
FICOFICO R©R©Xpress OptimizationXpress Optimization

version 36.01
Last update 20 March 2020

FICO R© Xpress Nonlinear
Manual

©1983–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair IsaacCorporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,reproduce, make derivative works, use, or allow others to use it except solely for internal evaluationpurposes to determine whether to purchase a license to the software described in this documentation, oras otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoingpermitted uses, and no other use is permitted.
The information in this documentation is subject to change without notice. If you find any problems in thisdocumentation, please report them to us in writing. Neither FICO nor its affiliates warrant that thisdocumentation is error-free, nor are there any other warranties with respect to the documentation exceptas may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,express or implied, including, but not limited to, non-infringement, merchantability and fitness for aparticular purpose. Portions of this documentation and the software described in it may contain copyrightof various authors and may be licensed under certain third-party licenses identified in the software,documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, orconsequential damages, including lost profits, arising out of the use of this documentation or the softwaredescribed in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO andits affiliates have no obligation to provide maintenance, support, updates, enhancements, or modificationsexcept as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registeredtrademark of Fair Isaac Corporation in other countries. Other product and company names herein may betrademarks of their respective owners.
Xpress Nonlinear
Deliverable Version: A
Last Revised: 20 March 2020
Version version 36.01

Contents

I Overview 1

1 Introduction 21.1 Mathematical programs . 21.1.1 Linear programs . 31.1.2 Convex quadratic programs . 31.1.3 Convex quadratically constrained quadratic programs 31.1.4 Second order conic problems . 31.1.5 General nonlinear optimization problems . 41.1.6 Mixed integer programs . 41.2 Technology Overview . 41.2.1 The Simplex Method . 41.2.2 The Logarithmic Barrier Method . 41.2.3 Outer approximation schemes . 51.2.4 Successive Linear Programming . 51.2.5 Second Order Methods . 51.2.6 Mixed Integer Solvers . 51.3 API naming convention . 5
2 The Problem 72.1 Problem Definition . 72.2 Problem Formulation . 7
3 Modeling in Mosel 93.1 Basic formulation . 93.2 Setting up and solving the problem . 103.3 Looking at the results . 113.4 Parallel evaluation of Mosel user functions . 11
4 Modeling in Extended MPS Format 134.1 Basic formulation . 134.2 Using the nonlinear optimizer console-based interface . 174.3 Coefficients and terms . 18
5 The Xpress NonLinear API Functions 195.1 Header files . 195.2 Initialization . 195.3 Callbacks . 195.4 Creating the linear part of the problem . 205.5 Adding the non-linear part of the problem . 235.6 Adding the non-linear part of the problem using character formulae 255.7 Checking the data . 265.8 Solving and printing the solution . 265.9 Closing the program . 275.10 Adding initial values . 27

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

6 The Nonlinear Console Program 296.1 The Console Nonlinear . 296.1.1 The nonlinear console extensions . 296.1.2 Common features of the XpressOptimizer and theXpressNonlinear Optimizer con-sole . 30

II Advanced 32

7 Nonlinear Problems 337.1 Coefficients and terms . 337.2 SLP variables . 347.3 Local and global optimality . 347.4 Convexity . 347.5 Converged and practical solutions . 357.6 The duals of general, nonlinear program . 35
8 Extended MPS file format 378.1 Formulae . 378.2 COLUMNS . 388.3 BOUNDS . 398.4 SLPDATA . 398.4.1 CV (Character variable) . 398.4.2 DR (Determining row) . 408.4.3 EC (Enforced constraint) . 408.4.4 FR (Free variable) . 408.4.5 FX (Fixed variable) . 418.4.6 IV (Initial value) . 418.4.7 LO (Lower bounded variable) . 418.4.8 Rx, Tx (Relative and absolute convergence tolerances) 418.4.9 SB (Initial step bound) . 428.4.10 UF (User function) . 428.4.11 UP (Free variable) . 438.4.12 WT (Explicit row weight) . 438.4.13 DL (variable specific Determining row cascade iteration Limit) 43
9 Xpress-SLP Solution Process 449.1 Analyzing the solution process . 459.2 The initial point . 459.3 Derivatives . 459.3.1 Finite Differences . 469.3.2 Symbolic Differentiation . 469.3.3 Automatic Differentiation . 469.4 Points of inflection . 469.5 Trust regions . 47
10 Handling Infeasibilities 4810.1 Infeasibility Analysis in the Xpress Optimizer . 4810.2 Managing Infeasibility with Xpress Knitro . 4810.3 Managing Infeasibility with Xpress-SLP . 4910.4 Penalty Infeasibility Breakers in XSLP . 49
11 Cascading 5111.1 Determining rows and determining columns . 52
12 Convergence criteria 53

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

12.1 Convergence criteria . 5312.2 Convergence overview . 5312.2.1 Strict Convergence . 5312.2.2 Extended Convergence . 5312.2.3 Stopping Criterion . 5412.2.4 Step Bounding . 5512.3 Convergence: technical details . 5512.3.1 Closure tolerance (CTOL) . 5812.3.2 Delta tolerance (ATOL) . 5812.3.3 Matrix tolerance (MTOL) . 5812.3.4 Impact tolerance (ITOL) . 5912.3.5 Slack impact tolerance (STOL) . 6012.3.6 Fixed variables due to determining columns smaller than threshold (FX) 6012.3.7 User-defined convergence . 6012.3.8 Static objective function (1) tolerance (VTOL) . 6012.3.9 Static objective function (2) tolerance (OTOL) . 6112.3.10Static objective function (3) tolerance (XTOL) . 6112.3.11 Extended convergence continuation tolerance (WTOL) 62
13 Xpress-SLP Structures 6413.1 SLP Matrix Structures . 6413.1.1 Augmentation of a nonlinear coefficient . 6413.1.2 Augmentation of a nonlinear term . 6613.1.3 Augmentation of a user-defined SLP variable . 6713.1.4 SLP penalty error vectors . 6813.2 Xpress-SLP Matrix Name Generation . 6813.3 Xpress-SLP Statistics . 6913.4 SLP Variable History . 71
14 Xpress NonLinear Formulae 7314.1 Parsed and unparsed formulae . 7314.2 Example of an arithmetic formula . 7414.3 Example of a formula involving a simple function . 75
15 User Functions 7715.1 Callbacks and user functions . 7715.2 User function interface . 7815.3 User Function declaration in native languages . 7815.3.1 User function declaration in C . 7815.4 Simple functions and general functions . 7915.4.1 Simple user functions . 7915.4.2 General user functions returning an array of values through a reference 7915.4.3 General user functions returning an array of values through an argument 8015.5 Programming Techniques for User Functions . 8115.5.1 Deltas . 8215.5.2 Return values and ReturnArray . 8215.5.3 Returning Derivatives . 8215.5.4 Function Instances . 8215.6 Function Derivatives . 8315.6.1 Analytic Derivatives of Instantiated User Functions not Returning their own Deriva-tives . 85
16 Management of zero placeholder entries 8616.1 The augmented matrix structure . 8616.2 Derivatives and zero derivatives . 8616.3 Placeholder management . 87

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

17 Special Types of Problem 8917.1 Nonlinear objectives . 8917.2 Convex Quadratic Programming . 8917.3 Mixed Integer Nonlinear Programming . 9017.3.1 Mixed Integer SLP . 9017.3.2 Heuristics for Mixed Integer SLP . 9017.3.3 Fixing or relaxing the values of the SLP variables 9117.3.4 Iterating at each node . 9217.3.5 Termination criteria at each node . 9217.3.6 Callbacks . 9217.4 Integer and semi-continuous delta variables . 93
18 Xpress NonLinear multistart 95

III Reference 96

19 Problem Attributes 9719.1 Double problem attributes . 101XSLP_CURRENTDELTACOST . 101XSLP_CURRENTERRORCOST . 101XSLP_ERRORCOSTS . 101XSLP_OBJVAL . 101XSLP_PENALTYDELTATOTAL . 101XSLP_PENALTYDELTAVALUE . 102XSLP_PENALTYERRORTOTAL . 102XSLP_PENALTYERRORVALUE . 102XSLP_PRIMALINTEGRAL . 102XSLP_VALIDATIONINDEX_A . 102XSLP_VALIDATIONINDEX_K . 103XSLP_VALIDATIONINDEX_R . 103XSLP_VSOLINDEX . 10319.2 Integer problem attributes . 104XSLP_COEFFICIENTS . 104XSLP_CVS . 104XSLP_DELTAS . 104XSLP_ECFCOUNT . 104XSLP_EXPLOREDELTAS . 104XSLP_EQUALSCOLUMN . 105XSLP_IFS . 105XSLP_IMPLICITVARIABLES . 105XSLP_INTEGERDELTAS . 105XSLP_INTERNALFUNCCALLS . 105XSLP_ITER . 106XSLP_JOBID . 106XSLP_KEEPBESTITER . 106XSLP_MINORVERSION . 106XSLP_MINUSPENALTYERRORS . 106XSLP_MIPITER . 107XSLP_MIPNODES . 107XSLP_MIPSOLS . 107XSLP_MODELCOLS . 107XSLP_MODELROWS . 107XSLP_MSSTATUS . 108XSLP_NLPSTATUS . 108

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

XSLP_NONCONSTANTCOEFF . 108XSLP_NONLINEARCONSTRAINTS . 109XSLP_ORIGINALCOLS . 109XSLP_ORIGINALROWS . 109XSLP_PENALTYDELTACOLUMN . 109XSLP_PENALTYDELTAROW . 109XSLP_PENALTYDELTAS . 110XSLP_PENALTYERRORCOLUMN . 110XSLP_PENALTYERRORROW . 110XSLP_PENALTYERRORS . 110XSLP_PLUSPENALTYERRORS . 110XSLP_PRESOLVEDELETEDDELTA . 111XSLP_PRESOLVEELIMINATIONS . 111XSLP_PRESOLVEFIXEDCOEF . 111XSLP_PRESOLVEFIXEDDR . 111XSLP_PRESOLVEFIXEDNZCOL . 112XSLP_PRESOLVEFIXEDSLPVAR . 112XSLP_PRESOLVEFIXEDZCOL . 112XSLP_PRESOLVEPASSES . 112XSLP_PRESOLVESTATE . 113XSLP_PRESOLVETIGHTENED . 113XSLP_SBXCONVERGED . 113XSLP_SEMICONTDELTAS . 113XSLP_SOLVERSELECTED . 114XSLP_SOLSTATUS . 114XSLP_STATUS . 114XSLP_STOPSTATUS . 116XSLP_TOLSETS . 116XSLP_TOTALEVALUATIONERRORS . 116XSLP_UCCONSTRAINEDCOUNT . 116XSLP_UFINSTANCES . 117XSLP_UFS . 117XSLP_UNCONVERGED . 117XSLP_USEDERIVATIVES . 117XSLP_USERFUNCCALLS . 118XSLP_VARIABLES . 118XSLP_VERSION . 118XSLP_ZEROESRESET . 118XSLP_ZEROESRETAINED . 118XSLP_ZEROESTOTAL . 11919.3 Reference (pointer) problem attributes . 120XSLP_MIPPROBLEM . 120XSLP_SOLUTIONPOOL . 120XSLP_XPRSPROBLEM . 120XSLP_XSLPPROBLEM . 12019.4 String problem attributes . 121XSLP_VERSIONDATE . 121
20 Control Parameters 12220.1 Double control parameters . 130XSLP_ATOL_A . 130XSLP_ATOL_R . 130XSLP_BARSTALLINGTOL . 130XSLP_CASCADETOL_PA . 131XSLP_CASCADETOL_PR . 131

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

XSLP_CDTOL_A . 131XSLP_CDTOL_R . 132XSLP_CLAMPSHRINK . 132XSLP_CLAMPVALIDATIONTOL_A . 133XSLP_CLAMPVALIDATIONTOL_R . 133XSLP_CTOL . 133XSLP_DAMP . 134XSLP_DAMPEXPAND . 134XSLP_DAMPMAX . 134XSLP_DAMPMIN . 135XSLP_DAMPSHRINK . 135XSLP_DEFAULTIV . 135XSLP_DEFAULTSTEPBOUND . 136XSLP_DELTA_A . 136XSLP_DELTA_R . 136XSLP_DELTA_X . 137XSLP_DELTA_Z . 137XSLP_DELTA_ZERO . 137XSLP_DELTACOST . 138XSLP_DELTACOSTFACTOR . 138XSLP_DELTAMAXCOST . 138XSLP_DJTOL . 139XSLP_DRCOLTOL . 139XSLP_ECFTOL_A . 139XSLP_ECFTOL_R . 140XSLP_ENFORCECOSTSHRINK . 140XSLP_ENFORCEMAXCOST . 141XSLP_ERRORCOST . 141XSLP_ERRORCOSTFACTOR . 141XSLP_ERRORMAXCOST . 142XSLP_ERRORTOL_A . 142XSLP_ERRORTOL_P . 142XSLP_ESCALATION . 143XSLP_ETOL_A . 143XSLP_ETOL_R . 143XSLP_EVTOL_A . 144XSLP_EVTOL_R . 144XSLP_EXPAND . 145XSLP_FEASTOLTARGET . 145XSLP_GRANULARITY . 145XSLP_INFINITY . 146XSLP_ITOL_A . 146XSLP_ITOL_R . 147XSLP_MATRIXTOL . 147XSLP_MAXWEIGHT . 148XSLP_MEMORYFACTOR . 148XSLP_MERITLAMBDA . 148XSLP_MINSBFACTOR . 149XSLP_MINWEIGHT . 149XSLP_MIPCUTOFF_A . 149XSLP_MIPCUTOFF_R . 150XSLP_MIPERRORTOL_A . 150XSLP_MIPERRORTOL_R . 150XSLP_MIPOTOL_A . 151XSLP_MIPOTOL_R . 151

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

XSLP_MSMAXBOUNDRANGE . 152XSLP_MTOL_A . 152XSLP_MTOL_R . 153XSLP_MVTOL . 153XSLP_OBJSENSE . 154XSLP_OBJTOPENALTYCOST . 154XSLP_OPTIMALITYTOLTARGET . 155XSLP_OTOL_A . 155XSLP_OTOL_R . 155XSLP_PRESOLVEZERO . 156XSLP_PRIMALINTEGRALREF . 156XSLP_SHRINK . 157XSLP_SHRINKBIAS . 157XSLP_STOL_A . 157XSLP_STOL_R . 158XSLP_VALIDATIONTARGET_R . 158XSLP_VALIDATIONTARGET_K . 158XSLP_VALIDATIONTOL_A . 159XSLP_VALIDATIONTOL_R . 159XSLP_VTOL_A . 160XSLP_VTOL_R . 160XSLP_WTOL_A . 161XSLP_WTOL_R . 162XSLP_XTOL_A . 163XSLP_XTOL_R . 163XSLP_ZERO . 16420.2 Integer control parameters . 166XSLP_ALGORITHM . 166XSLP_ANALYZE . 168XSLP_AUGMENTATION . 169XSLP_AUTOSAVE . 170XSLP_BARCROSSOVERSTART . 171XSLP_BARLIMIT . 171XSLP_BARSTALLINGLIMIT . 172XSLP_BARSTALLINGOBJLIMIT . 172XSLP_BARSTARTOPS . 172XSLP_CALCTHREADS . 173XSLP_CASCADE . 173XSLP_CASCADENLIMIT . 174XSLP_CONTROL . 174XSLP_CONVERGENCEOPS . 175XSLP_DAMPSTART . 176XSLP_DCLIMIT . 176XSLP_DCLOG . 176XSLP_DELAYUPDATEROWS . 176XSLP_DELTAOFFSET . 177XSLP_DELTAZLIMIT . 177XSLP_DERIVATIVES . 178XSLP_DETERMINISTIC . 178XSLP_ECFCHECK . 178XSLP_ECHOXPRSMESSAGES . 179XSLP_ERROROFFSET . 179XSLP_EVALUATE . 180XSLP_FILTER . 180XSLP_FINDIV . 181

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

XSLP_FUNCEVAL . 181XSLP_GRIDHEURSELECT . 182XSLP_HEURSTRATEGY . 182XSLP_HESSIAN . 183XSLP_INFEASLIMIT . 183XSLP_ITERLIMIT . 183XSLP_JACOBIAN . 184XSLP_LINQUADBR . 184XSLP_LOG . 184XSLP_LSITERLIMIT . 185XSLP_LSPATTERNLIMIT . 185XSLP_LSSTART . 185XSLP_LSZEROLIMIT . 186XSLP_MAXTIME . 186XSLP_MIPALGORITHM . 186XSLP_MIPCUTOFFCOUNT . 188XSLP_MIPCUTOFFLIMIT . 188XSLP_MIPDEFAULTALGORITHM . 189XSLP_MIPFIXSTEPBOUNDS . 189XSLP_MIPITERLIMIT . 190XSLP_MIPLOG . 190XSLP_MIPOCOUNT . 190XSLP_MIPRELAXSTEPBOUNDS . 191XSLP_MULTISTART . 191XSLP_MULTISTART_MAXSOLVES . 191XSLP_MULTISTART_MAXTIME . 192XSLP_MULTISTART_POOLSIZE . 192XSLP_MULTISTART_SEED . 193XSLP_MULTISTART_THREADS . 193XSLP_OCOUNT . 193XSLP_PENALTYINFOSTART . 194XSLP_POSTSOLVE . 194XSLP_PRESOLVE . 194XSLP_PRESOLVELEVEL . 195XSLP_PRESOLVEOPS . 195XSLP_PRESOLVEPASSLIMIT . 196XSLP_PROBING . 196XSLP_REFORMULATE . 196XSLP_SAMECOUNT . 197XSLP_SAMEDAMP . 197XSLP_SBROWOFFSET . 198XSLP_SBSTART . 198XSLP_SCALE . 198XSLP_SCALECOUNT . 199XSLP_SOLVER . 199XSLP_SLPLOG . 200XSLP_STOPOUTOFRANGE . 200XSLP_THREADS . 200XSLP_TIMEPRINT . 200XSLP_THREADSAFEUSERFUNC . 201XSLP_TRACEMASKOPS . 201XSLP_UNFINISHEDLIMIT . 202XSLP_UPDATEOFFSET . 202XSLP_VCOUNT . 203XSLP_VLIMIT . 203

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

XSLP_WCOUNT . 204XSLP_XCOUNT . 205XSLP_XLIMIT . 205XSLP_ZEROCRITERION . 206XSLP_ZEROCRITERIONCOUNT . 207XSLP_ZEROCRITERIONSTART . 20720.3 String control parameters . 208XSLP_CVNAME . 208XSLP_DELTAFORMAT . 208XSLP_ITERFALLBACKOPS . 208XSLP_IVNAME . 209XSLP_MINUSDELTAFORMAT . 209XSLP_MINUSERRORFORMAT . 210XSLP_PENALTYCOLFORMAT . 210XSLP_PENALTYROWFORMAT . 210XSLP_PLUSDELTAFORMAT . 211XSLP_PLUSERRORFORMAT . 211XSLP_SBLOROWFORMAT . 211XSLP_SBNAME . 212XSLP_SBUPROWFORMAT . 212XSLP_TOLNAME . 212XSLP_TRACEMASK . 213XSLP_UPDATEFORMAT . 21320.4 Knitro controls . 213
21 Library functions and the programming interface 21421.1 Counting . 21421.2 The Xpress NonLinear problem pointer . 21421.3 The XSLPload... functions . 21521.4 Library functions . 215XSLPaddcoefs . 221XSLPadddfs . 223XSLPaddtolsets . 224XSLPadduserfunction . 225XSLPaddvars . 226XSLPcalcslacks . 228XSLPcascade . 229XSLPcascadeorder . 230XSLPchgcascadenlimit . 231XSLPchgccoef . 232XSLPchgcoef . 233XSLPchgdeltatype . 234XSLPchgdf . 235XSLPchgrowstatus . 236XSLPchgrowwt . 237XSLPchgtolset . 238XSLPchgvar . 240XSLPconstruct . 242XSLPcopycallbacks . 243XSLPcopycontrols . 244XSLPcopyprob . 245XSLPcreateprob . 246XSLPdelcoefs . 247XSLPdeltolsets . 248XSLPdeluserfunction . 249

Fair Isaac Corporation Confidential and Proprietary Information ix

Contents

XSLPdelvars . 250XSLPdestroyprob . 251XSLPevaluatecoef . 252XSLPevaluateformula . 253XSLPfixpenalties . 254XSLPfree . 255XSLPgetbanner . 256XSLPgetccoef . 257XSLPgetcoefformula . 258XSLPgetcoefs . 259XSLPgetcolinfo . 260XSLPgetdblattrib . 261XSLPgetdblcontrol . 262XSLPgetdf . 263XSLPgetindex . 264XSLPgetintattrib . 265XSLPgetintcontrol . 266XSLPgetlasterror . 267XSLPgetptrattrib . 268XSLPgetrowinfo . 269XSLPgetrowstatus . 270XSLPgetrowwt . 271XSLPgetslpsol . 272XSLPgetstrattrib . 273XSLPgetstrcontrol . 274XSLPgettolset . 275XSLPgetvar . 276XSLPglobal . 278XSLPimportlibfunc . 279XSLPinit . 280XSLPinterrupt . 281XSLPitemname . 282XSLPloadcoefs . 283XSLPloaddfs . 285XSLPloadtolsets . 286XSLPloadvars . 287XSLPmaxim . 289XSLPminim . 290XSLPmsaddcustompreset . 291XSLPmsaddjob . 292XSLPmsaddpreset . 293XSLPmsclear . 294XSLPnlpoptimize . 295XSLPpostsolve . 296XSLPpresolve . 297XSLPprintmemory . 298XSLPprintevalinfo . 299XSLPreadprob . 300XSLPremaxim . 301XSLPreminim . 302XSLPrestore . 303XSLPreinitialize . 304XSLPsave . 305XSLPsaveas . 306XSLPscaling . 307

Fair Isaac Corporation Confidential and Proprietary Information x

Contents

XSLPsetcbcascadeend . 308XSLPsetcbcascadestart . 309XSLPsetcbcascadevar . 310XSLPsetcbcascadevarfail . 311XSLPsetcbcoefevalerror . 312XSLPsetcbconstruct . 313XSLPsetcbdestroy . 315XSLPsetcbdrcol . 316XSLPsetcbintsol . 317XSLPsetcbiterend . 318XSLPsetcbiterstart . 319XSLPsetcbitervar . 320XSLPsetcbmessage . 321XSLPsetcbmsjobend . 323XSLPsetcbmsjobstart . 324XSLPsetcbmswinner . 325XSLPsetcboptnode . 326XSLPsetcbprenode . 327XSLPsetcbpreupdatelinearization . 328XSLPsetcbslpend . 329XSLPsetcbslpnode . 330XSLPsetcbslpstart . 331XSLPsetcurrentiv . 332XSLPsetdblcontrol . 333XSLPsetdefaultcontrol . 334XSLPsetdefaults . 335XSLPsetfunctionerror . 336XSLPsetintcontrol . 337XSLPsetlogfile . 338XSLPsetparam . 339XSLPsetstrcontrol . 340XSLPunconstruct . 341XSLPupdatelinearization . 342XSLPvalidate . 343XSLPvalidatekkt . 344XSLPvalidateprob . 345XSLPvalidaterow . 346XSLPvalidatevector . 347XSLPwriteprob . 348XSLPwriteslxsol . 349
22 Internal Functions 35022.1 Trigonometric functions . 351ARCCOS . 352ARCSIN . 353ARCTAN . 354COS . 355SIN . 356TAN . 35722.2 Other mathematical functions . 358ABS . 359ERF . 360ERFC . 361EXP . 362LN . 363

Fair Isaac Corporation Confidential and Proprietary Information xi

Contents

LOG, LOG10 . 364MAX . 365MIN . 366PWL . 367SIGN . 368SQRT . 369
23 Error Messages 370

24 Xpress Knitro Control Parameters 37624.1 Double control parameters . 379XKTR_PARAM_BAR_FEASMODETOL . 379XKTR_PARAM_BAR_INITMU . 379XKTR_PARAM_DELTA . 379XKTR_PARAM_FEASTOL . 379XKTR_PARAM_FEASTOLABS . 380XKTR_PARAM_INFEASTOL . 380XKTR_PARAM_MIP_INTEGERTOL . 380XKTR_PARAM_MIP_INTGAPABS . 380XKTR_PARAM_MIP_INTGAPREL . 380XKTR_PARAM_OBJRANGE . 381XKTR_PARAM_OPTTOL . 381XKTR_PARAM_OPTTOLABS . 381XKTR_PARAM_PRESOLVE_TOL . 381XKTR_PARAM_XTOL . 38224.2 Integer control parameters . 383XKTR_PARAM_ALGORITHM . 383XKTR_PARAM_BAR_DIRECTINTERVAL . 383XKTR_PARAM_BAR_FEASIBLE . 383XKTR_PARAM_BAR_INITPT . 384XKTR_PARAM_BAR_MAXBACKTRACK . 384XKTR_PARAM_BAR_MAXCROSSIT . 384XKTR_PARAM_BAR_MAXREFACTOR . 385XKTR_PARAM_BAR_MURULE . 385XKTR_PARAM_BAR_PENCONS . 386XKTR_PARAM_BAR_PENRULE . 386XKTR_PARAM_BAR_SWITCHRULE . 386XKTR_PARAM_GRADOPT . 387XKTR_PARAM_HESSOPT . 387XKTR_PARAM_HONORBNDS . 387XKTR_PARAM_LMSIZE . 388XKTR_PARAM_MAXCGIT . 388XKTR_PARAM_MAXIT . 388XKTR_PARAM_MIP_BRANCHRULE . 389XKTR_PARAM_MIP_GUB_BRANCH . 389XKTR_PARAM_MIP_HEURISTIC . 389XKTR_PARAM_MIP_HEURISTIC_MAXIT . 389XKTR_PARAM_MIP_IMPLICATNS . 390XKTR_PARAM_MIP_KNAPSACK . 390XKTR_PARAM_MIP_LPALG . 390XKTR_PARAM_MIP_MAXNODES . 391XKTR_PARAM_MIP_MAXSOLVES . 391XKTR_PARAM_MIP_METHOD . 391XKTR_PARAM_MIP_OUTINTERVAL . 391XKTR_PARAM_MIP_OUTLEVEL . 392

Fair Isaac Corporation Confidential and Proprietary Information xii

Contents

XKTR_PARAM_MIP_PSEUDOINIT . 392XKTR_PARAM_MIP_ROOTALG . 392XKTR_PARAM_MIP_ROUNDING . 392XKTR_PARAM_MIP_SELECTRULE . 393XKTR_PARAM_MIP_STRONG_CANDLIM . 393XKTR_PARAM_MIP_STRONG_LEVEL . 393XKTR_PARAM_MIP_STRONG_MAXIT . 393XKTR_PARAM_MIP_TERMINATE . 393XKTR_PARAM_OUTLEV . 394XKTR_PARAM_PRESOLVE . 394XKTR_PARAM_SCALE . 394XKTR_PARAM_SOC . 395

Appendix 396

A The Xpress-SLP Log 397A.0.1 Logging controls . 397A.0.2 The structure of the log . 397
B Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of

XSLP 400B.0.1 Convex Quadratic Programs (QPs) . 400B.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs) 400B.0.3 Convexity . 401B.0.4 Characterizing Convexity in Quadratic Constraints 401
C Files used by Xpress NonLinear 403

D Contacting FICO 404Product support . 404Product education . 404Product documentation . 404Sales and maintenance . 405Related services . 405FICO Community . 405About FICO . 405

Index 406

Fair Isaac Corporation Confidential and Proprietary Information xiii

I. Overview

CHAPTER 1

Introduction

This part of the manual is intended to provide a general description of the facilities available formodeling with Xpress NonLinear. It is not an exhaustive list of possibilities, and it does not go into verygreat depth on some of the more advanced topics. All the functions and formats are given in moredetail in the second part of this manual and the Xpress-Mosel Reference Manual (Module mmxnlpsection).
Xpress Nonlinear consists of the Xpress Optimizer to solve linear, mixed integer linear, and convexquadratic problems, Xpress-SLP which uses Successive Linear Programming to solve non-linearmodels, and as an plugin Knitro.
The functionalities of Xpres NonLinear extend those of the Xpress Optimizer. Almost any problem thatfits into the problem types supported by the Xpress Optimizer are automatically detected andconverted into the appropriate format to take advantage of the power of the optimizer’s purpose writtenalgorithms.
Xpress-SLP is in essence, is a technique which involves making a linear approximation of the originalproblem at a chosen point, solving the linear approximation and seeing how "far away" the solutionpoint is from the original chosen point. If it is "sufficiently close" then the solution is said to haveconverged and the process stops. Otherwise, a new point is chosen, based on the solution, and a newlinear approximation is made. This process repeats (iterates) until the solution converges. Althoughthis process will find a solution which is the optimum for the linear approximation, there is no guaranteethat the solution will be the optimum for the original non-linear problem (that is to say: it may not be thebest possible solution to the original problem). Such a solution is called a "local optimum", because it isa better solution than any others in the immediate neighbourhood, but may not be better than one along way away.
The problem of local optima can be thought of as being like trying to find the deepest valley in a rangeof mountains. You can find a valley relatively easily (just keep going downhill). However, when youreach it, you have no idea whether there is a deeper valley somewhere else, because the mountainsblock your view. You have found a local optimum, but you do not know whether it is a global optimum.Indeed, in general, there is no way to find the global optimum except an exhaustive search (check everyvalley in the mountain range).
While Xpress-SLP is most powerful for large or integer nonlinear problems, Knitro which can takeadvantage of using second order partial derivative information can be more beneficial for hihglynonlinear models.

1.1 Mathematical programs

There are many specialised forms of model in mathematical programming, and if such a form can beidentified, there are usually much more efficient solution techniques available. This section describessome of the major types of problem that Xpress NonLinear can identify automatically.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction Overview

1.1.1 Linear programs

Linear programming (LP) involves solving problems of the form
minimize cTxsubject to Ax ≤ b

and in practice this encompasses, via transformations, any problem whose objective and constraintsare linear functions.
Such problems were traditionally solved with the simplex method, although recently interior pointmethods have come to be favoured for larger instances. Linear programs can be solved quickly, andsolution techniques scale to enormous sizes of the matrix A. However, few applications are genuinelylinear. It was common in the past, however, to approximate general functions by linear counterpartswhen LPs were the only class of problem with efficient solution techniques.

1.1.2 Convex quadratic programs

Convex quadratic programming (QP) involves solving problems of the form
minimize cTx + xTQxsubject to Ax ≤ b

for which the matrix Q is symmetric and positive semi-definite (that is, xTQx ≥ 0 for all x). Thisencompasses, via transformations, all problems with a positive semi-definite Q and linear constraints.Such problems can be solved efficiently by interior point methods, and also by quadratic variants of thesimplex method.
1.1.3 Convex quadratically constrained quadratic programs

Convex quadratically constrained quadratic programming (QCQP) involves solving problems of theform minimize cTx + xTQxsubject to Ax ≤ b
qTj x + xTPjx ≤ dj, ∀j

for which the matrix Q and all matrices Pj are positive semi-definite. The most efficient solutiontechniques are based on interior point methods.
1.1.4 Second order conic problems

Second order conic problems is a special form of a convex quadratically constrained quadraticprogram, where although the quadratic matrix is not positive semi-definite, the feasible range of theproblem is convex, and there are specialized algorithm to solve them.
minimize cTx + xTQxsubject to Ax ≤ b

x is in Cj, ∀j
for which the matrix Cj is a convex second order cone and Q is positive semi-definite. The standard
form of a second order cone is xT Ix ≤ y ∗ y where y is non-negative, or (a rotated second order cone)
xT Ix ≤ y ∗ z where y and z are non-negative. Many quadratic problems can be formulated as a secondorder convex conic problem, including any convex quadratically constrained quadratic programs.Transformation happens automatically for most convertible problems.

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction Overview

1.1.5 General nonlinear optimization problems

Nonlinear programming (NLP) involves solving problems of the form
minimize f(x)subject to gj(x) ≤ b, ∀j

where f(x) is an arbitrary function, and g(x) are a set of arbitrary functions. This is the most general typeof problem, and any constrained model can be realised in this form via simple transformations.
Until recently, few practical techniques existed for tackling such problems, but it is now possible tosolve even large instances using Successive Linear Programming solvers (SLP) or second-ordermethods.

1.1.6 Mixed integer programs

Mixed-integer programming (MIP), in the most general case, involves solving problems of the form
minimize f(x)subject to gj(x) ≤ b, ∀j

xk integral
It can be combined with any of the previous problem types, giving Mixed-Integer Linear Programming(MILP), Mixed-Integer Quadratic Programming (MIQP), Mixed-Integer Quadratically ConstrainedQuadratic Programming (MIQCQP), Mixed-Integer Second Order Conic Problems (MISOCP) andMixed-Integer Nonlinear Programming (MINLP). Efficient solution techniques now exist for all of theseclasses of problem.

1.2 Technology Overview

In real-world applications, it is vital to match the right optimization technology to your problem. TheFICO Xpress libraries provide dedicated, high performance implementations of optimizationtechnologies for the many model classes commonly appearing in practical applications. This includessolvers for linear programming (LP), mixed integer programming (MIP), convex quadratic programming(QP), and convex quadratically constrained programming (QCQP), and general nonlinear programming(NLP).
1.2.1 The Simplex Method

The simplex method is one of the most well-developed and highly studied mathematical programmingtools. The solvers in the FICO Xpress Optimizer are the product of over 30 years of research, and includehigh quality, competitive implementations of the primal and dual simplex methods for both linear andquadratic programs. A key advantage of the simplex method is that it can very quickly reoptimize aproblem after it has been modified, which is an important step in solving mixed integer programs.
1.2.2 The Logarithmic Barrier Method

The interior point method of the FICO Xpress Optimizer is a state of the art implementation, withleading performance across a variety of large models. It is capable of solving not only the largest andmost difficult linear and convex quadratic programs, but also convex quadratically constrainedquadratic and second order conic programs. It includes optimized versions of both infeasiblelogarithmic barrier methods, and also homogeneous self-dual methods.

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction Overview

1.2.3 Outer approximation schemes

A drawback of the barrier methods is that they are not efficiently warms-tarted. This makes thesemethods unattractive for solving several related problems, like the ones arising from a branch andbound search. While for linear and convex quadratic problems the simplex methods can be used, thereis no immediate such alternative for convex quadratic constrained and second order methods. Tobridge the gap, outer approximation cutting schemes are used, which themselves may be warm startedby a barrier solution.
1.2.4 Successive Linear Programming

For general nonlinear programs which are very large, highly structured, or contain a significant linearpart, the FICO Xpress Sequential Linear Programming solver (XSLP) offers exceptional performance.Successive linear programming is a first order, iterative approach for solving nonlinear models. At eachiteration, a linear approximation to the original problem is solved at the current point, and the distanceof the result from the the selected point is examined. When the two points are sufficiently close, thesolution is said to have converged and the result is returned. This technique is thus based upon solvinga sequence of linear programming problems and benefits from the advanced algorithmic andpresolving techniques available for linear problems. This makes XSLP scalable, as well as efficient forlarge problems. In addition, the relatively simple core concepts make understanding the solutionprocess and subsequent tuning comparatively straightforward.
1.2.5 Second Order Methods

Also integrated into the Xpress suite is Knitro from Artelys, a second-order method which is particularlysuited to large-scale continuous problems containing high levels of nonlinearity. Second order methodsapproximate a problem by examining quadratic programs fitted to a local region. This can provideinformation about the curvature of the solution space to the solver, which first-order methods do nothave. Advanced implementations of such methods, like Knitro, may as a result be able to produce moreresilient solutions. This can be especially noticeable when the initial point is close to a local optimum.
1.2.6 Mixed Integer Solvers

The FICO Xpress MIP Solver is a highly scalable parallel branch and bound framework for all classes ofmixed integer programs. It is based on a branch and bound search utilizing continuous solvers,advanced cutting planes in-tree presolving and multiple heuristics, for discovering primal solutions andtightening best bounds. The search is guided by advanced methods for selecting branching variablesand estimating sub-tree sizes/efforts. Mixed integer programming forms the basis of many importantapplications, and the implementation in the FICO Xpress Suite has proven itself in operation for someof the world’s largest organizations. Both XSLP and Knitro are also able to solve mixed integernonlinear problems (MINLP).

1.3 API naming convention

Xpress Nonlinear has been developed as an extension to the XPRS library building on the SLP solvertechnology, which is reflected in the naming convention. All XPRS API functions are used the same wayas normal to build the linear part of the problem, while the API functions prefixed with XSLP are usedfor all nonlinear aspects, independently of how the problem is solved afterwards (convex quadraticproblems by a dedicated solver or Knitro instead of SLP). Some controls have both an XPRS and anXSLP counterpart, for example "XPRS_PRESOLVE" and "XSLP_PRESOLVE". In such cases,"XSLP_PRESOLVE" refers to the nonlinear presolver (even if another solver than SLP is used to solve theproblem afterwards) and "XPRS_PRESOLVE" refers to problems that are not deemed as general

Fair Isaac Corporation Confidential and Proprietary Information 5

Introduction Overview

nonlinear (LP, MIP or convex quadratic); in such cases, if SLP solves one of such problems as part of itsiterative process, the XPRS control is respected for such sub-solves.

Fair Isaac Corporation Confidential and Proprietary Information 6

CHAPTER 2

The Problem

2.1 Problem Definition

The diameter of a two-dimensional shape is the greatest distance between any two of its points. For acircle, this definition corresponds to the normal meaning of "diameter". For a polygon (with straightsides), it is equivalent to the greatest distance between any two vertices.
What is the greatest area of a polygon with N sides and a diameter of 1?

2.2 Problem Formulation

This formulation is one of two described by Prieto [1]. It is easy to visualize, and has advantages in laterexamples. The pentagon is about the smallest model which can reasonably be used – it is non-trivialbut is still just about small enough to be written out in full.

Figure 2.1: Polygon Example

One vertex (the highest-numbered, VN) is chosen as the "base" point, and all the other vertices aremeasured from it, using (r, θ) coordinates – that is, the distance ("r") is measured from the vertex, andthe angle or bearing of the vertex (" θ ") is measured from the X-axis.

Fair Isaac Corporation Confidential and Proprietary Information 7

The Problem Overview

We shall use ri and θi as the coordinates of vertex Vi. Then simple geometry and trigonometry gives:
� The area of the triangle VNViVj: area(VNViVj) = 12 · ri · rj · sin(θj – θi)
� The side ViVj is given by: (ViVj)2 = r2i + r2j – 2 · ri · rj · cos(θj – θi)
� The total area of the polygon is: ∑N–1

i=2 area(VNViVi–1)
� The maximum diameter of 1 requires that all the sides of all the triangles are ≤ 1 – that is:

ri ≤ 1 for i = 1, ...,N – 1and
ViVj ≤ 1 for i = 1, ...,N – 2, j = i + 1, ...,N – 1

We have assumed in the diagram 2.1 and in the formulation that θ i ≤ θ i+1 – in other words, the verticesare in order anti-clockwise. In fact, this is not just an assumption, and we need to include theseconstraints as well.
In the diagram, we have assumed that the first angle θ 1 is ≥ 0. This is not an additional restriction if weuse the normal modeling convention that all variables are non-negative. We also assumed that the lastvertex is still "above" the X-axis – that is, θ N–1 is ≤ 180◦ (or π radians).
The requirement is therefore:
maximize

∑N–1
i=2 (ri · ri–1 · sin(θi – θi–1)) ∗ 0.5 (area of the polygon)

subject to: ri ≤ 1 for i = 1, ...,N – 1 (distances betweem VN and other vertices)
r2i + r2j – 2 · ri · rj · cos(θj – θi ≤ 1 for i = 1, ...,N – 2, j = i + 1, ...,N – 1

(distances between other pairs of vertices)
θ1 ≥ 0 (first bearing is non-negative)
θi+1 – θi ≥ 0 for i = 1, ...,N – 2 (bearings are in order)
θN–1 ≤ π (last vertex is above X-axis)

Reference:(1) F.J. Prieto. Maximum area for unit-diameter polygon of N sides, first model and second model (NetlibAMPL programs in ftp://netlib.bell-labs.com/netlib/ampl/models).

Fair Isaac Corporation Confidential and Proprietary Information 8

CHAPTER 3

Modeling in Mosel

3.1 Basic formulation

Nonlinear capabilities in Mosel are provided by the mmxnlpmodule. Please refer to the moduledocumentation for more details. This chapter provides a short introduction only.
The model uses the Mosel module mmxnlp which contains the extensions required for modelinggeneral non-linear expressions. This automatically loads the mmxprs module, so there is no need toinclude this explicitly as well.

model "Polygon"
uses "mmxnlp"

We can design the model to work for any number of sides, so one way to do this is to set the number ofsides of the polygon as a parameter.
parameters
N=5

end-parameters

The meanings of most of these declarations will become apparent as the modeling progresses.
declarations
area: nlctr
rho: array(1..N) of mpvar
theta: array(1..N) of mpvar
objdef: mpvar
D: array(1..N,1..N) of nlctr

end-declarations

� The distances are described as "rho", to distinguish them from the default names for the rows inthe generated matrix (which are R1, R2, etc).
� The types nlctr (nonlinear constraint) are defined by the mmxnlpmodule.

area := sum(i in 2..N-1) (rho(i) ⁎ rho(i-1) ⁎ sin(theta(i)-theta(i-1)))⁎0.5

This uses the normal Mosel sum function to calculate the area. Notice that the formula is written inessentially the same way as normal, including the use of the sin function. Because the argument tothe function is not a constant, Mosel will not try to evaluate the function yet; instead, it will be evaluatedas part of the optimization process.
area is a Mosel object of type nlctr.

objdef = area
objdef is_free

Fair Isaac Corporation Confidential and Proprietary Information 9

Modeling in Mosel Overview

What we really want to do is to maximize area. However, although Xpress NonLinear is happy inprinciple with a non-linear objective function, the Xpress Optimizer is not, unless it is handled in aspecial way. Xpress NonLinear therefore imposes the requirement that the objective function itselfmust be linear. This is not really a restriction, because – as in this case – it is easy to reformulate anon-linear objective function as an apparently linear one. Simply replace the function by a new mpvarand then maximize the value of the mpvar. In general, because the objective could have a positive ornegative value, we make the variable free, so that it can take any value. In this example, we say:
objdef = area defining the variable objdef to be equal to the non-linear expres-sion area
objdef is_free defining objdef to be a free variable
maximize(objdef) maximizing the linear objective

This is firstly setting the standard bounds on the variables rho and theta. To reduce problems withsides of zero length, we impose a minimum of 0.1 on rho(i) instead of the default minimum of zero.
forall (i in 1..N-1) do
rho(i) >= 0.1
rho(i) <= 1
setinitval(rho(i), 4⁎i⁎(N+1-i)/((N+1)^2))
setinitval(theta(i), M_PI⁎i/N)

end-do

We also give Xpress NonLinear initial values by using the setinitval procedure. The first argumentis the name of the variable, and the second is the initial value to be used. The initial values for thetaare divided equally between 0 and π . The initial values for rho are designed to go from 0 (when i = 0 or
N) to 1 (when i is about half way) and back.

forall (i in 1..N-2, j in i+1..N-1) do
D(i,j) := rho(i)^2 + rho(j)^2 - rho(i)⁎rho(j)⁎2⁎cos(theta(j)-theta(i)) <lt/>= 1

end-do

This is creating the general constraints D(i,j) which constrain the other sides of the triangles to be ≤1.
These constraints could be made anonymous – that is, the assignment to an object of type nlctrcould be omitted – but then it would not be possible to report the values.

forall (i in 2..N-1) do
theta(i) >= theta(i-1) + 0.01

end-do

These anonymous constraints put the values of the theta variables in non-decreasing order. To avoidproblems with triangles which have zero angles, we make each bearing at least 0.01 greater than itspredecessor.
This is the boundary condition on the bearing of the final vertex.

theta(N-1) <= M_PI

3.2 Setting up and solving the problem

loadprob(objdef)

This procedure loads the currently-defined non-linear problem into the Xpress NonLinear optimizationframework. This includes any purely linear part. Where a general constraint has a linear expression as

Fair Isaac Corporation Confidential and Proprietary Information 10

Modeling in Mosel Overview

its left or right hand side, that linear expression will be retained as linear relationships (constantcoefficients) in the matrix. Thus, for example, in the anonymous constraint defining objdef, the
objdef coefficient will be identified as a linear term and will appear as a separate item in the problem.
maximise

Optimization is carried out with the maximise or minimise procedures. They can take a stringparameter – for example maxmimise("b") – as described in the Xpress NonLinear and XpressOptimizer reference manuals.
With the default settings of the parameters, you will see usually nothing from the optimizer. Thefollowing parameters affect what is produced:
xnlp_verbose Normally set to false. If set to true, it produces standard XpressNonLinear iteration logging.
xprs_verbose Normally set to false. If set to true, then information from theoptimizer will also be output.
xslp_log Normally set to -1. If set to 0, limited information is output fromthe SLP iterations. Settings of 1 or greater produce progressivelymore information for each SLP iteration.
xslp_slplog If xslp_log is set to 0, this determines the frequency with whichSLP progress is reported. The default is 10, which means that itprints every 10 SLP iterations.

3.3 Looking at the results

Within Mosel, the values of the variables and named constraints can be obtained using the getsol,
getslack and similar functions. A simple report lists just the area and the positions of the vertices:

writeln("Area = ", getobjval)
forall (i in 1..N-1) do
writeln("V", i, ": r=", getsol(rho(i)), " theta=", getsol(theta(i)))

end-do

This produces the following result for the case N=5:
Area = 0.657166
V1: r=0.616416 theta=0.703301
V2: r=1 theta=1.33111
V3: r=1 theta=1.96079
V4: r=0.620439 theta=2.58648

3.4 Parallel evaluation of Mosel user functions

It is possible to use parallel evaluations of simple Mosel functions that return a single real value. Thesefunctions may take an arbitrary array of nlctr expressions as input. It is the modeler’s responsibility toensure that the user functions to be called in parallel are thread-safe (i.e., they do not depend uponshared resources). Assuming the name of the user function is MyFunc, the user function beforeenabling the parallel version is expected to be declared as usefuncMosel(’MyFunc’).
In order for mmxnlp to be able to utilize parallel user function evaluations, the user function must beimplemented as a public function in a Mosel package. Any initialization necessary to enable the

Fair Isaac Corporation Confidential and Proprietary Information 11

Modeling in Mosel Overview

evaluation of the user function should be performed as part of the package initialization (which is thecode in in the main body of the package).
To enable parallel evaluations, a parallel enabled version of the user function needs to be generatedusing the mmxnlp procedure generateUFparallel, which takes two arguments: the compiledpackage .bim name implementing the user function and the name of the user function within thepackage. It is good practice to use a separate Mosel model to perform this generation, keeping itseparate from the main model. Multiple generated parallel user functions may be used within a singlemodel.
The generator will produce a single Mosel file, the Mosel package MyFunc_master. This package alsoincludes the worker model which will be responsible for the user function evaluations and will beresident in memory during the execution. The package also implements the parallel version of the userfunction, called MyFunc_parallel.
After compiling and including the master package into your model, it is this function that should beused in the actual model as userfuncMosel(’MyFunc_parallel’,XSLP_DELTAS). In mostcases, no other modifications are necessary, as the parallel function will detect the number of threadsin the system and will start that many worker threads automatically. These will be shut down when yourmodel finishes. Each worker’s initialization code is performed only once, at the time of its firstexecution.
It may be necessary to explicitly start the worker threads, either to control the number of threads used,or to pass specific parameter settings to the user function package. This can be done by the procedure
MyFunc_StartWorkers(ThreadCount : integer, UfPackageParameters : string).In case it is necessary to stop the workers, the procedure MyFunc_StopWorkersmay be used.
In case the user functions are computationally very expensive, by modifying the connection string in thegenerated module it is possible to utilize distributed/cloud-based computation of the user functions.
The worker model will only be compiled into memory during execution, but may be modified asnecessary within the master model. For debugging purposes, it may be practical to redirect the workerto a file.

Fair Isaac Corporation Confidential and Proprietary Information 12

CHAPTER 4

Modeling in Extended MPS Format

4.1 Basic formulation

Standard MPS format uses a fixed format text file to hold the problem information. Extended MPSformat has two main differences from the standard form:
� The records in the file are free-format – that is, the fields are not necessarily in fixed columns orof fixed size, and each field is delimited by one or more spaces.
� The standard MPS format allows only numbers to be used in the "coefficient" fields – extendedMPS format allows the use of formulae.
� There is an optional extra section in extended MPS format, holding additional data and structuresfor Xpress NonLinear.

We shall tend to use a fairly fixed format, to aid readability.
NAME POLYGON

The first record of any MPS file is the NAME record, which has the name which may be used to createfile names where no other name is specified, and is also written into the matrix and solution files.
ROWS

The ROWS record introduces the list of rows of the problem – this includes the objective function aswell as all the constraints.
N OBJ
E OBJEQ
G T2T1
G T3T2
G T4T3
L V1V2
L V1V3
L V2V3
L V2V4
L V3V4

The first character denotes the type of constraint. The possible values are:

Fair Isaac Corporation Confidential and Proprietary Information 13

Modeling in Extended MPS Format Overview

N not constraining (always used for the objective function, but maybe used elsewhere).
E equality: the left hand side (LHS) is equal to the right hand side(RHS).
L less than or equal to: the LHS is less than or equal to the RHS.
G greater than or equal to: the LHS is greater than or equal to theRHS.

The second field is the name used for the constraint. In MPS file format, everything has a name.Therefore, within each type of entity (rows, columns, etc) each name must be unique. In general, youshould try to ensure that names are unique across all entities, to avoid possible confusion.
You should also try to make the names meaningful, so that you can understand what they mean.
In the example:
OBJ is the objective function.
OBJEQ is the "equality" version of the objective function which, as ex-plained below, is required because we are trying to optimize anon-linear objective.
TiTj is the constraint that will ensure θi ≥ θj(j = i – 1).
ViVj is the constraint that will ensure that the distance between Vi and

Vj is ≤ 1.
COLUMNS

The COLUMNS record introduces the list of columns and coefficients in the matrix. In a normal linearproblem, all the variables will appear explicitly as columns in this section. However, in non-linearproblems, it is possible for variables to appear only in formulae and so they may not appear explicitly. Inthe example, the variables THETA1 to THETA4 appear explicitly, the variables RHO1 to RHO4 appear onlyin formulae. Constraints which involve only one variable in a linear way (that is, they limit the value of avariable to a minimum value, a maximum value or both – possibly equal – values) are usually put in aseparate "BOUNDS" section which appears later.
OBJX OBJ 1.0
OBJX OBJEQ -1.0

The first field is the name of the column. All "COLUMNS" records for a column must be together. Thesecond field is the name of the row (which was defined in the ROWS section). The third field is the value.It is not necessary to include zero values – only the non-zeros are required
If the coefficients are constant, then it is possible to put two on each record, by putting a second rowname and value after the first (as in the example for THETA2 and THETA3 below).
The constraints putting θ i in order are all linear – that is, the coefficients are all constant.

THETA1 T2T1 -1
THETA2 T2T1 1 T3T2 -1
THETA3 T3T2 1 T4T3 -1
THETA4 T4T3 1

The RHS of any constraint must be constant. Therefore, to write THETA2 ≥ THETA1, we must actuallywrite THETA2 - THETA1 ≥ 0. The constraint T2T1 has coefficient -1 in THETA1 and +1 in THETA2.
We want to maximise the area of the polygon. The formula for this is the sum of the areas of thetriangles with one vertex at V5 – i.e.:

Fair Isaac Corporation Confidential and Proprietary Information 14

Modeling in Extended MPS Format Overview

0.5 ⁎ RHO1 ⁎ RHO2 ⁎ SIN (THETA2 - THETA1) +
0.5 ⁎ RHO2 ⁎ RHO3 ⁎ SIN (THETA3 - THETA2) +
0.5 ⁎ RHO3 ⁎ RHO4 ⁎ SIN (THETA4 - THETA3)

– which is a non-linear function. Xpress NonLinear does not itself have a problem with non-linearobjective functions, but Xpress distinguishes between the original N-type row which contains theobjective function coefficients when the matrix is read in, and the objective function which is actuallyoptimized. To avoid any confusion between these two "objectives", Xpress NonLinear also requires thatthe objective function as passed to Xpress Optimizer is linear. What we want to do is:
maximize AREA, where AREA is a non-linear function.

We create a new variable – called in this example OBJX – and write:
OBJX = AREA (or, because the RHS must be constant, AREA – OBJX = 0)

and then: maximize OBJX, where OBJX is just a variable.
The constraint linking OBJX and AREA was defined as the equality constraint OBJEQ in the ROWSsection, and AREA is the formula given above. This is where the coefficient of -1 in column OBJX comesfrom.
Every item in the matrix has to be in a coefficient – that is, it is the multiplier of a variable. However, theformula for area, as written, is not a coefficient of anything. There are several ways of dealing with thissituation. We shall start by breaking the formula up into coefficient form – that is, to write it asX1*formula1 + X2*formula2 + Our formula could then be:

RHO1 ⁎ (0.5 ⁎ RHO2 ⁎ SIN (THETA2 - THETA1)) +
RHO2 ⁎ (0.5 ⁎ RHO3 ⁎ SIN (THETA3 - THETA2)) +
RHO3 ⁎ (0.5 ⁎ RHO4 ⁎ SIN (THETA4 - THETA3))

which is of the right form and can be written in the COLUMNS section as follows:
RHO1 OBJEQ = 0.5 ⁎ RHO2 ⁎ SIN (THETA2 - THETA1)
RHO2 OBJEQ = 0.5 ⁎ RHO3 ⁎ SIN (THETA3 - THETA2)
RHO3 OBJEQ = 0.5 ⁎ RHO4 ⁎ SIN (THETA4 - THETA3)

Notice that the formula begins with an equals sign. When this is used in the coefficient field, it alwaysmeans that a formula is being used rather than a constant. The formula must be written on one line – itdoes not matter how long it is – and each token (variable, constant, operator, bracket or function name)must be delimited by spaces.
When a formula is used, you can only write one coefficient on the record – the option of a secondcoefficient only applies when both coefficients are constants.
The constraints for the distances between pairs of vertices are relationships of the form:

RHO1 ⁎ RHO1 + RHO2 ⁎ RHO2 - 2 ⁎ RHO1 ⁎ RHO2 ⁎ COS (THETA2 - THETA1) <= 1

These can again be split into coefficients, for example:
RHO1 ⁎ (RHO1 - 2 ⁎ RHO2 ⁎ COS (THETA2 - THETA1)) + RHO2 ⁎ (RHO2)

This looks a little strange, because RHO2 appears as a coefficient of itself, but that is perfectly all right.This section of the matrix contains a set of records (one for each of the ViVj constraints) like this:
RHO1 V1V2 = RHO1 - 2 ⁎ RHO2 ⁎ COS (THETA2 - THETA1)
RHO2 V1V2 = RHO2

Fair Isaac Corporation Confidential and Proprietary Information 15

Modeling in Extended MPS Format Overview

Note that because the records for each column must all appear together, the coefficients for – forexample – RHO1 in this segment must be merged in with those in the previous (OBJEQ) segment.
RHS

The RHS record introduces the right hand side section.
The RHS section is formatted very much like a COLUMNS section with constant coefficients. There is acolumn name – it is actually the name of the right hand side – and then one or two entries per record.Again, only the non-zero entries are actually required.

RHS1 T2T1 .001 T3T2 .001
RHS1 T4T3 .001 V1V2 1
RHS1 V1V3 1 V1V4 1
RHS1 V2V3 1 V2V4 1
RHS1 V3V4 1

RHS1 is the name we have chosen for the right hand side. It is possible – although beyond the scope ofthis guide – to have more than one right hand side, and to select the one you want. Note that, in order toensure we do have a polygon with N sides, we have made the relationship between theta(i) andtheta(i-1) a strict inequality by adding 0.001 as the right hand side. If we did not, then two of the verticescould coincide and so the polygon would effectively lose one of its sides.
BOUNDS

The BOUNDS record introduces the BOUNDS section which typically holds the values of constraintswhich involve single variables.
Like the RHS section, it is possible to have more than one set of BOUNDS, and to select the one you wantto use. There is therefore in each record a bound name which identifies the set of bounds to which itbelongs. We shall be using only ones set of bounds, called BOUND1.
Bounds constrain a variable by providing a lower limit or an upper limit to its value. By providing a limitof -∞ for the lower bound, it is possible to create a variable which can take on any value – a "free"variable. The following bound types are provided:
LO a lower bound.
UP an upper bound.
FX a fixed bound (the upper and lower limits are equal).
FR a free variable (no lower or upper limit).
MI a "minus infinity" variable – it can take on any non-positive value.

There are other types of bound which are used with integer programming, which is beyond the scope ofthis guide.
FR BOUND1 OBJX
LO BOUND1 RHO1 0.01
UP BOUND1 RHO1 1
LO BOUND1 RHO2 0.01
UP BOUND1 RHO2 1
LO BOUND1 RHO3 0.01
UP BOUND1 RHO3 1
LO BOUND1 RHO4 0.01
UP BOUND1 RHO4 1
UP BOUND1 THETA4 3.1415926

Fair Isaac Corporation Confidential and Proprietary Information 16

Modeling in Extended MPS Format Overview

A record in a BOUNDS section can contain up to four fields. The first one is the bound type (from the listabove). The second is the name of the BOUNDS set being used (ours is always BOUND1). The third isthe name of the variable or column being bounded. Unless the bound type is FR or MI, there is a fourthfield which contains the value of the bound.
Although we know that the area is always positive (or at least non-negative), a more complicatedproblem might have an objective function which could be positive or negative – you could make a profitor a loss – and so OBJX needs to be able to take on po sitive and negative values. The fact that it ismarked as "free" here does not mean that it can actually take on any value, because it is stillconstrained by the rest of the problem.
The upper bounds on RHO1 to RHO4 provide the rest of the restrictions which ensure that the distancesbetween any two vertices are = 1, and the limit on THETA4 ensures that the whole polygon is above theX-axis. Just to make sure that we do not "lose" a side because the value of RHOi becomes zero, we seta lower bound of 0.01 on all the rhos, performing a similar function to the RHS values of .001 for TiTj.
ENDATA

The last record in the file is the ENDATA record.
Although this is sufficient to define the model, it is usually better to give Xpress NonLinear some idea ofwhere to start – that is, to provide a set of initial values for the variables. You do not have to providevalues for everything, but you should try to provide them for every variable which appears in a non-linearcoefficient, or which has a non-linear coefficient. In our current example, that means everything except
OBJX.
SLPDATA

The SLPDATA record introduces a variety of different special items for Xpress NonLinear. It comes asthe last section in the model (before the ENDATA record). We are using it at this stage for defining initialvalues. These are done with an IV record.
IV IVSET1 RHO1 0.555
IV IVSET1 RHO2 0.888
IV IVSET1 RHO3 1
IV IVSET1 RHO4 0.888

Just as with the RHS and BOUNDS sections, it is possible to have more than one set of initial values –perhaps because the same structure is used to solve a whole range of problems where the answers areso different that it does not make much sense to start always from the same place. In this example, weare using only one set – IVSET1.
The IV record contains four fields. The first one is IV, which indicates the type of SLPDATA beingprovided. The second is the name of the set of initial values. The third is the name of the variable andthe fourth is the value being provided.
In the case of IV records, it is possible – and indeed perhaps necessary – to provide initial valueswhich are zero. The default value (which is used if no value is provided) is not zero, so if you want tostart with a zero value you must say so.

4.2 Using the nonlinear optimizer console-based interface

The nonlinear console is a data-driven console-based interface for operating Xpress NonLinear, anextension of the Xpress Optimizer console. The optimizer console switches to nonlinear is a validnonlinear license is detected.

Fair Isaac Corporation Confidential and Proprietary Information 17

Modeling in Extended MPS Format Overview

The example will use screen-based input and output. You can also put the commands into a file andexecute it in batch mode, or use the embedded TCL scripting language.
Commands are not case-sensitive except where the case is important (for example, the name of theobjective function). We shall use upper case for commands and lower case for the arguments whichwould change for other models. Each parameter in a command must be separated by at least onespace from the preceding parameter or command.
optimizer

This starts the optimizer program. This checks for the existence of the Xpress Optimizer DLLs. If youare using an OEM version of the Xpress DLL, you may need a special password or license file from yourusual supplier.
READPROB polygon

This reads a non-linear problem from the file polygon.mat.
MAXIM

This form of the maximize command does a non-linear optimization with the default settings of all theparameters (it will recognise the problem as an SLP one automatically).
WRITEPRTSOL

This will use the normal Xpress function to write to solution in a text form to a file with the same nameas the input, but with a ".prt" suffix.
Q

This (the abbreviation for the QUIT command) terminates the optimizer console program.

4.3 Coefficients and terms

So far we have managed to express the formulae as coefficients. However, there are constraints – forexample SIN(A) ≤ 0.5 – which cannot be expressed directly using coefficients. The extended MPSformat has a special reserved column name – the equals sign – which is effectively a variable with afixed value of 1.0, and which can be used to hold formulae of any type, whether they can be expressedas coefficients or not. The area formula and distance constraints could all be written in a morereadable form by using the "equals column". The area formula is rather long to write in this guide, butthe distance constraints look like this:
= V1V2 RHO1 ⁎ RHO1 + RHO2 ⁎ RHO2 - 2 ⁎ RHO1 ⁎ RHO2 ⁎ COS (THETA2 - THETA1)
= V1V3 RHO1 ⁎ RHO1 + RHO3 ⁎ RHO3 - 2 ⁎ RHO1 ⁎ RHO3 ⁎ COS (THETA3 - THETA1)

Fair Isaac Corporation Confidential and Proprietary Information 18

CHAPTER 5

The Xpress NonLinear API Functions

Instead of writing an extended MPS file and reading in the model from the file, it is possible to embedXpress NonLinear directly into your application, and to create the problem, solve it and analyze thesolution entirely by using the Xpress NonLinear API functions. This example uses the C header files andAPI calls. We shall assume you have some familiarity with the Xpress Optimizer API functions inXPRS.DLL.
The structure of the model and the naming system will follow that used in the previous section, so youshould read the chapter 4 first.

5.1 Header files

The header file containing the Xpress NonLinear definitions is xslp.h. This must be included togetherwith the Xpress Optimizer header xprs.h. xprs.hmust come first.
#include "xprs.h"
#include "xslp.h"

5.2 Initialization

Xpress NonLinear and Xpress Optimizer both need to be initialized, and an empty problem created. AllXpress NonLinear functions return a code indicating whether the function completed successfully. Anon-zero value indicates an error. For ease of reading, we have for the most part omitted the tests onthe return codes, but a well-written program should always test the values.
XPRSprob mprob;
XSLPprob sprob;

if (ReturnValue=XPRSinit(NULL)) goto ErrorReturn;
if (ReturnValue=XSLPinit()) goto ErrorReturn;
if (ReturnValue=XPRScreateprob(&mprob)) goto ErrorReturn;
if (ReturnValue=XSLPcreateprob(&sprob, &mprob)) goto ErrorReturn;

5.3 Callbacks

It is good practice to set up at least a message callback, so that any messages produced by the systemappear on the screen or in a file. The XSLPsetcbmessage function sets both the Xpress NonLinearand Xpress Optimizer callbacks, so that all messages appear in the same place.
XSLPsetcbmessage(sprob, XSLPMessage, NULL);

Fair Isaac Corporation Confidential and Proprietary Information 19

The Xpress NonLinear API Functions Overview

void XPRS_CC XSLPMessage(XSLPprob my_prob, void ⁎my_object, char ⁎msg, int len,
int msg_type)

{
switch (msg_type) {
case 4: /⁎ error ⁎/
case 3: /⁎ warning ⁎/
case 2: /⁎ dialogue ⁎/
case 1: /⁎ information ⁎/
printf("%s\n", msg);
break;

default: /⁎ exiting ⁎/
fflush(stdout);
break;

}
}

This is a simple callback routine, which prints any message to standard output.

5.4 Creating the linear part of the problem

The linear part of the problem, and the definitions of the rows and columns of the problem are carriedout using the normal Xpress Optimizer functions.
#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
int nRow, nCol, nSide, nRowName, nColName;
int Sin, Cos;
char RowType[MAXROW];
double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT];
double Lower[MAXCOL], Upper[MAXCOL];
int ColStart[MAXCOL+1], RowIndex[MAXELT];
char RowNames[500], ColNames[500];

In this example, we have set the dimensions by using #define statements, rather than working out theactual sizes required from the number of sides and then allocating the space dynamically.
nSide = 5;
nRowName = 0;
nColName = 0;

By making the number of sides a variable (nSide) we can create other polygons by changing its value.
It is useful – at least while building a model – to be able to see what has been created. We willtherefore create meaningful names for the rows and columns. nRowName and nColName count alongthe character buffers RowNames and ColNames.

nRow = nSide-2 + (nSide-1)⁎(nSide-2)/2 + 1;
nCol = (nSide-1)⁎2 + 2;
for (i=0; i<nRow; i++) RHS[i] = 0;

The number of constraints is:
nSide-2 for the relationships between adjacent thetas.
(nSide-1)⁎(nSide-2)/2 for the distances between pairs of vertices.
1 for the OBJEQ non-linear "objective function".

The number of columns is:

Fair Isaac Corporation Confidential and Proprietary Information 20

The Xpress NonLinear API Functions Overview

nSide-1 for the thetas.
nSide-1 for the rhos.
1 for the OBJX objective function column.
1 for the "equals column".

We are using "C"-style numbering for rows and columns, so the counting starts from zero.
nRow = 0;
RowType[nRow++] = 'E'; /⁎ OBJEQ ⁎/
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "OBJEQ");
for (i=1; i<nSide-1; i++) {

RowType[nRow++] = 'G'; /⁎ T2T1 .. T4T3 ⁎/
RHS[i] = 0.001;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "T%dT%d", i+1, i);

}

This sets the row type indicator for OBJEQ and the theta relationships, with a right hand side of 0.001.We also create row names in the RowNames buffer. Each name is terminated by a NULL character(automatically placed there by the sprintf function). sprintf returns the length of the string written,excluding the terminating NULL character.
for (i=1; i<nSide-1; i++) {

for (j=i+1; j<nSide; j++) {
RowType[nRow] = 'L';
RHS[nRow++] = 1.0;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "V%dV%d", i, j);

}
}

This defines the L-type rows which constrain the distances between pairs of vertices. The right handside is 1.0 (the maximum value) and the names are of the form ViVj.
for (i=0; i<nCol; i++) {

OBJ[i] = 0; /⁎ objective function ⁎/
Lower[i] = 0; /⁎ lower bound normally zero ⁎/
Upper[i] = XPRS_PLUSINFINITY; /⁎ upper bound = infinity ⁎/

}

This sets up the standard column data, with objective function entries of zero, and default bounds ofzero to plus infinity. We shall change these for the individual items as required.
nCol = 0;
nElement = 0;
ColStart[nCol] = nElement;
OBJ[nCol] = 1.0;
Lower[nCol++] = XPRS_MINUSINFINITY; /⁎ free column ⁎/
Element[nElement] = -1.0;
RowIndex[nElement++] = 0;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "OBJX");

This starts the construction of the matrix elements. nElement counts through the Element and
RowIndex arrays, nCol counts through the ColStart, OBJ, Lower and Upper arrays. The firstcolumn, OBJX, has the objective function value of +1 and a value of -1 in the OBJEQ row. It is alsodefined to be "free", by making its lower bound equal to minus infinity.

iRow = 0
for (i=1; i<nSide; i++) {

nColName = nColName + 1 + sprintf(&ColNames[nColName], "THETA%d", i);
ColStart[nCol++] = nElement;

Fair Isaac Corporation Confidential and Proprietary Information 21

The Xpress NonLinear API Functions Overview

if (i < nSide-1) {
Element[nElement] = -1;
RowIndex[nElement++] = iRow+1;

}
if (i > 1) {

Element[nElement] = 1;
RowIndex[nElement++] = iRow;

}
iRow++;

}

This creates the relationships between adjacent thetas. The tests on i are to deal with the first and lastthetas which do not have relationships with both their predecessor and successor.
Upper[nCol-1] = 3.1415926;

This sets the bound on the final theta to be π . The column index is nCol-1 because nCol has alreadybeen incremented.
nColName = nColName + 1 + sprintf(&ColNames[nColName], "=");
ColStart[nCol] = nElement;
Lower[nCol] = Upper[nCol] = 1.0; /⁎ fixed at 1.0 ⁎/
nCol++;

This creates the "equals column" – its name is "=" and it is fixed at a value of 1.0.
for (i=1; i<nSide; i++) {
Lower[nCol] = 0.01; /⁎ lower bound ⁎/
Upper[nCol] = 1;
ColStart[nCol++] = nElement;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "RHO%d", i);

}
ColStart[nCol] = nElement;

The remaining columns – the rho variables – have only non-linear coefficients and so they do notappear in the linear section except as empty columns. They are bounded between 0.01 and 1.0 but haveno entries. The final entry in ColStart is one after the end of the last column.
XPRSsetintcontrol(mprob, XPRS_MPSNAMELENGTH, 16);

If you are creating your own names – as we are here – then you need to make sure that XpressOptimizer can handle both the names you have created and the names that will be created by XpressNonLinear. Typically, Xpress NonLinear will create names which are three characters longer than thenames you have used. If the longest name would be more than 8 characters, you should set the XpressOptimizer name length to be larger – it comes in multiples of 8, so we have used 16 here. If you do notmake the name length sufficiently large, then the XPRSaddnames function will return an error eitherhere or during the Xpress NonLinear "construct" phase.
XPRSloadlp(mprob, "Polygon", nCol, nRow, RowType, RHS, NULL,
OBJ, ColStart, NULL, RowIndex, Element, Lower, Upper);

This actually loads the model into Xpress Optimizer. We are not using ranges or column elementcounts, which is why the two arguments are NULL.
XPRSaddnames(mprob, 1, RowNames, 0, nRow-1);
XPRSaddnames(mprob, 2, ColNames, 0, nCol-1);

The row and column names can now be added.

Fair Isaac Corporation Confidential and Proprietary Information 22

The Xpress NonLinear API Functions Overview

5.5 Adding the non-linear part of the problem

Be warned – this section is complicated, but it is the most efficient way – from SLP’s point of view – toinput formulae. See the next section for a much easier (but less efficient) way of inputting the formulaedirectly.
#define MAXTOKEN 200
#define MAXCOEF 20
...
int Sin, Cos;
ColIndex[MAXCOL];
FormulaStart[MAXCOEF];
Type[MAXTOKEN];
double Value[MAXTOKEN], Factor[MAXCOEF];

The arrays for the non-linear part can often be re-used from the linear part. The new arrays are
ColIndex (for the column index of the coefficients), FormulaStart and Factor for the coefficients,and Type and Value to hold the internal forms of the formulae.

XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "SIN", &Sin);
XSLPgetindex(sprob, XSLP_INTERNALFUNCNAMES, "COS", &Cos);

We will be using the Xpress NonLinear internal functions SIN and COS. The XSLPgetindex functionfinds the index of an Xpress NonLinear entity (character variable, internal or user function).
nToken = 0;
nCoef = 0;
RowIndex[nCoef] = 0;
ColIndex[nCoef] = nSide;
Factor[nCoef] = 0.5;
FormulaStart[nCoef++] = nToken;

For each coefficient, the following information is required:
RowIndex the index of the row.
ColIndex the index of the column.
FormulaStart the beginning of the internal formula array for the coefficient.
Factor this is optional. If used, it holds a constant multiplier for the for-mula. This is particularly useful where the same formula appearsin several coefficients, but with different signs or scaling. The for-mula can be used once, with different factors.

for (i=1; i<nSide-1; i++) {
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i+1;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_RB;
Value[nToken++] = 0;
Type[nToken] = XSLP_COL;
Value[nToken++] = i+1;
Type[nToken] = XSLP_COL;
Value[nToken++] = i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_IFUN;
Value[nToken++] = Sin;

Fair Isaac Corporation Confidential and Proprietary Information 23

The Xpress NonLinear API Functions Overview

Type[nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
if (i>1) {

Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_PLUS;

}
}

This looks very complicated, but it is really just rather large. We are using the "reverse Polish" or "parsed"form of the formula for area. The original formula, written in the normal way, would look like this:
RHO2 ⁎ RHO1 ⁎ SIN (THETA2 - THETA1) +In reverse Polish notation, tokens are pushed onto the stack or popped from it. Typically, this meansthat a binary operation A x B is written as A B x (push A, push B, pop A and B and push the result). Thefirst term of our area formula then becomes:
RHO2 RHO1 ⁎) THETA2 THETA1 - SIN ⁎Notice that the right hand bracket appears as an explicit token. This allows the SIN function to identifywhere its argument list starts – and incidentally allows functions to have varying numbers ofarguments.
Each token of the formula is written as two items – Type and Value.
Type is an integer and is one of the defined types of token, as given in the xslp.h header file.
XSLP_CON, for example, is a constant; XSLP_COL is a column.
Value is a double precision value, and its meaning depends on the corresponding Type. For a Type of
XSLP_CON, Value is the constant value; for XSLP_COL, Value is the column number; for XSLP_OP(arithmetic operation), Value is the operand number as defined in xslp.h; for a function (type
XSLP_IFUN for internal functions, XSLP_FUN for user functions), Value is the function number.A list of tokens for a formula is always terminated by a token of type XSLP_EOF.
The loop writes each term in order, and adds terms (using the XSLP_PLUS operator) after the first passthrough the loop.

for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {
RowIndex[nCoef] = iRow++;
ColIndex[nCoef] = nSide;
Factor[nCoef] = 1.0;
FormulaStart[nCoef++] = nToken;

Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_EXPONENT;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+j;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_PLUS;
Type[nToken] = XSLP_CON;
Value[nToken++] = 2;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_COL;
Value[nToken++] = nSide+j;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_RB;
Value[nToken++] = 0;
Type[nToken] = XSLP_COL;
Value[nToken++] = j;

Fair Isaac Corporation Confidential and Proprietary Information 24

The Xpress NonLinear API Functions Overview

Type[nToken] = XSLP_COL;
Value[nToken++] = i;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_IFUN;
Value[nToken++] = Cos;
Type[nToken] = XSLP_OP
Value[nToken++] = XSLP_MULTIPLY;
Type[nToken] = XSLP_OP;
Value[nToken++] = XSLP_MINUS;
Type[nToken] = XSLP_EOF;
Value[nToken++] = 0;

}
}

This writes the formula for the distances between pairs of vertices. It follows the same principle as theprevious formula, writing the formula in parsed form as:
RHOi 2 RHOj 2 + 2 RHOi ⁎ RHOj ⁎) THETAj THETAi - COS ⁎ -

XSLPloadcoefs(sprob, nCoef, RowIndex, ColIndex, Factor,
FormulaStart, 1, Type, Value);

The XSLPloadcoefs is the most efficient way of loading non-linear coefficients into a problem. Thereis an XSLPaddcoefs function which is identical except that it does not delete any existing coefficientsfirst. There is also an XSLPchgcoef function, which can be used to change individual coefficients oneat a time. Because we are using internal parsed format, the "Parsed" flag in the argument list is set to 1.

5.6 Adding the non-linear part of the problem using character formulae

Provided that all entities – in particular columns and user functions – have explicit and unique names,the non-linear part can be input by writing the formulae as character strings. This is not as efficient asusing the XSLPloadcoefs() function but is generally easier to understand.
/⁎ Build up nonlinear coefficients ⁎/
/⁎ Allow space for largest formula - approx 50 characters per side for area ⁎/
CoefBuffer = (char ⁎) malloc(50⁎nSide);

We shall be using large formulae, so we need a character buffer large enough to hold the largestformula we are using. The estimate here is 50 characters per side of the polygon for the area formula,which is the largest we are using.
/⁎ Area ⁎/
Factor = 0.5;

BufferPos = 0;
for (i=1; i<nSide-1; i++) {
if (i > 1) {

BufferPos = BufferPos + sprintf(&CoefBuffer[BufferPos], " + ");
}
BufferPos = BufferPos + sprintf(&CoefBuffer[BufferPos], "RHO%d ⁎ RHO%d ⁎

SIN (THETA%d - THETA%d)", i+1, i, i+1, i);
}
XSLPchgccoef(sprob, 0, nSide, &Factor, CoefBuffer);

The area formula is of the form:
(RHO2⁎RHO1⁎SIN(THETA2-THETA1) + RHO3⁎RHO2⁎SIN(THETA3-THETA2) + ...) / 2The loop writes the product for each consecutive pair of vertices and also puts in the "+" sign after thefirst one.

Fair Isaac Corporation Confidential and Proprietary Information 25

The Xpress NonLinear API Functions Overview

The XSLPchgccoef function is a variation of XSLPchgcoef but uses a character string for theformula instead of passing it as arrays of tokens. The arguments to the function are:
RowIndex the index of the row.
ColIndex the index of the column.
Factor this is optional. If used, it holds the address of a constant multi-plier for the formula. This is particularly useful where the sameformula appears in several coefficients, but with different signs orscaling. The formula can be used once, but with different factors.To omit it, use a NULL argument.
CoefBuffer the formula, written in character form.

In this case, RowIndex is zero and ColIndex is nSide (the "equals" column).
/⁎ Distances ⁎/
Factor = 1.0;
for (i=1; i<nSide-1; i++) {
for (j=i+1; j<nSide; j++) {

sprintf(CoefBuffer, "RHO%d ^ 2 + RHO%d ^ 2 - 2 ⁎ RHO%d ⁎ RHO%d ⁎
COS (THETA%d - THETA%d)", j, i, j, i, j, i);

XSLPchgccoef(sprob, iRow, nSide, &Factor, CoefBuffer);
iRow++;

}

This creates the formula for the distance between pairs of vertices and writes each into a new row inthe "equals" column.
Provided you have given names to any user functions in your program, you can use them in a formula inexactly the same way as SIN and COS have been used above.

5.7 Checking the data

Xpress NonLinear includes the function XSLPwriteprob which writes out a non-linear problem in textform which can then be checked manually. Indeed, the problem can then be run using the XSLP consoleprogram, provided there are no user functions which refer back into your compiled program. Inparticular, this facility does allow small versions of a problem to be checked before moving on to thefull size ones.
XSLPwriteprob(sprob, "testmat", "");

The first argument is the Xpress NonLinear problem pointer; the second is the name of the matrix to beproduced (the suffix ".mat" will be added automatically). The last argument allows various differenttypes of output including "scrambled" names – that is, internally-generated names will be used ratherthan those you have provided. For checking purposes, this is obviously not a good idea.

5.8 Solving and printing the solution

XSLPmaxim(sprob, "");

The XSLPmaxim and XSLPminim functions perform a non-linear maximization or minimization on thecurrent problem. The second argument can be used to pass flags as defined in the Xpress NonLinearReference Manual.

Fair Isaac Corporation Confidential and Proprietary Information 26

The Xpress NonLinear API Functions Overview

XPRSwriteprtsol(mprob);

The standard Xpress Optimizer solution print can be obtained by using the XPRSwriteprtsolfunction. The row and column activities and dual values can be obtained using the XPRSgetsolfunction.
In addition, you can use the XSLPgetvar function to obtain the values of SLP variables – that is, ofvariables which are in non-linear coefficients, or which have non-linear coefficients. If you are usingcascading (see the Xpress NonLinear reference manual for more details) so that Xpress NonLinearrecalculates the values of the dependent SLP variables at each SLP iteration, then the value from
XSLPgetvar will be the recalculated value, whereas the value from XPRSgetsol will be the valuefrom the LP solution (before recalculation).

5.9 Closing the program

The XSLPdestroyprob function frees any system resources allocated by Xpress NonLinear for thespecific problem. The problem pointer is then no longer valid. XPRSdestroyprob performs a similarfunction for the underlying linear problem mprob. The XSLPfree function frees any system resourcesallocated by Xpress NonLinear. You must then call XPRSfree to perform a similar operation for theoptimizer.
XSLPdestroyprob(sprob);
XPRSdestroyprob(mprob);
XSLPfree();
XPRSfree();

If these functions are not called, the program may appear to have worked and terminated correctly.However, in such a case there may be areas of memory which are not returned to the system when theprogram terminates and so repeated executions of the program will result in progressive loss ofavailable memory to the system, which will manifest iself in poorer performance and could ultimatelyproduce a system crash.

5.10 Adding initial values

So far, Xpress NonLinear has started by using values which it estimates for itself. Because most of thevariables are bounded, these initial values are fairly reasonable, and the model will solve. However, ingeneral, you will need to provide initial values for at least some of the variables. Initial values, and otherinformation for SLP variables, are provided using the XSLPloadvars function.
int VarType[MAXCOL];
double InitialValue[MAXCOL];

To load initial values using XSLPloadvars, we need an array (InitialValue) to hold the initialvalues, and a VarType array which is a bitmap to describe what information is being set for eachvariable.
for(i=1; i<nSide; i++) {

...
InitialValue[nCol] = 3.14159⁎((double)i) / ((double)nSide);
VarType[nCol] = 4;
...

}
...
for(i=1; i<nSide; i++) {

Fair Isaac Corporation Confidential and Proprietary Information 27

The Xpress NonLinear API Functions Overview

InitialValue[nCol] = 1;
VarType[nCol] = 4;

}

These sections extend the loops for the columns in the earlier example. We set initial values for thethetas so that the vertices are spaced at equal angles; the rhos are all started at 1. We do not need toset a value for the equals column, because it is fixed at one. However, it is good practice to do so. Ineach case we set VarType to 4 because (as described in the Xpress NonLinear Reference Manual) Bit2 of the type indicates that the initial value is being set.
for(i=0; i<nCol; i++) ColIndex[i] = i
XSLPloadvars(sprob, nCol-1, &ColIndex[1], &VarType[1], NULL, NULL, NULL,

&InitialValue[1], NULL);

XSLPloadvars can take several other arguments apart from the initial value. It is a general principle inXpress NonLinear that using NULL for an argument means that there is no information being provided,and the current or default value will not be changed.
Because we built up the initial values as we went, the VarType and InitialValue arrays includecolumn 0, which is OBJX and is not an SLP variable. As all the rest are SLP variables, we can simplystart these arrays at the second item, and reduce the variable count by 1.

Fair Isaac Corporation Confidential and Proprietary Information 28

CHAPTER 6

The Nonlinear Console Program

6.1 The Console Nonlinear

The nonlinear optimizer is an extension to the FICO Xpress Optimizer interactive console.
The console for nonlinear is started from the command line using the following syntax:

C:\> optimizer [problem_name] [@filename]

6.1.1 The nonlinear console extensions

The nonlinear console is an extension of the Xpress optimizer console. The optimizer automaticallyswitches to nonlinear mode if a nonlinear license is detected. All the optimizer console commandswork the same way as in the normal optimizer console. The active working problem for thosecommands is the actual linearization after augmentation, and the linear part of the problem beforeaugmentation.
Optimizer console commands with an extended effect:
readprob Read in an MPS/MAT or LP file
minim Minimize an LP, a MIP or an SLP problem
maxim Maximize an LP, a MIP or an SLP problem
lpoptimize Minimize or maximize a problem
mipoptimize Solve the problem to MIP optimality
writeprob Export the problem into file
dumpcontrols Display controls which are at a non default value

The MPS file can be an extended MPS file containing an NLP model. The minim and maxim commandswill call XPRSminim or XPRSmaxim for LP and MIP problems, and XSLPminim and XSLPmaxim forSLP problems respectively; with the same applying to lpoptimize and mipoptimize. All thesecommands accept the same flags as the corresponding library function
New commands:

Fair Isaac Corporation Confidential and Proprietary Information 29

The Nonlinear Console Program Overview

cascade Perform cascading
cascadeorder Recalculate the cascading order
construct Construct the augmented problem
dumpattributes Display problem attributes
reinitialize Reinitialize an augmented problem
setcurrentiv Copy the current solution as initial value
slp_save XSLPsave
slp_scaling Display scaling statistics
unconstruct Remove the augmentation
validate Validate the current solution
validatekkt Validate the kkt conditions for the current solution

In order to separate XSLP controls and attributes for the XPRS ones, all XSLP controls and attributesare pretagged as XSLP_ or SLP_, for example XSLP_ALGORITHM.
6.1.2 Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer console

All features of the Xpress optimizer console program is supported. For a full description, please refer tothe Xpress optimizer reference manual.
From the command line an initial problem name can be optionally specified together with an optionalsecond argument specifying a text "script" file from which the console input will be read as if it hadbeen typed interactively.
Note that the syntax example above shows the command as if it were input from the WindowsCommand Prompt (i.e., it is prefixed with the command prompt string C:\>). For Windows usersConsole XSLP can also be started by typing xslp into the "Run ..." dialog box in the Start menu.
The Console XSLP provides a quick and convenient interface for operating on a single problem loadedinto XSLP. The Console XSLP problem contains the problem data as well as (i) control variables forhandling and solving the problem and (ii) attributes of the problem and its solution information.
The Console SLP auto–completion feature is a useful way of reducing key strokes when issuingcommands. To use the auto–completion feature, type the first part of an optimizer command namefollowed by the Tab key. For example, by typing "CONST" followed by the Tab key Console Xpress willcomplete to the "CONSTRUCT". Note that once you have finished inputting the command name portionof your command line, Console Xpress can also auto–complete on file names. Note that theauto–completion of file names is case–sensitive.
Console XSLP also features integration with the operating system’s shell commands. For example, bytyping "dir" (or "ls" under Unix) you will directly run the operating system’s directory listing command.Using the "cd" command will change the working directory, which will be indicated in the prompt string:

[xpress bin] cd \
[xpress C:\]

Finally, note that when the Console XSLP is first started it will attempt to read in an initialization filenamed optimizer.ini from the current working directory. This is an ASCII "script" file that maycontain commands to be run at start up, which are intended to setup a customized default ConsoleXpress environment for the user (e.g., defining custom controls settings on the Console Xpressproblem).
The Console XSLP interactive command line hosts a TCL script parser (http://www.tcl.tk). With TCLscripting the user can program flow control into their optimizer scripts. Also TCL scripting provides theuser with programmatic access to a powerful suite of functionality in the TCL library. With scriptingsupport the Console Xpress provides a high level of control and flexibility well beyond that which can beachieved by combining operating system batch files with simple piped script files. Indeed, with

Fair Isaac Corporation Confidential and Proprietary Information 30

http://www.tcl.tk/

The Nonlinear Console Program Overview

scripting support the Console XSLP is ideal for (i) early application development, (ii) tuning of modelformulations and solving performance and (iii) analyzing difficulties and bugs in models.
Note that the TCL parser has been customized and simplified to handle intuitive access to the controlsand attributes of the Optimizer and XSLP. The following example shows how to proceed with write andread access to the XSLP_ALGROITHM control:

[xpress C:\] xslp_algorithm=166
[xpress C:\] xslp_algorithm
166

The following shows how this would usually be achieved using TCL syntax:
[xpress C:\] set xslp_algorithm 166
166
[xpress C:\] $miplog
166

For examples on how TCL can be used for scripting, tuning and testing models, please refer to theXpress Optimizer reference manual.
Console XSLP users may interrupt the running of the commands (e.g., minim) by typing Ctrl–C. Onceinterrupted Console Xpress will return to its command prompt. If an optimization algorithm has beeninterrupted in this way, any solution process will stop at the first ’safe’ place before returning to theprompt.
When Console XSLP is being run with script input then Ctrl–C will not return to the command promptand the Console Xpress process will simply stop.
Lastly, note that "typing ahead" while the console is writing output to screen can cause Ctrl–C input tofail on some operating systems.
The XSLP console program can be used as a direct substitute for the Xpress Optimizer consoleprogram. The one exception is the fixed format MPS files, which is not supported by XSLP and thusneither by the XSLP console.

Fair Isaac Corporation Confidential and Proprietary Information 31

II. Advanced

CHAPTER 7

Nonlinear Problems

Xpress NonLinear will solve nonlinear problems. In this context, a nonlinear problem is one in whichthere are nonlinear relationships between variables or where there are nonlinear terms in the objectivefunction. There is no such thing as a nonlinear variable — all variables are effectively the same — butthere are nonlinear constraints and formulae. A nonlinear constraint contains terms which are notlinear. A nonlinear term is one which is not a constant and is not a variable with a constant coefficient.A nonlinear constraint can contain any number of nonlinear terms.
Xpress NonLinear will also solve linear problems — that is, if the problem presented to XpressNonLinear does not contain any nonlinear terms, then Xpress NonLinear will still solve it, using thenormal optimizer library.
The solution mechanism used by Xpress-SLP is Successive (or Sequential) Linear Programming. Thisinvolves building a linear approximation to the original nonlinear problem, solving this approximation(to an optimal solution) and attempting to validate the result against the original problem. If the linearoptimal solution is sufficiently close to a solution to the original problem, then the SLP is said to have
converged, and the procedure stops. Otherwise, a new approximation is created and the process isrepeated. Xpress-SLP has a number of features which help to create good approximations to theoriginal problem and therefore help to produce a rapid solution.
When license, Xpress NonLinear may also utilize Knitro to solve nonlinear problems.
Note that although the solution is the result of an optimization of the linear approximation, there is noguarantee that it will be an optimal solution to the original nonlinear problem. It may be a local optimum— that is, it is a better solution than any points in its immediate neighborhood, but there is a bettersolution rather further away. However, a converged SLP solution will always be (to within definedtolerances) a self-consistent — and therefore practical — solution to the original problem.

7.1 Coefficients and terms

Later in this manual, it will be helpful to distinguish between formulae written as coefficients and thosewritten as terms.
If X is a variable, then in the formula X ∗ f(Y), f(Y) is the coefficient of X.
If f(X) appears in a nonlinear constraint, then f(X) is a term in the nonlinear constraint.
If X ∗ f(Y) appears in a nonlinear constraint, then the entity X ∗ f(Y) is a term in the nonlinear constraint.
As this implies, a formula written as a variable multiplied by a coefficient can always be viewed as aterm, but there are terms which cannot be viewed as variables multiplied by coefficients. For example,in the constraint
X – SIN(Y) = 0,
SIN(Y) is a term and cannot be written as a coefficient.

Fair Isaac Corporation Confidential and Proprietary Information 33

Nonlinear Problems Advanced

7.2 SLP variables

A variable which appears in a nonlinear coefficient or term is described as an SLP variable.
Normally, any variable which has a nonlinear coefficient will also be treated as an SLP variable.However, it is possible to set options so that variables which do not appear in nonlinear coefficients orterms are not treated as SLP variables.
Any variable, whether it is related to a nonlinear term or not, can be defined by the user as an SLPvariable. This is most easily achieved by setting an initial value for the variable.

7.3 Local and global optimality

A globally optimal solution is a feasible solution with the best possible objective value. In general, theglobal optimum for a problem is not unique. By contrast, a locally optimal solution has the bestpossible objective value within an open neighbourhood around it. For a convex problem, every localoptimum is a global optimum, but for general nonlinear problems, this is not the case.
For convex problems, which include linear, convex quadratic and convex quadratically constrainedprograms, solvers in the FICO Xpress library will always provide a globally optimal solution when oneexists. This also holds true for mixed integer problems whose continuous relaxation is convex.
When a problem is of a more general nonlinear type, there will typically be many local optima, which arepotentially widely spaced, or even in parts of the feasible region which are not connected. For theseproblems, both XSLP and Knitro guarantee only that they will return a locally optimal solution. That is,the result of optimization will be a solution which is better than any others in its immediateneighborhood, but there might exist other solutions which are far distant which have a better objectivevalue.
Finding a guaranteed global optimum for an arbitrary nonlinear function requires an exhaustive search,which may be orders of magnitude more expensive. To use an analogy, it is the difference betweenfinding a valley in a range of mountains, and finding the deepest valley. When standing in a particularvalley, there is no way to know whether there is a deeper valley somewhere else.
Neither local nor global optima are typically unique. The solution returned by a solver will depend on thecontrol settings used and, particularly for non-convex problems, on the initial values provided. Aconnected set of initial points yielding the same locally optimal solutions is sometimes referred to as aregion of attraction for the solution. These regions are typically both algorithm and setting dependent.

7.4 Convexity

Convex problems have many desirable characteristics from the perspective of mathematicaloptimization. Perhaps the most significant of these is that should both the objective and the feasibleregion be convex, any local optimally solutions found are also known immediately to be globallyoptimal.
A constraint f(x) ≤ 0 is convex if the matrix of second derivatives of f , that is to say its Hessian, ispositive semi-definite at every point at which it exists. This requirement can be understoodgeometrically as requiring every point on every line segment which connects two points satisfying theconstraint to also satisfy the constraint. It follows trivially that linear functions always lead to convexconstraints, and that a nonlinear equality constraint is never convex.
For regions, a similar property must hold. If any two points of the region can be connected by a linesegment which lies fully in the region itself, the region is convex. This extension is straightforward

Fair Isaac Corporation Confidential and Proprietary Information 34

Nonlinear Problems Advanced

Figure 7.1: Two convex functions on the left, and two non-convex functions on the right.

when the the properties of convex functions are considered.

Figure 7.2: A convex region on the left and a non-convex region on the right.

It is important to note that convexity is necessary for some solution techniques and not for others. Inparticular, some solvers require convexity of the constraints and objective function to hold only in thefeasible region, whilst others may require convexity to hold across the entire space, including infeasiblepoints. In the special case of quadratic and quadratically constrained programs, Xpress NonLinearseamlessly migrates problems to solvers whose convexity requirements match the convexity of theproblem.

7.5 Converged and practical solutions

In a strict mathematical sense, an algorithm is said to have converged if repeated iterations do not alterthe coordinates of its solution significantly. A more practical view of convergence, as used in thenonlinear solvers of the Xpress suite, is to also consider the algorithm to have converged if repeatediterations have no significant effect on either the objective value or upon feasibility. This will be calledextended convergence to distinguish it from the strict sense.
For some problems, a solver may visit points at which the local neighborhood is very complex, or evenmalformed due to numerical issues. In this situation, the best results may be obtained whenconvergence of some of the variables is forced. This leads to practical solutions, which are feasibleand converged in most variables, but the remaining variables have had their convergence forced by thesolver, for example by means of a trust region. Although these solutions are not locally optimal in astrict sense, they provide meaningful, useful results for difficult problems in practice.

7.6 The duals of general, nonlinear program

The dual of a mathematical program plays a fundamental role in the theory of continuous optimization.Each variable in a problem has a corresponding partner in that problem’s dual, and the values of those

Fair Isaac Corporation Confidential and Proprietary Information 35

Nonlinear Problems Advanced

variables are called the reduced costs and dual multipliers (shadow prices). Xpress NonLinear makesestimates of these values available. These are normally defined in a similar way to the usual linearprogramming case, so that each value represents the rate of change of the objective when eitherincreasing the corresponding primal variable or relaxing the corresponding primal constraint.
From an algorithmic perspective, one of the most important roles of the dual variables is tocharacterize local optimality. In this context, the dual multipliers and reduced costs are called Lagrangemultipliers, and a solution with both primal and dual feasible variables satisfies the Karush-Kuhn-Tuckerconditions. However, it is important to note that for general nonlinear problems, there exist situations inwhich there are no such multipliers. Geometrically, this means that the slope of the objective function isorthogonal to the linearization of the active constraints, but that their curvature still prevents anymovement in the improving direction.
As a simple example, consider: minimize ysubject to x2 + y2 ≤ 1(x – 2)2 + y2 ≤ 1
which is shown graphically in figure 7.3.

Figure 7.3: A problem admitting no dual values

This problem has a single feasible solution at (1,0). Reduced costs and dual multipliers could never bemeaningful indicators of optimality, and indeed are not well-defined for this problem. Intuitively, thisarises because the feasible region lacks an interior, and the existence of an interior (also referred to asthe Slater condition) is one of several alternative conditions which can be enforced to ensure that suchsituations do not occur. The other common condition for well-defined duals is that the gradients of theactive constraints are linearly independent.
Problems without valid duals do not often arise in practice, but it is important to be aware of thepossibility. Analytic detection of such issues is difficult, and they manifest instead in the form ofunexpectedly large or otherwise implausible dual values.

Fair Isaac Corporation Confidential and Proprietary Information 36

CHAPTER 8

Extended MPS file format

One method of inputting a problem to Xpress NonLinear is from a text file which is similar to the normalMPS format matrix file. The Xpress NonLinear file uses free format MPS-style data. All the features ofnormal free-format MPS are supported. There are no changes to the sections except as indicatedbelow.
Note: the use of free-format requires that no name in the matrix contains any leading or embeddedspaces and that no name could be interpreted as a number. Therefore, the following names are invalid:

B 02 because it contains an embedded space;
1E02 because it could be interpreted as 100 (the scientific or floating-point format number,1.0E02).
It is possible to use column and row names inlcuding mathematical operators. A variable name a+b isvalid. However, as an expression a + b would be interpreted as the addition of variables a and b - notethe spaces between the variable names - it is best practice to avoid such names when possible. SLPwill produce a warning if such names are encountered in the MPS file.

8.1 Formulae

One new feature of the Extended MPS format is the formula. A formula is written in much the same wayas it would be in any programming language or spreadsheet. It is made up of (for example) constants,functions, the names of variables, and mathematical operators. The formula always starts with anequals sign, and each item (or token) is separated from its neighbors by one or more spaces.
Tokens may be one of the following:

� A constant;
� The name of a variable;
� An arithmetic operator "+", "-", "*", "/";
� The exponentiation operator "**" or "̂";
� An opening or closing bracket "(" or ")";
� A comma "," separating a list of function arguments;
� The name of a supported internal function such as LOG, SIN, EXP;
� The name of a user-supplied function;

Fair Isaac Corporation Confidential and Proprietary Information 37

Extended MPS file format Advanced

� A colon ":" preceding the return argument indicator of a multi-valued function;
� The name of a return argument from a multi-valued function.

The following are valid formulae:
= SIN (A / B) SIN is a recognized internal function which takes one argument and returns oneresult (the sin of its argument).
= A ˆ B ˆis the exponentiation symbol. Note that the formula may have valid syntax but it stillmay not be possible to evaluate it (for example if A = –1 and B = 0.5).
= MyFunc1 (C1 , – C2 , C3 : 1) MyFunc1must be a function which can take threearguments and which returns an array of results. This formula is asking for the first itemin the array.
= MyFunc2 (C1 , – C2 , C3 : RVP) MyFunc1must be a function which can take threearguments and which returns an array of results. This formula is asking for the item inthe array which is named RVP.
The following are not valid formulae:
SIN (A) Missing the equals sign at the start
= SIN(A) No spaces between adjacent tokens
= A ∗ ∗ B "**" is exponentiation, "* *" (with an embedded space) is not a recognized operation.
= MyFunc1 (C1 , – C2 , C3 , 1) If MyFunc1 is as shown in the previous set of examples, itreturns an array of results. The last argument to the function must be delimited by acolon, not a comma, and is the name or number of the item to be returned as the valueof the function.

There is no limit in principle to the length of a formula. However, there is a limit on the length of a recordread by XSLPreadprob, which is 31000 characters. Parsing very long records can be slow, andconsideration should be given to pre-parsing them and passing the parsed formula to XpressNonLinear rather than asking it to parse the formula itself.

8.2 COLUMNS

Normal MPS-style records of the form
column row1 value1 [row2 value2]
are supported. Non-linear relationships are modeled by using a formula instead of a constant in the
value1 field. If a formula is used, then only one coefficient can be described in the record (that is, therecan be no row2 value2). The formula begins with an equals sign ("=") and is as described in theprevious section.
A formula must be contained entirely on one record. The maximum record length for files read by
XSLPreadprob is 31000. Note that there are limits applied by the Optimizer to the lengths of thenames of rows and columns.
Variables used in formulae may be included in the COLUMNS section as variables, or may exist only asitems within formulae. A variable which exists only within formulae is called an implicit variable.

Fair Isaac Corporation Confidential and Proprietary Information 38

Extended MPS file format Advanced

Sometimes the non-linearity cannot be written as a coefficient. For example, in the constraint
Y – LOG(X) = 0,
LOG(X) cannot be written in the form of a coefficient. In such a case, the reserved column name "="may be used in the first field of the record as shown:
Y MyRow 1
= MyRow = – LOG (X)

Effectively, "=" is a column with a fixed activity of 1.0 .
When a file is read by XSLPreadprob, more than one coefficient can be defined for the samecolumn/row intersection. As long as there is at most one constant coefficient (one not written as aformula), the coefficients will be added together. If there are two or more constant coefficients for thesame intersection, they will be handled by the Optimizer according to its own rules (normally additive,but the objective function retains only the last coefficient).

8.3 BOUNDS

Bounds can be included for variables which are not defined explicitly in the COLUMNS section of thematrix. If they are not in the COLUMNS section, they must appear as variables within formulae (implicit
variables). A BOUNDS entry for an item which is not a column or a variable will produce a warningmessage and will be ignored.
Global entities (such as integer variables and members of Special Ordered Sets) must be definedexplicitly in the COLUMNS section of the matrix. If a variable would otherwise appear only in formulae incoefficients, then it should be included in the COLUMNS section with a zero entry in a row (for example,the objective function) which will not affect the result.

8.4 SLPDATA

SLPDATA is a new section which holds additional information for solving the non-linear problem usingSLP.
Many of the data items have a setname. This works in the same way as the BOUND, RANGE or RHS name,in that a number of different values can be given, each with a different set name, and the one which isactually used is then selected by specifying the appropriate setname before reading the problem.
Record type IV and the tolerance records Tx, Rx can have "=" as the variable name. This provides adefault value for the record type, which will be used if no specific information is given for a particularvariable.
Note that only linear BOUND types can be included in the SLPDATA section. Bound types for globalentities (discrete variables and special ordered sets) must be provided in the normal BOUNDS sectionand the variables must also appear explicitly in the COLUMNS section.
All of the items in the SLPDATA section can be loaded into a model using Xpress NonLinear functioncalls.

8.4.1 CV (Character variable)

CV setname variable value

The CV record defines a character variable. This is only required for user functions which havecharacter arguments (for example, file names). The value field begins with the first non-blank characterafter the variable name, and the value of the variable is made up of all the characters from that point to

Fair Isaac Corporation Confidential and Proprietary Information 39

Extended MPS file format Advanced

the end of the record. The normal free-format rules do not apply in the value field, and all spacing willbe retained exactly as in the original record.
Examples:

CV CVSET1 MyCV1 Program Files\MyLibs\MyLib1This defines the character variable named MyCV1. It is required because there is an embedded space inthe path name which it holds.
CV CVSET1 MyCV1 Program Files\MyLibs\MyLib1
CV CVSET2 MyCV1 Program Files\MyLibs\MyLib2This defines the character variable named MyCV1. There are two definitions, and the appropriate one isselected by setting the string control variable XSLP_CVNAME before calling XSLPreadprob to load theproblem.

8.4.2 DR (Determining row)

DR variable rowname [weighting] [limit]
The DR record defines the determining row for a variable.
In most non-linear problems, there are some variables which are effectively defined by means of anequation in terms of other variables. Such an equation is called a determining row. If Xpress NonLinearknows the determining rows for the variables which appear in coefficients, then it can provide betterlinear approximations for the problem and can then solve it more quickly. Optionally, a non-zero integervalue can be included in the weighting field. Variables which have weights will generally be evaluated inorder of increasing weight. Variables without weights will generally be evaluated after those which dohave weights. However, if a variable A (with or without a weight) is dependent through its determiningrow on another variable B, then B will always be evaluated first. The optional limit field provides avariable specific value for XSLP_CASCADENLIMIT.
Example:

DR X Row1This defines Row1 as the determining row for the variable X. If Row1 is
X – Y ∗ Z = 6then Y and Z will be recalculated first before X is recalculated as Y ∗ Z + 6.

8.4.3 EC (Enforced constraint)

EC rowname

The EC record defines an enforced constraint. Penalty error vectors are never added to enforcedconstraints, so the effect of such constraints is maintained at all times.
Note that this means the linearized version of the enforced constraint will be active, so it is important toappreciate that enforcing too many constraints can easily lead to infeasible linearizations which willmake it hard to solve the original nonlinear problem.
Example:

EC Row1This defines Row1 as an enforced constraint. When the SLP is augmented, no penalty error vectors willbe added to the constraint, so the linearized version of Row1 will constrain the linearized problem in thesame sense (L, G or E) as the nonlinear version of Row1 constrains the original nonlinear problem.
8.4.4 FR (Free variable)

FR boundname variable

Fair Isaac Corporation Confidential and Proprietary Information 40

Extended MPS file format Advanced

An FR record performs the same function in the SLPDATA section as it does in the BOUNDS section. Itcan be used for bounding variables which do not appear as explicit columns in the matrix.
8.4.5 FX (Fixed variable)

FX boundname variable value

An FX record performs the same function in the SLPDATA section as it does in the BOUNDS section. Itcan be used for bounding variables which do not appear as explicit columns in the matrix.
8.4.6 IV (Initial value)

IV setname variable [value | = formula]
An IV record specifies the initial value for a variable. All variables which appear in coefficients or terms,or which have non-linear coefficients, should have an IV record.
A formula provided as the initial value for a variable can contain references to other variables. It will beevaluated based on the initial values of those variables (which may themselves be calculated byformula). It is the user’s responsibility to ensure that there are no circular references within theformulae. Formulae are typically used to calculate consistent initial values for dependent variablesbased on the values of independent variables.
If an IV record is provided for the equals column (the column whose name is "=" and which has a fixedvalue of 1.0), the value provided will be used for all SLP variables which do not have an explicit initialvalue of their own.
If there is no explicit or implied initial value for an SLP variable, the value of control parameter
XSLP_DEFAULTIV will be used.
If the initial value is greater than the upper bound of the variable, the upper bound will be used; if theinitial value is less than the lower bound of the variable, the lower bound will be used.
If both a formula and a value are provided, then the explicit value will be used.
Example:

IV IVSET1 Col99 1.4971
IV IVSET2 Col99 2.5793This sets the initial value of column Col99. The initial value to be used is selected using controlparameter XSLP_IVNAME. If no selection is made, the first initial value set found will be used.
If Col99 is bounded in the range 1 ≤ Col99 ≤ 2 then in the second case (when IVSET2 isselected), an initial value of 2 will be used because the value given is greater than the upper bound.
IV IVSET2 Col98 = Col99 ⁎ 2This sets the value of Col98 to twice the initial value of Col99 when IVSET2 is the selected initialvalue set.

8.4.7 LO (Lower bounded variable)

LO boundname variable value

A LO record performs the same function in the SLPDATA section as it does in the BOUNDS section. Itcan be used for bounding variables which do not appear as explicit columns in the matrix.
8.4.8 Rx, Tx (Relative and absolute convergence tolerances)

Rx setname variable value

Fair Isaac Corporation Confidential and Proprietary Information 41

Extended MPS file format Advanced

Tx setname variable value

The Tx and Rx records (where "x" is one of the defined tolerance types) define specific tolerances forconvergence of the variable. See the section "convergence criteria" for a list of convergence tolerances.The same tolerance set name (setname) is used for all the tolerance records.
Example:

RA TOLSET1 Col99 0.005
TA TOLSET1 Col99 0.05
RI TOLSET1 Col99 0.015
RA TOLSET1 Col01 0.01
RA TOLSET2 Col01 0.015These records set convergence tolerances for variables Col99 and Col01. Tolerances RA (relativeconvergence tolerance), TA (absolute convergence tolerance) and RI (relative impact tolerance) are setfor Col99 using the tolerance set named TOLSET1.Tolerance RA is set for variable Col01 using tolerance sets named TOLSET1 and TOLSET2.If control parameter XSLP_TOLNAME is set to the name of a tolerance set before the problem is readusing XSLPreadprob, then only the tolerances on records with that tolerance set will be used. If
XSLP_TOLNAME is blank or not set, then the name of the set on the first tolerance record will be used.

8.4.9 SB (Initial step bound)

SB setname variable value

An SB record defines the initial step bounds for a variable. Step bounds are symmetric (i.e. the boundson the delta are –SB ≤ delta ≤ +SB). If a value of 1.0E+20 is used (equivalent to XPRS_PLUSINFINITYin programming), the delta will never have step bounds applied, and will almost always be regarded asconverged.
If there is no explicit initial step bound for an SLP variable, a value will be estimated either from the sizeof the coefficients in the initial linearization, or from the values of the variable during the early SLPiterations. The value of control parameter XSLP_DEFAULTSTEPBOUND provides a lower limit for thestep bounds in such cases.
If there is no explicit initial step bound, then the closure convergence tolerance cannot be applied to thevariable.
Example:

SB SBSET1 Col99 1.5
SB SBSET2 Col99 7.5This sets the initial step bound of column Col99. The value to be used is selected using controlparameter XSLP_SBNAME. If no selection is made, the first step bound set found will be used.

8.4.10 UF (User function)

UF funcname [= extname] (arguments) linkage [= [param1] [= [param2] [= [param3]]]]
A UF record defines a user function.The definition includes the list of required arguments, and the linkage or calling mechanism. For detailsof the fields, see the section on Function Declaration in Xpress NonLinear.
Example:

UF MyFunc (DOUBLE , INTEGER) DLL = UserLibThis defines a user function called MyFunc. It takes two arguments (an array of type double precisionand an array of type integer). The linkage is DLL (free-standing user library or DLL) and the function is infile UserLib.

Fair Isaac Corporation Confidential and Proprietary Information 42

Extended MPS file format Advanced

8.4.11 UP (Free variable)

UP boundname variable value

An UP record performs the same function in the SLPDATA section as it does in the BOUNDS section. Itcan be used for bounding variables which do not appear as explicit columns in the matrix.
8.4.12 WT (Explicit row weight)

WT rowname value

The WT record is a way of setting the initial penalty weighting for a row. If value is positive, then thedefault initial weight is multiplied by the value given. If value is negative, then the absolute value willbe used instead of the default weight.
Increasing the penalty weighting of a row makes it less attractive to violate the constraint during theSLP iterations.
Examples:

WT Row1 3This changes the initial weighting on Row1 by multiplying by 3 the default weight calculated byXpress-SLP during problem augmentation.
WT Row1 -3This sets the initial weighting on Row1 to 3.

8.4.13 DL (variable specific Determining row cascade iteration Limit)

DL columnname limit

A DL record specififies a variable specific iteration limit to be emposed on the number of iterationswhen cascading the variable. This can be used to overwrite the setting of XSLP_CASCADENLIMIT for aspecific variable.

Fair Isaac Corporation Confidential and Proprietary Information 43

CHAPTER 9

Xpress-SLP Solution Process

This section gives a brief overview of the sequence of operations within Xpress-SLP once the data hasbeen set up. The positions of the possible user callbacks are also shown.
Check if problem is an SLP problem or not. Call the appropriate XPRS library function if not, and DONE.
[Call out to user callback if set by XSLPsetcbslpstart]
Augment the matrix (create the linearized structure) if not already done
If determining row data supplied, calculate cascading order and detect determining columns
DO

[Call out to user callback if set by XSLPsetcbiterstart]
If previous solution available, pre-process solution

Execute line search
[Call out to user callback if set by XSLPsetcbcascadestart]
Sequentially update values of SLP variables (cascading) and re-calculate coefficients
For each variable (in a suitable evaluation order):

Update solution value (cascading) and re-calculate coefficients
[Call out to user callback if set by XSLPsetcbcascadevar]

[Call out to user callback if set by XSLPsetcbcascadeend]
Update penalties
Update coefficients, bounds and RHS in linearized matrix
Solve linearized problem using the Xpress Optimizer
Recover SLP variable and delta solution values
Test convergence against specified tolerances and other criteria
For each variable:

Test convergence against specified tolerances
[Call out to user callback if set by XSLPsetcbitervar]

For each variable with a determining column:
Check value of determining column and fix variable when necessary, or
[Call out to user callback if set by XSLPsetcbdrcol]
Reset variable convergence status if a change is made to a variable

If not all variables have converged, check for other extended convergence criteria
If the solution has converged, then BREAK
For each SLP variable:

Update history
Reset step bounds

[Call out to user callback if set by XSLPsetcbiterend]
Change row types for DC rows as required
If SLP iteration limit is reached, then BREAK

ENDDO
[Call out to user callback if set by XSLPsetcbslpend]

For MISLP (mixed-integer SLP) problems, the above solution process is normally repeated at each

Fair Isaac Corporation Confidential and Proprietary Information 44

Xpress-SLP Solution Process Advanced

node. The standard procedure for each node is as follows:
Initialize node
[Call out to user callback if set by XSLPsetcbprenode]
Solve node using SLP procedure
If an optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcboptnode]
If an integer optimal solution is obtained for the node then

[Call out to user callback if set by XSLPsetcbintsol]
When node is completed

[Call out to user callback if set by XSLPsetcbslpnode]

When a problem is destroyed, there is a call out to the user callback set by XSLPsetcbdestroy.

9.1 Analyzing the solution process

Xpress-SLP provides a comprehensive set of callbacks to interact with, and to analyze the solutionprocess. However, there are a set of purpose build options that are intended to assist and make theanalysis more efficient.
For infeasible problems, it often helps to identify the source of conflict by running XPRESS’ IrreducibleInfeasibiliy Set (IIS) finder tool. The set found by IIS often helps to either point to a problem in theoriginal model formulation, or if the infeasibility is a result of conflicting step bounds or linearizationupdates; please see control XSLP_ANALYZE.
Xpress-SLP can collect the various solutions it generates during the solution pool to an XPRS solutionpool object. The solution pool is accessible using the XSLP_SOLUTIONPOOL pointer attribute. Thesolutions to collect are defined by XSLP_ANALYZE. It is also possible to let XSLP write the collectedsolutions to disk for easier access.
It is often advantageous to trace a certain variable, constraint or a certain property through the solutionprocess. XSLP_TRACEMASK and XSLP_TRACEMASKOPS allows for collecting detailed informationduring the solution process, without the need to stop XSLP between iterations.
For in depth debugging purposes or support requests, it is possible to create XSLP save files andlinearizations at verious iterations, controlled by XSLP_AUTOSAVE and XSLP_ANALYZE.

9.2 The initial point

The solution process is sensitive to the initial values which are selected for variables in the problem,and particularly so for non-convex problems. It is not uncommon for a general nonlinear problem tohave a feasible region which is not connected, and in this case the starting point may largely determinewhich region, connected set, or basin of attraction the final solution belongs to.
Note that it may not always be beneficial to completely specify an initial point, as the solversthemselves may be able to detect suitable starting values for some or all of the variables.

9.3 Derivatives

Both XSLP and Knitro require the availability of derivative information for the constraints and objectivefunction in order to solve a problem. In the Xpress NonLinear framework, several advanced approaches

Fair Isaac Corporation Confidential and Proprietary Information 45

Xpress-SLP Solution Process Advanced

to the production of both first and second order derivatives (the Jacobian and Hessian matrices) areavailable, and which approach is used can be controlled by the user.
9.3.1 Finite Differences

The simplest such method is the use of finite differences, sometimes called numerical derivatives. Thisis a relatively coarse approximation, in which the function is evaluated in a small neighborhood of thepoint in question. The standard argument from calculus indicates that an increasingly accurateapproximation to the derivative of the function will be found as the size of the neighborhood decreases.This argument ignores the effects of floating point arithmetic, however, which can make it difficult toselect values sufficiently small to give a good approximation to the function, and yet sufficiently largeto avoid substantial numerical error.
The high performance implementation in XSLP makes use of subexpression caching to improveperformance, but finite differences are inherently inefficient. They may however be necessary when thefunction itself is not known in closed form. When analytic approaches cannot be used, due to the useof expensive black box functions which do not provide derivatives (note that XSLP does allow userfunctions to provide their own derivatives), the cost of function evaluations may become a dominantfactor in solve time. It is important to note that each second order numerical derivative costs twice asmuch as a first order numerical derivative, and this can make XSLP more attractive than Knitro for suchproblems.

9.3.2 Symbolic Differentiation

Xpress NonLinear will instead provide analytic derivatives where possible, which are both moreaccurate and more efficient. There are two major approaches to such calculations, and high qualityimplementations of both are available in this framework.
A symbolic differentiation engine calculates the derivative of an expression in closed form, using itsformula representation. This is a very efficient way of recalculating individual entries of the Jacobian,and is the default approach to providing derivative information to XSLP.

9.3.3 Automatic Differentiation

An automatic differentiation engine in contrast can simultaneously compute multiple derivatives byrepeated application of the chain rule. This is a very efficient means of calculating large numbers ofHessian entries, and is the default approach to providing derivative information to Knitro.

9.4 Points of inflection

A point of inflection in a given variable occurs when the first and second order partial derivatives withrespect to that variable become zero, but there exist nonzero derivatives of higher order. At such points,the approximations the iterative nonlinear methods create do not encapsulate enough informationabout the behavior of the function, and both first and second order methods may experiencedifficulties. For example, consider the following problem
minimize x3subject to –1 ≤ x ≤ 1

for which the optimal solution is -1.
When the initial value of x is varied, XSLP and Knitro produce the solutions presented in Table 9.1 forthis problem:

Fair Isaac Corporation Confidential and Proprietary Information 46

Xpress-SLP Solution Process Advanced

Figure 9.1: Effect of an inflection point on solution values.

As a second order method, Knitro examines a local quadratic approximation to the function. Starting atboth 0 and 1, this approximation will closely resemble the x2 function, and so the solution will beattracted to zero. For XSLP, which is a first order method, the approximation at 0 will have a zerogradient. However, XSLP can detect this situation and will perform the analysis required to substitutean appropriate small nonzero (placeholder) value for the derivative during the first iterations. As can beseen, this allows XSLP find an optimal solution in all three cases.
This is only one example of the behaviour of these solvers without further tuning. The long steps whichXSLP often takes can be both beneficial and harmful in different contexts. For example, if the functionto be optimized includes many local minima, it is possible to see the opposite pattern for XSLP andKnitro. Consider minimize x sin(100x2)subject to –1 ≤ x ≤ 1
which has many local minima. For this problem, the results obtained are presented in Table 9.2:

Figure 9.2: Local solutions for a function with several local optima

In this case the same long steps made by XSLP lead to it finding the an identical, but unfortunate, localoptimum no matter which initial point it begins from.

9.5 Trust regions

In a second order method like Knitro, there is a well-defined merit function which can be used tocompare solutions, and which provides a measure of the progress being made by the algorithm. This isa significant advantage over first order methods, in which there is generally no such function.
Despite their speed and resilience to points of inflection, first order methods can also experiencedifficulties at points in which the current approximation is not well posed. Consider

minimize x2subject to x free
at x = 1. A naive linearization is simply

minimize 2xsubject to x free
which is unbounded. To address such situations, XSLP will introduce trust regions to model theneighborhood in which the current approximation is believed to be applicable. When coupled with theuse of derivative placeholders described in the previous section, this can lead XSLP to initially makelarge moves from its starting position.

Fair Isaac Corporation Confidential and Proprietary Information 47

CHAPTER 10

Handling Infeasibilities

By default, Xpress-SLP will include penalty error vectors in the augmented SLP structure. This featureadds explicit positive and negative slack vectors to all constraints (or, optionally, just to equalityconstraints) which include nonlinear coefficients. In many cases, this is itself enough to retainfeasibility. There is also an opportunity to add penalty error vectors to all constraints, but this is notnormally required.
During cascading (see next section), Xpress-SLP will ensure that the value of a cascaded variable isnever set outside its lower and upper bounds (if these have been specified).

10.1 Infeasibility Analysis in the Xpress Optimizer

For problems which can be solved using the Xpress Optimizer, that is LP, convex QP and QCQP andtheir MIP counterparts, there is normally no difficulty with establishing feasibility. This is because forthese convex problem classes, Xpress can produce global solutions, and any problem declaredinfeasible is globally infeasible. The concept of local infeasibility is primarily of use in the case ofnonlinear problems, and in particular non-convex, nonlinear problems.
When the Xpress Optimizer declares a problem to be infeasible, the tools provided with the XpressOptimizer console can be used to analyse the infeasibility, and hence to subsequently alter the model toovercome it. One important step in this respect is the ability to retrieve an irreducible infeasible set (IIS)(using the iis command). An IIS is a statement of a particular conflict in the model between a set ofconstraints and bounds, which make the problem certainly infeasible. An IIS is minimal in the sensethat if any constraint or bound of the IIS were removed from the subproblem represented by the IIS, theresulting (relaxed) subproblem would be feasible. The Xpress Optimizer also contains a tool to identifythe minimum weighted violations of constraints or bounds that would make the problem feasible(called repairinfeas).
Both iis and repairinfeas can be applied to any LP, convex QP, or convex QCQP problem, as wellas to their mixed integer counterparts. Please refer to the Xpress Optimizer and Mosel referencemanuals for more information.

10.2 Managing Infeasibility with Xpress Knitro

Xpress Knitro has three major controls which govern feasibility.
XKTR_PARAM_FEASTOL This is the relative feasibility tolerance applied to a problem.
XKTR_PARAM_FEASTOLABS This is the corresponding absolute feasibility tolerance.
XKTR_PARAM_INFEASTOL This is the tolerance for declaring a problem infeasible.

Fair Isaac Corporation Confidential and Proprietary Information 48

Handling Infeasibilities Advanced

The feasibility emphasis control, XKTR_PARAM_BAR_FEASIBLE, can be set for models on which Knitrohas encountered difficulties in finding a feasible solution. If it is set to get or get_stay, particularemphasis will be placed upon obtaining feasibility, rather than balancing progress toward feasibility andoptimality as is the default.
If one of the built-in interior point methods is used, as determined by XKTR_PARAM_ALGORITHM, thefeasibility emphasis control can force the iterates to strictly satisfy inequalities. It does not, however,require Knitro to satisfy all equality constraints at intermediate iterates.
The migration between a pure search for feasibility, and a balanced approach to feasibility andoptimality, may be further fine tuned by using the XKTR_PARAM_BAR_SWITCHRULE control. Should amodel still fail to converge to a feasible solution, the XKTR_PARAM_BAR_PENCONS control may be usedto instruct Knitro to introduce penalty breakers of its own. This option has similar behaviour to thecorresponding option in XSLP.

10.3 Managing Infeasibility with Xpress-SLP

There are two sources of infeasibility when XSLP is used
1. Infeasibility introduced by the error of the approximation, most noticeable when significant stepsare made in the linearization.
2. Infeasibility introduced by the activation of penalty breakers, where it was not otherwise possibleto make a meaningful step in the linearization.

The infeasibility induced by the former diminishes as the solution converges, provided mildassumptions regarding the continuity of the functions describing the model are satisfied. The focus ofany analysis of infeasibility in XSLP must therefore most often be on the penalty breakers (also callederror vectors).
For some problems, Xpress-SLP may terminate with a solution which is not sufficiently feasible for usein a desired application. The first controls to use to try to resolve such an issue are
XSLP_ECFTOL_A The absolute linearization feasibility tolerance is compared for each constraint inthe original, nonlinear problem to its violation by the current solution.
XSLP_ECFTOL_R The relative linearization feasibility tolerance is compared for each constraint inthe original, nonlinear problem to its violation by the current solution, relative tothe maximum absolute value of the positive and negative contributions to theconstraint.

10.4 Penalty Infeasibility Breakers in XSLP

Convergence will automatically address any errors introduced by movement within the linearization.When only small movements occur in the solution, then for differentiable functions the drift resultingfrom motion on the linearization is also limited.
However, it is not always possible to stay within the linearization and still make an improving step.XSLP is often able to resolve such situations automatically by the introduction of penalty infeasibilitybreakers. These allow the solver to violate the linearized constraints by a small amount. Such variablesare associated with large cost penalties in the linearized problems, which prevents the solution processfrom straying too far from the approximated feasible region.
Note that if penalty breakers are required, the solution process may be very sensitive to the choice ofcost penalties placed on the breakers. In most cases, XSLP’s constraint analysis will automatically

Fair Isaac Corporation Confidential and Proprietary Information 49

Handling Infeasibilities Advanced

identify appropriate penalties as needed for each row, but for some problems additional tuning mightbe required.
Xpress-SLP will attempt to force all penalty breakers to zero in the limit by associating a substantialcost with them in the objective function. Such costs will be increased repeatedly should the penaltybreaker remain non-zero over a period of time. The current penalty cost for all such variables isavailable as XSLP_CURRENTERRORCOST. The control XSLP_ERRORCOST determines the initial valuefor this cost, while the XSLP_ERRORCOSTFACTOR controls the factor by which it increases if activeerror vectors remain. The maximum value of the penalty is determined by the control
XSLP_ERRORMAXCOST. If the maximum error cost is reached, it is unlikely that XSLP will converge. It ispossible in this situation to terminate the solve, by setting bit 11 of XSLP_ALGORITHM.
Some problems may be sensitive to the initial value of XSLP_ERRORCOST. If this value is too smallrelative to the original objective in the model, feasibility will not be sufficiently strongly encouragedduring the solution process. This can cause SLP to explore highly infeasible solutions in the earlystages, since the original objective will dominate any consideration of feasibility. It is even possible inthis case for unboundedness of the linearizations to occur, although SLP is capable of automaticrecovery from such a situation.
When the initial penalty cost is too high, the penalty term will dominate the objective. This in turn willmay lead to initially low quality solutions being explored, with the attendant possibility of numericalerrors accumulating. The control XSLP_OBJTOPENALTYCOST guides the process which selects anautomatic value for XSLP_ERRORCOST, but determining such a value analytically can be difficult. Forsome difficult problems, there may be significant benefits to selecting the value directly.
Often for infeasible problems, the contribution of the individual constraints to the overall infeasibility isnon-uniform. XSLP can automatically associate a weight with each row based upon the magnitude ofthe terms in the constraint. It is both possible to refine these weights, or alternatively to allow XSLPupdate them dynamically. The latter case is called escalation, and is controlled by bit 8 of
XSLP_ALGORITHM.
Devising appropriate weights manually can be difficult, and in most cases it is preferable to leave theidentification of these values to Xpress-SLP. However if it is necessary to do, the output of XSLP mayprovide hints as to appropriate values if detailed logging is enabled. This can be turned on with
XSLP_LOG. The most important points in such output are the active error vectors at each iteration,where the most attractive constraints to modify are those which occur regularly in the log inassociation with non-zero error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 50

CHAPTER 11

Cascading

Cascading is the process of recalculating the values of SLP variables to be more consistent with eachother. The procedure involves sequencing the designated variables in order of dependence and then,starting from the current solution values, successively recalculating values for the variables, andmodifying the stored solution values as required. Normal cascading is only possible if a determining
row can be identified for each variable to be recalculated. A determining row is an equality constraintwhich uniquely determines the value of a variable in terms of other variables whose values are alreadyknown. Any variable for which there is no determining row will retain its original solution value. Defininga determining row for a column automatically makes the column into an SLP variable.
In extended MPS format, the SLPDATA record type "DR" is used to provide information aboutdetermining rows.
In the Xpress NonLinear function library, functions XSLPaddvars, XSLPloadvars, and XSLPchgvarallow the definition of a determining row for a column.
The cascading procedure is as follows:

� Produce an order of evaluation to ensure that variables are cascaded after any variables on whichthey are dependent.
� After each SLP iteration, evaluate the columns in order, updating coefficients only as required. If adetermining row cannot calculate a new value for the SLP variable (for example, because thecoefficient of the variable evaluates to zero), then the current value may be left unchanged, or(optionally) the previous value can be used instead.
� If a feedback loop is detected (that is, a determining row for a variable is dependent indirectly onthe value of the variable), the evaluation sequence is carried out in the order in which the variablesare weighted, or the order in which they are encountered if there is no explicit weighting.
� Check the step bounds, individual bounds and cascaded values for consistency. Adjust thecascaded result to ensure it remains within any explicit or implied bounds.

Normally, the solution value of a variable is exactly equal to its assumed value plus the solution value ofits delta. Occasionally, this calculation is not exact (it may vary by up to the LP feasibility tolerance) andthe difference may cause problems with the SLP solution path. This is most likely to occur in aquadratic problem when the quadratic part of the objective function contains SLP variables. XpressNonLinear can re-calculate the value of an SLP variable to be equal to its assumed value plus its delta,rather than using the solution value itself.
XSLP_CASCADE is a bitmap which determines whether cascading takes place and whether therecalculation of solution values is extended from the use of determining rows to recalculation of thesolution values for all SLP variables, based on the assumed value and the solution value of the delta.
In the following table, in the definitions under Category, error means the difference between thesolution value and the assumed value plus the delta value. Bit settings in XSLP_CASCADE are used todetermine which category of variable will have its value recalculated as follows:

Fair Isaac Corporation Confidential and Proprietary Information 51

Cascading Advanced

Bit Constant name Category
0 XSLP_CASCADE_ALL SLP variables with determining rows
1 XSLP_CASCADE_COEF_VAR Variables appearing in coefficients where the erroris greater than the feasibility tolerance
2 XSLP_CASCADE_ALL_COEF_VAR Variables appearing in coefficients where the erroris greater than 1.0E-14
3 XSLP_CASCADE_STRUCT_VAR Variables not appearing in coefficients where the er-ror is greater than the feasibility tolerance
4 XSLP_CASCADE_ALL_STRUCT_VAR Variables not appearing in coefficients where the er-ror is greater than 1.0E-14

In the presence of determining rows that include instantiated functions, SLP can attempt to group thecorresponding variables together in the cascading order. This can be achieved by setting
Bit Constant name Effect
0 XSLP_CASCADE_SECONDARY_GROUPS Create secondary order groupping DR rows with in-stantiated user functions together in the order

11.1 Determining rows and determining columns

Normally, Xpress-SLP automatically identifies if the constraint selected as determining row for avariable defines the value of the SLP variable which it determines or not. However, in certain situations,the value of a single another column determines if the determing row defines the variable or not; such acolumn is called the determining column for the variable.
This situation is typical when the determined and determining column form a bilinear term: x * y + F(Z)= 0 where y is the determined variable, Z is a set of other variables not including x or y, and F is anarbitrary function; in this case x is the determining column. These variable pairs are detectedautomatically. In case the absolute value of x is smaller than XSLP_DRCOLTOL, then variable y will notbe cascaded, instead its value will be fixed and kept at its current value until the value of x becomeslarger than the threshold.
Alternatively, the handling of variables for which a determining column has been identified can becustomized by using a callback, see XSLPsetcbdrcol.

Fair Isaac Corporation Confidential and Proprietary Information 52

CHAPTER 12

Convergence criteria

12.1 Convergence criteria

In Xpress-SLP there are two levels of convergence criteria. On the higher level, convergence is driven bythe target relative feasibility / validation control XSLP_VALIDATIONTARGET_R, and the target firstorder validation tolerance XSLP_VALIDATIONTARGET_K. These high level targets drive the traditionalSLP convergence measures, of which there are three types for testing test convergence:
� Strict convergence tests on variables
� Extended convergence tests on variables
� Convergence tests on the solution overall

12.2 Convergence overview

12.2.1 Strict Convergence

Three tolerances in XSLP are used to determine whether an individual variable has strictly converged,that is they describe the numerical behaviour of convergence in the formal, mathematical sense.
XSLP_CTOL The closure tolerance is compared against the movement of a variable relative to itsinitial step bound.
XSLP_ATOL_A The absolute delta tolerance is compared against the absolute movement of avariable.
XSLP_ATOL_R The relative delta tolerance is compared against the movement of a variable relativeto its initial value.

12.2.2 Extended Convergence

There are six tolerances in XSLP used to determine whether an individual variable has convergedaccording to the extended definition. These tests essentially measure the quality of the linearization,including the effect of changes to the nonlinear terms that contribute to a variable in the linearization.In order to be deemed to have converged in the extended sense, all terms in which it appears mustsatisfy at least one of the following:
XSLP_MTOL_A The absolute matrix tolerance is compared against the approximation error relativeonly to the absolute value of the variable.

Fair Isaac Corporation Confidential and Proprietary Information 53

Convergence criteria Advanced

XSLP_MTOL_R The relative matrix tolerance is compared against the approximation error relative tothe size of the nonlinear term before any step is taken.
XSLP_ITOL_A The absolute impact tolerance is compared against the approximation error of thenonlinear term.
XSLP_ITOL_R The relative impact tolerance is compared against the approximation error relative tothe positive and negative contributions to each constraint.
XSLP_STOL_A The absolute slack impact tolerance is compared against the approximation error,but only for non-binding constraints, which is to say those for which the marginalvalue is small (as defined by XSLP_MVTOL).
XSLP_STOL_R The relative slack impact tolerance is compared against the approximation errorrelative to the term’s contribution to its constraints, but only for non-bindingconstraints, which is to say those for which the marginal value is small (as defined by

XSLP_MVTOL).
12.2.3 Stopping Criterion

The stopping criterion requires that all variables in the problem have converged in one of the threesenses. Detailed information regarding the conditions under which XSLP has terminated can beobtained from the XSLP_STATUS solver attribute. Note that a solution is deemed to have fullyconverged if all variables have converged in the strict sense. If all variables have converged either in thestrict or extended sense, and there are no active step bounds, then the solution is called a practicalsolution. In contrast, the solution may be called converged if it is feasible and the objective is no longerimproving.
The following four control sets can be applied by XSLP to determine whether the objective is stationary,depending on the convergence control parameter XSLP_CONVERGENCEOPS:
VTOL This is the baseline static objective function tolerance, which is compared against thechange in the objective over a given number of iterations, relative to the average objectivevalue. Satisfaction of VTOL does not imply convergence of the variables.

XSLP_VCOUNT This is the number of iterations over which to apply this measure ofstatic objective convergence.
XSLP_VLIMIT The static objective function test is applied only after at least

XSLP_VLIMIT + XSLP_SBSTART XSLP iterations have taken place.
XSLP_VTOL_A This is the absolute tolerance which is compared to the range of theobjective over the last XSLP_VLIMIT iterations.
XSLP_VTOL_R This is the used for a scaled version of the absolute test whichconsiders the average size of the absolute value of the objective overthe previous XSLP_VLIMIT iterations.

OTOL This static objective function tolerance is applied when there are no unconverged variablesin active constraints, although some variables with active step bounds might remain. It iscompared to the change in the objective over a given number of iterations, relative to theaverage objective value.
XSLP_OCOUNT This is the number of iterations over which to apply this measure ofstatic objective convergence.
XSLP_OTOL_A This is the absolute tolerance which is compared to the range of theobjective over the last XSLP_OCOUNT iterations.

Fair Isaac Corporation Confidential and Proprietary Information 54

Convergence criteria Advanced

XSLP_OTOL_R This is used for a scaled version of the absolute test which considersthe average size of the absolute value of the objective over theprevious XSLP_OCOUNT iterations.
XTOL This static objective function tolerance is applied when a practical solution has been found.It is compared against the change in the objective over a given number of iterations, relativeto the average objective value.

XSLP_XCOUNT This is the number of iterations over which to apply this measure ofstatic objective convergence.
XSLP_XLIMIT This is the maximum number of iterations which can have occurredfor this static objective function test to be applied. Once this numberis exceeded, the solution is deemed to have converged if all thevariables have converged by the strict or extended criteria.
XSLP_XTOL_A This is the absolute tolerance which is compared to the range of theobjective function over the last XSLP_XLIMIT iterations.
XSLP_XTOL_R This is used for a scaled version of the absolute test which considersthe average size of the absolute value of the objective over the last

XSLP_XLIMIT iterations.
WTOL The extended convergence continuation tolerance is applied when a practical solution hasbeen found. It is compared to the change in the objective during the previous iteration.

XSLP_WCOUNT This is number of iterations over which to calculate this measure ofstatic objective convergence in the relative version of the test.
XSLP_WTOL_A This is the absolute tolerance which is compared to the change in theobjective in the previous iteration.
XSLP_WTOL_R This is used for a scaled version of the test which considers theaverage size of the absolute value of the objective over the last

XSLP_WCOUNT iterations.
12.2.4 Step Bounding

Step bounding in XSLP can be activated in two cases. It may be enabled adaptively in response tovariable oscillation, or it may be enabled by after XSLP_SBSTART iterations, by setting
XSLP_ALGORITHM appropriately. Two major controls define the behaviour of step bounds:
XSLP_SBSTART This defines the number of iterations which must occur before XSLPmay apply non-essential step bounding. When a linearization isunbounded, XSLP will introduce step bounding regardless of the valueof this control.
XSLP_DEFAULTSTEPBOUND This is the initial size of the step bounds introduced. Depending uponthe value of XSLP_ALGORITHM, XSLP may use the iterations before

XSLP_SBSTART to refine this initial value on a per variable basis.

12.3 Convergence: technical details

In the following sections we shall use the subscript 0 to refer to values used to build the linearapproximation (the assumed value) and the subscript 1 to refer to values in the solution to the linearapproximation (the actual value). We shall also use δ to indicate the change between the assumed andthe actual values, so that for example:
δX = X1 – X0.

Fair Isaac Corporation Confidential and Proprietary Information 55

Convergence criteria Advanced

The tests are described in detail later in this section. Tests are first carried out on each variable in turn,according to the following sequence:
Strict convergence criteria:

1. Closure tolerance (CTOL).This tests δX against the initial step bound of X.
2. Delta tolerance (ATOL)This tests δX against X0.

If the strict convergence tests fail for a variable, it is tested against the extended convergence criteria:
3. Matrix tolerance (MTOL)This tests whether the effect of a matrix coefficient is adequately approximated by thelinearization. It tests the error against the magnitude of the effect.
4. Impact tolerance (ITOL)This tests whether the effect of a matrix coefficient is adequately approximated by thelinearization. It tests the error against the magnitude of the contributions to the constraint.
5. Slack impact tolerance (STOL)This tests whether the effect of a matrix coefficient is adequately approximated by thelinearization and is applied only if the constraint has a negligible marginal value (that is, it isregarded as "not constraining"). The test is the same as for the impact tolerance, but thetolerance values may be different.

The three extended convergence tests are applied simultaneously to all coefficients involving thevariable, and each coefficient must pass at least one of the tests if the variable is to be regarded asconverged. If any coefficient fails the test, the variable has not converged.
Regardless of whether the variable has passed the system convergence tests or not, if a convergencecallback function has been set using XSLPsetcbitervar then it is called to allow the user todetermine the convergence status of the variable.

6. User convergence testThis test is entirely in the hands of the user and can return one of three conditions: the variablehas converged on user criteria; the variable has not converged; or the convergence status of thevariable is unchanged from that determined by the system.
Once the tests have been completed for all the variables, there are several possibilities for theconvergence status of the solution:
(a) All variables have converged on strict criteria or user criteria.
(b) All variables have converged, some on extended criteria, and there are no active step bounds (thatis, there is no delta vector which is at its bound and has a significant reduced cost).
(c) All variables have converged, some on extended criteria, and there are active step bounds (that is,there is at least one delta vector which is at its bound and has a significant reduced cost).
(d) Some variables have not converged, but these have non-constant coefficients only in constraintswhich are not active (that is, the constraints do not have a significant marginal value);
(e) Some variables have not converged, and at least one has a non-constant coefficient in an activeconstraint (that is, the constraint has a significant marginal value);

Fair Isaac Corporation Confidential and Proprietary Information 56

Convergence criteria Advanced

If (a) is true, then the solution has converged on strict convergence criteria.
If (b) is true, then the solution has converged on extended convergence criteria.
If (c) is true, then the solution is a practical solution. That is, the solution is an optimal solution to thelinearization and, within the defined tolerances, it is a solution to the original nonlinear problem. It ispossible to accept this as the solution to the nonlinear problem, or to continue optimizing to see if abetter solution can be obtained.
If (d) or (e) is true, then the solution has not converged. Nevertheless, there are tests which can beapplied to establish whether the solution can be regarded as converged, or at least whether there isbenefit in continuing with more iterations.
The first convergence test on the solution simply tests the variation in the value of the objectivefunction over a number of SLP iterations:

7. Objective function convergence test 1 (VTOL)This test measures the range of the objective function (the difference between the maximum andminimum values) over a number of SLP iterations, and compares this against the magnitude ofthe average objective function value. If the range is small, then the solution is deemed to haveconverged.
Notice that this test says nothing about the convergence of the variables. Indeed, it is almost certainthat the solution is not in any sense a practical solution to the original nonlinear problem. However,experience with a particular type of problem may show that the objective function does settle into anarrow range quickly, and is a good indicator of the ultimate value obtained. This test can therefore beused in circumstances where only an estimate of the solution value is required, not how it is made up.One example of this is where a set of schedules is being evaluated. If a quick estimate of the value ofeach schedule can be obtained, then only the most profitable or economical ones need be examinedfurther.
If the convergence status of the variables is as in (d) above, then it may be that the solution is practicaland can be regarded as converged:

8. Objective function convergence test 2 (XTOL)If there are no unconverged values in active constraints, then the inaccuracies in the linearization(at least for small errors) are not important. If a constraint is not active, then deleting theconstraint does not change the feasibility or optimality of the solution. The convergence testmeasures the range of the objective function (the difference between the maximum and minimumvalues) over a number of SLP iterations, and compares this against the magnitude of the averageobjective function value. If the range is small, then the solution is deemed to have converged.
The difference between this test and the previous one is the requirement for the convergence status ofthe variables to be (d).
Unless test 7 (VTOL) is being applied, if the convergence status of the variables is (e) then the solutionhas not converged and another SLP iteration will be carried out.
If the convergence status is (c), then the solution is practical. Because there are active step bounds inthe solution, a "better" solution would be obtained to the linearization if the step bounds were relaxed.However, the linearization becomes less accurate the larger the step bounds become, so it might notbe the case that a better solution would also be achieved for the nonlinear problem. There are twoconvergence tests which can be applied to decide whether it is worth continuing with more SLPiterations in the hope of improving the solution:

9. Objective function convergence test 3 (OTOL)If all variables have converged (even if some are converged on extended criteria only, and some ofthose have active step bounds), the solution is a practical one. If the objective function has not

Fair Isaac Corporation Confidential and Proprietary Information 57

Convergence criteria Advanced

changed significantly over the last few iterations, then it is reasonable to suppose that the solutionwill not be significantly improved by continuing with more SLP iterations. The convergence testmeasures the range of the objective function (the difference between the maximum and minimumvalues) over a number of SLP iterations, and compares this against the magnitude of the averageobjective function value. If the range is small, then the solution is deemed to have converged.
10. Extended convergence continuation test (WTOL)Once a solution satisfying (c) has been found, we have a practical solution against which tocompare solution values from later SLP iterations. As long as there has been a significantimprovement in the objective function, then it is worth continuing. If the objective function overthe last few iterations has failed to improve over the practical solution, then the practical solutionis restored and the solution is deemed to have converged.

The difference between tests 9 and 10 is that 9 (OTOL) tests for the objective function being stable,whereas 10 (WTOL) tests whether it is actually improving. In either case, if the solution is deemed tohave converged, then it has converged to a practical solution.
12.3.1 Closure tolerance (CTOL)

If an initial step bound is provided for a variable, then the closure test measures the significance of themagnitude of the delta compared to the magnitude of the initial step bound. More precisely:
Closure test:

ABS(δX) ≤ B ∗ XSLP_CTOL
where B is the initial step bound for X. If no initial step bound is given for a particular variable, theclosure test is not applied to that variable, even if automatic step bounds are applied to it during thesolution process.
If a variable passes the closure test, then it is deemed to have converged.

12.3.2 Delta tolerance (ATOL)

The simplest tests for convergence measure whether the actual value of a variable in the solution issignificantly different from the assumed value used to build the linear approximation.
The absolute test measures the significance of the magnitude of the delta; the relative test measuresthe significance of the magnitude of the delta compared to the magnitude of the assumed value. Moreprecisely:
Absolute delta test:

ABS(δX) ≤ XSLP_ATOL_A
Relative delta test:

ABS(δX) ≤ X0 ∗ XSLP_ATOL_R
If a variable passes the absolute or relative delta tests, then it is deemed to have converged.

12.3.3 Matrix tolerance (MTOL)

The matrix tests for convergence measure the linearization error in the effect of a coefficient. The
effect of a coefficient is its value multiplied by the activity of the column in which it appears.

E = V ∗ C

where V is the activity of the matrix column in which the coefficient appears, and C is the value of thecoefficient. The linearization approximates the effect of the coefficient as
E = V ∗ C0 + δX ∗ C′0

Fair Isaac Corporation Confidential and Proprietary Information 58

Convergence criteria Advanced

where V is as before, C0 is the value of the coefficient C calculated using the assumed values for thevariables and C′0 is the value of ∂C
∂X calculated using the assumed values for the variables.

The error in the effect of the coefficient is given by
δE = V1 ∗ C1 – (V1 ∗ C0 + δX ∗ C′0)

Absolute matrix test:
ABS(δE) ≤ XSLP_MTOL_A

Relative matrix test:
ABS(δE) ≤ V0 ∗ X0 ∗ XSLP_MTOL_R

If all the coefficients which involve a given variable pass the absolute or relative matrix tests, then thevariable is deemed to have converged.
12.3.4 Impact tolerance (ITOL)

The impact tests for convergence also measure the linearization error in the effect of a coefficient. Theeffect of a coefficient was described in the previous section. Whereas the matrix test compares theerror against the magnitude of the coefficient itself, the impact test compares the error against ameasure of the magnitude of the constraint in which it appears. All the elements of the constraint areexamined: for each, the contribution to the constraint is evaluated as the element multiplied by theactivity of the vector in which it appears; it is then included in a total positive contribution or total
negative contribution depending on the sign of the contribution. If the predicted effect of the coefficientis positive, it is tested against the total positive contribution; if the effect of the coefficient is negative, itis tested against the total negative contribution.
As in the matrix tests, the predicted effect of the coefficient is

V ∗ C0 + δX ∗ C′0
and the error is

δE = V1 ∗ C1 – (V1 ∗ C0 + δX ∗ C′0)
Absolute impact test:

ABS(δE) ≤ XSLP_ITOL_A
Relative impact test:

ABS(δE) ≤ T0 ∗ XSLP_ITOL_R
where

T0 = ABS(∑
v∈V

v0 ∗ c0)

c is the value of the constraint coefficient in the vector v; V is the set of vectors such that v0 ∗ c0 > 0 if Eis positive, or the set of vectors such that v0 ∗ c0 < 0 if E is negative.
If a coefficient passes the matrix test, then it is deemed to have passed the impact test as well. If allthe coefficients which involve a given variable pass the absolute or relative impact tests, then thevariable is deemed to have converged.

Fair Isaac Corporation Confidential and Proprietary Information 59

Convergence criteria Advanced

12.3.5 Slack impact tolerance (STOL)

This test is identical in form to the impact test described in the previous section, but is applied only toconstraints whose marginal value is less than XSLP_MVTOL. This allows a weaker test to be appliedwhere the constraint is not, or is almost not, binding.
Absolute slack impact test:

ABS(δE) ≤ XSLP_STOL_A
Relative slack impact test:

ABS(δE) ≤ T0 ∗ XSLP_STOL_R
where the items in the expressions are as described in the previous section, and the tests are appliedonly when

ABS(πi) < XSLP_MVTOL

where πi is the marginal value of the constraint.
If all the coefficients which involve a given variable pass the absolute or relative matrix, impact or slackimpact tests, then the variable is deemed to have converged.

12.3.6 Fixed variables due to determining columns smaller than threshold (FX)

Variables having a determining column, that are temporarily fixed due to the absolute value of thedetermining column being smaller than the threshold XSLP_DRCOLTOL are regarded as converged.
12.3.7 User-defined convergence

Regardless of what the Xpress-SLP convergence tests have said about the status of an individualvariable, it is possible for the user to set the convergence status for a variable by using a functiondefined through the XSLPsetcbitervar callback registration procedure. The callback functionreturns an integer result S which is interpreted as follows:
S < 0 mark variable as unconverged
S = 0 leave convergence status of variable unchanged
S ≥ 11 mark variable as converged with status S
Values of S in the range 1 to 10 are interpreted as meaning convergence on the standardsystem-defined criteria.
If a variable is marked by the user as converged, it is treated as if it has converged on strict criteria.

12.3.8 Static objective function (1) tolerance (VTOL)

This test does not measure convergence of individual variables, and in fact does not in any way implythat the solution has converged. However, it is sometimes useful to be able to terminate anoptimization once the objective function appears to have stabilized. One example is where a set ofpossible schedules are being evaluated and initially only a good estimate of the likely objective functionvalue is required, to eliminate the worst candidates.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)

Fair Isaac Corporation Confidential and Proprietary Information 60

Convergence criteria Advanced

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the corresponding objectivefunction value.
Absolute static objective function (3) test:

ABS(δObj) ≤ XSLP_VTOL_A
Relative static objective function (3) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_R
The static objective function (3) test is applied only after at least XSLP_VLIMIT + XSLP_SBSTARTSLP iterations have taken place. Where step bounding is being applied, this ensures that the test is notapplied until after step bounding has been introduced.
If the objective function passes the relative or absolute static objective function (3) test then thesolution will be deemed to have converged.

12.3.9 Static objective function (2) tolerance (OTOL)

This test does not measure convergence of individual variables. Instead, it measures the significanceof the changes in the objective function over recent SLP iterations. It is applied when all the variablesinteracting with active constraints (those that have a marginal value of at least XSLP_MVTOL) haveconverged. The rationale is that if the remaining unconverged variables are not involved in activeconstraints and if the objective function is not changing significantly between iterations, then thesolution is more-or-less practical.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the corresponding objectivefunction value.
Absolute static objective function (2) test:

ABS(δObj) ≤ XSLP_OTOL_A
Relative static objective function (2) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_R
If the objective function passes the relative or absolute static objective function (2) test then thesolution is deemed to have converged.

12.3.10 Static objective function (3) tolerance (XTOL)

It may happen that all the variables have converged, but some have converged on extended criteria(MTOL, ITOL or STOL) and at least one of these is at its step bound. It is therefore possible that animproved result could be obtained by taking another SLP iteration. However, if the objective functionhas already been stable for several SLP iterations, then there is less likelihood of an improved result,and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in the objective functionover recent SLP iterations. It is applied when all the variables have converged, but some have convergedon extended criteria (MTOL, ITOL or STOL) and at least one of these is at its step bound. Because all

Fair Isaac Corporation Confidential and Proprietary Information 61

Convergence criteria Advanced

the variables have converged, the solution is already converged but the fact that some variables are attheir step bound limit suggests that the objective function could be improved by going further.
The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the corresponding objectivefunction value.
Absolute static objective function (1) test:

ABS(δObj) ≤ XSLP_XTOL_A
Relative static objective function (1) test:

ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_R
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations have takenplace. After that, if all the variables have converged on strict or extended criteria, the solution isdeemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test then thesolution is deemed to have converged.

12.3.11 Extended convergence continuation tolerance (WTOL)

This test is applied after a converged solution has been found where at least one variable hasconverged on extended criteria and is at its step bound limit. As described under XTOL above, it ispossible that by continuing with additional SLP iterations, the objective function might improve. Theextended convergence continuation test measures whether any improvement is being achieved. If not,then the last converged solution will be restored and the optimization will stop.
For a maximization problem, the improvement in the objective function at the current iterationcompared to the objective function at the last converged solution is given by:

δObj = Obj – ConvergedObj

(for a minimization problem, the sign is reversed).
Absolute extended convergence continuation test:

δObj > XSLP_WTOL_A
Relative extended convergence continuation test:

δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R
A solution is deemed to have a significantly better objective function value than the converged solutionif δObj passes the relative and absolute extended convergence continuation tests.
When a solution is found which converges on extended criteria and with active step bounds, thesolution is saved and SLP optimization continues until one of the following:

� a new solution is found which converges on some other criterion, in which case the SLPoptimization stops with this new solution

Fair Isaac Corporation Confidential and Proprietary Information 62

Convergence criteria Advanced

� a new solution is found which converges on extended criteria and with active step bounds, andwhich has a significantly better objective function, in which case this is taken as the new savedsolution
� none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objective functionthan the saved solution, in which case the saved solution is restored and the SLP optimizationstops

Fair Isaac Corporation Confidential and Proprietary Information 63

CHAPTER 13

Xpress-SLP Structures

13.1 SLP Matrix Structures

Xpress-SLP augments the original matrix to include additional rows and columns to model some or allof the variables involved in nonlinear relationships, together with first-order derivatives.
The amount and type of augmentation is determined by the bit map control variable
XSLP_AUGMENTATION:
Bit 0 Minimal augmentation. All SLP variables appearing in coefficients or matrix entries areprovided with a corresponding update row and delta vector.
Bit 1 Even-handed augmentation. All nonlinear expressions are converted into terms. All SLPvariables are provided with a corresponding update row and delta vector.
Bit 2 Create penalty error vectors (+ and -) for each equality row of the original problemcontaining a nonlinear coefficient or term. This can also be implied by the setting of bit3.
Bit 3 Create penalty error vectors (+ and/or - as required) for each row of the original problemcontaining a nonlinear coefficient or term. Setting bit 3 to 1 implies the setting of bit 2 to1 even if it is not explicitly carried out.
Bit 4 Create additional penalty delta vectors to allow the solution to exceed the step boundsat a suitable penalty.
Bit 8 Implement step bounds as constraint rows.
Bit 9 Create error vectors (+ and/or - as required) for each constraining row of the originalproblem.
If Bits 0-1 are not set, then Xpress-SLP will use standard augmentation: all SLP variables (appearing incoefficients or matrix entries, or variables with non constant coefficients) are provided with acorresponding update row and delta vector.
To avoid too many levels of super- and sub- scripting, we shall use X, Y and Z as variables, F() as afunction, and R as the row name. In the matrix structure, column and row names are shown in italics.
X0 is the current estimate ("assumed value") of X. F′x(...) is the first derivative of F with respect to X.

13.1.1 Augmentation of a nonlinear coefficient

Original matrix structure

X
R F(Y ,Z)

Fair Isaac Corporation Confidential and Proprietary Information 64

Xpress-SLP Structures Advanced

Matrix structure: minimal augmentation (XSLP_AUGMENTATION=1)

X Y Z dY dZ
R F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of theindependent variables.
Two vectors and one equality constraint for each independent variable in the coefficient are created ifthey do not already exist.
The new vectors are:

� The SLP variable (e.g. Y)
� The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in theupdate row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side isthe assumed value for the SLP variable.
The entry in the original nonlinear constraint row for each independent variable is the first-order partialderivative of the implied term X ∗ F(Y ,Z), evaluated at the assumed values.
The delta variables are bounded by the current values of the corresponding step bounds.

Matrix structure: standard augmentation (XSLP_AUGMENTATION=0)

X Y Z dX dY dZ
R F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (X,R) is replaced by its evaluation using the assumed values of theindependent variables.
Two vectors and one equality constraint for each independent variable in the coefficient are created ifthey do not already exist.
The new vectors are:

� The SLP variable (e.g. Y)
� The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in theupdate row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side isthe assumed value for the SLP variable.
The entry in the original nonlinear constraint row for each independent variable is the first-order partialderivative of the implied term X ∗ F(Y ,Z), evaluated at the assumed values.
The delta variables are bounded by the current values of the corresponding step bounds.
One new vector and one new equality constraint are created for the variable containing the nonlinearcoefficient.
The new vector is:

Fair Isaac Corporation Confidential and Proprietary Information 65

Xpress-SLP Structures Advanced

� The SLP delta variable (e.g. dX)
The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in theupdate row are the +1 and -1 for the original variable and delta variable respectively. The right hand sideis the assumed value for the original variable.
The delta variable is bounded by the current values of the corresponding step bounds.

Matrix structure: even-handed augmentation (XSLP_AUGMENTATION=2)

= X Y Z dX dY dZ
R X0 ∗ F(Y0,Z0) F(Y0,Z0) X0 ∗ F′y(Y0,Z0) X0 ∗ F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The coefficient is treated as if it was the term X ∗ F(Y ,Z) and is expanded in the same way as a
nonlinear term.

13.1.2 Augmentation of a nonlinear term

Original matrix structure

=
R F(X,Y ,Z)

The column name = is a reserved name for a column which has a fixed activity of 1.0 and canconveniently be used to hold nonlinear terms, particularly those which cannot be expressed ascoefficients of variables.

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(X0,Y0,Z0) F′x(X0,Y0,Z0) F′y(X0,Y0,Z0) F′z(X0,Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The original nonlinear coefficient (=,R) is replaced by its evaluation using the assumed values of theindependent variables.
Two vectors and one equality constraint for each independent variable in the coefficient are created ifthey do not already exist.
The new vectors are:

� The SLP variable (e.g. Y)
� The SLP delta variable (e.g. dY)

The new constraint is the SLP update row (e.g. uY) and is always an equality. The only entries in theupdate row are the +1 and -1 for the SLP variable and delta variable respectively. The right hand side isthe assumed value for the SLP variable.
The entry in the original nonlinear constraint row for each independent variable is the first-order partialderivative of the term F(X,Y ,Z), evaluated at the assumed values.
The delta variables are bounded by the current values of the corresponding step bounds.

Fair Isaac Corporation Confidential and Proprietary Information 66

Xpress-SLP Structures Advanced

One new vector and one new equality constraint are created for the variable containing the nonlinearcoefficient.
The new vector is:

� The SLP delta variable (e.g. dX)
The new constraint is the SLP update row (e.g. uX) and is always an equality. The only entries in theupdate row are the +1 and -1 for the original variable and delta variable respectively. The right hand sideis the assumed value for the original variable.
The delta variable is bounded by the current values of the corresponding step bounds.
Note that if F(X,Y,Z) = X*F(Y,Z) then this translation is exactly equivalent to that for the nonlinearcoefficient described earlier.

13.1.3 Augmentation of a user-defined SLP variable

Typically, this will arise when a variable represents the result of a nonlinear function, and is required toconverge, or to be constrained by step-bounding to force convergence. In essence, it would arise from arelationship of the form
X = F(Y ,Z)

Original matrix structure

= X
R F(Y ,Z) –1

Matrix structure: all augmentations

= X Y Z dX dY dZ
R F(Y0,Z0) –1 F′y(Y0,Z0) F′z(Y0,Z0)
uX 1 –1 = X0
uY 1 –1 = Y0
uZ 1 –1 = Z0

The Y,Z structures are identical to those which would result from a nonlinear term or coefficient. The X,dX and uX structures effectively define dX as the deviation of X from X0 which can be controlled withstep bounds.
The augmented and even-handed structures include more delta vectors, and so allow for moremeasurement and control of convergence.
Type of structure Minimal Standard Even-handed
Type of variable
Variables in nonlinear coefficients Y Y Y
Variables with nonlinear coefficients N Y Y
User-defined SLP variable Y Y Y
Nonlinear term Y Y Y
Y SLP variable has a delta vector which can be measured and/or controlled forconvergence.
N SLP variable does not have a delta and cannot be measured and/or controlled forconvergence.

Fair Isaac Corporation Confidential and Proprietary Information 67

Xpress-SLP Structures Advanced

There is no mathematical difference between the augmented and even-handed structures.
The even-handed structure is more elegant because it treats all variables in an identical way. However,the original coefficients are lost, because their effect is transferred to the "=" column as a term and so itis not possible to look up the coefficient value in the matrix after the SLP solution process has finished(whether because it has converged or because it has terminated for some other reason). The values ofthe SLP variables are still accessible in the usual way.
Some of the extended convergence criteria will be less effective because the effects of the individualcoefficients may be amalgamated into one term (so, for example, the total positive and negativecontributions to a constraint are no longer available).

13.1.4 SLP penalty error vectors

Bits 2, 3 and 9 of control variable XSLP_AUGMENTATION determine whether SLP penalty error vectorsare added to constraints. Bit 9 applies penalty error vectors to all constraints; bits 2 and 3 apply themonly to constraints containing nonlinear terms. When bit 2 or bit 3 is set, two penalty error vectors areadded to each such equality constraint; when bit 3 is set, one penalty error vector is also added to eachsuch inequality constraint. The general form is as follows:

Original matrix structure

=
R F(Y ,Z)

Matrix structure with error vectors
X R+ R-

R F(Y ,Z) +1 –1
P_ERROR +Weight +Weight

For equality rows, two penalty error vectors are added. These have penalty weights in the penalty errorrow PERROR, whose total is transferred to the objective with a cost of XSLP_CURRENTERRORCOST. Forinequality rows, only one penalty error vector is added — the one corresponding to the slack is omitted.If any error vectors are used in a solution, the transfer cost from the cost penalty error row will beincreased by a factor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST.
Error vectors are ignored when calculating cascaded values.
The presence of error vectors at a non-zero level in an SLP solution normally indicates that the solutionis not self-consistent and is therefore not a solution to the nonlinear problem.
Control variable XSLP_ERRORTOL_A is a tolerance on error vectors. Any error vector with a value lessthan XSLP_ERRORTOL_A will be regarded as having a value of zero.
Bit 9 controls whether error vectors are added to all constraints. If bit 9 is set, then error vectors areadded in the same way as for the setting of bit 3, but to all constraints regardless of whether or not theyhave nonlinear coefficients.

13.2 Xpress-SLP Matrix Name Generation

Xpress-SLP adds rows and columns to the nonlinear problem in order to create a linear approximation.The new rows and columns are given names derived from the row or column to which they are relatedas follows:

Fair Isaac Corporation Confidential and Proprietary Information 68

Xpress-SLP Structures Advanced

Row or column type Control parameter containing
format

Default format

Update row XSLP_UPDATEFORMAT pU_r
Delta vector XSLP_DELTAFORMAT pD_c
Penalty delta (below step
bound)

XSLP_MINUSDELTAFORMAT pD-c
Penalty delta (above step
bound)

XSLP_PLUSDELTAFORMAT pD+c
Penalty error (below RHS) XSLP_MINUSERRORFORMAT pE-r
Penalty error (above RHS) XSLP_PLUSERRORFORMAT pE+r
Row for total of all penalty vec-
tors (error or delta)

XSLP_PENALTYROWFORMAT pPR_x
Column for standard penalty
cost (error or delta)

XSLP_PENALTYCOLFORMAT pPC_x
LO step bound formulated as a
row

XSLP_SBLOROWFORMAT pSB-c
UP step bound formulated as a
row

XSLP_SBUPROWFORMAT pSB+c
In the default formats:
p a unique prefix (one or more characters not used as the beginning of any name in theproblem).
r the original row name.
c the original column name.
x The penalty row and column vectors are suffixed with "ERR" or "DELT" (for error anddelta respectively).
Other characters appear "as is".
The format of one of these generated names can be changed by setting the corresponding controlparameter to a formatting string using standard "C"-style conventions. In these cases, the unique prefixis not available and the only obvious choices, apart from constant names, use "%s" to include theoriginal name — for example:

U_%s would create names like U_abcdefghi
U_%-8s would create names like U_abcdefgh (always truncated to 8 characters).

You can use a part of the name by using the XSLP_⁎OFFSET control parameters (such as
XSLP_UPDATEOFFSET) which will offset the start of the original name by the number of charactersindicated (so, setting XSLP_UPDATEOFFSET to 1 would produce the name U_bcdefghi).

13.3 Xpress-SLP Statistics

When a matrix is read in using XSLPreadprob, statistics on the model are produced. They should beinterpreted as described in the numbered footnotes:
Reading Problem xxx (1)
Problem Statistics

1920 (0 spare) rows (2)
899 (0 spare) structural columns (3)
6683 (3000 spare) non-zero elements (4)

Global Statistics
0 entities 0 sets 0 set members (5)

Fair Isaac Corporation Confidential and Proprietary Information 69

Xpress-SLP Structures Advanced

Xpress-SLP Statistics:
3632 coefficients (6)
14 extended variable arrays (7)
1 user functions (8)

1011 SLP variables (9)

Notes:
1. Standard output from XPRSreadprob reading the linear part of the problem
2. Number of rows declared in the ROWS section
3. Number of columns with at least one constant coefficient
4. Number of constant elements
5. Integer and SOS statistics if appropriate
6. Number of non-constant coefficients
7. Number of XVs defined
8. Number of user functions defined
9. Number of variables identified as SLP variables (interacting with a non-linear coefficient)

When the original problem is SLP-presolved prior to augmentation, the following statistics areproduced:
Xpress-SLP Presolve:

3 presolve passes (10)
247 SLP variables newly identified as fixed (11)
425 determining rows fixed (12)
32 coefficients identified as fixed (13)
58 columns fixed to zero (56 SLP variables) (14)
367 columns fixed to nonzero (360 SLP variables) (15)
139 column deltas deleted (16)
34 column bounds tightened (6 SLP variables) (17)

Notes:
10. Presolve is an iterative process. Each iteration refines the problem until no further progress ismade. The number of iterations (presolve passes) can be limited by using

XSLP_PRESOLVEPASSES

11. SLP variables which are deduced to be fixed by virtue of constraints in the model (over and aboveany which are fixed by bounds in the original problem)
12. Number of determining rows which have fixed variables and constant coefficients
13. Number of coefficients which are fixed because they are functions of constants and fixedvariables
14. Total number of columns fixed to zero (number of fixed SLP variables shown in brackets)
15. Total number of columns fixed to nonzero values (number of fixed SLP variables shown inbrackets)
16. Total number of deltas deleted because the SLP variable is fixed
17. Total number of bounds tightened by virtue of constraints in the model.

Fair Isaac Corporation Confidential and Proprietary Information 70

Xpress-SLP Structures Advanced

If any of these items is zero, it will be omitted. Unless specifically requested by setting additional bits ofcontrol XSLP_PRESOLVE, newly fixed variables and tightened bounds are not actually applied to themodel. However, they are used in the initial augmentation and during cascading to ensure that thestarting points for each iteration are within the tighter bounds.
When the original problem is augmented prior to optimization, the following statistics are produced:

Xpress-SLP Augmentation Statistics:
Columns:

754 implicit SLP variables (18)
1010 delta vectors (19)
2138 penalty error vectors (1177 positive, 961 negative) (20)

Rows:
1370 nonlinear constraints (21)
1010 update rows (22)

1 penalty error rows (23)
Coefficients:

11862 non-constant coefficients (24)

Notes:
18. SLP variables appearing only in coefficients and having no constant elements
19. Number of delta vectors created
20. Numbers of penalty error vectors
21. Number of constraints containing nonlinear terms
22. Number of update rows (equals number of delta vectors)
23. Number of rows totaling penalty vectors (error or delta)
24. Number of non-constant coefficients in the linear augmented matrix

� The total number of rows in the augmented matrix is (2) + (22) + (23)
� The total number of columns in the augmented matrix is (3) + (18) + (19) + (20) + (23)
� The total number of elements in the original matrix is (4) + (6)
� The total number of elements in the augmented matrix is (4) + (24) + (19) + 2*(20) + 2*(23)

If the matrix is read in using the XPRSloadxxx and XSLPloadxxx functions then these statistics maynot be produced. However, most of the values are accessible through Xpress NonLinear integerattributes using the XSLPgetintattrib function.

13.4 SLP Variable History

Xpress-SLP maintains a history value for each SLP variable. This value indicates the direction in whichthe variable last moved and the number of consecutive times it moved in the same direction. Allvariables start with a history value of zero.

Fair Isaac Corporation Confidential and Proprietary Information 71

Xpress-SLP Structures Advanced

Current History Change in activity of
variable

New History

0 >0 10 <0 -1>0 >0 No change unless delta vector is at its bound. If it is,then new value is Current History + 1>0 <0 -1<0 <0 No change unless delta vector is at its bound. If it is,then new value is Current History - 1<0 >0 1anything 0 No change
Tests of variable movement are based on comparison with absolute and relative (and, if set, closure)tolerances. Any movement within tolerance is regarded as zero.
If the new absolute value of History exceeds the setting of XSLP_SAMECOUNT, then the step bound isreset to a larger value (determined by XSLP_EXPAND) and History is reset as if it had been zero.
If History and the change in activity are of opposite signs, then the step bound is reset to a smallervalue (determined by XSLP_SHRINK) and History is reset as if it had been zero.
With the default settings, History will normally be in the range -1 to -3 or +1 to +3.

Fair Isaac Corporation Confidential and Proprietary Information 72

CHAPTER 14

Xpress NonLinear Formulae

Xpress NonLinear can handle formulae described in three different ways:
Character strings The formula is written exactly as it would appear in, for example, the ExtendedMPS format used for text file input.
Internal unparsed format The tokens within the formula are replaced by a{tokentype, tokenvalue} pair. The list of types and values is in the table below.
Internal parsed format The tokens are converted as in the unparsed format, but the order ischanged so that the resulting array forms a reverse-Polish execution stack for directevaluation by the system.

14.1 Parsed and unparsed formulae

All formulae input into Xpress NonLinear are parsed into a reverse-Polish execution stack. Tokens areidentified by their type and a value. The table below shows the values used in interface functions.
All formulae are provided in the interface functions as two parallel arrays:an integer array of token types;a double array of token values.
The last token type in the array should be an end-of-formula token (XSLP_EOF, which evaluates to zero).
If the value required is an integer, it should still be provided in the array of token values as a doubleprecision value.
Even if a token type requires no token value, it is best practice to initialize such values as zeros.

Fair Isaac Corporation Confidential and Proprietary Information 73

Xpress NonLinear Formulae Advanced

Type Description Value
XSLP_COL column index of matrix column.
XSLP_CON constant (double) value.
XSLP_DEL delimiter XSLP_COMMA (1) = comma (",")

XSLP_COLON (2) = colon (":")
XSLP_EOF end of formula not required: use zero
XSLP_FUN user function index of function
XSLP_IFUN internal function index of function
XSLP_LB left bracket not required: use zero
XSLP_OP operator XSLP_UMINUS (1) = unary minus ("-")

XSLP_EXPONENT (2) = exponent ("**" or "̂")
XSLP_MULTIPLY (3) = multiplication ("*")
XSLP_DIVIDE (4) = division ("/")
XSLP_PLUS (5) = addition ("+")
XSLP_MINUS (6) = subtraction ("-")

XSLP_RB right bracket not required: use zero
XSLP_VAR variable index of variable. Note that variables count from 1,so that the index of matrix column n is n + 1.
Token type XSLP_COL is used only when passing formulae into Xpress NonLinear. Any formulaerecovered from Xpress NonLinear will use the XSLP_VAR token type which always count from 1.
When a formula is passed to Xpress NonLinear in "internal unparsed format" — that is, with the formulaalready converted into tokens — the full range of token types is permitted.
When a formula is passed to Xpress NonLinear in "parsed format" — that is, in reverse Polish — thefollowing rules apply:
XSLP_DEL comma is optional.
XSLP_FUN implies a following left-bracket, which is not included explicitly.
XSLP_IFUN implies a following left-bracket, which is not included explicitly.
XSLP_LB never used.
XSLP_RB only used to terminate the list of arguments to a function.Brackets are not used in the reverse Polish representation of the formula: the order of evaluation isdetermined by the order of the items on the stack. Functions which need the brackets — for example
XSLPgetccoef — fill in brackets as required to achieve the correct evaluation order. The result maynot match the formula as originally provided.

14.2 Example of an arithmetic formula

x2 + 4y(z – 3)
Written as an unparsed formula, each token is directly transcribed as follows:

Fair Isaac Corporation Confidential and Proprietary Information 74

Xpress NonLinear Formulae Advanced

Type Value
XSLP_VAR index of x
XSLP_OP XSLP_EXPONENT
XSLP_CON 2
XSLP_OP XSLP_PLUS
XSLP_CON 4
XSLP_OP XSLP_MULTIPLY
XSLP_VAR index of y
XSLP_OP XSLP_MULTIPLY
XSLP_LB 0
XSLP_VAR index of z
XSLP_OP XSLP_MINUS
XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:
x 2 ˆ 4 y ∗ z 3 – ∗ +
and this is then transcribed as follows:
Type Value
XSLP_VAR index of x
XSLP_CON 2
XSLP_OP XSLP_EXPONENT
XSLP_CON 4
XSLP_VAR index of y
XSLP_OP XSLP_MULTIPLY
XSLP_VAR index of z
XSLP_CON 3
XSLP_OP XSLP_MINUS
XSLP_OP XSLP_MULTIPLY
XSLP_OP XSLP_PLUS
XSLP_EOF 0

Notice that the brackets used to establish the order of evaluation in the unparsed formula are notrequired in the parsed form.

14.3 Example of a formula involving a simple function

y ∗MyFunc(z, 3)
Written as an unparsed formula, each token is directly transcribed as follows:
Type Value
XSLP_VAR index of y
XSLP_OP XSLP_MULTIPLY
XSLP_FUN index of MyFunc
XSLP_LB 0
XSLP_VAR index of z
XSLP_DEL XSLP_COMMA
XSLP_CON 3
XSLP_RB 0
XSLP_EOF 0

Written as a parsed formula (in reverse Polish), an evaluation order is established first, for example:

Fair Isaac Corporation Confidential and Proprietary Information 75

Xpress NonLinear Formulae Advanced

y) 3 , z MyFunc(∗
and this is then transcribed as follows:
Type Value
XSLP_VAR index of y
XSLP_RB 0
XSLP_CON 3
XSLP_DEL XSLP_COMMA
XSLP_VAR index of z
XSLP_FUN index of MyFunc
XSLP_OP XSLP_MULTIPLY
XSLP_EOF 0

Notice that the function arguments are in reverse order, and that a right bracket is used as a delimiter toindicate the end of the argument list. The left bracket indicating the start of the argument list is impliedby the XSLP_FUN token.

Fair Isaac Corporation Confidential and Proprietary Information 76

CHAPTER 15

User Functions

15.1 Callbacks and user functions

Callbacks and user functions both provide mechanisms for connecting user-written functions toXpress NonLinear. However, they have different capabilities and are not interchangeable.
A callback is called at a specific point in the SLP optimization process (for example, at the start of eachSLP iteration). It has full access to all the problem data and can, in principle, change the values of anyitems — although not all such changes will necessarily be acted upon immediately or at all.
A user function is essentially the same as any other mathematical function, used in a formula tocalculate the current value of a coefficient. The function is called when a new value is needed; forefficiency, user functions are not usually called if the value is already known (for example, when thefunction arguments are the same as on the previous call). Therefore, there is no guarantee that a userfunction will be called at any specific point in the optimization procedure or at all.
Although a user function is normally free-standing and needs no access to problem or other data apartfrom that which it receives through its argument list, there are facilities to allow it to access theproblem and its data if required. The following limitations should be observed:

1. The function should not make use of any variable data which is not in its list of arguments;
2. The function should not change any of the problem data.

The reasons for these restrictions are as follows:
1. Xpress NonLinear determines which variables are linked to a formula by examining the list ofvariables and arguments to functions in the formula. If a function were to access and use thevalue of a variable not in this list, then incorrect relationships would be established, and incorrector incomplete derivatives would be calculated. The predicted and actual values of the coefficientwould then always be open to doubt.
2. Xpress NonLinear generally allows problem data to be changed between function calls, and alsoby callbacks called from within an Xpress NonLinear function. However, user functions are calledat various points during the optimization and no checks are generally made to see if any problemdata has changed. The effects of any such changes will therefore at best be unpredictable.

For a description of how to access the problem data from within a user function, see the section on"More complicated user functions" later in this chapter.

Fair Isaac Corporation Confidential and Proprietary Information 77

User Functions Advanced

15.2 User function interface

In its simplest form, a user function is exactly the same as any other mathematical function: it takes aset of arguments (constants or values of variables) and returns a value as its result. In this form, whichis the usual implementation, the function needs no information apart from the values of its arguments.It is possible to create more complicated functions which do use external data in some form: these arediscussed at the end of this section.
Xpress NonLinear supports two basic forms of user function. The simple form of function returns asingle value, and is treated in essentially the same way as a normal mathematical function. The generalform of function returns an array of values and may also perform automatic differentiation.
The main difference between the simple and general form of a user function is in the way the value isreturned.

� The simple function calculates and returns one value and is declared as such (for example,
double in C).

� The general function calculates an array of values. It can either return the array itself (and isdeclared as such: double ⁎), or it can return the results in one of the function arguments, inwhich case the function itself returns a single (double precision) status value (and is declared assuch: double).

15.3 User Function declaration in native languages

This section describes how to declare a user function in C, Fortran and so on. The general shape of thedeclaration is shown. Not all the possible arguments will necessarily be used by any particular function,and the actual arguments required will depend on the way the function is declared to Xpress NonLinear.
15.3.1 User function declaration in C

The XPRS_CC calling convention (equivalent to __stdcall under Windows) must be used for thefunction. For example:
type XPRS_CC MyFunc(double ⁎InputValues, int ⁎FunctionInfo,

char ⁎InputNames, char ⁎ReturnNames
double ⁎Deltas, double ⁎ReturnArray);

where type is double or double⁎ depending on the nature of the function.
In C++, the function should be declared as having a standard C-style linkage. For example, withMicrosoft C++ under Windows:

extern "C" type _declspec(dllexport) XPRS_CC
MyFunc(double ⁎InputValues, int ⁎FunctionInfo,
char ⁎InputNames, char ⁎ReturnNames
double ⁎Deltas, double ⁎ReturnArray);

If the function is placed in a library, the function name may need to be externalized. If the compiler adds"decoration" to the name of the function, the function may also need to be given an alias which is theoriginal name. For example, with the Microsoft compiler, a definition file can be used, containing thefollowing items:
EXPORTS
MyFunc=_MyFunc@12

Fair Isaac Corporation Confidential and Proprietary Information 78

User Functions Advanced

where the name after the equals sign is the original function name preceded by an underscore andfollowed by the @ sign and the number of bytes in the arguments. As all arguments in XpressNonLinear external function calls are pointers, each argument represents 4 bytes on a 32-bit platform,and 8 bytes on a 64-bit platform.
A user function can be included in the executable program which calls Xpress NonLinear. In such acase, the user function is declared as usual, but the address of the program is provided using
XSLPchguserfuncaddress or XSLPsetuserfuncaddress. The same technique can also be usedwhen the function has been loaded by the main program and, again, its address is already known.
The InputNames and ReturnNames arrays, if used, contain a sequence of character strings which arethe names, each terminated by a null character.
Any argument omitted from the declaration in Xpress NonLinear will be omitted from the function call.
Any argument declared in Xpress NonLinear as of type NULL will generally be passed as a null pointerto the program.

15.4 Simple functions and general functions

A simple function is one which returns a single value calculated from its arguments, and does notprovide derivatives. A general function returns more than one value, because it calculates an array ofresults, or because it calculates derivatives, or both.
Because of restrictions in the various types of linkage, not all types of function can be declared andused in all languages. Any limitations are described in the appropriate sections.
For simplicity, the functions will be described using only examples in C. Implementation in otherlanguages follows the same rules.

15.4.1 Simple user functions

A simple user function returns only one value and does not calculate derivatives. It therefore does notuse the ReturnNames, Deltas or ReturnArray arguments.
The full form of the declaration is:

double XPRS_CC MyFunc(double ⁎InputValues, int ⁎FunctionInfo,
char ⁎InputNames);

FunctionInfo can be omitted if the number of arguments is not required, and access to probleminformation and function objects is not required.
InputNames can be omitted if the input values are identified by position and not by name (see"Programming Techniques for User Functions" below).
The function supplies its single result as the return value of the function.
There is no provision for indicating that an error has occurred, so the function must always be able tocalculate a value.

15.4.2 General user functions returning an array of values through a reference

General user functions calculate more than one value, and the results are returned as an array. In thefirst form of a general function, the values are supplied by returning the address of an array which holdsthe values. See the notes below for restrictions on the use of this method.
The full form of the declaration is:

Fair Isaac Corporation Confidential and Proprietary Information 79

User Functions Advanced

double ⁎ XPRS_CC MyFunc(double ⁎InputValues, int ⁎FunctionInfo,
char ⁎InputNames, char ⁎ReturnNames
double ⁎Deltas);

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are beingcalculated, the number of return values is fixed, and access to problem information and functionobjects is not required. However, it is recommended that FunctionInfo is always included.
InputNames can be omitted if the input values are identified by position and not by name (see"Programming Techniques for User Functions" below).
ReturnNames can be omitted if the return values are identified by position and not by name (see"Programming Techniques for User Functions" below).
Deltasmust be omitted if no derivatives are calculated.
The function supplies the address of an array of results. This array must be available after the functionhas returned to its caller, and so is normally a static array. This may mean that the function cannot becalled from a multi-threaded optimization, or where multiple instances of the function are required,because the single copy of the array may be overwritten by another call to the function. An alternativemethod is to use a function object which refers to an array specific to the thread or problem beingoptimized.
Deltas is an array with the same number of items as InputValues. It is used as an indication ofwhich derivatives (if any) are required on a particular function call. If Deltas[i] is zero then aderivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero then aderivative for input variable i is required and must be returned. The total number of nonzero entries in
Deltas is given in FunctionInfo[2]. In particular, if it is zero, then no derivatives are required at all.
When no derivatives are calculated, the array of return values simply contains the results (in the orderspecified by ReturnNames if used).When derivatives are calculated, the array contains the values and the derivatives as follows (DVi is theith variable for which derivatives are required, which may not be the same as the ith input value):
Result1Derivative of Result1 w.r.t. DV1Derivative of Result1 w.r.t. DV2
...Derivative of Result1 w.r.t. DVn
Result2Derivative of Result2 w.r.t. DV1Derivative of Result2 w.r.t. DV2
...Derivative of Result2 w.r.t. DVn
...Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.
15.4.3 General user functions returning an array of values through an argument

General user functions calculate more than one value, and the results are returned as an array. In thesecond form of a general function, the values are supplied by returning the values in an array providedas an argument to the function by the calling program. See the notes below for restrictions on the useof this method.
The full form of the declaration is:

double XPRS_CC MyFunc(double ⁎InputValues, int ⁎FunctionInfo,
char ⁎InputNames, char ⁎ReturnNames
double ⁎Deltas, double ⁎ReturnArray);

Fair Isaac Corporation Confidential and Proprietary Information 80

User Functions Advanced

FunctionInfo can be omitted if the number of arguments is not required, no derivatives are beingcalculated, the number of return values is fixed, and access to problem information and functionobjects is not required. However, it is recommended that FunctionInfo is always included.
InputNames can be omitted if the input values are identified by position and not by name (see"Programming Techniques for User Functions" below).
ReturnNames can be omitted if the return values are identified by position and not by name (see"Programming Techniques for User Functions" below).
Deltasmust be omitted if no derivatives are calculated.
The function must supply the results in the array ReturnArray. This array is guaranteed to be largeenough to hold all the values requested by the calling program. No guarantee is given that the resultswill be retained between function calls.
Deltas is an array with the same number of items as InputValues. It is used as an indication ofwhich derivatives (if any) are required on a particular function call. If Deltas[i] is zero then aderivative for input variable i is not required and must not be returned. If Deltas[i] is nonzero then aderivative for input variable i is required and must be returned. The total number of nonzero entries in
Deltas is given in FunctionInfo[2]. In particular, if it is zero, then no derivatives are required at all.
When no derivatives are calculated, the array of return values simply contains the results (in the orderspecified by ReturnNames if used).When derivatives are calculated, the array contains the values and the derivatives as follows (DVi is theith variable for which derivatives are required, which may not be the same as the ith input value):
Result1Derivative of Result1 w.r.t. DV1Derivative of Result1 w.r.t. DV2
...Derivative of Result1 w.r.t. DVn
Result2Derivative of Result2 w.r.t. DV1Derivative of Result2 w.r.t. DV2
...Derivative of Result2 w.r.t. DVn
...Derivative of Resultm w.r.t. DVn

It is therefore important to check whether derivatives are required and, if so, how many.
The return value of the function is a status code indicating whether the function has completednormally. Possible values are:
0 No errors: the function has completed normally.
1 The function has encountered an error. This will terminate the optimization.
-1 The calling function must estimate the function value from the last set of values calculated.This will cause an error if no values are available.

15.5 Programming Techniques for User Functions

This section is principally concerned with the programming of large or complicated user functions,perhaps taking a potentially large number of input values and calculating a large number of results.However, some of the issues raised are also applicable to simpler functions.
The first part describes in more detail some of the possible arguments to the function. The remainderof the section looks at function instances, function objects and direct calls to user functions.

Fair Isaac Corporation Confidential and Proprietary Information 81

User Functions Advanced

15.5.1 Deltas

The Deltas array has the same dimension as InputValues and is used to indicate which of the inputvariables should be used to calculate derivatives. If Deltas[i] is zero, then no derivative should bereturned for input variable i. If Deltas[i] is nonzero, then a derivative is required for input variable i.The value of Deltas[i] can be used as a suggested perturbation for numerical differentiation (anegative sign indicates that if a one-sided derivative is calculated, then a backward one is preferred). Ifderivatives are calculated analytically, or without requiring a specific perturbation, then Deltas can beinterpreted simply as an array of flags indicating which derivatives are required.
15.5.2 Return values and ReturnArray

The ReturnArray array is provided for those user functions which return more than one value, eitherbecause they do calculate more than one result, or because they also calculate derivatives. Thefunction must either return the address of an array which holds the values, or pass the values to thecalling program through the ReturnArray array.
The total number of values returned depends on whether derivatives are being calculated. TheFunctionInfo array holds details of the number of input values supplied, the number of return valuesrequired (nRet) and the number of sets derivatives required (nDeriv). The total number of values (andhence the minimum size of the array) is nRet ∗ (nDeriv + 1). Xpress NonLinear guarantees that
ReturnArray will be large enough to hold the total number of values requested.
A function which calculates and returns a single value can use the ReturnArray array provided thatthe declarations of the function in Xpress NonLinear and in the native language both include theappropriate argument definition.
functions which use the ReturnArray array must also return a status code as their return value. Zerois the normal return value. A value of 1 or greater is an error code which will cause any formulaevaluation to stop and will normally interrupt any optimization or other procedure. A value of -1 asksXpress NonLinear to estimate the function values from the last calculation of the values and partialderivatives. This will produce an error if there is no such set of values.

15.5.3 Returning Derivatives

A multi-valued function which does not calculate its own derivatives will return its results as aone-dimensional array.
As already described, when derivatives are calculated as well, the order is changed, so that the requiredderivatives follow the value for each result. That is, the order becomes:
A, ∂A

∂X1 , ∂A
∂X2 , ... ∂A∂Xn

, B, ∂B
∂X1 , ∂B

∂X2 , ... ∂B∂Xn
, ... ∂Z∂Xnwhere A, B, Z are the return values, and X1, X2, Xn, are the input (independent) variables (in order) forwhich derivatives have been requested.

Not all calls to a user function necessarily require derivatives to be calculated. Check FunctionInfofor the number of derivatives required (it will be zero if only a value calculation is needed), and Deltasfor the indications as to which independent variables are required to produce derivatives. XpressNonLinear will not ask for, nor will it expect to receive, derivatives for function arguments which areactually constant in a particular problem. A function which provides uncalled-for derivatives will causeerrors in subsequent calculations and may cause other unexpected side-effects if it stores valuesoutside the expected boundaries of the return array.
15.5.4 Function Instances

Xpress NonLinear defines an instance of a user function to be a unique combination of function andarguments. For functions which return an array of values, the specific return argument is ignored whendetermining instances. Thus, given the following formulae:

Fair Isaac Corporation Confidential and Proprietary Information 82

User Functions Advanced

f(x) + f(y) + g(x, y : 1)
f(y) ∗ f(x) ∗ g(x, y : 2)
f(z)the following instances are created:

f(x)
f(y)
f(z)
g(x, y)(A function reference of the form g(x, y : n) means that g is a multi-valued function of x and y, and wewant the nth return value.)
Xpress NonLinear regards as complicated any user function which returns more than one value, whichuses input or return names, or which calculates its own derivatives. All complicated functions give riseto function instances, so that each function is called only once for each distinct combination ofarguments.
Functions which are not regarded as complicated are normally called each time a value is required. Afunction of this type can still be made to generate instances by defining its ExeType as creatinginstances (set bit 9 when using the normal library functions, or use the "I" suffix when using file-basedinput through XSLPreadprob or when using SLPDATA in Mosel).
Note that conditional re-evaluation of the function is only possible if it generates function instances.
Using function instances can improve the performance of a problem, because the function is calledonly once for each combination of arguments, and is not re-evaluated if the values have not changedsignificantly. If the function is computationally intensive, the improvement can be significant.
There are reasons for not wanting to use function instances:

� When the function is fast. It may be as fast to recalculate the value as to work out if evaluation isrequired.
� When the function is discontinuous. Small changes are estimated by using derivatives. Thesebehave badly across a discontinuity and so it is usually better to evaluate the derivative of aformula by using the whole formula, rather than to calculate it from estimates of the derivatives ofeach term.
� Function instances do use more memory. Each instance holds a full copy of the last input andoutput values, and a full set of first-order derivatives. However, the only time when functioninstances are optional is when there is only one return value, so the extra space is not normallysignificant.

15.6 Function Derivatives

Xpress NonLinear normally expects to obtain a set of partial derivatives from a user function at aparticular base-point and then to use them as required, depending on the evaluation settings for thevarious functions. If for any reason this is not appropriate, then the integer control parameter
XSLP_EVALUATE can be set to 1, which will force re-evaluation every time.A function instance is not re-evaluated if all of its arguments are unchanged.A simple function which does not have a function instance is evaluated every time.
If XSLP_EVALUATE is not set, then it is still possible to by-pass the re-evaluation of a function if thevalues have not changed significantly since the last evaluation. If the input values to a function have allconverged to within their strict convergence tolerance (CTOL, ATOL_A, ATOL_R), and bit 4 of
XSLP_FUNCEVAL is set to 1, then the existing values and derivatives will continue to be used. At theoption of the user, an individual function, or all functions, can be re-evaluated in this way or at each SLPiteration. If a function is not re-evaluated, then all the required values will be calculated from the base

Fair Isaac Corporation Confidential and Proprietary Information 83

User Functions Advanced

point and the partial derivatives; the input and return values used in making the original functioncalculation are unchanged.
Bits 3-5 of integer control parameter XSLP_FUNCEVAL determine the nature of function evaluations.The meaning of each bit is as follows:
Bit 3 evaluate functions whenever independent variables change.
Bit 4 evaluate functions when independent variables change outside tolerances.
Bit 5 apply evaluation mode to all functions.
If bits 3-4 are zero, then the settings for the individual functions are used.If bit 5 is zero, then the settings in bits 3-4 apply only to functions which do not have their own specificevaluation modes set.
Examples:

Bits 3-5 = 1 (set bit 3) Evaluate functions whenever their input arguments (independent variables)change, unless the functions already have their own evaluation options set.
Bits 3-5 = 5 (set bits 3 and 5) Evaluate all functions whenever their input arguments (independentvariables) change.
Bits 3-5 = 6 (set bits 4 and 5) Evaluate functions whenever input arguments (independent variables)change outside tolerance. Use existing calculation to estimate values otherwise.
Bits 6-8 of integer control parameter XSLP_FUNCEVAL determine the nature of derivative calculations.The meaning of each bit is as follows:
Bit 6 tangential derivatives.
Bit 7 forward derivatives.
Bit 8 apply evaluation mode to all functions.
If bits 6-7 are zero, then the settings for the individual functions are used.If bit 8 is zero, then the settings in bits 6-7 apply only to functions which do not have their own specificderivative calculation modes set.
Examples:

Bits 6-8 = 1 (set bit 6) Use tangential derivatives for all functions which do not already have their ownderivative options set.
Bits 6-8 = 5 (set bits 6 and 8) Use tangential derivatives for all functions.
Bits 6-8 = 6 (set bits 7 and 8) Use forward derivatives for all functions.
The following constants are provided for setting these bits:
Setting bit 3 XSLP_RECALCSetting bit 4 XSLP_TOLCALCSetting bit 5 XSLP_ALLCALCSSetting bit 6 XSLP_2DERIVATIVESetting bit 7 XSLP_1DERIVATIVESetting bit 8 XSLP_ALLDERIVATIVES

Fair Isaac Corporation Confidential and Proprietary Information 84

User Functions Advanced

A function can make its own determination of whether to re-evaluate. If the function has alreadycalculated and returned a full set of values and partial derivatives, then it can request Xpress NonLinearto estimate the values required from those already provided.
The function must be defined as using the ReturnArray argument, so that the return value from thefunction itself is a double precision status value as follows:
0 normal return. The function has calculated the values and they are in ReturnArray.
1 error return. The function has encountered an unrecoverable error. The values in

ReturnArray are ignored and the optimization will normally terminate.
-1 no calculation. Xpress NonLinear should recalculate the values from the previous results. Thevalues in ReturnArray are ignored.

15.6.1 Analytic Derivatives of Instantiated User Functions not Returning their own Deriva-
tives

When analytical derivatives are used, SLP will calculate approximated derivatives using finitedifferences for instantiated functions and use these values when deriving analytical derivatives.Functions returning multiple arguments will always be instantiated, otherwise functions can be forcedto be instantiated on a per function basis.

Fair Isaac Corporation Confidential and Proprietary Information 85

CHAPTER 16

Management of zero placeholder entries

16.1 The augmented matrix structure

During the augmentation process, Xpress-SLP builds additional matrix structure to represent the linearapproximation of the nonlinear constraints within the problem (see Xpress-SLP Structures). In effect, itadds a generic structure which approximates the effect of changes to variables in nonlinearexpressions, over and above that which would apply if the variables were simply replaced by theircurrent values.
As a very simple example, consider the nonlinear constraint (R1, say)
X ∗ Y ≤ 10
The variables X and Y are replaced by X0 + δX and Y0 + δY respectively, where X0 and Y0 are the valuesof X and Y at which the approximation will be made.
The original constraint is therefore(X0 + δX) ∗ (Y0 + δY) ≤ 10
Expanding this into individual terms, we have
X0 ∗ Y0 + X0 ∗ δY + Y0 ∗ δX + δX ∗ δY ≤ 10
The first term is constant, the next two terms are linear in δY and δX respectively, and the last term isnonlinear.
The augmented structure deletes the nonlinear term, so that the remaining structure is a linearapproximation to the original constraint. The justification for doing this is that if δX or δY (or both) aresmall, then the error involved in ignoring the term is also small.
The resulting matrix structure has entries of Y0 in the delta variable δX and X0 in the delta variable δY.The constant entry X0 ∗ Y0 is placed in the special "equals" column which has a fixed activity of 1. Allthese entries are updated at each SLP iteration as the solution process proceeds and the problem islinearized at a new point. The positions of these entries – (R1, δX), (R1, δY) and (R1, =) – are known as
placeholders.

16.2 Derivatives and zero derivatives

At each SLP iteration, the values of the placeholders are re-calculated. In the example in the previoussection, the values X0 in the delta variable δY and Y0 in the delta variable δX were effectivelydetermined by analytic methods – that is, we differentiated the original formula to determine whatvalues would be required in the placeholders.
In general, analytic differentiation may not be possible: the formula may contain functions whichcannot be differentiated (because, for example, they are not smooth or not continuous), or for whichthe analytic derivatives are not known (because, for example, they are functions providing values from

Fair Isaac Corporation Confidential and Proprietary Information 86

Management of zero placeholder entries Advanced

"black boxes" such as databases or simulators). In such cases, Xpress-SLP approximates thedifferentiation process by numerical methods. The example in the previous section would haveapproximate derivatives calculated as follows:
The current value of X (X0) is perturbed by a small amount (dX), and the value of the formula isrecalculated in each case.
fd = (X0 – dX) ∗ Y0
fu = (X0 + dX) ∗ Y0
derivative = (fu – fd)/(2 ∗ dX)
In this particular example, the value obtained by numerical methods is the same as the analyticderivative. For more complex functions, there may be a slight difference, depending on the magnitudeof dX.
This derivative represents the effect on the constraint of a change in the value of X. Obviously, if Ychanges as well, then the combined effect will not be fully represented although, in general, it will bedirectionally correct.
The problem comes when Y0 is zero. In such a case, the derivative is calculated as zero, meaning thatchanging X has no effect on the value of the formula. This can impact in one of two ways: either thevalue of X never changes because there is no incentive to do so, or it changes by unreasonably largeamounts because there is no effect from doing so. If X and Y are linked in some other way, so that Ybecomes nonzero when X changes, the approximation using zero as the derivative can cause theoptimization process to behave badly.
Xpress-SLP tries to avoid the problem of zero derivatives by using small nonzero values for variableswhich are in fact zero. In most cases this gives a small nonzero value for the derivative, and hence forthe placeholder entry. The model then contains some effect for the change in a variable, even ifinstantaneously the effect is zero.
The same principle is applied to analytic derivatives, so that the values obtained by either method arebroadly similar.

16.3 Placeholder management

The default action of Xpress-SLP is to retain all the calculated values for all the placeholder entries.This includes values which would be zero without the special handling described in the previoussection. We will call such values "zero placeholders".
Although retaining all the values gives the best chance of finding a good optimum, the presence of alarge dense area of small values often gives rise to considerable numerical instability which adverselyaffects the optimization process. Xpress-SLP therefore offers a way of deleting small values which isless likely to affect the final outcome whilst improving numerical stability.
Most of the candidate placeholders are in the delta variables (represented by the δX and δY variablesabove). Various criteria can be selected for deletion of zero placeholder entries without affecting thevalidity of the basis (and so making the next SLP iteration more costly in time and stability). The criteriaare selected using the control parameter XSLP_ZEROCRITERION as follows:

� Bit 0 (=1) Remove placeholders in nonbasic SLP variablesThis criterion applies to placeholders which are in the SLP variable (not the delta). Any value canbe deleted from a nonbasic variable without upsetting the basis, so all eligible zero placeholderscan be deleted.
� Bit 1 (=2) Remove placeholders in nonbasic delta variablesAny value can be deleted from a nonbasic variable without upsetting the basis, so all eligible zeroplaceholders can be deleted.

Fair Isaac Corporation Confidential and Proprietary Information 87

Management of zero placeholder entries Advanced

� Bit 2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasicIf the update row is nonbasic, then generally the basic SLP variable can be pivoted in the updaterow, so the basis is still valid if other entries are deleted. The entry in the update row is always 1.0and will never be deleted.
� Bit 3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic and thecorresponding SLP variable is nonbasicIf the delta is basic and the corresponding SLP variable is nonbasic, then the delta will pivot in theupdate row (the delta and the SLP variable are the only two variables in the update row), so thebasis is still valid if other entries are deleted. The entry in the update row is always -1.0 and willnever be deleted.
� Bit 4 (=16) Remove placeholders in a basic delta variable if the determining row for thecorresponding SLP variable is nonbasicIf the delta variable is basic and the determining row for the corresponding SLP variable isnonbasic then it is generally possible (although not 100% guaranteed) to pivot the delta variable inthe determining row. so the basis is still valid if other entries are deleted. The entry in thedetermining row is never deleted even if it is otherwise eligible.

The following constants are provided for setting these bits:
Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVARSetting bit 1 XSLP_ZEROCRTIERION_NBDELTASetting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROWSetting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROWSetting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROW

There are two additional control parameters used in this procedure:
� XSLP_ZEROCRITERIONSTARTThis is the first SLP iteration at which zero placeholders will be examined for eligibility. Use of thisparameter allows a balance to be made between optimality and numerical stability.
� XSLP_ZEROCRITERIONCOUNTThis is the number of consecutive SLP iterations that a placeholder is a zero placeholder before itis deleted. So, if in the earlier example XSLP_ZEROCRITERIONCOUNT is 2, the entry in the deltavariable dX will be deleted only if Y was also zero on the previous SLP iteration.

Regardless of the basis status of a variable, its delta, update row and determining row, if a zeroplaceholder was deleted on the previous SLP iteration, it will always be deleted in the current SLPiteration (keeping a zero matrix entry at zero does not upset the basis).
If the optimization method is barrier, or the basis is not being used, then the bit settings of
XSLP_ZEROCRITERION are not used as such: if XSLP_ZEROCRITERION is nonzero, all zeroplaceholders will be deleted subject to XSLP_ZEROCRITERIONCOUNT and
XSLP_ZEROCRITERIONSTART.

Fair Isaac Corporation Confidential and Proprietary Information 88

CHAPTER 17

Special Types of Problem

17.1 Nonlinear objectives

Xpress NonLinear works with nonlinear constraints. If a nonlinear objective is required (except for thespecial case of a quadratic objective — see below) then the objective should be provided using aconstraint in the problem. For example, to optimize f(x) where f is a nonlinear function and x is a setof one or more variables, create the constraint
f(x) – X = 0

where X is a new variable, and then optimize X.
In general, X should be made a free variable, so that the problem does not converge prematurely on thebasis of an unchanging objective function. It is generally important that the objective is not artificiallyconstrained (for example, by bounding X) because this can distort the solution process. Also, as suchan objective transfer row is not a real constraint, no error vectors should be added (row can beenforced); feasibility should be provided by the transfer variable X being free.

17.2 Convex Quadratic Programming

Convex quadratic programming (QP) is a special case of nonlinear programming where the constraintsare linear but the objective is quadratic (that is, it contains only terms which are constant, variablesmultiplied by a constant, or products of two variables multiplied by a constant) and convex (convexity ischecked by the Xpress Optimizer). It is possible to solve convex quadratic problems using SLP, but it isnot usually the best way. The reason is that the solution to a convex QP problem is typically not at avertex. In SLP a non-vertex solution is achieved by applying step bounds to create additionalconstraints which surround the solution point, so that ultimately the solution has been obtained withinsuitable tolerances. Because of the nature of the problem, successive solutions will often swing fromone step bound to the other; in such circumstances, the step bounds are reduced on each SLP iterationbut it will still take a long time before convergence. In addition, unless the linear approximation isadequately constrained, it will be unbounded because the linear approximation will not recognize thechange in direction of the relationship with the derivative as the variable passes through a stationarypoint. The easiest way to ensure that the linear problem is constrained is to provide realistic upper andlower bounds on all variables.
In Xpress NonLinear, convex quadratic problems can be solved using the quadratic optimizer within theXpress optimizer package. For pure QP (or MIQP) problems, therefore, SLP is not required. However,the SLP algorithm can be used together with QP to solve problems with a quadratic objective and alsononlinear constraints. The constraints are handled using the normal SLP techniques; the objective ishandled by the QP optimizer. If the objective is not convex (not semi-definite), the QP optimizer may notgive a solution (with default settings, it will produce an error message); SLP will find a solution but — asalways — it may be a local optimum.

Fair Isaac Corporation Confidential and Proprietary Information 89

Special Types of Problem Advanced

If a QP problem is to be solved, then the quadratic component should be input in the normal way (using
QMATRIX or QUADOBJ in MPS file format, or the library functions XPRSloadqp or XPRSloadqglobal).Xpress NonLinear will then automatically use the QP optimizer. If the problem is to be solved using theSLP routines throughout, then the objective should be provided via a constraint as described in theprevious section.
This applies to quadratically constrained (QCQP and MIQCQP) problems as well.
For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP problems,please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

17.3 Mixed Integer Nonlinear Programming

Mixed Integer Non-Linear Programming (MINLP) is the application of mixed integer techniques to thesolution of problems including non-linear relationships. Xpress NonLinear offers a set of componentsto implement MINLP using Mixed Integer Successive Linear Programming (MISLP).
17.3.1 Mixed Integer SLP

The mixed integer successive linear programming (MISLP) solver is a generalization of the traditionalbranch and bound procedure to nonlinear programming. The MIP engine is used to control thebranch-and-bound algorithm, with each node being evaluated using SLP. MIP then compares the SLPsolutions at each node to decide which node to explore next, and to decide when an integer feasibleand ultimately optimal solution have been obtained.
MISLP, also known as SLP within MIP, offers nonlinear specific root heuristics controlled by control
XSLP_HEURSTRATEGY.
Other generic heuristics are controlled by the respective XPRS heuristics controls.
The branch and bound tree exploration is executed in parallel. Use the XPRS control MIPTHREADS tolimit the number of threads used.
Normally, the relaxed problem is solved first, using XSLPminim or XSLPmaxim with the -l flag toignore the integer elements of the problem. It is possible to go straight into the XSLPglobal routineand allow it to do the initial SLP optimization as well. In that case, ensure that the control parameter
XSLP_OBJSENSE is set to +1 (minimization) or -1 (maximization) before calling XSLPglobal.
The actual algorithm employed is controlled by a number of control parameters, as well as offering thepossibility of direct user interaction through call-backs at key points in the solution process.

17.3.2 Heuristics for Mixed Integer SLP

For hard MINLP problems, or where a solution must quickly be generated, the root heuristics of MISLPcan be executed as stand alone methods. These approaches can be used by changing the value of thecontrol parameter XSLP_MIPALGORITHM.
there are two MISLP heuristics:

1. MIP within SLP. In this, each SLP iteration is optimized using MIP to obtain an integer optimalsolution to the linear approximation of the original problem. SLP then compares this MIP solutionto the MIP solution of the previous SLP iteration and determines convergence based on thedifferences between the successive MIP solutions.
2. SLP then MIP. In this, SLP is used to find a converged solution to the relaxed problem. Theresulting linearization is then fixed (i.e. the base point and the partial derivatives do not change)

Fair Isaac Corporation Confidential and Proprietary Information 90

Special Types of Problem Advanced

and MIP is run to find an integer optimum. SLP is then run again to find a converged solution tothe original problem with these integer settings.
The approach described in (1) seems potentially dangerous, in that changes in the integer variablescould have disproportionate effects on the solution and on the values of the SLP variables. There arealso question-marks over the use of step-bounding to control convergence, particularly if any of theinteger variables are also SLP variables.
The approach described in (2) has the big advantage that MIP is working on a linear problem and socan take advantage of all of the special attributes of such a problem. This means that the solution timeis likely to be much faster than the alternatives. However, if the real problem is significantly non-linear,the integer solution to the initial SLP solution may not be a good integer solution to the original problemand so a false optimum may occur.

17.3.3 Fixing or relaxing the values of the SLP variables

The solution process may involve step-bounding to obtain the converged solution. Some MIP solutionstrategies may want to fix the values of some of the SLP variables before moving on to the MIP part ofthe process, or they may want to allow the child nodes more freedom than would be allowed by the finalsettings of the step bounds. Control parameters XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDSand XSLP_MIPRELAXSTEPBOUNDS can be used to free, or fix to zero, various categories of stepbounds, thus effectively freeing the SLP variables or fixing them to their values in the initial solution.
At each node, step bounds may again be fixed to zero or relaxed or left in the same state as in thesolution to the parent node.
XSLP_MIPALGORITHM uses bits 2-3 (for the root node) and 4-5 (for other nodes) to determine whichstep bounds are fixed to zero (thus fixing the values of the corresponding variables) or freed (thusallowing the variables to change, possibly beyond the point they were restricted to in the parent node).Set bit 2 (4) of XSLP_MIPALGORITHM to implement relaxation of defined categories of step bounds asdetermined by XSLP_MIPRELAXSTEPBOUNDS at the root node (at each node).Set bit 3 (5) of XSLP_MIPALGORITHM to implement fixing of defined categories of step bounds asdetermined by XSLP_MIPFIXSTEPBOUNDS at the root node (at each node).
Alternatively, specific actions on setting bounds can be carried out by the user callback defined by
XSLPsetcbprenode.
The default setting of XSLP_MIPALGORITHM is 17 which relaxes step bounds at all nodes except theroot node. The step bounds from the initial SLP optimization are retained for the root node.
XSLP_MIPRELAXSTEPBOUNDS and XSLP_MIPFIXSTEPBOUNDS are bitmaps which determine whichcategories of SLP variables are processed.
Bit 1 Process SLP variables which do not appear in coefficients but which do have coefficients(constant or variable) in the original problem.
Bit 2 Process SLP variables which have coefficients (constant or variable) in the originalproblem.
Bit 3 Process SLP variables which appear in coefficients but which do not have coefficients(constant or variable) in the original problem.
Bit 4 Process SLP variables which appear in coefficients.
In most cases, the default settings (XSLP_MIPFIXSTEPBOUNDS=0,
XSLP_MIPRELAXSTEPBOUNDS=15) are appropriate.

Fair Isaac Corporation Confidential and Proprietary Information 91

Special Types of Problem Advanced

17.3.4 Iterating at each node

Any number of SLP iterations can be carried out at each node. The maximum number is set by controlparameter XSLP_MIPITERLIMIT and is activated by XSLP_MIPALGORITHM. The significant values for
XSLP_MIPITERLIMIT are:
0 Perform an LP optimization with the current linearization. This means that, subject to the stepbounds, the SLP variables can take on other values, but the coefficients are not updated.
1 As for 0, but the model is updated after each iteration, so that each node starts with a newlinearization based on the solution of its parent.
n>1 Perform up to n SLP iterations, but stop when a termination criterion is satisfied. If no othercriteria are set, the SLP will terminate on XSLP_ITERLIMIT or XSLP_MIPITERLIMITiterations, or when the SLP converges.
After the last MIP node has been evaluated and the MIP procedure has terminated, the final solutioncan be re-optimized using SLP to obtain a converged solution. This is only necessary if the individualnodes are being terminated on a criterion other than SLP convergence.

17.3.5 Termination criteria at each node

Because the intention at each node is to get a reasonably good estimate for the SLP objective functionrather than to obtain a fully converged solution (which is only required at the optimum), it may bepossible to set looser but practical termination criteria. The following are provided:
Testing for movement of the objective functionThis functions in a similar way to the extended convergence criteria for ordinary SLP convergence, butdoes not require the SLP variables to have converged in any way. The test is applied once stepbounding has been applied (or XSLP_SBSTART SLP iterations have taken place if step bounding is notbeing used). The node will be terminated at the current iteration if the range of the objective functionvalues over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A or within
XSLP_MIPOTOL_R ∗ OBJ where OBJ is the average value of the objective function over those iterations.
Related control parameters:
XSLP_MIPOTOL_A Absolute tolerance
XSLP_MIPOTOL_R Relative tolerance
XSLP_MIPOCOUNT Number of SLP iterations over which the movement is measured

Testing the objective function against a cutoffIf the objective function is worse by a defined amount than the best integer solution obtained so far,then the SLP will be terminated (and the node will be cut off). The node will be cut off at the current SLPiteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLP iterations are all worse thanthe best obtained so far, and the difference is greater than XSLP_MIPCUTOFF_A and
XSLP_MIPCUTOFF_R ∗ OBJ where OBJ is the best integer solution obtained so far.
Related control parameters:
XSLP_MIPCUTOFF_A Absolute amount by which the objective function is worse
XSLP_MIPCUTOFF_R Relative amount by which the objective function is worse
XSLP_MIPCUTOFFCOUNT Number of SLP iterations checked
XSLP_MIPCUTOFFLIMIT Number of SLP iterations before which the cutoff takes effect

17.3.6 Callbacks

User callbacks are provided as follows:

Fair Isaac Corporation Confidential and Proprietary Information 92

Special Types of Problem Advanced

XSLPsetcbintsol(XSLPprob Prob,
int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject),
void ⁎Object);

UserFunc is called when an integer solution has been obtained. The return value is ignored.
XSLPsetcboptnode(XSLPprob Prob,

int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called when an optimal solution is obtained at a node.If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then furtherprocessing of the node will be terminated (it is declared infeasible).
XSLPsetcbprenode(XSLPprob Prob,

int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called at the beginning of each node after the SLP problem has been set up but beforeany SLP iterations have taken place.If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then the node willbe declared infeasible and cut off. In particular, the SLP optimization at the node will not be performed.
XSLPsetcbslpnode(XSLPprob Prob,

int (⁎UserFunc)(XSLPprob myProb, void ⁎myObject, int ⁎feas),
void ⁎Object);

UserFunc is called after each SLP iteration at each node, after the SLP iteration, and after theconvergence and termination criteria have been tested.If the feasibility flag ⁎feas is set nonzero or if the function returns a nonzero value, then the node willbe declared infeasible and cut off.

17.4 Integer and semi-continuous delta variables

Functions implementing piecewise linear expressions often lead to local stalling due to the partialderivatives not capturing the true nature of the behaviour of the function. Such functions are oftenimplemented as user functions or expressions using the abs function. To provide the Xpress with abetter way of evaluating such expressions, it is possible to mark variables (typically the keydependencies of the expression) as having a semi-continuous delta variable with a minimumperturbation size associated, which means the value of any expression that involves this variable isexpected to meaningfully change if the variable’s value in the current solution is changed by at least ofthe semi-continuous value of the delta. If a minimum meaningful perturbation is not known, thevariable’s delta may be set up to being of type explore, when SLP will trial several values up to theprovided maximum in case of zero partials are detected. Using exploration deltas may significantlyincrease the number the formulas the variable is used in are evaluated.
It is important to note that the value with a semi-continuous delta will still be allowed to take any valueand make arbitrary steps between iterations, the extra information of the delta variable is solely used asa means of better evaluating the effect of change per variable.
User functions that can only be evaluated at given values (e.g. lookup tables or simulations over integerinput) may be modelled with variables with an integer delta variable. If a variable’s delta variable isflagged as being integer, with a step value of ’delta’, then assuming the variable has an initial value of’x0’, the possible values of the variable are ’x0 + i * delta’ where ’i’ is an integer number. If no initial valueis provided, the lower bound (or zero if no lover bound) is used to start the possible values from.

Fair Isaac Corporation Confidential and Proprietary Information 93

Special Types of Problem Advanced

Variables with a semi-continuous delta are not expected to be harder than the problem without, in fact,the extra information usually aids the solve noticeably.
A model with variables with integer deltas is considered to be hard. An integer delta is expected to beused to model the domain of user function, and should not be used to otherwise model integrality of theoriginal variable. Variables with an integer delta used in constraints tend to make the problem difficultto solve unless their use is balanced by the presence of infeasibility breaker variables (penalty slacks).
To change the type of a delta variable, use ’XSLPchgdeltatype’ in the API and the ’setdeltatype’ methodin Mosel.
If variables with integer deltas are present in the problem, then SLP will run a number of heuristics aspart of the solve, please refer to XSLP_GRIDHEURSELECT.

Fair Isaac Corporation Confidential and Proprietary Information 94

CHAPTER 18

Xpress NonLinear multistart

The feature is an additive feature that minimizes the development overhead and effort of implementingparallel multistart searches. The purpose of multistart is two-fold. Traditionally, multistart is a so calledglobalization feature. It is important to correctly understand what this technology offers, and what itdoes not. It offers a convenient and efficient way of exploring a larger feasible space building on top ofexisting local solver algorithms by the means of perturbing initial points and/or parameters or even theproblem statement itself. Multistart can also be viewed as a left-alone feature. In a typical situation,versions of a model react favourably to a set of control settings, dependent on data. Multistart allowsfor a simple way of combining different control setting scenarios, increasing the robustness of themodel.
The base problem is defined as the baseline: as the model is normally loaded it without any multistartinformation, including problem description, callbacks and controls. A run or a job is defined as aproblem instance that needs to be solved as part of multistart.
On completion, the current problem is set up to match that of the winner, allowing examination of thewinning strategy and solution using the normal means.
The original prob object is not reused, all runs are mode on a copy of the problem, allowing fullcustomization from the callbacks, including changes to structre.
Callbacks are inherited to the multistart jobs from the master problem and can be customized from thethe multistart callbacks. XSLinterrupt has a global scope, and a calling it terminates the multistartsearch.
Although not intended as the primary use, multistart allows the execution of all supported problemclasses, so for example alternate MIP strategies can be used in parallel.
The mutistart job pool is maintained and can be extended until the first maxim / minim with
XSLP_MULTISTART on. This allows for doing optimizations runs aimed at generating multistart jobs.The multistart pool is dynamic and new jobs can be added on the fly from the jobstart and jobendcallbacks.

Fair Isaac Corporation Confidential and Proprietary Information 95

III. Reference

CHAPTER 19

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and madeavailable to users of the Xpress NonLinear Libraries in the form of problem attributes. These can beaccessed in much the same manner as the controls. Examples of problem attributes include the sizesof arrays, for which library users may need to allocate space before the arrays themselves are retrieved.A full list of the attributes available and their types may be found in this chapter.
Library users are provided with the following functions for obtaining the values of attributes:
XSLPgetintattrib XSLPgetdblattrib
XSLPgetptrattrib XSLPgetstrattrib

The attributes listed in this chapter are all prefixed with XSLP_. It is possible to use the above functionswith attributes for the Xpress Optimizer (attributes prefixed with XPRS_). For details of the Optimizerattributes, see the Optimizer manual.
Example of the usage of the functions:

XSLPgetintattrib(Prob, XSLP_ITER, &nIter);
printf("The number of SLP iterations is %d\n", nIter);
XSLPgetdblattrib(Prob, XSLP_ERRORCOSTS, &Errors);
printf("and the total error cost is %lg\n", Errors);

The following is a list of all the Xpress NonLinear attributes:
XSLP_COEFFICIENTS Number of nonlinear coefficients p. 104
XSLP_CURRENTDELTACOST Current value of penalty cost multiplier for penalty delta vectors p. 101
XSLP_CURRENTERRORCOST Current value of penalty cost multiplier for penalty error vectors p. 101
XSLP_CVS Number of character variables p. 104
XSLP_DELTAS Number of delta vectors created during augmentation p. 104
XSLP_ECFCOUNT Number of infeasible constraints found at the point of linearization p. 104
XSLP_EQUALSCOLUMN Index of the reserved "=" column p. 105
XSLP_ERRORCOSTS Total penalty costs in the solution p. 101
XSLP_EXPLOREDELTAS Number of variables with an exploration-type delta set up in the problemp. 104
XSLP_IFS Number of internal functions p. 105
XSLP_IMPLICITVARIABLES Number of SLP variables appearing only in coefficients p. 105

Fair Isaac Corporation Confidential and Proprietary Information 97

Problem Attributes Reference

XSLP_INTEGERDELTAS Number of variables set up with an integer delta in the problem p. 105
XSLP_INTERNALFUNCCALLS Number of calls made to internal functions p. 105
XSLP_ITER SLP iteration count p. 106
XSLP_JOBID Unique identifier for the current job p. 106
XSLP_KEEPBESTITER The iteration in which the returned solution has been found. p. 106
XSLP_MINORVERSION Xpress NonLinear minor version number p. 106
XSLP_MINUSPENALTYERRORS Number of negative penalty error vectors p. 106
XSLP_MIPITER Total number of SLP iterations in MISLP p. 107
XSLP_MIPNODES Number of nodes explored in MISLP. This includes any nodes for which anon-linear solve has been carried out. p. 107
XSLP_MIPPROBLEM The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a referenceof type XPRSprob, and should be used in MISLP callbacks to accessMIP-specific Optimizer values (such as node and parent numbers). p. 120
XSLP_MIPSOLS Number of integer solutions found in MISLP. This includes solutions foundduring the tree search or any heuristics. p. 107
XSLP_MODELCOLS Number of model columns in the problem p. 107
XSLP_MODELROWS Number of model rows in the problem p. 107
XSLP_MSSTATUS Status of the mutlistart search p. 108
XSLP_NLPSTATUS The solution status of the problem. p. 108
XSLP_NONCONSTANTCOEFF Number of coefficients in the augmented problem that might changebetween SLP iterations p. 108
XSLP_NONLINEARCONSTRAINTS Number of nonlinear constraints in the problem p. 109
XSLP_OBJVAL Objective function value excluding any penalty costs p. 101
XSLP_ORIGINALCOLS Number of model columns in the problem p. 109
XSLP_ORIGINALROWS Number of model rows in the problem p. 109
XSLP_PENALTYDELTACOLUMN Index of column costing the penalty delta row p. 109
XSLP_PENALTYDELTAROW Index of equality row holding the penalties for delta vectors p. 109
XSLP_PENALTYDELTAS Number of penalty delta vectors p. 110
XSLP_PENALTYDELTATOTAL Total activity of penalty delta vectors p. 101
XSLP_PENALTYDELTAVALUE Total penalty cost attributed to penalty delta vectors p. 102
XSLP_PENALTYERRORCOLUMN Index of column costing the penalty error row p. 110
XSLP_PENALTYERRORROW Index of equality row holding the penalties for penalty error vectors p. 110
XSLP_PENALTYERRORS Number of penalty error vectors p. 110
XSLP_PENALTYERRORTOTAL Total activity of penalty error vectors p. 102
XSLP_PENALTYERRORVALUE Total penalty cost attributed to penalty error vectors p. 102
XSLP_PLUSPENALTYERRORS Number of positive penalty error vectors p. 110

Fair Isaac Corporation Confidential and Proprietary Information 98

Problem Attributes Reference

XSLP_PRESOLVEDELETEDDELTA Number of potential delta variables deleted by XSLPpresolve p. 111
XSLP_PRESOLVEELIMINATIONS Number of SLP variables eliminated by XSLPpresolve p. 111
XSLP_PRESOLVEFIXEDCOEF Number of SLP coefficients fixed by XSLPpresolve p. 111
XSLP_PRESOLVEFIXEDDR Number of determining rows fixed by XSLPpresolve p. 111
XSLP_PRESOLVEFIXEDNZCOL Number of variables fixed to a nonzero value by XSLPpresolve p. 112
XSLP_PRESOLVEFIXEDSLPVAR Number of SLP variables fixed by XSLPpresolve p. 112
XSLP_PRESOLVEFIXEDZCOL Number of variables fixed at zero by XSLPpresolve p. 112
XSLP_PRESOLVEPASSES Number of passes made by the SLP nonlinear presolve procedure p. 112
XSLP_PRESOLVESTATE Indicates if the problem is presolved p. 113
XSLP_PRESOLVETIGHTENED Number of bounds tightened by XSLPpresolve p. 113
XSLP_PRIMALINTEGRAL Local primal integral of the solve p. 102
XSLP_SBXCONVERGED Number of step-bounded variables converged only on extended criteriap. 113
XSLP_SEMICONTDELTAS Number of variables with a minimum perturbation step set up in theproblem p. 113
XSLP_SOLSTATUS Indicates the type of solution returned by the solver. p. 114
XSLP_SOLUTIONPOOL The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of typeXPRSmipsolpool. Change control XSLP_ANALYZE to record the solutionsinto the pool. p. 120
XSLP_SOLVERSELECTED Includes information of which Xpress solver has been used to solve theproblem p. 114
XSLP_STATUS Bitmap holding the problem convergence status p. 114
XSLP_STOPSTATUS Status of the optimization process. p. 116
XSLP_TOLSETS Number of tolerance sets p. 116
XSLP_TOTALEVALUATIONERRORS The total number of evaluation errors during the solve p. 116
XSLP_UCCONSTRAINEDCOUNT Number of unconverged variables with coefficients in constrainingrows p. 116
XSLP_UFINSTANCES Number of user function instances p. 117
XSLP_UFS Number of user functions p. 117
XSLP_UNCONVERGED Number of unconverged values p. 117
XSLP_USEDERIVATIVES Indicates whether numeric or analytic derivatives were used to create thelinear approximations and solve the problem p. 117
XSLP_USERFUNCCALLS Number of calls made to user functions p. 118
XSLP_VALIDATIONINDEX_A Absolute validation index p. 102
XSLP_VALIDATIONINDEX_K Relative first order optimality validation index p. 103
XSLP_VALIDATIONINDEX_R Relative validation index p. 103

Fair Isaac Corporation Confidential and Proprietary Information 99

Problem Attributes Reference

XSLP_VARIABLES Number of SLP variables p. 118
XSLP_VERSION Xpress NonLinear major version number p. 118
XSLP_VERSIONDATE Date of creation of Xpress NonLinear p. 121
XSLP_VSOLINDEX Vertex solution index p. 103
XSLP_XPRSPROBLEM The underlying Optimizer problem p. 120
XSLP_XSLPPROBLEM The Xpress NonLinear problem p. 120
XSLP_ZEROESRESET Number of placeholder entries set to zero p. 118
XSLP_ZEROESRETAINED Number of potentially zero placeholders left untouched p. 118
XSLP_ZEROESTOTAL Number of potential zero placeholder entries p. 119

Fair Isaac Corporation Confidential and Proprietary Information 100

Problem Attributes Reference

19.1 Double problem attributes

XSLP_CURRENTDELTACOST

Description Current value of penalty cost multiplier for penalty delta vectors
Type Double
Set by routines XSLPmaxim, XSLPminim
See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTERRORCOST

XSLP_CURRENTERRORCOST

Description Current value of penalty cost multiplier for penalty error vectors
Type Double
Set by routines XSLPmaxim, XSLPminim
See also XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_CURRENTDELTACOST

XSLP_ERRORCOSTS

Description Total penalty costs in the solution
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_OBJVAL

Description Objective function value excluding any penalty costs
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYDELTATOTAL

Description Total activity of penalty delta vectors
Type Double
Set by routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 101

Problem Attributes Reference

XSLP_PENALTYDELTAVALUE

Description Total penalty cost attributed to penalty delta vectors
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYERRORTOTAL

Description Total activity of penalty error vectors
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_PENALTYERRORVALUE

Description Total penalty cost attributed to penalty error vectors
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_PRIMALINTEGRAL

Description Local primal integral of the solve
Type Double
Set by routines XSLPmaxim, XSLPminim

XSLP_VALIDATIONINDEX_A

Description Absolute validation index
Type Double
Set by routines XSLPvalidate

Fair Isaac Corporation Confidential and Proprietary Information 102

Problem Attributes Reference

XSLP_VALIDATIONINDEX_K

Description Relative first order optimality validation index
Type Double
Set by routines XSLPvalidatekkt

XSLP_VALIDATIONINDEX_R

Description Relative validation index
Type Double
Set by routines XSLPvalidate

XSLP_VSOLINDEX

Description Vertex solution index
Type Double
Notes The vertex solution index (VSOLINDEX) is a measure of how nearly the converged solution toa problem is at a vertex (that is, at the intersection of a set of constraints) of the feasibleregion.

Where the solution is in the middle of a face, the solution will in general have been achievedthrough the use of step bounds. The VSOLINDEX is the fraction of delta vectors which are notat a bound in the solution. Therefore, a value of 1.0 means that no delta is at a step bound andtherefore the solution is at a vertex of the feasible region. Smaller values indicate that thereare deltas at step bounds and so the solution is further from being a vertex solution.

Fair Isaac Corporation Confidential and Proprietary Information 103

Problem Attributes Reference

19.2 Integer problem attributes

XSLP_COEFFICIENTS

Description Number of nonlinear coefficients
Type Integer
Set by routines XSLPaddcoefs, XSLPchgcoef, XSLPloadcoefs, XSLPreadprob

XSLP_CVS

Description Number of character variables
Type Integer
Set by routines XSLPreadprob

XSLP_DELTAS

Description Number of delta vectors created during augmentation
Type Integer
Set by routines XSLPconstruct

XSLP_ECFCOUNT

Description Number of infeasible constraints found at the point of linearization
Type Integer
Set by routines XSLPmaxim, XSLPminim
See also XSLP_ECFCHECK, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_EXPLOREDELTAS

Description Number of variables with an exploration-type delta set up in the problem
Type Integer
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 104

Problem Attributes Reference

XSLP_EQUALSCOLUMN

Description Index of the reserved "=" column
Type Integer
Note If there had been no "=" column present, it will be assumed that the user needs the index toadd nonlinear terms into the problem that are not coefficients, and an "=" columns will beadded to the problem, whose index is then returned. Please note, that this means that a call toXSLPgetintattrib with this attribute might make a slight modification to the problem itself.
Set by routines XSLPconstruct, XSLPreadprob

XSLP_IFS

Description Number of internal functions
Type Integer
Set by routines XSLPcreateprob

XSLP_IMPLICITVARIABLES

Description Number of SLP variables appearing only in coefficients
Type Integer
Set by routines XSLPconstruct

XSLP_INTEGERDELTAS

Description Number of variables set up with an integer delta in the problem
Type Integer
Set by routines XSLPconstruct

XSLP_INTERNALFUNCCALLS

Description Number of calls made to internal functions
Type Integer
Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,

XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 105

Problem Attributes Reference

XSLP_ITER

Description SLP iteration count
Type Integer
Set by routines XSLPmaxim, XSLPminim

XSLP_JOBID

Description Unique identifier for the current job
Type Integer
Note Assigned when a job is created, and can be used to identify jobs in callbacks. Note that allcallback receives an optional job name that can be assigned at job creation time.
Set by routines XSLPmaxim, XSLPminim

XSLP_KEEPBESTITER

Description The iteration in which the returned solution has been found.
Type Integer
Note A zero value indicates no solution or the filter option is off. A value of ’-1’ indicates the initialsolution has been returned.
Set by routines XSLPmaxim, XSLPminim

XSLP_MINORVERSION

Description Xpress NonLinear minor version number
Type Integer
Set by routines XSLPinit

XSLP_MINUSPENALTYERRORS

Description Number of negative penalty error vectors
Type Integer
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 106

Problem Attributes Reference

XSLP_MIPITER

Description Total number of SLP iterations in MISLP
Type Integer
Set by routines XSLPglobal

XSLP_MIPNODES

Description Number of nodes explored in MISLP. This includes any nodes for which a non-linear solve hasbeen carried out.
Type Integer
Set by routines XSLPglobal

XSLP_MIPSOLS

Description Number of integer solutions found in MISLP. This includes solutions found during the treesearch or any heuristics.
Type Integer
Set by routines XSLPglobal

XSLP_MODELCOLS

Description Number of model columns in the problem
Type Integer
Note This is the number of columns currently in the problem without any augmentation, i.e. thenumber of columns that describe the algebraic definition of the problem. These columnsalways precede the augmentation columns in order. If the problem is presolved, this may besmaller than the number of original columns in the problem. To access the number of originalcolumns, use XSLP_ORIGINALCOLS.

XSLP_MODELROWS

Description Number of model rows in the problem
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 107

Problem Attributes Reference

Note This is the number of rows currently in the problem without any augmentation, i.e. the numberof rows that describe the algebraic definition of the problem. These rows always precede theaugmentation rows in order. If the problem is presolved, this may be smaller than the numberof original rows in the problem. To access the number of original rows, use
XSLP_ORIGINALROWS.

XSLP_MSSTATUS

Description Status of the mutlistart search
Type Integer
Note The value matches that of the winner job if the multistart search completes and a feasiblesolution has been found. If no solution is found, it is set to XSLP_NLPSTATUS_INFEASIBLE. Ifthe search is terminated early, it is set to XSLP_NLPSTATUS_UNFINISHED (thought in whichcase the winner if any is still synchronized to the base problem and the solution and

XSLP_NLPSTATUS is available).

XSLP_NLPSTATUS

Description The solution status of the problem.
Type Integer
Values 0 Optimization unstarted (XSLP_NLPSTATUS_UNSTARTED)

1 Solution found (XSLP_NLPSTATUS_SOLUTION)
2 Globally optimal (XSLP_NLPSTATUS_OPTIMAL)
3 No solution found (XSLP_NLPSTATUS_NOSOLUTION)
4 Proven infeasible (XSLP_NLPSTATUS_INFEASIBLE)
5 Locally unbounded (XSLP_NLPSTATUS_UNBOUNDED)
6 Problem could not be solved due to numerical issues.(XSLP_NLPSTATUS_UNFINISHED)
7 Unsolved (XSLP_NLPSTATUS_UNSOLVED)

Default value 0
Set by routines XSLPminim, XSLPmaxim, XSLPglobal

XSLP_NONCONSTANTCOEFF

Description Number of coefficients in the augmented problem that might change between SLP iterations
Type Integer
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 108

Problem Attributes Reference

XSLP_NONLINEARCONSTRAINTS

Description Number of nonlinear constraints in the problem
Type Integer
Set by routines XSLPconstruct

XSLP_ORIGINALCOLS

Description Number of model columns in the problem
Type Integer
Note The number of columns in the original matrix before presolveing without any augmentationcolumns.

XSLP_ORIGINALROWS

Description Number of model rows in the problem
Type Integer
Note The number of rows in the original matric before presolveing without any augmentation rows.

XSLP_PENALTYDELTACOLUMN

Description Index of column costing the penalty delta row
Type Integer
Note This index always counts from 1. It is zero if there is no penalty delta row.
Set by routines XSLPconstruct

XSLP_PENALTYDELTAROW

Description Index of equality row holding the penalties for delta vectors
Type Integer
Note This index always counts from 1. It is zero if there are no penalty delta vectors.
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 109

Problem Attributes Reference

XSLP_PENALTYDELTAS

Description Number of penalty delta vectors
Type Integer
Set by routines XSLPconstruct

XSLP_PENALTYERRORCOLUMN

Description Index of column costing the penalty error row
Type Integer
Note This index always counts from 1. It is zero if there is no penalty error row.
Set by routines XSLPconstruct

XSLP_PENALTYERRORROW

Description Index of equality row holding the penalties for penalty error vectors
Type Integer
Note This index always counts from 1. It is zero if there are no penalty error vectors.
Set by routines XSLPconstruct

XSLP_PENALTYERRORS

Description Number of penalty error vectors
Type Integer
Set by routines XSLPconstruct

XSLP_PLUSPENALTYERRORS

Description Number of positive penalty error vectors
Type Integer
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 110

Problem Attributes Reference

XSLP_PRESOLVEDELETEDDELTA

Description Number of potential delta variables deleted by XSLPpresolve
Type Integer
Note A potential delta variable is deleted when an SLP variable is identified as not interacting in anonlinear way with any constraints (that is, it appears only in linear constraints, or is fixed).
Set by routines XSLPpresolve

See also XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR, XSLP_PRESOLVEFIXEDNZCOL,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEELIMINATIONS

Description Number of SLP variables eliminated by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED

XSLP_PRESOLVEFIXEDCOEF

Description Number of SLP coefficients fixed by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDDR

Description Number of determining rows fixed by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 111

Problem Attributes Reference

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDNZCOL

Description Number of variables fixed to a nonzero value by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDSLPVAR, XSLP_PRESOLVEFIXEDZCOL,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDSLPVAR

Description Number of SLP variables fixed by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVETIGHTENED,
XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEFIXEDZCOL

Description Number of variables fixed at zero by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVETIGHTENED, XSLP_PRESOLVEELIMINATIONS

XSLP_PRESOLVEPASSES

Description Number of passes made by the SLP nonlinear presolve procedure
Type Integer
Set by routines XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 112

Problem Attributes Reference

XSLP_PRESOLVESTATE

Description Indicates if the problem is presolved
Type Integer
Values 0 The problem is not presolved

1 The problem is presolved, but no columns or rows have been removed from theproblem
2 The problem is fully presolved, and the column and row indices do not match theoriginal problem

Set by routines XSLPmaxim, XSLPminim, XSLPpresolve

XSLP_PRESOLVETIGHTENED

Description Number of bounds tightened by XSLPpresolve
Type Integer
Set by routines XSLPpresolve

See also XSLP_PRESOLVEDELETEDDELTA, XSLP_PRESOLVEFIXEDCOEF, XSLP_PRESOLVEFIXEDDR,
XSLP_PRESOLVEFIXEDNZCOL, XSLP_PRESOLVEFIXEDSLPVAR,
XSLP_PRESOLVEFIXEDZCOL, XSLP_PRESOLVEELIMINATIONS

XSLP_SBXCONVERGED

Description Number of step-bounded variables converged only on extended criteria
Type Integer
Set by routines XSLPmaxim, XSLPminim

XSLP_SEMICONTDELTAS

Description Number of variables with a minimum perturbation step set up in the problem
Type Integer
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 113

Problem Attributes Reference

XSLP_SOLVERSELECTED

Description Includes information of which Xpress solver has been used to solve the problem
Type Integer
Values -1 Unset

0 Xpress-SLP
1 Knitro (Artelys)
2 Xpress Optimizer

Default value -1
Set by routines XSLPmaxim, XSLPminim
Note The following constants are provided:

0 XSLP_SOLVER_XSLP1 XSLP_SOLVER_KNITRO2 XSLP_SOLVER_OPTIMIZER

XSLP_SOLSTATUS

Description Indicates the type of solution returned by the solver.
Type Integer
Values 0 No solution available.

1 A solution with no dual information.
2 A locally optimal solution with dual information.
3 A globally optimal solution without dual information.
4 A globally optimal solution with dual information.

Default value 0
Set by routines XSLPminim, XSLPmaxim, XSLPglobal

XSLP_STATUS

Description Bitmap holding the problem convergence status
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 114

Problem Attributes Reference

Values Bit Meaning
0 Converged on objective function with no unconverged values in active constraints.
1 Converged on objective function with some variables converged on extended criteriaonly.
2 LP solution is infeasible.
3 LP solution is unfinished (not optimal or infeasible).
4 SLP terminated on maximum SLP iterations.
5 SLP is integer infeasible.
6 SLP converged with residual penalty errors.
7 Converged on objective.
9 SLP terminated on max time.
10 SLP terminated by user.
11 Some variables are linked to active constraints.
12 No unconverged values in active constraints.
13 OTOL is satisfied - range of objective change small, active step bounds.
14 VTOL is satisfied - range of objective change is small.
15 XTOL is satisfied - range of objective change small, no unconverged in active.
16 WTOL is satisfied - convergence continuation.
17 ERRORTOL satisfied - penalties not increased further.
18 EVTOL satisfied - penalties not increased further.
19 There were iterations where the solution had to be polished.
20 There were iterations where the solution polishing failed.
21 There were iterations where rows were enforced.
22 Terminated due to XSLP_INFEASLIMIT.

Note A value of zero after SLP optimization means that the solution is fully converged.
The following constants are provided for checking these bits:
Setting bit 0 XSLP_STATUS_CONVERGEDOBJUCCSetting bit 1 XSLP_STATUS_CONVERGEDOBJSBXSetting bit 2 XSLP_STATUS_LPINFEASIBLESetting bit 3 XSLP_STATUS_LPUNFINISHEDSetting bit 4 XSLP_STATUS_MAXSLPITERATIONSSetting bit 5 XSLP_STATUS_INTEGERINFEASIBLESetting bit 6 XSLP_STATUS_RESIDUALPENALTIESSetting bit 7 XSLP_STATUS_CONVERGEDOBJOBJSetting bit 9 XSLP_STATUS_MAXTIMESetting bit 10 XSLP_STATUS_USERSetting bit 11 XSLP_STATUS_VARSLINKEDINACTIVESetting bit 12 XSLP_STATUS_NOVARSINACTIVESetting bit 13 XSLP_STATUS_OTOLSetting bit 14 XSLP_STATUS_VTOLSetting bit 15 XSLP_STATUS_XTOLSetting bit 16 XSLP_STATUS_WTOLSetting bit 17 XSLP_STATUS_ERROTOLSetting bit 18 XSLP_STATUS_EVTOLSetting bit 19 XSLP_STATUS_POLISHEDSetting bit 20 XSLP_STATUS_POLISH_FAILURESetting bit 21 XSLP_STATUS_ENFORCEDSetting bit 22 XSLP_STATUS_CONSECUTIVE_INFEAS

Fair Isaac Corporation Confidential and Proprietary Information 115

Problem Attributes Reference

Set by routines XSLPmaxim, XSLPminim

XSLP_STOPSTATUS

Description Status of the optimization process.
Type Integer
Note Possible values are:

Value Description
XSLP_STOP_NONE no interruption - the solve completed normally
XSLP_STOP_TIMELIMIT time limit hit
XSLP_STOP_CTRLC control C hit
XSLP_STOP_NODELIMIT node limit hit
XSLP_STOP_ITERLIMIT iteration limit hit
XSLP_STOP_MIPGAP MIP gap is sufficiently small
XSLP_STOP_SOLLIMIT solution limit hit
XSLP_STOP_USER user interrupt.

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim, XSLPglobal.

XSLP_TOLSETS

Description Number of tolerance sets
Type Integer
Set by routines XSLPaddtolsets, XSLPchgtolset, XSLPloadtolsets, XSLPreadprob

XSLP_TOTALEVALUATIONERRORS

Description The total number of evaluation errors during the solve
Type Integer
Set by routines

Set by routines XSLPnlpoptimize, XSLPmaxim, XSLPminim, XSLPglobal.

XSLP_UCCONSTRAINEDCOUNT

Description Number of unconverged variables with coefficients in constraining rows

Fair Isaac Corporation Confidential and Proprietary Information 116

Problem Attributes Reference

Type Integer
Set by routines XSLPmaxim, XSLPminim

XSLP_UFINSTANCES

Description Number of user function instances
Type Integer
Set by routines XSLPconstruct

XSLP_UFS

Description Number of user functions
Type Integer
Set by routines XSLPadduserfunction, XSLPdeluserfunction, XSLPreadprob

XSLP_UNCONVERGED

Description Number of unconverged values
Type Integer
Note Prior to the first iteration this will return -1.
Set by routines XSLPmaxim, XSLPminim

XSLP_USEDERIVATIVES

Description Indicates whether numeric or analytic derivatives were used to create the linearapproximations and solve the problem
Type Integer
Values 0 numeric derivatives.

1 analytic derivatives for all formulae unless otherwise specified.
Set by routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 117

Problem Attributes Reference

XSLP_USERFUNCCALLS

Description Number of calls made to user functions
Type Integer
Set by routines XSLPcascade, XSLPconstruct, XSLPevaluatecoef, XSLPevaluateformula,

XSLPmaxim, XSLPminim

XSLP_VARIABLES

Description Number of SLP variables
Type Integer
Set by routines XSLPconstruct

XSLP_VERSION

Description Xpress NonLinear major version number
Type Integer
Set by routines XSLPinit

XSLP_ZEROESRESET

Description Number of placeholder entries set to zero
Type Integer
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
Set by routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRETAINED,

XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESRETAINED

Description Number of potentially zero placeholders left untouched
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 118

Problem Attributes Reference

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.

Set by routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,

XSLP_ZEROESTOTAL, Management of zero placeholder entries

XSLP_ZEROESTOTAL

Description Number of potential zero placeholder entries
Type Integer
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
Set by routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, XSLP_ZEROESRESET,

XSLP_ZEROESRETAINED, Management of zero placeholder entries

Fair Isaac Corporation Confidential and Proprietary Information 119

Problem Attributes Reference

19.3 Reference (pointer) problem attributes

The reference attributes are void pointers whose size (32 or 64 bit) depends on the platform.

XSLP_MIPPROBLEM

Description The underlying Optimizer MIP problem. XSLP_MIPPROBLEM is a reference of type XPRSprob,and should be used in MISLP callbacks to access MIP-specific Optimizer values (such asnode and parent numbers).
Type Reference
Set by routines XSLPglobal

XSLP_SOLUTIONPOOL

Description The underlying solution pool. XSLP_SOLUTIONPOOL is a reference of type XPRSmipsolpool.Change control XSLP_ANALYZE to record the solutions into the pool.
Type Reference
Set by routines XSLPminim, XSLPmaxim

XSLP_XPRSPROBLEM

Description The underlying Optimizer problem
Type Reference
Set by routines XSLPcreateprob

XSLP_XSLPPROBLEM

Description The Xpress NonLinear problem
Type Reference
Set by routines XSLPcreateprob

Fair Isaac Corporation Confidential and Proprietary Information 120

Problem Attributes Reference

19.4 String problem attributes

XSLP_VERSIONDATE

Description Date of creation of Xpress NonLinear
Type String
Note The format of the date is dd mmm yyyy.
Set by routines XSLPinit

Fair Isaac Corporation Confidential and Proprietary Information 121

CHAPTER 20

Control Parameters

Various controls exist within Xpress NonLinear to govern the solution procedure and the form of theoutput. Some of these take integer values and act as switches between various types of behavior.Many are tolerances on values related to the convergence criteria; these are all double precision. Thereare also a few controls which are character strings, setting names for structures. Any of these may bealtered by the user to enhance performance of the SLP algorithm. In most cases, the default valuesprovided have been found to work well in practice over a range of problems and caution should beexercised if they are changed.
Users of the Xpress NonLinear function library are provided with the following set of functions forsetting and obtaining control values:
XSLPgetintcontrol XSLPgetdblcontrol XSLPgetstrcontrol
XSLPsetintcontrol XSLPsetdblcontrol XSLPsetstrcontrol

All the controls as listed in this chapter are prefixed with XSLP_. It is possible to use the abovefunctions with control parameters for the Xpress Optimizer (controls prefixed with XPRS_). For detailsof the Optimizer controls, see the Optimizer manual.
Example of the usage of the functions:

XSLPgetintcontrol(Prob, XSLP_PRESOLVE, &presolve);
printf("The value of PRESOLVE was %d\n", presolve);
XSLPsetintcontrol(Prob, XSLP_PRESOLVE, 1-presolve);
printf("The value of PRESOLVE is now %d\n", 1-presolve);

The following is a list of all the Xpress NonLinear controls:
XSLP_ALGORITHM Bit map describing the SLP algorithm(s) to be used p. 166
XSLP_ANALYZE Bit map activating additional options supporting model / solution pathanalyzis p. 168
XSLP_ATOL_A Absolute delta convergence tolerance p. 130
XSLP_ATOL_R Relative delta convergence tolerance p. 130
XSLP_AUGMENTATION Bit map describing the SLP augmentation method(s) to be used p. 169
XSLP_AUTOSAVE Frequency with which to save the model p. 170
XSLP_BARCROSSOVERSTART Default crossover activation behaviour for barrier start p. 171
XSLP_BARLIMIT Number of initial SLP iterations using the barrier method p. 171
XSLP_BARSTALLINGLIMIT Number of iterations to allow numerical failures in barrier beforeswitching to dual p. 172

Fair Isaac Corporation Confidential and Proprietary Information 122

Control Parameters Reference

XSLP_BARSTALLINGOBJLIMIT Number of iterations over which to measure the objective changefor barrier iterations with no crossover p. 172
XSLP_BARSTALLINGTOL Required change in the objective when progress is measured in barrieriterations without crossover p. 130
XSLP_BARSTARTOPS Controls behaviour when the barrier is used to solve the linearizationsp. 172
XSLP_CALCTHREADS Number of threads used for formula and derivatives evaluations p. 173
XSLP_CASCADE Bit map describing the cascading to be used p. 173
XSLP_CASCADENLIMIT Maximum number of iterations for cascading with non-linear determiningrows p. 174
XSLP_CASCADETOL_PA Absolute cascading print tolerance p. 131
XSLP_CASCADETOL_PR Relative cascading print tolerance p. 131
XSLP_CDTOL_A Absolute tolerance for deducing constant derivatives p. 131
XSLP_CDTOL_R Relative tolerance for deducing constant derivatives p. 132
XSLP_CLAMPSHRINK Shrink ratio used to impose strict convergence on variables converged inextended criteria only p. 132
XSLP_CLAMPVALIDATIONTOL_A Absolute validation tolerance for applying XSLP_CLAMPSHRINKp. 133
XSLP_CLAMPVALIDATIONTOL_R Relative validation tolerance for applying XSLP_CLAMPSHRINKp. 133
XSLP_CONTROL Bit map describing which Xpress NonLinear functions also activate thecorresponding Optimizer Library function p. 174
XSLP_CONVERGENCEOPS Bit map describing which convergence tests should be carried out p. 175
XSLP_CTOL Closure convergence tolerance p. 133
XSLP_CVNAME Name of the set of character variables to be used p. 208
XSLP_DAMP Damping factor for updating values of variables p. 134
XSLP_DAMPEXPAND Multiplier to increase damping factor during dynamic damping p. 134
XSLP_DAMPMAX Maximum value for the damping factor of a variable during dynamicdamping p. 134
XSLP_DAMPMIN Minimum value for the damping factor of a variable during dynamicdamping p. 135
XSLP_DAMPSHRINK Multiplier to decrease damping factor during dynamic damping p. 135
XSLP_DAMPSTART SLP iteration at which damping is activated p. 176
XSLP_DCLIMIT Default iteration delay for delayed constraints p. 176
XSLP_DCLOG Amount of logging information for activcation of delayed constraints p. 176
XSLP_DEFAULTIV Default initial value for an SLP variable if none is explicitly given p. 135
XSLP_DEFAULTSTEPBOUND Minimum initial value for the step bound of an SLP variable if none isexplicitly given p. 136

Fair Isaac Corporation Confidential and Proprietary Information 123

Control Parameters Reference

XSLP_DELAYUPDATEROWS Number of SLP iterations before update rows are fully activated p. 176
XSLP_DELTA_A Absolute perturbation of values for calculating numerical derivatives p. 136
XSLP_DELTA_R Relative perturbation of values for calculating numerical derivatives p. 136
XSLP_DELTA_X Minimum absolute value of delta coefficients to be retained p. 137
XSLP_DELTA_Z Tolerance used when calculating derivatives p. 137
XSLP_DELTA_ZERO Absolute zero acceptance tolerance used when calculating derivativesp. 137
XSLP_DELTACOST Initial penalty cost multiplier for penalty delta vectors p. 138
XSLP_DELTACOSTFACTOR Factor for increasing cost multiplier on total penalty delta vectors p. 138
XSLP_DELTAFORMAT Formatting string for creation of names for SLP delta vectors p. 208
XSLP_DELTAMAXCOST Maximum penalty cost multiplier for penalty delta vectors p. 138
XSLP_DELTAOFFSET Position of first character of SLP variable name used to create name ofdelta vector p. 177
XSLP_DELTAZLIMIT Number of SLP iterations during which to apply XSLP_DELTA_Z p. 177
XSLP_DERIVATIVES Bitmap describing the method of calculating derivatives p. 178
XSLP_DETERMINISTIC Determines if the parallel features of SLP should be guaranteed to bedeterministic p. 178
XSLP_DJTOL Tolerance on DJ value for determining if a variable is at its step boundp. 139
XSLP_DRCOLTOL The minimum absolute magnitude of a determining column, for which thedetermined variable is still regarded as well defined p. 139
XSLP_ECFCHECK Check feasibility at the point of linearization for extended convergencecriteria p. 178
XSLP_ECFTOL_A Absolute tolerance on testing feasibility at the point of linearization p. 139
XSLP_ECFTOL_R Relative tolerance on testing feasibility at the point of linearization p. 140
XSLP_ECHOXPRSMESSAGES Controls if the XSLP message callback should relay messages from theXPRS library. p. 179
XSLP_ENFORCECOSTSHRINK Factor by which to decrease the current penalty multiplier whenenforcing rows. p. 140
XSLP_ENFORCEMAXCOST Maximum penalty cost in the objective before enforcing most violatingrows p. 141
XSLP_ERRORCOST Initial penalty cost multiplier for penalty error vectors p. 141
XSLP_ERRORCOSTFACTOR Factor for increasing cost multiplier on total penalty error vectors p. 141
XSLP_ERRORMAXCOST Maximum penalty cost multiplier for penalty error vectors p. 142
XSLP_ERROROFFSET Position of first character of constraint name used to create name ofpenalty error vectors p. 179
XSLP_ERRORTOL_A Absolute tolerance for error vectors p. 142
XSLP_ERRORTOL_P Absolute tolerance for printing error vectors p. 142

Fair Isaac Corporation Confidential and Proprietary Information 124

Control Parameters Reference

XSLP_ESCALATION Factor for increasing cost multiplier on individual penalty error vectorsp. 143
XSLP_ETOL_A Absolute tolerance on penalty vectors p. 143
XSLP_ETOL_R Relative tolerance on penalty vectors p. 143
XSLP_EVALUATE Evaluation strategy for user functions p. 180
XSLP_EVTOL_A Absolute tolerance on total penalty costs p. 144
XSLP_EVTOL_R Relative tolerance on total penalty costs p. 144
XSLP_EXPAND Multiplier to increase a step bound p. 145
XSLP_FEASTOLTARGET When set, this defines a target feasibility tolerance to which thelinearizations are solved to p. 145
XSLP_FILTER Bit map for controlling solution updates p. 180
XSLP_FINDIV Option for running a heuristic to find a feasible initial point p. 181
XSLP_FUNCEVAL Bit map for determining the method of evaluating user functions and theirderivatives p. 181
XSLP_GRANULARITY Base for calculating penalty costs p. 145
XSLP_GRIDHEURSELECT Bit map selectin which heuristics to run if the problem has variable with aninteger delta p. 182
XSLP_HESSIAN Second order differentiation mode when using analytical derivatives p. 183
XSLP_HEURSTRATEGY Branch and Bound: This specifies the MINLP heuristic strategy. On someproblems it is worth trying more comprehensive heuristic strategies bysetting HEURSTRATEGY to 2 or 3. p. 182
XSLP_INFEASLIMIT The maximum number of consecutive infeasible SLP iterations which canoccur before Xpress-SLP terminates p. 183
XSLP_INFINITY Value returned by a divide-by-zero in a formula p. 146
XSLP_ITERFALLBACKOPS Alternative LP level control values for numerically challengeing problemsp. 208
XSLP_ITERLIMIT The maximum number of SLP iterations p. 183
XSLP_ITOL_A Absolute impact convergence tolerance p. 146
XSLP_ITOL_R Relative impact convergence tolerance p. 147
XSLP_IVNAME Name of the set of initial values to be used p. 209
XSLP_JACOBIAN First order differentiation mode when using analytical derivatives p. 184
XSLP_LINQUADBR Use linear and quadratic constraints and objective function to furtherreduce bounds on all variables p. 184
XSLP_LOG Level of printing during SLP iterations p. 184
XSLP_LSITERLIMIT Number of iterations in the line search p. 185
XSLP_LSPATTERNLIMIT Number of iterations in the pattern search preceding the line search p. 185
XSLP_LSSTART Iteration in which to active the line search p. 185

Fair Isaac Corporation Confidential and Proprietary Information 125

Control Parameters Reference

XSLP_LSZEROLIMIT Maximum number of zero length line search steps before line search isdeactivated p. 186
XSLP_MATRIXTOL Provides an override value for XPRS_MATRIXTOL, which controls thesmallest magnitude of matrix coefficents p. 147
XSLP_MAXTIME The maximum time in seconds that the SLP optimization will run before itterminates p. 186
XSLP_MAXWEIGHT Maximum penalty weight for delta or error vectors p. 148
XSLP_MEMORYFACTOR Factor for expanding size of dynamic arrays in memory p. 148
XSLP_MERITLAMBDA Factor by which the net objective is taken into account in the merit functionp. 148
XSLP_MINSBFACTOR Factor by which step bounds can be decreased beneath XSLP_ATOL_Ap. 149
XSLP_MINUSDELTAFORMAT Formatting string for creation of names for SLP negative penalty deltavectors p. 209
XSLP_MINUSERRORFORMAT Formatting string for creation of names for SLP negative penalty errorvectors p. 210
XSLP_MINWEIGHT Minimum penalty weight for delta or error vectors p. 149
XSLP_MIPALGORITHM Bitmap describing the MISLP algorithms to be used p. 186
XSLP_MIPCUTOFF_A Absolute objective function cutoff for MIP termination p. 149
XSLP_MIPCUTOFF_R Absolute objective function cutoff for MIP termination p. 150
XSLP_MIPCUTOFFCOUNT Number of SLP iterations to check when considering a node for cutting offp. 188
XSLP_MIPCUTOFFLIMIT Number of SLP iterations to check when considering a node for cutting offp. 188
XSLP_MIPDEFAULTALGORITHM Default algorithm to be used during the global search in MISLPp. 189
XSLP_MIPERRORTOL_A Absolute penalty error cost tolerance for MIP cut-off p. 150
XSLP_MIPERRORTOL_R Relative penalty error cost tolerance for MIP cut-off p. 150
XSLP_MIPFIXSTEPBOUNDS Bitmap describing the step-bound fixing strategy during MISLP p. 189
XSLP_MIPITERLIMIT Maximum number of SLP iterations at each node p. 190
XSLP_MIPLOG Frequency with which MIP status is printed p. 190
XSLP_MIPOCOUNT Number of SLP iterations at each node over which to measure objectivefunction variation p. 190
XSLP_MIPOTOL_A Absolute objective function tolerance for MIP termination p. 151
XSLP_MIPOTOL_R Relative objective function tolerance for MIP termination p. 151
XSLP_MIPRELAXSTEPBOUNDS Bitmap describing the step-bound relaxation strategy during MISLPp. 191
XSLP_MSMAXBOUNDRANGE Defines the maximum range inside which initial points are generated bymultistart presets p. 152

Fair Isaac Corporation Confidential and Proprietary Information 126

Control Parameters Reference

XSLP_MTOL_A Absolute effective matrix element convergence tolerance p. 152
XSLP_MTOL_R Relative effective matrix element convergence tolerance p. 153
XSLP_MULTISTART The multistart master control. Defines if the multistart search is to beinitiated, or if only the baseline model is to be solved. p. 191
XSLP_MULTISTART_MAXSOLVES The maximum number of jobs to create during the multistartsearch. p. 191
XSLP_MULTISTART_MAXTIME The maximum total time to be spent in the mutlistart search. p. 192
XSLP_MULTISTART_POOLSIZE The maximum number of problem objects allowed to pool up beforesynchronization in the deterministic multistart. p. 192
XSLP_MULTISTART_SEED Random seed used for the automatic generation of initial point whenloading multistart presets p. 193
XSLP_MULTISTART_THREADS The maximum number of threads to be used in multistart p. 193
XSLP_MVTOL Marginal value tolerance for determining if a constraint is slack p. 153
XSLP_OBJSENSE Objective function sense p. 154
XSLP_OBJTOPENALTYCOST Factor to estimate initial penalty costs from objective function p. 154
XSLP_OCOUNT Number of SLP iterations over which to measure objective functionvariation for static objective (2) convergence criterion p. 193
XSLP_OPTIMALITYTOLTARGET When set, this defines a target optimality tolerance to which thelinearizations are solved to p. 155
XSLP_OTOL_A Absolute static objective (2) convergence tolerance p. 155
XSLP_OTOL_R Relative static objective (2) convergence tolerance p. 155
XSLP_PENALTYCOLFORMAT Formatting string for creation of the names of the SLP penalty transfervectors p. 210
XSLP_PENALTYINFOSTART Iteration from which to record row penalty information p. 194
XSLP_PENALTYROWFORMAT Formatting string for creation of the names of the SLP penalty rowsp. 210
XSLP_PLUSDELTAFORMAT Formatting string for creation of names for SLP positive penalty deltavectors p. 211
XSLP_PLUSERRORFORMAT Formatting string for creation of names for SLP positive penalty errorvectors p. 211
XSLP_POSTSOLVE This control determines whether postsolving should be performedautomatically p. 194
XSLP_PRESOLVE This control determines whether presolving should be performed prior tostarting the main algorithm p. 194
XSLP_PRESOLVELEVEL This control determines the level of changes presolve may carry out on theproblem p. 195
XSLP_PRESOLVEOPS Bitmap indicating the SLP presolve actions to be taken p. 195
XSLP_PRESOLVEPASSLIMIT Maximum number of passes through the problem to improve SLPbounds p. 196

Fair Isaac Corporation Confidential and Proprietary Information 127

Control Parameters Reference

XSLP_PRESOLVEZERO Minimum absolute value for a variable which is identified as nonzeroduring SLP presolve p. 156
XSLP_PRIMALINTEGRALREF Reference solution value to take into account when calculating theprimal integral p. 156
XSLP_PROBING This control determines whether probing on a subset of variables shouldbe performed prior to starting the main algorithm. Probing runs multipletimes bound reduction in order to further tighten the bounding box. p. 196
XSLP_REFORMULATE Controls the problem reformulations carried out before augmentation. Thisallows SLP to take advantage of dedicated algorithms for special problemclasses. p. 196
XSLP_SAMECOUNT Number of steps reaching the step bound in the same direction before stepbounds are increased p. 197
XSLP_SAMEDAMP Number of steps in same direction before damping factor is increasedp. 197
XSLP_SBLOROWFORMAT Formatting string for creation of names for SLP lower step bound rowsp. 211
XSLP_SBNAME Name of the set of initial step bounds to be used p. 212
XSLP_SBROWOFFSET Position of first character of SLP variable name used to create name ofSLP lower and upper step bound rows p. 198
XSLP_SBSTART SLP iteration after which step bounds are first applied p. 198
XSLP_SBUPROWFORMAT Formatting string for creation of names for SLP upper step bound rowsp. 212
XSLP_SCALE When to re-scale the SLP problem p. 198
XSLP_SCALECOUNT Iteration limit used in determining when to re-scale the SLP matrix p. 199
XSLP_SHRINK Multiplier to reduce a step bound p. 157
XSLP_SHRINKBIAS Defines an overwrite / adjustment of step bounds for improving iterationsp. 157
XSLP_SLPLOG Frequency with which SLP status is printed p. 200
XSLP_SOLVER First order differentiation mode when using analytical derivatives p. 199
XSLP_STOL_A Absolute slack convergence tolerance p. 157
XSLP_STOL_R Relative slack convergence tolerance p. 158
XSLP_STOPOUTOFRANGE Stop optimization and return error code if internal function argument is outof range p. 200
XSLP_THREADS Default number of threads to be used p. 200
XSLP_THREADSAFEUSERFUNC Defines if user functions are allowed to be called in parallel p. 201
XSLP_TIMEPRINT Print additional timings during SLP optimization p. 200
XSLP_TOLNAME Name of the set of tolerance sets to be used p. 212
XSLP_TRACEMASK Mask of variable or row names that are to be traced through the SLPiterates p. 213

Fair Isaac Corporation Confidential and Proprietary Information 128

Control Parameters Reference

XSLP_TRACEMASKOPS Controls the information printed for XSLP_TRACEMASK. The order inwhich the information is printed is determined by the order of bits inXSLP_TRACEMASKOPS. p. 201
XSLP_UNFINISHEDLIMIT Number of times within one SLP iteration that an unfinished LPoptimization will be continued p. 202
XSLP_UPDATEFORMAT Formatting string for creation of names for SLP update rows p. 213
XSLP_UPDATEOFFSET Position of first character of SLP variable name used to create name ofSLP update row p. 202
XSLP_VALIDATIONTARGET_K Optimality target tolerance p. 158
XSLP_VALIDATIONTARGET_R Feasiblity target tolerance p. 158
XSLP_VALIDATIONTOL_A Absolute tolerance for the XSLPvalidate procedure p. 159
XSLP_VALIDATIONTOL_R Relative tolerance for the XSLPvalidate procedure p. 159
XSLP_VCOUNT Number of SLP iterations over which to measure static objective (3)convergence p. 203
XSLP_VLIMIT Number of SLP iterations after which static objective (3) convergencetesting starts p. 203
XSLP_VTOL_A Absolute static objective (3) convergence tolerance p. 160
XSLP_VTOL_R Relative static objective (3) convergence tolerance p. 160
XSLP_WCOUNT Number of SLP iterations over which to measure the objective for theextended convergence continuation criterion p. 204
XSLP_WTOL_A Absolute extended convergence continuation tolerance p. 161
XSLP_WTOL_R Relative extended convergence continuation tolerance p. 162
XSLP_XCOUNT Number of SLP iterations over which to measure static objective (1)convergence p. 205
XSLP_XLIMIT Number of SLP iterations up to which static objective (1) convergencetesting starts p. 205
XSLP_XTOL_A Absolute static objective function (1) tolerance p. 163
XSLP_XTOL_R Relative static objective function (1) tolerance p. 163
XSLP_ZERO Absolute tolerance p. 164
XSLP_ZEROCRITERION Bitmap determining the behavior of the placeholder deletion procedurep. 206
XSLP_ZEROCRITERIONCOUNT Number of consecutive times a placeholder entry is zero before beingconsidered for deletion p. 207
XSLP_ZEROCRITERIONSTART SLP iteration at which criteria for deletion of placeholder entries arefirst activated. p. 207

Fair Isaac Corporation Confidential and Proprietary Information 129

Control Parameters Reference

20.1 Double control parameters

XSLP_ATOL_A

Description Absolute delta convergence tolerance
Type Double
Note The absolute delta convergence criterion assesses the change in value of a variable (δX)against the absolute delta convergence tolerance. If

δX < XSLP_ATOL_Athen the variable has converged on the absolute delta convergence criterion. When the valueis set to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and1e-6.

Default value -1.0
See also Convergence Criteria, XSLP_ATOL_R

XSLP_ATOL_R

Description Relative delta convergence tolerance
Type Double
Note The relative delta convergence criterion assesses the change in value of a variable (δX)relative to the value of the variable (X), against the relative delta convergence tolerance. If

δX < X ∗ XSLP_ATOL_Rthen the variable has converged on the relative delta convergence criterion. When the value isset to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and1e-6.

Default value -1.0
See also Convergence Criteria, XSLP_ATOL_A

XSLP_BARSTALLINGTOL

Description Required change in the objective when progress is measured in barrier iterations withoutcrossover
Type Double
Note Minumum objective variability change required in relation to control

XSLP_BARSTALLINGOBJLIMIT for the iterations to be regarded as making progress. Thenet objective, error cost and error sum are taken into account.
Default value 0.05

Fair Isaac Corporation Confidential and Proprietary Information 130

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,

XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGOBJLIMIT

XSLP_CASCADETOL_PA

Description Absolute cascading print tolerance
Type Double
Note The change to the value of a variable as a result of cascading is only printed if the change isdeemed significant. The change is tested against: absolute and relative convergencetolerance and absolute and relative cascading print tolerance. The change is printed only if alltests fail. The absolute cascading print criterion measures the change in value of a variable(δX) against the absolute cascading print tolerance. If

δX < XSLP_CASCADETOL_PAthen the change is within the absolute cascading print tolerance and will not be printed.XSLP_LOG must be at least 5 for this control to have an effect.
Default value 0.01
See also Cascading, XSLP_CASCADETOL_PR
Affects routines XSLPcascade

XSLP_CASCADETOL_PR

Description Relative cascading print tolerance
Type Double
Note The change to the value of a variable as a result of cascading is only printed if the change isdeemed significant. The change is tested against: absolute and relative convergencetolerance and absolute and relative cascading print tolerance. The change is printed only if alltests fail. The relative cascading print criterion measures the change in value of a variable(δX) relative to the value of the variable (X), against the relative cascading print tolerance. If

δX < X ∗ XSLP_CASCADETOL_PRthen the change is within the relative cascading print tolerance and will not be printed.XSLP_LOG must be at least 5 for this control to have an effect.
Default value 0.01
See also Cascading, XSLP_CASCADETOL_PA
Affects routines XSLPcascade

XSLP_CDTOL_A

Description Absolute tolerance for deducing constant derivatives

Fair Isaac Corporation Confidential and Proprietary Information 131

Control Parameters Reference

Type Double
Note The absolute tolerance test for constant derivatives is used as follows:If the value of the user function at point X0 is Y0 and the values at (X0 – δX) and (X0 + δX) are

Yd and Yu respectively, then the numerical derivatives at X0 are:"down" derivative Dd = (Y0 – Yd)/δX"up" derivative Du = (Yu – Y0)/δX
If abs(Dd – Du) ≤ XSLP_CDTOL_Athen the derivative is regarded as constant.

Default value 1.0e-08
See also XSLP_CDTOL_R

XSLP_CDTOL_R

Description Relative tolerance for deducing constant derivatives
Type Double
Note The relative tolerance test for constant derivatives is used as follows:If the value of the user function at point X0 is Y0 and the values at (X0 – δX) and (X0 + δX) are

Yd and Yu respectively, then the numerical derivatives at X0 are:"down" derivative Dd = (Y0 – Yd)/δX"up" derivative Du = (Yu – Y0)/δX
If abs(Dd – Du) ≤ XSLP_CDTOL_R ∗ abs(Yd + Yu)/2then the derivative is regarded as constant.

Default value 1.0e-08
See also XSLP_CDTOL_A

XSLP_CLAMPSHRINK

Description Shrink ratio used to impose strict convergence on variables converged in extended criteriaonly
Type Double
Note If the solution has converged but there are variables converged on extended criteria only, theXSLP_CLAMPSHRINK acts as a shrinking ratio on the step bounds and the problem isoptimized (if necessary multiple times), with the purpose of expediting strict convergence onall variables. XSLP_ALGORITHM controls if this shrinking is applied at all, and if shrinking isapplied to of the variables converged on extended criteria only with active step bounds only,or if on all variables.
Default value 0.3
See also XSLP_ALGORITHM, XSLP_CLAMPVALIDATIONTOL_A, XSLP_CLAMPVALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 132

Control Parameters Reference

XSLP_CLAMPVALIDATIONTOL_A

Description Absolute validation tolerance for applying XSLP_CLAMPSHRINK
Type Double
Note If set and the absolute validation value is larger than this value, then control

XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variablesconverged on extended criteria only.
Default value 0.0 (not set)
See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_R

XSLP_CLAMPVALIDATIONTOL_R

Description Relative validation tolerance for applying XSLP_CLAMPSHRINK
Type Double
Note If set and the relative validation value is larger than this value, then control

XSLP_CLAMPSHRINK is checked once the solution has converged, but there are variablesconverged on extended criteria only.
Default value 0.0 (not set)
See also XSLP_ALGORITHM, XSLP_CLAMPSHRINK, XSLP_CLAMPVALIDATIONTOL_A

XSLP_CTOL

Description Closure convergence tolerance
Type Double
Notes The closure convergence criterion measures the change in value of a variable (δX) relative tothe value of its initial step bound (B), against the closure convergence tolerance. If

δX < B ∗ XSLP_CTOLthen the variable has converged on the closure convergence criterion.If no explicit initial step bound is provided, then the test will not be applied and the variablecan never converge on the closure criterion. When the value is set to be negative, the value isadjusted automatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R.Good values for the control are usually fall between 1e-3 and 1e-6.
Default value -1.0
See also Convergence Criteria, XSLP_ATOL_A, XSLP_ATOL_R

Fair Isaac Corporation Confidential and Proprietary Information 133

Control Parameters Reference

XSLP_DAMP

Description Damping factor for updating values of variables
Type Double
Note The damping factor sets the next assumed value for a variable based on the previousassumed value (X0) and the actual value (X1). The new assumed value is given by

X1 ∗ XSLP_DAMP + X0 ∗ (1 – XSLP_DAMP)
Default value 1
See also Xpress-SLP Solution Process, XSLP_DAMPEXPAND XSLP_DAMPMAX, XSLP_DAMPMIN,

XSLP_DAMPSHRINK, XSLP_DAMPSTART
Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPEXPAND

Description Multiplier to increase damping factor during dynamic damping
Type Double
Note If dynamic damping is enabled, the damping factor for a variable will be increased ifsuccessive changes are in the same direction. More precisely, if there are XSLP_SAMEDAMPsuccessive changes in the same direction for a variable, then the damping factor (D) for thevariable will be reset to

D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)
Default value 1
See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX,

XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP
Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPMAX

Description Maximum value for the damping factor of a variable during dynamic damping
Type Double
Note If dynamic damping is enabled, the damping factor for a variable will be increased ifsuccessive changes are in the same direction. More precisely, if there are XSLP_SAMEDAMPsuccessive changes in the same direction for a variable, then the damping factor (D) for thevariable will be reset to

D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)
Default value 1
See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,

XSLP_DAMPMIN, XSLP_DAMPSHRINK, XSLP_DAMPSTART, XSLP_SAMEDAMP
Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 134

Control Parameters Reference

XSLP_DAMPMIN

Description Minimum value for the damping factor of a variable during dynamic damping
Type Double
Note If dynamic damping is enabled, the damping factor for a variable will be decreased ifsuccessive changes are in the opposite direction. More precisely, the damping factor (D) forthe variable will be reset to

D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1 – XSLP_DAMPEXPAND)
Default value 1
See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,

XSLP_DAMPMAX, XSLP_DAMPSHRINK, XSLP_DAMPSTART
Affects routines XSLPmaxim, XSLPminim

XSLP_DAMPSHRINK

Description Multiplier to decrease damping factor during dynamic damping
Type Double
Note If dynamic damping is enabled, the damping factor for a variable will be decreased ifsuccessive changes are in the opposite direction. More precisely, the damping factor (D) forthe variable will be reset to

D ∗ XSLP_DAMPSHRINK + XSLP_DAMPMIN ∗ (1 – XSLP_DAMPEXPAND)
Default value 1
See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPEXPAND,

XSLP_DAMPMAX, XSLP_DAMPMIN, XSLP_DAMPSTART
Affects routines XSLPmaxim, XSLPminim

XSLP_DEFAULTIV

Description Default initial value for an SLP variable if none is explicitly given
Type Double
Note If no initial value is given for an SLP variable, then the initial value provided for the "equalscolumn" will be used. If no such value has been provided, then XSLP_DEFAULTIV will beused. If this is above the upper bound for the variable, then the upper bound will be used; if itis below the lower bound for the variable, then the lower bound will be used.
Default value 100
Affects routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 135

Control Parameters Reference

XSLP_DEFAULTSTEPBOUND

Description Minimum initial value for the step bound of an SLP variable if none is explicitly given
Type Double
Notes If no initial step bound value is given for an SLP variable, this will be used as a minimumvalue. If the algorithm is estimating step bounds, then the step bound actually used for avariable may be larger than the default.A default initial step bound is ignored when testing for the closure tolerance XSLP_CTOL: ifthere is no specific value, then the test will not be applied.
Default value 16
See also XSLP_CTOL

Affects routines XSLPconstruct

XSLP_DELTA_A

Description Absolute perturbation of values for calculating numerical derivatives
Type Double
Note First-order derivatives are calculated by perturbing the value of each variable in turn by a smallamount. The amount is determined by the absolute and relative delta factors as follows:

XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_Rwhere (X) is the current value of the variable. If the perturbation takes the variable outside abound, then the perturbation normally made only in the opposite direction.
Default value 0.001
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTA_R

XSLP_DELTA_R

Description Relative perturbation of values for calculating numerical derivatives
Type Double
Note First-order derivatives are calculated by perturbing the value of each variable in turn by a smallamount. The amount is determined by the absolute and relative delta factors as follows:

XSLP_DELTA_A + abs(X) ∗ XSLP_DELTA_Rwhere (X) is the current value of the variable. If the perturbation takes the variable outside abound, then the perturbation normally made only in the opposite direction.
Default value 0.001
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTA_A

Fair Isaac Corporation Confidential and Proprietary Information 136

Control Parameters Reference

XSLP_DELTA_X

Description Minimum absolute value of delta coefficients to be retained
Type Double
Notes If the value of a coefficient in a delta column is less than this value, it will be reset to zero.Larger values of XSLP_DELTA_X will result in matrices with fewer elements, which may beeasier to solve. However, there will be increased likelihood of local optima as some of thesmall relationships between variables and constraints are deleted. There may also beincreased difficulties with singular bases resulting from deletion of pivot elements from thematrix.
Default value 1.0e-6
Affects routines XSLPmaxim, XSLPminim

XSLP_DELTA_Z

Description Tolerance used when calculating derivatives
Type Double
Notes If the absolute value of a variable is less than this value, then a value of XSLP_DELTA_Z willbe used instead for calculating derivatives.If a nonzero derivative is calculated for a formula which always results in a matrix coefficientless than XSLP_DELTA_Z, then a larger value will be substituted so that at least one of thecoefficients is XSLP_DELTA_Z in magnitude.If XSLP_DELTAZLIMIT is set to a positive number, then when that number of iterations havepassed, values smaller than XSLP_DELTA_Z will be set to zero.
Default value 0.00001
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTAZLIMIT, XSLP_DELTA_ZERO

XSLP_DELTA_ZERO

Description Absolute zero acceptance tolerance used when calculating derivatives
Type Double
Notes Provides an override value for the XSLP_DELTA_Z behavior. Derivatives smaller thanXSLP_DELTA_ZERO will not be substituted by XSLP_DELTA_Z, defining a range in whichderivatives are deemed nonzero and are affected by XSLP_DELTA_Z.A negative value means that this tolerance will not be applied.
Default value -1.0 (not applied)
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTAZLIMIT, XSLP_DELTA_Z

Fair Isaac Corporation Confidential and Proprietary Information 137

Control Parameters Reference

XSLP_DELTACOST

Description Initial penalty cost multiplier for penalty delta vectors
Type Double
Note If penalty delta vectors are used, this parameter sets the initial cost factor. If there are activepenalty delta vectors, then the penalty cost may be increased.
Default value 200
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOSTFACTOR, XSLP_DELTAMAXCOST,

XSLP_ERRORCOST

XSLP_DELTACOSTFACTOR

Description Factor for increasing cost multiplier on total penalty delta vectors
Type Double
Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased by afactor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST
Default value 1.3
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTAMAXCOST, XSLP_ERRORCOST

XSLP_DELTAMAXCOST

Description Maximum penalty cost multiplier for penalty delta vectors
Type Double
Note If there are active penalty delta vectors, then the penalty cost multiplier will be increased by afactor of XSLP_DELTACOSTFACTOR up to a maximum of XSLP_DELTAMAXCOST
Default value infinite
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_DELTACOSTFACTOR, XSLP_ERRORCOST

Fair Isaac Corporation Confidential and Proprietary Information 138

Control Parameters Reference

XSLP_DJTOL

Description Tolerance on DJ value for determining if a variable is at its step bound
Type Double
Note If a variable is at its step bound and within the absolute delta tolerance XSLP_ATOL_A orclosure tolerance XSLP_CTOL then the step bounds will not be further reduced. If the DJ isgreater in magnitude than XSLP_DJTOL then the step bound may be relaxed if it meets thenecessary criteria.
Default value 1.0e-6
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ATOL_A, XSLP_CTOL

XSLP_DRCOLTOL

Description The minimum absolute magnitude of a determining column, for which the determinedvariable is still regarded as well defined
Type Double
Notes This control affects the cascading procedure. Please see Chapter Cascading for moreinformation.
Default value 0
See also XSLP_CASCADE

Affects routines XSLPconstruct XSLPcascade

XSLP_ECFTOL_A

Description Absolute tolerance on testing feasibility at the point of linearization
Type Double
Notes The extended convergence criteria test how well the linearization approximates the trueproblem. They depend on the point of linearization being a reasonable approximation — inparticular, that it should be reasonably close to feasibility. Each constraint is tested at thepoint of linearization, and the total positive and negative contributions to the constraint fromthe columns in the problem are calculated. A feasibility tolerance is calculated as the largestof XSLPECFTOLA and

max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_RIf the calculated infeasibility is greater than the tolerance, the point of linearization isregarded as infeasible and the extended convergence criteria will not be applied. When thevalue is set to be negative, the value is adjusted automatically by SLP, based on the feasibilitytarget XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between1e-1 and 1e-6.

Fair Isaac Corporation Confidential and Proprietary Information 139

Control Parameters Reference

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_R

XSLP_ECFTOL_R

Description Relative tolerance on testing feasibility at the point of linearization
Type Double
Notes The extended convergence criteria test how well the linearization approximates the trueproblem. They depend on the point of linearization being a reasonable approximation — inparticular, that it should be reasonably close to feasibility. Each constraint is tested at thepoint of linearization, and the total positive and negative contributions to the constraint fromthe columns in the problem are calculated. A feasibility tolerance is calculated as the largestof XSLPECFTOLA and

max(abs(Positive), abs(Negative)) ∗ XSLP_ECFTOL_RIf the calculated infeasibility is greater than the tolerance, the point of linearization isregarded as infeasible and the extended convergence criteria will not be applied. When thevalue is set to be negative, the value is adjusted automatically by SLP, based on the feasibilitytarget XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between1e-1 and 1e-6.
Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also Convergence criteria, XSLP_ECFCHECK, XSLP_ECFCOUNT, XSLP_ECFTOL_A

XSLP_ENFORCECOSTSHRINK

Description Factor by which to decrease the current penalty multiplier when enforcing rows.
Type Double
Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its errorvariable, removing the variable (fixing it to zero) can force the row to be satisfied, as set by

XSLP_ENFORCEMAXCOST. After the error variables have been removed (which is equivalent tosetting to row to be enforced) the penalties on the remaining error variables are rebalanced toallow for a reduction in the size of the penalties in the objective in order to achive betternumerical behaviour.
Default value 0.00001
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ENFORCEMAXCOST

Fair Isaac Corporation Confidential and Proprietary Information 140

Control Parameters Reference

XSLP_ENFORCEMAXCOST

Description Maximum penalty cost in the objective before enforcing most violating rows
Type Double
Notes When feasiblity of a row cannot be achieved by increasing the penalty cost on its errorvariable, removing the variable (fixing it to zero) can force the row to be satisfied. After theerror variables have been removed (which is equivalent to setting to row to be enforced) thepenalties on the remaining error variables are rebalanced to allow for a reduction in the sizeof the penalties in the objective in order to achive better numerical behaviour, controlled by

XSLP_ENFORCECOSTSHRINK.
Default value 10000000000
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ENFORCECOSTSHRINK

XSLP_ERRORCOST

Description Initial penalty cost multiplier for penalty error vectors
Type Double
Note If penalty error vectors are used, this parameter sets the initial cost factor. If there are activepenalty error vectors, then the penalty cost may be increased.
Default value 200
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOSTFACTOR,

XSLP_ERRORMAXCOST

XSLP_ERRORCOSTFACTOR

Description Factor for increasing cost multiplier on total penalty error vectors
Type Double
Note If there are active penalty error vectors, then the penalty cost multiplier will be increased by afactor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST
Default value 1.3
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORMAXCOST

Fair Isaac Corporation Confidential and Proprietary Information 141

Control Parameters Reference

XSLP_ERRORMAXCOST

Description Maximum penalty cost multiplier for penalty error vectors
Type Double
Note If there are active penalty error vectors, then the penalty cost multiplier will be increased by afactor of XSLP_ERRORCOSTFACTOR up to a maximum of XSLP_ERRORMAXCOST
Default value infinite
Affects routines XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ERRORCOSTFACTOR

XSLP_ERRORTOL_A

Description Absolute tolerance for error vectors
Type Double
Note The solution will be regarded as having no active error vectors if one of the following applies:every penalty error vector and penalty delta vector has an activity less than

XSLP_ERRORTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value.
Default value 0.00001
Affects routines XSLPmaxim, XSLPminim
See also XSLP_EVTOL_A, XSLP_EVTOL_R

XSLP_ERRORTOL_P

Description Absolute tolerance for printing error vectors
Type Double
Note The solution log includes a print of penalty delta and penalty error vectors with an activitygreater than XSLP_ERRORTOL_P.
Default value 0.0001
Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 142

Control Parameters Reference

XSLP_ESCALATION

Description Factor for increasing cost multiplier on individual penalty error vectors
Type Double
Note If penalty cost escalation is activated in XSLP_ALGORITHM then the penalty cost multiplierwill be increased by a factor of XSLP_ESCALATION for any active error vector up to amaximum of XSLP_MAXWEIGHT.
Default value 1.25
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ALGORITHM, XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_MAXWEIGHT

XSLP_ETOL_A

Description Absolute tolerance on penalty vectors
Type Double
Note For each penalty error vector, the contribution to its constraint is calculated, together with thetotal positive and negative contributions to the constraint from other vectors. If itscontribution is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less than

abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not have itspenalty increased. When the value is set to be negative, the value is adjusted automatically bySLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for thecontrol are usually fall between 1e-3 and 1e-6.
Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ETOL_R XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_ETOL_R

Description Relative tolerance on penalty vectors
Type Double
Note For each penalty error vector, the contribution to its constraint is calculated, together with thetotal positive and negative contributions to the constraint from other vectors. If itscontribution is less than XSLP_ETOL_A or less than Positive ∗ XSLP_ETOL_R or less than

abs(Negative) ∗ XSLP_ETOL_R then it will be regarded as insignificant and will not have itspenalty increased. When the value is set to be negative, the value is adjusted automatically bySLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Good values for thecontrol are usually fall between 1e-3 and 1e-6.
Default value -1.0

Fair Isaac Corporation Confidential and Proprietary Information 143

Control Parameters Reference

Affects routines XSLPmaxim, XSLPminim
See also XSLP_ETOL_A XSLP_DELTACOST, XSLP_ERRORCOST, XSLP_ESCALATION

XSLP_EVTOL_A

Description Absolute tolerance on total penalty costs
Type Double
Note The solution will be regarded as having no active error vectors if one of the following applies:every penalty error vector and penalty delta vector has an activity less than

XSLP_ERRORTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value. When the value isset to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and1e-6, but normally a magnitude larger than XSLP_ETOL_A.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ERRORTOL_A, XSLP_EVTOL_R

XSLP_EVTOL_R

Description Relative tolerance on total penalty costs
Type Double
Note The solution will be regarded as having no active error vectors if one of the following applies:every penalty error vector and penalty delta vector has an activity less than

XSLP_ERRORTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_A;the sum of the cost contributions from all the penalty error and penalty delta vectors is lessthan XSLP_EVTOL_R ∗ Obj where Obj is the current objective function value. When the value isset to be negative, the value is adjusted automatically by SLP, based on the feasibility target
XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-2 and1e-6, but normally a magnitude larger than XSLP_ETOL_R.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ERRORTOL_A, XSLP_EVTOL_A

Fair Isaac Corporation Confidential and Proprietary Information 144

Control Parameters Reference

XSLP_EXPAND

Description Multiplier to increase a step bound
Type Double
Note If step bounding is enabled, the step bound for a variable will be increased if successivechanges are in the same direction. More precisely, if there are XSLP_SAMECOUNT successivechanges reaching the step bound and in the same direction for a variable, then the stepbound (B) for the variable will be reset to

B ∗ XSLP_EXPAND.
Default value 2
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SHRINK, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_FEASTOLTARGET

Description When set, this defines a target feasibility tolerance to which the linearizations are solved to
Type Double
Note This is a soft version of XPRS_FEASTOL, and will dynamically revert back to XPRS_FEASTOLif the desired accuracy could not be achieved.
Default value 0 (ignored, not set)
Affects routines XSLPmaxim, XSLPminim
See also XSLP_OPTIMALITYTOLTARGET,

XSLP_GRANULARITY

Description Base for calculating penalty costs
Type Double
Note If XSLP_GRANULARITY >1, then initial penalty costs will be powers of XSLP_GRANULARITY.
Default value 4
Affects routines XSLPconstruct

See also XSLP_MAXWEIGHT, XSLP_MINWEIGHT

Fair Isaac Corporation Confidential and Proprietary Information 145

Control Parameters Reference

XSLP_INFINITY

Description Value returned by a divide-by-zero in a formula
Type Double
Default value 1.0e+10

XSLP_ITOL_A

Description Absolute impact convergence tolerance
Type Double
Note The absolute impact convergence criterion assesses the change in the effect of a coefficientin a constraint. The effect of a coefficient is its value multiplied by the activity of the columnin which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is thevalue of the coefficient. The linearization approximates the effect of the coefficient as
E1 = X ∗ C0 + δX ∗ C′0

where X is as before, C0 is the value of the coefficient C calculated using the assumed valuesfor the variables and C′0 is the value of ∂C
∂X calculated using the assumed values for thevariables.If C1 is the value of the coefficient C calculated using the actual values for the variables, thenthe error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′0)
If δE < XSLP_ITOL_Athen the variable has passed the absolute impact convergence criterion for this coefficient.If a variable which has not converged on strict (closure or delta) criteria passes the (relativeor absolute) impact or matrix criteria for all the coefficients in which it appears, then it isdeemed to have converged. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 146

Control Parameters Reference

XSLP_ITOL_R

Description Relative impact convergence tolerance
Type Double
Note The relative impact convergence criterion assesses the change in the effect of a coefficient ina constraint in relation to the magnitude of the constituents of the constraint. The effect of acoefficient is its value multiplied by the activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is thevalue of the coefficient. The linearization approximates the effect of the coefficient as
E1 = X ∗ C0 + δX ∗ C′0

where X is as before, C0 is the value of the coefficient C calculated using the assumed valuesfor the variables and C′0 is the value of ∂C
∂X calculated using the assumed values for thevariables.If C1 is the value of the coefficient C calculated using the actual values for the variables, thenthe error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′0)
All the elements of the constraint are examined, excluding delta and error vectors: for each,the contribution to the constraint is evaluated as the element multiplied by the activity of thevector in which it appears; it is then included in a total positive contribution or total negative
contribution depending on the sign of the contribution. If the predicted effect of thecoefficient is positive, it is tested against the total positive contribution; if the effect of thecoefficient is negative, it is tested against the total negative contribution. If T0 is the totalpositive or total negative contribution to the constraint (as appropriate)and δE < T0 ∗ XSLP_ITOL_Rthen the variable has passed the relative impact convergence criterion for this coefficient.If a variable which has not converged on strict (closure or delta) criteria passes the (relativeor absolute) impact or matrix criteria for all the coefficients in which it appears, then it isdeemed to have converged. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_A, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

XSLP_MATRIXTOL

Description Provides an override value for XPRS_MATRIXTOL, which controls the smallest magnitude ofmatrix coefficents
Type Double

Fair Isaac Corporation Confidential and Proprietary Information 147

Control Parameters Reference

Note Any value smaller than XSLP_MATRIXTOL in magnitude will not be loaded into thelinearization. This only applies to the matrix coefficients; bounds, right hand sides andobjectives are not affected.
Default value 1e-30
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim

XSLP_MAXWEIGHT

Description Maximum penalty weight for delta or error vectors
Type Double
Note When penalty vectors are created, or when their weight is increased by escalation, themaximum weight that will be used is given by XSLP_MAXWEIGHT.
Default value 100
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim
See also XSLP_ALGORITHM, XSLP_AUGMENTATION, XSLP_ESCALATION, XSLP_MINWEIGHT

XSLP_MEMORYFACTOR

Description Factor for expanding size of dynamic arrays in memory
Type Double
Note When a dynamic array has to be increased in size, the new space allocated will be

XSLP_MEMORYFACTOR times as big as the previous size. A larger value may result inimproved performance because arrays need to be re-sized and moved less frequently;however, more memory may be required under such circumstances because not all of theprevious memory area can be re-used efficiently.
Default value 1.6
See also Memory control variables XSLP_MEM⁎Memory control variables XSLP_MEM⁎

XSLP_MERITLAMBDA

Description Factor by which the net objective is taken into account in the merit function
Type Double
Note The merit function is evaluated in the original, non-augmented / linearized space of theproblem. A solution is deemed improved, if either feasibility improved, or if feasibility is notdeteriorated but the net objective is improved, or if the combination of the two is improved,where the value of the XSLP_MERITLAMBDA control is used to combine the two measures. Anonpositive value indicates that the combined effect should not be checked.

Fair Isaac Corporation Confidential and Proprietary Information 148

Control Parameters Reference

Default value 0.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_FILTER XSLP_LSITERLIMIT XSLP_LSPATTERNLIMIT

XSLP_MINSBFACTOR

Description Factor by which step bounds can be decreased beneath XSLP_ATOL_A
Type Double
Note Normally, step bounds are not decreased beneath XSLP_ATOL_A, as such variables aretreated as converged. However, it may be beneficial to decrease step bounds further, asindividual variable value changes might affect the convergence of other variables in themodel, even if the variablke itself is deemed converged.
Default value 1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ATOL_A

XSLP_MINWEIGHT

Description Minimum penalty weight for delta or error vectors
Type Double
Note When penalty vectors are created, the minimum weight that will be used is given by

XSLP_MINWEIGHT.
Default value 0.01
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim
See also XSLP_AUGMENTATION, XSLP_MAXWEIGHT

XSLP_MIPCUTOFF_A

Description Absolute objective function cutoff for MIP termination
Type Double
Note If the objective function is worse by a defined amount than the best integer solution obtainedso far, then the SLP will be terminated (and the node will be cut off). The node will be cut offat the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLPiterations are all worse than the best obtained so far, and the difference is greater than

XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solutionobtained so far.The MIP cutoff tests are only applied after XSLP_MIPCUTOFFLIMIT SLP iterations at thecurrent node.

Fair Isaac Corporation Confidential and Proprietary Information 149

Control Parameters Reference

Default value 0.0001
Affects routines XSLPglobal

See also XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_R

XSLP_MIPCUTOFF_R

Description Absolute objective function cutoff for MIP termination
Type Double
Note If the objective function is worse by a defined amount than the best integer solution obtainedso far, then the SLP will be terminated (and the node will be cut off). The node will be cut offat the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLPiterations are all worse than the best obtained so far, and the difference is greater than

XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solutionobtained so far.The MIP cutoff tests are only applied after XSLP_MIPCUTOFFLIMIT SLP iterations at thecurrent node.
Default value 0.0001
Affects routines XSLPglobal

See also XSLP_MIPCUTOFFCOUNT, XSLP_MIPCUTOFFLIMIT, XSLP_MIPCUTOFF_A

XSLP_MIPERRORTOL_A

Description Absolute penalty error cost tolerance for MIP cut-off
Type Double
Note The penalty error cost test is applied at each node where there are active penalties in thesolution. If XSLP_MIPERRORTOL_A is nonzero and the absolute value of the penalty costs isgreater than XSLP_MIPERRORTOL_A, the node will be declared infeasible. If

XSLP_MIPERRORTOL_A is zero then no test is made and the node will not be declaredinfeasible on this criterion.
Default value 0 (inactive)
Affects routines XSLPglobal

See also XSLP_MIPERRORTOL_R

XSLP_MIPERRORTOL_R

Description Relative penalty error cost tolerance for MIP cut-off
Type Double

Fair Isaac Corporation Confidential and Proprietary Information 150

Control Parameters Reference

Note The penalty error cost test is applied at each node where there are active penalties in thesolution. If XSLP_MIPERRORTOL_R is nonzero and the absolute value of the penalty costs isgreater than XSLP_MIPERRORTOL_R ∗ abs(Obj) where Obj is the value of the objectivefunction, then the node will be declared infeasible. If XSLP_MIPERRORTOL_R is zero then notest is made and the node will not be declared infeasible on this criterion.
Default value 0 (inactive)
Affects routines XSLPglobal

See also XSLP_MIPERRORTOL_A

XSLP_MIPOTOL_A

Description Absolute objective function tolerance for MIP termination
Type Double
Note The objective function test for MIP termination is applied only when step bounding has beenapplied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not beingused). The node will be terminated at the current SLP iteration if the range of the objectivefunction values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A orwithin OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function overthose iterations.
Default value 0.00001
Affects routines XSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_R XSLP_SBSTART

XSLP_MIPOTOL_R

Description Relative objective function tolerance for MIP termination
Type Double
Note The objective function test for MIP termination is applied only when step bounding has beenapplied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not beingused). The node will be terminated at the current SLP iteration if the range of the objectivefunction values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A orwithin OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function overthose iterations.
Default value 0.00001
Affects routines XSLPglobal

See also XSLP_MIPOCOUNT XSLP_MIPOTOL_A XSLP_SBSTART

Fair Isaac Corporation Confidential and Proprietary Information 151

Control Parameters Reference

XSLP_MSMAXBOUNDRANGE

Description Defines the maximum range inside which initial points are generated by multistart presets
Type Double
Note The is the maximum range in which initial points are generated; the actual range is expectedto be smaller as bounds are domains are also considered.
Default value 1000
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART

XSLP_MTOL_A

Description Absolute effective matrix element convergence tolerance
Type Double
Note The absolute effective matrix element convergence criterion assesses the change in theeffect of a coefficient in a constraint. The effect of a coefficient is its value multiplied by theactivity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is thevalue of the coefficient. The linearization approximates the effect of the coefficient as
E = X ∗ C0 + δX ∗ C′0

where V is as before, C0 is the value of the coefficient C calculated using the assumed valuesfor the variables and C′0 is the value of ∂C
∂X calculated using the assumed values for thevariables.If C1 is the value of the coefficient C calculated using the actual values for the variables, thenthe error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′0)
If δE < X ∗ XSLP_MTOL_Athen the variable has passed the absolute effective matrix element convergence criterion forthis coefficient.If a variable which has not converged on strict (closure or delta) criteria passes the (relativeor absolute) impact or matrix criteria for all the coefficients in which it appears, then it isdeemed to have converged. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_R, XSLP_STOL_A, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 152

Control Parameters Reference

XSLP_MTOL_R

Description Relative effective matrix element convergence tolerance
Type Double
Note The relative effective matrix element convergence criterion assesses the change in the effectof a coefficient in a constraint relative to the magnitude of the coefficient. The effect of acoefficient is its value multiplied by the activity of the column in which it appears.

E = X ∗ C

where X is the activity of the matrix column in which the coefficient appears, and C is thevalue of the coefficient. The linearization approximates the effect of the coefficient as
E1 = X ∗ C0 + δX ∗ C′0

where V is as before, C0 is the value of the coefficient C calculated using the assumed valuesfor the variables and C′0 is the value of ∂C
∂X calculated using the assumed values for thevariables.If C1 is the value of the coefficient C calculated using the actual values for the variables, thenthe error in the effect of the coefficient is given by

δE = X ∗ C1 – (X ∗ C0 + δX ∗ C′0)
If δE < E1 ∗ XSLP_MTOL_Rthen the variable has passed the relative effective matrix element convergence criterion forthis coefficient.If a variable which has not converged on strict (closure or delta) criteria passes the (relativeor absolute) impact or matrix criteria for all the coefficients in which it appears, then it isdeemed to have converged. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_STOL_A, XSLP_STOL_R

XSLP_MVTOL

Description Marginal value tolerance for determining if a constraint is slack
Type Double
Note If the absolute value of the marginal value of a constraint is less than XSLP_MVTOL, then(1) the constraint is regarded as not constraining for the purposes of the slack toleranceconvergence criteria;(2) the constraint is not regarded as an active constraint when identifying unconvergedvariables in active constraints. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the feasibility target XSLP_VALIDATIONTARGET_R. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Fair Isaac Corporation Confidential and Proprietary Information 153

Control Parameters Reference

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_STOL_A, XSLP_STOL_R

XSLP_OBJSENSE

Description Objective function sense
Type Double
Note XSLP_OBJSENSE is set to +1 for minimization and to -1 for maximization. It is automaticallyset by XSLPmaxim and XSLPminim; it must be set by the user before calling

XSLPnlpoptimize.
Set by routines XSLPmaxim, XSLPminim
Default value +1
Affects routines XSLPmaxim, XSLPminim, XSLPnlpoptimize

XSLP_OBJTOPENALTYCOST

Description Factor to estimate initial penalty costs from objective function
Type Double
Notes The setting of initial penalty error costs can affect the path of the optimization and, indeed,whether a solution is achieved at all. If the penalty costs are too low, then unboundedsolutions may result although Xpress-SLP will increase the costs in an attempt to recover. Ifthe penalty costs are too high, then the requirement to achieve feasibility of the linearizedconstraints may be too strong to allow the system to explore the nonlinear feasible region.Low penalty costs can result in many SLP iterations, as feasibility of the nonlinear constraintsis not achieved until the penalty costs become high enough; high penalty costs forcefeasibility of the linearizations, and so tend to find local optima close to an initial feasiblepoint. Xpress-SLP can analyze the problem to estimate the size of penalty costs required toavoid an initial unbounded solution. XSLP_OBJTOPENALTYCOST can be used in conjunctionwith this procedure to scale the costs and give an appropriate initial value for balancing therequirements of feasibility and optimality.Not all models are amenable to the Xpress-SLP analysis. As the analysis is initially concernedwith establishing a cost level to avoid unboundedness, a model which is sufficientlyconstrained will never show unboundedness regardless of the cost. Also, as the analysis isdone at the start of the optimization to establish a penalty cost, significant changes in thecoefficients, or a high degree of nonlinearity, may invalidate the initial analysis.A setting for XSLP_OBJTOPENALTYCOST of zero disables the analysis. A setting of 3 or 4 hasproved successful for many models. If XSLP_OBJTOPENALTYCOST cannot be used becauseof the problem structure, its effect can still be emulated by some initial experiments toestablish the cost required to avoid unboundedness, and then manually applying a suitablefactor. If the problem is initially unbounded, then the penalty cost will be increased until eitherit reaches its maximum or the problem becomes bounded.
Default value 0
Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 154

Control Parameters Reference

XSLP_OPTIMALITYTOLTARGET

Description When set, this defines a target optimality tolerance to which the linearizations are solved to
Type Double
Note This is a soft version of XPRS_OPTIMALITYTOL, and will dynamically revert back toXPRS_OPTIMALITYTOL if the desired accuracy could not be achieved.
Default value 0 (ignored, not set)
Affects routines XSLPmaxim, XSLPminim
See also XSLP_FEASTOLTARGET,

XSLP_OTOL_A

Description Absolute static objective (2) convergence tolerance
Type Double
Note The static objective (2) convergence criterion does not measure convergence of individualvariables. Instead, it measures the significance of the changes in the objective function overrecent SLP iterations. It is applied when all the variables interacting with active constraints(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale isthat if the remaining unconverged variables are not involved in active constraints and if theobjective function is not changing significantly between iterations, then the solution ismore-or-less practical.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ XSLP_OTOL_Athen the problem has converged on the absolute static objective (2) convergence criterion.The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When thevalue is set to be negative, the value is adjusted automatically by SLP, based on the optimalitytarget XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_OCOUNT, XSLP_OTOL_R

XSLP_OTOL_R

Description Relative static objective (2) convergence tolerance

Fair Isaac Corporation Confidential and Proprietary Information 155

Control Parameters Reference

Type Double
Note The static objective (2) convergence criterion does not measure convergence of individualvariables. Instead, it measures the significance of the changes in the objective function overrecent SLP iterations. It is applied when all the variables interacting with active constraints(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale isthat if the remaining unconverged variables are not involved in active constraints and if theobjective function is not changing significantly between iterations, then the solution ismore-or-less practical.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_OTOL_Rthen the problem has converged on the relative static objective (2) convergence criterion.The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2. When thevalue is set to be negative, the value is adjusted automatically by SLP, based on the optimalitytarget XSLP_VALIDATIONTARGET_K. Good values for the control are usually fall between1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_OCOUNT, XSLP_OTOL_A

XSLP_PRESOLVEZERO

Description Minimum absolute value for a variable which is identified as nonzero during SLP presolve
Type Double
Note During the SLP (nonlinear)presolve, a variable may be identified as being nonzero (forexample, because it is used as a divisor). A bound of plus or minus XSLP_PRESOLVEZEROwill be applied to the variable if it is identified as non-negative or non-positive.
Default value 1.0E-09
Affects routines XSLPpresolve

XSLP_PRIMALINTEGRALREF

Description Reference solution value to take into account when calculating the primal integral
Type Double
Note When a global optimum is known, this can used to calculate a globally valid primal integral. Itcan also be used to indicate the target objective value still to be taken into account in theintegral.
Default value XPRS_PLUSINFINITY
Affects routines XSLPminim, XSLPmaxim

Fair Isaac Corporation Confidential and Proprietary Information 156

Control Parameters Reference

XSLP_SHRINK

Description Multiplier to reduce a step bound
Type Double
Note If step bounding is enabled, the step bound for a variable will be decreased if successivechanges are in opposite directions. The step bound (B) for the variable will be reset to

B ∗ XSLP_SHRINK.If the step bound is already below the strict (delta or closure) tolerances, it will not be reducedfurther.
Default value 0.5
Affects routines XSLPmaxim, XSLPminim
See also XSLP_EXPAND, XSLP_SHRINKBIAS, XSLP_SAMECOUNT

XSLP_SHRINKBIAS

Description Defines an overwrite / adjustment of step bounds for improving iterations
Type Double
Note Positive values overwrite XSLP_SHRINK only if the objective is improving. A negative value isused to scale all step bounds in improving iterations.
Default value 0 (ignored, not set)
Affects routines XSLPminim, XSLPmaxim
See also XSLP_SHRINK, XSLP_EXPAND, XSLP_SAMECOUNT

XSLP_STOL_A

Description Absolute slack convergence tolerance
Type Double
Note The slack convergence criterion is identical to the impact convergence criterion, except thatthe tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R(instead of XSLP_ITOL_R). See XSLP_ITOL_A for a description of the test. When the valueis set to be negative, the value is adjusted automatically by SLP, based on the feasibility target

XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and1e-6.
Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_R

Fair Isaac Corporation Confidential and Proprietary Information 157

Control Parameters Reference

XSLP_STOL_R

Description Relative slack convergence tolerance
Type Double
Note The slack convergence criterion is identical to the impact convergence criterion, except thatthe tolerances used are XSLP_STOL_A (instead of XSLP_ITOL_A) and XSLP_STOL_R(instead of XSLP_ITOL_R). See XSLP_ITOL_R for a description of the test. When the valueis set to be negative, the value is adjusted automatically by SLP, based on the feasibility target

XSLP_VALIDATIONTARGET_R. Good values for the control are usually fall between 1e-3 and1e-6.
Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ITOL_A, XSLP_ITOL_R, XSLP_MTOL_A, XSLP_MTOL_R, XSLP_STOL_A

XSLP_VALIDATIONTARGET_R

Description Feasiblity target tolerance
Type Double
Note Primary feasiblity control for SLP. When the relevant feasibility based convergence controlsare left at their default values, SLP will adjust their value to match the target. The controldefines a target value, that may not necessarily be attainable.
Default value 1e-6
Affects routines XSLPmaxim, XSLPminim
See also XSLP_VALIDATIONTARGET_K

XSLP_VALIDATIONTARGET_K

Description Optimality target tolerance
Type Double
Note Primary optimality control for SLP. When the relevant optimality based convergence controlsare left at their default values, SLP will adjust their value to match the target. The controldefines a target value, that may not necessarily be attainable for problem with no strongconstraint qualifications.
Default value 1e-6
Affects routines XSLPmaxim, XSLPminim
See also XSLP_VALIDATIONTARGET_R

Fair Isaac Corporation Confidential and Proprietary Information 158

Control Parameters Reference

XSLP_VALIDATIONTOL_A

Description Absolute tolerance for the XSLPvalidate procedure
Type Double
Note XSLPvalidate checks the feasibility of a converged solution against relative and absolutetolerances for each constraint. The left hand side and the right hand side of the constraint arecalculated using the converged solution values. If the calculated values imply that theconstraint is infeasible, then the difference (D) is tested against the absolute and relativevalidation tolerances.If D < XSLP_VALIDATIONTOL_Athen the constraint is within the absolute validation tolerance. The total positive (TPos) andnegative contributions (TNeg) to the left hand side are also calculated.If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_Athen the constraint is within the relative validation tolerance. For each constraint which isoutside both the absolute and relative validation tolerances, validation factors are calculatedwhich are the factors by which the infeasibility exceeds the corresponding validationtolerance; the smaller factor is printed in the validation report.The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is anabsolute validation factor multiplied by the absolute validation tolerance; the validation index

XSLP_VALIDATIONINDEX_R is the largest of these factors which is a relative validationfactor multiplied by the relative validation tolerance.
Default value 0.00001
Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_R

XSLP_VALIDATIONTOL_R

Description Relative tolerance for the XSLPvalidate procedure
Type Double
Note XSLPvalidate checks the feasibility of a converged solution against relative and absolutetolerances for each constraint. The left hand side and the right hand side of the constraint arecalculated using the converged solution values. If the calculated values imply that theconstraint is infeasible, then the difference (D) is tested against the absolute and relativevalidation tolerances.If D < XSLP_VALIDATIONTOL_Athen the constraint is within the absolute validation tolerance. The total positive (TPos) andnegative contributions (TNeg) to the left hand side are also calculated.If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_Rthen the constraint is within the relative validation tolerance. For each constraint which isoutside both the absolute and relative validation tolerances, validation factors are calculatedwhich are the factors by which the infeasibility exceeds the corresponding validationtolerance; the smaller factor is printed in the validation report.The validation index XSLP_VALIDATIONINDEX_A is the largest of these factors which is anabsolute validation factor multiplied by the absolute validation tolerance; the validation index

Fair Isaac Corporation Confidential and Proprietary Information 159

Control Parameters Reference

XSLP_VALIDATIONINDEX_R is the largest of these factors which is a relative validationfactor multiplied by the relative validation tolerance.
Default value 0.00001
Affects routines XSLPvalidate

See also XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A

XSLP_VTOL_A

Description Absolute static objective (3) convergence tolerance
Type Double
Note The static objective (3) convergence criterion does not measure convergence of individualvariables, and in fact does not in any way imply that the solution has converged. However, it issometimes useful to be able to terminate an optimization once the objective function appearsto have stabilized. One example is where a set of possible schedules are being evaluated andinitially only a good estimate of the likely objective function value is required, to eliminate theworst candidates.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ XSLP_VTOL_Athen the problem has converged on the absolute static objective function (3) criterion.The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.Where step bounding is being used, this ensures that the test is not applied until after stepbounding has been introduced. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the optimality target XSLP_VALIDATIONTARGET_K. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_R

XSLP_VTOL_R

Description Relative static objective (3) convergence tolerance
Type Double
Note The static objective (3) convergence criterion does not measure convergence of individualvariables, and in fact does not in any way imply that the solution has converged. However, it issometimes useful to be able to terminate an optimization once the objective function appearsto have stabilized. One example is where a set of possible schedules are being evaluated and

Fair Isaac Corporation Confidential and Proprietary Information 160

Control Parameters Reference

initially only a good estimate of the likely objective function value is required, to eliminate theworst candidates.The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)

where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_VTOL_Rthen the problem has converged on the absolute static objective function (3) criterion.The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.Where step bounding is being used, this ensures that the test is not applied until after stepbounding has been introduced. When the value is set to be negative, the value is adjustedautomatically by SLP, based on the optimality target XSLP_VALIDATIONTARGET_K. Goodvalues for the control are usually fall between 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VLIMIT, XSLP_VTOL_A

XSLP_WTOL_A

Description Absolute extended convergence continuation tolerance
Type Double
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution hasbeen found where at least one variable has converged on extended criteria and is at its stepbound limit. The extended convergence continuation test measures whether anyimprovement is being achieved when additional SLP iterations are carried out. If not, then thelast converged solution will be restored and the optimization will stop.For a maximization problem, the improvement in the objective function at the current iterationcompared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObjFor a minimization problem, the sign is reversed.If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantlybetter objective function value than the converged solution.
When a solution is found which converges on extended criteria and with active step bounds,the solution is saved and SLP optimization continues until one of the following:(1) a new solution is found which converges on some other criterion, in which case the SLPoptimization stops with this new solution;(2) a new solution is found which converges on extended criteria and with active step bounds,and which has a significantly better objective function, in which case this is taken as the newsaved solution;

Fair Isaac Corporation Confidential and Proprietary Information 161

Control Parameters Reference

(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objectivefunction than the saved solution, in which case the saved solution is restored and the SLPoptimization stops.
When the value is set to be negative, the value is adjusted automatically by SLP, based on theoptimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fallbetween 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_WCOUNT, XSLP_WTOL_R

XSLP_WTOL_R

Description Relative extended convergence continuation tolerance
Type Double
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution hasbeen found where at least one variable has converged on extended criteria and is at its stepbound limit. The extended convergence continuation test measures whether anyimprovement is being achieved when additional SLP iterations are carried out. If not, then thelast converged solution will be restored and the optimization will stop.For a maximization problem, the improvement in the objective function at the current iterationcompared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObjFor a minimization problem, the sign is reversed.If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantlybetter objective function value than the converged solution.
If XSLP_WCOUNT is greater than zero, and a solution is found which converges on extendedcriteria and with active step bounds, the solution is saved and SLP optimization continuesuntil one of the following:(1) a new solution is found which converges on some other criterion, in which case the SLPoptimization stops with this new solution;(2) a new solution is found which converges on extended criteria and with active step bounds,and which has a significantly better objective function, in which case this is taken as the newsaved solution;(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objectivefunction than the saved solution, in which case the saved solution is restored and the SLPoptimization stops.
When the value is set to be negative, the value is adjusted automatically by SLP, based on theoptimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fallbetween 1e-4 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 162

Control Parameters Reference

See also XSLP_WCOUNT, XSLP_WTOL_A

XSLP_XTOL_A

Description Absolute static objective function (1) tolerance
Type Double
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.However, if the objective function has already been stable for several SLP iterations, thenthere is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in theobjective function over recent SLP iterations. It is applied when all the variables haveconverged, but some have converged on extended criteria and at least one of these variablesis at its step bound. Because all the variables have converged, the solution is alreadyconverged but the fact that some variables are at their step bound limit suggests that theobjective function could be improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.
If ABS(δObj) ≤ XSLP_XTOL_Athen the objective function is deemed to be static according to the absolute static objectivefunction (1) criterion.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_Rthen the objective function is deemed to be static according to the relative static objectivefunction (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations havetaken place. After that, if all the variables have converged on strict or extended criteria, thesolution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test thenthe solution is deemed to have converged.
When the value is set to be negative, the value is adjusted automatically by SLP, based on theoptimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fallbetween 1e-3 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_R

XSLP_XTOL_R

Description Relative static objective function (1) tolerance

Fair Isaac Corporation Confidential and Proprietary Information 163

Control Parameters Reference

Type Double
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.However, if the objective function has already been stable for several SLP iterations, thenthere is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in theobjective function over recent SLP iterations. It is applied when all the variables haveconverged, but some have converged on extended criteria and at least one of these variablesis at its step bound. Because all the variables have converged, the solution is alreadyconverged but the fact that some variables are at their step bound limit suggests that theobjective function could be improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.
If ABS(δObj) ≤ XSLP_XTOL_Athen the objective function is deemed to be static according to the absolute static objectivefunction (1) criterion.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_Rthen the objective function is deemed to be static according to the relative static objectivefunction (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations havetaken place. After that, if all the variables have converged on strict or extended criteria, thesolution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test thenthe solution is deemed to have converged.
When the value is set to be negative, the value is adjusted automatically by SLP, based on theoptimality target XSLP_VALIDATIONTARGET_K. Good values for the control are usually fallbetween 1e-4 and 1e-6.

Default value -1.0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_XCOUNT, XSLP_XLIMIT, XSLP_XTOL_A

XSLP_ZERO

Description Absolute tolerance
Type Double
Note If a value is below XSLP_ZERO in magnitude, then it will be regarded as zero in certainformula calculations:an attempt to divide by such a value will give a "divide by zero" error;an exponent of a negative number will produce a "negative number, fractional exponent" errorif the exponent differs from an integer by more than XSLP_ZERO.
Default value 1.0E-10

Fair Isaac Corporation Confidential and Proprietary Information 164

Control Parameters Reference

Affects routines XSLPevaluatecoef, XSLPevaluateformula

Fair Isaac Corporation Confidential and Proprietary Information 165

Control Parameters Reference

20.2 Integer control parameters

XSLP_ALGORITHM

Description Bit map describing the SLP algorithm(s) to be used
Type Integer
Values Bit Meaning

0 Do not apply step bounds.
1 Apply step bounds to SLP delta vectors only when required.
2 Estimate step bounds from early SLP iterations.
3 Use dynamic damping.
4 Do not update values which are converged within strict tolerance.
5 Retain previous value when cascading if determining row is zero.
6 Reset XSLP_DELTA_Z to zero when converged and continue SLP.
7 Quick convergence check.
8 Escalate penalties.
9 Use the primal simplex algorithm when all error vectors become inactive.
11 Continue optimizing after penalty cost reaches maximum.
12 Accept a solution which has converged even if there are still significant activepenalty error vectors.
13 Skip the solution polishing step if the LP postsolve returns a slightly infeasible, butclaimed optimal solution.
14 Step bounds are updated to accomodate cascaded values (otherwise cascadedvalues are pushed to respect step bounds).
15 Apply clamping when converged on extended criteria only with some variableshaving active step bounds.
16 Apply clamping when converged on extended criteria only.

Notes Bit 0: Do not apply step bounds. The default algorithm uses step bounds to forceconvergence. Step bounds may not be appropriate if dynamic damping is used.
Bit 1: Apply step bounds to SLP delta vectors only when required. Step bounds can beapplied to all vectors simultaneously, or applied only when oscillation of the delta vector(change in sign between successive SLP iterations) is detected.
Bit 2: Estimate step bounds from early SLP iterations. If initial step bounds are not beingexplicitly provided, this gives a good method of calculating reasonable values. Values willtend to be larger rather than smaller, to reduce the risk of infeasibility caused by excessivetightness of the step bounds.
Bit 3: Use dynamic damping. Dynamic damping is sometimes an alternative to stepbounding as a means of encouraging convergence, but it does not have the same power toforce convergence as do step bounds.
Bit 4: Do not update values which are converged within strict tolerance. Models which arenumerically unstable may benefit from this setting, which does not update values which haveeffectively hardly changed. If a variable subsequently does move outside its strictconvergence tolerance, it will be updated as usual.
Bit 5: Retain previous value when cascading if determining row is zero. If the determiningrow is zero (that is, all the coefficients interacting with it are either zero or in columns with a

Fair Isaac Corporation Confidential and Proprietary Information 166

Control Parameters Reference

zero activity), then it is impossible to calculate a new value for the vector being cascaded.The choice is to use the solution value as it is, or to revert to the assumed value
Bit 6: Reset XSLP_DELTA_Z to zero when converged and continue SLP. One of themechanisms to avoid local optima is to retain small non-zero coefficients between deltavectors and constraints, even when the coefficient should strictly be zero. If this option is set,then a converged solution will be continued with zero coefficients as appropriate.
Bit 7: Quick convergence check. Normally, each variable is checked against allconvergence criteria until either a criterion is found which it passes, or it is declared "notconverged". Later (extended convergence) criteria are more expensive to test and, once anunconverged variable has been found, the overall convergence status of the solution hasbeen established. The quick convergence check carries out checks on the strict criteria, butomits checks on the extended criteria when an unconverged variable has been found.
Bit 8: Escalate penalties. Constraint penalties are increased after each SLP iteration wherepenalty vectors are present in the solution. Escalation applies an additional scaling factor tothe penalty costs for active errors. This helps to prevent successive solutions becoming"stuck" because of a particular constraint, because its cost will be raised so that otherconstraints may become more attractive to violate instead and thus open up a new region toexplore.
Bit 9: Use the primal simplex algorithm when all error vectors become inactive. The primalsimplex algorithm often performs better than dual during the final stages of SLP optimizationwhen there are relatively few basis changes between successive solutions. As it isimpossible to establish in advance when the final stages are being reached, thedisappearance of error vectors from the solution is used as a proxy.
Bit 11: Continue optimizing after penalty cost reaches maximum. Normally if the penaltycost reaches its maximum (by default the value of XPRS_PLUSINFINITY), the optimizationwill terminate with an unconverged solution. If the maximum value is set to a smaller value,then it may make sense to continue, using other means to determine when to stop.
Bit 12: Accept a solution which has converged even if there are still significant activepenalty error vectors. Normally, the optimization will continue if there are active penaltyvectors in the solution. However, it may be that there is no feasible solution (and so activepenalties will always be present). Setting bit 12 means that, if other convergence criteria aremet, then the solution will be accepted as converged and the optimization will stop.
Bit 13: Due to the nature of the SLP linearizations, and in particular because of the largedifferences in the objective function (model objective against penalty costs) some dualreductions in the linear presolver might introduce numerically instable reductions that causeslight infeasibilities to appear in postsolve. It is typically more efficient to remove theseinfeasibilities with an extra call to the linear optimizer; compared to switching thesereductions off, which usually has a significant cost in performance. This bit is provided fornumerically very hard problems, when the polishing step proves to be too expensive (XSLPwill report these if any in the final log summary).
Bit 14: Normally, cascading will respect the step bounds of the SLP variable beingcascaded. However, allowing the cascaded value to fall outside the step bounds (i.e.expanding the step bounds) can lead to better linearizations, as cascading will set bettervalues for the SLP variables regarding their determining rows; note, that this later strategymight interfere with convergence of the cascaded variables.
Bit 15: When clamping is applied, then in any iteration when the solution would normallybe deemed converged on extended criteria only, an extra step bound shrinking step is appliedto help imposing strict convergence. In this variant, clamping is only applied on variables thathave converged on extended criteria only and have active step bounds.
Bit 16: When clamping is applied, then in any iteration when the solution would normallybe deemed converged on extended criteria only, an extra step bound shrinking step is applied

Fair Isaac Corporation Confidential and Proprietary Information 167

Control Parameters Reference

to help imposing strict convergence. In this variant, clamping is applied on all variables thathave converged on extended criteria only.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_NOSTEPBOUNDSSetting bit 1 XSLP_STEPBOUNDSASREQUIREDSetting bit 2 XSLP_ESTIMATESTEPBOUNDSSetting bit 3 XSLP_DYNAMICDAMPINGSetting bit 4 XSLP_HOLDVALUESSetting bit 5 XSLP_RETAINPREVIOUSVALUESetting bit 6 XSLP_RESETDELTAZSetting bit 7 XSLP_QUICKCONVERGENCECHECKSetting bit 8 XSLP_ESCALATEPENALTIESSetting bit 9 XSLP_SWITCHTOPRIMALSetting bit 11 XSLP_MAXCOSTOPTIONSetting bit 12 XSLP_RESIDUALERRORSSetting bit 13 XSLP_NOLPPOLISHINGSetting bit 14 XSLP_CASCADEDBOUNDSSetting bit 15 XSLP_CLAMPEXTENDEDACTIVESBSetting bit 16 XSLP_CLAMPEXTENDEDALL

Recommended setting: Bits 1, 2, 5, 7 and usually bits 8 and 9.
Default value 166 (sets bits 1, 2, 5, 7)
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTA_Z, XSLP_ERRORMAXCOST, XSLP_ESCALATION, XSLP_CLAMPSHRINK

XSLP_ANALYZE

Description Bit map activating additional options supporting model / solution path analyzis
Type Integer
Values Bit Meaning

0 Add solutions of the linearizations to the solution pool.
1 Add cascaded solutions to the solution pool.
2 Add line search solutions to the solution pool.
3 Include an extended iteration summary.
4 Run infeasibility analysis on infeasible iterations.
5 Save the solutions collected in the pool to disk.
6 Write the linearizations to disk at every XSLP_AUTOSAVE iterations.
7 Write the initial basis of the linearizations to disk at every XSLP_AUTOSAVEiterations.
8 Create an XSLP save file at every XSLP_AUTOSAVE iterations.

Note The solution pool can be accessed using the memory attribute XSLP_SOLUTIONPOOL.Normally, the value of this control does not affect the solution process itself. However, bit 3(extended summary) will cause SLP to do more function evaluations, and the presence ofnon-deterministic user functions might cause changes in the solution process. These optionsare off by default due to performance considerations. The following constants are providedfor setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 168

Control Parameters Reference

Setting bit 0 XSLP_ANALYZE_RECORDLINEARIZATIONSetting bit 1 XSLP_ANALYZE_RECORDCASCADESetting bit 2 XSLP_ANALYZE_RECORDLINESEARCHSetting bit 3 XSLP_ANALYZE_EXTENDEDFINALSUMMARYSetting bit 4 XSLP_ANALYZE_INFEASIBLE_ITERATIONSetting bit 5 XSLP_ANALYZE_AUTOSAVEPOOLSetting bit 6 XSLP_ANALYZE_SAVELINEARIZATIONSSetting bit 7 XSLP_ANALYZE_SAVEITERBASISSetting bit 8 XSLP_ANALYZE_SAVEFILE

Default value 0
See also XSLP_AUTOSAVE

XSLP_AUGMENTATION

Description Bit map describing the SLP augmentation method(s) to be used
Type Integer
Values Bit Meaning

0 Minimum augmentation.
1 Even handed augmentation.
2 Penalty error vectors on all non-linear equality constraints.
3 Penalty error vectors on all non-linear inequality constraints.
4 Penalty vectors to exceed step bounds.
5 Use arithmetic means to estimate penalty weights.
6 Estimate step bounds from values of row coefficients.
7 Estimate step bounds from absolute values of row coefficients.
8 Row-based step bounds.
9 Penalty error vectors on all constraints.
10 Intial values do not imply an SLP variable.

Notes Bit 0: Minimum augmentation. Standard augmentation includes delta vectors for allvariables involved in nonlinear terms (in non-constant coefficients or as vectors containingnon-constant coefficients). Minimum augmentation includes delta vectors only for variablesin non-constant coefficients. This produces a smaller linearization, but there is less control onconvergence, because convergence control (for example, step bounding) cannot be appliedto variables without deltas.
Bit 1: Even handed augmentation. Standard augmentation treats variables which appear innon-constant coefficients in a different way from those which contain non-constantcoefficients. Even-handed augmentation treats them all in the same way by replacing eachnon-constant coefficient C in a vector V by a new coefficient C ∗ V in the "equals" column(which has a fixed activity of 1) and creating delta vectors for all types of variable in the sameway.
Bit 2: Penalty error vectors on all non-linear equality constraints. The linearization of anonlinear equality constraint is inevitably an approximation and so will not generally befeasible except at the point of linearization. Adding penalty error vectors allows the linearapproximation to be violated at a cost and so ensures that the linearized constraint is feasible.
Bit 3: Penalty error vectors on all non-linear inequality constraints. The linearization of anonlinear constraint is inevitably an approximation and so may not be feasible except at the

Fair Isaac Corporation Confidential and Proprietary Information 169

Control Parameters Reference

point of linearization. Adding penalty error vectors allows the linear approximation to beviolated at a cost and so ensures that the linearized constraint is feasible.
Bit 4: Penalty vectors to exceed step bounds. Although it has rarely been found necessaryor desirable in practice, Xpress-SLP allows step bounds to be violated at a cost. This mayhelp with feasibility but it generally slows down or prevents convergence, so it should be usedonly if found absolutely necessary.
Bit 5: Use arithmetic means to estimate penalty weights. Penalty weights are estimatedfrom the magnitude of the elements in the constraint or interacting rows. Geometric meansare normally used, so that a few excessively large or small values do not distort the weightssignificantly. Arithmetic means will value the coefficients more equally.
Bit 6: Estimate step bounds from values of row coefficients. If step bounds are to beimposed from the start, the best approach is to provide explicit values for the bounds.Alternatively, Xpress-SLP can estimate the values from the range of estimated coefficientsizes in the relevant rows.
Bit 7: Estimate step bounds from absolute values of row coefficients. If step bounds are tobe imposed from the start, the best approach is to provide explicit values for the bounds.Alternatively, Xpress-SLP can estimate the values from the largest estimated magnitude ofthe coefficients in the relevant rows.
Bit 8: Row-based step bounds. Step bounds are normally applied as bounds on the deltavariables. Some applications may find that using explicit rows to bound the delta vectorsgives better results.
Bit 9: Penalty error vectors on all constraints. If the linear portion of the underlying modelmay actually be infeasible, then applying penalty vectors to all rows may allow identificationof the infeasibility and may also allow a useful solution to be found.
Bit 10: Having an initial value will not cause the augmentation to include the correspondingdelta variable; i.e. treat the variable as an SLP variable. Useful to provide initial valuesnecessary in the first linearization in case of a minimal augmentation, or as a convenienceoption when it’s easiest to set an initial value for all variables for some reason.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_MINIMUMAUGMENTATIONSetting bit 1 XSLP_EVENHANDEDAUGMENTATIONSetting bit 2 XSLP_EQUALITYERRORVECTORSSetting bit 3 XSLP_ALLERRORVECTORSSetting bit 4 XSLP_PENALTYDELTAVECTORSSetting bit 5 XSLP_AMEANWEIGHTSetting bit 6 XSLP_SBFROMVALUESSetting bit 7 XSLP_SBFROMABSVALUESSetting bit 8 XSLP_STEPBOUNDROWSSetting bit 9 XSLP_ALLROWERRORVECTORSSetting bit 10 XSLP_NOUPDATEIFONLYIV

The recommended setting is bits 2 and 3 (penalty vectors on all nonlinear constraints).
Default value 12 (sets bits 2 and 3)
Affects routines XSLPconstruct

XSLP_AUTOSAVE

Description Frequency with which to save the model

Fair Isaac Corporation Confidential and Proprietary Information 170

Control Parameters Reference

Type Integer
Note A value of zero means that the model will not automatically be saved. A positive value of nwill save model information at every nth SLP iteration as requested by XSLP_ANALYZIS.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ANALYZE

XSLP_BARCROSSOVERSTART

Description Default crossover activation behaviour for barrier start
Type Integer
Note When XSLP_BARLIMIT is set, XSLP_BARCROSSOVERSTART offers an overwrite control onwhen crossover is applied. A positive value indicates that crossover should be disabled initerations smaller than XSLP_BARCROSSOVERSTART and should be enabled afterwards, orwhen stalling is detected as described in XSLP_BARSTARTOPS. A value of 0 indicates torespect the value of XPRS_CROSSOVER and only overwrite its value when stalling is detected.A value of -1 indicates to always rely on the value of XPRS_CROSSOVER.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARLIMIT, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,

XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARLIMIT

Description Number of initial SLP iterations using the barrier method
Type Integer
Note Particularly for larger models, using the Newton barrier method is faster in the earlier SLPiterations. Later on, when the basis information becomes more useful, a simplex methodgenerally performs better. XSLP_BARLIMIT sets the number of SLP iterations which will beperformed using the Newton barrier method.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARCROSSOVERSTART, XSLP_BARSTARTOPS, XSLP_BARSTALLINGLIMIT,

XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

Fair Isaac Corporation Confidential and Proprietary Information 171

Control Parameters Reference

XSLP_BARSTALLINGLIMIT

Description Number of iterations to allow numerical failures in barrier before switching to dual
Type Integer
Note On large problems, it may be beneficial to warm start progress by running a number ofiterations with the barrier solver as specified by XSLP_BARLIMIT. On some numericallydifficult problems, the barrier may stop prematurely due to numerical issues. Such solves cansometimes be finished if crossover is applied. After XSLP_BARSTALLINGLIMIT suchattempts, SLP will automatically switch to use the dual simplex.
Default value 3
Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,

XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTALLINGOBJLIMIT

Description Number of iterations over which to measure the objective change for barrier iterations with nocrossover
Type Integer
Note On large problems, it may be beneficial to warm start progress by running a number ofiterations with the barrier solver without crossover by setting XSLP_BARLIMIT to a positivevalue and setting XPRS_CROSSOVER to 0. A potential drawback is slower convergence due tothe interior point provided by the barrier solve keeping a higher number of variables active.This may lead to stalling in progress, negating the benefit of using the barrier. When in the last

XSLP_BARSTALLINGOBJLIMIT iterations no significant progress has been made, crossoveris automatically enabled.
Default value 3
Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTARTOPS,

XSLP_BARSTALLINGLIMIT, XSLP_BARSTALLINGTOL

XSLP_BARSTARTOPS

Description Controls behaviour when the barrier is used to solve the linearizations
Type Integer
Values Bit Meaning

0 Check objective progress when no crossover is applied.
1 Fall back to dual simplex if too many numerical problems are reported by the barrier.
2 If a non-vertex converged solution found by barrier without crossover can bereturned as a final solution.

Fair Isaac Corporation Confidential and Proprietary Information 172

Control Parameters Reference

Note The following constants are provided for setting these bits:
Setting bit 0 BARSTARTOPS_STALLING_OBJECTIVESetting bit 1 BARSTARTOPS_STALLING_NUMERICALSetting bit 2 BARSTARTOPS_ALLOWINTERIORSOLUTION

Default value -1
Affects routines XSLPmaxim, XSLPminim
See also XSLP_BARCROSSOVERSTART, XSLP_BARLIMIT, XSLP_BARSTALLINGLIMIT,

XSLP_BARSTALLINGOBJLIMIT, XSLP_BARSTALLINGTOL

XSLP_CALCTHREADS

Description Number of threads used for formula and derivatives evaluations
Type Integer
Note When beneficial, SLP can calculate formula values and partial derivative information inparallel.
Default value -1 (automatically determined)
Affects routines XSLPmaxim, XSLPmaxim
See also XSLP_THREADS,

XSLP_CASCADE

Description Bit map describing the cascading to be used
Type Integer
Values Bit Meaning

0 Apply cascading to all variables with determining rows.
1 Apply cascading to SLP variables which appear in coefficients and which wouldchange by more than XPRS_FEASTOL.
2 Apply cascading to all SLP variables which appear in coefficients.
3 Apply cascading to SLP variables which are structural and which would change bymore than XPRS_FEASTOL.
4 Apply cascading to all SLP variables which are structural.
5 Create secondary order groupping DR rows with instantiated user functions togetherin the order.

Note Normal cascading (bit 0) uses determining rows to recalculate the values of variables to beconsistent with values already available or already recalculated.Other bit settings are normally required only in quadratic programming where some of theSLP variables are in the objective function. The values of such variables may need to becorrected if the corresponding update row is slightly infeasible. The following constants areprovided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 173

Control Parameters Reference

Setting bit 0 XSLP_CASCADE_ALLSetting bit 1 XSLP_CASCADE_COEF_VARSetting bit 2 XSLP_CASCADE_ALL_COEF_VARSetting bit 3 XSLP_CASCADE_STRUCT_VARSetting bit 4 XSLP_CASCADE_ALL_STRUCT_VARSetting bit 5 XSLP_CASCADE_SECONDARY_GROUPS

Default value 1
Affects routines XSLPcascade

XSLP_CASCADENLIMIT

Description Maximum number of iterations for cascading with non-linear determining rows
Type Integer
Note Re-calculation of the value of a variable uses a modification of the Newton-Raphson method.The maximum number of steps in the method is set by XSLP_CASCADENLIMIT. If themaximum number of steps is taken without reaching a converged value, the best value foundwill be used.
Default value 10
Affects routines XSLPcascade

See also XSLP_CASCADE

XSLP_CONTROL

Description Bit map describing which Xpress NonLinear functions also activate the correspondingOptimizer Library function
Type Integer
Values Bit Meaning

0 Xpress NonLinear problem management functions do NOT invoke the correspondingOptimizer Library function for the underlying linear problem.
1 XSLPcopycontrols does NOT invoke XPRScopycontrols.
2 XSLPcopycallbacks does NOT invoke XPRScopycallbacks.
3 XSLPcopyprob does NOT invoke XPRScopyprob.
4 XSLPsetdefaults does NOT invoke XPRSsetdefaults.
5 XSLPsave does NOT invoke XPRSsave.
6 XSLPrestore does NOT invoke XPRSrestore.

Note The problem management functions are:
XSLPcopyprob to copy from an existing problem;
XSLPcopycontrols and XSLPcopycallbacks to copy the current controls and callbacksfrom an existing problem;
XSLPsetdefaults to reset the controls to their default values;
XSLPsave and XSLPrestore for saving and restoring a problem.

Fair Isaac Corporation Confidential and Proprietary Information 174

Control Parameters Reference

Default value 0 (no bits set)
Affects routines XSLPcopycontrols, XSLPcopycallbacks, XSLPcopyprob, XSLPrestore, XSLPsave,

XSLPsetdefaults

XSLP_CONVERGENCEOPS

Description Bit map describing which convergence tests should be carried out
Type Integer
Values Bit Meaning

0 Execute the closure tolerance checks.
1 Execute the delta tolerance checks.
2 Execute the matrix tolerance checks.
3 Execute the impact tolerance checks.
4 Execute the slack impact tolerance checks.
5 Check for user provided convergence.
6 Execute the objective range checks.
7 Execute the objective range + constraint activity check.
8 Execute the objective range + active step bound check.
9 Execute the convergence continuation check.
10 Take scaling of individual variables / rows into account.
11 Execute the validation target convergence checks.
12 Execute the first order optimality target convergence checks.

Note Provides fine tuned control (over setting the related convergence tolerances) of whichconvergence checks are carried out.
The following constants are provided for setting these bits:
Setting bit 0 XSLP_CONVERGEBIT_CTOLSetting bit 1 XSLP_CONVERGEBIT_ATOLSetting bit 2 XSLP_CONVERGEBIT_MTOLSetting bit 3 XSLP_CONVERGEBIT_ITOLSetting bit 4 XSLP_CONVERGEBIT_STOLSetting bit 5 XSLP_CONVERGEBIT_USERSetting bit 6 XSLP_CONVERGEBIT_VTOLSetting bit 7 XSLP_CONVERGEBIT_XTOLSetting bit 8 XSLP_CONVERGEBIT_OTOLSetting bit 9 XSLP_CONVERGEBIT_WTOLSetting bit 10 XSLP_CONVERGEBIT_EXTENDEDSCALINGSetting bit 11 CONVERGEBIT_VALIDATIONSetting bit 12 CONVERGEBIT_VALIDATION_K

Default value 7167 (bits 0-9 and 11-12 are set)
Affects routines XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 175

Control Parameters Reference

XSLP_DAMPSTART

Description SLP iteration at which damping is activated
Type Integer
Note If damping is used as part of the SLP algorithm, it can be delayed until a specified SLPiteration. This may be appropriate when damping is used to encourage convergence after anun-damped algorithm has failed to converge.
Default value 0
Affects routines XSLPmaxim, XSLPmaxim
See also XSLP_ALGORITHM, XSLP_DAMPEXPAND, XSLP_DAMPMAX, XSLP_DAMPMIN,

XSLP_DAMPSHRINK

XSLP_DCLIMIT

Description Default iteration delay for delayed constraints
Type Integer
Note If a delayed constraint does not have an explicit delay, then the value of XSLP_DCLIMIT willbe used.
Default value 5
Affects routines XSLPmaxim, XSLPminim

XSLP_DCLOG

Description Amount of logging information for activcation of delayed constraints
Type Integer
Note If XSLP_DCLOG is set to 1, then a message will be produced for each DC as it is activated.
Default value 0
Affects routines XSLPmaxim, XSLPminim

XSLP_DELAYUPDATEROWS

Description Number of SLP iterations before update rows are fully activated
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 176

Control Parameters Reference

Notes Update rows are an integral part of the augmented matrix used to create linearapproximations of the nonlinear problem. However, if determining rows are present, then it ispossible for some updated values to be calculated during cascading, and the correspondingupdate rows are then not required. When SLP variables have explicit bounds, and particularlywhen step bounding is enforced, update rows become important to the solutions actuallyobtained. It is therefore normal practice to delay update rows for only a few initial SLPiterations.Update rows can only be delayed for variables which are not structural (that is, they do nothave explicit coefficients in the original problem) and for which determining rows areprovided.
Default value 2
Affects routines XSLPmaxim, XSLPminim

XSLP_DELTAOFFSET

Description Position of first character of SLP variable name used to create name of delta vector
Type Integer
Note During augmentation, a delta vector, and possibly penalty delta vectors, are created for eachSLP variable. They are created with names derived from the corresponding SLP variable.Customized naming is possible using XSLP_DELTAFORMAT etc to define a format and

XSLP_DELTAOFFSET to define the first character (counting from zero) of the variable nameto be used.
Default value 0
Affects routines XSLPconstruct

See also XSLP_DELTAFORMAT, XSLP_MINUSDELTAFORMAT, XSLP_PLUSDELTAFORMAT

XSLP_DELTAZLIMIT

Description Number of SLP iterations during which to apply XSLP_DELTA_Z
Type Integer
Note XSLP_DELTA_Z is used to retain small derivatives which would otherwise be regarded aszero. This is helpful in avoiding local optima, but may make the linearized problem moredifficult to solve because of the number of small nonzero elements in the resulting matrix.

XSLP_DELTAZLIMIT can be set to a nonzero value, which is then the number of iterations forwhich XSLP_DELTA_Z will be used. After that, small derivatives will be set to zero. A negativevalue indicates no automatic perturbations to the derivatives in any situation.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_DELTA_Z

Fair Isaac Corporation Confidential and Proprietary Information 177

Control Parameters Reference

XSLP_DERIVATIVES

Description Bitmap describing the method of calculating derivatives
Type Integer
Values Bit Meaning

0 analytic derivatives where possible
1 avoid embedding numerical derivatives of instantiated functions into analyticderivatives

Notes If no bits are set then numerical derivatives are calculated using finite differences.Analytic derivatives cannot be used for formulae involving discontinuous functions. They maynot work well with functions which are not smooth (such as MAX), or where the derivativechanges very quickly with the value of the variable (such as LOG of small values).Both first and second order analytic derivatives can either be calculated as symbolicformulas, or by the means of auto-differentiation, with the exception that the second ordersymbolic derivatives require that the first order derivatives are also calculated using thesymbolic method.
Default value 1
Affects routines XSLPconstruct, XSLPmaxim, XSLPminim
See also XSLP_JACOBIAN, XSLP_HESSIAN

XSLP_DETERMINISTIC

Description Determines if the parallel features of SLP should be guaranteed to be deterministic
Type Integer
Note Determinism can only be guaranteed if no callbacks are used, or if in the presence ofcallbacks the effect of the callbacks only depend on local information provided by SLP.
Default value 1
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART_POOLSIZE,

XSLP_ECFCHECK

Description Check feasibility at the point of linearization for extended convergence criteria
Type Integer
Values 0 no check (extended criteria are always used);

1 check until one infeasible constraint is found;
2 check all constraints.

Fair Isaac Corporation Confidential and Proprietary Information 178

Control Parameters Reference

Notes The extended convergence criteria measure the accuracy of the solution of the linearapproximation compared to the solution of the original nonlinear problem. For this to work,the linear approximation needs to be reasonably good at the point of linearization. Inparticular, it needs to be reasonably close to feasibility.
XSLP_ECFCHECK is used to determine what checking of feasibility is carried out at the pointof linearization. If the point of linearization at the start of an SLP iteration is deemed to beinfeasible, then the extended convergence criteria are not used to decide convergence at theend of that SLP iteration.If all that is required is to decide that the point of linearization is not feasible, then the searchcan stop after the first infeasible constraint is found (parameter is set to 1). If the actualnumber of infeasible constraints is required, then XSLP_ECFCHECK should be set to 2, and allconstraints will be checked.The number of infeasible constraints found at the point of linearization is returned in
XSLP_ECFCOUNT.

Default value 1
Affects routines Convergence criteria, XSLPmaxim, XSLPminim
See also XSLP_ECFCOUNT, XSLP_ECFTOL_A, XSLP_ECFTOL_R

XSLP_ECHOXPRSMESSAGES

Description Controls if the XSLP message callback should relay messages from the XPRS library.
Type Integer
Note In case the XSLP and XPRS logs are handled the same way by an application, setting thiscontrol to 1 makes it sufficient to implement the XSLP messaging callback only.
Default value 0

XSLP_ERROROFFSET

Description Position of first character of constraint name used to create name of penalty error vectors
Type Integer
Note During augmentation, penalty error vectors may be created for some or all of the constraints.The vectors are created with names derived from the corresponding constraint name.Customized naming is possible using XSLP_MINUSERRORFORMAT and

XSLP_PLUSERRORFORMAT to define a format and XSLP_ERROROFFSET to define the firstcharacter (counting from zero) of the constraint name to be used.
Default value 0
Affects routines XSLPconstruct

See also XSLP_MINUSERRORFORMAT, XSLP_PLUSERRORFORMAT

Fair Isaac Corporation Confidential and Proprietary Information 179

Control Parameters Reference

XSLP_EVALUATE

Description Evaluation strategy for user functions
Type Integer
Values 0 use derivatives where possible;

1 always re-evaluate.
Note If a user function returns derivatives or returns more than one value, then it is possible forXpress NonLinear to estimate the value of the function from its derivatives if the new point ofevaluation is sufficiently close to the original. Setting XSLP_EVALUATE to 1 will forcere-evaluation of all functions regardless of how much or little the point of evaluation haschanged.
Default value 0
Affects routines XSLPevaluatecoef, XSLPevaluateformula
See also XSLP_FUNCEVAL

XSLP_FILTER

Description Bit map for controlling solution updates
Type Integer
Values Bit Meaning

0 retrain solution best according to the merit function.
1 check cascaded solutions against improvements in the merit function.
2 force minimum step sizes in line search.
3 accept the trust region step is the line search returns a zero step size.

Notes Bits 0 determine if XSLPgetslpsol should return the final converged solution, or thesolution which had the best value according to the merit function.If bit 1 is set, a cascaded solution which does not improve the merit function will be rejected(XSLP will revert to the solution of the linearization).Bits 2-3 determine the strategy for when the step direction is not improving according to themerit function.The following constants are provided for setting these bits:
Setting bit 0 XSLP_FILTER_KEEPBESTSetting bit 1 XSLP_FILTER_CASCADESetting bit 2 XSLP_FILTER_ZEROLINESEARCHSetting bit 3 XSLP_FILTER_ZEROLINESEARCHTR

Default value 11 (bit 0,1,3)
Affects routines XSLPmaxim, XSLPminim, XSLPcascade
See also XSLP_MERITLAMBDA, XSLP_CASCADE, XSLP_LSSTART, XSLP_LSITERLIMIT,

XSLP_LSPATTERNLIMIT

Fair Isaac Corporation Confidential and Proprietary Information 180

Control Parameters Reference

XSLP_FINDIV

Description Option for running a heuristic to find a feasible initial point
Type Integer
Values -1 Automatic (default).

0 Disable the heuristic.
1 Enable the heuristic.

Notes The procedure uses bound reduction (and, up to an extent, probing) to obtain a point in theinitial bounding box that is feasible for the bound reduction techniques.If an initial point is already specified and is found not to violate bound reduction, then theheuristic is not run and the given point is used as the initial solution.
Default value -1
Affects routines XSLPmaxim, XSLPminim

XSLP_FUNCEVAL

Description Bit map for determining the method of evaluating user functions and their derivatives
Type Integer
Values Bit Meaning

3 evaluate function whenever independent variables change.
4 evaluate function when independent variables change outside tolerances.
5 application of bits 3-4: 0 = functions which do not have a defined re-evaluationmode;1 = all functions.
6 tangential derivatives.
7 forward derivatives
8 application of bits 6-7: 0 = functions which do not have a defined derivative mode;1 =all functions.

Notes Bits 3-4 determine the type of function re-evaluation. If both bits are zero, then the settings foreach individual function are used.If bit 3 or bit 4 is set, then bit 5 defines which functions the setting applies to. If it is set to 1,then it applies to all functions. Otherwise, it applies only to functions which do not have anexplicit setting of their own.Bits 6-7 determine the type of calculation for numerical derivatives. If both bits are zero, thenthe settings for each individual function are used.If bit 6 or bit 7 is set, then bit 8 defines which functions the setting applies to. If it is set to 1,then it applies to all functions. Otherwise, it applies only to functions which do not have anexplicit setting of their own.
The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 181

Control Parameters Reference

Setting bit 3 XSLP_RECALCSetting bit 4 XSLP_TOLCALCSetting bit 5 XSLP_ALLCALCSSetting bit 6 XSLP_2DERIVATIVESetting bit 7 XSLP_1DERIVATIVESetting bit 8 XSLP_ALLDERIVATIVES

Default value 0
Affects routines XSLPevaluatecoef, XSLPevaluateformula
See also XSLP_EVALUATE

XSLP_GRIDHEURSELECT

Description Bit map selectin which heuristics to run if the problem has variable with an integer delta
Type Integer
Values Bit Meaning

0 Enumeration: try all combinations.
1 Simple search heuristics.
2 Simulated annealing.

Note A value of 0 indicates that integer deltas are only taken into consideration during the SLPiterations.
Note The enumeration option can be useful for cases where the number of possible values of thevariables with an integer delta is small.
Default value 3 (bits 1-2 are set)
Affects routines XSLPmaxim, XSLPminim

XSLP_HEURSTRATEGY

Description Branch and Bound: This specifies the MINLP heuristic strategy. On some problems it is worthtrying more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.
Type Integer
Values -1 Automatic selection of heuristic strategy.

0 No heuristics.
1 Basic heuristic strategy.
2 Enhanced heuristic strategy.
3 Extensive heuristic strategy.
4 Run all heuristics without effort limits.

Default value -1

Affects routines XSLPminim, XSLPmaxim.

Fair Isaac Corporation Confidential and Proprietary Information 182

Control Parameters Reference

XSLP_HESSIAN

Description Second order differentiation mode when using analytical derivatives
Type Integer
Values -1,0 automatic selection

1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is also set to symbolic mode.

Default value -1
See also XSLP_DERIVATIVES, XSLP_JACOBIAN

XSLP_INFEASLIMIT

Description The maximum number of consecutive infeasible SLP iterations which can occur beforeXpress-SLP terminates
Type Integer
Note An infeasible solution to an SLP iteration means that is likely that Xpress-SLP will create apoor linear approximation for the next SLP iteration. Sometimes, small infeasibilities arisebecause of numerical difficulties and do not seriously affect the solution process. However, ifsuccessive solutions remain infeasible, it is unlikely that Xpress-SLP will be able to find afeasible converged solution. XSLP_INFEASLIMIT sets the number of successive SLPiterations which must take place before Xpress-SLP terminates with a status of "infeasiblesolution".
Default value 3
Affects routines XSLPmaxim, XSLPminim

XSLP_ITERLIMIT

Description The maximum number of SLP iterations
Type Integer
Note If Xpress-SLP reaches XSLP_ITERLIMIT without finding a converged solution, it will stop.For MISLP, the limit is on the number of SLP iterations at each node.
Default value 1000
Affects routines XSLPglobal, XSLPmaxim, XSLPminim

Fair Isaac Corporation Confidential and Proprietary Information 183

Control Parameters Reference

XSLP_JACOBIAN

Description First order differentiation mode when using analytical derivatives
Type Integer
Values -1,0 automatic selection

1 numerical derivatives (finite difference)
2 symbolic differentiation
3 automatic differentiation

Note Symbolic mode differentiation for the second order derivatives is only available when
XSLP_JACOBIAN is set to symbolic mode.

Default value -1
See also XSLP_DERIVATIVES, XSLP_HESSIAN

XSLP_LINQUADBR

Description Use linear and quadratic constraints and objective function to further reduce bounds on allvariables
Type Integer
Values -1 automatic selection

0 disable
1 enable

Note While bound reduction is effective when performed on nonlinear, nonquadratic constraintsand objective function, it can be useful to obtain tightened bounds from linear and quadraticconstraints, as the corresponding variables may appear in other nonlinear constraints. Thisoption then allows for a slightly more expensive bound reduction procedure, at the benefit offurther reduction in the problem’s bounds.
Default value -1
See also XSLP_PRESOLVEOPS, XSLP_PROBING

XSLP_LOG

Description Level of printing during SLP iterations
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 184

Control Parameters Reference

Values -1 none
0 minimal
1 normal: iteration, penalty vectors
2 omit from convergence log any variables which have converged
3 omit from convergence log any variables which have already converged (exceptvariables on step bounds)
4 include all variables in convergence log
5 include user function call communications in the log

Default value 0
Affects routines XSLPmaxim, XSLPminim

XSLP_LSITERLIMIT

Description Number of iterations in the line search
Type Integer
Notes The line search attempts to refine the step size suggested by the trust region step bounds.The line search is a local method; the control sets a maximum on the number of modelevaluations during the line search.
Default value 0
See also XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER
Affects routines XSLPmaxim, XSLPminim

XSLP_LSPATTERNLIMIT

Description Number of iterations in the pattern search preceding the line search
Type Integer
Notes When positive, defines the number of samples taken along the step size suggested by thetrust region step bounds before initiating the line search. Useful for highly non-convexproblems.
Default value 0
See also XSLP_LSITERLIMIT, XSLP_LSSTART, XSLP_LSZEROLIMIT, XSLP_FILTER
Affects routines XSLPmaxim, XSLPminim

XSLP_LSSTART

Description Iteration in which to active the line search
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 185

Control Parameters Reference

Notes

Default value 8
See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSZEROLIMIT, XSLP_FILTER
Affects routines XSLPmaxim, XSLPminim

XSLP_LSZEROLIMIT

Description Maximum number of zero length line search steps before line search is deactivated
Type Integer
Notes When the line search repeatedly returns a zero step size, counteracted by bits set on

XSLP_FILTER, the effort spent in line search is redundant, and line search will be deactivatedafter XSLP_LSZEROLIMIT consecutive such iteration.
Default value 5
See also XSLP_LSITERLIMIT, XSLP_LSPATTERNLIMIT, XSLP_LSSTART, XSLP_FILTER
Affects routines XSLPmaxim, XSLPminim

XSLP_MAXTIME

Description The maximum time in seconds that the SLP optimization will run before it terminates
Type Integer
Notes The (elapsed) time is measured from the beginning of the first SLP optimization.If XSLP_MAXTIME is negative, Xpress NonLinear will terminate after (-XSLP_MAXTIME)seconds. If it is positive, Xpress NonLinear will terminate in MISLP after XSLP_MAXTIMEseconds or as soon as an integer solution has been found thereafter.
Default value 0
Affects routines XSLPglobal, XSLPmaxim, XSLPminim

XSLP_MIPALGORITHM

Description Bitmap describing the MISLP algorithms to be used
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 186

Control Parameters Reference

Values Bit Meaning
0 Solve initial SLP to convergence.
2 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after initial node.
3 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after initial node.
4 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS at each node.
5 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS at each node.
6 Limit iterations at each node to XSLP_MIPITERLIMIT.
7 Relax step bounds according to XSLP_MIPRELAXSTEPBOUNDS after MIP solution isfound.
8 Fix step bounds according to XSLP_MIPFIXSTEPBOUNDS after MIP solution isfound.
9 Use MIP at each SLP iteration instead of SLP at each node.
10 Use MIP on converged SLP solution and then SLP on the resulting MIP solution.

Notes XSLP_MIPALGORITHM determines the strategy of XSLPglobal for solving MINLP problems.The recommended approach is to solve the problem first without reference to the globalvariables. This can be handled automatically by setting bit 0 of XSLP_MIPALGORITHM; ifdone manually, then optimize using the "l" option to prevent the Optimizer presolve fromchanging the problem.Some versions of the optimizer re-run the initial node as part of the global search; it ispossible to initiate a new SLP optimization at this point by relaxing or fixing step bounds (usebits 2 and 3). If step bounds are fixed for a class of variable, then the variables in that classwill not change their value in any child node.At each node, it is possible to relax or fix step bounds. It is recommended that step boundsare relaxed, so that the new problem can be solved starting from its parent, but without unduerestrictions cased by step bounding (use bit 4). Exceptionally, it may be preferable to restrictthe freedom of child nodes by relaxing fewer types of step bound or fixing the values of someclasses of variable (use bit 5).When the optimal node has been found, it is possible to fix the global variables and thenre-optimize with SLP. Step bounds can be relaxed or fixed for this optimization as well (usebits 7 and 8).Although it is ultimately necessary to solve the optimal node to convergence, individual nodescan be truncated after XSLP_MIPITERLIMIT SLP iterations. Set bit 6 to activate this feature.The normal MISLP algorithm uses SLP at each node. One alternative strategy is to use theMIP optimizer for solving each SLP iteration. Set bit 9 to implement this strategy ("MIP withinSLP").Another strategy is to solve the problem to convergence ignoring the nature of the globalvariables. Then, fixing the linearization, use MIP to find the optimal setting of the globalvariables. Then, fixing the global variables, but varying the linearization, solve to convergence.Set bit 10 to implement this strategy ("SLP then MIP").For mode details about MISLP algorithms and strategies, see the separate section.
The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 187

Control Parameters Reference

Setting bit 0 XSLP_MIPINITIALSLPSetting bit 1 XSLP_MIPFINALSLPSetting bit 2 XSLP_MIPINITIALRELAXSLPSetting bit 3 XSLP_MIPINITIALFIXSLPSetting bit 4 XSLP_MIPNODERELAXSLPSetting bit 5 XSLP_MIPNODEFIXSLPSetting bit 6 XSLP_MIPNODELIMITSLPSetting bit 7 XSLP_MIPFINALRELAXSLPSetting bit 8 XSLP_MIPFINALFIXSLPSetting bit 9 XSLP_MIPWITHINSLPSetting bit 10 XSLP_SLPTHENMIPSetting bit 11 XSLP_NOFINALROUNDING

Default value 17 (bits 0 and4 are set)
Affects routines XSLPglobal

See also XSLP_ALGORITHM, XSLP_MIPFIXSTEPBOUNDS, XSLP_MIPITERLIMIT,
XSLP_MIPRELAXSTEPBOUNDS

XSLP_MIPCUTOFFCOUNT

Description Number of SLP iterations to check when considering a node for cutting off
Type Integer
Notes If the objective function is worse by a defined amount than the best integer solution obtainedso far, then the SLP will be terminated (and the node will be cut off). The node will be cut offat the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLPiterations are all worse than the best obtained so far, and the difference is greater than

XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solutionobtained so far.The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have beencarried out at the current node.
Default value 5
Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFLIMIT

XSLP_MIPCUTOFFLIMIT

Description Number of SLP iterations to check when considering a node for cutting off
Type Integer
Notes If the objective function is worse by a defined amount than the best integer solution obtainedso far, then the SLP will be terminated (and the node will be cut off). The node will be cut offat the current SLP iteration if the objective function for the last XSLP_MIPCUTOFFCOUNT SLPiterations are all worse than the best obtained so far, and the difference is greater than

XSLP_MIPCUTOFF_A and OBJ ∗ XSLP_MIPCUTOFF_R where OBJ is the best integer solutionobtained so far.

Fair Isaac Corporation Confidential and Proprietary Information 188

Control Parameters Reference

The test is not applied until at least XSLP_MIPCUTOFFLIMIT SLP iterations have beencarried out at the current node.
Default value 10
Affects routines XSLPglobal

See also XSLP_MIPCUTOFF_A, XSLP_MIPCUTOFF_R, XSLP_MIPCUTOFFCOUNT

XSLP_MIPDEFAULTALGORITHM

Description Default algorithm to be used during the global search in MISLP
Type Integer
Note The default algorithm used within SLP during the MISLP optimization can be set using

XSLP_MIPDEFAULTALGORITHM. It will not necessarily be the same as the one best suited tothe initial SLP optimization.
Default value 3 (primal simplex)
Affects routines XSLPglobal

See also XPRS_DEFAULTALG, XSLP_MIPALGORITHM

XSLP_MIPFIXSTEPBOUNDS

Description Bitmap describing the step-bound fixing strategy during MISLP
Type Integer
Values Bit Meaning

0 Fix step bounds on structural SLP variables which are not in coefficients.
1 Fix step bounds on all structural SLP variables.
2 Fix step bounds on SLP variables appearing only in coefficients.
3 Fix step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to fix the step bounds ofclasses of variables so that the variables themselves will not change. This may help withconvergence, but it does increase the chance of a local optimum because of excessiveartificial restrictions on the variables.
Default value 0
Affects routines XSLPglobal

See also XSLP_MIPALGORITHM, XSLP_MIPRELAXSTEPBOUNDS

Fair Isaac Corporation Confidential and Proprietary Information 189

Control Parameters Reference

XSLP_MIPITERLIMIT

Description Maximum number of SLP iterations at each node
Type Integer
Note If bit 6 of XSLP_MIPALGORITHM is set, then the number of iterations at each node will belimited to XSLP_MIPITERLIMIT.
Default value 0
Affects routines XSLPglobal

See also XSLP_ITERLIMIT, XSLP_MIPALGORITHM

XSLP_MIPLOG

Description Frequency with which MIP status is printed
Type Integer
Note By default (zero or negative value) the MIP status is printed after syncronization points. If

XSLP_MIPLOG is set to a positive integer, then the current MIP status (node number, bestvalue, best bound) is printed every XSLP_MIPLOG nodes.
Default value 0 (deterministic logging)
Affects routines XSLPglobal

See also XSLP_LOG, XSLP_SLPLOG

XSLP_MIPOCOUNT

Description Number of SLP iterations at each node over which to measure objective function variation
Type Integer
Note The objective function test for MIP termination is applied only when step bounding has beenapplied (or XSLP_SBSTART SLP iterations have taken place if step bounding is not beingused). The node will be terminated at the current SLP iteration if the range of the objectivefunction values over the last XSLP_MIPOCOUNT SLP iterations is within XSLP_MIPOTOL_A orwithin OBJ ∗ XSLP_MIPOTOL_R where OBJ is the average value of the objective function overthose iterations.
Default value 5
Affects routines XSLPglobal

See also XSLP_MIPOTOL_A XSLP_MIPOTOL_R XSLP_SBSTART

Fair Isaac Corporation Confidential and Proprietary Information 190

Control Parameters Reference

XSLP_MIPRELAXSTEPBOUNDS

Description Bitmap describing the step-bound relaxation strategy during MISLP
Type Integer
Values Bit Meaning

0 Relax step bounds on structural SLP variables which are not in coefficients.
1 Relax step bounds on all structural SLP variables.
2 Relax step bounds on SLP variables appearing only in coefficients.
3 Relax step bounds on SLP variables appearing in coefficients.

Note At any node (including the initial and optimal nodes) it is possible to relax the step bounds ofclasses of variables so that the variables themselves are completely free to change. This mayhelp with finding a global optimum, but it may also increase the solution time, because moreSLP iterations are necessary at each node to obtain a converged solution.
Default value 15 (relax all types)
Affects routines XSLPglobal

See also XSLP_MIPALGORITHM, XSLP_MIPFIXSTEPBOUNDS

XSLP_MULTISTART

Description The multistart master control. Defines if the multistart search is to be initiated, or if only thebaseline model is to be solved.
Type Integer
Values -1 Depends on if any multistart jobs have been added.

0 Multistart is off.
1 Multistart is on.

Note By default, the multistart search will always be initiated if multistart jobs have been added tothe problem. The (original) base problem is not part of the multisearch job pool. To make itso, add an job with no extra settings (template job). It might be useful to load multipletemplate jobs, and customize them from callbacks.
Default value -1
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART_MAXSOLVES, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXSOLVES

Description The maximum number of jobs to create during the multistart search.

Fair Isaac Corporation Confidential and Proprietary Information 191

Control Parameters Reference

Type Integer
Note This control can be increased on the fly during the mutlistart search: for example, if a job getsrefused by a user callback, the callback may increase this limit to account for the rejected job.
Default value 0 (no upper limit)
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART, XSLP_MULTISTART_MAXTIME

XSLP_MULTISTART_MAXTIME

Description The maximum total time to be spent in the mutlistart search.
Type Integer
Note XSLP_MAXTIME applies on a per job instance basis. There will be some time spent even afterXSLP_MULTISTART_MAXTIME has elapsed, while the running jobs get terminated and theirresults collected.
Default value 0 (no upper limit)
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART, XSLP_MULTISTART_MAXSOLVES

XSLP_MULTISTART_POOLSIZE

Description The maximum number of problem objects allowed to pool up before synchronization in thedeterministic multistart.
Type Integer
Default value 2
Note Deterministic multistart is ensured by guaranteeing that the multistart solve results areevaluated in the same order every time. Solves that finish too soon can be pooled until allearlier started solves finish, allowing the system to start solving other multistart instances inthe meantime on idle threads. Larger pool sizes will provide better speedups, but will requirelarger amounts of memory. Positive values are interpreted as a multiplier on the maximumnumber of active threads used, while negative values are interpreted as an absolute limit (andthe absolute value is used). A value of zero will mean no result pooling.
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART, XSLP_DETERMINISTIC

Fair Isaac Corporation Confidential and Proprietary Information 192

Control Parameters Reference

XSLP_MULTISTART_SEED

Description Random seed used for the automatic generation of initial point when loading multistartpresets
Type Integer
Default value 0
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART

XSLP_MULTISTART_THREADS

Description The maximum number of threads to be used in multistart
Type Integer
Default value -1
Note The current hard upper limit on the number of threads to be sued in multistart is 64.
Affects routines XSLPminim, XSLPmaxim
See also XSLP_MULTISTART

XSLP_OCOUNT

Description Number of SLP iterations over which to measure objective function variation for staticobjective (2) convergence criterion
Type Integer
Note The static objective (2) convergence criterion does not measure convergence of individualvariables. Instead, it measures the significance of the changes in the objective function overrecent SLP iterations. It is applied when all the variables interacting with active constraints(those that have a marginal value of at least XSLP_MVTOL) have converged. The rationale isthat if the remaining unconverged variables are not involved in active constraints and if theobjective function is not changing significantly between iterations, then the solution ismore-or-less practical.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_OCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ XSLP_OTOL_Athen the problem has converged on the absolute static objective (2) convergence criterion.The static objective function (2) test is applied only if XSLP_OCOUNT is at least 2.

Fair Isaac Corporation Confidential and Proprietary Information 193

Control Parameters Reference

Default value 5
Affects routines XSLPmaxim, XSLPminim
See also XSLP_OTOL_A XSLP_OTOL_R

XSLP_PENALTYINFOSTART

Description Iteration from which to record row penalty information
Type Integer
Note Information about the size (current and total) of active penalties of each row and the numberof times a penalty vector has been active is recorded starting at the SLP iteration numbergiven by XSLP_PENALTYINFOSTART.
Default value 3

XSLP_POSTSOLVE

Description This control determines whether postsolving should be performed automatically
Type Integer
Values 0 Do not automatically postsolve.

1 Postsolve automatically.
Default value 0
See also XSLP_PRESOLVE

XSLP_PRESOLVE

Description This control determines whether presolving should be performed prior to starting the mainalgorithm
Type Integer
Values 0 Disable SLP presolve.

1 Activate SLP presolve.
2 Low memory presolve. Original problem is not restored by postsolve and dualsolution may not be completely postsolved.

Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) isindependent of the Optimizer presolve (which is carried out during each SLP iteration).
Default value 1
Affects routines XSLPconstruct, XSLPpresolve
See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,

XSLP_PRESOLVEPASSLIMIT

Fair Isaac Corporation Confidential and Proprietary Information 194

Control Parameters Reference

XSLP_PRESOLVELEVEL

Description This control determines the level of changes presolve may carry out on the problem
Type Integer
Values XSLP_PRESOLVELEVEL_LOCALIZED Individual rows only presolve, no nonlineartransformations.

XSLP_PRESOLVELEVEL_BASIC Individual rows and bounds only presolve, no nonlineartransformations.
XSLP_PRESOLVELEVEL_LINEAR Presolve allowing changing problem dimension, nononlinear transformations.
XSLP_PRESOLVELEVEL_FULL Full presolve.

Note XSLP_PRESOLVEOPS and XSLP_REFORMULATE controls the operations carried out inpresolve. XSLP_PRESOLVELEVEL controls how those operations may change the problem.
Default value XSLP_PRESOLVELEVEL_FULL
Affects routines XSLPconstruct, XSLPpresolve
See also XSLP_PRESOLVE, XSLP_PRESOLVEOPS, XSLP_REFORMULATE,

XSLP_PRESOLVEPASSLIMIT

XSLP_PRESOLVEOPS

Description Bitmap indicating the SLP presolve actions to be taken
Type Integer
Values Bit Meaning

0 Generic SLP presolve.
1 Explicitly fix columns identified as fixed to zero.
2 Explicitly fix all columns identified as fixed.
3 SLP bound tightening.
4 MISLP bound tightening.
5 Bound tightening based on function domains.
8 Do not presolve coefficients.
9 Do not remove delta variables.
10 Avoid reductions that can not be dual postsolved.
11 Allow eliminations on determined variables.

Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) isindependent of the Optimizer presolve (which is carried out during each SLP iteration).
Default value 24
Affects routines XSLPconstruct, XSLPpresolve
See also XSLP_PRESOLVELEVEL, XSLP_PRESOLVE, XSLP_PRESOLVEOPS,

XSLP_PRESOLVEPASSLIMIT, XSLP_REFORMULATE

Fair Isaac Corporation Confidential and Proprietary Information 195

Control Parameters Reference

XSLP_PRESOLVEPASSLIMIT

Description Maximum number of passes through the problem to improve SLP bounds
Type Integer
Note The Xpress NonLinear nonlinear presolve (which is carried out once, before augmentation) isindependent of the Optimizer presolve (which is carried out during each SLP iteration). Theprocedure carries out a number of passes through the SLP problem, seeking to tightenimplied bounds or to identify fixed values. XSLP_PRESOLVEPASSLIMIT can be used tochange the maximum number of passes carried out.
Default value 20
Affects routines XSLPpresolve

See also XSLP_PRESOLVE

XSLP_PROBING

Description This control determines whether probing on a subset of variables should be performed priorto starting the main algorithm. Probing runs multiple times bound reduction in order to furthertighten the bounding box.
Type Integer
Values -1 Automatic.

0 Disable SLP probing.
1 Activate SLP probing only on binary variables.
2 Activate SLP probing only on binary or unbounded integer variables.
3 Activate SLP probing only on binary or integer variables.
4 Activate SLP probing only on binary, integer variables, and unbounded continuousvariables.
5 Activate SLP probing on any variable.

Default value -1: XSLP sets the probing level based on the problem size
Note The Xpress NonLinear nonlinear probing, which is carried out once, is independent of theOptimizer presolve (which is carried out during each SLP iteration). The probing level allowsfor probing on an expanding set of variables, allowing for probing on all variables (level 5) oronly those for which probing is more likely to be useful (binary variables).
Affects routines XSLPpresolve

See also XSLP_PRESOLVEOPS,

XSLP_REFORMULATE

Description Controls the problem reformulations carried out before augmentation. This allows SLP totake advantage of dedicated algorithms for special problem classes.

Fair Isaac Corporation Confidential and Proprietary Information 196

Control Parameters Reference

Type Integer
Values Bit Meaning

0 Solve convex quadratic objectives using the XPRS library .
1 Convert non-convex quadratic objectives to SLP constructs .
2 Solve convex quadratic constraints using the XPRS library.
3 Convert non-convex QCQP constraints to SLP constructs.
4 Convexity of a quadratic only problem may be checked by calling the optimizer tosolve the instance.

Default value -1: All structures are checked against reformulation
Note The reformulation is part of XSLP presolve, and is only carried out if XSLP_PRESOLVE isnonzero. The following constants are provided for setting these bits:

Setting bit 0 XSLP_REFORMULATE_SLP2QPSetting bit 1 XSLP_REFORMULATE_QP2SLPSetting bit 2 XSLP_REFORMULATE_SLP2QCQPSetting bit 3 XSLP_REFORMULATE_QCQP2SLPSetting bit 4 XSLP_REFORMULATE_QPSOLVE

Affects routines XSLPconstruct, XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim,
XSLPnlpoptimize, XSLPglobal

XSLP_SAMECOUNT

Description Number of steps reaching the step bound in the same direction before step bounds areincreased
Type Integer
Note If step bounding is enabled, the step bound for a variable will be increased if successivechanges are in the same direction. More precisely, if there are XSLP_SAMECOUNT successivechanges reaching the step bound and in the same direction for a variable, then the stepbound (B) for the variable will be reset to

B ∗ XSLP_EXPAND.
Default value 3
Affects routines XSLPmaxim, XSLPminim
See also XSLP_EXPAND

XSLP_SAMEDAMP

Description Number of steps in same direction before damping factor is increased
Type Integer
Note If dynamic damping is enabled, the damping factor for a variable will be increased ifsuccessive changes are in the same direction. More precisely, if there are XSLP_SAMEDAMPsuccessive changes in the same direction for a variable, then the damping factor (D) for thevariable will be reset to

D ∗ XSLP_DAMPEXPAND + XSLP_DAMPMAX ∗ (1 – XSLP_DAMPEXPAND)

Fair Isaac Corporation Confidential and Proprietary Information 197

Control Parameters Reference

Default value 3
See also Xpress-SLP Solution Process, XSLP_ALGORITHM, XSLP_DAMP, XSLP_DAMPMAX
Affects routines XSLPmaxim, XSLPminim

XSLP_SBROWOFFSET

Description Position of first character of SLP variable name used to create name of SLP lower and upperstep bound rows
Type Integer
Note During augmentation, a delta vector is created for each SLP variable. Step bounds areprovided for each delta variable, either using explicit bounds, or by using rows to providelower and upper bounds. If such rows are used, they are created with names derived from thecorresponding SLP variable. Customized naming is possible using XSLP_SBLOROWFORMATand XSLP_SBUPROWFORMAT to define a format and XSLP_SBROWOFFSET to define the firstcharacter (counting from zero) of the variable name to be used.
Default value 0
Affects routines XSLPconstruct

See also XSLP_SBLOROWFORMAT, XSLP_SBUPROWFORMAT

XSLP_SBSTART

Description SLP iteration after which step bounds are first applied
Type Integer
Note If step bounds are used, they can be applied for the whole of the SLP optimization process, orstarted after a number of SLP iterations. In general, it is better not to apply step bounds fromthe start unless one of the following applies:(1) the initial estimates are known to be good, and explicit values can be provided for initialstep bounds on all variables; or(2) the problem is unbounded unless all variables are step-bounded.
Default value 8
Affects routines XSLPmaxim, XSLPminim

XSLP_SCALE

Description When to re-scale the SLP problem
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 198

Control Parameters Reference

Values 0 No re-scaling.
1 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations after the end ofbarrier optimization.
2 Re-scale every SLP iteration up to XSLP_SCALECOUNT iterations in total.
3 Re-scale every SLP iteration until primal simplex is automatically invoked.
4 Re-scale every SLP iteration.
5 Re-scale every XSLP_SCALECOUNT SLP iterations.
6 Re-scale every XSLP_SCALECOUNT SLP iterations after the end of barrieroptimization.

Note During the SLP optimization, matrix entries can change considerably in magnitude, even whenthe formulae in the coefficients are not very nonlinear. Re-scaling of the matrix can reducenumerical errors, but may increase the time taken to achieve convergence.
Default value 1
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SCALECOUNT

XSLP_SCALECOUNT

Description Iteration limit used in determining when to re-scale the SLP matrix
Type Integer
Notes If XSLP_SCALE is set to 1 or 2, then XSLP_SCALECOUNT determines the number of iterations(after the end of barrier optimization or in total) in which the matrix is automatically re-scaled.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SCALE

XSLP_SOLVER

Description First order differentiation mode when using analytical derivatives
Type Integer
Values -1 automatic selection, based on model characteristics and solver availability

0 use Xpress-SLP (always available)
1 use Knitro if available

Note The presence of Knitro is detected automatically. Knitro can be used to solve any problemloaded into XSLP, independently from how the problem was loaded. XSLP_SOLVER is set toautomatic, XSLP will be selected if any SLP specific construct has been loaded (these areignored if Knitro is selcetd manually).
Default value -1

Fair Isaac Corporation Confidential and Proprietary Information 199

Control Parameters Reference

XSLP_SLPLOG

Description Frequency with which SLP status is printed
Type Integer
Note If XSLP_LOG is set to zero (minimal logging) then a nonzero value for XSLP_SLPLOG definesthe frequency (in SLP iterations) when summary information is printed out.
Default value 1
Affects routines XSLPglobal, XSLPmaxim, XSLPminim
See also XSLP_LOG, XSLP_MIPLOG

XSLP_STOPOUTOFRANGE

Description Stop optimization and return error code if internal function argument is out of range
Type Integer
Note If XSLP_STOPOUTOFRANGE is set to 1, then if an internal function receives an argument whichis out of its allowable range (for example, LOG of a negative number), an error code is set andthe optimization is terminated.
Default value 0
Affects routines XSLPevaluatecoef, XSLPevaluateformula XSLPmaxim, XSLPminim

XSLP_THREADS

Description Default number of threads to be used
Type Integer
Note Overall thread control value, used to determine the number of threads used where parallelcalculations are possible.
Default value -1 (automatically determined)
Affects routines XSLPmaxim, XSLPmaxim
See also XSLP_CALCTHREADS, XSLP_MULTISTART_THREADS,

XSLP_TIMEPRINT

Description Print additional timings during SLP optimization
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 200

Control Parameters Reference

Note Date and time printing can be useful for identifying slow procedures during the SLPoptimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during theoptimization.
Default value 0
Affects routines XSLPmaxim, XSLPminim

XSLP_THREADSAFEUSERFUNC

Description Defines if user functions are allowed to be called in parallel
Type Integer
Note Date and time printing can be useful for identifying slow procedures during the SLPoptimization. Setting XSLP_TIMEPRINT to 1 prints times at additional points during theoptimization.
Values 0 user function are not thread safe, and will not be called in parallel

1 user functions are thread safe, and may be called in parallel
Default value 0 (no parallel user function calls)
Affects routines XSLPmaxim, XSLPminim

XSLP_TRACEMASKOPS

Description Controls the information printed for XSLP_TRACEMASK. The order in which the information isprinted is determined by the order of bits in XSLP_TRACEMASKOPS.
Type Integer
Values Bit Meaning

0 The variable name is used as a mask, not as an exact fit.
1 Use mask to trace rows.
2 Use mask to trace columns.
3 Use mask to trace cascaded SLP variables.
4 Show row / column category.
5 Trace slack values.
6 Trace dual values.
7 Trace row penalty multiplier.
8 Trace variable values (as returned by the lineariation).
9 Trace reduced costs.
10 Trace slp value (value used in linearization and cascaded).
11 Trace step bounds.
12 Trace convergence status.
13 Trace line search.

Default value -1: all bits are set

Fair Isaac Corporation Confidential and Proprietary Information 201

Control Parameters Reference

Note The following constants are provided for setting these bits:
Setting bit 0 XSLP_TRACEMASK_GENERALFITSetting bit 1 XSLP_TRACEMASK_ROWSSetting bit 2 XSLP_TRACEMASK_COLSSetting bit 3 XSLP_TRACEMASK_CASCADESetting bit 4 XSLP_TRACEMASK_TYPESetting bit 5 XSLP_TRACEMASK_SLACKSetting bit 6 XSLP_TRACEMASK_DUALSetting bit 7 XSLP_TRACEMASK_WEIGHTSetting bit 8 XSLP_TRACEMASK_SOLUTIONSetting bit 9 XSLP_TRACEMASK_REDUCEDCOSTSetting bit 10 XSLP_TRACEMASK_SLPVALUESetting bit 11 XSLP_TRACEMASK_STEPBOUNDSetting bit 12 XSLP_TRACEMASK_CONVERGESetting bit 13 XSLP_TRACEMASK_LINESEARCH

Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize, XSLPglobal

XSLP_UNFINISHEDLIMIT

Description Number of times within one SLP iteration that an unfinished LP optimization will be continued
Type Integer
Note If the optimization of the current linear approximation terminates with an "unfinished" status(for example, because it has reached maximum iterations), Xpress-SLP will attempt tocontinue using the primal simplex algorithm. This process will be repeated for up to

XSLP_UNFINISHEDLIMIT successive LP optimizations within any one SLP iteration. If thelimit is reached, Xpress-SLP will terminate with XSLP_STATUS set to XSLP_LPUNFINISHED
Default value 3
Affects routines XSLPglobal, XSLPmaxim, XSLPminim

XSLP_UPDATEOFFSET

Description Position of first character of SLP variable name used to create name of SLP update row
Type Integer
Note During augmentation, one or more delta vectors are created for each SLP variable. The valuesof these are linked to that of the variable through an update row which is created as part ofthe augmentation procedure. Update rows are created with names derived from thecorresponding SLP variable. Customized naming is possible using XSLP_UPDATEFORMAT todefine a format and XSLP_UPDATEOFFSET to define the first character (counting from zero)of the variable name to be used.
Default value 0
Affects routines XSLPconstruct

See also XSLP_UPDATEFORMAT

Fair Isaac Corporation Confidential and Proprietary Information 202

Control Parameters Reference

XSLP_VCOUNT

Description Number of SLP iterations over which to measure static objective (3) convergence
Type Integer
Note The static objective (3) convergence criterion does not measure convergence of individualvariables, and in fact does not in any way imply that the solution has converged. However, it issometimes useful to be able to terminate an optimization once the objective function appearsto have stabilized. One example is where a set of possible schedules are being evaluated andinitially only a good estimate of the likely objective function value is required, to eliminate theworst candidates.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ XSLP_VTOL_Athen the problem has converged on the absolute static objective function (3) criterion.The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.Where step bounding is being used, this ensures that the test is not applied until after stepbounding has been introduced.

Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SBSTART, XSLP_VLIMIT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_VLIMIT

Description Number of SLP iterations after which static objective (3) convergence testing starts
Type Integer
Note The static objective (3) convergence criterion does not measure convergence of individualvariables, and in fact does not in any way imply that the solution has converged. However, it issometimes useful to be able to terminate an optimization once the objective function appearsto have stabilized. One example is where a set of possible schedules are being evaluated andinitially only a good estimate of the likely objective function value is required, to eliminate theworst candidates.The variation in the objective function is defined as

δObj = MAXIter(Obj) –MINIter(Obj)
where Iter is the XSLP_VCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.If ABS(δObj) ≤ XSLP_VTOL_Athen the problem has converged on the absolute static objective function (3) criterion.

Fair Isaac Corporation Confidential and Proprietary Information 203

Control Parameters Reference

The static objective function (3) test is applied only if after at least XSLP_VLIMIT +
XSLP_SBSTART SLP iterations have taken place and only if XSLP_VCOUNT is at least 2.Where step bounding is being used, this ensures that the test is not applied until after stepbounding has been introduced.

Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_SBSTART, XSLP_VCOUNT, XSLP_VTOL_A, XSLP_VTOL_R

XSLP_WCOUNT

Description Number of SLP iterations over which to measure the objective for the extended convergencecontinuation criterion
Type Integer
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.

The extended convergence continuation criterion is applied after a converged solution hasbeen found where at least one variable has converged on extended criteria and is at its stepbound limit. The extended convergence continuation test measures whether anyimprovement is being achieved when additional SLP iterations are carried out. If not, then thelast converged solution will be restored and the optimization will stop.For a maximization problem, the improvement in the objective function at the current iterationcompared to the objective function at the last converged solution is given by:
δObj = Obj – LastConvergedObjFor a minimization problem, the sign is reversed.If δObj > XSLP_WTOL_A and
δObj > ABS(ConvergedObj) ∗ XSLP_WTOL_R then the solution is deemed to have a significantlybetter objective function value than the converged solution.
When a solution is found which converges on extended criteria and with active step bounds,the solution is saved and SLP optimization continues until one of the following:(1) a new solution is found which converges on some other criterion, in which case the SLPoptimization stops with this new solution;(2) a new solution is found which converges on extended criteria and with active step bounds,and which has a significantly better objective function, in which case this is taken as the newsaved solution;(3) none of the XSLP_WCOUNTmost recent SLP iterations has a significantly better objectivefunction than the saved solution, in which case the saved solution is restored and the SLPoptimization stops.
If XSLP_WCOUNT is zero, then the extended convergence continuation criterion is disabled.

Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_WTOL_A, XSLP_WTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 204

Control Parameters Reference

XSLP_XCOUNT

Description Number of SLP iterations over which to measure static objective (1) convergence
Type Integer
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function wouldimprove. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.However, if the objective function has already been stable for several SLP iterations, thenthere is less likelihood of an improved result, and the converged solution can be accepted.

The static objective function (1) test measures the significance of the changes in theobjective function over recent SLP iterations. It is applied when all the variables haveconverged, but some have converged on extended criteria and at least one of these variablesis at its step bound. Because all the variables have converged, the solution is alreadyconverged but the fact that some variables are at their step bound limit suggests that theobjective function could be improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.
If ABS(δObj) ≤ XSLP_XTOL_Athen the objective function is deemed to be static according to the absolute static objectivefunction (1) criterion.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_Rthen the objective function is deemed to be static according to the relative static objectivefunction (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations havetaken place. After that, if all the variables have converged on strict or extended criteria, thesolution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test thenthe solution is deemed to have converged.

Default value 5
Affects routines XSLPmaxim, XSLPminim
See also XSLP_XLIMIT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_XLIMIT

Description Number of SLP iterations up to which static objective (1) convergence testing starts
Type Integer
Note It may happen that all the variables have converged, but some have converged on extendedcriteria and at least one of these variables is at its step bound. This means that, at least in thelinearization, if the variable were to be allowed to move further the objective function would

Fair Isaac Corporation Confidential and Proprietary Information 205

Control Parameters Reference

improve. This does not necessarily imply that the same is true of the original problem, but it isstill possible that an improved result could be obtained by taking another SLP iteration.However, if the objective function has already been stable for several SLP iterations, thenthere is less likelihood of an improved result, and the converged solution can be accepted.
The static objective function (1) test measures the significance of the changes in theobjective function over recent SLP iterations. It is applied when all the variables haveconverged, but some have converged on extended criteria and at least one of these variablesis at its step bound. Because all the variables have converged, the solution is alreadyconverged but the fact that some variables are at their step bound limit suggests that theobjective function could be improved by going further.
The variation in the objective function is defined as
δObj = MAXIter(Obj) –MINIter(Obj)where Iter is the XSLP_XCOUNTmost recent SLP iterations and Obj is the correspondingobjective function value.
If ABS(δObj) ≤ XSLP_XTOL_Athen the objective function is deemed to be static according to the absolute static objectivefunction (1) criterion.If ABS(δObj) ≤ AVGIter(Obj) ∗ XSLP_XTOL_Rthen the objective function is deemed to be static according to the relative static objectivefunction (1) criterion.
The static objective function (1) test is applied only until XSLP_XLIMIT SLP iterations havetaken place. After that, if all the variables have converged on strict or extended criteria, thesolution is deemed to have converged.
If the objective function passes the relative or absolute static objective function (1) test thenthe solution is deemed to have converged.

Default value 100
Affects routines XSLPmaxim, XSLPminim
See also XSLP_XCOUNT, XSLP_XTOL_A, XSLP_XTOL_R

XSLP_ZEROCRITERION

Description Bitmap determining the behavior of the placeholder deletion procedure
Type Integer
Values Bit Meaning

0 (=1) Remove placeholders in nonbasic SLP variables
1 (=2) Remove placeholders in nonbasic delta variables
2 (=4) Remove placeholders in a basic SLP variable if its update row is nonbasic
3 (=8) Remove placeholders in a basic delta variable if its update row is nonbasic andthe corresponding SLP variable is nonbasic
4 (=16) Remove placeholders in a basic delta variable if the determining row for thecorresponding SLP variable is nonbasic
5 (=32) Print information about zero placeholders

Note For an explanation of deletion of placeholder entries in the matrix see Management of zero
placeholder entries.
The following constants are provided for setting these bits:

Fair Isaac Corporation Confidential and Proprietary Information 206

Control Parameters Reference

Setting bit 0 XSLP_ZEROCRTIERION_NBSLPVARSetting bit 1 XSLP_ZEROCRTIERION_NBDELTASetting bit 2 XSLP_ZEROCRTIERION_SLPVARNBUPDATEROWSetting bit 3 XSLP_ZEROCRTIERION_DELTANBUPSATEROWSetting bit 4 XSLP_ZEROCRTIERION_DELTANBDRROWSetting bit 5 XSLP_ZEROCRTIERION_PRINT

Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERIONCOUNT, XSLP_ZEROCRITERIONSTART, Management of zero

placeholder entries

XSLP_ZEROCRITERIONCOUNT

Description Number of consecutive times a placeholder entry is zero before being considered for deletion
Type Integer
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONSTART, Management of zero placeholder

entries

XSLP_ZEROCRITERIONSTART

Description SLP iteration at which criteria for deletion of placeholder entries are first activated.
Type Integer
Note For an explanation of deletion of placeholder entries in the matrix see Management of zero

placeholder entries.
Default value 0
Affects routines XSLPmaxim, XSLPminim
See also XSLP_ZEROCRITERION, XSLP_ZEROCRITERIONCOUNT, Management of zero placeholder

entries

Fair Isaac Corporation Confidential and Proprietary Information 207

Control Parameters Reference

20.3 String control parameters

XSLP_CVNAME

Description Name of the set of character variables to be used
Type String
Notes This variable may be required for input from a file using XSLPreadprob if there is more thanone set of character variables in the file. If no name is set, then the first set of charactervariables will be used, and the name will be set accordingly.This variable may also be required for output using XSLPwriteprob where charactervariables are included in the problem. If it is not set, then a default name will be used.
Set by routines XSLPreadprob

Default value none
Affects routines XSLPreadprob, XSLPwriteprob
See also XSLP_IVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_DELTAFORMAT

Description Formatting string for creation of names for SLP delta vectors
Type String
Note This control can be used to create a specific naming structure for delta vectors. The structurefollows the normal C-style printf form, and can contain printing characters plus one %s string.This will be replaced by sequential characters from the name of the variable starting atposition XSLP_DELTAOFFSET.
Default value pD_%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_ITERFALLBACKOPS

Description Alternative LP level control values for numerically challengeing problems
Type String
Notes When set, this control provides alternative ways of solving a linearization called adaptiveiteration solves. This can be useful for numerically challenging problems that either solve to anon-satisfactory accuracy (relative to XSLP_FEASTOLTARGET) with the default solves, or thatcan incorrectly report infeasibility or unboundedness. In such cases, the solve will try the

Fair Isaac Corporation Confidential and Proprietary Information 208

Control Parameters Reference

controls listed by XSLP_ITERFALLBACKOPS until a satisfactory solution is found or alloptions are exhausted.
The individual controls for each solve are separated by a comma (’,’), while the set of controlsfor an attepmt by a colon (’:’) . Example: ’XPRS_DEFAULTALG=3 : XPRS_BARORDER = 2,XPRS_PRESOVLE = 0’ will try primal in one solve, and the homogenous barrier with presolveturned off in an other. Optimizer flags are not inherited by the solve, so useXPRS_DEFAULTALG for selecting an LP solver to use.
The resulting LP solves are carried out in a parallel manner, using
XSLP_MULTISTART_THREADS number of threads.
The result of the adaptive solves are always deterministic.
Once a satisfactory solution is found, remaining solves are progressed only as far asnecessary to guarantee determinism, so it is beneficial to list more promising control setsfirst.

Default value none
Affects routines XSLPminim, XSLPmaxim, XSLPnlpoptimize
See also XSLP_FEASTOLTARGET,

XSLP_IVNAME

Description Name of the set of initial values to be used
Type String
Notes This variable may be required for input from a file using XSLPreadprob if there is more thanone set of initial values in the file. If no name is set, then the first set of initial values will beused, and the name will be set accordingly.This variable may also be required for output using XSLPwriteprob where initial values areincluded in the problem. If it is not set, then a default name will be used.
Set by routines XSLPreadprob

Default value none
Affects routines XSLPreadprob, XSLPwriteprob
See also XSLP_CVNAME, XSLP_SBNAME, XSLP_TOLNAME

XSLP_MINUSDELTAFORMAT

Description Formatting string for creation of names for SLP negative penalty delta vectors
Type String
Note This control can be used to create a specific naming structure for negative penalty deltavectors. The structure follows the normal C-style printf form, and can contain printingcharacters plus one %s string. This will be replaced by sequential characters from the nameof the variable starting at position XSLP_DELTAOFFSET.
Default value pD-%swhere p is a unique prefix for names in the current problem

Fair Isaac Corporation Confidential and Proprietary Information 209

Control Parameters Reference

Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_MINUSERRORFORMAT

Description Formatting string for creation of names for SLP negative penalty error vectors
Type String
Note This control can be used to create a specific naming structure for negative penalty errorvectors. The structure follows the normal C-style printf form, and can contain printingcharacters plus one %s string. This will be replaced by sequential characters from the nameof the variable starting at position XSLP_ERROROFFSET.
Default value pE-%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_PENALTYCOLFORMAT

Description Formatting string for creation of the names of the SLP penalty transfer vectors
Type String
Note This control can be used to create a specific naming structure for the penalty transfer vectorswhich transfer penalty costs into the objective. The structure follows the normal C-style printfform, and can contain printing characters plus one %s string. This will be replaced by "DELT"for the penalty delta transfer vector and "ERR" for the penalty error transfer vector.
Default value pPC_%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

XSLP_PENALTYROWFORMAT

Description Formatting string for creation of the names of the SLP penalty rows
Type String
Note This control can be used to create a specific naming structure for the penalty rows whichtotal the penalty costs for the objective. The structure follows the normal C-style printf form,and can contain printing characters plus one %s string. This will be replaced by "DELT" for thepenalty delta row and "ERR" for the penalty error row.
Default value pPR_%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 210

Control Parameters Reference

XSLP_PLUSDELTAFORMAT

Description Formatting string for creation of names for SLP positive penalty delta vectors
Type String
Note This control can be used to create a specific naming structure for positive penalty deltavectors. The structure follows the normal C-style printf form, and can contain printingcharacters plus one %s string. This will be replaced by sequential characters from the nameof the variable starting at position XSLP_DELTAOFFSET.
Default value pD+%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_DELTAOFFSET

XSLP_PLUSERRORFORMAT

Description Formatting string for creation of names for SLP positive penalty error vectors
Type String
Note This control can be used to create a specific naming structure for positive penalty errorvectors. The structure follows the normal C-style printf form, and can contain printingcharacters plus one %s string. This will be replaced by sequential characters from the nameof the variable starting at position XSLP_ERROROFFSET.
Default value pE+%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_ERROROFFSET

XSLP_SBLOROWFORMAT

Description Formatting string for creation of names for SLP lower step bound rows
Type String
Note This control can be used to create a specific naming structure for lower limits on step boundsmodeled as rows. The structure follows the normal C-style printf form, and can containprinting characters plus one %s string. This will be replaced by sequential characters from thename of the variable starting at position XSLP_SBROWOFFSET.
Default value pSB-%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET

Fair Isaac Corporation Confidential and Proprietary Information 211

Control Parameters Reference

XSLP_SBNAME

Description Name of the set of initial step bounds to be used
Type String
Notes This variable may be required for input from a file using XSLPreadprob if there is more thanone set of initial step bounds in the file. If no name is set, then the first set of initial stepbounds will be used, and the name will be set accordingly.This variable may also be required for output using XSLPwriteprob where initial stepbounds are included in the problem. If it is not set, then a default name will be used.
Set by routines XSLPreadprob

Default value none
Affects routines XSLPreadprob, XSLPwriteprob
See also XSLP_CVNAME, XSLP_IVNAME, XSLP_TOLNAME

XSLP_SBUPROWFORMAT

Description Formatting string for creation of names for SLP upper step bound rows
Type String
Note This control can be used to create a specific naming structure for upper limits on step boundsmodeled as rows. The structure follows the normal C-style printf form, and can containprinting characters plus one %s string. This will be replaced by sequential characters from thename of the variable starting at position XSLP_SBROWOFFSET.
Default value pSB+%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_SBROWOFFSET

XSLP_TOLNAME

Description Name of the set of tolerance sets to be used
Type String
Notes This variable may be required for input from a file using XSLPreadprob if there is more thanone set of tolerance sets in the file. If no name is set, then the first set of tolerance sets will beused, and the name will be set accordingly.This variable may also be required for output using XSLPwriteprob where tolerance setsare included in the problem. If it is not set, then a default name will be used.
Set by routines XSLPreadprob

Fair Isaac Corporation Confidential and Proprietary Information 212

Control Parameters Reference

Default value none
Affects routines XSLPreadprob, XSLPwriteprob
See also XSLP_CVNAME, XSLP_IVNAME, XSLP_SBNAME

XSLP_TRACEMASK

Description Mask of variable or row names that are to be traced through the SLP iterates
Type String
Notes If the mask is nonempty, variables and rows matching the mask are listed after each SLPiteration and each cascade, allowing for a convenient means to observe how certain variableschange through the iterates. This feasture is provided for tuning and model debuggingpurposes. The actual information printed is controlled by XSLP_TRACEMASKOPS.The string in the tracemask may contain several variable or row names, separated by awhitespace. Wildcards may also be used.
Default value none: no tracing
Affects routines XSLPminim, XSLPmaxim, XSLPreminim, XSLPremaxim, XSLPnlpoptimize, XSLPglobal
See also XSLP_TRACEMASKOPS

XSLP_UPDATEFORMAT

Description Formatting string for creation of names for SLP update rows
Type String
Note This control can be used to create a specific naming structure for update rows. The structurefollows the normal C-style printf form, and can contain printing characters plus one %s string.This will be replaced by sequential characters from the name of the variable starting atposition XSLP_UPDATEOFFSET.
Default value pU_%swhere p is a unique prefix for names in the current problem
Affects routines XSLPconstruct

See also XSLP_UPDATEOFFSET

20.4 Knitro controls

All Knitro controls are available with an ’X’ pre-tag. For example the Knitro integer control’KTR_PARAM_ALGORITHM’ can be set using XSLPsetintcontrol using the control ID defined as’XKTR_PARAM_ALGORITHM’. Please refer to the Xpress Knitro manual for the description of the Knitrocontrols.

Fair Isaac Corporation Confidential and Proprietary Information 213

CHAPTER 21

Library functions and the programming inter-
face

21.1 Counting

All Xpress NonLinear entities are numbered from 1. The 0th item is defined, and is an empty entity ofthe appropriate type. Therefore, whenever an Xpress NonLinear function returns a zero value, it meansthat there is no data of that type.
In parsed and unparsed function arrays, the indices always count from 1. This includes types
XSLP_VAR and XSLP_CONSTRAINT: the index is the matrix column or row index +1.
Note that for input of function arrays, types XSLP_COL and XSLP_ROW can be used, but will beconverted into standard XSLP_VAR or XSLP_CONSTRAINT references. When a function array isreturned from Xpress NonLinear, the XSLP_VAR or XSLP_CONSTRAINT type will always be used.

21.2 The Xpress NonLinear problem pointer

Xpress NonLinear uses the same concept as the Optimizer library, with a "pointer to a problem". Theoptimizer problem must be initialized first in the normal way. Then the corresponding Xpress NonLinearproblem must be initialized, including a pointer to the underlying optimizer problem. For example:
{
...
XPRSprob prob=NULL;
XSLPprob SLPprob=NULL;

XPRSinit("");
XSLPinit();
XPRScreateprob(&prob);
XSLPcreateprob(&SLPprob,&prob);
...
}

At the end of the program, the Xpress NonLinear problem should be destroyed. You are responsible fordestroying the underlying XPRSprob linear problem afterwards. For example:
{
...
XSLPdestroyprob(SLPprob);
XPRSdestroyprob(prob);
XSLPfree();
XPRSfree();
...

}

Fair Isaac Corporation Confidential and Proprietary Information 214

Library functions and the programming interface Reference

The following functions are provided to manage Xpress NonLinear problems. See the documentationbelow on the individual functions for more details.
XSLPcopycontrols(XSLPprob prob1, XSLPprob prob2)Copy the settings of control variables
XSLPcopycallbacks(XSLPprob prob1, XSLPprob prob2)Copy the callback settings
XSLPcopyprob(XSLPprob prob1, XSLPprob prob2, char ⁎ProbName)Copy a problem completely
XSLPcreateprob(XSLPprob ⁎prob1, XPRSprob ⁎prob2)Create an Xpress NonLinear problem
XSLPdestroyprob(XSLPprob prob1)Delete an Xpress NonLinear problem from memory
XSLPrestore(XSLPprob prob1)Restore Xpress NonLinear data structures from file
XSLPsave(XSLPprob prob1)Save Xpress NonLinear data structures to file

21.3 The XSLPload... functions

The XSLPload... functions can be used to load an Xpress NonLinear problem directly into the Xpressdata structures. Because there are so many additional items which can be loaded apart from the basic(linear) matrix, the loading process is divided into several functions.
The best practice is to load the linear part of the problem irst, using the normal Optimizer Libraryfunctions XPRSloadlp or XPRSloadglobal. Then the appropriate parts of the Xpress NonLinearproblem can be loaded. After all the XSLPload... functions have been called, XSLPconstructshould be called to create the SLP matrix and data structures. If XSLPconstruct is not invoked beforea call to one of the Xpress NonLinear optimization routines, then it will be called by the optimizationroutine itself.
All of these functions initialize their data areas. Therefore, if a second call is made to the same functionfor the same problem, the previous data will be deleted. If you want to include additional data of thesame type, then use the corresponding XSLPadd... function.
It is possible to remove parts of the SLP strcutures with the various XSLPdel functions, and
XSLPunconstruct can also be used to remove the augmentation.
Xpress NonLinear is compatible with the Xpress quadratic programming optimizer. XPRSloadqp and
XPRSloadqglobal can be used to load quadratic problems (or quadratically constrained problmesusing XPRSloadqcqp and XPRSloadqcqpglobal). The quadratic objective will be optimized usingthe Xpress quadratic optimizer; the nonlinear constraints will be handled with the normal SLPprocedures. Please note, that this separation is only useful for a convex quadratic objective and convexquadratic inequality constraints. All nonconvex quadratic matrices should be handled as SLP strctures.
For a description on when it’s more beneficial to use the XPRS library to solve QP or QCQP problems,please see Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of
XSLP.

21.4 Library functions

A large number of routines are available for Library users of Xpress NonLinear, ranging from simple

Fair Isaac Corporation Confidential and Proprietary Information 215

Library functions and the programming interface Reference

routines for the input and solution of problems from matrix files to sophisticated callback functionsand greater control over the solution process. Library users have access to a set of functions providingadvanced control over their program’s interaction with the SLP module and catering for morecomplicated problem development.
XSLPaddcoefs Add non-linear coefficients to the SLP problem p. 221
XSLPadddfs Add a set of distribution factors p. 223
XSLPaddtolsets Add sets of standard tolerance values to an SLP problem p. 224
XSLPadduserfunction Add user function definitions to an SLP problem. p. 225
XSLPaddvars Add SLP variables defined as matrix columns to an SLP problem p. 226
XSLPcalcslacks Calculate the slack values for the provided solution in the non-linearproblem p. 228
XSLPcascade Re-calculate consistent values for SLP variables based on the currentvalues of the remaining variables. p. 229
XSLPcascadeorder Establish a re-calculation sequence for SLP variables with determiningrows. p. 230
XSLPchgcascadenlimit Set a variable specific cascade iteration limit p. 231
XSLPchgccoef Add or change a single matrix coefficient using a character string for theformula p. 232
XSLPchgcoef Add or change a single matrix coefficient using a parsed or unparsedformula p. 233
XSLPchgdeltatype Changes the type of the delta assigned to a nonlinear variable p. 234
XSLPchgdf Set or change a distribution factor p. 235
XSLPchgrowstatus Change the status setting of a constraint p. 236
XSLPchgrowwt Set or change the initial penalty error weight for a row p. 237
XSLPchgtolset Add or change a set of convergence tolerances used for SLP variablesp. 238
XSLPchgvar Define a column as an SLP variable or change the characteristics andvalues of an existing SLP variable p. 240
XSLPconstruct Create the full augmented SLP matrix and data structures, ready foroptimization p. 242
XSLPcopycallbacks Copy the user-defined callbacks from one SLP problem to another p. 243
XSLPcopycontrols Copy the values of the control variables from one SLP problem to anotherp. 244
XSLPcopyprob Copy an existing SLP problem to another p. 245
XSLPcreateprob Create a new SLP problem p. 246
XSLPdelcoefs Delete coefficients from the current problem p. 247
XSLPdeltolsets Delete tolerance sets from the current problem p. 248
XSLPdeluserfunction Delete a user function from the current problem p. 249

Fair Isaac Corporation Confidential and Proprietary Information 216

Library functions and the programming interface Reference

XSLPdelvars Convert SLP variables to normal columns. Variables must not appear inSLP structures p. 250
XSLPdestroyprob Delete an SLP problem and release all the associated memory p. 251
XSLPevaluatecoef Evaluate a coefficient using the current values of the variables p. 252
XSLPevaluateformula Evaluate a formula using the current values of the variables p. 253
XSLPfixpenalties Fixe the values of the error vectors p. 254
XSLPfree Free any memory allocated by Xpress NonLinear and close any openXpress NonLinear files p. 255
XSLPgetbanner Retrieve the Xpress NonLinear banner and copyright messages p. 256
XSLPgetccoef Retrieve a single matrix coefficient as a formula in a character string p. 257
XSLPgetcoefformula Retrieve a single matrix coefficient as a formula split into tokens p. 258
XSLPgetcoefs Retrieve the list of positions of the nonlinear coefficients in the problemp. 259
XSLPgetcolinfo Get current column information. p. 260
XSLPgetdblattrib Retrieve the value of a double precision problem attribute p. 261
XSLPgetdblcontrol Retrieve the value of a double precision problem control p. 262
XSLPgetdf Get a distribution factor p. 263
XSLPgetindex Retrieve the index of an Xpress NonLinear entity with a given name p. 264
XSLPgetintattrib Retrieve the value of an integer problem attribute p. 265
XSLPgetintcontrol Retrieve the value of an integer problem control p. 266
XSLPgetlasterror Retrieve the error message corresponding to the last Xpress NonLinearerror during an SLP run p. 267
XSLPgetptrattrib Retrieve the value of a problem pointer attribute p. 268
XSLPgetrowinfo Get current row information. p. 269
XSLPgetrowstatus Retrieve the status setting of a constraint p. 270
XSLPgetrowwt Get the initial penalty error weight for a row p. 271
XSLPgetslpsol Obtain the solution values for the most recent SLP iteration p. 272
XSLPgetstrattrib Retrieve the value of a string problem attribute p. 273
XSLPgetstrcontrol Retrieve the value of a string problem control p. 274
XSLPgettolset Retrieve the values of a set of convergence tolerances for an SLP problemp. 275
XSLPgetvar Retrieve information about an SLP variable p. 276
XSLPglobal Initiate the Xpress NonLinear mixed integer SLP (MISLP) algorithm p. 278
XSLPimportlibfunc Imports a function from a library file to be called as a user function p. 279
XSLPinit Initializes the Xpress NonLinear system p. 280
XSLPinterrupt Interrupts the current SLP optimization p. 281

Fair Isaac Corporation Confidential and Proprietary Information 217

Library functions and the programming interface Reference

XSLPitemname Retrieves the name of an Xpress NonLinear entity or the value of a functiontoken as a character string. p. 282
XSLPloadcoefs Load non-linear coefficients into the SLP problem p. 283
XSLPloaddfs Load a set of distribution factors p. 285
XSLPloadtolsets Load sets of standard tolerance values into an SLP problem p. 286
XSLPloadvars Load SLP variables defined as matrix columns into an SLP problem p. 287
XSLPmaxim Maximize an SLP problem p. 289
XSLPminim Minimize an SLP problem p. 290
XSLPmsaddcustompreset A combined version of XSLPmsaddjob and XSLPmsaddpreset. Thepreset described is loaded, topped up with the specific settings suppliedp. 291
XSLPmsaddjob Adds a multistart job to the multistart pool p. 292
XSLPmsaddpreset Loads a preset of jobs into the multistart job pool. p. 293
XSLPmsclear Removes all scheduled jobs from the multistart job pool p. 294
XSLPnlpoptimize Maximize or minimize an SLP problem p. 295
XSLPpostsolve Restores the problem to its pre-solve state p. 296
XSLPpresolve Perform a nonlinear presolve on the problem p. 297
XSLPprintevalinfo Print a summary of any evaluation errors that may have occurred duringsolving a problem p. 299
XSLPprintmemory Print the dimensions and memory allocations for a problem p. 298
XSLPreadprob Read an Xpress NonLinear extended MPS format matrix from a file into anSLP problem p. 300
XSLPreinitialize Reset the SLP problem to match a just augmented system p. 304
XSLPremaxim Continue the maximization of an SLP problem p. 301
XSLPreminim Continue the minimization of an SLP problem p. 302
XSLPrestore Restore the Xpress NonLinear problem from a file created by XSLPsavep. 303
XSLPsave Save the Xpress NonLinear problem to file p. 305
XSLPsaveas Save the Xpress NonLinear problem to a named file p. 306
XSLPscaling Analyze the current matrix for largest/smallest coefficients and ratiosp. 307
XSLPsetcbcascadeend Set a user callback to be called at the end of the cascading process, afterthe last variable has been cascaded p. 308
XSLPsetcbcascadestart Set a user callback to be called at the start of the cascading process,before any variables have been cascaded p. 309
XSLPsetcbcascadevar Set a user callback to be called after each column has been cascadedp. 310

Fair Isaac Corporation Confidential and Proprietary Information 218

Library functions and the programming interface Reference

XSLPsetcbcascadevarfail Set a user callback to be called after cascading a column was notsuccessful p. 311
XSLPsetcbcoefevalerror Set a user callback to be called when an evaluation of a coefficientfails during the solve p. 312
XSLPsetcbconstruct Set a user callback to be called during the Xpress-SLP augmentationprocess p. 313
XSLPsetcbdestroy Set a user callback to be called when an SLP problem is about to bedestroyed p. 315
XSLPsetcbdrcol Set a user callback used to override the update of variables with smalldetermining column p. 316
XSLPsetcbintsol Set a user callback to be called during MISLP when an integer solution isobtained p. 317
XSLPsetcbiterend Set a user callback to be called at the end of each SLP iteration p. 318
XSLPsetcbiterstart Set a user callback to be called at the start of each SLP iteration p. 319
XSLPsetcbitervar Set a user callback to be called after each column has been tested forconvergence p. 320
XSLPsetcbmessage Set a user callback to be called whenever Xpress NonLinear outputs a lineof text p. 321
XSLPsetcbmsjobend Set a user callback to be called every time a new multistart job finishes.Can be used to overwrite the default solution ranking function p. 323
XSLPsetcbmsjobstart Set a user callback to be called every time a new multistart job is created,and the pre-loaded settings are applied p. 324
XSLPsetcbmswinner Set a user callback to be called every time a new multistart job is created,and the pre-loaded settings are applied p. 325
XSLPsetcboptnode Set a user callback to be called during MISLP when an optimal SLPsolution is obtained at a node p. 326
XSLPsetcbprenode Set a user callback to be called during MISLP after the set-up of the SLPproblem to be solved at a node, but before SLP optimization p. 327
XSLPsetcbpreupdatelinearization Set a user callback to be called before the linearization isupdated p. 328
XSLPsetcbslpend Set a user callback to be called at the end of the SLP optimization p. 329
XSLPsetcbslpnode Set a user callback to be called during MISLP after the SLP optimization ateach node. p. 330
XSLPsetcbslpstart Set a user callback to be called at the start of the SLP optimization p. 331
XSLPsetcurrentiv Transfer the current solution to initial values p. 332
XSLPsetdblcontrol Set the value of a double precision problem control p. 333
XSLPsetdefaultcontrol Set the values of one SLP control to its default value p. 334
XSLPsetdefaults Set the values of all SLP controls to their default values p. 335
XSLPsetfunctionerror Set the function error flag for the problem p. 336
XSLPsetintcontrol Set the value of an integer problem control p. 337

Fair Isaac Corporation Confidential and Proprietary Information 219

Library functions and the programming interface Reference

XSLPsetlogfile Define an output file to be used to receive messages from XpressNonLinear p. 338
XSLPsetparam Set the value of a control parameter by name p. 339
XSLPsetstrcontrol Set the value of a string problem control p. 340
XSLPunconstruct Removes the augmentation and returns the problem to its pre-linearizationstate p. 341
XSLPupdatelinearization Updates the current linearization p. 342
XSLPvalidate Validate the feasibility of constraints in a converged solution p. 343
XSLPvalidatekkt Validates the first order optimality conditions also known as theKarush-Kuhn-Tucker (KKT) conditions versus the currect solution p. 344
XSLPvalidateprob Validates the current problem formulation and statement p. 345
XSLPvalidaterow Prints an extensive analysis on a given constraint of the SLP problem p. 346
XSLPvalidatevector Validate the feasibility of constraints for a given solution p. 347
XSLPwriteprob Write the current problem to a file in extended MPS or text format p. 348
XSLPwriteslxsol Write the current solution to an MPS like file format p. 349

Fair Isaac Corporation Confidential and Proprietary Information 220

Library functions and the programming interface Reference

XSLPaddcoefs

Purpose Add non-linear coefficients to the SLP problem
Synopsis

int XPRS_CC XSLPaddcoefs(XSLPprob Prob, int nSLPCoef, int ⁎RowIndex, int
⁎ColIndex, double ⁎Factor, int ⁎FormulaStart, int Parsed, int ⁎Type,
double ⁎Value);

Arguments
Prob The current SLP problem.
nSLPCoef Number of non-linear coefficients to be added.
RowIndex Integer array holding index of row for the coefficient.
ColIndex Integer array holding index of column for the coefficient.
Factor Double array holding factor by which formula is scaled. If this is NULL, then a value of1.0 will be used.
FormulaStart Integer array of length nSLPCoef+1 holding the start position in the arrays Typeand Value of the formula for the coefficients. FormulaStart[nSLPCoef] should beset to the next position after the end of the last formula.
Parsed Integer indicating whether the token arrays are formatted as internal unparsed(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the formula for each coefficient.
Value Array of values corresponding to the types in Type.

Example Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The followingexample adds coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Type[8];
int n, nSLPCoef;
double Value[8];

RowIndex[0] = 1; ColIndex[0] = 2;
RowIndex[1] = 1; ColIndex[1] = 6;
RowIndex[2] = 3; ColIndex[2] = 2;

n = nSLPCoef = 0;
FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 3;
Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;
Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 221

Library functions and the programming interface Reference

FormulaStart[nSLPCoef] = n;

XSLPaddcoefs(Prob, nSLPCoef, RowIndex, ColIndex,
NULL, FormulaStart, 1, Type, Value);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 ⁎rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further informationThe jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,which can be provided in the Factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j]. The tokensfollow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formulamust be terminated with an XSLP_EOF token. If several coefficients share the same formula, they canhave the same value in FormulaStart. For possible token types and values see the chapter on"Formula Parsing".
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.
The behaviour for existing coefficients is additive: the formula defined in the parameters are added toany existing formula coefficients. However, due to performance considerations, such duplicationsshould be avoided when possible.

Related topics
XSLPchgcoef, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 222

Library functions and the programming interface Reference

XSLPadddfs

Purpose Add a set of distribution factors
Synopsis

int XSLP_CC XSLPadddfs(XSLPprob Prob, int nDF, const int ⁎ColIndex, const
int ⁎RowIndex, const double ⁎Value)

Arguments
Prob The current SLP problem.
nDF The number of distribution factors.
ColIndex Array of indices of columns whose distribution factor is to be changed.
RowIndex Array of indices of the rows where each distribution factor applies.
Value Array of double precision variables holding the new values of the distribution factors.

Example The following example adds distribution factors as follows:column 282 in row 134 = 0.1column 282 in row 136 = 0.15column 285 in row 133 = 1.0.
int ColIndex[3], RowIndex[3];
double Value[3];
ColIndex[0] = 282; RowIndex[0] = 134; Value[0] = 0.1;
ColIndex[1] = 282; RowIndex[1] = 136; Value[1] = 0.15;
ColIndex[2] = 285; RowIndex[2] = 133; Value[2] = 1.0;
XSLPadddfs(prob,3,ColIndex,RowIndex,Value);

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgdf, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 223

Library functions and the programming interface Reference

XSLPaddtolsets

Purpose Add sets of standard tolerance values to an SLP problem
Synopsis

int XPRS_CC XSLPaddtolsets(XSLPprob Prob, int nSLPTol, double ⁎SLPTol);

Arguments
Prob The current SLP problem.
nSLPTol The number of tolerance sets to be added.
SLPTol Double array of (nSLPTol ⁎ 9) items containing the 9 tolerance values for each set inorder.

Example The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; thesecond has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolutetolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).
double SLPTol[18];
for (i=0;i<9;i++) SLPTol[i] = 0.005;
SLPTol[9] = 0;
for (i=10;i<18;i=i+2) SLPTol[i] = 0.01;
for (i=11;i<18;i=i+2) SLPTol[i] = 0.001;
XSLPaddtolsets(Prob, 2, SLPTol);

Further informationA tolerance set is an array of 9 values containing the following tolerances:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable.
If a tolerance value is zero, then the default tolerance will be used instead. To force the use of atolerance, use the XSLPchgtolset function and set the Status variable appropriately.
See the section Convergence criteria for a fuller description of tolerances and their uses.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPchgtolset, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 224

Library functions and the programming interface Reference

XSLPadduserfunction

Purpose Add user function definitions to an SLP problem.
Synopsis

int XPRS_CC XSLPadduserfunction(XSLPprob Prob, const char ⁎ FunctionName,
int FunctionType, int nInput, int nOutput, int Options, void ⁎
FunctionPointer,void ⁎ UserContext, int ⁎ FunctionTokenId);

Arguments
Prob The current SLP problem.
FunctionName The name of the function as it appears in text formula expressions.
FunctionType The type of the user function, one of

1 (XSLP_USERFUNCTION_MAP) function takes double, returnsdouble.
2 (XSLP_USERFUNCTION_VECMAP) function takes double array, returnsdouble.
3 (XSLP_USERFUNCTION_MULTIMAP) function takes double array, returnsdouble array.
4 (XSLP_USERFUNCTION_MAPDELTA) function takes double, returnsdouble and delta.
5 (XSLP_USERFUNCTION_VECMAPDELTA) function takes double array, returnsdouble and deltas.
6 (XSLP_USERFUNCTION_MULTIMAPDELTA) function takes double array, returnsdouble array and deltas.

nInput Number of arguments the user function takes.
nOutput Number of return arguments for the function.
Options Options as a bitmap to the user function

XSLP_INSTANCEFUNCTION always istantiate the function.
FunctionPointer Pointer of the suer function to call.
UserContext Context pointer to provide the user function with.
FunctionTokenId The token id of the user function added, to be used in the Value array whendefining formulas and using with XSLP_USERFUNCTION.

Further informationThe function declarations expected for the user functions are defined by the FunctionType argument.
The function of type XSLP_USERFUNCTION_MAP expects a function in the form of ’double XPRS_CCF(double Value, void *Context)’.
The function of type XSLP_USERFUNCTION_VECMAP expects a function in the form of ’doubleXPRS_CC F(double *Value, void *Context)’.
The function of type XSLP_USERFUNCTION_MULTIMAP expects a function in the form of ’int XPRS_CCF(double *Value, double *Out, void *Context)’.
The function of type XSLP_USERFUNCTION_MAPDELTA expects a function in the form of ’int XPRS_CCF(double Value, double Delta, double *Evaluation, double *Partial, void *Context)’.
The function of type XSLP_USERFUNCTION_VECMAPDELTA expects a function in the form of ’intXPRS_CC F(double *Value, double *Deltas, double *Evaluation, double *Partials, void *Context)’.
The function of type XSLP_USERFUNCTION_MULTIMAPDELTA expects a function in the form of ’intXPRS_CC F(double *Value, double *Deltas, double *Out, void *Context)’.

Related topicsFunction Declaration in Xpress NonLinear, XSLPdeluserfunction, XSLPimportlibfunc

Fair Isaac Corporation Confidential and Proprietary Information 225

Library functions and the programming interface Reference

XSLPaddvars

Purpose Add SLP variables defined as matrix columns to an SLP problem
Synopsis

int XPRS_CC XSLPaddvars(XSLPprob Prob, int nSLPVar, int ⁎ColIndex, int
⁎VarType, int ⁎DetRow, int ⁎SeqNum, int ⁎TolIndex, double ⁎InitValue,
double ⁎StepBound);

Arguments
Prob The current SLP problem.
nSLPVar The number of SLP variables to be added.
ColIndex Integer array holding the index of the matrix column corresponding to each SLP variable.
VarType Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a negativevalue means there is no determining row)May be NULL if not required.
SeqNum Integer array holding the index sequence number for cascading for each SLP variable (azero value means there is no pre-defined order for this variable)May be NULL if not required.
TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero valuemeans the default tolerances are used)May be NULL if not required.
InitValue Double array holding the initial value for each SLP variable (use the VarType bit map toindicate if a value is being provided)May be NULL if not required.
StepBound Double array holding the initial step bound size for each SLP variable (a zero valuemeans that no initial step bound size has been specified). If a value of

XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have stepbounds applied, and will almost always be regarded as converged.May be NULL if not required.
Example The following example loads two SLP variables into the problem. They correspond to columns 23 and25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specificinitial value

int ColIndex[2], VarType[2];
double InitValue[2];

ColIndex[0] = 23; VarType[0] = 0;
ColIndex[1] = 25; Vartype[1] = 2; InitValue[1] = 1.42;

XSLPaddvars(Prob, 2, ColIndex, VarType, NULL, NULL,
NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType isset for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 226

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used atall, and so have been passed to the function as NULL.
Further informationThe XSLPadd... functions load additional items into the SLP problem. The corresponding

XSLPload... functions delete any existing items first.
Related topics

XSLPchgvar, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 227

Library functions and the programming interface Reference

XSLPcalcslacks

Purpose Calculate the slack values for the provided solution in the non-linear problem
Synopsis

int XPRS_CC XSLPcalcslacks(XSLPprob Prob, const double ⁎ dSol, double ⁎
Slacks);

Arguments
Prob The current SLP problem.
dSol The solution for which the slacks are requested for.
Slacks Vector of length NROWS to return the slack in.

Related topics
XSLPvalidate, XSLPvalidaterow

Fair Isaac Corporation Confidential and Proprietary Information 228

Library functions and the programming interface Reference

XSLPcascade

Purpose Re-calculate consistent values for SLP variables based on the current values of the remaining variables.
Synopsis

int XPRS_CC XSLPcascade(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example changes the solution value for column 91, and then re-calculates the values ofthose dependent on it.
int ColNum;
double Value;

ColNum = 91;
XSLPgetvar(Prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL);

Value = Value + 1.42;
XSLPchgvar(Prob, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL);

XSLPcascade(Prob);

XSLPgetvar and XSLPchgvar are being used to get and change the current value of a single variable.
Provided no other values have been changed since the last execution of XSLPcascade, values will bechanged only for variables which depend on column 91.

Further informationSee the section on cascading for an extended discussion of the types of cascading which can beperformed.
XSLPcascade is called automatically during the SLP iteration process and so it is not normallynecessary to perform an explicit cascade calculation.
The variables are re-calculated in accordance with the order generated by XSLPcascadeorder.

Related topics
XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 229

Library functions and the programming interface Reference

XSLPcascadeorder

Purpose Establish a re-calculation sequence for SLP variables with determining rows.
Synopsis

int XPRS_CC XSLPcascadeorder(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example Assuming that all variables are SLP variables, the following example sets default values for thevariables, creates the re-calculation order and then calls XSLPcascade to calculate consistent valuesfor the dependent variables.
int ColNum;
for (ColNum=1;ColNum<=nCol;ColNum++)

XSLPchgvar(Prob, ColNum, NULL, NULL, NULL, NULL,
NULL, NULL, &DefaultValue[ColNum], NULL, NULL, NULL,
NULL);

XSLPcascadeorder(Prob);
XSLPcascade(Prob);

Further information
XSLPcascadeorder is called automatically at the start of the SLP iteration process and so it is notnormally necessary to perform an explicit cascade ordering.

Related topics
XSLPcascade

Fair Isaac Corporation Confidential and Proprietary Information 230

Library functions and the programming interface Reference

XSLPchgcascadenlimit

Purpose Set a variable specific cascade iteration limit
Synopsis

int XPRS_CC XSLPchgcascadenlimit(XSLPprob Prob, int iCol, int
CascadeNLimit);

Arguments
Prob The current SLP problem.
iCol The index of the column corresponding to the SLP variable for which the cascading limitis to be imposed.
CascadeNLimit The new cascading iteration limit.

Further informationA value set by this function will overwrite the value of XSLP_CASCADENLIMIT for this variable. Toremove any previous value set by this function, use an iteration limit of 0.
Related topics

XSLPcascadeorder, XSLP_CASCADE, XSLP_CASCADENLIMIT, XSLP_CASCADETOL_PA,
XSLP_CASCADETOL_PR

Fair Isaac Corporation Confidential and Proprietary Information 231

Library functions and the programming interface Reference

XSLPchgccoef

Purpose Add or change a single matrix coefficient using a character string for the formula
Synopsis

int XPRS_CC XSLPchgccoef(XSLPprob Prob, int RowIndex, int ColIndex, double
⁎Factor, char ⁎Formula);

Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row for the coefficient.
ColIndex The index of the matrix column for the coefficient.
Factor Address of a double precision variable holding the constant multiplier for the formula. If

Factor is NULL, a value of 1.0 will be used.
Formula Character string holding the formula with the tokens separated by spaces.

Example Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts theformula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.
char ⁎Formula="sin (Col1)";
double Factor;

Factor = 2.5;
XSLPchgccoef(Prob, 1, 3, &Factor, Formula);

Note that all the tokens in the formula (including mathematical operators and separators) areseparated by one or more spaces.
Further informationIf the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If itdoes not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier whichcan be provided in the Factor variable. If Xpress NonLinear can identify a constant factor in theFormula, then it will use that as well, to minimize the size of the formula which has to be calculated.
This function can only be used if all the operands in the formula can be correctly identified asconstants, existing columns, character variables or functions. Therefore, if a formula refers to a newcolumn, that new item must be added to the Xpress NonLinear problem first.

Related topics
XSLPaddcoefs, XSLPdelcoefs, XSLPchgcoef, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 232

Library functions and the programming interface Reference

XSLPchgcoef

Purpose Add or change a single matrix coefficient using a parsed or unparsed formula
Synopsis

int XPRS_CC XSLPchgcoef(XSLPprob Prob, int RowIndex, int ColIndex, double
⁎Factor, int Parsed, int ⁎Type, double ⁎Value);

Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row for the coefficient.
ColIndex The index of the matrix column for the coefficient.
Factor Address of a double precision variable holding the constant multiplier for the formula. If

Factor is NULL, a value of 1.0 will be used.
Parsed Integer indicating the whether the token arrays are formatted as internal unparsed(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the description and formula for each item.
Value Array of values corresponding to the types in Type.

Example Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts theformula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.
int n, iSin, Type[4];
double Value[4];
double Factor;

XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,
"sin", &iSin);

n = 0;
Type[n] = XSLP_IFUN; Value[n++] = iSin;
Type[n] = XSLP_VAR; Value[n++] = 1;
Type[n++] = XSLP_RB;
Type[n++] = XSLP_EOF;

Factor = 2.5;
XSLPchgcoef(Prob, 1, 3, &Factor, 0, Type, Value);

XSLPgetindex is used to retrieve the index for the internal function sin. The "nocase" versionmatches the function name regardless of the (upper or lower) case of the name.
Token type XSLP_VAR always counts from 1, so Col1 is always 1.
The formula is written in unparsed form (Parsed = 0) and so it is provided as tokens in the same orderas they would appear if the formula were written in character form.

Further informationIf the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If itdoes not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier whichcan be provided in the Factor variable. If Xpress NonLinear can identify a constant factor in theFormula, then it will use that as well, to minimize the size of the formula which has to be calculated.

Related topics
XSLPaddcoefs, XSLPchgccoef, XSLPdelcoefs, XSLPgetcoefformula, XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 233

Library functions and the programming interface Reference

XSLPchgdeltatype

Purpose Changes the type of the delta assigned to a nonlinear variable
Synopsis

int XPRS_CC XSLPchgdeltatype(XSLPprob Prob, int nVar, int Vars[], int
DeltaTypes[], double Values[]);

Arguments
Prob The current SLP problem.
nVar The number of SLP variables to change the delta type for.
Vars Indices of the variables to change the deltas for.
DeltaTypes Type if the delta variable:

0 Differentiable variable, default.
1 Variable defined over the grid size given in Values.
2 Variable where a minimum perturbation size given in Valuesmay berequired before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be detected,with an upper limit given in Values.

Values Grid or minimum step sizes for the variables.
Further informationChanging the delta type of a variables makes the variable nonlinear.
Related topics

XSLP_SEMICONTDELTAS, XSLP_INTEGERDELTAS, XSLP_EXPLOREDELTAS

Fair Isaac Corporation Confidential and Proprietary Information 234

Library functions and the programming interface Reference

XSLPchgdf

Purpose Set or change a distribution factor
Synopsis

int XSLP_CC XSLPchgdf(XSLPprob Prob, int ColIndex, int RowIndex, const
double ⁎Value)

Arguments
Prob The current SLP problem.
ColIndex The index of the column whose distribution factor is to be set or changed.
RowIndex The index of the row where the distribution applies.
Value Address of a double precision variable holding the new value of the distribution factor.May be NULL if not required.

Example The following example retrieves the value of the distribution factor for column 282 in row 134 andchanges it to be twice as large.
double Value;
XSLPgetdf(prob,282,134,&Value);
Value = Value ⁎ 2;
XSLPchgdf(prob,282,134,&Value);

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress NonLinear can accept distribution factors instead of initial values,provided that the values of the variables involved can all be calculated after optimization usingdetermining rows, or by a callback.
Related topics

XSLPadddfs, XSLPgetdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 235

Library functions and the programming interface Reference

XSLPchgrowstatus

Purpose Change the status setting of a constraint
Synopsis

int XPRS_CC XSLPchgrowstatus(XSLPprob Prob, int RowIndex, int ⁎Status);

Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row to be changed.
Status Address of an integer holding a bitmap with the new status settings. If the status is tobe changed, always get the current status first (use XSLPgetrowstatus) and thenchange settings as required. The only settings likely to be changed are:

Bit 11 Set if row must not have a penalty error vector. This is the equivalent of anenforced constraint (SLPDATA type EC).
Example The following example changes the status of row 9 to be an enforced constraint.

int RowIndex, Status;
RowIndex = 9;
XSLPgetrowstatus(Prob,RowIndex,&Status);
Status = Status | (1<<11);
XSLPchgrowstatus(Prob,RowIndex,&Status);

Further informationIf Status is NULL the current status will remain unchanged.
Related topics

XSLPgetrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 236

Library functions and the programming interface Reference

XSLPchgrowwt

Purpose Set or change the initial penalty error weight for a row
Synopsis

int XSLP_CC XSLPchgrowwt(XSLPprob Prob, int RowIndex, const double ⁎Value)

Arguments
Prob The current SLP problem.
RowIndex The index of the row whose weight is to be set or changed.
Value Address of a double precision variable holding the new value of the weight. May be

NULL if not required.
Example The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the initialweight of row 4 to a value twice the calculated default value.

double Value;
Value = -3.6;
XSLPchgrowwt(Prob,2,&Value);
Value = 2.0;
XSLPchgrowwt(Prob,4,&Value);

Further informationA positive value is interpreted as a multiplier of the default row weight calculated by Xpress-SLP.
A negative value is interpreted as a fixed value: the absolute value is used directly as the row weight.
The initial row weight is used only when the augmented structure is created.

Related topics
XSLPgetrowwt

Fair Isaac Corporation Confidential and Proprietary Information 237

Library functions and the programming interface Reference

XSLPchgtolset

Purpose Add or change a set of convergence tolerances used for SLP variables
Synopsis

int XPRS_CC XSLPchgtolset(XSLPprob Prob, int nSLPTol, int ⁎Status, double
⁎Tols);

Arguments
Prob The current SLP problem.
nSLPTol Tolerance set for which values are to be changed. A zero value for nSLPTol will createa new set.
Status Address of an integer holding a bitmap describing which tolerances are active in thisset. See below for the settings.
Tols Array of 9 double precision values holding the values for the corresponding tolerances.

Example The following example creates a new tolerance set with the default values for all tolerances except therelative delta tolerance, which is set to 0.005. It then changes the value of the absolute delta andabsolute impact tolerances in tolerance set 6 to 0.015
int Status;
double Tols[9];

Tols[2] = 0.005;
Status = 1<<2;
XSLPchgtolset(Prob, 0, &Status, Tols);
Tols[1] = Tols[5] = 0.015;
Status = 1<<1 | 1<<5;
XSLPchgtolset(Prob, 6, &Status, Tols);

Further informationThe bits in Status are set to indicate that the corresponding tolerance is to be changed in thetolerance set. The meaning of the bits is as follows:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable. The members of the Tols array corresponding to nonzero bit settings in Status will beused to change the tolerance set. So, for example, if bit 3 is set in Status, then Tols[3] will replacethe current value of the absolute coefficient tolerance. If a bit is not set in Status, the value of thecorresponding element of Tols is unimportant.

Fair Isaac Corporation Confidential and Proprietary Information 238

Library functions and the programming interface Reference

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 239

Library functions and the programming interface Reference

XSLPchgvar

Purpose Define a column as an SLP variable or change the characteristics and values of an existing SLP variable
Synopsis

int XPRS_CC XSLPchgvar(XSLPprob Prob, int ColIndex, int ⁎DetRow, double
⁎InitStepBound, double ⁎StepBound, double ⁎Penalty, double ⁎Damp,
double ⁎InitValue, double ⁎Value, int ⁎TolSet, int ⁎History, int
⁎Converged, int ⁎VarType);

Arguments
Prob The current SLP problem.
ColIndex The index of the matrix column.
DetRow Address of an integer holding the index of the determining row. Use -1 if there is nodetermining row. May be NULL if not required.
InitStepBound Address of a double precision variable holding the initial step bound size. May be

NULL if not required.
StepBound Address of a double precision variable holding the current step bound size. Use zero todisable the step bounds. May be NULL if not required.
Penalty Address of a double precision variable holding the weighting of the penalty cost forexceeding the step bounds. May be NULL if not required.
Damp Address of a double precision variable holding the damping factor for the variable. Maybe NULL if not required.
InitValue Address of a double precision variable holding the initial value for the variable. May be

NULL if not required.
Value Address of a double precision variable holding the current value for the variable. May be

NULL if not required.
TolSet Address of an integer holding the index of the tolerance set for this variable. Use zero ifthere is no specific tolerance set. May be NULL if not required.
History Address of an integer holding the history value for this variable. May be NULL if notrequired.
Converged Address of an integer holding the convergence status for this variable. May be NULL ifnot required.
VarType Address of an integer holding a bitmap defining the existence of certain properties forthis variable:

Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" columnMay be NULL if not required.

Example The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the matrix.
double InitialValue;
int VarType, TolSet;

InitialValue = 1.42;
TolSet = 2;
VarType = 1<<1 | 1<<2;

XSLPchgvar(Prob, 25, NULL, NULL, NULL, NULL,
NULL, &InitialValue, NULL, &TolSet,

Fair Isaac Corporation Confidential and Proprietary Information 240

Library functions and the programming interface Reference

NULL, NULL, &VarType);

Note that bits 1 and 2 of VarType are set, indicating that the variable has a delta vector and an initialvalue. For columns already defined as SLP variables, use XSLPgetvar to obtain the current value of
VarType because other bits may already have been set by the system.

Further informationIf any of the arguments is NULL then the corresponding information for the variable will be leftunaltered. If the information is new (i.e. the column was not previously defined as an SLP variable) thenthe default values will be used.
Changing Value, History or Converged is only effective during SLP iterations.
Changing InitValue and InitStepBound is only effective before XSLPconstruct.
If a value of XPRS_PLUSINFINITY is used in the value for StepBound or InitStepBound, the deltawill never have step bounds applied, and will almost always be regarded as converged.

Related topics
XSLPaddvars, XSLPdelvars, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 241

Library functions and the programming interface Reference

XSLPconstruct

Purpose Create the full augmented SLP matrix and data structures, ready for optimization
Synopsis

int XPRS_CC XSLPconstruct(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example constructs the augmented matrix and then outputs the result in MPS format toa file called augment.mat
/⁎ creation and/or loading of data ⁎/
/⁎ precedes this segment of code ⁎/
...
XSLPconstruct(Prob);
XSLPwriteprob(Prob,"augment","l");

The "l" flag causes output of the current linear problem (which is now the augmented structure and thecurrent linearization) rather than the original nonlinear problem.
Further information

XSLPconstruct adds new rows and columns to the SLP matrix and calculates initial values for thenon-linear coefficients. Which rows and columns are added will depend on the setting of
XSLP_AUGMENTATION. Names for the new rows and columns are generated automatically, based onthe existing names and the string control variables XSLP_xxxFORMAT.
Once XSLPconstruct has been called, no new rows, columns or non-linear coefficients can be addedto the problem. Any rows or columns which will be required must be added first. Non-linear coefficientsmust not be changed; constant matrix elements can generally be changed after XSLPconstruct, butnot after XSLPpresolve if used.
XSLPconstruct is called automatically by the SLP optimization procedure, and so only needs to becalled explicitly if changes need to be made between the augmentation and the optimization.

Related topics
XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 242

Library functions and the programming interface Reference

XSLPcopycallbacks

Purpose Copy the user-defined callbacks from one SLP problem to another
Synopsis

int XPRS_CC XSLPcopycallbacks(XSLPprob NewProb, XSLPprob OldProb);

Arguments
NewProb The SLP problem to receive the callbacks.
OldProb The SLP problem from which the callbacks are to be copied.

Example The following example creates a new problem and copies only the Xpress NonLinear callbacks fromthe existing problem (not the Optimizer library ones).
XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<2;
XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);
XSLPcopycallbacks(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.
Further informationNormally XSLPcopycallbacks copies both the Xpress NonLinear callbacks and the Optimizer Librarycallbacks for the underlying problem. If only the Xpress NonLinear callbacks are required, set theinteger control variable XSLP_CONTROL appropriately.
Related topics

XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 243

Library functions and the programming interface Reference

XSLPcopycontrols

Purpose Copy the values of the control variables from one SLP problem to another
Synopsis

int XPRS_CC XSLPcopycontrols(XSLPprob NewProb, XSLPprob OldProb);

Arguments
NewProb The SLP problem to receive the controls.
OldProb The SLP problem from which the controls are to be copied.

Example The following example creates a new problem and copies only the Xpress NonLinear controls from theexisting problem (not the Optimizer library ones).
XSLPprob nProb;
XPRSprob xProb;
int Control;

XSLPcreateprob(&nProb, &xProb);

Control = 1<<1;
XSLPsetintcontrol(Prob, XSLP_CONTROL, Control);
XSLPcopycontrols(nProb, Prob);

Note that XSLP_CONTROL is set in the old problem, not the new one.
Further informationNormally XSLPcopycontrols copies both the Xpress NonLinear controls and the Optimizer Librarycontrols for the underlying problem. If only the Xpress NonLinear controls are required, set the integercontrol variable XSLP_CONTROL appropriately.
Related topics

XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 244

Library functions and the programming interface Reference

XSLPcopyprob

Purpose Copy an existing SLP problem to another
Synopsis

int XPRS_CC XSLPcopyprob(XSLPprob NewProb, XSLPprob OldProb, char
⁎ProbName);

Arguments
NewProb The SLP problem to receive the copy.
OldProb The SLP problem from which to copy.
ProbName The name to be given to the problem.

Example The following example creates a new Xpress NonLinear problem and then copies an existing problemto it. The new problem is named "ANewProblem".
XSLPprob nProb;
XPRSprob xProb;

XSLPcreateprob(&nProb, &xProb);
XSLPcopyprob(nProb, Prob, "ANewProblem");

Further informationNormally XSLPcopyprob copies both the Xpress NonLinear problem and the underlying OptimizerLibrary problem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.
This function does not copy controls or callbacks. These must be copied separately using
XSLPcopycontrols and XSLPcopycallbacks if required.

Related topics
XSLP_CONTROL

Fair Isaac Corporation Confidential and Proprietary Information 245

Library functions and the programming interface Reference

XSLPcreateprob

Purpose Create a new SLP problem
Synopsis

int XPRS_CC XSLPcreateprob(XSLPprob ⁎Prob, XPRSprob ⁎xProb);

Arguments
Prob The address of the SLP problem variable.
xProb The address of the underlying Optimizer Library problem variable.

Example The following example creates an optimizer problem, and then a new Xpress NonLinear problem.
XSLPprob nProb;
XPRSprob xProb;

XPRScreateprob(&xProb);
XSLPcreateprob(&nProb, &xProb);

Further informationAn Xpress NonLinear problem includes an underlying optimizer problem which is used to solve thesuccessive linear approximations. The user is responsible for creating and destroying the underlyinglinear problem, and can also access it using the normal optimizer library functions. When an SLPproblem is to be created, the underlying problem is created first, and the SLP problem is then created,knowing the address of the underlying problem.
Related topics

XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 246

Library functions and the programming interface Reference

XSLPdelcoefs

Purpose Delete coefficients from the current problem
Synopsis

int XPRS_CC XSLPdelcoefs(XSLPprob Prob, in nSLPCoef, int ⁎RowIndex, int
⁎ColIndex);

Arguments
Prob The current SLP problem.
nSLPCoef Number of SLP coefficients to delete.
RowIndex Row indices of the SLP coefficients to delete.
ColIndex Column indices of the SLP coefficients to delete.

Related topics
XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef,
XSLPloadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 247

Library functions and the programming interface Reference

XSLPdeltolsets

Purpose Delete tolerance sets from the current problem
Synopsis

int XPRS_CC XSLPdeltolsets(XSLPprob Prob, int nTolSet, int ⁎TolSetIndex);

Arguments
Prob The current SLP problem.
nTolSet Number of tolerance sets to delete.
TolSetIndex Indices of tolerance sets to delete.

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPgettolset, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 248

Library functions and the programming interface Reference

XSLPdeluserfunction

Purpose Delete a user function from the current problem
Synopsis

int XPRS_CC XSLPdeluserfunction(XSLPprob prob, int FunctionTokenId);

Arguments
Prob The current SLP problem.
FunctionTokenId The identifier of the user function as returned by XSLPadduserfunction.

Related topics
XSLPadduserfunction, XSLPimportlibfunc

Fair Isaac Corporation Confidential and Proprietary Information 249

Library functions and the programming interface Reference

XSLPdelvars

Purpose Convert SLP variables to normal columns. Variables must not appear in SLP structures
Synopsis

int XPRS_CC XSLPdelvars(XSLPprob prob, int nCol, int ⁎ColIndex);

Arguments
Prob The current SLP problem.
nCol Number SLP variables to be converted to linear columns.
ColIndex Column indices of the SLP vars to be converted to linear ones.

Further informationThe SLP variables to be converted to linear, non SLP columns must not be in use by any other SLPstructure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or changefunctions to remove them first.
Related topics

XSLPaddvars, XSLPchgvar, XSLPgetvar, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 250

Library functions and the programming interface Reference

XSLPdestroyprob

Purpose Delete an SLP problem and release all the associated memory
Synopsis

int XPRS_CC XSLPdestroyprob(XSLPprob Prob);

Argument
Prob The SLP problem.

Example The following example creates an SLP problem and then destroys it together with the underlyingoptimizer problem.
XSLPprob nProb;
XPRSprob xProb;

XPRScreateprob(&xProb);
XSLPcreateprob(&nProb, &xProb);
...
XSLPdestroyprob(nProb);
XPRSdestroyprob(xProb);

Further informationWhen you have finished with the SLP problem, it should be "destroyed" so that the memory used by theproblem can be released. Note that this does not destroy the underlying optimizer problem, so a call to
XPRSdestroyprob should follow XSLPdestroyprob as and when you have finished with theunderlying optimizer problem.

Related topics
XSLPcreateprob

Fair Isaac Corporation Confidential and Proprietary Information 251

Library functions and the programming interface Reference

XSLPevaluatecoef

Purpose Evaluate a coefficient using the current values of the variables
Synopsis

int XPRS_CC XSLPevaluatecoef(XSLPprob Prob, int RowIndex, int ColIndex,
double ⁎dValue);

Arguments
Prob The current SLP problem.
RowIndex Integer index of the row.
ColIndex Integer index of the column.
Value Address of a double precision value to receive the result of the calculation.

Example The following example sets the value of column 5 to 1.42 and then calculates the coefficient in row 2,column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the calculation.
double Value, dValue;

Value = 1.42;
XSLPchgvar(Prob, 5, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL);

XSLPevaluatecoef(Prob, 2, 3, &dValue);

Further informationThe values of the variables are obtained from the solution, or from the Value setting of an SLP variable(see XSLPchgvar and XSLPgetvar).
Related topics

XSLPchgvar, XSLPevaluateformula XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 252

Library functions and the programming interface Reference

XSLPevaluateformula

Purpose Evaluate a formula using the current values of the variables
Synopsis

int XPRS_CC XSLPevaluateformula(XSLPprob Prob, int Parsed, int ⁎Type,
double ⁎Value, double ⁎dValue);

Arguments
Prob The current SLP problem.
Parsed integer indicating whether the formula of the item is in internal unparsed format(Parsed=0) or parsed (reverse Polish) format (Parsed=1).
Type Integer array of token types for the formula.
Value Double array of values corresponding to Type.
dValue Address of a double precision value to receive the result of the calculation.

Example The following example calculates the value of column 3 divided by column 6.
int n, Type[10];
double dValue, Value[10];

n = 0;
Type[n] = XSLP_COL; Value[n++] = 3;
Type[n] = XSLP_COL; Value[n++] = 6;
Type[n] = XSLP_OP; Value[n++] = XSLP_DIVIDE;
Type[n++] = XSLP_EOF;

XSLPevaluateformula(Prob, 1, Type, Value, &dValue);

Further informationThe formula in Type and Valuemust be terminated by an XSLP_EOF token.
The formula cannot include "complicated" functions, such as user functions which return more thanone value

Related topics
XSLPevaluatecoef

Fair Isaac Corporation Confidential and Proprietary Information 253

Library functions and the programming interface Reference

XSLPfixpenalties

Purpose Fixe the values of the error vectors
Synopsis

int XPRS_CC XSLPfixpenalties(XSLPprob Prob, int ⁎Status);

Arguments
Prob The current SLP problem.
Status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further informationThe function fixes the values of all error vectors on their current values. It also removes their objectivecost contribution.
The function is intended to support post optimization analysis, by removing any possible direct effectof the error vectors from the dual and reduced cost values.
The XSLPfixpenalties will automatically reoptimize the linearization. However, as the XSLPconvergence and infeasibility checks (regarding the original non-linear problem) will not be carried out,this function will not update the SLP solution itself. The updated values will be accessible usingXPRSgetlpsolution instead.

Fair Isaac Corporation Confidential and Proprietary Information 254

Library functions and the programming interface Reference

XSLPfree

Purpose Free any memory allocated by Xpress NonLinear and close any open Xpress NonLinear files
Synopsis

int XPRS_CC XSLPfree(void);

Example The following code frees the Xpress NonLinear memory and then frees the optimizer memory:
XSLPfree();
XPRSfree();

Further informationA call to XSLPfree only frees the items specific to Xpress NonLinear. XPRSfreemust be called after
XSLPfree to free the optimizer structures.

Related topics
XSLPinit

Fair Isaac Corporation Confidential and Proprietary Information 255

Library functions and the programming interface Reference

XSLPgetbanner

Purpose Retrieve the Xpress NonLinear banner and copyright messages
Synopsis

int XPRS_CC XSLPgetbanner(char ⁎Banner);

Argument
Banner Character buffer to hold the banner. This will be at most 256 characters including thenull terminator.

Example The following example retrieves the Xpress NonLinear banner and prints it
char Buffer[260];
XSLPgetbanner(Buffer];
printf("%s\n",Buffer);

Further informationNote that XSLPgetbanner does not take the normal Prob argument.
If XSLPgetbanner is called before XPRSinit, then it will return only the Xpress NonLinearinformation; otherwise it will include the XPRSgetbanner information as well.

Fair Isaac Corporation Confidential and Proprietary Information 256

Library functions and the programming interface Reference

XSLPgetccoef

Purpose Retrieve a single matrix coefficient as a formula in a character string
Synopsis

int XPRS_CC XSLPgetccoef(XSLPprob Prob, int RowIndex, int ColIndex, double
⁎Factor, char ⁎Formula, int fLen);

Arguments
Prob The current SLP problem.
RowIndex Integer holding the row index for the coefficient.
ColIndex Integer holding the column index for the coefficient.
Factor Address of a double precision variable to receive the value of the constant factormultiplying the formula in the coefficient.
Formula Character buffer in which the formula will be placed in the same format as used forinput from a file. The formula will be null terminated.
fLen Maximum length of returned formula.

Return value
0 Normal return.
1 Formula is too long for the buffer and has been truncated.
other Error.

Example The following example displays the formula for the coefficient in row 2, column 3:
char Buffer[60];
double Factor;
int Code;

Code = XSLPgetccoef(Prob, 2, 3, &Factor, Buffer, 60);
switch (Code) {
case 0: printf("\nFormula is %s",Buffer);

printf("\nFactor = %lg",Factor);
break;

case 1: printf("\nFormula is too long for the buffer");
break;

default: printf("\nError accessing coefficient");
break;

}

Further informationIf the requested coefficient is constant, then Factor will be set to 1.0 and the value will be formatted in
Formula.
If the length of the formula would exceed fLen-1, the formula is truncated to the last token that will fit,and the (partial) formula is terminated with a null character.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 257

Library functions and the programming interface Reference

XSLPgetcoefformula

Purpose Retrieve a single matrix coefficient as a formula split into tokens
Synopsis

int XPRS_CC XSLPgetcoefformula(XSLPprob Prob, int RowIndex, int ColIndex,
double ⁎Factor, int Parsed, int BufferSize, int ⁎TokenCount, int
⁎Type, double ⁎Value);

Arguments
Prob The current SLP problem.
RowIndex Integer holding the row index for the coefficient.
ColIndex Integer holding the column index for the coefficient.
Factor Address of a double precision variable to receive the value of the constant factormultiplying the formula in the coefficient.
Parsed Integer indicating whether the formula of the item is to be returned in internal unparsedformat (Parsed=0) or parsed (reverse Polish) format (Parsed=1).
BufferSize Maximum number of tokens to return, i.e. length of the Type and Value arrays.
TokenCount Number of tokens returned in Type and Value.
Type Integer array to hold the token types for the formula.
Value Double array of values corresponding to Type.

Example The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:
int n, Type[10];
double Value[10];
int TokenCount;

XSLPgetcoefformula(Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);

for (n=0;Type[n] != XSLP_EOF;n++)
printf("\nType=%-3d Value=%lg",Type[n],Value[n]);

Further informationThe Type and Value arrays are terminated by an XSLP_EOF token.
If the requested coefficient is constant, then Factor will be set to 1.0 and the value will be returnedwith token type XSLP_CON.

Related topics
XSLPchgccoef, XSLPchgcoef, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 258

Library functions and the programming interface Reference

XSLPgetcoefs

Purpose Retrieve the list of positions of the nonlinear coefficients in the problem
Synopsis

int XPRS_CC XSLPgetcoefs(XSLPprob Prob, int ⁎nCoef, int ⁎RowIndices, int
⁎ColIndices);

Arguments
Prob The current SLP problem.
nCoef Integer used to return the total number of nonlinear coefficients in the problem.
RowIndices Integer array used for returning the row positions of the coefficients. May be NULL ifnot required.
ColIndices Integer array used for returning the column positions of the coefficients. May be NULLif not required.

Related topics
XSLPgetccoef, XSLPgetcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 259

Library functions and the programming interface Reference

XSLPgetcolinfo

Purpose Get current column information.
Synopsis

int XSLP_CC XSLPgetcolinfo(XSLPprob Prob, int InfoType, int ColIndex,
XSLPalltype ⁎Info);

Arguments
Prob The current SLP problem
InfoType Type of information (see below)
ColIndex Index of the column whose information is to be handled
Info Address of information to be set or retrieved

Further informationIf the data is not available, the type of the returned Info is set to XSLPtype_undefined.
Please refer to the header file xslp.h for the definition of XSLPalltype.
The following constants are provided for column information handling:
XSLP_COLINFO_VALUE Get the current value of the column
XSLP_COLINFO_RDJ Get the current reduced cost of the column
XSLP_COLINFO_DELTAINDEX Get the delta variable index associated to the column
XSLP_COLINFO_DELTA Get the delta value (change since previous value) of the column
XSLP_COLINFO_DELTADJ Get the delta variables reduced cost
XSLP_COLINFO_UPDATEROW Get the index of the update (or step bound) row associated to thecolumn
XSLP_COLINFO_SB Get the step bound on the variable
XSLP_COLINFO_SBDUAL Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Confidential and Proprietary Information 260

Library functions and the programming interface Reference

XSLPgetdblattrib

Purpose Retrieve the value of a double precision problem attribute
Synopsis

int XPRS_CC XSLPgetdblattrib(XSLPprob Prob, int Param, double ⁎dValue);

Arguments
Prob The current SLP problem.
Param attribute (SLP or optimizer) whose value is to be returned.
dValue Address of a double precision variable to receive the value.

Example The following example retrieves the value of the Xpress NonLinear attribute
XSLP_CURRENTDELTACOST and of the optimizer attribute XPRS_LPOBJVAL:

double DeltaCost, ObjVal;
XSLPgetdblattrib(Prob, XSLP_CURRENTDELTACOST, &DeltaCost);
XSLPgetdblattrib(Prob, XPRS_LPOBJVAL, &ObjVal);

Further informationBoth SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute isrequested, the return value will be the same as that from XPRSgetdblattrib.
Related topics

XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 261

Library functions and the programming interface Reference

XSLPgetdblcontrol

Purpose Retrieve the value of a double precision problem control
Synopsis

int XPRS_CC XSLPgetdblcontrol(XSLPprob Prob, int Param, double ⁎dValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
dValue Address of a double precision variable to receive the value.

Example The following example retrieves the value of the Xpress NonLinear control XSLP_CTOL and of theoptimizer control XPRS_FEASTOL:
double CTol, FeasTol;
XSLPgetdblcontrol(Prob, XSLP_CTOL, &CTol);
XSLPgetdblcontrol(Prob, XPRS_FEASTOL, &FeasTol);

Further informationBoth SLP and optimizer controls can be retrieved using this function. If an optimizer control isrequested, the return value will be the same as that from XPRSgetdblcontrol.
Related topics

XSLPgetintcontrol, XSLPgetstrcontrol, XSLPsetdblcontrol

Fair Isaac Corporation Confidential and Proprietary Information 262

Library functions and the programming interface Reference

XSLPgetdf

Purpose Get a distribution factor
Synopsis

int XSLP_CC XSLPgetdf(XSLPprob Prob, int ColIndex, int RowIndex, double
⁎Value)

Arguments
Prob The current SLP problem.
ColIndex The index of the column whose distribution factor is to be retrieved.
RowIndex The index of the row from which the distribution factor is to be taken.
Value Address of a double precision variable to receive the value of the distribution factor.May be NULL if not required.

Example The following example retrieves the value of the distribution factor for column 282 in row 134 andchanges it to be twice as large.
double Value;
XSLPgetdf(prob,282,134,&Value);
Value = Value ⁎ 2;
XSLPchgdf(prob,282,134,&Value);

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
Related topics

XSLPadddfs, XSLPchgdf, XSLPloaddfs

Fair Isaac Corporation Confidential and Proprietary Information 263

Library functions and the programming interface Reference

XSLPgetindex

Purpose Retrieve the index of an Xpress NonLinear entity with a given name
Synopsis

int XPRS_CC XSLPgetindex(XSLPprob Prob, int Type, char ⁎cName, int ⁎Index);

Arguments
Prob The current SLP problem.
Type Type of entity. The following are defined:

XSLP_CVNAMES (=3) Character variables;
XSLP_USERFUNCNAMES (=5) User functions;
XSLP_INTERNALFUNCNAMES (=6) Internal functions;
XSLP_USERFUNCNAMESNOCASE (=7) User functions, case insensitive;
XSLP_INTERNALFUNCNAMESNOCASE (=8) Internal functions, case insensitive;The constants 1 (for row names) and 2 (for column names) may also be used.

cName Character string containing the name, terminated by a null character.
Index Integer to receive the index of the item.

Example The following example retrieves the index of the internal SIN function using both an upper-case and alower case version of the name.
int UpperIndex, LowerIndex;
XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"SIN", &UpperIndex);
XSLPgetindex(Prob, XSLP_INTERNALFUNCNAMESNOCASE,

"sin", &LowerIndex);

UpperIndex and LowerIndex will contain the same value because the search was made usingcase-insensitive matching.
Further informationAll entities count from 1. This includes the use of 1 or 2 (row or column) for Type. A value of zeroreturned in Indexmeans there is no matching item. The case-insensitive types will find the first matchregardless of the case of cName or of the defined function.

Fair Isaac Corporation Confidential and Proprietary Information 264

Library functions and the programming interface Reference

XSLPgetintattrib

Purpose Retrieve the value of an integer problem attribute
Synopsis

int XPRS_CC XSLPgetintattrib(XSLPprob Prob, int Param, int ⁎iValue);

Arguments
Prob The current SLP problem.
Param attribute (SLP or optimizer) whose value is to be returned.
iValue Address of an integer variable to receive the value.

Example The following example retrieves the value of the Xpress NonLinear attribute XSLP_CVS and of theoptimizer attribute XPRS_COLS:
int nCV, nCol;
XSLPgetintattrib(Prob, XSLP_CVS, &nCV);
XSLPgetintattrib(Prob, XPRS_COLS, &nCol);

Further informationBoth SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute isrequested, the return value will be the same as that from XPRSgetintattrib.
Related topics

XSLPgetdblattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 265

Library functions and the programming interface Reference

XSLPgetintcontrol

Purpose Retrieve the value of an integer problem control
Synopsis

int XPRS_CC XSLPgetintcontrol(XSLPprob Prob, int Param, int ⁎iValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
iValue Address of an integer variable to receive the value.

Example The following example retrieves the value of the Xpress NonLinear control XSLP_ALGORITHM and ofthe optimizer control XPRS_DEFAULTALG:
int Algorithm, DefaultAlg;
XSLPgetintcontrol(Prob, XSLP_ALGORITHM, &Algorithm);
XSLPgetintcontrol(Prob, XPRS_DEFAULTALG, &DefaultAlg);

Further informationBoth SLP and optimizer controls can be retrieved using this function. If an optimizer control isrequested, the return value will be the same as that from XPRSgetintcontrol.
Related topics

XSLPgetdblcontrol, XSLPgetstrcontrol, XSLPsetintcontrol

Fair Isaac Corporation Confidential and Proprietary Information 266

Library functions and the programming interface Reference

XSLPgetlasterror

Purpose Retrieve the error message corresponding to the last Xpress NonLinear error during an SLP run
Synopsis

int XPRS_CC XSLPgetlasterror(XSLPprob Prob, int ⁎Code, char ⁎Buffer);

Arguments
Prob The current SLP problem.
Code Address of an integer to receive the message number of the last error. May be NULL ifnot required.
Buffer Character buffer to receive the error message. The error message will never be longerthan 256 characters. May be NULL if not required.

Example The following example checks the return code from reading a matrix. If the code is nonzero then anerror has occurred, and the error number is retrieved for further processing.
int Error, Code;
if (Error=XSLPreadprob(Prob, "Matrix", "")) {

XSLPgetlasterror(Prob, &Code, NULL);
MyErrorHandler(Code);

}

Further informationIn general, Xpress NonLinear functions return a value of 32 to indicate a non-recoverable error.
XSLPgetlasterror can retrieve the actual error number and message. In case no SLP error codewas retuned, the function will check the underlying XPRS libary for any errors reported.

Fair Isaac Corporation Confidential and Proprietary Information 267

Library functions and the programming interface Reference

XSLPgetptrattrib

Purpose Retrieve the value of a problem pointer attribute
Synopsis

int XPRS_CC XSLPgetptrattrib(XSLPprob Prob, int Param, void ⁎⁎Value);

Arguments
Prob The current SLP problem.
Param attribute whose value is to be returned.
Value Address of a pointer to receive the value.

Example The following example retrieves the value of the Xpress NonLinear pointer attribute
XSLP_XPRSPROBLEM which is the underlying optimizer problem pointer:

XPRSprob xprob;
XSLPgetptrattrib(Prob, XSLP_XPRSPROBLEM, &xprob);

Further informationThis function is normally used to retrieve the underlying optimizer problem pointer, as shown in theexample.
Related topics

XSLPgetdblattrib, XSLPgetintattrib, XSLPgetstrattrib

Fair Isaac Corporation Confidential and Proprietary Information 268

Library functions and the programming interface Reference

XSLPgetrowinfo

Purpose Get current row information.
Synopsis

int XSLP_CC XSLPgetrowinfo(XSLPprob Prob, int InfoType, int RowIndex,
XSLPalltype ⁎Info);

Arguments
Prob The current SLP problem
InfoType Type of information (see below)
RowIndex Index of the row whose information is to be handled
Info Address of information to be set or retrieved

Further informationIf the data is not available, the type of the returned Info is set to XSLPtype_undefined.
Please refer to the header file xslp.h for the definition of XSLPalltype.
The following constants are provided for row information handling:
XSLP_ROWINFO_SLACK Get the current slack value of the row
XSLP_ROWINFO_DUAL Get the current dual multiplier of the row
XSLP_ROWINFO_NUMPENALTYERRORS Get the number of times the penalty error vector has beenactive for the row
XSLP_ROWINFO_MAXPENALTYERROR Get the maximum size of the penalty error vector activity forthe row
XSLP_ROWINFO_TOTALPENALTYERROR Get the total size of the penalty error vector activity for therow
XSLP_ROWINFO_CURRENTPENALTYERROR Get the size of the penalty error vector activity in thecurrent iteration for the row
XSLP_ROWINFO_CURRENTPENALTYFACTOR Set the size of the penalty error factor for the currentiteration for the row
XSLP_ROWINFO_PENALTYCOLUMNPLUS Get the index of the positive penalty column for the row (+)
XSLP_ROWINFO_PENALTYCOLUMNPLUSVALUE Get the value of the positive penalty column for therow (+)
XSLP_ROWINFO_PENALTYCOLUMNPLUSDJ Get the reduced cost of the positive penalty column forthe row (+)
XSLP_ROWINFO_PENALTYCOLUMNMINUS Get the index of the negative penalty column for the row (-)
XSLP_ROWINFO_PENALTYCOLUMNMINUSVALUE Get the value of the negative penalty column for therow (-)
XSLP_ROWINFO_PENALTYCOLUMNMINUSDJ Get the reduced cost of the negative penalty column forthe row (-)

Fair Isaac Corporation Confidential and Proprietary Information 269

Library functions and the programming interface Reference

XSLPgetrowstatus

Purpose Retrieve the status setting of a constraint
Synopsis

int XPRS_CC XSLPgetrowstatus(XSLPprob Prob, int RowIndex, int ⁎Status);

Arguments
Prob The current SLP problem.
RowIndex The index of the matrix row whose data is to be obtained.
Status Address of an integer holding a bitmap to receive the status settings.

Example This recovers the status of the rows of the matrix of the current problem and reports those which areflagged as enforced constraints.
int iRow, nRow, Status;
XSLPgetintattrib(Prob, XPRS_ROWS, &nRow);
for (iRow=0;iRow<nRow;iRow++) {

XSLPgetrowstatus(Prob, iRow, &Status);
if (Status & 0x800) printf("\nRow %d is enforced");

}

Further informationSee the section on bitmap settings for details on the possible information in Status.
Related topics

XSLPchgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 270

Library functions and the programming interface Reference

XSLPgetrowwt

Purpose Get the initial penalty error weight for a row
Synopsis

int XSLP_CC XSLPgetrowwt(XSLPprob Prob, int RowIndex, double ⁎Value)

Arguments
Prob The current SLP problem.
RowIndex The index of the row whose weight is to be retrieved.
Value Address of a double precision variable to receive the value of the weight.

Example The following example gets the initial weight of row number 2.
double Value;
XSLPgetrowwt(Prob,2,&Value)

Further informationThe initial row weight is used only when the augmented structure is created. After that, the currentweighting can be accessed using XSLPgetrowinfo.
Related topics

XSLPchgrowwt, XSLPgetrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 271

Library functions and the programming interface Reference

XSLPgetslpsol

Purpose Obtain the solution values for the most recent SLP iteration
Synopsis

int XPRS_CC XSLPgetslpsol(XSLPprob Prob, double ⁎x, double ⁎slack, double
⁎dual, double ⁎dj);

Arguments
Prob The current SLP problem.
x Double array of length XSLP_ORIGINALCOLS to hold the values of the primal variables.May be NULL if not required.
slack Double array of length XSLP_ORIGINALROWS to hold the values of the slack variables.May be NULL if not required.
dual Double array of length XSLP_ORIGINALROWS to hold the values of the dual variables.May be NULL if not required.
dj Double array of length XSLP_ORIGINALCOLS to hold the recuded costs of the primalvariables. May be NULL if not required.

Example The following code fragment recovers the values and reduced costs of the primal variables from themost recent SLP iteration:
XSLPprob prob;
int nCol;
double ⁎val, ⁎dj;
XSLPgetintattrib(prob,XSLP_ORIGINALCOLS,&nCol);
val = malloc(nCol⁎sizeof(double));
dj = malloc(nCol⁎sizeof(double));
XSLPgetslpsol(prob,val,NULL,NULL,dj);

Further information
XSLPgetslpsol can be called at any time after an SLP iteration has completed, and will return thesame values even if the problem is subsequently changed. XSLPgetslpsol returns values for thecolumns and rows originally in the problem and not for any augmentation rows or columns. To accessthe values of any augmentation columns or rows, use XPRSgetlpsol; accessing the augmentedsolution is only recommended if XSLP_PRESOLVELEVEL indicates that the problem dimensionsshould not be changed in presolve.

Fair Isaac Corporation Confidential and Proprietary Information 272

Library functions and the programming interface Reference

XSLPgetstrattrib

Purpose Retrieve the value of a string problem attribute
Synopsis

int XPRS_CC XSLPgetstrattrib(XSLPprob Prob, int Param, char ⁎cValue);

Arguments
Prob The current SLP problem.
Param attribute (SLP or optimizer) whose value is to be returned.
cValue Character buffer to receive the value.

Example The following example retrieves the value of the Xpress NonLinear attribute XSLP_VERSIONDATE andof the optimizer attribute XPRS_MATRIXNAME:
char VersionDate[200], MatrixName[200];
XSLPgetstrattrib(Prob, XSLP_VERSIONDATE, VersionDate);
XSLPgetstrattrib(Prob, XPRS_MATRIXNAME, MatrixName);

Further informationBoth SLP and optimizer attributes can be retrieved using this function. If an optimizer attribute isrequested, the return value will be the same as that from XPRSgetstrattrib.
Related topics

XSLPgetdblattrib, XSLPgetintattrib

Fair Isaac Corporation Confidential and Proprietary Information 273

Library functions and the programming interface Reference

XSLPgetstrcontrol

Purpose Retrieve the value of a string problem control
Synopsis

int XPRS_CC XSLPgetstrcontrol(XSLPprob Prob, int Param, char ⁎cValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
cValue Character buffer to receive the value.

Example The following example retrieves the value of the Xpress NonLinear control XSLP_CVNAME and of theoptimizer control XPRS_MPSOBJNAME:
char CVName[200], ObjName[200];
XSLPgetstrcontrol(Prob, XSLP_CVNAME, CVName);
XSLPgetstrcontrol(Prob, XPRS_MPSOBJNAME, ObjName);

Further informationBoth SLP and optimizer controls can be retrieved using this function. If an optimizer control isrequested, the return value will be the same as that from XPRSgetstrcontrol.
Related topics

XSLPgetdblcontrol, XSLPgetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 274

Library functions and the programming interface Reference

XSLPgettolset

Purpose Retrieve the values of a set of convergence tolerances for an SLP problem
Synopsis

int XPRS_CC XSLPgettolset(XSLPprob Prob, int nSLPTol, int ⁎Status, double
⁎Tols);

Arguments
Prob The current SLP problem.
nSLPTol The index of the tolerance set.
Status Address of integer to receive the bit-map of status settings. May be NULL if not required.
Tols Array of 9 double-precision values to hold the tolerances. May be NULL if not required.

Example The following example retrieves the values for tolerance set 3 and prints those which are set:
double Tols[9];
int i, Status;
XSLPgettolset(Prob, 3, &Status, Tols);
for (i=0;i<9;i++)

if (Status & (1<<i))
printf("\nTolerance %d = %lg",i,Tols[i]);

Further informationIf Status or Tols is NULL, then the corresponding information will not be returned.
If Tols is not NULL, then a set of 9 values will always be returned. Status indicates which of thesevalues is active as follows. Bit n of Status is set if Tols[n] is active, where n is:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable.
Related topics

Related topics
XSLPaddtolsets, XSLPchgtolset, XSLPdeltolsets, XSLPloadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 275

Library functions and the programming interface Reference

XSLPgetvar

Purpose Retrieve information about an SLP variable
Synopsis

int XPRS_CC XSLPgetvar(XSLPprob prob, int ColIndex, int ⁎DetRow, double
⁎InitStepBound, double ⁎StepBound, double ⁎Penalty, double ⁎Damp,
double ⁎InitValue, double ⁎Value, int ⁎TolSet, int ⁎History, int
⁎Converged, int ⁎VarType, int ⁎Delta, int ⁎PenaltyDelta, int
⁎UpdateRow, double ⁎OldValue);

Arguments
Prob The current SLP problem.
ColIndex The index of the column.
DetRow Address of an integer to receive the index of the determining row. May be NULL if notrequired.
InitStepBound Address of a double precision variable to receive the value of the initial step boundof the variable. May be NULL if not required.
StepBound Address of a double precision variable to receive the value of the current step bound ofthe variable. May be NULL if not required.
Penalty Address of a double precision variable to receive the value of the penalty deltaweighting of the variable. May be NULL if not required.
Damp Address of a double precision variable to receive the value of the current damping factorof the variable. May be NULL if not required.
InitValue Address of a double precision variable to receive the value of the initial value of thevariable. May be NULL if not required.
Value Address of a double precision variable to receive the current activity of the variable. Maybe NULL if not required.
TolSet Address of an integer to receive the index of the tolerance set of the variable. May be

NULL if not required.
History Address of an integer to receive the SLP history of the variable. May be NULL if notrequired.
Converged Address of an integer to receive the convergence status of the variable as defined in the"Convergence Criteria" section (The returned value will match the numbering of thetolerances). May be NULL if not required.
VarType Address of an integer to receive the status settings (a bitmap defining the existence ofcertain properties for this variable). The following bits are defined:

Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" columnOther bits are reserved for internal use. May be NULL if not required.

Delta Address of an integer to receive the index of the delta vector for the variable. May be
NULL if not required.

PenaltyDelta Address of an integer to receive the index of the first penalty delta vector for thevariable. The second penalty delta immediately follows the first. May be NULL if notrequired.
UpdateRow Address of an integer to receive the index of the update row for the variable. May be

NULL if not required.
OldValue Address of a double precision variable to receive the value of the variable at theprevious SLP iteration. May be NULL if not required.

Fair Isaac Corporation Confidential and Proprietary Information 276

Library functions and the programming interface Reference

Example The following example retrieves the current value, convergence history and status for column 3.
int Status, History;
double Value;

XSLPgetvar(Prob, 3, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, &History, &Converged,
NULL, NULL, NULL, NULL, NULL);

Further informationIf ColIndex refers to a column which is not an SLP variable, then all the return values will indicate thatthere is no corresponding data.
DetRow will be set to -1 if there is no determining row.
Delta, PenaltyDelta and UpdateRow will be set to -1 if there is no corresponding item.

Related topics
XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPloadvars

Fair Isaac Corporation Confidential and Proprietary Information 277

Library functions and the programming interface Reference

XSLPglobal

Purpose Initiate the Xpress NonLinear mixed integer SLP (MISLP) algorithm
Synopsis

int XPRS_CC XSLPglobal(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example optimizes the problem and then finds the integer solution.
XSLPmaxim(Prob,"");
XSLPglobal(Prob);

Further informationThe current Xpress NonLinear mixed integer problem will be maximized or minimized using thealgorithm defined by the control variable XSLP_MIPALGORITHM.
It is recommended that XSLPminim or XSLPmaxim is used first to obtain a converged solution to therelaxed problem. If this is not done, ensure that XSLP_OBJSENSE is set appropriately.
See the chapter on Mixed Integer Non-Linear Programming for more information about the XpressNonLinear MISLP algorithms.

Related topics
XSLPmaxim, XSLPminim, XSLP_MIPALGORITHM, XSLP_OBJSENSE

Fair Isaac Corporation Confidential and Proprietary Information 278

Library functions and the programming interface Reference

XSLPimportlibfunc

Purpose Imports a function from a library file to be called as a user function
Synopsis

int XPRS_CC XSLPimportlibfunc(XSLPprob Prob,const char ⁎ LibName, const
char ⁎ FunctionName, void ⁎⁎ FuncPointer, int ⁎ Status);

Arguments
Prob The current SLP problem.
LibName Filename of the library.
FunctionName Fucntion anme inside the library.
FuncPointer Function pointer to return the loaded function.
Status Outcome of the load operation

0 success.
1 library file not found.
2 library function in library file not found.

Further informationOn systems where necessary, Xpress will hold the handle of the library opened and free up when theproblem object Prob is destroyed.
Related topics

XSLPadduserfunction, XSLPdeluserfunction

Fair Isaac Corporation Confidential and Proprietary Information 279

Library functions and the programming interface Reference

XSLPinit

Purpose Initializes the Xpress NonLinear system
Synopsis

int XPRS_CC XSLPinit();

Argument
none

Example The following example initiates the Xpress NonLinear system and prints the banner.
char Buffer[256];
XPRSinit();
XSLPinit();
XSLPgetbanner(Buffer);

XPRSinit initializes the Xpress optimizer; XSLPinit then initializes the SLP module, so that thebanner contains information from both systems.
Further information

XSLPinitmust be the first call to the Xpress NonLinear system except for XSLPgetbanner and
XSLPgetversion. It initializes any global parts of the system if required. The call to XSLPinitmustbe preceded by a call to XPRSinit to initialize the Optimizer Library part of the system first.

Related topics
XSLPfree

Fair Isaac Corporation Confidential and Proprietary Information 280

Library functions and the programming interface Reference

XSLPinterrupt

Purpose Interrupts the current SLP optimization
Synopsis

int XPRS_CC XSLPinterrupt(int Reason);

Arguments
Prob The current SLP problem.
Reason Interrupt code to be propagated.

Further informationProvides functionality to stop the SLP optimization process from inside a callback. The followingconstants are provided for the paramter value:
Value 1 XSLP_STOP_TIMELIMITValue 2 XSLP_STOP_CTRLCValue 3 XSLP_STOP_NODELIMITValue 4 XSLP_STOP_ITERLIMITValue 5 XSLP_STOP_MIPGAPValue 6 XSLP_STOP_SOLLIMITValue 9 XSLP_STOP_USER

Fair Isaac Corporation Confidential and Proprietary Information 281

Library functions and the programming interface Reference

XSLPitemname

Purpose Retrieves the name of an Xpress NonLinear entity or the value of a function token as a character string.
Synopsis

int XPRS_CC XSLPitemname(XSLPprob Prob, int Type, double Value, char
⁎Buffer);

Arguments
Prob The current SLP problem.
Type Integer holding the type of Xpress NonLinear entity. This can be any one of the tokentypes described in the section on Formula Parsing.
Value Double precision value holding the index or value of the token. The use and meaning ofthe value is as described in the section on Formula Parsing.
Buffer Character buffer to hold the result, which will be terminated with a null character.

Example The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:
int n, Type[10];
double Value[10];
char Buffer[60];
int TokenCount;

XSLPgetcoefformula(Prob, 2, 3, &Factor, 0, 10, &TokenCount, Type, Value);

printf("\n");
for (n=0;Type[n] != XSLP_EOF;n++) {

XSLPitemname(Prob, Type[n], Value[n], Buffer);
printf(" %s", Buffer);

}

Further informationIf a name has not been provided for an Xpress NonLinear entity, then an internally-generated name willbe used.
Numerical values will be formatted as fixed-point or floating-point depending on their size.

Fair Isaac Corporation Confidential and Proprietary Information 282

Library functions and the programming interface Reference

XSLPloadcoefs

Purpose Load non-linear coefficients into the SLP problem
Synopsis

int XPRS_CC XSLPloadcoefs(XSLPprob Prob, int nSLPCoef, int ⁎RowIndex, int
⁎ColIndex, double ⁎Factor, int ⁎FormulaStart, int Parsed, int ⁎Type,
double ⁎Value);

Arguments
Prob The current SLP problem.
nSLPCoef Number of non-linear coefficients to be loaded.
RowIndex Integer array holding index of row for the coefficient.
ColIndex Integer array holding index of column for the coefficient.
Factor Double array holding factor by which formula is scaled. If this is NULL, then a value of1.0 will be used.
FormulaStart Integer array of length nSLPCoef+1 holding the start position in the arrays Typeand Value of the formula for the coefficients. FormulaStart[nSLPCoef] should beset to the next position after the end of the last formula.
Parsed Integer indicating whether the token arrays are formatted as internal unparsed(Parsed=0) or internal parsed reverse Polish (Parsed=1).
Type Array of token types providing the formula for each coefficient.
Value Array of values corresponding to the types in Type.

Example Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The followingexample loads coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

int RowIndex[3], ColIndex[3], FormulaStart[4], Type[8];
int n, nSLPCoef;
double Value[8];

RowIndex[0] = 1; ColIndex[0] = 2;
RowIndex[1] = 1; ColIndex[1] = 6;
RowIndex[2] = 3; ColIndex[2] = 2;

n = nSLPCoef = 0;
FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 3;
Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n] = XSLP_OP; Value[n++] = XSLP_MULTIPLY;
Type[n++] = XSLP_EOF;

FormulaStart[nSLPCoef++] = n;
Type[n] = XSLP_COL; Value[n++] = 2;
Type[n++] = XSLP_EOF;

Fair Isaac Corporation Confidential and Proprietary Information 283

Library functions and the programming interface Reference

FormulaStart[nSLPCoef] = n;

XSLPloadcoefs(Prob, nSLPCoef, RowIndex, ColIndex,
NULL, FormulaStart, 1, Type, Value);

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 ⁎rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further informationThe jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,which can be provided in the Factor array. If Xpress NonLinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j]. The tokensfollow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formulamust be terminated with an XSLP_EOF token. If several coefficients share the same formula, they canhave the same value in FormulaStart. For possible token types and values see the chapter on"Formula Parsing".
The XSLPload... functions load items into the SLP problem. Any existing items of the same type aredeleted first. The corresponding XSLPadd... functions add or replace items leaving other items ofthe same type unchanged.

Related topics
XSLPaddcoefs, XSLPchgcoef, XSLPchgccoef, XSLPgetcoefformula, XSLPgetccoef

Fair Isaac Corporation Confidential and Proprietary Information 284

Library functions and the programming interface Reference

XSLPloaddfs

Purpose Load a set of distribution factors
Synopsis

int XSLP_CC XSLPloaddfs(XSLPprob Prob, int nDF, const int ⁎ColIndex, const
int ⁎RowIndex, const double ⁎Value)

Arguments
Prob The current SLP problem.
nDF The number of distribution factors.
ColIndex Array of indices of columns whose distribution factor is to be changed.
RowIndex Array of indices of the rows where each distribution factor applies.
Value Array of double precision variables holding the new values of the distribution factors.

Example The following example loads distribution factors as follows:column 282 in row 134 = 0.1column 282 in row 136 = 0.15column 285 in row 133 = 1.0.Any other first-order derivative placeholders are set to XSLP_DELTA_Z.
int ColIndex[3], RowIndex[3];
double Value[3];
ColIndex[0] = 282; RowIndex[0] = 134; Value[0] = 0.1;
ColIndex[1] = 282; RowIndex[1] = 136; Value[1] = 0.15;
ColIndex[2] = 285; RowIndex[2] = 133; Value[2] = 1.0;
XSLPloaddfs(prob,3,ColIndex,RowIndex,Value);

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress-SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
The XSLPadd... functions load additional items into the SLP problem. The corresponding
XSLPload... functions delete any existing items first.

Related topics
XSLPadddfs, XSLPchgdf, XSLPgetdf

Fair Isaac Corporation Confidential and Proprietary Information 285

Library functions and the programming interface Reference

XSLPloadtolsets

Purpose Load sets of standard tolerance values into an SLP problem
Synopsis

int XPRS_CC XSLPloadtolsets(XSLPprob Prob, int nSLPTol, double ⁎SLPTol);

Arguments
Prob The current SLP problem.
nSLPTol The number of tolerance sets to be loaded.
SLPTol Double array of (nSLPTol ⁎ 9) items containing the 9 tolerance values for each set inorder.

Example The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; thesecond has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolutetolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).
double SLPTol[18];
for (i=0;i<9;i++) SLPTol[i] = 0.005;
SLPTol[9] = 0;
for (i=10;i<18;i=i+2) SLPTol[i] = 0.01;
for (i=11;i<18;i=i+2) SLPTol[i] = 0.001;
XSLPloadtolsets(Prob, 2, SLPTol);

Further informationA tolerance set is an array of 9 values containing the following tolerances:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) XSLP_TOLSET_TC XSLP_TOLSETBIT_TC
1 Absolute delta tolerance (TA) XSLP_TOLSET_TA XSLP_TOLSETBIT_TA
2 Relative delta tolerance (RA) XSLP_TOLSET_RA XSLP_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) XSLP_TOLSET_TM XSLP_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) XSLP_TOLSET_RM XSLP_TOLSETBIT_RM
5 Absolute impact tolerance (TI) XSLP_TOLSET_TI XSLP_TOLSETBIT_TI
6 Relative impact tolerance (RI) XSLP_TOLSET_RI XSLP_TOLSETBIT_RI
7 Absolute slack tolerance (TS) XSLP_TOLSET_TS XSLP_TOLSETBIT_TS
8 Relative slack tolerance (RS) XSLP_TOLSET_RS XSLP_TOLSETBIT_RS

The XSLP_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe XSLP_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable.
If a tolerance value is zero, then the default tolerance will be used instead. To force the use of atolerance, use the XSLPchgtolset function and set the Status variable appropriately.
See the section "Convergence Criteria" for a fuller description of tolerances and their uses.
The XSLPload... functions load items into the SLP problem. Any existing items of the same type aredeleted first. The corresponding XSLPadd... functions add or replace items leaving other items ofthe same type unchanged.

Related topics
XSLPaddtolsets, XSLPdeltolsets, XSLPchgtolset, XSLPgettolset

Fair Isaac Corporation Confidential and Proprietary Information 286

Library functions and the programming interface Reference

XSLPloadvars

Purpose Load SLP variables defined as matrix columns into an SLP problem
Synopsis

int XPRS_CC XSLPloadvars(XSLPprob Prob, int nSLPVar, int ⁎ColIndex, int
⁎VarType, int ⁎DetRow, int ⁎SeqNum, int ⁎TolIndex, double ⁎InitValue,
double ⁎StepBound);

Arguments
Prob The current SLP problem.
nSLPVar The number of SLP variables to be loaded.
ColIndex Integer array holding the index of the matrix column corresponding to each SLP variable.
VarType Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;May be NULL if not required.

DetRow Integer array holding the index of the determining row for each SLP variable (a negativevalue means there is no determining row)May be NULL if not required.
SeqNum Integer array holding the index sequence number for cascading for each SLP variable (azero value means there is no pre-defined order for this variable)May be NULL if not required.
TolIndex Integer array holding the index of the tolerance set for each SLP variable (a zero valuemeans the default tolerances are used)May be NULL if not required.
InitValue Double array holding the initial value for each SLP variable (use the VarType bit map toindicate if a value is being provided)May be NULL if not required.
StepBound Double array holding the initial step bound size for each SLP variable (a zero valuemeans that no initial step bound size has been specified). If a value of

XPRS_PLUSINFINITY is used for a value in StepBound, the delta will never have stepbounds applied, and will almost always be regarded as converged.May be NULL if not required.
Example The following example loads two SLP variables into the problem. They correspond to columns 23 and25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specificinitial value

int ColIndex[2], VarType[2];
double InitValue[2];

ColIndex[0] = 23; VarType[0] = 0;
ColIndex[1] = 25; Vartype[1] = 2; InitValue[1] = 1.42;

XSLPloadvars(Prob, 2, ColIndex, VarType, NULL, NULL,
NULL, InitValue, NULL);

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType isset for the second variable to indicate that the initial value has been set.

Fair Isaac Corporation Confidential and Proprietary Information 287

Library functions and the programming interface Reference

The arrays for determining rows, sequence numbers, tolerance sets and step bounds are not used atall, and so have been passed to the function as NULL.
Further informationThe XSLPload... functions load items into the SLP problem. Any existing items of the same type aredeleted first. The corresponding XSLPadd... functions add or replace items leaving other items ofthe same type unchanged.
Related topics

XSLPaddvars, XSLPchgvar, XSLPdelvars, XSLPgetvar

Fair Isaac Corporation Confidential and Proprietary Information 288

Library functions and the programming interface Reference

XSLPmaxim

Purpose Maximize an SLP problem
Synopsis

int XPRS_CC XSLPmaxim(XSLPprob Prob, char ⁎Flags);

Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XPRSmaxim.

Example The following example reads an SLP problem from file and then maximizes it using the primal simplexoptimizer.
XSLPreadprob("Matrix","");
XSLPmaxim(Prob,"p");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLPoptimization starts.

Further informationIf XSLPconstruct has not already been called, it will be called first, using the augmentation defined bythe control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will beinvoked in accordance with the setting of the control variable XSLP_CASCADE.
Related topics

XSLPconstruct, XSLPglobal, XSLPminim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 289

Library functions and the programming interface Reference

XSLPminim

Purpose Minimize an SLP problem
Synopsis

int XPRS_CC XSLPminim(XSLPprob Prob, char ⁎Flags);

Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XPRSminim.

Example The following example reads an SLP problem from file and then minimizes it using the Newton barrieroptimizer.
XSLPreadprob("Matrix","");
XSLPminim(Prob,"b");

Related controls
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLPoptimization starts.

Further informationIf XSLPconstruct has not already been called, it will be called first, using the augmentation defined bythe control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will beinvoked in accordance with the setting of the control variable XSLP_CASCADE.
Related topics

XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPnlpoptimize, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 290

Library functions and the programming interface Reference

XSLPmsaddcustompreset

Purpose A combined version of XSLPmsaddjob and XSLPmsaddpreset. The preset described is loaded, toppedup with the specific settings supplied
Synopsis

int XSLP_CC XSLPmsaddcustompreset(XSLPprob Prob, const char ⁎sDescription,
const int Preset, const int Count, const int nIVs, const int ⁎IVCols,
const double ⁎IVValues, const int nIntControls, const int
⁎IntControlIndices, const int ⁎IntControlValues, const int
nDblControls, const int ⁎DblControlIndices, const double
⁎DblControlValues, void ⁎pJobObject);

Arguments
Prob The current SLP problem.
sDescription Text description of the job. Used for messaging, may be NULL if not required.
Preset Which preset to load.
Count Maximum number of jobs to be added to the multistart pool.
nIVs Number of initial values to set.
IVCols Indices of the variables for which to set an initial value. May be NULL if nIVs is zero.
IVValues Initial values for the variables for which to set an initial value. May be NULL if nIVs iszero.
nIntControls Number of integer controls to set.
IntControlIndices The indices of the integer controls to be set. May be NULL if nIntControls iszero.
IntControlValues The values of the integer controls to be set. May be NULL if nIntControls is zero.
nDblControls Number of double controls to set.
DblControlIndices The indices of the double controls to be set. May be NULL if nDblControls iszero.
DblControlValues The values of the double controls to be set. May be NULL if nDblControls iszero.
pJobObject Job specific user context pointer to be passed to the multistart callbacks.

Further informationThis function allows for repeatedly calling the same multistart preset (e.g. initial values) using differentbasic controls.
Related topics

XSLPmsaddpreset, XSLPmsaddjob, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 291

Library functions and the programming interface Reference

XSLPmsaddjob

Purpose Adds a multistart job to the multistart pool
Synopsis

int XSLP_CC XSLPmsaddjob(XSLPprob Prob, const char ⁎sDescription, const
int nIVs, const int ⁎IVCols, const double ⁎IVValues, const int
nIntControls, const int ⁎IntControlIndices, const int
⁎IntControlValues, const int nDblControls, const int
⁎DblControlIndices, const double ⁎DblControlValues, void
⁎pJobObject);

Arguments
Prob The current SLP problem.
sDescription Text description of the job. Used for messaging, may be NULL if not required.
nIVs Number of initial values to set.
IVCols Indices of the variables for which to set an initial value. May be NULL if nIVs is zero.
IVValues Initial values for the variables for which to set an initial value. May be NULL if nIVs iszero.
nIntControls Number of integer controls to set.
IntControlIndices The indices of the integer controls to be set. May be NULL if nIntControls iszero.
IntControlValues The values of the integer controls to be set. May be NULL if nIntControls is zero.
nDblControls Number of double controls to set.
DblControlIndices The indices of the double controls to be set. May be NULL if nDblControls iszero.
DblControlValues The values of the double controls to be set. May be NULL if nDblControls iszero.
pJobObject Job specific user context pointer to be passed to the multistart callbacks.

Further informationAdds a mutistart job, applying the specified initial point and option combinations on top of the baseproblem, i.e. the options and initial values specified to the function is applied on top of the existingsettigns.
This function allows for loading empty template jobs, that can then be identified using the pJobObjectvariable.

Related topics
XSLPmsaddpreset, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 292

Library functions and the programming interface Reference

XSLPmsaddpreset

Purpose Loads a preset of jobs into the multistart job pool.
Synopsis

int XSLP_CC XSLPmsaddpreset(XSLPprob Prob, const char ⁎sDescription, const
int Preset, const int Count, void ⁎pJobObject);

Arguments
Prob The current SLP problem.
sDescription Text description of the preset. Used for messaging, may be NULL if not required.
Preset Which preset to load.
Count Maximum number of jobs to be added to the multistart pool.
pJobObject Job specific user context pointer to be passed to the multistart callbacks.

Further informationThe following presets are defined:
XSLP_MSSET_INITIALVALUES: generate Count number of random base points.
XSLP_MSPRESET_SOLVERS: load all solvers.
XSLP_MSPRESET_SLPCONTROLSBASIC: load the most typical SLP tuning settings. A maximum ofCount jobs are loaded.
XSLP_MSPRESET_SLPCONROLSEXTENSIVE: load a comprehensive set of SLP tuning settings. Amaximum of Count jobs are loaded.
XSLP_MSPRESET_KNITROBASIC: load the most typical Knitro tuning settings. A maximum of Countjobs are loaded.
XSLP_MSPRESET_KNITROEXTENSIVE: load a comprehensive set of Knitro tuning settings. Amaximum of Count jobs are loaded.
XSLP_MSSET_INITIALFILTERED: generate Count number of random base points, filtered by a meritfunction centred on initial feasibility.
XSLP_MSSET_INITIALDYNAMIC: generate Count number of random base points, that are then refinedand combined further by any solution found during the search.
See XSLP_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
XSLPmsaddjob, XSLPmsaddcustompreset, XSLPmsclear

Fair Isaac Corporation Confidential and Proprietary Information 293

Library functions and the programming interface Reference

XSLPmsclear

Purpose Removes all scheduled jobs from the multistart job pool
Synopsis

int XSLP_CC XSLPmsclear(XSLPprob Prob);

Argument
Prob The current SLP problem.

Related topics
XSLPmsaddjob, XSLPmsaddpreset, XSLPmsaddcustompreset

Fair Isaac Corporation Confidential and Proprietary Information 294

Library functions and the programming interface Reference

XSLPnlpoptimize

Purpose Maximize or minimize an SLP problem
Synopsis

int XPRS_CC XSLPnlpoptimize(XSLPprob Prob, char ⁎Flags);

Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XPRSmaxim and XPRSminim.

Related controls
Double

XSLP_OBJSENSE Determines the direction of optimization: +1 is for minimization, -1 is formaximization.
Integer

XSLP_ALGORITHM Bit map determining the SLP algorithm(s) used in the optimization.
XSLP_AUGMENTATION Bit map determining the type of augmentation used to create the linearization.
XSLP_CASCADE Bit map determining the type of cascading (recalculation of SLP variable values)used during the SLP optimization.
XSLP_LOG Determines the amount of iteration logging information produced.
XSLP_PRESOLVE Bit map determining the type of nonlinear presolve used before the SLPoptimization starts.

Further information
XSLPnlpoptimize is equivalent to XSLPmaxim (if XSLP_OBJSENSE = -1) or XSLPminim (if
XSLP_OBJSENSE = +1).
If XSLPconstruct has not already been called, it will be called first, using the augmentation defined bythe control variable XSLP_AUGMENTATION. If determining rows are provided, then cascading will beinvoked in accordance with the setting of the control variable XSLP_CASCADE.

Related topics
XSLPconstruct, XSLPglobal, XSLPmaxim, XSLPminim, XSLPpresolve

Fair Isaac Corporation Confidential and Proprietary Information 295

Library functions and the programming interface Reference

XSLPpostsolve

Purpose Restores the problem to its pre-solve state
Synopsis

int XPRS_CC XSLPpostsolve(XSLPprob Prob);

Argument
Prob The current SLP problem.

Related controls
Integer

XSLP_POSTSOLVE Determines if postsolve is applied automatically.
Further informationIf Xpress-SLP was used to solve the problem, postsolve will unconstruct the problem beforepostsolving (including any reformulation that might have been applied).
Related topics

XSLP_POSTSOLVE

Fair Isaac Corporation Confidential and Proprietary Information 296

Library functions and the programming interface Reference

XSLPpresolve

Purpose Perform a nonlinear presolve on the problem
Synopsis

int XPRS_CC XSLPpresolve(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example reads a problem from file, sets the presolve control, presolves the problem andthen maximizes it.
XSLPreadprob(Prob, "Matrix", "");
XSLPsetintcontrol(Prob, XSLP_PRESOLVE, 1);
XSLPpresolve(Prob);
XSLPmaximize(Prob,"");

Related controls
Integer

XSLP_PRESOLVE Bitmap containing nonlinear presolve options.
Further informationIf bit 1 of XSLP_PRESOLVE is not set, no nonlinear presolve will be performed. Otherwise, the presolvewill be performed in accordance with the bit settings.. XSLPpresolve is called automatically by

XSLPconstruct, so there is no need to call it explicitly unless there is a requirement to interrupt theprocess between presolve and optimization. XSLPpresolvemust be called before XSLPconstructor any of the SLP optimization procedures..
Related topics

XSLP_PRESOLVE

Fair Isaac Corporation Confidential and Proprietary Information 297

Library functions and the programming interface Reference

XSLPprintmemory

Purpose Print the dimensions and memory allocations for a problem
Synopsis

int XPRS_CC XSLPprintmemory(XSLPprob prob);

Argument
Prob The current SLP problem.

Example The following example loads a problem from file and then prints the dimensions of the arrays.
XSLPreadprob(Prob, "Matrix1", "");
XSLPprintmemory(Prob);

The output is similar to the following:
Arrays and dimensions:
Array Item Used Max Allocated Memory

Size Items Items Memory Control
MemList 28 103 129 4K
String 1 8779 13107 13K XSLP_MEM_STRING
Xv 16 2 1000 16K XSLP_MEM_XV
Xvitem 48 11 1000 47K XSLP_MEM_XVITEM
....

Further information
XSLPprintmemory lists the current sizes and amounts used of the variable arrays in the currentproblem. For each array, the size of each item, the number used and the number allocated are shown,together with the size of memory allocated and, where appropriate, the name of the memory controlvariable to set the array size. Loading and execution of some problems can be speeded up by settingthe memory controls immediately after the problem is created. If an array has to be moved tore-allocate it with a larger size, there may be insufficient memory to hold both the old and new versions;pre-setting the memory controls reduces the number of such re-allocations which take place and mayallow larger problems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 298

Library functions and the programming interface Reference

XSLPprintevalinfo

Purpose Print a summary of any evaluation errors that may have occurred during solving a problem
Synopsis

int XPRS_CC XSLPprintevalinfo(XSLPprob prob);

Argument
Prob The current SLP problem.

Related topics
XSLPsetcbcoefevalerror

Fair Isaac Corporation Confidential and Proprietary Information 299

Library functions and the programming interface Reference

XSLPreadprob

Purpose Read an Xpress NonLinear extended MPS format matrix from a file into an SLP problem
Synopsis

int XPRS_CC XSLPreadprob(XSLPprob Prob, char ⁎Probname, char ⁎Flags);

Arguments
Prob The current SLP problem.
Probname Character string containing the name of the file from which the matrix is to be read.
Flags Character string containing any flags needed for the input routine. No flag settings arecurrently recognized.

Example The following example reads the problem from file "Matrix.mat".
XSLPreadprob(Prob, "Matrix", "");

Further information
XSLPreadprob tries to open the file with an extension of "mat" or, failing that, an extension of "mps". Ifboth fail, the file name will be tried with no extension.
XSLPreadprob is capable to read most Ampl .nl files. To specify that a .nl file is to be read, provide thefull filename including the .nl extension.
For details of the format of the file, see the section on Extended MPS format.

Related topicsExtended MPS format, XSLPwriteprob

Fair Isaac Corporation Confidential and Proprietary Information 300

Library functions and the programming interface Reference

XSLPremaxim

Purpose Continue the maximization of an SLP problem
Synopsis

int XPRS_CC XSLPremaxim(XSLPprob Prob, char ⁎Flags);

Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XSLPmaxim.

Example The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, itsaves the file and continues for another 10.
int Status;

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 10);
XSLPmaxim(Prob,"");
XSLPgetintattrib(Prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(Prob);
XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 20);
XSLPremaxim(Prob,"");

}

Further informationThis allows Xpress NonLinear to continue the maximization of a problem after it has been terminated,without re-initializing any of the parameters. In particular, the iteration count will resume at the pointwhere it previously stopped, and not at 1.
Related topics

XSLPmaxim, XSLPreminim

Fair Isaac Corporation Confidential and Proprietary Information 301

Library functions and the programming interface Reference

XSLPreminim

Purpose Continue the minimization of an SLP problem
Synopsis

int XPRS_CC XSLPreminim(XSLPprob Prob, char ⁎Flags);

Arguments
Prob The current SLP problem.
Flags These have the same meaning as for XSLPminim.

Example The following example optimizes the SLP problem for up to 10 SLP iterations. If it has not converged, itsaves the file and continues for another 10.
int Status;

XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 10);
XSLPminim(Prob,"");
XSLPgetintattrib(Prob, XSLP_STATUS, &Status);
if (Status & XSLP_MAXSLPITERATIONS) {

XSLPsave(Prob);
XSLPsetintcontrol(Prob, XSLP_ITERLIMIT, 20);
XSLPreminim(Prob,"");

}

Further informationThis allows Xpress NonLinear to continue the minimization of a problem after it has been terminated,without re-initializing any of the parameters. In particular, the iteration count will resume at the pointwhere it previously stopped, and not at 1.
Related topics

XSLPminim, XSLPremaxim

Fair Isaac Corporation Confidential and Proprietary Information 302

Library functions and the programming interface Reference

XSLPrestore

Purpose Restore the Xpress NonLinear problem from a file created by XSLPsave
Synopsis

int XPRS_CC XSLPrestore(XSLPprob Prob, char ⁎Filename);

Arguments
Prob The current SLP problem.
Filename Character string containing the name of the problem which is to be restored.

Example The following example restores a problem originally saved on file "MySave"
XSLPrestore(Prob, "MySave");

Further informationNormally XSLPrestore restores both the Xpress NonLinear problem and the underlying optimizerproblem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.
The problem is saved into two files save.svf which is the optimizer save file, and save.svx which is theSLP save file. Both files are required for a full restore; only the svx file is required when the underlyingoptimizer problem is not being restored.

Related topics
XSLP_CONTROL, XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 303

Library functions and the programming interface Reference

XSLPreinitialize

Purpose Reset the SLP problem to match a just augmented system
Synopsis

int XPRS_CC XSLPreinitialize(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further informationCan be used to rerun the SLP optimization process with updated parameters, penalties or initial values,but unchanged augmentation.
Related topics

XSLPcreateprob, XSLPdestroyprob, XSLPunconstruct, XSLPsetcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 304

Library functions and the programming interface Reference

XSLPsave

Purpose Save the Xpress NonLinear problem to file
Synopsis

int XPRS_CC XSLPsave(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example saves the current problem to files named prob1.svf and prob1.svx.
XPRSprob xprob;
XSLPgetptrattrib(Prob, XSLP_XPRSPROBLEM, &xprob);
XPRSsetprobname(xprob, "prob1");
XSLPsave(Prob);

Further informationThe problem is saved into two files prob.svf which is the optimizer save file, and prob.svx which is theSLP save file, where prob is the name of the problem. Both files are used in a full save; only the svx fileis required when the underlying optimizer problem is not being saved.
Normally XSLPsave saves both the Xpress NonLinear problem and the underlying optimizer problem.If only the Xpress NonLinear problem is required, set the integer control variable XSLP_CONTROLappropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsaveas

Fair Isaac Corporation Confidential and Proprietary Information 305

Library functions and the programming interface Reference

XSLPsaveas

Purpose Save the Xpress NonLinear problem to a named file
Synopsis

int XPRS_CC XSLPsaveas(XSLPprob Prob, const char ⁎Filename);

Arguments
Prob The current SLP problem.
Filename The name of the file (without extension) in which the problem is to be saved.

Example The following example saves the current problem to files named MyProb.svf and MyProb.svx.
XSLPsaveas(Prob,"MyProb");

Further informationThe problem is saved into two files filename.svf which is the optimizer save file, and filename.svx whichis the SLP save file, where filename is the second argument to the function. Both files are used in a fullsave; only the svx file is required when the underlying optimizer problem is not being saved.
Normally XSLPsaveas saves both the Xpress NonLinear problem and the underlying optimizerproblem. If only the Xpress NonLinear problem is required, set the integer control variable
XSLP_CONTROL appropriately.

Related topics
XSLP_CONTROL, XSLPrestore XSLPsave

Fair Isaac Corporation Confidential and Proprietary Information 306

Library functions and the programming interface Reference

XSLPscaling

Purpose Analyze the current matrix for largest/smallest coefficients and ratios
Synopsis

int XPRS_CC XSLPscaling(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example analyzes the matrix
XSLPscaling(Prob);

Further informationThe current matrix (including augmentation if it has been carried out) is scanned for the absolute andrelative sizes of elements. The following information is reported:
� Largest and smallest elements in the matrix;
� Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between1.0E+01 and 1.0E+02);
� List of the rows (with largest and smallest elements) which appear in the highest range;
� Counts of the ranges of column ratios in powers of 10 (e.g. number of columns with ratio between1.0E+01 and 1.0E+02);
� List of the columns (with largest and smallest elements) which appear in the highest range;
� Element ranges in powers of 10 (e.g. number of elements between 1.0E+01 and 1.0E+02).

Where any of the reported items (largest or smallest element in the matrix or any reported row orcolumn element) is in a penalty error vector, the results are repeated, excluding all penalty error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 307

Library functions and the programming interface Reference

XSLPsetcbcascadeend

Purpose Set a user callback to be called at the end of the cascading process, after the last variable has beencascaded
Synopsis

int XPRS_CC XSLPsetcbcascadeend(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the end of the cascading process. UserFunc returns aninteger value. The return value is noted by Xpress-SLP but it has no effect on theoptimization.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadeend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the end of the cascading process whichchecks if any of the values have been changed significantly:

double ⁎cSol;
XSLPsetcbcascadeend(Prob, CBCascEnd, &cSol);

A suitable callback function might resemble this:
int XPRS_CC CBCascEnd(XSLPprob MyProb, void ⁎Obj) {

int iCol, nCol;
double ⁎cSol, Value;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);
for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

if (fabs(Value-cSol[iCol]) > .01)
printf("\nCol %d changed from %lg to %lg",

iCol, cSol[iCol], Value);
}
return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume has beenpopulated with the original solution values.
Further informationThis callback can be used at the end of the cascading, when all the solution values have beenrecalculated.
Related topics

XSLPcascade, XSLPsetcbcascadestart, XSLPsetcbcascadevar,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 308

Library functions and the programming interface Reference

XSLPsetcbcascadestart

Purpose Set a user callback to be called at the start of the cascading process, before any variables have beencascaded
Synopsis

int XPRS_CC XSLPsetcbcascadestart(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the start of the cascading process. UserFunc returns aninteger value. If the return value is nonzero, the cascading process will be omitted forthe current SLP iteration, but the optimization will continue.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadestart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the start of the cascading process to savethe current values of the variables:

double ⁎cSol;
XSLPsetcbcascadestart(Prob, CBCascStart, &cSol);

A suitable callback function might resemble this:
int XPRS_CC CBCascStart(XSLPprob MyProb, void ⁎Obj) {

int iCol, nCol;
double ⁎cSol;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintcontrol(MyProb, XPRS_COLS, &nCol);
for (iCol=0;iCol<nCol;iCol++) {

XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,
NULL, NULL, NULL, &cSol[iCol],
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

}
return 0;

}

The Object argument is used here to hold the address of the array cSol which we populate with thesolution values.
Further informationThis callback can be used at the start of the cascading, before any of the solution values have beenrecalculated.
Related topics

XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadevar, XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 309

Library functions and the programming interface Reference

XSLPsetcbcascadevar

Purpose Set a user callback to be called after each column has been cascaded
Synopsis

int XPRS_CC XSLPsetcbcascadevar(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ColIndex), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after each column has been cascaded. UserFunc returns aninteger value. If the return value is nonzero, the cascading process will be omitted for theremaining variables during the current SLP iteration, but the optimization will continue.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadevar.
ColIndex The number of the column which has been cascaded.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed after each variable has been cascaded:

double ⁎cSol;
XSLPsetcbcascadevar(Prob, CBCascVar, &cSol);

The following sample callback function resets the value of the variable if the cascaded value is of theopposite sign to the original value:
int XPRS_CC CBCascVar(XSLPprob MyProb, void ⁎Obj, int iCol) {

double ⁎cSol, Value;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, &Value,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL);

if (Value ⁎ cSol[iCol] < 0) {
Value = cSol[iCol];
XSLPchgvar(MyProb, ColNum, NULL, NULL, NULL, NULL,

NULL, NULL, &Value, NULL, NULL, NULL,
NULL);

}
return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume has beenpopulated with the original solution values.
Further informationThis callback can be used after each variable has been cascaded and its new value has beencalculated.
Related topics

XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart,
XSLPsetcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 310

Library functions and the programming interface Reference

XSLPsetcbcascadevarfail

Purpose Set a user callback to be called after cascading a column was not successful
Synopsis

int XPRS_CC XSLPsetcbcascadevarfail(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ColIndex), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after cascading a column was not successful. UserFuncreturns an integer value. If the return value is nonzero, the cascading process will beomitted for the remaining variables during the current SLP iteration, but the optimizationwill continue.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadevarfail.
ColIndex The number of the column which has been cascaded.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Further informationThis callback can be used to provide user defined updates for SLP variables having a determining rowthat were not successfully cascaded due to the determining row being close to singular around thecurrent values. This callback will always be called in place of the cascadevar callback in such cases,and in no situation will both the cascadevar and the cascadevarfail callback be called in the sameiteration for the same variable.
Related topics

XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart, XSLPsetcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 311

Library functions and the programming interface Reference

XSLPsetcbcoefevalerror

Purpose Set a user callback to be called when an evaluation of a coefficient fails during the solve
Synopsis

int XPRS_CC XSLPsetcbcoefevalerror(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int RowIndex, int ColIndex), void
⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when an evaluation fails.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcoefevalerror.
RowIndex The row position of the coefficient.
ColIndex The column position of the coefficient.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Further informationThis callback can be used to capture when an evaluation of a coefficient fails. The callback is calledonly once for each coefficient.
Related topics

XSLPprintevalinfo

Fair Isaac Corporation Confidential and Proprietary Information 312

Library functions and the programming interface Reference

XSLPsetcbconstruct

Purpose Set a user callback to be called during the Xpress-SLP augmentation process
Synopsis

int XPRS_CC XSLPsetcbconstruct(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called during problem augmentation. UserFunc returns an integervalue. See below for an explanation of the values.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbconstruct.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed during the Xpress-SLP problem augmentation:

double ⁎cValue;
cValue = NULL;
XSLPsetcbconstruct(Prob, CBConstruct, &cValue);

The following sample callback function sets values for the variables the first time the function is calledand returns to XSLPconstruct to recalculate the initial matrix. The second time it is called it frees theallocated memory and returns to XSLPconstruct to proceed with the rest of the augmentation.
int XPRS_CC CBConstruct(XSLPprob MyProb, void ⁎Obj) {

double ⁎cValue;
int i, n;

/⁎ if Object is NULL, this is first-time entry ⁎/
if (⁎(void⁎⁎)Obj == NULL) {

XSLPgetintattrib(MyProb,XPRS_COLS,&n);
cValue = malloc(n⁎sizeof(double));

/⁎ ... initialize with values (not shown here) and then ... ⁎/
for (i=0;i<n;i++)

/⁎ store into SLP structures ⁎/
XSLPchgvar(MyProb, i, NULL, NULL, NULL, NULL,

NULL, NULL, &cValue[i], NULL, NULL, NULL,
NULL);

/⁎ set Object non-null to indicate we have processed data ⁎/
⁎(void⁎⁎)Obj = cValue;
return -1;

}
else {

/⁎ free memory, clear marker and continue ⁎/
free(⁎(void⁎⁎)Obj);
⁎(void⁎⁎)Obj = NULL;

}
return 0;

}

Fair Isaac Corporation Confidential and Proprietary Information 313

Library functions and the programming interface Reference

Further informationThis callback can be used during the problem augmentation, generally (although not exclusively) tochange the initial values for the variables.
The following return codes are accepted:
0 Normal return: augmentation continues
-1 Return to recalculate matrix values
-2 Return to recalculate row weights and matrix entries
other Error return: augmentation terminates, XSLPconstruct terminates with a nonzeroerror code.
The return values -1 and -2 will cause the callback to be called a second time after the matrix has beenrecalculated. It is the responsibility of the callback to ensure that it does ultimately exit with a returnvalue of zero.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 314

Library functions and the programming interface Reference

XSLPsetcbdestroy

Purpose Set a user callback to be called when an SLP problem is about to be destroyed
Synopsis

int XPRS_CC XSLPsetcbdestroy(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when the SLP problem is about to be destroyed. UserFuncreturns an integer value. At present the return value is ignored.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbdestroy.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed before the SLP problem is destroyed:

double ⁎cSol;
XSLPsetcbdestroy(Prob, CBDestroy, &cSol);

The following sample callback function frees the memory associated with the user-defined object:
int XPRS_CC CBDestroy(XSLPprob MyProb, void ⁎Obj) {

if (⁎(void⁎⁎)Obj) free(⁎(void⁎⁎)Obj);
return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume wasassigned using one of the malloc functions.
Further informationThis callback can be used when the problem is about to be destroyed to free any user-definedresources which were allocated during the life of the problem.
Related topics

XSLPdestroyprob

Fair Isaac Corporation Confidential and Proprietary Information 315

Library functions and the programming interface Reference

XSLPsetcbdrcol

Purpose Set a user callback used to override the update of variables with small determining column
Synopsis

int XPRS_CC XSLPsetcbdrcol(XSLPprob Prob, int (XPRS_CC ⁎UserFunc) (XSLPprob
myProb, void ⁎myObject, int ColIndex, int DrColIndex, double
DrColValue, double ⁎ NewValue, double VLB, double VUB), void
⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after each column has been cascaded. UserFunc returns aninteger value. If the return value is positive, it will indicate that the value has been fixed,and cascading should be omitted for the variable. A negative value indicates that apreviously fixed value has been relaxed. If no action is taken, a 0 return value should beused.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbcascadevar.
ColIndex The index of the column for which the determining columns is checked.
DrColIndex The index of the determining column for the column that is being updated.
DrColValue The value of the determining column in the current SLP iteration.
NewValue Used to return the new value for column ColIndex, should it need to be updated, inwhich case the callback must return a positive value to indicate that this value should beused.
VLB The original lower bound of column ColIndex. The callback provides this value as areference, should the bound be updated or changed during the solution process.
VUB The original upper bound of column ColIndex. The callback provides this value as areference, should the bound be updated or changed during the solution process.
Object Address of a user-defined object, which can be used for any purpose. by the function.

Object is passed to UserFunc as myObject.
Further informationIf set, this callback is called as part of the cascading procedure. Please see Chapter Cascading formore information.
Related topics

XSLP_DRCOLTOL, XSLPcascade, XSLPsetcbcascadeend, XSLPsetcbcascadestart

Fair Isaac Corporation Confidential and Proprietary Information 316

Library functions and the programming interface Reference

XSLPsetcbintsol

Purpose Set a user callback to be called during MISLP when an integer solution is obtained
Synopsis

int XPRS_CC XSLPsetcbintsol(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when an integer solution is obtained. UserFunc returns aninteger value. At present, the return value is ignored.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbintsol.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed whenever an integer solution is found duringMISLP:

double ⁎cSol;
XSLPsetcbintsol(Prob, CBIntSol, &cSol);

The following sample callback function saves the solution values for the integer solution just found:
int XPRS_CC CBIntSol(XSLPprob MyProb, void ⁎Obj) {

XPRSprob xprob;
double ⁎cSol;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetsol(xprob, cSol, NULL, NULL, NULL);
return 0;

}

The Object argument is used here to hold the address of the array cSol which we assume wasassigned using one of the malloc functions.
Further informationThis callback must be used during MISLP instead of the XPRSsetcbintsol callback which is used forMIP problems.
Related topics

XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 317

Library functions and the programming interface Reference

XSLPsetcbiterend

Purpose Set a user callback to be called at the end of each SLP iteration
Synopsis

int XPRS_CC XSLPsetcbiterend(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the end of each SLP iteration. UserFunc returns an integervalue. If the return value is nonzero, the SLP iterations will stop.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbiterend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the end of each SLP iteration. It records thenumber of LP iterations in the latest optimization and stops if there were fewer than 10:

XSLPsetcbiterend(Prob, CBIterEnd, NULL);

A suitable callback function might resemble this:
int XPRS_CC CBIterEnd(XSLPprob MyProb, void ⁎Obj) {

int nIter;
XPRSprob xprob;
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XSLPgetintattrib(xprob, XPRS_SIMPLEXITER, &nIter);
if (nIter < 10) return 1;
return 0;

}

The Object argument is not used here, and so is passed as NULL.
Further informationThis callback can be used at the end of each SLP iteration to carry out any further processing and/orstop any further SLP iterations.
Related topics

XSLPsetcbiterstart, XSLPsetcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 318

Library functions and the programming interface Reference

XSLPsetcbiterstart

Purpose Set a user callback to be called at the start of each SLP iteration
Synopsis

int XPRS_CC XSLPsetcbiterstart(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the start of each SLP iteration. UserFunc returns an integervalue. If the return value is nonzero, the SLP iterations will stop.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbiterstart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the start of the optimization to save to savethe values of the variables from the previous iteration:

double ⁎cSol;
XSLPsetcbiterstart(Prob, CBIterStart, &cSol);

A suitable callback function might resemble this:
int XPRS_CC CBIterStart(XSLPprob MyProb, void ⁎Obj) {

XPRSprob xprob;
double ⁎cSol;
int nIter;
cSol = ⁎ (double ⁎⁎) Obj;
XSLPgetintattrib(MyProb, XSLP_ITER, &nIter);
if (nIter == 0) return 0; /⁎ no previous solution ⁎/
XSLPgetptrattrib(MyProb, XSLP_XPRSPROBLEM, &xprob);
XPRSgetsol(xprob, cSol, NULL, NULL, NULL);
return 0;

}

The Object argument is used here to hold the address of the array cSol which we populate with thesolution values.
Further informationThis callback can be used at the start of each SLP iteration before the optimization begins.
Related topics

XSLPsetcbiterend, XSLPsetcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 319

Library functions and the programming interface Reference

XSLPsetcbitervar

Purpose Set a user callback to be called after each column has been tested for convergence
Synopsis

int XPRS_CC XSLPsetcbitervar(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ColIndex), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after each column has been tested for convergence.

UserFunc returns an integer value. The return value is interpreted as a convergencestatus. The possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion(these values should not normally be returned);
> 10 The variable has converged on user criteria.

myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbitervar.
ColIndex The number of the column which has been tested for convergence.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed after each variable has been tested forconvergence. The user object Important is an integer array which has already been set up and holdsa flag for each variable indicating whether it is important that it converges.

int ⁎Important;
XSLPsetcbitervar(Prob, CBIterVar, &Important);

The following sample callback function tests if the variable is already converged. If not, then it checks ifthe variable is important. If it is not important, the function returns a convergence status of 99.
int XPRS_CC CBIterVar(XSLPprob MyProb, void ⁎Obj, int iCol) {

int ⁎Important, Converged;
Important = ⁎(int ⁎⁎) Obj;
XSLPgetvar(MyProb, iCol, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,
NULL, NULL, &Converged, NULL,
NULL, NULL, NULL, NULL);

if (Converged) return 0;
if (!Important[iCol]) return 99;
return -1;

}

The Object argument is used here to hold the address of the array Important.
Further informationThis callback can be used after each variable has been checked for convergence, and allows theconvergence status to be reset if required.
Related topics

XSLPsetcbiterend, XSLPsetcbiterstart

Fair Isaac Corporation Confidential and Proprietary Information 320

Library functions and the programming interface Reference

XSLPsetcbmessage

Purpose Set a user callback to be called whenever Xpress NonLinear outputs a line of text
Synopsis

int XPRS_CC XSLPsetcbmessage(XSLPprob Prob, void (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, char ⁎msg, int len, int msgtype),
void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called whenever Xpress NonLinear outputs a line of text. UserFuncdoes not return a value.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbmessage.
msg Character buffer holding the string to be output.
len Length in characters of msg excluding the null terminator.
msgtype Type of message. The following are system-defined:

1 Information message
3 Warning message
4 Error messageA negative value indicates that the Optimizer is about to finish and any buffers shouldbe flushed at this time.

Object Address of a user-defined object, which can be used for any purpose by the function.
Object is passed to UserFunc as myObject.

Example The following example creates a log file into which all messages are placed. System messages arealso printed on standard output:
FILE ⁎logfile;
logfile = fopen("myLog","w");
XSLPsetcbmessage(Prob, CBMessage, logfile);

A suitable callback function could resemble the following:
void XPRS_CC CBMessage(XSLPprob Prob, void ⁎Obj,

char ⁎msg, int len, int msgtype) {
FILE ⁎logfile;
logfile = (FILE ⁎) Obj;
if (msgtype < 0) {

fflush(stdout);
if (logfile) fflush(logfile);
return;

}
switch (msgtype) {

case 1: /⁎ information ⁎/
case 3: /⁎ warning ⁎/
case 4: /⁎ error ⁎/

printf("%s\n",msg);
default: /⁎ user ⁎/

if (logfile)
fprintf(logfile,"%s\n",msg);

break;

Fair Isaac Corporation Confidential and Proprietary Information 321

Library functions and the programming interface Reference

}
return;

}

Further informationIf a user message callback is defined then screen output is automatically disabled.
Output can be directed into a log file by using XSLPsetlogfile.

Related topics
XSLPsetlogfile,

Fair Isaac Corporation Confidential and Proprietary Information 322

Library functions and the programming interface Reference

XSLPsetcbmsjobend

Purpose Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite thedefault solution ranking function
Synopsis

int XSLP_CC XSLPsetcbmsjobend(XSLPprob Prob, int (XSLP_CC
⁎UserFunc)(XSLPprob myProb, void ⁎myObject,void ⁎pJobObject,const
char ⁎JobDescription,int ⁎Status), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbmsjobend.
pJobObject Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
JobDescription The description of the problem as specified in by the multistart job creating APIfunctions.
Status User return status variable:0 - use the default evaluation of the finished job1 - disregard the result and continue2 - stop the multistart search

Further informationThe multistart pool is dynamic, and this callback can be used to load new multistart jobs using thenormal API functions.
Related topics

XSLPsetcbmsjobstart, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 323

Library functions and the programming interface Reference

XSLPsetcbmsjobstart

Purpose Set a user callback to be called every time a new multistart job is created, and the pre-loaded settingsare applied
Synopsis

int XSLP_CC XSLPsetcbmsjobstart(XSLPprob Prob, int (XSLP_CC
⁎UserFunc)(XSLPprob myProb, void ⁎myObject,void ⁎pJobObject,const
char ⁎JobDescription,int ⁎Status), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbmsjobstart.
pJobObject Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
JobDescription The description of the problem as specified in by the multistart job creating APIfunctions.
Status User return status variable:0 - normal return, solve the job,1 - disregard this job and continue,2 - Stop multistart.

Further informationAll mulit-start jobs operation on an independent copy of the original problem, and any modification tothe problem is allowed, including structural changes. Please note however, that any modification will becarried over to the base problem, should a modified problem be declared the winner prob.
Related topics

XSLPsetcbmsjobend, XSLPsetcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 324

Library functions and the programming interface Reference

XSLPsetcbmswinner

Purpose Set a user callback to be called every time a new multistart job is created, and the pre-loaded settingsare applied
Synopsis

int XSLP_CC XSLPsetcbmswinner(XSLPprob Prob, int (XSLP_CC
⁎UserFunc)(XSLPprob myProb, void ⁎myObject,void ⁎pJobObject,const
char ⁎JobDescription), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when a new multistart job is created
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbmswinner.
pJobObject Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
JobDescription The description of the problem as specified in by the multistart job creating APIfunctions.

Further informationThe multistart pool is dynamic, and this callback can be used to load new multistart jobs using thenormal API functions.
Related topics

XSLPsetcbmsjobstart, XSLPsetcbmsjobend

Fair Isaac Corporation Confidential and Proprietary Information 325

Library functions and the programming interface Reference

XSLPsetcboptnode

Purpose Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node
Synopsis

int XPRS_CC XSLPsetcboptnode(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ⁎feas), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called when an optimal SLP solution is obtained at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flagis set nonzero, then further processing of the node will be terminated (it is declaredinfeasible).
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcboptnode.
feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,the node is declared infeasible.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example defines a callback function to be executed at each node when an SLP optimalsolution is found. If there are significant penalty errors in the solution, the node is declared infeasible.

XSLPsetcboptnode(Prob, CBOptNode, NULL);

A suitable callback function might resemble the following:
int XPRS_CC CBOptNode(XSLPprob myProb, void ⁎Obj, int ⁎feas) {

double Total, ObjVal;
XSLPgetdblattrib(myProb, XSLP_ERRORCOSTS, &Total);
XSLPgetdblattrib(myProb, XSLP_OBJVAL, &ObjVal);
if (fabs(Total) > fabs(ObjVal) ⁎ 0.001 &&

fabs(Total) > 1) ⁎feas = 1;
return 0;

Further informationIf a node is declared infeasible from the callback function, the cost of exploring the node further will beavoided.
This callback must be used in place of XPRSsetcboptnode when optimizing with MISLP.

Related topics
XSLPsetcbprenode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 326

Library functions and the programming interface Reference

XSLPsetcbprenode

Purpose Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at anode, but before SLP optimization
Synopsis

int XPRS_CC XSLPsetcbprenode(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ⁎feas), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flagis set nonzero, then further processing of the node will be terminated (it is declaredinfeasible).
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbprenode.
feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,the node is declared infeasible.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback function to be executed at each node before the SLPoptimization starts. The array IntList contains a list of integer variables, and the function prints thebounds on these variables.

int ⁎IntList;
XSLPsetcbprenode(Prob, CBPreNode, IntList);

A suitable callback function might resemble the following:
int XPRS_CC CBPreNode(XSLPprob myProb, void ⁎Obj, int ⁎feas) {

XPRSprob xprob;
int i, ⁎IntList;
double LO, UP;
IntList = (int ⁎) Obj;
XSLPgetptrattrib(myProb, XSLP_XPRSPROBLEM, &xprob);
for (i=0; IntList[i]>=0; i++) {

XPRSgetlb(xprob,&LO,IntList[i],IntList[i]);
XPRSgetub(xprob,&UP,IntList[i],IntList[i]);
if (LO > 0 || UP < XPRS_PLUSINFINITY)

printf("\nCol %d: %lg <= %lg",LO,UP);
}
return 0;

}

Further informationIf a node can be identified as infeasible by the callback function, then the initial optimization at thecurrent node is avoided, as well as further exploration of the node.
This callback must be used in place of XPRSsetcbprenode when optimizing with MISLP.

Related topics
XSLPsetcboptnode, XSLPsetcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 327

Library functions and the programming interface Reference

XSLPsetcbpreupdatelinearization

Purpose Set a user callback to be called before the linearization is updated
Synopsis

int XPRS_CC XSLPsetcbpreupdatelinearization(XSLPprob Prob, int (XPRS_CC
⁎UserFunc) (XSLPprob myProb, void ⁎myObject, int ⁎ifRepeat), void
⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the end of the SLP optimization. UserFunc returns aninteger value. If the return value is nonzero, the optimization will return an error codeand the "User Return Code" error will be set.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to
ifRepeat If returned nonzero, SLP restart the lienarization update. XSLPsetcbslpend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Further informationThis callback is intended to be used with user functions, allowing to peak where the functions will beevaluated, and then asked to redo the linearization. This is usefull for user functions returning their ownpartial derivatives implemented in a parallel setup. The callback is called again after the linearization iscomplete with ifRepeat being initialzied to -1, to indicate that any further evaluations are no longer partof updating the linearization.

Fair Isaac Corporation Confidential and Proprietary Information 328

Library functions and the programming interface Reference

XSLPsetcbslpend

Purpose Set a user callback to be called at the end of the SLP optimization
Synopsis

int XPRS_CC XSLPsetcbslpend(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the end of the SLP optimization. UserFunc returns aninteger value. If the return value is nonzero, the optimization will return an error codeand the "User Return Code" error will be set.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbslpend.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the end of the SLP optimization. It frees thememory allocated to the object created when the optimization began:

void ⁎ObjData;
ObjData = NULL;
XSLPsetcbslpend(Prob, CBSlpEnd, &ObjData);

A suitable callback function might resemble this:
int XPRS_CC CBSlpEnd(XSLPprob MyProb, void ⁎Obj) {

void ⁎ObjData;
ObjData = ⁎ (void ⁎⁎) Obj;
if (ObjData) free(ObjData);
⁎ (void ⁎⁎) Obj = NULL;
return 0;

}

Further informationThis callback can be used at the end of the SLP optimization to carry out any further processing orhousekeeping before the optimization function returns.
Related topics

XSLPsetcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 329

Library functions and the programming interface Reference

XSLPsetcbslpnode

Purpose Set a user callback to be called during MISLP after the SLP optimization at each node.
Synopsis

int XPRS_CC XSLPsetcbslpnode(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject, int ⁎feas), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called after the set-up of the SLP problem to be solved at a node.

UserFunc returns an integer value. If the return value is nonzero, or if the feasibility flagis set nonzero, then further processing of the node will be terminated (it is declaredinfeasible).
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbslpnode.
feas Address of an integer containing the feasibility flag. If UserFunc sets the flag nonzero,the node is declared infeasible.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback function to be executed at each node after the SLPoptimization finishes. If the solution value is worse than a target value (referenced through the userobject), the node is cut off (it is declared infeasible).

double OBJtarget;
XSLPsetcbslpnode(Prob, CBSLPNode, &OBJtarget);

A suitable callback function might resemble the following:
int XPRS_CC CBSLPNode(XSLPprob myProb, void ⁎Obj, int ⁎feas) {

double TargetValue, LPValue;
XSLPgetdblattrib(prob, XPRS_LPOBJVAL, &LPValue);
TargetValue = ⁎ (double ⁎) Obj;
if (LPValue < TargetValue) ⁎feas = 1;
return 0;

}

Further informationIf a node can be cut off by the callback function, then further exploration of the node is avoided.
Related topics

XSLPsetcboptnode, XSLPsetcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 330

Library functions and the programming interface Reference

XSLPsetcbslpstart

Purpose Set a user callback to be called at the start of the SLP optimization
Synopsis

int XPRS_CC XSLPsetcbslpstart(XSLPprob Prob, int (XPRS_CC ⁎UserFunc)
(XSLPprob myProb, void ⁎myObject), void ⁎Object);

Arguments
Prob The current SLP problem.
UserFunc The function to be called at the start of the SLP optimization. UserFunc returns aninteger value. If the return value is nonzero, the optimization will not be carried out.
myProb The problem passed to the callback function.
myObject The user-defined object passed as Object to XSLPsetcbslpstart.
Object Address of a user-defined object, which can be used for any purpose by the function.

Object is passed to UserFunc as myObject.
Example The following example sets up a callback to be executed at the start of the SLP optimization. Itallocates memory to a user-defined object to be used during the optimization:

void ⁎ObjData;
ObjData = NULL;
XSLPsetcbslpstart(Prob, CBSlpStart, &ObjData);

A suitable callback function might resemble this:
int XPRS_CC CBSlpStart(XSLPprob MyProb, void ⁎Obj) {

void ⁎ObjData;
ObjData = ⁎ (void ⁎⁎) Obj;
if (ObjData) free(ObjData);
⁎ (void ⁎⁎) Obj = malloc(99⁎sizeof(double));
return 0;

}

Further informationThis callback can be used at the start of the SLP optimization to carry out any housekeeping before theoptimization actually starts. Note that a nonzero return code from the callback will terminate theoptimization immediately.
Related topics

XSLPsetcbslpend

Fair Isaac Corporation Confidential and Proprietary Information 331

Library functions and the programming interface Reference

XSLPsetcurrentiv

Purpose Transfer the current solution to initial values
Synopsis

int XPRS_CC XSLPsetcurrentiv(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further informationProvides a way to set the current iterates solution as initial values, make changes to parameters or tothe underlying nonlinear problem and then rerun the SLP optimization process.
Related topics

XSLPreinitialize, XSLPunconstruct

Fair Isaac Corporation Confidential and Proprietary Information 332

Library functions and the programming interface Reference

XSLPsetdblcontrol

Purpose Set the value of a double precision problem control
Synopsis

int XPRS_CC XSLPsetdblcontrol(XSLPprob Prob, int Param, double dValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
dValue Double precision value to be set.

Example The following example sets the value of the Xpress NonLinear control XSLP_CTOL and of the optimizercontrol XPRS_FEASTOL:
XSLPsetdblcontrol(Prob, XSLP_CTOL, 0.001);
XSLPgetdblcontrol(Prob, XPRS_FEASTOL, 0.005);

Further informationBoth SLP and optimizer controls can be set using this function. If an optimizer control is set, the returnvalue will be the same as that from XPRSsetdblcontrol.
Related topics

XSLPgetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 333

Library functions and the programming interface Reference

XSLPsetdefaultcontrol

Purpose Set the values of one SLP control to its default value
Synopsis

int XPRS_CC XSLPsetdefaultcontrol(XSLPprob Prob, int Param);

Arguments
Prob The current SLP problem.
Param The number of the control to be reset to its default.

Example The following example reads a problem from file, sets the XSLP_LOG control, optimizes the problemand then reads and optimizes another problem using the default setting.
XSLPreadprob(Prob, "Matrix1", "");
XSLPsetintcontrol(Prob, XSLP_LOG, 4);
XSLPmaxim(Prob, "");
XSLPsetdefaultcontrol(Prob,XSLP_LOG);
XSLPreadprob(Prob, "Matrix2", "");
XSLPmaxim(Prob, "");

Further informationThis function cannot reset the optimizer controls. Use XPRSsetdefaults or
XPRSsetdefaultcontrolas well to reset optimizer controls to their default values.

Related topics
XSLPsetdblcontrol, XSLPsetdefaults, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 334

Library functions and the programming interface Reference

XSLPsetdefaults

Purpose Set the values of all SLP controls to their default values
Synopsis

int XPRS_CC XSLPsetdefaults(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example reads a problem from file, sets some controls, optimizes the problem and thenreads and optimizes another problem using the default settings.
XSLPreadprob(Prob, "Matrix1", "");
XSLPsetintcontrol(Prob, XSLP_LOG, 4);
XSLPsetdblcontrol(Prob, XSLP_CTOL, 0.001);
XSLPsetdblcontrol(Prob, XSLP_ATOL_A, 0.005);
XSLPmaxim(Prob, "");
XSLPsetdefaults(Prob);
XSLPreadprob(Prob, "Matrix2", "");
XSLPmaxim(Prob, "");

Further informationThis function does not reset the optimizer controls. Use XPRSsetdefaults as well to reset all thecontrols to their default values.
Related topics

XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 335

Library functions and the programming interface Reference

XSLPsetfunctionerror

Purpose Set the function error flag for the problem
Synopsis

int XPRS_CC XSLPsetfunctionerror(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further informationOnce the function error has been set, calculations generally stop and the routines will return to theircaller with a nonzero return code.

Fair Isaac Corporation Confidential and Proprietary Information 336

Library functions and the programming interface Reference

XSLPsetintcontrol

Purpose Set the value of an integer problem control
Synopsis

int XPRS_CC XSLPsetintcontrol(XSLPprob Prob, int Param, int iValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
iValue The value to be set.

Example The following example sets the value of the Xpress NonLinear control XSLP_ALGORITHM and of theoptimizer control XPRS_DEFAULTALG:
XSLPsetintcontrol(Prob, XSLP_ALGORITHM, 934);
XSLPsetintcontrol(Prob, XPRS_DEFAULTALG, 3);

Further informationBoth SLP and optimizer controls can be set using this function. If an optimizer control is requested, thereturn value will be the same as that from XPRSsetintcontrol.
Related topics

XSLPgetintcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 337

Library functions and the programming interface Reference

XSLPsetlogfile

Purpose Define an output file to be used to receive messages from Xpress NonLinear
Synopsis

int XPRS_CC XSLPsetlogfile(XSLPprob Prob, char ⁎Filename, int Option);

Arguments
Prob The current SLP problem.
FileName Character string containing the name of the file to be used for output.
Option Option to indicate whether the output is directed to the file only (Option=0) or (inconsole mode) to the console as well (Option=1).

Example The following example defines a log file "MyLog1" and directs output to the file and to the console:
XSLPsetlogfile(Prob, "MyLog1", 1);

Further informationIf Filename is NULL, the current log file (if any) will be closed, and message handling will revert to thedefault mechanism.
Related topics

XSLPsetcbmessage

Fair Isaac Corporation Confidential and Proprietary Information 338

Library functions and the programming interface Reference

XSLPsetparam

Purpose Set the value of a control parameter by name
Synopsis

int XPRS_CC XSLPsetparam(XSLPprob Prob, const char ⁎Param, const char
⁎cValue);

Arguments
Prob The current SLP problem.
Param Name of the control or attribute whose value is to be returned.
cValue Character buffer containing the value.

Example The following example sets the value of XSLP_ALGORITHM:
XSLPprob Prob;
int Algorithm;
char Buffer[32];
Algorithm = 934;
sprintf(Buffer,"%d",Algorithm);
XSLPsetparam(Prob, "XSLP_ALGORITHM", Buffer);

Further informationThis function can be used to set any Xpress NonLinear or Optimizer control. The value is alwayspassed as a character string. It is the user’s responsibility to create the character string in anappropriate format.
Related topics

XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetparam, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 339

Library functions and the programming interface Reference

XSLPsetstrcontrol

Purpose Set the value of a string problem control
Synopsis

int XPRS_CC XSLPsetstrcontrol(XSLPprob Prob, int Param, const char
⁎cValue);

Arguments
Prob The current SLP problem.
Param control (SLP or optimizer) whose value is to be returned.
cValue Character buffer containing the value.

Example The following example sets the value of the Xpress NonLinear control XSLP_CVNAME and of theoptimizer control XPRS_MPSOBJNAME:
XSLPsetstrcontrol(Prob, XSLP_CVNAME, "CharVars");
XSLPsetstrcontrol(Prob, XPRS_MPSOBJNAME, "_OBJ_");

Further informationBoth SLP and optimizer controls can be set using this function. If an optimizer control is requested, thereturn value will be the same as that from XPRSsetstrcontrol.
Related topics

XSLPgetstrcontrol, XSLPsetdblcontrol, XSLPsetintcontrol, XSLPsetstrcontrol

Fair Isaac Corporation Confidential and Proprietary Information 340

Library functions and the programming interface Reference

XSLPunconstruct

Purpose Removes the augmentation and returns the problem to its pre-linearization state
Synopsis

int XPRS_CC XSLPunconstruct(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further informationOnly limited changes are allowed to an augmented problem.
Related topics

XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 341

Library functions and the programming interface Reference

XSLPupdatelinearization

Purpose Updates the current linearization
Synopsis

int XPRS_CC XSLPupdatelinearization(XSLPprob Prob);

Argument
Prob The current SLP problem.

Further informationUpdates the augmented probem (the linearization) to match the current base point. The base point isthe current SLP solution. The values of the SLP variables can be changed using XSLPchgvar.
The linearization must be present, and this function can only be called after the problem has beenaugmented by XSLPconstruct.

Related topics
XSLPconstruct

Fair Isaac Corporation Confidential and Proprietary Information 342

Library functions and the programming interface Reference

XSLPvalidate

Purpose Validate the feasibility of constraints in a converged solution
Synopsis

int XPRS_CC XSLPvalidate(XSLPprob Prob);

Argument
Prob The current SLP problem.

Example The following example sets the validation tolerance parameters, validates the converged solution andretrieves the validation indices.
double IndexA, IndexR;
XSLPsetdblcontrol(Prob, XSLP_VALIDATIONTOL_A, 0.001);
XSLPsetdblcontrol(Prob, XSLP_VALIDATIONTOL_R, 0.001);
XSLPvalidate(Prob);
XSLPgetdblattrib(Prob, XSLP_VALIDATIONINDEX_A, &IndexA);
XSLPgetdblattrib(Prob, XSLP_VALIDATIONINDEX_R, &IndexR);

Further information
XSLPvalidate checks the feasibility of a converged solution against relative and absolute tolerancesfor each constraint. The left hand side and the right hand side of the constraint are calculated using theconverged solution values. If the calculated values imply that the constraint is infeasible, then thedifference (D) is tested against the absolute and relative validation tolerances.If D < XSLP_VALIDATIONTOL_Athen the constraint is within the absolute validation tolerance. The total positive (TPos) and negativecontributions (TNeg) to the left hand side are also calculated.If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_Rthen the constraint is within the relative validation tolerance. For each constraint which is outside boththe absolute and relative validation tolerances, validation factors are calculated which are the factorsby which the infeasibility exceeds the corresponding validation tolerance; the smallest factor is printedin the validation report.The validation index XSLP_VALIDATIONINDEX_A is the largest absolute validation factor multipliedby the absolute validation tolerance; the validation index XSLP_VALIDATIONINDEX_R is the largestrelative validation factor multiplied by the relative validation tolerance.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 343

Library functions and the programming interface Reference

XSLPvalidatekkt

Purpose Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditionsversus the currect solution
Synopsis

int XPRS_CC XSLPvalidatekkt(XSLPprob Prob, int iCalculationMode, int
iRespectBasisStatus, int iUpdateMultipliers, double
dKKTViolationTarget);

Arguments
Prob The current SLP problem.
iCalculationMode The calculation mode can be:

0 recalculate the reduced costs at the current solution using the current dualsolution.
1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

iRespectBasisStatus The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus XSLP_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

iUpdateMultipliers The calculated values can be:
0 only used to calculate the XSLP_VALIDATIONINDEX_Kmeasure.
1 used to update the current dual solution and reduced costs.

dKKTViolationTarget When calculating the best KKT multipliers, it is possible to enforce an evendistribution of reduced costs violations by enforcing a bound on them.
Further informationThe bounds enforced by dKKTViolationTarget are automatically relaxed if the desired accuracy cannotbe achieved.

Fair Isaac Corporation Confidential and Proprietary Information 344

Library functions and the programming interface Reference

XSLPvalidateprob

Purpose Validates the current problem formulation and statement
Synopsis

int XPRS_CC XSLPvalidateprob(XSLPprob Prob, int ⁎nErrors, int ⁎nWarnings);

Arguments
Prob The current SLP problem.
nErrors Returns the number of errors found in the problem. Errors are expected to make theproblem not solve.
nWarnings Returns the number of potential issues found in the problem. The solver may be able toautomatically recover during the solve.

Further informationThis function is expected to be used in the development stage of a model.

Fair Isaac Corporation Confidential and Proprietary Information 345

Library functions and the programming interface Reference

XSLPvalidaterow

Purpose Prints an extensive analysis on a given constraint of the SLP problem
Synopsis

int XPRS_CC XSLPvalidate(XSLPprob Prob, int Row);

Arguments
Prob The current SLP problem.
Row The index of the row to be analyzed

Further informationThe analysis will include the readable format of the original constraint and the augmented constraint.For infeasible constraints, the absolute and relative infeasibility is calculated. Variables in theconstraints are listed including their value in the solution of the last linearization, the internal value (e.g.cascaded), reduced cost, step bound and convergence status. Scaling analysis is also provided.

Fair Isaac Corporation Confidential and Proprietary Information 346

Library functions and the programming interface Reference

XSLPvalidatevector

Purpose Validate the feasibility of constraints for a given solution
Synopsis

int XPRS_CC XSLPvalidate(XSLPprob Prob, double ⁎Vector, double ⁎SumInf,
double ⁎SumScaledInf, double ⁎Objective);

Arguments
Prob The current SLP problem.
Vector A vector of length XPRS_COLS containing the solution vector to be checked.
SumInf Pointer to double in which the sum of infeasibility will be returned. May be NULL if notrequired.
SumScaledInf Pointer to double in which the sum of scaled (relative) infeasibility will be returned.May be NULL if not required.
Objective Pointer to double in which the net objective will be returned. May be NULL if not required.

Further information
XSLPvalidatevector works the same way as XSLPvalidate, and will update
XSLP_VALIDATIONINDEX_A and XSLP_VALIDATIONINDEX_R.

Related topics
XSLP_VALIDATIONINDEX_A, XSLP_VALIDATIONINDEX_R, XSLP_VALIDATIONTOL_A,
XSLP_VALIDATIONTOL_R

Fair Isaac Corporation Confidential and Proprietary Information 347

Library functions and the programming interface Reference

XSLPwriteprob

Purpose Write the current problem to a file in extended MPS or text format
Synopsis

int XPRS_CC XSLPwriteprob(XSLPprob Prob, char ⁎Filename, char ⁎Flags);

Arguments
Prob The current SLP problem.
Filename Character string holding the name of the file to receive the output. The extension ".mat"will automatically be appended to the file name, except for "text" format when ".txt" willbe appended.
Flags The following flags can be used:

a write the current approximation (linearized) matrix (the default is to writethe non-linear matrix including formulae);
o one coefficient per line (the default is up to two numbers or one formulaper line);
l write the matrix in the tradition LP like format. Similar to the "text" format,with more SLP specific information
s "scrambled" names (the default is to use the names provided on input);
t write the matrix in "text" (the default is to write extended MPS format).

Example The following example reads a problem from file, augments it and writes the augmented (linearized)matrix in text form to file "output.txt":
XSLPreadprob(Prob, "Matrix", "");
XSLPconstruct(Prob);
XSLPwriteprob(Prob, "output", "lt");

Further informationThe t flag is used to produce a "human-readable" form of the problem. It is similar to the lp format of
XPRSwriteprob, but does not contain all the potential complexities of the Extended MPS Format, sothe resulting file cannot be used for input. A quadratic objective is written with its true coefficients (notscaled by 2 as in the equivalent lp format).

Related topics
XSLPreadprob

Fair Isaac Corporation Confidential and Proprietary Information 348

Library functions and the programming interface Reference

XSLPwriteslxsol

Purpose Write the current solution to an MPS like file format
Synopsis

int XPRS_CC XSLPwriteslxsol(XSLPprob Prob, char ⁎Filename, char ⁎Flags);

Arguments
Prob The current SLP problem.
Filename Character string holding the name of the file to receive the output. The extension ".slx"will automatically be appended to the file name, unless an extension is already specifiedin the filename.
Flags The following flags can be used:

p Use double precision numbers

Fair Isaac Corporation Confidential and Proprietary Information 349

CHAPTER 22

Internal Functions

Xpress NonLinear provides a set of standard functions for use in formulae. Many are standardmathematical functions; there are a few which are intended for specialized applications.
The following is a list of all the Xpress NonLinear internal functions:
ABS Absolute value p. 359
ARCCOS Arc cosine trigonometric function p. 352
ARCSIN Arc sine trigonometric function p. 353
ARCTAN Arc tangent trigonometric function p. 354
COS Cosine trigonometric function p. 355
ERF The error function p. 360
ERFC The complementary error function p. 361
EXP Exponential function (e raised to the power) p. 362
LN Natural logarithm p. 363
LOG, LOG10 Logarithm to base 10 p. 364
MAX Maximum value of two or more expressions p. 365
MIN Minimum value of two or more expressions p. 366
PWL The piecewise linear function p. 367
SIGN The sign function p. 368
SIN Sine trigonometric function p. 356
SQRT Square root p. 369
TAN Tangent trigonometric function p. 357

Fair Isaac Corporation Confidential and Proprietary Information 350

Internal Functions Reference

22.1 Trigonometric functions

The trigonometric functions SIN, COS and TAN return the value corresponding to their argument inradians. SIN and COS are well-defined, continuous and differentiable for all values of their arguments;care must be exercised when using TAN because it is discontinuous.
The inverse trigonometric functions ARCSIN and ARCCOS are undefined for arguments outside therange -1 to +1 and special care is required to ensure that no attempt is made to evaluate them outsidethis range. Derivatives for the inverse trigonometric functions are always calculated numerically.

Fair Isaac Corporation Confidential and Proprietary Information 351

Internal Functions Reference

ARCCOS

Purpose Arc cosine trigonometric function
Synopsis

ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return valueA value in the range 0 to +π.
Further information

valuemust be in the range -1 to +1. Values outside the range will return zero and produce anappropriate error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Confidential and Proprietary Information 352

Internal Functions Reference

ARCSIN

Purpose Arc sine trigonometric function
Synopsis

ARCSIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return valueA value in the range –π/2 to +π/2.
Further information

valuemust be in the range -1 to +1. Values outside the range will return zero and produce anappropriate error message. If XSLP_STOPOUTOFRANGE is set then the function error flag will be set.

Fair Isaac Corporation Confidential and Proprietary Information 353

Internal Functions Reference

ARCTAN

Purpose Arc tangent trigonometric function
Synopsis

ARCTAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Return valueA value in the range –π/2 to +π/2.

Fair Isaac Corporation Confidential and Proprietary Information 354

Internal Functions Reference

COS

Purpose Cosine trigonometric function
Synopsis

COS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 355

Internal Functions Reference

SIN

Purpose Sine trigonometric function
Synopsis

SIN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 356

Internal Functions Reference

TAN

Purpose Tangent trigonometric function
Synopsis

TAN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 357

Internal Functions Reference

22.2 Other mathematical functions

Most of the mathematical functions are differentiable, although care should be taken in using analyticderivatives where the derivative is changing rapidly.

Fair Isaac Corporation Confidential and Proprietary Information 358

Internal Functions Reference

ABS

Purpose Absolute value
Synopsis

ABS(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
ABS is not always differentiable and so alternative modeling approaches should be used wherepossible.

Fair Isaac Corporation Confidential and Proprietary Information 359

Internal Functions Reference

ERF

Purpose The error function
Synopsis

ERF(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 360

Internal Functions Reference

ERFC

Purpose The complementary error function
Synopsis

ERFC(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 361

Internal Functions Reference

EXP

Purpose Exponential function (e raised to the power)
Synopsis

EXP(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 362

Internal Functions Reference

LN

Purpose Natural logarithm
Synopsis

LN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 363

Internal Functions Reference

LOG, LOG10

Purpose Logarithm to base 10
Synopsis

LOG(value)
LOG10(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be strictly positive (greater than 1.0E-300).

Fair Isaac Corporation Confidential and Proprietary Information 364

Internal Functions Reference

MAX

Purpose Maximum value of two or more expressions
Synopsis

MAX(value1, value2)

Argument
value1, value2 Each argument is one of the following: a constant; a variable; a formula evaluatingto a single value

Further information
MAX is not always differentiable and so alternative modeling approaches should be used wherepossible.
In mmxnlp, fmax is used to represent the max function.

Fair Isaac Corporation Confidential and Proprietary Information 365

Internal Functions Reference

MIN

Purpose Minimum value of two or more expressions
Synopsis

MIN(value1, value2)

Argument
value1, value2 Each argument is one of the following: a constant; a variable; a formula evaluatingto a single value

Further information
MIN is not always differentiable and so alternative modeling approaches should be used wherepossible.
In mmxnlp, fmin is used to represent the min function.

Fair Isaac Corporation Confidential and Proprietary Information 366

Internal Functions Reference

PWL

Purpose The piecewise linear function
Synopsis

PWL(variable, x1, y1, ..., xk, yk)

Arguments
variable is a single variable that describes where the pwl shold be evaluated.
x1,y2, ..., xk, yk are the k breakpoints of the piecewise linear function. The pwl is extendedto minus and plus infinity using the first and last 2 breakpoints respectively.

Fair Isaac Corporation Confidential and Proprietary Information 367

Internal Functions Reference

SIGN

Purpose The sign function
Synopsis

SIGN(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Fair Isaac Corporation Confidential and Proprietary Information 368

Internal Functions Reference

SQRT

Purpose Square root
Synopsis

SQRT(value)

Argument
value One of the following: a constant; a variable; a formula evaluating to a single value

Further information
valuemust be non-negative.

Fair Isaac Corporation Confidential and Proprietary Information 369

CHAPTER 23

Error Messages

If the optimization procedure or some other library function encounters an error, then the procedurenormally terminates with a nonzero return code and sets an error code. For most functions, the returncode is 32 for an error; those functions which can return Optimizer return codes (such as the functionsfor accessing attributes and controls) will return the Optimizer code in such circumstances.
If an error message is produced, it will normally be output to the message handler; for console-basedoutput, it will appear on the console. The error message and the error code can also be obtained usingthe function XSLPgetlasterror. This allows the user to retrieve the message number and/or themessage text. The format is:

XSLPgetlasterror(Prob, &ErrorCode, &ErrorMessage);

The following is a list of the error codes and an explanation of the message. In the list, error numbersare prefixed by E- and warnings by W-. The printed messages are generally prefixed by Xpress
NonLinear error and Xpress NonLinear warning respectively.
E-12001 invalid parameter number numThis message is produced by the functions which access SLP or Optimizer controls andattributes. The parameter numbers for SLP are given in the header file xslp.h. Theparameter is of the wrong type for the function, or cannot be changed by the user.
E-12002 internal hash errorThis is a non-recoverable program error. If this error is encountered, please contact your localXpress support office.
E-12003 XSLPprob problem pointer is NULLThe problem pointer has not been initialized and contains a zero address. Initialize theproblem using XSLPcreateprob.
E-12004 XSLPprob is corrupted or is not a valid problemThe problem pointer is not the address of a valid problem. The problem pointer has beencorrupted, and no longer contains the correct address; or the problem has not been initializedcorrectly; or the problem has been corrupted in memory. Check that your program is using thecorrect pointer and is not overwriting part of the memory area.
E-12005 memory manager error - allocation errorThis message normally means that the system has run out of memory when trying to allocateor reallocate arrays. Use XSLPprintmemory to obtain a list of the arrays and amounts ofmemory allocated by the system. Ensure that any memory allocated by user programs isfreed at the appropriate time.
E-12006 memory manager error - Array expansion size (num) ≤ 0This may be caused by incorrect setting of the XSLP_EXTRA⁎ control parameters to negativenumbers. Use XSLPprintmemory to obtain a list of the arrays and amounts of memory

Fair Isaac Corporation Confidential and Proprietary Information 370

Error Messages Reference

allocated by the system for the specified array. If the problem persists, please contact yourlocal Xpress support office.
E-12007 memory manager error - object Obj size not definedThis is a non-recoverable program error. If this error is encountered, please contact your localXpress support office.
E-12008 cannot open file nameThis message appears when Xpress NonLinear is required to open a file of any type andencounters an error while doing so. Check that the file name is spelt correctly (including thepath, directory or folder) and that it is accessible (for example, not locked by anotherapplication).
E-12009 cannot open problem file nameThis message is produced by XSLPreadprob if it cannot find name.mat, name.mps or

name. Note that "lp" format files are not accepted for SLP input.
E-12010 internal I/O errorThis error is produced by XSLPreadprob if it is unable to read or write intermediate filesrequired for input.
E-12011 XSLPreadprob unknown record type nameThis error is produced by XSLPreadprob if it encounters a record in the file which is notidentifiable. It may be out of place (for example, a matrix entry in the BOUNDS section), or itmay be a completely invalid record type.
E-12012 XSLPreadprob invalid function argument type nameThis error is produced by XSLPreadprob if it encounters a user function definition with anargument type that is not one of NULL, DOUBLE, INTEGER, CHAR or VARIANT.
E-12013 XSLPreadprob invalid function linkage type nameThis error is produced by XSLPreadprob if it encounters a user function with a linkage typethat is not one of DLL, XLS, XLF, MOSEL or COM.
E-12014 XSLPreadprob unrecognized function nameThis error is produced by XSLPreadprob if it encounters a function reference in a formulawhich is not a pre-defined internal function nor a defined user function. Check the formulaand the function name, and define the function if required.
E-12015 func: item num out of rangeThis message is produced by the Xpress NonLinear function func which is referencing theSLP item (row, column variable, etc). The index provided is out of range (less than 1 unlesszero is explicitly allowed, or greater than the current number of items of that type). Rememberthat most Xpress NonLinear items count from 1.
E-12016 missing left bracket in formulaThis message is produced during parsing of formulae provided in character or unparsedinternal format. A right bracket is not correctly paired with a corresponding left bracket.Check the formulae.
E-12017 missing left operand in formulaThis message is produced during parsing of formulae provided in character or unparsedinternal format. An operator which takes two operands is missing the left hand one (and soimmediately follows another operator or a bracket). Check the formulae.
E-12018 missing right operand in formulaThis message is produced during parsing of formulae provided in character or unparsedinternal format. An operator is missing the right hand (following) operand (and so isimmediately followed by another operator or a bracket). Check the formulae.

Fair Isaac Corporation Confidential and Proprietary Information 371

Error Messages Reference

E-12019 missing right bracket in formulaThis message is produced during parsing of formulae provided in character or unparsedinternal format. A left bracket is not correctly paired with a corresponding right bracket.Check the formulae.
E-12020 column #n is defined more than once as an SLP variableThis message is produced by XSLPaddvars or XSLPloadvars if the same column appearsmore than once in the list, or has already been defined as an SLP variable. Although

XSLPchgvar is less efficient, it can be used to set the properties of an SLP variable whetheror not it has already been declared.
E-12021 row #num is defined more than once as an SLP delayed constraintThis message is produced by the deprecated XSLPadddcs or XSLPloaddcs if the same rowappears more than once in the list, or has already been defined as a delayed constraint.Although XSLPchgdc is less efficient, it can be used to set the properties of an SLP delayedconstraint whether or not it has already been declared.
E-12022 undefined tolerance type nameThis error is produced by XSLPreadprob if it encounters a tolerance which is not one of the9 defined types (TC, TA, TM, TI, TS, RA, RM, RI, RS). Check the two-character code for thetolerance.
W-12023 name has been given a tolerance but is not an SLP variableThis error is produced by XSLPreadprob if it encounters a tolerance for a variable which isnot an SLP variable (it is not in a coefficient, it does not have a non-constant coefficient and ithas not been given an initial value). If the tolerance is required (that is, if the variable is to bemonitored for convergence) then give it an initial value so that it becomes an SLP variable.Otherwise, the tolerance will be ignored.
W-12024 name has been given SLP data of type ty but is not an SLP variableThis error is produced by XSLPreadprob if it encounters SLPDATA for a variable which hasnot been defined as an SLP variable. Typically, this is because the variable would only appearin coefficients, and the relevant coefficients are missing. The data item will be ignored.
E-12025 func has the same source and destination problemsThis message is produced by XSLPcopycallbacks, XSLPcopycontrols and

XSLPcopyprob if the source and destination problems are the same. If they are the same,then there is no point in copying them.
E-12026 invalid or corrupt SAVE fileThis message is produced by XSLPrestore if the SAVE file header is not valid, or if internalconsistency checks fail. Check that the file exists and was created by XSLPsave.
E-12027 SAVE file version is too oldThis message is produced by XSLPrestore if the SAVE file was produced by an earlierversion of Xpress NonLinear. In general, it is not possible to restore a file except with thesame version of the program as the one which SAVEd it.
W-12028 problem already has augmented SLP structureThis message is produced by XSLPconstruct if it is called for a second time for the sameproblem. The problem can only be augmented once, which must be done after all thevariables and coefficients have been loaded. XSLPconstruct is called automatically by

XSLPmaxim and XSLPminim if it has not been called earlier.
E-12029 zero divisorThis message is produced by the formula evaluation routines if an attempt is made to divideby a value less than XSLP_ZERO. A value of +/-XSLP_INFINITY is returned as the result andthe calculation continues.

Fair Isaac Corporation Confidential and Proprietary Information 372

Error Messages Reference

E-12030 negative number, fractional exponent - truncated to integerThis message is produced by the formula evaluation routines if an attempt is made to raise anegative number to a non-integer exponent. The exponent is truncated to an integer value andthe calculation continues.
E-12031 binary search failedThis is a non-recoverable program error. If this error is encountered, please contact your localXpress support office.
E-12032 wrong number (num) of arguments to function funcThis message is produced by the formula evaluation routines if a formula contains the wrongnumber of arguments for an internal function (for example, SIN(A,B)). Correct the formula.
E-12033 argument value out of range in function funcThis message is produced by the formula evaluation routines if an internal function is calledwith an argument outside the allowable range (for example, LOG of a negative number). Thefunction will normally return zero as the result and, if XSLP_STOPOUTOFRANGE is set, will setthe function error flag.
W-12034 terminated following user return code numThis message is produced by XSLPmaxim and XSLPminim if a nonzero value is returned bythe callback defined by XSLPsetcbiterend or XSLPsetcbslpend.
E-12037 failed to load library/file/program "name" containing function "func"This message is produced if a user function is defined to be in a file, but Xpress NonLinearcannot the specified file. Check that the correct file name is specified (also check the searchpaths such as $PATH and %path% if necessary).This message may also be produced if the specified library exists but is dependent onanother library which is missing.
E-12038 function "func" is not correctly defined or is not in the specified locationThis message is produced if a user function is defined to be in a file, but Xpress NonLinearcannot find it in the file. Check that the number and type of the arguments is correct, and thatthe (external) name of the user function matches the name by which it is known in the file.
E-12084 Xpress NonLinear has not been initializedAn attempt has been made to use Xpress NonLinear functions without a previous call to

XSLPinit. Only a very few functions can be called before initialization. Check the sequenceof calls to ensure that XSLPinit is called first, and that it completed successfully. This error
message normally produces return code 279.

E-12085 Xpress NonLinear has not been licensed for use hereEither Xpress NonLinear is not licensed at all (although the Xpress Optimizer may belicensed), or the particular feature (such as MISLP) is not licensed. Check the license andcontact the local Fair Isaac sales office if necessary. This error message normally produces
return code 352.

E-12105 Xpress NonLinear error: I/O error on fileThe message is produced by XSLPsave or XSLPwriteprob if there is an I/O error whenwriting the output file (usually because there is insufficient space to write the file).
E-12107 Xpress NonLinear error: user function type name not supported on this platformThis message is produced if a user function defined as being of type XLS, XLF or COM and isrun on a non-Windows platform.
E-12110 Xpress NonLinear error: unidentified section in REVISE: nameThe file provided to XSLPrevise contains an unsupported MPS section.
E-12111 Xpress NonLinear error: unidentified row type in REVISE: nameThe file provided to XSLPrevise contains an unsupported row type.

Fair Isaac Corporation Confidential and Proprietary Information 373

Error Messages Reference

E-12112 Xpress NonLinear error: unidentified row in REVISE: nameThe file provided to XSLPrevise contains a row name not found in the current problem.
E-12113 Xpress NonLinear error: unidentified bound in REVISE: nameThe file provided to XSLPrevise contains an unsupported bound type.
E-12114 Xpress NonLinear error: unidentified column in REVISE: nameThe file provided to XSLPrevise contains a column name not found in the current problem.
E-12121 Xpress NonLinear error: bad return code num from user function funcThis message is produced during evaluation of a complicated user function if it returns avalue (-1) indicating that the system should estimate the result from a previous function call,but there has been no previous function call.
E-12124 Xpress NonLinear error: augmented problem not set upThe message is produced by XSLPvalidate if an attempt is made to validate the problemwithout a preceding call to XSLPconstruct. In fact, unless a solution to the linearizedproblem is available, XSLPvalidate will not be able to give useful results.
E-12125 Xpress NonLinear error: user function func terminated with errorsThis message is produced during evaluation of a user function if it sets the function error flag(see XSLPsetfunctionerror).
W-12142 Xpress NonLinear warning: invalid record: textThis error is produced by XSLPreadprob if it encounters a record in the file which isidentifiable but invalid (for example, a BOUNDS record without a bound set name). The recordis ignored.
E-12147 Xpress NonLinear error: incompatible arguments in user function funcThis message is produced if a user function is called by XSLPcalluserfunc but thefunction call does not provide the arguments required by the function.
E-12158 Xpress NonLinear error: unknown parameter name nameThis message is produced if an attempt is made to set or retrieve a value for a controlparameter or attribute given by name where the name is incorrect.
E-12159 Xpress NonLinear error: unknown parameter type nameA parameter has an unexpected type and cannot be retrieved. This is an internal error, pleasecontanct FICO support.
E-12159 Xpress NonLinear error: parameter number is not writableThis message is produced if an attempt is made to set a value for an attribute.
E-12160 Xpress NonLinear error: parameter num is not availableThis message is produced if an attempt is made to retrieve a value for a control or attributewhich is not readable
E-12161 Xpress NonLinear error: parameter num is not availableThe parameter corresponding to the provided ID is aninternal, not readable parameter.
E-12192 Xpress NonLinear error: no problem or solution readNo problem or solution has been read. If a problem read fails, it is not valid to continue withany problem building or solving functions.
E-12193 Xpress NonLinear error: this version of SLP requires XPRS version num or newerAltough not recommended, Xpress SLP can work with different xprs library versions. Thiserror is issued when a tool old xpres library is found.
E-12194 Xpress NonLinear error: provided buffer is too shortThe provided buffer is too short. This error may occur if a formula is retrieved from Xpress,into a buffer that is not large enough.

Fair Isaac Corporation Confidential and Proprietary Information 374

Error Messages Reference

E-12195 Xpress NonLinear error: type index value is invalidThe index provided is not valid for the this type.
E-12196 Xpress NonLinear error: error in problem transformationAn error occurred while the problem was attempted to be reformulated as part of thenonlinear presolver. Please contact FICO support.
E-12197 Xpress NonLinear error: request index invalidThe requested information cannot be retrieved as it is not valid or not availanble.
E-12198 Xpress NonLinear error: error while cascading. Cannot evaluate coefficient at row rowname

column.Evaluating an expression in cascading has returned an error. There is likely a user function inthe expression returning an error.
E-12199 Xpress NonLinear error: nonlinear coefficient in neutral objective row ’rowname’. Please

use an objective transfer row instead.A nonlinear objective function in SLP needs to be modelled using an objective transfer row.
E-12200 Xpress NonLinear error: problem is not augmented.The operation is only valid for augmented problems. Please call the construct method first, orsolve using SLP.
E-12201 Xpress NonLinear error: an internal error has occured.An internal error has occured that is not expected to have been caused by incorrect input.Please contact FICO support.
E-12202 Xpress NonLinear error: attribute i cannot be changed.Attributes normally cannot be changed, as they are set up by the solver. There are a fewexceptions to this rule, the requested attribute is not among the exceptions.
E-12203 Xpress NonLinear error: no problem or solution written.No problem or solution was written to disk due to an error processing the data.

Fair Isaac Corporation Confidential and Proprietary Information 375

CHAPTER 24

Xpress Knitro Control Parameters

This chapter provides a full list of the controls accepted by Xpress for setting Knitro parameters. Knitrohas a great number and variety of user option settings and although it tries to choose the best settingsby default, often significant performance improvements can be realized by choosing some non-defaultoption settings.
XKTR_PARAM_ALGORITHM Indicates which algorithm to use to solve the problem p. 383
XKTR_PARAM_BAR_DIRECTINTERVAL Controls the maximum number of consecutive conjugategradient (CG) steps before Knitro will try to enforce that a step is takenusing direct linear algebra. p. 383
XKTR_PARAM_BAR_FEASIBLE Specifies whether special emphasis is placed on getting and stayingfeasible in the interior-point algorithms. p. 383
XKTR_PARAM_BAR_FEASMODETOL Specifies the tolerance in equation that determines whetherKnitro will force subsequent iterates to remain feasible. p. 379
XKTR_PARAM_BAR_INITMU Specifies the initial value for the barrier parameter : used with the barrieralgorithms. This option has no effect on the Active Set algorithm. p. 379
XKTR_PARAM_BAR_INITPT Indicates whether an initial point strategy is used with barrieralgorithms. p. 384
XKTR_PARAM_BAR_MAXBACKTRACK Indicates the maximum allowable number of backtracks duringthe linesearch of the Interior/Direct algorithm before reverting to a CG step.p. 384
XKTR_PARAM_BAR_MAXCROSSIT Specifies the maximum number of crossover iterations beforetermination. p. 384
XKTR_PARAM_BAR_MAXREFACTOR Indicates the maximum number of refactorizations of the KKTsystem per iteration of the Interior/Direct algorithm before reverting to aCG step. p. 385
XKTR_PARAM_BAR_MURULE Indicates which strategy to use for modifying the barrier parameter muin the barrier algorithms. p. 385
XKTR_PARAM_BAR_PENCONS Indicates whether a penalty approach is applied to the constraints.p. 386
XKTR_PARAM_BAR_PENRULE Indicates which penalty parameter strategy to use for determiningwhether or not to accept a trial iterate. p. 386
XKTR_PARAM_BAR_SWITCHRULE Indicates whether or not the barrier algorithms will allow switchingfrom an optimality phase to a pure feasibility phase. p. 386

Fair Isaac Corporation Confidential and Proprietary Information 376

Xpress Knitro Control Parameters Reference

XKTR_PARAM_DELTA Specifies the initial trust region radius scaling factor used to determine theinitial trust region size. p. 379
XKTR_PARAM_FEASTOL Specifies the final relative stopping tolerance for the feasibility error. p. 379
XKTR_PARAM_FEASTOLABS Specifies the final absolute stopping tolerance for the feasibility error.p. 380
XKTR_PARAM_GRADOPT Specifies how to compute the gradients of the objective and constraintfunctions. p. 387
XKTR_PARAM_HESSOPT Specifies how to compute the (approximate) Hessian of the Lagrangian.p. 387
XKTR_PARAM_HONORBNDS Indicates whether or not to enforce satisfaction of simple variablebounds throughout the optimization. p. 387
XKTR_PARAM_INFEASTOL Specifies the (relative) tolerance used for declaring infeasibility of amodel. p. 380
XKTR_PARAM_LMSIZE Specifies the number of limited memory pairs stored when approximatingthe Hessian using the limited-memory quasi-Newton BFGS option. p. 388
XKTR_PARAM_MAXCGIT Specifies the number of limited memory pairs stored when approximatingthe Hessian using the limited-memory quasi-Newton BFGS option. p. 388
XKTR_PARAM_MAXIT Specifies the maximum number of iterations before termination. p. 388
XKTR_PARAM_MIP_BRANCHRULE Specifies which branching rule to use for MIP branch and boundprocedure. p. 389
XKTR_PARAM_MIP_GUB_BRANCH Specifies whether or not to branch on generalized upper bounds(GUBs). p. 389
XKTR_PARAM_MIP_HEURISTIC Specifies which MIP heuristic search approach to apply to try to findan initial integer feasible point. p. 389
XKTR_PARAM_MIP_HEURISTIC_MAXIT Specifies the maximum number of iterations to allow forMIP heuristic, if one is enabled. p. 389
XKTR_PARAM_MIP_IMPLICATNS Specifies whether or not to add constraints to the MIP derivedfrom logical implications. p. 390
XKTR_PARAM_MIP_INTEGERTOL This value specifies the threshold for deciding whether or not avariable is determined to be an integer. p. 380
XKTR_PARAM_MIP_INTGAPABS The absolute integrality gap stop tolerance for MIP. p. 380
XKTR_PARAM_MIP_INTGAPREL The relative integrality gap stop tolerance for MIP. p. 380
XKTR_PARAM_MIP_KNAPSACK Specifies rules for adding MIP knapsack cuts. p. 390
XKTR_PARAM_MIP_LPALG Specifies which algorithm to use for any linear programming (LP)subproblem solves that may occur in the MIP branch and bound procedure.p. 390
XKTR_PARAM_MIP_MAXNODES Specifies the maximum number of nodes explored. p. 391
XKTR_PARAM_MIP_MAXSOLVES Specifies the maximum number of subproblem solves allowed (0means no limit). p. 391
XKTR_PARAM_MIP_METHOD Specifies which MIP method to use. p. 391

Fair Isaac Corporation Confidential and Proprietary Information 377

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_OUTINTERVAL Specifies node printing interval forXKTR_PARAM_MIP_OUTLEVEL when XKTR_PARAM_MIP_OUTLEVEL > 0.p. 391
XKTR_PARAM_MIP_OUTLEVEL Specifies how much MIP information to print. p. 392
XKTR_PARAM_MIP_PSEUDOINIT Specifies the method used to initialize pseudo-costscorresponding to variables that have not yet been branched on in the MIPmethod. p. 392
XKTR_PARAM_MIP_ROOTALG Specifies which algorithm to use for the root node solve in MIP (sameoptions as XKTR_PARAM_ALGORITHM user option). p. 392
XKTR_PARAM_MIP_ROUNDING Specifies the MIP rounding rule to apply. p. 392
XKTR_PARAM_MIP_SELECTRULE Specifies the MIP select rule for choosing the next node in thebranch and bound tree. p. 393
XKTR_PARAM_MIP_STRONG_CANDLIM Specifies the maximum number of candidates to explore forMIP strong branching. p. 393
XKTR_PARAM_MIP_STRONG_LEVEL Specifies the maximum number of tree levels on which toperform MIP strong branching. p. 393
XKTR_PARAM_MIP_STRONG_MAXIT Specifies the maximum number of iterations to allow for MIPstrong branching solves. p. 393
XKTR_PARAM_MIP_TERMINATE Specifies conditions for terminating the MIP algorithm. p. 393
XKTR_PARAM_OBJRANGE Specifies the extreme limits of the objective function for purposes ofdetermining unboundedness. p. 381
XKTR_PARAM_OPTTOL Specifies the final relative stopping tolerance for the KKT (optimality) error.p. 381
XKTR_PARAM_OPTTOLABS Specifies the final absolute stopping tolerance for the KKT (optimality)error. p. 381
XKTR_PARAM_OUTLEV Controls the level of output produced by Knitro. p. 394
XKTR_PARAM_PRESOLVE Determine whether or not to use the Knitro presolver to try to simplify themodel by removing variables or constraints. Specifies conditions forterminating the MIP algorithm. p. 394
XKTR_PARAM_PRESOLVE_TOL Determines the tolerance used by the Knitro presolver to removevariables and constraints from the model. p. 381
XKTR_PARAM_SCALE Performs a scaling of the objective and constraint functions based on theirvalues at the initial point. p. 394
XKTR_PARAM_SOC Specifies whether or not to try second order corrections (SOC). p. 395
XKTR_PARAM_XTOL The optimization process will terminate if the relative change in allcomponents of the solution point estimate is less than xtol. p. 382

Fair Isaac Corporation Confidential and Proprietary Information 378

Xpress Knitro Control Parameters Reference

24.1 Double control parameters

These double control parameters can be set using XSLPsetdblcontrol using the Xpress NonLinear API,XNLPsetsolverdoublecontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_BAR_FEASMODETOL

Description Specifies the tolerance in equation that determines whether Knitro will force subsequentiterates to remain feasible.
Type Double
Note The tolerance applies to all inequality constraints in the problem. This option only has aneffect if option XKTR_PARAM_BAR_FEASIBLE = stay or XKTR_PARAM_BAR_FEASIBLE =get_stay.
Default value 1.0e-4

XKTR_PARAM_BAR_INITMU

Description Specifies the initial value for the barrier parameter : µ used with the barrier algorithms. Thisoption has no effect on the Active Set algorithm.
Type Double
Default value 1.0e-1

XKTR_PARAM_DELTA

Description Specifies the initial trust region radius scaling factor used to determine the initial trust regionsize.
Type Double
Default value 1.0e0

XKTR_PARAM_FEASTOL

Description Specifies the final relative stopping tolerance for the feasibility error.
Type Double
Note Smaller values of feastol result in a higher degree of accuracy in the solution with respect tofeasibility.
Default value 1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 379

Xpress Knitro Control Parameters Reference

XKTR_PARAM_FEASTOLABS

Description Specifies the final absolute stopping tolerance for the feasibility error.
Type Double
Note Smaller values of feastol_abs result in a higher degree of accuracy in the solution withrespect to feasibility.
Default value 0.0e0

XKTR_PARAM_INFEASTOL

Description Specifies the (relative) tolerance used for declaring infeasibility of a model.
Type Double
Note Smaller values of infeastol make it more difficult to satisfy the conditions Knitro uses fordetecting infeasible models. If you believe Knitro incorrectly declares a model to beinfeasible, then you should try a smaller value for infeastol.
Default value 1.0e-8

XKTR_PARAM_MIP_INTEGERTOL

Description This value specifies the threshold for deciding whether or not a variable is determined to bean integer.
Type Double
Default value 1.0e-8

XKTR_PARAM_MIP_INTGAPABS

Description The absolute integrality gap stop tolerance for MIP.
Type Double
Default value 1.0e-6

XKTR_PARAM_MIP_INTGAPREL

Description The relative integrality gap stop tolerance for MIP.
Type Double
Default value 1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 380

Xpress Knitro Control Parameters Reference

XKTR_PARAM_OBJRANGE

Description Specifies the extreme limits of the objective function for purposes of determiningunboundedness.
Type Double
Note If the magnitude of the objective function becomes greater than objrange for a feasibleiterate, then the problem is determined to be unbounded and Knitro proceeds no further.
Default value 1.0e20

XKTR_PARAM_OPTTOL

Description Specifies the final relative stopping tolerance for the KKT (optimality) error.
Type Double
Note Smaller values of opttol result in a higher degree of accuracy in the solution with respect tooptimality.
Default value 1.0e-6

XKTR_PARAM_OPTTOLABS

Description Specifies the final absolute stopping tolerance for the KKT (optimality) error.
Type Double
Note Smaller values of opttol_abs result in a higher degree of accuracy in the solution with respectto optimality.
Default value 0.0e0

XKTR_PARAM_PRESOLVE_TOL

Description Determines the tolerance used by the Knitro presolver to remove variables and constraintsfrom the model.
Type Double
Note If you believe the Knitro presolver is incorrectly modifying the model, use a smaller value forthis tolerance (or turn the presolver off).
Default value 1.0e-6

Fair Isaac Corporation Confidential and Proprietary Information 381

Xpress Knitro Control Parameters Reference

XKTR_PARAM_XTOL

Description The optimization process will terminate if the relative change in all components of thesolution point estimate is less than xtol.
Type Double
Note If using the Interior/Direct or Interior/CG algorithm and the barrier parameter is still large,Knitro will first try decreasing the barrier parameter before terminating.
Default value 1.0e-15

Fair Isaac Corporation Confidential and Proprietary Information 382

Xpress Knitro Control Parameters Reference

24.2 Integer control parameters

These integer control parameters can be set using XSLPsetintcontrol using the Xpress NonLinear API,XNLPsetsolverintcontrol using the XNLP API and setparam in Mosel using module mmxnlp.

XKTR_PARAM_ALGORITHM

Description Indicates which algorithm to use to solve the problem
Type Integer
Values 0 (auto) let Knitro automatically choose an algorithm, based on the problemcharacteristics.

1 (direct) use the Interior/Direct algorithm.
2 (cg) use the Interior/CG algorithm.
3 (active) use the Active Set algorithm.
4 (sqp) use the SQP algorithm.
5 (multi) run all algorithms, perhaps in parallel.

Default value 0

XKTR_PARAM_BAR_DIRECTINTERVAL

Description Controls the maximum number of consecutive conjugate gradient (CG) steps before Knitrowill try to enforce that a step is taken using direct linear algebra.
Type Integer
Note This option is only valid for the Interior/Direct algorithm and may be useful on problemswhere Knitro appears to be taking lots of conjugate gradient steps. Setting bar_directintervalto 0 will try to enforce that only direct steps are taken which may produce better results onsome problems.
Default value 10

XKTR_PARAM_BAR_FEASIBLE

Description Specifies whether special emphasis is placed on getting and staying feasible in theinterior-point algorithms.
Type Integer
Values 0 (no) No special emphasis on feasibility.

1 (stay) Iterates must satisfy inequality constraints once they become sufficientlyfeasible.
2 (get) Special emphasis is placed on getting feasible before trying to optimize.
3 (get_stay) Implement both options 1 and 2 above.

Fair Isaac Corporation Confidential and Proprietary Information 383

Xpress Knitro Control Parameters Reference

Note This option can only be used with the Interior/Direct and Interior/CG algorithms. Ifbar_feasible = stay or bar_feasible = get_stay, this will activate the feasible version of Knitro.The feasible version of Knitro will force iterates to strictly satisfy inequalities, but does notrequire satisfaction of equality constraints at intermediate iterates. This option and thehonorbnds option may be useful in applications where functions are undefined outside theregion defined by inequalities. The initial point must satisfy inequalities to a sufficient degree;if not, Knitro may generate infeasible iterates and does not switch to the feasible version untila sufficiently feasible point is found. Sufficient satisfaction occurs at a point x if it is true forall inequalities that cl + tol ≤ c(x) ≤ cu - tol The constant tol is determined by the optionbar_feasmodetol. If bar_feasible = get or bar_feasible = get_stay, Knitro will place specialemphasis on first trying to get feasible before trying to optimize.
Default value 0

XKTR_PARAM_BAR_INITPT

Description Indicates whether an initial point strategy is used with barrier algorithms.
Type Integer
Values 0 (auto) Let Knitro automatically choose the strategy.

1 (yes) Shift the initial slacks and multipliers to improve barrier algorithm performance.
2 (no) Do no alter the initial slacks and multipliers.

Note This option has no effect on the Active Set algorithm.
Default value 0

XKTR_PARAM_BAR_MAXBACKTRACK

Description Indicates the maximum allowable number of backtracks during the linesearch of theInterior/Direct algorithm before reverting to a CG step.
Type Integer
Note Increasing this value will make the Interior/Direct algorithm less likely to take CG steps. If theInterior/Direct algorithm is taking a large number of CG steps (as indicated by a positive valuefor ’Gits’ in the output), this may improve performance. This option has no effect on theActive Set algorithm.
Default value 3

XKTR_PARAM_BAR_MAXCROSSIT

Description Specifies the maximum number of crossover iterations before termination.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 384

Xpress Knitro Control Parameters Reference

Note If the value is positive and the algorithm in operation is Interior/Direct or Interior/CG, thenKnitro will crossover to the Active Set algorithm near the solution. The Active Set algorithmwill then perform at most bar_maxcrossit iterations to get a more exact solution. If the valueis 0, no Active Set crossover occurs and the interior-point solution is the final result. If ActiveSet crossover is unable to improve the approximate interior-point solution, then Knitro willrestore the interior-point solution. In some cases (especially on large-scale problems ordifficult degenerate problems) the cost of the crossover procedure may be significant - forthis reason, crossover is disabled by default. Enabling crossover generally provides a moreaccurate solution than Interior/Direct or Interior/CG.
Default value 0

XKTR_PARAM_BAR_MAXREFACTOR

Description Indicates the maximum number of refactorizations of the KKT system per iteration of theInterior/Direct algorithm before reverting to a CG step.
Type Integer
Note These refactorizations are performed if negative curvature is detected in the model. Ratherthan reverting to a CG step, the Hessian matrix is modified in an attempt to make thesubproblem convex and then the KKT system is refactorized. Increasing this value will makethe Interior/Direct algorithm less likely to take CG steps. If the Interior/Direct algorithm istaking a large number of CG steps (as indicated by a positive value for "CGits" in the output),this may improve performance. This option has no effect on the Active Set algorithm.
Default value -1

XKTR_PARAM_BAR_MURULE

Description Indicates which strategy to use for modifying the barrier parameter mu in the barrieralgorithms.
Type Integer
Values 0 (auto) Let Knitro automatically choose the strategy.

1 (monotone) Monotonically decrease the barrier parameter. Available for both barrieralgorithms.
2 (adaptive) Use an adaptive rule based on the complementarity gap to determine thevalue of the barrier parameter. Available for both barrier algorithms.
3 (probing) Use a probing (affine-scaling) step to dynamically determine the barrierparameter. Available only for the Interior/Direct algorithm.
4 (dampmpc) Use a Mehrotra predictor-corrector type rule to determine the barrierparameter, with safeguards on the corrector step. Available only for theInterior/Direct algorithm.
5 (fullmpc) Use a Mehrotra predictor-corrector type rule to determine the barrierparameter, without safeguards on the corrector step. Available only for theInterior/Direct algorithm.
6 (quality) Minimize a quality function at each iteration to determine the barrierparameter. Available only for the Interior/Direct algorithm.

Fair Isaac Corporation Confidential and Proprietary Information 385

Xpress Knitro Control Parameters Reference

Note Not all strategies are available for both barrier algorithms. This option has no effect on theActive Set algorithm.
Default value 0

XKTR_PARAM_BAR_PENCONS

Description Indicates whether a penalty approach is applied to the constraints.
Type Integer
Values 0 (auto) Let Knitro automatically choose the strategy.

1 (none) No constraints are penalized.
2 (all) A penalty approach is applied to all general constraints.

Note Using a penalty approach may be helpful when the problem has degenerate or difficultconstraints. It may also help to more quickly identify infeasible problems, or achieve feasibilityin problems with difficult constraints. This option has no effect on the Active Set algorithm.
Default value 0

XKTR_PARAM_BAR_PENRULE

Description Indicates which penalty parameter strategy to use for determining whether or not to accept atrial iterate.
Type Integer
Values 0 (auto) Let Knitro automatically choose the strategy.

1 (single) Use a single penalty parameter in the merit function to weight feasibilityversus optimality.
2 (flex) Use a more tolerant and flexible step acceptance procedure based on a rangeof penalty parameter values.

Note This option has no effect on the Active Set algorithm.
Default value 0

XKTR_PARAM_BAR_SWITCHRULE

Description Indicates whether or not the barrier algorithms will allow switching from an optimality phaseto a pure feasibility phase.
Type Integer
Values 0 (auto) Let Knitro determine the switching procedure.

1 (never) Never switch to feasibility phase.
2 (level1) Allow switches to feasibility phase.
3 (level2) Use a more aggressive switching rule.

Fair Isaac Corporation Confidential and Proprietary Information 386

Xpress Knitro Control Parameters Reference

Note This option has no effect on the Active Set algorithm.
Default value 0

XKTR_PARAM_GRADOPT

Description Specifies how to compute the gradients of the objective and constraint functions.
Type Integer
Values 1 (exact) User provides a routine for computing the exact gradients.

2 (forward) Knitro computes gradients by forward finite-differences.
3 (central) Knitro computes gradients by central finite differences.

Note It is highly recommended to provide exact gradients if at all possible as this greatly impactsthe performance of the code.
Default value 1

XKTR_PARAM_HESSOPT

Description Specifies how to compute the (approximate) Hessian of the Lagrangian.
Type Integer
Values 1 (exact) User provides a routine for computing the exact Hessian.

2 (bfgs) Knitro computes a (dense) quasi-Newton BFGS Hessian.
3 (sr1) Knitro computes a (dense) quasi-Newton SR1 Hessian.
4 (finite_diff) Knitro computes Hessian-vector products using finite-differences.
5 (product) User provides a routine to compute the Hessian-vector products.
6 (lbfgs) Knitro computes a limited-memory quasi-Newton BFGS Hessian (its size isdetermined by the option lmsize).

Note Options hessopt = 4 and hessopt = 5 are not available with the Interior/Direct algorithm.Knitro usually performs best when the user provides exact Hessians (hessopt = 1) or exactHessian-vector products (hessopt = 5). If neither can be provided but exact gradients areavailable (i.e., gradopt = 1), then hessopt = 4 is recommended. This option is comparable interms of robustness to the exact Hessian option and typically not much slower in terms oftime, provided that gradient evaluations are not a dominant cost. If exact gradients cannot beprovided, then one of the quasi-Newton options is preferred. Options hessopt = 2 and hessopt= 3 are only recommended for small problems (n ≤ 1000) since they require working with adense Hessian approximation. Option hessopt = 6 should be used for large problems.
Default value 1

XKTR_PARAM_HONORBNDS

Description Indicates whether or not to enforce satisfaction of simple variable bounds throughout theoptimization.

Fair Isaac Corporation Confidential and Proprietary Information 387

Xpress Knitro Control Parameters Reference

Type Integer
Values 0 (no) Knitro does not require that the bounds on the variables be satisfied atintermediate iterates.

1 (always) Knitro enforces that the initial point and all subsequent solution estimatessatisfy the bounds on the variables.
2 (initpt) Knitro enforces that the initial point satisfies the bounds on the variables.

Note This option and the bar_feasible option may be useful in applications where functions areundefined outside the region defined by inequalities.
Default value 2

XKTR_PARAM_LMSIZE

Description Specifies the number of limited memory pairs stored when approximating the Hessian usingthe limited-memory quasi-Newton BFGS option.
Type Integer
Note The value must be between 1 and 100 and is only used with XKTR_PARAM_HESSOPT = 6.Larger values may give a more accurate, but more expensive, Hessian approximation. Smallervalues may give a less accurate, but faster, Hessian approximation. When using the limitedmemory BFGS approach it is recommended to experiment with different values of thisparameter.
Default value 10

XKTR_PARAM_MAXCGIT

Description Specifies the number of limited memory pairs stored when approximating the Hessian usingthe limited-memory quasi-Newton BFGS option.
Type Integer
Values 0 Let Knitro automatically choose a value based on the problem size.

n At most n>0 CG iterations may be performed during one minor iteration of Knitro.
Default value 0

XKTR_PARAM_MAXIT

Description Specifies the maximum number of iterations before termination.
Type Integer
Values 0 Let Knitro automatically choose a value based on the problem type. Currently Knitrosets this value to 10000 for LPs/NLPs and 3000 for MIP problems.

n At most n>0 iterations may be performed before terminating.
Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 388

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_BRANCHRULE

Description Specifies which branching rule to use for MIP branch and bound procedure.
Type Integer
Values 0 (auto) Let Knitro automatically choose the branching rule.

1 (most_frac) Use most fractional (most infeasible) branching.
2 (pseudcost) Use pseudo-cost branching.
3 (strong) Use strong branching (see options XKTR_PARAM_MIP_STRONG_CANDLIM,

XKTR_PARAM_MIP_STRONG_LEVEL, XKTR_PARAM_MIP_STRONG_MAXIT forfurther control of strong branching procedure).
Default value 0

XKTR_PARAM_MIP_GUB_BRANCH

Description Specifies whether or not to branch on generalized upper bounds (GUBs).
Type Integer
Values 0 (no) Do not branch on GUBs.

1 (yes) Allow branching on GUBs.
Default value 0

XKTR_PARAM_MIP_HEURISTIC

Description Specifies which MIP heuristic search approach to apply to try to find an initial integer feasiblepoint.
Type Integer
Values 0 (auto) Let Knitro choose the heuristic to apply (if any).

1 (none) No heuristic search applied.
2 (feaspump) Apply feasibility pump heuristic.
3 (mpec) Apply heuristic based on MPEC formulation.

Note If a heuristic search procedure is enabled, it will run for at most mip_heuristic_maxititerations, before starting the branch and bound procedure.
Default value 0

XKTR_PARAM_MIP_HEURISTIC_MAXIT

Description Specifies the maximum number of iterations to allow for MIP heuristic, if one is enabled.

Fair Isaac Corporation Confidential and Proprietary Information 389

Xpress Knitro Control Parameters Reference

Type Integer
Default value 100

XKTR_PARAM_MIP_IMPLICATNS

Description Specifies whether or not to add constraints to the MIP derived from logical implications.
Type Integer
Values 0 (no) Do not add constraints from logical implications.

1 (yes) Knitro adds constraints from logical implications.
Default value 1

XKTR_PARAM_MIP_KNAPSACK

Description Specifies rules for adding MIP knapsack cuts.
Type Integer
Values 0 (none) Do not add knapsack cuts.

1 (ineqs) Add cuts derived from inequalities only.
2 (ineqs_eqs) Add cuts derived from both inequalities and equalities.

Default value 1

XKTR_PARAM_MIP_LPALG

Description Specifies which algorithm to use for any linear programming (LP) subproblem solves thatmay occur in the MIP branch and bound procedure.
Type Integer
Values 0 (auto) Let Knitro automatically choose an algorithm, based on the problemcharacteristics.

1 (direct) Use the Interior/Direct (barrier) algorithm.
2 (cg) Use the Interior/CG (barrier) algorithm.
3 (active) Use the Active Set (simplex) algorithm.

Note LP subproblems may arise if the problem is a mixed integer linear program (MILP), or if using
XKTR_PARAM_MIP_METHOD = HQG. (Nonlinear programming subproblems use the algorithmspecified by the algorithm option.)

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 390

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_MAXNODES

Description Specifies the maximum number of nodes explored.
Type Integer
Note Zero vealue means no limit.
Default value 100000

XKTR_PARAM_MIP_MAXSOLVES

Description Specifies the maximum number of subproblem solves allowed (0 means no limit).
Type Integer
Default value 200000

XKTR_PARAM_MIP_METHOD

Description Specifies which MIP method to use.
Type Integer
Values 0 (auto) Let Knitro automatically choose the method.

1 (BB) Use the standard branch and bound method.
2 (HQG) Use the hybrid Quesada-Grossman method (for convex, nonlinear problemsonly).

Default value 0

XKTR_PARAM_MIP_OUTINTERVAL

Description Specifies node printing interval for XKTR_PARAM_MIP_OUTLEVEL when
XKTR_PARAM_MIP_OUTLEVEL > 0.

Type Integer
Values 0 Print output every node.

2 Print output every 2nd node.
N Print output every Nth node.

Default value 10

Fair Isaac Corporation Confidential and Proprietary Information 391

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_OUTLEVEL

Description Specifies how much MIP information to print.
Type Integer
Values 0 (none) Do not print any MIP node information.

1 (iters) Print one line of output for every node.
Default value 1

XKTR_PARAM_MIP_PSEUDOINIT

Description Specifies the method used to initialize pseudo-costs corresponding to variables that have notyet been branched on in the MIP method.
Type Integer
Values 0 Let Knitro automatically choose the method.

1 Initialize using the average value of computed pseudo-costs.
2 Initialize using strong branching.

Default value 0

XKTR_PARAM_MIP_ROOTALG

Description Specifies which algorithm to use for the root node solve in MIP (same options as
XKTR_PARAM_ALGORITHM user option).

Type Integer
Default value 0

XKTR_PARAM_MIP_ROUNDING

Description Specifies the MIP rounding rule to apply.
Type Integer
Values 0 (auto) Let Knitro choose the rounding rule.

1 (none) Do not round if a node is infeasible.
2 (heur_only) Round using a fast heuristic only.
3 (nlp_sometimes) Round and solve a subproblem if likely to succeed.
4 (nlp_always) Always round and solve a subproblem.

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 392

Xpress Knitro Control Parameters Reference

XKTR_PARAM_MIP_SELECTRULE

Description Specifies the MIP select rule for choosing the next node in the branch and bound tree.
Type Integer
Values 0 (auto) Let Knitro choose the node selection rule.

1 (depth_first) Search the tree using a depth first procedure.
2 (best_bound) Select the node with the best relaxation bound.
3 (combo_1) Use depth first unless pruned, then best bound.

Default value 0

XKTR_PARAM_MIP_STRONG_CANDLIM

Description Specifies the maximum number of candidates to explore for MIP strong branching.
Type Integer
Default value 10

XKTR_PARAM_MIP_STRONG_LEVEL

Description Specifies the maximum number of tree levels on which to perform MIP strong branching.
Type Integer
Default value 10

XKTR_PARAM_MIP_STRONG_MAXIT

Description Specifies the maximum number of iterations to allow for MIP strong branching solves.
Type Integer
Default value 1000

XKTR_PARAM_MIP_TERMINATE

Description Specifies conditions for terminating the MIP algorithm.
Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 393

Xpress Knitro Control Parameters Reference

Values 0 (optimal) Terminate at optimum.
1 (feasible) Terminate at first integer feasible point.

Default value 0

XKTR_PARAM_OUTLEV

Description Controls the level of output produced by Knitro.
Type Integer
Values 0 (none) Printing of all output is suppressed.

1 (summary) Print only summary information.
2 (iter_10) Print basic information every 10 iterations.
3 (iter) Print basic information at each iteration.
4 (iter_verbose) Print basic information and the function count at each iteration.
5 (iter_x) Print all the above, and the values of the solution vector x.
6 (all) Print all the above, and the values of the constraints c at x and the Lagrangemultipliers lambda.

Default value 2

XKTR_PARAM_PRESOLVE

Description Determine whether or not to use the Knitro presolver to try to simplify the model by removingvariables or constraints. Specifies conditions for terminating the MIP algorithm.
Type Integer
Values 0 (none) Do not use Knitro presolver.

1 (basic) Use the Knitro basic presolver.
Default value 1

XKTR_PARAM_SCALE

Description Performs a scaling of the objective and constraint functions based on their values at theinitial point.
Type Integer
Values 0 (no) No scaling is performed.

1 (yes) Knitro is allowed to scale the objective function and constraints.
Note If scaling is performed, all internal computations, including the stopping tests, are based onthe scaled values.
Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 394

Xpress Knitro Control Parameters Reference

XKTR_PARAM_SOC

Description Specifies whether or not to try second order corrections (SOC).
Type Integer
Values 0 (no) No second order correction steps are attempted.

1 (maybe) Second order correction steps may be attempted on some iterations.
2 (yes) Second order correction steps are always attempted if the original step isrejected and there are nonlinear constraints.

Note A second order correction may be beneficial for problems with highly nonlinear constraints.
Default value 1

Fair Isaac Corporation Confidential and Proprietary Information 395

Appendix

APPENDIX A

The Xpress-SLP Log

The Xpress-SLP log consists of log lines of two different types: the output of the underlying XPRSoptimizer, and the log of XSLP itself.
Output is sent to the screen (stdout) by default, but may be intercepted by a user function using theuser output callback; see XSLPsetcbmessage. However, under Windows, no output from theOptimizer DLL is sent to the screen. The user must define a callback function and print messages tothe screen them self if they wish output to be displayed.

A.0.1 Logging controls

General SLP logging
XPRS_OUTPUTLOG Logging level of the underlying XPRS problem
XPRS_LPLOG Logging frequency for solving the linearization
XPRS_MIPLOG Logging frequency for the MIP solver

Logging for the underlying XPRS problem
XSLP_LOG Level of SLP logging (iteration, penalty, convergence)
XSLP_SLPLOG Logging frequency for SLP iterations
XSLP_MIPLOG MI-SLP specific logging

Special logging settings
XPRS_DCLOG Logging of delayed constraint activation
XSLP_ERRORTOL_P Absolute tolerance for printing error vectors

A.0.2 The structure of the log

The typical log with the default settings starts with statistics about the problem sizes. On thepolygon1.mps example, using the XSLP console program this looks like
[xpress mps] readprob Polygon1.mat
Reading Problem Polygon
Problem Statistics

11 (0 spare) rows
10 (4 spare) structural columns
8 (0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

PV: 0 DC: 0 DR: 0 EC: 0
IV: 0 RX: 0 TX: 0 SB: 0
UF: 0 WT: 0 XV: 0 Total: 0

Xpress-SLP Statistics:
7 coefficients
9 SLP variables

Fair Isaac Corporation Confidential and Proprietary Information 397

The Xpress-SLP Log Reference

The standard XPRS optimizer problem loading statistics is extended with a report about the specialstructures possibly present in the problem, including DC (delayed constraints), DR (determining rows),EC (enforced constraints), IV (initial values), RX/TX (relative and absolute tolerances), SB (initial stepbounds), UF (user functions), WT (initial row weights), followed by a statistics about the number of SLPcoefficients and variables.

SLP iteration 1, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 68 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 828864.7136 D 0 0 .000000 0

Uncrunching matrix
0 828864.7136 D 0 0 .000000 0

Optimal solution found
8 unconverged values (at least 1 in active constraints)
Total feasibility error costs 829100.765742

Penalty Error Vectors - Penalties scaled by 200
Variable Activity Penalty
BE-V1V4 1381.836001 1.000000
BE-V2V4 1381.834610 1.000000
BE-V3V4 1381.833218 1.000000
Total: 4145.503829
Error Costs: 829100.765742 Penalty Delta Costs: 0.000000 Net Objective: -236.052107

SLP iteration 2, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 73 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 -3.13860E-05 D 0 0 .000000 0

Uncrunching matrix
0 -3.13860E-05 D 0 0 .000000 0

Optimal solution found
4 unconverged values (at least 1 in active constraints)

SLP iteration 3, 0s
Minimizing LP Polygon
Original problem has:

20 rows 27 cols 72 elements
Presolved problem has:

0 rows 0 cols 0 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 -1.56933E-05 D 0 0 .000000 0

Uncrunching matrix
0 -1.56933E-05 D 0 0 .000000 0

Optimal solution found

The default solution log consists of the optimizer output of solving the linearizations, followed bystatistics of the nonlinear infeasibilities, the penalty and the objective, and the convergence status.

Iteration summary
Itr. LPS NetObj ErrorSum ErrorCost Unconv. Extended Action

1 O -236.052107 4145.503829 829100.7657 8 0

Fair Isaac Corporation Confidential and Proprietary Information 398

The Xpress-SLP Log Reference

2 O -3.13860E-05 .000000 .000000 4 0
3 O -1.56932E-05 .000000 .000000 0 0

Xpress-SLP stopped after 3 iterations. 0 unconverged items
No unconverged values in active constraints

The final iteration summary contains the following fields:
Itr: The iteration number.
LPS: The LP status of the linearization, which can take the following values:
O Linearization is optimal
I Linearization is infeasible
U Linearization is unbounded
X Solving the linearization was interupted

NetObj: The net objective of the SLP iteration.
ErrorSum: Sum of the error delta variables. A measure of infeasibility.
ErrorCost: The value of the weighted error delta variables in the objective. A measure of the effortneeded to push the model towards feasiblity.
Unconv: The number of SLP variables that are not converged.
Extended: The number of SLP variables that are converged, but only by extended criteria
Action: The special actions that happened in the iteration. These can be
0 Failed line search (non-improving)
B Enforcing step bounds
E Some infeasible rows were enforced
G Global variables were fixed
P The solution needed polishing, postsolve instability
P! Solution polishing failed
R Penalty error vectors were removed
V Feasiblity validation induces further iterations
K Optimality validation induces further iterations

The presence of a P! suggests that the problem is particularly hard to solve without postsolve, and themodel might benefit from setting XSLP_NOLPPOLISHING on XSLP_ALGORITHM (please note, that thisshould only be considered if the solution polishing features is very slow or fails, as the numericalinaccuracies it aims to remove can cause other problems to the solution process).

Fair Isaac Corporation Confidential and Proprietary Information 399

APPENDIX B

Selecting the right algorithm for a nonlinear
problem - when to use the XPRS library in-
stead of XSLP

This chapter focuses on the nonlinear capabilities of the Xpress XPRS optimizer. As a general rule ofthumb, problems that can be handled by the XPRS library do not require the use of XSLP; while XpressXSLP is able to efficiently solve most nonlinear problems, there are subclasses of nonlinear problemsfor which the Xpress optimizer features specialized algorithms that are able to solve those problemsmore efficiently and in larger sizes. These are notably the convex quadratic programming and theconvex quadratically constrained problems and their mixed integer counterparts.
It is also possible to separate the convex quadratic information from the rest of XSLP, and let theXpress XPRS optimizer handle those directly. Doing so is good modelling practice, but emphasis mustbe placed on that the optimizer can only handle convex quadratic constraints.

B.0.1 Convex Quadratic Programs (QPs)

Convex Quadratic Programming (QP) problems are an extension of Linear Programming (LP) problemswhere the objective function may include a second order polynomial. The FICO Xpress Optimizer canbe used directly for solving QP problems (and the Mixed Integer version MIQP).
If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms forthe solution of convex QP (MIQP) problems, that are much more efficient than solving the problem as ageneral nonlinear problem with XSLP.

B.0.2 Convex Quadratically Constrained Quadratic Programs (QCQPs)

Quadratically Constrained Quadratic Programs (QCQPs) are an extension of the QuadraticProgramming (QP) problem where the constraints may also include second order polynomials.
A QCQP problem may be written as:
minimize: c1x1+...+cnxn+xTQ0xsubject to: a11x1+...+a1nxn+xTQ1x ≤ b1...

am1x1+...+amnxn+xTQmx ≤ bml1 ≤ x1 ≤ u1,...,ln ≤ xn ≤ un
where any of the lower or upper bounds li or ui may be infinite.

Fair Isaac Corporation Confidential and Proprietary Information 400

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Reference

If there are no other nonlinearities in the problem, the XPRS library povides specialized algorithms forthe solution of convex QCQP (and the integer counterpart MIQCQP) problems, that are much moreefficient than solving the problem as a general nonlinear problem with XSLP.
B.0.3 Convexity

A fundamental property for nonlinear optimization problems, thus in QCQP as well, is convexity. Aregion is called convex, if for any two points from the region the connecting line segment is also part ofthe region.
The lack of convexity may give rise to several unfavorable model properties. Lack of convexity in theobjective may introduce the phenomenon of locally optimal solutions that are not global ones (a localoptimal solution is one for which a neighborhood in the feasible region exists in which that solution isthe best). While the lack of convexity in constraints can also give rise to local optimums, they may evenintroduce non–connected feasible regions as shown in Figure B.1.

Figure B.1: Non-connected feasible regions

In this example, the feasible region is divided into two parts. Over feasible region B, the objectivefunction has two alterative local optimal solutions, while over feasible region A the objective is not evenbounded.
For convex problems, each locally optimal solution is a global one, making the characterization of theoptimal solution efficient.

B.0.4 Characterizing Convexity in Quadratic Constraints

A quadratic constraint of form
a1x1 + ... + anxn + xTQx ≤ b

defines a convex region if and only if Q is a so–called positive semi–definite (PSD) matrix.
A rectangular matrix Q is PSD by definition, if for any vector (not restricted to the feasible set of aproblem) x it holds that xTQx ≥ 0.
It follows that for greater or equal constraints

a1x1 + ... + anxn – xTQx ≥ b

the negative of Q shall be PSD.

Fair Isaac Corporation Confidential and Proprietary Information 401

Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP Reference

A nontrivial quadratic equality constraint (one for which not every coefficient is zero) always defines anonconvex region, therefore those must be modelled as XSLP structures.
There is no straightforward way of checking if a matrix is PSD or not. An intuitive way of checking thisproperty, is that the quadratic part shall always only make a constraint harder to satisfy (i.e. taking thequadratic part away shall always be a relaxation of the original problem).
There are certain constructs however, that can easily be recognized as being non convex:

1. the product of two variables say xy without having both x2 and y2 defined;
2. having –x2 in any quadratic expression in a less or equal, or having x2 in any greater or equal row.

As a general rule, a convex quadratic objective and convex quadratic constraints are best handled bythe XPRS library; while all nonconvex counterparts should be modelled as XSLP structures.

Fair Isaac Corporation Confidential and Proprietary Information 402

APPENDIX C

Files used by Xpress NonLinear

Most of the data used by Xpress NonLinear is held in memory. However, there are a few files which arewritten, either automatically or on demand, in addition to those created by the Xpress Optimizer.
LOGFILE Created by: XSLPsetlogfileThe file name and location are user-defined.
NAME.mat Created by: XSLPwriteprobThis is the matrix file in extended MPS format. The name is user-defined. Theextension .mat is appended automatically.
NAME.txt Created by: XSLPwriteprobThis is the matrix file in human-readable "text". The name is user-defined. Theextension .txt is appended automatically.
PROBNAME.svx Created by: XSLPsaveThis is the SLP part of the save file (the linear part is in probname.svf). Usedby XSLPrestore.

Fair Isaac Corporation Confidential and Proprietary Information 403

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 404

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO Reference

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 405

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols= column, 39
A
ABS, 359Absolute tolerance recordTx, 42
ARCCOS, 352
ARCSIN, 353
ARCTAN, 354Attributes, Problem, 97Augmentation, 64
B
BOUNDS, 16BOUNDS section in file, 39
CCallbacks and user functions, 77Callbacks in MISLP, 92Cascading, 51Character Variable record, 39Closure convergence tolerance, 58Coefficientsand terms, 33
COLUMNS, 14COLUMNS section in file, 38Control parameters, 122Convergenceclosure, 58delta, 58extended convergence continuation, 62impact, 59matrix, 58slack impact, 60static objective (1), 60static objective (2), 61static objective (3), 61user-defined, 60Convergence criteria, 53convex region, 401
COS, 355Counting, 214CV record in SLPDATA, 39
DDelta convergence tolerance, 58Derivativesreturning from user function, 82user function, 83Determining Row record, 40DR record in SLPDATA, 40

E
E-12001, 370
E-12002, 370
E-12003, 370
E-12004, 370
E-12005, 370
E-12006, 370
E-12007, 371
E-12008, 371
E-12009, 371
E-12010, 371
E-12011, 371
E-12012, 371
E-12013, 371
E-12014, 371
E-12015, 371
E-12016, 371
E-12017, 371
E-12018, 371
E-12019, 372
E-12020, 372
E-12021, 372
E-12022, 372
E-12025, 372
E-12026, 372
E-12027, 372
E-12029, 372
E-12030, 373
E-12031, 373
E-12032, 373
E-12033, 373
E-12037, 373
E-12038, 373
E-12084, 373
E-12085, 373
E-12105, 373
E-12107, 373
E-12110, 373
E-12111, 373
E-12112, 374
E-12113, 374
E-12114, 374
E-12121, 374
E-12124, 374
E-12125, 374
E-12147, 374
E-12158, 374
E-12159, 374
E-12160, 374
E-12161, 374
E-12192, 374
E-12193, 374

Fair Isaac Corporation Confidential and Proprietary Information 406

Index Reference

E-12194, 374
E-12195, 375
E-12196, 375
E-12197, 375
E-12198, 375
E-12199, 375
E-12200, 375
E-12201, 375
E-12202, 375
E-12203, 375EC record in SLPDATA, 40
ENDATA, 17Enforced Constraint record, 40Equals column, 39
ERF, 360
ERFC, 361Error Messages, 370Error vectors, penalty, 68
EXP, 362Extended convergence continuation tolerance, 62Extended MPS file format, 37
Ffiles .ini, 30Files used by Xpress NonLinear, 403Fixing values of SLP variables in MISLP, 91FormulaInitial Value record, 41Formulae, 37, 73Functions, internal, 350Functions, library, 214Functions, user, 77
G
getslack, 11
getsol, 11
HHandling Infeasibilities, 48History, 71
IImpact convergence tolerance, 59Implicit variable, 38Infeasibilities, handling, 48Initial Value formula, 41Initial Value record, 41Instanceuser function, 82Internal Functions, 350Iterating at each node in MISLP, 92
IV, 17IV record in SLPDATA, 41
LLibrary functions, 214, 215
LN, 363
loadprob, 10
LOG, 364
LOG10, 364

MMatrix convergence tolerance, 58Matrix Name Generation, 68Matrix Structures, 64
MAX, 365
MAXIM, 18
maximise, 11
MIN, 366
minimise, 11MINLP, 90MISLPCallbacks, 92Fixing or relaxing values of SLP variables, 91Iterating at each node, 92Termination criteria at each node, 92Mixed Integer Non-Linear Programming, 90
mmxnlp, 9mutlistart, 95
N
NAME, 13Name Generation, 68
nlctr, 9Nonlinear objectives, 89Nonlinear problems, 33
OObjectives, nonlinear, 89Objectives, quadratic, 89
optimizer, 18
PParsed formula format, 73Penalty error vectors, 68Pointer (reference) attribute, 120positive semi-definite matrix, 401Problem attributes, 97Problem pointer, 214
PWL, 367
QQuadratic objectives, 89
QUIT, 18
RRelative tolerance record Rx, 42Relaxing values of SLP variables in MISLP, 91
RHS, 16Row weightExtended MPS record, 43
ROWS, 13Rx record in SLPDATA, 42
SSB record in SLPDATA, 42Sequential Linear Programming, see SuccessiveLinear Programming
setinitval, 10
SIGN, 368
SIN, 356Slack impact convergence tolerance, 60

Fair Isaac Corporation Confidential and Proprietary Information 407

Index Reference

SLP problem pointer, 214SLP variable, 34SLPDATACV record, 39DR record, 40EC record, 40IV record, 41Rx record, 42SB record, 42Tx record, 42UF record, 42WT record, 43
SLPDATA, 17SLPDATA section in file, 39solution, 400Solution Process, 44Special Types of Problem, see Problem, special typesMixed Integer Non-Linear Programming, 90Nonlinear objectives, 89Quadratic objectives, 89
SQRT, 369Static objective (1) convergence tolerance, 60Static objective (2) convergence tolerance, 61Static objective (3) convergence tolerance, 61Statistics, Xpress-SLP, 69Step Bound record, 42Structures, SLP matrix, 64Successive Linear Programming, 33
T
TAN, 357Termination criteria at each node in MISLP, 92Termsand coefficients, 33Tolerance recordRx, 42Tolerance record Tx, 42Tolerances, convergence, 53Tx record in SLPDATA, 42
UUF record in SLPDATA, 42Unparsed formula format, 73User function, 77declaration in native languages, 78Deltas, 82general, returning array by reference, 79general, returning array through argument, 80instance, 82programming techniques, 81ReturnArray, 82returning derivatives, 82simple, 79User function Derivatives, 83User function interface, 78User Function record, 42User Functions, 77User-defined convergence, 60

VValues of SLP variables in MISLP, fixing or relaxing,91Variableimplicit, 38SLP, 34
W
W-12023, 372
W-12024, 372
W-12028, 372
W-12034, 373
W-12142, 374
WRITEPRTSOL, 18WT record in SLPDATA, 43
X
XKTR_PARAM_ALGORITHM, 383
XKTR_PARAM_BAR_DIRECTINTERVAL, 383
XKTR_PARAM_BAR_FEASIBLE, 383
XKTR_PARAM_BAR_FEASMODETOL, 379
XKTR_PARAM_BAR_INITMU, 379
XKTR_PARAM_BAR_INITPT, 384
XKTR_PARAM_BAR_MAXBACKTRACK, 384
XKTR_PARAM_BAR_MAXCROSSIT, 384
XKTR_PARAM_BAR_MAXREFACTOR, 385
XKTR_PARAM_BAR_MURULE, 385
XKTR_PARAM_BAR_PENCONS, 386
XKTR_PARAM_BAR_PENRULE, 386
XKTR_PARAM_BAR_SWITCHRULE, 386
XKTR_PARAM_DELTA, 379
XKTR_PARAM_FEASTOL, 379
XKTR_PARAM_FEASTOLABS, 380
XKTR_PARAM_GRADOPT, 387
XKTR_PARAM_HESSOPT, 387
XKTR_PARAM_HONORBNDS, 387
XKTR_PARAM_INFEASTOL, 380
XKTR_PARAM_LMSIZE, 388
XKTR_PARAM_MAXCGIT, 388
XKTR_PARAM_MAXIT, 388
XKTR_PARAM_MIP_BRANCHRULE, 389
XKTR_PARAM_MIP_GUB_BRANCH, 389
XKTR_PARAM_MIP_HEURISTIC, 389
XKTR_PARAM_MIP_HEURISTIC_MAXIT, 389
XKTR_PARAM_MIP_IMPLICATNS, 390
XKTR_PARAM_MIP_INTEGERTOL, 380
XKTR_PARAM_MIP_INTGAPABS, 380
XKTR_PARAM_MIP_INTGAPREL, 380
XKTR_PARAM_MIP_KNAPSACK, 390
XKTR_PARAM_MIP_LPALG, 390
XKTR_PARAM_MIP_MAXNODES, 391
XKTR_PARAM_MIP_MAXSOLVES, 391
XKTR_PARAM_MIP_METHOD, 391
XKTR_PARAM_MIP_OUTINTERVAL, 391
XKTR_PARAM_MIP_OUTLEVEL, 392
XKTR_PARAM_MIP_PSEUDOINIT, 392
XKTR_PARAM_MIP_ROOTALG, 392
XKTR_PARAM_MIP_ROUNDING, 392
XKTR_PARAM_MIP_SELECTRULE, 393
XKTR_PARAM_MIP_STRONG_CANDLIM, 393

Fair Isaac Corporation Confidential and Proprietary Information 408

Index Reference

XKTR_PARAM_MIP_STRONG_LEVEL, 393
XKTR_PARAM_MIP_STRONG_MAXIT, 393
XKTR_PARAM_MIP_TERMINATE, 393
XKTR_PARAM_OBJRANGE, 381
XKTR_PARAM_OPTTOL, 381
XKTR_PARAM_OPTTOLABS, 381
XKTR_PARAM_OUTLEV, 394
XKTR_PARAM_PRESOLVE, 394
XKTR_PARAM_PRESOLVE_TOL, 381
XKTR_PARAM_SCALE, 394
XKTR_PARAM_SOC, 395
XKTR_PARAM_XTOL, 382
xnlp_verbose, 11Xpress NonLinear problem pointer, 214Xpress-SLP Statistics, 69
xprs_verbose, 11
XPRSdestroyprob, 27
XPRSfree, 27
XPRSgetsol, 27
XPRSwriteprtsol, 27
XSLP_ALGORITHM, 166
XSLP_ANALYZE, 168
XSLP_ATOL_A, 130
XSLP_ATOL_R, 130
XSLP_AUGMENTATION, 169
XSLP_AUTOSAVE, 170
XSLP_BARCROSSOVERSTART, 171
XSLP_BARLIMIT, 171
XSLP_BARSTALLINGLIMIT, 172
XSLP_BARSTALLINGOBJLIMIT, 172
XSLP_BARSTALLINGTOL, 130
XSLP_BARSTARTOPS, 172
XSLP_CALCTHREADS, 173
XSLP_CASCADE, 173
XSLP_CASCADENLIMIT, 174
XSLP_CASCADETOL_PA, 131
XSLP_CASCADETOL_PR, 131
XSLP_CDTOL_A, 131
XSLP_CDTOL_R, 132
XSLP_CLAMPSHRINK, 132
XSLP_CLAMPVALIDATIONTOL_A, 133
XSLP_CLAMPVALIDATIONTOL_R, 133
XSLP_COEFFICIENTS, 104
XSLP_COL, 24
XSLP_CON, 24
XSLP_CONTROL, 174
XSLP_CONVERGENCEOPS, 175
XSLP_CTOL, 133
XSLP_CURRENTDELTACOST, 101
XSLP_CURRENTERRORCOST, 101
XSLP_CVNAME, 208
XSLP_CVS, 104
XSLP_DAMP, 134
XSLP_DAMPEXPAND, 134
XSLP_DAMPMAX, 134
XSLP_DAMPMIN, 135
XSLP_DAMPSHRINK, 135
XSLP_DAMPSTART, 176
XSLP_DCLIMIT, 176
XSLP_DCLOG, 176

XSLP_DEFAULTIV, 135
XSLP_DEFAULTSTEPBOUND, 136
XSLP_DELAYUPDATEROWS, 176
XSLP_DELTA_A, 136
XSLP_DELTA_R, 136
XSLP_DELTA_X, 137
XSLP_DELTA_Z, 137
XSLP_DELTA_ZERO, 137
XSLP_DELTACOST, 138
XSLP_DELTACOSTFACTOR, 138
XSLP_DELTAFORMAT, 208
XSLP_DELTAMAXCOST, 138
XSLP_DELTAOFFSET, 177
XSLP_DELTAS, 104
XSLP_DELTAZLIMIT, 177
XSLP_DERIVATIVES, 178
XSLP_DETERMINISTIC, 178
XSLP_DJTOL, 139
XSLP_DRCOLTOL, 139
XSLP_ECFCHECK, 178
XSLP_ECFCOUNT, 104
XSLP_ECFTOL_A, 139
XSLP_ECFTOL_R, 140
XSLP_ECHOXPRSMESSAGES, 179
XSLP_ENFORCECOSTSHRINK, 140
XSLP_ENFORCEMAXCOST, 141
XSLP_EOF, 24
XSLP_EQUALSCOLUMN, 105
XSLP_ERRORCOST, 141
XSLP_ERRORCOSTFACTOR, 141
XSLP_ERRORCOSTS, 101
XSLP_ERRORMAXCOST, 142
XSLP_ERROROFFSET, 179
XSLP_ERRORTOL_A, 142
XSLP_ERRORTOL_P, 142
XSLP_ESCALATION, 143
XSLP_ETOL_A, 143
XSLP_ETOL_R, 143
XSLP_EVALUATE, 180
XSLP_EVTOL_A, 144
XSLP_EVTOL_R, 144
XSLP_EXPAND, 145
XSLP_EXPLOREDELTAS, 104
XSLP_FEASTOLTARGET, 145
XSLP_FILTER, 180
XSLP_FINDIV, 181
XSLP_FUN, 24
XSLP_FUNCEVAL, 181
XSLP_GRANULARITY, 145
XSLP_GRIDHEURSELECT, 182
XSLP_HESSIAN, 183
XSLP_HEURSTRATEGY, 182
XSLP_IFS, 105
XSLP_IFUN, 24
XSLP_IMPLICITVARIABLES, 105
XSLP_INFEASLIMIT, 183
XSLP_INFINITY, 146
XSLP_INTEGERDELTAS, 105
XSLP_INTERNALFUNCCALLS, 105
XSLP_ITER, 106

Fair Isaac Corporation Confidential and Proprietary Information 409

Index Reference

XSLP_ITERFALLBACKOPS, 208
XSLP_ITERLIMIT, 183
XSLP_ITOL_A, 146
XSLP_ITOL_R, 147
XSLP_IVNAME, 209
XSLP_JACOBIAN, 184
XSLP_JOBID, 106
XSLP_KEEPBESTITER, 106
XSLP_LINQUADBR, 184
XSLP_LOG, 184
xslp_log, 11
XSLP_LSITERLIMIT, 185
XSLP_LSPATTERNLIMIT, 185
XSLP_LSSTART, 185
XSLP_LSZEROLIMIT, 186
XSLP_MATRIXTOL, 147
XSLP_MAXTIME, 186
XSLP_MAXWEIGHT, 148
XSLP_MEMORYFACTOR, 148
XSLP_MERITLAMBDA, 148
XSLP_MINORVERSION, 106
XSLP_MINSBFACTOR, 149
XSLP_MINUSDELTAFORMAT, 209
XSLP_MINUSERRORFORMAT, 210
XSLP_MINUSPENALTYERRORS, 106
XSLP_MINWEIGHT, 149
XSLP_MIPALGORITHM, 186
XSLP_MIPCUTOFF_A, 149
XSLP_MIPCUTOFF_R, 150
XSLP_MIPCUTOFFCOUNT, 188
XSLP_MIPCUTOFFLIMIT, 188
XSLP_MIPDEFAULTALGORITHM, 189
XSLP_MIPERRORTOL_A, 150
XSLP_MIPERRORTOL_R, 150
XSLP_MIPFIXSTEPBOUNDS, 189
XSLP_MIPITER, 107
XSLP_MIPITERLIMIT, 190
XSLP_MIPLOG, 190
XSLP_MIPNODES, 107
XSLP_MIPOCOUNT, 190
XSLP_MIPOTOL_A, 151
XSLP_MIPOTOL_R, 151
XSLP_MIPPROBLEM, 120
XSLP_MIPRELAXSTEPBOUNDS, 191
XSLP_MIPSOLS, 107
XSLP_MODELCOLS, 107
XSLP_MODELROWS, 107
XSLP_MSMAXBOUNDRANGE, 152
XSLP_MSSTATUS, 108
XSLP_MTOL_A, 152
XSLP_MTOL_R, 153
XSLP_MULTISTART, 191
XSLP_MULTISTART_MAXSOLVES, 191
XSLP_MULTISTART_MAXTIME, 192
XSLP_MULTISTART_POOLSIZE, 192
XSLP_MULTISTART_SEED, 193
XSLP_MULTISTART_THREADS, 193
XSLP_MVTOL, 153
XSLP_NLPSTATUS, 108
XSLP_NONCONSTANTCOEFF, 108

XSLP_NONLINEARCONSTRAINTS, 109
XSLP_OBJSENSE, 154
XSLP_OBJTOPENALTYCOST, 154
XSLP_OBJVAL, 101
XSLP_OCOUNT, 193
XSLP_OP, 24
XSLP_OPTIMALITYTOLTARGET, 155
XSLP_ORIGINALCOLS, 109
XSLP_ORIGINALROWS, 109
XSLP_OTOL_A, 155
XSLP_OTOL_R, 155
XSLP_PENALTYCOLFORMAT, 210
XSLP_PENALTYDELTACOLUMN, 109
XSLP_PENALTYDELTAROW, 109
XSLP_PENALTYDELTAS, 110
XSLP_PENALTYDELTATOTAL, 101
XSLP_PENALTYDELTAVALUE, 102
XSLP_PENALTYERRORCOLUMN, 110
XSLP_PENALTYERRORROW, 110
XSLP_PENALTYERRORS, 110
XSLP_PENALTYERRORTOTAL, 102
XSLP_PENALTYERRORVALUE, 102
XSLP_PENALTYINFOSTART, 194
XSLP_PENALTYROWFORMAT, 210
XSLP_PLUSDELTAFORMAT, 211
XSLP_PLUSERRORFORMAT, 211
XSLP_PLUSPENALTYERRORS, 110
XSLP_POSTSOLVE, 194
XSLP_PRESOLVE, 194
XSLP_PRESOLVEDELETEDDELTA, 111
XSLP_PRESOLVEELIMINATIONS, 111
XSLP_PRESOLVEFIXEDCOEF, 111
XSLP_PRESOLVEFIXEDDR, 111
XSLP_PRESOLVEFIXEDNZCOL, 112
XSLP_PRESOLVEFIXEDSLPVAR, 112
XSLP_PRESOLVEFIXEDZCOL, 112
XSLP_PRESOLVELEVEL, 195
XSLP_PRESOLVEOPS, 195
XSLP_PRESOLVEPASSES, 112
XSLP_PRESOLVEPASSLIMIT, 196
XSLP_PRESOLVESTATE, 113
XSLP_PRESOLVETIGHTENED, 113
XSLP_PRESOLVEZERO, 156
XSLP_PRIMALINTEGRAL, 102
XSLP_PRIMALINTEGRALREF, 156
XSLP_PROBING, 196
XSLP_REFORMULATE, 196
XSLP_SAMECOUNT, 197
XSLP_SAMEDAMP, 197
XSLP_SBLOROWFORMAT, 211
XSLP_SBNAME, 212
XSLP_SBROWOFFSET, 198
XSLP_SBSTART, 198
XSLP_SBUPROWFORMAT, 212
XSLP_SBXCONVERGED, 113
XSLP_SCALE, 198
XSLP_SCALECOUNT, 199
XSLP_SEMICONTDELTAS, 113
XSLP_SHRINK, 157
XSLP_SHRINKBIAS, 157

Fair Isaac Corporation Confidential and Proprietary Information 410

Index Reference

XSLP_SLPLOG, 200
xslp_slplog, 11
XSLP_SOLSTATUS, 114
XSLP_SOLUTIONPOOL, 120
XSLP_SOLVER, 199
XSLP_SOLVERSELECTED, 114
XSLP_STATUS, 114
XSLP_STOL_A, 157
XSLP_STOL_R, 158
XSLP_STOPOUTOFRANGE, 200
XSLP_STOPSTATUS, 116
XSLP_THREADS, 200
XSLP_THREADSAFEUSERFUNC, 201
XSLP_TIMEPRINT, 200
XSLP_TOLNAME, 212
XSLP_TOLSETS, 116
XSLP_TOTALEVALUATIONERRORS, 116
XSLP_TRACEMASK, 213
XSLP_TRACEMASKOPS, 201
XSLP_UCCONSTRAINEDCOUNT, 116
XSLP_UFINSTANCES, 117
XSLP_UFS, 117
XSLP_UNCONVERGED, 117
XSLP_UNFINISHEDLIMIT, 202
XSLP_UPDATEFORMAT, 213
XSLP_UPDATEOFFSET, 202
XSLP_USEDERIVATIVES, 117
XSLP_USERFUNCCALLS, 118
XSLP_VALIDATIONINDEX_A, 102
XSLP_VALIDATIONINDEX_K, 103
XSLP_VALIDATIONINDEX_R, 103
XSLP_VALIDATIONTARGET_K, 158
XSLP_VALIDATIONTARGET_R, 158
XSLP_VALIDATIONTOL_A, 159
XSLP_VALIDATIONTOL_R, 159
XSLP_VARIABLES, 118
XSLP_VCOUNT, 203
XSLP_VERSION, 118
XSLP_VERSIONDATE, 121
XSLP_VLIMIT, 203
XSLP_VSOLINDEX, 103
XSLP_VTOL_A, 160
XSLP_VTOL_R, 160
XSLP_WCOUNT, 204
XSLP_WTOL_A, 161
XSLP_WTOL_R, 162
XSLP_XCOUNT, 205
XSLP_XLIMIT, 205
XSLP_XPRSPROBLEM, 120
XSLP_XSLPPROBLEM, 120
XSLP_XTOL_A, 163
XSLP_XTOL_R, 163
XSLP_ZERO, 164
XSLP_ZEROCRITERION, 206
XSLP_ZEROCRITERIONCOUNT, 207
XSLP_ZEROCRITERIONSTART, 207
XSLP_ZEROESRESET, 118
XSLP_ZEROESRETAINED, 118
XSLP_ZEROESTOTAL, 119
XSLP_ATOL, 58

XSLP_CTOL, 58
XSLP_ITOL, 59
XSLP_MTOL, 59
XSLP_OCOUNT, 61
XSLP_OTOL, 61
XSLP_STOL, 60
XSLP_VCOUNT, 61
XSLP_VLIMIT, 61
XSLP_VTOL, 61
XSLP_WCOUNT, 63
XSLP_WTOL, 62
XSLP_XCOUNT, 62
XSLP_XLIMIT, 62
XSLP_XTOL, 62
XSLPaddcoefs, 221
XSLPadddfs, 223
XSLPaddtolsets, 224
XSLPadduserfunction, 225
XSLPaddvars, 226
XSLPcalcslacks, 228
XSLPcascade, 229
XSLPcascadeorder, 230
XSLPchgcascadenlimit, 231
XSLPchgccoef, 232
XSLPchgcoef, 25, 233
XSLPchgdeltatype, 234
XSLPchgdf, 235
XSLPchgrowstatus, 236
XSLPchgrowwt, 237
XSLPchgtolset, 238
XSLPchgvar, 240
XSLPconstruct, 242
XSLPcopycallbacks, 243
XSLPcopycontrols, 244
XSLPcopyprob, 245
XSLPcreateprob, 246
XSLPdelcoefs, 247
XSLPdeltolsets, 248
XSLPdeluserfunction, 249
XSLPdelvars, 250
XSLPdestroyprob, 27, 251
XSLPevaluatecoef, 252
XSLPevaluateformula, 253
XSLPfixpenalties, 254
XSLPfree, 27, 255
XSLPgetbanner, 256
XSLPgetccoef, 257
XSLPgetcoefformula, 258
XSLPgetcoefs, 259
XSLPgetcolinfo, 260
XSLPgetdblattrib, 261
XSLPgetdblcontrol, 262
XSLPgetdf, 263
XSLPgetindex, 264
XSLPgetintattrib, 265
XSLPgetintcontrol, 266
XSLPgetlasterror, 267
XSLPgetptrattrib, 268
XSLPgetrowinfo, 269
XSLPgetrowstatus, 270

Fair Isaac Corporation Confidential and Proprietary Information 411

Index Reference

XSLPgetrowwt, 271
XSLPgetslpsol, 272
XSLPgetstrattrib, 273
XSLPgetstrcontrol, 274
XSLPgettolset, 275
XSLPgetvar, 27, 276
XSLPglobal, 278
XSLPimportlibfunc, 279
XSLPinit, 280
XSLPinterrupt, 281
XSLPitemname, 282XSLPload... functions, 215
XSLPloadcoefs, 25, 283
XSLPloaddfs, 285
XSLPloadtolsets, 286
XSLPloadvars, 27, 287
XSLPmaxim, 26, 289
XSLPminim, 26, 290
XSLPmsaddcustompreset, 291
XSLPmsaddjob, 292
XSLPmsaddpreset, 293
XSLPmsclear, 294
XSLPnlpoptimize, 295
XSLPpostsolve, 296
XSLPpresolve, 297
XSLPprintevalinfo, 299
XSLPprintmemory, 298XSLPprob, 214
XSLPreadprob, 300
XSLPreinitialize, 304
XSLPremaxim, 301
XSLPreminim, 302
XSLPrestore, 303
XSLPsave, 305
XSLPsaveas, 306
XSLPscaling, 307
XSLPsetcbcascadeend, 308
XSLPsetcbcascadestart, 309
XSLPsetcbcascadevar, 310
XSLPsetcbcascadevarfail, 311
XSLPsetcbcoefevalerror, 312
XSLPsetcbconstruct, 313
XSLPsetcbdestroy, 315
XSLPsetcbdrcol, 316
XSLPsetcbintsol, 317
XSLPsetcbiterend, 318
XSLPsetcbiterstart, 319
XSLPsetcbitervar, 320
XSLPsetcbmessage, 19, 321
XSLPsetcbmsjobend, 323
XSLPsetcbmsjobstart, 324
XSLPsetcbmswinner, 325
XSLPsetcboptnode, 326
XSLPsetcbprenode, 327
XSLPsetcbpreupdatelinearization, 328
XSLPsetcbslpend, 329
XSLPsetcbslpnode, 330
XSLPsetcbslpstart, 331
XSLPsetcurrentiv, 332
XSLPsetdblcontrol, 333

XSLPsetdefaultcontrol, 334
XSLPsetdefaults, 335
XSLPsetfunctionerror, 336
XSLPsetintcontrol, 337
XSLPsetlogfile, 338
XSLPsetparam, 339
XSLPsetstrcontrol, 340
XSLPunconstruct, 341
XSLPupdatelinearization, 342
XSLPvalidate, 343
XSLPvalidatekkt, 344
XSLPvalidateprob, 345
XSLPvalidaterow, 346
XSLPvalidatevector, 347
XSLPwriteprob, 26, 348
XSLPwriteslxsol, 349

Fair Isaac Corporation Confidential and Proprietary Information 412

	I Overview
	Introduction
	Mathematical programs
	Linear programs
	Convex quadratic programs
	Convex quadratically constrained quadratic programs
	Second order conic problems
	General nonlinear optimization problems
	Mixed integer programs

	Technology Overview
	The Simplex Method
	The Logarithmic Barrier Method
	Outer approximation schemes
	Successive Linear Programming
	Second Order Methods
	Mixed Integer Solvers

	API naming convention

	The Problem
	Problem Definition
	Problem Formulation

	Modeling in Mosel
	Basic formulation
	Setting up and solving the problem
	Looking at the results
	Parallel evaluation of Mosel user functions

	Modeling in Extended MPS Format
	Basic formulation
	Using the nonlinear optimizer console-based interface
	Coefficients and terms

	The Xpress NonLinear API Functions
	Header files
	Initialization
	Callbacks
	Creating the linear part of the problem
	Adding the non-linear part of the problem
	Adding the non-linear part of the problem using character formulae
	Checking the data
	Solving and printing the solution
	Closing the program
	Adding initial values

	The Nonlinear Console Program
	The Console Nonlinear
	The nonlinear console extensions
	Common features of the Xpress Optimizer and the Xpress Nonlinear Optimizer console

	II Advanced
	Nonlinear Problems
	Coefficients and terms
	SLP variables
	Local and global optimality
	Convexity
	Converged and practical solutions
	The duals of general, nonlinear program

	Extended MPS file format
	Formulae
	COLUMNS
	BOUNDS
	SLPDATA
	CV (Character variable)
	DR (Determining row)
	EC (Enforced constraint)
	FR (Free variable)
	FX (Fixed variable)
	IV (Initial value)
	LO (Lower bounded variable)
	Rx, Tx (Relative and absolute convergence tolerances)
	SB (Initial step bound)
	UF (User function)
	UP (Free variable)
	WT (Explicit row weight)
	DL (variable specific Determining row cascade iteration Limit)

	Xpress-SLP Solution Process
	Analyzing the solution process
	The initial point
	Derivatives
	Finite Differences
	Symbolic Differentiation
	Automatic Differentiation

	Points of inflection
	Trust regions

	Handling Infeasibilities
	Infeasibility Analysis in the Xpress Optimizer
	Managing Infeasibility with Xpress Knitro
	Managing Infeasibility with Xpress-SLP
	Penalty Infeasibility Breakers in XSLP

	Cascading
	Determining rows and determining columns

	Convergence criteria
	Convergence criteria
	Convergence overview
	Strict Convergence
	Extended Convergence
	Stopping Criterion
	Step Bounding

	Convergence: technical details
	Closure tolerance (CTOL)
	Delta tolerance (ATOL)
	Matrix tolerance (MTOL)
	Impact tolerance (ITOL)
	Slack impact tolerance (STOL)
	Fixed variables due to determining columns smaller than threshold (FX)
	User-defined convergence
	Static objective function (1) tolerance (VTOL)
	Static objective function (2) tolerance (OTOL)
	Static objective function (3) tolerance (XTOL)
	Extended convergence continuation tolerance (WTOL)

	Xpress-SLP Structures
	SLP Matrix Structures
	Augmentation of a nonlinear coefficient
	Augmentation of a nonlinear term
	Augmentation of a user-defined SLP variable
	SLP penalty error vectors

	Xpress-SLP Matrix Name Generation
	Xpress-SLP Statistics
	SLP Variable History

	Xpress NonLinear Formulae
	Parsed and unparsed formulae
	Example of an arithmetic formula
	Example of a formula involving a simple function

	User Functions
	Callbacks and user functions
	User function interface
	User Function declaration in native languages
	User function declaration in C

	Simple functions and general functions
	Simple user functions
	General user functions returning an array of values through a reference
	General user functions returning an array of values through an argument

	Programming Techniques for User Functions
	Deltas
	Return values and ReturnArray
	Returning Derivatives
	Function Instances

	Function Derivatives
	Analytic Derivatives of Instantiated User Functions not Returning their own Derivatives

	Management of zero placeholder entries
	The augmented matrix structure
	Derivatives and zero derivatives
	Placeholder management

	Special Types of Problem
	Nonlinear objectives
	Convex Quadratic Programming
	Mixed Integer Nonlinear Programming
	Mixed Integer SLP
	Heuristics for Mixed Integer SLP
	Fixing or relaxing the values of the SLP variables
	Iterating at each node
	Termination criteria at each node
	Callbacks

	Integer and semi-continuous delta variables

	Xpress NonLinear multistart

	III Reference
	Problem Attributes
	Double problem attributes
	XSLP_CURRENTDELTACOST
	XSLP_CURRENTERRORCOST
	XSLP_ERRORCOSTS
	XSLP_OBJVAL
	XSLP_PENALTYDELTATOTAL
	XSLP_PENALTYDELTAVALUE
	XSLP_PENALTYERRORTOTAL
	XSLP_PENALTYERRORVALUE
	XSLP_PRIMALINTEGRAL
	XSLP_VALIDATIONINDEX_A
	XSLP_VALIDATIONINDEX_K
	XSLP_VALIDATIONINDEX_R
	XSLP_VSOLINDEX

	Integer problem attributes
	XSLP_COEFFICIENTS
	XSLP_CVS
	XSLP_DELTAS
	XSLP_ECFCOUNT
	XSLP_EXPLOREDELTAS
	XSLP_EQUALSCOLUMN
	XSLP_IFS
	XSLP_IMPLICITVARIABLES
	XSLP_INTEGERDELTAS
	XSLP_INTERNALFUNCCALLS
	XSLP_ITER
	XSLP_JOBID
	XSLP_KEEPBESTITER
	XSLP_MINORVERSION
	XSLP_MINUSPENALTYERRORS
	XSLP_MIPITER
	XSLP_MIPNODES
	XSLP_MIPSOLS
	XSLP_MODELCOLS
	XSLP_MODELROWS
	XSLP_MSSTATUS
	XSLP_NLPSTATUS
	XSLP_NONCONSTANTCOEFF
	XSLP_NONLINEARCONSTRAINTS
	XSLP_ORIGINALCOLS
	XSLP_ORIGINALROWS
	XSLP_PENALTYDELTACOLUMN
	XSLP_PENALTYDELTAROW
	XSLP_PENALTYDELTAS
	XSLP_PENALTYERRORCOLUMN
	XSLP_PENALTYERRORROW
	XSLP_PENALTYERRORS
	XSLP_PLUSPENALTYERRORS
	XSLP_PRESOLVEDELETEDDELTA
	XSLP_PRESOLVEELIMINATIONS
	XSLP_PRESOLVEFIXEDCOEF
	XSLP_PRESOLVEFIXEDDR
	XSLP_PRESOLVEFIXEDNZCOL
	XSLP_PRESOLVEFIXEDSLPVAR
	XSLP_PRESOLVEFIXEDZCOL
	XSLP_PRESOLVEPASSES
	XSLP_PRESOLVESTATE
	XSLP_PRESOLVETIGHTENED
	XSLP_SBXCONVERGED
	XSLP_SEMICONTDELTAS
	XSLP_SOLVERSELECTED
	XSLP_SOLSTATUS
	XSLP_STATUS
	XSLP_STOPSTATUS
	XSLP_TOLSETS
	XSLP_TOTALEVALUATIONERRORS
	XSLP_UCCONSTRAINEDCOUNT
	XSLP_UFINSTANCES
	XSLP_UFS
	XSLP_UNCONVERGED
	XSLP_USEDERIVATIVES
	XSLP_USERFUNCCALLS
	XSLP_VARIABLES
	XSLP_VERSION
	XSLP_ZEROESRESET
	XSLP_ZEROESRETAINED
	XSLP_ZEROESTOTAL

	Reference (pointer) problem attributes
	XSLP_MIPPROBLEM
	XSLP_SOLUTIONPOOL
	XSLP_XPRSPROBLEM
	XSLP_XSLPPROBLEM

	String problem attributes
	XSLP_VERSIONDATE

	Control Parameters
	Double control parameters
	XSLP_ATOL_A
	XSLP_ATOL_R
	XSLP_BARSTALLINGTOL
	XSLP_CASCADETOL_PA
	XSLP_CASCADETOL_PR
	XSLP_CDTOL_A
	XSLP_CDTOL_R
	XSLP_CLAMPSHRINK
	XSLP_CLAMPVALIDATIONTOL_A
	XSLP_CLAMPVALIDATIONTOL_R
	XSLP_CTOL
	XSLP_DAMP
	XSLP_DAMPEXPAND
	XSLP_DAMPMAX
	XSLP_DAMPMIN
	XSLP_DAMPSHRINK
	XSLP_DEFAULTIV
	XSLP_DEFAULTSTEPBOUND
	XSLP_DELTA_A
	XSLP_DELTA_R
	XSLP_DELTA_X
	XSLP_DELTA_Z
	XSLP_DELTA_ZERO
	XSLP_DELTACOST
	XSLP_DELTACOSTFACTOR
	XSLP_DELTAMAXCOST
	XSLP_DJTOL
	XSLP_DRCOLTOL
	XSLP_ECFTOL_A
	XSLP_ECFTOL_R
	XSLP_ENFORCECOSTSHRINK
	XSLP_ENFORCEMAXCOST
	XSLP_ERRORCOST
	XSLP_ERRORCOSTFACTOR
	XSLP_ERRORMAXCOST
	XSLP_ERRORTOL_A
	XSLP_ERRORTOL_P
	XSLP_ESCALATION
	XSLP_ETOL_A
	XSLP_ETOL_R
	XSLP_EVTOL_A
	XSLP_EVTOL_R
	XSLP_EXPAND
	XSLP_FEASTOLTARGET
	XSLP_GRANULARITY
	XSLP_INFINITY
	XSLP_ITOL_A
	XSLP_ITOL_R
	XSLP_MATRIXTOL
	XSLP_MAXWEIGHT
	XSLP_MEMORYFACTOR
	XSLP_MERITLAMBDA
	XSLP_MINSBFACTOR
	XSLP_MINWEIGHT
	XSLP_MIPCUTOFF_A
	XSLP_MIPCUTOFF_R
	XSLP_MIPERRORTOL_A
	XSLP_MIPERRORTOL_R
	XSLP_MIPOTOL_A
	XSLP_MIPOTOL_R
	XSLP_MSMAXBOUNDRANGE
	XSLP_MTOL_A
	XSLP_MTOL_R
	XSLP_MVTOL
	XSLP_OBJSENSE
	XSLP_OBJTOPENALTYCOST
	XSLP_OPTIMALITYTOLTARGET
	XSLP_OTOL_A
	XSLP_OTOL_R
	XSLP_PRESOLVEZERO
	XSLP_PRIMALINTEGRALREF
	XSLP_SHRINK
	XSLP_SHRINKBIAS
	XSLP_STOL_A
	XSLP_STOL_R
	XSLP_VALIDATIONTARGET_R
	XSLP_VALIDATIONTARGET_K
	XSLP_VALIDATIONTOL_A
	XSLP_VALIDATIONTOL_R
	XSLP_VTOL_A
	XSLP_VTOL_R
	XSLP_WTOL_A
	XSLP_WTOL_R
	XSLP_XTOL_A
	XSLP_XTOL_R
	XSLP_ZERO

	Integer control parameters
	XSLP_ALGORITHM
	XSLP_ANALYZE
	XSLP_AUGMENTATION
	XSLP_AUTOSAVE
	XSLP_BARCROSSOVERSTART
	XSLP_BARLIMIT
	XSLP_BARSTALLINGLIMIT
	XSLP_BARSTALLINGOBJLIMIT
	XSLP_BARSTARTOPS
	XSLP_CALCTHREADS
	XSLP_CASCADE
	XSLP_CASCADENLIMIT
	XSLP_CONTROL
	XSLP_CONVERGENCEOPS
	XSLP_DAMPSTART
	XSLP_DCLIMIT
	XSLP_DCLOG
	XSLP_DELAYUPDATEROWS
	XSLP_DELTAOFFSET
	XSLP_DELTAZLIMIT
	XSLP_DERIVATIVES
	XSLP_DETERMINISTIC
	XSLP_ECFCHECK
	XSLP_ECHOXPRSMESSAGES
	XSLP_ERROROFFSET
	XSLP_EVALUATE
	XSLP_FILTER
	XSLP_FINDIV
	XSLP_FUNCEVAL
	XSLP_GRIDHEURSELECT
	XSLP_HEURSTRATEGY
	XSLP_HESSIAN
	XSLP_INFEASLIMIT
	XSLP_ITERLIMIT
	XSLP_JACOBIAN
	XSLP_LINQUADBR
	XSLP_LOG
	XSLP_LSITERLIMIT
	XSLP_LSPATTERNLIMIT
	XSLP_LSSTART
	XSLP_LSZEROLIMIT
	XSLP_MAXTIME
	XSLP_MIPALGORITHM
	XSLP_MIPCUTOFFCOUNT
	XSLP_MIPCUTOFFLIMIT
	XSLP_MIPDEFAULTALGORITHM
	XSLP_MIPFIXSTEPBOUNDS
	XSLP_MIPITERLIMIT
	XSLP_MIPLOG
	XSLP_MIPOCOUNT
	XSLP_MIPRELAXSTEPBOUNDS
	XSLP_MULTISTART
	XSLP_MULTISTART_MAXSOLVES
	XSLP_MULTISTART_MAXTIME
	XSLP_MULTISTART_POOLSIZE
	XSLP_MULTISTART_SEED
	XSLP_MULTISTART_THREADS
	XSLP_OCOUNT
	XSLP_PENALTYINFOSTART
	XSLP_POSTSOLVE
	XSLP_PRESOLVE
	XSLP_PRESOLVELEVEL
	XSLP_PRESOLVEOPS
	XSLP_PRESOLVEPASSLIMIT
	XSLP_PROBING
	XSLP_REFORMULATE
	XSLP_SAMECOUNT
	XSLP_SAMEDAMP
	XSLP_SBROWOFFSET
	XSLP_SBSTART
	XSLP_SCALE
	XSLP_SCALECOUNT
	XSLP_SOLVER
	XSLP_SLPLOG
	XSLP_STOPOUTOFRANGE
	XSLP_THREADS
	XSLP_TIMEPRINT
	XSLP_THREADSAFEUSERFUNC
	XSLP_TRACEMASKOPS
	XSLP_UNFINISHEDLIMIT
	XSLP_UPDATEOFFSET
	XSLP_VCOUNT
	XSLP_VLIMIT
	XSLP_WCOUNT
	XSLP_XCOUNT
	XSLP_XLIMIT
	XSLP_ZEROCRITERION
	XSLP_ZEROCRITERIONCOUNT
	XSLP_ZEROCRITERIONSTART

	String control parameters
	XSLP_CVNAME
	XSLP_DELTAFORMAT
	XSLP_ITERFALLBACKOPS
	XSLP_IVNAME
	XSLP_MINUSDELTAFORMAT
	XSLP_MINUSERRORFORMAT
	XSLP_PENALTYCOLFORMAT
	XSLP_PENALTYROWFORMAT
	XSLP_PLUSDELTAFORMAT
	XSLP_PLUSERRORFORMAT
	XSLP_SBLOROWFORMAT
	XSLP_SBNAME
	XSLP_SBUPROWFORMAT
	XSLP_TOLNAME
	XSLP_TRACEMASK
	XSLP_UPDATEFORMAT

	Knitro controls

	Library functions and the programming interface
	Counting
	The Xpress NonLinear problem pointer
	The XSLPload... functions
	Library functions
	XSLPaddcoefs
	XSLPadddfs
	XSLPaddtolsets
	XSLPadduserfunction
	XSLPaddvars
	XSLPcalcslacks
	XSLPcascade
	XSLPcascadeorder
	XSLPchgcascadenlimit
	XSLPchgccoef
	XSLPchgcoef
	XSLPchgdeltatype
	XSLPchgdf
	XSLPchgrowstatus
	XSLPchgrowwt
	XSLPchgtolset
	XSLPchgvar
	XSLPconstruct
	XSLPcopycallbacks
	XSLPcopycontrols
	XSLPcopyprob
	XSLPcreateprob
	XSLPdelcoefs
	XSLPdeltolsets
	XSLPdeluserfunction
	XSLPdelvars
	XSLPdestroyprob
	XSLPevaluatecoef
	XSLPevaluateformula
	XSLPfixpenalties
	XSLPfree
	XSLPgetbanner
	XSLPgetccoef
	XSLPgetcoefformula
	XSLPgetcoefs
	XSLPgetcolinfo
	XSLPgetdblattrib
	XSLPgetdblcontrol
	XSLPgetdf
	XSLPgetindex
	XSLPgetintattrib
	XSLPgetintcontrol
	XSLPgetlasterror
	XSLPgetptrattrib
	XSLPgetrowinfo
	XSLPgetrowstatus
	XSLPgetrowwt
	XSLPgetslpsol
	XSLPgetstrattrib
	XSLPgetstrcontrol
	XSLPgettolset
	XSLPgetvar
	XSLPglobal
	XSLPimportlibfunc
	XSLPinit
	XSLPinterrupt
	XSLPitemname
	XSLPloadcoefs
	XSLPloaddfs
	XSLPloadtolsets
	XSLPloadvars
	XSLPmaxim
	XSLPminim
	XSLPmsaddcustompreset
	XSLPmsaddjob
	XSLPmsaddpreset
	XSLPmsclear
	XSLPnlpoptimize
	XSLPpostsolve
	XSLPpresolve
	XSLPprintmemory
	XSLPprintevalinfo
	XSLPreadprob
	XSLPremaxim
	XSLPreminim
	XSLPrestore
	XSLPreinitialize
	XSLPsave
	XSLPsaveas
	XSLPscaling
	XSLPsetcbcascadeend
	XSLPsetcbcascadestart
	XSLPsetcbcascadevar
	XSLPsetcbcascadevarfail
	XSLPsetcbcoefevalerror
	XSLPsetcbconstruct
	XSLPsetcbdestroy
	XSLPsetcbdrcol
	XSLPsetcbintsol
	XSLPsetcbiterend
	XSLPsetcbiterstart
	XSLPsetcbitervar
	XSLPsetcbmessage
	XSLPsetcbmsjobend
	XSLPsetcbmsjobstart
	XSLPsetcbmswinner
	XSLPsetcboptnode
	XSLPsetcbprenode
	XSLPsetcbpreupdatelinearization
	XSLPsetcbslpend
	XSLPsetcbslpnode
	XSLPsetcbslpstart
	XSLPsetcurrentiv
	XSLPsetdblcontrol
	XSLPsetdefaultcontrol
	XSLPsetdefaults
	XSLPsetfunctionerror
	XSLPsetintcontrol
	XSLPsetlogfile
	XSLPsetparam
	XSLPsetstrcontrol
	XSLPunconstruct
	XSLPupdatelinearization
	XSLPvalidate
	XSLPvalidatekkt
	XSLPvalidateprob
	XSLPvalidaterow
	XSLPvalidatevector
	XSLPwriteprob
	XSLPwriteslxsol

	Internal Functions
	Trigonometric functions
	ARCCOS
	ARCSIN
	ARCTAN
	COS
	SIN
	TAN

	Other mathematical functions
	ABS
	ERF
	ERFC
	EXP
	LN
	LOG, LOG10
	MAX
	MIN
	PWL
	SIGN
	SQRT

	Error Messages
	Xpress Knitro Control Parameters
	Double control parameters
	XKTR_PARAM_BAR_FEASMODETOL
	XKTR_PARAM_BAR_INITMU
	XKTR_PARAM_DELTA
	XKTR_PARAM_FEASTOL
	XKTR_PARAM_FEASTOLABS
	XKTR_PARAM_INFEASTOL
	XKTR_PARAM_MIP_INTEGERTOL
	XKTR_PARAM_MIP_INTGAPABS
	XKTR_PARAM_MIP_INTGAPREL
	XKTR_PARAM_OBJRANGE
	XKTR_PARAM_OPTTOL
	XKTR_PARAM_OPTTOLABS
	XKTR_PARAM_PRESOLVE_TOL
	XKTR_PARAM_XTOL

	Integer control parameters
	XKTR_PARAM_ALGORITHM
	XKTR_PARAM_BAR_DIRECTINTERVAL
	XKTR_PARAM_BAR_FEASIBLE
	XKTR_PARAM_BAR_INITPT
	XKTR_PARAM_BAR_MAXBACKTRACK
	XKTR_PARAM_BAR_MAXCROSSIT
	XKTR_PARAM_BAR_MAXREFACTOR
	XKTR_PARAM_BAR_MURULE
	XKTR_PARAM_BAR_PENCONS
	XKTR_PARAM_BAR_PENRULE
	XKTR_PARAM_BAR_SWITCHRULE
	XKTR_PARAM_GRADOPT
	XKTR_PARAM_HESSOPT
	XKTR_PARAM_HONORBNDS
	XKTR_PARAM_LMSIZE
	XKTR_PARAM_MAXCGIT
	XKTR_PARAM_MAXIT
	XKTR_PARAM_MIP_BRANCHRULE
	XKTR_PARAM_MIP_GUB_BRANCH
	XKTR_PARAM_MIP_HEURISTIC
	XKTR_PARAM_MIP_HEURISTIC_MAXIT
	XKTR_PARAM_MIP_IMPLICATNS
	XKTR_PARAM_MIP_KNAPSACK
	XKTR_PARAM_MIP_LPALG
	XKTR_PARAM_MIP_MAXNODES
	XKTR_PARAM_MIP_MAXSOLVES
	XKTR_PARAM_MIP_METHOD
	XKTR_PARAM_MIP_OUTINTERVAL
	XKTR_PARAM_MIP_OUTLEVEL
	XKTR_PARAM_MIP_PSEUDOINIT
	XKTR_PARAM_MIP_ROOTALG
	XKTR_PARAM_MIP_ROUNDING
	XKTR_PARAM_MIP_SELECTRULE
	XKTR_PARAM_MIP_STRONG_CANDLIM
	XKTR_PARAM_MIP_STRONG_LEVEL
	XKTR_PARAM_MIP_STRONG_MAXIT
	XKTR_PARAM_MIP_TERMINATE
	XKTR_PARAM_OUTLEV
	XKTR_PARAM_PRESOLVE
	XKTR_PARAM_SCALE
	XKTR_PARAM_SOC

	Appendix
	The Xpress-SLP Log
	Logging controls
	The structure of the log

	Selecting the right algorithm for a nonlinear problem - when to use the XPRS library instead of XSLP
	Convex Quadratic Programs (QPs)
	Convex Quadratically Constrained Quadratic Programs (QCQPs)
	Convexity
	Characterizing Convexity in Quadratic Constraints

	Files used by Xpress NonLinear
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

