieve the value of a string problem control

Synopsis

int XPRS_CC XSLPgetstrcontrol (XSLPprob Prob, int Param, char *cValue);
Arguments

Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

cValue Character buffer to receive the value.
Example

The following example retrieves the value of the Xpress NonLinear control xs.p_cvNAME and of the
optimizer control XPRS_MP SOBJNAME:

char CVName[200], ObjName[200];
XSLPgetstrcontrol (Prob, XSLP_CVNAME, CVName);
XSLPgetstrcontrol (Prob, XPRS_MPSOBJNAME, ObjName);

Further information
Both SLP and optimizer controls can be retrieved using this function. If an optimizer control is
requested, the return value will be the same as that from XPRSgetstrcontrol.

Related topics
XSLPgetdblcontrol, XSLPgetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 274

Library functions and the programming interface Reference

XSLPgettolset

Purpose
Retrieve the values of a set of convergence tolerances for an SLP problem

Synopsis
int XPRS_CC XSLPgettolset (XSLPprob Prob, int nSLPTol, int *Status, double
*Tols) ;
Arguments
Prob The current SLP problem.
nSLPTol The index of the tolerance set.
Status Address of integer to receive the bit-map of status settings. May be NULL if not required.
Tols Array of 9 double-precision values to hold the tolerances. May be NULL if not required.
Example

The following example retrieves the values for tolerance set 3 and prints those which are set:

double Tols[9];
int i, Status;
XSLPgettolset (Prob, 3, &Status, Tols);
for (i=0;1<9;i++)
if (Status & (1<<i))
printf ("\nTolerance %d = %$1g",i,Tols[i]);

Further information
If Status or Tols is NULL, then the corresponding information will not be returned.

If Tols is not NULL, then a set of 9 values will always be returned. status indicates which of these
values is active as follows. Bit n of Status is setif Tols[n] is active, where n is:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while
the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given
SLP variable.

Related topics

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPdeltolsets, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 275

Library functions and the programming interface Reference

XSLPgetvar

Purpose
Retrieve information about an SLP variable

Synopsis
int XPRS_CC XSLPgetvar (XSLPprob prob, int ColIndex, int *DetRow, double
*InitStepBound, double *StepBound, double *Penalty, double *Damp,
double *InitValue, double *Value, int *TolSet, int *History, int
*Converged, int xVarType, int *Delta, int *PenaltyDelta, int
*UpdateRow, double *0OldValue);
Arguments
Prob The current SLP problem.
ColIndex Theindex of the column.
DetRow Address of an integer to receive the index of the determining row. May be NULL if not
required.

InitStepBound Address of a double precision variable to receive the value of the initial step bound
of the variable. May be NULL if not required.

StepBound Address of a double precision variable to receive the value of the current step bound of
the variable. May be NULL if not required.

Penalty Address of a double precision variable to receive the value of the penalty delta
weighting of the variable. May be NULL if not required.
Damp Address of a double precision variable to receive the value of the current damping factor

of the variable. May be NULL if not required.

Initvalue Address of a double precision variable to receive the value of the initial value of the
variable. May be NULL if not required.

Value Address of a double precision variable to receive the current activity of the variable. May
be NULL if not required.

TolSet Address of an integer to receive the index of the tolerance set of the variable. May be
NULL if not required.

History Address of an integer to receive the SLP history of the variable. May be NULL if not
required.

Converged Address of an integer to receive the convergence status of the variable as defined in the
"Convergence Criteria" section (The returned value will match the numbering of the
tolerances). May be NULL if not required.

VarType Address of an integer to receive the status settings (a bitmap defining the existence of
certain properties for this variable). The following bits are defined:
Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variableis the reserved "=" column
Other bits are reserved for internal use. May be NULL if not required.

Delta Address of an integer to receive the index of the delta vector for the variable. May be
NULL if not required.

PenaltyDelta Address of an integer to receive the index of the first penalty delta vector for the
variable. The second penalty delta immediately follows the first. May be NULL if not
required.

UpdateRow Address of an integer to receive the index of the update row for the variable. May be
NULL if not required.

Oldvalue Address of a double precision variable to receive the value of the variable at the
previous SLP iteration. May be NULL if not required.

Fair Isaac Corporation Confidential and Proprietary Information 276

Library functions and the programming interface Reference

Example
The following example retrieves the current value, convergence history and status for column 3.

int Status, History;
double Value;

XSLPgetvar (Prob, 3, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, &History, &Converged,
NULL, NULL, NULL, NULL, NULL);

Further information
If ColIndex refers to a column which is not an SLP variable, then all the return values will indicate that
there is no corresponding data.
DetRow Will be set to -1 if there is no determining row.

Delta, PenaltyDelta and UpdateRow Will be set to -1if there is no corresponding item.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 277

Library functions and the programming interface Reference

XSLPglobal

Purpose
Initiate the Xpress NonLinear mixed integer SLP (MISLP) algorithm

Synopsis

int XPRS_CC XSLPglobal (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example optimizes the problem and then finds the integer solution.

XSLPmaxim (Prob,"") ;
XSLPglobal (Prob) ;

Further information
The current Xpress NonLinear mixed integer problem will be maximized or minimized using the
algorithm defined by the control variable XSLP_MIPALGORITHM.

It is recommended that xs1.pminim or XSL.Pmaxim is used first to obtain a converged solution to the
relaxed problem. If this is not done, ensure that xS1.p_ OBJSENSE is set appropriately.

See the chapter on Mixed Integer Non-Linear Programming for more information about the Xpress
NonLinear MISLP algorithms.

Related topics
XSLPmaxim, XSLPminim, XSLP_MIPALGORITHM, XSLP_OBJSENSE

Fair Isaac Corporation Confidential and Proprietary Information 278

Library functions and the programming interface Reference

XSLPimportlibfunc

Purpose
Imports a function from a library file to be called as a user function

Synopsis
int XPRS_CC XSLPimportlibfunc (XSLPprob Prob,const char * LibName, const
char * FunctionName, void ** FuncPointer, int x Status);

Arguments
Prob The current SLP problem.
LibName Filename of the library.

FunctionName Fucntion anme inside the library.
FuncPointer Function pointer to return the loaded function.

Status Outcome of the load operation
0 success.
1 library file not found.
2 library function in library file not found.

Further information

On systems where necessary, Xpress will hold the handle of the library opened and free up when the
problem object Prob is destroyed.

Related topics
XSLPadduserfunction, XSLPdeluserfunction

Fair Isaac Corporation Confidential and Proprietary Information 279

Library functions and the programming interface Reference

XSLPinit

Purpose
Initializes the Xpress NonLinear system

Synopsis
int XPRS_CC XSLPinit();

Argument
none

Example
The following example initiates the Xpress NonLinear system and prints the banner.

char Buffer[256];
XPRSinit () ;
XSLPinit () ;
XSLPgetbanner (Buffer);

XPRSinit initializes the Xpress optimizer; XSLPinit then initializes the SLP module, so that the
banner contains information from both systems.

Further information
XSLPinit must be the first call to the Xpress NonLinear system except for XSLPgetbanner and
XSLPgetversion. Itinitializes any global parts of the system if required. The call to XSLPinit must
be preceded by a call to XPRSinit to initialize the Optimizer Library part of the system first.

Related topics
XSLPfree

Fair Isaac Corporation Confidential and Proprietary Information 280

Library functions and the programming interface Reference

XSLPinterrupt

Purpose
Interrupts the current SLP optimization

Synopsis

int XPRS_CC XSLPinterrupt (int Reason);
Arguments

Prob The current SLP problem.

Reason Interrupt code to be propagated.

Further information
Provides functionality to stop the SLP optimization process from inside a callback. The following
constants are provided for the paramter value:

Value1 XSLP_STOP_TIMELIMIT
Value2 XSLP_STOP_CTRLC
Value3 XSLP_STOP_NODELIMIT
Value4 XSLP_STOP_ITERLIMIT
Value5 XSLP_STOP_MIPGAP
Value6 XSLP_STOP_SOLLIMIT
Value9 XSLP_STOP_USER

Fair Isaac Corporation Confidential and Proprietary Information 281

Library functions and the programming interface Reference

XSLPitemname

Purpose
Retrieves the name of an Xpress NonLinear entity or the value of a function token as a character string.

Synopsis
int XPRS_CC XSLPitemname (XSLPprob Prob, int Type, double Value, char
*Buffer);
Arguments
Prob The current SLP problem.
Type Integer holding the type of Xpress NonLinear entity. This can be any one of the token
types described in the section on Formula Parsing.
Value Double precision value holding the index or value of the token. The use and meaning of
the value is as described in the section on Formula Parsing.
Buffer Character buffer to hold the result, which will be terminated with a null character.
Example

The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:

int n, Type[l0];
double Value[1l0];
char Buffer[60];
int TokenCount;

XSLPgetcoefformula (Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);

printf ("\n");

for (n=0;Typeln] != XSLP_EOF;n++) {
XSLPitemname (Prob, Type[n], Value[n], Buffer);
printf (" %s", Buffer);

}

Further information
If a name has not been provided for an Xpress NonLinear entity, then an internally-generated name will
be used.

Numerical values will be formatted as fixed-point or floating-point depending on their size.

Fair Isaac Corporation Confidential and Proprietary Information 282

Library functions and the programming interface Reference

XSLPloadcoefs

Purpose
Load non-linear coefficients into the SLP problem

Synopsis
int XPRS_CC XSLPloadcoefs (XSLPprob Prob, int nSLPCoef, int *RowIndex, int
*ColIndex, double *Factor, int *FormulaStart, int Parsed, int *Type,
double *Value);

Arguments
Prob The current SLP problem.
nSLPCoef Number of non-linear coefficients to be loaded.
RowIndex Integer array holding index of row for the coefficient.
ColIndex Integer array holding index of column for the coefficient.

Factor Double array holding factor by which formula is scaled. If this is NULL, then a value of
1.0 will be used.

FormulaStart Integer array of length nsLPCoef+1 holding the start position in the arrays Type
and value of the formula for the coefficients. FormulaStart [nSLPCoef] should be
set to the next position after the end of the last formula.

Parsed Integer indicating whether the token arrays are formatted as internal unparsed
(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the formula for each coefficient.
Value Array of values corresponding to the types in Type.
Example

Assume that the rows and columns of Prob are named Rowl, Row2 ..., Coll, Col2 ... The following
example loads coefficients representing:

Col2 * Col3 + Col6 * Col2"2into Rowl and

Col2 ~ 2into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Typel8];
int n, nSLPCoef;
double Value[8];

RowIndex[0]
RowIndex[1]
RowIndex[2]

1l; ColIndex[0] = 2;
1l; ColIndex[1]
3; CollIndex[2] = 2;

|
o
~

n = nSLPCoef = 0;

FormulaStart [nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 3;
Type [n++] = XSLP_EOF;

FormulaStart [nSLPCoef++] = n;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_COL; Value[n++] = 2;

Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;
Type[n++] = XSLP_EOF;

FormulaStart [nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type [n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 283

Library functions and the programming interface Reference

FormulaStart [nSLPCoef] = n;

XSLPloadcoefs (Prob, nSLPCoef, RowIndex, CollIndex,
NULL, FormulaStart, 1, Type, Value);

The first coefficient in Rowl is in Co12 and has the formula Co13, so it represents Col2 * Col3.

The second coefficient in Rowl is in Col6 and has the formula Co12 * Col2 so it represents Col6 *
Col2"2. The formulae are described as parsed (Parsed=1), so the formula is written as

Col2 Col2 +*

rather than the unparsed form

Col2 * Col2

The last coefficient, in Row3, is in Co12 and has the formula Co12, so it represents Co12 * Col2.

Further information
The ji coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,
which can be provided in the Factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j]. The tokens
follow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formula
must be terminated with an xSLP_EOF token. If several coefficients share the same formula, they can
have the same value in FormulaStart. For possible token types and values see the chapter on
"Formula Parsing".

The XxsLPload. . . functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd. . . functions add or replace items leaving other items of
the same type unchanged.

Related topics
XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 284

Library functions and the programming interface Reference

XSLPloaddfs

Purpose
Load a set of distribution factors

Synopsis

int XSLP_CC XSLPloaddfs (XSLPprob Prob, int nDF, const int *ColIndex, const

int *RowIndex, const double *Value)

Arguments

Prob The current SLP problem.

nDF The number of distribution factors.

ColIndex Array of indices of columns whose distribution factor is to be changed.

RowIndex Array of indices of the rows where each distribution factor applies.

Value Array of double precision variables holding the new values of the distribution factors.
Example

The following example loads distribution factors as follows:

column 282 in row 134 = 0.1

column 282 in row 136 = 0.15

column 285 in row 133 = 1.0.

Any other first-order derivative placeholders are set to XxSL.P_DELTA_ 7.

int ColIndex[3], RowIndex[3];
double Value[3];

ColIndex[0] = 282; RowIndex[0] = 134; Value[0] = 0.1;
ColIndex[1l] = 282; RowIndex[l] = 136; Value[l] = 0.15;
ColIndex[2] = 285; RowIndex[2] = 133; Value[2] = 1.0;

XSLPloaddfs (prob, 3, ColIndex, RowIndex, Value) ;

Further information
The distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector in
the row. Distribution factors are used in conventional recursion models, and are essentially normalized
first-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided that
the values of the variables involved can all be calculated after optimization using determining rows, or
by a callback.

The XsLPadd. . . functions load additional items into the SLP problem. The corresponding
XSLPload. .. functions delete any existing items first.

Related topics
XSLPadddfs, XSLPchgdf, XSLPgetdf

Fair Isaac Corporation Confidential and Proprietary Information 285

Library functions and the programming interface Reference

XSLPloadtolsets
Purpose
Load sets of standard tolerance values into an SLP problem
Synopsis
int XPRS_CC XSLPloadtolsets (XSLPprob Prob, int nSLPTol, double *SLPTol);
Arguments
Prob The current SLP problem.
nSLPTol The number of tolerance sets to be loaded.
SLPTol Double array of (nSLPTol * 9) items containing the 9 tolerance values for each set in
order.
Example

The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the
second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute
tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).

double SLPTol[18];

for (i=0;i<9;i++) SLPTol[i] = 0.005;
SLPTol[9] = 0O;

for (i=10;i<18;i=i+2) SLPTol[i]
for (i=11;i<18;i=i+2) SLPTol[i]
XSLPloadtolsets (Prob, 2, SLPTol);

0.01;
0.001;

Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_ TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, while
the XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given
SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable.

If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a
tolerance, use the xs1.Pchgtolset function and set the Status variable appropriately.

See the section "Convergence Criteria" for a fuller description of tolerances and their uses.

The XsLPload. .. functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd. . . functions add or replace items leaving other items of
the same type unchanged.

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPchgtolset, XSLPgettolset

Fair Isaac Corporation Confidential and Proprietary Information 286

Library functions and the programming interface Reference

XSLPloadvars

Purpose
Load SLP variables defined as matrix columns into an SLP problem

Synopsis
int XPRS_CC XSLPloadvars (XSLPprob Prob, int nSLPVar, int *ColIndex, int
*VarType, int *DetRow, int *SeqgNum, int *TolIndex, double *InitValue,
double *StepBound) ;
Arguments

Prob The current SLP problem.

nSLPVar The number of SLP variables to be loaded.

ColIndex Integer array holding the index of the matrix column corresponding to each SLP variable.

VarType Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;

Bit 2 Variable has an initial value;

Bit 14 Variable is the reserved "=" column;
May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a negative
value means there is no determining row)
May be NULL if not required.

SegNum Integer array holding the index sequence number for cascading for each SLP variable (a
zero value means there is no pre-defined order for this variable)
May be NULL if not required.

TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero value
means the default tolerances are used)
May be NULL if not required.

Initvalue Double array holding the initial value for each SLP variable (use the varType bit map to
indicate if a value is being provided)
May be NULL if not required.

StepBound Double array holding the initial step bound size for each SLP variable (a zero value
means that no initial step bound size has been specified). If a value of
XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have step
bounds applied, and will almost always be regarded as converged.

May be NULL if not required.
Example

The following example loads two SLP variables into the problem. They correspond to columns 23 and
25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specific
initial value

int ColIndex[2], VarTypel[2];
double InitValue[2];

ColIndex[0] = 23; VarType[0] = O;
ColIndex[1] 25; Vartypel[l] 2; InitvValue[l] = 1.42;

XSLPloadvars (Prob, 2, ColIndex, VarType, NULL, NULL,
NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of varType is
set for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 287

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used at
all, and so have been passed to the function as NULL.

Further information
The XSLPload. .. functions load items into the SLP problem. Any existing items of the same type are
deleted first. The corresponding XSLPadd. . . functions add or replace items leaving other items of
the same type unchanged.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 288

Library functions and the programming interface Reference

XSLPmaxim

Purpose
Maximize an SLP problem

Synopsis
int XPRS_CC XSLPmaxim (XSLPprob Prob, char =*Flags);

Arguments

Prob The current SLP problem.
Flags These have the same meaning as for XPRSmaxim.

Example
The following example reads an SLP problem from file and then maximizes it using the primal simplex
optimizer.

XSLPreadprob ("Matrix","");
XSLPmaxim (Prob, "p") ;

Related controls

Integer
XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)
used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
If xsLPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable xs1.p_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XS1.p_ CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPminim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 289

Library functions and the programming interface Reference

XSLPminim

Purpose
Minimize an SLP problem

Synopsis
int XPRS_CC XSLPminim (XSLPprob Prob, char =*Flags);

Arguments

Prob The current SLP problem.
Flags These have the same meaning as for XPRSminim.

Example
The following example reads an SLP problem from file and then minimizes it using the Newton barrier
optimizer.

XSLPreadprob ("Matrix","");
XSLPminim (Prob, "b") ;

Related controls

Integer
XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)
used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
If xsLPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable xs1.p_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XS1.p_ CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 290

Library functions and the programming interface Reference

XSLPmsaddcustompreset

Purpose
A combined version of XSLPmsaddjob and XSLPmsaddpreset. The preset described is loaded, topped
up with the specific settings supplied

Synopsis
int XSLP_CC XSLPmsaddcustompreset (XSLPprob Prob, const char *sDescription,
const int Preset, const int Count, const int nIVs, const int *IVCols,
const double *IVValues, const int nIntControls, const int
*IntControlIndices, const int *IntControlValues, const int
nDblControls, const int *DblControlIndices, const double
*DblControlValues, void *pJdobObject);

Arguments
Prob The current SLP problem.
sDescription Text description of the job. Used for messaging, may be NULL if not required.
Preset Which preset to load.
Count Maximum number of jobs to be added to the multistart pool.
nIVs Number of initial values to set.
IVCols Indices of the variables for which to set an initial value. May be NULL if nlVs is zero.
IVValues Initial values for the variables for which to set an initial value. May be NULL if nlVs is

zero.
nIntControls Number of integer controls to set.

IntControlIndices The indices of the integer controls to be set. May be NULL if nintControls is
zero.

IntControlvalues The values of the integer controls to be set. May be NULL if nIntControls is zero.
nDblControls Number of double controls to set.

DblControlIndices The indices of the double controls to be set. May be NULL if nDbIControls is
Zero.

DblControlvalues The values of the double controls to be set. May be NULL if nDblControls is
zero.

pJobObject Job specific user context pointer to be passed to the multistart callbacks.

Further information

This function allows for repeatedly calling the same multistart preset (e.qg. initial values) using different
basic controls.

Related topics
XSLPmsaddpreset, XSLPmsaddjob, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 291

Library functions and the programming interface Reference

XSLPmsaddjob

Adds a multistart job to the multistart pool

int XSLP_CC XSLPmsaddjob(XSLPprob Prob, const char xsDescription, const
int nIVs, const int *IVCols, const double *IVValues, const int
nIntControls, const int *IntControlIndices, const int
*IntControlValues, const int nDblControls, const int
*DblControlIndices, const double *DblControlValues, void
*pJobObject) ;

Arguments

Prob The current SLP problem.
sDescription Text description of the job. Used for messaging, may be NULL if not required.
nlvVs Number of initial values to set.

IVCols Indices of the variables for which to set an initial value. May be NULL if nlVs is zero.
IVValues Initial values for the variables for which to set an initial value. May be NULL if nlVs is
zero.

nIntControls Number of integer controls to set.

IntControlIndices The indices of the integer controls to be set. May be NULL if nintControls is
Zero.

IntControlvalues The values of the integer controls to be set. May be NULL if nintControls is zero.
nDblControls Number of double controls to set.

DblControlIndices The indices of the double controls to be set. May be NULL if nDblControls is
zero.

DblControlvalues The values of the double controls to be set. May be NULL if nDblControls is
zero.

pJobObject Job specific user context pointer to be passed to the multistart callbacks.

Further information

Adds a mutistart job, applying the specified initial point and option combinations on top of the base
problem, i.e. the options and initial values specified to the function is applied on top of the existing
settigns.

This function allows for loading empty template jobs, that can then be identified using the pJobObject
variable.

Related topics

XSLPmsaddpreset, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 292

Library functions and the programming interface Reference

XSLPmsaddpreset

Purpose
Loads a preset of jobs into the multistart job pool.

Synopsis
int XSLP_CC XSLPmsaddpreset (XSLPprob Prob, const char *sDescription, const
int Preset, const int Count, void *pJobObject);

Arguments
Prob The current SLP problem.
sDescription Text description of the preset. Used for messaging, may be NULL if not required.
Preset Which preset to load.
Count Maximum number of jobs to be added to the multistart pool.

pJobObject Job specific user context pointer to be passed to the multistart callbacks.
Further information

The following presets are defined:

XSLP_MSSET_INITIALVALUES: generate Count number of random base points.

XSLP_MSPRESET_SOLVERS: load all solvers.

XSLP_MSPRESET_SLPCONTROLSBASIC: load the most typical SLP tuning settings. A maximum of
Count jobs are loaded.

XSLP_MSPRESET_SLPCONROLSEXTENSIVE: load a comprehensive set of SLP tuning settings. A
maximum of Count jobs are loaded.

XSLP_MSPRESET_KNITROBASIC: load the most typical Knitro tuning settings. A maximum of Count
jobs are loaded.

XSLP_MSPRESET_KNITROEXTENSIVE: load a comprehensive set of Knitro tuning settings. A
maximum of Count jobs are loaded.

XSLP_MSSET_INITIALFILTERED: generate Count number of random base points, filtered by a merit
function centred on initial feasibility.

XSLP_MSSET_INITIALDYNAMIC: generate Count number of random base points, that are then refined
and combined further by any solution found during the search.

See xS1L.P_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
XSLPmsaddjob, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 293

Library functions and the programming interface

Reference

XSLPmsclear

Purpose
Removes all scheduled jobs from the multistart job pool

Synopsis
int XSLP_CC XSLPmsclear (XSLPprob Prob);

Argument
Prob The current SLP problem.

Related topics
XSLPmsaddjob, XSLPmsaddpreset, XSLPmsaddcustompreset

Fair Isaac Corporation Confidential and Proprietary Information

294

Library functions and the programming interface Reference

XSLPnlpoptimize

Purpose
Maximize or minimize an SLP problem

Synopsis
int XPRS_CC XSLPnlpoptimize (XSLPprob Prob, char x*Flags);

Arguments

Prob The current SLP problem.
Flags These have the same meaning as for XPRSmaxim and XPRSminim.

Related controls
Double
XSLP_OBJSENSE Determines the direction of optimization: +1 is for minimization, -1 is for
maximization.

Integer
XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.

XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.

XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)
used during the SLP optimization.

XSLP_LOG Determines the amount of iteration logging information produced.

XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLP
optimization starts.

Further information
XSLPnlpoptimize is equivalent to XSLPmaxim (if XSLP_OBJSENSE =-1) or XSLPminim (if
XSLP_OBJSENSE = +1).

If xsLpPconstruct has not already been called, it will be called first, using the augmentation defined by
the control variable xs1.p_AUGMENTATION. If determining rows are provided, then cascading will be
invoked in accordance with the setting of the control variable XS1.p_ CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPminim, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 295

Library functions and the programming interface Reference

XSLPpostsolve

Purpose
Restores the problem to its pre-solve state

Synopsis

int XPRS_CC XSLPpostsolve (XSLPprob Prob);
Argument

Prob The current SLP problem.

Related controls

Integer
XSLP_POSTSOLVE Determines if postsolve is applied automatically.

Further information
If Xpress-SLP was used to solve the problem, postsolve will unconstruct the problem before
postsolving (including any reformulation that might have been applied).

Related topics
XSLP_POSTSOLVE

Fair Isaac Corporation Confidential and Proprietary Information 296

Library functions and the programming interface Reference

XSLPpresolve

Purpose
Perform a nonlinear presolve on the problem

Synopsis

int XPRS_CC XSLPpresolve (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example reads a problem from file, sets the presolve control, presolves the problem and
then maximizes it.

XSLPreadprob (Prob, "Matrix", "");
XSLPsetintcontrol (Prob, XSLP_PRESOLVE, 1);
XSLPpresolve (Prob);

XSLPmaximize (Prob,"");

Related controls

Integer
XSLP_PRESOLVE Bitmap containing nonlinear presolve options.

Further information
If bit 1 of xST.P_PRESOLVE is not set, no nonlinear presolve will be performed. Otherwise, the presolve
will be performed in accordance with the bit settings.. XSLPpresolve is called automatically by
XSLPconstruct, SO there is no need to call it explicitly unless there is a requirement to interrupt the
process between presolve and optimization. XSLPpresolve must be called before xsL.Pconstruct
or any of the SLP optimization procedures..

Related topics
XSLP_PRESOLVE

Fair Isaac Corporation Confidential and Proprietary Information 297

Library functions and the programming interface Reference

XSLPprintmemory

Purpose
Print the dimensions and memory allocations for a problem

Synopsis

int XPRS_CC XSLPprintmemory (XSLPprob prob);
Argument

Prob The current SLP problem.
Example

The following example loads a problem from file and then prints the dimensions of the arrays.

XSLPreadprob (Prob, "Matrixl", "");
XSLPprintmemory (Prob) ;

The output is similar to the following:

Arrays and dimensions:

Array Item Used Max Allocated Memory

Size Items Items Memory Control
MemList 28 103 129 4K
String 1 8779 13107 13K XSLP_MEM_STRING
Xv 16 2 1000 16K XSLP_MEM_XV
Xvitem 48 11 1000 47K XSLP_MEM_XVITEM

Further information
XSLPprintmemory lists the current sizes and amounts used of the variable arrays in the current
problem. For each array, the size of each item, the number used and the number allocated are shown,
together with the size of memory allocated and, where appropriate, the name of the memory control
variable to set the array size. Loading and execution of some problems can be speeded up by setting
the memory controls immediately after the problem is created. If an array has to be moved to
re-allocate it with a larger size, there may be insufficient memory to hold both the old and new versions;
pre-setting the memory controls reduces the number of such re-allocations which take place and may
allow larger problems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 298

Library functions and the programming interface Reference

XSLPprintevalinfo

Purpose
Print a summary of any evaluation errors that may have occurred during solving a problem

Synopsis
int XPRS_CC XSLPprintevalinfo (XSLPprob prob);

Argument
Prob The current SLP problem.

Related topics
XSLPsetcbcoefevalerror

Fair Isaac Corporation Confidential and Proprietary Information 299

Library functions and the programming interface Reference

XSLPreadprob

Purpose
Read an Xpress NonLinear extended MPS format matrix from a file into an SLP problem

Synopsis
int XPRS_CC XSLPreadprob (XSLPprob Prob, char *Probname, char *Flags);
Arguments
Prob The current SLP problem.
Probname Character string containing the name of the file from which the matrix is to be read.
Flags Character string containing any flags needed for the input routine. No flag settings are
currently recognized.
Example

The following example reads the problem from file "Matrix.mat".
XSLPreadprob (Prob, "Matrix", "");

Further information
XSLPreadprob tries to open the file with an extension of "mat" or, failing that, an extension of "mps". If
both fail, the file name will be tried with no extension.

XSLPreadprob is capable to read most Ampl .nl files. To specify that a .nl file is to be read, provide the
full filename including the .nl extension.

For details of the format of the file, see the section on Extended MPS format.

Related topics
Extended MPS format, XSLPwriteprob

Fair Isaac Corporation Confidential and Proprietary Information 300

Library functions and the programming interface Reference

XSLPremaxim

Purpose
Continue the maximization of an SLP problem

Synopsis

int XPRS_CC XSLPremaxim (XSLPprob Prob, char *Flags);
Arguments

Prob The current SLP problem.

Flags These have the same meaning as for XST.Pmaxim.
Example

The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, it
saves the file and continues for another 10.

int Status;

XSLPsetintcontrol (Prob, XSLP_ITERLIMIT, 10);
XSLPmaxim (Prob,"");
XSLPgetintattrib (Prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {
XSLPsave (Prob) ;
XSLPsetintcontrol (Prob, XSLP_ITERLIMIT, 20);
XSLPremaxim (Prob, "");

}

Further information
This allows Xpress NonLinear to continue the maximization of a problem after it has been terminated,

without re-initializing any of the parameters. In particular, the iteration count will resume at the point
where it previously stopped, and not at 1.

Related topics
XSLPmaxim, XSLPreminim

Fair Isaac Corporation Confidential and Proprietary Information 301

Library functions and the programming interface

Reference

XSLPreminim

Purpose
Continue the minimization of an SLP problem

Synopsis
int XPRS_CC XSLPreminim (XSLPprob Prob, char *Flags);
Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XST.Pminim.
Example
The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, it
saves the file and continues for another 10.
int Status;
XSLPsetintcontrol (Prob, XSLP_ITERLIMIT, 10);
XSLPminim (Prob,"");
XSLPgetintattrib (Prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {
XSLPsave (Prob) ;
XSLPsetintcontrol (Prob, XSLP_ITERLIMIT, 20);
XSLPreminim (Prob, "");
}
Further information
This allows Xpress NonLinear to continue the minimization of a problem after it has been terminated,
without re-initializing any of the parameters. In particular, the iteration count will resume at the point
where it previously stopped, and not at 1.
Related topics
XSLPminim, XSLPremaxim
302

Fair Isaac Corporation Confidential and Proprietary Information

Library functions and the programming interface Reference

XSLPrestore

Purpose
Restore the Xpress NonLinear problem from a file created by xsL.psave

Synopsis

int XPRS_CC XSLPrestore (XSLPprob Prob, char *Filename);
Arguments

Prob The current SLP problem.

Filename Character string containing the name of the problem which is to be restored.

Example
The following example restores a problem originally saved on file "MySave"

XSLPrestore (Prob, "MySave");

Further information
Normally XxSLPrestore restores both the Xpress NonLinear problem and the underlying optimizer
problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.

The problem is saved into two files save.svf which is the optimizer save file, and save.svx which is the
SLP save file. Both files are required for a full restore; only the svx file is required when the underlying
optimizer problem is not being restored.

Related topics
XSLP_CONTROL, XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 303

Library functions and the programming interface Reference

XSLPreinitialize

Purpose
Reset the SLP problem to match a just augmented system

Synopsis
int XPRS_CC XSLPreinitialize (XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Can be used to rerun the SLP optimization process with updated parameters, penalties or initial values,
but unchanged augmentation.

Related topics
XSLPcreateprob, XSLPdestroyprob, XSLPunconstruct, XSLPsetcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 304

Library functions and the programming interface Reference

XSLPsave

Purpose
Save the Xpress NonLinear problem to file

Synopsis

int XPRS_CC XSLPsave (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example saves the current problem to files named prob1.svf and prob1.svx.

XPRSprob xprob;

XSLPgetptrattrib (Prob, XSLP_XPRSPROBLEM, &xprob);
XPRSsetprobname (xprob, "probl");

XSLPsave (Prob) ;

Further information
The problem is saved into two files prob.svf which is the optimizer save file, and prob.svx which is the
SLP save file, where prob is the name of the problem. Both files are used in a full save; only the svx file
is required when the underlying optimizer problem is not being saved.

Normally xsLPsave saves both the Xpress NonLinear problem and the underlying optimizer problem.
If only the Xpress NonLinear problem is required, set the integer control variable XxS1.p_CONTROL
appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsaveas

Fair Isaac Corporation Confidential and Proprietary Information 305

Library functions and the programming interface Reference

XSLPsaveas

Purpose
Save the Xpress NonLinear problem to a named file

Synopsis

int XPRS_CC XSLPsaveas (XSLPprob Prob, const char *Filename);
Arguments

Prob The current SLP problem.

Filename The name of the file (without extension) in which the problem is to be saved.

Example
The following example saves the current problem to files named MyProb.svf and MyProb.svx.

XSLPsaveas (Prob, "MyProb") ;

Further information
The problem is saved into two files filename.svf which is the optimizer save file, and filename.svx which
is the SLP save file, where filename is the second argument to the function. Both files are used in a full
save; only the svx file is required when the underlying optimizer problem is not being saved.

Normally xsLPsaveas saves both the Xpress NonLinear problem and the underlying optimizer
problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 306

Library functions and the programming interface Reference

XSLPscaling

Purpose
Analyze the current matrix for largest/smallest coefficients and ratios

Synopsis

int XPRS_CC XSLPscaling (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example analyzes the matrix
XSLPscaling (Prob) ;

Further information
The current matrix (including augmentation if it has been carried out) is scanned for the absolute and
relative sizes of elements. The following information is reported:

m Largest and smallest elements in the matrix;

m Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between
1.0E+01 and 1.0E+02);

m List of the rows (with largest and smallest elements) which appear in the highest range;

m Counts of the ranges of column ratios in powers of 10 (e.g. number of columns with ratio between
1.0E+01 and 1.0E+02);

m List of the columns (with largest and smallest elements) which appear in the highest range;
m Element ranges in powers of 10 (e.g. number of elements between 1.0E+01 and 1.0E+02).

Where any of the reported items (largest or smallest element in the matrix or any reported row or
column element) is in a penalty error vector, the results are repeated, excluding all penalty error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 307

Library functions and the programming interface Reference

XSLPsetcbcascadeend

Purpose
Set a user callback to be called at the end of the cascading process, after the last variable has been
cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadeend (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Object);
Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of the cascading process. UserFunc returns an
integer value. The return value is noted by Xpress-SLP but it has no effect on the

optimization.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadeend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed at the end of the cascading process which
checks if any of the values have been changed significantly:

double *cSol;
XSLPsetcbcascadeend (Prob, CBCascEnd, &cSol);

A suitable callback function might resembile this:

int XPRS_CC CBCascEnd (XSLPprob MyProb, wvoid *0Obj) {
int iCol, nCol;
double *cSol, Value;
cSol = * (double **) Obj;
XSLPgetintcontrol (MyProb, XPRS_COLS, &nCol);
for (iCol=0;iCol<nCol;iCol++) {
XSLPgetvar (MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);
if (fabs(Value-cSol[iCol]) > .01)
printf ("\nCol %d changed from %$lg to %1g",
iCol, cSol[iCol], Value);
}
return O;

}

The Object argument is used here to hold the address of the array cSol which we assume has been
populated with the original solution values.

Further information
This callback can be used at the end of the cascading, when all the solution values have been
recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadestart, XSLPsetcbcascadevar,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 308

Library functions and the programming interface Reference

XSLPsetcbcascadestart

Purpose
Set a user callback to be called at the start of the cascading process, before any variables have been
cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadestart (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of the cascading process. UserFunc returns an
integer value. If the return value is nonzero, the cascading process will be omitted for
the current SLP iteration, but the optimization will continue.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadestart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed at the start of the cascading process to save
the current values of the variables:

double *cSol;
XSLPsetcbcascadestart (Prob, CBCascStart, &cSol);

A suitable callback function might resemble this:

int XPRS_CC CBCascStart (XSLPprob MyProb, wvoid *0bj) {

int iCol, nCol;

double *cSol;

cSol = * (double **x) Obj;

XSLPgetintcontrol (MyProb, XPRS_COLS, &nCol);

for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar (MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &cSol[iColl,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

}

return O;

}

The Object argument is used here to hold the address of the array cSol which we populate with the
solution values.

Further information
This callback can be used at the start of the cascading, before any of the solution values have been
recalculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadevar, XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 309

Library functions and the programming interface Reference

XSLPsetcbcascadevar

Purpose
Set a user callback to be called after each column has been cascaded

Synopsis
int XPRS_CC XSLPsetcbcascadevar (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject, int ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been cascaded. UserFunc returns an
integer value. If the return value is nonzero, the cascading process will be omitted for the
remaining variables during the current SLP iteration, but the optimization will continue.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadevar.
ColIndex The number of the column which has been cascaded.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed after each variable has been cascaded:

double *cSol;
XSLPsetcbcascadevar (Prob, CBCascVar, &cSol);

The following sample callback function resets the value of the variable if the cascaded value is of the
opposite sign to the original value:

int XPRS_CC CBCascVar (XSLPprob MyProb, wvoid *0Ob3j, int iCol) {
double *cSol, Value;
cSol = * (double **x) Obj;
XSLPgetvar (MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);
if (Value * cSol[iCol] < 0) {
Value = cSol[iCol];
XSLPchgvar (MyProb, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &Value, NULL, NULL, NULL,
NULL) ;
}
return O;

}

The Object argument is used here to hold the address of the array cSol which we assume has been
populated with the original solution values.

Further information
This callback can be used after each variable has been cascaded and its new value has been
calculated.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 310

Library functions and the programming interface Reference

XSLPsetcbcascadevarfail

Purpose
Set a user callback to be called after cascading a column was not successful

Synopsis
int XPRS_CC XSLPsetcbcascadevarfail (XSLPprob Prob, int (XPRS_CC #*UserFunc)
(XSLPprob myProb, void *myObject, int ColIndex), void *Object);
Arguments
Prob The current SLP problem.
UserFunc The function to be called after cascading a column was not successful. UserFunc
returns an integer value. If the return value is nonzero, the cascading process will be

omitted for the remaining variables during the current SLP iteration, but the optimization
will continue.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object t0 XSLPsetcbcascadevarfail.
ColIndex The number of the column which has been cascaded.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject.

Further information
This callback can be used to provide user defined updates for SLP variables having a determining row
that were not successfully cascaded due to the determining row being close to singular around the
current values. This callback will always be called in place of the cascadevar callback in such cases,
and in no situation will both the cascadevar and the cascadevarfail callback be called in the same
iteration for the same variable.

Related topics
XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart, XSLPsetcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 311

Library functions and the programming interface Reference

XSLPsetcbcoefevalerror

Purpose
Set a user callback to be called when an evaluation of a coefficient fails during the solve

Synopsis
int XPRS_CC XSLPsetcbcoefevalerror (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, wvoid *myObject, int RowIndex, int ColIndex), void

*Object) ;
Arguments
Prob The current SLP problem.
UserFunc The function to be called when an evaluation fails.
myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcoefevalerror.
RowIndex The row position of the coefficient.
ColIndex The column position of the coefficient.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject.

Further information
This callback can be used to capture when an evaluation of a coefficient fails. The callback is called
only once for each coefficient.

Related topics
XSLPprintevalinfo

Fair Isaac Corporation Confidential and Proprietary Information 312

Library functions and the programming interface Reference

XSLPsetcbconstruct

Purpose
Set a user callback to be called during the Xpress-SLP augmentation process

Synopsis
int XPRS_CC XSLPsetcbconstruct (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);

Arguments
Prob The current SLP problem.

UserFunc The function to be called during problem augmentation. UserFunc returns an integer
value. See below for an explanation of the values.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbconstruct.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed during the Xpress-SLP problem augmentation:

double *cValue;
cValue = NULL;
XSLPsetcbconstruct (Prob, CBConstruct, &cValue);

The following sample callback function sets values for the variables the first time the function is called
and returns to XxsLPconstruct to recalculate the initial matrix. The second time it is called it frees the
allocated memory and returns to xS1.Pconstruct to proceed with the rest of the augmentation.

int XPRS_CC CBConstruct (XSLPprob MyProb, void *0bj) {
double *cValue;
int i, n;
/* if Object is NULL, this is first-time entry =/
if (*(voidx*)Obj == NULL) {
XSLPgetintattrib (MyProb, XPRS_COLS, &n) ;
cValue = malloc (n*sizeof (double)) ;
/* ... initialize with values (not shown here) and then ... */
for (i=0;i<n;i++)
/* store into SLP structures x/
XSLPchgvar (MyProb, i, NULL, NULL, NULL, NULL,
NULL, NULL, &cValue[i], NULL, NULL, NULL,

NULL) ;
/* set Object non-null to indicate we have processed data x*/
* (void**)Obj = cValue;

return -1;
}
else {
/* free memory, clear marker and continue */
free (* (void**)O0Obj) ;
* (void**)Obj = NULL;
}

return O0;

Fair Isaac Corporation Confidential and Proprietary Information 313

Library functions and the programming interface Reference

Further information
This callback can be used during the problem augmentation, generally (although not exclusively) to
change the initial values for the variables.

The following return codes are accepted:

0 Normal return: augmentation continues

-1 Return to recalculate matrix values

-2 Return to recalculate row weights and matrix entries

other Error return: augmentation terminates, XSLPconstruct terminates with a nonzero
error code.

The return values -1 and -2 will cause the callback to be called a second time after the matrix has been
recalculated. It is the responsibility of the callback to ensure that it does ultimately exit with a return
value of zero.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 314

Library functions and the programming interface Reference

XSLPsetcbdestroy

Purpose
Set a user callback to be called when an SLP problem is about to be destroyed

Synopsis
int XPRS_CC XSLPsetcbdestroy (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called when the SLP problem is about to be destroyed. UserFunc
returns an integer value. At present the return value is ignored.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object t0o XSLPsetcbdestroy.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed before the SLP problem is destroyed:

double *cSol;
XSLPsetcbdestroy (Prob, CBDestroy, &cSol);

The following sample callback function frees the memory associated with the user-defined object:

int XPRS_CC CBDestroy (XSLPprob MyProb, void *0bj) ({
if (*x (void**)Obj) free(x (void**)0Obj);
return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume was
assigned using one of the malloc functions.

Further information
This callback can be used when the problem is about to be destroyed to free any user-defined
resources which were allocated during the life of the problem.

Related topics
XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 315

Library functions and the programming interface Reference

XSLPsetcbdrcol

Purpose
Set a user callback used to override the update of variables with small determining column

Synopsis
int XPRS_CC XSLPsetcbdrcol (XSLPprob Prob, int (XPRS_CC *UserFunc) (XSLPprob
myProb, void *myObject, int ColIndex, int DrColIndex, double
DrColValue, double * NewValue, double VLB, double VUB), void
*Object) ;
Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been cascaded. UserFunc returns an
integer value. If the return value is positive, it will indicate that the value has been fixed,
and cascading should be omitted for the variable. A negative value indicates that a
previously fixed value has been relaxed. If no action is taken, a 0 return value should be
used.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbcascadevar.
ColIndex The index of the column for which the determining columns is checked.
DrColIndex The index of the determining column for the column that is being updated.
DrColvValue The value of the determining column in the current SLP iteration.

NewValue Used to return the new value for column ColIndex, should it need to be updated, in
which case the callback must return a positive value to indicate that this value should be

used.

VLB The original lower bound of column ColIndex. The callback provides this value as a
reference, should the bound be updated or changed during the solution process.

VUB The original upper bound of column ColIndex. The callback provides this value as a
reference, should the bound be updated or changed during the solution process.

Object Address of a user-defined object, which can be used for any purpose. by the function.

Object is passed to UserFunc as myObject.

Further information
If set, this callback is called as part of the cascading procedure. Please see Chapter Cascading for
more information.

Related topics
XSLP_DRCOLTOL, XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart

Fair Isaac Corporation Confidential and Proprietary Information 316

Library functions and the programming interface Reference

XSLPsetcbintsol

Purpose
Set a user callback to be called during MISLP when an integer solution is obtained

Synopsis
int XPRS_CC XSLPsetcbintsol (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called when an integer solution is obtained. UserFunc returns an
integer value. At present, the return value is ignored.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbintsol.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example

The following example sets up a callback to be executed whenever an integer solution is found during
MISLP:

double *cSol;
XSLPsetcbintsol (Prob, CBIntSol, &cSol);

The following sample callback function saves the solution values for the integer solution just found:

int XPRS_CC CBIntSol (XSLPprob MyProb, wvoid *0bj) {
XPRSprob xprob;
double *cSol;
cSol = * (double **x) Obj;
XSLPgetptrattrib (MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetsol (xprob, cSol, NULL, NULL, NULL);
return O;

}

The Object argument is used here to hold the address of the array cSol which we assume was
assigned using one of the malloc functions.

Further information

This callback must be used during MISLP instead of the XPRSsetcbintsol callback which is used for
MIP problems.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 317

Library functions and the programming interface Reference

XSLPsetcbiterend

Purpose
Set a user callback to be called at the end of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterend (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of each SLP iteration. UserFunc returns an integer
value. If the return value is nonzero, the SLP iterations will stop.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object t0 XSLPsetcbiterend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed at the end of each SLP iteration. It records the
number of LP iterations in the latest optimization and stops if there were fewer than 10:

XSLPsetcbiterend (Prob, CBIterEnd, NULL);

A suitable callback function might resembile this:

int XPRS_CC CBIterEnd (XSLPprob MyProb, void *0bj) ({
int nIter;
XPRSprob xprob;
XSLPgetptrattrib (MyProb, XSLP_XPRSPROBLEM, &xprob);
XSLPgetintattrib (xprob, XPRS_SIMPLEXITER, &nIter);
if (nIter < 10) return 1;
return 0;

}
The Object argument is not used here, and so is passed as NULL.

Further information
This callback can be used at the end of each SLP iteration to carry out any further processing and/or
stop any further SLP iterations.

Related topics
XSLPsetcbiterstart, XSLPsetcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 318

Library functions and the programming interface Reference

XSLPsetcbiterstart

Purpose
Set a user callback to be called at the start of each SLP iteration

Synopsis
int XPRS_CC XSLPsetcbiterstart (XSLPprob Prob, int (XPRS_CC =*UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of each SLP iteration. UserFunc returns an integer
value. If the return value is nonzero, the SLP iterations will stop.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbiterstart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed at the start of the optimization to save to save
the values of the variables from the previous iteration:

double *cSol;
XSLPsetcbiterstart (Prob, CBIterStart, &cSol);

A suitable callback function might resembile this:

int XPRS_CC CBIterStart (XSLPprob MyProb, void *0bj) {
XPRSprob xprob;
double *cSol;
int nIter;
cSol = * (double **x) Obj;
XSLPgetintattrib (MyProb, XSLP_ITER, &nlter);
if (nIter == 0) return 0; /* no previous solution =*/
XSLPgetptrattrib (MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetsol (xprob, cSol, NULL, NULL, NULL);
return 0;

}

The Object argument is used here to hold the address of the array cSo1 which we populate with the
solution values.

Further information
This callback can be used at the start of each SLP iteration before the optimization begins.

Related topics
XSLPsetcbiterend, XSLPsetcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 319

Library functions and the programming interface Reference

XSLPsetcbitervar

Purpose
Set a user callback to be called after each column has been tested for convergence

Synopsis
int XPRS_CC XSLPsetcbitervar (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject, int ColIndex), void *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called after each column has been tested for convergence.
UserFunc returns an integer value. The return value is interpreted as a convergence
status. The possible values are:
<0 The variable has not converged;

0 The convergence status of the variable is unchanged;

1 to 10 The column has converged on a system-defined convergence criterion
(these values should not normally be returned);

> 10 The variable has converged on user criteria.

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbitervar.

ColIndex The number of the column which has been tested for convergence.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject

Example
The following example sets up a callback to be executed after each variable has been tested for
convergence. The user object Important is an integer array which has already been set up and holds
a flag for each variable indicating whether it is important that it converges.

int *Important;
XSLPsetcbitervar (Prob, CBIterVar, &Important);

The following sample callback function tests if the variable is already converged. If not, then it checks if
the variable is important. If it is not important, the function returns a convergence status of 99.

int XPRS_CC CBIterVar (XSLPprob MyProb, void *0Obj, int iCol) {
int *Important, Converged;
Important = *(int *x*) Obj;
XSLPgetvar (MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, &Converged, NULL,
NULL, NULL, NULL, NULL);
if (Converged) return 0;
if (!Important[iCol]) return 99;
return -1;

}
The Object argument is used here to hold the address of the array Important.

Further information
This callback can be used after each variable has been checked for convergence, and allows the
convergence status to be reset if required.

Related topics
XSLPsetcbiterend, XSLPsetcbiterstart

Fair Isaac Corporation Confidential and Proprietary Information 320

Library functions and the programming interface Reference

XSLPsetcbmessage

Purpose
Set a user callback to be called whenever Xpress NonLinear outputs a line of text

Synopsis
int XPRS_CC XSLPsetcbmessage (XSLPprob Prob, wvoid (XPRS_CC =*UserFunc)
(XSLPprob myProb, void *myObject, char *msg, int len, int msgtype),
void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called whenever Xpress NonLinear outputs a line of text. UserFunc
does not return a value.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbmessage.
msg Character buffer holding the string to be output.
len Length in characters of msg excluding the null terminator.
msgtype Type of message. The following are system-defined:
1 Information message
3 Warning message
4 Error message

A negative value indicates that the Optimizer is about to finish and any buffers should
be flushed at this time.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject

Example
The following example creates a log file into which all messages are placed. System messages are
also printed on standard output:

FILE =*logfile;
logfile = fopen ("myLog","w");
XSLPsetcbmessage (Prob, CBMessage, logfile);

A suitable callback function could resemble the following:

void XPRS_CC CBMessage (XSLPprob Prob, void *0Obj,
char *msg, int len, int msgtype) {
FILE xlogfile;
logfile = (FILE =*) Obj;
if (msgtype < 0) {
fflush (stdout);
if (logfile) fflush(logfile);
return;
}
switch (msgtype) {
case 1: /* information */
case 3: /* warning */
case 4: /* error */
printf ("$s\n",msqg);
default: /x user =/
if (logfile)
fprintf (logfile, "$s\n",msqg) ;
break;

Fair Isaac Corporation Confidential and Proprietary Information 321

Library functions and the programming interface Reference

return;

}

Further information
If a user message callback is defined then screen output is automatically disabled.

Output can be directed into a log file by using xS1.Psetlogfile.

Related topics
XSLPsetlogfile,

Fair Isaac Corporation Confidential and Proprietary Information 322

Library functions and the programming interface Reference

XSLPsetcbmsjobend

Purpose
Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite the
default solution ranking function

Synopsis
int XSLP_CC XSLPsetcbmsjobend (XSLPprob Prob, int (XSLP_CC
*UserFunc) (XSLPprob myProb, void *myObject,void *pJobObject,const
char *JobDescription,int *Status), void *Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbms jobend.
pJobObject Job specific user-defined object, as specified in by the multistart job creating API

functions.

JobDescription The description of the problem as specified in by the multistart job creating API
functions.

Status User return status variable:

0 - use the default evaluation of the finished job
1- disregard the result and continue
2 - stop the multistart search

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 323

Library functions and the programming interface Reference

XSLPsetcbmsjobstart

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings
are applied

Synopsis
int XSLP_CC XSLPsetcbmsjobstart (XSLPprob Prob, int (XSLP_CC
*UserFunc) (XSLPprob myProb, void *myObject,void *pJobObject,const
char *JobDescription,int *Status), void *Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.

myObject The user-defined object passed as Object 10 XSLPsetcbmsjobstart.
pJobObject Job specific user-defined object, as specified in by the multistart job creating API

functions.

JobDescription The description of the problem as specified in by the multistart job creating API
functions.

Status User return status variable:

0 - normal return, solve the job,
1- disregard this job and continue,
2 - Stop multistart.

Further information
All mulit-start jobs operation on an independent copy of the original problem, and any modification to
the problem is allowed, including structural changes. Please note however, that any modification will be
carried over to the base problem, should a modified problem be declared the winner prob.

Related topics
XSLPsetcbmsjobend, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 324

Library functions and the programming interface Reference

XSLPsetcbmswinner

Purpose
Set a user callback to be called every time a new multistart job is created, and the pre-loaded settings
are applied

Synopsis
int XSLP_CC XSLPsetcbmswinner (XSLPprob Prob, int (XSLP_CC
*UserFunc) (XSLPprob myProb, void *myObject,void *pJobObject,const
char *JobDescription), void *Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbmswinner.
pJobObject Job specific user-defined object, as specified in by the multistart job creating API
functions.

JobDescription The description of the problem as specified in by the multistart job creating API
functions.

Further information
The multistart pool is dynamic, and this callback can be used to load new multistart jobs using the
normal API functions.

Related topics
XSLPsetcbmsjobstart, XSLPsetcbms jobend

Fair Isaac Corporation Confidential and Proprietary Information 325

Library functions and the programming interface Reference

XSLPsetcboptnode

Purpose
Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node

Synopsis
int XPRS_CC XSLPsetcboptnode (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject, int *feas), wvoid *Object);

Arguments
Prob The current SLP problem.

UserFunc The function to be called when an optimal SLP solution is obtained at a node.
UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared

infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcboptnode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,
the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example defines a callback function to be executed at each node when an SLP optimal
solution is found. If there are significant penalty errors in the solution, the node is declared infeasible.

XSLPsetcboptnode (Prob, CBOptNode, NULL);
A suitable callback function might resemble the following:

int XPRS_CC CBOptNode (XSLPprob myProb, void *0Obj, int =*feas) {
double Total, ObjVal;
XSLPgetdblattrib (myProb, XSLP_ERRORCOSTS, &Total);
XSLPgetdblattrib (myProb, XSLP_OBJVAL, &Objval);
if (fabs(Total) > fabs(Objval) * 0.001 &&
fabs (Total) > 1) =*feas = 1;
return 0;

Further information
If a node is declared infeasible from the callback function, the cost of exploring the node further will be
avoided.

This callback must be used in place of XxPRSsetcboptnode when optimizing with MISLP.

Related topics
XSLPsetcbprenode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 326

Library functions and the programming interface Reference

XSLPsetcbprenode

Purpose

Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at a
node, but before SLP optimization

Synopsis
int XPRS_CC XSLPsetcbprenode (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject, int *feas), void *Object);
Arguments
Prob The current SLP problem.
UserFunc The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared

infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object to XSLPsetcbprenode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,
the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback function to be executed at each node before the SLP

optimization starts. The array IntList contains a list of integer variables, and the function prints the
bounds on these variables.

int *IntList;
XSLPsetcbprenode (Prob, CBPreNode, IntList);

A suitable callback function might resemble the following:

int XPRS_CC CBPreNode (XSLPprob myProb, void *0Obj, int *feas) {
XPRSprob xprob;
int i, *IntList;
double LO, UP;
IntList = (int =*) Obj;
XSLPgetptrattrib (myProb, XSLP_XPRSPROBLEM, &xprob);
for (i=0; IntList[i]>=0; i++) {
XPRSgetlb (xprob, &LO, IntList[i], IntList[i]);
XPRSgetub (xprob, &UP, IntList[i], IntList[i]);
if (LO > 0 || UP < XPRS_PLUSINFINITY)
printf ("\nCol %d: %lg <= %1g",LO,UP);
}
return 0;

}

Further information
If a node can be identified as infeasible by the callback function, then the initial optimization at the
current node is avoided, as well as further exploration of the node.

This callback must be used in place of XPRSsetcbprenode when optimizing with MISLP.

Related topics
XSLPsetcboptnode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 327

Library functions and the programming interface Reference

XSLPsetcbpreupdatelinearization

Purpose
Set a user callback to be called before the linearization is updated

Synopsis
int XPRS_CC XSLPsetcbpreupdatelinearization (XSLPprob Prob, int (XPRS_CC
*UserFunc) (XSLPprob myProb, void *myObject, int *ifRepeat), void
*Object) ;

Arguments
Prob The current SLP problem.

UserFunc The function to be called at the end of the SLP optimization. UserFunc returns an
integer value. If the return value is nonzero, the optimization will return an error code
and the "User Return Code" error will be set.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to
ifRepeat If returned nonzero, SLP restart the lienarization update. XSLPsetcbslpend.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject.

Further information
This callback is intended to be used with user functions, allowing to peak where the functions will be
evaluated, and then asked to redo the linearization. This is usefull for user functions returning their own
partial derivatives implemented in a parallel setup. The callback is called again after the linearization is
complete with ifRepeat being initialzied to -1, to indicate that any further evaluations are no longer part
of updating the linearization.

Fair Isaac Corporation Confidential and Proprietary Information 328

Library functions and the programming interface Reference

XSLPsetcbslpend

Purpose
Set a user callback to be called at the end of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpend (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.
UserFunc The function to be called at the end of the SLP optimization. UserFunc returns an

integer value. If the return value is nonzero, the optimization will return an error code
and the "User Return Code" error will be set.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object t0 XSLPsetcbslpend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example

The following example sets up a callback to be executed at the end of the SLP optimization. It frees the
memory allocated to the object created when the optimization began:

void xObjData;
ObjData = NULL;
XSLPsetcbslpend (Prob, CBSlpEnd, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpEnd (XSLPprob MyProb, wvoid *0Obj) {
void *ObjData;
ObjData = * (void xx) Obj;
if (ObjData) free(ObjData);
* (void *x) Obj = NULL;
return 0;

}

Further information

This callback can be used at the end of the SLP optimization to carry out any further processing or
housekeeping before the optimization function returns.

Related topics
XSLPsetcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 329

Library functions and the programming interface Reference

XSLPsetcbslpnode

Purpose
Set a user callback to be called during MISLP after the SLP optimization at each node.

Synopsis
int XPRS_CC XSLPsetcbslpnode (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject, int *feas), wvoid *Object);
Arguments
Prob The current SLP problem.
UserFunc The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flag
is set nonzero, then further processing of the node will be terminated (it is declared

infeasible).

myProb The problem passed to the callback function.

myObject The user-defined object passed as Object t0o XSLPsetcbslpnode.

feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,
the node is declared infeasible.

Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example
The following example sets up a callback function to be executed at each node after the SLP
optimization finishes. If the solution value is worse than a target value (referenced through the user
object), the node is cut off (it is declared infeasible).

double OBJtarget;
XSLPsetcbslpnode (Prob, CBSLPNode, &OBJtarget);

A suitable callback function might resemble the following:

int XPRS_CC CBSLPNode (XSLPprob myProb, wvoid *0Obj, int *feas) {
double TargetValue, LPValue;
XSLPgetdblattrib (prob, XPRS_LPOBJVAL, &LPValue);
TargetValue = * (double *) Obj;
if (LPValue < TargetValue) xfeas = 1;
return 0;

}

Further information
If a node can be cut off by the callback function, then further exploration of the node is avoided.

Related topics
XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 330

Library functions and the programming interface Reference

XSLPsetcbslpstart

Purpose
Set a user callback to be called at the start of the SLP optimization

Synopsis
int XPRS_CC XSLPsetcbslpstart (XSLPprob Prob, int (XPRS_CC *UserFunc)
(XSLPprob myProb, void *myObject), void *Obiject);
Arguments
Prob The current SLP problem.

UserFunc The function to be called at the start of the SLP optimization. UserFunc returns an
integer value. If the return value is nonzero, the optimization will not be carried out.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbslpstart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject

Example

The following example sets up a callback to be executed at the start of the SLP optimization. It
allocates memory to a user-defined object to be used during the optimization:

void *ObjData;
ObjData = NULL;
XSLPsetcbslpstart (Prob, CBSlpStart, &ObjData);

A suitable callback function might resemble this:

int XPRS_CC CBSlpStart (XSLPprob MyProb, void *0bj) ({
void *ObjData;
ObjData = * (void =**) Obj;
if (ObjData) free(ObjData);
* (void *x) Obj = malloc (99*sizeof (double));
return O;

}

Further information
This callback can be used at the start of the SLP optimization to carry out any housekeeping before the

optimization actually starts. Note that a nonzero return code from the callback will terminate the
optimization immediately.

Related topics
XSLPsetcbslpend

Fair Isaac Corporation Confidential and Proprietary Information 331

Library functions and the programming interface Reference

XSLPsetcurrentiv

Purpose
Transfer the current solution to initial values

Synopsis

int XPRS_CC XSLPsetcurrentiv (XSLPprob Prob);
Argument

Prob The current SLP problem.

Further information
Provides a way to set the current iterates solution as initial values, make changes to parameters or to
the underlying nonlinear problem and then rerun the SLP optimization process.

Related topics
XSLPreinitialize, XSLPunconstruct

Fair Isaac Corporation Confidential and Proprietary Information 332

Library functions and the programming interface Reference

XSLPsetdblcontrol

Purpose
Set the value of a double precision problem control

Synopsis

int XPRS_CC XSLPsetdblcontrol (XSLPprob Prob, int Param, double dvValue);
Arguments

Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

dvalue Double precision value to be set.
Example

The following example sets the value of the Xpress NonLinear control xs.p_cTOL and of the optimizer
control XPRS_FEASTOL:

XSLPsetdblcontrol (Prob, XSLP_CTOL, 0.001);
XSLPgetdblcontrol (Prob, XPRS_FEASTOL, 0.005);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is set, the return
value will be the same as that from XPRSsetdblcontrol.

Related topics
XSLPgetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 333

Library functions and the programming interface Reference

XSLPsetdefaultcontrol

Purpose
Set the values of one SLP control to its default value

Synopsis

int XPRS_CC XSLPsetdefaultcontrol (XSLPprob Prob, int Param);
Arguments

Prob The current SLP problem.

Param The number of the control to be reset to its default.
Example

The following example reads a problem from file, sets the XSLP_LOG control, optimizes the problem
and then reads and optimizes another problem using the default setting.

XSLPreadprob (Prob, "Matrixl", "");
XSLPsetintcontrol (Prob, XSLP_LOG, 4);
XSLPmaxim(Prob, "");
XSLPsetdefaultcontrol (Prob, XSLP_LOG) ;
XSLPreadprob (Prob, "Matrix2", "");
XSLPmaxim (Prob, "");

Further information
This function cannot reset the optimizer controls. Use XPRSsetdefaults or
XPRSsetdefaultcontrolas well to reset optimizer controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetdefaults, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 334

Library functions and the programming interface Reference

XSLPsetdefaults

Purpose
Set the values of all SLP controls to their default values

Synopsis

int XPRS_CC XSLPsetdefaults (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example reads a problem from file, sets some controls, optimizes the problem and then
reads and optimizes another problem using the default settings.

XSLPreadprob (Prob, "Matrixl", "");
XSLPsetintcontrol (Prob, XSLP_LOG, 4);
XSLPsetdblcontrol (Prob, XSLP_CTOL, 0.001);
XSLPsetdblcontrol (Prob, XSLP_ATOL_A, 0.005);
XSLPmaxim (Prob, "");

XSLPsetdefaults (Prob);

XSLPreadprob (Prob, "Matrix2", "");

XSLPmaxim (Prob, "");

Further information

This function does not reset the optimizer controls. Use XPRSsetdefaults as well to reset all the
controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 335

Library functions and the programming interface Reference

XSLPsetfunctionerror

Purpose
Set the function error flag for the problem

Synopsis

int XPRS_CC XSLPsetfunctionerror (XSLPprob Prob);
Argument

Prob The current SLP problem.

Further information
Once the function error has been set, calculations generally stop and the routines will return to their

caller with a nonzero return code.

Fair Isaac Corporation Confidential and Proprietary Information 336

Library functions and the programming interface Reference

XSLPsetintcontrol

Purpose
Set the value of an integer problem control

Synopsis

int XPRS_CC XSLPsetintcontrol (XSLPprob Prob, int Param, int iValue);
Arguments

Prob The current SLP problem.

Param control (SLP or optimizer) whose value is to be returned.

ivalue The value to be set.
Example

The following example sets the value of the Xpress NonLinear control xs1.p_ALGORITHM and of the
optimizer control XPRS_DEFAULTALG:

XSLPsetintcontrol (Prob, XSLP_ALGORITHM, 934);
XSLPsetintcontrol (Prob, XPRS_DEFAULTALG, 3);

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is requested, the
return value will be the same as that from XxPRSsetintcontrol.

Related topics
XSLPgetintcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 337

Library functions and the programming interface Reference

XSLPsetlogfile

Purpose
Define an output file to be used to receive messages from Xpress NonLinear

Synopsis

int XPRS_CC XSLPsetlogfile (XSLPprob Prob, char *Filename, int Option);
Arguments

Prob The current SLP problem.

FileName Character string containing the name of the file to be used for output.

Option Option to indicate whether the output is directed to the file only (0ption=0) or (in

console mode) to the console as well (Option=1).

Example

The following example defines a log file "MyLog1" and directs output to the file and to the console:
XSLPsetlogfile (Prob, "MyLogl", 1);

Further information
If Filename is NULL, the current log file (if any) will be closed, and message handling will revert to the
default mechanism.

Related topics
XSLPsetcbmessage

Fair Isaac Corporation Confidential and Proprietary Information 338

Library functions and the programming interface Reference

XSLPsetparam

Purpose
Set the value of a control parameter by name

Synopsis
int XPRS_CC XSLPsetparam (XSLPprob Prob, const char *Param, const char
*cValue) ;

Arguments
Prob The current SLP problem.
Param Name of the control or attribute whose value is to be returned.
cValue Character buffer containing the value.

Example

The following example sets the value of XSLP_ALGORITHM:

XSLPprob Prob;

int Algorithm;

char Buffer[32];

Algorithm = 934;

sprintf (Buffer, "$d",Algorithm) ;
XSLPsetparam(Prob, "XSLP_ALGORITHM", Buffer);

Further information
This function can be used to set any Xpress NonLinear or Optimizer control. The value is always
passed as a character string. It is the user’s responsibility to create the character string in an
appropriate format.

Related topics
XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetparam, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 339

Library functions and the programming interface Reference

XSLPsetstrcontrol

Purpose
Set the value of a string problem control

Synopsis
int XPRS_CC XSLPsetstrcontrol (XSLPprob Prob, int Param, const char
*cValue) ;

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
cValue Character buffer containing the value.

Example

The following example sets the value of the Xpress NonLinear control xs1.p_cvNAME and of the
optimizer control XPRS_MP SOBJNAME:

XSLPsetstrcontrol (Prob, XSLP_CVNAME, "CharVars");
XSLPsetstrcontrol (Prob, XPRS_MPSOBJNAME, "_OBJ_");

Further information
Both SLP and optimizer controls can be set using this function. If an optimizer control is requested, the
return value will be the same as that from XPRSsetstrcontrol.

Related topics
XSLPgetstrcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 340

Library functions and the programming interface Reference

XSLPunconstruct

Purpose
Removes the augmentation and returns the problem to its pre-linearization state

Synopsis

int XPRS_CC XSLPunconstruct (XSLPprob Prob);
Argument

Prob The current SLP problem.

Further information
Only limited changes are allowed to an augmented problem.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 341

Library functions and the programming interface Reference

XSLPupdatelinearization

Purpose
Updates the current linearization

Synopsis
int XPRS_CC XSLPupdatelinearization (XSLPprob Prob);

Argument
Prob The current SLP problem.

Further information
Updates the augmented probem (the linearization) to match the current base point. The base point is
the current SLP solution. The values of the SLP variables can be changed using xs1.pchgvar.

The linearization must be present, and this function can only be called after the problem has been
augmented by xsLPconstruct.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 342

Library functions and the programming interface Reference

XSLPvalidate

Purpose
Validate the feasibility of constraints in a converged solution

Synopsis

int XPRS_CC XSLPvalidate (XSLPprob Prob);
Argument

Prob The current SLP problem.
Example

The following example sets the validation tolerance parameters, validates the converged solution and
retrieves the validation indices.

double IndexA, IndexR;

XSLPsetdblcontrol (Prob, XSLP_VALIDATIONTOL_A, 0.001);
XSLPsetdblcontrol (Prob, XSLP_VALIDATIONTOL_ R, 0.001);
XSLPvalidate (Prob) ;

XSLPgetdblattrib (Prob, XSLP_VALIDATIONINDEX_A, &IndexA);
XSLPgetdblattrib (Prob, XSLP_VALIDATIONINDEX R, &IndexR);

Further information
XSLPvalidate checks the feasibility of a converged solution against relative and absolute tolerances
for each constraint. The left hand side and the right hand side of the constraint are calculated using the
converged solution values. If the calculated values imply that the constraint is infeasible, then the
difference (D) is tested against the absolute and relative validation tolerances.
If D < XSLP_VALIDATIONTOL_A
then the constraint is within the absolute validation tolerance. The total positive (TPos) and negative
contributions (TNeg) to the left hand side are also calculated.
If D < MAX(ABS(TPos), ABS(TNeg)) = XSLP_VALIDATIONTOL_R
then the constraint is within the relative validation tolerance. For each constraint which is outside both
the absolute and relative validation tolerances, validation factors are calculated which are the factors
by which the infeasibility exceeds the corresponding validation tolerance; the smallest factor is printed
in the validation report.
The validation index xSL.p_ VALIDATIONINDEX_A is the largest absolute validation factor multiplied
by the absolute validation tolerance; the validation index xSL.P_ VALIDATIONINDEX_R is the largest
relative validation factor multiplied by the relative validation tolerance.

Related topics
XSLP_VALIDATIONINDEX_ A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 343

Library functions and the programming interface Reference

XSLPvalidatekkt

Purpose
Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditions
versus the currect solution

Synopsis
int XPRS_CC XSLPvalidatekkt (XSLPprob Prob, int iCalculationMode, int
iRespectBasisStatus, int iUpdateMultipliers, double
dKKTViolationTarget);

Arguments

Prob The current SLP problem.

iCalculationMode The calculation mode can be:
0 recalculate the reduced costs at the current solution using the current dual

solution.

1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

iRespectBasisStatus The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus xs1.p_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

iUpdateMultipliers The calculated values can be:
0 only used to calculate the XxSLP_VALIDATIONINDEX_K measure.
1 used to update the current dual solution and reduced costs.

dKKTViolationTarget When calculating the best KKT multipliers, it is possible to enforce an even
distribution of reduced costs violations by enforcing a bound on them.

Further information
The bounds enforced by dKKTViolationTarget are automatically relaxed if the desired accuracy cannot
be achieved.

Fair Isaac Corporation Confidential and Proprietary Information 344

Library functions and the programming interface Reference

XSLPvalidateprob

Purpose
Validates the current problem formulation and statement

Synopsis

int XPRS_CC XSLPvalidateprob (XSLPprob Prob, int *nErrors, int *nWarnings);
Arguments

Prob The current SLP problem.

nErrors Returns the number of errors found in the problem. Errors are expected to make the

problem not solve.
nWarnings Returns the number of potential issues found in the problem. The solver may be able to
automatically recover during the solve.

Further information
This function is expected to be used in the development stage of a model.

Fair Isaac Corporation Confidential and Proprietary Information 345

Library functions and the programming interface Reference

XSLPvalidaterow

Purpose
Prints an extensive analysis on a given constraint of the SLP problem

Synopsis

int XPRS_CC XSLPvalidate (XSLPprob Prob, int Row);
Arguments

Prob The current SLP problem.

Row The index of the row to be analyzed

Further information
The analysis will include the readable format of the original constraint and the augmented constraint.
For infeasible constraints, the absolute and relative infeasibility is calculated. Variables in the
constraints are listed including their value in the solution of the last linearization, the internal value (e.qg.
cascaded), reduced cost, step bound and convergence status. Scaling analysis is also provided.

Fair Isaac Corporation Confidential and Proprietary Information 346

Library functions and the programming interface Reference

XSLPvalidatevector

Purpose
Validate the feasibility of constraints for a given solution

Synopsis

int XPRS_CC XSLPvalidate (XSLPprob Prob, double *Vector, double *SumInf,
double *SumScaledInf, double *Objective);

Arguments
Prob The current SLP problem.
Vector A vector of length XPRS_COLS containing the solution vector to be checked.
SumInf Pointer to double in which the sum of infeasibility will be returned. May be NULL if not

required.
SumScaledInf Pointer to double in which the sum of scaled (relative) infeasibility will be returned.
May be NULL if not required.

Objective Pointerto double in which the net objective will be returned. May be NULL if not required.

Further information
XSLPvalidatevector works the same way as xS1.pvalidate, and will update
XSLP_VALIDATIONINDEX_ A and XSLP_VALIDATIONINDEX_R.

Related topics

XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 347

Library functions and the programming interface Reference

XSLPwriteprob

Purpose
Write the current problem to a file in extended MPS or text format

Synopsis

int XPRS_CC XSLPwriteprob (XSLPprob Prob, char *Filename, char =*Flags);
Arguments

Prob The current SLP problem.

Filename Character string holding the name of the file to receive the output. The extension ".mat"
will automatically be appended to the file name, except for "text" format when ".txt" will

be appended.
Flags The following flags can be used:

a write the current approximation (linearized) matrix (the default is to write
the non-linear matrix including formulae);

o one coefficient per line (the default is up to two numbers or one formula
per line);

1 write the matrix in the tradition LP like format. Similar to the "text" format,
with more SLP specific information

s "scrambled" names (the default is to use the names provided on input);

t write the matrix in "text" (the default is to write extended MPS format).

Example
The following example reads a problem from file, augments it and writes the augmented (linearized)
matrix in text form to file "output.txt":

XSLPreadprob (Prob, "Matrix", "");
XSLPconstruct (Prob) ;
XSLPwriteprob (Prob, "output", "1t");

Further information
The t flag is used to produce a "human-readable"” form of the problem. It is similar to the 1p format of
XPRSwriteprob, but does not contain all the potential complexities of the Extended MPS Format, so
the resulting file cannot be used for input. A quadratic objective is written with its true coefficients (not
scaled by 2 as in the equivalent 1p format).

Related topics
XSLPreadprob

Fair Isaac Corporation Confidential and Proprietary Information 348

Library functions and the programming interface Reference

XSLPwriteslxsol

Purpose
Write the current solution to an MPS like file format

Synopsis

int XPRS_CC XSLPwriteslxsol (XSLPprob Prob, char *Filename, char *Flags);
Arguments

Prob The current SLP problem.

Filename Character string holding the name of the file to receive the output. The extension ".sIx"
will automatically be appended to the file name, unless an extension is already specified
in the filename.

Flags The following flags can be used:
P Use double precision numbers

Fair Isaac Corporation Confidential and Proprietary Information 349

CHAPTER 22
Internal Functions

Xpress NonLinear provides a set of standard functions for use in formulae. Many are standard
mathematical functions; there are a few which are intended for specialized applications.

The following is a list of all the Xpress NonLinear internal functions:

ABS Absolute value p. 359
ARCCOS Arc cosine trigonometric function p. 352
ARCSIN Arc sine trigonometric function p. 353
ARCTAN Arc tangent trigonometric function p. 354
cos Cosine trigonometric function p. 355
ERF The error function p. 360
ERFC The complementary error function p. 361
EXP Exponential function (e raised to the power) p. 362
LN Natural logarithm p. 363
LOG, LOG10 Logarithm to base 10 p. 364
MAX Maximum value of two or more expressions p. 365
MIN Minimum value of two or more expressions p. 366
PWL The piecewise linear function p. 367
SIGN The sign function p. 368
SIN Sine trigonometric function p. 356
SQRT Square root p. 369
TAN Tangent trigonometric function p. 357

Fair Isaac Corporation Confidential and Proprietary Information 350

Internal Functions Reference

22.1 Trigonometric functions

The trigonometric functions s1, COs and TAN return the value corresponding to their argument in
radians. sTN and cos are well-defined, continuous and differentiable for all values of their arguments;
care must be exercised when using TAN because it is discontinuous.

The inverse trigonometric functions ARCS1N and 2ArRCCOS are undefined for arguments outside the
range -1to +1 and special care is required to ensure that no attempt is made to evaluate them outside
this range. Derivatives for the inverse trigonometric functions are always calculated numerically.

Fair Isaac Corporation Confidential and Proprietary Information 351

Internal Functions Reference

ARCCOS

Purpose
Arc cosine trigonometric function

Synopsis
ARCSIN (value)
Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range 0 to +7.

Further information
value must be in the range -1 to +1. Values outside the range will return zero and produce an
appropriate error message. If XS1.P_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Confidential and Proprietary Information 352

Internal Functions Reference

ARCSIN

Purpose
Arc sine trigonometric function

Synopsis
ARCSIN (value)
Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range —7/2 to +r/2.

Further information
value must be in the range -1 to +1. Values outside the range will return zero and produce an
appropriate error message. If XS1.P_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Confidential and Proprietary Information 353

Internal Functions Reference

ARCTAN

Purpose
Arc tangent trigonometric function

Synopsis
ARCTAN (value)
Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return value
A value in the range —7/2 to +r/2.

Fair Isaac Corporation Confidential and Proprietary Information 354

Internal Functions Reference

COS

Purpose
Cosine trigonometric function

Synopsis
COS (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 355

Internal Functions Reference

SIN

Purpose
Sine trigonometric function

Synopsis
SIN (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 356

Internal Functions Reference

TAN

Purpose
Tangent trigonometric function

Synopsis
TAN (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 357

Internal Functions Reference

22.2 Other mathematical functions

Most of the mathematical functions are differentiable, although care should be taken in using analytic
derivatives where the derivative is changing rapidly.

Fair Isaac Corporation Confidential and Proprietary Information 358

Internal Functions Reference

ABS

Purpose
Absolute value

Synopsis
ABS (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
ABS is not always differentiable and so alternative modeling approaches should be used where

possible.

Fair Isaac Corporation Confidential and Proprietary Information 359

Internal Functions Reference

ERF

Purpose
The error function

Synopsis
ERF (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 360

Internal Functions Reference

ERFC

Purpose
The complementary error function

Synopsis
ERFC (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 361

Internal Functions Reference

EXP

Purpose
Exponential function (e raised to the power)

Synopsis
EXP (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 362

Internal Functions Reference

LN
Purpose
Natural logarithm
Synopsis
LN (value)
Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
value must be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 363

Internal Functions Reference

LOG, LOG10

Purpose
Logarithm to base 10

Synopsis
LOG (value)
LOG10 (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
value must be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 364

Internal Functions Reference

MAX

Purpose
Maximum value of two or more expressions

Synopsis
MAX (valuel, value2)

Argument
valuel, value2 Eachargumentis one of the following: a constant; a variable; a formula evaluating
to a single value

Further information
MAX is not always differentiable and so alternative modeling approaches should be used where

possible.
In mmxnlp, fmax is used to represent the max function.

Fair Isaac Corporation Confidential and Proprietary Information 365

Internal Functions Reference

MIN

Purpose
Minimum value of two or more expressions

Synopsis
MIN (valuel, value2)

Argument
valuel, value2 Eachargumentis one of the following: a constant; a variable; a formula evaluating
to a single value

Further information
MIN is not always differentiable and so alternative modeling approaches should be used where

possible.
In mmxnlp, fmin is used to represent the min function.

Fair Isaac Corporation Confidential and Proprietary Information 366

Internal Functions Reference

PWL

Purpose
The piecewise linear function

Synopsis
PWL(variable, x1, yl1l, ..., xk, yk)

Arguments
variable is a single variable that describes where the pwl shold be evaluated.

x1,y2, ..., xk, yk arethe kbreakpoints of the piecewise linear function. The pwl is extended
to minus and plus infinity using the first and last 2 breakpoints respectively.

Fair Isaac Corporation Confidential and Proprietary Information 367

Internal Functions Reference

SIGN

Purpose
The sign function

Synopsis
SIGN (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 368

Internal Functions Reference

SQRT

Purpose
Square root

Synopsis
SQRT (value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
value must be non-negative.

Fair Isaac Corporation Confidential and Proprietary Information 369

CHAPTER 23
Error Messages

If the optimization procedure or some other library function encounters an error, then the procedure
normally terminates with a nonzero return code and sets an error code. For most functions, the return
code is 32 for an error; those functions which can return Optimizer return codes (such as the functions
for accessing attributes and controls) will return the Optimizer code in such circumstances.

If an error message is produced, it will normally be output to the message handler; for console-based
output, it will appear on the console. The error message and the error code can also be obtained using
the function xs1pgetlasterror. This allows the user to retrieve the message number and/or the
message text. The format is:

XSLPgetlasterror (Prob, &ErrorCode, &ErrorMessage);

The following is a list of the error codes and an explanation of the message. In the list, error numbers
are prefixed by E- and warnings by W-. The printed messages are generally prefixed by Xpress
NonLinear error and Xpress NonLinear warning respectively.

E-12001 invalid parameter number num
This message is produced by the functions which access SLP or Optimizer controls and
attributes. The parameter numbers for SLP are given in the header file xs1p.h. The
parameter is of the wrong type for the function, or cannot be changed by the user.

E-12002 internal hash error
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

E-12003 XSLPprob problem pointer is NULL
The problem pointer has not been initialized and contains a zero address. Initialize the
problem using XSLPcreateprob.

E-12004 XSLPprob is corrupted or is not a valid problem
The problem pointer is not the address of a valid problem. The problem pointer has been
corrupted, and no longer contains the correct address; or the problem has not been initialized
correctly; or the problem has been corrupted in memory. Check that your program is using the
correct pointer and is not overwriting part of the memory area.

E-12005 memory manager error - allocation error
This message normally means that the system has run out of memory when trying to allocate
or reallocate arrays. Use xS1L.Pprintmemory to obtain a list of the arrays and amounts of
memory allocated by the system. Ensure that any memory allocated by user programs is
freed at the appropriate time.

E-12006 memory manager error - Array expansion size (num) < 0
This may be caused by incorrect setting of the XSLP_EXTRA* control parameters to negative
numbers. Use xsLPprintmemory to obtain a list of the arrays and amounts of memory

Fair Isaac Corporation Confidential and Proprietary Information 370

Error Messages

Reference

E-12007

E-12008

E-12009

E-12010

E-12011

E-12012

E-12013

E-12014

E-12015

E-12016

E-12017

E-12018

allocated by the system for the specified array. If the problem persists, please contact your
local Xpress support office.

memory manager error - object ob j size not defined
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

cannot open file name
This message appears when Xpress NonLinear is required to open a file of any type and
encounters an error while doing so. Check that the file name is spelt correctly (including the
path, directory or folder) and that it is accessible (for example, not locked by another
application).

cannot open problem file name
This message is produced by XSL.Preadprob if it cannot find name . mat, name . mps or
name. Note that "lp" format files are not accepted for SLP input.

internal I/0 error
This error is produced by xsL.preadprob if it is unable to read or write intermediate files
required for input.

XSLPreadprob unknown record type name
This error is produced by xs1.preadprob if it encounters a record in the file which is not
identifiable. It may be out of place (for example, a matrix entry in the BOUNDS section), or it
may be a completely invalid record type.

XSLPreadprob invalid function argument type name
This error is produced by xsL.preadprob if it encounters a user function definition with an
argument type that is not one of NULL, DOUBLE, INTEGER, CHAR Of VARIANT.

XSLPreadprob invalid function linkage type name
This error is produced by xsL.preadprob if it encounters a user function with a linkage type
that is not one of DLL, XLS, XLF, MOSEL Or COM.

XSLPreadprob unrecognized function name
This error is produced by xsL.preadprob if it encounters a function reference in a formula
which is not a pre-defined internal function nor a defined user function. Check the formula
and the function name, and define the function if required.

func: item numout of range
This message is produced by the Xpress NonLinear function func which is referencing the
SLP item (row, column variable, etc). The index provided is out of range (less than 1 unless
zero is explicitly allowed, or greater than the current number of items of that type). Remember
that most Xpress NonLinear items count from 1.

missing left bracket in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. A right bracket is not correctly paired with a corresponding left bracket.
Check the formulae.

missing left operand in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. An operator which takes two operands is missing the left hand one (and so
immediately follows another operator or a bracket). Check the formulae.

missing right operand in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. An operator is missing the right hand (following) operand (and so is
immediately followed by another operator or a bracket). Check the formulae.

Fair Isaac Corporation Confidential and Proprietary Information 371

Error Messages Reference

E-12019 missing right bracket in formula
This message is produced during parsing of formulae provided in character or unparsed
internal format. A left bracket is not correctly paired with a corresponding right bracket.
Check the formulae.

E-12020 column #n is defined more than once as an SLP variable
This message is produced by xsL.paddvars or XSLPloadvars if the same column appears
more than once in the list, or has already been defined as an SLP variable. Although
XSLPchgvar is less efficient, it can be used to set the properties of an SLP variable whether
or not it has already been declared.

E-12021 row #numis defined more than once as an SLP delayed constraint
This message is produced by the deprecated xSLPadddcs or XSLPloaddcs if the same row
appears more than once in the list, or has already been defined as a delayed constraint.
Although XsLPchgdc is less efficient, it can be used to set the properties of an SLP delayed
constraint whether or not it has already been declared.

E-12022 undefined tolerance type name
This error is produced by xs1.preadprob if it encounters a tolerance which is not one of the
9 defined types (TC, TA, TM, TT, TS, RA, RM, RI, RS). Check the two-character code for the
tolerance.

W-12023 name has been given a tolerance but is not an SLP variable
This error is produced by xs1.preadprob if it encounters a tolerance for a variable which is
not an SLP variable (it is not in a coefficient, it does not have a non-constant coefficient and it
has not been given an initial value). If the tolerance is required (that is, if the variable is to be
monitored for convergence) then give it an initial value so that it becomes an SLP variable.
Otherwise, the tolerance will be ignored.

W-12024 name has been given SLP data of type ty but is not an SLP variable
This error is produced by xsLPreadprob if it encounters SLPDATA for a variable which has
not been defined as an SLP variable. Typically, this is because the variable would only appear
in coefficients, and the relevant coefficients are missing. The data item will be ignored.

E-12025 func has the same source and destination problems
This message is produced by xST.Pcopycallbacks, XSL.Pcopycontrols and
XSLPcopyprob if the source and destination problems are the same. If they are the same,
then there is no point in copying them.

E-12026 invalid or corrupt SAVE file
This message is produced by xs1.prestore if the SAVE file header is not valid, or if internal
consistency checks fail. Check that the file exists and was created by xsL.psave.

E-12027 SAVE file version is too old
This message is produced by xsL.prestore if the SAVE file was produced by an earlier
version of Xpress NonLinear. In general, it is not possible to restore a file except with the
same version of the program as the one which SAVEd it.

W-12028 problem already has augmented SLP structure
This message is produced by xsL.Pconstruct if it is called for a second time for the same
problem. The problem can only be augmented once, which must be done after all the
variables and coefficients have been loaded. xsL.Pconstruct is called automatically by
¥SLPmaxim and XSLPminim if it has not been called earlier.

E-12029 zero divisor
This message is produced by the formula evaluation routines if an attempt is made to divide
by a value less than xs1.p_ ZERO. A value of +/-XSLP_INFINITY is returned as the result and
the calculation continues.

Fair Isaac Corporation Confidential and Proprietary Information 372

Error Messages

Reference

E-12030

E-12031

E-12032

E-12033

W-12034

E-12037

E-12038

E-12084

E-12085

E-12105

E-12107

E-12110

E-12111

negative number, fractional exponent - truncated to integer
This message is produced by the formula evaluation routines if an attempt is made to raise a
negative number to a non-integer exponent. The exponent is truncated to an integer value and
the calculation continues.

binary search failed
This is a non-recoverable program error. If this error is encountered, please contact your local
Xpress support office.

wrong number (num) of arguments to function func
This message is produced by the formula evaluation routines if a formula contains the wrong
number of arguments for an internal function (for example, SIN(A, B)). Correct the formula.

argument value out of range in function func
This message is produced by the formula evaluation routines if an internal function is called
with an argument outside the allowable range (for example, LOG of a negative number). The
function will normally return zero as the result and, if XSLP_STOPOUTOFRANGE is set, will set
the function error flag.

terminated following user return code num
This message is produced by XxSL.Pmaxim and XxSLPminim if a nonzero value is returned by
the callback defined by xSL.Psetcbiterend or XSLPsetcbslpend.

failed to load library/file/program "name" containing function "func"
This message is produced if a user function is defined to be in a file, but Xpress NonLinear
cannot the specified file. Check that the correct file name is specified (also check the search
paths such as $PATH and %path% if necessary).
This message may also be produced if the specified library exists but is dependent on
another library which is missing.

function "func" is not correctly defined or is not in the specified location
This message is produced if a user function is defined to be in a file, but Xpress NonLinear
cannot find it in the file. Check that the number and type of the arguments is correct, and that
the (external) name of the user function matches the name by which it is known in the file.

Xpress NonLinear has not been initialized
An attempt has been made to use Xpress NonLinear functions without a previous call to
xsLPinit. Only a very few functions can be called before initialization. Check the sequence
of calls to ensure that xs1.pinit is called first, and that it completed successfully. This error
message normally produces return code 279.

Xpress NonLinear has not been licensed for use here
Either Xpress NonLinear is not licensed at all (although the Xpress Optimizer may be
licensed), or the particular feature (such as MISLP) is not licensed. Check the license and
contact the local Fair Isaac sales office if necessary. This error message normally produces
return code 352.

Xpress NonLinear error: I/0 erroron file
The message is produced by xs1.psave or XSLPwriteprob if there is an 1/0 error when
writing the output file (usually because there is insufficient space to write the file).

Xpress NonLinear error: user function type name not supported on this platform
This message is produced if a user function defined as being of type XLS, XLF or COM and is
run on a non-Windows platform.

Xpress NonLinear error: unidentified section in REVISE: name
The file provided to XSLPrevise contains an unsupported MPS section.

Xpress NonLinear error: unidentified row type in REVISE: name
The file provided to XSLPrevise contains an unsupported row type.

Fair Isaac Corporation Confidential and Proprietary Information 373

Error Messages

Reference

E-12112

E-12113

E-12114

E-12121

E-12124

E-12125

Xpress NonLinear error: unidentified row in REVISE: name
The file provided to XSLPrevise contains a row name not found in the current problem.

Xpress NonLinear error: unidentified bound in REVISE: name
The file provided to XSLPrevise contains an unsupported bound type.

Xpress NonLinear error: unidentified column in REVISE: name
The file provided to XSLPrevise contains a column name not found in the current problem.

Xpress NonLinear error: bad return code num from user function func
This message is produced during evaluation of a complicated user function if it returns a
value (-1) indicating that the system should estimate the result from a previous function call,
but there has been no previous function call.

Xpress NonLinear error: augmented problem not set up
The message is produced by xs1.pvalidate if an attempt is made to validate the problem
without a preceding call to xSLPconstruct. In fact, unless a solution to the linearized
problem is available, xsL.pvalidate will not be able to give useful results.

Xpress NonLinear error: user function func terminated with errors
This message is produced during evaluation of a user function if it sets the function error flag
(see xsLPsetfunctionerror).

W-12142 Xpress NonLinear warning: invalid record: text

E-12147

E-12158

E-12159

E-12159

E-12160

E-12161

E-12192

E-12193

E-12194

This error is produced by xsL.preadprob if it encounters a record in the file which is
identifiable but invalid (for example, a BOUNDS record without a bound set name). The record
is ignored.

Xpress NonLinear error: incompatible arguments in user function func
This message is produced if a user function is called by xs1.pPcalluserfunc but the
function call does not provide the arguments required by the function.

Xpress NonLinear error: unknown parameter name name
This message is produced if an attempt is made to set or retrieve a value for a control
parameter or attribute given by name where the name is incorrect.

Xpress NonLinear error: unknown parameter type name
A parameter has an unexpected type and cannot be retrieved. This is an internal error, please
contanct FICO support.

Xpress NonLinear error: parameter number is not writable
This message is produced if an attempt is made to set a value for an attribute.

Xpress NonLinear error: parameter numis not available
This message is produced if an attempt is made to retrieve a value for a control or attribute
which is not readable

Xpress NonLinear error: parameter numis not available
The parameter corresponding to the provided ID is aninternal, not readable parameter.

Xpress NonLinear error: no problem or solution read
No problem or solution has been read. If a problem read fails, it is not valid to continue with
any problem building or solving functions.

Xpress NonLinear error: this version of SLP requires XPRS version num or newer
Altough not recommended, Xpress SLP can work with different xprs library versions. This
error is issued when a tool old xpres library is found.

Xpress NonLinear error: provided buffer is too short
The provided buffer is too short. This error may occur if a formula is retrieved from Xpress,
into a buffer that is not large enough.

Fair Isaac Corporation Confidential and Proprietary Information 374

Error Messages

Reference

E-12195

E-12196

E-12197

E-12198

E-12199

E-12200

E-12201

E-12202

E-12203

Xpress NonLinear error: type index value is invalid
The index provided is not valid for the this type.

Xpress NonLinear error: error in problem transformation
An error occurred while the problem was attempted to be reformulated as part of the
nonlinear presolver. Please contact FICO support.

Xpress NonLinear error: request index invalid
The requested information cannot be retrieved as it is not valid or not availanble.

Xpress NonLinear error: error while cascading. Cannot evaluate coefficient at row rowname
column.
Evaluating an expression in cascading has returned an error. There is likely a user function in
the expression returning an error.

Xpress NonLinear error: nonlinear coefficient in neutral objective row ‘rowname’. Please
use an objective transfer row instead.
A nonlinear objective function in SLP needs to be modelled using an objective transfer row.

Xpress NonLinear error: problem is not augmented.
The operation is only valid for augmented problems. Please call the construct method first, or
solve using SLP.

Xpress NonLinear error: an internal error has occured.
An internal error has occured that is not expected to have been caused by incorrect input.
Please contact FICO support.

Xpress NonLinear error: attribute i cannot be changed.
Attributes normally cannot be changed, as they are set up by the solver. There are a few
exceptions to this rule, the requested attribute is not among the exceptions.

Xpress NonLinear error: no problem or solution written.
No problem or solution was written to disk due to an error processing the data.

Fair Isaac Corporation Confidential and Proprietary Information 375

CHAPTER 24
Xpress Knitro Control Parameters

This chapter provides a full list of the controls accepted by Xpress for setting Knitro parameters. Knitro
has a great number and variety of user option settings and although it tries to choose the best settings
by default, often significant performance improvements can be realized by choosing some non-default
option settings.

XKTR_PARAM ALGORITHM Indicates which algorithm to use to solve the problem p. 383

XKTR_PARAM_BAR_DIRECTINTERVAL Controls the maximum number of consecutive conjugate
gradient (CG) steps before Knitro will try to enforce that a step is taken
using direct linear algebra. p. 383

XKTR_PARAM_BAR_FEASIBLE Specifies whether special emphasis is placed on getting and staying
feasible in the interior-point algorithms. p. 383

XKTR_PARAM BAR_FEASMODETOL Specifies the tolerance in equation that determines whether
Knitro will force subsequent iterates to remain feasible. p. 379

XKTR_PARAM BAR_INITMU Specifies the initial value for the barrier parameter : used with the barrier
algorithms. This option has no effect on the Active Set algorithm. p. 379

XKTR_PARAM BAR_INITPT Indicates whether an initial point strategy is used with barrier
algorithms. p. 384

XKTR_PARAM_BAR_MAXBACKTRACK Indicates the maximum allowable number of backtracks during
the linesearch of the Interior/Direct algorithm before reverting to a CG step.
p. 384

XKTR_PARAM BAR_MAXCROSSIT Specifies the maximum number of crossover iterations before
termination. p. 384

XKTR_PARAM BAR MAXREFACTOR Indicates the maximum number of refactorizations of the KKT
system per iteration of the Interior/Direct algorithm before reverting to a
CG step. p. 385

XKTR_PARAM_BAR_MURULE Indicates which strategy to use for modifying the barrier parameter mu
in the barrier algorithms. p. 385

XKTR_PARAM BAR_PENCONS Indicates whether a penalty approach is applied to the constraints.
p. 386

XKTR_PARAM_BAR_PENRULE Indicates which penalty parameter strategy to use for determining
whether or not to accept a trial iterate. p. 386

XKTR_PARAM BAR_SWITCHRULE Indicates whether or not the barrier algorithms will allow switching
from an optimality phase to a pure feasibility phase. p. 386

Fair Isaac Corporation Confidential and Proprietary Information 376

Xpress Knitro Control Parameters Reference

XKTR_PARAM_DELTA Specifies the initial trust region radius scaling factor used to determine the
initial trust region size. p. 379

XKTR_PARAM FEASTOL Specifies the final relative stopping tolerance for the feasibility error. p. 379

XKTR_PARAM FEASTOLABS Specifies the final absolute stopping tolerance for the feasibility error.
p. 380

XKTR_PARAM GRADOPT Specifies how to compute the gradients of the objective and constraint
functions. p. 387

XKTR_PARAM_HESSOPT Specifies how to compute the (approximate) Hessian of the Lagrangian.
p. 387

XKTR_PARAM_HONORBNDS Indicates whether or not to enforce satisfaction of simple variable
bounds throughout the optimization. p. 387

XKTR_PARAM_INFEASTOL Specifies the (relative) tolerance used for declaring infeasibility of a
model. p. 380

XKTR_PARAM_LMSIZE Specifies the number of limited memory pairs stored when approximating
the Hessian using the limited-memory quasi-Newton BFGS option. p. 388

XKTR_PARAM MAXCGIT Specifies the number of limited memory pairs stored when approximating
the Hessian using the limited-memory quasi-Newton BFGS option. p. 388

XKTR_PARAM_MAXIT Specifies the maximum number of iterations before termination. p. 388
XKTR_PARAM_MIP_BRANCHRULE Specifies which branching rule to use for MIP branch and bound
procedure. p. 389
XKTR_PARAM MIP_GUB_BRANCH Specifies whether or not to branch on generalized upper bounds
(GUBS). p. 389
XKTR_PARAM _MIP_HEURISTIC Specifies which MIP heuristic search approach to apply to try to find
an initial integer feasible point. p. 389
XKTR_PARAM MIP_HEURISTIC_MAXIT Specifies the maximum number of iterations to allow for
MIP heuristic, if one is enabled. p. 389
XKTR_PARAM MIP_TMPLICATNS Specifies whether or not to add constraints to the MIP derived
from logical implications. p. 390
XKTR_PARAM MIP_INTEGERTOL This value specifies the threshold for deciding whether or not a
variable is determined to be an integer. p. 380
XKTR_PARAM _MIP_INTGAPABS The absolute integrality gap stop tolerance for MIP. p. 380
XKTR_PARAM MIP_INTGAPREL The relative integrality gap stop tolerance for MIP. p. 380
XKTR_PARAM MIP_KNAPSACK Specifies rules for adding MIP knapsack cuts. p. 390

XKTR_PARAM_MTP_LPALG Specifies which algorithm to use for any linear programming (LP)
subproblem solves that may occur in the MIP branch and bound procedure.

p. 390
XKTR_PARAM_MIP_MAXNODES Specifies the maximum number of nodes explored. p. 391
XKTR_PARAM_MIP_MAXSOLVES Specifies the maximum number of subproblem solves allowed (0
means no limit). p. 391
XKTR_PARAM MIP_METHOD Specifies which MIP method to use. p. 391

Fair Isaac Corporation Confidential and Proprietary Information 377

Xpress Knitro Control Parameters Reference

XKTR_PARAM MIP_OUTINTERVAL Specifies node printing interval for
XKTR_PARAM_MIP_OUTLEVEL when XKTR_PARAM_MIP_OUTLEVEL > 0.
p. 391

XKTR_PARAM MIP_OUTLEVEL Specifies how much MIP information to print. p. 392

XKTR_PARAM _MIP_PSEUDOINIT Specifies the method used to initialize pseudo-costs
corresponding to variables that have not yet been branched on in the MIP

method. p. 392
XKTR_PARAM_MIP_ROOTALG Specifies which algorithm to use for the root node solve in MIP (same
options as XKTR_PARAM_ALGORITHM user option). p. 392
XKTR_PARAM_MIP_ROUNDING Specifies the MIP rounding rule to apply. p. 392
XKTR_PARAM_MIP_SELECTRULE Specifies the MIP select rule for choosing the next node in the
branch and bound tree. p. 393
XKTR_PARAM MIP_STRONG_CANDLIM Specifies the maximum number of candidates to explore for
MIP strong branching. p. 393
XKTR_PARAM MIP_STRONG_LEVEL Specifies the maximum number of tree levels on which to
perform MIP strong branching. p. 393
XKTR_PARAM MIP_STRONG_MAXIT Specifies the maximum number of iterations to allow for MIP
strong branching solves. p. 393
XKTR_PARAM MIP_TERMINATE Specifies conditions for terminating the MIP algorithm. p. 393
XKTR_PARAM_OBJRANGE Specifies the extreme limits of the objective function for purposes of
determining unboundedness. p. 381
XKTR_PARAM_OPTTOL Specifies the final relative stopping tolerance for the KKT (optimality) error.
p. 381
XKTR_PARAM_OPTTOLABS Specifies the final absolute stopping tolerance for the KKT (optimality)
error. p. 381
XKTR_PARAM_OUTLEV Controls the level of output produced by Knitro. p. 394

XKTR_PARAM_PRESOLVE Determine whether or not to use the Knitro presolver to try to simplify the
model by removing variables or constraints. Specifies conditions for

terminating the MIP algorithm. p. 394
XKTR_PARAM_PRESOLVE_TOL Determines the tolerance used by the Knitro presolver to remove
variables and constraints from the model. p. 381
XKTR_PARAM_SCALE Performs a scaling of the objective and constraint functions based on their
values at the initial point. p. 394
XKTR_PARAM_SOC Specifies whether or not to try second order corrections (SOC). p. 395
XKTR_PARAM_XTOL The optimization process will terminate if the relative change in all
components of the solution point estimate is less than xtol. p. 382

Fair Isaac Corporation Confidential and Proprietary Information 378

Xpress Knitro Control Parameters Reference

24.1 Double control parameters

These double control parameters can be set using XSLPsetdblcontrol using the Xpress NonLinear AP],
XNLPsetsolverdoublecontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_BAR_FEASMODETOL

Description Specifies the tolerance in equation that determines whether Knitro will force subsequent
iterates to remain feasible.

Type Double

Note The tolerance applies to all inequality constraints in the problem. This option only has an
effect if option XKTR_PARAM_BAR_FEASIBLE = stay or XKTR_PARAM_ BAR_FEASIBLE =
get_stay.

Default value 1.0e-4

XKTR_PARAM_BAR_INITMU

Description Specifies the initial value for the barrier parameter : 1 used with the barrier algorithms. This
option has no effect on the Active Set algorithm.

Type Double

Default value 1.0e-1

XKTR_PARAM_DELTA

Description Specifies the initial trust region radius scaling factor used to determine the initial trust region
size.

Type Double

Default value 1.0e0

XKTR_PARAM_FEASTOL

Description Specifies the final relative stopping tolerance for the feasibility error.

Type Double

Note Smaller values of feastol result in a higher degree of accuracy in the solution with respect to
feasibility.

Default value 1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 379

Xpress Knitro Control Parameters Reference

XKTR_PARAM_FEASTOLABS

Description Specifies the final absolute stopping tolerance for the feasibility error.
Type Double
Note Smaller values of feastol_abs result in a higher degree of accuracy in the solution with

respect to feasibility.
Default value 0.0e0

XKTR_PARAM_INFEASTOL

Description Specifies the (relative) tolerance used for declaring infeasibility of a model.
Type Double
Note Smaller values of infeastol make it more difficult to satisfy the conditions Knitro uses for

detecting infeasible models. If you believe Knitro incorrectly declares a model to be
infeasible, then you should try a smaller value for infeastol.

Default value 1.0e-8

XKTR_PARAM_MIP_INTEGERTOL

Description This value specifies the threshold for deciding whether or not a variable is determined to be
an integer.

Type Double

Default value 1.0e-8

XKTR_PARAM_MIP_INTGAPABS

Description The absolute integrality gap stop tolerance for MIP.
Type Double
Default value 1.0e-6

XKTR_PARAM_MIP_INTGAPREL

Description The relative integrality gap stop tolerance for MIP.
Type Double
Default value 1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 380

Xpress Knitro Control Parameters Reference

XKTR_PARAM_OBJRANGE

Description

Type
Note

Default value

Specifies the extreme limits of the objective function for purposes of determining
unboundedness.

Double

If the magnitude of the objective function becomes greater than objrange for a feasible
iterate, then the problem is determined to be unbounded and Knitro proceeds no further.

1.0e20

XKTR_PARAM_OPTTOL

Description

Type
Note

Default value

Specifies the final relative stopping tolerance for the KKT (optimality) error.
Double

Smaller values of opttol result in a higher degree of accuracy in the solution with respect to
optimality.

1.0e-6

XKTR_PARAM_OPTTOLABS

Description

Type
Note

Default value

Specifies the final absolute stopping tolerance for the KKT (optimality) error.
Double

Smaller values of opttol_abs result in a higher degree of accuracy in the solution with respect
to optimality.

0.0e0

XKTR_PARAM_PRESOLVE_TOL

Description

Type
Note

Default value

Determines the tolerance used by the Knitro presolver to remove variables and constraints
from the model.

Double

If you believe the Knitro presolver is incorrectly modifying the model, use a smaller value for
this tolerance (or turn the presolver off).

1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 381

Xpress Knitro Control Parameters Reference

XKTR_PARAM_XTOL

Description The optimization process will terminate if the relative change in all components of the
solution point estimate is less than xtol.

Type Double

Note If using the Interior/Direct or Interior/CG algorithm and the barrier parameter is still large,

Knitro will first try decreasing the barrier parameter before terminating.

Default value 1.0e-15

Fair Isaac Corporation Confidential and Proprietary Information 382

Xpress Knitro Control Parameters Reference

24.2 Integer control parameters

These integer control parameters can be set using XSLPsetintcontrol using the Xpress NonLinear AP],
XNLPsetsolverintcontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_ALGORITHM

Description Indicates which algorithm to use to solve the problem
Type Integer
Values 0 (auto) let Knitro automatically choose an algorithm, based on the problem

characteristics.
1 (direct) use the Interior/Direct algorithm.
2 (cg) use the Interior/CG algorithm.
3 (active) use the Active Set algorithm.
4 (sgp) use the SQP algorithm.
5 (multi) run all algorithms, perhaps in parallel.
0

Default value

XKTR_PARAM_BAR_DIRECTINTERVAL

Description Controls the maximum number of consecutive conjugate gradient (CG) steps before Knitro
will try to enforce that a step is taken using direct linear algebra.

Type Integer

Note This option is only valid for the Interior/Direct algorithm and may be useful on problems

where Knitro appears to be taking lots of conjugate gradient steps. Setting bar_directinterval
to 0 will try to enforce that only direct steps are taken which may produce better results on
some problems.

Default value 10

XKTR_PARAM_BAR_FEASIBLE

Description Specifies whether special emphasis is placed on getting and staying feasible in the
interior-point algorithms.

Type Integer

Values 0 (no) No special emphasis on feasibility.
(stay) Iterates must satisfy inequality constraints once they become sufficiently
feasible.

(get) Special emphasis is placed on getting feasible before trying to optimize.
(get_stay) Implement both options 1 and 2 above.

Fair Isaac Corporation Confidential and Proprietary Information 383

Xpress Knitro Control Parameters Reference

Note This option can only be used with the Interior/Direct and Interior/CG algorithms. If
bar_feasible = stay or bar_feasible = get_stay, this will activate the feasible version of Knitro.
The feasible version of Knitro will force iterates to strictly satisfy inequalities, but does not
require satisfaction of equality constraints at intermediate iterates. This option and the
honorbnds option may be useful in applications where functions are undefined outside the
region defined by inequalities. The initial point must satisfy inequalities to a sufficient degree;
if not, Knitro may generate infeasible iterates and does not switch to the feasible version until
a sufficiently feasible point is found. Sufficient satisfaction occurs at a point x if it is true for
all inequalities that cl + tol < c(x) < cu - tol The constant tol is determined by the option
bar_feasmodetol. If bar_feasible = get or bar_feasible = get_stay, Knitro will place special
emphasis on first trying to get feasible before trying to optimize.

Default value 0

XKTR_PARAM_BARL_INITPT

Description Indicates whether an initial point strategy is used with barrier algorithms.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.
1 (yes) Shift the initial slacks and multipliers to improve barrier algorithm performance.
2 (no) Do no alter the initial slacks and multipliers.

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_MAXBACKTRACK

Description Indicates the maximum allowable number of backtracks during the linesearch of the
Interior/Direct algorithm before reverting to a CG step.

Type Integer

Note Increasing this value will make the Interior/Direct algorithm less likely to take CG steps. If the
Interior/Direct algorithm is taking a large number of CG steps (as indicated by a positive value
for 'Gits’ in the output), this may improve performance. This option has no effect on the
Active Set algorithm.

Default value 3

XKTR_PARAM_BAR_MAXCROSSIT

Description Specifies the maximum number of crossover iterations before termination.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 384

Xpress Knitro Control Parameters Reference

Note

Default value

If the value is positive and the algorithm in operation is Interior/Direct or Interior/CG, then
Knitro will crossover to the Active Set algorithm near the solution. The Active Set algorithm
will then perform at most bar_maxcrossit iterations to get a more exact solution. If the value
is 0, no Active Set crossover occurs and the interior-point solution is the final result. If Active
Set crossover is unable to improve the approximate interior-point solution, then Knitro will
restore the interior-point solution. In some cases (especially on large-scale problems or
difficult degenerate problems) the cost of the crossover procedure may be significant - for
this reason, crossover is disabled by default. Enabling crossover generally provides a more
accurate solution than Interior/Direct or Interior/CG.

0

XKTR_PARAM_BAR_MAXREFACTOR

Description

Type
Note

Default value

Indicates the maximum number of refactorizations of the KKT system per iteration of the
Interior/Direct algorithm before reverting to a CG step.

Integer

These refactorizations are performed if negative curvature is detected in the model. Rather
than reverting to a CG step, the Hessian matrix is modified in an attempt to make the
subproblem convex and then the KKT system is refactorized. Increasing this value will make
the Interior/Direct algorithm less likely to take CG steps. If the Interior/Direct algorithm is
taking a large number of CG steps (as indicated by a positive value for "CGits" in the output),
this may improve performance. This option has no effect on the Active Set algorithm.

-1

XKTR_PARAM_BAR_MURULE

Description

Type

Values

Indicates which strategy to use for modifying the barrier parameter mu in the barrier
algorithms.

Integer

(auto) Let Knitro automatically choose the strategy.
(monotone) Monotonically decrease the barrier parameter. Available for both barrier

algorithms.

2 (adaptive) Use an adaptive rule based on the complementarity gap to determine the
value of the barrier parameter. Available for both barrier algorithms.

3 (probing) Use a probing (affine-scaling) step to dynamically determine the barrier
parameter. Available only for the Interior/Direct algorithm.

4 (dampmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier

parameter, with safeguards on the corrector step. Available only for the
Interior/Direct algorithm.

5 (fullmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier
parameter, without safeguards on the corrector step. Available only for the
Interior/Direct algorithm.

6 (quality) Minimize a quality function at each iteration to determine the barrier
parameter. Available only for the Interior/Direct algorithm.

Fair Isaac Corporation Confidential and Proprietary Information 385

Xpress Knitro Control Parameters Reference

Note Not all strategies are available for both barrier algorithms. This option has no effect on the
Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_PENCONS

Description Indicates whether a penalty approach is applied to the constraints.
Type Integer
Values 0 (auto) Let Knitro automatically choose the strategy.
1 (none) No constraints are penalized.
2 (all) A penalty approach is applied to all general constraints.
Note Using a penalty approach may be helpful when the problem has degenerate or difficult

constraints. It may also help to more quickly identify infeasible problems, or achieve feasibility
in problems with difficult constraints. This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_PENRULE

Description Indicates which penalty parameter strategy to use for determining whether or not to accept a
trial iterate.

Type Integer

Values 0 (auto) Let Knitro automatically choose the strategy.

(single) Use a single penalty parameter in the merit function to weight feasibility
versus optimality.

2 (flex) Use a more tolerant and flexible step acceptance procedure based on a range
of penalty parameter values.

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_BAR_SWITCHRULE

Description Indicates whether or not the barrier algorithms will allow switching from an optimality phase
to a pure feasibility phase.
Type Integer
Values 0 (auto) Let Knitro determine the switching procedure.
1 (never) Never switch to feasibility phase.
2 (level1) Allow switches to feasibility phase.
3 (level2) Use a more aggressive switching rule.

Fair Isaac Corporation Confidential and Proprietary Information 386

Xpress Knitro Control Parameters Reference

Note This option has no effect on the Active Set algorithm.

Default value 0

XKTR_PARAM_GRADOPT

Description Specifies how to compute the gradients of the objective and constraint functions.
Type Integer
Values 1 (exact) User provides a routine for computing the exact gradients.
2 (forward) Knitro computes gradients by forward finite-differences.
3 (central) Knitro computes gradients by central finite differences.
Note It is highly recommended to provide exact gradients if at all possible as this greatly impacts

the performance of the code.

Default value 1

XKTR_PARAM_HESSOPT

Description Specifies how to compute the (approximate) Hessian of the Lagrangian.
Type Integer
Values 1 (exact) User provides a routine for computing the exact Hessian.
2 (bfgs) Knitro computes a (dense) quasi-Newton BFGS Hessian.
3 (sr1) Knitro computes a (dense) quasi-Newton SR1 Hessian.
4 (finite_diff) Knitro computes Hessian-vector products using finite-differences.
5 (product) User provides a routine to compute the Hessian-vector products.
6 (Ibfgs) Knitro computes a limited-memory quasi-Newton BFGS Hessian (its size is

determined by the option Imsize).

Note Options hessopt = 4 and hessopt = 5 are not available with the Interior/Direct algorithm.
Knitro usually performs best when the user provides exact Hessians (hessopt = 1) or exact
Hessian-vector products (hessopt = 5). If neither can be provided but exact gradients are
available (i.e., gradopt = 1), then hessopt = 4 is recommended. This option is comparable in
terms of robustness to the exact Hessian option and typically not much slower in terms of
time, provided that gradient evaluations are not a dominant cost. If exact gradients cannot be
provided, then one of the quasi-Newton options is preferred. Options hessopt = 2 and hessopt
= 3 are only recommended for small problems (n < 1000) since they require working with a
dense Hessian approximation. Option hessopt = 6 should be used for large problems.

Default value 1

XKTR_PARAM_HONORBNDS

Description Indicates whether or not to enforce satisfaction of simple variable bounds throughout the
optimization.

Fair Isaac Corporation Confidential and Proprietary Information 387

Xpress Knitro Control Parameters Reference

Type Integer
Values 0 (no) Knitro does not require that the bounds on the variables be satisfied at
intermediate iterates.
1 (always) Knitro enforces that the initial point and all subsequent solution estimates
satisfy the bounds on the variables.
2 (initpt) Knitro enforces that the initial point satisfies the bounds on the variables.
Note This option and the bar_feasible option may be useful in applications where functions are

undefined outside the region defined by inequalities.

Default value 2

XKTR_PARAM_LMSIZE

Description Specifies the number of limited memory pairs stored when approximating the Hessian using
the limited-memory quasi-Newton BFGS option.

Type Integer

Note The value must be between 1 and 100 and is only used with XKTR_PARAM_HESSOPT = 6.

Larger values may give a more accurate, but more expensive, Hessian approximation. Smaller
values may give a less accurate, but faster, Hessian approximation. When using the limited
memory BFGS approach it is recommended to experiment with different values of this

parameter.
Default value 10
XKTR_PARAM_MAXCGIT
Description Specifies the number of limited memory pairs stored when approximating the Hessian using
the limited-memory quasi-Newton BFGS option.
Type Integer
Values 0 Let Knitro automatically choose a value based on the problem size.
n At most n>0 CG iterations may be performed during one minor iteration of Knitro.
Default value 0

XKTR_PARAM_MAXIT

Description Specifies the maximum number of iterations before termination.
Type Integer
Values 0 Let Knitro automatically choose a value based on the problem type. Currently Knitro
sets this value to 10000 for LPs/NLPs and 3000 for MIP problems.
n At most n>0 iterations may be performed before terminating.
Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 388

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_BRANCHRULE

Description Specifies which branching rule to use for MIP branch and bound procedure.
Type Integer
Values 0 (auto) Let Knitro automatically choose the branching rule.
1 (most_frac) Use most fractional (most infeasible) branching.
2 (pseudcost) Use pseudo-cost branching.
3 (strong) Use strong branching (see options XKTR_PARAM MIP_STRONG_CANDLTIV,

XKTR_PARAM_MIP_STRONG_LEVEL, XKTR_PARAM MIP_STRONG_MAXIT for
further control of strong branching procedure).

Default value 0

XKTR_PARAM_MIP_GUB_BRANCH

Description Specifies whether or not to branch on generalized upper bounds (GUBs).
Type Integer
Values 0 (no) Do not branch on GUBs.
1 (yes) Allow branching on GUBs.
Default value 0

XKTR_PARAM_MIP_HEURISTIC

Description Specifies which MIP heuristic search approach to apply to try to find an initial integer feasible
point.
Type Integer
Values 0 (auto) Let Knitro choose the heuristic to apply (if any).
1 (none) No heuristic search applied.
2 (feaspump) Apply feasibility pump heuristic.
3 (mpec) Apply heuristic based on MPEC formulation.
Note If a heuristic search procedure is enabled, it will run for at most mip_heuristic_maxit

iterations, before starting the branch and bound procedure.

Default value 0

XKTR_PARAM_MIP_HEURISTIC_MAXIT

Description Specifies the maximum number of iterations to allow for MIP heuristic, if one is enabled.

Fair Isaac Corporation Confidential and Proprietary Information 389

Xpress Knitro Control Parameters Reference

Type Integer
Default value 100

XKTR_PARAM_MIP_IMPLICATNS

Description Specifies whether or not to add constraints to the MIP derived from logical implications.
Type Integer
Values 0 (no) Do not add constraints from logical implications.
1 (yes) Knitro adds constraints from logical implications.
Default value 1

XKTR_PARAM_MIP_KNAPSACK

Description Specifies rules for adding MIP knapsack cuts.
Type Integer
Values 0 (none) Do not add knapsack cuts.
1 (inegs) Add cuts derived from inequalities only.
2 (inegs_eqgs) Add cuts derived from both inequalities and equalities.

Default value 1

XKTR_PARAM_MIP_LPALG

Description Specifies which algorithm to use for any linear programming (LP) subproblem solves that
may occur in the MIP branch and bound procedure.
Type Integer
Values 0 (auto) Let Knitro automatically choose an algorithm, based on the problem
characteristics.
1 (direct) Use the Interior/Direct (barrier) algorithm.
2 (cg) Use the Interior/CG (barrier) algorithm.
3 (active) Use the Active Set (simplex) algorithm.
Note LP subproblems may arise if the problem is a mixed integer linear program (MILP), or if using

XKTR_PARAM_MIP_METHOD = HQG. (Nonlinear programming subproblems use the algorithm
specified by the algorithm option.)

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 390

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_MAXNODES

Description Specifies the maximum number of nodes explored.
Type Integer
Note Zero vealue means no limit.

Default value 100000

XKTR_PARAM_MIP_MAXSOLVES

Description Specifies the maximum number of subproblem solves allowed (0 means no limit).
Type Integer
Default value 200000

XKTR_PARAM_MIP_METHOD

Description Specifies which MIP method to use.
Type Integer
Values 0 (auto) Let Knitro automatically choose the method.
(BB) Use the standard branch and bound method.
2 (HQG) Use the hybrid Quesada-Grossman method (for convex, nonlinear problems
only).
Default value 0

XKTR_PARAM_MIP_OUTINTERVAL

Description Specifies node printing interval for XK TR_PARAM_MIP_OUTLEVEL when
XKTR_PARAM_MIP_OUTLEVEL > 0.

Type Integer

Values 0 Print output every node.
2 Print output every 2nd node.
N Print output every Nth node.

Default value 10

Fair Isaac Corporation Confidential and Proprietary Information 391

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_OUTLEVEL

Description Specifies how much MIP information to print.

Type Integer

Values 0 (none) Do not print any MIP node information.
1 (iters) Print one line of output for every node.

Default value 1

XKTR_PARAM_MIP_PSEUDOINIT

Description Specifies the method used to initialize pseudo-costs corresponding to variables that have not
yet been branched on in the MIP method.

Type Integer

Values 0 Let Knitro automatically choose the method.
1 Initialize using the average value of computed pseudo-costs.
2 Initialize using strong branching.

Default value 0

XKTR_PARAM_MIP_ROOTALG

Description Specifies which algorithm to use for the root node solve in MIP (same options as
XKTR_PARAM_ALGORITHM user option).

Type Integer

Default value 0

XKTR_PARAM_MIP_ROUNDING

Description Specifies the MIP rounding rule to apply.
Type Integer
Values (auto) Let Knitro choose the rounding rule.

0
1 (none) Do not round if a node is infeasible.

2 (heur_only) Round using a fast heuristic only.

3 (nlp_sometimes) Round and solve a subproblem if likely to succeed.
4 (nlp_always) Always round and solve a subproblem.

0

Default value

Fair Isaac Corporation Confidential and Proprietary Information 392

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_SELECTRULE

Description Specifies the MIP select rule for choosing the next node in the branch and bound tree.
Type Integer
Values (auto) Let Knitro choose the node selection rule.

0

1 (depth_first) Search the tree using a depth first procedure.

2 (best_bound) Select the node with the best relaxation bound.
3 (combo_1) Use depth first unless pruned, then best bound.

0

Default value

XKTR_PARAM_MIP_STRONG_CANDLIM

Description Specifies the maximum number of candidates to explore for MIP strong branching.
Type Integer
Default value 10

XKTR_PARAM_MIP_STRONG_LEVEL

Description Specifies the maximum number of tree levels on which to perform MIP strong branching.
Type Integer
Default value 10

XKTR_PARAM_MIP_STRONG_MAXIT

Description Specifies the maximum number of iterations to allow for MIP strong branching solves.
Type Integer
Default value 1000

XKTR_PARAM_MIP_TERMINATE

Description Specifies conditions for terminating the MIP algorithm.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 393

Xpress Knitro Control Parameters Reference

Values 0 (optimal) Terminate at optimum.
1 (feasible) Terminate at first integer feasible point.
Default value 0
XKTR_PARAM_OUTLEV
Description Controls the level of output produced by Knitro.
Type Integer
Values 0 (none) Printing of all output is suppressed.
1 (summary) Print only summary information.
2 (iter_10) Print basic information every 10 iterations.
3 (iter) Print basic information at each iteration.
4 (iter_verbose) Print basic information and the function count at each iteration.
5 (iter_x) Print all the above, and the values of the solution vector x.
6 (all) Print all the above, and the values of the constraints c at x and the Lagrange

multipliers lambda.

Default value 2

XKTR_PARAM_PRESOLVE

Description Determine whether or not to use the Knitro presolver to try to simplify the model by removing
variables or constraints. Specifies conditions for terminating the MIP algorithm.

Type Integer

Values 0 (none) Do not use Knitro presolver.
1 (basic) Use the Knitro basic presolver.

Default value 1

XKTR_PARAM_SCALE

Description Performs a scaling of the objective and constraint functions based on their values at the
initial point.

Type Integer

Values 0 (no) No scaling is performed.
1 (yes) Knitro is allowed to scale the objective function and constraints.

Note If scaling is performed, all internal computations, including the stopping tests, are based on

the scaled values.

Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 394

Xpress Knitro Control Parameters Reference

XKTR_PARAM_SOC

Description Specifies whether or not to try second order corrections (SOC).
Type Integer
Values 0 (no) No second order correction steps are attempted.
1 (maybe) Second order correction steps may be attempted on some iterations.
2 (yes) Second order correction steps are always attempted if the original step is
rejected and there are nonlinear constraints.
Note A second order correction may be beneficial for problems with highly nonlinear constraints.
Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 395

Appendix

APPENDIX A

The Xpress-SLP Log

A.0.1

A.0.2

The Xpress-SLP log consists of log lines of two different types: the output of the underlying XPRS

optimizer, and the log of XSLP itself.

Output is sent to the screen (stdout) by default, but may be intercepted by a user function using the
user output callback; see xs1.Psetcbmessage. However, under Windows, no output from the
Optimizer DLL is sent to the screen. The user must define a callback function and print messages to

the screen them self if they wish output to be displayed.

Logging controls

General SLP logging

XPRS_OUTPUTLOG Logging level of the underlying XPRS problem

XPRS_LPLOG
XPRS_MIPLOG

Logging frequency for solving the linearization
Logging frequency for the MIP solver

Logging for the underlying XPRS problem

XSLP_LOG

Level of SLP logging (iteration, penalty, convergence)

XSLP_SLPLOG Logging frequency for SLP iterations
XSLP_MIPLOG MI-SLP specific logging

Special logging settings

XPRS_DCLOG

Logging of delayed constraint activation

XSLP_ERRORTOL_P Absolute tolerance for printing error vectors

The structure of the log

The typical log with the default settings starts with statistics about the problem sizes. On the

polygon1.mps example, using the XSLP console program this looks like

[xpress mps] readprob Polygonl.mat
Reading Problem Polygon
Problem Statistics

Global Statistics

PV:
Iv:
UF:

11 (0 spare) rows
10 (4 spare) structural columns
8 (0 spare) non-zero elements
0 entities 0 sets 0 set members
0 DC: 0 DR: 0 EC:
0 RX: 0 TX: 0 SB:
0 WT: 0 XV: 0 Total:

Xpress—-SLP Statistics:

7 coefficients
9 SLP variables

Fair Isaac Corporation Confidential and Proprietary Information

397

The Xpress-SLP Log Reference

The standard XPRS optimizer problem loading statistics is extended with a report about the special
structures possibly present in the problem, including DC (delayed constraints), DR (determining rows),
EC (enforced constraints), IV (initial values), RX/TX (relative and absolute tolerances), SB (initial step
bounds), UF (user functions), WT (initial row weights), followed by a statistics about the number of SLP
coefficients and variables.

SLP iteration 1, Os
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 68 elements
Presolved problem has:
0 rows 0 cols 0 elements
Its Obj Value S Ninf Nneg Sum Inf Time
0 828864.7136 D 0 0 .000000 0
Uncrunching matrix
0 828864.7136 D 0 0 .000000 0

Optimal solution found
8 unconverged values (at least 1 in active constraints)
Total feasibility error costs 829100.765742

Penalty Error Vectors - Penalties scaled by 200

Variable Activity Penalty
BE-V1V4 1381.836001 1.000000
BE-V2V4 1381.834610 1.000000
BE-V3V4 1381.833218 1.000000
Total: 4145.503829

Error Costs: 829100.765742 Penalty Delta Costs: 0.000000 Net Objective: -236.052107

SLP iteration 2, O0Os
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 73 elements
Presolved problem has:
0 rows 0 cols 0 elements
Its Obj Value S Ninf Nneg Sum Inf Time
0 -3.13860E-05 D 0 0 .000000 0
Uncrunching matrix
0 -3.13860E-05 D 0 0 .000000 0

Optimal solution found
4 unconverged values (at least 1 in active constraints)

SLP iteration 3, Os
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 72 elements
Presolved problem has:
0 rows 0 cols 0 elements
Its Obj Value S Ninf Nneg Sum Inf Time
0 -1.56933E-05 D 0 0 .000000 0
Uncrunching matrix
0 -1.56933E-05 D 0 0 .000000 0

Optimal solution found

The default solution log consists of the optimizer output of solving the linearizations, followed by
statistics of the nonlinear infeasibilities, the penalty and the objective, and the convergence status.

Iteration summary
Itr. LPS NetObj ErrorSum ErrorCost Unconv. Extended Action
1 O -236.052107 4145.503829 829100.7657 8 0

Fair Isaac Corporation Confidential and Proprietary Information 398

The Xpress-SLP Log Reference

2 0O -3.13860E-05 .000000 .000000 4 0
3 0 -1.56932E-05 .000000 .000000 0 0

Xpress—SLP stopped after 3 iterations. 0 unconverged items
No unconverged values in active constraints

The final iteration summary contains the following fields:
Itr: The iteration number.

LPS: The LP status of the linearization, which can take the following values:
0 Linearization is optimal
I Linearization is infeasible
U Linearization is unbounded
X Solving the linearization was interupted

NetObj: The net objective of the SLP iteration.
ErrorSum: Sum of the error delta variables. A measure of infeasibility.

ErrorCost: The value of the weighted error delta variables in the objective. A measure of the effort
needed to push the model towards feasiblity.

Unconv: The number of SLP variables that are not converged.
Extended: The number of SLP variables that are converged, but only by extended criteria

Action: The special actions that happened in the iteration. These can be
0 Failed line search (non-improving)
Enforcing step bounds
Some infeasible rows were enforced
Global variables were fixed
The solution needed polishing, postsolve instability
! Solution polishing failed
Penalty error vectors were removed
Feasiblity validation induces further iterations
K Optimality validation induces further iterations

Sl v B v L I B e Bl v

The presence of a P! suggests that the problem is particularly hard to solve without postsolve, and the
model might benefit from setting XSLP_NOLPPOLISHING on XxSLP_ALGORITHM (please note, that this
should only be considered if the solution polishing features is very slow or fails, as the numerical
inaccuracies it aims to remove can cause other problems to the solution process).

Fair Isaac Corporation Confidential and Proprietary Information 399

APPENDIX B

Selecting the right algorithm for a nonlinear
problem - when to use the XPRS library in-
stead of XSLP

B.0.1

B.0.2

This chapter focuses on the nonlinear capabilities of the Xpress XPRS optimizer. As a general rule of
thumb, problems that can be handled by the XPRS library do not require the use of XSLP; while Xpress
XSLP is able to efficiently solve most nonlinear problems, there are subclasses of nonlinear problems
for which the Xpress optimizer features specialized algorithms that are able to solve those problems
more efficiently and in larger sizes. These are notably the convex quadratic programming and the
convex quadratically constrained problems and their mixed integer counterparts.

It is also possible to separate the convex quadratic information from the rest of XSLP, and let the
Xpress XPRS optimizer handle those directly. Doing so is good modelling practice, but emphasis must
be placed on that the optimizer can only handle convex quadratic constraints.

Convex Quadratic Programs (QPs)

Convex Quadratic Programming (QP) problems are an extension of Linear Programming (LP) problems
where the objective function may include a second order polynomial. The FICO Xpress Optimizer can
be used directly for solving QP problems (and the Mixed Integer version MIQP).

If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms for
the solution of convex QP (MIQP) problems, that are much more efficient than solving the problem as a
general nonlinear problem with XSLP.

Convex Quadratically Constrained Quadratic Programs (QCQPs)

Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the Quadratic
Programming (QP) problem where the constraints may also include second order polynomials.

A QCQP problem may be written as:

minimize: cqX7+...4+CpXp+x’ Qpx
subjectto: apyXq+...+a1,Xn+x’ QX

N
i

amXqt..tamnXntx'Qmx < bm
lh <X1 <Upln <xp<up

where any of the lower or upper bounds /; or u; may be infinite.

Fair Isaac Corporation Confidential and Proprietary Information 400

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Reference

B.0.3

B.0.4

If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms for
the solution of convex QCQP (and the integer counterpart MIQCQP) problems, that are much more
efficient than solving the problem as a general nonlinear problem with XSLP.

Convexity

A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity. A
region is called convex, if for any two points from the region the connecting line segment is also part of
the region.

The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in the
objective may introduce the phenomenon of locally optimal solutions that are not global ones (a local
optimal solution is one for which a neighborhood in the feasible region exists in which that solution is
the best). While the lack of convexity in constraints can also give rise to local optimums, they may even
introduce non—connected feasible regions as shown in Figure B.1.

A | r=-16 X =0.866 Example 1.
y
g Feasible region A 11]2]11 x ..
7 //////////////// (0.0) ryizl
+ s s
%4’?— i —05Zy<03
/ %%]: easible region B
|
X
>

Figure B.1: Non-connected feasible regions

In this example, the feasible region is divided into two parts. Over feasible region B, the objective
function has two alterative local optimal solutions, while over feasible region A the objective is not even
bounded.

For convex problems, each locally optimal solution is a global one, making the characterization of the
optimal solution efficient.

Characterizing Convexity in Quadratic Constraints

A quadratic constraint of form
aXp+ .. +anXn +X' Qx < b

defines a convex region if and only if Q is a so—called positive semi-definite (PSD) matrix.

A rectangular matrix Q is PSD by definition, if for any vector (not restricted to the feasible set of a
problem) x it holds that x”Qx > 0.

It follows that for greater or equal constraints
aX1+..+anXn - X' Qx > b

the negative of Q shall be PSD.

Fair Isaac Corporation Confidential and Proprietary Information 401

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Reference

A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always defines a
nonconvex region, therefore those must be modelled as XSLP structures.

There is no straightforward way of checking if a matrix is PSD or not. An intuitive way of checking this
property, is that the quadratic part shall always only make a constraint harder to satisfy (i.e. taking the
quadratic part away shall always be a relaxation of the original problem).

There are certain constructs however, that can easily be recognized as being non convex:

1. the product of two variables say xy without having both x2 and y2 defined;

2. having —x2 in any quadratic expression in a less or equal, or having x2 in any greater or equal row.

As a general rule, a convex quadratic objective and convex quadratic constraints are best handled by
the XPRS library; while all nonconvex counterparts should be modelled as XSLP structures.

Fair Isaac Corporation Confidential and Proprietary Information 402

APPENDIX C
Files used by Xpress NonLinear

Most of the data used by Xpress NonLinear is held in memory. However, there are a few files which are
written, either automatically or on demand, in addition to those created by the Xpress Optimizer.

LOGFILE Created by: XsLPsetlogfile
The file name and location are user-defined.

NAME.mat Created by: XSL.Pwriteprob
This is the matrix file in extended MPS format. The name is user-defined. The
extension .mat is appended automatically.

NAME txt Created by: xsLPwriteprob
This is the matrix file in human-readable "text". The name is user-defined. The
extension .txt is appended automatically.

PROBNAME.svx Created by: xsLpsave
This is the SLP part of the save file (the linear part is in probname.svf). Used
by xsLprestore.

Fair Isaac Corporation Confidential and Proprietary Information 403

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ‘Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and training
tools for both new user enablement and ongoing performance support. For additional information, visit
the Product Education homepage at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let
us know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 404

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO Reference

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

m Phone: +1(408) 535-1500 or +44 207 940 8718

m Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time
to assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting
time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical
support, build relationships with local and remote professionals, and improve your business practices.
For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.
Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics
and data science to improve operational decisions. FICO holds more than 165 US and foreign patents
on technologies that increase profitability, customer satisfaction, and growth for businesses in
financial services, telecommunications, health care, retail, and many other industries. Using FICO
solutions, businesses in more than 100 countries do everything from protecting 2.6 billion payment
cards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are
in the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 405

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
= column, 39

A

ABS, 359

Absolute tolerance record
Tx, 42

ARCCOS, 352

ARCSIN, 353

ARCTAN, 354

Attributes, Problem, 97

Augmentation, 64

B
BOUNDS, 16
BOUNDS section in file, 39

(]
Callbacks and user functions, 77
Callbacks in MISLP, 92
Cascading, 51
Character Variable record, 39
Closure convergence tolerance, 58
Coefficients
and terms, 33
COLUMNS, 14
COLUMNS section in file, 38
Control parameters, 122
Convergence
closure, 58
delta, 58
extended convergence continuation, 62
impact, 59
matrix, 58
slack impact, 60
static objective (1), 60
static objective (2), 61
static objective (3), 61
user-defined, 60
Convergence criteria, 53
convex region, 4071
Cos, 355
Counting, 214
CV record in SLPDATA, 39

D
Delta convergence tolerance, 58
Derivatives
returning from user function, 82
user function, 83
Determining Row record, 40
DR record in SLPDATA, 40

E

E-12001, 370
E-12002, 370
E-12003, 370
E-12004, 370
E-12005, 370
E-12006, 370
E-12007, 371
E-12008, 371
E-12009, 371
E-12010, 371
E-12011, 371
E-12012, 371
E-12013, 371
E-12014, 371
E-12015, 371
E-12016, 371
E-12017, 371
E-12018, 371
E-120109, 372
E-12020, 372
E-12021, 372
E-12022, 372
E-12025, 372
E-12026, 372
E-12027,372
E-12029, 372
E-12030, 373
E-12031, 373
E-12032, 373
E-12033, 373
E-12037, 373
E-12038, 373
E-12084, 373
E-12085, 373
E-12105, 373
E-12107, 373
E-12110, 373
E-12111,373
E-12112,374
E-12113,374
E-12114,374
E-12121,374
E-12124,374
E-12125,374
E-12147,374
E-12158,374
E-12159,374
E-12160, 374
E-12161,374
E-12192,374
E-12193,374

Fair Isaac Corporation Confidential and Proprietary Information

406

Index Reference

E-12194, 374 M
E-121095, 375 Matrix convergence tolerance, 58
E-12196,375 Matrix Name Generation, 68
E-12197,375 Matrix Structures, 64
E-121098, 375 MAX, 365
E-12199, 375 MAXIM, 18
E-12200,375 maximise, 11
E-12201, 375 MIN, 366
E-12202, 375 minimise, 11
E-12203, 375 MINLP, 90
EC record in SLPDATA, 40 MISLP
ENDATA, 17 Callbacks, 92
Enforced Constraint record, 40 Fixing or relaxing values of SLP variables, 91
Equals column, 39 Iterating at each node, 92
ERF, 360 Termination criteria at each node, 92
ERFC, 361 Mixed Integer Non-Linear Programming, 90
Error Messages, 370 mmxnlp, 9
Error vectors, penalty, 68 mutlistart, 95
EXP, 362
Extended convergence continuation tolerance, 62 N
Extended MPS file format, 37 NAME, 13
Name Generation, 68
F nlctr, 9
files Nonlinear objectives, 89
.ini, 30 Nonlinear problems, 33
Files used by Xpress NonLinear, 403
Fixing values of SLP variables in MISLP, 91 (0]
Formula Objectives, nonlinear, 89
Initial Value record, 41 Objectives, quadratic, 89
Formulae, 37, 73 optimizer, 18
Functions, internal, 350
Functions, library, 214 P
Functions, user, 77 Parsed formula format, 73
Penalty error vectors, 68
G Pointer (reference) attribute, 120
getslack, 11 positive semi-definite matrix, 401
getsol, 11 Problem attributes, 97
Problem pointer, 214
H PWL, 367
Handling Infeasibilities, 48
History, 71 Q
Quadratic objectives, 89
| QUIT, 18
Impact convergence tolerance, 59
Implicit variable, 38 R
Infeasibilities, handling, 48 Relative tolerance record Rx, 42
Initial Value formula, 41 Relaxing values of SLP variables in MISLP, 91
Initial Value record, 41 RHS, 16
Instance Row weight
user function, 82 Extended MPS record, 43
Internal Functions, 350 ROWS, 13
Iterating at each node in MISLP, 92 Rx record in SLPDATA, 42
v, 17
IV record in SLPDATA, 41 S
SB record in SLPDATA, 42
L Sequential Linear Programming, see Successive
Library functions, 214, 215 Linear Programming
LN, 363 setinitval, 10
loadprob, 10 SIGN, 368
LOG, 364 SIN, 356
LOG10, 364 Slack impact convergence tolerance, 60

Fair Isaac Corporation Confidential and Proprietary Information 407

Index

Reference

SLP problem pointer, 214
SLP variable, 34
SLPDATA

CV record, 39

DR record, 40

EC record, 40

IV record, 41

Rx record, 42

SB record, 42

Tx record, 42

UF record, 42

WT record, 43
SLPDATA, 17
SLPDATA section in file, 39
solution, 400
Solution Process, 44

Special Types of Problem, see Problem, special types

Mixed Integer Non-Linear Programming, 90
Nonlinear objectives, 89
Quadratic objectives, 89
SQRT, 369
Static objective (1) convergence tolerance, 60
Static objective (2) convergence tolerance, 61
Static objective (3) convergence tolerance, 61
Statistics, Xpress-SLP, 69
Step Bound record, 42
Structures, SLP matrix, 64
Successive Linear Programming, 33

T
TAN, 357
Termination criteria at each node in MISLP, 92
Terms
and coefficients, 33
Tolerance record
Rx, 42
Tolerance record Tx, 42
Tolerances, convergence, 53
Tx record in SLPDATA, 42

U

UF record in SLPDATA, 42

Unparsed formula format, 73

User function, 77
declaration in native languages, 78
Deltas, 82
general, returning array by reference, 79
general, returning array through argument, 80
instance, 82
programming techniques, 81
ReturnArray, 82
returning derivatives, 82
simple, 79

User function Derivatives, 83

User function interface, 78

User Function record, 42

User Functions, 77

User-defined convergence, 60

\",
Values of SLP variables in MISLP, fixing or relaxing,
91
Variable
implicit, 38
SLP. 34

w

W-12023,372

W-12024, 372
W-12028, 372

W-12034, 373
W-12142,374
WRITEPRTSOL, 18

WT record in SLPDATA, 43

X

XKTR_PARAM_ALGORITHM, 383
XKTR_PARAM_BAR_DIRECTINTERVAL, 383
XKTR_PARAM_BAR_FEASIBLE, 383
XKTR_PARAM_BAR_FEASMODETOL, 379
XKTR_PARAM_BAR_INITMU, 379
XKTR_PARAM_BAR_INITPT, 384
XKTR_PARAM_BAR_MAXBACKTRACK, 384
XKTR_PARAM_BAR_MAXCROSSIT, 384
XKTR_PARAM_BAR_MAXREFACTOR, 385
XKTR_PARAM_BAR_MURULE, 385
XKTR_PARAM_BAR_PENCONS, 386
XKTR_PARAM_BAR_PENRULE, 386
XKTR_PARAM_BAR_SWITCHRULE, 386
XKTR_PARAM_DELTA, 379
XKTR_PARAM_FEASTOL, 379
XKTR_PARAM_FEASTOLABS, 380
XKTR_PARAM_GRADOPT, 387
XKTR_PARAM_HESSOPT, 387
XKTR_PARAM_HONORBNDS, 387
XKTR_PARAM_INFEASTOL, 380
XKTR_PARAM_LMSIZE, 388
XKTR_PARAM_MAXCGIT, 388
XKTR_PARAM_MAXIT, 388
XKTR_PARAM_MIP_BRANCHRULE, 389
XKTR_PARAM_MIP_GUB_BRANCH, 389
XKTR_PARAM_MIP_HEURISTIC, 389
XKTR_PARAM_MIP_HEURISTIC_MAXIT, 389
XKTR_PARAM_MIP_IMPLICATNS, 390
XKTR_PARAM_MIP_INTEGERTOL, 380
XKTR_PARAM_MIP_INTGAPABS, 380
XKTR_PARAM_MIP_INTGAPREL, 380
XKTR_PARAM_MIP_KNAPSACK, 390
XKTR_PARAM_MIP_LPALG, 390
XKTR_PARAM_MIP_MAXNODES, 391
XKTR_PARAM_MIP_MAXSOLVES, 391
XKTR_PARAM_MIP_METHOD, 391
XKTR_PARAM_MIP_OUTINTERVAL, 391
XKTR_PARAM_MIP_OUTLEVEL, 392
XKTR_PARAM_MIP_PSEUDOINIT, 392
XKTR_PARAM_MIP_ROOTALG, 392
XKTR_PARAM_MIP_ROUNDING, 392
XKTR_PARAM_MIP_SELECTRULE, 393
XKTR_PARAM_MIP_STRONG_CANDLIM, 393

Fair Isaac Corporation Confidential and Proprietary Information

408

Index Reference
XKTR_PARAM_MIP_STRONG_LEVEL, 393 XSLP_DEFAULTIV, 135
XKTR_PARAM_MIP_STRONG_MAXIT, 393 XSLP_DEFAULTSTEPBOUND, 136
XKTR_PARAM_MIP_TERMINATE, 393 XSLP_DELAYUPDATEROWS, 176
XKTR_PARAM_OBJRANGE, 381 XSLP_DELTA_A, 136
XKTR_PARAM_OPTTOL, 381 XSLP_DELTA_R, 136
XKTR_PARAM_OPTTOLABS, 381 XSLP_DELTA_X, 137
XKTR_PARAM_OUTLEV, 394 XSLP_DELTA_Z, 137
XKTR_PARAM_PRESOLVE, 394 XSLP_DELTA_ZERO, 137
XKTR_PARAM_PRESOLVE_TOL, 381 XSLP_DELTACOST, 138
XKTR_PARAM_SCALE, 394 XSLP_DELTACOSTFACTOR, 138
XKTR_PARAM_SOC, 395 XSLP_DELTAFORMAT, 208
XKTR_PARAM_XTOL, 382 XSLP_DELTAMAXCOST, 138
xnlp_verbose, 11 XSLP_DELTAOFFSET, 177
Xpress NonLinear problem pointer, 214 XSLP_DELTAS, 104
Xpress-SLP Statistics, 69 XSLP_DELTAZLIMIT, 177
xprs_verbose, 11 XSLP_DERIVATIVES, 178
XPRSdestroyprob, 27 XSLP_DETERMINISTIC, 178
XPRSfree, 27 XSLP_DJTOL, 139
XPRSgetsol, 27 XSLP_DRCOLTOL, 139
XPRSwriteprtsol, 27 XSLP_ECFCHECK, 178
XSLP_ALGORITHM, 166 XSLP_ECFCOUNT, 104
XSLP_ANALYZE, 168 XSLP_ECFTOL_A, 139
XSLP_ATOL_A, 130 XSLP_ECFTOL_R, 140
XSLP_ATOL_R, 130 XSLP_ECHOXPRSMESSAGES, 179
XSLP_AUGMENTATION, 169 XSLP_ENFORCECOSTSHRINK, 140
XSLP_AUTOSAVE, 170 XSLP_ENFORCEMAXCOST, 141
XSLP_BARCROSSOVERSTART, 171 XSLP_EOF, 24
XSLP_BARLIMIT, 171 XSLP_EQUALSCOLUMN, 105
XSLP_BARSTALLINGLIMIT, 172 XSLP_ERRORCOST, 141
XSLP_BARSTALLINGOBJLIMIT, 172 XSLP_ERRORCOSTFACTOR, 141
XSLP_BARSTALLINGTOL, 130 XSLP_ERRORCOSTS, 101
XSLP_BARSTARTOPS, 172 XSLP_ERRORMAXCOST, 142
XSLP_CALCTHREADS, 173 XSLP_ERROROFFSET, 179
XSLP_CASCADE, 173 XSLP_ERRORTOL_A, 142
XSLP_CASCADENLIMIT, 174 XSLP_ERRORTOL_P, 142
XSLP_CASCADETOL_PA, 131 XSLP_ESCALATION, 143
XSLP_CASCADETOL_PR, 131 XSLP_ETOL_A, 143
XSLP_CDTOL_A, 131 XSLP_ETOL_R, 143
XSLP_CDTOL_R, 132 XSLP_EVALUATE, 180
XSLP_CLAMPSHRINK, 132 XSLP_EVTOL_A, 144
XSLP_CLAMPVALIDATIONTOL_A, 133 XSLP_EVTOL_R, 144
XSLP_CLAMPVALIDATIONTOL_R, 133 XSLP_EXPAND, 145
XSLP_COEFFICIENTS, 104 XSLP_EXPLOREDELTAS, 104
XSLP_COL, 24 XSLP_FEASTOLTARGET, 145
XSLP_CON, 24 XSLP_FILTER, 180
XSLP_CONTROL, 174 XSLP_FINDIV, 181
XSLP_CONVERGENCEOPS, 175 XSLP_FUN, 24
XSLP_CTOL, 133 XSLP_FUNCEVAL, 181
XSLP_CURRENTDELTACOST, 101 XSLP_GRANULARITY, 145
XSLP_CURRENTERRORCOST, 101 XSLP_GRIDHEURSELECT, 182
XSLP_CVNAME, 208 XSLP_HESSIAN, 183
XSLP_CVS, 104 XSLP_HEURSTRATEGY, 182
XSLP_DAMP, 134 XSLP_IFS, 105
XSLP_DAMPEXPAND, 134 XSLP_IFUN, 24
XSLP_DAMPMAX, 134 XSLP_IMPLICITVARIABLES, 105
XSLP_DAMPMIN, 135 XSLP_INFEASLIMIT, 183
XSLP_DAMPSHRINK, 135 XSLP_INFINITY, 146
XSLP_DAMPSTART, 176 XSLP_INTEGERDELTAS, 105
XSLP_DCLIMIT, 176 XSLP_INTERNALFUNCCALLS, 105
XSLP_DCLOG, 176 XSLP_ITER, 106

Fair Isaac Corporation Confidential and Proprietary Information 409

Index Reference
XSLP_ITERFALLBACKOPS, 208 XSLP_NONLINEARCONSTRAINTS, 109
XSLP_ITERLIMIT, 183 XSLP_OBJSENSE, 154
XSLP_ITOL_A, 146 XSLP_OBJTOPENALTYCOST, 154
XSLP_ITOL_R, 147 XSLP_OBJVAL, 101
XSLP_IVNAME, 209 XSLP_OCOUNT, 193
XSLP_JACOBIAN, 184 XSLP_OP, 24
XSLP_JOBID, 106 XSLP_OPTIMALITYTOLTARGET, 155
XSLP_KEEPBESTITER, 106 XSLP_ORIGINALCOLS, 109
XSLP_LINQUADBR, 184 XSLP_ORIGINALROWS, 109
XSLP_LOG, 184 XSLP_OTOL_A, 155
xslp_log, 11 XSLP_OTOL_R, 155
XSLP_LSITERLIMIT, 185 XSLP_PENALTYCOLFORMAT, 210
XSLP_LSPATTERNLIMIT, 185 XSLP_PENALTYDELTACOLUMN, 109
XSLP_LSSTART, 185 XSLP_PENALTYDELTAROW, 109
XSLP_LSZEROLIMIT, 186 XSLP_PENALTYDELTAS, 110
XSLP_MATRIXTOL, 147 XSLP_PENALTYDELTATOTAL, 101
XSLP_MAXTIME, 186 XSLP_PENALTYDELTAVALUE, 102
XSLP_MAXWEIGHT, 148 XSLP_PENALTYERRORCOLUMN, 110
XSLP_MEMORYFACTOR, 148 XSLP_PENALTYERRORROW, 110
XSLP_MERITLAMBDA, 148 XSLP_PENALTYERRORS, 110
XSLP_MINORVERSION, 106 XSLP_PENALTYERRORTOTAL, 102
XSLP_MINSBFACTOR, 149 XSLP_PENALTYERRORVALUE, 102
XSLP_MINUSDELTAFORMAT, 209 XSLP_PENALTYINFOSTART, 194
XSLP_MINUSERRORFORMAT, 210 XSLP_PENALTYROWFORMAT, 210
XSLP_MINUSPENALTYERRORS, 106 XSLP_PLUSDELTAFORMAT, 211
XSLP_MINWEIGHT, 149 XSLP_PLUSERRORFORMAT, 211
XSLP_MIPALGORITHM, 186 XSLP_PLUSPENALTYERRORS, 110
XSLP_MIPCUTOFF_A, 149 XSLP_POSTSOLVE, 194
XSLP_MIPCUTOFF_R, 150 XSLP_PRESOLVE, 194
XSLP_MIPCUTOFFCOUNT, 188 XSLP_PRESOLVEDELETEDDELTA, 111
XSLP_MIPCUTOFFLIMIT, 188 XSLP_PRESOLVEELIMINATIONS, 111
XSLP_MIPDEFAULTALGORITHM, 189 XSLP_PRESOLVEFIXEDCOEF, 111
XSLP_MIPERRORTOL_A, 150 XSLP_PRESOLVEFIXEDDR, 111
XSLP_MIPERRORTOL_R, 150 XSLP_PRESOLVEFIXEDNZCOL, 112
XSLP_MIPFIXSTEPBOUNDS, 189 XSLP_PRESOLVEFIXEDSLPVAR, 112
XSLP_MIPITER, 107 XSLP_PRESOLVEFIXEDZCOL, 112
XSLP_MIPITERLIMIT, 190 XSLP_PRESOLVELEVEL, 195
XSLP_MIPLOG, 190 XSLP_PRESOLVEOPS, 195
XSLP_MIPNODES, 107 XSLP_PRESOLVEPASSES, 112
XSLP_MIPOCOUNT, 190 XSLP_PRESOLVEPASSLIMIT, 196
XSLP_MIPOTOIL_A, 151 XSLP_PRESOLVESTATE, 113
XSLP_MIPOTOL_R, 151 XSLP_PRESOLVETIGHTENED, 113
XSLP_MIPPROBLEM, 120 XSLP_PRESOLVEZERO, 156
XSLP_MIPRELAXSTEPBOUNDS, 191 XSLP_PRIMALINTEGRAL, 102
XSLP_MIPSOLS, 107 XSLP_PRIMALINTEGRALREF, 156
XSLP_MODELCOLS, 107 XSLP_PROBING, 196
XSLP_MODELROWS, 107 XSLP_REFORMULATE, 196
XSLP_MSMAXBOUNDRANGE, 152 XSLP_SAMECOUNT, 197
XSLP_MSSTATUS, 108 XSLP_SAMEDAMP, 197
XSLP_MTOL_A, 152 XSLP_SBLOROWFORMAT, 211
XSLP_MTOL_R, 153 XSLP_SBNAME, 212
XSLP_MULTISTART, 191 XSLP_SBROWOFFSET, 198
XSLP_MULTISTART MAXSOLVES, 191 XSLP_SBSTART, 198
XSLP_MULTISTART MAXTIME, 192 XSLP_SBUPROWFORMAT, 212
XSLP_MULTISTART_ POOLSIZE, 192 XSLP_SBXCONVERGED, 113
XSLP_MULTISTART_SEED, 193 XSLP_SCALE, 198
XSLP_MULTISTART_THREADS, 193 XSLP_SCALECOUNT, 199
XSLP_MVTOL, 153 XSLP_SEMICONTDELTAS, 113
XSLP_NLPSTATUS, 108 XSLP_SHRINK, 157
XSLP_NONCONSTANTCOEFF, 108 XSLP_SHRINKBIAS, 157

Fair Isaac Corporation Confidential and Proprietary Information 410

Index

Reference

XSLP_SLPLOG, 200
xslp_slplog, 11
XSLP_SOLSTATUS, 114
XSLP_SOLUTIONPOOL, 120
XSLP_SOLVER, 199
XSLP_SOLVERSELECTED, 114
XSLP_STATUS, 114
XSLP_STOL_A, 157
XSLP_STOL_R, 158
XSLP_STOPOUTOFRANGE, 200
XSLP_STOPSTATUS, 116
XSLP_THREADS, 200
XSLP_THREADSAFEUSERFUNC, 201
XSLP_TIMEPRINT, 200
XSLP_TOLNAME, 212
XSLP_TOLSETS, 116
XSLP_TOTALEVALUATIONERRORS, 116
XSLP_TRACEMASK, 213
XSLP_TRACEMASKOPS, 201
XSLP_UCCONSTRAINEDCOUNT, 116
XSLP_UFINSTANCES, 117
XSLP_UFS, 117
XSLP_UNCONVERGED, 117
XSLP_UNFINISHEDLIMIT, 202
XSLP_UPDATEFORMAT, 213
XSLP_UPDATEOFFSET, 202
XSLP_USEDERIVATIVES, 117
XSLP_USERFUNCCALLS, 118
XSLP_VALIDATIONINDEX_A, 102
XSLP_VALIDATIONINDEX_K, 103
XSLP_VALIDATIONINDEX_R, 103
XSLP_VALIDATIONTARGET_K, 158
XSLP_VALIDATIONTARGET_R, 158
XSLP_VALIDATIONTOL_A, 159
XSLP_VALIDATIONTOL_R, 159
XSLP_VARIABLES, 118
XSLP_VCOUNT, 203
XSLP_VERSION, 118
XSLP_VERSIONDATE, 121
XSLP_VLIMIT, 203
XSLP_VSOLINDEX, 103
XSLP_VTOL_A, 160
XSLP_VTOL_R, 160
XSLP_WCOUNT, 204
XSLP_WTOL_A, 161
XSLP_WTOL_R, 162
XSLP_XCOUNT, 205
XSLP_XLIMIT, 205
XSLP_XPRSPROBLEM, 120
XSLP_XSLPPROBLEM, 120
XSLP_XTOL_A, 163
XSLP_XTOL_R, 163
XSLP_ZERO, 164
XSLP_ZEROCRITERION, 206
XSLP_ZEROCRITERIONCOUNT, 207
XSLP_ZEROCRITERIONSTART, 207
XSLP_ZEROESRESET, 118
XSLP_ZEROESRETAINED, 118
XSLP_ZEROESTOTAL, 119
XSLP_ATOL, 58

XSLP_CTOL, 58
XSLP_ITOL, 59
XSLP_MTOL, 59
XSLP_OCOUNT, 61
XSLP_OTOL, 61
XSLP_STOL, 60
XSLP_VCOUNT, 61
XSLP_VLIMIT, 61
XSLP_VTOL, 61
XSLP_WCOUNT, 63
XSLP_WTOL, 62
XSLP_XCOUNT, 62
XSLP_XLIMIT, 62
XSLP_XTOL, 62
XSLPaddcoefs, 221
XSLPadddfs, 223
XSLPaddtolsets, 224
XSLPadduserfunction, 225
XSLPaddvars, 226
XSLPcalcslacks, 228
XSLPcascade, 229
XSLPcascadeorder, 230
XSLPchgcascadenlimit, 231
XSLPchgccoef, 232
XSLPchgcoef, 25, 233
XSLPchgdeltatype, 234
XSLPchgdf, 235
XSLPchgrowstatus, 236
XSLPchgrowwt, 237
XSLPchgtolset, 238
XSLPchgvar, 240
XSLPconstruct, 242
XSLPcopycallbacks, 243
XSLPcopycontrols, 244
XSLPcopyprob, 245
XSLPcreateprob, 246
XSLPdelcoefs, 247
XSLPdeltolsets, 248
XSLPdeluserfunction, 249
XSLPdelvars, 250
XSLPdestroyprob, 27,251
XSLPevaluatecoef, 252
XSLPevaluateformula, 253
XSLPfixpenalties, 254
XSLPfree, 27,255
XSLPgetbanner, 256
XSLPgetccoef, 257
XSLPgetcoefformula, 258
XSLPgetcoefs, 259
XSLPgetcolinfo, 260
XSLPgetdblattrib, 261
XSLPgetdblcontrol, 262
XSLPgetdf, 263
XSLPgetindex, 264
XSLPgetintattrib, 265
XSLPgetintcontrol, 266
XSLPgetlasterror, 267
XSLPgetptrattrib, 268
XSLPgetrowinfo, 269
XSLPgetrowstatus, 270

Fair Isaac Corporation Confidential and Proprietary Information

41

Index

Reference

XSLPgetrowwt, 271
XSLPgetslpsol, 272
XSLPgetstrattrib, 273
XSLPgetstrcontrol, 274
XSLPgettolset, 275
XSLPgetvar, 27,276
XSLPglobal, 278
XSLPimportlibfunc, 279
XSLPinit, 280
XSLPinterrupt, 281
XSLPitemname, 282
XSLPload... functions, 215
XSLPloadcoefs, 25, 283
XSLPloaddfs, 285
XSLPloadtolsets, 286
XSLPloadvars, 27, 287
XSLPmaxim, 26, 289
XSLPminim, 26, 290
XSLPmsaddcustompreset, 291
XSLPmsaddjob, 292
XSLPmsaddpreset, 293
XSLPmsclear, 294
XSLPnlpoptimize, 295
XSLPpostsolve, 296
XSLPpresolve, 297
XSLPprintevalinfo, 299
XSLPprintmemory, 298
XSLPprob, 214
XSLPreadprob, 300
XSLPreinitialize, 304
XSLPremaxim, 3071
XSLPreminim, 302
XSLPrestore, 303
XSLPsave, 305
XSLPsaveas, 306
XSLPscaling, 307
XSLPsetcbcascadeend, 308
XSLPsetcbcascadestart, 309
XSLPsetcbcascadevar, 310
XSLPsetcbcascadevarfail, 311
XSLPsetcbcoefevalerror, 312
XSLPsetcbconstruct, 313
XSLPsetcbdestroy, 315
XSLPsetcbdrcol, 316
XSLPsetcbintsol, 317
XSLPsetcbiterend, 318
XSLPsetcbiterstart, 319
XSLPsetcbitervar, 320
XSLPsetcbmessage, 19, 321
XSLPsetcbmsjobend, 323
XSLPsetcbmsjobstart, 324
XSLPsetcbmswinner, 325
XSLPsetcboptnode, 326
XSLPsetcbprenode, 327
XSLPsetcbpreupdatelinearization, 328
XSLPsetcbslpend, 329
XSLPsetcbslpnode, 330
XSLPsetcbslpstart, 331
XSLPsetcurrentiv, 332
XSLPsetdblcontrol, 333

XSLPsetdefaultcontrol, 334
XSLPsetdefaults, 335
XSLPsetfunctionerror, 336
XSLPsetintcontrol, 337
XSLPsetlogfile, 338
XSLPsetparam, 339
XSLPsetstrcontrol, 340
XSLPunconstruct, 341
XSLPupdatelinearization, 342
XSLPvalidate, 343
XSLPvalidatekkt, 344
XSLPvalidateprob, 345
XSLPvalidaterow, 346
XSLPvalidatevector, 347
XSLPwriteprob, 26, 348
XSLPwriteslxsol, 349

Fair Isaac Corporation Confidential and Proprietary Information

412

	I Overview
	Introduction
	Mathematical programs
	Linear programs
	Convex quadratic programs
	Convex quadratically constrained quadratic programs
	Second order conic problems
	General nonlinear optimization problems
	Mixed integer programs

	Technology Overview
	The Simplex Method
	The Logarithmic Barrier Method
	Outer approximation schemes
	Successive Linear Programming
	Second Order Methods
	Mixed Integer Solvers

	API naming convention

	The Problem
	Problem Definition
	Problem Formulation

	Modeling in Mosel
	Basic formulation
	Setting up and solving the problem
	Looking at the results
	Parallel evaluation of Mosel user functions

	Modeling in Extended MPS Format
	Basic formulation
	Using the nonlinear optimizer console-based interface
	Coefficients and terms

	The Xpress NonLinear API Functions
	Header files
	Initialization
	Callbacks
	Creating the linear part of the problem
	Adding the non-linear part of the problem
	Adding the non-linear part of the problem using character formulae
	Checking the data
	Solving and printing the solution
	Closing the program
	Adding initial values

	The Nonlinear Console Program
	The Console Nonlinear
	The nonlinear console extensions
	Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer console

	II Advanced
	Nonlinear Problems
	Coefficients and terms
	SLP variables
	Local and global optimality
	Convexity
	Converged and practical solutions
	The duals of general, nonlinear program

	Extended MPS file format
	Formulae
	COLUMNS
	BOUNDS
	SLPDATA
	CV (Character variable)
	DR (Determining row)
	EC (Enforced constraint)
	FR (Free variable)
	FX (Fixed variable)
	IV (Initial value)
	LO (Lower bounded variable)
	Rx, Tx (Relative and absolute convergence tolerances)
	SB (Initial step bound)
	UF (User function)
	UP (Free variable)
	WT (Explicit row weight)
	DL (variable specific Determining row cascade iteration Limit)

	Xpress-SLP Solution Process
	Analyzing the solution process
	The initial point
	Derivatives
	Finite Differences
	Symbolic Differentiation
	Automatic Differentiation

	Points of inflection
	Trust regions

	Handling Infeasibilities
	Infeasibility Analysis in the Xpress Optimizer
	Managing Infeasibility with Xpress Knitro
	Managing Infeasibility with Xpress-SLP
	Penalty Infeasibility Breakers in XSLP

	Cascading
	Determining rows and determining columns

	Convergence criteria
	Convergence criteria
	Convergence overview
	Strict Convergence
	Extended Convergence
	Stopping Criterion
	Step Bounding

	Convergence: technical details
	Closure tolerance (CTOL)
	Delta tolerance (ATOL)
	Matrix tolerance (MTOL)
	Impact tolerance (ITOL)
	Slack impact tolerance (STOL)
	Fixed variables due to determining columns smaller than threshold (FX)
	User-defined convergence
	Static objective function (1) tolerance (VTOL)
	Static objective function (2) tolerance (OTOL)
	Static objective function (3) tolerance (XTOL)
	Extended convergence continuation tolerance (WTOL)

	Xpress-SLP Structures
	SLP Matrix Structures
	Augmentation of a nonlinear coefficient
	Augmentation of a nonlinear term
	Augmentation of a user-defined SLP variable
	SLP penalty error vectors

	Xpress-SLP Matrix Name Generation
	Xpress-SLP Statistics
	SLP Variable History

	Xpress NonLinear Formulae
	Parsed and unparsed formulae
	Example of an arithmetic formula
	Example of a formula involving a simple function

	User Functions
	Callbacks and user functions
	User function interface
	User Function declaration in native languages
	User function declaration in C

	Simple functions and general functions
	Simple user functions
	General user functions returning an array of values through a reference
	General user functions returning an array of values through an argument

	Programming Techniques for User Functions
	Deltas
	Return values and ReturnArray
	Returning Derivatives
	Function Instances

	Function Derivatives
	Analytic Derivatives of Instantiated User Functions not Returning their own Derivatives

	Management of zero placeholder entries
	The augmented matrix structure
	Derivatives and zero derivatives
	Placeholder management

	Special Types of Problem
	Nonlinear objectives
	Convex Quadratic Programming
	Mixed Integer Nonlinear Programming
	Mixed Integer SLP
	Heuristics for Mixed Integer SLP
	Fixing or relaxing the values of the SLP variables
	Iterating at each node
	Termination criteria at each node
	Callbacks

	Integer and semi-continuous delta variables

	Xpress NonLinear multistart

	III Reference
	Problem Attributes
	Double problem attributes
	XSLP_CURRENTDELTACOST
	XSLP_CURRENTERRORCOST
	XSLP_ERRORCOSTS
	XSLP_OBJVAL
	XSLP_PENALTYDELTATOTAL
	XSLP_PENALTYDELTAVALUE
	XSLP_PENALTYERRORTOTAL
	XSLP_PENALTYERRORVALUE
	XSLP_PRIMALINTEGRAL
	XSLP_VALIDATIONINDEX_A
	XSLP_VALIDATIONINDEX_K
	XSLP_VALIDATIONINDEX_R
	XSLP_VSOLINDEX

	Integer problem attributes
	XSLP_COEFFICIENTS
	XSLP_CVS
	XSLP_DELTAS
	XSLP_ECFCOUNT
	XSLP_EXPLOREDELTAS
	XSLP_EQUALSCOLUMN
	XSLP_IFS
	XSLP_IMPLICITVARIABLES
	XSLP_INTEGERDELTAS
	XSLP_INTERNALFUNCCALLS
	XSLP_ITER
	XSLP_JOBID
	XSLP_KEEPBESTITER
	XSLP_MINORVERSION
	XSLP_MINUSPENALTYERRORS
	XSLP_MIPITER
	XSLP_MIPNODES
	XSLP_MIPSOLS
	XSLP_MODELCOLS
	XSLP_MODELROWS
	XSLP_MSSTATUS
	XSLP_NLPSTATUS
	XSLP_NONCONSTANTCOEFF
	XSLP_NONLINEARCONSTRAINTS
	XSLP_ORIGINALCOLS
	XSLP_ORIGINALROWS
	XSLP_PENALTYDELTACOLUMN
	XSLP_PENALTYDELTAROW
	XSLP_PENALTYDELTAS
	XSLP_PENALTYERRORCOLUMN
	XSLP_PENALTYERRORROW
	XSLP_PENALTYERRORS
	XSLP_PLUSPENALTYERRORS
	XSLP_PRESOLVEDELETEDDELTA
	XSLP_PRESOLVEELIMINATIONS
	XSLP_PRESOLVEFIXEDCOEF
	XSLP_PRESOLVEFIXEDDR
	XSLP_PRESOLVEFIXEDNZCOL
	XSLP_PRESOLVEFIXEDSLPVAR
	XSLP_PRESOLVEFIXEDZCOL
	XSLP_PRESOLVEPASSES
	XSLP_PRESOLVESTATE
	XSLP_PRESOLVETIGHTENED
	XSLP_SBXCONVERGED
	XSLP_SEMICONTDELTAS
	XSLP_SOLVERSELECTED
	XSLP_SOLSTATUS
	XSLP_STATUS
	XSLP_STOPSTATUS
	XSLP_TOLSETS
	XSLP_TOTALEVALUATIONERRORS
	XSLP_UCCONSTRAINEDCOUNT
	XSLP_UFINSTANCES
	XSLP_UFS
	XSLP_UNCONVERGED
	XSLP_USEDERIVATIVES
	XSLP_USERFUNCCALLS
	XSLP_VARIABLES
	XSLP_VERSION
	XSLP_ZEROESRESET
	XSLP_ZEROESRETAINED
	XSLP_ZEROESTOTAL

	Reference (pointer) problem attributes
	XSLP_MIPPROBLEM
	XSLP_SOLUTIONPOOL
	XSLP_XPRSPROBLEM
	XSLP_XSLPPROBLEM

	String problem attributes
	XSLP_VERSIONDATE

	Control Parameters
	Double control parameters
	XSLP_ATOL_A
	XSLP_ATOL_R
	XSLP_BARSTALLINGTOL
	XSLP_CASCADETOL_PA
	XSLP_CASCADETOL_PR
	XSLP_CDTOL_A
	XSLP_CDTOL_R
	XSLP_CLAMPSHRINK
	XSLP_CLAMPVALIDATIONTOL_A
	XSLP_CLAMPVALIDATIONTOL_R
	XSLP_CTOL
	XSLP_DAMP
	XSLP_DAMPEXPAND
	XSLP_DAMPMAX
	XSLP_DAMPMIN
	XSLP_DAMPSHRINK
	XSLP_DEFAULTIV
	XSLP_DEFAULTSTEPBOUND
	XSLP_DELTA_A
	XSLP_DELTA_R
	XSLP_DELTA_X
	XSLP_DELTA_Z
	XSLP_DELTA_ZERO
	XSLP_DELTACOST
	XSLP_DELTACOSTFACTOR
	XSLP_DELTAMAXCOST
	XSLP_DJTOL
	XSLP_DRCOLTOL
	XSLP_ECFTOL_A
	XSLP_ECFTOL_R
	XSLP_ENFORCECOSTSHRINK
	XSLP_ENFORCEMAXCOST
	XSLP_ERRORCOST
	XSLP_ERRORCOSTFACTOR
	XSLP_ERRORMAXCOST
	XSLP_ERRORTOL_A
	XSLP_ERRORTOL_P
	XSLP_ESCALATION
	XSLP_ETOL_A
	XSLP_ETOL_R
	XSLP_EVTOL_A
	XSLP_EVTOL_R
	XSLP_EXPAND
	XSLP_FEASTOLTARGET
	XSLP_GRANULARITY
	XSLP_INFINITY
	XSLP_ITOL_A
	XSLP_ITOL_R
	XSLP_MATRIXTOL
	XSLP_MAXWEIGHT
	XSLP_MEMORYFACTOR
	XSLP_MERITLAMBDA
	XSLP_MINSBFACTOR
	XSLP_MINWEIGHT
	XSLP_MIPCUTOFF_A
	XSLP_MIPCUTOFF_R
	XSLP_MIPERRORTOL_A
	XSLP_MIPERRORTOL_R
	XSLP_MIPOTOL_A
	XSLP_MIPOTOL_R
	XSLP_MSMAXBOUNDRANGE
	XSLP_MTOL_A
	XSLP_MTOL_R
	XSLP_MVTOL
	XSLP_OBJSENSE
	XSLP_OBJTOPENALTYCOST
	XSLP_OPTIMALITYTOLTARGET
	XSLP_OTOL_A
	XSLP_OTOL_R
	XSLP_PRESOLVEZERO
	XSLP_PRIMALINTEGRALREF
	XSLP_SHRINK
	XSLP_SHRINKBIAS
	XSLP_STOL_A
	XSLP_STOL_R
	XSLP_VALIDATIONTARGET_R
	XSLP_VALIDATIONTARGET_K
	XSLP_VALIDATIONTOL_A
	XSLP_VALIDATIONTOL_R
	XSLP_VTOL_A
	XSLP_VTOL_R
	XSLP_WTOL_A
	XSLP_WTOL_R
	XSLP_XTOL_A
	XSLP_XTOL_R
	XSLP_ZERO

	Integer control parameters
	XSLP_ALGORITHM
	XSLP_ANALYZE
	XSLP_AUGMENTATION
	XSLP_AUTOSAVE
	XSLP_BARCROSSOVERSTART
	XSLP_BARLIMIT
	XSLP_BARSTALLINGLIMIT
	XSLP_BARSTALLINGOBJLIMIT
	XSLP_BARSTARTOPS
	XSLP_CALCTHREADS
	XSLP_CASCADE
	XSLP_CASCADENLIMIT
	XSLP_CONTROL
	XSLP_CONVERGENCEOPS
	XSLP_DAMPSTART
	XSLP_DCLIMIT
	XSLP_DCLOG
	XSLP_DELAYUPDATEROWS
	XSLP_DELTAOFFSET
	XSLP_DELTAZLIMIT
	XSLP_DERIVATIVES
	XSLP_DETERMINISTIC
	XSLP_ECFCHECK
	XSLP_ECHOXPRSMESSAGES
	XSLP_ERROROFFSET
	XSLP_EVALUATE
	XSLP_FILTER
	XSLP_FINDIV
	XSLP_FUNCEVAL
	XSLP_GRIDHEURSELECT
	XSLP_HEURSTRATEGY
	XSLP_HESSIAN
	XSLP_INFEASLIMIT
	XSLP_ITERLIMIT
	XSLP_JACOBIAN
	XSLP_LINQUADBR
	XSLP_LOG
	XSLP_LSITERLIMIT
	XSLP_LSPATTERNLIMIT
	XSLP_LSSTART
	XSLP_LSZEROLIMIT
	XSLP_MAXTIME
	XSLP_MIPALGORITHM
	XSLP_MIPCUTOFFCOUNT
	XSLP_MIPCUTOFFLIMIT
	XSLP_MIPDEFAULTALGORITHM
	XSLP_MIPFIXSTEPBOUNDS
	XSLP_MIPITERLIMIT
	XSLP_MIPLOG
	XSLP_MIPOCOUNT
	XSLP_MIPRELAXSTEPBOUNDS
	XSLP_MULTISTART
	XSLP_MULTISTART_MAXSOLVES
	XSLP_MULTISTART_MAXTIME
	XSLP_MULTISTART_POOLSIZE
	XSLP_MULTISTART_SEED
	XSLP_MULTISTART_THREADS
	XSLP_OCOUNT
	XSLP_PENALTYINFOSTART
	XSLP_POSTSOLVE
	XSLP_PRESOLVE
	XSLP_PRESOLVELEVEL
	XSLP_PRESOLVEOPS
	XSLP_PRESOLVEPASSLIMIT
	XSLP_PROBING
	XSLP_REFORMULATE
	XSLP_SAMECOUNT
	XSLP_SAMEDAMP
	XSLP_SBROWOFFSET
	XSLP_SBSTART
	XSLP_SCALE
	XSLP_SCALECOUNT
	XSLP_SOLVER
	XSLP_SLPLOG
	XSLP_STOPOUTOFRANGE
	XSLP_THREADS
	XSLP_TIMEPRINT
	XSLP_THREADSAFEUSERFUNC
	XSLP_TRACEMASKOPS
	XSLP_UNFINISHEDLIMIT
	XSLP_UPDATEOFFSET
	XSLP_VCOUNT
	XSLP_VLIMIT
	XSLP_WCOUNT
	XSLP_XCOUNT
	XSLP_XLIMIT
	XSLP_ZEROCRITERION
	XSLP_ZEROCRITERIONCOUNT
	XSLP_ZEROCRITERIONSTART

	String control parameters
	XSLP_CVNAME
	XSLP_DELTAFORMAT
	XSLP_ITERFALLBACKOPS
	XSLP_IVNAME
	XSLP_MINUSDELTAFORMAT
	XSLP_MINUSERRORFORMAT
	XSLP_PENALTYCOLFORMAT
	XSLP_PENALTYROWFORMAT
	XSLP_PLUSDELTAFORMAT
	XSLP_PLUSERRORFORMAT
	XSLP_SBLOROWFORMAT
	XSLP_SBNAME
	XSLP_SBUPROWFORMAT
	XSLP_TOLNAME
	XSLP_TRACEMASK
	XSLP_UPDATEFORMAT

	Knitro controls

	Library functions and the programming interface
	Counting
	The Xpress NonLinear problem pointer
	The XSLPload... functions
	Library functions
	XSLPaddcoefs
	XSLPadddfs
	XSLPaddtolsets
	XSLPadduserfunction
	XSLPaddvars
	XSLPcalcslacks
	XSLPcascade
	XSLPcascadeorder
	XSLPchgcascadenlimit
	XSLPchgccoef
	XSLPchgcoef
	XSLPchgdeltatype
	XSLPchgdf
	XSLPchgrowstatus
	XSLPchgrowwt
	XSLPchgtolset
	XSLPchgvar
	XSLPconstruct
	XSLPcopycallbacks
	XSLPcopycontrols
	XSLPcopyprob
	XSLPcreateprob
	XSLPdelcoefs
	XSLPdeltolsets
	XSLPdeluserfunction
	XSLPdelvars
	XSLPdestroyprob
	XSLPevaluatecoef
	XSLPevaluateformula
	XSLPfixpenalties
	XSLPfree
	XSLPgetbanner
	XSLPgetccoef
	XSLPgetcoefformula
	XSLPgetcoefs
	XSLPgetcolinfo
	XSLPgetdblattrib
	XSLPgetdblcontrol
	XSLPgetdf
	XSLPgetindex
	XSLPgetintattrib
	XSLPgetintcontrol
	XSLPgetlasterror
	XSLPgetptrattrib
	XSLPgetrowinfo
	XSLPgetrowstatus
	XSLPgetrowwt
	XSLPgetslpsol
	XSLPgetstrattrib
	XSLPgetstrcontrol
	XSLPgettolset
	XSLPgetvar
	XSLPglobal
	XSLPimportlibfunc
	XSLPinit
	XSLPinterrupt
	XSLPitemname
	XSLPloadcoefs
	XSLPloaddfs
	XSLPloadtolsets
	XSLPloadvars
	XSLPmaxim
	XSLPminim
	XSLPmsaddcustompreset
	XSLPmsaddjob
	XSLPmsaddpreset
	XSLPmsclear
	XSLPnlpoptimize
	XSLPpostsolve
	XSLPpresolve
	XSLPprintmemory
	XSLPprintevalinfo
	XSLPreadprob
	XSLPremaxim
	XSLPreminim
	XSLPrestore
	XSLPreinitialize
	XSLPsave
	XSLPsaveas
	XSLPscaling
	XSLPsetcbcascadeend
	XSLPsetcbcascadestart
	XSLPsetcbcascadevar
	XSLPsetcbcascadevarfail
	XSLPsetcbcoefevalerror
	XSLPsetcbconstruct
	XSLPsetcbdestroy
	XSLPsetcbdrcol
	XSLPsetcbintsol
	XSLPsetcbiterend
	XSLPsetcbiterstart
	XSLPsetcbitervar
	XSLPsetcbmessage
	XSLPsetcbmsjobend
	XSLPsetcbmsjobstart
	XSLPsetcbmswinner
	XSLPsetcboptnode
	XSLPsetcbprenode
	XSLPsetcbpreupdatelinearization
	XSLPsetcbslpend
	XSLPsetcbslpnode
	XSLPsetcbslpstart
	XSLPsetcurrentiv
	XSLPsetdblcontrol
	XSLPsetdefaultcontrol
	XSLPsetdefaults
	XSLPsetfunctionerror
	XSLPsetintcontrol
	XSLPsetlogfile
	XSLPsetparam
	XSLPsetstrcontrol
	XSLPunconstruct
	XSLPupdatelinearization
	XSLPvalidate
	XSLPvalidatekkt
	XSLPvalidateprob
	XSLPvalidaterow
	XSLPvalidatevector
	XSLPwriteprob
	XSLPwriteslxsol

	Internal Functions
	Trigonometric functions
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	SIN
	TAN

	Other mathematical functions
	ABS
	ERF
	ERFC
	EXP
	LN
	LOG, LOG10
	MAX
	MIN
	PWL
	SIGN
	SQRT

	Error Messages
	Xpress Knitro Control Parameters
	Double control parameters
	XKTR_PARAM_BAR_FEASMODETOL
	XKTR_PARAM_BAR_INITMU
	XKTR_PARAM_DELTA
	XKTR_PARAM_FEASTOL
	XKTR_PARAM_FEASTOLABS
	XKTR_PARAM_INFEASTOL
	XKTR_PARAM_MIP_INTEGERTOL
	XKTR_PARAM_MIP_INTGAPABS
	XKTR_PARAM_MIP_INTGAPREL
	XKTR_PARAM_OBJRANGE
	XKTR_PARAM_OPTTOL
	XKTR_PARAM_OPTTOLABS
	XKTR_PARAM_PRESOLVE_TOL
	XKTR_PARAM_XTOL

	Integer control parameters
	XKTR_PARAM_ALGORITHM
	XKTR_PARAM_BAR_DIRECTINTERVAL
	XKTR_PARAM_BAR_FEASIBLE
	XKTR_PARAM_BAR_INITPT
	XKTR_PARAM_BAR_MAXBACKTRACK
	XKTR_PARAM_BAR_MAXCROSSIT
	XKTR_PARAM_BAR_MAXREFACTOR
	XKTR_PARAM_BAR_MURULE
	XKTR_PARAM_BAR_PENCONS
	XKTR_PARAM_BAR_PENRULE
	XKTR_PARAM_BAR_SWITCHRULE
	XKTR_PARAM_GRADOPT
	XKTR_PARAM_HESSOPT
	XKTR_PARAM_HONORBNDS
	XKTR_PARAM_LMSIZE
	XKTR_PARAM_MAXCGIT
	XKTR_PARAM_MAXIT
	XKTR_PARAM_MIP_BRANCHRULE
	XKTR_PARAM_MIP_GUB_BRANCH
	XKTR_PARAM_MIP_HEURISTIC
	XKTR_PARAM_MIP_HEURISTIC_MAXIT
	XKTR_PARAM_MIP_IMPLICATNS
	XKTR_PARAM_MIP_KNAPSACK
	XKTR_PARAM_MIP_LPALG
	XKTR_PARAM_MIP_MAXNODES
	XKTR_PARAM_MIP_MAXSOLVES
	XKTR_PARAM_MIP_METHOD
	XKTR_PARAM_MIP_OUTINTERVAL
	XKTR_PARAM_MIP_OUTLEVEL
	XKTR_PARAM_MIP_PSEUDOINIT
	XKTR_PARAM_MIP_ROOTALG
	XKTR_PARAM_MIP_ROUNDING
	XKTR_PARAM_MIP_SELECTRULE
	XKTR_PARAM_MIP_STRONG_CANDLIM
	XKTR_PARAM_MIP_STRONG_LEVEL
	XKTR_PARAM_MIP_STRONG_MAXIT
	XKTR_PARAM_MIP_TERMINATE
	XKTR_PARAM_OUTLEV
	XKTR_PARAM_PRESOLVE
	XKTR_PARAM_SCALE
	XKTR_PARAM_SOC

	Appendix
	The Xpress-SLP Log
	Logging controls
	The structure of the log

	Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP
	Convex Quadratic Programs (QPs)
	Convex Quadratically Constrained Quadratic Programs (QCQPs)
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Files used by Xpress NonLinear
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

