
FICOFICO R©R©Xpress OptimizationXpress Optimization

5.2
Last update March 2020

REFERENCE MANUAL

FICO R© Xpress Mosel

©2001–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair IsaacCorporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,reproduce, make derivative works, use, or allow others to use it except solely for internal evaluationpurposes to determine whether to purchase a license to the software described in this documentation, oras otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoingpermitted uses, and no other use is permitted.
The information in this documentation is subject to change without notice. If you find any problems in thisdocumentation, please report them to us in writing. Neither FICO nor its affiliates warrant that thisdocumentation is error-free, nor are there any other warranties with respect to the documentation exceptas may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,express or implied, including, but not limited to, non-infringement, merchantability and fitness for aparticular purpose. Portions of this documentation and the software described in it may contain copyrightof various authors and may be licensed under certain third-party licenses identified in the software,documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, orconsequential damages, including lost profits, arising out of the use of this documentation or the softwaredescribed in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO andits affiliates have no obligation to provide maintenance, support, updates, enhancements, or modificationsexcept as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registeredtrademark of Fair Isaac Corporation in other countries. Other product and company names herein may betrademarks of their respective owners.
Xpress Mosel
Deliverable Version: A
Last Revised: March 2020
Version 5.2

Contents

1 Introduction 11.1 What is Mosel? . 11.2 General organization . 11.3 Running Mosel . 21.3.1 mosel command: invocation . 21.3.2 mosel command: interactive debugger . 61.3.3 mosel command: tracing mode . 101.3.4 mosel command: restricted mode . 111.3.5 mosel command: securing bim files . 121.4 References . 121.5 Structure of this manual . 13

I Core System 14

2 The Mosel Language 152.1 Introduction . 152.1.1 Comments . 152.1.2 Identifiers . 152.1.3 Reserved words . 162.1.4 Separation of instructions, line breaking . 162.1.5 Conventions in this document . 162.2 Structure of the source file . 172.3 The compiler directives . 172.3.1 Directive uses . 172.3.2 Directive imports . 182.3.3 Directive options . 192.3.4 Directive version . 192.4 The parameters block . 202.5 Source file preprocessing . 202.5.1 Source file character encoding . 202.5.2 Source file inclusion . 202.5.3 Line control directives . 212.6 The declaration block . 212.6.1 Elementary types . 222.6.1.1 Basic types . 222.6.1.2 MP types . 222.6.2 Sets . 232.6.3 Lists . 232.6.4 Arrays . 242.6.4.1 Special case of dynamic arrays of a type not supporting assignment . . . 242.6.5 Records . 242.6.6 Constants . 252.6.7 User defined types . 262.6.7.1 Naming new types . 26

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

2.6.7.2 Combining types . 262.7 Expressions . 262.7.1 Type conversions and constructors . 282.7.2 Aggregate operators . 292.7.3 Arithmetic expressions . 302.7.4 String expressions . 312.7.5 Set expressions . 312.7.6 List expressions . 322.7.7 Boolean expressions . 322.7.8 Linear constraint expressions . 332.7.9 Automatic arrays . 342.8 Statements . 342.8.1 Simple statements . 342.8.1.1 Assignment . 342.8.1.2 Assignment of structured types . 352.8.1.3 About implicit declarations . 352.8.1.4 Inline initialization . 352.8.1.5 Linear constraint expression . 362.8.1.6 Procedure call . 362.8.2 Initialization block . 362.8.2.1 About automatic finalization . 392.8.3 Selections . 392.8.3.1 If statement . 392.8.3.2 Case statement . 402.8.4 Loops . 402.8.4.1 Forall loop . 402.8.4.2 While loop . 412.8.4.3 Repeat loop . 412.8.4.4 break and next statements . 412.8.4.5 with statement . 422.9 Procedures and functions . 422.9.1 Definition . 422.9.2 Formal parameters: passing convention . 432.9.3 Local declarations . 442.9.4 Overloading . 442.9.5 Forward declaration . 442.9.6 Suffix notation . 452.10 Problems . 452.10.1 The mpproblem type . 462.11 The public qualifier . 472.12 Packages . 482.12.1 Version management . 482.12.2 The requirements block . 482.12.3 Control parameters . 492.13 Namespaces . 492.14 Annotations . 502.14.1 Syntax . 512.14.2 Symbol association . 522.14.3 Declaration . 522.15 File names and input/output drivers . 542.16 Character encoding of text files . 552.17 Working directory and temporary directory . 562.18 Handling of input/output . 562.19 Deploying models . 572.20 Documenting models using annotations . 58

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

2.20.1 doc annotation category . 592.20.1.1 Global definitions . 592.20.1.2 Document structure . 602.20.1.3 Symbol definitions . 602.20.1.4 Annotation definitions . 622.20.1.5 Package control parameters . 622.20.2 moseldoc documentation processor . 622.20.2.1 Running moseldoc . 622.20.2.2 Structure of the generated document . 632.20.2.3 Processing of annotation values . 632.21 Message translation . 632.21.1 Preparing the model source . 632.21.2 Building the message catalogs . 642.21.3 Model execution . 65
3 Predefined functions and procedures 66abs . 67arctan . 68asproc . 69assert . 70bitflip . 71bitneg . 72bitset . 73bitshift . 74bittest . 75bitval . 76ceil . 77compare . 78cos . 79create . 80currentdate . 81currenttime . 82cutelt . 83cutfirst . 84cuthead . 85cutlast . 86cuttail . 87delcell . 88datablock . 89exists . 90exit . 91exp . 92exportprob . 93fclose . 95fflush . 96finalize . 97findfirst . 98findlast . 99floor . 100fopen . 101fselect . 102fskipline . 103fwrite, fwriteln . 104getact . 105getcoeff . 106

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

getcoeffs . 107getdual . 108getelt . 109getfid . 110getfirst . 111gethead . 112getfname . 113getlast . 114getobjval . 115getparam . 116getrcost . 119getreadcnt . 120getreverse . 121getsize . 122getslack . 123getsol . 124gettail . 125gettype . 126getvars . 127isdynamic . 128iseof . 129isfinite . 130ishidden . 131isinf . 132isnan . 133isodd . 134ln . 135localsetparam . 136log . 137makesos1, makesos2 . 138maxlist . 139memoryuse . 140minlist . 141newmuid . 142publish . 143random . 144read, readln . 145reset . 146restoreparam . 147reverse . 148round . 149setcoeff . 150sethidden . 151setioerr . 152setmatherr . 153setname . 154setparam . 155setrandseed . 156setrange . 157settype . 158sin . 159splithead . 160splittail . 161sqrt . 162strfmt . 163

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

substr . 164timestamp . 165unpublish . 166versionnum, versionstr . 167write, writeln . 168

II Modules 169

4 mmetc 1704.1 Procedures and functions . 170disc . 171diskdata . 1724.2 I/O drivers . 1744.2.1 Driver diskdata . 174
5 mmhttp 1765.1 New functionality for the Mosel language . 1765.1.1 The type reqqueue . 1765.2 Control parameters . 176http_async . 177http_browser . 177http_cookies . 178http_defpage . 178http_defport . 178http_expire . 179http_freeasync . 179http_keephdr . 179http_listen . 179http_maxconn . 180http_maxcontime . 180http_maxreq . 180http_maxreqtime . 181http_maxasync . 181http_port . 181http_proxy . 182http_proxyport . 182http_srvconfig . 182http_startwb . 183https_defport . 183https_listen . 183https_port . 1845.3 Constants . 1845.4 Procedures and functions . 1845.4.1 HTTP client . 184delcookies . 187findcookie . 188httpcancel . 189httpdel . 190httpget . 191httpgetheader . 192httphead . 193httppost . 194httpput . 195httpreason . 196

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

loadcookies . 197savecookies . 198setcookie . 199tcpping . 200urlencode . 2015.4.2 HTTP server . 202httppending . 205httpqueueinfo . 206httpreply . 207httpreplycode . 208httpreplyjson . 209httpreqcookies . 210httpreqfile . 211httpreqfrom . 212httpreqheader . 213httpreqlabel . 214httpreqpop . 215httpreqpush . 216httpreqpushlim . 217httpreqstat . 218httpreqtype . 219httpstartsrv . 220httpstopsrv . 221jsonwrite . 222mksetcookie . 2235.5 I/O drivers . 2245.5.1 Driver url . 224
6 mmjava 2256.1 I/O drivers . 2256.1.1 Driver java . 2256.1.2 Driver jraw . 226
7 mmjobs 2277.1 Example . 2277.2 Data sharing between models . 2287.3 Control parameters . 228conntmpl . 229nodenumber . 229defaultnode . 229jobid . 230parentnumber . 230keepalive . 230fsrvport . 230fsrvdelay . 231fsrvnbiter . 231sshcmd . 2317.4 Procedures and functions . 2327.4.1 Mosel instance management . 232connect . 233disconnect . 234clearaliases . 235getbanner . 236gethostalias . 237getaliases . 238

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

sethostalias . 239findxsrvs . 2407.4.2 Model management . 241compile . 242detach . 244load . 245setdefstream . 247resetmodpar . 248setcontrol . 249setmodpar . 250setworkdir . 251run . 252getdsoprop, getdsopropnum . 253getgid . 254getid . 255getmodprop, getmodpropnum . 256getnode . 257getrmtid . 258getstatus . 259getuid . 260getexitcode . 261stop . 262reset . 263unload . 264getannidents . 265getannotations . 2667.4.3 Synchronization . 267canceltimer . 268send . 269settimer . 270setuid . 271setgid . 272wait . 273waitexpired . 274waitfor . 275waitforend . 277getnextevent . 278dropnextevent . 279isqueueempty . 280nullevent . 281getfromid . 282getfromgid . 283getfromuid . 284getclass . 285gettimer . 286getvalue . 287peeknextevent . 2887.5 I/O drivers . 2897.5.1 Driver shmem . 2897.5.2 Driver mempipe . 2897.5.3 Driver rcmd . 2907.5.4 Driver xsrv . 2907.5.5 Driver xssh . 2907.5.6 Driver rmt . 2917.6 The Mosel Remote Launcher xprmsrv . 291

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

7.6.1 Running the xprmsrv command . 2917.6.1.1 Main command line options . 2917.6.1.2 Secure server . 2937.6.1.3 Private key management . 2937.6.1.4 Mode of operation . 2937.6.2 Configuration file . 2947.6.2.1 Access control list . 296
8 mmnl 2988.1 New functionality for the Mosel language . 2988.1.1 The problem type mpproblem.nl . 2988.1.2 The type nlctr and its operators . 2988.1.3 Setting initial values . 2988.1.4 Example: using mmnl for QCQP . 2998.2 Procedures and functions . 300clearinitvals . 301copysoltoinit . 302setinitval . 303getsol . 304ishidden . 305sethidden . 306gettype . 307setname . 308settype . 309
9 mmoci 3109.1 Prerequisite . 3109.2 Example . 3109.3 Data transfer between Mosel and Oracle . 3119.3.1 From Oracle to Mosel . 3119.3.2 From Mosel to Oracle . 3129.4 Control parameters . 314OCIautocommit . 315OCIautondx . 315OCIbufsize . 316OCIcolsize . 316OCIconnection . 316OCIdebug . 317OCIfirstndx . 317OCIndxcol . 317OCIrowcnt . 318OCIrowxfr . 318OCIsuccess . 318OCItruncsize . 318OCIverbose . 3199.5 Procedures and functions . 319OCIlogon . 320OCIlogoff . 321OCIexecute . 322OCIreadinteger . 323OCIreadreal . 324OCIreadstring . 325OCIcommit . 326OCIrollback . 3279.6 I/O drivers . 328

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

9.6.1 Driver oci . 328
10 mmodbc 32910.1 Prerequisite . 32910.2 Example . 32910.3 Data transfer between Mosel and the database . 33010.3.1 From the database to Mosel . 33010.3.2 From Mosel to the database . 33210.4 ODBC and MS Excel . 33310.5 Control parameters . 334SQLautocommit . 335SQLautondx . 335SQLbufsize . 335SQLcolsize . 336SQLconnection . 336SQLdebug . 336SQLdm . 337SQLextn . 337SQLfirstndx . 337SQLndxcol . 338SQLrowcnt . 338SQLrowxfr . 338SQLsuccess . 338SQLtruncsize . 339SQLverbose . 33910.6 Procedures and functions . 339SQLcolumns . 341SQLcommit . 342SQLconnect . 343SQLdisconnect . 345SQLexecute . 346SQLparam . 348SQLgetparam . 349SQLindices . 350SQLprimarykeys . 351SQLreadinteger . 352SQLreadreal . 353SQLreadstring . 354SQLrollback . 355SQLtables . 356SQLupdate . 35710.7 I/O drivers . 35810.7.1 Driver odbc . 358
11 mmquad 35911.1 New functionality for the Mosel language . 35911.1.1 The type qexp and its operators . 35911.1.1.1 Example: using mmquad for Quadratic Programming 35911.1.2 Procedures and functions . 360exportprob . 361getsol . 36211.2 Published library functions . 36311.2.1 Complete module example . 36311.2.2 Description of the library functions . 365getqexpsol . 366

Fair Isaac Corporation Confidential and Proprietary Information ix

Contents

getqexpstat . 367clearqexpstat . 368getqexpnextterm . 369
12 mmrobust 37012.1 New functionality for the Mosel language . 37012.1.1 The problem type mpproblem.xprs.robust . 37012.1.2 The type uncertain . 37012.1.3 The type robustctr and its operators . 37112.1.4 The type uncertainctr and its operators . 37112.1.5 Example: using mmrobust for solving a robust problem 37112.2 Control parameters . 372robust_uncertain_overlap . 372robust_check_feas_uncertainty_set . 372robust_check_feas_original_problem . 37312.3 Procedures and functions . 373cardinality . 374getsol . 375getact . 376ishidden . 377scenario . 378sethidden . 379getnominal . 380gettype . 381setnominal . 382settype . 383
13 mmsheet 38413.1 I/O drivers . 38413.1.1 Driver excel . 38513.1.2 Driver xls/xlsx . 38613.1.3 Driver csv . 386
14 mmssl 38814.1 Overview . 38814.1.1 Document encryption in Mosel . 38814.1.2 The mmssl command . 38814.2 Control parameters . 389https_cacerts . 390https_ciphers . 390https_cltcrt . 390https_cltkey . 391https_srvcrt . 391https_srvkey . 391https_trustsrv . 392ssl_cipher . 392ssl_digest . 392ssl_dir . 393ssl_privkey . 39414.3 Procedures and functions . 394RSAfingerprint . 395RSAgenkey . 396RSAgetkeysize . 397RSAisprivate . 398RSAloadkey . 399

Fair Isaac Corporation Confidential and Proprietary Information x

Contents

RSApubdecrypt . 400RSAprivdecrypt . 401RSAprivencrypt . 402RSApubencrypt . 403RSAsavekey . 404msgdigest . 405msgsign . 406msgverify . 407sslivsize . 408sslkeysize . 409sslmdsize . 410sslrandom . 411sslrandomdata . 412x509check . 413x509getinfo . 414x509newcrt . 41514.4 I/O drivers . 41614.4.1 Driver base64 . 41614.4.2 Driver hex . 41614.4.3 Driver crypt . 41614.4.4 Driver hmac . 417
15 mmsvg 41815.1 SVG graph structure . 41815.1.1 Object groups . 41815.1.2 SVG styling . 41915.1.3 Interaction with the graphical display . 42015.1.4 Example . 42015.2 Control parameters . 421MMSVGDISPLAY . 421MMSVGTGZ . 42215.3 Procedures and Functions . 422svgaddgroup . 424svgaddarrow . 425svgaddcircle . 426svgaddellipse . 427svgaddfile . 428svgaddimage . 429svgaddline . 430svgaddpie . 431svgaddpoint . 432svgaddpolygon . 433svgaddrectangle . 434svgaddtext . 435svgaddxmltext . 436svgclosing . 437svgcolor . 438svgdelobj . 439svgerase . 440svggetgraphstyle . 441svggetgraphstylesheet . 442svggetgraphviewbox . 443svggetlastobj . 444svggetstyle . 445svggetstylesheet . 446

Fair Isaac Corporation Confidential and Proprietary Information xi

Contents

svgpause . 447svgrefresh . 448svgsave . 449svgsetgraphlabels . 450svgsetgraphpointsize . 451svgsetgraphscale . 452svgsetgraphstyle . 453svgsetgraphstylesheet . 454svgsetgraphviewbox . 455svgsetreffreq . 456svgsetstyle . 457svgsetstylesheet . 458svgshowgraphaxes . 459svgwaitclose . 460
16 mmsystem 46116.1 New functionality for the Mosel language . 46116.1.1 The type text . 46116.1.2 The type date . 46116.1.3 The type time . 46116.1.4 The type datetime . 46216.1.5 The type parsectx . 46216.1.6 The type textarea . 46216.2 Control parameters . 462datefmt . 463timefmt . 463datetimefmt . 464monthnames . 464sys_endparse . 465sys_fillchar . 465sys_pid . 465sys_qtype . 465sys_regcache . 466sys_sepchar . 466sys_trim . 466sys_txtmem . 46716.3 Procedures and functions . 467addmonths . 471compareic . 472copytext . 473cuttext . 474deltext . 475endswith . 476erase . 477expandpath . 478fcopy . 479fdelete . 480findfiles . 481findtext . 482fmove . 483formattext . 484getasnumber . 486getchar . 487getcwd . 488getdate . 489

Fair Isaac Corporation Confidential and Proprietary Information xii

Contents

getday . 490getdaynum . 491getdays . 492getdirsep . 493getdsoparam . 494getendparse, setendparse . 495getenv . 496getfsize . 497getfstat, getflstat . 498getftime . 499gethour . 500getminute . 501getmonth . 502getmsec . 503getoserror . 504getoserrmsg . 505getpathsep . 506getsucc, setsucc . 507getqtype, setqtype . 508getsecond . 509getsepchar, setsepchar . 510getsize . 511getstart, setstart . 512getsysinfo . 513getsysstat . 514gettime . 515gettmpdir . 516gettrim, settrim . 517getweekday . 518getyear . 519inserttext . 520isvalid . 521jointext . 522makedir . 523makepath . 524newtar . 525newzip . 526nextfield . 527openpipe . 528parseextn . 529parseint . 530parsereal . 532parsetext . 533pastetext . 535pathmatch . 536pathsplit . 537qsort . 538quote . 540readlink . 541readtextline . 542regmatch . 543regreplace . 545removedir . 546removefiles . 547setchar . 548

Fair Isaac Corporation Confidential and Proprietary Information xiii

Contents

setdate . 549setday . 550setdsoparam . 551setenv . 552setoserror . 553sethour . 554setminute . 555setmonth . 556setmsec . 557setsecond . 558settime . 559setyear . 560sleep . 561splittext . 562startswith . 563symlink . 564system . 565tarlist . 566textfmt . 567tolower . 569toupper . 570trim . 571untar . 572unzip . 573ziplist . 57416.4 I/O drivers . 57516.4.1 Driver text . 57516.4.2 Driver pipe . 57516.5 Published library functions . 57616.5.1 Description of the library functions . 576gettime . 578settime . 579getdate . 580setdate . 581getdatetime . 582setdatetime . 583gettxtsize . 584gettxtbuf . 585txtresize . 586
17 mmxml 58717.1 Document representation in mmxml . 58717.1.1 Data model . 58717.1.2 Paths in a document . 58817.1.2.1 Axis specifier . 58917.1.2.2 Node test . 58917.1.2.3 Abbreviated notation . 58917.1.2.4 Predicate . 58917.1.3 JSON document as an XML tree . 59017.2 New functionality for the Mosel language . 59217.2.1 The type xmldoc . 59217.3 Procedures and functions . 592addnode . 594copynode . 596delattr . 597

Fair Isaac Corporation Confidential and Proprietary Information xiv

Contents

delnode . 598getattr . 599testattr . 600getencoding . 601getname . 602getvalue . 603getfirstattr . 604getnext . 605getfirstchild . 606getlastchild . 607getnode . 608getnodes . 609getparent . 610gettype . 611getstandalone . 612getxmlversion . 613gethspace . 614getvspace . 615getindentmode . 616getindentskip . 617getlinelen . 618getmaxnodes . 619getsize . 620jsonload . 621jsonparse . 622jsonsave . 624load . 625save . 626setattr . 627setencoding . 628setmaxnodes . 629setname . 630setvalue . 631sethspace . 632setvspace . 634setindentmode . 635setindentskip . 636setlinelen . 637setstandalone . 638setxmlversion . 639xmlattr . 640xmlencode . 641xmldecode . 642xmlparse . 643
18 mmxnlp 64518.1 New functionality for the Mosel language . 64518.1.1 The userfunc type . 64518.1.2 The tolset type . 64618.1.3 The mpproblem.xprs.xnlp problem type . 64618.2 mmxnlp and the other Mosel modules . 64618.2.1 Overloaded functions . 64718.2.2 Module compatibility . 64718.3 Control parameters . 647XNLP_AUTOELIM . 648

Fair Isaac Corporation Confidential and Proprietary Information xv

Contents

XNLP_LOADASNL . 648XNLP_LOADNAMES . 649XNLP_NLPSTATUS . 649XNLP_SOLVER . 649XNLP_VERBOSE . 65018.4 Procedures and functions . 650addmultistart . 652chgdeltatype . 653F . 654generateUFparallel . 656printmodelmemory . 657printmodelscaling . 658setcallback . 659setcomplementary . 660setdelayedctr . 661setdefvar . 662setdetrow . 663setenforcedctr . 664setinitsb . 665settol . 666settolset . 667userfuncDLL . 668userfuncExcel . 669userfuncExcelMacro . 670userfuncinfo . 671userfuncMosel . 672validate . 67318.5 Error codes issued by mmxnlp . 674
19 mmxprs 67619.1 New functionality for the Mosel language . 67619.1.1 The problem type mpproblem.xprs . 67619.1.2 The type basis . 67619.1.3 The type mpsol . 67619.1.4 The type logctr . 67719.2 Control parameters . 677XPRS_colorder . 677XPRS_enumsols . 678XPRS_enummaxsol . 678XPRS_enumduplpol . 678XPRS_fullversion . 679XPRS_loadnames . 679XPRS_problem . 679XPRS_probname . 679XPRS_verbose . 68019.3 Procedures and functions . 680addmipsol . 683basisstability . 684calcsolinfo . 685clearmipdir . 686clearmodcut . 687command . 688copysoltoinit . 689crossoverlpsol . 690defdelayedrows . 691

Fair Isaac Corporation Confidential and Proprietary Information xvi

Contents

defsecurevecs . 692estimatemarginals . 693fixglobal . 694getbstat . 695getdualray . 696getiis . 697getiissense . 698getiistype . 699getinfcause . 700getinfeas . 701getlb . 702getloadedlinctrs . 703getloadedmpvars . 704getname . 705getprimalray . 706getprobstat . 707getrange . 708getsensrng . 709getsize . 710getsol . 711getub . 712getvars . 713hasfeature . 714implies . 715indicator . 716isiisvalid . 717isintegral . 718loadbasis . 719loadlpsol . 720loadmipsol . 721loadprob . 723maximize, minimize . 724postsolve . 726readbasis . 727readdirs . 728readsol . 729refinemipsol . 730rejectintsol . 731repairinfeas . 732resetbasis . 734resetiis . 735resetsol . 736savebasis . 737savemipsol . 738savesol . 739savestate . 740selectsol . 741setarchconsistency . 742setbstat . 743setcallback . 744setcbcutoff . 747setgndata . 748setlb . 749setmipdir . 750setmodcut . 751

Fair Isaac Corporation Confidential and Proprietary Information xvii

Contents

setsol . 752setub . 753setucbdata . 754stopoptimize . 755unloadprob . 756uselastbarsol . 757writebasis . 758writedirs . 759writeprob . 760writesol . 761xor . 76219.4 Cut Pool Manager . 763addcut . 764addcuts . 765delcuts . 766dropcuts . 767getcnlist . 768getcplist . 769loadcuts . 770storecut . 771storecuts . 772
20 python3 77320.1 Introduction . 77320.1.1 Prerequisites . 77320.1.2 Windows Anaconda Setup . 77420.1.3 Linux Anaconda Setup . 77420.1.4 Python initialization . 77520.1.5 Data types . 77520.2 Xpress Insight configuration . 77620.3 Control parameters . 777pyinitverbose . 777pyusepandas . 77820.4 Procedures and functions . 778pycall . 779pyexec . 781pyget . 782pygetdf . 783pyinit . 785pyinitpandas . 786pyrun . 787pyset . 788pysetdf . 789pyunload . 79020.5 I/O drivers . 79120.5.1 Driver python . 79120.5.1.1 Type mapping to Python . 79120.5.1.2 Type mapping from Python . 79220.6 Troubleshooting . 793
21 R 79521.1 Introduction . 79521.1.1 Prerequisites . 79521.1.2 R initialization . 79621.1.3 Memory limit on Windows . 796

Fair Isaac Corporation Confidential and Proprietary Information xviii

Contents

21.1.4 Data types . 79721.2 Example . 79921.3 Control parameters . 800Rverbose . 801Rinteractive . 801Rusemosstreams . 801Rcleanscript . 801Runloadscript . 802Rsessionmode . 80221.4 Procedures and functions . 802Reval . 804Rfree . 805Rgetarr . 806Rgetbool . 807Rgetint . 808Rgetreal . 809Rgetstr . 810Rinit . 811Rprint . 812Rset . 813Rsetdf . 814Rsource . 815Rerrcode . 816Rerrmsg . 817Rclearerr . 81821.5 I/O drivers . 81921.5.1 Driver rws . 81921.6 Troubleshooting . 819
22 zlib 82122.1 I/O drivers . 82122.1.1 Driver gzip . 82122.1.2 Driver deflate . 82122.1.3 Driver zip . 821

Appendix 823

A Syntax diagrams for the Mosel language 824A.1 Main structures and statements . 824A.2 Expressions . 828A.3 Initializations data file format . 831
B Remote Invocation Protocol 832B.1 Instance control parameters . 832B.2 mcmd pseudo file . 833B.3 Profiler interface . 837B.4 Debugger interface . 837
C Error messages 839C.1 General errors . 839C.2 Parser/compiler errors . 841C.2.1 Errors related to modules . 849C.2.2 Errors related to packages . 849C.3 Runtime errors . 849C.3.1 Initializations . 849

Fair Isaac Corporation Confidential and Proprietary Information xix

Contents

C.3.2 General runtime errors . 850C.3.3 BIM reader . 852C.3.4 Module manager errors . 853
D Contacting FICO 854Product support . 854Product education . 854Product documentation . 854Sales and maintenance . 855Related services . 855FICO Community . 855About FICO . 855

Index 856

Fair Isaac Corporation Confidential and Proprietary Information xx

CHAPTER 1

Introduction

1.1 What is Mosel?

Mosel is an environment for modeling and solving problems. To this aim, it provides a language that isboth a modeling and a programming language. The originality of the Mosel language is that there is noseparation between a modeling statement (e.g. declaring a decision variable or expressing aconstraint) and a procedure that actually solves the problem (e.g. call to an optimizing command).Thanks to this synergy, one can program a complex solution algorithm by combining modeling andsolving statements.
Each category of problem comes with its own particular types of variables and constraints and a singlekind of solver cannot be efficient in all cases. To take this into account, the Mosel system does notintegrate any solver by default but offers a dynamic interface to external solvers provided as modules.Each solver module comes with its own set of procedures and functions that directly extends thevocabulary and capabilities of the Mosel language. The link between Mosel and a solving module isachieved at the memory level and does not require any modification of the core system.
This open architecture can also be used as a means to connect Mosel to other software. For instance,a module could define the functionality required to communicate with a specific database.
The modeling and solving tasks are usually not the only operations performed by a softwareapplication. This is why the Mosel environment is provided either in the form of libraries or as astandalone program.

1.2 General organization

As input, Mosel expects a text file containing the source of the model/program to execute (henceforthwe use just the term ’model’ for ’model/program’ except where there might be an ambiguity). Thissource file is first compiled by the Mosel compiler. During this operation, the syntax of the model ischecked but no operation is executed. The result of the compilation is a BInary Model (BIM) that issaved in a second file. In this form, the model is ready to be executed and the source file is not requiredany more. To actually ’run’ the model, the BIM file must be read in again by Mosel and then executed.These different phases are handled by different modules that comprise the Mosel environment:
The runtime library: This library contains the VIrtual MAchine (VIMA) interpreter. It knows how to loada model in its binary format and how to execute it. It also implements a model manager (for handlingseveral models at a time) and a Dynamic Shared Objects manager (for loading and unloading modulesrequired by a given model). All the features of this library can be accessed from a user application.
The compiler library: The role of this module is to translate a source file into a binary format suitablefor being executed by the VIMA Interpreter.
The standalone application: The ’mosel’ application, also known as ’Mosel Console’, is a command line

Fair Isaac Corporation Confidential and Proprietary Information 1

Introduction

interpreter linked to the two previous modules. It provides a single program to compile and executemodels.
Various modules: These modules complete the Mosel set of functionalities by providing, for instance,optimization procedures. As an example, the mmxprs module extends the Mosel language with theprocedure maximize that optimizes the current problem using the Xpress Optimizer.
This modularized structure offers various advantages:

� Once compiled, a model can be run several times, for instance with different data sets, withoutthe need for recompiling it.
� The compiled form of the program is system and architecture independent: it can be run on anyoperating system equipped with the Mosel runtime library and any modules required.
� The BIM file can be generated in order to contain no symbols at all. It is then safe, in terms ofintellectual property, to distribute a model in its binary form.
� As a library, Mosel can be easily integrated into a larger application. The model may be providedas a BIM file and the application only linked to the runtime library.
� The Mosel system does not integrate any kind of solver but is designed in a way that a modulecan provide solving facilities. The direct consequence of this is that Mosel can be linked todifferent solvers and communicate with them directly through memory.
� This open architecture of Mosel makes extensions of the functionality possible on a case by casebasis, without the need to modify the Mosel internals.

1.3 Running Mosel

The Mosel environment may be accessed either through its libraries or by means of two applications,perhaps the simplest of which is Xpress Workbench, a development studio type environment forworking with your Mosel models. Xpress Workbench is a complete modeling and optimizationdevelopment environment that presents Mosel in an easy-to-use graphical interface with a built-in texteditor.
In its standalone version, Mosel offers a simple interface to execute certain generic commands directlyfrom the command prompt (or shell) of the operating system. The user may compile or execute sourcemodels or programs (.mos files), run binary models (.bim files) or retrieve information related to theMosel environment itself (like properties of modules or version number of the system). An interactivedebugger as well as a profiler are also included: the debugger allows to execute the model step by step,specify breakpoints from where status of the model can be examined. Running a model with theprofiler provides detailed information on what part of the code is actually executed and how much timeeach statement requires. This information may be helpful for optimizing the model (by locating hot
spots where the code is using a great deal of computer time) and also for building testsuites (bychecking whether the data sets used in the test set exercise all statements of a given model).

1.3.1 mosel command: invocation

The mosel executable is typically used with the following syntax from an operating system console:
mosel command [-l lang] [-d dir] [-tf trf] [-sdm sdm] [-sr rst]

[-dp dsopath] [-bx bimpfx] cmd_args

Where the option -l selects the language for message translation (see Section 2.21); the option -dsets the working directory of the process; the option -tf defines a trace file (see command trace

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

below); the option -sdm specifies the maximum size of stack dumps (displayed when a modelterminates on a runtime error, this can also be set via the environment variable MOSEL_SDMAX, thedefault value of 0 disables the display of the stack trace); the option -sr defines the active restrictions(see Section 1.3.4) and -dp specify an initial DSO path (to locate modules and packages) while -bxsets a list of bim file prefixes (used to find packages, see Section 2.3.1). Both options -dp and -bxmight be stated several times, the resulting setting will correspond to the concatenation of the providedvalues separated by the appropriate symbol. The command parameter is one of the followingcommands and cmd_args are the associated arguments that must be stated after the optionsdescribed above (square brackets indicate optional arguments):
comp[ile] [-gGIpwiwenixSETVFD] [-pwd pwd] [-pk priv] [-k|-kf pub]

[-ix incpfx] [-o outf] [-c usrcom] src [src2 ...]Compile the model src and generate the corresponding Binary Model (BIM) file if thecompilation succeeds. The extension .mos is appended to src if no extension is provided. Ifoption ’-o outf’ (filename to use for saving BIM file) is not given, the extension .bim is used toform the name of the binary file. The flag ’-g’ adds debugging information: private object names(e.g. variables, constraints) are included in the BIM file as well as required information forlocating runtime errors. The flag ’-G’ adds both debugging and tracing information: it is requiredto run the model with the debugger. When the ’-G’ flag is used, the compiler adds instructions inthe generated code that may slow down execution speed of the model. The flag ’-I’ may also beadded to enable the xbim extension (see Section 2.3.3). The flag ’-D’ enables generation ofdocumentation annotations in the resulting BIM file (by default documentation annotations areignored). With the flag ’-wi’, the compiler emits a warning message each time a symbol isimplicitly declared and the flag ’-ni’ disables implicit declarations (see Section 2.8.1.3). Whenthe flag ’-we’ is used warnings are handled like errors such that any warning will make thecompilation fail. The option ’-c usrcom’ may be used to add a commentary to the BIM file (seedebugger command LSMODS). The option ’-ix’ defines the file name prefix for file inclusion (seeSection 2.5.2). If the flag ’-p’ is selected, only the syntax of the source file is checked, thecompilation is not performed and no output file is generated.The flag ’-x’ will be used to generate a POT file (Portable Object Template) for messagetranslation (see Section 2.21).The other options are related to handling encrypted or signed BIM files (see Section 1.3.5):option ’-S’ will be used to produce a signed file. Unless the option ’-pk’ is specified, the defaultprivate key personal.key (see ssl_dir) is used for the signature. The options ’-V’ and ’-T’control how to handle signed packages: by default signature of packages is ignored but, if thefirst option is used, the signature is checked and the loading fails if it cannot be verified. Withoption ’-T’, only signed packages with a valid signature can be used (i.e. packages withoutsignature are not allowed). Public keys that are required for the verification are searched for inthe default public keys directory pubkeys (see ssl_dir).BIM file encryption is enabled by the ’-E’ option: the encryption key is either deduced from thepassword stated via option ’-pwd’ (if the flag ’-F’ is active, the value of ’-pwd’ is interpreted as atext file the first line of which is the password) or generated randomly. Optionally, the encryptionkey can be stored in the BIM file itself in encrypted form (this is required if it has been randomlygenerated): in this case the encryption requires public keys of the recipients of the BIM file (whowill be able to decrypt the file using their own private keys). Public keys can be listed by usingthe ’-k’ or ’-kf’ options: in the first case, one public key is listed at a time (the ’-k’ parametermay be used several times) and in the second case a file containing a list of keys is specified.Each line of this file is interpreted as a key file name (except empty lines or lines starting with ’!’or ’#’ that are ignored). Unless they include a path specification, key files are considered to belocated in the default public keys directory (for instance the key file "somekey" is searched inthe public keys directory but the file "./somekey" comes from the current working directory).An encrypted BIM file can always be decrypted by its creator thanks to his private key.Several source files may be passed to the compiler command in a single step (this is notcompatible with option ’-o’): each file gets compiled individually.

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

run [-TVF] [-pwd pwd] [-pk priv] [-k|-kf pub] [-is in] [-os out] [-es err]
[-dbg|-prof|-cov|-trac] [-sdir dir] [-nl] bim [param=value [...]]Load the provided BIM file bim and then run it. Options ’-is in’, ’-os out’ and ’-es err’ canbe specified to define alternative default input, ouput and error streams to be used by Mosel.With option ’-prof’ or ’-cov’ the model is run through the profiler (see commands profileand coverage below), the option ’-trac’ activates the tracing mode (see command trace)and with option ’-dbg’ it is passed to the interactive debugger (see command debug). Theoption ’-sdir’ can be used in addition to the profiler or debugger to indicate alternativelocations for source files (this option may be stated several times).The options ’-V’ and ’-T’ control how to handle signed BIM files (see Section 1.3.5): by defaultsignature of files is ignored but, if the first option is used, the signature is checked and theloading fails if it cannot be verified. With the second option, only signed BIM files with a validsignature can be used (i.e. files without signature are not allowed). For this verification taskpublic keys are usually searched for in the default public keys directory pubkeys (see ssl_dir)but alternatively a list of expected keys may be specified with the ’-k’ or ’-kf’ options: in the firstcase, one public key is listed at a time (the ’-k’ parameter may be used several times) and in thesecond case a list of keys is read from the given file. Each line of this file is interpreted as a keyfile name (except empty lines or lines starting with ’!’ or ’#’ that are ignored). Unless they includea path specification, key files are considered to be located in the default public keys directory(for instance the key file "somekey" is searched in the public keys directory but the file

"./somekey" comes from the current working directory). Moreover, the special file name ⁎implies that keys stored in the default location can also be used.The options ’-pwd’ and ’-pk’ may be required to load an encrypted BIM file: the former definesthe password to use (if the flag ’-F’ is active, the value of ’-pwd’ is interpreted as a text file thefirst line of which is the password) and the option ’-pk’ servers to specify a private key file (to beused in place of the default personal.key in ssl_dir).Optionally, a list of parameter values may be provided in order to initialize the run-timeparameters of the model and/or the control parameters of the modules used. The syntax ofsuch an initialization is param_name = value for a model parameter and
dsoname.ctrpar_name = value for a control parameter, where dsoname is the name of amodule and ctrpar_name the control parameter to set.The option ’-nl’ can be used when running the debugger on Unix/Linux systems to deactivatethe command history if the terminal is not properly handled by the command history mechanism.

exec[ute] [compile_opts] [run_opts] src [param=value [...]]Compile src, load, and then run the model. This command is equivalent to the consecutiveexecution of compile and run except that no BIM file is generated. All options documented forboth, compile and run, can be used with this command. The use of option ’-prof’, ’-cov’ or’-trac’ implies the compiler flag ’-G’ and the use of option -dbg will also add compiler flag ’-G’if flag ’-g’ is not explicitly specified.
debug [compile_opts] [run_opts] src [param=value [...]]This command is equivalent to ’execute -dbg’, the model is compiled and then run throughthe interactive debugger. If the model is compiled with flag ’-G’ (the default with this command),the execution is immediately suspended before the first statement. Otherwise the executionstarts as usual but can be suspended by pressing ctrl-C. Note that if a critical operation is beingprocessed, the interruption is delayed until the operation completes (for instance, the Optimizercannot be interrupted during an iteration of its algorithm). Execution is suspended once morejust before the program terminates: this makes it possible to inspect model data before the endof execution. Refer to the Section 1.3.2 below for further information on the use of the debugger.
prof[ile] [compile_opts] [run_opts] src [param=value [...]]This command is equivalent to ’execute -prof’, the model is compiled and then run throughthe profiler. After execution, the total execution time and some source coverage information isdisplayed. Moreover a file sourcefile.prof is generated based on the original source file. Eachline of this file consists in:

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction

� the number of times the corresponding statement has been executed;
� the total amount of time (in seconds) or the percentage of the total execution time (ifoption ’-prof 2’ is used) spent on this particular line (this measure is not valid if thestatement is a recursive call);
� the elapsed time (in seconds) between the beginning of the execution and the last time theline was executed;
� the text of the model source

All lines of the original source file are transferred, lines that do not correspond to the beginningof a statement are directly copied without further information.If the model runs additional submodels via mmjobs, a report for each model execution is alsodisplayed and the associated annotated files are generated in a similar way as for the mainmodel.
cover[age] [compile_opts] [run_opts] src [param=value [...]]This command is equivalent to ’execute -cov’, the model is compiled and then run throughthe profiler. The difference with the profile command described above is the type of reportsgenerated: the files produced are taking the .cov extension and only collect the number of timeseach statement has been executed (if option ’-cov 2’ is used it is 0 or 1). Moreover existing filesare updated instead of being replaced (i.e. iteration counts of each statement are added up).
trace [compile_opts] [run_opts] src [param=value [...]]This command is equivalent to ’execute -trac’, the model is compiled and then run in tracingmode: the activity of the program is logged in a trace file that is automatically generated orextended (if the file already existed). The file name for this report is either defined using the ’-tf’option or taken from the environment variable MOSEL_TRFILE. In both cases a question mark inthe file name will be replaced by the process ID expressed in hexadecimal. If no trace file isdefined the default name ’tmpdir/xprm_?.trac’ will be used (’tmpdir’ being thetemporary directory of the system). Refer to the Section 1.3.3 below for further information onthe trace file.
exam[ine] [-pwd pwd] [-pk priv] [-cspthHirvaumLVF] [mod|pkg [mod|pkg...]]Display the list of constants, procedures/functions, types, IO drivers, control parameters andannotations of modules, packages or the Mosel core library. By default required packages arenot loaded (but modules are loaded): using option ’-L’ will force loading of all dependencies. Toload only the header of the bim file to check its dependencies use option ’-H’. Optional flags maybe used to select which type of information is displayed: ’-h’ for general information, ’-c’ forconstants, ’-s’ for subroutines, ’-v’ for variables, ’-r’ for requirements, ’-t’ for types, ’-i’ for IOdrivers, ’-p’ for control parameters and ’-a’ for annotations. By default, listings are sorted inalphabetical order, option ’-u’ disables sorting. If both, a package and a module of the samename, are available only the information relating to the package is displayed. To select either thepackage or the module, extension .bim or .dso can be appended to the library name. If the flag’-m’ is used and no package or module can be located then a binary model file is searched for inthe current working directory. The displayed information is related to the Mosel core library if noname is specified with the command.The option ’-V’ can be added for checking the signature of signed BIM files (the result of theverification is reported in the header output). The options ’-pwd’ and ’-pk’ may be required toload an encrypted BIM file: the former defines the password to use (if the flag ’-F’ is active, thevalue of ’-pwd’ is interpreted as a text file the first line of which is the password) and the secondoption specifies a private key file (to be used in place of the default personal.key in

ssl_dir).
lslib [-p|-m]Display a list of available modules and packages. Use the optional flag ’-p’ to list only packagesand ’-m’ to get modules only.

Fair Isaac Corporation Confidential and Proprietary Information 5

Introduction

If none of the above keywords is recognized, the first argument of the command is interpreted as aMosel file. In the case of a BIM file, the command ’run’ is executed; otherwise the file name is passedto the command ’execute’.
The mosel command may also be started using only flags. Besides options ’-V’ (Mosel versioninformation) and ’-h’ (short help message), all other options relate to starting Mosel in server modewhen it is invoked from a remote instance: they should not be used directly (see the documentation ofmodule mmjobs in Chapter 7 for further explanations).
After the completion of a command the mosel executable returns a non-zero status to the operatingsystem in case of error and the execution status of the model if a model has been run (e.g. with thecommand execute). This execution status is the value provided via the procedure exit in the model(by default this is 0).
Some examples:

Execute model ’mymodel.mos’ setting values for the model parameters A,B,C and D
> mosel mymodel A=33 B="word" C=true D=5.3e-5

Compile model ’m.mos’ located on a web service and store the bim file locally in compressed form
> mosel comp -o zlib.gzip:m.bim.gz mmhttp.url:http://websrv/m.mos

Run ’optmod.bim’ from the debugger enabling verbose mode of module ’mmxprs’
> mosel run -dbg optmod mmxprs.XPRS_verbose=true

List all available modules and packages
> mosel lslib

Display the list of subroutines defined by ’mmxprs’
> mosel exam -s mmxprs

Display all constants defined in the Mosel language
> mosel exam -c

Display version information of Mosel
> model -V

1.3.2 mosel command: interactive debugger

When a model that is executed through the debugger is interrupted (for instance, because the user hastyped ctrl-C or an error has occured), the execution is suspended, the text source of the statementbeing processed is displayed and an interactive session starts. This mode is signaled by the specificprompt ’dbg>’ and the following commands may be entered (the arguments enclosed in squarebrackets [] are optional). The command line interpreter is case-insensitive, although we displaycommands in upper case for clarity:
BCONDITION bk [cond]Define or remove a condition on a breakpoint. This command may be used to put a condition(Boolean expression) on the specified break point: the execution is suspended at the

Fair Isaac Corporation Confidential and Proprietary Information 6

Introduction

breakpoint only if the given condition is verified. To remove a condition previously set up, enterthis command without specifying any condition.
BREAK [procname]|[line [file]]Install a breakpoint. When a breakpoint has been set up, execution is interrupted whenever thestatement corresponding to the specified location is reached. A procedure or function namemay be used as the location: in this case a breakpoint is installed at the beginning of eachprocedure or function of the provided name. If this command is used without parameters, thebreakpoint is defined at the current location.
BREAKPOINTSList the defined breakpoints.
BREAKSUB [0|1]Decide whether to suspend execution whenever a submodel is started.
CONTINUEResume execution. If the interruption was not due to an error, execution of the modelcontinues, otherwise the execution of the model is aborted and Mosel exits.
DELETE [bk]Delete a breakpoint.
DISPLAY [expression]Record an expression to be displayed at every interruption. Used with no expression, thiscommand gives a list of all recorded expressions.
DOWN [nblev]Go down in the calling stack. If an argument is provided, it indicates how many levels down togo (default is 1).
EXPORTPROB [-pms] [filename [objective]]Display or save to the given file (option filename) the matrix corresponding to the activeproblem. The matrix output uses the LP format (default) or the MPS format (flag ’-m’). A

problem is available after the execution of a model. The flags may be used to select thedirection of the optimization (’-p’: maximize), the file format (’-m’: MPS format) and whetherreal object names should be used (’-s’: scrambled names — this is the default if the objectnames are not available). The objective may also be selected by specifying a constraint name.
FINISH Continue execution until the end of the current subroutine. The execution continues but will beinterrupted again after the subroutine terminates.
INFO [⁎|symbol [symbol...]]Without arguments, this command displays information about the program being executed(this may be useful for problem reporting). Any specified argument is interpreted as a symbolfrom the current model. If the requested symbol exists in the model, this command displayssome information about its type and structure. Several symbols may be given in a single calland if ’⁎’ is used in place of a symbol name then the information is displayed for everysymbol of the model.
LIST [[start] nblines]Display the source file that corresponds to the model being executed. When used with no extraargument, this command lists 10 lines of the source model starting at the current statement;used with a single positive parameter nblines, it displays nblines lines instead of the default 10lines. If the parameter nblines is negative, it is interpreted as a starting point for the listingrelative to the current statement. When 2 parameters are used, the first one is understood asthe first line to display (a negative value is relative to the current line) and the second one asthe number of lines to display.Examples (assuming current line is 5):

Fair Isaac Corporation Confidential and Proprietary Information 7

Introduction

>list displays lines 5 to 14
>list 5 displays lines 5 to 9
>list -2 displays lines 3 to 14
>list -2 5 displays lines 3 to 7

LSATTR [typename]Display the list of available attributes for all used native types or only those related to thespecified type typename

LSLIBS Display the list of all loaded dynamic shared objects (DSO) together with, for each module, itsversion number and its number of references (i.e. number of loaded models using it).
LSLOCALDisplay the list of symbols defined locally to the current context.
LSMODS Display the list of all models currently loaded in core memory. The information displayed foreach model is:

� name: the model name and version number (given by the model and versionstatements in the source file);
� number: the model number is automatically assigned when the model is loaded;
� size: the amount of memory used by the model (in bytes);
� system comment: a text string generated by the compiler indicating the source filenameand if the model contains debugging information and/or symbols;
� user comment: the comment defined by the user at compile time (cf. command

compile);
� modules: the name and version number of each module required by the model;
� pkg. req.: if the model is a package, the name and version number of each packagerequired by a model using this package;
� pkg. imp.: the name and version number of each package included by this model.

The active model is marked by an asterisk (’⁎’) in front of its name.
LSSYMB [-cspou]Display the list of symbols published by the current model. The optional flags may be used tofilter what kind of symbol to display: ’-c’ for constants, ’-s’ for subroutines, ’-p’ forparameters and ’-o’ for everything else. By default the list is sorted in alphabetical order,option ’-u’ disables sorting.
MODEL [modnum]With no argument this command lists all models running concurrently. The active model(debugger commands are applied to this model) is identified by a star ("⁎"). If provided, theargument is interpreted as a model number that becomes the active model.
NEXT [line [file]]Continue execution until the next statement. The execution continues but will be interruptedagain after the current statement has been completed. If a location information is provided (bymeans of a line number and, if necessary, a file name), the next interruption will occur beforethe specified statement is executed.
OPTION name [[=] value]View or change the value of a command line parameter. These parameters are used by thecommand line interpreter to display real values (especially in command PRINT):

� realfmt: C-style format for printing floating point numbers (default value: "%.10g")

Fair Isaac Corporation Confidential and Proprietary Information 8

Introduction

� zerotol: zero tolerance to decide whether two values are equal (default value: 1e-13).It is also used when printing very small numbers: if a value is smaller than zerotol, "0"is displayed instead.
Although these parameters have the same name and function as those used by Mosel whenrunning a model, they are not synchronised with their internal counterpart.

PRINT expression [>>filename]Evaluate then display the value of the given arithmetic or Boolean expression. For building theexpression, the following functions can be used: getparam, ceil, floor, round, abs,
getsize, getmodprop as well as all attributes (see LSATTR command above). In addition tothese Mosel functions, the interpreter implements getnbdim that returns the number ofdimensions of an array and getndx# that gets the index set of dimension number ’#’ of anarray (’#’ being an integer between 1 and the number of dimensions of the array).
get-functions may be called using the suffix notation (e.g. getact(c) is equivalent to c.act).Some functions can be applied to arrays: the result is the evaluation of the function for eachcell of the array. Symbols are expected to be fully qualified: even if a symbol is expressedwithout namespace reference in the model source (thanks to the namespace search, seeSection 2.13) it is necessary to use its full name from the debugger. In particular privatesymbols of packages must be prefixed by the package name (for instance the identifier aadeclared in the package mypkg can be accessed using mypkg~aa). It is possible to report onlya part of a collection (array, set or list) by specifying range information. Ranges definitionstake one of these two forms:
� [maxelt]: get at most ’maxelt’ elements
� [skip maxelt]: get at most ’maxelt’ entries after skipping ’skip’ elements

Several range definitions may be specified (separated by blanks): they are used whenexploring complex structures (e.g. a list of list).The display format of this command is compatible with the data file format of Mosel. Use theoperator >>filename to append output of the command to the file filename.Examples:
>print getsol(x) >> solfile.txt
>print getact(C(1,"tut"))+c.size
>print toto~a
>print abs(mytol)>1
>print myarray.ndx2 [3]

QUIT Terminate the debug session. Model execution is aborted and Mosel exits.
STEP Continue execution until the next statement stepping into procedures and functions. Theexecution continues but will be interrupted again after the current statement has beencompleted. If the current statement contains function or procedure calls, interruption willhappen in these procedures or functions.
UNDISPLAY [disp]Remove an expression recorded with DISPLAY. If no parameter is provided, all recordedexpressions are removed, otherwise the parameter is understood as a record number.
UP [nblev]Go up in the calling stack. If an argument is provided, it indicates how many levels up to go(default is 1). Note that expressions are evaluated according to the current stack frame. Forexample, if variable i is defined in procedure B and execution is suspended in procedure Acalled by B; it is necessary to go up in the stack in order to view the value of i because it doesnot exist in the current frame.

Fair Isaac Corporation Confidential and Proprietary Information 9

Introduction

WHERE [nblev]Display the calling stack. The calling stack corresponds to the sequence of procedure andfunction calls being processed. For instance assume the model calls procedure A which callsprocedure B and the execution is suspended in procedure B: the calling stack will contain 3records (location where A is called, location where B is called and current statement).
If a command is not recognized, a list of possible keywords is displayed together with a shortexplanation. The command names can be shortened as long as there is no ambiguity (e.g. un can beused in place of UNDISPLAY but u is not sufficient because it could equally denote the UP command).String arguments (the parameter 10 is a number, but "10" or ’10’ are text strings) may be quotedwith either single or double quotes. Quoting is required if the text string starts with a digit or containsspaces and/or quotes.
Execution step by step and breakpoints can be used only if the model has been compiled using option
-G. In this case, before the execution starts, a breakpoint is automatically put at the first statement ofthe model. Otherwise (model has been compiled with option -g), the model will be interrupted only ifan error occurs or keys ctrl-C are pressed.
When debugging a model that runs submodels via mmjobs a message is displayed each time asubmodel starts or terminates. Moreover, interrupting the execution of the model also suspends theexecution of all submodels: the entered commands are applied to the selected active model, the choiceof which can be changed with the command MODEL.
A program may interrupt its execution and trigger the interactive debugger by using the followingspecial annotation (See section 2.14):

!@mc.dbgmsg break

When the program is compiled with tracing information (option -G) this annotation is replaced by aspecial instruction that will cause an interruption when the program is being run through the debugger(otherwise it is silently ignored).
1.3.3 mosel command: tracing mode

Running a program in tracing mode results in the generation of a trace file that collects the activity of theprogram. Each record of this file consists in a single line of text that can take the following forms:
0O timestampThe file has been open
0C timestampThe file has been closed
mmS timestamp modelnameThe model number mm with name modelname is starting. Line tracing is enabled
mmTrr timestamp modelnameThe model number mm with name modelname is finishing, its status code is rr

mm- timestamp msgThe model number mm has disabled line tracing (with optional message msg), submodels arenot affected
mm+ timestamp msgThe model number mm has enabled line tracing (with optional message msg), submodels arenot affected
mm! timestamp msgThe model number mm logs message msg

Fair Isaac Corporation Confidential and Proprietary Information 10

Introduction

mmLpp timestampThe model number mm is loaded by model number pp
mmUpp timestampThe model number mm is unloaded by model number pp
mm:nn fnameThe model number mm is executing the statement at line nn of file fname (that becomes thecurrent file for this model). These records are not emitted when line tracing is disabled.
mm nn The model number mm is executing the statement at line nn of current file as specifiedpreviously for the given model These records are not emitted when line tracing is disabled.
A program may control the behaviour of the tracer using the special annotation mc.dbgmsg (Seesection 2.14). The following annotations are interpreted:

!@mc.dbgmsg traceoff msg
!@mc.dbgmsg traceon msg
!@mc.dbgmsg tracelog msg

When the program is compiled with tracing information (option -G) this annotation is replaced by aspecial instruction that communicates with the tracer (it is silently ignored if the program is not run intracing mode). The first syntax disables the line tracing (it is active by default), the second has theopposite effect while the last syntax makes it possible to insert a message in the trace file. In all casesthe message text msg is optional.
1.3.4 mosel command: restricted mode

Mosel may be run in restricted mode: by selecting which restrictions are to be applied, it is possible tocontrol what operations models can perform (in particular regarding disk access). Upon startup, if theoption -sr is not stated, the command line interpreter uses the value of the environment variable
MOSEL_RESTR for setting the execution restrictions. These restrictions are bit-encoded as an integer(each bit corresponding to a specific restriction) but restrictions can also be expressed by a list of oneor more of the following keywords (symbols are not case-sensitive and can be optionally separated byspaces):
NoWrite (bit 0, value 1)Disable write access on the local system. This restriction concerns all file access exceptdatabases. Access to the temporary directory is not affected.
NoRead (bit 1, value 2)Disable read access on the local system (this also implies NoWrite). This restrictionconcerns all file access except databases. When this option is selected, the current workingdirectory is automatically set to the temporary directory (which can still be accessed).
NoExec (bit 2, value 4)Disable external command execution. This restriction deactivates some procedures/functionsallowing execution of commands external to Mosel (for instance system or command). Also,Mosel can only load modules from read-only locations when this restriction is active.
WDOnly (bit 3, value 8)File access is limited to the current working directory and its subdirectories as well as thepaths specified by the environment variables MOSEL_RWPATH (for reading and writing) and

MOSEL_ROPATH (for reading only). The temporary directory can still be accessed.
NoTmp (bit 4, value 16)Access to the temporary directory is disabled.

Fair Isaac Corporation Confidential and Proprietary Information 11

Introduction

NoDB (bit 5, value 32)Disable access to databases by blocking connection routines (e.g. SQLconnect or
OCIlogon).

For example, to disable write access and execution of external commands the environment variable
MOSEL_RESTR will have to be either the integer value 5 (1+4) or the string "NoWrite NoExec".
Restricted mode is observed by the Mosel core libraries (when accessing files and managingdirectories) and the system requires that modules also satisfy the stated restrictions (althoughimplementation of restrictions may vary depending on the type of functionality provided by a givenmodule): a module that does not support the restricted mode of execution will fail to load when Moselis running in this mode.

1.3.5 mosel command: securing bim files

The bim file format is secure with respect to the intellectual property of the author of the model (i.e. it isnot possible to recover the original model from the bim file). However, further security mechanismsmay be required when a bim file is to be transferred over an insecure media (like the internet): inparticular it might be necessary to (1) make sure the file has not been modified during the transfer and(2) guarantee that only the addressee can access the file.
A digital signature ensures the first requirement: it is computed using a private key (exclusively ownedby the sender of the document) such that any addressee having the corresponding public key (providedby the sender) can, at the same time, verify that the document has been prepared by the sender andthat it has not been altered during the transfer. From the Mosel command line tool, creating a signedbim file can be done by using the ’-S’ compiler option. When loading a signed bim file with the runcommand, it is required to enable the signature verification with options ’-V’ or ’-T’ as verification is notperformed by default.
The second requirement can be satisfied by encrypting the bim file such that it appears as random dataduring the transfer. Mosel supports two kinds of encryption processes: it can use a usual passwordbased key. In this case the same password is used for both encrypting and decrypting the bim file (thesender and the recipient have to share this key). The alternative is to rely on private/public key pairs likefor the signature procedure outlined above: encryption is achieved with the public key of the adressee.Only the recipient will be able to decrypt the bim file using his private key. From the Mosel commandline tool, creating an encrypted bim file can be done by using the ’-E’ compiler option. A password isspecified with the ’-pwd’ option otherwise the public keys of the recipients have to be stated with the’-k’ or ’-kf’ options (a bim file can be encrypted for up to 128 public keys).
Both signature and encryption require the management of private and public keys. These keys areexpected to be stored in a predefined location specified by the module parameter ssl_dir.
Mosel relies on the RSA cryptographic system for the management of private/public key pairs (keysmust be of at least 1024bits). The signature procedure uses the SHA256 message digest algorithm.Bim files are encrypted using the AES block cipher with keys of 128 bits.

1.4 References

Mosel could be described as an original combination of a couple of well known technologies. Here is anon-exhaustive list of the most important ’originators’ of Mosel:
� The overall architecture of the system (compiler, virtual machine, native interface) is directlyinspired by the Java language. Similar implementations are also commonly used in the languagesfor artificial intelligence (e.g. Prolog, Lisp).

Fair Isaac Corporation Confidential and Proprietary Information 12

Introduction

� The syntax and the major building blocks of the Mosel language are in some aspects asimplification and for other aspects extensions of the Pascal language.
� The aggregate operators (like ’sum’) are inherited from the ’tradition of model builders’ and can befound in most of today’s modeling languages.
� The dynamic arrays and their particular link with sets are probably unique to Mosel but are at theirorigin a generalization of the sparse tables of the mp-model model builder.

1.5 Structure of this manual

The main body of this manual is essentially organized into two parts. In Chapter 2, the basic buildingblocks of Mosel’s modeling and programming language are discussed.
Chapter 3 begins the reference section of this manual, providing a full description of all the functionsand procedures defined as part of the core Mosel language. The functionality of the Mosel languagemay be expanded by loading modules: the following chapters describe the modules currently providedwith the standard Mosel distribution.

Fair Isaac Corporation Confidential and Proprietary Information 13

I. Core System

CHAPTER 2

The Mosel Language

The Mosel language can be thought of as both a modeling language and a programming language.Like other modeling languages it offers the required facilities to declare and manipulate problems,decision variables, constraints and various data types and structures like sets and arrays. On the otherhand, it also provides a complete set of functionalities proper to programming languages: it iscompiled and optimized, all usual control flow constructs are supported (selection, loops) and can beextended by means of modules. Among these extensions, optimizers can be loaded just like any othertype of modules and the functionality they offer may be used in the same way as any Mosel proceduresor functions. These properties make of Mosel a powerful modeling, programming and solving languagewith which it is possible to write complex solution algorithms.
The syntax has been designed to be easy to learn and maintain. As a consequence, the set of reservedwords and syntax constructs has deliberately been kept small avoiding shortcuts and ‘tricks’ oftenprovided by modeling languages. These facilities are sometimes useful to reduce the size of a modelsource (not its readability) but also are likely to introduce inconsistencies and ambiguities in thelanguage itself, making it harder to understand and maintain.

2.1 Introduction

2.1.1 Comments

A comment is a part of the source file that is ignored by the compiler. It is usually used to explain whatthe program is supposed to do. Either single line comments or multi lines comments can be used in asource file. For the first case, the comment starts with the ’!’ character and terminates with the end ofthe line. A multi-line commentary must be inclosed in ’(!’ and ’!)’. Note that it is possible to nestseveral multi-line commentaries.
! In a comment
This text will be analyzed
(! Start of a multi line
(! Another comment
blabla
end of the second level comment !)

end of the first level !) Analysis continues here

Comments may appear anywhere in the source file.
2.1.2 Identifiers

Identifiers are used to name objects (variables, for instance). An identifier is an alphanumeric (plus ’_’)character string starting with an alphabetic character or ’_’. All characters of an identifier are significantand the case is important (the identifier ’word’ is not equivalent to ’Word’).

Fair Isaac Corporation Confidential and Proprietary Information 15

The Mosel Language

2.1.3 Reserved words

The reserved words are identifiers with a particular meaning that determine a specific behaviour withinthe language. Because of their special role, these keywords cannot be used to name user definedobjects (i.e. they cannot be redefined). The list of reserved words is:
and, array, as, boolean, break, case, constant, count, counter, declarations, div, do,
dynamic, elif, else, end, evaluation, false, forall, forward, from, function, hashmap, if,
imports, in, include, initialisations, initializations, integer, inter, is_binary,
is_continuous,
is_free, is_integer, is_partint, is_semcont, is_semint, is_sos1, is_sos2, linctr,
list, max, min, mod, model, mpvar, namespace, next, not, nsgroup, nssearch, of, options, or,
package, parameters, procedure, public, prod, range, real, record, repeat, requirements,
return, set, shared, string, sum, then, to, true, union, until, uses, version, while, with.
Note that, although the lexical analyzer of Mosel is case-sensitive, the reserved words are defined bothas lower and upper case (i.e. AND and and are keywords but not And).

2.1.4 Separation of instructions, line breaking

In order to improve the readability of the source code, each statement may be split across several linesand indented using as many spaces or tabulations as required. However, as the line breaking is theexpression terminator, if an expression is to be split, it must be cut after a symbol that implies acontinuation like an operator (’+’, ’-’, ...) or a comma (’,’) in order to warn the analyzer that theexpression continues in the following line(s).
A+B ! Expression 1
-C+D ! Expression 2
A+B- ! Expression 3...
C+D ! ...end of expression 3

Moreover, the character ’;’ can be used as an expression terminator.
A+B ; -C+D ! 2 expressions on the same line

Some users prefer to explicitly mark the end of each expression with a particular symbol. This ispossible using the option explterm (see Section 2.3) which disables the default behaviour of thecompiler. In that case, the line breaking is not considered any more as an expression separator andeach statement finishing with an expression must be terminated by the symbol ’;’.
A+B; ! Expression 1
-C+D; ! Expression 2
A+B ! Expression 3...
-C+D; ! ...end of expression 3

2.1.5 Conventions in this document

In the following sections, the language syntax is explained. In all code templates, the followingconventions are employed:
� word: ’word’ is a keyword and should be typed as is;
� todo: ’todo’ is to be replaced by something else that is explained later;
� [something]: ’something’ is optional and the entire block of instructions may be omitted;
� [something ...]: ’something’ is optional but if used, it can be repeated several times.

Fair Isaac Corporation Confidential and Proprietary Information 16

The Mosel Language

2.2 Structure of the source file

The Mosel compiler may compile both models and packages source files. Once compiled, a model isready for execution but a package is intended to be used by a model or another package (see Section2.3).
The general structure of a model source file is as follows:

modelmodel_name
[Directives]
[Parameters]
[Body]
end-model

The model statement marks the beginning the program and the statement end-model its end. Anytext following this instruction is ignored (this can be used for adding plain text comments after the endof the program). The model name may be any quoted string or identifier, this name will be used as themodel name in the Mosel model manager. An optional set of directives and a parameters block mayfollow. The actual program/model is described in the body of the source file which consists of asuccession of declaration blocks, subroutine definitions and statements.
The structure of a package (see Section 2.12) source file is similar to the one of a model:

package package_name
[Directives]
[Parameters]
[Body]
end-package

The package statement marks the beginning the library and the statement end-package its end. Thepackage name must be a valid identifier.
It is important to understand that the language is procedural and not declarative: the declarations andstatements are compiled and executed in the order of their appearance. As a consequence, it is notpossible to refer to an identifier that is declared later in the source file or consider that a statementlocated later in the source file has already been executed. Moreover, the language is compiled and not
interpreted: the entire source file is first translated — as a whole — into a binary form (the BIM file), thenthis binary form of the program is read again to be executed. During the compilation, except for somesimple constant expressions, no action is actually performed. This is why only some errors can bedetected during the compilation time, any others being detected when running the program.

2.3 The compiler directives

The compiler accepts four different types of directives: the uses statement, the imports statement,the options statement and the version statement. Namespace declarations are also expressed bymeans of directives, see Section 2.13 for further explanations.
2.3.1 Directive uses

The general form of a uses statement is:
uses libname1 [, libname2 ...][;]

This clause asks the compiler to load the listed modules or packages and import the symbols they

Fair Isaac Corporation Confidential and Proprietary Information 17

The Mosel Language

define. Both modules and packages must still be available for running the model. If the source filebeing processed is a package, the bim files associated to the listed packages must be available forcompiling another file using this package. It is also possible to merge bim files of several packages byusing imports instead of uses when building packages.
By default the compiler tries first to find a package (the corresponding file is libname.bim) then, if thisfails, it searches for a module (which file name is libname.dso). It is possible to indicate the type oflibrary to look for by appending either ".bim" or ".dso" to the name (then the compiler does not trythe alternative in case of failure). A package may also be specified by an extended file name (seeSection 2.15) including the IO driver in order to disable the automatic search (i.e. "a.bim" searchesthe file a.bim in the library path but ":a.bim" takes the file a.bim from the current directory).
For example,

uses 'mmsystem','mmxprs.dso','mypkg.bim'
uses ':/tmp/otherpkg.bim'

Both packages and modules are searched in a list of possible locations. Upon startup, Mosel uses asthe default for this list the value of the environment variable MOSEL_DSO completed by a path deducedfrom the location (rtdir) of the Mosel runtime library (in the following # can be "32" on a 32bit system,"64" on a 64bit system or an empty string):
"rtdir\..\dso#" Under Windows if rtdir terminates by "\bin#" and "rtdir\..\dso#" exists or
"rtdir/../dso#" On Posix systems if rtdir terminates by "/lib#" and "rtdir/../dso#" existsor
"rtdir/dso#" if this directory exists or
"rtdir" if none of the above rules apply
The variable MOSEL_DSO is expected to be a list of paths conforming to the operating systemconventions: for a Posix system the path separator is ’:’ (e.g. "/opt/Mosel/dso:/tmp") and it is ’;’under Win32 (e.g. "E:\Mosel\Dso;C:\Temp"). The search path for modules and packages may alsobe set from the mosel command (using the -dp option, see Section 1.3) as well as inspected andmodified from the Mosel Libraries (see functions XPRMgetdsopath and XPRMsetdsopath in the
Mosel Libraries Reference Manual). Note however that Mosel will ignore modules not located inread-only locations when the restriction NoExec is active (see Section 1.3.4).
For locating packages Mosel will use the list of prefixes defined by the compiler option -bx (Section1.3) or the environment variable MOSEL_BIM before proceeding to the search as decribed above. Thisparameter consists in a list of strings separated by the sequence || that are used as prefixes to thepackage name. For instance if the option -bx "bimdir/||tmp:" is used with the directive uses
’mypkg’, the compiler will try to load the package "bimdir/mypkg.bim", then "tmp:mypkg.bim"before looking for "mypkg.bim" and "mypkg.dso" in the usual locations.

2.3.2 Directive imports

The general form of an imports statement is:
imports pkgname1 [, pkgname2 ...][;]

This clause is a special version of the uses directive that can only be used for packages: it asks thecompiler to load the listed packages, import the symbols they define and incorporate thecorresponding bim file. As a consequence, the generated file provides the functionality of the packagesit imports. When used on a model file it removes the dynamic dependency on the listed packages (i.e.these packages are no longer required to run the model).

Fair Isaac Corporation Confidential and Proprietary Information 18

The Mosel Language

For example,
imports 'mypkg'

2.3.3 Directive options

The compiler options may be used to modify the default behaviour of the compiler. The general form ofan options statement is:
options optname1 [, optname2 ...]

The supported options are:
� explterm: asks the compiler to expect explicit expression termination (see Section 2.1.4).
� noimplicit: disables the implicit declarations (see Section 2.8.1.3). This option can also beactivated by using the ’-ni’ compiler flag (see Section 1.3)
� noautofinal: by default initialization from blocks finalize sets they populate (section 2.8.2.1).This option disables this behaviour that may be activated afterwards using the autofinalcontrol parameter (cf. setparam).
� keepassert: assertions (cf. assert) are compiled only in debug mode. With this optionassertions are preserved regardless of the compilation mode.
� xbim: store additional symbol information in the generated bim file (in particular array indexnames). This option can also be enabled by using the ’-I’ compiler flag (see Section 1.3).
� fctasproc: by default return values of functions must be used such that a function call is not avalid statement. With this option functions can be used as procedures: when a statementconsists in a function call its return value is silently ignored (see also asproc).
� tagpriv: when the model is compiled with debug information private symbols are preserved.When this option is used these symbols are prefixed with ’~’ such that they can be easilyidentified.
� dynonly: this option can only be applied to a package: it marks the package as dynamic onlysuch that it cannot be imported (see Section 2.3.2).

For example,
options noimplicit,explterm

2.3.4 Directive version

In addition to the model/package name, a file version number may be specified using this directive: aversion number consists in 1, 2 or 3 integers between 0 and 999 separated by the character ’.’.
versionmajor [. minor [. release]]

For example,
version 1.2

The file version is stored in the BIM file and can be displayed from the Mosel console (command list)or retrieved using the Mosel Libraries (see function XPRMgetmodprop in the Mosel Libraries Reference
Manual). From the model itself, the version number is recorded as a string in the control parameter
model_version (see function getparam).

Fair Isaac Corporation Confidential and Proprietary Information 19

The Mosel Language

2.4 The parameters block

A model parameter is a symbol, the value of which can be set just before running the model (optionalparameter of the ’run’ command of the command line interpreter). The general form of the parametersblock is:
parameters

ident1 = Expression1
[ident2 = Expression2 ...]
end-parameters

where each identifier identi is the name of a parameter and the corresponding expression Expressioniits default value. This value is assigned to the parameter if no explicit value is provided at the start ofthe execution of the program (e.g. as a parameter of the ’run’ command). Note that the type (integer,real, text string or Boolean) of a parameter is implied by its default value. Model parameters aremanipulated as constants in the rest of the source file (it is not possible to alter their original value).
parameters
size=12 ! Integer parameter
R=12.67 ! Real parameter
F="myfile" ! Text string parameter
B=true ! Boolean parameter

end-parameters

In addition to model parameters, Mosel and some modules and packages provide control parameters :they can be used to give information on the system (e.g. success of an I/O operation) or control itsbehaviour (e.g. select output format of real numbers). These parameters can be accessed andmodified using the routines getparam and setparam. Refer to the documentation of these functionsfor a complete listing of available Mosel parameters. The documentation of the modules include thedescription of the parameters they publish.

2.5 Source file preprocessing

2.5.1 Source file character encoding

The Mosel compiler expects source files to be encoded in UTF-8 and will handle properly UTF-16 andUTF-32 encodings when the file begins with a BOM (Byte Order Mark). It is also possible to select analternative encoding using the encoding annotation (see section 2.14).
For instance to notify the compiler that the the source file is encoded using ISO-8859-1, the followingcomment has to be copied at the beginning of the fie:

!@encoding:iso-8859-1

2.5.2 Source file inclusion

A Mosel program may be split into several source files by means of file inclusion. The ’include’instruction performs this task:
include filename

where filename is the name of the file to be included. This file name may contain environment variablereferences using the notation ${varname} (e.g. ’${MOSEL}/examples/mymodel’) that are

Fair Isaac Corporation Confidential and Proprietary Information 20

The Mosel Language

expanded to generate the actual name. The ’include’ instruction is replaced at compile time by thecontents of the file filename.
Assuming the file a.mos contains:

model "Example for file inclusion"
writeln('From the main file')
include "b.mos"

end-model

And the file b.mos:
writeln('From an included file')

Due to the inclusion of b.mos, the file a.mos is equivalent to:
model "Example for file inclusion"
writeln('From the main file')
writeln('From an included file')

end-model

If the compiler option -ix is used (Section 1.3) all file names used in the ’include’ instruction will beprefixed as requested. For instance, if the option -ix "incdir/" is used with the compiler, thestatement include "myfile.mos" will be replaced by the content of "incdir/myfile.mos".
Note that file inclusion cannot be used inside of blocks of instructions or before the body of theprogram (as a consequence, a file included cannot contain any of the following statements: uses,
options or parameters).

2.5.3 Line control directives

In some cases it may be useful to process a Mosel source through an external preprocessor beforecompilation. For instance this may enable the use of facilities not supported by the Mosel compiler likemacros, unrestricted file inclusion or conditional compilation. In order to generate meaningful errormessages, the Mosel compiler supports line control directives: these directives are inserted bypreprocessors (e.g. cpp or m4) to indicate the original location (file name and line number) ofgenerated text.
#[line] linenum [filename]

To be properly interpreted, a line control directive must be the only statement of the line. Malformeddirectives and text following valid directives are silently ignored.

2.6 The declaration block

The role of the declaration block is to give a name, a type, and a structure to the entities that theprocessing part of the program/model will use. The type of a value defines its domain (for instanceinteger or real) and its structure, how it is organized, stored (for instance a reference to a single value oran ordered collection in the form of an array). The declaration block is composed of a list of declarationstatements enclosed between the instructions declarations and end-declarations.
declarations

Declare_stat
[Declare_stat ...]

end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 21

The Mosel Language

Several declaration blocks may appear in a single source file but a symbol introduced in a given blockcannot be used before that block. Once a name has been assigned to an entity, it cannot be reused foranything else.
2.6.1 Elementary types

Elementary objects are used to build up more complex data structures like sets or arrays. It is, ofcourse, possible to declare an entity as a reference to a value of one of these elementary types. Such adeclaration looks as follows:
ident1 [, ident2 ...]: [shared] type_name

where type_name is the type of the objects to create. Each of the identifiers identi is then declared as areference to a value of the given type. The type name may be either a basic type (integer, real,
string, boolean), an MP type (mpvar, linctr), an external type or a user defined type (see section2.6.7). MP types are related to Mathematical Programming and allow declaration of decision variablesand linear constraints. Note that the linear constraint objects can also be used to store linearexpressions. External types are defined by modules (the documentation of each module describes howto use the type(s) it implements). The qualifier shared identifies variables that will be shared betweenseveral concurrent models (see Section 7.2). Only entities of basic types and external types supportingsharing can be shared.

declarations
i,j: integer
str: string
x,y,z: mpvar

end-declarations

2.6.1.1 Basic types

The basic types are:
� integer: an integer value between -2147483648 and 2147483647. Integers may also beexpressed in hexadecimal by using the prefix 0x or 0X (e.g. 0x7b is the same as 123)
� real: a real value between -1.7e+308 and 1.7e+308. Floating point numbers expressed inhexadecimal can also be used as real constants. The general form of such a constant is
0xh.hhhp[+/-]ddd where ’h’ are hexadecimal digits and ’d’ decimal digits (e.g. 0x1.9p+3is the same as 12.5)

� string: some text.
� boolean: the result of a Boolean (logical) expression. The value of a Boolean entity is either thesymbol true or the symbol false.

After its declaration, each entity receives an initial value of 0, an empty string, or false depending onits type.
2.6.1.2 MP types

Two special types are provided for mathematical programming.
� mpvar: a decision variable
� linctr: a linear constraint

Fair Isaac Corporation Confidential and Proprietary Information 22

The Mosel Language

2.6.2 Sets

Sets are used to group an unordered collection of elements of a given type. Set elements are unique: ifan element is added several times it is only contained once in the set. Declaring a set consists ofdefining the type of elements to be collected.
The general form of a set declaration is:

ident1 [, ident2 ...] : [shared] [dynamic] set of [constant] type_name

where type_name is one of the elementary types. Each of the identifiers identi is then declared as a setof the given type. The qualifier shared identifies sets that will be shared between several concurrentmodels (see Section 7.2). Only sets of basic types can be shared. If the qualifier dynamic is used thecorresponding set(s) will never be finalized (see Section 2.8.2.1 and procedure finalize).
A set may collect references to constant elements of a native type (the type must support constantdeclaration): this kind of set will be created if the type name is preceded by the constant keyword. Asopposed to an ordinary set, a set of constant references behaves as if it was collecting values of thenative type entities instead of their references. For instance adding 2 different variables of some nativetype to a normal set will always result in 2 elements added to the set. However a single element will beadded to a set of constant references if these 2 variables have the same content (or the same textualrepresentation). Moreover, since references are not directly collected, any change to a variablepreviously added to a set of constant references has no impact on the content of this set.
A particular set type is also available that should be preferred to the general form wherever possiblebecause of its better efficiency: the range set is an ordered collection of consecutive integers in a giveninterval. The declaration of a range set is achieved by:

ident1 [, ident2 ...] : [shared] [dynamic] range [set of integer]

Each of the identifiers identi is then declared as a range set of integers. Every newly created set isempty.
declarations
s1: set of string
r1: range

end-declarations

2.6.3 Lists

Lists are used to group a collection of elements of a given type. An element can be stored several timesin a list and order of the elements is specified by construction. Declaring a list consists of defining thetype of elements to be collected.
The general form of a list declaration is:

ident1 [, ident2 ...] : [shared] list of type_name

where type_name is one of the elementary types. Each of the identifiers identi is then declared as a listof the given type. The qualifier shared identifies lists that will be shared between several concurrentmodels (see Section 7.2). Only lists of basic types can be shared.
Every newly created list is empty.

declarations
l1: list of string
l2: list of real

end-declarations

Fair Isaac Corporation Confidential and Proprietary Information 23

The Mosel Language

A list element can be accessed using its order number. The first element has number 1 and indexvalues inferior to 1 point to elements starting from the end of the list. For instance if l is a list, l(2) isthe second element of this list, l(0) is the last element of the list and l(-1) its predecessor.
2.6.4 Arrays

An array is a collection of labelled objects of a given type. A label is defined by a list of indices takingtheir values in domains characterized by sets: the indexing sets. An array may be either dense orsparse: every possible index tuple is associated to a cell in a dense array while sparse arrays arecreated empty. The cells are then created explicitly (cf. procedure create) or when they are assigned avalue (cf. Section 2.8.1.1) and the array may then grow ‘on demand’. It is also possible to delete some orall cells of a dynamic array using the procedure delcell. A cell that has not been created can beidentified using the exists function and its value is the default initial value of the type of the array. Thegeneral form of an array declaration is:
ident1 [, ident2 ...] : [shared] [dynamic|hashmap] array(list_of_sets) of type_name

where list_of_sets is a list of set declarations/expressions separated by commas and type_name is oneof the elementary types. Each of the identifiers identi is then declared as an array of the given type andindexed by the given sets. In the list of indexing sets, a set declaration can be anonymous (i.e. rs:set
of real can be replaced by set of real if no reference to rs is required) or shortened to the typeof the set (i.e. set of real can be replaced by real in that context). The qualifier shared identifiesarrays that will be shared between several concurrent models (see Section 7.2). Only arrays of basictypes and indiced by shared or constant sets of basic types can be shared.

declarations
e: set of string
t1:array (e, rs:set of real, range, integer) of real
t2:array ({"i1","i2"}, 1..3) of integer

end-declarations

By default an array is dense (or static). For best performane it is better to index static arrays withconstant sets or initialize and finalize indexing sets as soon as possible (cf. procedure finalize). Anarray is sparse (or dynamic) and created empty if either the qualifier dynamic or hashmap is used.Arrays declared with either of these qualifiers behave the same but their internal representation differ:the dynamic representation requires less memory and is faster for linear enumeration while the
hashmap representation is faster for random access.
Note that once a set is employed as an indexing set, Mosel makes sure that its size is never reduced inorder to guarantee that no entry of any array becomes inaccessible. Such a set is called fixed.
2.6.4.1 Special case of dynamic arrays of a type not supporting assignment

Certain types do not have assignment operators: for instance, writing x:=1 is a syntax error if x is oftype mpvar. If an array of such a type is defined as dynamic the corresponding cells are not created. Inthat case, it is required to create each of the relevant entries of the array by using the procedure
create since entries cannot be defined by assignment.

2.6.5 Records

A record is a finite collection of objects of any type. Each component of a record is called a field and ischaracterized by its name (an identifier) and its type. The general form of a record declaration is:

Fair Isaac Corporation Confidential and Proprietary Information 24

The Mosel Language

ident1 [, ident2 ...] : record
field1 [, field2 ...]: type_name
[...]

end-record

where fieldi are the identifiers of the fields of the record and type_name one of the elementary types.Each of the identifiers identi is then declared as a record including the listed fields.
Example:

declarations
r1: record

i,j:integer
r:real
end-record

end-declarations

Each record declaration is considered unique by the compiler. In the following example, although r1and r2 have the same definitions, they are not of the same type (but r3 is of course of the type of r2):
declarations
r1: record

i,j:integer
end-record

r2,r3: record
i,j:integer
end-record

end-declarations

2.6.6 Constants

A constant is an identifier for which the value is known at declaration time and that will never bemodified. The general form of a constant declaration is:
identifier = Expression

where identifier is the name of the constant and Expression its initial and only value. The expressionmust be of one of the basic types, a set or a list of one of these types, a native type supporting constantdefinition, or a record type containing only basic types.
Example:

declarations
STR='my const string'
I1=12
R=1..10 ! constant range
S={2.3,5.6,7.01} ! constant set
L=[2,4,6] ! constant list

end-declarations

The compiler supports two kinds of constants: a compile time constant is a constant which value canbe computed by the compiler. A run time constant will be known only when the model is run.
Example:

parameters
P=0

end-parameters
declarations
I=1/3 ! compile time constant
J=P⁎2 ! run time constant

Fair Isaac Corporation Confidential and Proprietary Information 25

The Mosel Language

end-declarations

2.6.7 User defined types

2.6.7.1 Naming new types

A new type may be defined by associating an identifier to a type declaration. The general form of a typedefinition is:
identifier = Type_def

where Type_def is a type (elementary, set, list, array or record) to be associated to the symbol identifier.After such a definition, the new type may be used wherever a type name is required.
Example:

declarations
entier=integer
setint=set of entier
i:entier ! <=> i:integer
s:setint ! <=> s:set of integer

end-declarations

Note that only compile time constant or globally defined sets are allowed as indices to array types:
declarations
ar1=array(1..10) of integer ! OK
ar2=array(range) of integer ! incorrect
R:range
ar3=array(R) of integer ! OK

end-declarations

2.6.7.2 Combining types

Thanks to user defined types one can create complex data structures by combining structures offeredby the language. For instance an array of sets may be defined as follows:
declarations
typset=set of integer
a1:array(1..10) of typset

end-declarations

In order to simplify the description of complex data structures, the Mosel compiler can generateautomatically the intermediate user types. Using this property, the example above can be written asfollows (both arrays a1 and a2 are of the same type):
declarations
a2:array(1..10) of set of integer

end-declarations

2.7 Expressions

Expressions are, together with the keywords, the major building blocks of a language. This sectionsummarizes the different basic operators and connectors used to build expressions.
Expressions are constructed using constants, operators and identifiers (of objects or functions). If anidentifier appears in an expression its value is the value referenced by this identifier. In the case of a set,

Fair Isaac Corporation Confidential and Proprietary Information 26

The Mosel Language

a list, an array or a record, it is the whole structure. To access a single cell of an array, it is required to’dereference’ this array. The dereferencing of an array is denoted as follows:
array_ident (Exp1 [, Exp2 ...])

where array_ident is the name of the array and Expi an expression of the type of the ith indexing set ofthe array. The type of such an expression is the type of the array and its value the value stored in thearray with the label ’Exp1 [, Exp2 ...]’. In order to access the cell of an array of arrays, the list of indicesfor the second array has to be appended to the list of indices of the first array. For instance, the array
a:array(1..10) of array(1..10) of integer can be dereferenced with a(1,2).
Similarly, to access the field of a record, it is required to ’dereference’ this record. The dereferencing ofa record is denoted as follows:

record_ident.field_ident

where record_ident is the name of the record and field_ident the name of the required field.
Dereferencing arrays of records is achieved by combining the syntax for the two structures. Forinstance a(1).b
A function call is denoted as follows:

function_ident
or
function_ident (Exp1 [, Exp2 ...])

where function_ident is the name of the function and Expi the ith parameter required by this function(note that function parameters are evaluated from right to left). The first form is for a function requiringno parameter.
The special function if is an operator that allows one to make a selection among expressions. Itssyntax is the following:

if (Bool_expr, Exp1, Exp2)

which evaluates to Exp1 if Bool_expr is true or Exp2 otherwise. The type of this expression is the typeof Exp1 and Exp2 which must be of the same type.
Parentheses may be used to modify the predefined evaluation order of the operators (see Table 2.1) orsimply to group subexpressions.
Table 2.1: Priority and evaluation order of operators in Mosel (smaller values indicate higher priority)
Priority Operators Sense of evaluation

1 () {} [] . if count function calls type conversions →
2 -unary ˆ ←
3 ⁎ / div mod prod inter →
4 + -binary sum union max min →
5 < <= > >= = <> in not in →
6 not →
7 and →
8 or →
9 array →

Operators that result in statements are discussed in other sections:

Fair Isaac Corporation Confidential and Proprietary Information 27

The Mosel Language

� assignment operators: := += -= (see Section 2.8.1.1)
� inline array initialization: :: (see Section 2.8.1.4))

Table 2.2 summarizes the meaning and applicability of operators that are discussed for the differentexpression types in the following sections.
Table 2.2: Meaning of operators for different expression types

Type Operators Description
All expressions () Changing the evaluation order
All expect linear constraints if Inline ’if’
Arithmetic expressions count Counter

ˆ Exponential operator
⁎ / prod Multiplication and division
div mod Integer division and modulo
+ - sum Addition and substraction
max min Maximum and minimum value
< <= > >= = <> Comparators

String expressions + Concatenation
- Difference
< <= > >= = <> Comparators (see Section 2.7.7)

Set expressions {} Constant set definition
⁎ inter Intersection
+ union Union
- Difference
< <= Subset
> >= Superset
= <> Equality and difference of contents
in not in Set element
range set Constructors; clone operators

List expressions [] Constant list definition
+ sum Concatenation
- Difference
= <> Equality and difference of contents
list Constructor; clone operator

Boolean expressions not Negation
and Logic ’and’
or Logic ’or’

Linear constraint expressions ⁎ Multiplication (one operand must be of numerical type)
+ - sum Addition / subtraction
<= >= = Relational operators

Automatic arrays :: Inline array initialization (see Section 2.8.1.4)
= <> Equality and difference of contents
array Constructor

2.7.1 Type conversions and constructors

The Mosel compiler operates automatic conversions to the type required by a given operator in thefollowing cases:
� in the dereference list of an array:
integer→ real;

� in a function or procedure parameter list:

Fair Isaac Corporation Confidential and Proprietary Information 28

The Mosel Language

integer→ real, linctr;
real→ linctr;
mpvar→ linctr;

� anywhere else:
integer→ real, string, linctr;
real→ string, linctr;
mpvar→ linctr;
boolean→ string.

It is possible to force a basic type conversion using the type name as a function (i.e. integer, real,
string, boolean). In the case of string, the result is the textual representation of the convertedexpression. In the case of boolean, for numerical values, the result is true if the value is nonzero andfor strings the result is true if the string is the word ‘true’. When converting a real to an integer theresult is the integral part of the number (no rounding is performed). Note that explicit conversions arenot defined for MP types, and structured types (e.g. linctr(x) is a syntax error).For generating numerical values from strings it is in general preferrable to use the subroutines
parseint/parsereal that provide error handling functionality in place of the basic conversionavailable through integer/real.

! Assuming A=3.6, B=2
integer(A+B) ! = 5
string(A-B) ! = "1.6"
real(integer(A+B)) ! = 5.6 (because the compiler simplifies

the expression)

Some native and record types might be used as function names to create new instances of thecorresponding type (see the documentation of each individual type for a list of possible constructors).If the only argument of such a function call is an entity of the same type the result is a copy of theargument (the type must support assignment). For record types a specific syntax makes it possible tocreate and initialise each field of the newly created entity in a single operation:
type_name (.field1:=val1 [, .field2:=val2 ...])

where type_name is the name of a record type and fieldi one of its fields to be initialised with thecorresponding vali value.
The constructor array (see 2.7.9) for creating new arrays ad-hoc is an aggregate operator, via list(see 2.7.6), set and range (see 2.7.5) it is possible to perform transformations between set and liststructures.

2.7.2 Aggregate operators

An operator is said to be aggregatewhen it is associated to a list of indices for each of which a set or listof values is defined. This operator is then applied to its operands for each possible tuple of values (e.g.the summation operator sum is an aggregate operator). The general form of an aggregate operator is:
Aggregate_ident (Iterator1 [, Iterator2 ...]) Expression
or
count (Iterator1 [, Iterator2 ...])

where the Aggregate_ident is the name of the operator and Expression an expression compatible withthis operator (see below for the different available operators). The type of the result of such anaggregate expression is the type of Expression. The count operator does not require an additionalexpression: its value, an integer, corresponds to the number of times the expression of another

Fair Isaac Corporation Confidential and Proprietary Information 29

The Mosel Language

Table 2.3: Aggregate operators in Mosel with default values for empty expressions
Operator Description Default values
count Counter 0
prod Product 1
inter Intersection of sets empty set
sum Sum (arithmetic); concatenation (list, text) arithmetic: 0, list: empty list
union Union of sets empty set
max Maximum value real: -MAX_REAL, integer: -MAX_INT-1
min Minimum value real: MAX_REAL, integer: MAX_INT
and Logic ’and’ true
or Logic ’or’ false
array Array creation dynamic empty array

aggregate operator used with the same iterator list would be evaluated (i.e. it is equivalent to
sum(iteratorlist) 1).
An iterator is one of the following constructs:

SetList_expr
or
ident1 [, ident2 ...] in SetList_expr [| Bool_expr]
or
ident = Expression [| Bool_expr]
or
ident as counter

The first form gives the list of the values to be taken without specifying an index name. With the secondform, the indices named identi take successively all values of the set or list defined by SetList_expr.With the third form, the index ident is assigned a single value (which must be a scalar). For the secondand third cases, the scope of the created identifier is limited to the scope of the operator (i.e. it existsonly for the following iterators and for the operand of the aggregate operator). Moreover, an optionalcondition can be stated by means of Bool_expr which can be used as a filter to select the relevantelements of the domain of the index. It is important to note that this condition is evaluated as early aspossible. As a consequence, a Boolean expression that does not depend on any of the defined indicesin the considered iterator list is evaluated only once, namely before the aggregate operator itself andnot for each possible tuple of indices. The last form of an iterator declares a counter for the operator:the value of the corresponding symbol is incremented each time the operator’s expression is evaluated.For this case, if ident has been declared before, it must be integer or real and its value is not reset.Otherwise, as for indices, the scope of the created integer identifier is limited to the scope of theoperator and its initial value is 0. There can be only one counter for a given aggregate operator.
The Mosel compiler performs loop optimization when function exists is used as the first factors ofthe condition in order to enumerate only those tuples of indices that correspond to actual cells in thearray instead of all possible tuples. To be effective, this optimization requires that sets used to declarethe array on which the exist condition applies must be named and the same sets must be used todefine the index domains. Moreover, the maximum speedup is obtained when order of indices isrespected and all indices are defined in the same aggregate operator.
An index is considered to be a constant: it is not possible to change explicitly the value of a namedindex (using an assignment for instance).

2.7.3 Arithmetic expressions

Numerical constants can be written using the common scientific notation. Arithmetic expressions are

Fair Isaac Corporation Confidential and Proprietary Information 30

The Mosel Language

naturally expressed by means of the usual operators (+, -, ⁎, / division, unary -, unary +,ˆraise to thepower). For integer values, the operators mod (remainder of division) and div (integral division) arealso defined. Note that mpvar objects are handled like real values in expression.
The sum (summation) aggregate operators is defined on integers, real and mpvar. The aggregateoperators prod (product), min (minimum) and max (maximum) can be used on integer and real values.

x⁎5.5+(2+z)^4+cos(12.4)
sum(i in 1..10) (min(j in s) t(i)⁎(a(j) mod 2))

2.7.4 String expressions

Constant strings of characters must be quoted with single (’) or double quote (") and may extend overseveral lines. Strings enclosed in double quotes may contain C-like escape sequences introduced bythe ’backslash’ character (\a \b \f \n \r \t \v \xxx \uhhhh with xxx being the character code asan octal number and hhhh a Unicode code as a four hexadecimal digits number).
Each sequence is replaced by the corresponding control character (e.g. \n is the ‘new line’ command)or, if no control character exists, by the second character of the sequence itself (e.g. \\ is replaced by’\’).
The escape sequences are not interpreted if they are contained in strings that are enclosed in singlequotes.
Example:

’c:\ddd1\ddd2\ddd3’ is understood as c:\ddd1\ddd2\ddd3
"c:\ddd1\ddd2\ddd3" is understood as c:ddd1ddd2ddd3

There are two basic operators for strings: the concatenation, written ’+’ and the difference, written ’-’.
"a1b2c3d5"+"e6" ! = "a1b2c3d5e6"
'a1b2c3d5'-"3d5" ! = "a1b2c"

A constant string may also take 2 additional forms: initialised from the content of an external file or asa portion of the current input file. For the first case, a text string enclosed in backquotes will bereplaced by the content of the file identified by this enclosed text. For the second case, a line ending bythe backquote character optionally followed by some label (consisting in any sequence of charactersnot including backquote) will be interpreted as the beginning of a text block. The end of this text blockis marked by a line starting with the previously used label (if any) followed by the backquote character.
Example:

`afile.txt` ! This string is the content of "afile.txt"
`MyMarker
line1
line2
MyMarker` ! This string is equivalent to "line1\nline2\n"

2.7.5 Set expressions

Constant sets are described using one of the following constructs:
{[Exp1 [, Exp2 ...]]}
or
Integer_exp1 .. Integer_exp2

The first form enumerates all the values contained in the set and the second form, restricted to sets ofintegers, gives an interval of integer values. This form implicitly defines a range set.

Fair Isaac Corporation Confidential and Proprietary Information 31

The Mosel Language

The basic operators on sets are the union written +, the difference written - and the intersection written
⁎.
The aggregate operators union and inter can also be used to build up set expressions.

{1,2,3}+{4,5,6}-(5..8)⁎{6,10} ! = {1,2,3,4,5}
{'a','b','c'}⁎{'b','c','d'} ! = {'b','c'}
union(i in 1..4|i<>2) {i⁎3} ! = {3,9,12}

If several range sets are combined in the same expression, the result is either a range or a set ofintegers depending on the continuity of the produced domain. If range sets and sets of integers ofmore than one element are combined in an expression, the result is a set of integers. It is howeverpossible to convert a set of integers to a range by using the notation range(setexpr) where
setexpr is a set expression which result is either a set of integers or a range. Similarly stating
set(lstexpr) will generate a set from the elements of the list expression lstexpr.

2.7.6 List expressions

A constant list consist in a list of expressions enclosed in square brackets:
[[Exp1 [, Exp2 ...]]]

There are two basic operators for lists: the concatenation, written ’+’ and the difference, written ’-’. Theaggregate operator sum can also be used to build up list expressions.
[1,2,3]+[1,2,3] ! = [1,2,3,1,2,3]
[1,2,3,4]-[3,4] ! = [1,2]
sum(i in 1..3) [i⁎3] ! = [3,6,9]

A list can also be constructed from the elements of a set using the syntax list(setexpr) where
setexpr is a set expression.

2.7.7 Boolean expressions

A Boolean expression is an expression whose result is either true or false. The traditional comparatorsare defined on integer and real values: <, <=, =, <> (not equal), >=, >.
These operators are also defined for string expressions. In that case, the order is defined by theISO-8859-1 character set (i.e. roughly: punctuation <digits <capitals <lower case letters <accentedletters).
With sets, the comparators <= (‘is subset of’), >= (‘is superset of’), = (‘equality of contents’) and <>(‘difference of contents’) are defined. These comparators must be used with two sets of the same type.Moreover, the operator ‘expr in Set_expr’ is true if the expression expr is contained in the set Set_expr.The opposite, the operator not in is also defined.
With lists, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.These comparators must be used with two lists of the same type.
With arrays, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.These comparators must be used with two arrays of the same type and this type must support therequested operator (for instance arrays of mpvar cannot be compared).
With records, the comparators = (‘equality of contents’) and <> (‘difference of contents’) are defined.These comparators must be used with two records of the same type and all fields of this record typemust support the requested operator (for instance records including mpvar entries cannot becompared).
To combine Boolean expressions, the operators and (logical and) and or (logical or) as well as the

Fair Isaac Corporation Confidential and Proprietary Information 32

The Mosel Language

unary operator not (logical negation) can be used. The evaluation of an arithmetic expression stops assoon as its value is known.
The aggregate operators and and or are the natural extension of their binary counterparts.

3<=v1 and v2>=45 or t<>r and not r in {1..10}
and(i in 1..10) 3<=arr(i)

2.7.8 Linear constraint expressions

Linear constraints are built up using linear expressions on the decision variables (type mpvar).
The different forms of constraints are:

Linear_expr
or
Linear_expr1 Ctr_cmp Linear_expr2
or
Linear_expr SOS_type
or
mpvar_ref mpvar_type1
or
mpvar_ref mpvar_type2 Arith_expr

In the case of the first form, the constraint is unconstrained and is just a linear expression. For thesecond form, the valid comparators are <=, >=, = (range constraints may be created using theprocedure setrange). The third form is used to declare special ordered sets. The types are then
is_sos1 and is_sos2. The coefficients of the variables in the linear expression are used as weightsfor the SOS (as a consequence, a 0-weighted variable cannot be represented this way, procedure
makesos1 or makesos2 has to be used instead).
The last two types are used to set up special types for decision variables. The first series does notrequire any extra information: is_continuous (default), is_integer, is_binary, is_free.Continuous and integer variables have the default lower bound 0, binary variables only take the values 0or 1, and ’free’ means that the variable is unbounded (i.e. ranging from -∞ to +∞). The second seriesof types is associated with a threshold value stated by an arithmetic expressions: is_partint forpartial integer, the value indicates the limit up to which the variable must be integer, above which it iscontinuous. For is_semcont (semi-continuous) and is_semint (semi-continuous integer) the valuegives the semi-continuous limit of the variable (that is, the lower bound on the part of its domain that iscontinuous or consecutive integers respectively). Note that these constraints on single variables arealso considered as common linear constraints.

3⁎y+sum(i in 1..10) x(i)⁎i >= z-t
x is_free ! Define an unbounded variable
x <= -2 ! Upper bound on x
t is_integer ! Define an integer variable t=0,1,2,...
t >= -7 ! Change lower bound on t: t=-7,-6,-5,...
sum(i in 1..10) i⁎x(i) is_sos1 ! SOS1 {x(1),x(2),...} with

! weights 1,2,...
y is_partint 5 ! y=0 or y=5,6,...
y <= 20 ! Upper bound on y: y=0 or y=5,6,...,20

Internally all linear constraints are stored in the same form: a linear expression (including a constantterm) and a constraint type (the right hand side is always 0). This means, the constraint expression
3⁎x>=5⁎y-10 is internally represented by: 3⁎x-5⁎y+10 and the type ‘greater than or equal to’. Whena reference to a linear constraint appears in an expression, its value is the linear expression it contains.For example, if the identifier ctl refers to the linear constraint 3⁎x>=5⁎y-10, the expression z-x+ctlis equal to: z-2⁎x-5⁎y+10.

Fair Isaac Corporation Confidential and Proprietary Information 33

The Mosel Language

Note that the value of a unary constraint of the type x is_type threshold is x-threshold.
2.7.9 Automatic arrays

The array keyword can be used as an aggregate operator in order to create an array that will existonly for the duration of the expression.
array (Iterator1 [, Iterator2 ...]) Expression

here, the iterators define the indices of the array and the expression, the associated values.
This automatic array may be used wherever a reference to an array is expected: for instance to save thesolution values of an array of decision variables in an initialization block (see Section 2.8.2).

initializations to "mydata.txt"
evaluation of array(i in 1..10) x(i).sol as "mylabel"

end-initializations

2.8 Statements

Four types of statements are supported by the Mosel language. The simple statements can be seen aselementary operations. The initialization block is used to load data from a file or save data to a file.Selection statements allow one to choose between different sets of statements depending onconditions. Finally, the loop statements are used to repeat operations.
Each of these constructs is considered as a single statement. A list of statements is a succession ofstatements. No particular statement separator is required between statements except if a statementterminates by an expression. In that case, the expression must be finished by either a line break or thesymbol ’;’.

2.8.1 Simple statements

2.8.1.1 Assignment

An assignment consists in changing the value associated to an identifier. The general form of anassignment is:
ident_ref := Expression
or
ident_ref += Expression
or
ident_ref -= Expression

where ident_ref is a reference to a value (i.e. an identifier or an array/record dereference) and
Expression is an expression of a compatible type with ident_ref. The direct assignment, denoted :=replaces the value associated with ident_ref by the value of the expression. The additive assignment,denoted +=, and the subtractive assignment, denoted -=, are basically combinations of a directassignment with an addition or a subtraction. They require an expression of a type that supports theseoperators (for instance it is not possible to use additive assignment with Boolean objects).
The additive and subtractive assignments have a special meaning with linear constraints in the sensethat they preserve the constraint type of the assigned identifier: normally a constraint used in anexpression has the value of the linear expression it contains, the constraint type is ignored.

c:= 3⁎x+y >= 5

Fair Isaac Corporation Confidential and Proprietary Information 34

The Mosel Language

c+= y ! Implies c is 3⁎x+2⁎y-5 >= 0
c:= 3⁎x+y >= 5
c:= c + y ! Implies c is 3⁎x+2⁎y-5 (c becomes unconstrained)

2.8.1.2 Assignment of structured types

The direct assignment := can also be used with sets, lists, arrays and records under certain conditions.For sets and lists, reference and value must be of the same type, the system performing no conversionon structures. For instance it is not possible to assign a set of integers to a set of reals althoughassigning an integer value to a real object is valid.
When assigning records, reference and value must be of the same type and this type must be
assignment compatible: two records having identical definitions are not considered to be the same typeby the compiler. In most cases it will be necessary to employ a user type to declare the objects. Arecord is assignment compatible if all the fields it includes can be assigned a value. For instance arecord including a decision variable (type mpvar) cannot be used in an assignment: copying a value ofsuch a type has to be performed one field at a time skiping those fields that cannot be assigned.
Two arrays can be used in an assignment if they have strictly the same definition and are assignmentcompatible (i.e. their type supports assignment).
2.8.1.3 About implicit declarations

Each symbol should be declared before being used. However, an implicit declaration is issued when anew symbol is assigned a value the type of which is unambiguous.
! Assuming A,S,SE are unknown symbols
A:= 1 ! A is automatically defined

! as an integer reference
S:={1,2,3} ! S is automatically defined

! as a set of integers
SE:={} ! This produces a parser error as

! the type of SE is unknown

In the case of arrays, the implicit declaration should be avoided or used with particular care as Moseltries to deduce the indexing sets from the context and decides automatically whether the created arraymust be dynamic. The result is not necessarily what is expected.
A(1):=1 ! Implies: A:array(1..1) of integer
A(t):=2.5 ! Assuming "t in 1..10|f(t) > 0"

! implies: A:dynamic array(range) of real

The option noimplicit disables implicit declarations (see Section 2.3.3).
2.8.1.4 Inline initialization

Using inline initialization it is possible to assign several cells of an array in a single statement. Thegeneral form of an inline initialization is:
ident_ref ::[Exp1 [, Exp2 ...]]
or
ident_ref ::(Ind1 [, Ind2 ...])[Exp1 [, Exp2 ...]]

where ident_ref is the object to initialize (array, set or list) and Expi are expressions of a compatible typewith ident_ref. The first form of this statement may be used with lists, sets and arrays indiced byranges: the list of expressions is used to initialize the object. In the case of lists and sets this operation

Fair Isaac Corporation Confidential and Proprietary Information 35

The Mosel Language

is similar to a direct assignment, with an array, the first index of each dimension is the lower bound ofthe indexing range or 1 if the range is empty.
The second form is used to initialize regions of arrays or arrays indiced by general sets: each Indiexpression indicates the index or list of indices for the corresponding dimension. An index list can be aconstant, a list of constants (e.g. [’a’,’b’,’c’]) or a constant range (e.g. 1..10) but all valuesmust be known at compile time.

declarations
T:array(1..10) of integer
U:array(1..9,{'a','b','c'}) of integer
end-declarations
T::[2,4,6,8] ! <=> T(1):=2; T(2):=4;...
T::(2..5)[7,8,9,19] ! <=> T(2):=7; T(3):=8;...
U::([1,3,6],'b')[1,2,3]! <=> U(1,'b'):=1; U(3,'b'):=2;...

2.8.1.5 Linear constraint expression

A linear constraint expression can be assigned to an identifier but can also be stated on its own. In thatcase, the constraint is said to be anonymous and is added to the set of already defined constraints. Thedifference from a named constraint is that it is not possible to refer to an anonymous constraint again,for instance to modify it.
10<=x; x<=20
x is_integer

2.8.1.6 Procedure call

Not all required actions are coded in a given source file. The Mosel language comes with a set ofpredefined procedures that perform specific actions (like displaying a message). It is also possible toimport procedures from external locations by using modules or packages (cf. Section 2.3).
The general form of a procedure call is:

procedure_ident
procedure_ident (Exp1 [, Exp2 ...])

where procedure_ident is the name of the procedure and, if required, Expi is the ith parameter for the call(note that parameters of procedures are evaluated from right to left). Refer to Chapter 3 of this manualfor a comprehensive listing of the predefined procedures.The modules documentation should also beconsulted for explanations about the procedures provided by each module.
writeln("hello!") ! Displays the message: hello!

2.8.2 Initialization block

The initialization block may be used to initialize objects (scalars, arrays, lists or sets) of basic type fromfiles or to save the values of such objects to files. Scalars and arrays of external/user types supportingthis feature may also be initialized using this facility.
The first form of an initialization block is used to initialize data from a file:

Fair Isaac Corporation Confidential and Proprietary Information 36

The Mosel Language

initializations from Filename
item1 [as Label1]
or
[itemT11,itemT12 [,IdentT13 ...]] asLabelT1

[
item2 [as Label2]
or
[itemT21,itemT22 [,IdentT23 ...]] asLabelT2

...]
end-initializations

where Filename, a string expression, is the name of the file to read, itemi any object identifier and
itemTij an array identifier. Each identifier is automatically associated to a label: by default this label isthe identifier itself but a different name may be specified explicitly using a string expression Labeli. If agiven item is of a record type, the operation is permitted only if all fields it contains can be initialized.For instance, if one of the fields is a decision variable (type mpvar), the compilation will fail.Alternatively, the fields to be initialized can be listed using the following syntax as an item:

Identifier(field1 [,filedi ...])

If a given item is a namespace (see Section 2.13) all the identifiers it includes at the time of parsing thestatement are implicitly added to the block with the exception of namespaces and entities that are notcompatible with initializations (like decision variables). The associated labels are the fully qualifiednames of the objects (i.e. the identifier prefixed by the namespace) unless a label is specified for thisrecord: in this case it is used as a replacement for the default prefix when generating the per entitylabels such that an empty string will remove entirely the prefix. Using the compiler option -wimakes itpossible to get a list of included identifiers by means of a compiler warning (see Section 1.3).
When an initialization block is executed, the given file is opened and the requested labels are searchedfor in this file to initialize the corresponding objects. Several arrays may be initialized with a singlerecord. In this case they must be all indexed by the same sets, have scalar types and the label isobligatory. After the execution of an initializations from block, the control parameter nbreadreports the number of items actually read in. Moreover, if control parameter readcnt is set to truebefore the execution of the block, counting is also achieved at the label level: the number of itemsactually read in for each label may be obtained using function getreadcnt.
An initialization file must contain one or several records of the following form:

Label: value
where Label is a text string and value either a constant of a basic type (integer, real, string or
boolean) or a collection of values separated by spaces and enclosed in square brackets. Collectionsof values are used to initialize lists, sets records or arrays — if such a record is requested for a scalar,then the first value of the collection is selected. When used for arrays, indices enclosed in roundbrackets may be inserted in the list of values to specify a location in the corresponding array.
Note also that:

� no particular formatting is required: spaces, tabulations, and line breaks are just normalseparators
� the special value ’*’ implies a no-operation (i.e. the corresponding entity is not initialized)
� single line comments are supported (i.e. starting with ’!’ and terminated by the end of the line)
� Boolean constants are either the identifiers false (FALSE) and true (TRUE) or the numericalconstants 0 and 1

Fair Isaac Corporation Confidential and Proprietary Information 37

The Mosel Language

� all text strings (including the labels) may be quoted using either single or double quotes. In thelatter case, escape sequences are interpreted (i.e. use of ’\’).
By default Mosel expects that initialization files are encoded in UTF-8 and it can handle UTF-16 andUTF-32 when a BOM (Byte Order Mark) is used. To process files in another encoding, a special
encoding comment line must be put at the beginning of the file (see section 2.5.1). For instance a datafile encoded with CP1252 should start with the following comment line:

!@encoding:CP1252

The second form of an initialization block is used to save data to a file:
initializations to Filename

item1 [as Label1]
or
[itemT11,itemT12 [,IdentT13 ...]]asLabelT1

[
item2 [as Label2]
or [itemT21,itemT22 [,IdentT23 ...]]asLabelT2

...]
end-initializations

In this form, any itemi can be replaced by the value of an expression using the following construct(Labeli is mandatory in this case):
evaluation of expression

When this second form is executed, the value of all provided labels is updated with the current value ofthe corresponding identifier1 in the given file. If a label cannot be found, a new record is appended tothe end of the file and the file is created if it does not yet exist.
For example, assuming the file a.dat contains:

! Example of the use of initialization blocks
t:[(1 un) [10 11] (2 deux) [⁎ 22] (3 trois) [30 33]]
t2:[10 (4) 30 40]
'nb used': 0

consider the following program:
model "Example initblk"
declarations
nb_used:integer
s: set of string
ta,tb: dynamic array(1..3,s) of real
t2: array(1..5) of integer
end-declarations

initializations from 'a.dat'
[ta,tb] as 't' ! ta=[(1,'un',10),(3,'trois',30)]

! tb=[(1,'un',11),(2,'deux',22),(3,'trois',33)]
t2 ! t2=[10,0,0,30,40]
nb_used as "nb used" ! nb_used=0
end-initializations

nb_used+=1
ta(2,"quatre"):=1000

1A copy of the original file is saved prior to the update (i.e. the original version of fname can be found in fname˜).

Fair Isaac Corporation Confidential and Proprietary Information 38

The Mosel Language

initializations to 'a.dat'
[ta,tb] as 't'
nb_used as "nb used"
s
end-initializations
end-model

After the execution of this model, the data file contains:
! Example of the use of initialization blocks
t:[(1 'un') [10 11] (2 'deux') [⁎ 22] (2 'quatre') [1000 ⁎]

(3 'trois') [30 33]]
t2:[10 (4) 30 40]
'nb used': 1
's': ['un' 'deux' 'trois' 'quatre']

In case of error (e.g. file not found, corrupted data format) during the processing of an initializationblock, the execution of the model is interrupted. However if the value of control parameter ioctrl istrue, executions continues. It is up to the user to verify whether data has been properly transfered bychecking the value of control parameter iostatus.
2.8.2.1 About automatic finalization

During the execution of an initializations from block all sets are automatically finalized just after havingbeen initialized (unless they have been explicitly declared as dynamic). This also applies to setsindirectly initialized through the non-dynamic arrays for which they are index sets. In addition, such anarray is created as a static array if it has not been used before the initialization block.
This behaviour is controled by the autofinal control parameter which value may be changed usingthe setparam procedure (i.e. it is therefore possible to have automatic finalization active for onlysome initializations blocks). The compiler option noautofinal (see section 2.3.3) allows to disablethis feature from the beginning of the model (although it can be re-enabled as required using thecontrol parameter).

2.8.3 Selections

2.8.3.1 If statement

The general form of the if statement is:
if Bool_exp_1
then Statement_list_1
[

elif Bool_exp_2
then Statement_list_2

...]
[else Statement_list_E]
end-if

The selection is executed as follows: if Bool_exp_1 is true then Statement_list_1 is executed and theprocess continues after the end-if instruction. Otherwise, if there are elif statements, they areexecuted in the same manner as the if instruction itself. If, all boolean expressions evaluated are
false and there is an else instruction, then Statement_list_E are executed; otherwise no statement isexecuted and the process continues after the end-if keyword.

if c=1

Fair Isaac Corporation Confidential and Proprietary Information 39

The Mosel Language

then writeln('c=1')
elif c=2
then writeln('c=2')
else writeln('c<>1 and c<>2')
end-if

2.8.3.2 Case statement

The general form of the case statement is:
case Expression_0 of
Expression_1: Statement_1
or
Expression_1: do Statement_list_1 end-do
[

Expression_2: Statement_2
or
Expression_2: do Statement_list_2 end-do

...]
[else Statement_list_E]
end-case

The selection is executed as follows: Expression_0 is evaluated and compared sequentially with eachexpression of the list Expression_i until a match is found. Then the statement Statement_i (resp. list ofstatements Statement_list_i) corresponding to the matching expression is executed and the executioncontinues after the end-case instruction. If no matching is found and an else statement is present,the list of statements Statement_list_E is executed, otherwise the execution continues after the
end-case instruction. Note that, each of the expression lists Expression_i can be either a scalar, a setor a list of expressions separated by commas. In the last two cases, the matching succeeds if theexpression Expression_0 corresponds to an element of the set or an entry of the list.

case c of
1 : writeln('c=1')
2..5 : writeln('c in 2..5')
6,8,10: writeln('c in {6,8,10}')
else writeln('c in {7,9} or c >10 or c <1')

end-case

2.8.4 Loops

2.8.4.1 Forall loop

The general form of the forall statement is:
forall (Iterator_list) Statement
or
forall (Iterator_list) do Statement_list end-do

The statement Statement (resp. list of statements Statement_list) is repeated for each possible indextuple generated by the iterator list (cf. Section 2.7.2).
forall (i in 1..10, j in 1..10 | i<>j) do
write(' (' , i, ',' , j, ')')
if isodd(i⁎j) then s+={i⁎j}
end-if

end-do

Fair Isaac Corporation Confidential and Proprietary Information 40

The Mosel Language

2.8.4.2 While loop

The general form of the while statement is:
while (Bool_expr) Statement
or
while (Bool_expr) do Statement_list end-do

The statement Statement (resp. list of statements Statement_list) is repeated as long as the condition
Bool_expr is true. If the condition is false at the first evaluation, the while statement is entirelyskipped.

i:=1
while(i<=10) do
write(' ',i)
if isodd(i) then s+={i}
end-if
i+=1

end-do

2.8.4.3 Repeat loop

The general form of the repeat statement is:
repeat
Statement1
[Statement2 ...]
until Bool_expr

The list of statements enclosed in the instructions repeat and until is repeated until the condition
Bool_expr is true. As opposed to the while loop, the statement(s) is (are) executed at least once.

i:=1
repeat
write(' ',i)
if isodd(i) then s+={i}
end-if
i+=1

until i>10

2.8.4.4 break and next statements

The statements break and next are respectively used to interrupt and jump to the next iteration of aloop. The general form of the break and next statements is:
break [n|label]
or
next [n|label]

where n is an optional integer constant: n-1 nested loops are stopped before applying the operation.This optional argument may also be a label (in the form an identifier or a string constant): in this casethe loop to consider is identified by a label that must be defined just before the corresponding loopusing the following syntax:
label :

Fair Isaac Corporation Confidential and Proprietary Information 41

The Mosel Language

The label can be either an identifier (that is not associated to any entity) or a constant string. The scopeof each label is limited to the loop it identifies.
! in this example only the loop controls are shown
L1: ! 1: Define label "L1"
repeat ! 2: Loop L1
forall (i in S) do ! 3: Loop L2
while (C3) do ! 4: Loop L3
break 3 ! 5: Stop the 3 loops and continue after line 12
next ! 6: Go to next iteration of L3 (line 4)
next 2 ! 7: Stop L3 and go to next 'i' (line 3)
end-do ! 8: End of L3
next "L1" ! 9: Stop L2, go to next iteration of L1 (line 12)
break !10: Stop L2 and continue after line 11
end-do !11: End of L2
until C1 !12: End of L1

2.8.4.5 with statement

The general syntax of this statement is:
with ident_1=exp_1 [, ident_2=exp_2...] do

Statement
[Statement ...]

end-do

Although the with statement is not a loop it is handled like a single iteration forall loop such that itis possible to use the break statement within the block of instructions. The identifiers ident_i aredefined as local symbols to the block.
! in this example LR is an array of records
with r=LR(10) do
r.x:=10 ! update LR(10).x
r.y:=20 ! update LR(10).y
end-do

2.9 Procedures and functions

It is possible to group sets of statements and declarations in the form of subroutines that, oncedefined, can be called several times during the execution of the model. There are two kinds ofsubroutines in Mosel, procedures and functions. Procedures are used in the place of statements (e.g.
writeln("Hi!")) and functions as part of expressions (because a value is returned, e.g.
round(12.3)). Procedures and functions may both receive arguments, define local data and callthemselves recursively.

2.9.1 Definition

Defining a subroutine consists of describing its external properties (i.e. its name and arguments) andthe actions to be performed when it is executed (i.e. the statements to perform). The general form of aprocedure definition is:
procedure name_proc [(list_of_parms)]

Proc_body
end-procedure

Fair Isaac Corporation Confidential and Proprietary Information 42

The Mosel Language

where name_proc is the name of the procedure and list_of_parms its list of formal parameters (if any).This list is composed of symbol declarations (cf. Section 2.6) separated by commas. The onlydifference from usual declarations is that no constants or expressions are allowed, including in theindexing list of an array (for instance A=12 or t1:array(1..4) of real are not valid parameterdeclarations). The body of the procedure is the usual list of statements and declaration blocks exceptthat no procedure or function definition can be included.
procedure myproc
writeln("In myproc")

end-procedure

procedure withparams(a:array(r:range) of real, i,j:integer)
writeln("I received: i=",i," j=",j)
forall(n in r) writeln("a(",n,")=",a(n))

end-procedure

declarations
mytab:array(1..10) of real

end-declarations

myproc ! Call myproc
withparams(mytab,23,67) ! Call withparams

The definition of a function is very similar to the one of a procedure:
function name_func [(List_of_params)]: Type

Func_body
end-function

The only difference with a procedure is that the function type must be specified: it can be any typename except mpvar. Inside the body of a function, a special variable of the type of the function isautomatically defined: returned. This variable is used as the return value of the function, it musttherefore be assigned a value during the execution of the function.
function multiply_by_3(i:integer):integer
returned:=i⁎3

end-function

writeln("3⁎12=", multiply_by_3(12)) ! Call the function

Normally all statements of a subroutine are executed in sequence. It is however possible to interruptthe execution and return to the caller by using the special statement return.
2.9.2 Formal parameters: passing convention

Formal Parameters of basic types are passed by value and all other types are passed by reference. Inpractice, when a parameter is passed by value, the subroutine receives a copy of the information so, ifthe subroutine modifies this parameter, the effective parameter remains unchanged. But if a parameteris passed by reference, the subroutine receives the parameter itself. As a consequence, if theparameter is modified during the process of the subroutine, the effective parameter is also affected.
procedure alter(s:set of integer,i:integer)
i+=1
s+={i}

end-procedure

gs:={1}
gi:=5
alter(gs,gi)
writeln(gs," ",gi) ! Displays: {1,6} 5

Fair Isaac Corporation Confidential and Proprietary Information 43

The Mosel Language

2.9.3 Local declarations

Several declaration blocks may be used in a subroutine and all identifiers declared are local to thissubroutine. This means that all of these symbols exist only in the scope of the subroutine (i.e. betweenthe declaration and the end-procedure or end-function statement) and all of the resource theyuse is released once the subroutine terminates its execution unless they are referenced outside of theroutine (e.g. member of a set defined globally). As a consequence, active constraints (linctr that arenot just linear expressions) declared inside a subroutine and the variables they employ are still effectiveafter the termination of the subroutine (because they are part of the current problem) even if thesymbols used to name the related objects are not defined any more. Note also that a local declarationmay hide a global symbol.
declarations ! Global definition
i,j:integer

end-declarations

procedure myproc
declarations

i:string ! This declaration hides the global symbol
end-declarations
i:="a string" ! Local 'i'
j:=4
writeln("Inside of myproc, i=",i," j=",j)

end-procedure

i:=45 ! Global 'i'
j:=10
myproc
writeln("Outside of myproc, i=",i," j=",j)

This code extract displays:
Inside of myproc, i=a string j=4
Outside of myproc, i=45 j=4

2.9.4 Overloading

Mosel supports overloading of procedures and functions. One can define the same function severaltimes with different sets of parameters and the compiler decides which subroutine to use dependingon the parameter list. This also applies to predefined procedures and functions.
! Returns a randomly generated integer in the interval [1,limit]
function random(limit:integer):integer
returned:=round(.5+random⁎limit) ! Use the predefined

! 'random' function
end-function

It is important to note that:
� a procedure cannot overload a function and vice versa;
� it is not possible to redefine any identifier; this rule also applies to procedures and functions. Asubroutine definition can be used to overload another subroutine only if it differs for at least oneparameter. This means, a difference in the type of the return value of a function is not sufficient.

2.9.5 Forward declaration

During the compilation phase of a source file, only symbols that have been previously declared can beused at any given point. If two procedures call themselves recursively (cross recursion), it is therefore

Fair Isaac Corporation Confidential and Proprietary Information 44

The Mosel Language

necessary to be able to declare one of the two procedures in advance. Moreover, for the sake of clarityit is sometimes useful to group all procedure and function definitions at the end of the source file. Aforward declaration is provided for these uses: it consists of stating only the header of a subroutinethat will be defined later. The general form of a forward declaration is:
forward procedure Proc_name [(List_of_params)]
or
forward function Func_name [(List_of_params)]: Basic_type

where the procedure or function Func_name will be defined later in the source file. Alternatively asubroutine can be declared by stating its header inside of a declarations block. Note that a forwarddeclaration for which no actual definition can be found is considered as an error by Mosel.
forward function f2(x:integer):integer

function f1(x:integer):integer
returned:=x+if(x>0,f2(x-1),0) ! f1 needs to know f2

end-function

function f2(x:integer):integer
returned:=x+if(x>0,f1(x-1),0) ! f2 needs to know f1

end-function

2.9.6 Suffix notation

Functions which name begins with get and taking a single argument may be called using a suffix
notation. This alternative syntax is constructed by appending to the variable name (the intendedfunction parameter) a dot followed by the function name without its prefix get. For instance the call
getsol(x) is the same as x.sol. The compiler performing internally the translation from the suffixnotation to the usual function call notation, the two syntaxes are equivalent.
Similarly, calls to procedures which name begins with set and taking two arguments may be written asan assignment combined with a suffix notation. In this case the statement can be replaced by thevariable name (the intended first procedure parameter) followed by a dot and the procedure namewithout its prefix set then the assignment sign := and the value corresponding to the secondparameter. For instance the statement sethidden(ctl,true) can also be written
ctl.hidden:=true. As for the other alternative notation, the compiler performs the rewritinginternally and the two syntaxes are equivalent.

2.10 Problems

In Mosel terms, a problem is a container holding various attributes and entities. The nature of theinformation stored is characterised by a problem type. The core system of Mosel provides the
mpproblem problem type for the representation of mathematical programming problems with linearconstraints. Other types may be published by modules either as entirely new problem types or as
problem type extensions. An extension adds extra functionality or properties to an existing type; forinstance, mpproblem.xprs provided by the module mmxprs adds support for solving mpproblemproblems while the type mpproblem.nl of mmnlmakes it possible to include non-linear constraints inan mpproblem.
When the execution of the model starts, an instance of each of the available problem types is created:this main problem constitutes the default problem context. As a consequence, all problem relatedoperations (e.g., add constraints, solve...) refer to this context. Further problem instances may bedeclared just like any other symbol using a declarations section. The specification of a problem type(that is used as an elementary type in a declaration) has two forms:

Fair Isaac Corporation Confidential and Proprietary Information 45

The Mosel Language

problem_type
or
problem_type1 and problem_type2 [and problem_typen ...]

where problem_type* are problem type names. The second syntax allows to define a problem instancethat refers to several problem types: this can be useful if a particular problem consists in thecombination of several problem types. Note also that the main problem can be seen as an instance ofthe combination of all available problem types.
The with construct can be used to switch to a different problem context for the duration of a block ofinstructions. The general form of this construct is:

with prob do
Statement
[Statement ...]

end-do

where prob is a problem reference or a problem type specification. In the first case the referencedproblem is selected, in the second case, a new problem instance is created for the duration of the block(i.e., it is released after the block has been processed). Both statements and declaration blocks as wellas other with constructs may be included in this section: they are all executed in the context of theselected problem.
declarations
p1,p2:mpproblem
p3:mpproblem and mypb ! assuming 'mypb' is a problem type
PT=mpproblem and mypb ! user defined problem type
a:array(1..10) of PT
x,y:mpvar

end-declarations
with p1 do
x+y>=0
end-do
with p2 do
x-y=1
end-do

Some problem types support assignment (operator :=) and additive assignment (operator +=). Theseoperators can be used between objects of same type but also when the right parameter of the operatoris a component of the assigned object. For instance, assuming the declarations of the previousexample we could state p3:=p2meaning that the mpproblem part of p3must be replaced by a copyof p2, the mypb part of p3 remaining unchanged. From the same context, the assignment p2:=p3produces a compilation error.
2.10.1 The mpproblem type

An mpproblem instance basically consists in a set of linear constraints (the decision variables definedanywhere in a model are shared by all problems). A constraint is incorporated into a problem when it isexpressed, so having the declaration of a linctr identifier in the context of a problem is not sufficientto attach it to this problem. The association will occur when the symbol is assigned its first value.Afterwards, the constraint will remain part of the same problem even if it is altered from within thecontext of another problem (a constraint cannot belong to several problems at the same time).
with p1 do
C1:=x+y+z>=0
x is_integer
end-do
with p2 do

Fair Isaac Corporation Confidential and Proprietary Information 46

The Mosel Language

2⁎x-3⁎z=0 ! here we state constraints of p2
...
minimize(z)
C1+= x.sol⁎z.sol
end-do

In the example above, the constraint C1 is part of problem p1. From the context of a second problem
p2 the constraint C1 is modified using solution information of p2: this change affects only the firstproblem since the constraint does not belong to the current context. Note that since is_integer is a(unary) constraint, the decision variable x is integer for problem p1 but it is a continuous variable in p2.
When a problem is released or reset (see reset), all its constraints are detached. Constraints whichare not referenced (anonymous constraints) are released at the same time, named constraints howeverare not freed, they become available to be associated to some other problem.

with mpproblem do
C1:=x+y+z>=0 ! (1)
x-2⁎y=10 ! (2)
x is_integer ! (3)
end-do
with p1 do
C1
end-do

In this example, at the end of the first with block, the local problem is released. As a consequence theconstraint C1 is detached from this problem (but remains unchanged) and the 2 other constraints arefreed. The following statements add C1 to the problem p1.
The type mpproblem supports both assignment (operator :=) and additive assignment (operator +=).

2.11 The public qualifier

Once a source file has been compiled, the identifiers used to designate the objects of the modelbecome useless for Mosel. In order to access information after a model has been executed (forinstance using the print command of the interractive debugger), a table of symbols is saved in theBIM file.
The qualifier public can be used in declaration and definition of objects to mark those identifiers(including subroutines) that must be published in the table of symbols. Without this qualifier a symbolis considered to be private and it is not recorded in the table of symbols (unless the source is compiledwith debugging information).

public declarations
e:integer ! e is published
f:integer ! f is published

end-declarations

declarations
public a,b,c:integer ! a,b and c are published
d:real ! d is private

end-declarations

forward public procedure myproc(i:integer) ! 'myproc' is published

This qualifier can also be used when declaring record types in order to select the fields of the recordthat can be accessed from outside of the file making the definitions: this allows to make available onlya few fields of a record, hidding what is considered to be internal data.
declarations
public t1=record

Fair Isaac Corporation Confidential and Proprietary Information 47

The Mosel Language

i:integer ! t1.i is private
public j:real ! t1.j is public

end-record
public t2=public record

i:integer ! t2.i is public
j:real ! t2.j is public

end-record
end-declarations

Note that a public record type can only contain public types even if it does not publish its fields.

2.12 Packages

Declarations may be stored in a package: once compiled, the package can be used by any model bymeans of the uses or import statements (see Section 2.3.1). Except for its beginning and termination(keyword model is replaced by package) a package source is similar to a normal model source. Thefollowing points should be noticed:
� all statements and declarations outside procedure or function definitions are used as an

initialization routine: they are automatically executed before statements of the model using thepackage;
� symbols that should be published by the package must be made explicitly public using the
public qualifier (see Section 2.11);

� model parameters of a package are automatically added to the list of parameters of the modelusing the package;
� a package cannot be imported several times by a model and packages publish symbols ofpackages they import. For instance, assuming package P1 imports package P2, a model using P1cannot import or use explicitly P2 but has access to the functionality of P2 via P1.

2.12.1 Version management

When a package defines a version number (see Section 2.3.4) Mosel implements a compatility rulesimilar to the one used for modules: a package version A can be used in place of package version B if
major(A) = major(B) and minor(A) ≥minor(B). This mechanism applies at compile time (when usingdifferent packages with the same dependencies) and at runtime when loading a model.

2.12.2 The requirements block

Requirements are symbols a package requires for its processing but does not define. These requiredsymbols are declared in requirement blocks which are a special kind of declaration blocks in whichconstants are not allowed but procedure/functions can be declared. The symbols of such a block haveto be defined when the model using the package is compiled: the definitions may appear either in themodel or in another package but cannot come from a module. Several packages used by a given modelmay have the same requirements (i.e. same identifier and same declaration). It is also worth notingthat a package inherits the requirements of the packages it uses.
requirements
an_int:integer
s0: set of string
bigar: array(S0) of real
procedure doit(i:integer)

end-requirements

Fair Isaac Corporation Confidential and Proprietary Information 48

The Mosel Language

2.12.3 Control parameters

Packages may define control parameters that can be used just like those of modules via routines
getparam and setparam. A control parameter is defined in the parameters block (see Section 2.4)using the following syntax:

pname: type_name

where pname is the name of the parameter as a constant string and type_name its type (either
integer, real, string or boolean). In addition to this declaration accessor routines must bedefined: for handling integer parameters the public function
pkgname~getiparam(pname:string):integer and the public procedure
pkgname~setparam(pname:string,v:integer)must be defined (pkgname being the name ofthe current package). The function will be called by getparam to retrieve the value of the specifiedparameter (as a string in lower case) and the procedure will be used by setparam to change theparameter value. Similar definitions will be required for the other types (assuming the package declaresparameters of the corresponding types), namely getrparam (real parameters), getsparam (stringparameters) and getbparam (Boolean parameters) as well as the associated procedures setparam.The following example shows the required definitions for the package mypkg to publish realparameters p1 and p2:

parameters
"p1":real
"p2":real

end-parameters

declarations
myp1,myp2:real ! private variables to hold parameter values
end-declarations

! get value function for real parameters
public function mypkg~getrparam(p:string):real
case p of
"p1": returned:=myp1
"p2": returned:=myp2
end-case
end-function

! set value procedure for real parameters
public procedure mypkg~setparam(p:string,v:real)
case p of
"p1": myp1:=v
"p2": myp2:=v
end-case
end-procedure

2.13 Namespaces

All identifiers (variables and subroutines names) of a program are implicitly collected in a globaldictionary shared by the program itself and all packages and modules it uses. It is also possible togroup certain identifiers under a namespace that is characterised by a name. A given identifier mayappear in several namespaces and each of its occurrences refers to a different entity, as aconsequence an entity is unambiguously identified by its name and the namespace to which it is amember: this is the fully qualified name of this entity that is noted:
nspc~ident

Where nspc is a namespace name and ident an identifier in this namespace.

Fair Isaac Corporation Confidential and Proprietary Information 49

The Mosel Language

A namespace’s name is also an identifier that must be declared before being used even if it is definedby a package already loaded. This declaration is achieved using the namespace compiler directive:
namespace ns1 [, ns2 ...]

Where nsi are the names of the namespaces that will be used in the program. As an identifier anamespace may be declared as part of another namespace and any of the nsi may have the form
nsx~nsy to declare nsy as a namespace included in nsx. Several namespace directives may bestated.
When the compilation starts a namespace is automatically created: it is used to collect all privatesymbols of the program. When compiling a model this namespace has an empty name (i.e. a fullyqualified name of this namespace is of the form ~ident) and for a package it has the same name as thepackage.
When looking for an identifier (that is not fully qualified) the compiler tries first to find it in the globaldictionary and then searches in a predefined list of namespaces. This list is initialised with thenamespace of private symbols and may be extended using the nssearch directive:

nssearch ns1 [, ns2 ...]

This statement adds the specified namespaces to the search list. If the directive is stated severaltimes, each added list is appended to the current list of namespaces. The namespace search is notrecursive: it is not sufficient to add a namespace to the search list to have all its included namespacesto be also part of the search list (e.g. if ns1 includes ns11 and ns12, the 3 names ns1,ns1~ns11 and
ns1~ns12must be put into the search list for all the identifiers to be searchable). Note thatnamespaces listed in a nssearch directive do not need to be declared in a namespace directive.
Any namespace defined in a package is available to any model or package using it (and all theidentifiers it includes are implicitly public). Defining a namespace group makes it possible to allow onlycertain packages to access a given namespace. The definition of such a group requires the use of adedicated compiler directive:

nsgroup nspc: pkg1 [, pkg2 ...]
or
nsgroup nspc

Where pkgi are the package names (as constant strings) that will be allowed to access namespace
nspc. By default the automatic namespace containing the private symbols of a package has a groupcontaining only the package itself such that it cannot be used by any external component. It is howeverpossible to redefine this initial group with a nsgroup directive, in particular the second form of thedirective (without specifying any package) makes the corresponding namespace available to anypackage. Note that namespaces listed in a nsgroup directive do not need to be declared in a
namespace directive.

2.14 Annotations

Annotations are meta data expressed in the Mosel source file that are stored in the resulting bim fileafter compilation. Thanks to a dedicated API it is possible to retrieve the information both from themodel itself during its execution (see getannotations) or before/after execution from a hostapplication (see function XPRMgetannotations in the Mosel Libraries Reference Manual).

Fair Isaac Corporation Confidential and Proprietary Information 50

The Mosel Language

2.14.1 Syntax

Annotations are organised in categories. A category groups a set of annotations and other categories(or sub-categories). When expressing a full annotation name, categories are separated by the ’.’symbol. For instance:
doc.name

will be used to select the annotation name that is a member of the doc category. Similarly:
mycat1.cat2.info

will reference the annotation info recorded in the category cat2 that is itself part of category
mycat1. Annotations and annotation categories must be valid Mosel identifiers: their names can onlyuse alpha-numeric symbols plus ’_’.
Some predefined categories are available at the beginning of the compilation:

� the default category (its name is empty) collects annotations that are not explicitly member ofany particular category. For instance the annotation myannot will be recorded in the defaultcategory. This annotation may also be referenced by its full name .myannot
� mc (for Mosel Compiler) is used to pass information to the compiler during the compilation. Forexample, the mc.def annotation makes it possible to declare an annotation type (see section2.14.3)
� doc can be used to document a model or package file (see section 2.20)

In the Mosel source file annotations are included in special comments. A single-line annotation is of theform:
!@ name value

Here name is the name of the annotation (spaces between ’@’ and the name are ignored) and thefollowing text (up to the end of line) its corresponding value. The separation character between thename and the value can be a space, ’:’ or ’=’ (there must be no space between the name and thesymbol). There is no restriction on the content of the value: it can be any kind of text (unless theannotation is typed—see section 2.14.3).
A multi-line annotation is of the form:

(!@name value
...
@name2 value2
...

!)

where name is an annotation name while the text following this name is its associated value. With thissyntax the value may spread over several lines, its termination is marked either by the end of thecomment block or by a new annotation specification. In this context, a new annotation must start withthe ’@’ symbol at the beginning of a new line (leading spaces are ignored). As for a one-lineannotation, symbols ’:’ and ’=’ can be used instead of a space to separate the name and its value.
If several annotations of the same category have to be defined in the same block, a current categorymay be defined such that following annotation names can be shortened. This mechanism is activatedby specifying the category name terminated by a dot (the remainder of this line is ignored) before thefirst annotation statement. The category selection is effective for the current comment block only and

Fair Isaac Corporation Confidential and Proprietary Information 51

The Mosel Language

remains active until the next selection. Using a dot in place of a category name restores the defaultbehaviour (i.e. the full path must be used for annotation reference). For instance:
(!@doc. Switch to 'doc' category (this text is ignored)

@name:my_function
@type:integer
@mycat.cat1. Switch to 'mycat.cat1'
@memb1 10
@memb2 20
@. Unselect current category
@glb=useless

!)

Is equivalent to:
(!@doc.name:my_function
@doc.type:integer
@mycat.cat1.memb1 10
@mycat.cat1.memb2 20
@glb=useless

!)

By default any new annotation name is added to the internal dictionary and no checking is applied tothe provided value. If a given annotation is defined several times only the last assignment is preserved.The compiler will however emit a warning if an attempt is made to assign a value to a category or touse an annotation as a category. For instance:
!@mycat.memb1 10
!@mycat.memb1.memb2 20

The second definition will fail to use mycat.memb1 as a category because the first one has alreadyimplicitly declared it as an annotation.
2.14.2 Symbol association

An annotation is either global or associated with a specific public symbol (see section 2.11). Theassociation depends on the location of the definition in the source code:
� annotations preceding a subroutine declaration (forward statement) or definition are associatedwith the subroutine name
� annotations preceding a declarations block are distributed to all the symbols declared in the block
� inside of a declarations block: annotations preceding or terminating the line of a declaration areassociated with the corresponding symbols

In all other cases the annotations are global (i.e. not associated with any particular symbol) — inparticular trying to associate annotations to private symbols will result in global annotations.
Annotations that precede a subroutine declaration, a declarations block or an entity in a declarationsblock can be turned into global annotations by inserting the compiler annotation mc.flush betweenthe annotation and the following code.

2.14.3 Declaration

Declaration of annotations is achieved via the mc.def compiler annotation. Once an annotation isdeclared, the compiler checks the validity of definitions and rejects those that are not compliant,

Fair Isaac Corporation Confidential and Proprietary Information 52

The Mosel Language

issuing a warning message (invalid annotations will not make the compilation fail unless the flag
strict is used).
The general syntax of the annotation declaration statement is:

!@mc.def aname [prop1[,prop2...]]

Where aname is an annotation name and prop? a property keyword. The possible keywords are:
alias name1 name2... aname Defining an alias to name1, name2...
text|integer|real|boolean Type of the annotation value (default:text).
last|first|merge|multi Handling of multiple definitions of an annotation (default:last)

� last: the last definition is kept
� first: keep the first definition (the following ones are ignored)
� merge: definitions are concatenated (separated by new lines)
� multi: all definitions are kept

global|specific By default, the association of annotations depends on the location of thedefinition. If global is stated, the annotation is always global; with option specific,the annotation will be kept only if it can be associated with a symbol (otherwise it isignored instead of being stored as a global one).
values=v1 v2 v3... If used, this option must be the last one of the definition and it cannot becombined with range. It defines a list of possible values for the annotation.
range=lb ub If used, this option must be the last one of the definition, it requires the type to bespecified (integer or real) and it cannot be combined with values. It defines arange of possible values.
strict When this option has been stated any error detected on this annotation (or path whenapplied to a category) will make the compilation fail
Example:

!@mc.def person.name text,first,specific
!@mc.def person.age integer,first,specific,range=0 150
!@mc.def person.gender values=male female

Categories are implicitly declared by the annotations they include (for instance declaring
@mycat.myann implies the creation of mycat as a category). It is also possible to explicitly declare anempty category (i.e. containing no annotation) using the mc.def construct by appending a dot to thecategory name (the only supported property is strict). For instance:

!@mc.def mycat.

For a given annotation the declaration may be stated several times but the properties of an annotationcannot be changed. For instance, the following declarations can be used in the same source:
!@mc.def myann
!@mc.def myann text,last

But the following declaration cannot be combined with any of the two preceding ones as they bothresult in the annotation type text:

Fair Isaac Corporation Confidential and Proprietary Information 53

The Mosel Language

!@mc.def myann integer

Declarations included in models are not exported to the bim file (i.e. they are only used during thecompilation procedure) but declarations stated in packages are published if they are relative to a userdefined category: any model using the package inherits the annotation declarations of the package.
Additional properties can be set using the mc.set compiler annotation. The general syntax of thisspecial statement is:

!@mc.set name flag

Where name is an annotation or category name and flag one of the following keywords:
complete Applied to a category this flag indicates that no other annotation can be added to thiscategory (ignored for an annotation). It is however still possible to declare aliases. Notethat sub-categories are not concerned by this flag: if required each sub-category hasalso to be tagged.
disable Disable the named category or annotation. From the point where this flag has been setonwards, all definitions deriving from the provided name are silently ignored.
enable Revert the effect of disable.
unpublish Disable the automatic publication of the specified declaration.
publish Publish the specified declaration.
Note that mc.set expects a full explicit name: for this command ann refers to category ann and not toannotation .ann as in other places.

2.15 File names and input/output drivers

Mosel handles data streams using I/O drivers: a driver is an interface between Mosel and a physicaldata source. Its role is to expose the data source in a standard way such that from the user perspective,all data sources can be accessed using the same methods (i.e. initializations blocks, filehandling functions). Drivers are specified in file names: all Mosel functions supporting I/O operationsthrough drivers can be given an extended file name. This type of name is composed of the pair
driver_name:file_name. When Mosel needs to access a file, it looks for the specified driver in the tableof available drivers. This table contains all predefined drivers as well as drivers published by modulescurrently loaded in memory. If the driver is provided by a module, the module name may also beindicated in the extended file name: module_name.driver_name:file_name. Using this notation, Moselloads the required module if necessary (otherwise the file operation fails if the module is not alreadyloaded). For instance it is better to use mmodbc.odbc:database than odbc:database.
The file_name part of the extended file name is specific to the driver and its structure and meaningdepends on the driver. For instance, the sysfd driver expects a numerical file descriptor so file
sysfd:1 is a valid name but sysfd:myfile cannot work. A driver may act as a filter and expects as
file_name another extended file name (e.g. zlib.deflate:mem:myblk).
When no driver name is specified, Mosel uses the default driver which name is an empty string(myfile is equivalent to :myfile). This driver relies on OS functions to access files from the filesystem. Note that on the Windows operating system Mosel does not support relative paths on aspecified drive (i.e. the file "C:myfile" is equivalent to "C:\myfile", the behaviour may be differentin other environments).
The tmp driver is an extension to the default driver: it locates the specified file in the temporary directoryused by Mosel (i.e. "tmp:toto" is equivalent to the expression getparam("tmpdir")+"/toto").

Fair Isaac Corporation Confidential and Proprietary Information 54

The Mosel Language

The null driver can be used to disable a stream: whatever written to file "null:" is ignored andreading from it is like reading from an empty file.
The mem driver uses a memory block instead of a file handled by the operating system. A file name forthis driver is of the form mem:label[/minsize[/incstep]] where label is an identifier whosefirst character is a letter and minsize an optional initial amount of memory to be reserved (size isexpressed in bytes, in kilobytes with suffix "k" or in megabytes with suffix "m"). The label beingrecorded in the dictionary of the model symbols it cannot be identical to any of the identifiers of themodel (the function newmuidmight be used to generate a unique identifier). The memory block isallocated dynamically and resized as necessary. By default the size of the memory block is increasedby pages of 4 kilobytes: the optional parameter incstepmay be used to change this page size (i.e. thedefault setting is "label/0/4k"). The special value 0 modifies the allocation policy: instead of beingincreased of a fixed amount, the block size is doubled. In all cases unused memory is released whenthe file is closed.The mem driver may also be used to exchange data with an application using the Mosel libraries (referto the Mosel Libraries Reference Manual for further explanation).
The tee driver can only be open for writing and expects as file name a list of up to 6 extended filenames separated with ‘&’: it opens all the specified files and duplicates what it receives to each ofthem. If only one file is given or if the string terminates with ‘&’, output is also sent to the default outputstream (or error stream if the file is used for errors). For instance, writing to the file
"tee:log1&log2&" has the effect of writing at the same time to files "log1" and "log2" as well assending a copy to the console.
The bin driver can only be used for initializations blocks as a replacement of the default driver:it allows to write (and read) data files in a platform independent binary format. This file format isgenerally smaller than its ASCII equivalent and preserves accuracy of floating point numbers. Thisdriver can be used in 2 different ways: a single file including all records of the initialisations block isproduced if a file name is provided. For instance, in the following example the file "mydata" willcontain both A and B:

initialisations to "bin:mydata"
A
B

end-initialisations

With the second form (without file name) one file is generated for each record of the block. Thefollowing example produces 2 files: "mydata_A" to contain the values of record A and "mydata_B"for values of B:
initialisations to "bin:"
A as "mydata_A"
B as "mydata_B"

end-initialisations

When using this form in an initialisations to block, the option appendmay be specified suchthat files are open in append mode.
The other predefined drivers (sysfd, cb and raw) are useful when interfacing Mosel with a hostapplication. They are described in detail in the Mosel Libraries Reference Manual.
I/O drivers provided by modules of the Mosel distribution are documented with the correspondingmodule (see Part II of this manual).

2.16 Character encoding of text files

Mosel uses UTF-8 for its internal representation of text strings and this is also the default character

Fair Isaac Corporation Confidential and Proprietary Information 55

The Mosel Language

encoding for text files. It is however possible to read and write text files in different encodings: formodel source and initialization block files the selection can be achieved by means of a specialcomment (see sections 2.5.1 and 2.8.2) but the encoding may also be specified at the time of openinga file by prefixing its name with the "enc:" prefix:
enc:encoding [+unix|+dos|+sys] [+bom|+nobom],filename

Mosel supports natively the encodings UTF-8, UTF-16, UTF-32, ISO-8859-1, ISO-8859-15, CP1252 andUS-ASCII. For UTF-16 and UTF-32 the byte ordering depends on the architecture of the running system(e.g. this is Little Endian on an x86 processor) but it can also be specified by appending LE (LittleEndian) or BE (Big Endian) to the encoding name (e.g. UTF-16LE). The availability and names of otherencodings depends on the operating system.
The following aliases may also be used in place of an encoding name: RAW (no encoding), SYS (defaultsystem encoding), WCHAR (wide character for the C library), FNAME (encoding used for file names), TTY(encoding of the output stream of the console), TTYIN (encoding of the input stream of the console),
STDIN, STDOUT, STDERR (encoding of the default input/output/error stream).
In addition to the encoding name a couple of options might be applied: +unix and +dos select the linetermination (note that +dos is automatically used when writing to a physical file on Windows). Options
+bom and +nobom decides whether a Byte Order Mark is to be inserted at the beginning of the file (thisoption only applies to UTF encodings when the file is not open in appending mode). By default a BOM isinserted when the encoding is UTF-16 or UTF-32, the option +nobom disables this insertion. The option
+bom implies the insertion of a BOM on UTF-8 encoded files (this is usually not required for thisencoding but often used on Windows systems). The option +sys selects the line termination and BOMconvention of the running system (i.e. it is equivalent to +unix on a Posix system and +dos+bom on aWindows machine).

2.17 Working directory and temporary directory

Except for absolute path names, file or path name expansion are relative to the current working
directory. By default this reference location corresponds to the operating system current workingdirectory which usually is the directory from which Mosel has been started. Since the working directoryis an execution parameter, a model may be running with a current working directory which might bedifferent from the one used by the operating system. It is therefore recommended to use absolute filenames when a Mosel model communicates with an external component (for instance when a file nameis part of the DSN to be used for an ODBC connection).
In addition to the current working directory, Mosel creates a temporary directory that is shared by allmodels for storing temporary data handled as physical files. This directory is located in the systemtemporary directory as specified by one of the environment variables TMP, TEMP or USERPROFILEunder Windows and TMPDIR on Posix systems. If none of these environment variables is defined, thedefault base directory will be "C:\" on Windows and "/tmp" on Posix systems. The Mosel temporarydirectory is automatically created when needed and deleted at program termination.
The path names of the working directory and the temporary directory are identified respectively by the
"workdir" and "tmpdir" control parameters and can be retrieved using the getparam function. It ispossible to change the current working directory of a running model by updating the "workdir"parameter using setparam.

2.18 Handling of input/output

At the start of the execution of a program/model, three text streams are created automatically: thestandard input, output and error streams. The standard output stream is used by the procedures writing

Fair Isaac Corporation Confidential and Proprietary Information 56

The Mosel Language

text (write, writeln, fflush). The standard input stream is used by the procedures reading text(read, readln, fskipline). The standard error stream is the destination of error messages reportedby Mosel during its execution. These streams are inherited from the environment in which Mosel isbeing run: usually using an output procedure implies printing something to the console and using aninput procedure implies expecting something to be typed by the user.
The procedures fopen and fclosemake it possible to associate text files to the input, output anderror streams: in this case the IO functions can be used to read from or write to files. Note that when afile is opened, it is automatically made the active input, output or error stream (according to its openingstatus) but the file that was previously assigned to the corresponding stream remains open. It ishowever possible to switch between different open files using the procedure fselect in combinationwith the function getfid.

model "test IO"
def_out:=getfid(F_OUTPUT) ! Save file ID of default output
fopen("mylog.txt",F_OUTPUT) ! Switch output to 'mylog.txt'
my_out:=getfid(F_OUTPUT) ! Save ID of current output stream

repeat
fselect(def_out) ! Select default ouput...
write("Text? ") ! ...to print a message
text:=''
readln(text) ! Read a string from the default input
fselect(my_out) ! Select the file 'mylog.txt'
writeln(text) ! Write the string into the file
until text=''
fclose(F_OUTPUT) ! Close current output (='mylog.txt')
writeln("Finished!") ! Display message to default output
end-model

2.19 Deploying models

Once a model has been compiled to a BIM file it may be deployed in a variety of ways. It may be
� run from some remote code using the remote invocation library XPRD (see the XPRD reference

manual),
� be integrated in an application through the Mosel libraries (see Mosel libraries reference manual),
� form part of an Xpress Insight application (see the Xpress Insight Developer Guide), or
� simply be invoked from a command window or shell.

For the last option the usual approach consists in using the mosel command line tool (see section 1.3)with the run command. For instance, the following command may be used to run the model
mycmd.bim:

> mosel run mycmd.bim

The aim of the deploy module is to ease the use of a model published this way. This module makes itpossible to generate an executable program from the BIM file. Moreover, it gives the model access tothe command line arguments and exposes a method for embedding configuration files into theresulting program. The deploy module is usually used through one of its two IO drivers: the first driver,
csrc, generates a C program (based on the Mosel libraries) from a BIM file and the second one, exe,produces directly the executable by running a C compiler on the generated C source (this requires theavailability of a C compiler on the system). For example the following command will create the program
runmycmd (or runmycmd.exe on Windows) from the model mycmd.mos:

Fair Isaac Corporation Confidential and Proprietary Information 57

The Mosel Language

> mosel comp mycmd.mos -o deploy.exe:runmycmd

In addition to its IO drivers, the deploy module publishes two functions for accessing the programarguments: argc returns the number of parameters passed to the command (counting the commanditself as the first) and argv(i) returns the ith argument (as a string). As an example, the followingmodel displays the arguments it receives:
model mycmd
uses 'deploy'

writeln("My arguments:")
forall(i in 1..argc) writeln(argv(i))
end-model

After compiling this example into an executable with the command shown above, an execution of thecommand runmycmd a b c will display:
My arguments:
runmycmd
a
b
c

In addition to giving access to command line arguments, deploy makes it possible to embed files intothe resulting executable. File locations are passed via model parameters. The following exampleoutputs its source when the program is called with the argument ’src’ — otherwise it reports an errormessage:
model mycmd2
uses 'deploy','mmsystem'

parameters
SRC="null:"
end-parameters

if argc<>2 or argv(2)<>"src" then
writeln("Usage: ", argv(1), " src")
exit(1)
else
writeln("Source:")
fcopy(SRC,"")
end-if
end-model

In this example, the source file is identified by the model parameter SRC. To generate the program, thefollowing command has to be issued:
> mosel comp mycmd2.mos -o deploy.exe:runmycmd2,SRC=mycmd2.mos

With the command above, the file mycmd2.mos is included in the executable and the SRC parameter isredefined such that the model can access the file through memory. Note that the model file can also beincluded in the executable in compressed form. To enable this feature, the parameter name has to besuffixed with -z in the compilation command:
> mosel comp mycmd2.mos -o deploy.exe:runmycmd2,SRC-z=mycmd2.mos

2.20 Documenting models using annotations

The predefined doc annotation category can be used to document a Mosel file. Using a dedicated set

Fair Isaac Corporation Confidential and Proprietary Information 58

The Mosel Language

of annotations the model author can add descriptions to the various entities defined in the source, theuser-defined descriptions are completed by definitions automatically generated by the Mosel compiler.
From a bim file that includes such definitions a documentation processor may produce a completedocument: as an example, the Xpress distribution comes with the moseldoc processor that generatesan HTML documentation from an annotated bim file.

2.20.1 doc annotation category

Unlike other annotation categories, the doc annotation category is disabled by default such that thecorresponding annotations are silently ignored. To generate a documentation-enabled bim file thecompiler has to be run with the option -D. In addition to enabling the doc category, this flag alsoactivates the automatic generation of certain documentation annotations by the compiler. Alternativelyto using this flag, a model may define the following annotations:
!@mc.set doc enable
!@doc.autogen=true

Note that these special annotations can also be used in the source file as a means to exclude somedefinitions from the documentation, setting doc.autogen to false right before the definitions to beexcluded and back to true immediately after.
2.20.1.1 Global definitions

The following global annotations are automatically generated by the compiler:
@doc.name Name of the package or model
@doc.version Version number as stated by the ’version’ statement
@doc.date Current date
@doc.ispkg Set to ’true’ if the file is a package
All automatic annotations can also be defined explicitly in the Mosel source to overwrite their defaultvalues.
The following annotations may be added to complete the general appearance of the document to beproduced (they are used by the moseldoc documentation processor):
@doc.title Title of the document
@doc.subtitle Subtitle of the document
@doc.xmlheader Header of the XML document
@doc.xmlroot Name of the XML element containing the documentation
@doc.id Prefix used to generate IDs of chapters, sections, and subsections. If thedocumentation for several packages is generated from a single master modelthen a unique ID must be explicitly defined in each of the packages in order toavoid ID collision
The @doc category is complete (i.e. it is not possible to create new doc.X annotations), however, thecategory @doc.ext can be used to define further information assuming a particular documentationprocessor can exploit it.

Fair Isaac Corporation Confidential and Proprietary Information 59

The Mosel Language

2.20.1.2 Document structure

Optionally, the resulting document may be organised in chapters, sections and subsections. Each ofthese constructs can contain both text paragraphs and entity descriptions (declarations andsubroutines). To enter a new documentation component, one of the following annotations has to bedefined:
@doc.chapter Start a chapter
@doc.section Start a section inside of a chapter
@doc.subsection Start a subsection inside of a section
In addition to the provided title a short title might also be defined (using @doc.shorttitle) that willbe used in place of the (long) title in the table of contents. Whenever a new division starts, a unique IDis automatically generated based on the section number and any defined prefix specified in the headerof the document with @doc.id. It is also possible to explicitly define an ID using @doc.id just afterentering the section (this is required when the section has to be referenced using a <ref> tag).
From inside of any of these divisions a new paragraph is added with the @doc.p annotation. By defaultany new addition (paragraph or entity description) is appended to the current component but it ispossible to select an alternative location. A target location has first to be defined using the annotation
@doc.location: this creates a label associated with the current section. Defining the annotation
@doc.relocate with this target elsewhere in the source file will move all subsequent additions to thetarget location; this relocation will continue up to the next division marker or relocation definition. Notethat defining an empty relocation reverts to the effective current location. Example:

(!@doc.
@chapter My first chapter
@p some text related to the first chapter
@location first_chap
@section first section of first chapter
@p something about the section
@relocate first_chap
@p this paragraph will be inserted directly under first chapter
@relocate
@p but this one will remain in the section

!)

2.20.1.3 Symbol definitions

The following sections list the various documentation annotations that can be defined depending onthe kind of the entity (parameter, variable, type or subroutine) to be documented. Some of theseannotations are automatically defined by the compiler: in the case of values (like the value of aconstant) the automatic definition may not be performed if the value is the result of a calculation thatcannot be evaluated at compile time ("runtime constant"). In this case it is required to explicitly specifythe text that should be retained in the documentation.
Parameters

@doc.descr Description (1-2 text lines)
@doc.default Default value (automatically generated)
@doc.type Type (automatically generated)
@doc.value Possible value and explanation of its meaning (may be defined several times)
@doc.info Some more detailed explanations (may be defined several times)

Fair Isaac Corporation Confidential and Proprietary Information 60

The Mosel Language

@doc.ignore The symbol will be ignored by the documentation processor
Types, constants and variablesThis set of annotations apply to symbols declared in declarations blocks. Record fields (both for a typedeclaration and for a variable) can be described using @doc.recflddescr: the value of thisannotation consists in the name of the field followed by its description (a space should separate thesetwo components)
@doc.descr Description (1-2 text lines)
@doc.const For a constant: value (automatically generated)
@doc.type Type (automatically generated)
@doc.typedef For a type definition: type (automatically generated)
@doc.value Possible value and explanation of its meaning (may be defined several times)
@doc.info Some more detailed explanations (may be defined several times)
@doc.setby Name of subroutines modifying this entity
@doc.recfldtype Type of a record field (automatically generated)
@doc.recflddescr Description of a record field
@doc.ignore The symbol will be ignored by the documentation processor
Procedures and functionsInformation from different overloaded versions of a given subroutine is merged automatically. The
@doc.group annotation may be used to merge information of routines with different names but usedfor a similar task (up to 3 different subroutine names can be grouped). The @doc.param annotation isused to describe the parameters of the routine: the value of this annotation consists in the name of theparameter followed by its description (a space should separate these two components)
@doc.group Name of another subroutine that this one should be grouped with
@doc.descr Description (1-2 text lines)
@doc.shortdescr Shortened description for table of contents and list display
@doc.syntax Routine signature (automatically generated)
@doc.param Name and meaning of a subroutine argument (may be defined several times)
@doc.paramval Possible value and meaning of a subroutine argument (may be defined severaltimes). The value of this annotation is the name of the parameter (as specifiedwith a preceding @doc.param) followed by the value and the explanation
@doc.return For functions only: what is returned
@doc.err Possible error code (may be defined several times)
@doc.example Example of use (may be defined several times)
@doc.info Some more detailed explanations (may be defined several times)
@doc.related List of related symbols
@doc.ignore The subroutine will be ignored by the documentation processor

Fair Isaac Corporation Confidential and Proprietary Information 61

The Mosel Language

2.20.1.4 Annotation definitions

A special set of annotations (category @doc.annot) is available for documenting annotationdefinitions in Mosel packages (not supported for Mosel models). The annotations for documentingannotation definitions are global annotations, their value must start with an annotation name in order toassociate them with the corresponding annotation definition.
@doc.annot.descr Annotation name followed by a short description (1-2 text lines)
@doc.annot.default Annotation name and default value
@doc.annot.value Annotation name, possible value and explanation of its meaning (may bedefined several times)
@doc.annot.type Annotation type
@doc.annot.info Annotation name and some more detailed explanations (may be defined severaltimes)
@doc.annotcat Annotation category to document (may be defined several times), if undefined allcategories are documented
@doc.annotloc Insertion point (specified via @doc.location) for annotations documentation
2.20.1.5 Package control parameters

A special set of annotations (category @doc.cparam) is available for documenting control parametersof Mosel packages. The annotations for documenting control parameters are global annotations, theirvalue must start with a parameter name in order to associate them with the corresponding controlparameter.
@doc.cparam.descr Parameter name followed by a short description (1-2 text lines)
@doc.cparam.default Parameter name and default value
@doc.cparam.value Parameter name, possible value and explanation of its meaning (may bedefined several times)
@doc.cparam.type Parameter type (automatically generated by the compiler)
@doc.cparam.info Parameter name and some more detailed explanations (may be defined severaltimes)
@doc.cparamloc Insertion point (specified via @doc.location) for control parametersdocumentation

2.20.2 moseldoc documentation processor

2.20.2.1 Running moseldoc

The moseldoc program takes as input either a bim file produced from a Mosel model compiled with the
-D compiler option or directly a Mosel source file (in which case a compilation step is automaticallyexecuted). Typically the generation of the documentation from a source file will be obtained with thefollowing command:

>moseldoc mymodel.mos

Fair Isaac Corporation Confidential and Proprietary Information 62

The Mosel Language

The result of this process is an XML file ("mymodel_doc.xml") and a directory containing an HTMLversion of the documentation ("mymodel_html"). The program will produce only the XML file (from abim or source file) if option -xml is used and only the HTML output (from an XML file) if -html isselected. The option -f is required to force the replacement of existing files.
As a Mosel program available in source form, moseldoc can be adapted to fit specific requirements. Tore-generate the executable use this compilation command:

>mosel comp -s moseldoc.mos -o deploy.exe:moseldoc,css-z=moseldoc.css

2.20.2.2 Structure of the generated document

The resulting document respects the structure defined by the dedicated annotations (chapter, section,subsection). In each of these divisions, the paragraphs are exposed first, then the parameters andvariables and finally the list of subroutines. If no structural elements have been defined, a chapter perentity type is automatically created to group similar objects (Parameters, Constants, Types, Variablesand Subroutines).
2.20.2.3 Processing of annotation values

Values associated with descriptive text annotations (like section titles or descriptions) are interpretedas XML. Paragraphs (@doc.p) and examples (@doc.example) are handled in a specific way: bydefault the value is inserted as XML but, if the value starts with [TXT], the content is treated as plaintext; if it starts with [SRC], the value is considered to be some example code and it is reproducedpreserving spacing. If it starts with [NOD], it is interpreted as a self-contained XML node (i.e. it is notinserted in a paragraph block). In an XML block of text, the markers ref (chapter/section/subsectionreference), fctRef (subroutine reference) and entRef (entity reference) are processed such that inthe HTML document they are turned into hyperlinks to the corresponding objects. Similarly, the ttelement type is replaced by an appropriate style for displaying code samples.

2.21 Message translation

Mosel supports a message translation mechanism that makes it possible to display messages in thecurrent language of the operating environment. This system requires that all messages are originallywritten in English and identified as messages to be translated (it is usually not desirable to translate alltext strings of a model). The Mosel compiler can then collect all messages to be translated for building
message catalogs. Each message catalog file contains the translations of the messages for a givenlanguage: Mosel will select the appropriate file for the current language during its execution to use theright set of translations. The system is designed such that it will not fail if a translation or an entirelanguage is missing: in such a case the original English text is used.

2.21.1 Preparing the model source

Most often, not all text strings occurring in a program are to be translated to native language. This iswhy it is necessary to tag each message to be translated such that the automatic message translationsystem can process only the relevant texts. The tagging is achieved by using the operators _c(), _()or the modified procedures write_(), writeln_(), fwrite_() and fwriteln_().
The operator _c() is used to identify constant strings that should be collected for translation but thestring will not be translated at the place where it is used. This operator can be applied to a list of stringconstants. A similar effect can be obtained with the annotation mc.msgid.
The function _() applies to both constant strings and variables: it replaces its argument by the

Fair Isaac Corporation Confidential and Proprietary Information 63

The Mosel Language

translated string. As with the operator _c() constant strings are collected for the message catalogs,but they will also be replaced by their translation at the place where the operator is applied to the string.
The write_ and writeln_ procedures are equivalent to their normal versions except that theyprocess the constant strings they have to display for translation.
All translations of a model (or package) are grouped under a domain: this identifier is used to name themessage catalog files. The default domain name is the model (or package) name after having replacedspaces and non-ascii characters by underscores (for instance the domain name of the model "my
mod" is "my_mod"). The domain name can also be specified using the mc.msgdom annotation.
The following model example shows the use of the various markers:

model translate
! The message domain is 'trs' (default name would be the model name 'translate')
!@mc.msgdom trs

declarations
! The elements of 'nums' are kept in English, but collected for translation
nums=[_c("one","two","three")]
! Add 'four' to the message catalogs (although it is not used here)
!@mc.msgid:four
end-declarations

! Translate the message text, without translating 'nums'
writeln_("all numbers (in English): ", nums)
n:=getfirst(nums)
! Translate the message text and the first occurrence of 'n', but not
! its second occurrence
writeln_("the first number is: ", _(n), " (in English:", n, ")")
end-model

2.21.2 Building the message catalogs

Once the model source has been prepared, the list of messages to be translated can be extracted. Thisoperation is performed by the Mosel compiler when executed with the option -x:
>mosel comp -x mymod.mos -o trs.pot

The output of this command is a Portable Object Template (POT): this is a text file consisting of a list ofpairs msgid (message to translate), msgstr (translation) for which only the first entry is populated.
With the example model from the previous section the generated POT file results in the following:

Created by Mosel v4.0.0 from 'translate.mos'
Domain name: trs

msgid "all numbers (in English): %L\n"
msgstr ""

msgid "four"
msgstr ""

msgid "one"
msgstr ""

msgid "the first number is: %s (in English:%s)\n"
msgstr ""

msgid "three"
msgstr ""

msgid "two"
msgstr ""

Fair Isaac Corporation Confidential and Proprietary Information 64

The Mosel Language

For each of the supported languages a separate PO (Portable Object) file that will contain thecorresponding translations has to be created from this template. The command xprnls is used forthis task (for further details please refer to the XPRNLS Reference Manual). For instance the followingcommand will create the file for the Italian translations of the messages:
>xprnls init -o trs.it.po trs.pot

Here we name the file domain.language.po in order to ease the management of these translation files(where language stands for the ISO639 language code).
The generated file is a copy of the template with an additional header that should be completed by thetranslator (it is pre-populated with information obtained from the system), in particular the language(property "Language") and the encoding (property "Content-Type"). For each of the msgidrecords the translation in the language associated to the file has to be provided in the msgstr record.Note that some messages include escape sequences (like "\n") and format markers (e.g. "%s"): thecorresponding translation must include the same format markers as the original text and they mustappear in the same order (otherwise the translation will be ignored).
The beginning of the translation file of our example for French (named "trs.fr.po") should besimilar to the following (the extract below shows only the header and the translation of the firstmessage):

msgid ""
msgstr ""
"Project-Id-Version: My translation example\n"
"POT-Creation-Date: 2015-12-04 18:16+0100\n"
"PO-Revision-Date: 2015-12-04 18:16+0100\n"
"Last-Translator: Jules Verne\n"
"Language: fr\n"
"Content-Type: text/plain; charset=ISO8859-15\n"

msgid "all numbers (in English): %L\n"
msgstr "tous les nombres (en anglais): %L\n"

The message catalogs for the PO files are obtained by running once more the xprnls command, thistime using the option mogen:
>xprnls mogen -d locale trs.⁎.po

This command will compile each of the PO files into a Machine Object (MO) file named trs.mo that willbe saved under the directory locale/lang/LC_MESSAGES. This directory tree must be distributedalong with the model file for the automatic translation to work.
2.21.3 Model execution

During the execution of the model the message catalogs for the current language (as indicated by theoperating system) are loaded automatically from the ’locale’ directory. This location is defined by the
"localedir" control parameter (by default this is "./locale"). If no message catalog can be foundfor the requested language then the original English text is used. This will also be the case if atranslation is missing (e.g. if the message catalog has not been updated after some model sourcechange).
When run on a computer configured for French our example displays:

tous les nombres (en anglais): [`one',`two',`three']
le premier nombre est: un (en anglais:one)

Fair Isaac Corporation Confidential and Proprietary Information 65

CHAPTER 3

Predefined functions and procedures

This chapter lists in alphabetical order all predefined functions and procedures included in the Mosellanguage. Certain functions or procedures take predefined constants as input values or return valuesthat correspond to predefined constants. In every case, these constants are documented with thefunction or procedure. In addition, Mosel defines a few other useful numerical constants:
MAX_INT maximum integer number
MAX_REAL maximum real number
M_E base of natural logarithms e

M_PI value of π
INFINITY Infinity
NAN Not A Number

Fair Isaac Corporation Confidential and Proprietary Information 66

Predefined functions and procedures

abs

Purpose Get the absolute value of an integer or real.
Synopsis

function abs(i:integer):integer
function abs(r:real):real

Arguments
i Integer number for which to calculate the absolute value
r Real number for which to calculate the absolute value

Return valueAbsolute value of an integer or real number.
Further informationThis function returns the absolute value of an integer or real number. The returned type corresponds tothe type of the input.
Related topics

exp, ln, log, sqrt.

Fair Isaac Corporation Confidential and Proprietary Information 67

Predefined functions and procedures

arctan

Purpose Get the arctangent of a value.
Synopsis

function arctan(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return valueArctangent of the argument.
Example The following functions compute the arcsine and arccosine of a value:

function arcsin(s:real):real
returned:=arctan(s/sqrt(1-s^2))
end-function

function arccos(c:real):real
returned:=arctan(sqrt(1-c^2)/c)
end-function

Related topics
cos, sin

Fair Isaac Corporation Confidential and Proprietary Information 68

Predefined functions and procedures

asproc

Purpose Ignore the return value of a function call.
Synopsis

procedure asproc(fctcall)

Argument
fctcall A function call

Example

asproc(splithead(L,2))

Further informationThis procedure makes it possible to call a function and ignore its return value (see also option
fctasproc in section 2.3.3).

Fair Isaac Corporation Confidential and Proprietary Information 69

Predefined functions and procedures

assert

Purpose Abort execution if a condition is not satisfied.
Synopsis

procedure assert(c:boolean)
procedure assert(c:boolean,m:string)
procedure assert(c:boolean,m:string,e:integer)

Arguments
c Condition to verify
m Error message to display in case of failure
e Error code to return in case of failure (default: 8)

Example

assert(and(i in I) mydata(i)>0)
assert(isodd(a),"a is not odd!!")

Further information
1. If the condition c is satisfied, this procedure has no effect, otherwise it displays an error message andaborts execution by calling exit. The versions of the procedure with 2 and 3 parameters can be usedto replace the default message (location of the statement in the source) and default exit value (8).
2. Assertions are usually used as a debugging tool and are ignored when the model is compiled withoutdebugging information (i.e. none of options -g or -G is used). It is however possible to keep assertstatements even when no debugging information is included by specifying the compiler directive

keepassert (see Section 2.3).
Related topics

exit

Fair Isaac Corporation Confidential and Proprietary Information 70

Predefined functions and procedures

bitflip

Purpose Flip bits (bitwise XOR).
Synopsis

function bitflip(i:integer, j:integer):integer

Arguments
i Integer to be set
j Value to flip

Return valueBitwise XOR of the operands.
Example In the following, i takes the value 9, j takes the value 141, and k takes the value 7:

i:= bitflip(12, 5)
j:= biflip(13, 128)
k:= bitflip(13, 10)

Further informationThis function computes the bitwise exclusive OR of its operands.
Related topics

bittest, bitshift, bitset, bitneg, bitval

Fair Isaac Corporation Confidential and Proprietary Information 71

Predefined functions and procedures

bitneg

Purpose Bitwise negation (bitwise NOT).
Synopsis

function bitneg(i:integer):integer

Argument
i Integer to negate

Return valueNegated value of argument.
Example In the following, i takes the value -6, j takes the value 2147483647, and k takes the value -4:

i:= bitneg(5)
j:= bitneg(-2147483647-1)
k:= bitneg(3)

Further informationThe bitwise NOT (or complement) consists in computing the logical negation of each bit: 1 is replacedby 0 and 0 is replaced by 1.
Related topics

bitset, bittest, bitflip, bitshift, bitval

Fair Isaac Corporation Confidential and Proprietary Information 72

Predefined functions and procedures

bitset

Purpose Set bits (bitwise OR).
Synopsis

function bitset(i:integer, j:integer):integer

Arguments
i Integer to be set
j Value to set

Return valueBitwise OR of the operands.
Example In the following, i takes the value 13, j takes the value 141, and k takes the value 15:

i:= bitset(12, 5)
j:= bitset(13, 128)
k:= bitset(13, 10)

Further informationThis function computes the bitwise OR of its operands.
Related topics

bittest, bitshift, bitflip, bitneg, bitval

Fair Isaac Corporation Confidential and Proprietary Information 73

Predefined functions and procedures

bitshift

Purpose Shift an integer by a number of bits.
Synopsis

function bitshift(i:integer, n:integer):integer

Arguments
i Integer to be shifted
n Number of bits: >0 for shifting to the left and <0 for shifting to the right

Return valueShifted integer.
Example In the following, i takes the value 160, j takes the value 32, and k takes the value 1:

i:= bitshift(5, 5)
j:= bitshit(1, 5)
k:= bitshit(128, -7)

Further informationShifting of 1 bit to the right is the same as dividing it by 2 and shifting of 1 bit to the left is the same asmultiplying by 2.
Related topics

bitset, bittest, bitflip, bitneg, bitval

Fair Isaac Corporation Confidential and Proprietary Information 74

Predefined functions and procedures

bittest

Purpose Test bit settings (bitwise AND).
Synopsis

function bittest(i:integer, mask:integer):integer

Arguments
i Integer to be tested
mask Bit mask

Return valueBits selected by the mask.
Example In the following, i takes the value 4, j takes the value 5, and k takes the value 8:

i:= bittest(12, 5)
j:= bittest(13, 5)
k:= bittest(13, 10)

Further informationThis function compares a given number with a bit mask and returns those bits selected by the maskthat are set in the number (bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on - use function
bitval to get the value of a bit).

Related topics
bitset, bitshift, bitflip, bitneg, bitval

Fair Isaac Corporation Confidential and Proprietary Information 75

Predefined functions and procedures

bitval

Purpose Compute the value corresponding to a bit number.
Synopsis

function bitval(i:integer):integer

Argument
i Bit number (between 0 and 31)

Return valueValue of the selected bit.
Example In the following, i takes the value 1, j takes the value -2147483648, and k takes the value 16:

i:= bitval(0)
j:= bitval(7)
k:= bitval(4)

Further informationThis function computes the value corresponding to a bit number. The evaluation of bitval(i)corresponds to bitshift(1,i)
Related topics

bitset, bitshift, bitflip, bitneg, bittest

Fair Isaac Corporation Confidential and Proprietary Information 76

Predefined functions and procedures

ceil

Purpose Round a number to the next largest integer.
Synopsis

function ceil(r:real):integer

Argument
r Real number to be rounded

Return valueRounded value.
Example In the following, i takes the value 6, j takes the value -6, and k takes the value 13:

i := ceil(5.6)
j := ceil(-6.7)
k := ceil(12.3)

Related topics
floor, round.

Fair Isaac Corporation Confidential and Proprietary Information 77

Predefined functions and procedures

compare

Purpose Compare 2 values.
Synopsis

function compare(arg1:ordered type, arg2:same type as arg1):integer

Arguments
arg1 First operand for the comparison
arg2 Second operand for the comparison (same type as arg1)

Return value
0 if arguments are identical, -1 if the first argument is less than the second argument and 1 otherwise.

Further informationThis function is defined for integer, real, string and boolean variables. It is also available for moduletypes that implement the necessary functionality.

Fair Isaac Corporation Confidential and Proprietary Information 78

Predefined functions and procedures

cos

Purpose Get the cosine of a value.
Synopsis

function cos(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return valueCosine value of the argument.
Example The function tangent can be implemented as follows:

function tangent(x:real):real
returned:=sin(x)/cos(x)
end-function

Related topics
arctan, sin.

Fair Isaac Corporation Confidential and Proprietary Information 79

Predefined functions and procedures

create

Purpose Create explicitly a cell of a dynamic array.
Synopsis

procedure create(x:array reference)

Argument
x Cell to be created

Example The following declares a dynamic array of variables, creating only those corresponding to the oddindices. Finally, it defines the linear expression x(1) + x(3) + x(5) + x(7):
declarations
x: dynamic array(1..8) of mpvar
end-declarations

forall(i in 1..8| isodd(i)) create(x(i))
c:= sum(i in 1..8) x(i)

Further informationUsually cells of dynamic arrays are created by means of assignments. This procedure can be used as areplacement for an assignment especially when the type of a dynamic array does not provide anyassignment operator (like mpvar for instance).
Related topicsSection 2.6.4, delcell.

Fair Isaac Corporation Confidential and Proprietary Information 80

Predefined functions and procedures

currentdate

Purpose Return the current date as a Julian Day Number (JDN).
Synopsis

function currentdate:integer

Return valueThe number of days elapsed since 1/1/1970 as an integer.
Further information

1. The control parameter "UTC" indicates whether this function returns a date in local or UTC time.
2. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
setparam,timestamp,currenttime

Fair Isaac Corporation Confidential and Proprietary Information 81

Predefined functions and procedures

currenttime

Purpose Return the current time as the number of milliseconds since midnight.
Synopsis

function currenttime:integer

Return valueThe number of milliseconds since midnight as an integer.
Further information

1. The control parameter "UTC" indicates whether this function returns a time in local or UTC time.
2. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
setparam,timestamp,currentdate

Fair Isaac Corporation Confidential and Proprietary Information 82

Predefined functions and procedures

cutelt

Purpose Extract an element from a set or a list.
Synopsis

function cutelt(e:set):type_of_e
function cutelt(l:list):type_of_l
function cutelt(l:list,p:integer):type_of_l

Arguments
e A set
l A list
p Index of the element to remove (default:1)

Return valueAn element of the set or list after it has been removed from its container.
Further informationWhen applied to a range set or list this function behaves like cutfirst. An error is generated if theargument of the function is empty.
Related topics

getelt.

Fair Isaac Corporation Confidential and Proprietary Information 83

Predefined functions and procedures

cutfirst

Purpose Extract the first element of a range set or a list.
Synopsis

function cutfirst(r:range):integer
function cutfirst(l:list):type_of_l

Arguments
r A range set
l A list

Return valueThe first element of the set or list after it has been removed from its container.
Further informationThis function is equivalent to calling getfirst and then cuthead for dropping one element.
Related topics

cutlast, cutelt.

Fair Isaac Corporation Confidential and Proprietary Information 84

Predefined functions and procedures

cuthead

Purpose Cut the first elements of a list.
Synopsis

procedure cuthead(l:list, o:integer)

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Example

L:=[1,2,3,4,5]
cuthead(L,2) ! => L=[3,4,5]
cuthead(L,-1) ! => L=[5]

Further informationIf the second parameter is 0, the list is unchanged. If the same parameter is larger than the size of thelist, all elements are deleted.
Related topics

cuttail

Fair Isaac Corporation Confidential and Proprietary Information 85

Predefined functions and procedures

cutlast

Purpose Extract the last element of a range set or a list.
Synopsis

function cutlast(r:range):integer
function cutlast(l:list):type_of_l

Arguments
r A range set
l A list

Return valueThe last element of the set or list after it has been removed from its container.
Further informationThis function is equivalent to calling getlast and then cuttail for dropping one element.
Related topics

cutfirst, cutelt.

Fair Isaac Corporation Confidential and Proprietary Information 86

Predefined functions and procedures

cuttail

Purpose Cut the last elements of a list.
Synopsis

procedure cuttail(l:list, o:integer)

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Example

L:=[1,2,3,4,5]
cuttail(L,2) ! => L=[1,2,3]
cuttail(L,-1) ! => L=[1]

Further informationIf the second parameter is 0, the list is unchanged. If the same parameter is larger than the size of thelist, all elements are deleted.
Related topics

cuthead

Fair Isaac Corporation Confidential and Proprietary Information 87

Predefined functions and procedures

delcell

Purpose Delete a cell or all cells of a dynamic array.
Synopsis

procedure delcell(x:array reference)
procedure delcell(a:array)

Arguments
x Cell to be deleted
a An array

Further information

1. The first form of the routine can only be applied to dynamic arrays (it is not possible to delete a cell of adense array). Using the second syntax of the procedure will release all cells of the array, note that in thecase of a dense array the entire data set will be reallocated when the array is accessed again.
2. Deleting a cell of an array of referenced objects (like mpvar) may not effectively release that object.Actually, a referenced object is released only when all its references have been removed. For instance,if an object appears in a set, deleting its main reference using delcell will not remove this objectfrom the set.

Related topicsSection 2.6.4, create, reset.

Fair Isaac Corporation Confidential and Proprietary Information 88

Predefined functions and procedures

datablock

Purpose Get the file name of an embedded data block .
Synopsis

function datablock(src:string, prefix:string):string
function datablock(src:string):string

Arguments
src Name of the file to be embedded
prefix Prefix to be used for accessing the data block (default: "zlib.deflate:")

Return valueA file name pointing to the data block
Example In the following code extract the bim file for submod.mos is generated during the compilation of thecurrent (master) model and is included in the resulting bim file for this model. At execution time themaster model will therefore not require any additional file for this submodel:

load(submod,datablock("mmsystem.pipe:mosel comp -o - submod.mos"))
run(submod)
waitforend(submod)

Note that the output of the compilation for the file submod.mos is redirected via the ’pipe’ onto themaster model while this model itself is being compiled.
Further information

1. This function makes it possible to embed in a bim file any data files that are available during thecompilation of the model source but cannot be accessed at execution time. The files specified by thisroutine are made available as memory blocks (see Section 2.15) during the execution of the model.
2. The file specified by the src argument is loaded into memory and saved in the resulting bim file duringthe compilation of the source model. At execution time this function call results in a file name pointingto a memory location storing the previously saved data.
3. The file name src is handled in the same way as for source file inclusion (see Section 2.5.2), inparticular the same rules apply regarding the file location and the expansion of environment variables.
4. The prefix argument can be used to select a driver for processing the file. With its default value("zlib.deflate:") the file is compressed before being stored in the bim file, the decompressionoccurs when the file is accessed during execution (i.e. the file name returned by the function beginswith the string "zlib.deflate:"). To keep the file in its original form use an empty string as theprefix (i.e. "").
5. When several data blocks with the same name and prefix are used in a model source the correspondingfile is loaded and stored only once.
6. If the file to store is empty (or if its name is an empty string) the function call is replaced by theconstant "null:" and no memory block is created.

Fair Isaac Corporation Confidential and Proprietary Information 89

Predefined functions and procedures

exists

Purpose Check if a given entry in a dynamic array has been created.
Synopsis

function exists(x):boolean

Argument
x Array reference (e.g. t(1))

Return value
true if the entry exists, false otherwise.

Example The following, a dynamic array of decision variables only has its even elements created, which ischecked by displaying the existing variables:
declarations
S=1..8
x: dynamic array(S) of mpvar
end-declarations

forall(i in S| not isodd(i)) create(x(i))
forall(i in S| exists(x(i)))
writeln("x(", i, ") exists")

Further information
1. If an array is declared dynamic its elements are not created at its declaration. This function indicates ifa given element has been created.
2. Under certain conditions, the exists function call is optimized by the compiler when used for filteringan aggregate operator: the loop is only performed for the existing entries instead of enumerating allpossible tuples of indices for finding the relevant ones.

Related topicsSection 2.7.2, create.

Fair Isaac Corporation Confidential and Proprietary Information 90

Predefined functions and procedures

exit

Purpose Terminate the program.
Synopsis

procedure exit(code:integer)

Argument
code Value to be returned by the program

Further informationThis procedure terminates the current program and returns the given value. Models exit by default witha value of 0 unless this is changed using exit. The Mosel command line interpreter uses this value asexit status.
Related topicsSection 1.3.

Fair Isaac Corporation Confidential and Proprietary Information 91

Predefined functions and procedures

exp

Purpose Get the natural exponent of a value.
Synopsis

function exp(r:real):real

Argument
r Real value the function is applied to.

Return valueNatural exponent (er) of the argument.
Related topics

abs, exp, ln, log, sqrt.

Fair Isaac Corporation Confidential and Proprietary Information 92

Predefined functions and procedures

exportprob

Purpose Export a problem to a file.
Synopsis

procedure exportprob(options:integer, filename:string, obj:linctr)
procedure exportprob(options:integer, filename:string)
procedure exportprob(filename:string, obj:linctr)
procedure exportprob(filename:string)
procedure exportprob

Arguments
options File format options:

EP_MIN minimization (default)
EP_MAX maximization
EP_MPS MPS format
EP_STRIP Use scrambled names
EP_HEX Ouput numbers in hexadecimal when using MPS formatSeveral options may be combined using +.

filename Name of the output file. If the empty string "" is given, output is printed to the standardoutput (the screen)
obj Objective function constraint

Example The following prints the current problem to the screen using the default format and with MinCost asobjective function. The second statement exports the problem in LP-format and with scrambled namesto the file prob1.lpmaximizing the constraint Profit:
declarations
MinCost, Profit:linctr
end-declarations

exportprob(0, "", MinCost)
exportprob(EP_MAX+EP_STRIP, "prob1", Profit)

Fair Isaac Corporation Confidential and Proprietary Information 93

Predefined functions and procedures

Further information

1. If the given filename uses the default IO driver (no driver specified) and has no extension, Moselappends .lp to it for LP format files and .mps for MPS format.
2. Except when option EP_MPS+EP_HEX is used numbers are ouput according to the realfmt and

zerotolmodel parameters (see setparam).
3. Normally, local symbols (i.e. defined in a procedure or function) are replaced by generated names in theexported matrix. However, if the model has been compiled with option -G, names defined locally to theroutine calling exportprob are used in the exported matrix. Moreover, if a local symbol hides a globalone, this symbol is prefixed by ’~’.
4. If the model is compiled with -G and the control parameter recloc is set to true (see setparam),missing constraint names are replaced by the source location of the constraint definition (i.e. acombination of the row number, source file name and line number in the file).
5. If no option is provided, the default format is LP for a minimization; if no constraint is given, the currentobjective (if available) is exported. The matrix is printed to the standard output when this function isused without parameter.
6. This function exports only the LP/MIP problem directly handled by the Mosel core libraries. It cannotreport problem extensions managed by external modules. For instance, quadratic constraints orindicator constraints provided by the Xpress Optimizer are not shown by this routine: for this type ofproblems, the module-specific writeprob routine has to be used instead of exportprob.

Related topics
setname.

Fair Isaac Corporation Confidential and Proprietary Information 94

Predefined functions and procedures

fclose

Purpose Close the active input, output or error stream.
Synopsis

procedure fclose(stream:integer)

Argument
stream The stream to close:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Further informationThis procedure closes the file that is currently associated with the given stream. The file preceding theclosed file (in the order of opening) is then assigned to the corresponding stream. A file that is closedwith this procedure must previously have been opened with fopen. This function has no effect if thecorresponding stream is not associated with any explicitly opened file (i.e. it is not possible to close thedefault input, output or error streams). All open streams are automatically closed when the programterminates.
Related topics

fflush, fopen, fselect, getfid, iseof.

Fair Isaac Corporation Confidential and Proprietary Information 95

Predefined functions and procedures

fflush

Purpose Force the operating system to write buffered data.
Synopsis

procedure fflush

Further informationThis procedure forces a write of all buffered data of the default output stream. fflush is automaticallycalled when the stream is closed either with fclose or when the program terminates.
Related topics

fclose, fopen.

Fair Isaac Corporation Confidential and Proprietary Information 96

Predefined functions and procedures

finalize

Purpose Finalize the definition of a set or list.
Synopsis

procedure finalize(s:set)
procedure finalize(l:list)

Arguments
s Dynamic set
l Dynamic list

Example In the following, an indexing set is defined, on which depends a dynamic array of decision variables.The set is subsequently defined to have three elements and is finalized. A static array is then defined:
declarations
Set1: set of string
x: array(Set1) of mpvar ! Declare a dynamic array of variables

! (entries need to be created
! subsequently)

end-declarations
Set1:= {"first", "second", "fifth"}
finalize(Set1) ! Finalize the set definition

declarations
y: array(Set1) of mpvar ! Declare a static array of variables

! (entries are created immediately)
end-declarations

Further information

1. This procedure finalizes the definition of a set (or list), that is, it turns a dynamic set into a constant setconsisting of the elements that are currently in the set. All subsequently declared arrays that areindexed by this set will be created as static (= fixed size). Any arrays indexed by this set that have beendeclared prior to finalizing the set retain the status dynamic but their set of elements cannot bemodified any more.
2. Using this routine on sets declared dynamic has no effect.

Fair Isaac Corporation Confidential and Proprietary Information 97

Predefined functions and procedures

findfirst

Purpose Find the first occurrence of an element in a list.
Synopsis

function findfirst(l:list, e:type_of_l):integer

Arguments
l A list
e The element to look for (it must be of the type of l)

Return valueThe position of the element or 0 if the element is not included in the list.
Example

L:=['a','b','c','d','b']
i:=findfirst(L,'b') ! => i=2
i:=findlast(L,'f') ! => i=0

Related topics
findlast

Fair Isaac Corporation Confidential and Proprietary Information 98

Predefined functions and procedures

findlast

Purpose Find the last occurrence of an element in a list.
Synopsis

function findlast(l:list, e:type_of_l):integer

Arguments
l A list
e The element to look for (it must be of the type of l)

Return valueThe position of the element or 0 if the element is not included in the list.
Example

L:=['a','b','c','d','b']
i:=findlast(L,'b') ! => i=5
i:=findlast(L,'f') ! => i=0

Related topics
findfirst

Fair Isaac Corporation Confidential and Proprietary Information 99

Predefined functions and procedures

floor

Purpose Round a number to the next smallest integer.
Synopsis

function floor(r:real):integer

Argument
r Real number to be rounded

Return valueRounded value.
Example In the following, i takes the value 5, j the value -7, and k the value 12:

i := floor(5.6)
j := floor(-6.7)
k := floor(12.3)

Related topics
ceil, round.

Fair Isaac Corporation Confidential and Proprietary Information 100

Predefined functions and procedures

fopen

Purpose Open a file and make it the active input or output stream.
Synopsis

procedure fopen(f:string, mode:integer)

Arguments
f The name of the file to be opened
mode Open mode (may be combined):

F_INPUT Open for reading
F_OUTPUT Empty the file and open it for writing
F_ERROR Empty the file and open it for writing as the error stream
F_APPEND Open for writing, appending new data to the end of the file
F_TEXT Open in text mode (the default)
F_BINARY Open in binary mode
F_LINBUF If open for writing, flushes buffer after end of each line (default when writing to aconsole or for an error stream)
F_SILENT Do not display IO error messages

Further information
1. This procedure opens a file for reading or writing. If the operation succeeds, depending on the openingmode, the file becomes the active input, output or error stream. The procedures write and writelnare used to write data to the default output stream and the functions read, readln, and fskiplineare used to read data from the default input stream. Error messages are sent to the error stream.
2. The behavior of this function in case of an IO error (i.e. the file cannot be opened) is directed by thecontrol parameter ioctrl (see setparam): if the value of this parameter is ‘false’ (default value), theinterpreter stops. Otherwise, the interpreter ignores the error and continues. The error status of an IOoperation is stored in the control parameter iostatus (see getparam) which is 0 when the lastoperation has been executed successfully. Note that this parameter is automatically reset once itsvalue has been read using the function getparam. The behavior of IO operations after an unhandlederror is not defined.
3. The binary mode disables character encoding conversion (see section 2.16).

Related topics
fclose, fselect, getfid.

Fair Isaac Corporation Confidential and Proprietary Information 101

Predefined functions and procedures

fselect

Purpose Select the active input, output or error stream.
Synopsis

procedure fselect(stream:integer)

Argument
stream The stream number

Example The following saves the file ID of the default output before switching output to the file mylog.txt.Subsequently, the file ID of the current output stream is saved and the default output is again selected.
def_out:= getfid(F_OUTPUT)
fopen("mylog.txt", F_OUTPUT)

...
my_out:= getfid(F_OUTPUT)
fselect(def_out)

Further information
1. This procedure selects the given stream as the active input, output or error stream. The concernedstream is designated by the opening status of the given stream (that is, if the given stream has beenopened for reading, it will be assigned to the default input stream). The stream number can be obtainedwith the function getfid.
2. The default input, output and error streams have respectively numbers 0, 1 and 2.

Related topics
fclose, fopen, getfid, fwrite, fwriteln.

Fair Isaac Corporation Confidential and Proprietary Information 102

Predefined functions and procedures

fskipline

Purpose Advance in the default input stream as long as comment lines are found.
Synopsis

procedure fskipline(filter:string)

Argument
filter List of comment signs

Example In the following, the first statement skips all lines beginning with either ‘#’ or ‘!’. The second statementskips any following blank lines:
fskipline("!#")
fskipline("\n")

Further informationThis procedure advances in the input stream using the given list of comment signs as a filter. Eachcharacter of the given string is considered to be a symbol that marks the beginning of a comment line.Note that the character ‘\n’ designates lines starting with nothing, that is, empty lines. During theparsing, spaces and tabulations are ignored.
Related topics

read, readln.

Fair Isaac Corporation Confidential and Proprietary Information 103

Predefined functions and procedures

fwrite, fwriteln

Purpose Send an expression or list of expressions to the specified output stream.
Synopsis

procedure fwrite(fd:integer, e1:expr[, e2:expr...])
procedure fwriteln(fd:integer)
procedure fwriteln(fd:integer, e1:expr[, e2:expr...])

Arguments
fd An output stream number
e1, e2,... Expression or list of expressions

Further information
1. These procedures are equivalent to calling fselect before using the corresponding output procedureand then restore the initial current stream with a second call to fselect.
2. The selected stream may also be an error stream.

Related topics
write, writeln, fselect, getfid.

Fair Isaac Corporation Confidential and Proprietary Information 104

Predefined functions and procedures

getact

Purpose Get the activity value of a constraint.
Synopsis

function getact(c:linctr):real

Argument
c A linear constraint

Return valueActivity value or 0.
Further informationThis function returns the activity value of a constraint if the problem has been solved successfully,otherwise 0 is returned.
Related topics

getdual, getslack, getsol.

Fair Isaac Corporation Confidential and Proprietary Information 105

Predefined functions and procedures

getcoeff

Purpose Get a constraint coefficient or constant term.
Synopsis

function getcoeff(c:linctr):real
function getcoeff(c:linctr, x:mpvar):real
function getcoeff(c:linctr, n:integer):real

Arguments
c A linear constraint
x A decision variable
n -1 for constant term, -2 for range lower bound

Return valueCoefficient of the variable or a constant term.
Example In this example a single constraint with three variables is defined. The calls to getcoeff result in rtaking the value -1 and s taking the value -12.

declarations
x,y,z:mpvar
end-declarations

c:= 4⁎x + y -z <= 12
r:= getcoeff(c, z)
r:= getcoeff(c)

Further informationThis function returns the coefficient of a given variable in a constraint, or if no variable is given, theconstant term (= -RHS) of the constraint. The returned values correspond to a normalised constraintrepresentation with all variable and constant terms on the left side of the (in)equality sign.
Related topics

getcoeffs, getvars, setcoeff.

Fair Isaac Corporation Confidential and Proprietary Information 106

Predefined functions and procedures

getcoeffs

Purpose Get all variable coefficients of a constraint.
Synopsis

procedure getcoeffs(c:linctr, a:array(set of mpvar) of real, s:set of
mpvar)

Arguments
c A linear constraint
a An array of reals indiced by decision variables
s A set of decision variables

Further information
1. This procedure returns in the parameter a the coefficients of all variables of a constraint. After callingthis procedure, the coefficient of variable v of constraint c is a(v). The set s is used to specify forwhich variables the coefficients have to be retrieved (if this set is empty all variables are considered).
2. If set s is empty all cells of array a are updated (i.e. cells corresponding to variables not included inconstraint c are set to 0). Otherwise only cells corresponding to elements of s are modified.

Related topics
getcoeffs, getcoeff

Fair Isaac Corporation Confidential and Proprietary Information 107

Predefined functions and procedures

getdual

Purpose Get the dual value of a constraint.
Synopsis

function getdual(c:linctr):real

Argument
c A linear constraint

Return valueDual value or 0.
Further informationThis function returns the dual value of a constraint if the problem has been solved successfully and theconstraint is contained in the problem, otherwise 0 is returned.
Related topics

getrcost, getslack, getsol.

Fair Isaac Corporation Confidential and Proprietary Information 108

Predefined functions and procedures

getelt

Purpose Get an element of a set or a list.
Synopsis

function getelt(e:set):type_of_e
function getelt(l:list):type_of_l

Arguments
e A set
l A list

Return valueAn element of the set or list.
Further informationWhen applied to a range set or list this function behaves like getfirst. An error is generated if theargument of the function is empty.
Related topics

cutelt.

Fair Isaac Corporation Confidential and Proprietary Information 109

Predefined functions and procedures

getfid

Purpose Get the stream number of the active input, output or error stream.
Synopsis

function getfid(stream:integer):integer

Argument
stream The stream to query:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Return valueStream number.
Further informationThe returned value can be used as parameter for the function fselect.
Related topics

fselect.

Fair Isaac Corporation Confidential and Proprietary Information 110

Predefined functions and procedures

getfirst

Purpose Get the first element of a range set or a list.
Synopsis

function getfirst(r:range):integer
function getfirst(l:list):type_of_l

Arguments
r A range set
l A list

Return valueThe first element of the set or list.
Example In this example the range set r is defined before its first and last elements are retrieved and displayed:

declarations
r=2..8
end-declarations

...
writeln("First element of r: ", getfirst(r),

"\nLast element of r: ", getlast(r))

Further informationWhen applied to a list, the type of the function is the type of the list. An error is generated if theargument of the function is empty.
Related topics

getlast, cutfirst.

Fair Isaac Corporation Confidential and Proprietary Information 111

Predefined functions and procedures

gethead

Purpose Get a copy of the first elements of a list.
Synopsis

function gethead(l:list, o:integer):list

Arguments
l A list
o Number of elements to copy if >0 or number of elements to ignore if <0

Return valueA (partial) copy of the list.
Example

L:=[1,2,3,4,5]
L2:=gethead(L,2) ! => L2=[1,2]
L2:=gethead(L,-1) ! => L2=[1,2,3,4]

Further informationThis function does not alter its input list. If the second parameter is 0 an empty list is returned. If thesame parameter is larger than the size of the list the function returns a copy of the original list.
Related topics

gettail

Fair Isaac Corporation Confidential and Proprietary Information 112

Predefined functions and procedures

getfname

Purpose Get the file name associated to the active input, output or error stream.
Synopsis

function getfname(stream:integer):string

Argument
stream The stream to query:

F_INPUT Input stream
F_OUTPUT Output stream
F_ERROR Error stream

Return valueFile name.

Fair Isaac Corporation Confidential and Proprietary Information 113

Predefined functions and procedures

getlast

Purpose Get the last element of a range set or a list.
Synopsis

function getlast(r:range):integer
function getlast(l:list):type_of_l

Arguments
r A range set
l A list

Return valueThe last element of the set or list.
Example In this example the range set r is defined before its first and last elements are retrieved and displayed:

declarations
r=2..8
end-declarations

...
writeln("First element of r: ", getfirst(r),

"\nLast element of r: ", getlast(r))

Further informationWhen applied to a list, the type of the function is the type of the list. An error is generated if theargument of the function is empty.
Related topics

getfirst.

Fair Isaac Corporation Confidential and Proprietary Information 114

Predefined functions and procedures

getobjval

Purpose Get the objective function value.
Synopsis

function getobjval:real

Return valueObjective function value or 0.
Further informationThis function returns the objective function value if the problem has been solved successfully. If integerfeasible solution(s) have been found, the value of the best is returned, otherwise the value of the last LPsolved.
Related topics

getsol.

Fair Isaac Corporation Confidential and Proprietary Information 115

Predefined functions and procedures

getparam

Purpose Get the current value of a control parameter.
Synopsis

function getparam(name:string):integer|string|real|boolean

Argument
name Name of the control parameter whose value is to be returned (case insensitive).

Return valueCurrent setting of the control parameter.

Fair Isaac Corporation Confidential and Proprietary Information 116

Predefined functions and procedures

Further information
1. Parameters whose values may be returned by this function include the settings of Mosel as well asthose of any loaded module or package. The location of the parameter may be specified by prefixing itsname with the name of the module or package defining it (e.g. mmxprs.XPRS_verbose). The type ofthe return value corresponds to the type of the parameter.
2. This function can be applied only to control parameters whose value can be accessed.
3. The name argument must be a constant string: a model parameter, variable or string expression cannotbe used as a control parameter name.
4. The following control parameters are supported by Mosel:

realfmt Default C printing format for real numbers (string)
zerotol zero tolerance in comparisons between reals (real)
ioctrl the interpreter ignores IO errors (Boolean)
iostatus status of the last IO operation (integer), which is 0 when the last operation has beenexecuted successfully. This parameter is automatically reset once its value has been read. Notdoing so may result in undefined behavior. When ioctrl is active the IO status must be read(and reset) after every IO operation
nbread number of items recognized by the last read procedure or read in by the last initializationsblock (integer)
readcnt generate per label counting when executing ‘initializations from’ blocks (Boolean)
UTC indicate whether the time functions return time expressed in local (false) or UTC (true) time(Boolean)
autofinal indicate whether initialisation from blocks are finalizing sets (Boolean)
tmpdir the Mosel temporary directory (string)
workdir the current working directory of the model (string)
restrict active restrictions (integer). See Section 1.3.4 for further details.
modelname internal unique name of the model being executed.
modelnumber order number of the model being executed.
recloc indicate whether automatic recording of source location of constraints definitions is active(Boolean)
localedir directory where message catalogs are stored (string)
lang current language (string)
runparams parameter string used for the current execution (string)
bimprefix list of bim file prefixes (string)
sharingstatus sharing status of the model (integer). This parameter is -1 if the model does notshare any data; 0 if the model shares data but no submodel is using it; 1 when shared data isin use; 2 if the model is a submodel using shared data (see Section 7.2)

5. Function getparammay also be used to retrieve parser parameters. As opposed to the otherparameters whose value is computed at run time, these parameters are evaluated as soon as they areparsed:
parser_line number of the line being parsed (integer)
parser_file current source file name (string)
parser_date current local date (string)
parser_time current local time (string)
parser_UTCdate current UTC date (string)
parser_UTCtime current UTC time (string)
parser_version Mosel version (string)
model_version Version of the model as given by the version directive (string)

Fair Isaac Corporation Confidential and Proprietary Information 117

Predefined functions and procedures

Related topics
setparam, getdsoparam.

Fair Isaac Corporation Confidential and Proprietary Information 118

Predefined functions and procedures

getrcost

Purpose Get the reduced cost value of a variable.
Synopsis

function getrcost(v:mpvar):real

Argument
v A decision variable

Return valueReduced cost value or 0.
Further informationThis function returns the reduced cost value of a variable if the problem has been solved successfullyand the variable is contained in the problem, otherwise 0 is returned.
Related topics

getslack, getsol, getdual.

Fair Isaac Corporation Confidential and Proprietary Information 119

Predefined functions and procedures

getreadcnt

Purpose Get the number of items read in during last ‘initializations from’ for a given label.
Synopsis

function getreadcnt(l:string):integer

Argument
l A label

Return valueNumber of items read in for label l.
Further informationValue 0 is returned if the given string does not correspond to a label or if control parameter readcnthas not been set to true before execution of the initializations block.

Fair Isaac Corporation Confidential and Proprietary Information 120

Predefined functions and procedures

getreverse

Purpose Duplicate and reverse a list.
Synopsis

function getreverse(l:list):list

Argument
l A list

Return valueA reversed copy of the provided list.
Example

L:=[1,2,3,4,5]
L2:=L.reverse ! => L=[5,4,3,2,1]

Related topics
reverse.

Fair Isaac Corporation Confidential and Proprietary Information 121

Predefined functions and procedures

getsize

Purpose Get the size of an array, set, list, constraint or string.
Synopsis

function getsize(a:array):integer
function getsize(s:set):integer
function getsize(l:list):integer
function getsize(t:string):integer
function getsize(c:linctr):integer

Arguments
a An array
s A set
l A list
t A string
c A linear constraint

Return valueNumber of effective entries for an array, number of elements for a set or a list, number of characters fora string, number of terms for a constraint.
Example In the following, a dynamic array is declared holding eight elements, of which only two are actuallydefined. Calling getsize on this array returns 2 rather than 8. The length lw of the string w is 9.

declarations
a:dynamic array(1..8) of real
w = "some text"
end-declarations

a(1):= 4
a(5):= 7.2
la:= getsize(a)
lw:= getsize(w)

Further informationIn the case of a dynamic array that has been declared with a maximal range this number may besmaller than the size of the range, but it cannot exceed it. When used with a string, this function returnsthe length of the string (i.e. the number of characters it contains). If used with a linear constraint, thisfunction returns the number of terms of the constraint (the constant term is not taken into account).

Fair Isaac Corporation Confidential and Proprietary Information 122

Predefined functions and procedures

getslack

Purpose Get the slack value of a constraint.
Synopsis

function getslack(c:linctr):real

Argument
c A linear constraint

Return valueSlack value or 0.
Further informationThis function returns the slack value of a constraint if the problem has been solved successfully andthe constraint is contained in the problem, otherwise 0 is returned.
Related topics

getdual, getrcost, getsol.

Fair Isaac Corporation Confidential and Proprietary Information 123

Predefined functions and procedures

getsol

Purpose Get the solution value of a variable or a linear expression (constraint).
Synopsis

function getsol(v:mpvar):real
function getsol(c:linctr):real

Arguments
c A linear constraint
v A decision variable

Return valueSolution value or 0.
Further informationThis function returns the (primal) solution value of a variable if the problem has been solvedsuccessfully and the variable is contained in the problem (otherwise 0). If used with a constraint, itreturns the evaluation of the corresponding linear expression using the current solution.
Related topics

getdual, getrcost, getobjval.

Fair Isaac Corporation Confidential and Proprietary Information 124

Predefined functions and procedures

gettail

Purpose Get a copy of the last elements of a list.
Synopsis

function gettail(l:list, o:integer):list

Arguments
l A list
o Number of elements to copy if >0 or number of elements to ignore if <0

Return valueA (partial) copy of the list.
Example

L:=[1,2,3,4,5]
L2:=gettail(L,2) ! => L2=[4,5]
L2:=gettail(L,-1) ! => L2=[2,3,4,5]

Further informationThis function does not alter its input list. If the second parameter is 0 an empty list is returned. If thesame parameter is larger than the size of the list the function returns a copy of the original list.
Related topics

gethead

Fair Isaac Corporation Confidential and Proprietary Information 125

Predefined functions and procedures

gettype

Purpose Get the type of a constraint.
Synopsis

function gettype(c:linctr):integer

Argument
c A linear constraint

Return valueConstraint type. Values applicable to any type of linear constraint are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_RNG Range
CT_UNB Non-binding constraint
CT_SOS1 Special ordered set of type 1
CT_SOS2 Special ordered set of type 2
Values applicable for unary constraints are:
CT_CONT Continuous
CT_INT Integer
CT_BIN Binary
CT_PINT Partial integer
CT_SEC Semi-continuous
CT_SINT Semi-continuous integer
CT_FREE Free

Related topics
settype.

Fair Isaac Corporation Confidential and Proprietary Information 126

Predefined functions and procedures

getvars

Purpose Get the set of variables of a constraint.
Synopsis

procedure getvars(c:linctr,s:set of mpvar)

Arguments
c A linear constraint
s A set of decision variables

Example The following returns the set of variables in a linear constraint to the set variable vset, and then loopsthrough them to find their solution values:
declarations
c:linctr
vset: set of mpvar
end-declarations

getvars(c,vset)
forall(x in vset) writeln(getsol(x))

Further informationThis procedure returns in the parameter s the set of variables of a constraint. Note that this procedurereplaces the content of the set.
Related topics

getcoeffs, getcoeff

Fair Isaac Corporation Confidential and Proprietary Information 127

Predefined functions and procedures

isdynamic

Purpose Check whether an array, set, or list is dynamic.
Synopsis

function isdynamic(a:array):boolean
function isdynamic(s:set):boolean
function isdynamic(l:list):boolean

Arguments
a An array
s A set
l A list

Return value
true if the provided entity is dynamic.

Further informationThis function returns true when applied to sparse arrays (i.e. declared either as dynamic or
hashmap).

Fair Isaac Corporation Confidential and Proprietary Information 128

Predefined functions and procedures

iseof

Purpose Test whether the end of the default input stream has been reached.
Synopsis

function iseof:boolean

Return value
true if the end of the default input stream has been reached, false otherwise.

Example The following opens a datafile of integers, reads one from each line and prints it to the console until theend of the file is reached:
declarations
d:integer
end-declarations

...
fopen("datafile.dat", F_INPUT)
while(not iseof) do

readln(d)
writeln(d)

end-do
fclose(F_INPUT)

Further informationThis function returns the “end of file” status of the active input stream.
Related topics

fclose, fopen.

Fair Isaac Corporation Confidential and Proprietary Information 129

Predefined functions and procedures

isfinite

Purpose Test whether a real value is finite.
Synopsis

function isfinite(r: real):boolean

Argument
r The value to test

Return value
true if the value is neither (-)INFINITY nor NAN.

Further informationThe call isfinite(v) is equivalent to (not isnan(v) and not isinf(v)).
Related topics

setmatherr, isnan, isinf.

Fair Isaac Corporation Confidential and Proprietary Information 130

Predefined functions and procedures

ishidden

Purpose Test whether a constraint is hidden.
Synopsis

function ishidden(c:linctr):boolean

Argument
c A linear constraint

Return value
true if the constraint is hidden, false otherwise.

Further informationThis function tests the current status of a constraint. At its creation a constraint is added to the currentproblem, but using the function sethidden it may be hidden. This means, the constraint will not becontained in the problem that is solved by the optimizer but it is not deleted from the definition of theproblem in Mosel.
Related topics

sethidden.

Fair Isaac Corporation Confidential and Proprietary Information 131

Predefined functions and procedures

isinf

Purpose Test whether a real value is an infinity.
Synopsis

function isinf(r: real):boolean

Argument
r The value to test

Return value
true if the value is INFINITY or -INFINITY.

Further informationWhen the parameter matherr is set to true (see setparam) mathematical functions return theconstant NAN or INFINITY instead of failing. This function can be used to identify incorrect results(direct comparison to NAN or INFINITY always fails).
Related topics

setmatherr, isnan, isfinite.

Fair Isaac Corporation Confidential and Proprietary Information 132

Predefined functions and procedures

isnan

Purpose Test whether a real value is valid.
Synopsis

function isnan(r: real):boolean

Argument
r The value to test

Return value
true if the value is not valid (i.e. it corresponds to Not A Number).

Further informationWhen the parameter matherr is set to true (see setparam) mathematical functions return theconstant NAN or INFINITY instead of failing. This function can be used to identify incorrect results(direct comparison to NAN or INFINITY always fails).
Related topics

setmatherr, isinf, isfinite.

Fair Isaac Corporation Confidential and Proprietary Information 133

Predefined functions and procedures

isodd

Purpose Test whether an integer is odd.
Synopsis

function isodd(i:integer):boolean

Argument
i An integer number

Return value
true if the given integer is odd, false if it is even.

Fair Isaac Corporation Confidential and Proprietary Information 134

Predefined functions and procedures

ln

Purpose Get the natural logarithm of a value.
Synopsis

function ln(r:real):real

Argument
r Real value the function is applied to. This value must be positive.

Return valueNatural logarithm of the argument.
Example The following example provides a function for calculating logarithms to any (positive) base:

function logn(base,number: real):real
if (number > 0 and base > 0) then
returned:= ln(number)/ln(base)

else
exit(1)

end-if
end-function

Related topics
exp, log, sqrt.

Fair Isaac Corporation Confidential and Proprietary Information 135

Predefined functions and procedures

localsetparam

Purpose Set the value of a control parameter locally to a subroutine.
Synopsis

procedure localsetparam(name:string,val:integer|string|real|boolean)

Arguments
name Name of a control parameter (case insensitive).
val New value for the control parameter

Further information
1. This procedure is a special version of setparam that can only be used from a subroutine: the effect ofthe parameter change is reverted at the end of the subroutine.
2. Independently of the location of the call to this procedure and whether other modifications areperformed on the parameter (using for instance setparam) the original value of the parameter issaved at the beginning of the execution of the routine and restored before its termination.

Related topics
setparam, setdsoparam, restoreparam.

Fair Isaac Corporation Confidential and Proprietary Information 136

Predefined functions and procedures

log

Purpose Get the base 10 logarithm of a value.
Synopsis

function log(r:real):real

Argument
r Real value the function is applied to. This value must be positive.

Return valueBase 10 logarithm of the argument.
Related topics

exp, ln, sqrt.

Fair Isaac Corporation Confidential and Proprietary Information 137

Predefined functions and procedures

makesos1, makesos2

Purpose Creates a special ordered set (SOS) using a set of decision variables and a linear constraint.
Synopsis

procedure makesos1(cs:linctr, s:set of mpvar, c:linctr)
procedure makesos1(s:set of mpvar, c:linctr)
procedure makesos2(cs:linctr, s:set of mpvar, c:linctr)
procedure makesos2(s:set of mpvar, c:linctr)

Arguments
cs A linear constraint
s A set of decision variables
c A linear constraint

Example The following generates the SOS1 set mysos based on the linear constraint rr. The resulting setcontains the variables x, y, and z with the weights 0,2, and 4.
declarations
x,y,z: mpvar
rr,mysos: linctr

end-declarations

rr:= 2⁎y+4⁎z
makesos1(mysos, {x,y,z}, rr)

Further informationThese procedures generate a SOS set containing the decision variables of the set s with thecoefficients of the linear constraint c. The resulting set it assigned to cs if it is provided. Note thatthese procedures simplify the generation of SOS with weights of value 0.

Fair Isaac Corporation Confidential and Proprietary Information 138

Predefined functions and procedures

maxlist

Purpose Get the maximum value of a list of integers or reals.
Synopsis

function maxlist(i1:integer, i2:integer[, i3:integer...]):integer
function maxlist(r1:real, r2:real[, r3:real...]):real

Arguments
i1,i2,... List of integer numbers
r1,r2,... List of real numbers

Return valueLargest value in the given list.
Example In the following r is assigned the value 7 by maxlist:

r:= maxlist(-1, 4.5, 2, 7, -0.3)

Further informationThe returned type corresponds to the type of the input.
Related topics

minlist.

Fair Isaac Corporation Confidential and Proprietary Information 139

Predefined functions and procedures

memoryuse

Purpose Get an estimate of the memory usage of an entity, a module or the entire model.
Synopsis

function memoryuse:real
function memoryuse(ent:any entity):real
function memoryuse(mname:string):real

Arguments
ent An entity
mname A Module name

Return valueAn estimate of the memory usage in bytes or -1 if the evaluation cannot be performed.
Further information

1. When used with no argument this function returns the total amount of memory used by the runningmodel including the loaded modules (if they implement the functionality). A constant string isinterpreted as the name of a module: the returned value is the memory consumed by this module thatmust be currently used by the model.
2. For entities of type integer, real, boolean and mpvar the value returned is the constant amount ofmemory required by a variable of the corresponding type. For a reference to a string or linctr theeffective memory used by the internal datastructure is returned. In the case of a set or a list only thememory used to represent the collection is accounted, not its content. However the value reported foran array or record includes the memory used by the content of the structure except for strings.

Related topics
getmodpropnum.

Fair Isaac Corporation Confidential and Proprietary Information 140

Predefined functions and procedures

minlist

Purpose Get the minimum value of a list of integers or reals.
Synopsis

function minlist(i1:integer, i2:integer[, i3:integer...]):integer
function minlist(r1:real, r2:real[, r3:real...]):real

Arguments
i1,i2,... List of integer numbers
r1,r2,... List of real numbers

Return valueSmallest value in the given list.
Example In the following r is assigned the value -1 by maxlist:

r:= minlist(-1, 4.5, 2, 7, -0.3)

Further informationThe returned type corresponds to the type of the input.
Related topics

maxlist.

Fair Isaac Corporation Confidential and Proprietary Information 141

Predefined functions and procedures

newmuid

Purpose Generate a unique identifier.
Synopsis

function newmuid:string

Return valueAn identifier string.
Further informationThis function returns a string of the form muid#_xxx where # is an execution number in hexadecimal(specific to this model execution) and xxx a random hexadecimal number. It is guaranteed that eachgenerated value does not correspond to any symbol of the model and that it will never be returnedagain.

Fair Isaac Corporation Confidential and Proprietary Information 142

Predefined functions and procedures

publish

Purpose Publish a symbol.
Synopsis

procedure publish(name:string, ref:string, external or structured)

Arguments
name Symbol to identify the object
ref A reference to an object of an external type, a structure (e.g. set, list or array) or a string

Further information
1. This procedure can be used to publish an object in the model dictionary such that it can be found bynative code using name. Any entity (including local and private) can be exposed with this routine aslong as it is of a referenced type (basically any type except integer, real and boolean). If a string variableis used the published symbol corresponds to a string constant initialized with the current value of thisvariable.
2. The provided namemust be a valid identifier that is not yet being used by the model as symbol name(including entity and subroutine names). In case of error the procedure raises an IO error.

Related topics
unpublish, newmuid.

Fair Isaac Corporation Confidential and Proprietary Information 143

Predefined functions and procedures

random

Purpose Generate a random number.
Synopsis

function random:real

Return valueA randomly generated number in the interval [0,1).
Example In the following i is assigned a random integer value between 1 and 10:

i:= integer(round((10⁎random)+0.5))

Further informationEach model uses its own generator which is randomly initialized when the model execution starts. Thesequence may also be reset using procedure setrandseed.
Related topics

setrandseed.

Fair Isaac Corporation Confidential and Proprietary Information 144

Predefined functions and procedures

read, readln

Purpose Read in formatted data from the active input stream.
Synopsis

procedure read(e1:expr[, e2:expr...])
procedure readln
procedure readln(e1:expr[, e2:expr...])

Argument
e1, e2,... Expression or list of expressions of basic type

Example The following reads (possible split over several lines) 12 45 word, followed by toto(12 and
45)=word:

declarations
i,j:integer
s:string
ts:array (range,range) of string
end-declarations
read(i, j, s)
readln("toto(", i, "and", j, ")=", ts(i,j))

Further information
1. These procedures assign the data read from the active input stream to the given symbols or try tomatch the given expressions with what is read from the input stream. If ei is a symbol that can beassigned a value, the procedure tries to recognise from the input stream a constant of the required typeand, if successful, assigns the resulting value to ei. If ei is a constant or a symbol that cannot bereassigned, the procedure tries to read in a constant of the required value and succeeds if the resultingvalue corresponds to ei. These procedures do not fail but set the control parameter nbread to thenumber of items actually recognized.
2. Note that the read procedures are based on the lexical analyser of Mosel: items are separated byspaces and a string that contains spaces must be quoted using either single or double quotes (thequotes are automatically removed once the string has been identified).
3. The procedure readln expects all the items to be recognized to be contained in single line. Thefunction read ignores changes of line. If the procedure readln is used without parameters it skips theend of the current line.

Related topics
write, writeln.

Fair Isaac Corporation Confidential and Proprietary Information 145

Predefined functions and procedures

reset

Purpose Reset an entity.
Synopsis

procedure reset(x:resettable entity)

Argument
x A reference to a set, a list, an array, an object of an external type or problem

Further informationOnly types supporting the ’copy’ operation (i.e. they can be assigned a value) can be reset. The effect ofthis routine depends on the type of the object, typically the object returns to its state just after beingcreated. For instance, applying it to an mpproblem will clear the problem by detaching all constraints itcontains.
Related topics

delcell.

Fair Isaac Corporation Confidential and Proprietary Information 146

Predefined functions and procedures

restoreparam

Purpose Restore the value of a control parameter.
Synopsis

procedure restoreparam(name:string)

Argument
name Name of a control parameter (case insensitive).

Further information
1. This procedure can only be used from a subroutine to restore the value of a parameter to its state at thebeginning of the routine.
2. Independently of the location of the call to this procedure and whether modifications are performed onthe parameter (using for instance setparam) the original value of the parameter is saved at thebeginning of the execution of the routine and restored before its termination.

Related topics
setparam, setdsoparam, localsetparam.

Fair Isaac Corporation Confidential and Proprietary Information 147

Predefined functions and procedures

reverse

Purpose Reverse a list.
Synopsis

procedure reverse(l:list)

Argument
l A list

Example

L:=[1,2,3,4,5]
reverse(L) ! => L=[5,4,3,2,1]
reverse(L) ! => L=[1,2,3,4,5]

Related topics
getreverse.

Fair Isaac Corporation Confidential and Proprietary Information 148

Predefined functions and procedures

round

Purpose Round a number to the nearest integer.
Synopsis

function round(r:real):integer

Argument
r Real number to be rounded

Return valueRounded value.
Example In the following, i takes the value 6, j the value -7, and k the value 12:

i := round(5.5)
j := round(-6.7)
k := round(12.3)

Related topics
ceil, floor.

Fair Isaac Corporation Confidential and Proprietary Information 149

Predefined functions and procedures

setcoeff

Purpose Set the coefficient of a variable or the constant term.
Synopsis

procedure setcoeff(c:linctr, x:mpvar, r:real)
procedure setcoeff(c:linctr, r:real)

Arguments
c A linear constraint
x A decision variable
r Coefficient or constant term

Example The following declares a constraint c and then changes some of its terms:
declarations
x,y,z: mpvar
end-declarations

c:= 4⁎x + y -z <= 12

setcoeff(c, y, 2)
setcoeff(c, 8.1)

The constraint is now 4 · x + 2 · y – z ≤ –8.1.
Further informationIf a variable is given then this procedure sets the coefficient of this variable in the constraint to thegiven value. Otherwise, it sets the constant term of the constraint.
Related topics

getcoeff.

Fair Isaac Corporation Confidential and Proprietary Information 150

Predefined functions and procedures

sethidden

Purpose Hide or unhide a constraint.
Synopsis

procedure sethidden(c:linctr, b:boolean)

Arguments
c A linear constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Example THe following defines a constraint and then sets it as hidden:
declarations
x,y,z: mpvar
end-declarations

c:= 4⁎x + y -z <= 12
sethidden(c, true)

Further informationAt its creation a constraint is added to the current problem, but using this procedure it may be hidden.This means that the constraint will not be contained in the problem that is solved by the optimizer but itis not deleted from the definition of the problem in Mosel. Function ishidden can be used to test thecurrent status of a constraint.
Related topics

ishidden.

Fair Isaac Corporation Confidential and Proprietary Information 151

Predefined functions and procedures

setioerr

Purpose Raise an IO error.
Synopsis

procedure setioerr(msg:string)

Argument
msg Error message to display (or an empty string)

Further informationThis function sets the control parameter iostatus (see getparam) such that an IO error is raised. If IOerrors are not handled by the model (see setparam), the execution is interrupted.
Related topics

setmatherr.

Fair Isaac Corporation Confidential and Proprietary Information 152

Predefined functions and procedures

setmatherr

Purpose Raise a Math error.
Synopsis

procedure setmatherr(msg:string)

Argument
msg Error message to display (or an empty string)

Further informationIf mathematical errors are not handled by the model (see setparam), the execution is interrupted. Afunction ending with a call to this routine may set its return value to NAN or INFINITY in order toindicate its error status.
Related topics

setioerr, isnan, isinf, isfinite.

Fair Isaac Corporation Confidential and Proprietary Information 153

Predefined functions and procedures

setname

Purpose Associate a matrix name to a constraint or variable.
Synopsis

procedure setname(c:linctr, n:string)
procedure setname(v:mpvar, n:string)

Arguments
c A linear constraint
v A decision variable
n Name given to the constraint or variable

Further information
1. When exporting a problem to a matrix file, constraint/variable names are deduced from the globalpublic symbols: anonymous and local entities are usually named after their row/column number in thematrix. This procedure makes it possible to give a name to these entities.
2. If the given name starts with the ’#’ character, the generated matrix name will include the ordernumber of the constraint or variable in the matrix.

Related topics
exportprob.

Fair Isaac Corporation Confidential and Proprietary Information 154

Predefined functions and procedures

setparam

Purpose Set the value of a control parameter.
Synopsis

procedure setparam(name:string,val:integer|string|real|boolean)

Arguments
name Name of a control parameter (case insensitive).
val New value for the control parameter

Example See example of function getparam.
Further information

1. Control parameters include the settings of Mosel as well as those of any loaded module or package.The location of the parameter may be specified by prefixing its name with the name of the module orpackage defining it (e.g. mmxprs.XPRS_verbose). The type of the value must correspond to the typeexpected by the parameter.
2. This procedure can be applied only to control parameters the value of which can be modified.
3. The name argument must be a constant string: a model parameter, variable or string expression cannotbe used as a control parameter name.
4. The following control parameters, supported by Mosel, can be altered with this procedure:

realfmt Default C printing format for real numbers (string, default: "%.10g")
zerotol zero tolerance in comparisons between reals (real, default: 1.0e-13). This parameter isalso used when displaying reals: any value smaller than the zero tolerance is handled like thezero constant
ioctrl specify whether the interpreter ignores IO errors (Boolean, default: false). When ioctrl isenabled it is required to get (and reset) the iostatus parameter (see getparam) after everyIO operation. Not doing so may result in undefined behavior
mathctrl specify whether the interpreter ignores Maths errors (Boolean, default: false)
readcnt generate per label counting when executing ‘initializations from’ blocks (Boolean, default:

false)
UTC indicate whether the time functions return time expressed in local (false) or UTC (true) time(Boolean, default: false)
autofinal indicate whether initialisation from blocks are finalizing sets (Boolean, default: true or

false if compiler option noautofinal is used)
workdir specify the current working directory of the model (string, initialised with the currentworking directory of the Mosel instance). The provided value can be a relative path (e.g.

"../somedir")
recloc enable (or disable) automatic recording of source location of constraints definitions(Boolean, default: false). This parameter can be set to true only if the model has beencompiled with option -G; it makes it possible the creation of meaningful constraint nameswhen exporting a matrix (see exportprob)
localedir directory where message catalogs are stored (string, default: "./locale")
bimprefix list of bim file prefixes (string). This parameter is used to locate packages whencompiling a model (compile) and loading a bim file (load), see Section 2.3.1.

Related topics
getparam, setdsoparam, localsetparam, restoreparam.

Fair Isaac Corporation Confidential and Proprietary Information 155

Predefined functions and procedures

setrandseed

Purpose Initialize the random number generator.
Synopsis

procedure setrandseed(s:integer)

Argument
s Seed value

Further informationThis procedure sets its argument as the seed for a new sequence of pseudo-random numbers to bereturned by the function random.
Related topics

random.

Fair Isaac Corporation Confidential and Proprietary Information 156

Predefined functions and procedures

setrange

Purpose Set the domain range of a constraint.
Synopsis

procedure setrange(c:linctr, lb:real, ub:real)

Arguments
c A linear constraint expression
lb Lower bound
ub Upper bound

Example The following sets the domain of the x variable and defines c as a range constraint.
declarations
x,y,z: mpvar
c: linctr
end-declarations

c:= 2⁎y+4⁎z+5
setrange(x,3,10) ! 3<=x<=10
setrange(c,1,30) ! -4<=2⁎y+4⁎z<=25

Further information
1. If the parameter c is a linear expression a new anonymous range constraint is added to the problem.Otherwise, the provided constraint is turned into a range constraint (and added to the problem ifrequired).
2. This procedure changes the type of the provided constraint to CT_RNG, stores the provided lowerbound as an external information and records the upper bound as the constant term of the constraint.As a consequence defining the range of a constraint modifies its constant term, this has to be takeninto account if a range constraint is converted to another type or used as part of a linear expression.

Fair Isaac Corporation Confidential and Proprietary Information 157

Predefined functions and procedures

settype

Purpose Set the type of a constraint.
Synopsis

procedure settype(c:linctr, type:integer)

Arguments
c A linear constraint
type Constraint type

Further informationThe type (type) of a linear constraint may be set to one of:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint
CT_SOS1 Special ordered set of type 1
CT_SOS2 Special ordered set of type 2
Values applicable for unary constraints only are:
CT_CONT Continuous
CT_INT Integer
CT_BIN Binary
CT_PINT Partial integer
CT_SEC Semi-continuous
CT_SINT Semi-continuous integer
CT_FREE Free

Related topics
gettype

Fair Isaac Corporation Confidential and Proprietary Information 158

Predefined functions and procedures

sin

Purpose Get the sine of a value.
Synopsis

function sin(r:real):real

Argument
r Real number to which to apply the trigonometric function

Return valueSine value of the argument.
Related topics

arctan, cos.

Fair Isaac Corporation Confidential and Proprietary Information 159

Predefined functions and procedures

splithead

Purpose Split a list returning the first elements.
Synopsis

function splithead(l:list, o:integer):list

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Return valueThe list of elements removed.
Example

L:=[1,2,3,4,5]
L2:=splithead(L,2) ! => L=[3,4,5] L2=[1,2]
L2:=splithead(L,-1) ! => L=[5] L2=[3,4]

Further informationIf the second parameter is 0, the list is unchanged and an empty list is returned. If the same parameteris larger than the size of the list, all elements are deleted and the function returns a copy of the originallist.
Related topics

splittail

Fair Isaac Corporation Confidential and Proprietary Information 160

Predefined functions and procedures

splittail

Purpose Split a list returning the last elements.
Synopsis

function splittail(l:list, o:integer):list

Arguments
l A list
o Number of elements to remove if >0 or number of elements to keep if <0

Return valueThe list of elements removed.
Example

L:=[1,2,3,4,5]
L2:=splittail(L,2) ! => L=[1,2,3] L2=[4,5]
L2:=splittail(L,-1) ! => L=[1] L2=[2,3]

Further informationIf the second parameter is 0, the list is unchanged and an empty list is returned. If the same parameteris larger than the size of the list, all elements are deleted and the function returns a copy of the originallist.
Related topics

splithead

Fair Isaac Corporation Confidential and Proprietary Information 161

Predefined functions and procedures

sqrt

Purpose Get the positive square root of a value.
Synopsis

function sqrt(r:real):real

Argument
r Real value the function is applied to. This value must be non-negative.

Return valueSquare root of the argument.
Related topics

abs, exp, ln, log.

Fair Isaac Corporation Confidential and Proprietary Information 162

Predefined functions and procedures

strfmt

Purpose Create a formatted string from a string or a number.
Synopsis

function strfmt(str:string,len:integer):string
function strfmt(i:integer, len:integer):string
function strfmt(r:real, len:integer):string
function strfmt(r:real, len:integer, dec:integer):string

Arguments
str String to be formatted
i Integer to be formatted
r Real to be formatted
len Reserved length (may be exceeded if given string is longer, in this case the string is always leftjustified).

<0 Left justified within reserved space
>0 Right justified within reserved space
0 Use defaults

dec Number of digits after the decimal point
Return valueFormatted string.
Example The following:

writeln("text1", strfmt("text2",8), "text3")
writeln("text1", strfmt("text2",-8), "text3")
r:=789.123456
writeln(strfmt(r,0)," ", strfmt(r,4,2), strfmt(r,8,0))

produces this output:
text1 text2text3
text1text2 text3
789.123 789.12 789

Further information
1. This function creates a formatted string from a string or an integer or real number. It can be used at anyplace where strings may be used. Its most likely use is for generating printed output (in combinationwith write and writeln).
2. If the resulting string is longer than the reserved space it is not cut but printed in its entirety, overflowingthe reserved space to the right.

Related topics
write, writeln.

Fair Isaac Corporation Confidential and Proprietary Information 163

Predefined functions and procedures

substr

Purpose Get a substring of a string.
Synopsis

function substr(str:string, i1:integer, i2:integer):string

Arguments
str String
i1 Starting position of the substring
i2 End position of the substring

Return valueSubstring of the given string.
Example

write(substr("Example text", 3, 10))

This outputs the text: ample te

Further informationThis function returns the substring from the i1th to the i2th character of a given string (the countingstarts from 1). This function returns an empty string if the bounds are not compatible with the string(e.g. starting position larger than the length of the string) or inconsistent (e.g. starting position afterend position).

Fair Isaac Corporation Confidential and Proprietary Information 164

Predefined functions and procedures

timestamp

Purpose Generate a timestamp by combining the current UTC date and time.
Synopsis

function timestamp:real

Return valueThe number of seconds since 1/1/1970 at midnight as a real.
Further information

1. This function corresponds to the expression (using UTC time):
real(currentdate)⁎86400+currenttime/1000

2. A local time timestamp may be obtained using: getasnumber(datetime(SYS_NOW))
3. Refer to the module mmsystem for a set of dedicated types for handling date and time.

Related topics
currenttime,currentdate

Fair Isaac Corporation Confidential and Proprietary Information 165

Predefined functions and procedures

unpublish

Purpose Unpublish a symbol.
Synopsis

procedure unpublish(name:string)

Argument
name Symbol to be removed from the dictionary

Further informationThis procedure has the opposite effect of publish. If the given name does not correspond to apreviously published symbol no operation is performed.
Related topics

publish.

Fair Isaac Corporation Confidential and Proprietary Information 166

Predefined functions and procedures

versionnum, versionstr

Purpose Version of Mosel, a module or package.
Synopsis

function versionnum(what:string):integer
function versionstr(what:string):string

Argument
what A module name, a package name or an empty string

Return valueA version number as a string formatted as "maj.min.rel" (with versionstr) or as an integer (with
versionnum). An empty string or -1 is returned if the requested library cannot be found.

Further informationWith an empty string these routines return the version of Mosel currently running. Otherwise theargument is expected to be the name of a module (no suffix or name ending with ".dso"), or the nameof a package (name ending with ".bim"). In both cases the library must be currently used by themodel. For a package both imported and loaded at runtime packages are considered.

Fair Isaac Corporation Confidential and Proprietary Information 167

Predefined functions and procedures

write, writeln

Purpose Send an expression or list of expressions to the active output stream.
Synopsis

procedure write(e1:expr[, e2:expr...])
procedure writeln
procedure writeln(e1:expr[, e2:expr...])

Argument
e1, e2,... Expression or list of expressions

Example The following lines
Set1:={"first", "second", "fifth"}
write(Set1) ! Print set contents without return
writeln ! Print an empty line
b:=true
writeln("A real:", strfmt(7.1234, 4, 2), ", a Boolean:",b)

! Output followed by return

produce this output:
{`first', `second', `fifth'}
A real:7.12, a Boolean:true

Further informationThese procedures write the given expression or list of expressions to the active output stream. Theprocedure writeln adds the return character to the end of the output. Numbers may be formattedusing function strfmt (default formatting relies on parameters realfmt and zerotol, see
setparam). Basic types are printed "as is". For elementary but non-basic types (linctr, mpvar) onlythe address is printed. If the expression is a set or array, all its elements are printed.

Related topics
fwrite, fwriteln, read, readln, strfmt, formattext.

Fair Isaac Corporation Confidential and Proprietary Information 168

II. Modules

CHAPTER 4

mmetc

This compatibility module just defines the diskdata procedure required to use data files formatted formp-model from Mosel and provides a commercial discounting function. To use this module, thefollowing line must be included in the header of the Mosel model file:
uses 'mmetc'

4.1 Procedures and functions

disc Annual discount. p. 171
diskdata Read in or write an array or set of strings to a file. p. 172

Fair Isaac Corporation Confidential and Proprietary Information 170

mmetc

disc

Purpose Annual discount.
Synopsis

function disc(a:real, t:real)

Arguments
a Discount factor, real number greater than -1
t Time, real number

Return valueAnnual discount value: 1/(1 + a)t–1.
Further informationThis function calculates the annual discount for the given period of time and discount factor.
Module mmetc

Fair Isaac Corporation Confidential and Proprietary Information 171

mmetc

diskdata

Purpose Read in or write an array or set of strings to a file.
Synopsis

procedure diskdata(format:integer, file:string, a:array)
procedure diskdata(format:integer, file:string, s:set)
procedure diskdata(format:integer, file:string, l:list)

Arguments
format Format options:

ETC_DENSE dense data format
ETC_SPARSE sparse data format
ETC_SGLQ strings quoted with single quotes
ETC_NOQ strings are not quoted in the file
ETC_OUT write to a file
ETC_APPEND append output to the end of an existing file
ETC_TRANS tables are transposed
ETC_IN read from file (default)
ETC_NOZEROS skip zero values
ETC_CSV use CSV format
ETC_SKIPH skip first line (header) of the file
ETC_AUTONDX similar to sparse format but indices are not read or written (only appliesto 1-dimension arrays indiced by ranges)
ETC_EMPTYNDX missing indices are replaced by a default value
Several options may be combined using ‘+’.

file Extended file name
a Array to export or initialize
s Set to export or initialize
l List to export or initialize

Example The following example declares two sets and two dynamic arrays. The array ar1 is read in from the file
in.dat. Then both arrays, ar1 and ar2, are saved to the file out.dat (in sparse format) and finallythe contents of the set Set1 is appended to the file out.dat.

declarations
Set1: set of string
R: range
ar1,ar2: array(Set1,R) of real
end-declarations

diskdata(ETC_SPARSE, "in.dat", ar1)
diskdata(ETC_OUT, "out.dat", [ar1, ar2])
diskdata(ETC_OUT+ETC_APPEND, "out.dat", Set1)

Further information
1. This procedure reads in data from a file or writes to a file, depending on the parameter settings. The fileformat used is compatible with the command DISKDATA of the modeler mp-model (unless the option
ETC_CSV is specified).

2. Only arrays lists and sets of basic and native types (including mpvar and linctr for writing) can beused with this procedure, in particular records are not supported.

Fair Isaac Corporation Confidential and Proprietary Information 172

mmetc

Module mmetc

Fair Isaac Corporation Confidential and Proprietary Information 173

mmetc

4.2 I/O drivers

This module provides the diskdata IO driver designed to be used as an interface for
initializations blocks for both reading and writing files formated for the diskdata procedure.

4.2.1 Driver diskdata
diskdata:[dense|sparse|autondx;][sglq|noq|csv;][skiph;emptyndx;append;trans;nozeros;fsep=c;dsep=c]

The driver can only be used in ‘initializations’ blocks. In the opening part of the block, no file name hasto be provided, but general options can be stated at this point: they will be applied to all labels. In theblock, each label entry is understood as the file name to use for the actual processing. Note that, beforethe file name, one can add further options separated by comas or semicolons, that are effective to theparticular entry. Here, the csv option might be followed by a list of columns separated by commas andenclosed in parenthesis. The columns are identified by their number (first column has index 1) andmust be given in ascending order without duplicate. If the last column number is suffixed by the plussign, the following columns will also be included in the selection (e.g. "csv(1,3+)" skips the secondcolumn). To use names, the option skiphmust be used and the column names are taken from the
header row that is skipped through this option. When using skiph, column numbers need to be statedby prefixing the column number by # (even in this case columns must be given in ascending order).Thiscolumn selection is ignored for a writing operation. The file name given can use extended notation.
The diskdata driver takes the following options:
dense dense data format
sparse sparse data format
autondx sparse data format with automatic indexation (applies only to 1-dimension arraysindiced by ranges)
autondx=st same as autondx but starting index is set to st (instead of 1)
sglq strings quoted with single quotes
noq strings are not quoted in the file
csv use CSV format: quoting and escaping with double quotes, all lines are processed (i.e.characters ’!’ and ’&’ are ordinary symbols)
skiph When reading, the first line of the file is skipped, when writing, the first line of the file ispreserved (or a comment line is inserted if the file does not already exist)
emptyndx When reading array indices an empty cell causes a failure. With this option empty cellsare replaced by the default value of the corresponding type (e.g. 0 for a numerical value)
append append output to the end of an existing file
trans tables are transposed
nozeros skip zero values
fsep=c character used to separate fields. The default value is ","; tabulation or ";" are alsooften employed
dsep=c character used as decimal separator (default: ".")
Example:

Fair Isaac Corporation Confidential and Proprietary Information 174

mmetc

declarations
Set1: set of string ! Declare a set of strings
ar1,ar2: array(Set1,range) of real ! Declare two dynamic arrays
r: real ! Declare a real value
end-declarations

initializations from "diskdata:" ! Use 'diskdata' format for reading
ar1 as "sparse;csv(1,3,4);ind.dat" ! Read `ar1' from 'in.dat' in sparse format

! using CSV conventions and selecting columns 1,3 and 4
r as "r_init.dat" ! Initialize `r' from 'r_init.dat'
end-initializations

initializations to "diskdata:append" ! Use 'diskdata' format for output
[ar1, ar2] as "out.dat" ! Save two arrays in sparse format
Set1 as "out.dat" ! Save set `Set1' to the same file
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 175

CHAPTER 5

mmhttp

The module mmhttp makes it possible to communicate with external components via HTTP requests.Both modes, client or server side, can be used in a Mosel model: the client routines allow a Moselmodel to send the HTTP requests GET, POST, PUT or DELETE to a web service. A model may also actas a web service by starting the integrated HTTP server. In this mode, the model gets notified aboutconnections from remote clients via specific mmjobs events. The model can then reply to theserequests using a set of dedicated routines.To use this module, the following line must be included in the header of the Mosel model file:
uses 'mmhttp'

5.1 New functionality for the Mosel language

5.1.1 The type reqqueue

The type reqqueue can be used to implement multithreaded HTTP servers: it represents a queue ofpending HTTP requests to be processed by the server. A queue of this type must be declared as aglobal shared entity such that each cloned submodel of the master model can access it. A submodelready to handle a new request has to call httpreqpop in order to warn the queue manager of itsavailability and then wait for an event. When the server receives a request that has to be processed byone of these submodels it moves this request to the queue using httpreqpushlim or httpreqpush,as a result the request is sent to one of the available submodels that is notified as if the request hadbeen directly received from the network (see Section 5.4.2). If no submodel is ready, the request isrecorded in the queue until a model becomes available for processing it.

5.2 Control parameters

The following parameters are defined by mmhttp:
http_async HTTP requests processing mode. p. 177
http_browser Path to the web browser. p. 177
http_cookies Handling of cookies. p. 178
http_defpage Default page of the web server. p. 178
http_defport Default server TCP port. p. 178
http_expire Expiration delay of open connections. p. 179
http_freeasync Number of available asynchronous connections. p. 179

Fair Isaac Corporation Confidential and Proprietary Information 176

mmhttp

http_keephdr Whether to keep HTTP headers in results. p. 179
http_listen Interface used by server. p. 179
http_maxasync Maximum number of pending asynchronous requests. p. 181
http_maxconn Maximum number of open connections. p. 180
http_maxcontime Maximum time for a connection. p. 180
http_maxreq Maximum number of waiting connections. p. 180
http_maxreqtime Maximum time for a connection. p. 181
http_port Server TCP port. p. 181
http_proxy Proxy address. p. 182
http_proxyport Proxy TCP port. p. 182
http_srvconfig Server options. p. 182
http_startwb Decide whether to start a web browser with the server. p. 183
https_defport Default secure server TCP port. p. 183
https_listen Interface used by secure server. p. 183
https_port Secure server TCP port. p. 184

http_async

Description This parameter selects the processing mode of the HTTP request functions(httpget|put|post|del). These functions return immediately after the connection to the serverhas been established (without waiting for the reply by the server) when this parameter is setto true. The model is notified about the completion of the request via an event of class
EVENT_HTTPEND.

Type Boolean, read/write
Default value false
Affects routines httpdel, httpget, httppost, httpput.
See also http_maxasync.
Module mmhttp

http_browser

Description The path to a web browser to be executed when the parameter http_startwb is active.
Type String, read/write
Values Path to a web browser
Affects routines httpstartsrv.
See also http_startwb.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 177

mmhttp

http_cookies

Description Decides whether cookie management is enabled: when this parameter is set to true thecookie store is updated according to server replies and request headers are completed withthe relevant cookies. Changing the value of this parameter does not affect the cookie store(i.e. existing cookies are not modified).
Type Boolean, read/write
Default value false
Affects routines httpdel, httpget, httppost, httpput.
Module mmhttp

http_defpage

Description The default page is selected when the server receives a request not specifying any path (e.g.
"http://server/").

Type String, read/write
Values The label to be used as the default page. Selecting an empty string restores the default value
Default value "index.html"
Affects routines httpstartsrv.
Module mmhttp

http_defport

Description This is the port number used by the web server upon its startup. If this parameter is 0, theport number is selected automatically by the operating system (the actual port number canbe retrieved through parameter http_port).
Type Integer, read/write
Values Between 0 and 65535
Default value 0
Affects routines httpstartsrv.
See also http_port.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 178

mmhttp

http_expire

Description Connections held in the connection pool are automatically closed if they are not used formore than the amount of time (in seconds) defined by this parameter.
Type Integer, read/write
Values Between 5 and 60 by steps of 5 seconds
Default value 5
See also http_maxconn.
Module mmhttp

http_freeasync

Description Up to http_maxasync asynchronous requests can be used concurrently. This parameterreports the current number of asynchronous requests that can still be initiated.
Type Integer, read only
See also http_maxasync.
Module mmhttp

http_keephdr

Description By default results of HTTP queries do not include the HTTP header lines. This parameter canbe used to retrieve these header lines in addition to the result document (use
httpgetheader to separate the header from the effective result document).

Type Boolean, read/write
Default value false
Affects routines httpdel, httpget, httppost, httpput.
Module mmhttp

http_listen

Description This is the interface used by the web server upon its startup. The default value impliesbinding to all available interfaces.
Type String, read/write
Default value 0.0.0.0

Fair Isaac Corporation Confidential and Proprietary Information 179

mmhttp

Affects routines httpstartsrv.
Module mmhttp

http_maxconn

Description This parameter defines the size of the connection pool: whenever an HTTP request is emitted
mmhttp tries to use one of the already open connections. After the end of the operation theconnection is saved into the pool (if the server supports this functionality). Setting thisparameter to 0 disables the pool (i.e. each query is executed on a new connection). When thisparameter is changed all connections of the pool are closed.

Type Integer, read/write
Values Between 0 and 8
Default value 4
See also http_expire.
Module mmhttp

http_maxcontime

Description Maximum amount of time (in seconds) allowed for connecting to a HTTP server and send arequest. If the operation is longer than the specified duration the request is cancelled and theprocedure results in an IO error. A value of 0 disables this time limit.
Type Integer, read/write
Default value 0
See also http_maxreqtime.
Affects routines httpdel, httpget, httppost, httpput.
Module mmhttp

http_maxreq

Description The maximum number of active concurrent connections the server is maintaining. Above thislimit, connections are rejected and clients are notified with the HTTP code 500.
Type Integer, read/write
Values At least 1
Default value 16
Affects routines httpstartsrv.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 180

mmhttp

http_maxreqtime

Description Maximum amount of time (in seconds) allowed for processing a request. If the operation islonger than the specified duration the request is cancelled and the procedure results in an IOerror. A value of 0 disables this time limit.
Type Integer, read/write
Default value 0
See also http_maxcontime.
Affects routines httpdel, httpget, httppost, httpput.
Module mmhttp

http_maxasync

Description This parameter defines the maximum number of active asynchronous requests that can besent by a Mosel model. This parameter can only be changed if asynchronous mode is notactive and there is no active request.
Type Integer, read/write
Values Between 4 and 58
Default value 8
Affects routines httpdel, httpget, httppost, httpput.
See also http_async, http_freeasync.
Module mmhttp

http_port

Description This parameter reports the port number currently used by the web server.
Type Integer, read only
Affects routines httpstartsrv.
See also http_defport.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 181

mmhttp

http_proxy

Description When this parameter is defined, HTTP connections are sent through this proxy server (insteadof establishing direct connections).
Type Integer, read/write
Default value ""
Affects routines httpdel, httpget, httppost, httpput.
See also http_proxyport.
Module mmhttp

http_proxyport

Description The value of this parameter corresponds to the connection port of the proxy server (whendefined).
Type Integer, read/write
Values Between 1 and 65535
Default value 80
Affects routines httpdel, httpget, httppost, httpput.
See also http_proxy.
Module mmhttp

http_srvconfig

Description This parameter specifies which request types are accepted by the HTTP server started from aMosel model. For instance, if the application will only process HTTP GET queries the value ofthis parameter should be HTTP_GET. Moreover, if the flag HTTP_SSL is set, the server willalso listen for HTTPS connections and, if the flag HTTP_SSLONLY is used, only the HTTPSserver will be started (i.e. normal HTTP queries will be rejected). When an HTTPS server isstarted, the flag HTTP_CLTAUTH enables client authentication: clients are accepted only ifthey present a known certificate.
Type Integer, read/write
Default value HTTP_DELETE+HTTP_GET+HTTP_POST+HTTP_PUT
Affects routines httpstartsrv.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 182

mmhttp

http_startwb

Description If this parameter is true a web browser pointing to the default page is launched just after theweb server starts.
Type Boolean, read/write
Default value false
Affects routines httpstartsrv.
See also http_browser.
Module mmhttp

https_defport

Description This is the port number used by the web secure server upon its startup. If this parameter is 0,the port number is selected automatically by the operating system (the actual port numbercan be retrieved through parameter https_port).
Type Integer, read/write
Values Between 0 and 65535
Default value 0
Affects routines httpstartsrv.
See also https_port.
Module mmhttp

https_listen

Description This is the interface used by the secure web server upon its startup. The default value impliesbinding to all available interfaces.
Type String, read/write
Default value 0.0.0.0
Affects routines httpstartsrv.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 183

mmhttp

https_port

Description This parameter reports the port number currently used by the secure web server.
Type Integer, read only
Affects routines httpstartsrv.
See also https_defport.
Module mmhttp

5.3 Constants

mmhttp defines the following constants for frequently used HTTP status codes (the codes of the 200series indicate success, the 400 series are error codes, according to the RFC 2616 specification). Notethat the textual representations of HTTP status codes can be obtained via function httpreason.
� HTTP_OK: 200
� HTTP_CREATED: 201
� HTTP_ACCEPTED: 202
� HTTP_NO_CONTENT: 204
� HTTP_RESET_CONTENT: 205
� HTTP_BAD_REQUEST: 400
� HTTP_UNAUTHORIZED: 401
� HTTP_PAYMENT_REQUIRED: 402
� HTTP_FORBIDDEN: 403
� HTTP_NOT_FOUND: 404
� HTTP_METHOD_NOT_ALLOWED: 405
� HTTP_NOT_ACCEPTABLE: 406
� HTTP_PROXY_AUTHENTICATION_REQUIRED: 407
� HTTP_REQUEST_TIMEOUT: 408

5.4 Procedures and functions

5.4.1 HTTP client

The HTTP requests GET, HEAD, POST, PUT and DELETE can be sent to a web service using functions
httpget, httphead, httppost, httpput and httpdel respectively. Each of these functions takesat least two parameters: the URL of the resource and a file name where to store the result of theoperation. POST and PUT requests require an additional file, namely the data source to be sent to theweb service.

Fair Isaac Corporation Confidential and Proprietary Information 184

mmhttp

HTTP requests are either processed synchronously or asynchronously.
When a request is sent in synchronous mode (the default), the HTTP function call returns after theprocessing has completed and the return value corresponds to the status of the request (a successfulrequest will have a status value between 200 and 299). The following example uses www.bing.com tosearch for ’FICO’ using a synchronous request:

status:=httpget("http://www.bing.com/search?q=FICO", "result.html")
if status div 100=2 then
writeln("Found FICO!")
else
writeln("Request failed with code :", status, " (", httpreason(status), ")")
end-if

If the asynchronous mode is active (that is, the parameter http_async is set to true) the HTTPfunctions return just after the request has been sent, without waiting for the reply by the server. Theprocessing continues in a separate thread of execution (up to http_maxasync requests can behandled at the same time) and the function returns a request identifier (or an error code in case offailure during the connection phase). Once the request has completed (i.e. the server has replied) anevent of class EVENT_HTTPEND is raised (please refer to the documentation of the module mmjobs forfurther explanation on how to handle events). The associated value of this event is
request_id+status/1000. For instance if request number 1300 succeeded with status 204 (’nodata’) the corresponding event value is 1300.204. An asynchronous request can be cancelled using
httpcancel: in this case an event is still generated but its status is 998.In the following example, search for ’FICO’ is sent to BING, Yahoo and Ask at the same time. A loop isthen started to wait for answers from each of the search engines.

setparam("http_async",true) ! Switch to asynchronous mode
reqyahoo:=httpget("http://us.search.yahoo.com/search/?p=FICO", "resyahoo.html")
writeln("Request ", reqyahoo, " sent to Yahoo")
reqbing:=httpget("http://www.bing.com/search?q=FICO", "resbing.html")
writeln("Request ", reqbing, " sent to BING")
reqask:=httpget("http://uk.ask.com/web?q=FICO", "resask.html")
writeln("Request ", reqask, " sent to Ask")
if reqbing<1000 or reqyahoo<1000 or reqask<1000 then
writeln("A request has failed!")
else
nbdone:=0
repeat
wait ! Wait for an event
evt:=getnextevent
if evt.class = EVENT_HTTPEND then ! One of the requests completed
reqnum:=floor(evt.value) ! Get request number
write("Request ", reqnum, " done: ")
status:=round((evt.value-reqnum)⁎1000) ! Get HTTP status
if status div 100=2 then ! 200<=status<300 is success
writeln("Found FICO!")
else ! Any other value is an error code
writeln("Failed with code :", status, " (", httpreason(status), ")")
end-if
nbdone+=1
end-if
until nbdone=3 ! Finished when all requests are done
end-if

By default the module performs direct TCP connections to the servers but a proxy may be specifiedusing the http_proxy and http_proxyport parameters.
It is possible to set a limit on the time spent for connecting to a server by using http_maxcontime.The parameter http_maxreqtime defines a time limit on the entire request (i.e. connection andretrieval of result). mmhttp will wait undefinitely for each request if none of these parameters isdefined.

Fair Isaac Corporation Confidential and Proprietary Information 185

mmhttp

When requests are sent to a secure server (i.e. URL starting with "https://") the trusted certificatesfile https_cacertsmust be available such that authenticity of servers can be verified. If thisverification is not required, the control parameter https_trustsrv has to be set to true. If therequested secure server requires client authentication, client certificate https_cltcrt andassociated private key https_cltkeymust be defined. Note that these parameters are published by
mmssl: this module has to be used when a secure requests have to be sent.
HTTP client functions:
delcookies Delete cookies from the cookie store. p. 187
findcookie Get the value of a cookie from the cookie store. p. 188
httpcancel Cancel an asynchronous request. p. 189
httpdel Perform an HTTP DELETE request. p. 190
httpget Perform an HTTP GET request. p. 191
httpgetheader Extract the HTTP header of a result file. p. 192
httphead Perform an HTTP HEAD request. p. 193
httppost Perform an HTTP POST request. p. 194
httpput Perform an HTTP PUT request. p. 195
httpreason Generate the text representation of an HTTP status code. p. 196
loadcookies Load cookies from a file. p. 197
savecookies Save the cookie store into a file. p. 198
setcookie Define or update a cookie. p. 199
tcpping Test availability of a service on a server. p. 200
urlencode Encode a text string for a URL. p. 201

Fair Isaac Corporation Confidential and Proprietary Information 186

mmhttp

delcookies

Purpose Delete cookies from the cookie store.
Synopsis

procedure delcookies(domain:text|string)

Argument
domain Domain filter of the cookies to be deleted or an empty string to select all cookies

Related topics
setcookie.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 187

mmhttp

findcookie

Purpose Get the value of a cookie from the cookie store.
Synopsis

function findcookie(name:string, domain:text, path:text, strict:boolean,
val:text)

Arguments
name Cookie name
domain Domain of the cookie
path Path in the domain
strict If true perfect matching is required for name, domain and path (like for setcookie),otherwise any cookie of the requested name with a compatible domain and path is returned
val Returned value when a corresponding cookie is found

Return value
true if the cookie was found (its value is saved in val), false otherwise

Related topics
delcookies, findcookie.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 188

mmhttp

httpcancel

Purpose Cancel an asynchronous request.
Synopsis

procedure httpcancel(id: integer)

Argument
id Number of the request to cancel

Further informationThis procedure has no effect if the request number cannot be found (e.g. the request has completed inthe meantime). If the request is effectively cancelled an event of class EVENT_HTTPEND is raised witha request status of value 998.
Related topics

httppost, httpput, httpget, httphead, httpdel.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 189

mmhttp

httpdel

Purpose Perform an HTTP DELETE request.
Synopsis

function httpdel(url:string|text, result:string):integer
function httpdel(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return valueHTTP status of the request (e.g. 200 for success, see Section 5.3 for a list of predefined status codeconstants; value 999 indicates that an I/O error occurred during the operation) or the request number (
≥ 1000) if the asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after havingsent the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"and "null:" can still be used).

2. When cookie management is enabled (see http_cookies) an additional header "Cookie:" isinserted into the request if the cookie store contains compatible cookies. This behaviour is disabled ifthis optional header is already specified via the parameter xhdr.
Related topics

httppost, httpput, httpget, httphead, httpcancel.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 190

mmhttp

httpget

Purpose Perform an HTTP GET request.
Synopsis

function httpget(url:string|text, result:string):integer
function httpget(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return valueHTTP status of the request (e.g. 200 for success, see Section 5.3 for a list of predefined status codeconstants; value 999 indicates that an I/O error occurred during the operation) or the request number (
≥ 1000) if asynchronous mode is active

Example Retrieve the default entry page of the FICO website in French and store it in the file "fico.html":
status:=httpget('http://www.fico.com/fr/Pages/default.aspx', 'fico.html')

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after havingsent the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"and "null:" can still be used).

2. When building a query it is important to encode data to be sent using urlencode
3. By default the header "Accept-Encoding: gzip" is inserted into the request and the result data isautomatically decompressed if the server supports compression. This behaviour is disabled if thisoptional header is already specified (e.g. the parameter xhdr includes "Accept-Encoding:

identity").
4. When cookie management is enabled (see http_cookies) an additional header "Cookie:" isinserted into the request if the cookie store contains compatible cookies. This behaviour is disabled ifthis optional header is already specified via the parameter xhdr.

Related topics
httppost, httpput, httpdel, httphead, urlencode, httpcancel.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 191

mmhttp

httpgetheader

Purpose Extract the HTTP header of a result file.
Synopsis

function httpgetheader(sfile:string|text):text
function httpgetheader(sfile:string|text, dfile:string|text):text

Arguments
sfile Name of the file to process
dfile Destination file (can be the same as sfile)

Return valueHeader of the result document
Further information

1. Result files of queries inlude the HTTP header when the parameter http_keephdr is set to true: thisfunction returns the header of a result file when this setting is active.
2. The optional destination file dfile receives a copy of the original result file after the header has beenremoved.

Related topics
httpget, httppost, httpput, httpdel.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 192

mmhttp

httphead

Purpose Perform an HTTP HEAD request.
Synopsis

function httphead(url:string|text, result:string):integer
function httphead(url:string|text, result:string, xhdr:string|text):integer

Arguments
url URL to process
result File to store the result of the request
xhdr Additional headers to add to the request

Return valueHTTP status of the request (e.g. 200 for success, see Section 5.3 for a list of predefined status codeconstants; value 999 indicates that an I/O error occurred during the operation) or the request number (
≥ 1000) if asynchronous mode is active

Further informationThe HEAD request is equivalent to a GET request except that no result is returned by the server, only theheader can be retrieved (see httpgetheader).
Related topics

httppost, httpput, httpdel, httpget, urlencode, httpcancel.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 193

mmhttp

httppost

Purpose Perform an HTTP POST request.
Synopsis

function httppost(url:string|text, data:string, result:string):integer
function httppost(url:string|text, data:string, result:string,

xhdr:string|text):integer

Arguments
url URL to process
data Data file to be sent to the server
result File to store the result of the request
xhdr Additional headers to add to the request

Return valueHTTP status of the request (e.g. 200 for success, see Section 5.3 for a list of predefined status codeconstants; value 999 indicates that an I/O error occurred during the operation) or the request number (
≥ 1000) if asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after havingsent the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"and "null:" can still be used).

2. The parameter xhdr is typically used when the data type has to be specified. For instance, when thedata sent is URL-encoded it may be necessary to use "Content-Type:
application/x-www-form-urlencoded" as the value for xhdr in order to indicate to the serverhow to decode and process the data.

3. By default the header "Accept-Encoding: gzip" is inserted into the request and the result data isautomatically decompressed if the server supports compression. This behaviour is disabled if thisoptional header is already specified (e.g. the parameter xhdr includes "Accept-Encoding:
identity").

4. When cookie management is enabled (see http_cookies) an additional header "Cookie:" isinserted into the request if the cookie store contains compatible cookies. This behaviour is disabled ifthis optional header is already specified via the parameter xhdr.
Related topics

httpget, httphead, httpput, httpdel, urlencode, httpcancel.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 194

mmhttp

httpput

Purpose Perform an HTTP PUT request.
Synopsis

function httpput(url:string|text, data:string, result:string):integer
function httpput(url:string|text, data:string, result:string,

xhdr:string|text):integer

Arguments
url URL to process
data Data file to be sent to the server
result File to store the result of the request
xhdr Additional headers to add to the request

Return valueHTTP status of the request (e.g. 200 for success, see Section 5.3 for a list of predefined status codeconstants; value 999 indicates that an I/O error occurred during the operation) or the request number (
≥ 1000) if asynchronous mode is active

Further information

1. The function returns after the request has been processed when synchronous mode is active (see
http_async). Otherwise, using asynchronous mode, the function returns immediately after havingsent the request and the model is notified about the completion of the operation by an event of class
EVENT_HTTPEND. In this mode the result file resultmust be a physical file (although drivers "tmp:"and "null:" can still be used).

2. The parameter xhdr is typically used when the data type has to be specified. For instance, when thedata sent is URL-encoded it may be necessary to use "Content-Type:
application/x-www-form-urlencoded" as the value for xhdr in order to indicate to the serverhow to decode and process this data.

3. When cookie management is enabled (see http_cookies) an additional header "Cookie:" isinserted into the request if the cookie store contains compatible cookies. This behaviour is disabled ifthis optional header is already specified via the parameter xhdr.
Related topics

httpget, httphead, httppost, httpdel, urlencode, httpcancel.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 195

mmhttp

httpreason

Purpose Generate the text representation of an HTTP status code.
Synopsis

function httpreason(code:integer):string

Argument
code HTTP status code (see Section 5.3 for a list of predefined status code constants)

Return valueText associated to the provided status code or an empty string if the code is unknown
Example The following displays "Bad Request":

writeln(httpreason(400))

Further informationThe HTTP standard specifies a set of predefined status codes. This function returns the textassociated with a given code. For instance, upon success a request will reply with code 200 ("OK") or204 ("No Content").
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 196

mmhttp

loadcookies

Purpose Load cookies from a file.
Synopsis

function loadcookies(fname:string|text, host:string):integer

Arguments
fname Source file name
host If not empty only cookies compatible with this host name are recorded

Return valueNumber of cookies added to the store
Further informationThis function loads cookies from the specified file and record them into the cookie store. The file mustbe encoded as a HTTP header and only "Set-Cookie" headers are processed (other lines are silentlyignored).
Related topics

savecookies, setcookie.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 197

mmhttp

savecookies

Purpose Save the cookie store into a file.
Synopsis

function savecookies(fname:string|text, domain:string):integer

Arguments
fname Destination file name
domain Domain filter of the cookies to be saved or an empty string to select all cookies

Return valueNumber of records generated
Further informationThis function saves the selected cookies into a text file. The cookies are encoded according to thestandard "Set-Cookie" header (one record per line per cookie).
Related topics

loadcookies, findcookie.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 198

mmhttp

setcookie

Purpose Define or update a cookie.
Synopsis

procedure setcookie(name:string, value:text, domain:text, path:text,
exp:integer)

Arguments
name Cookie name
value Associated value
domain Domain of the cookie: if it does not start with a dot the domain is interpreted as a host nameand the cookie is a host only cookie
path Path in the domain
exp Expiration time: with a negative value the cookie is deleted; with 0 the cookie never expires(session cookie) and a positive value is interpreted as an amount of time in seconds afterwhich the cookie will expire

Further informationThis procedure adds a cookie to the cookie store. If an existing cookie has the same name, domain andpath as those specified to the procedure its value and expiration information is updated.
Related topics

delcookies, findcookie.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 199

mmhttp

tcpping

Purpose Test availability of a service on a server.
Synopsis

function tcpping(host:string|text,port:integer):integer

Arguments
host Name of server to test
port Service port

Return valueTest result:
0 Connection succeeded
1 Invalid parameters
2 Host name not found
3 Connection failed

Further informationThis function opens a TCP connection to to the given host and port and closes it immediately in case ofsuccess.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 200

mmhttp

urlencode

Purpose Encode a text string for a URL.
Synopsis

function urlencode(data:string|text):text

Argument
data Text to encode

Return valueEncoded text suitable for building a URL
Example The following request sends query "qry" to the server "srv" requiring parameters "a" and "b". Thevalues associated with these parameters are URL-encoded:

status:=httpget("http://srv/qry?a="+urlencode(a)+
"&b="+urlencode(b), "result.txt")

Further information
1. This function converts a text string into a format that is compatible with URL conventions. Theconversion consists in replacing characters with a special meaning by a portable representation basedon the character code. For example, the character "&" is replaced by "%26".
2. Typically, query parameters have to be encoded when sending them via an HTTP GET request, datasent via POST may also have to be encoded.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 201

mmhttp

5.4.2 HTTP server

The mmhttp module integrates an HTTP server that is started using the procedure httpstartsrv andstopped with httpstopsrv (the server is stopped in any case when the execution of the modelterminates). The server behaviour may be changed using these module parameters: http_defportdefines the TCP port on which the server is listening (by default a random port is selected);
http_defpage indicates which page or label the server has to consider when no path is specified in arequest (by default this is "index.html"); http_srvconfig defines the set of request typessupported by the model (for instance only GET and POST) as well as whether a secure server is to bestarted; http_maxreq sets a limit on the number of simultaneous connections that are kept active.
When a secure server (HTTPS) is requested (the server config includes flags HTTP_SSL or
HTTP_SSLONLY) besides the optional basic settings similar to those used for the standard server (like
https_defport) additional parameters have to be set. The server certificate https_srvcrt as wellas its private key https_srvkey are required. Moreover, if the clients are requested to authenticatethemselves (server option HTTP_CLTAUTH), the authorised certificate file https_cacertsmustinclude the expected certificates. Note that these parameters are published by mmssl: this module hasto be used when a secure server is started.
The server runs in the background and notifies the model of incoming connections through events ofclass EVENT_HTTPNEW (please refer to the documentation of mmjobs for further explanation on howto handle events). The value associated with this event is a request number: the connection to theclient is kept open and the model has to reply to the request in order to complete the operation. Anydata associated with the incoming request (query in the case of a GET or data sent via POST or PUT) issaved into a temporary file before the event is sent. URL encoded information is automatically decodedand converted to a format compatible with initialisations from blocks. The function
httppendingmay also be used to retrieve the list of requests currently waiting for a reply.
Request properties can be obtained through a set of dedicated routines: httpreqfrom is the IPaddress of the client; httpreqtype is the request type (i.e. GET, POST, PUT or DELETE);
httpreqheader is the request header; httpreqstat reports the status associated to a requestnumber (for instance whether it is active, or has associated data); httpreqlabel is the label of therequest; httpreqcookies returns the cookies found in the header. The label of a request is its URLafter having removed server reference and the query data (for example, the label returned for
"http://srv/some/path?a=10" is "some/path"); httpreqfile is the name of the temporaryfile holding data associated to the request.
Three different methods can be used to reply to a request: httpreplycode will only return a statuscode associated with a short (error) message; httpreply takes as input a file to be sent back to theclient (with a success status code) and httpreplyjson converts its input parameter into JSON datathat is sent back to the client.
The following example shows how to implement a simple file server. This program expects GET(download a file) and PUT (upload a file) requests sent to the port 2533. The URI of the request isinterpreted as the file name: for example, the URL "http://srv:2533/myfile.txt" could be usedto access file "myfile.txt" stored on host "srv" running this example.

setparam("http_defport", 2533) ! Set server port (2533)
setparam("http_srvconfig",HTTP_GET+HTTP_PUT) ! Only GET and PUT requests
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
httpstartsrv ! Server now running
repeat
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
fname:=httpreqlabel(r) ! File name will be the URI
if httpreqtype(r)=HTTP_GET then ! Client wants to get the file
if bittest(getfstat(fname), SYS_TYP) = SYS_REG then
httpreply(r,fname) ! If available: send it

Fair Isaac Corporation Confidential and Proprietary Information 202

mmhttp

else
httpreplycode(r,404) ! Otherwise: reply "Not Found"
end-if
elif httpreqtype(r)=HTTP_PUT and ! Client wants to put a file

httpreqstat(r)>=2 then ! File must be non-empty
fmove(httpreqfile(r), fname) ! Try to save it
if getsysstat=0 then
httpreplycode(r,204) ! If success: reply "No Content"
else
httpreplycode(r,403) ! Otherwise: reply "Forbidden"
end-if
else
httpreplycode(r,400) ! Empty files are refused

end-if
end-if
until false

In the above example all requests are handled by the same model but it is also possible to dispatch theprocessing of the requests to several submodels running concurrently to improve the efficiency of theservice. To implement a multithreaded server a queue of requests of type reqqueue (See Section 5.1)has to be declared as a global shared entity and each of the submodels must be clones of the servermodel (in order to have access to this shared queue). The master model can then start all of itssubmodels and initialise the HTTP server as in the preceding example but it can move the HTTPrequests it receives to the queue using httpreqpush. The submodels enter a loop starting with a callto httpreqpop (to indicate that they are ready to handle a request) followed by a wait: requestscoming from the master model are notified via an event of class EVENT_HTTPNEW and exposed just asin a single-model server. The general structure of the server looks like the following:
parameters
MASTER=true ! Running the master or a worker?
NBW=5 ! Number of submodels to start
end-parameters

declarations
queue: shared reqqueue ! The shared queue of requests
procedure run_master
procedure run_worker
procedure process_request(req:integer)
end-declarations

if MASTER then
run_master
else
run_worker
end-if

! The master model runs the HTTP server
procedure run_master
declarations
workers:array(1..NBW) of Model
end-declarations
forall(i in 1..NBW) do
load(workers(i)) ! Each worker is a clone of the server
run(workers(i),"MASTER=false")
end-do
setparam("http_defport", 2533) ! Set server port (2533)
setparam("http_srvconfig",HTTP_GET+HTTP_PUT) ! Only GET and PUT requests
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
httpstartsrv ! Server now running
repeat
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
httpreqpush(r,queue) ! Move it to the queue
end-if

Fair Isaac Corporation Confidential and Proprietary Information 203

mmhttp

until false
end-procedure

! Each worker waits for requests sent by the master model and processes them
procedure run_worker
setparam("workdir", getparam("tmpdir")) ! Move to temporary directory
repeat
httpreqpop(queue) ! Model ready
wait ! Wait for an event
ev:=getnextevent
if ev.class=EVENT_HTTPNEW then ! Request pending
r:=integer(ev.value) ! Get request ID
process_request(r) ! Actual processing
end-if
until false
end-procedure

HTTP server functions:
httppending Get a list of requests waiting for a reply. p. 205
httpqueueinfo Get size information of a queue of requests. p. 206
httpreply Reply to an HTTP request with a file. p. 207
httpreplycode Reply to an HTTP request only with a status code. p. 208
httpreplyjson Reply to an HTTP request with JSON data. p. 209
httpreqcookies Retrieve the cookies of a request. p. 210
httpreqfile Get the data file associated to a request. p. 211
httpreqfrom Get the IP address of the sender of a request. p. 212
httpreqheader Get the header associated to a request. p. 213
httpreqlabel Get the label associated to a request. p. 214
httpreqpop Ask for a HTTP request from a queue. p. 215
httpreqpush Move a request to a queue. p. 216
httpreqpushlim Move a request to a queue with restriction. p. 217
httpreqstat Get the status associated with a request. p. 218
httpreqtype Get the type of a request. p. 219
httpstartsrv Start the HTTP server. p. 220
httpstopsrv Stop the HTTP server. p. 221
jsonwrite Generate a JSON representation of a Mosel entity. p. 222
mksetcookie Generate a set-cookie header line. p. 223

Fair Isaac Corporation Confidential and Proprietary Information 204

mmhttp

httppending

Purpose Get a list of requests waiting for a reply.
Synopsis

function httppending(lp:list of integer):integer
function httppending:integer

Argument
lp List of request numbers

Return valueNumber of requests in the waiting queue
Further informationThis function returns in lp the list of requests currently waiting for a reply in the server queue (thecontent of the list is replaced).
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 205

mmhttp

httpqueueinfo

Purpose Get size information of a queue of requests.
Synopsis

function httpqueueinfo(rq:reqqueue, what:integer):integer

Arguments
rq A queue of requests
what What information to retrieve:

0 Number of requests waiting in the queue
1 Number of models having access to the queue
2 Number of models ready for processing a request
3 The result of httpqueueinfo(rq,2)-httpqueueinfo(rq,0)

Return valueRequested information or 0 for an unknown code.
Related topics

httpreqpushlim.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 206

mmhttp

httpreply

Purpose Reply to an HTTP request with a file.
Synopsis

procedure httpreply(reqid:integer)
procedure httpreply(reqid:integer, fname:string)
procedure httpreply(reqid:integer, fname:string|text, xhdr:string|text)

Arguments
reqid Request number
fname Name of the file holding the response data
xhdr Additional headers to include in the response

Further information

1. This procedure replies to the specified request sending the provided file and using 200 (’OK’) as theHTTP status code.
2. The first form of the procedure is the same as providing an empty file name with the second form: inthis case no data is sent to the client and the returned status code becomes 204 (’No Content’).
3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part ofthe result.

Related topics
httpreplycode, httpreplyjson, mksetcookie.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 207

mmhttp

httpreplycode

Purpose Reply to an HTTP request only with a status code.
Synopsis

procedure httpreplycode(reqid:integer, code:integer)
procedure httpreplycode(reqid:integer, code:integer, msg:string)
procedure httpreplycode(reqid:integer, code:integer, msg:string,

xhdr:string|text)

Arguments
reqid Request number
code HTTP status code to be returned (see Section 5.3 for a list of predefined status codeconstants)
msg Explanation text
xhdr Additional headers to include in the response

Further information
1. This procedure replies to the specified request using the provided code that should be a valid HTTPstatus (i.e. 3 digit number).
2. Unless the provided code is 204 (No Content) a basic HTML page is generated as the data associatedto the response including the standard reason (e.g. Bad Request for code 400) as well as the givenexplanation text.
3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part ofthe result.

Related topics
httpreply, httpreplyjson, mksetcookie, Section 5.3.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 208

mmhttp

httpreplyjson

Purpose Reply to an HTTP request with JSON data.
Synopsis

procedure httpreplyjson(reqid:integer)
procedure httpreplyjson(reqid:integer, mosobj:⁎)

Arguments
reqid Request number
mosobj Mosel object to use for the reply

Further information
1. This procedure replies to the specified request by sending the provided Mosel object encoded as aJSON object.
2. When the first form is used, the returned data is the JSON constant null.
3. If the specified request is of type HEAD (see httphead) this procedure sends only the header part ofthe result.

Related topics
httpreply, httpreplycode.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 209

mmhttp

httpreqcookies

Purpose Retrieve the cookies of a request.
Synopsis

procedure httpreqcookies(reqid:integer, cook:array(string) of text)

Arguments
reqid Request number
cook An array where cookie values are returned (indiced by the names of the cookies)

Further informationThis procedure decodes the header "Cookie" of a request to populate the provided array.
Related topics

httpreqfrom, httpreqlabel, httpreqstat, httpreqtype, httpreqheader, httpreqfile,
mksetcookie.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 210

mmhttp

httpreqfile

Purpose Get the data file associated to a request.
Synopsis

function httpreqfile(reqid:integer):string

Argument
reqid Request number

Return valueFull path to the data file
Further information

1. Each request is associated with a data file located in the temporary directory. This function returns thefull path to this file.
2. The data file is specific to the given request number and can be used (for instance, to store theresponse to the request) even if no data is associated with the request.

Related topics
httpreqfrom, httpreqlabel, httpreqstat, httpreqtype, httpreqheader,
httpreqcookies.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 211

mmhttp

httpreqfrom

Purpose Get the IP address of the sender of a request.
Synopsis

function httpreqfrom(reqid:integer):text

Argument
reqid Request number

Return valueIP of the sender of the request as a text string
Related topics

httpreqtype, httpreqfile, httpreqstat, httpreqlabel, httpreqheader,
httpreqcookies.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 212

mmhttp

httpreqheader

Purpose Get the header associated to a request.
Synopsis

function httpreqheader(reqid:integer):text

Argument
reqid Request number

Return valueHeader of the request
Further informationThe header of the request is a block of text consisting of lines of the form fieldname:value (e.g.

Content-Type: application/json).
Related topics

httpreqfrom, httpreqfile, httpreqstat, httpreqlabel, httpreqtype, httpreqcookies.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 213

mmhttp

httpreqlabel

Purpose Get the label associated to a request.
Synopsis

function httpreqlabel(reqid:integer):text

Argument
reqid Request number

Return valueLabel of the request
Further information

1. The label of the GET or DELETE request is the URL after having removed server reference and querydata (for instance the label returned for "http://srv/some/path?a=10" is "some/path"). Anyquery data is automatically saved into the associated request file (httpreqfile) in a formatcompatible with initialisations blocks. When such a file has been created the request status(httpreqstat) has value 3.
2. In the case of a POST or PUT request the returned value also includes the undecoded data.

Related topics
httpreqfrom, httpreqfile, httpreqstat, httpreqtype, httpreqheader, httpreqcookies.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 214

mmhttp

httpreqpop

Purpose Ask for a HTTP request from a queue.
Synopsis

procedure httpreqpop(rq:reqqueue)

Argument
rq A queue of requests

Further information
1. This procedure has to be used by a model to notify the manager of a queue of requests that it is readyfor processing an HTTP request. After this call, as soon as a new request is available an event of class
EVENT_HTTPNEW is sent to the model that can handle it as if it was running the HTTP server.

2. The model is flagged as available if no request is waiting in the queue. This flag is cleared when arequest is passed to the model: it is therefore required to call the procedure again after a request hasbeen processed.
Related topics

httpreqpushlim, httpreqpush, httpqueueinfo.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 215

mmhttp

httpreqpush

Purpose Move a request to a queue.
Synopsis

procedure httpreqpush(reqid:integer,rq:reqqueue)

Arguments
reqid Request number or -1
rq A queue of requests

Further information
1. This routine moves the selected request to a queue of requests in order to make it available to otherserver models. The request can no longer be accessed by the calling model after it has been passed tothis procedure.
2. If the provided request is -1 this routine only clears the availability flag of the model (i.e. it is no longerready to process a request).

Related topics
httpreqpushlim, httpreqpop, httpqueueinfo.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 216

mmhttp

httpreqpushlim

Purpose Move a request to a queue with restriction.
Synopsis

function httpreqpushlim(reqid:integer,rq:reqqueue,lim:integer):boolean

Arguments
reqid Request number or -1
rq A queue of requests
lim Maximum number of waiting requests or -1 for no limit

Return value
true if the operation succeeded, false otherwise.

Further information
1. This function moves the selected request to a queue of requests in order to make it available to otherserver models. The operation is canceled if the current number of elements in the queue exceeds thegiven limit lim and false is returned. Otherwise, true is returned and the request can no longer beaccessed by the calling model.
2. If the provided request is -1 this routine only clears the availability flag of the model (i.e. it is no longerready to process a request). In this case the return value indicates whether the flag was reset or not:with a false result the flag was already cleared before the function call.

Related topics
httpreqpush, httpreqpop, httpqueueinfo.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 217

mmhttp

httpreqstat

Purpose Get the status associated with a request.
Synopsis

function httpreqstat(reqid:integer):integer

Argument
reqid Request number

Return valueRequest status:
<0 Invalid request number
0 Request not active
1 No associated data
2 Raw data available
3 ’initialisations from’ data available

Further information

1. If the return value is 2 or 3 a data file is available (see httpreqfile). If this function returns 3 then thefile can be read using an initialisations from block: data that was originally URL-encoded has beendecoded by the server and stored using Mosel’s initialisations format.
2. The status 3 will be produced when the request is of type GET or DELETE and has associated data.This will also be the case with a query of type POST or DELETE if the content type is

"application/x-www-form-urlencoded".
Related topics

httpreqfrom, httpreqfile, httpreqlabel, httpreqtype, httpreqheader,
httpreqcookies.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 218

mmhttp

httpreqtype

Purpose Get the type of a request.
Synopsis

function httpreqtype(reqid:integer):integer

Argument
reqid Request number

Return valueRequest type:
<0 Invalid request number
0 Request not active
HTTP_GET GET (1)
HTTP_POST POST (2)
HTTP_PUT PUT (4)
HTTP_DELETE DELETE (8)
HTTP_HEAD HEAD (128)

Related topics
httpreqfrom, httpreqfile, httpreqstat, httpreqlabel, httpreqheader,
httpreqcookies.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 219

mmhttp

httpstartsrv

Purpose Start the HTTP server.
Synopsis

procedure httpstartsrv
procedure httpstartsrv(srvdir:string, moslab:string)

Arguments
srvdir Server directory
moslab Label identifying commands

Further information
1. The server takes its configuration from the parameters http_defport, http_srvconfig,
http_listen, http_maxreq and http_defpage.

2. Only one server can be run by a model: if the server is already running, no operation is performed.
3. The server processes only authorised request types (see http_srvconfig): the model is notified ofevery valid request by an event of class EVENT_HTTPNEW. Malformed or unauthorised requests areautomatically rejected.
4. When the function is used with arguments, srvdir designates a directory: mmhttp will act as a fileserver for the files stored in this directory (via GET queries). The argument moslab is a prefix thatidentifies requests that are to be handled by the model.
5. An IO error is raised if the server cannot start because of a network setting (typically the TCP port isalready used or requires higher privileges).
6. If the parameter http_startwb is set to true a web browser (as defined by http_browser) islaunched just after the server has started.

Related topics
httpstopsrv.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 220

mmhttp

httpstopsrv

Purpose Stop the HTTP server.
Synopsis

procedure httpstopsrv

Further information
1. This procedure has no effect if no server is running.
2. During its shutting down procedure the server closes all waiting requests (with a response code 410)such that it is no longer possible for the model to reply to these requests (however, eventscorresponding to these requests may still be in the event queue).

Related topics
httpstartsrv.

Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 221

mmhttp

jsonwrite

Purpose Generate a JSON representation of a Mosel entity.
Synopsis

procedure jsonwrite(fname:string, mosobj:⁎)

Arguments
fname Name of a file to store the generated text
mosobj A Mosel object

Further informationThis procedure generates a JSON representation of a Mosel entity. If the file name is an empty string,the generated string is sent to the current output stream (by default this is the console).
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 222

mmhttp

mksetcookie

Purpose Generate a set-cookie header line.
Synopsis

function mksetcookie(name:string, value:text, domain:text, path:text,
exp:integer):text

Arguments
name Cookie name
value Associated value
domain Domain of the cookie: if it does not start with a dot the domain is interpreted as a host nameand the cookie is a host only cookie
path Path in the domain
exp Expiration time: with a negative value the cookie will be deleted; with 0 the cookie neverexpires (session cookie) and a positive value is interpreted as an amount of time in secondsafter which the cookie will expire

Return valueA text string of the form "Set-Cookie: name=value\n"

Further informationThis function may be used to send cookies to a client by generating a set-cookie header that can bedirectly appended to the additional headers string of httpreply or httpreplycode. The returnedstring is terminated by an end of line.
Related topics

httpreply, httpreplycode, httpreqcookies.
Module mmhttp

Fair Isaac Corporation Confidential and Proprietary Information 223

mmhttp

5.5 I/O drivers

The mmhttp module publishes the url driver with which a URL can be used as a file. Thanks to thisfacility it is possible to use files stored on an HTTP enabled file server just as if they were located onthe local file system. For example, the following command downloads and executes the Mosel file
"hello.mos" stored on the web server mysrv:

> mosel exec mmhttp.url:http://mysrv/hello.mos

5.5.1 Driver url
url:URL

The file name for this driver is a URL. Currently only HTTP URLs are supported (i.e. the name mustbegin with "http://"). The behaviour of the driver depends on the file operation:
reading A GET request is sent to the specified URL at the time of opening the file. The following

read operations are executed directly from the result stream generated by the server.
writing The written data is first saved into a temporary file and then sent to the specified URLvia a PUT request when the file is closed.
deleting When deleting a file (e.g., using fdelete) through this driver a DELETE request is sentto the specified URL.

Fair Isaac Corporation Confidential and Proprietary Information 224

CHAPTER 6

mmjava

The mmjava module for Mosel is intended for users who integrate their Mosel models into Javaapplications. This module can only be used from a Java enabled application.

6.1 I/O drivers

This module provides the java and jraw IO drivers. The first one can be used to link a Mosel output(input) stream to a Java OutputStream (InputStream) or a Java ByteBuffer. The second driver isa modified version of the raw driver suitable for Java: instead of an address, this driver takes as input areference to an object.
For both drivers, file names are replaced by references to objects. These references are of two kinds:direct references to public static objects (e.g. "java.lang.Sytem.out") and names defined usingthe XPRM.bindmethod. The second technique will be used with non static objects: the method
XPRM.bind establishes a link between a name and an object. This name can then be used as anobject reference for mmjava drivers.
When using Java object from Mosel, it is important to make sure objects and related fields can beaccessed: in particular the class and its fields must be public.

6.1.1 Driver java
java:[rewind,]static object|named object

With this driver a Java stream (OutputStream or InputStream) as well as a ByteBuffer can beused in place of a file in Mosel. This facility is specially useful for redirecting default Mosel streams toJava objects. Note that the Mosel Java interface uses this driver for redirecting default streams (in, out,and error) to the corresponding Java streams (System.in, System.out and System.err).When the file is open for reading and the referenced object is a ByteBuffer, the option rewind can beused in order to rewind the buffer before starting to read.
Example:

mosel=new XPRM();
mosel.bind("out", myout); /⁎ Associate 'myout' object with string "out" ⁎/

/⁎ Redirect default output to 'myout' ⁎/
mosel.setDefaultStream(XPRM.F_OUTPUT|XPRM.F_LINBUF, "java:out")

/⁎ Redirect error stream to Java output stream ⁎/
mosel.setDefaultStream(XPRM.F_ERROR, "java:java.lang.System.out"

If the driver is used in an initializations from block (resp. initializations to block) andthe provided object implements interface XPRMInitializationFrom (resp.
XPRMInitializationTo) then the corresponding Java methods are used to process the initialization(refer to the Mosel Library JavaDoc for further explanation).

Fair Isaac Corporation Confidential and Proprietary Information 225

mmjava

This driver supports the delete operation: deleting a java file name from the Mosel code (e.g.
fdelete("java:out")) corresponds to executing unbind on the corresponding identifier. Theoperator first tries to unbind the identifier associated to the running model (XPRMModel.unbind) andthen uses the global reference (XPRM.unbind) if the first attempt fails.

6.1.2 Driver jraw
jraw:[noindex,all]

The driver can only be used in ‘initializations’ blocks. In the opening part of the block, no file name hasto be provided, but general options can be stated at this point: they will be applied to all labels. Twooptions are supported:
all forces output of all cells of an array even if it is dynamic (by default only existing cellsare considered).
noindex indicates that only data (no indices) are transfered between the Java objects and Mosel.By default, the first fields of each object are interpreted as index values for the array tobe transfered. This behavior is changed by this option.
In the block, each label entry is understood as an object reference to use for the actual processing.Note that, before the object reference, one can add further options separated by comas, that areeffective to the particular entry.
If the Model object to be initialized (or saved) is a scalar or an array with option noindex, the driverexpects a Java object of a corresponding type (i.e. same basic type and scalar or one dimension array).If the option noindex is not used and the Mosel object is an array, the label must specify which fieldsof the class have to be taken into account for the mapping. This is indicated by a list of field namesseparated by commas and noted in brackets (e.g. "myobj(fi1,fi2,fi3)").
In the following example the jraw driver is used to initialize an array of reals, a, and an array of integers,
ia, with data held in the Java application that executes the model.
Java part:

public class MyData { /⁎ A class to store an `array(string, int) of real' ⁎/
public String s; public int r; public double v;
MyData(String i1, int i2, double v0) { s=i1; r=i2; v=v0; }
}
...
MyData[] data;
int[] intarr;
...
mosel=new XPRM();
mosel.bind("data", data); /⁎ Associate `data' object with string "data" ⁎/
mosel.bind("ia", intarr); /⁎ Associate `intarr' object with string "ia" ⁎/

Mosel part:
declarations
a:array(string, range) of real
ia:array(range) of integer
end-declarations
...
initializations from "jraw:"
aa as "data(s,r,v)" ! Initialize `aa' with fields s,r,v of object `data'
ia as "noindex,ia" ! Initialize `ia' with array `ia'; no index (only values)
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 226

CHAPTER 7

mmjobs

Thanks to this module it is possible to load several models in memory and execute them concurrently.In addition, other instances of Mosel might be started (either locally to the running system or remotelyon another machine through the network) and used to run additional models controlled by the modelthat has started them. This means that the computing capacity of the running model is not restricted tothe executing process. A general synchronization mechanism based on event queues as well as twospecialized IO drivers are also provided in order to ease the implementation of parallel algorithms inMosel.To use this module, the following line must be included in the header of the Mosel model file:
uses 'mmjobs'

7.1 Example

The following example shows how to compile, load, and then run a model from another model. Afterhaving started the execution, it waits for 60 seconds before stopping the secondary model if the latterhas not yet finished.
model "mmjobs example"
uses "mmjobs","mmsystem"

declarations
mymod: Model
event: Event
end-declarations

! Compile 'mymod.mos' to memory
if compile("","mymod.mos","shmem:bim")<>0
then
exit(1)
end-if

load(mymod,"shmem:bim") ! Load bim file from memory...
fdelete("shmem:bim") ! ... and release the memory block

! Disable model output
setdefstream(mymod,"","null:","null:")
run(mymod) ! Start execution and
wait(60) ! wait 1 min for an event

if waitexpired then ! No event has been sent...
writeln("Model too long: stopping it!")
stop(mymod) ! ... stop the model then wait
wait
end-if

! An event is available: model finished
event:=getnextevent

Fair Isaac Corporation Confidential and Proprietary Information 227

mmjobs

writeln("Exit status: ", getvalue(event))
writeln("Exit code : ", getexitcode(mymod))

unload(mymod)
end-model

7.2 Data sharing between models

A model may share data with its submodels under certain conditions: any initialisation performed bythe master model on these shared entities is available to the submodels at their startup and anymodification carried out by both the master model and its submodels are effective for all models.
Entities to be shared must be global and identified by the declaration qualifier shared (they do notneed to be public). Only scalars of basic types and native types supporting sharing, as well as sets, listsand arrays of basic types can be shared. For the arrays, index sets must be either shared or constantsof basic types, shared hashmap arrays cannot have more than 1 dimension.

declarations
sci: shared integer
ss: shared set of string
sa: shared dynamic array(ss,1..2) of real
end-declarations

Data sharing is possible only between a model (the master model) and its clones (i.e. submodelsloaded from the running model see load). The master model can manipulate its shared entities justlike any other data structure as long as no compatible submodel is running. However, as soon as asubmodel using shared data is started the sharing mode is enabled and access to shared entities isaltered as follows: sets and lists behave as if they were constant, the structure of arrays is locked (i.e. itis no longer possible to add or remove cells of sparse arrays). Normal access to shared entities isrestored when all submodels using them are reset (reset) or unloaded (unload). The current statusof the sharing mode can be obtained from the sharingstatus control parameter (getparam).
model "shared example"
uses 'mmjobs'

declarations
a: shared array(1..3) of integer
m: Model
end-declarations

if getparam("sharingstatus")<>2 then
! in master model ('a' is empty)

forall(i in 1..3) a(i):=i ! initialise 'a'
writeln("master:",a) ! output: master:[1,2,3]
load(m) ! clone master then run it
run(m)
waitforend(m) ! wait for its termination
writeln("aftersub:",a) ! output: aftersub:[2,3,4]
else

! in submodel ('a' is already initialised)
writeln("sub:",a) ! output: sub:[1,2,3]
forall(i in 1..3) a(i)+=1 ! modify 'a'
end-if

end-model

7.3 Control parameters

The following parameters are defined by mmjobs:

Fair Isaac Corporation Confidential and Proprietary Information 228

mmjobs

conntmpl Default connection template. p. 229
defaultnode Default node number used by driver ’rmt:’. p. 229
fsrvdelay Maximum wait time for findxsrvs. p. 231
fsrvnbiter Number of iterations performed by findxsrvs. p. 231
fsrvport UDP port used by findxsrvs. p. 230
jobid ID of the current model. p. 230
keepalive Keepalive timer setting. p. 230
nodenumber ID of the current instance. p. 229
parentnumber ID of the parent of the current instance. p. 230
sshcmd SSH command for xssh driver. p. 231

conntmpl

Description The connection template is used by the connect function to generate a valid hostspecification from an identifier (typically corresponding to a host name). The generation isperformed by replacing in the template each occurrence of the %hmarker by the originalidentifier.
Type String, read/write
Values A string containing "%h" at least once
Default value "xsrv:%h"
Affects routines connect.
Module mmjobs

nodenumber

Description The ID (or node number) of the current instance as returned by the function getid. The ID ofthe initial (root) instance is 0
Type Integer, read only
Module mmjobs

defaultnode

Description This parameter is used by the IO driver "rmt:" when it is not given any node reference (seeSection 7.5.6). By default its value is 0 (the initial node) but it may be changed by a parentmodel using the instance parameter defaultnode (see Annex B).
Type Integer, read only
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 229

mmjobs

jobid

Description The ID of the current model as returned by the function getid. The ID of the initial (root)model is 0
Type Integer, read only
Module mmjobs

parentnumber

Description The ID (or node number) of the parent (i.e., creator) of the current instance. The ID of theinitial instance is 0 and its parent is -1.
Type Integer, read only
Module mmjobs

keepalive

Description When using a Mosel remote instance (see connect), the server sends to its client a keepalivemessage at fixed interval. A connection is considered broken if more than
maxfail*interval seconds have elapsed since the last message received. Setting 0 for
maxfail disables this mechanism. This parameter can only be changed if no remote Moselinstance is connected.

Type String, read/write
Values A string of the form "maxfail/interval"

Default value "2/60"
Module mmjobs

fsrvport

Description This parameter defines the UDP port to be used by the findxsrvs routine for its broadcastmessages.
Type Integer, read/write
Default value 2514
Affects routines findxsrvs.
See also fsrvnbiter, fsrvdelay.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 230

mmjobs

fsrvdelay

Description After it has sent its broadcast message, the findxsrvs routine waits for up to fsrvdelaymilliseconds for answers before aborting.
Type Integer, read/write
Default value 1000
Affects routines findxsrvs.
See also fsrvnbiter, fsrvport.
Module mmjobs

fsrvnbiter

Description This control parameter specifies the number of times the procedure findxsrvs sends abroadcast message.
Type Integer, read/write
Default value 1
Affects routines findxsrvs.
See also fsrvdelay, fsrvport.
Module mmjobs

sshcmd

Description When connecting to a remote host via the "xssh:" I/O driver, an external program is used toestablish the SSH tunnel: this parameter specifies which program to use. The arguments ofthe program are identified with the symbol "%h" for the target host, "%p" for the TCP portand "%f" for the known host file (which is "-" when no file is provided). For instance thefollowing string will select ssh as the program to handle the secure tunnel: "ssh -q -p %p
-s %h xprmsrv".
Note that this control parameter is read-only when Mosel is running under restriction NoExec(see Section 1.3.4).

Type String, read/write
Affects routines connect.
Values A string including at least "%h"
Default value "xprmsrv -sshclt %h -p %p -kh %f"
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 231

mmjobs

7.4 Procedures and functions

7.4.1 Mosel instance management

The type Mosel is used to reference a Mosel instance. Before an instance can execute commands (likeloading or running a model), it must be connected. Connecting an instance consists in starting anadditional operating system process running Mosel: this is done by the connect function. To improvereadability of the model source, one can use host aliases (defined by means of the sethostaliasroutine) to designate connection targets. Once work with a particular instance has been finished, theinstance can be disconnected (disconnect): this terminates the process running Mosel (and releasesall associated resources).
clearaliases Delete all defined aliases. p. 235
connect Connect a Mosel instance. p. 233
disconnect Disconnect a Mosel instance. p. 234
findxsrvs Search xprmsrv servers on the local network. p. 240
getaliases Retrieve the list of all defined aliases. p. 238
getbanner Get the banner displayed by an instance on startup. p. 236
gethostalias Get the value of a host alias. p. 237
sethostalias Define a host alias. p. 239

Fair Isaac Corporation Confidential and Proprietary Information 232

mmjobs

connect

Purpose Connect a Mosel instance.
Synopsis

function connect(mi:Mosel, host:string|text):integer

Arguments
mi The instance to connect
host A host specification

Return value
0 if successful, a positive value otherwise

Example Start instance inst1 on a separate process:
r:=connect(ins1,"")

With default settings, the 2 following statements are equivalent:
r:=connect(ins2,"ariane")
r:=connect(ins3,"xsrv:ariane")

Further information
1. Any Mosel instance has to be connected before it can be used for executing commands.
2. If the host provided is an empty string (""), it is replaced by "rcmd:" (instance started on the samemachine in a separate process). Otherwise, the string host is searched in the list of defined aliases(see sethostalias) and, if found, it is replaced by the associated text. If the resulting specificationdoes not contain any IO driver reference, a valid specification is generated using the current connectiontemplate (see conntmpl): each occurrence of the %hmarker in the template is replaced by the value of

host.
3. The host argument (or the string resulting from the transformations described above) is expected tobe an extended file name using an IO driver the task of which is to start a process running the moselprogram in remote mode and create/manage the communication streams between the processes. The

mmjobs module provides three drivers supporting this service (see Section 7.5): "rcmd:" to start aMosel instance on a separate process on the same machine, "xsrv:" to start a Mosel instance on ahost running the Mosel Remote Launcher (see Section 7.6) and "xssh:" to use a secure connectionwith an xprmsrv server.
Related topics

sethostalias, findxsrvs, disconnect, Driver rcmd, Driver xsrv, Driver xssh
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 233

mmjobs

disconnect

Purpose Disconnect a Mosel instance.
Synopsis

procedure disconnect(mi:Mosel)

Argument
mi The instance to disconnect

Further informationThis routine should be used to terminate a Mosel instance started by connect.
Related topics

connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 234

mmjobs

clearaliases

Purpose Delete all defined aliases.
Synopsis

procedure clearaliases

Further informationThis routine deletes all host aliases previously defined by sethostalias.
Related topics

sethostalias,getaliases,gethostalias,connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 235

mmjobs

getbanner

Purpose Get the banner displayed by an instance on startup.
Synopsis

function getbanner(mi:Mosel):string

Argument
mi A connected instance

Return valueThe text displayed by Mosel when it started the instance
Further informationWhen a new instance is started, the text displayed by Mosel is saved (this includes typically copyrightnotice and version information): this function returns this startup banner.
Related topics

connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 236

mmjobs

gethostalias

Purpose Get the value of a host alias.
Synopsis

function gethostalias(alias:string):string

Argument
alias Internal identifier

Return valueThe host specification corresponding to the alias or an empty string if the alias is not defined
Related topics

sethostalias,clearaliases,getaliases, connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 237

mmjobs

getaliases

Purpose Retrieve the list of all defined aliases.
Synopsis

procedure getaliases(aliases:list of string)

Argument
aliases A list to return the aliases

Example The following procedure displays all aliases:
procedure showaliases
declarations
l:list of string

end-declarations

getaliases(l)
forall(h in l)
writeln(h,"->",gethostalias(h))

end-procedure

Further informationThis procedure resets its aliases argument.
Related topics

sethostalias,clearaliases,gethostalias, connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 238

mmjobs

sethostalias

Purpose Define a host alias.
Synopsis

procedure sethostalias(alias:string,host:string)

Arguments
alias Internal identifier
host Corresponding host specification

Example The first statement defines "localhost" as a separate process on the same machine and "win" fora remote access to the machine "winpc":
sethostalias("localhost","rcmd:")
sethostalias("win","xsrv:winpc")

Further informationHost aliases are used by connect to start Mosel instances. If the argument host is the empty string,the corresponding alias is removed from the list (or nothing is done if the alias was not defined before).
Related topics

gethostalias,clearaliases,getaliases, connect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 239

mmjobs

findxsrvs

Purpose Search xprmsrv servers on the local network.
Synopsis

procedure findxsrvs(group:integer,maxip:integer,addrs:set of string)

Arguments
group Group number of the request
maxip Maximum number of addresses to collect
addrs Set to store the addresses found

Further information
1. This procedure sends a broadcast message over the local network and waits for replies from running
xprmsrv servers (see Section 7.6). A given server will reply only to selected group numbers: the groupargument specifies this property.

2. The IP addresses of the hosts having replied to the request are returned via the last argument of theprocedure in the form of strings. The maximum size of this set is fixed by maxip. Note that theprovided set is not cleared: if it already contains maxip elements the routine returns immediately.
3. Control parameters fsrvnbiter, fsrvdelay and fsrvport can be used to tune the behaviour of

findxsrvs. This routine repeats fsrvnbiter times the following procedure: it sends a broadcastmessage to the fsrvport UDP port and then waits for up to fsrvdelaymilliseconds for replies.
Related topics

connect, disconnect.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 240

mmjobs

7.4.2 Model management

The type Model is used to reference a Mosel model. This section describes the procedures andfunctions available for model management: compilation of source model files, loading of bim files,execution and retrieval of model information. Note that before it can be used, a model has to beinitialized by loading a bim file (load).
compile Compile a source model. p. 242
detach Detach the current model from its parent node. p. 244
getannidents Get model identitifiers for which annotations are available. p. 265
getannotations Get model annotations associated to a given symbol. p. 266
getdsoprop, getdsopropnum Get module information. p. 253
getexitcode Get the exit code of a model. p. 261
getgid Get the group ID of a model. p. 254
getid Get the ID of a model or Mosel instance. p. 255
getmodprop, getmodpropnum Get model information. p. 256
getnode Get the ID (node number) of the Mosel instance of a model. p. 257
getrmtid Get the ID of a model on a remote instance. p. 258
getstatus Get the status of a model. p. 259
getuid Get the user ID of a model. p. 260
load Load a Binary Model file. p. 245
reset Reset a model. p. 263
resetmodpar Remove a parameter from a model parameter string. p. 248
run Run a model. p. 252
setcontrol Set an instance control parameter on a remote instance. p. 249
setdefstream Set default input/output streams of a model. p. 247
setmodpar Add or change the value of a parameter in a model parameter string. p. 250
setworkdir Set the initial working directory of a model. p. 251
stop Stop a running model. p. 262
unload Unload a model. p. 264

Fair Isaac Corporation Confidential and Proprietary Information 241

mmjobs

compile

Purpose Compile a source model.
Synopsis

function compile(src:string|text):integer
function compile(opt:string|text, src:string|text):integer
function compile(opt:string|text, src:string|text, dst:

string|text):integer
function compile(opt:string|text, src:string|text, dst: string|text,

com:string|text, pass:string|text, pke:string|text,
kls:string|text):integer

function compile(mi:Mosel, opt:string|text, src:string|text, dst:
string|text):integer

function compile(mi:Mosel, opt:string|text, src:string|text, dst:
string|text, com:string|text, pass:string|text, pke:string|text,
kls:string|text):integer

Arguments
opt Compilation options (may be separated by spaces or ’-’ symbols):

"g" Include debugging information
"G" Include tracing information
"s" Strip symbols
"p" parse only: stop after the syntax analysis of the source file, do not compile (no filegenerated)
"bx=prefix" Package prefix list (can be quoted with single or double quotes)
"ix=prefix" Include source prefix (can be quoted with single or double quotes)
"S" Sign the bim file
"E" Encrypt the bim file
"F" The argument pass is a file name (not the password itself)
"V" Accept to load signed packages only if their signature can be verified
"T" Accept to load only signed packages with a valid signature

src Source file name
dst Destination file name
com Comment to store in the bim file
mi The Mosel instance to perform the compilation
pass Password or password file (for encryption with a password)
pke Private key file (for bim file signing)
kls File of public keys (for encryption with public keys)

Return value
0 Function executed successfully
1 Parsing phase has failed (syntax error or file access error)
2 Error in compilation phase (a semantic error has been detected)
3 Error writing the output file
4 License error (compiler not authorized)

Example Compile the local file "src.mos" stored on the current directory using the instance inst1 and storethe resulting BIM file on the current directory of this instance:
r:=compile(ins1,"","rmt:src.mos","dst.bim")

Fair Isaac Corporation Confidential and Proprietary Information 242

mmjobs

Further information

1. This function compiles a given model source file into a binary model file (bim file) that is required asinput to function load for executing the model.
2. If no destination file name is provided, the output file takes the same name as the source file with theextension .bim.
3. When sending a compilation request to a separate Mosel instance, it is important to keep in mind thatthe operation is performed in the environment of this instance (in particular its current workingdirectory) and file names should be specified appropriately (the rmt: IO driver can be particularlyhelpful in this context).
4. The argument kls is a list of public key files (i.e. each line of the file is a key file name): whenencrypting a file, the encryption is performed for each of the listed public keys such that the bim file canbe decrypted by any of the corresponding private keys.
5. When prefixes provided via bx or ix are quoted with double quotes, backslashes are interpreted suchthat special characters can be included in the string. It is therefore required to double this symbol whenit has to be included (e.g. ’bx="C:\\mydir"’).
6. If the option bx is not stated, the current value of the control parameter bimprefix will be usedinstead during the compilation for loading packages (See section 2.3.1).

Related topics
load.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 243

mmjobs

detach

Purpose Detach the current model from its parent node.
Synopsis

procedure detach

Further information
1. This procedure detaches the model calling it from its parent model such that it becomes a mastermodel running on a root node. As a consequence the connection to its parent model is closed, itsmodel number is set to 0 and the node number of its instance becomes 0 (root node). The parent nodeis notified of the detachment by means of a termination event for the model which gets the status
RT_DETACHED.

2. The operation is possible only if the hosting intance is running exclusively this model (i.e. no submodelis loaded at the time of calling detach) and no file is open between the hosting instance or the modeland its parent (in particular the default streams have to be set to "null:").
3. After a model is detached, it can no longer communicate with its parent using events or access filesthrough the "rmt:" driver. The HTTP protocol (available through the module mmhttp) might be usedas an alternative to the facilities provided by mmjobs in this case.
4. The instance running the detached model terminates automatically after the end of execution of themodel.
5. This routine can only be called by a submodel running on a remote instance. It has no effect if used bya master model.

Related topics
getstatus, run.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 244

mmjobs

load

Purpose Load a Binary Model file.
Synopsis

procedure load(mo:Model)
procedure load(mo:Model, bimf:string|text)
procedure load(mo:Model, mr:Model)
procedure load(mo:Model, bimf:string|text, opt:string|text,

pass:string|text, pke:string|text, kls:string|text)
procedure load(mi:Mosel, mo:Model, bimf:string|text)
procedure load(mi:Mosel, mo:Model, bimf:string|text, opt:string|text,

pass:string|text, pke:string|text, kls:string|text)

Arguments
mo Model object to be initialized
mr Model object used a reference
bimf Bim file name
mi The instance on which the model will be run
opt Loading options (may be separated by spaces or ’-’ symbols):

"c" Check signature (if the file is signed)
"V" If the file is signed, load it only if the signature is valid
"T" Load only signed files with a valid signature
"F" The argument pass is a file name (not the password itself)
"l" Do not load required packages

pass Password or password file (for encrypted bim files)
pke Private key file (for encrypted bim files)
kls File of public keys

Further information
1. This procedure initializes the model mo with the bim file bimf. If mo has already been initialized, themodel it references is unloaded before trying to load the new file (note that this operations fails if themodel is running). If the file bimf cannot be accessed or one of the required modules cannot be loaded,the procedure generates an IO error (which may be intercepted if the control parameter ioctrl is true).
2. When loading a model from a separate Mosel instance, it is important to keep in mind that the operationis performed in the environment of this instance (in particular its current working directory) and filenames should be specified appropriately (the rmt: IO driver can be particularly helpful in this context).
3. The argument kls is a list of public key files (i.e. each line of the file is a key file name): when a signedbim file is loaded, its signature is checked with the keys listed in this file. If this argument is notspecified, the signing key is searched in the default public keys directory located at

getparam("ssl_dir")+"/pubkeys".
4. Packages required for the loading of a model are located using the list of prefixes defined by the controlparameter bimprefix (See section 2.3.1).
5. When invoked with a single argument this routine creates a new model from the one being executed(without using any bim file): this clone can access data shared by its master model (see Section 7.2).Similarly, when a model is used in place of a bim file the new generated model is a copy of the providedreference model. Note that all copies of a given model share the constant information (like constantstrings or the code segment) of the reference model. As a consequence, during a debugging session,setting a breakpoint in a model loaded this way also installs the same breakpoint in all other modelscoming from the same source (including the reference model).

Fair Isaac Corporation Confidential and Proprietary Information 245

mmjobs

Related topics
compile, setdefstream, run, unload.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 246

mmjobs

setdefstream

Purpose Set default input/output streams of a model.
Synopsis

procedure setdefstream(mo:Model, wmd:integer, fname:string)
procedure setdefstream(mo:Model, input:string, output:string, error:string)
procedure setdefstream(mi:Mosel, wmd:integer, fname:string)
procedure setdefstream(mi:Mosel, input:string, output:string, error:string)

Arguments
mo A Model
mi A Mosel instance
wmd Stream to set. Possible values:

F_INPUT Default input stream
F_OUTPUT Default output stream
F_ERROR Default error stream
F_LINBUF Use line buffering

fname Extended file name to be used for the stream.
input Extended file name to be used for the input stream.
output Extended file name to be used for the output stream.
error Extended file name to be used for the error stream.

Further information
1. This function sets default IO streams to be used by a model. Model streams can be changed only whenthe model is not running. Each stream is associated to an extended file name (i.e. IO drivers can beused). For output streams, F_LINBUFmay be specified (e.g.F_OUTPUT+F_LINBUF) in order to enableline buffering for the corresponding stream (the error stream is always open using line buffering).
2. For input and output streams, the filename is stored and streams are actually open when execution ofthe model starts: in case of an invalid file name, the error is not reported by this function. The errorstream is immediately opened so in the case of an invalid file name it is detected by this function.
3. Using an empty string as the file name implies resetting to the original default stream.
4. When applied to a Mosel instance, this routine sets the default streams for this instance. Thesestreams can only be changed if the instance has not yet loaded any model.
5. When using this routine on a separate Mosel instance or on a model loaded on a separate Moselinstance, it is important to keep in mind that the operation is performed in the environment of thisinstance (in particular its current working directory) and file names should be specified appropriately(the rmt: IO driver can be particularly helpful in this context).

Related topics
getfname.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 247

mmjobs

resetmodpar

Purpose Remove a parameter from a model parameter string.
Synopsis

procedure resetmodpar(plist:text, pname:string|text)

Arguments
plist Text object storing the parameters
pname Parameter name

Further information
1. This function helps in building the model parameter string to be passed to the run procedure byremoving a parameter definition (previously set with setmodpar) from a parameter string. The plisttext is left unchanged if the requested parameter cannot be found.
2. It is expected that the provided text string is either empty or composed of a list of assignments of theform "pname=val,pname2=val2...".

Related topics
setmodpar, run.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 248

mmjobs

setcontrol

Purpose Set an instance control parameter on a remote instance.
Synopsis

procedure setcontrol(mi:Mosel, ctrl:string, val:string)
procedure setcontrol(mo:Model, ctrl:string, val:string)

Arguments
mi A Mosel instance
mo A model reference (it must be loaded onto a remote instance)
ctrl Control name
val Control value

Further information
1. This procedure is used to change an instance control parameter in the context of the RemoteInvocation Protocol (see Annex B).
2. An IO error is raised in case of error.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 249

mmjobs

setmodpar

Purpose Add or change the value of a parameter in a model parameter string.
Synopsis

procedure setmodpar(plist:text, pname:string|text,
val:integer|real|boolean|string|text)

Arguments
plist Text object storing the parameters
pname Parameter name
val Value assigned to the parameter.

Further information
1. This function helps in building the model parameter string to be passed to the run procedure. As inputit takes a text object that it modifies by either adding an assignment of the form pname=val or byreplacing an existing assignment. The routine adds the necessary quoting as necessary.
2. It is expected that the provided text string is either empty or composed of a list of assignments of theform "pname=val,pname2=val2...".

Related topics
resetmodpar, run.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 250

mmjobs

setworkdir

Purpose Set the initial working directory of a model.
Synopsis

procedure setworkdir(mo:Model, cwd:string)

Arguments
mo A model reference
cwd Initial working directory

Example The following statement sets the initial working directory of submodel sub to the current directory ofits master model:
setworkdir(sub,'.')

Further information
1. This procedure defines the initial working directory to be used when the execution of the model(re)starts. As a consequence it cannot be used to change the environment of a running model.
2. For a local execution the provided path is expanded just before the beginning of the execution relativelyto the current working directory of the caller. For a remote execution the path is relative to the directoryof the instance running the model.

Related topics
run.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 251

mmjobs

run

Purpose Run a model.
Synopsis

procedure run(mo:Model)
procedure run(mo:Model, plist:string|text)

Arguments
mo Model to be executed
plist String composed of model parameter initializations separated by commas

Further information
1. This procedure starts the execution of a model in a new thread: when the procedure returns, the modelis not necessarily started (this may be delayed depending on the operating system load) and notnecessarily terminated (the second model is executing concurrently to the caller).
2. By default the execution starts in the working directory of the Mosel instance (that might be differentfrom the working directory of the calling model). A different initial path can be setup using

setworkdir.
3. When the execution of the model is completed (normal termination, interruption after calling stop, orruntime error) or could not be started, an event of class EVENT_END is sent to the caller. The executionstatus is returned via the event value but it may also be obtained using getstatus. The exit coderelated to the last execution may be retrieved using getexitcode.
4. An event EVENT_END is also received after a model has detached itself although its execution maycontinue (see detach). In this case the model status is RT_DETACHED and its associated instance isdisconnected.
5. The specified model must have been previously initialized with load and must not be running. If thesame model has to be executed several times concurrently, it must be loaded several times in differentmodel objects.
6. The parameter string plistmay be built and modified using setmodpar and resetmodpar. Theseroutines handle transparently the protection of parameter values by adding the appropriate quoteswhen required.

Related topics
load, wait, waitforend, setmodpar, stop, getstatus, getexitcode, reset.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 252

mmjobs

getdsoprop, getdsopropnum

Purpose Get module information.
Synopsis

function getdsoprop(dso:string, prop:integer):string
function getdsopropnum(dso:string, prop:integer):real

Arguments
dso The name of a module currently loaded into memory
prop The property to retrieve. Possible values:

PROP_NAME Module name
PROP_VERSION Module version
PROP_PATH Path to the module file

Return valueThe property as a string (real for getdsopropnum) or an empty string (-1 for getdsopropnum) incase of error (invalid property or the module was not found)
Related topics

getmodprop

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 253

mmjobs

getgid

Purpose Get the group ID of a model.
Synopsis

function getgid(mo:Model):integer

Argument
mo A model

Return valueGroup ID of the model
Further informationA model can be associated with a group ID using setgid. This group ID may be used to identify theorigin of an event (see getfromgid) or as a filter for a wait (see waitfor).
Related topics

getuid, getid, setgid
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 254

mmjobs

getid

Purpose Get the ID of a model or Mosel instance.
Synopsis

function getid(mo:Model):integer
function getid(mi:Mosel):integer

Arguments
mo A model
mi A Mosel instance

Return valueID of the model or instance as an integer
Further information

1. Each model object has a unique ID number that can be obtained with this function. This ID may be usedto identify the origin of an event (see getfromid) or as a filter for a wait (see waitfor).
2. The ID number of a Mosel instance is its node number. The initial instance has node number 0.

Related topics
getuid, getgid, jobid

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 255

mmjobs

getmodprop, getmodpropnum

Purpose Get model information.
Synopsis

function getmodprop(mo:Model, prop:integer):string
function getmodprop(prop: integer):string
function getmodpropnum(mo:Model, prop:integer):real
function getmodpropnum(prop: integer):real

Arguments
mo A model
prop The property to retrieve. Possible values:

PROP_NAME Model name (cf. model statement)
PROP_ID Order number
PROP_VERSION Model version
PROP_SYSCOM System comment
PROP_USRCOM User comment
PROP_SIZE Amount of memory (in bytes) used by the model
PROP_DATE Compilation date
PROP_UNAME Unique model name

Return valueThe property as a string (real for getmodpropnum) or an empty string (-1 for getmodpropnum) incase of error
Further informationThe second form of the function reports information for the calling model.
Related topics

getdsoprop, memoryuse
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 256

mmjobs

getnode

Purpose Get the ID (node number) of the Mosel instance of a model.
Synopsis

function getnode(mo:Model):integer
function getnode(mi:Mosel):integer

Arguments
mo A model
mi A Mosel instance

Return valueID of the instance on which the model is loaded as an integer or -1 if the model has not been loaded
Further information

1. This function returns the node number of the current instance if the provided model is local.
2. When applied to a Mosel instance this function returns the same information as getid.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 257

mmjobs

getrmtid

Purpose Get the ID of a model on a remote instance.
Synopsis

function getrmtid(mo:Model):integer

Argument
mo A model

Return valueID of the model on the remote instance as an integer or -1 if the model has not been loaded or is local tothe running instance.
Further informationThis ID corresponds to the model number assigned to the model by Mosel when it is loaded (i.e. thevalue of the control parameter modelnumber). This function can only be used on models handled byremote instances.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 258

mmjobs

getstatus

Purpose Get the status of a model.
Synopsis

function getstatus(mo:Model):integer
function getstatus(mi:Mosel):integer

Argument
mo A model

Return valueThe status of a Mosel instance is 0 if it is connected, any other value indicates that it is not ready. Themodel status can be:
RT_NOTINIT Model has not been initialized or has been unloaded
RT_RUNNING Model is running
RT_OK Model is ready for execution and/or no error occurred during last execution
RT_MATHERR A mathematical error occurred
RT_ERROR A runtime error occurred
RT_IOERR An IO error occurred
RT_NULL A NULL reference error occurred
RT_LICERR Execution could not start because no license was available
RT_FDCLOSED Execution on a separate instance has been interrupted
RT_DETACHED Execution on a separate instance continues although the instance has beendisconnected (see detach)
RT_STOP Execution has been interrupted by a call to stop

Related topics
connect, stop, getexitcode.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 259

mmjobs

getuid

Purpose Get the user ID of a model.
Synopsis

function getuid(mo:Model):integer

Argument
mo A model

Return valueUser ID of the model
Further informationA model can be associated with a user ID using setuid. This user ID may be used to identify the originof an event (see getfromuid) or as a filter for a wait (see waitfor).
Related topics

getgid, getid, setuid
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 260

mmjobs

getexitcode

Purpose Get the exit code of a model.
Synopsis

function getexitcode(mo:Model):integer

Argument
mo A model

Return valueExit code of the last execution or 0
Further informationThe exit code of the last execution corresponds to the value stated via a call to the procedure exit.The default exit value (i.e. procedure exit has not been called) is 0.
Related topics

getstatus.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 261

mmjobs

stop

Purpose Stop a running model.
Synopsis

procedure stop(mo:Model)

Argument
mo Model to interrupt

Further informationIf the model is not currently running, no operation is performed. Note that the effect of this call may notbe immediate and the corresponding model may continue running a few seconds before its effectiveinterruption (for instance the time required to complete an IO operation).
Related topics

run.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 262

mmjobs

reset

Purpose Reset a model.
Synopsis

procedure reset(mo:Model)

Argument
mo Model to reset

Further informationThis procedure resets a model after its execution: all resources it has allocated are released. Themodel returns to its state just after it has been loaded into memory. Note that this function isautomatically called before a model is unloaded or run.
Related topics

run, unload.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 263

mmjobs

unload

Purpose Unload a model.
Synopsis

procedure unload(mo:Model)

Argument
mo Model to unload

Further informationThis procedure unloads the given model. All resources used by this model, including modules, arereleased. The function fails if the model is running.
Related topics

load.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 264

mmjobs

getannidents

Purpose Get model identitifiers for which annotations are available.
Synopsis

procedure getannidents(mo:Model, si:set of string)
procedure getannidents(si:set of string)

Arguments
mo A model reference
si Set receiving the identifiers

Further information
1. When used with a single argument this procedure returns information for the calling model.
2. This routine cannot be used with remote models.

Related topics
getannotations.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 265

mmjobs

getannotations

Purpose Get model annotations associated to a given symbol.
Synopsis

procedure getannotations(mo:Model, id:string, prefix:string, si:set of
string, ann:array(string) of string)

procedure getannotations(mo:Model, id:string, prefix:string, lsa:list of
string)

procedure getannotations(id:string, prefix:string, si:set of string,
ann:array(string) of string)

procedure getannotations(id:string, prefix:string, lsa:list of string)

Arguments
mo A model reference
id Symbol for which annotations are requested (an empty string will report global declarations)
prefix Prefix filter: only annotations with a name starting by the specified prefix will be returned
si Set receiving the annotation names
ann Array receiving the annotation values (indiced by names)
lsa List receiving the annotation names and values

Example The following code snippet implements a function to retrieve a specific annotation for the specifiedmodel entity (if several matching annotations are found the value of the first is returned):
public function getannotation(symb:string, aname:string):string

declarations
l:list of string

end-declarations
getannotations(symb,aname,l)
if l.size>=2 and getfirst(l)=aname then

cuthead(l,1)
returned:=getfirst(l)

end-if
end-function

writeln("Value of first annotation 'my.annot' for entity 'x': ",
getannotation("x","my.annot"))

writeln("Value of first global annotation 'my.annot': ",
getannotation("","my.annot"))

Further information
1. With the version taking a list, each annotation is represented by 2 entries: the first one is the annotationname and the second one its value. Note that the version returning information via an array will onlyreport partial information in the case of annotations defined several times.
2. When used without a model reference these procedures return information for the calling model.
3. These routines cannot be used with remote models.

Related topics
getannidents.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 266

mmjobs

7.4.3 Synchronization

Synchronization between running models can be implemented using events. Events are characterizedby a class and a value and may be exchanged between a model and its parent model. The model fromwhich an event has been sent is identified by its unique ID, its user ID and its group ID. An event queue isattached to each model to collect all events sent to this model and is managed with a FIFO policy (FirstIn – First Out). Depending on the needs, a model may check whether its queue is empty or simplysuspend its execution until it has been sent an event.
The type Event represents an event in the Mosel language. Objects of type Event may be compared with
= or <> and assigned with :=. The function nullevent returns an event without class and value: thisis the initial value of a newly created event and no model can send an event of this kind (i.e. the class isnecessarily not null).
canceltimer Cancel an active timer. p. 268
dropnextevent Drop the next event in the event queue of the model. p. 279
getclass Get the class of an event. p. 285
getfromgid Get the group ID of the sender of an event. p. 283
getfromid Get the ID of the sender of an event. p. 282
getfromuid Get the user ID of the sender of an event. p. 284
getnextevent Get the next event in the event queue of the model. p. 278
gettimer Get the amount of time remaining before a timer expires. p. 286
getvalue Get the value associated with an event. p. 287
isqueueempty Check whether there are events waiting in the event queue. p. 280
nullevent Return a ‘null’ event. p. 281
peeknextevent Peek the next event in the event queue of the model. p. 288
send Send an event to a running model. p. 269
setgid Set the group ID of a model. p. 272
settimer Create or update a timer. p. 270
setuid Set the user ID of a model. p. 271
wait Wait for an event. p. 273
waitexpired Indicate whether the previous ’wait’ or ’waitfor’ expired. p. 274
waitfor Wait for specific events. p. 275
waitforend Wait for the end of execution of a model. p. 277

Fair Isaac Corporation Confidential and Proprietary Information 267

mmjobs

canceltimer

Purpose Cancel an active timer.
Synopsis

procedure canceltimer(tid:integer)

Argument
tid A timer identifier

Further information
1. This procedure has no effect if it cannot find the requested timer. However it will delete from the eventqueue the event EVENT_TIMER coresponding to a timer that is no longer active.
2. If the provided timer identifier tid is negative or null all timers are cancelled.

Related topics
settimer, gettimer.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 268

mmjobs

send

Purpose Send an event to a running model.
Synopsis

procedure send(mo:Model, class:integer, value:real)
procedure send(class:integer, value:real)

Arguments
mo Model to send the event to
class Event class (must be >1)
value Event value

Further information

1. Events can be sent to models started by the caller (the child models) by using the first form of theprocedure and to the model having started the caller (the parent model) with the second form of theprocedure. An event can be received only by a running model using the mmjobs module: sending anevent to a model that is not running or not using mmjobs is a no-operation.
2. Events are characterized by a class and a value. Event class values can be used to indicate thecause of the event (for instance, 2 could mean ‘a new solution has been found’) and the associatedvalue may specify a property of the given instance (for example an objective value). Except for thespecial value 1 (EVENT_END) class values have no predefined meaning.
3. An event of class EVENT_END (=1) and model status as the event value is automatically sent by eachmodel to its parent model when it terminates its execution.

Related topics
wait, waitfor.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 269

mmjobs

settimer

Purpose Create or update a timer.
Synopsis

function settimer(tid:integer, dur:integer, rep:boolean):integer
function settimer(dur:integer, rep:boolean):integer

Arguments
tid A timer identifier
dur A duration in milliseconds
rep Decides whether the timer will be armed one time only or automatically repeated

Return valueTimer identifier as a positive integer
Further information

1. This function creates or updates an interval timer: after a timer has been armed by a call to this routinean event of class EVENT_TIMER is scheduled for being sent to the model after the specified amount oftime has elapsed. The value of such an event is the timer identifier tid. Note that the system will notemit a new event if an identical event is already in the queue.
2. If the option rep is set to false the timer is released after its termination, otherwise it is immediatelyre-armed with the same interval after each expiration until it is explicitly cancelled (see canceltimer).
3. If the provided identifier tid is not positive a new timer is created with a newly generated identifier, thiscorresponds to the behaviour of the second form of this function.
4. When the provided identifier corresponds to an existing timer, this one is first cancelled with a call to

canceltimer before being re-created with the new properties.
Related topics

canceltimer, gettimer.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 270

mmjobs

setuid

Purpose Set the user ID of a model.
Synopsis

procedure setuid(mo:Model,uid:integer)

Arguments
mo A model
uid New user ID

Further informationThis function defines the user ID associated to a model (by default it is 0). This user ID may be used toidentify the origin of an event (see getfromuid).
Related topics

setgid, getuid
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 271

mmjobs

setgid

Purpose Set the group ID of a model.
Synopsis

procedure setgid(mo:Model,gid:integer)

Arguments
mo A model
gid New group ID

Further informationThis function defines the group ID associated to a model (by default it is 0). This group ID may be usedto identify the origin of an event (see getfromgid).
Related topics

setuid, getgid
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 272

mmjobs

wait

Purpose Wait for an event.
Synopsis

procedure wait
procedure wait(dur:integer)

Argument
dur A duration in seconds or the constant WAIT_INFINITE

Further informationThis procedure suspends the execution of the caller until an event is available. The second formspecifies a time limit: the processing is suspended for at most dur seconds, the special value
WAIT_INFINITE is interpreted as an infinite duration. The behaviour of the procedure is undefined ifthe specified duration is smaller than 1 second.

Related topics
send, waitfor, waitforend, waitexpired, isqueueempty, getnextevent, dropnextevent.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 273

mmjobs

waitexpired

Purpose Indicate whether the previous ’wait’ or ’waitfor’ expired.
Synopsis

function waitexpired:boolean

Return value
true if the last call to wait or waitfor terminated after expiration of a time limit

Related topics
wait, waitfor.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 274

mmjobs

waitfor

Purpose Wait for specific events.
Synopsis

procedure waitfor(mask:integer)
procedure waitfor(mask:integer,dur:integer)
procedure waitfor(mask:integer,dur:integer,opt:integer)
procedure waitfor(mask:integer,id:integer,dur:integer,opt:integer)

Arguments
mask Bit mask of expected events
id ID of model for which events are expected
dur A duration in seconds, the constant WAIT_INFINITE or a timer identifier as a negative integer
opt Options:

WAIT_EXACT Mask must be exactly matched
WAIT_KEEP Keep unexpected events
WAIT_UID Wait for a particular user ID
WAIT_GID Wait for a particular group ID

Example The following statement waits for an event of class 3 coming from a model of group 100 withoutdropping any event:
waitfor(3,100,WAIT_INFINITE,WAIT_KEEP+WAIT_EXACT+WAIT_GID)

Further information
1. This procedure suspends the execution of the caller until an event of a particular class is available. Thesecond form specifies a time limit: the processing is suspended for at most dur seconds, the specialvalue WAIT_INFINITE is interpreted as an infinite duration.
2. If the time limit is 0 the execution is not suspended but the queue of events is processed once and asubsequent call to waitexpired will return true if no valid event was found.
3. The parameter durmay also take a negative value: in this case it is interpreted as the opposite of atimer identifier (see settimer) and the function will wait until this timer expires if no valid eventarrives. When the routine interrupts its monitoring due to the expiration of a timer the first event in thequeue is the event EVENT_TIMER associated to this timer. Note that if no timer corresponds to thegiven value the routine will terminate only when an expected event is available as if WAIT_INFINITEhad been used.
4. By default, the parameter mask is interpreted as a bit mask to select the expected events: all eventssent to the model are automatically dropped until an event ev satisfies the following condition:

bittest(getclass(ev),mask)<>0

5. If the parameter opt includes option WAIT_EXACT, the parameter mask becomes the target eventclass: the wait will end when an event of a class equal to mask is found.
6. If the parameter opt includes option WAIT_KEEP, unexpected events are not dropped but the firstevent satisfying the condition is moved to the top of the queue such that it is returned by the next call to

getnextevent.
7. With the last form of the function an ID is specified: it characterises events coming from a particularmodel or a group of models. By default the argument id is interpreted as the unique model ID (see

getid), if option WAIT_UID is used, the ID is interpreted as a user ID (see getuid) and with option
WAIT_GID the argument is a group ID (see getgid).

Fair Isaac Corporation Confidential and Proprietary Information 275

mmjobs

Related topics
send, wait, waitexpired, isqueueempty, getnextevent, dropnextevent.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 276

mmjobs

waitforend

Purpose Wait for the end of execution of a model.
Synopsis

procedure waitforend(mo:Model)
procedure waitforend(mo:Model,dur:integer)

Arguments
mo A model
dur A duration in seconds, the constant WAIT_INFINITE or a timer identifier as a negative integer

Further information
1. This procedure suspends the execution of the caller until a given model has terminated its execution.The second form specifies a time limit: the processing is suspended for at most dur seconds, thespecial value WAIT_INFINITE is interpreted as an infinite duration.
2. Before the procedure returns all events received from the model to monitor are removed from the eventqueue (including the EVENT_END event) unless the time limit has been reached. In this case some ofthe events of the submodel may have been removed from the event queue.
3. If the time limit is 0 the execution is not suspended but the queue of events is processed once and asubsequent call to waitexpired will return true if the model was still running when the procedurewas called (the event queue is not modified in this case).
4. The parameter durmay also take a negative value: in this case it is interpreted as the opposite of atimer identifier (see settimer) and the function will wait until this timer expires if no valid eventarrives. When the routine interrupts its monitoring due to the expiration of a timer the first event in thequeue is the event EVENT_TIMER associated to this timer. Note that if no timer corresponds to thegiven value the routine will terminate only when an expected event is available as if WAIT_INFINITEhad been used.

Related topics
wait, waitexpired.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 277

mmjobs

getnextevent

Purpose Get the next event in the event queue of the model.
Synopsis

function getnextevent:Event

Return valueThe next event or nullevent if the queue is empty
Further informationThe returned event is removed from the queue after it has been retrieved with this function.
Related topics

peeknextevent, dropnextevent, isqueueempty.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 278

mmjobs

dropnextevent

Purpose Drop the next event in the event queue of the model.
Synopsis

procedure dropnextevent

Further informationThis procedure has no effect if the event queue is empty.
Related topics

peeknextevent, getnextevent, isqueueempty.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 279

mmjobs

isqueueempty

Purpose Check whether there are events waiting in the event queue.
Synopsis

function isqueueempty:boolean

Return value
false if at least one event is available in the queue, true otherwise.

Related topics
dropnextevent, peeknextevent, getnextevent.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 280

mmjobs

nullevent

Purpose Return a ‘null’ event.
Synopsis

function nullevent:Event

Return valueAn event of class and value equal to 0
Further informationVariables of type Event are initialized with this function.
Related topics

getnextevent.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 281

mmjobs

getfromid

Purpose Get the ID of the sender of an event.
Synopsis

function getfromid(ev:Event):integer

Argument
ev An event

Return valueThe ID of the sender of the event. 0 is returned for a nullevent
Further information

1. Each model has a unique ID that is attached to each event it sends. With this function one can identifythe sender of a given event.
2. The ID of an event sent from the parent model is always 0.

Related topics
getid, getfromgid, getfromuid, getvalue, getclass.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 282

mmjobs

getfromgid

Purpose Get the group ID of the sender of an event.
Synopsis

function getfromgid(ev:Event):integer

Argument
ev An event

Return valueThe group ID of the sender of the event. 0 is returned for a nullevent
Further information

1. Each model can be associated with a group ID that is attached to each event it sends. With thisfunction one can identify the sender of a given event.
2. The group ID of an event sent from the parent model is always 0.

Related topics
getgid, setgid, getvalue, getfromid, getfromuid, getclass.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 283

mmjobs

getfromuid

Purpose Get the user ID of the sender of an event.
Synopsis

function getfromuid(ev:Event):integer

Argument
ev An event

Return valueThe user ID of the sender of the event. 0 is returned for a nullevent
Further information

1. Each model can be associated with a user ID that is attached to each event it sends. With this functionone can identify the sender of a given event.
2. The user ID of an event sent from the parent model is always 0.

Related topics
getuid, setuid, getvalue, getfromid, getfromgid, getclass.

Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 284

mmjobs

getclass

Purpose Get the class of an event.
Synopsis

function getclass(ev:Event):integer

Argument
ev An event

Return valueThe class of the event (>0) or 0 for a nullevent
Further informationA model sends automatically an event of class EVENT_END(=1) when it terminates its processing.Other values are application specific.
Related topics

getvalue, getfromid, getfromgid, getfromuid.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 285

mmjobs

gettimer

Purpose Get the amount of time remaining before a timer expires.
Synopsis

function gettimer(tid:integer):integer

Argument
tid A timer identifier

Return valueRemaining time in milliseconds before the timer expires or 0 if the corresponding event is alreadyavailable in the queue or -1 if no timer corresponds to the provided identifier
Further informationThis function will return 0 if an event corresponding to the specified timer is waiting in the queue ofevent even if this timer has been automatically re-armed.
Related topics

canceltimer, settimer.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 286

mmjobs

getvalue

Purpose Get the value associated with an event.
Synopsis

function getvalue(ev:Event):real

Argument
ev An event

Return valueThe value of the event
Further informationIn the case of an event of class EVENT_END(=1), this value corresponds to the model status.
Related topics

getclass, getfromid, getfromgid, getfromuid.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 287

mmjobs

peeknextevent

Purpose Peek the next event in the event queue of the model.
Synopsis

function peeknextevent:Event

Return valueA copy of the next event or nullevent if the queue is empty
Further informationThe returned event is a copy of the first available event of the queue. The event queue is not changedby this function.
Related topics

getnextevent, dropnextevent, isqueueempty.
Module mmjobs

Fair Isaac Corporation Confidential and Proprietary Information 288

mmjobs

7.5 I/O drivers

The mmjobs module provides a modified version of the mem IO driver designed to be used in amultithreaded environment: memory blocks allocated by the shmem IO driver are persistent (i.e. theyare not released after the model terminates) and can be used by several models. Thanks to this facility,models running concurrently may exchange data through memory by means of initialization blocks forinstance.
The driver mempipe offers another communication mechanism between models: a memory pipe maybe open by two models simultaneously. One of them for writing and the other one for reading. Thisdriver also supports initialization blocks through which data is transfered in binary form.
The drivers rcmd, xsrv and xssh allow to start additional Mosel instances: they have to be used tobuild host specifications as expected by the connect function. Finally, thanks to the rmt driver aMosel instance can access files available from the environment of another instance.

7.5.1 Driver shmem
shmem:label[/minsize[/incstep]]

The file name for this driver is a label: this is the identifier (the first character must be a letter) of thememory block. A label is not local to a particular model and remains valid after the end of the executionof the model having created it. All memory blocks are released when the module mmjobs is unloadedbut a given memory block may also be deleted explicitly by calling the fdelete procedure of module
mmsystem or by using the fremove C-function of the Native Interface. Note also that deleting thespecial file "shmem:⁎" has the effect of releasing all memory blocks handled by the driver.
Several models may open a given label at the same time and several read operations may be performedconcurrently. However, writing to a memory block can be done by only one model at a time: if severalmodels try to read and write from/to the same label, only one (it becomes the owner of the memoryblock) performs its IO operations for writing and the others are suspended until the owner closes its filedescriptor to the specified label. Then, one of the waiting models is restarted and becomes the newowner: this process continues until all file descriptors to the label are closed.
The memory block is allocated dynamically and resized as necessary. By default the size of thememory block is increased by pages of 4 kilobytes: the optional parameter incstepmay be used tochange this page size (i.e. the default setting is "label/0/4k"). The special value 0 modifies theallocation policy: instead of being increased of a fixed amount, the block size is doubled. In all casesunused memory is released when the file is closed.

7.5.2 Driver mempipe
mempipe:name

A memory pipe is characterized by its name. Only one model may open a pipe for reading but severalmodels may open the same pipe for writing. However, if several models try to write to the same pipe,only one (it becomes the owner of the memory pipe) performs its IO operations and the others aresuspended until the owner closes its file descriptor to the specified pipe. Then, one of the waitingmodels is restarted and becomes the new owner: this process continues until all file descriptors to thepipe are closed.
Pipe operations are possible only if the two ends of the pipe are open: one model for reading and atleast one model for writing. There is no notion of ’end of file’ in a pipe: if a model tries to read from anempty pipe (i.e. no model is writing to the other end) no error is raised and the model is suspended untilsomething is available. Similarly trying to write to a pipe for which no model is reading from the otherend is a blocking operation. In order to avoid lock ups, it is usually good practice to synchronize the

Fair Isaac Corporation Confidential and Proprietary Information 289

mmjobs

models using events. For instance a model waits for a specific event before trying to read from a pipe;before starting to write to the same pipe, the other model sends the expected event.
Memory pipes may be used with initialization blocks. This driver does not use labels for each record ofthe initialization block: it is assumed (but not checked) that both ends of the pipe are using the samesequence of records. For instance, if the writer sends an integer, a string and then an array of reals, thereader must expect an integer, a string and an array of reals: it is not allowed to skip records or changeorder as it is usually possible with these blocks.

7.5.3 Driver rcmd
rcmd:[command]

This driver starts the specified command in a new process and connects its standard input and outputstreams to the calling Mosel instance. The created process is executed in the same current workingdirectory as the controlling model and inherits the environment variables defined using setenv. Thedefault command is "mosel -r". A typical use for this driver is to start an instance on the currentmachine or on a remote computer through an external program. For instance:
rcmd:rsh sunbox mosel -r

When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables thisdriver.
7.5.4 Driver xsrv

xsrv:hostname[(port)][/ctx[/pass]][|var=val...]

This driver connects to the host hostname running the Mosel Remote Launcher (see Section 7.6)through a TCP socket on port port (default value: 2513) asking for the context ctx (default: xpress)using the password pass (default: no password). Additional environment variables can be specified:assignments of the form var=valmust be separated by the symbol | and variable values may includevariable references noted ${varname} (expansion is performed on the remote host in the context ofits environment). The special environment variable MOSEL_CWD defines the current working directoryfor the newly created instance.
xsrv:winbox(3211)/xpr64|MOSEL_CWD=C:\workdir|MYDATA=${MOSEL_CWD}\data

7.5.5 Driver xssh
xssh:hostname[(port,kwf)][/ctx[/pass]][|var=val...]

This driver is the secure version of the xsrv driver decribed above: it establishes the connection to thexprmsrv server through an encrypted SSH tunnel (using 2515 as the default TCP port number). Inaddition to the port number, the driver can also take a file name (kwf) used as the known host file forserver authentication: this file contains the list of known hosts with their corresponding public keys.When the connection is established to the remote host, the public key stored in this file is comparedwith the key provided by the server. The connection is canceled if keys do not match. Generating thisknown hosts file requires running the command xprmsrv -key public on the remote server inorder to retrieve its public key (see Section 7.6.1).
For instance, the following command will include the server mysun in the knownhosts.txt file (thecommand must be run on the server):

xprmsrv -key public -hn mysun >>knownhosts.txt

Fair Isaac Corporation Confidential and Proprietary Information 290

mmjobs

Then after having moved the file to the machine(s) from where connections are initiated, the followingconnection string may be used to open secure connections with server authentication:
xssh:mysun(knownhosts.txt)

The remote connection is handled by a separate process. By default the program xprmsrv is used asthe helper program but it can be replaced by another SSH client by changing the control parameter
sshcmd.

7.5.6 Driver rmt
rmt:[node,bs]filename

This driver can be used with any routine expecting a physical file for accessing files on remoteinstances. By default, the file is located on the instance running on the node identified by the parameter
defaultnode but a particular instance may be specified by prefixing the file name by its node numberenclosed in square brackets. The special node number -1 designates the parent node of the currentinstance.

load(mi,mo,"rmt:[-1]model.bim")

By default the driver creates a buffer of 8k for its communication operations. The size of this buffermight be changed by specifying the desired buffer size after the node number (for instance
"rmt:[0,4]filename" to use a 4k buffer). If only the buffer size has to stated the node number canbe omitted (e.g. "rmt:[,4]filename"). Note that a buffer size must be between 2k and 64k.
In addition to physical files, this driver also emulates the behaviour of drivers cb, sysfd, tmp, shmemand java such that it can transfer streams from one instance to another. For instance,
"rmt:sysfd:2" is the standard error stream of the process running the default node.

7.6 The Mosel Remote Launcher xprmsrv

The xprmsrv program is the server part of the "xsrv:" and "xssh:" IO drivers: it must be runningon each computer on which instances will be started using these drivers. The communication betweentwo Mosel instances is achieved through a single TCP stream. Mosel instances are started in thecontext of execution environments: such an environment consists in a set of environment variables aswell as the name of the program to start with its initial working directory. The server can managedifferent execution environments which are identified by a name and optionally protected by apassword. Thanks to this feature a single server can offer several versions of Xpress or dedicatedsettings for particular distributed applications.
This program is also used as an SSH client by mmjob and XPRD when connecting to an xprmsrv serverthrough a secure tunnel. Therefore it must be available when using the "xssh:" IO driver even if noserver is to be run on the host machine.

7.6.1 Running the xprmsrv command

7.6.1.1 Main command line options

The first argument of the command that is not identified as an option is used as the name for aconfiguration file. The following options are accepted:
-h Display a short help message and terminate.

Fair Isaac Corporation Confidential and Proprietary Information 291

mmjobs

-V Display the version number and terminate.
-tc Display the current configuration and terminate.
-f Force automatic setting of environment variable XPRESSDIR even if it is already defined.
-v [#] Set the verbosity level of the communication protocol. The default value is 1 (report onlyerrors) when the server is running in background (service/daemon) and 2 (reportactivity) when the server is run from a console.
-l fname Set a logfile to record all messages.
-li addr Set the address of the interface to use (default: 0.0.0.0 for all interfaces).
-p port Set the TCP port to listen to (default port is 2513, -1 to disable).
-bp port Set the UDP port for broadcast (default port is 2514, -1 to disable).
-pf pfname Define a file name for recording the process number of the server. This file is removedwhen the server exits.
-d Start the server in background (or as a daemon on Posix systems).
The following options are used by the Windows version of the server:
-service install Install the server as a service. All other provided options (includingconfiguration file) are recorded and will be used by the server. If the correspondingservice has already been installed, its execution settings are updated with the providedoptions.
-service remove Remove the previously installed service.
-service start Start the previously installed service.
-service reload Reload configuration.
-service stop Stop the previously started service.
-service status Check whether the service is already running.
-u user This option is used only when installing the service: it selects the user running theservice.
-pwd pwd This option specifies the password required for the user indicated by the -u option.
The following options are used by all other platforms:
-u user User that should be running the server.
-g group Group that should be running the server.
When the server is run as a service (under Windows) or as a daemon (on Posix systems) that areusually started by a privileged user, it is recommended to use the appropriate option to run the processas an unprivileged user for security reasons. For instance, under Windows, installing the service can bedone using the following command in order to use the network service account:

xprmsrv -service install -u "NT AUTHORITY\NetworkService" conffile

Similarly on a Posix system, the server can be run as the nobody user:
xprmsrv -d -u nobody conffile

Fair Isaac Corporation Confidential and Proprietary Information 292

mmjobs

7.6.1.2 Secure server

xprmsrv can also accept secure connections through SSH tunnels: this is the protocol used by the
xssh IO driver. The following options are used to setup the secure server:
-sp port Set the TCP port for SSH connections (default port is 2515, -1 to disable).
-k fname Private key file name.
-sc cilst Set the list of accepted ciphers in order of preference (default: "aes256-ctr

aes192-ctr aes128-ctr aes256-cbc aes192-cbc aes128-cbc
blowfish-cbc 3des-cbc").

The secure server requires a private key to authenticate itself (see following section). By default it willuse the file "xprmsrv_rsa.pem" located in the same directory as the xprmsrv executable. It isimportant to store this file in a secure location as it identifies the server, in particular it must not bereadable by Mosel models started by the server. If this file is missing or the provided file name cannotbe accessed the secure server will be disabled.
7.6.1.3 Private key management

A new private key can be generated with the following command:
xprmsrv -key new

Additionally, option -k filename can be specified to change the default key file location. Note thatthis procedure does not remove an existing key file.
The following command loads and check the validity of a key file:

xprmsrv -key check

When executed on a valid key file this command displays the fingerprint of the public part of the key aswell as its properties.
The SSH protocol makes possible authentication of a server by a client. This optional feature,supported by the IO driver xssh, requires a known host file on the client side: this text file consists in alist of host server names with their associated public key. The command xprmsrv -key publicgenerates the required data for such a file using the hostname reported by the operating system toidentify the server. Often this hostname does not correspond to the public name of the machine. Insuch a case, it is possible to replace the label in the file or use the option -hn name to select adifferent name. For instance, the following command will append to the file knownhosts.txt thepublic data key for the server using keyfile mykey.pem with host name srvname:

xprmsrv -key public -k mykey.pem -hn srvname >>knownhosts.txt

7.6.1.4 Mode of operation

The server proceeds as follows:
1. If the environment variable XPRESSDIR is not defined or if the -f option is in use, the value of thisenvironment variable is deduced from the location of the program itself. Under Posix operatingsystems, the environment variable XPRESS is also set up.

Fair Isaac Corporation Confidential and Proprietary Information 293

mmjobs

2. The environment variables MOSEL_DSO and MOSEL_BIM (see Section 2.3.1), MOSEL_EXECPATH(see system), MOSEL_RWPATH, MOSEL_ROPATH (see Section 1.3.4) and XPRMSRV_ACCESS (seeSection 7.6.2.1) are cleared and the environment variable MOSEL_RESTR is initialised with value
"NoReadNoWriteNoExecNoDBWDOnly" (see Section 1.3.4).

3. The default execution environment xpress is created: it refers to the Xpress installation detectedat the first step.
4. If available, the configuration file is read (see Section 7.6.2): it can be used to define globalsettings (e.g., defining the logfile) or/and create and modify execution environments by definingenvironment variables.
5. The process then starts its main loop listening to the specified TCP and UDP ports.
6. When a connection is requested, a new session is started to process commands from the client.These commands are used to authenticate the client, select an environment and finally start theMosel program in a separate process. This process inherits all the environment variables definedin the context and starts in the specified working directory (by default: the location pointed by

XPRESSDIR). In addition, on Posix systems, the path ${XPRESSDIR}/lib is added to thedynamic library path of the operating system. Once the process is started, xprmsrv detachesitself from the client — the communication is established directly between the two Moselinstances.
7.6.2 Configuration file

The configuration file consists in a list of variable definitions of one of the following forms:
varname=value

varname?=value

Each statement is recorded in the current environment. The valuemay contain variable referencesnoted ${varname}, the expansion is executed when the environment is processed except for selfreferences that are expanded at the time of defining the variable (e.g.PATH=${PATH}:otherpath).When the first syntax is used, the variable cannot be changed by a remote host; the second syntax(using ?=) allows a remote host to modify the corresponding variable before starting the Moselinstance.
Switching to a different environment is done by giving the name of the environment enclosed in squarebrackets:

[newenv]

If the environment name has not yet been used, a new environment is created unless the line ends withthe symbol ’+’ (e.g. [myenv]+). In this case the following definitions are included only if theenvironment already exists. If the line ends with the symbol ’=’ (e.g. [myenv]=) the previousdefinitions for this context are cleared. These markers can be combined (e.g. [myenv]+=) such thatthe definition block replaces the corresponding context only if it exists.
Upon startup, two environments are automatically created: "global" to store general configurationand settings shared by all environments and "xpress" (it can also be referred to as ⁎ or default) thedefault execution environment. When the reading of the configuration file begins, the globalenvironment is selected: in this environment all variable definitions are processed immediatly andadded to the xprmsrv process environment. In this context, some variables have a special meaningand are not handled as ordinary environment variables:
LOGFILE the file to be used for recording all messages. Messages are sent to the standard errorstream when this parameter is not set.

Fair Isaac Corporation Confidential and Proprietary Information 294

mmjobs

LISTEN address of the interface to use (default value: 0.0.0.0 for all interfaces).
TCP_PORT the port number to use for TCP connections (default value: 2513, -1 to disable).
UDP_PORT the port number to use for UDP connections (default value: 2514, -1 to disable). Theserver listen to this port for broadcast messages (see procedure findxsrvs).
SSH_PORT the port number to use for SSH connections (default value: 2515, -1 to disable).
KEYFILE private key file name used by the SSH protocol (default value: xprmsrv_rsa.pem locatedin the same directory as the xprmsrv executable).
SSH_CIPHERS the list of accepted ciphers in order of preference (default: "aes256-ctr

aes192-ctr aes128-ctr aes256-cbc aes192-cbc aes128-cbc
blowfish-cbc 3des-cbc").

VERBOSITY verbosity level for the communication protocol (default value: 1 if the server is running inbackground and 2 if it is run from a console).
GROUPMASK Bit mask to select what broadcast requests to accept (default value: ANY). The serverreplies to a request of group grp only if bit test grp&GROUPMASK is not 0 (seeprocedure findxsrvs). The mask value can be given as an integer (e.g. 3 to allowgroups 1 and 2), an hexadecimal number (e.g. 0xFF for groups 1 to 128) or the specialkeyword ANY (all groups allowed).
MAXAUTHTIME a connection is closed if the authentication procedure takes more than the specifiedamount of time in seconds (default value:30).
MAXSESSIONS maximum number of concurrent sessions (the default value 0 disables this limitation).
XPRMSRV_ACCESS access control list (see Section 7.6.2.1).
CONFDIR a configuration directory path. The server includes each of the files stored in thisdirectory (sorted in alphabetical order) after it has finished reading the mainconfiguration file.
If the corresponding command line options are used (namely options -l, -p, -bp, -sp, -k, -sc and -v)the settings of the configuration file are ignored.
In other contexts, the following variables have a special meaning:
MOSEL_CMD the command to execute. The default value is "${XPRESSDIR}/bin/mosel -r"

MOSEL_CWD default working directory. The default value is "${XPRESSDIR}"
RUN_BEFORE command to be run before MOSEL_CMD. This command is executed in the sameenvironment as MOSEL_CMD after all variables have been defined.
RUN_AFTER command to be run after MOSEL_CMD. This command is executed in the environment ofthe server but the variable itself is expanded in the context of MOSEL_CMD before itsexecution.
PASS password required to use this environment (empty by default). If this variable is set tothe special value "⁎", the associated environment is disabled.
MAXSESSIONS maximum number of concurrent sessions running under this context (by default thereis no limit; a maximum of 0 or less disables the environment).
XPRMSRV_ACCESS context specific access control list (applied after the global access list).
XPRMSRV_SID session ID: if not explicitly defined this variable is automatically set by the server.

Fair Isaac Corporation Confidential and Proprietary Information 295

mmjobs

XPRMSRV_PEER IP address of the remote host: if not explicitly defined this variable is automaticallyset by the server.
For instance, the following configuration file sets the logfile to "/tmp/logfile.txt"; adds thepassword "hardone" to the default context and defines an additional context named xptest pointingto a different installation of xpress:

simple xprmsrv config file
LOGFILE=/tmp/logfile.txt

[xpress]
PASS=hardone

[xptest]
XPRESSDIR=/opt/xpressmp/testing
XPRESS=/opt/xpressmp/lic
MOSEL_RESTR=NoWriteNoDBNoExecWDOnly
MOSEL_CWD?=${XPRESSDIR}/workdir

Assuming the server using this configuration is running on the machine mypc, the following statementswill create two instances on this machine, one for each of the defined execution environments:
r1:=connect(m1, "xsrv:mypc/xpress/hardone")
r2:=connect(m2, "xsrv:mypc/xptest")

Since MOSEL_CWD has been initialised with the ?= symbol, the remote host can change its workingdirectory. For instance:
r2:=connect(m2, "xsrv:mypc/xptest|MOSEL_CWD=/tmp")

While the server is running it is possible to request a reload of its configuration: this procedure consistsin reading again the configuration file(s) in order to update the definition of the contexts. During thisoperation only context specific definitions are processed (all global definitions are silently ignored).Under Windows configuration change can only be requested on a running service using the reloadcommand:
xprmsrv -service reload

On a Unix system configuration change is performed after reception of a signal USR1. For instance if
PID is the process ID of a running xprmsrv server:

kill -USR1 PID

The configuration update can only be executed when the server is not monitoring any Mosel instance. Ifa request cannot be processed immediately it is delayed until the server is idle. Moreover if an error isdetected while reading the configuration an error is reported but the server continues running with itscurrent settings.
7.6.2.1 Access control list

The environment variable XPRMSRV_ACCESSmay be defined in each context of the configuration file.This variable defines which hosts are allowed to connect to the server or use a particular context. Therestriction applies to the server itself when the variable is defined in the global context and as asupplementary restriction when it is included in any other context (i.e. a host cannot be allowed in acontext if it is rejected by the global context).

Fair Isaac Corporation Confidential and Proprietary Information 296

mmjobs

The value of the variable must consist in a list of hosts and subnetworks separated by spaces. Eachentry of this list can optionally be preceded by the + sign (for accepting the host; this is the default if nopolicy is specified) or - sign (to reject connection). Order of the list members is important: whenchecking authorisation for a given host the list is processed from left to right. The first matching entrywill decide whether access is allowed or denied. A given host will be rejected if no matching entry canbe found.
A host is identified by its name (e.g. myhost) or its IP address (e.g. 192.168.1.1). A subnetwork isdefined by a routing prefix that can be expressed as a partial address (e.g. 192.168.1); or using theCIDR notation - the first address of the network followed by the bit-length of the prefix, separated by aslash "/" character (e.g. 192.168.1.0/24). The subnet mask may also be used instead of thebit-length which is a quad-dotted decimal representation like an address (e.g.
192.168.1.0/255.255.255.0). The special identifier ALL is replaced by the subnetwork definition
0.0.0.0/0 (any host) and the identifier SELF is replaced by the hostname of the server.
In the first example below, host uranus is rejected and subnetwork 192.168.1.0/24 is allowed toconnect. Note that uranus will be rejected even if it is part of the autorised subnetwork because itsreference appears first in the list. In the second example, all hosts are allowed except 2 subnetworks(192.168.1.0/24 and 192.168.2.0/24):

XPRMSRV_ACCESS=-uranus 192.168.1
XPRMSRV_ACCESS=-192.168.1.0/255.255.255.0 -192.168.2.0/24 +ALL

All defined control lists are preprocessed just after the configuration file has been read in order toresolve host names and check for syntax errors. Unresolved host names are ignored (although awarning is displayed in such a case) but a syntax error on a control list will cause the server to abort itsprocessing.

Fair Isaac Corporation Confidential and Proprietary Information 297

CHAPTER 8

mmnl

The mmnl module extends the Mosel language with a new type for representing nonlinear expressionsand constraints and also with some additional subroutines. To use this module the following line mustbe included in the header of the Mosel model file:
uses 'mmnl'

The first section presents the new functionality for the Mosel language provided by mmnl, namely thenew type nlctr and a set of subroutines that may be applied to objects of this type.
The following sections give detailed documentation of the subroutines (other than mathematicaloperators) defined by this module.

8.1 New functionality for the Mosel language

8.1.1 The problem type mpproblem.nl

This module exposes its functionality through an extension to the mpproblem problem type. As aconsequence, all routines presented here are executed in the context of the current problem.
8.1.2 The type nlctr and its operators

The module mmnl defines the type nlctr to represent nonlinear constraints in the Mosel Language.As shown in the following example (Section 8.1.4), mmnl also defines the standard arithmeticoperations that are required for working with objects of this type. By and large, these are the sameoperations as for linear expressions (type linctr of the Mosel language) with additionally thepossibility to multiply or divide by decision variables and to use the exponential notation x̂r (assumingthat x is of type mpvar). Nonlinear constraints may also be defined by using overloaded versions ofMosel’s arithmetic and trigonometric functions on expressions involving decision variables (seeSection 8.2 for a complete list).
8.1.3 Setting initial values

An important feature in Nonlinear Programming is the possibility to set initial values for decisionvariables. With mmnl this is done by the procedure setinitval. Nonlinear solvers use initial valuesas starting point for the search. The choice of the initial values may not only have an impact on the timespent by the solver but also, depending on the problem type, on the best (locally optimal) solutionfound by the solver.
The definitions of initial values can be removed with clearinitvals. It is also possible to employ thesolution values obtained from the immediately preceding optimization run as initial values to the nextby calling the procedure copysoltoinit.

Fair Isaac Corporation Confidential and Proprietary Information 298

mmnl

8.1.4 Example: using mmnl for QCQP

The following example shows how to solve a QCQP (Quadratically Constrained QuadraticProgramming) problem with the Xpress-MP QCQP solver. To use this solver we need to load themodule mmxprs in addition to mmnl since the module mmnl does not include any solver.
The problem we wish to solve is a classical NLP test problem (source:http://www.orfe.princeton.edu/ rvdb/ampl/nlmodels/ that determines the shape of a hanging chain byminimizing its potential energy. The objective function is linear and the problem has convex quadraticconstraints.

model "catenary"
uses "mmxprs", "mmnl"

parameters
N = 100 ! Number of chainlinks
L = 1 ! Difference in x-coordinates of endlinks
H = 2⁎L/N ! Length of each link
end-parameters

declarations
RN = 0..N
x: array(RN) of mpvar ! x-coordinates of endpoints of chainlinks
y: array(RN) of mpvar ! y-coordinates of endpoints of chainlinks
end-declarations

forall(i in RN) x(i) is_free
forall(i in RN) y(i) is_free

! Objective: minimise the potential energy
potential_energy:= sum(j in 1..N) (y(j-1)+y(j))/2

! Bounds: positions of endpoints
! Left anchor
x(0) = 0; y(0) = 0

! Right anchor
x(N) = L; y(N) = 0

! Constraints: positions of chainlinks
forall(j in 1..N)
Link_up(j):= (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2

! Setting start values
forall(j in RN) setinitval(x(j), j⁎L/N)
forall(j in RN) setinitval(y(j), 0)

setparam("XPRS_verbose", true)
minimise(potential_energy)

writeln("Solution: ", getobjval)
forall(j in RN)
writeln(strfmt(getsol(x(j)),10,5), " ", strfmt(getsol(y(j)),10,5))

end-model

A QCQP matrix can be exported to a text file (in MPS or LP format) by adding the following lines to yourmodel after the problem definition:
setparam("XPRS_loadnames", true) ! Enable loading of names
loadprob(potential_energy) ! Load the problem
writeprob("catenary.mat", "") ! Write an MPS matrix ("l" for LP format)

Not all problems with quadratic constraints conform with the properties required by QCQP solvers.Xpress-Optimizer therefore performs a convexity check before starting the optimization. This testtakes some time and if you know that your problem is convex you may disable it by setting the

Fair Isaac Corporation Confidential and Proprietary Information 299

http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/

mmnl

following parameter before starting the optimization.
setparam("XPRS_ifcheckconvexity", false) ! Disable convexity check

8.2 Procedures and functions

The module mmnl overloads certain mathematical functions of the Mosel language, replacing anargument of type real by the types linctr and nlctr. The return value of these functions is of type
nlctr. This means they can be used as operators in the definition of nonlinear constraints as shown inthe example of Section 8.1.4. The relevant functions are:

� Arithmetic functions:

abs absolute value
ceil rounding to the next largest integer
exp natural exponent of the argument
floor rounding to the next smallest integer
ln natural logarithm of the argument
log base 10 logarithm of the argument
round rounding to the nearset integer
sqrt positive square root of the argument
sign sign of an expression (-1 if negative, 1 if positive, 0 othewise)

� Trigonometric functions:

arccos arccosine of the argument
arcsin arcsine of the argument
arctan arctangent of the argument
cos cosine of the argument
sin sine of the argument
tan tangent of the argument

Since these mathematical operators are fairly self-explanatory, we shall forego any more detaileddocumentation of these functions.
The following list gives an overview of all other functions and procedures defined by mmnl for which wegive detailed descriptions later.
clearinitvals Delete all initial value definitions. p. 301
copysoltoinit Copy solution values to initial values. p. 302
getsol Get the solution value of a nonlinear constraint. p. 304
gettype Get the type of a nonlinear constraint. p. 307
ishidden Test whether a constraint is hidden. p. 305
sethidden Hide or unhide a nonlinear constraint. p. 306
setinitval Set an initial value (start value) for a variable. p. 303
setname Associate a matrix name to a nonlinear constraint. p. 308
settype Set the type of a nonlinear constraint. p. 309

Fair Isaac Corporation Confidential and Proprietary Information 300

mmnl

clearinitvals

Purpose Delete all initial value definitions.
Synopsis

procedure clearinitvals

Example The following copies the solution values from an optimization run to the initial values of the variablesinvolved. Later all initial value definitions are deleted and a new initial value is set for variable x.
uses "mmnl"
declarations
x,y: mpvar
end-declarations
...
minimize(sin(x+y))
copysoltoinit
...
clearinitvals
setinitval(x, -1)

Further informationThis procedure deletes all previously defined initial values for decision variables.
Related topics

copysoltoinit, setinitval.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 301

mmnl

copysoltoinit

Purpose Copy solution values to initial values.
Synopsis

procedure copysoltoinit

Example The following copies the solution values of all variables in an optimization run to their initial values andthen sets a different initial value for variable x(1).
uses "mmnl"
declarations
x: array(1..10) of mpvar
y,z: mpvar
end-declarations
...
maximize(x(1)⁎x(3) + ln(y+z))
copysoltoinit
setinitval(x(1), 0)

Further informationThis procedure copies the solution values of decision variables in the immediately precedingoptimization run to their initial values for the next run. Doing so it overrides any previously set initialvalues for the involved variables. However, the settings for decision variables that did not occur in thepreviously solved problem remain unchanged.
Related topics

copysoltoinit, clearinitvals, setinitval.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 302

mmnl

setinitval

Purpose Set an initial value (start value) for a variable.
Synopsis

procedure setinitval(x:mpvar, val:real)

Arguments
x A decision variable
val A real number to be used as initial value

Example The following sets an initial value of 0 for variable x. For y its solution from the preceding optimizationis set as its new initial value.
uses "mmnl"
declarations
x,y: mpvar
end-declarations
setinitval(x, 0)
setinitval(y, getsol(y))

Further informationThis procedure sets an initial value for a decision variable. Initial values are used by nonlinear solversas a (good) starting point for the search. It is in general not required that the initial values be part of afeasible solution to the optimization problem. All previously set initial values can be removed by calling
clearinitvals. The procedure copysoltoinit can be used to turn the solution of a previousoptimization run into initial values for the next run.

Related topics
clearinitvals, copysoltoinit.

Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 303

mmnl

getsol

Purpose Get the solution value of a nonlinear constraint.
Synopsis

function getsol(c:nlctr):real

Argument
c A nonlinear constraint

Return valueSolution value or 0.
Example The following prints the solution values of a nonlinear constraint and a nonlinear expression.

uses "mmnl"
declarations
x,y,z: mpvar
Ctr: nlctr
end-declarations

... ! (Define and solve the problem)
writeln("Evalution of Ctr: ", getsol(Ctr))
writeln("Evaluation of an expression: ", getsol(abs(x⁎y)+5⁎z^3))

Further informationThis function returns the evaluation of a nonlinear constraint using the current solution values of itsvariables. Note that the solution value of a variable is 0 if the problem has not been solved or thevariable is not contained in the problem that has been solved.
Related topics

maximize/minimize, copysoltoinit.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 304

mmnl

ishidden

Purpose Test whether a constraint is hidden.
Synopsis

function ishidden(c:nlctr):boolean

Argument
c A nonlinear constraint

Return value
true if the constraint is hidden, false otherwise.

Example The following tests whether a nonlinear constraint is hidden.
uses "mmnl"
declarations
c: nlctr
end-declarations

if ishidden(c) then
writeln("Constraint 'c' is currently hidden.")
end-if

Further informationThis function tests the current status of a constraint. At its creation a constraint is added to the currentproblem, but using the function sethidden it may be hidden. This means, the constraint will not becontained in the problem that is solved by the nonlinear solver but it is not deleted from the definition ofthe problem in Mosel.
Related topics

sethidden.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 305

mmnl

sethidden

Purpose Hide or unhide a nonlinear constraint.
Synopsis

procedure sethidden(c:nlctr, b:boolean)

Arguments
c A nonlinear constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Example The following defines a constraint and then sets it as hidden:
uses "mmnl"
declarations
x,y,z: mpvar
end-declarations

c:= 4⁎cos(x) + y - z^2 <= 12
sethidden(c, true)

Further informationAt its creation a constraint is added to the current problem, but using this procedure it may be hidden.This means that the constraint will not be contained in the problem that is solved by the nonlinearsolver but it is not deleted from the definition of the problem in Mosel. Function ishidden can be usedto test the current status of a constraint.
Related topics

ishidden.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 306

mmnl

gettype

Purpose Get the type of a nonlinear constraint.
Synopsis

function gettype(c:nlctr):integer

Argument
c A nonlinear constraint

Return valueConstraint type. Applicable values for nonlinear constraints are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint, i.e. free

Related topics
settype.

Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 307

mmnl

setname

Purpose Associate a matrix name to a nonlinear constraint.
Synopsis

procedure setname(c:nlctr, n:string)

Arguments
c A nonlinear constraint
n Name given to the constraint

Further information
1. When exporting a problem to a matrix file, constraint names are deduced from the global publicsymbols: anonymous and local constraints are usually named after their row number in the matrix. Thisprocedure makes it possible to give a name to these constraints.
2. If the given name starts with the ’#’ character, the generated matrix name will include the row numberof the constraint in the matrix.

Fair Isaac Corporation Confidential and Proprietary Information 308

mmnl

settype

Purpose Set the type of a nonlinear constraint.
Synopsis

procedure settype(c:nlctr, type:integer)

Arguments
c A nonlinear constraint
type Constraint type. Applicable values are:

CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint

Further informationThis procedure can be used to change the type of a nonlinear constraint, turning it into an equality orinequality or making it unbounded, i.e. free.
Related topics

gettype.
Module mmnl

Fair Isaac Corporation Confidential and Proprietary Information 309

CHAPTER 9

mmoci

The Mosel OCI (Oracle Call Interface) interface provides a set of procedures and functions that may beused to access Oracle databases. To use the OCI interface, the following line must be included in theheader of a Mosel model file:
uses 'mmoci'

This manual describes the Mosel OCI interface and shows how to use some standard PL/SQLcommands, but it is not meant to serve as a manual for PL/SQL. The reader is referred to thedocumentation of Oracle for more detailed information on these topics.

9.1 Prerequisite

The Oracle interface defined by the module mmoci accesses Oracle databases via the Oracle CallInterface (OCI). Oracle’s Instant Client package must be installed on the machine that runs the Moselmodel.

9.2 Example

Assume that the Oracle database contains a table “pricelist” of the following form:
articlenum color price

1001 blue 10.49
1002 red 10.49
1003 black 5.99
1004 blue 3.99

...

The following small example shows how to logon to a database from an Mosel model file, read in data,and logoff from the database.
model 'OCIexample'
uses 'mmoci'

declarations
prices: array (range) of real
end-declarations

setparam("OCIverbose", true) ! Enable OCI message printing in case of error

Fair Isaac Corporation Confidential and Proprietary Information 310

mmoci

OCIlogon("scott","tiger","") ! connect to Oracle as the user 'scott/tiger'

writeln("Connection number: ", getparam("OCIconnection"))

OCIexecute("select articlenum,price from pricelist", prices)
! Get the entries of field `price' (indexed by
! field `articlenum') in table `pricelist'

OCIlogoff ! Disconnect from the database
end-model

Here the OCIverbose control parameter is set to true to enable OCI message printing in case oferror. Following the connection, the procedure OCIexecute is called to retrieve entries from the field
price (indexed by field articlenum) in the table pricelist. Finally, the connection is closed.
For further examples of working with databases and spreadsheets, the reader is referred to the Xpresswhitepaper Using ODBC and other database interfaces with Mosel.

9.3 Data transfer between Mosel and Oracle

Data transfer beetween Mosel and Oracle is achieved by calls to the procedure OCIexecute. The valueof the control parameter OCIndxcol and the type and structure of the second argument of theprocedure decide how the data are transferred between the two systems.
9.3.1 From Oracle to Mosel

Information is moved from Oracle to Mosel when performing a SELECT command for instance.Assuming mt has been declared as follows:
mt: array(1..10,1..3) of integer

the execution of the call:
OCIexecute("SELECT c1,c2,c3 from T", mt)

behaves differently depending on the value of OCIndxcol. If this control parameter is true, thecolumns c1 and c2 are used as indices and c3 is the value to be assigned. For each row (i,j,k) of theresult set, the following assignment is performed by mmoci:
mt(i,j):=k

With a table T containing:
c1 c2 c3 c4
1 2 5 7
4 3 6 8

We obtain the initialization:
m2(1,2)=5, m(4,3)=6

If the control parameter OCIndxcol is false, all columns are treated as data. In this case, for eachrow (i,j,k) the following assignments are performed:
mt(r,1):=i; mt(r,2):=j; mt(r,3):=k

where r is the row number in the result set.
Here, the resulting initialization is:

Fair Isaac Corporation Confidential and Proprietary Information 311

mmoci

mt(1,1)=1, mt(1,2)=2, mt(1,3)=5
mt(2,1)=4, mt(2,2)=3, mt(2,3)=6

If the SQL statement selects 4 columns (instead of 3) as in:
OCIexecute("SELECT c1,c2,c3,c4 from T", mt)

and the control parameter OCIndxcol is false, the first column is used as the first array index whilethe remaining columns are treated as data. As a consequence, for each row (i,j,k,l) the followingassignments are performed:
mt(i,1):=j; mt(i,2):=k; mt(i,3):=l

The resulting initialization is therefore:
mt(1,1)=2, mt(1,2)=5, mt(1,3)=7
mt(4,1)=3, mt(4,2)=6, mt(4,3)=8

The second argument of OCIexecutemay also be a list of arrays. When using this version, the valueof OCIndxcol is ignored and the first column(s) of the result set are always considered as indices andthe following ones as values for the corresponding arrays. For instance, assuming we have thefollowing declarations:
m1, m2: array(1..10) of integer

With the statement:
OCIexecute("SELECT c1,c2,c3 from T", [m1,m2])

for each row (i,j,k) of the result set, the following assignments are performed:
m1(i):=j; m2(i):=k

So, if we use the table T of our previous example, we get the initialization:
m1(1)=2, m1(4)=5
m2(1)=3, m2(4)=6

9.3.2 From Mosel to Oracle

Information is transferred from Mosel to Oracle when performing an INSERT command for instance. Inthis case, the way to use the Mosel arrays has to be specified by using parameters in the SQLcommand. These parameters are identified by their name in the expression. For instance in thefollowing expression 3 parameters (:1, :2 and :3) are used:
INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)

mmoci expects that parameters are always named :n where n is the parameter number starting at 1but does not impose any order (i.e. :3,:1,:2 is also valid) and a given parameter may be used severaltimes in an expression. The command is then executed repeatedly as many times as the provided dataallows to build new tuples of parameters. The initialization of parameters is similar to what is done fora SELECT statement.
Assuming mt has been declared as follows:

mt: array(1..2,1..3) of integer

and initialized with this assignment:
mt::[1,2,3,

Fair Isaac Corporation Confidential and Proprietary Information 312

mmoci

4,5,6]

the execution of the call:
OCIexecute("INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)",mt)

behaves differently depending on the value of OCIndxcol. If this control parameter is true, for eachexecution of the command, the following assignments are performed by mmoci:
':1':= i, ':2':= j, ':3':= mt(i,j)

The execution is repeated for all possible values of i and j (in our example 6 times). The resultingtable T is therefore:
c1 c2 c3
1 1 1
1 2 2
1 3 3
2 1 4
2 2 5
2 3 6

Note that mmoci uses the names of the parameters to perform an initialization and not their relativeposition. This property is particularly useful for UPDATE statements where the order of parametersneeds to be changed. For instance, if we want to update the table T instead of inserting new rows, wecan write:
OCIexecute("UPDATE T c3=:3 WHERE c1=:1, c2=:2",mt)

This command is executed exactly in the same way as the INSERT example above (i.e. we do not have
’:3’:=i, ’:1’:=j, ’:2’:=mt(i,j) as the order of appearance in the command suggests but
’:1’:=i, ’:2’:=j, ’:3’:=mt(i,j)).
The same functionality may also be used to reorder or repeat columns. With the same definition of thearray mt as before and a 4-column table S in the database the execution of the command

OCIexecute("INSERT INTO S (c1,c2,c3,c4) VALUES (:1,:2,:3,:2)",mt)

results in the following contents of table S:
c1 c2 c3 c4
1 1 1 1
1 2 2 2
1 3 3 3
2 1 4 1
2 2 5 2
2 3 6 3

If the control parameter OCIndxcol is false, only the values of the Mosel array are used to initializethe parameters. So, for each execution of the command of our initial example (with 3 parameters), wehave:
':1':=mt(i,1), ':2':=mt(i,2), ':3':=mt(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T istherefore:
c1 c2 c3
1 2 3
4 5 6

Fair Isaac Corporation Confidential and Proprietary Information 313

mmoci

However if the SQL query defines 4 parameters (instead of 3) as in:
OCIexecute("INSERT INTO T (c1,c2,c3,c4) VALUES (:1,:2,:3,:4)",mt)

and the control parameter OCIndxcol is false, the first parameter is used as the first array indexwhile the remaining parameters are populated with data. As a consequence, for each execution of thecommand, the following assignments are performed by mmoci:
':1':= i, ':2':= mt(i,1), ':3':= mt(i,2), ':4':=mf(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T istherefore:
c1 c2 c3 c4
1 1 2 3
2 4 5 6

When OCIexecute is used with a list of arrays, the behavior is again similar to what has beendescribed earlier for the SELECT command: the first parameter(s) are assigned index values and thefinal ones the actual array values. For instance, assuming we have the following declarations:
m1,m2: array(1..3) of integer

And the arrays have been initialized as follows:
m1::[1,2,3]
m2::[4,5,6]

Then the following call:
OCIexecute("INSERT INTO T (c1,c2,c3) VALUES (:1,:2,:3)",[m1,m2])

executes 3 times the INSERT command. For each execution, the following parameter assignments areperformed:
':1':=i, ':2':=m1(i), ':3':=m2(i)

The resulting table T is therefore:
c1 c2 c3
1 1 4
2 2 5
3 3 6

9.4 Control parameters

The following parameters are defined by mmoci:
OCIautocommit Enable/disable "commit on success" in OCI. p. 315
OCIautondx Enable automatic indexation of arrays. p. 315
OCIbufsize Data buffer size. p. 316
OCIcolsize Maximum string length. p. 316
OCIconnection Identification number of the active OCI connection. p. 316
OCIdebug Enable/disable debug mode. p. 317

Fair Isaac Corporation Confidential and Proprietary Information 314

mmoci

OCIfirstndx Initial index value for an automatic indexation. p. 317
OCIndxcol Indicate whether to use first columns as indices. p. 317
OCIrowcnt Number of lines affected by the last SQL command. p. 318
OCIrowxfr Number of lines transferred during the last SQL command. p. 318
OCIsuccess Indicate whether the last SQL command succeeded. p. 318
OCItruncsize Length of the largest string that has been truncated. p. 318
OCIverbose Enable/disable message printing by OCI. p. 319
All parameters can be accessed with the Mosel function getparam, and those that are not markedread-only in the list below may be set using the procedure setparam.
Example:

setparam("OCIverbose", true) ! Enable message printing by OCI
csize:=getparam("OCIcolsize") ! Get the maximum string length
setparam("OCIconnection", 3) ! Select the connection number 3

OCIautocommit

Description Enable/disable "commit on success" in OCI.
Type Boolean, read/write
Values true Changes to the database are committed automatically.

false transactions have to be explicitly committed (or rolled back) using OCIcommit (or
OCIrollback).

Default value true

Module mmoci

OCIautondx

Description Enable automatic indexation of arrays.
Type Boolean, read/write
Values true Enable automatic indexation.

false Disable automatic indexation.
Default value false

Note Automatic indexation affects handling of arrays in SQL queries. It can be used only on1-dimension arrays indiced by ranges: when this mode is enabled indices are not imported orexported, only array values are exchanged with the database. For reading, the initial indexvalue is taken from the parameter OCIfirstndx and incremented at each iteration. Whenwriting all cells of the arrays are exported.
Affects routines OCIexecute.
See also OCIfirstndx.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 315

mmoci

OCIbufsize

Description Size in kilobytes of the buffer used for exchanging data between Mosel and Oracle.
Type Integer, read/write
Values At least 1
Default value 4
Affects routines OCIexecute, OCIreadstring.
Module mmoci

OCIcolsize

Description Maximum length of strings accepted to exchange data, anything exceeding this size is cut off.
Type Integer, read/write
Values At least 8
Default value 64
Note When exporting external type entities as text strings to the database and the column size istoo small the resulting cells might be empty.
Affects routines OCIexecute, OCIreadstring.
See also OCItruncsize.
Module mmoci

OCIconnection

Description Identification number of the active OCI connection. By changing the value of this parameter, itis possible to work with several connections simultaneously.
Type Integer, read/write
Affects routines OCIlogoff, OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.
Set by routines OCIlogon.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 316

mmoci

OCIdebug

Description When this parameter is set to true, OCIverbose is also enabled and any SQL request sentto Oracle is displayed to the error stream before execution. This option is ignored if the modelis not compiled with debug information.
Type Boolean, read/write
Values true Enable debug mode.

false Disable debug mode.
Default value false

See also OCIverbose.
Module mmoci

OCIfirstndx

Description Initial index value for an automatic indexation.
Type Integer, read/write
Default value 1
Affects routines OCIexecute.
See also OCIautondx.
Module mmoci

OCIndxcol

Description Indicates whether the first columns of each row must be interpreted as indices in all cases.Setting it to the value falsemight be useful, for example, if one is trying to access anon-relational table, perhaps a dense table. Note this mode can be enabled only is at least thelast dimension of each array is of fixed size.
Type Boolean, read/write
Values true Interpret the first columns of each row as indices.

false Do not interpret the first columns of each row as indices.
Default value true

Affects routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 317

mmoci

OCIrowcnt

Description Number of lines affected by the last SQL command.
Type Integer, read only
Set by routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.
See also OCIrowxfr.
Module mmoci

OCIrowxfr

Description Number of lines transferred during the last SQL command.
Type Integer, read only
Set by routines OCIexecute, OCIreadinteger.OCIreadreal, OCIreadstring.
See also OCIrowcnt.
Module mmoci

OCIsuccess

Description Indicate whether the last SQL command has been executed successfully.
Type Boolean, read only
Values true Succes.

false Error.
Set by routines All OCI functions.
Module mmoci

OCItruncsize

Description Length of the largest string that has been truncated.
Type Integer, read only
Note When exporting text to the database all strings must fit into the predefined column size(OCIcolsize). If strings are truncated due to this limit the operation status is set to false(see OCIsuccess) and this parameter receives the size that should be used to avoid anytruncation.
Set by routines OCIexecute.

Fair Isaac Corporation Confidential and Proprietary Information 318

mmoci

See also OCIsuccess, OCIcolsize.
Module mmoci

OCIverbose

Description Enable/disable message printing by OCI.
Type Boolean, read/write
Values true Enable message printing.

false Disable message printing.
Default value true

Module mmoci

9.5 Procedures and functions

This section lists in alphabetical order the functions and procedures that are provided by the mmocimodule.
OCIcommit Commit the current transaction. p. 326
OCIexecute Execute an SQL command. p. 322
OCIlogoff Terminate the active database connection. p. 321
OCIlogon Connect to a database. p. 320
OCIreadinteger Read an integer value from a database. p. 323
OCIreadreal Read a real value from a database. p. 324
OCIreadstring Read a string from a database. p. 325
OCIrollback Roll back the current transaction. p. 327

Fair Isaac Corporation Confidential and Proprietary Information 319

mmoci

OCIlogon

Purpose Connect to a database.
Synopsis

procedure OCIlogon(s:string|text)
procedure OCIlogon(u:string|text, p:string|text, db:string|text)

Arguments
s Logon string as "user/password@db"
n User name
p Password
db Database name (may be "" for the default database)

Example The following connects to the database ‘test’ as the user ‘yves’ with the password ‘DaSH’:
OCIlogon("yves/DaSH@test")

Open a connection to the default database the user ’scott’ with the password ’tiger’
OCIlogon("scott","tiger","")

Further information
1. This procedure establishes a connection to the database db as user n/p. It is possible to open severalconnections but the connection established last becomes active. Each connection is assigned anidentification number which can be obtained by getting the value of the parameter OCIconnectionafter this procedure has been executed. This parameter can also be used to change the activeconnection.
2. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoDB disables this routine.

Related topics
OCIlogoff.

Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 320

mmoci

OCIlogoff

Purpose Terminate the active database connection.
Synopsis

procedure OCIlogoff

Further informationThe active connection can be accessed or changed by setting the control parameter OCIconnection.
Related topics

OCIlogon.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 321

mmoci

OCIexecute

Purpose Execute an SQL command.
Synopsis

procedure OCIexecute(s:string|text)
procedure OCIexecute(s:string|text, a:array)
procedure OCIexecute(s:string|text, l:list)
procedure OCIexecute(s:string|text, m:set)

Arguments
s SQL command to be executed
a An array
l A list. May be a list of arrays
m A set

Example The following example contains four OCIexecute statements performing the following tasks:
� Get all different values of the column color in the table pricelist.
� Initialize the arrays colors and prices with the values of the columns color and price of thetable pricelist.
� Create a new table newtab in the active database with 2 columns, ndx and price.
� Add data entries to table newtab.

declarations
prices: array(1001..1004) of real
colors: array(1001..1004) of string
allcolors: set of string
end-declarations

OCIexecute("select color from pricelist", allcolors)
OCIexecute("select articlenum,color,price from pricelist",

[colors,prices])
OCIexecute("create table newtab (ndx integer, price double)")
OCIexecute("insert into newtab (ndx, price) values (:1,:2)", prices)

Further information
1. This procedure executes the given SQL command. The user is referred to the Oracle documentation forfurther information on PL/SQL.
2. For output commands (like insert into) this procedure accepts arrays, sets and lists of basic types(integer, real, string or Boolean) as well as module types for which from/to string conversions areavailable. Record types composed of scalars or other records can also be used (the fields that cannotbe handled are silently ignored). It is also possible to use a list of arrays of basic types (all arrays mustbe indexed by the same sets) or a list of scalar elements of different basic or module types.
3. For input commands (like select from) the same restrictions apply for arrays,lists and list of arraysbut sets must be of a basic type.

Related topics
OCIreadinteger, OCIreadreal, OCIreadstring.

Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 322

mmoci

OCIreadinteger

Purpose Read an integer value from a database.
Synopsis

function OCIreadinteger(s:string|text):integer

Argument
s SQL command for selecting the value to be read

Return valueInteger value read or 0.
Example The following gets the article number of the first data item in table pricelist for which the field

color is set to blue:
i:=OCIreadinteger(

"select articlenum from pricelist where color=blue")

Further information
1. 0 is returned if no integer value can be found.
2. If the given SQL selection command does not denote a single value, the first value to which theselection criterion applies is returned.

Related topics
OCIexecute, OCIreadreal, OCIreadstring.

Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 323

mmoci

OCIreadreal

Purpose Read a real value from a database.
Synopsis

function OCIreadreal(s:string|text):real

Argument
s SQL command for selecting the value to be read

Return valueReal value read or 0.
Example The following returns the price of the data item with index 2 in table newtab:

r:=OCIreadreal("select price from newtab where ndx=2")

Further information
1. 0 is returned if no real value can be found.
2. If the given SQL selection command does not denote a single value, the first value to which theselection criterion applies is returned.

Related topics
OCIexecute, OCIreadinteger, OCIreadstring.

Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 324

mmoci

OCIreadstring

Purpose Read a string from a database.
Synopsis

function OCIreadstring(s:string|text):string

Argument
s SQL command for selecting the string to be read

Return valueString read or empty string.
Example The following retrieves the color of the (first) data item in table pricelist with article number 1004:

s:=OCIreadstring(
"select color from pricelist where articlenum=1004")

Further information
1. The empty string is returned if no real value can be found.
2. If the given SQL selection command does not denote a single entry, the first string to which theselection criterion applies is returned.

Related topics
OCIexecute, OCIreadinteger, OCIreadreal.

Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 325

mmoci

OCIcommit

Purpose Commit the current transaction.
Synopsis

procedure OCIcommit

Further informationThis procedure is required only if the control parameter OCIautocommit is set to false.
Related topics

OCIrollback.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 326

mmoci

OCIrollback

Purpose Roll back the current transaction.
Synopsis

procedure OCIrollback

Further informationThis procedure can be used only if the control parameter OCIautocommit is set to false.
Related topics

OCIcommit.
Module mmoci

Fair Isaac Corporation Confidential and Proprietary Information 327

mmoci

9.6 I/O drivers

This module provides a driver designed to be used in initializations blocks for both reading andwriting data. The oci IO driver simplifies access to Oracle databases.
9.6.1 Driver oci

oci:[debug;][noindex;][colsize=#;][bufsize=#;]logstring

The driver can only be used in ‘initializations’ blocks. The database to use has to be given in theopening part of the block as user/password@dbname. Before this identifier, the following optionsmay be stated:
debug to execute the block in debug mode (to display what SQL queries are produced). Thisoption is ignored if the model is not compiled with debug information.
noindex to indicate that only data (no indices) are transferred between the data source andMosel. By default, the first columns of each table are interpreted as index values for thearray to be transferred. This behaviour is changed by this option.
colsize=c to set the size of a text column (default 64 characters).
bufsize=c to set the size of the data buffer in kilobytes (default 4).
In the block, each label entry is understood as a table name optionally followed by a list of columnnames in brackets (e.g. "my_table(col1,col2)"). All columns are used if no list of names isspecified. Note that, before the table name, one can add option noindex to indicate that for thisparticular entry indices are not used.
Example:

initializations from "mmoci.oci:scott/tiger@orcl"
NWeeks as "PARAMS(Weeks)" ! Initialize `NWeeks' with column `Weeks'

! of table `PARAMS'
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with table `BPROFILE'

! all columns being data (no indices)
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 328

CHAPTER 10

mmodbc

The Mosel ODBC interface provides a set of procedures and functions that may be used to accessdatabases for which an ODBC driver is available. This module also includes the SQLite database enginethat can be directly run without the need for any additional software.To use the ODBC interface, the following line must be included in the header of a Mosel model file:
uses 'mmodbc'

This manual describes the Mosel ODBC interface and shows how to use some standard SQLcommands, but it is not meant to serve as a manual for SQL. The reader is referred to thedocumentation of the software he is using for more detailed information on these topics.

10.1 Prerequisite

The ODBC technology relies on a driver manager that is used as an interface between applications (like
mmodbc) and a data source itself accessed through a dedicated driver. As a consequence, this modulerequires that both, a driver manager and the necessary drivers (one for each data source to be used),are installed and set up on the operating system.
Under Windows, usually the driver manager is part of the system and most data sources are providedwith their ODBC driver (for instance Excel, Access or SQLServer).
On the other supported operating systems it may be necessary to install a driver manager (as well asthe necessary drivers). The module mmodbc supports two driver managers: iODBC(http://www.iodbc.org) and unixODBC (http://www.unixodbc.org). Upon startup the module tries to loadthe dynamic library "libiodbc.so" then, if this fails, tries "libodbc.so". If none of these librariescan be found only the SQLite integrated driver will be available, please make sure that one of the drivermanagers is installed and that the corresponding libraries can be accessed (in general this requiresupdating some environment variable).

10.2 Example

Assume that the data source “mydata” defines a database that contains a table “pricelist” of thefollowing form:

Fair Isaac Corporation Confidential and Proprietary Information 329

http://www.iodbc.org
http://www.unixodbc.org

mmodbc

articlenum color price

1001 blue 10.49
1002 red 10.49
1003 black 5.99
1004 blue 3.99

...

The following small example shows how to connect to a database from an Mosel model file, read indata, and disconnect from the data source.
model 'ODBCexample'
uses 'mmodbc'

declarations
prices: array (range) of real
end-declarations

setparam("SQLverbose", true) ! Enable ODBC message printing in case of error
SQLconnect("DSN=mydata") ! Connect to the database defined by `mydata'

writeln("Connection number: ", getparam("SQLconnection"))

SQLexecute("select articlenum,price from pricelist", prices)
! Get the entries of field `price' (indexed by
! field `articlenum') in table `pricelist'

SQLdisconnect ! Disconnect from the database
end-model

Here the SQLverbose control parameter is set to true to enable ODBC message printing in case oferror. Following the connection, the procedure SQLexecute is called to retrieve entries from the field
price (indexed by field articlenum) in the table pricelist. Finally, the connection is closed.
For further examples of working with databases and spreadsheets, the reader is referred to the Xpresswhitepaper Using ODBC and other database interfaces with Mosel.

10.3 Data transfer between Mosel and the database

Data transfer beetween Mosel and the database is achieved by calls to the procedure SQLexecute.The value of the control parameter SQLndxcol and the type and structure of the second argument ofthe procedure decide how the data are transferred between the two systems.
10.3.1 From the database to Mosel

Information is moved from the database to Mosel when performing a SELECT command for instance.Assuming mt has been declared as follows:
mt: array(1..10,1..3) of integer

the execution of the call:
SQLexecute("SELECT c1,c2,c3 from T", mt)

behaves differently depending on the value of SQLndxcol. If this control parameter is true, thecolumns c1 and c2 are used as indices and c3 is the value to be assigned. For each row (i,j,k) of theresult set, the following assignment is performed by mmodbc:

Fair Isaac Corporation Confidential and Proprietary Information 330

mmodbc

mt(i,j):=k

With a table T containing:
c1 c2 c3 c4
1 2 5 7
4 3 6 8

We obtain the initialization:
m2(1,2)=5, m(4,3)=6

If the control parameter SQLndxcol is false, all columns are treated as data. In this case, for eachrow (i,j,k) the following assignments are performed:
mt(r,1):=i; mt(r,2):=j; mt(r,3):=k

where r is the row number in the result set.
Here, the resulting initialization is:

mt(1,1)=1, mt(1,2)=2, mt(1,3)=5
mt(2,1)=4, mt(2,2)=3, mt(2,3)=6

If the SQL statement selects 4 columns (instead of 3) as in:
SQLexecute("SELECT c1,c2,c3,c4 from T", mt)

and the control parameter SQLndxcol is false, the first column is used as the first array index whilethe remaining columns are treated as data. As a consequence, for each row (i,j,k,l) the followingassignments are performed:
mt(i,1):=j; mt(i,2):=k; mt(i,3):=l

The resulting initialization is therefore:
mt(1,1)=2, mt(1,2)=5, mt(1,3)=7
mt(4,1)=3, mt(4,2)=6, mt(4,3)=8

The second argument of SQLexecutemay also be a list of arrays. When using this version, the valueof SQLndxcol is ignored and the first column(s) of the result set are always considered as indices andthe following ones as values for the corresponding arrays. For instance, assuming we have thefollowing declarations:
m1, m2: array(1..10) of integer

With the statement:
SQLexecute("SELECT c1,c2,c3 from T", [m1,m2])

for each row (i,j,k) of the result set, the following assignments are performed:
m1(i):=j; m2(i):=k

So, if we use the table T of our previous example, we get the initialization:
m1(1)=2, m1(4)=5
m2(1)=3, m2(4)=6

Fair Isaac Corporation Confidential and Proprietary Information 331

mmodbc

10.3.2 From Mosel to the database

Information is transferred from Mosel to the database when performing an INSERT command forinstance. In this case, the way to use the Mosel arrays has to be specified by using parameters in theSQL command. These parameters are identified by the symbol ‘?’ in the expression. For instance in thefollowing expression 3 parameters are used:
INSERT INTO T (c1,c2,c3) VALUES (?,?,?)

The command is then executed repeatedly as many times as the provided data allows to build newtuples of parameters. The initialization of parameters is similar to what is done for a SELECTstatement.
Assuming mt has been declared as follows:

mt: array(1..2,1..3) of integer

and initialized with this assignment:
mt::[1,2,3,

4,5,6]

the execution of the call:
SQLexecute("INSERT INTO T (c1,c2,c3) VALUES (?,?,?)",mt)

behaves differently depending on the value of SQLndxcol. If this control parameter is true, for eachexecution of the command, the following assignments are performed by mmodbc (?1,?2,?3 denoterespectively the first second and third parameter):
'?1':= i, '?2':= j, '?3':= mt(i,j)

The execution is repeated for all possible values of i and j (in our example 6 times). The resultingtable T is therefore:
c1 c2 c3
1 1 1
1 2 2
1 3 3
2 1 4
2 2 5
2 3 6

If the control parameter SQLndxcol is false, only the values of the Mosel array are used to initializethe parameters. So, for each execution of the command, we have:
'?1':=mt(i,1), '?2':=mt(i,2), '?3':=mt(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T istherefore:
c1 c2 c3
1 2 3
4 5 6

However if the SQL query defines 4 parameters (instead of 3) as in:
SQLexecute("INSERT INTO T (c1,c2,c3,c4) VALUES (?,?,?,?)",mt)

and the control parameter SQLndxcol is false, the first parameter is used as the first array index

Fair Isaac Corporation Confidential and Proprietary Information 332

mmodbc

while the remaining parameters are populated with data. As a consequence, for each execution of thecommand, the following assignments are performed by mmodbc:
'?1':= i, '?2':= mt(i,1), '?3':= mt(i,2), '?4':=mf(i,3)

The execution is repeated for all possible values of i (in our example 2 times). The resulting table T istherefore:
c1 c2 c3 c4
1 1 2 3
2 4 5 6

When SQLexecute is used with a list of arrays, the behavior is again similar to what has beendescribed earlier for the SELECT command: the first parameter(s) are assigned index values and thefinal ones the actual array values. For instance, assuming we have the following declarations:
m1,m2: array(1..3) of integer

And the arrays have been initialized as follows:
m1::[1,2,3]
m2::[4,5,6]

Then the following call:
SQLexecute("INSERT INTO T (c1,c2,c3) VALUES (?,?,?)",[m1,m2])

executes 3 times the INSERT command. For each execution, the following parameter assignments areperformed:
'?1':=i, '?2':=m1(i), '?3':=m2(i)

The resulting table T is therefore:
c1 c2 c3
1 1 4
2 2 5
3 3 6

10.4 ODBC and MS Excel

Microsoft Excel is a spreadsheet application. Since ODBC was primarily designed for databasesspecial rules have to be followed to read and write Excel data using ODBC:
� A table of data is referred to as either a named range (e.g. MyRange), a worksheet name (e.g.
[Sheet1$]) or an explicit range (e.g. [Sheet1$B2:C12]).

� By default, the first row of a range is used for naming the columns (to be used in SQLstatements). The option FIRSTROWHASNAMES=0 disables this feature and columns are implicitlynamed F1, F2... However, even with this option, the first row is ignored and cannot contain data.
� The data type of columns is deduced by the Excel driver by scanning the first 8 rows. The numberof rows analyzed can be changed using the option MAXSCANROWS=n (n between 1 and 8).

It is important to be aware that when writing to database tables specified by a named range in Excel,they will increase in size if new data is added using an INSERT statement. To overwrite existing data inthe worksheet, the SQL statement UPDATE can be used in most cases (although this command is not

Fair Isaac Corporation Confidential and Proprietary Information 333

mmodbc

fully supported). Now suppose that we wish to write further data over the top of data that has alreadybeen written to a range using an INSERT statement. Within Excel it is not sufficient to delete theprevious data by selecting it and hitting the Delete key. If this is done, further data will be added after ablank rectangle where the deleted data used to reside. Instead, it is important to use Edit/Delete/Shiftcells up within Excel, which will eliminate all traces of the previous data, and the enlarged range.
Microsoft Excel tables can be created and opened by only one user at a time. However, the "Read Only"option available in the Excel driver options allows multiple users to read from the same .xls files.
When first experimenting with acquiring or writing data via ODBC it is tempting to use short names forcolumn headings. This can lead to horrible-to-diagnose errors if you inadvertently use an SQL keyword.We strongly recommend that you use names like “myParameters”, or “myParams”, or “myTime”, whichwill not clash with SQL reserved keywords.

10.5 Control parameters

The following parameters are defined by mmodbc:
SQLautocommit Enable/disable auto commit mode. p. 335
SQLautondx Enable automatic indexation of arrays. p. 335
SQLbufsize Data buffer size. p. 335
SQLcolsize Maximum string length. p. 336
SQLconnection Identification number of the active ODBC connection. p. 336
SQLdebug Enable/disable debug mode. p. 336
SQLdm Driver manager currently used. p. 337
SQLextn Enable/Disable extended syntax. p. 337
SQLfirstndx Initial index value for an automatic indexation. p. 337
SQLndxcol Indicate whether to use first columns as indices. p. 338
SQLrowcnt Number of lines affected by the last SQL command. p. 338
SQLrowxfr Number of lines transferred during the last SQL command. p. 338
SQLsuccess Indicate whether the last SQL command succeeded. p. 338
SQLtruncsize Length of the largest string that has been truncated. p. 339
SQLverbose Enable/disable message printing by the ODBC driver. p. 339
All parameters can be accessed with the Mosel function getparam, and those that are not markedread-only in the list below may be set using the procedure setparam.
Example:

setparam("SQLverbose", true) ! Enable message printing by the ODBC driver
csize:=getparam("SQLcolsize") ! Get the maximum string length
setparam("SQLconnection", 3) ! Select the connection number 3

Fair Isaac Corporation Confidential and Proprietary Information 334

mmodbc

SQLautocommit

Description When this parameter is set to true (the default), any change to the database is sentimmediately. Otherwise, if transactions are supported by the database, changes are retaineduntil a call to SQLcommit (commit changes) or SQLrollback (discard changes) is issued.The value of this parameter is used at the time the database is open with SQLconnect: onceconnection is established, changing this parameter has no impact on the existingconnections (i.e. they remain in their initial transaction mode)
Type Boolean, read/write
Values true Enable auto commit mode.

false Disable auto commit mode (i.e. transactions).
Default value true

Affects routines SQLconnect.
Module mmodbc

SQLautondx

Description Enable automatic indexation of arrays.
Type Boolean, read/write
Values true Enable automatic indexation.

false Disable automatic indexation.
Default value false

Note Automatic indexation affects handling of arrays in SQL queries. It can be used only on1-dimension arrays indiced by ranges: when this mode is enabled indices are not imported orexported, only array values are exchanged with the database. For reading, the initial indexvalue is taken from the parameter SQLfirstndx and incremented at each iteration. Whenwriting all cells of the arrays are exported.
Affects routines SQLexecute.
See also SQLfirstndx.
Module mmodbc

SQLbufsize

Description Size in kilobytes of the buffer used for exchanging data between Mosel and the ODBC driver.
Type Integer, read/write
Values At least 1
Default value 4 on Posix systems and 8 on Windows

Fair Isaac Corporation Confidential and Proprietary Information 335

mmodbc

Affects routines SQLexecute, SQLreadstring.
Module mmodbc

SQLcolsize

Description Maximum length of strings accepted to exchange data, anything exceeding this size is cut off.
Type Integer, read/write
Values At least 8
Default value 64
Affects routines SQLexecute, SQLreadstring.
Note The column size is expressed in bytes when using an ANSI interface (with a multibyteencoding a single character may occupy more than one byte) and in characters when using aUnicode interface. When exporting text strings to the database and the column size issignificantly too small the resulting cells might be empty.
See also SQLtruncsize.
Module mmodbc

SQLconnection

Description Identification number of the active ODBC connection. By changing the value of thisparameter, it is possible to work with several connections simultaneously.
Type Integer, read/write
Affects routines SQLdisconnect, SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.
Set by routines SQLconnect.
Module mmodbc

SQLdebug

Description When this parameter is set to true, SQLverbose is also enabled and any SQL request sentto ODBC is displayed to the error stream before execution. This option is ignored if the modelis not compiled with debug information.
Type Boolean, read/write
Values true Enable debug mode.

false Disable debug mode.
Default value false

See also SQLverbose.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 336

mmodbc

SQLdm

Description Driver manager currently used.
Type Integer, read only
Values <0 No driver manager available (Unix/Linux).

0 Unspecified (manager not loaded dynamically).
1 iODBC.
2 unixODBC.

Note A negative value for this parameter indicates that no driver manager could be found on thesystem. As a consequence only the integrated SQLite driver can be accessed.
Module mmodbc

SQLextn

Description Enable/Disable extended syntax.
Type Boolean, read/write
Values true Enable extended syntax.

false Disable extended syntax.
Default value true

Affects routines SQLconnect, SQLexecute.
Module mmodbc

SQLfirstndx

Description Initial index value for an automatic indexation.
Type Integer, read/write
Default value 1
Affects routines SQLexecute.
See also SQLautondx.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 337

mmodbc

SQLndxcol

Description Indicates whether the first columns of each row must be interpreted as indices in all cases.Setting it to the value falsemight be useful, for example, if one is trying to access anon-relational table, perhaps a dense spreadsheet table. Note this mode can be enabled onlyif at least the last dimension of each array is of fixed size.
Type Boolean, read/write
Values true Interpret the first columns of each row as indices.

false Do not interpret the first columns of each row as indices.
Default value true

Affects routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.
Module mmodbc

SQLrowcnt

Description Number of lines affected by the last SQL command.
Type Integer, read only
Set by routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.
See also SQLrowxfr.
Module mmodbc

SQLrowxfr

Description Number of lines transferred during the last SQL command.
Type Integer, read only
Set by routines SQLexecute, SQLreadinteger.SQLreadreal, SQLreadstring.
See also SQLrowcnt.
Module mmodbc

SQLsuccess

Description Indicate whether the last SQL command has been executed successfully.
Type Boolean, read only

Fair Isaac Corporation Confidential and Proprietary Information 338

mmodbc

Values true Succes.
false Error.

Set by routines All ODBC functions.
Module mmodbc

SQLtruncsize

Description Length of the largest string that has been truncated.
Type Integer, read only
Note When exporting text to the database all strings must fit into the predefined column size(SQLcolsize). If strings are truncated due to this limit the operation status is set to false(see SQLsuccess) and this parameter receives the size that should be used to avoid anytruncation.
Set by routines SQLexecute.
See also SQLsuccess, SQLcolsize.
Module mmodbc

SQLverbose

Description Enable/disable message printing by the ODBC driver.
Type Boolean, read/write
Values true Enable message printing.

false Disable message printing.
Default value true

Module mmodbc

10.6 Procedures and functions

This section lists in alphabetical order the functions and procedures that are provided by the mmodbcmodule.
SQLcolumns Get the columns of a given table. p. 341
SQLcommit Terminate the current transaction by committing any pending changes.p. 342
SQLconnect Connect to a database. p. 343
SQLdisconnect Terminate the active database connection. p. 345
SQLexecute Execute an SQL command. p. 346

Fair Isaac Corporation Confidential and Proprietary Information 339

mmodbc

SQLgetparam Get the value of an SQL parameter. p. 349
SQLindices Get the list of indices of a given table. p. 350
SQLparam Generate an SQL parameter. p. 348
SQLprimarykeys Get the list of primary keys of a given table. p. 351
SQLreadinteger Read an integer value from a database. p. 352
SQLreadreal Read a real value from a database. p. 353
SQLreadstring Read a string from a database. p. 354
SQLrollback Terminate the current transaction by discarding any pending changes.p. 355
SQLtables Get the list of tables available in the database. p. 356
SQLupdate Update the selected data with the provided array(s). p. 357

Fair Isaac Corporation Confidential and Proprietary Information 340

mmodbc

SQLcolumns

Purpose Get the columns of a given table.
Synopsis

function SQLcolumns(t:string,cname:array(range) of
string,cstype:array(range) of string):integer

function SQLcolumns(t:string,cname:array(range) of
string,citype:array(range) of integer):integer

function SQLcolumns(t:string,cname:array(range) of string):integer

Arguments
t The table name
cname An array of strings to return the column names
cstype An array of strings to return the column types (textual representation)
citype An array of integers to return the column types (type codes)

Return valueNumber of columns.
Example The following example displays the names and types of columns of table ’dtt’:

declarations
CR:range
cname:dynamic array(CR) of string
ctype:dynamic array(CR) of string
end-declarations

nbc:=SQLcolumns("dtt",cname,ctype)
write("Table 'dtt' has columns:")
forall(c in 1..nbc) write(' ',cname(c),'(',ctype(c),')')
writeln

Related topics
SQLtables, SQLprimarykeys, SQLindices.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 341

mmodbc

SQLcommit

Purpose Terminate the current transaction by committing any pending changes.
Synopsis

procedure SQLcommit

Further informationIf the database supports transactions and the connection has been created in manual commit mode(see SQLautocommit), all changes to the database are recorded as a transaction. This procedure
commits all pending changes corresponding to the current transaction and starts a new transaction.

Related topics
SQLrollback.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 342

mmodbc

SQLconnect

Purpose Connect to a database.
Synopsis

procedure SQLconnect(s:string|text)

Argument
s Connection string

Example The following connects to the MySQL database ‘test’ as the user ‘yves’ with the password ‘DaSH’:
SQLconnect("DSN=mysql;DB=test;UID=yves;PWD=DaSH")

Open the database mydata.sqlite with the integrated SQLite engine:
SQLconnect("mydata.sqlite")

Fair Isaac Corporation Confidential and Proprietary Information 343

mmodbc

Further information
1. This procedure establishes a connection to the database defined by the given connection string. Ifextended mode is in use (default) and the ODBC driver manager publishes its driver list, the connectionstring may be reduced to a file name as long as this name allows identification of the required driver (byusing the filename extension).
2. Both Unicode and ANSI ODBC interfaces are supported. By default the Unicode interface is used onWindows and the ANSI interface is selected on Posix systems. It is possible to choose the interface byusing the "enc:" file name prefix: any of the UTF encodings (except UTF-8) will enable the Unicodeinterface. Otherwise the ANSI interface is selected using the specified encoding. For instance for usingthe ANSI interface under Windows with an Access database: "enc:sys,mydb.mdb". Similarly, to usethe Unicode interface of MySQL on a Unix machine, the connection strings looks like:

"enc:wchar,DSN=mysql;DB=test".
3. It is possible to open several connections but the connection established last becomes active. Eachconnection is assigned an identification number which can be obtained by getting the value of theparameter SQLconnection after this procedure has been executed. This parameter can also be usedto change the active connection.
4. ODBC drivers are not necessarily executed from the same working directory as the model. As aconsequence, a driver expecting a file as data source may not be able to locate the file if its name isrelative to the current directory (e.g. "DSN=Microsoft Access Driver; DBQ=mydb.mdb"). Theuse of the function expandpath from mmsystem allows to avoid this problem by generating anabsolute path name for the given name (e.g. "DSN=Microsoft Access Driver;

DBQ="+expandpath("mydb.mdb")).
5. When Mosel is running in restricted mode (see Section 1.3.4), connections using a file name are notpossible if restriction NoRead or NoWrite is active and connections using a DSN are disabled byrestriction NoDB.
6. The embedded SQLite database engine is selected when specifying a file name with extension ".db",

".db3", ".sqlite" or ".sqlite3". The driver may also be selected with the help of an extendedconnection string starting with the DRIVER keyword and using "mmsqlite" as the driver name. In thiscase the option DB has to be set in order to select the database file and READONLYmay also be addedto open the database read-only. The option TIMEOUT will define the busy timeout for the connection:this is an amount of time (in milliseconds) indicating for how long SQLite will try to execute a querywhen the database is locked (by default the query fails if the database is already used by a concurrentconnection). A typical connection string for this SQLite driver is therefore of the form:
"DRIVER=mmsqlite;READONLY=FALSE;TIMEOUT=0;DB=mydata.db" (that is the same as
"mydata.db"). When using this syntax a temporary database can be created by using an empty filename and an in-memory database is generated if the file name is ":memory:".

Related topics
SQLdisconnect.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 344

mmodbc

SQLdisconnect

Purpose Terminate the active database connection.
Synopsis

procedure SQLdisconnect

Further informationThe active connection can be accessed or changed by setting the control parameter SQLconnection.
Related topics

SQLconnect.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 345

mmodbc

SQLexecute

Purpose Execute an SQL command.
Synopsis

procedure SQLexecute(s:string|text)
procedure SQLexecute(s:string|text, a:array)
procedure SQLexecute(s:string|text, l:list)
procedure SQLexecute(s:string|text, m:set)
procedure SQLexecute(s:string|text, lp:list, a:array)
procedure SQLexecute(s:string|text, lp:list, l:list)
procedure SQLexecute(s:string|text, lp:list, m:set)

Arguments
s SQL command to be executed
a An array
l A list
m A set
lp A list of parameters

Example The following example contains four SQLexecute statements performing the following tasks:
� Get all different values of the column color in the table pricelist.
� Initialize the arrays colors and prices with the values of the columns color and price of thetable pricelist.
� Create a new table newtab in the active database with 2 columns, ndx and price.
� Add data entries to table newtab.

declarations
prices: array(1001..1004) of real
colors: array(1001..1004) of string
allcolors: set of string

end-declarations

SQLexecute("select color from pricelist", allcolors)
SQLexecute("select articlenum,color,price from pricelist",

[colors,prices])
SQLexecute("create table newtab (ndx integer, price double)")
SQLexecute("insert into newtab (ndx, price) values (?,?)", prices)

Fair Isaac Corporation Confidential and Proprietary Information 346

mmodbc

Further information
1. This procedure executes the given SQL command. The user is referred to the documentation of thedatabase driver he is using for more information about the commands that are supported by it. Notethat if extended syntax is in use (default), parameters usually noted ’?’ in normal SQL queries may benumbered (like ’?1’,’?2’,...) in order to control in which order are mapped columns of data source table toMosel arrays. This feature is especially useful when writing ’update’ queries for which indices mustappear after values (e.g. "update mytable set datacol=?2 where ndxcol=?1").
2. For output commands (like insert into) this procedure accepts arrays, sets and lists of basic types(integer, real, string or Boolean) as well as module types for which from/to string conversions areavailable. Record types composed of scalars or other records can also be used (the fields that cannotbe handled are silently ignored). It is also possible to use a list of arrays of basic types (all arrays mustbe indexed by the same sets) or a list of scalar elements of different basic or module types.
3. For input commands (like select from) the same restrictions apply for arrays,lists and list of arraysbut sets must be of a basic type.
4. The form using an extra list argument will be used with input commands requiring parameters: the listdefines the value of the parameters.

Related topics
SQLupdate, SQLreadinteger, SQLreadreal, SQLreadstring.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 347

mmodbc

SQLparam

Purpose Generate an SQL parameter.
Synopsis

function SQLparam(i:integer):SQLparameter
function SQLparam(r:real):SQLparameter
function SQLparam(s:string):SQLparameter

Arguments
i The initial value as an integer
r The initial value as a real
s The initial value as a string

Return valueSQL parameter suitable for SQL routines.
Example The following calls a procedure named myproc using 3 parameters. The first one is an input stringparameter (’hello’), the second is an input/output integer parameter (10) and the last one is anoutput string parameter. The procedure returns a result set that mmodbc will use to initialise result.After execution of the query, the new values of the 2 input/output parameters set by the procedure maybe displayed using the appropriate SQLgetparam routines.

SQLexecute("CALL myproc(?,?,?)",
['hello',SQLparam(10),SQLparam("")],result)

writeln("P1=",SQLgetiparam(1))
writeln("P2=",SQLgetsparam(2))

Further information
1. This routine can only be used in a list of parameters for an SQL query: it defines an input/outputparameter. The input value of the parameter is provided via the argument function (an integer, a real ora string) and the output value (set by the database during the execution of the query) can be retrievedusing one of the SQLgetparam functions.
2. SQL parameters are typed: the type of the parameter is deduced from its initial values (passed to the

SQLparam function).
Related topics

SQLexecute, SQLreadreal, SQLreadstring, SQLreadinteger, SQLgetparam.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 348

mmodbc

SQLgetparam

Purpose Get the value of an SQL parameter.
Synopsis

function SQLgetiparam(n:integer):integer
function SQLgetrparam(n:integer):real
function SQLgetsparam(n:integer):string

Argument
n Parameter number (≥ 1)

Return valueThe value of the corresponding parameter.
Further information

1. This routine can be used after a query using input/output SQL parameters has been executed toretrieve the values of the parameters.
2. Each of the 3 functions is associated to a specific type: for instance SQLgetiparam will return valuesonly for integer parameters.

Related topics
SQLparam.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 349

mmodbc

SQLindices

Purpose Get the list of indices of a given table.
Synopsis

procedure SQLindices(t:string,ls:list of string)

Arguments
t The table name
ls A list of strings to return the index names

Further informationThe provided list is reset.
Related topics

SQLtables, SQLcolumns, SQLprimarykeys.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 350

mmodbc

SQLprimarykeys

Purpose Get the list of primary keys of a given table.
Synopsis

procedure SQLprimarykeys(t:string,ls:list of string)
procedure SQLprimarykeys(t:string,li:list of integer)

Arguments
t The table name
ls A list of strings to return the column names
li A list of strings to return the column numbers

Further informationThe provided list is reset.
Related topics

SQLtables, SQLcolumns, SQLindices.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 351

mmodbc

SQLreadinteger

Purpose Read an integer value from a database.
Synopsis

function SQLreadinteger(s:string|text):integer
function SQLreadinteger(s:string|text,p:list):integer

Arguments
s SQL command for selecting the value to be read
p A list of SQL parameters

Return valueInteger value read or 0.
Example The following gets the article number of the first data item in table pricelist for which the field

color is set to blue:
i:=SQLreadinteger(

"select articlenum from pricelist where color=blue")

Further information
1. 0 is returned if no integer value can be found.
2. If the given SQL selection command does not denote a single value, the first value to which theselection criterion applies is returned.
3. The second argument can be used to specify SQL parameter values if the SQL query containsparameter markers.

Related topics
SQLexecute, SQLreadreal, SQLreadstring.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 352

mmodbc

SQLreadreal

Purpose Read a real value from a database.
Synopsis

function SQLreadreal(s:string|text):real
function SQLreadreal(s:string|text,p:list):real

Arguments
s SQL command for selecting the value to be read
p A list of SQL parameters

Return valueReal value read or 0.
Example The following returns the price of the data item with index 2 in table newtab:

r:=SQLreadreal("select price from newtab where ndx=2")

Further information
1. 0 is returned if no real value can be found.
2. If the given SQL selection command does not denote a single value, the first value to which theselection criterion applies is returned.
3. The second argument can be used to specify SQL parameter values if the SQL query containsparameter markers.

Related topics
SQLexecute, SQLreadinteger, SQLreadstring.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 353

mmodbc

SQLreadstring

Purpose Read a string from a database.
Synopsis

function SQLreadstring(s:string|text):string
function SQLreadstring(s:string|text,p:list):string

Arguments
s SQL command for selecting the string to be read
p A list of SQL parameters

Return valueString read or empty string.
Example The following retrieves the color of the (first) data item in table pricelist with article number 1004:

s:=SQLreadstring(
"select color from pricelist where articlenum=1004")

Further information
1. The empty string is returned if no real value can be found.
2. If the given SQL selection command does not denote a single entry, the first string to which theselection criterion applies is returned.
3. The second argument can be used to specify SQL parameter values if the SQL query containsparameter markers.

Related topics
SQLexecute, SQLreadinteger, SQLreadreal.

Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 354

mmodbc

SQLrollback

Purpose Terminate the current transaction by discarding any pending changes.
Synopsis

procedure SQLrollback

Further informationIf the database supports transactions and the connection has been created in manual commit mode(see SQLautocommit), all changes to the database are recorded as a transaction. This procedurediscards all pending changes corresponding to the current transaction and starts a new transaction.
Related topics

SQLcommit.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 355

mmodbc

SQLtables

Purpose Get the list of tables available in the database.
Synopsis

procedure SQLtables(l:list of string)

Argument
l A list of strings to return the table names

Further informationThis procedure retrieves the list of tables available in the current database. The provided list is reset.
Related topics

SQLcolumns, SQLprimarykeys, SQLindices.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 356

mmodbc

SQLupdate

Purpose Update the selected data with the provided array(s).
Synopsis

procedure SQLupdate(s:string|text, a:array)
procedure SQLupdate(s:string|text, la:list)

Arguments
s An SQL ‘SELECT’ command
a An array of one of the basic types (integer, real, string or Boolean)
la A list of arrays of basic types (integer, real string or Boolean)

Example The following example initializes the array prices with the values of the table pricelist, changessome values in the array and finally, updates the date in the table pricelist.
declarations
prices: array(1001..1004) of real

end-declarations
SQLexecute("select articlenum,price from pricelist", prices)
prices(1002):=prices(1002)⁎0.9; prices(1003):=prices(1003)⁎0.8
SQLupdate("select articlenum,price from pricelist", prices)

Further informationThis procedure updates the data selected by an SQL command (usually ‘SELECT’) with an array or tupleof arrays. This procedure is available only if the data source supports positioned updates (for instance,MS Access does but MS Excel does not).
Related topics

SQLexecute.
Module mmodbc

Fair Isaac Corporation Confidential and Proprietary Information 357

mmodbc

10.7 I/O drivers

In order to simplify access to ODBC enabled data sources, this module provides a driver designed to beused in initializations blocks for both reading and writing data.
10.7.1 Driver odbc

odbc:[debug;][noindex;][colsize=#;][bufsize=#;]DSN

The driver can only be used in ‘initializations’ blocks. The Data Source Name to use has to be given inthe opening part of the block. Before the DSN, the following options may be stated:
debug to execute the block in debug mode (to display what SQL queries are produced). Thisoption is ignored if the model is not compiled with debug information,
noindex to indicate that only data (no indices) are transferred between the data source andMosel. By default, the first columns of each table are interpreted as index values for thearray to be transferred. This behaviour is changed by this option,
colsize=c to set the size of a text column (default 64 characters),
bufsize=c to set the size of the data buffer in kilobytes (default 4).
In the block, each label entry is understood as a table name optionally followed by a list of columnnames in brackets (e.g. "my_table(col1,col2)"). All columns are used if no list of names isspecified. Note that, before the table name, one can add option noindex to indicate that for thisparticular entry indices are not used.
Example:

initializations from "mmodbc.odbc:auction.db3"
NWeeks as "PARAMS(Weeks)" ! Initialize `NWeeks' with column `Weeks'

! of table `PARAMS'
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with table `BPROFILE'

! all columns being data (no indices)
end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 358

CHAPTER 11

mmquad

The mmquad module extends the Mosel language with a new type for representing quadraticexpressions.To use this module, the following line must be included in the header of the Mosel modelfile:
uses 'mmquad'

The first section presents the new functionality for the Mosel language that is provided by mmquad,namely the new type qexp and a set of subroutines that may be applied to objects of this type.
Via the inter-module communication interface, the module mmquad publishes several of its libraryfunctions. These are documented in the second section. By means of an example it is shown how thefunctions published by mmquad can be used in another module for accessing quadratic expressionsand working with them.

11.1 New functionality for the Mosel language

11.1.1 The type qexp and its operators

The module mmquad defines the type qexp to represent quadratic expressions in the Mosel Language.As shown in the following example, mmquad also defines the standard arithmetic operations that arerequired for working with objects of this type. By and large, these are the same operations as for linearexpressions (type linctr of the Mosel language) with in addition the possibility to multiply twodecision variables or one variable with itself. For the latter, the exponential notation x̂2may be used(assuming that x is of type mpvar).
11.1.1.1 Example: using mmquad for Quadratic Programming

Quadratic expressions as defined with the help of mmquad may be used to define quadratic objectivefunctions for Quadratic Programming (QP) or Mixed Integer Quadratic Programming (MIQP) problems.The Xpress-Optimizer module mmxprs for instance accepts expressions of type qexp as arguments forits optimization subroutines minimize and maximize, and for the procedure loadprob (see also the
mmxprs Reference Manual). The following

model "Small MIQP example"
uses "mmxprs", "mmquad"

declarations
x: array(1..4) of mpvar
Obj: qexp
end-declarations

! Define some linear constraints

Fair Isaac Corporation Confidential and Proprietary Information 359

mmquad

x(1) + 2⁎x(2) - 4⁎x(4) >= 0
3⁎x(1) - 2⁎x(3) - x(4) <= 100
x(1) + 3⁎x(2) + 3⁎x(3) - 2⁎x(4) >= 10
x(1) + 3⁎x(2) + 3⁎x(3) - 2⁎x(4) <= 30

2 <= x(1); x(1) <= 20
x(2) is_integer; x(3) is_integer
x(4) is_free

! The objective function is a quadratic expression
Obj:= x(1) + x(1)^2 + 2⁎x(1)⁎x(2) + 2⁎x(2)^2 + x(4)^2

! Solve the problem and print its solution
minimize(Obj)

writeln("Solution: ", getobjval)
forall(i in 1..4) writeln(getsol(x(i)))
end-model

11.1.2 Procedures and functions

The module mmquad overloads certain subroutines of the Mosel language, replacing an argument oftype linctr by the type qexp.
exportprob Export a quadratic problem to a file. p. 361
getsol Get the solution value of a quadratic expression. p. 362

Fair Isaac Corporation Confidential and Proprietary Information 360

mmquad

exportprob

Purpose Export a quadratic problem to a file.
Synopsis

procedure exportprob(options:integer, filename:string, obj:qexp)
procedure exportprob(filename:string, obj:qexp)

Arguments
options File format options:

EP_MIN LP format, minimization
EP_MAX LP format, maximization
EP_MPS MPS format
EP_STRIP Use scrambled names
EP_HEX Ouput numbers in hexadecimal when using MPS format

filename Name of the output file; if empty, output printed to standard output (screen)
obj Objective function (quadratic expression)

Example The following example prints the problem to screen using the default format, and then exports theproblem in LP-format to the file prob1.lpmaximizing constraint Profit:
uses "mmquad"
declarations
Profit:qexp
end-declarations
...
exportprob(0, "", Profit)
exportprob(EP_MAX, "prob1", Profit)

Further informationThis procedure overloads the exportprob subroutine of Mosel to handle quadratic objectivefunctions. It exports the current problem to a file, or if no file name is given (empty string ""), prints iton screen. If the given filename has no extension, Mosel appends .lp to it for LP format files and .matfor MPS format.
Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 361

mmquad

getsol

Purpose Get the solution value of a quadratic expression.
Synopsis

function getsol(q:qexp):real

Argument
q A quadratic expression

Return valueSolution value or 0.
Example

uses "mmquad"
declarations
x,y,z: mpvar
Profit:qexp
end-declarations

... ! (Define and solve the problem)
writeln("Profit value: ", getsol(Profit))
writeln("Evaluation of an expression: ", getsol(x⁎y+5⁎z^2))

Further informationThis function returns the evaluation of a given quadratic expression using the current (primal) solutionvalues of its variables. Note that the solution value of a variable is 0 if the problem has not been solvedor the variable is not contained in the problem that has been solved.
Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 362

mmquad

11.2 Published library functions

The module mmquad publishes some of its library functions via the service IMCI for use by othermodules (see the Mosel Native Interface Reference Manual for more detail about services). The list ofpublished functions is contained in the interface structure mmquad_imci that is defined in the moduleheader file mmquad.h.
From another module, the context of mmquad and its communication interface can be obtained usingfunctions of the Mosel Native Interface as shown in the following example.

static XPRMnifct mm;
XPRMcontext mmctx;
XPRMdsolib dso;
mmquad_imci mq;
void ⁎⁎quadctx;

dso=mm->finddso("mmquad"); /⁎ Retrieve the mmquad module⁎/
quadctx=⁎(mm->getdsoctx(mmctx, dso, (void ⁎⁎)(&mq)));

/⁎ Get the module context and the
communication interface of mmquad ⁎/

Typically, a module calling functions that are provided by mmquad will include this module into its list ofdependencies in order to make sure that mmquad will be loaded by Mosel at the same time as thecalling module. The “dependency” service of the Mosel Native Interface has to be used to set the list ofmodule dependencies:
static const char ⁎deplist[]={"mmquad",NULL}; /⁎ Module dependency list ⁎/

static XPRMdsoserv tabserv[]= /⁎ Table of services ⁎/
{
{XPRM_SRV_DEPLST, (void ⁎)deplist}

};

11.2.1 Complete module example

If the Mosel procedures write / writeln are applied to a quadratic expression, they print the addressof the expression and not its contents (just the same would happen for types mpvar or linctr).Especially for debugging purposes, it may be useful to be able to display some more detailedinformation. The module example printed below defines the procedure printqexp that displays all theterms of a quadratic expression (for simplicity’s sake, we do not retrieve the model names for thevariables but simply print their addresses).
model "Test printqexp module"
uses "printqexp"

declarations
x: array(1..5) of mpvar
q: qexp
end-declarations

printqexp(10+x(1)⁎x(2)-3⁎x(3)^2)

q:= x(1)⁎(sum(i in 1..5) i⁎x(i))
printqexp(q)
end-model

Note that in this model it is not necessary to load explicitly the mmquad module. This will be done bythe printqexp module because mmquad appears in its dependency list.
#include <stdlib.h>

Fair Isaac Corporation Confidential and Proprietary Information 363

mmquad

#include "xprm_ni.h"
#include "mmquad.h"

/⁎⁎⁎⁎ Function prototypes ⁎⁎⁎⁎/
static int printqexp(XPRMcontext ctx,void ⁎libctx);

/⁎⁎⁎⁎ Structures for passing info to Mosel ⁎⁎⁎⁎/
/⁎ Subroutines ⁎/
static XPRMdsofct tabfct[]=

{
{"printqexp", 1000, XPRM_TYP_NOT, 1, "|qexp|", printqexp}

};

static const char ⁎deplist[]={"mmquad",NULL}; /⁎ Module dependency list ⁎/

/⁎ Services ⁎/
static XPRMdsoserv tabserv[]=

{
{XPRM_SRV_DEPLST, (void ⁎)deplist}
};

/⁎ Interface structure ⁎/
static XPRMdsointer dsointer=

{
0,NULL, sizeof(tabfct)/sizeof(XPRMdsofct),tabfct,
0,NULL, sizeof(tabserv)/sizeof(XPRMdsoserv),tabserv
};

/⁎⁎⁎⁎ Structures used by this module ⁎⁎⁎⁎/
static XPRMnifct mm; /⁎ For storing Mosel NI function table ⁎/

/⁎⁎⁎⁎ Initialize the module library just after loading it ⁎⁎⁎⁎/
DSO_INIT printqexp_init(XPRMnifct nifct, int ⁎interver,int ⁎libver, XPRMdsointer ⁎⁎interf)
{
mm=nifct; /⁎ Save the table of Mosel NI functions ⁎/
⁎interver=MM_NIVERS; /⁎ Mosel NI version ⁎/
⁎libver=MM_MKVER(0,0,1); /⁎ Module version ⁎/
⁎interf=&dsointer; /⁎ Pass info about module contents to Mosel ⁎/

return 0;
}

/⁎⁎⁎⁎ Implementation of "printqexp" ⁎⁎⁎⁎/
static int printqexp(XPRMcontext ctx, void ⁎libctx)
{
XPRMdsolib dso;
mmquad_imci mq;
mmquad_qexp q;
void ⁎⁎quadctx;
void ⁎prev;
XPRMmpvar v1,v2;
double coeff;
int nlin,i;

dso=mm->finddso("mmquad"); /⁎ Retrieve reference to the mmquad module⁎/
quadctx=⁎(mm->getdsoctx(ctx, dso, (void ⁎⁎)(&mq)));

/⁎ Get the module context and the
communication interface of mmquad ⁎/

q = XPRM_POP_REF(ctx); /⁎ Get the quadratic expression from the stack ⁎/

/⁎ Get the number of linear terms ⁎/
mq->getqexpstat(ctx, quadctx, q, &nlin, NULL, NULL, NULL);

/⁎ Get the first term (constant) ⁎/
prev=mq->getqexpnextterm(ctx, quadctx, q, NULL, &v1, &v2, &coeff);
if(coeff!=0) mm->printf(ctx, "%g ", coeff);
for(i=0;i<nlin;i++) /⁎ Print all linear terms ⁎/
{

Fair Isaac Corporation Confidential and Proprietary Information 364

mmquad

prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
mm->printf(ctx,"%+g %p ", coeff, v2);
}
while(prev!=NULL) /⁎ Print all quadratic terms ⁎/
{
prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
mm->printf(ctx,"%+g %p ⁎ %p ", coeff, v1, v2);
}
mm->printf(ctx,"\n");

return XPRM_RT_OK;
}

11.2.2 Description of the library functions

clearqexpstat Free the memory allocated by getqexpstat. p. 368
getqexpnextterm Enumerate the terms of a quadratic expression. p. 369
getqexpsol Evaluate a quadratic expression. p. 366
getqexpstat Get information about a quadratic expression. p. 367

Fair Isaac Corporation Confidential and Proprietary Information 365

mmquad

getqexpsol

Purpose Return an evaluation of a quadratic expression based on the current solution.
Synopsis

double getqexpsol(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression

Return valueAn evaluation of the expression on the current solution.
Further informationThis function returns an evaluation of a quadratic expression based on last solution obtained from theoptimizer. This is the function called when using getsol on a quadratic expression from a Moselprogram.
Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 366

mmquad

getqexpstat

Purpose Get information about a quadratic expression.
Synopsis

int getqexpstat(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q, int ⁎nblin, int
⁎nbqd, int ⁎changed, XPRMmpvar ⁎⁎lsvar);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression
nblin Pointer to which the number of linear terms is returned (may be NULL)
nbqd Pointer to which the number of quadratic terms is returned (may be NULL)
changed Pointer to which the change flag is returned (may be NULL). Possible values of this flag:

1 The expression q has been modified since the last call to this function
0 Otherwise

lsvar Pointer to which is returned the table of variables that appear in the quadratic expression q(may be NULL)
Return valueTotal number of terms in the expression.
Further informationThis function returns in its arguments information about a given quadratic expression. Any of thesearguments may be NULL to indicate that the corresponding information is not required. The last entryof the table lsvar is NULL to indicate its end. This table is allocated by the module mmquad, it mustbe freed by the next call to this function or with function clearqexpstat.
Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 367

mmquad

clearqexpstat

Purpose Free the memory allocated by getqexpstat.
Synopsis

void clearqexpstat(XPRMctx ctx, void ⁎quadctx);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad

Further informationA call to this function frees the table of variables that has previously been allocated by a call to function
getqexpstat.

Related topics
getqexpstat.

Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 368

mmquad

getqexpnextterm

Purpose Enumerate the list of terms contained in a quadratic expression.
Synopsis

void ⁎getqexpnextterm(XPRMctx ctx, void ⁎quadctx, mmquad_qexp q, void
⁎prev, XPRMmpvar ⁎v1, XPRMmpvar ⁎v2, double ⁎coeff);

Arguments
ctx Mosel’s execution context
quadctx Context of mmquad
q Reference to a quadratic expression
prev Last value returned by this function. Should be NULL for the first call
v1,v2 Pointers to return the decision variable references for the current term
coeff Pointer to return the coefficient of the current term

Return valueThe value to be used as prev for the next call o NULL when all terms have been returned.
Example The following displays the terms of a quadratic expression:

void dispqexp(XPRMcontext ctx, mmquad_qexp q)
{
void ⁎prev;
XPRMmpvar v1,v2;
double coeff;
int nlin,ct;

mq->getqexpstat(ctx, quadctx, q, &nlin, NULL, NULL, NULL);
ct=0;
prev=mq->getqexpnextterm(ctx, quadctx, q, NULL, &v1, &v2, &coeff);
mm->printf(ctx, "%g ", coeff);
while(prev!=NULL) {
prev=mq->getqexpnextterm(ctx, quadctx, q, prev, &v1, &v2, &coeff);
if(ct<nlin) { mm->printf(ctx,"%+g %p", coeff, v2); ct++; }
else mm->printf(ctx,"%+g %p ⁎ %p", coeff, v1, v2);

}
mm->printf(ctx,"\n");
}

Further informationThis function can be called repeatedly to enumerate all terms of a quadratic expression. For the firstcall, the parameter prevmust be NULL and the function returns the constant term of the quadraticexpression (for v1 and v2 the value NULL is returned and coeff contains the constant term). For thefollowing calls, the value of prevmust be the last value returned by the function. The enumeration iscompleted when the function returns NULL.If this function is called repeatedly, after the constant term it returns next all linear terms and then thequadratic terms.
Module mmquad

Fair Isaac Corporation Confidential and Proprietary Information 369

CHAPTER 12

mmrobust

The mmrobust module extends the Mosel language with new types for representing robust constraintsand describe the associated uncertainty sets. To use this module the following line must be included inthe header of the Mosel model file:
uses 'mmrobust'

This is the reference manual of mmrobust. It is highly recommended to study the Xpress white paperon robust optimization found under docs/robust in the Xpress installation.
The first section presents the new functionality for the Mosel language provided by mmrobust, namelythe new types uncertain, robustctr and uncertainctr and a set of subroutines that may beapplied to objects of these types.
The following sections give detailed documentation of the subroutines (other than mathematicaloperators) defined by this module.

12.1 New functionality for the Mosel language

12.1.1 The problem type mpproblem.xprs.robust

This module exposes its functionality through an extension to the mpproblem.xprs problem type. Asa consequence, all routines presented here are executed in the context of the current problem.
12.1.2 The type uncertain

An uncertain is a quantity whose value is not known, but carries a level of uncertainty. The type
uncertain is used in the robust constraints of type robctr to express constraints that are subject touncertainty, and in uncertainctr constraints that describe the set of values that the uncertain cantake. The values of the uncertain quantity will take the possible worst case against the optimality andfeasibility of the problem. An uncertain can be intuitively thought of as a variable that is not underour control, but which has a value defined by an opponent to be the worst with respect to the model.
It is important to note that an uncertain does not have a default lower bound of zero imposed byMosel, in contrast to mpvars. This difference in default behavior is to reflect the most typical usecases.
An uncertain can be assigned a nominal value using the assignement operator :=. The working of thenominal value is discussed in the Xpress robust optimization white paper found under docs/robust inthe Xpress installation.
The actual value of uncertains and robust constraints can be obtained after the solution of the robustproblem through getsol and getact. The usage of getsol is extended as explained below.

Fair Isaac Corporation Confidential and Proprietary Information 370

mmrobust

If an uncertain u is used in a single robust constraint or only in the objective function, then getsol(u)returns one of the possible realizations of the uncertainty set that induced the optimal solution foundby Mosel.
If the same uncertain is used in two robust constraints named RCon1 and RCon2 respectively, theoptimal solution of the problem may imply that the uncertain has different values for RCon1 and
RCon2. Then its value can be obtained for the two constraints via the command getsol(u,RCon1)and getsol(u,RCon2).
Finally, the left-hand side of a robust constraint (e.g. RCon1) can simply be obtained via the command
getact(RCon1), whereas getsol(RCon1) returns the evaluation of left-hand side - right-hand side.

12.1.3 The type robustctr and its operators

The module mmrobust defines the type robustctr to represent robust constraints in the MoselLanguage. It also defines the standard arithmetic operations that are required for working with objectsof this type. By and large, these are the same operations as for linear expressions (type linctr of theMosel language) with additionally the possibility to include uncertain terms (i.e. of type uncertain).
12.1.4 The type uncertainctr and its operators

An uncertainty constraint uncertainctr describes the possible values of the uncertain data, or inother words defines the feasible set of the uncertains. Intuitively, if we visualize the role of an
uncertain as a value under the control of an opponent, then the set of uncertainctrs defines thelimitations under which the opponent is operating when choosing the worst possible values in respectof the optimality and feasibility of the model.

12.1.5 Example: using mmrobust for solving a robust problem

Consider the following example
model BaseModel
uses "mmrobust";

declarations
x, y, z : mpvar
end-declarations

x + 2⁎y + 3⁎z <= 10

maximize(x+y+z)

writeln("x = ", getsol(x), " y = ", getsol(y), " z = ", getsol(z))

end-model

This problem will solve to "x = 10 y = 0 z = 0".
Let us now assume that we only know that the sum of the first two coefficients is 3, and we need asolution that is valid for all realizations within this assumption.

model RobustModel
uses "mmrobust";

declarations
x, y, z : mpvar
u, v : uncertain
end-declarations

u⁎x + v⁎y + 3⁎z <= 10

Fair Isaac Corporation Confidential and Proprietary Information 371

mmrobust

u+v <= 4

setparam("xprs_verbose", true)
maximize(x+y+z)

writeln("x = ", getsol(x), " y = ", getsol(y), " z = ", getsol(z), "; u = ", getsol(u), " v = ", getsol (v))

end-model

This problem will solve to "x = 2.5 y = 2.5 z = 0; u = 2 v = 2".
It is easy to check that any realization of the uncertains u and v will keep the solution vector feasible,and that it is optimal within this assumption.

12.2 Control parameters

The following parameter is defined by mmrobust:
robust_check_feas_original_problem Check if original, non-robust problem is feasible. p. 373
robust_check_feas_uncertainty_set Check if uncertainty sets are non-empty. p. 372
robust_uncertain_overlap Use of uncertain data in multiple robust constraints. p. 372

robust_uncertain_overlap

Description This parameter allows for models where more than one robust constraint can use an
uncertain. Because each robust constraint is dealt with independently in the robustproblem, the optimal solution implicitly may associate different values of the uncertainquantities with each robust constraint.

Type Boolean, read/write
Default value false
Module mmrobust

robust_check_feas_uncertainty_set

Description This parameter allows for checking whether the uncertainty sets contain at least one feasiblevector of uncertains. In other words, with this parameter set to true Mosel will check if theopponent actually has a choice of uncertains. If at least one uncertainty set is empty, awarning will be issued. Uncertainty sets should not be empty as otherwise a robust problemcannot be created.
Type Boolean, read/write
Default value false
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 372

mmrobust

robust_check_feas_original_problem

Description This parameter allows for checking whether the problem where all uncertains are set to theirdefault value is feasible or not. This is off by default but can be useful to check correctness ofone’s model without uncertainty before solving the robust problem.
Type Boolean, read/write
Default value false
Module mmrobust

12.3 Procedures and functions

The module mmrobust overloads certain mathematical operators making possible the expression oflinear and quadratic expressions involving the type uncertain in order to create both robustctr and
uncertainctr objects. Since these mathematical operators are fairly self-explanatory, we shallforego any more detailed documentation of these functions.
The following list gives an overview of all other functions and procedures defined by mmrobust forwhich we give detailed descriptions later.
cardinality Create a cardinality uncertain constraint. p. 374
getact Get the activity value of a robust constraint. p. 376
getnominal Get the nominal value of an uncertain. p. 380
getsol Get the realisation of an uncertain or robust constraint. p. 375
gettype Get the type of a constraint. p. 381
ishidden Test whether a constraint is hidden. p. 377
scenario Create a scenario uncertain constraint. p. 378
sethidden Hide or unhide a constraint. p. 379
setnominal Set the nominal value of an uncertain. p. 382
settype Set the type of a constraint. p. 383

Fair Isaac Corporation Confidential and Proprietary Information 373

mmrobust

cardinality

Purpose Create a cardinality uncertain constraint.
Synopsis

function cardinality(su:set of uncertain,m:integer):uncertainctr

Arguments
su Uncertains to be added to the constraint
m Maximum number of uncertains that can be different from their nominal value

Return valueThe new cardinality uncertain constraint.
Further informationA cardinality unertain constraint limits the number of unceratins that can take a non-zero value, or bedifferent from their nominal value.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 374

mmrobust

getsol

Purpose Get the realisation of an uncertain or robust constraint.
Synopsis

function getsol(u:uncertain, rc:robustctr):real
function getsol(u:uncertain):real
function getsol(rc:robustctr):real

Arguments
rc A robust constraint
u An uncertain

Return valueSolution value or 0.
Further informationThis function returns the realization of uncertain u for the robust optimization problem solved. Thevalue of u is only available after solving the robust optimization problem. The value of u is 0 if theproblem has not been solved or the uncertain or constraint is not contained in the problem that hasbeen solved.

If the uncertain u appears in more than one constraint, it is necessary to specify the constraint withfunction call getsol(u,rc): this is a consequence of robust optimization, for which the sameuncertain can assume different values in different constraints. If the uncertain u only appears in oneconstraint, then it suffices to call getsol(u).
The function getsol(rc) returns the evaluation of a constraint with the current realization of thesolution and the uncertains. Therefore, if a constraint is of the form u⁎x + v⁎y + z ≤ 3 and
x,y,zare variables while u,v are uncertains, the current realization of x,y,z,u,v will be used toreturn u⁎x + v⁎y + z - 3.
Note that robust equality constraints (for instance, u⁎x + v⁎y + z = 3) have a special status inMosel. The value of uncertains u and v is, in general, related to an inequality constraint and can besafely obtained in this case only. In order to use getsol for equality robust constraints as well, it wouldbe best to decompose these constraints into two inequality constraints (i.e. u⁎x + v⁎y + z ≤ 3and u⁎x + v⁎y + z ≥ 3) and then request u and v from each of the two constraints. Note that bothuncertains might differ in value when requested from either inequality constraint.

Related topics
getact.

Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 375

mmrobust

getact

Purpose Get the activity value of a robust constraint.
Synopsis

function getact(rc:robustctr):real

Argument
rc A robust constraint

Return valueSolution value or 0.
Further informationThis function returns returns the value of the left-hand side of a constraint with the current realizationof the solution and the uncertains. Therefore, if a constraint is of the form u⁎x + v⁎y + z ≤ 3 and

x,y,zare variables while u,v are uncertains, the current realization of x,y,z,u,v will be used toreturn u⁎x + v⁎y + z.
Note that robust equality constraints (for instance, u⁎x + v⁎y + z = 3) have a special status inMosel. The value of uncertains u and v is, in general, related to an inequality constraint and can besafely obtained in this case only. In order to use getact for equality robust constraints as well, it wouldbe best to decompose these constraints into two inequality constraints (i.e. u⁎x + v⁎y + z ≤ 3and u⁎x + v⁎y + z ≥ 3) and then request u and v from each of the two constraints. Note that bothuncertains might differ in value when requested from either inequality constraint.

Related topics
getsol.

Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 376

mmrobust

ishidden

Purpose Test whether a constraint is hidden.
Synopsis

function ishidden(rc:robustctr):boolean
function ishidden(uc:uncertainctr):boolean

Arguments
rc A robust constraint
uc An uncertain constraint

Return value
true if the constraint is hidden, false otherwise.

Further informationThis function tests the current status of a constraint. At its creation a constraint is added to the currentproblem, but using the function sethidden it may be hidden. This means, the constraint will not becontained in the problem that is solved by the solver but it is not deleted from the definition of theproblem in Mosel.
Related topics

sethidden.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 377

mmrobust

scenario

Purpose Create a scenario uncertain constraint.
Synopsis

function scenario(data:array (range,set of uncertain) of real):uncertainctr

Argument
data Scenario data

Return valueThe new scenario uncertain constraint.
Further informationA scenario uncertain constraint takes historical data of the possible realizations of the uncertaindata. In effect, the introduced uncertain constraint enforced that for any solution to the robustoptimization problem, any robust constraint robustctr is satisfied for all realizations of the

uncertains as defined by the data array.
This function stores a reference to the provided array (i.e. it does not make a copy of it). As aconsequence any modification to the array will imply modifications to the constraint even after theconstraint has been built. Invalid data is only reported at the time of loading the problem into theoptimiser.

Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 378

mmrobust

sethidden

Purpose Hide or unhide a constraint.
Synopsis

procedure sethidden(rc:robustctr, b:boolean)
procedure sethidden(uc:uncertainctr, b:boolean)

Arguments
rc A robust constraint
uc An uncertain constraint
b Constraint status:

true Hide the constraint
false Unhide the constraint

Further informationAt its creation a constraint is added to the current problem, but using this procedure it may be hidden.This means that the constraint will not be contained in the problem that is solved by the solver but it isnot deleted from the definition of the problem in Mosel. Function ishidden can be used to test thecurrent status of a constraint.
Related topics

ishidden.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 379

mmrobust

getnominal

Purpose Get the nominal value of an uncertain.
Synopsis

function getnominal(u:uncertain):real

Argument
u An uncertain

Return valueThe nominal value of the uncertain
Related topics

setnominal.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 380

mmrobust

gettype

Purpose Get the type of a constraint.
Synopsis

function gettype(rc:robustctr):integer
function gettype(uc:uncertainctr):integer

Arguments
rc A robust constraint
uc An uncertain constraint

Return valueConstraint type. Applicable values for nonlinear constraints are:
CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_CARD Cardinality
CT_SCEN Scenario
CT_UNB Non-binding constraint, i.e. free

Related topics
settype.

Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 381

mmrobust

setnominal

Purpose Set the nominal value of an uncertain.
Synopsis

procedure setnominal(u:uncertain,n:real)

Arguments
u An uncertain
n A real constant

Further informationCalling this procedure has the same effect as assigning a value to the uncertain using the operator :=.
Related topics

getnominal.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 382

mmrobust

settype

Purpose Set the type of a constraint.
Synopsis

procedure settype(rc:robustctr, type:integer)
procedure settype(uc:uncertainctr, type:integer)

Arguments
rc A robust constraint
uc An uncertain constraint
type Constraint type. Applicable values are:

CT_EQ Equality, ‘=’
CT_GEQ Greater than or equal to, ‘ ≥ ’
CT_LEQ Less than or equal to, ‘ ≤ ’
CT_UNB Non-binding constraint

Further informationThis procedure can be used to change the type of a constraint, turning it into an equality or inequality ormaking it unbounded, i.e. free.
Related topics

gettype.
Module mmrobust

Fair Isaac Corporation Confidential and Proprietary Information 383

CHAPTER 13

mmsheet

The Mosel module mmsheet implements several I/O drivers for accessing and modifying spreadsheetfiles in different formats from ‘initializations’ blocks. The I/O drivers rely on different technologies foraccessing spreadsheets.

13.1 I/O drivers

The I/O drivers provided by mmsheet are all designed to be used in ‘initializations’ blocks and expectthe same type of information regarding file names and record references. The common form of a filespecification for all the mmsheet drivers is:
mmsheet.⁎:[noindex|partndx|autondx[=#];][grow;][skiph;][emptyndx;][bufsize=#;]filename

The spreadsheet file name must be a physical file (with its extension), except for the "csv:" driver thataccepts extended file names. The driver options (stated before the file name) shared by all mmsheetdrivers are:
noindex Indicates that only data (no indices) are transferred between the spreadsheet andMosel. By default, the first columns of each table are interpreted as index values for thearray to be transferred. This behaviour is changed by this option.
partndx Indicates that the first nbdim-1 columns are interpreted as indices (nbdim being thenumber of dimensions of the array to process) and remaining ones are used as data forthe last dimension.
autondx[=st] Indices are not read or written but automatically generated from the line number(this option only applies to 1-dimension arrays indiced by ranges). By default the firstindex has value 1 but a different value stmay be stated.
grow When writing data, the driver uses the provided range ignoring the end of the data ifthere is not enough space. When this option is specified, the driver extends the range byadding lines if necessary.
skiph With this option, the driver skips the first line (or header) of the provided range. If therange contains only one line, the following line is selected.
emptyndx When reading array indices an empty cell causes a failure. With this option empty cellsare replaced by the default value of the corresponding type (e.g. 0 for a numerical value)
bufsize=c To set the size of the data buffer in kilobytes (default c=2).

Fair Isaac Corporation Confidential and Proprietary Information 384

mmsheet

The driver-specific options are documented separately for each driver in the following sections.
In the initializations block, each label entry is understood as a range in the workbook: named ranges arerepresented by their name (e.g. "MyRange") and explicit ranges are noted using square brackets (e.g.
"[sheet1$a1:c2]"). For explicit ranges, the sheet is identified by its name or number and separatedfrom the cell selection with the $ sign. The first sheet of the workbook is selected if no indication isgiven. Similarly, the used cells of the selected sheet are assumed if no selection is provided. The cellselection can be stated either using the usual format with a letter to select the column followed by aline number (e.g. "a1:c1") or by specifying row and column numbers by prefixing the row number bythe letter "R" and the column number by the letter "C" (e.g. "R1C1:R1C3"). It is also possible toselect some of the columns from the specified range: this can be done either with a list of names or alist of column numbers (relative to the beginning of the range) noted in parentheses after the rangedescription. To use names, the option skiphmust be used and the column names are taken from the
header row that is skipped through this option. When using skiph, column numbers need to be statedby prefixing the column number by #. Note that, before the range selection, one can add options as forthe file opening. For instance, "skiph;grow;" can be used for writing data to a named rangeformatted for an ODBC connection.
In addition to the above options a label may consist in the string "rangesize;" followed by a rangespecification (e.g. "rangesize;[]"), this special label can only be used to populate a list of integersthat receives the size of the range in the form of 2 integers (number of lines and number of columns).
Example:

initializations from "mmsheet.excel:skiph;auction.xls"
NWeeks as "[b1:d12]" ! Initialize `NWeeks' with data in b2:d12
BPROF as "noindex;BPROFILE" ! Initialize `BPROF' with named range `BPROFILE'

! all columns being data (no indices)
mycols as "[b1:h12](3,5,7)" ! Initialize `mycols' with columns d2:d12,

! f2:f12 and h2:h12
mycol2 as "[b1:h12](nam1,#5,nam3)"

! Initialize `mycol2' with the column named
! 'nam1', the column f2:f12 and the column
! named 'nam3'

end-initializations

The mapping between the selected cells of the workbook and the Mosel data structures is similar tothe one used for databases (options noindex and partndx correspond to setting parameter
mmodbc.SQLndxcol to false): refer to the section Data transfer between Mosel and the database ofthe mmodbc chapter for further explanation.
Although direct read and write operations are not supported by these drivers, a spreadsheet may beopen using fopen: this allows to keep the document open across several ’initializations’ blocks andavoid the cost of loading and unloading the file (that may be expensive particularly with the "excel:"driver).
Cells of a spreadsheet are implicitly typed as either numbers, booleans or text strings. When getting thevalue of a cell the driver may have to perform a type conversion: the conversion from a number to itstextual representation relies on the real format "realfmt" (see setparam) that may have to bechanged when using a driver of this module. For instance the number 1234567 will be converted to thetext string 1.23457e+06 with the default real format ("%g"). To preserve the integer representation ofsuch a cell it is required to use "%.10g" as the real format.
For further examples of working with databases and spreadsheets, the reader is referred to the Xpresswhitepaper Using ODBC and other database interfaces with Mosel.

13.1.1 Driver excel
mmsheet.excel:[noindex|partndx;][grow;][skiph;][emptyndx;][newxl;][bufsize=#;]filename

Fair Isaac Corporation Confidential and Proprietary Information 385

mmsheet

This driver uses directly the application Excel for accessing the file (relying on COM/OLE as thecommunication channel): as a consequence it is available only under the Windows platform andrequires Excel to be installed on the host executing the Mosel model. All file formats handled by theversion of Excel can be used but this driver does not support creation of new files (i.e. it can onlymodify existing files). In addition to the options described in the introductory section, the option newxlmay be used: by default the driver does not open the file if it can find a running instance of Excel havingthe required file open: it works directly with the application and modifications made to the workbook arenot saved when the file is closed in Mosel. If this option is specified a new instance of Excel is startedin all cases and the workbook is saved before quitting the application when the file is closed in Mosel.
13.1.2 Driver xls/xlsx

mmsheet.xls:[noindex|partndx|autondx[=#];][grow;][skiph[+];][emptyndx;][bufsize=#;]filename

mmsheet.xlsx:[noindex|partndx|autondx[=#];][grow;][skiph[+];][emptyndx;][bufsize=#;]filename

These two drivers rely on the libxl library to access the spreadsheet file: they are available on theWindows, Linux and MacOS platforms and do not require any additional software. The first driverhandles xls files while the second deals with xlsx and xlsm format Excel files. These drivers can beused to create new files: when used for writing (through an ‘initializations to’ block) non-existing sheetsare automatically added to the workbook and the file is created if necessary. When the option skiph+is used instead of skiph when writing to a file, the necessary header row is created if this row is empty(this option behaves like skiph when reading a file and when no column name is provided).
13.1.3 Driver csv

mmsheet.csv:[noindex|partndx|autondx[=#];][alltxt;][grow;][skiph[+];][emptyndx;][bufsize=#;][fsep=c;][dsep=c;][true=s;][false=s;]filename

This driver works on spreadsheets saved in ascii CSV format (Comma Separated Values). It is availableon all platforms that are supported by Mosel and can open or create files using extended format filenames (i.e. combining several I/O drivers). A CSV file contains a single sheet (number 1 identified as
"Sheet1") and does not support named ranges, that is, cell references must use the explicit notation.When the option skiph+ is used instead of skiph when writing to a file, the necessary header row iscreated if this row is empty (this option behaves like skiph when reading a file and when no columnname is provided). The following driver-specific options may be used to specify the properties of theformat to handle:
alltxt by default the driver tries to guess the type of the cells while reading the document(cells can be either numbers, booleans or text strings). When this option is used all cellsare recorded as text strings
dsep=c character used as decimal separator (default: ".")
fsep=c character used to separate fields. The default value is ","; tabulation or ";" are alsooften employed
dsep=c character used as decimal separator (default: ".")
true=s text representing the true value of a Boolean (default: "true")
false=s text representing the false value of a Boolean (default: "false")
For example, the following statements will read data from a file formatted for the French language andthat has been compressed with gzip:

Fair Isaac Corporation Confidential and Proprietary Information 386

mmsheet

initializations from "mmsheet.csv:fsep=;;dsep=,;true=vrai;false=faux;zlib.gzip:mydata.csv.gz"
A as "[a1:c12]"
end-initializations

The csv driver supports the getfsize function applied to a file already loaded into memory: it reportsthe amount of memory currently allocated for the corresponding document. For instance the followingdisplays the memory used by "mydata.csv":
fopen("mmsheet.csv:mydata.csv",F_INPUT)
writeln(getfsize("mmsheet.csv:mydata.csv"))
fclose(F_INPUT)

Fair Isaac Corporation Confidential and Proprietary Information 387

CHAPTER 14

mmssl

The Mosel module mmssl is an interface to the OpenSSL cryptographic library(http://www.openssl.org). It brings most of the functionality of this library to the Mosel language andserves as the cryptographic component in other parts of Mosel. In particular, it provides support for the
HTTPS protocol in mmhttp and implements the encryption and signing mechanisms used by the Moselcore libraries when secure BIM files are used.

14.1 Overview

14.1.1 Document encryption in Mosel

Encryption and decryption of documents are achieved by cipher algorithms. Ciphers can be of twokinds: symmetric ciphers use the same encryption key to perform the encryption and decryption taskswhile asymmetric ciphers require one key to execute the encryption and another one for the decryption.In mmssl, symmetric ciphers are made available through the crypt I/O driver (Section 14.4.3): theencryption key (the size of which depends on the cipher) is automatically generated based on somegiven passphrase (either input from an external file or directly in the file name specification). Theimplementation of the crypt driver allows the user to select which specific cipher algorithm it shoulduse (for instance AES, DES or IDEA).
For asymmetric encryption, mmssl relies on the RSA cryptographic system. For the RSA algorithm, a key(RSAgenkey) consists of two components: a public part that is usually distributed to the individualswith whom documents are to be exchanged and a private part that must be kept secret by the owner ofthe key (this private key also includes the public key). In this framework, a document encrypted using apublic key (RSApubencrypt) can only be decrypted with the corresponding private key(RSAprivdecrypt). Moreover, the key pair can also be used for signing documents: the electronic
signature of a document is created with a private key (msgsign) and the corresponding public key isused to verify this signature (msgverify). Since only the owner of the private key can create thesignature, the recipient has a guarantee on the origin of the document.
RSA keys are commonly stored as text files in the OpenSSL PEM standard format, this is also the mostconvenient representation for exchanging key information (RSAsavekey). In addition to this fileformat, mmssl can store a key in the form of a Mosel array of integers (RSAloadkey). By using thisencoding a model may embbed keys or retrieve them from any of the usual model data sources.

14.1.2 The mmssl command

The module mmssl is distributed together with a command line tool of the same name as the module:
mmssl. This program helps setting up an initial working environment and performs basic key andcertificate operations directly from a shell (Unix) or command window (Windows). Running the mmsslprogram without any arguments will display a short help message, otherwise the following commandscan be used:

Fair Isaac Corporation Confidential and Proprietary Information 388

http://www.openssl.org

mmssl

setup Check the configuration directory of mmssl and create it if necessary (see parameter
ssl_dir)

genkey keyfile [size]Generate a new RSA key pair of the specified size (default: 1024) and save it into keyfile.
getpub keyfile keyfilepubExtract the public key of the private RSA key file keyfile and save it into keyfilepub
chkkey keyfile [keyfile...]Check the validity of the provided key file(s)
gencert certfile [prod=value...]Generate an X509 certificate using the provided properties (see x509newcrt for furtherdetail)
chkcert certfile [keyfile]Check the validity of the provided X509 certificate. If an additional private key file is provided,its compatibility with the certificate is also checked.
list [digest|cipher]Display the list of supported message digests (digest) or cipher algorithms (cipher). Bothlists are reported with the short form of the command.
Many procedures of the mmssl module require the availability of a configuration directory. To createand populate an initial setup it is recommended to run the following command before starting to usethe module:

> mmssl setup

Note that the setup procedure is not destructive: if the configuration directory has already been createdthe command will only check its validity, add any missing components and suggest how to proceed incase of incorrect settings.

14.2 Control parameters

Via the getparam function and the setparam procedure it is possible to access the following controlparameters of module mmssl (the reader is reminded that parameters may be spelled with lower orupper case letters or a mix of both):
https_cacerts List of trusted certification authorities. p. 390
https_ciphers Ciphers accepted for SSL communication. p. 390
https_cltcrt HTTPS client certificate. p. 390
https_cltkey HTTPS client private key. p. 391
https_srvcrt HTTPS server certificate. p. 391
https_srvkey HTTPS server private key. p. 391
https_trustsrv Whether to trust server certificates. p. 392
ssl_cipher Default symmetric cipher. p. 392
ssl_digest Default message digest algorithm. p. 392
ssl_dir mmssl configuration directory. p. 393
ssl_privkey Default user private key. p. 394

Fair Isaac Corporation Confidential and Proprietary Information 389

mmssl

https_cacerts

Description Location of the file containing the certificates of the trusted certification authorities.
Type String, read/write
Note The file identified by this parameter consists of a list of certificates (in PEM format) of trustedcertification authorities (in order to be able to check the validity of servers they have certified)and certificates of servers trusted by the application (typically using self-signed certificatesthat could not be certified by an external authority, see x509newcrt). This file is used whenHTTPS client connections are established to check the identity of the server unless thecontrol parameter https_trustsrv is set to true. It is also required by servers thatperform client authentication (see option HTTP_CLTAUTH of server configuration

http_srvconfig): in this case the certificates are used to identify the clients.When this parameter has not been initialised, the default location
getparam("ssl_dir")+"/ca-bundle.crt" is used. This default file collecting thecertificates of the major certification authorities is installed by the mmssl setup command(Section 14.1.2).

Affects routines httpget, httppost, httpdel, httpput, httpstartsrv
See also https_trustsrv

Module mmssl

https_ciphers

Description This parameter is used during the algorithm negociation of an HTTPS session initialisation toselect which cryptographic algorithm to use.
Type String, read/write
Default value "TLSv1.2+HIGH:TLSv1+HIGH:@STRENGTH"

Note This parameter is employed by both the server and the client in an HTTPS session. Pleaserefer to the OpenSSL documentation for a detailed explanation on how to build this selectionstring.
Affects routines httpstartsrv, httpget, httppost, httpdel, httpput
Module mmssl

https_cltcrt

Description Location of the client certificate (for HTTPS queries).
Type String, read/write
Note This parameter specifies the location of the client certificate (that must be in PEM format).Such a certificate (and its associated private key https_cltkey) is required when sendingHTTPS requests to a server that requires client authentication (see option HTTP_CLTAUTH ofserver configuration http_srvconfig).

Fair Isaac Corporation Confidential and Proprietary Information 390

mmssl

Affects routines httpget, httppost, httpdel, httpput
See also https_cltkey

Module mmssl

https_cltkey

Description Location of the client private key (for HTTPS queries).
Type String, read/write
Note This parameter specifies the location of the client private key. Such a key (and its associatedcertificate https_cltcrt) is required when sending HTTPS requests to a server thatrequires client authentication (see option HTTP_CLTAUTH of server configuration

http_srvconfig).
Affects routines httpget, httppost, httpdel, httpput
See also https_cltcrt

Module mmssl

https_srvcrt

Description Location of the server certificate (required by an HTTPS server).
Type String, read/write
Note Running an HTTPS server requires a server certificate and its associated private key. Thisparameter defines the location of the certificate file (in PEM format); to create a certificateyou can either use the mmssl command (Section 14.1.2) or the Mosel function x509newcrt.If no value has been assigned to this parameter the default certificate file

getparam("ssl_dir")+"/server.crt" will be used by the server.
Affects routines httpstartsrv

See also https_srvkey

Module mmssl

https_srvkey

Description Location of the server private key (required by an HTTPS server).
Type String, read/write
Note Running an HTTPS server requires a server certificate and its associated private key. Thisparameter defines the location of the private key file; to create a certificate use either the

mmssl command (Section 14.1.2) or the function x509newcrt). If no value has beenassigned to this parameter the default key file getparam("ssl_dir")+"/server.key"will be used by the server.

Fair Isaac Corporation Confidential and Proprietary Information 391

mmssl

Affects routines httpstartsrv

See also https_srvcrt

Module mmssl

https_trustsrv

Description This parameter decides whether the HTTPS client should trust servers without checking theircertificates.
Type Boolean, read/write
Default value false

Note When this parameter is false (the default) whenever an HTTPS connection is opened (via
httpget for instance) the authenticity of the remote server is checked using the list oftrusted certification authorities (as defined by the control parameter https_cacerts) andthe operation is aborted if the verification fails. Changing the value of this parameter disablesthis test.

Affects routines httpget, httppost, httpdel, httpput
See also https_cacerts

Module mmssl

ssl_cipher

Description Name of symmetric cipher to use when no algorithm is specified.
Type String, read/write
Default value "AES-128-CBC"

Note This parameter defines the default symmetric cipher used by the crypt I/O driver. The name ofa cipher consists in up to 3 components separated by the "-" symbol: the algorithm name(e.g. aes, bf, des), the key size (when the algorithm may be used with different sizes of keys)and the block chaining mode (e.g. cbc, cfb1, cfb8, ecb, ofb). For instance, "des-ofb"designates DES with Output Feedback chaining.Use the command mmssl list cipher to get a full list of the supported cipher names.
Affects routines I/O driver "crypt:" (Section 14.4.3)
Module mmssl

ssl_digest

Description Name of message digest to use when no algorithm is specified.
Type String, read/write

Fair Isaac Corporation Confidential and Proprietary Information 392

mmssl

Default value "SHA256"

Note This parameter defines the default message digest algorithm used by the crypt I/O driver,
msgdigest, msgsign and msgverify.Use the command mmssl list digest to get a full list of the supported names.

Affects routines msgdigest, msgsign, msgverify, I/O driver "crypt:" (Section 14.4.3)
Module mmssl

ssl_dir

Description This parameter is the path to the configuration directory of mmssl. Its content is used by boththe mmssl routines and the Mosel core libraries for handling signed and encrypted bim files.
Type String, read only
Note By default this location is the path "$HOME/.mmssl" (on Unix systems) or

"%USERPROFILE%\.mmssl" (on Windows). Assuming the active restrictions do not preventthe operation, this directory will be created if it does not exist at the time of loading themodule. It is also possible to select a different location by defining the environment variable
MOSEL_SSL (in this case, the directory is not automatically created and must be available atloading time).
The configuration directory should contain the following entries:
personal.key RSA private key of the user: it is used for signing documents to bepublished and for decrypting documents that have been encrypted withthe corresponding public key.
personal RSA public key of the user: to be provided with documents signed with

personal.key such that recipients can check the signature. Thepublic key is also used to encrypt documents to be decrypted with
personal.key.

pubkeys public keys repository: this directory is the default location where publickeys are searched for checking the signature of a document.
ca-bundle.crt trusted certificates file: mmhttp uses this file when checkingauthenticity of servers (HTTPS client) or clients (HTTPS server).
server.crt HTTPS server certificate: this file is required by the HTTPS server of

mmhttp together with the corresponding private key.
server.key HTTPS server private key: this file is required by the HTTPS server of

mmhttp together with the corresponding certificate.
The program mmssl can be used to create and populate this directory (Section 14.1.2).
Even if Mosel is run under restrictions, mmssl can still access its configuration directory forgetting public keys stored under the pubkeys directory, read the file of trusted certificates
ca-bundle.crt and load the private key personal.key to decrypt a document. However,the module requires explicit read access to use the private key personal.key for signingtasks and load the HTTPS server configuration (files server.key and server.crt).

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 393

mmssl

ssl_privkey

Description Name of the file holding the user’s private key.
Type String, read/write
Note The key identified by this parameter is used when a required private key is not provided.If no value has been assigned to this parameter the default key file

getparam("ssl_dir")+"/personal.key" will be used.
Affects routines msgsign, x509newcrt, RSAprivdecrypt, BIM file signing and encryption
Module mmssl

14.3 Procedures and functions

msgdigest Compute the message digest of a document. p. 405
msgsign Compute the digital signature of a document. p. 406
msgverify Verify the digital signature of a document. p. 407
RSAfingerprint Generate the fingerprint of an RSA key. p. 395
RSAgenkey Create a new RSA key pair. p. 396
RSAgetkeysize Get the size of an RSA key. p. 397
RSAisprivate Check whether an RSA key is private. p. 398
RSAloadkey Load an RSA key file into memory. p. 399
RSAprivdecrypt Decrypt a document using an RSA private key. p. 401
RSAprivencrypt Encrypt a document using an RSA private key. p. 402
RSApubdecrypt Decrypt a document using an RSA public key. p. 400
RSApubencrypt Encrypt a document using an RSA public key. p. 403
RSAsavekey Save an RSA key to a file. p. 404
sslivsize Get the size of the initialisation vector of a cipher. p. 408
sslkeysize Get the size of the key required by a symmetric cipher. p. 409
sslmdsize Get the size of a message digest. p. 410
sslrandom Generate a random number. p. 411
sslrandomdata Generate a random data file. p. 412
x509check Check the compatibility of a private key with an X509 certificate. p. 413
x509getinfo Retrieve information stored in an X509 certificate. p. 414
x509newcrt Create a new self-signed X509 certificate. p. 415

Fair Isaac Corporation Confidential and Proprietary Information 394

mmssl

RSAfingerprint

Purpose Generate the fingerprint of an RSA key.
Synopsis

function RSAfingerprint(key:array(range) of integer):text
function RSAfingerprint(key:array(range) of integer, mdalg:string):text
function RSAfingerprint(kfile:string):text

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
mdalg Name of the digest algorithm to use (default: MD5)

Return valueFingerprint as a text string of hexadecimal digits.
Further information

1. By default mmssl uses an MD5 hash of the public part of the RSA key as its fingerprint. Unless anotherdigest algorithm is selected, the return value of this function is therefore a text string of 32 hexadecimaldigits that characterises a given key.
2. The function can process both public and private keys either directly from a key file or from an array ofintegers (as produced by RSAloadkey or RSAgenkey).

Related topics
RSAloadkey

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 395

mmssl

RSAgenkey

Purpose Create a new RSA key pair.
Synopsis

function RSAgenkey(size:integer, key:array(range) of integer):integer
function RSAgenkey(size:integer, kfile:string):integer

Arguments
size Size of the key to generate (in bits, must be at least 1024)
key Array to store the new key
kfile File where to save the key

Return valueNumber of integers (first syntax) or size of the file (second syntax) or -1 in case of I/O error and -2 ifthe provided array is not suitable to store the key.
Further information

1. The generated key can be retrieved either as an array of integers or directly saved into a file. In bothcases, the public key may be extracted using RSAsavekey.
2. The function creates keys of at least 1024 bits: a request for a key of a smaller size will result in a 1024bits key.

Related topics
RSAloadkey, RSAsavekey

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 396

mmssl

RSAgetkeysize

Purpose Get the size of an RSA key.
Synopsis

function RSAgetkeysize(key:array(range) of integer):integer
function RSAgetkeysize(kfile:string, ispriv:boolean):integer

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
ispriv Must be true if the key file contains a private key

Return valueSize of the key (number of bits) or -1 in case of an error.
Further informationA return value of -1 indicates an error condition. Typically this will occur if the file cannot be accessed orthe ispriv parameter is not correct (e.g. ispriv is true and the file is a public key).
Related topics

RSAisprivate, RSAloadkey
Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 397

mmssl

RSAisprivate

Purpose Check whether an RSA key is private.
Synopsis

function RSAisprivate(key:array(range) of integer):boolean
function RSAisprivate(kfile:string):boolean

Arguments
key RSA key in the form of an array of integer
kfile File containing the key

Return value
true if the key is an RSA private key, false otherwise.

Further informationA return value of false does not necessarily indicate that the provided data corresponds to a validpublic key: this value is also returned in the case of an I/O error (e.g. the file does not exist).
Related topics

RSAloadkey

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 398

mmssl

RSAloadkey

Purpose Load an RSA key file into memory.
Synopsis

function RSAloadkey(key:array(range) of integer, kfile:string,
ispriv:boolean):integer

function RSAloadkey(key:array(range) of integer, kfile:string):integer

Arguments
key RSA key in the form of an array of integer
kfile File containing the key
ispriv Must be true if the key file contains a private key

Return valueThe number of integers saved into the array, or -1 in the case of an I/O error, or -2 if the provided arrayis not suitable to store the key.
Further informationIf the ispriv parameter is not provided, the function calls first RSAisprivate to determine its value.
Related topics

RSAsavekey

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 399

mmssl

RSApubdecrypt

Purpose Decrypt a document using an RSA public key.
Synopsis

function RSApubdecrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the public key
src Name of the file to decrypt
dst Name of the file to store the decrypted document

Return valueLength of the resulting document or -1 in the case of an error.
Further information

1. This function is used to decrypt a document that has been encrypted using RSAprivencrypt. Itrequires the public part of the key used for encryption.
2. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the defaultpublic keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current workingdirectory. It is required to prefix the key file name with "./" in order to access a key file from thecurrent directory (e.g."./somekey").

Related topics
RSAprivencrypt, msgverify

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 400

mmssl

RSAprivdecrypt

Purpose Decrypt a document using an RSA private key.
Synopsis

function RSAprivdecrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the private key
src Name of the file to decrypt
dst Name of the file to store the decrypted document

Return valueLength of the resulting document or -1 in the case of an error.
Further informationThis function is used to decrypt a document that has been encrypted using RSApubencrypt. Itrequires the private part of the key used for encryption.
Related topics

RSApubencrypt

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 401

mmssl

RSAprivencrypt

Purpose Encrypt a document using an RSA private key.
Synopsis

function RSAprivencrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the private key
src Name of the file to encrypt
dst Name of the file to store the encrypted document

Return valueLength of the resulting document or -1 in the case of an error.
Further information

1. This function can be used to encrypt a document using an RSA private key (with PKCS1 as the paddingalgorithm). Decryption will be done using function RSApubdecrypt with the help of the correspondingRSA public key.
2. The algorithm used here cannot handle documents larger than (RSAgetkeysize(kfile)/8-11)bytes. It is usually used to generate a digital signature from a message digest.

Related topics
RSApubdecrypt, msgsign

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 402

mmssl

RSApubencrypt

Purpose Encrypt a document using an RSA public key.
Synopsis

function RSApubencrypt(kfile:string, src:string, dest:string):integer

Arguments
kfile File containing the public key
src Name of the file to encrypt
dst Name of the file to store the encrypted document

Return valueLength of the resulting document or -1 in the case of an error.
Further information

1. This function can be used to encrypt a document using an RSA public key (with PKCS1 OAEP as thepadding algorithm). Decryption will be done using function RSAprivdecrypt with the help of thecorresponding RSA private key.
2. The algorithm used here cannot handle documents larger than (RSAgetkeysize(kfile)/8-41)bytes. Typically, encryption of larger documents will be performed with a symmetric cipher (see cryptI/O driver, Section 14.4.3) using a randomly generated key (that can be produced with

sslrandomdata), in which case the asymmetric cipher is used to encrypt only this random key. Thedecryption then also operates in two steps: the key is first decrypted using RSAprivdecrypt (with aprivate key) and after this the document can be restored from the decrypted symmetric key.
3. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the defaultpublic keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current workingdirectory. It is required to prefix the key file name with "./" in order to access a key file from thecurrent directory (e.g."./somekey").

Related topics
RSAprivdecrypt

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 403

mmssl

RSAsavekey

Purpose Save an RSA key to a file.
Synopsis

function RSAsavekey(key:array(range) of integer, kfile:string,
ispriv:boolean):integer

function RSAsavekey(key:array(range) of integer, kfile:string):integer

Arguments
key RSA key in the form of an array of integer
kfile Destination file
ispriv Save the private key if true, only the public key otherwise

Return valueA positive value on success or -1 in case of error.
Example In the code below a new 2048 bits key is generated and both, private and public parts are saved intodifferent files:

if RSAgenkey(2048,k)<=0 then
writeln("Failed to create RSA key")
elif RSAsavekey(k,"perso.key",true)<1 or

RSAsavekey(k,"perso",false)<1 then
writeln("Failed to save key file")
end-if

Further information
1. This function saves the RSA key that is provided as an array of string into a file in a textualrepresentation. The ispriv parameter can be used to select which part of the key to export.
2. If the ispriv parameter is not provided, the function will produce a private key file if the key is privateand a public key file otherwise.

Related topics
RSAloadkey, RSAgenkey

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 404

mmssl

msgdigest

Purpose Compute the message digest of a document.
Synopsis

function msgdigest(mdalg:string, fname:string, mdf:string):integer
function msgdigest(fname:string, mdf:string):integer

Arguments
mdalg Name of the algorithm to use
fname Name of the file to be processed
mdf File where to store the digest

Return valueSize of the message digest in bytes or -1 if case of error.
Example The following procedure implements the command ’md5sum’:

procedure md5sum(f:string)
if msgdigest("md5",f,"mem:dgst")<>16 then
writeln("Failed to compute digest")

else
fcopy("mem:dgst",F_BINARY,"hex:",F_TEXT)
writeln(" ",f)

end-if
end-procedure

Further information

1. This function computes a message digest (MD) using either the algorithm specified by the mdalgargument or the default algorithm as defined by the control parameter ssl_digest. The producedoutput takes the form of a binary file the size of which is returned by the function.
2. The set of supported algorithms includes "md5", "sha", and "sha256". For a full list use thecommand mmssl list digest.

Related topics
sslmdsize

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 405

mmssl

msgsign

Purpose Compute the digital signature of a document.
Synopsis

function msgsign(mdalg:string, pkey:string, fname:string,
sgf:string):integer

function msgsign(fname:string, sgf:string):integer

Arguments
mdalg Name of the message digest algorithm to use
pkey Name of the private key file to use for signing
fname File to sign
sgf File where the signature is to be saved

Return valueLength of the signature or -1 in the case of an error.
Further information

1. This function computes the digital signature of a document by encrypting the message digest of itsinput file using an RSA private key. The resulting signature can be verified with the function msgverifyused with the appropriate public key.
2. If no message digest algorithm is specified, the default algorithm defined by the control parameter

ssl_digest is used. Unless a specific key file is selected, the default private key defined by thecontrol parameter ssl_privkey or, (if this parameter is not defined) the key under
getparam("ssl_dir")+"/personal.key" is used.

Related topics
msgverify

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 406

mmssl

msgverify

Purpose Verify the digital signature of a document.
Synopsis

function msgverify(mdalg:string, key:string, fname:string,
sgf:string):integer

function msgverify(key:string, fname:string, sgf:string):integer

Arguments
mdalg Name of the message digest algorithm to use
key Name of the public key file to use
fname File to verify
sgf Signature used for the verification

Return value
1 if the signature is valid, 0 if the verification failed and -1 in the case of an error.

Further information
1. This function verifies the digital signature of a document by comparing the message digest of thedocument with the information obtained by decrypting the provided signature with a given RSA publickey. Typically this signature has been obtained with the function msgsign and the appropriate privatekey.
2. If no message digest algorithm is specified, the default algorithm defined by the control parameter

ssl_digest is used. Note that the same algorithm has to be used for both signing and verifying.
3. If the key file name does not include an explicit path (e.g."somekey"), it is searched for in the defaultpublic keys directory located at getparam("ssl_dir")+"/pubkeys" instead of the current workingdirectory. It is required to prefix the key file name with "./" in order to access a key file from thecurrent directory (e.g."./somekey").

Related topics
msgsign

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 407

mmssl

sslivsize

Purpose Get the size of the initialisation vector (IV) required by a symmetric cipher.
Synopsis

function sslivsize(cipalg:string):integer

Argument
cipalg Name of the cipher to consider

Return valueSize of a IV in bytes or -1 if the cipher is not supported.
Example The following statement generates a random IV for the default cipher algorithm:

sslrandomdata("myiv",sslivsize(""))

Further informationSome encryption algorithms require an initialisation vector (IV) in addition to the encryption key. Likethe key, the IV is an array of bytes of a fixed size. This function returns the length (in bytes) of the IVrequired by a given symmetric cipher algorithm. A return value of -1 indicates an unrecognisedalgorithm name: this property can be used to check whether a given algorithm is available.
Related topics

sslkeysize

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 408

mmssl

sslkeysize

Purpose Get the size of the key required by a symmetric cipher.
Synopsis

function sslkeysize(cipalg:string):integer

Argument
cipalg Name of the cipher to consider

Return valueSize of a key in bytes or -1 if the cipher is not supported.
Further informationThis function returns the length (in bytes) of an encryption key required by a given symmetric cipheralgorithm. A return value of -1 indicates that the algorithm name has not been recognised: thisproperty can be used to check whether a given algorithm is available.
Related topics

sslivsize

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 409

mmssl

sslmdsize

Purpose Get the size of a message digest.
Synopsis

function sslmdsize(mdalg:string):integer

Argument
mdalg Algorithm to consider

Return valueSize of the message digest in bytes or -1 if the algorithm is not supported.
Further informationThis function returns the length (in bytes) of a digest produced by the requested message digestalgorithm. A return value of -1 indicates that the algorithm name has not been recognised: thisproperty can be used to check whether a given algorithm is available.
Related topics

msgdigest

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 410

mmssl

sslrandom

Purpose Generate a random number.
Synopsis

function sslrandom:integer

Return valueA randomly generated integer.
Further informationThis function returns an integer by combining 4 bytes obtained from a cryptographically strongpseudo-random generator.
Related topics

sslrandomdata

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 411

mmssl

sslrandomdata

Purpose Generate a random data file.
Synopsis

procedure sslrandomdata(fname:string, size:integer)

Arguments
fname Name of the file where to save the generated data
size Number of bytes to generate

Example The following statement generates a random key for the default cipher algorithm:
sslrandomdata("mykey",sslkeysize(""))

Further informationThis function generates size bytes from a cryptographically strong pseudo-random generator that itsaves in the specified file fname.
Related topics

sslrandom

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 412

mmssl

x509check

Purpose Check the compatibility of a private key with an X509 certificate.
Synopsis

function x509check(x509:string, kfile:string):integer

Arguments
x509 File containing the certificate in PEM format
kfile File containing the private key

Return value
0 if the key is compatible with the certificate, 1 if the key is not compatibe and -1 in the case of an error.

Further informationThis function checks whether the public key recorded in the specified certificate corresponds to theprovided private key (the certificate can only be used by the owner of the public key).
Related topics

x509getinfo

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 413

mmssl

x509getinfo

Purpose Retrieve information stored in an X509 certificate.
Synopsis

function x509getinfo(x509:string, info:array(string) of text):integer

Arguments
x509 Certificate file in PEM format
info Array where to store certificate information

Return valueNumber of items stored in the array or -1 in case of error.
Example The example below shows how to display the properties of a certificate:

declarations
info:array(S:set of string) of text
end-declarations

if x509getinfo("srv.crt",info)<1 then
writeln("Failed to load certificate")
else
forall(s in S | exists(info(s)))
writeln(" ", s, ":", info(s))

end-if

Further informationThis function retrieves some of the information recorded in an X509 certificate. The data is recorded inthe provided array indexed by the labels of the records in the certificate. The possible labels are:
Version Format version of the certificate
Serial Serial number
Issuer Issuer of the certificate
Subject Entity associated to the public key stored in the certificate
NotBefore Valid after this date
NotAfter Valid until this date
SgnAlg Algorithm used to sign the certificate
A self-signed certificate (such as those created with x509newcrt) will have identical values for
Issuer and Subject.

Related topics
x509check

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 414

mmssl

x509newcrt

Purpose Create a new self-signed X509 certificate.
Synopsis

function x509newcrt(x509:string, kfile:string, info:array(string) of
text):integer

Arguments
x509 Certificate file to create (PEM format)
kfile File containing the private key
info Array describing the certificate properties

Return value
0 if success or -1 in the case of an error.

Example The following example creates a certificate that is valid for 3 years, using a new RSA key:
info("Version"):="1"
info("Serial"):="123456789"
info("Duration"):=text(365⁎3)
info("C"):="FR"
info("O"):="My Company"
info("CN"):="www.mycomp.com"
if RSAgenkey(1024,"srv.key")<=0 then
writeln("Failed to create RSA key")
elif x509newcrt("srv.crt","srv.key",info)<>0 then
writeln("Failed to create certificate")
end-if

Further information
1. This function creates a self-signed X509 certificate. Such a certificate can be used to run an HTTPSserver but clients of such a server have to disable server certificate verification (see
https_trustsrv) or include this certificate in their trusted certificate file (see https_cacerts).

2. The routine expects an array with indices defining the following entries (a default value applies if theentry is missing):
Version Format version of the certificate (default: 1)
Serial Serial number (default: 1)
Duration Validity (in days) from the current date (default: 365)
C Country code (default: system country or ’EU’)
O Organisation name (default: anonymous)
CN Common Name (typically the host name to authenticate, default: localhost)
The entries C, O and CN are used to generate the Issuer and Subject records of the certificate. Theprovided key is used both as the certificate key (using the public part of the key) and as the signing key.

Related topics
x509check, x509getinfo

Module mmssl

Fair Isaac Corporation Confidential and Proprietary Information 415

mmssl

14.4 I/O drivers

The mmssl module publishes two drivers for converting binary documents to textual representationand a driver dedicated to symmetric encryption. These drivers have the same behaviour: encryption orencoding is performed when the driver is used for writing while decryption/decoding is done on astream that is open for reading.
14.4.1 Driver base64

base64:[nonl,]filename

This driver can be used to handle documents encoded using the base64 standard. When used in anoutput stream, it generates the base64 encoded version of its binary input and in an input stream itexpects a base64 encoded document that it decodes.
For instance the following statement encodes "mydata.bin":

fcopy("mydata.bin",F_BINARY,"mmssl.base64:mydata.b64",F_TEXT)

By default a base64 document is split into lines of 76 characters but with the option nonl the entiredocument is output as (or read from) a single line.
14.4.2 Driver hex

hex:filename

This driver produces a textual representation of a binary document by replacing each byte by itshexadecimal representation (e.g. the value 13 is converted to the string "0d").
The following code extract displays the hexadecimal representation of the binary input file "mem:md5":

fcopy("mem:md5",F_BINARY,"mmssl.hex:",F_TEXT)
writeln

14.4.3 Driver crypt
crypt:[[nosalt,][md=a,][cipher=c,][key=kf,][iv=if,]pwd=p|pf]filename

The crypt driver performs encryption (when writing) or decryption (when reading) of its stream using asymmetric cipher (that is, the same key is used for encryption and decryption). Options are providedenclosed in square brackets, at the least a password has to be provided. For instance, the followingstatement encrypts the file "mydata" using the password stored in the file "passfile":
fcopy("mydata","mmssl.crypt:[passfile]mydata.enc")

The password is read from the first line of the password file (that is opened as a text document).Alternatively, the password may be directly passed through the file name using the pwd= option:
fcopy("mydata","mmssl.crypt:[pwd=mysecret]mydata.enc")

Encryption (or decryption) is performed using the default cipher as defined by the control parameter
ssl_cipher. Another cipher can be selected using the cipher option.
The encryption (or decryption) process requires a key as well as an initialisation vector. The size ofthese components depends of the selected cipher and the appropriate data is generated by a key

Fair Isaac Corporation Confidential and Proprietary Information 416

mmssl

derivation routine using the provided password as input. This procedure employs a message digestalgorithm and may use some initial value (or salt). Without any specific option the driver relies on thedefault message digest algorithm defined by the control parameter ssl_digest and generates arandom salt of 8 bytes. These bytes are then saved at the beginning of the encrypted document suchthat the decryption process can retrieve them and regenerate the encryption key and initialisationvector from the provided password. This default behaviour can be changed using the nosalt option toavoid using a salt and the option md to select some other message digest algorithm. It is also possibleto provide the encryption key and the initialisation vector via dedicated files using options key and iv.In this case no password has to be provided.
14.4.4 Driver hmac

hmac:[[md=a,]key=kf|key]filename

The hmac driver computes a HMAC (keyed-hash message authentication code) of its input streamusing the provided key and hash function (the driver does not support reading). Options are providedenclosed in square brackets, at the least a key has to be provided. For instance, the following statementgenerates the HMAC of the file "mydata" using the key stored in the file "keyfile":
fcopy("mydata","mmssl.hmac:[keyfile]mydata.hmac")

The key is read from the key file that is opened as a binary document. Alternatively, the key may bedirectly passed through the file name using the key= option:
fcopy("mydata","mmssl.hmac:[key=mykey]mydata.hmac")

Computation of a HMAC is based on a message digest algorithm, without any specific option the driverrelies on the default message digest algorithm defined by the control parameter ssl_digestotherwise, the option md can be used to select some other algorithm.

Fair Isaac Corporation Confidential and Proprietary Information 417

CHAPTER 15

mmsvg

The mmsvg package provides a set procedures which allow users to display graphs of functions,diagrams, networks, various shapes etc. in SVG format. To use this module the following line must beincluded in the header of the Mosel model file:
uses "mmsvg"

mmsvg requires a webbrowser in order to be able to display graphics. Running a Mosel model that usesthe svgrefresh routine provided by this module opens a window in the default browser that isconfigured on the system. In the absence of a webbrowser, it is still possible to generate graphics andsave them to file via svgsave.

15.1 SVG graph structure

The SVG graph format is an XML format, that is, the elements of a graph are organized in a hierarchicaltree structure. mmsvg structures graphical objects in three levels:
1. SVG graph
2. object group
3. graphical object

Each individual graphical object (line, polygon, text etc.) must be created within an object group. Bydefault this is the last group that has been added to the graph, but some other object reference can bestated. A default graph object is always present and object groups are created within this default graph.
15.1.1 Object groups

Object groups are identified via a string ID that is specified by the user at their creation, this ID must beunique. Each object group receives an entry in the legend of the graph. Typically a group serves torepresent a collection of graphical objects that are logically related. The style defined for a group isapplied to all its objects unless it is overwritten by individual settings, meaning that it is usually moreefficient to state generally valid style settings for an entire group instead of repeating them for eachindividual object.
At the creation of a group, optionally a group color can be specified. If no color is given, then a defaultcolor will be selected from a built-in list of color values.
Graphical objects are displayed in the order of definition of object groups, and within each group in theorder of their definition.

Fair Isaac Corporation Confidential and Proprietary Information 418

mmsvg

15.1.2 SVG styling

Style definitions can be applied to all levels of SVG elements, to the graph, object groups, or forindividual objects. mmsvg defines a set of property constants but other SVG styling options can equallybe used by directly stating their name in the svgset[graph]style routines. For a complete list ofSVG style properties and their permissible values the reader is refered to the SVG propertyspecifications at https://www.w3.org/TR/SVG/propidx.html.
SVG_COLOR Default color name (for object groups)
SVG_DECORATION Text decoration; possible values include ’none’, ’underline’, ’overline’,’line-through’, ’blink’
SVG_FILL Fill color name
SVG_FILLOPACITY Fill opacity; values between 0.0 and 1.0
SVG_FONT Whitespace separated list of font settings
SVG_FONTFAMILY Font family definition; this can be generic families (’serif’, ’sans-serif’,’cursive’, ’fantasy’, ’monospace’) or specific font names
SVG_FONTSIZE Font size; constants (’xx-small’, ’x-small’, ’small’, ’medium’, ’large’, ’x-large’,’xx-large) or percentage value or length (e.g. in ’em’, ’pt’, ’px’, ’cm’)
SVG_FONTSTYLE Font style; values ’normal’, ’italic’, ’oblique’
SVG_FONTWEIGHT Font weight; numbers 100,...900 or constants (’bold’, ’bolder’, ’lighter’,’normal’)
SVG_OPACITY Generic opacity setting; values between 0.0 and 1.0
SVG_STROKE Color for lines and borders
SVG_STROKEDASH Line style; comma-separated list of lengths or percentages specifyinglengths of alternating dashes and gaps
SVG_STROKEOPACITY Stroke opacity, values between 0.0 and 1.0
SVG_STROKEWIDTH Stroke width; percentage or length
SVG_TEXTANCHOR Vertical alignment of text; possible values include ’start’, ’middle’, ’end’
Other predefined constants are SVG_CURRENT for the current color and SVG_NONE.
mmsvg defines the following color constants (applicable to the properties SVG_COLOR, SVG_FILL,
SVG_STROKE) that can be used in place of SVG color keywords or color definitions generated via the
svgcolor routine:

� SVG_BLACK, SVG_BLUE, SVG_BROWN, SVG_CYAN, SVG_GOLD, SVG_GRAY, SVG_GREEN,
SVG_LIME, SVG_MAGENTA, SVG_ORANGE, SVG_PINK, SVG_PURPLE, SVG_RED, SVG_SILVER,
SVG_WHITE, SVG_YELLOW

For a full list of SVG color keywords and their definitions please seehttps://www.w3.org/TR/SVG/types.html.
The complete set of style properties specified for a graph, object group or individual objects can beretrieved via the routines svggetstylesheet and svggetgraphstylesheet, for example in orderto copy them to some other object via svgsetstylesheet or svgsetgraphstylesheetrespectively.

Fair Isaac Corporation Confidential and Proprietary Information 419

https://www.w3.org/TR/SVG/propidx.html
https://www.w3.org/TR/SVG/types.html#ColorKeywords

mmsvg

15.1.3 Interaction with the graphical display

The command svgrefresh sends the current graph and any additional files that might have beenadded to it (see svgaddfile) to the built-in server that handles the coordination with the display andtriggers an update of the graphical display. The end of the model execution will also terminate thedisplay, unless a call to the routine svgwaitclose is added at the end of the model, in which case themodel waits for the closing of the display window.
Inserting a call to the routine svgpause into a model will pause its execution at this point until the userhits the ’Continue’ button in the graphical display. Typically, this feature will be used to allow the usertime for visual inspection of the output if a model iteratively generates graphics or updates to a graphic.

15.1.4 Example

The following example shows how to define a few simple graphical objects, saves the resulting graphicto a file and also displays it in a webbrowser. The model waits until the browser is closed.
model "svg example"
uses "mmsvg"

! ⁎⁎⁎⁎ Line objects ⁎⁎⁎⁎
svgaddgroup("gl", "Lines") ! Group with automatic color
svgaddline(10,10,250,10) ! Simple line with default style
PointList:=sum(i in 1..20)[i⁎10,40+round(20⁎random)]
svgaddline(PointList) ! Polyline
l:=svggetlastobj ! Retrieve object reference
svgsetstyle(l, SVG_STROKE, SVG_MAGENTA) ! Change line color
svgsetstyle(l, SVG_STROKEDASH, "1,1") ! Dotted line

! ⁎⁎⁎⁎ Various shapes ⁎⁎⁎⁎
svgaddgroup("gs", "Shapes", SVG_GREY) ! Group with user-defined color
svgaddrectangle(275,25,250,250) ! Draw a square
svgsetstyle(svggetlastobj, SVG_STROKEWIDTH, 3) ! Wider border
svgaddcircle(400,150,75) ! Draw a circle
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT) ! Fill with group color
svgaddpolygon([200,400,200,350,300,300,500,350,600,350,600,400])
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREEN) ! Fill with user color

! ⁎⁎⁎⁎ Pie chart ⁎⁎⁎⁎
forall(i in 1..6) svgaddgroup("gp"+i,"Pie"+i) ! Pie slices with auto-colors
setrandseed(3); ttl:=0.0
forall(i in 1..5) do
rd:=random/6
svgaddpie("gp"+i, 150, 525, 100, ttl, ttl+rd)
ttl+=rd

end-do
svgaddpie("gp6", 150, 525, 100, ttl, 1)

! ⁎⁎⁎⁎ Text objects ⁎⁎⁎⁎
svgaddgroup("gt", "Text", SVG_BLACK) ! Group with user-defined color
svgaddtext(20, 100, "Text with default formatting")
svgaddtext(20, 120, "Formatted text")
t:=svggetlastobj
svgsetstyle(t, SVG_FONTSIZE, "20pt")
svgsetstyle(t, SVG_FONTSTYLE, "italic")
svgsetstyle(t, SVG_FONTWEIGHT, "bold")
svgsetstyle(t, SVG_COLOR, SVG_BLUE)
svgaddxmltext(20, 150, 'XML formatted text:
<tspan font-size="large"> large</tspan>
<tspan text-decoration="underline">underlined</tspan>
<tspan stroke="red"> red</tspan>')

svgsetgraphviewbox(0,0,610,635) ! Optional: specify graph size

svgsave("svgexpl.svg") ! Save graphic to file

Fair Isaac Corporation Confidential and Proprietary Information 420

mmsvg

svgrefresh ! Display graphic
svgwaitclose ! Wait until window is closed
end-model

Figure 15.1: Graphical output produced by the example

15.2 Control parameters

The following parameters are defined by mmsvg:
MMSVGDISPLAY Enable/disable rendering. p. 421
MMSVGTGZ Location of the mmsvg.tgz archive. p. 422

MMSVGDISPLAY

Description When this parameter is set to true (the default) the first call to svgrefresh starts a webbrowser for displaying the current graph. Changing the value of this parameter disablesrendering: after a warning message is reported calls to svgrefresh have no effect and thefunction svgclosing always returns true. Note that setting the environment variable
MMSVGDISPLAY to a non empty string has the same effect as changing this controlparameter.

Type Boolean, read/write
Values true Enable rendering.

false Disable rendering.
Default value true

Affects routines svgrefresh, svgclosing.
Module mmsvg

Fair Isaac Corporation Confidential and Proprietary Information 421

mmsvg

MMSVGTGZ

Description The function svgrefresh requires the archive mmsvg.tgz for its processing. By default thisfile is expected to be located in the same directory as the module mmsystem. This parametermakes it possible to specify an alternate location.
Type String, read/write
Default value ""

Affects routines svgrefresh.
Module mmsvg

15.3 Procedures and Functions

svgaddarrow Add an arrow to an object group. p. 425
svgaddcircle Add a circle to an object group. p. 426
svgaddellipse Add an ellipse to an object group. p. 427
svgaddfile Add a file to a graph. p. 428
svgaddgroup Add a new object group to the user graph. p. 424
svgaddimage Add an image to an object group. p. 429
svgaddline Add a line or polyline to an object group. p. 430
svgaddpie Add a pie slice. p. 431
svgaddpoint Add a small square to mark a point. p. 432
svgaddpolygon Add a polygon to an object group. p. 433
svgaddrectangle Add a rectangle to an object group. p. 434
svgaddtext Add a text to an object group. p. 435
svgaddxmltext Add an XML formatted text to an object group. p. 436
svgclosing Test whether the display window is being closed. p. 437
svgcolor Compute a composite color. p. 438
svgdelobj Delete the specified graphical object. p. 439
svgerase Erase all object groups or the contents of a specific group. p. 440
svggetgraphstyle Retrieve a style property of a graph. p. 441
svggetgraphstylesheet Retrieve the style definitions of a graph. p. 442
svggetgraphviewbox Retrieve the viewbox definition of a graph. p. 443
svggetlastobj Retrieve the identifier of a graphical object. p. 444
svggetstyle Retrieve a style property of a graphical object or object group. p. 445

Fair Isaac Corporation Confidential and Proprietary Information 422

mmsvg

svggetstylesheet Retrieve style definitions of a graphical object or object group. p. 446
svgpause Suspend the execution of a model. p. 447
svgrefresh Refresh the graph display. p. 448
svgsave Save a graph to a file. p. 449
svgsetgraphlabels Set x- and y-axis labels for a graph. p. 450
svgsetgraphpointsize Set point size property for a graph. p. 451
svgsetgraphscale Set scaling value for a graph. p. 452
svgsetgraphstyle Set a style property of a graph. p. 453
svgsetgraphstylesheet Set the style definitions for a graph. p. 454
svgsetgraphviewbox Set the visible area for a user graph. p. 455
svgsetreffreq Set the refresh frequency for a graph. p. 456
svgsetstyle Set a style property for a graphical object or object group. p. 457
svgsetstylesheet Set the style for a graphical object or object group. p. 458
svgshowgraphaxes Force displaying of graph axes. p. 459
svgwaitclose Delay model termination. p. 460

Fair Isaac Corporation Confidential and Proprietary Information 423

mmsvg

svgaddgroup

Purpose Add a new object group to the user graph.
Synopsis

procedure svgaddgroup(gid: string, desc: text, color: text)
procedure svgaddgroup(gid: string, desc: text)

Arguments
gid Object group ID (must be unique within a graph).
desc A text that will appear in the legend.
color A color specification obtained using svgcolor or one of the predefined constants (see list insection 15.1.2).

Example The following adds two groups ’g1’ and ’g2’ to the user graph:
svgaddgroup("g1", "sine", SVG_RED) ! User-specified group color
svgaddgroup("g2", "random numbers") ! Automatically selected color

Further information
1. A group is identified by its ID whereas the ’desc’ serves as text for the legend of the graphic. A groupcontains any number of individual objects (points, lines, arrows, texts etc.) which were added to it.
2. An empty string for the ’desc’ attribute indicates that the group is not to be included in the legend.
3. If no color is specified at the creation of a group it will be assigned a default color from a built-in list.This setting can be overwritten for individual objects within the group. Note that any style settings thatare common to a large number of objects within a group should preferrably be specified for the grouprather than for the individual objects.

Related topics
svgsetstyle.

Fair Isaac Corporation Confidential and Proprietary Information 424

mmsvg

svgaddarrow

Purpose Add an arrow to an object group.
Synopsis

procedure svgaddarrow(gid: string, x1: real, y1: real, x2: real, y2: real)
procedure svgaddarrow(x1: real, y1: real, x2: real, y2: real)

Arguments
gid Object group ID.
x1 The x coordinate of the first point.
y1 The y coordinate of the first point.
x2 The x coordinate of the second point.
y2 The y coordinate of the second point.

Example The following adds two arrows to a group named ‘thetime’. The arrows suggest three o’clock:
svgaddgroup("arrows", "thetime", SVG_BLACK)
svgaddarrow("arrows", 0, 0, 0, 5)
svgaddarrow(0, 0, 4.5, 0)
svgsetgraphviewbox(-5, -6, 10, 12)

Further information
1. The arrow connects the two points whose coordinates are given as parameters, pointing to the secondone.
2. If no group ID is specified, the arrow is added to the last group that has been created.

Fair Isaac Corporation Confidential and Proprietary Information 425

mmsvg

svgaddcircle

Purpose Add a circle to an object group.
Synopsis

procedure svgaddcircle(gid: string, x: real, y: real, r: real)
procedure svgaddcircle(x: real, y: real, r: real)

Arguments
gid Object group ID.
x The x coordinate of the center point.
y The y coordinate of the center point.
r The length of the radius of the circle.

Example The following code draws a filled, semi-transparent circle centered at the origin with a radius of 10.
declarations

circ: integer
end-declarations

svgaddcircle(0, 0, 10)
circ:=svggetlastobj
svgsetstyle(circ, SVG_FILL, SVG_CYAN)
svgsetstyle(circ, SVG_OPACITY, 0.5)

Further informationIf no group ID is specified, the circle is added to the last group that has been created.

Fair Isaac Corporation Confidential and Proprietary Information 426

mmsvg

svgaddellipse

Purpose Add an ellipse to an object group.
Synopsis

procedure svgaddellipse(gid: string, x: real, y: real, rx: real, ry: real)
procedure svgaddellipse(x: real, y: real, rx: real, ry: real)

Arguments
gid Object group ID.
x The x coordinate of the center point of the ellipse.
y The y coordinate of the center point of the ellipse.
rx The horizontal radius.
ry The vertical radius.

Example The following code draws a very "flat" ellipse centered at the origin filled with the group color.
svgaddellipse(0,0,5,0.5)
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT)

Further informationIf no group ID is specified, the ellipse is added to the last group that has been created.

Fair Isaac Corporation Confidential and Proprietary Information 427

mmsvg

svgaddfile

Purpose Add a file to a graph.
Synopsis

procedure svgaddfile(fname: string, fid: string)

Arguments
fname Filename (including path) of the file to be included.
fid Name for the file used within the SVG graph.

Example The following code adds an image file to the current graph and displays it in an area with corner pointsat the coordinates (100,100) and (250,250).
svgaddfile("./someimage.png", "myimg.png")
svgaddimage("myimg.png", 100, 100, 150, 150)

Further information
1. This routine is typically used in combination with svgaddimage to associate some external file withthe graph.
2. Using an empty file name fname will remove the corresponding fid from the file database.

Related topics
svgaddimage.

Fair Isaac Corporation Confidential and Proprietary Information 428

mmsvg

svgaddimage

Purpose Add an image to an object group.
Synopsis

procedure svgaddimage(gid: string, fid: text, x: real, y: real, w: real, h:
real)

procedure svgaddimage(fid: text, x: real, y: real, w: real, h: real)

Arguments
gid Object group ID.
fid Name for the file used within the SVG graph.
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the image.
h The height of the image.

Example The following code adds an image file to the current graph and displays it 3 times at different positions(3 squares forming a row).
svgaddfile("./someimage.png", "myimg.png")
forall(i in 1..3)

svgaddimage("myimg.png", 100⁎i, 100, 100, 100)

Further information
1. Any external file to be displayed within a graph needs to be associated with the graph via a call to
svgaddfile.

2. If no group ID is specified, the image is added to the last group that has been created.
Related topics

svgaddfile.

Fair Isaac Corporation Confidential and Proprietary Information 429

mmsvg

svgaddline

Purpose Add a line or polyline to an object group.
Synopsis

procedure svgaddline(gid: string, x1: real, y1: real, x2: real, y2: real)
procedure svgaddline(x1: real, y1: real, x2: real, y2: real)
procedure svgaddline(gid: string, points: list of integer|real)
procedure svgaddline(points: list of integer|real)

Arguments
gid Object group ID.
x1 The x coordinate of the first point.
y1 The y coordinate of the first point.
x2 The x coordinate of the second point.
y2 The y coordinate of the second point.
points A list of points.

Example The following code draws the outline of a triangle, given the correct aspect ratio of the user graph.
svgaddgroup("t", "triangle", SVG_ORANGE)
svgaddline([-2, -2, 0, 2, 2, -2, -2, -2)])
svgsetgraphviewbox(-5, -5, 10, 10)

If the shape is to be filled (here: using the group color), you need to use polygon drawing instead of apolyline:
svgaddpolygon([-2, -2, 0, 2, 2, -2)])
svgsetstyel(svggetlastobj, SVG_FILL, SVG_CURRENT)

Further information
1. The line connects the two points whose coordinates are given as parameters or the points contained inthe specified list in their order of appearance in the list.
2. If no group ID is specified, the line is added to the last group that has been created.

Related topics
svgaddpolygon.

Fair Isaac Corporation Confidential and Proprietary Information 430

mmsvg

svgaddpie

Purpose Add a filled pie slice at the given coordinates.
Synopsis

procedure svgaddpie(gid: string, x: real, y: real, r: real, p1: real, p2:
real)

procedure svgaddpie(x: real, y: real, r: real, p1: real, p2: real)

Arguments
gid Object group ID.
x The x coordinate of the center point.
y The y coordinate of the center point.
r Radius (side length of the pie slice).
p1 Start position on the circle (percentage).
p2 End position on the circle (percentage).

Example This code draws a pie chart with 5 slices of 20% width each around the center point (150,150) with aradius of 100.
forall(i in 1..5) do

svgaddgroup("gp"+i, "Pie"+i)
svgaddpie(150, 150, 100, (i-1)⁎0.2, i⁎0.2)

end-do

Further information
1. Pie slices are by default filled with the group color. If they are not to be filled with any color specifyvalue SVG_NONE for the style property SVG_FILL.
2. If no group ID is specified, the pie slice is added to the last group that has been created.

Fair Isaac Corporation Confidential and Proprietary Information 431

mmsvg

svgaddpoint

Purpose Add a small square to mark a point at the given coordinates.
Synopsis

procedure svgaddpoint(gid: string, x: real, y: real)
procedure svgaddpoint(x: real, y: real)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.

Example This code plots 100 random points:
svgaddgroup("cloud", "Random points", SVG_YELLOW)
svgsetgraphviewbox(-5, -5, 10, 10)
forall(i in 1..100)

svgaddpoint("cloud", -2+4⁎random, -2+4⁎random)

Further informationIf no group ID is specified, the point is added to the last group that has been created.
Related topics

svgsetgraphpointsize.

Fair Isaac Corporation Confidential and Proprietary Information 432

mmsvg

svgaddpolygon

Purpose Add a polygon to an object group.
Synopsis

procedure svgaddpolygon(gid: string, points: list of integer|real)
procedure svgaddpolygon(points: list of integer|real)

Arguments
gid Object group ID.
points A list of points.

Example The following code draws two semi-transparent, partially overlapping polygons, the first is filled withthe group color, the second with a different color:
svgaddgroup("p", "Polygons")
svgsetstyle(SVG_OPACITY, 0.5)
svgsetstyle(SVG_FILL, SVG_CURRENT)
svgaddpolygon([-2, -2, 0, 2, 2, -2)])
svgaddpolygon([-1, -2, 1, 2, 3, -2)])
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREY)

Further information
1. The last point in the list of points is automatically connected to the first point in the list to form a closedshape.
2. If no group ID is specified, the polygon is added to the last group that has been created.

Related topics
svgaddline.

Fair Isaac Corporation Confidential and Proprietary Information 433

mmsvg

svgaddrectangle

Purpose Add a rectangle to an object group.
Synopsis

procedure svgaddrectangle(gid: string, x: real, y: real, w: real, h: real)

Arguments
gid Object group ID.
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the rectangle.
h The height of the rectangle.

Example The following code draws a rectangle filled with the group color covering an area 10 units long and 1unit high starting at the origin.
svgaddrectangle(0,0,10,1)
svgsetstyle(svggetlastobj, SVG_FILL, SVG_CURRENT

Further informationIf no group ID is specified, the rectangle is added to the last group that has been created.

Fair Isaac Corporation Confidential and Proprietary Information 434

mmsvg

svgaddtext

Purpose Add a text to an object group.
Synopsis

procedure svgaddtext(gid: string, x: real, y: real, msg: text)
procedure svgaddtext(x: real, y: real, msg: text)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.
text The text that will be displayed at the given point.

Example This code complements the time graph with a dial:
! This should complement the example for svgaddarrow
forall(i in 1..12)

svgaddtext(4.8⁎cos(1.57-6.28⁎i/12), 5⁎sin(1.57-6.28⁎i/12), text(i))

Further information
1. By default the specified point denotes the lower left corner of the text display area; the verticalalignment can be changed via the style option SVG_ANCHOR (values ’start’, ’middle’, or ’end’).
2. If no group ID is specified, the text is added to the last group that has been created.

Related topics
svgaddxmltext.

Fair Isaac Corporation Confidential and Proprietary Information 435

mmsvg

svgaddxmltext

Purpose Add an XML formatted text to an object group.
Synopsis

procedure svgaddxmltext(x: real, y: real, msg: text)
procedure svgaddxmltext(gid: string, x: real, y: real, msg: text)

Arguments
gid Object group ID.
x The x coordinate of the point.
y The y coordinate of the point.
text The text that will be displayed at the given point.

Example This code displays some text with individual formatting on different words:
svgaddxmltext(20, 150, 'XML formatted text:

<tspan font-size="20px">large</tspan>,
<tspan font-style="oblique">oblique</tspan>,
<tspan font-weight="bold">bold</tspan>,
<tspan text-decoration="underline">underlined</tspan>,
<tspan stroke="red">red</tspan>')

Further information
1. By default the specified point denotes the lower left corner of the text display area; the verticalalignment can be changed via the style option SVG_ANCHOR (values ’start’, ’middle’, or ’end’).
2. If no group ID is specified, the text is added to the last group that has been created.

Related topics
svgaddtext.

Fair Isaac Corporation Confidential and Proprietary Information 436

mmsvg

svgclosing

Purpose Test whether the display window is being closed.
Synopsis

function svgclosing:boolean

Return value’false’ until the display window is about to be closed, ’true’ afterwards.
Example The following loop uses the browser window opening status as stopping criterion.

solct:= 0
svgrefresh ! Start graph display before svgclosing test
while (solct<NBSOL and not svgclosing) do

solct+=1
draw_solution(solct) ! Draws a graph calling svgrefresh and svgpause

end-do
svgwaitclose

Further informationThis function can be used to intercept the event of the display window being closed in order to adaptthe behaviour of the model execution (e.g. to interrupt a loop with repeated graphical displays or anoptimization solver run).
Related topics

svgwaitclose.

Fair Isaac Corporation Confidential and Proprietary Information 437

mmsvg

svgcolor

Purpose Compute a composite color by combining amounts of red, green and blue.
Synopsis

function svgcolor(red, green, blue: integer): text
function svgcolor(red, green, blue: real): text
function svgcolor(red, green, blue: text): text

Arguments
red Amount of red (integer between 0 and 255, real between 0 and 1, or hexadecimal valuebetween 0 and FF).
green Amount of green (integer between 0 and 255, real between 0 and 1, or hexadecimal valuebetween 0 and FF).
blue Amount of blue (integer between 0 and 255, real between 0 and 1, or hexadecimal valuebetween 0 and FF).

Return valueHexadecimal representation of the composite color.
Example The following definitions mix red with green and store the result in a variable. All three forms result inthe same color.

declarations
a_color: text

end-declarations

a_color:=svgcolor(255,255,0)
a_color:=svgcolor(1.0,1.0,0.0)
a_color:=svgcolor("FF","FF","0")

Further informationIf the color component values are out of range, mmsvg will raise an I/O error.

Fair Isaac Corporation Confidential and Proprietary Information 438

mmsvg

svgdelobj

Purpose Delete the specified graphical object.
Synopsis

procedure svgdelobj(obj: integer)

Argument
obj Object ID as returned by svggetlastobj.

Further informationThis procedure serves for deleting a specific graphical object. Use svgerase to delete the wholecontents of an object group or all groups.
Related topics

svgerase, svggetlastobj.

Fair Isaac Corporation Confidential and Proprietary Information 439

mmsvg

svgerase

Purpose Erase all object groups or the contents of a specific group.
Synopsis

procedure svgerase
procedure svgerase(gid: string)

Argument
gid Object group ID.

Further information
1. This procedure can be used together with svgpause to explore a number of different user graphversions during the execution of a Mosel model.
2. If a group ID is specified only the objects within this group are removed without deleting the groupdefinition itself.
3. Use svgdelobj to delete individual graphical objects.

Related topics
svgdelobj, svgpause.

Fair Isaac Corporation Confidential and Proprietary Information 440

mmsvg

svggetgraphstyle

Purpose Retrieve a style property of a graph.
Synopsis

function svggetgraphstyle(prop: string):text

Argument
prop The desired property (mmsvg constant or SVG property name).

Return valueValue of the property or empty string.
Example This code retrieves the font family defined for a graph and applies it to an object group.

svgaddgroup("g", "A group")
svgsetstyle("g", SVG_FONTFAMILY, svggetgraphstyle("b", SVG_FONTFAMILY))

Further informationThis function can be used to retrieve a style property of a graph in order to apply it to some object orgroup of objects. Use svggetgraphstylesheet to retrieve the whole set of style properties of agraph.
Related topics

svggetstyle, svgsetstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 441

mmsvg

svggetgraphstylesheet

Purpose Retrieve the style definitions of a graph.
Synopsis

function svggetgraphstylesheet:array of text

Return valueAn array of style properties (’stylesheet’) with their respective values.
Example This code retrieves the style properties of a graph and applies them to an object group.

svgaddgroup("a", "A group")
svgsetstylesheet("a", svggetgraphstylesheet)

Further informationThis function can be used to retrieve the set of style properties (’stylesheet’) of a graph in order to applyit to some object or group of objects. Use svggetgraphstyle to retrieve individual style properties ofa graph.
Related topics

svggetstyle, svgsetstyle, svggetgraphstyle, svgsetgraphstyle,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 442

mmsvg

svggetgraphviewbox

Purpose Retrieve the viewbox definition of a graph.
Synopsis

function svggetgraphviewbox:svgbox

Return valueAn object of type ’svgbox’ that holds the view box defined for the graph.
Example This code displays the viewbox defined for a graph.

writeln(svggetgraphviewbox)

Further informationThis function can be used to retrieve the viewbox (=visible area) defined for a graph.
Related topics

svgsetgraphviewbox.

Fair Isaac Corporation Confidential and Proprietary Information 443

mmsvg

svggetlastobj

Purpose Retrieve the identifier of a graphical object.
Synopsis

function svggetlastobj:integer

Return valueInteger identifier of the last graphical object that has been added.
Example This code retrieves an object identifier to apply several style settings.

declarations
t: integer

end-declarations

svgaddgroup("gt", "Text")
svgaddtext(20, 120, "Formatted text")
t:=svggetlastobj
svgsetstyle(t, SVG_COLOR, SVG_GREEN)
svgsetstyle(t, SVG_FONTSTYLE, "italic")

Further informationThis function serves for retrieving the identifier of a graphical object, in particular in order to apply stylesettings to this object.
Related topics

svgsetstyle.

Fair Isaac Corporation Confidential and Proprietary Information 444

mmsvg

svggetstyle

Purpose Retrieve a style property of a graphical object or object group.
Synopsis

function svggetstyle(gid: string, prop: string):text
function svggetstyle(prop: string):text
function svggetstyle(obj: integer, prop: string):text

Arguments
gid Object group ID.
obj Object ID.
prop The desired property (mmsvg constant or SVG property name).

Return valueValue of the property or empty string.
Example This code retrieves the color of a group and applies it to an object belonging to another group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstyle(svggetlastobj, SVG_COLOR, svggetstyle("b", SVG_COLOR))

Further informationThis function can be used to retrieve a style property of some object in order to apply it to some otherobject or group of objects. Use svggetstylesheet to retrieve the whole set of style properties of anobject or group of objects.
Related topics

svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet, svggetstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 445

mmsvg

svggetstylesheet

Purpose Retrieve style definitions of a graphical object or object group.
Synopsis

function svggetstylesheet(gid: string):array of text
function svggetstylesheet:array of text
function svggetstylesheet(obj: integer):array of text

Arguments
gid Object group ID.
obj Object ID.

Return valueAn array of style properties (’stylesheet’) with their respective values.
Example This code retrieves the style properties of a group and applies them to an object belonging to anothergroup.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstylesheet(svggetlastobj, svggetstylesheet("b"))

Further informationThis function can be used to retrieve the set of style properties (’stylesheet’) of some object in order toapply it to some other object or group of objects. Use svggetstyle to retrieve individual styleproperties of an object or group of objects.
Related topics

svggetstyle, svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 446

mmsvg

svgpause

Purpose Suspend the execution of a Mosel model at the line where the call occurs.
Synopsis

procedure svgpause

Further informationWhile the model run is suspended, the displayed graph or other model output can be inspected. Thisallows for visualization of intermediate states or solutions. To continue, click on the ’Continue’ button inthe display window.

Fair Isaac Corporation Confidential and Proprietary Information 447

mmsvg

svgrefresh

Purpose Refresh the graph display.
Synopsis

procedure svgrefresh

Example This code defines some objects and draws the graph, it then adds further objects and updates tedisplay..
svgaddgroup("a", "Group A")
svgaddtext(0, 0, "Some text")
svgrefresh ! Display the graph
svgaddgroup("b", "Group B")
svgaddtext("a", 0, 20, "Some more text")
svgaddcircle(10,10, 45)
svgrefresh ! Update the display

Further information
svgrefresh needs to be called in order to trigger the display of a graph. The subroutine can be calledrepeatedly in order to update the display—each time it will be completely redrawn. The refreshfrequency can be controlled via svgsetreffreq.

Related topics
svgsetreffreq.

Fair Isaac Corporation Confidential and Proprietary Information 448

mmsvg

svgsave

Purpose Save a graph to a file.
Synopsis

procedure svgsave(fname: string)

Argument
fname The (extended) filename to be used as output destination.

Example This code saves a graph to the file ’mygraph.svg’ in the model working directory.
svgaddgroup("a", "Group A")
svgaddrectangle(20, 120, 200, 250)
svgsave("mygraph.svg")

Further informationThis procedure can be used independently of the graphical display in order to produce output in SVGformat of the current graph definition.

Fair Isaac Corporation Confidential and Proprietary Information 449

mmsvg

svgsetgraphlabels

Purpose Set x- and y-axis labels for a graph.
Synopsis

procedure svgsetgraphlabels(xlabel: text, ylabel: text)

Arguments
xlabel Label text for the x-axis.
ylabel Label text for the y-axis.

Example The following line sets the x-axis label text to ’Time in sec’ and the y-axis label to ’Solution value’.
svgsetgraphlabels("Time in sec", "Solution value")

Further information

1. By default (no labels specified or empty strings) no label text is displayed.
2. The axes are displayed only if a label is defined (for x or y axis) unless svgshowgraphaxes has beenused.

Related topics
svgsetgraphscale, svgsetgraphpointsize, svgsetgraphviewbox, svgshowgraphaxes.

Fair Isaac Corporation Confidential and Proprietary Information 450

mmsvg

svgsetgraphpointsize

Purpose Set point size property for a graph.
Synopsis

procedure svgsetgraphpointsize(val: real)

Argument
val The new value for the point size.

Example This code shows how to modify graph scaling properties.
svgsetgraphpointsize(0.5)
svgsetgraphscale(10)

Further informationThis routine is likely to be used in combination with svgsetgraphscale in order to resize a graph.
Related topics

svgsetgraphscale, svggetgraphstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 451

mmsvg

svgsetgraphscale

Purpose Set scaling value for a graph.
Synopsis

procedure svgsetgraphscale(val: real)

Argument
val The new scaling value.

Example This code shows how to modify graph scaling properties.
svgsetgraphpointsize(0.5)
svgsetgraphscale(10)

Further informationThis routine is likely to be used in combination with svgsetgraphpointsize in order to resize agraph for display.
Related topics

svgsetgraphpointsize, svggetgraphstyle, svgsetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 452

mmsvg

svgsetgraphstyle

Purpose Set a style property of a graph.
Synopsis

procedure svgsetgraphstyle(prop: string, val: text|real)

Arguments
prop The desired property (mmsvg constant or SVG property name).
val The new value for the property (usually a text, but properties like SVG_OPACITY or

SVG_STROKEWIDTH also accept numerical values).
Return valueValue of the property or empty string.
Example This code retrieves the font family defined for a group and applies it to the entire graph.

svgaddgroup("g", "A group")
svgsetgraphstyle(SVG_FONTFAMILY, svggetstyle("g", SVG_FONTFAMILY))

Further informationThis procedure can be used to define a style property of a graph. Use svgsetgraphstylesheet todefine the whole set of style properties of a graph.
Related topics

svggetstyle, svgsetstyle, svggetgraphstyle, svggetgraphstylesheet,
svgsetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 453

mmsvg

svgsetgraphstylesheet

Purpose Set the style definitions for a graph.
Synopsis

procedure svgsetgraphstylesheet(stsh: array (svgstyleattrs) of text)

Argument
stsh Style definition.

Example This code retrieves the style properties of a group and applies them to the entire graph.
svgaddgroup("a", "A group")
svgsetgraphstylesheet(svggetstylesheet("a"))

Further informationThis procedure can be used to define the set of style properties (’stylesheet’) of a graph. Use
svgsetgraphstyle to define individual style properties of a graph.

Related topics
svggetstyle, svgsetstyle, svggetgraphstyle, svgsetgraphstyle,
svggetgraphstylesheet, svggetstylesheet, svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 454

mmsvg

svgsetgraphviewbox

Purpose Set the visible area for a user graph.
Synopsis

procedure svgsetgraphviewbox(x: real, y: real, w: real, h: real)
procedure svgsetgraphviewbox(box: svgbox)

Arguments
x The x coordinate of the lower left corner.
y The y coordinate of the lower left corner.
w The width of the viewbox.
h The height of the viewbox.
box Viewbox specification as returned by svggetgraphviewbox.

Further information
1. The viewable area is determined by its lower left corner, its width and height.
2. mmsvg automatically determines a viewbox (enclosing all specified coordinates) that can be retrievedwith svggetgraphviewbox.

Related topics
svggetgraphviewbox, svgsetgraphlabels, svgsetgraphscale.

Fair Isaac Corporation Confidential and Proprietary Information 455

mmsvg

svgsetreffreq

Purpose Set the refresh frequency for a graph.
Synopsis

procedure svgsetreffreq(val: real)

Argument
val The new refresh frequency (maximum number of refreshs per second).

Further informationThe refresh frequency indicates how often individual calls to svgrefresh are posted to the display. Ifseveral refresh occur during the specified time span, only the last one is executed.
Related topics

svgrefresh.

Fair Isaac Corporation Confidential and Proprietary Information 456

mmsvg

svgsetstyle

Purpose Set a style property for a graphical object or object group.
Synopsis

procedure svgsetstyle(gid: string, prop: string, val: text|real)
procedure svgsetstyle(prop: string, val: text|real)
procedure svgsetstyle(obj: integer, prop: string, val: text|real)

Arguments
gid Object group ID.
obj Object ID.
prop The desired property (mmsvg constant or SVG property name).
val The new value for the property (usually a text, but properties like SVG_OPACITY or

SVG_STROKEWIDTH also accept numerical values).
Example This code retrieves the color of a group and applies it to an object belonging to another group.

svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstyle(svggetlastobj, SVG_COLOR, svggetstyle("b", SVG_COLOR))

Further informationThis procedure can be used to define a style property of some object or group of objects. Use
svgsetstylesheet to redefine the whole set of style properties of an object or group of objects.

Related topics
svggetstyle, svggetgraphstylesheet, svgsetgraphstylesheet, svggetstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 457

mmsvg

svgsetstylesheet

Purpose Set the style for a graphical object or object group.
Synopsis

procedure svgsetstylesheet(gid: string, stsh: array (svgstyleattrs) of
text)

procedure svgsetstylesheet(stsh: array(svgstyleattrs) of text)
procedure svgsetstylesheet(obj: integer, stsh: array(svgstyleattrs) of

text)

Arguments
gid Object group ID.
obj Object ID.
stsh Style definition.

Example This code retrieves the style properties of a group and applies them to an object belonging to anothergroup.
svgaddgroup("a", "Group A")
svgaddgroup("b", "Group B")
svgaddtext("a", 20, 120, "Formatted text")
svgsetstylesheet(svggetlastobj, svggetstylesheet("b"))

Further informationThis procedure can be used to define a set of style properties (’stylesheet’) of some object or group ofobjects. Use svgsetstyle to modify individual style properties of an object or group of objects.
Related topics

svggetstyle, svgsetstyle, svggetgraphstylesheet, svgsetgraphstylesheet,
svgsetstylesheet.

Fair Isaac Corporation Confidential and Proprietary Information 458

mmsvg

svgshowgraphaxes

Purpose Force displaying of graph axes.
Synopsis

procedure svgshowgraphaxes(force:boolean)

Argument
force Decide whether graph axes must be shown when no label is defined.

Further informationBy default the axes are only shown if a label text is defined (for x or y axis). This procedure makes itpossible to display the axes even if no label is used.
Related topics

svgsetgraphlabels.

Fair Isaac Corporation Confidential and Proprietary Information 459

mmsvg

svgwaitclose

Purpose Delay model termination.
Synopsis

procedure svgwaitclose(msg:text,mode:integer)
procedure svgwaitclose(msg:text)
procedure svgwaitclose

Arguments
msg Some message to display.
mode Mode of operation:

0 Wait until the browser window is closed
1 Same as above except if running from Workbench: termination occurs after thegraph is loaded

Example This code shows a typical call sequence for graphical display.
svgaddgroup("a", "Group A")
svgaddrectangle(20, 120, 200, 250)
svgrefresh ! Display the graphic
svgwaitclose ! Model waits here until display window is closed

Further information

1. A call to this routine is typically added to the end of any model that includes graphical display (that is,calls to svgrefresh) via mmsvg to allow the user time for inspecting the graphical output. If thissubroutine call is not present, then model termination may close the display window or prevent thebrowser to load the graph.
2. The last form of the routine is equivalent to svgwaitclose("",0).

Related topics
svgrefresh, svgclosing.

Fair Isaac Corporation Confidential and Proprietary Information 460

CHAPTER 16

mmsystem

The mmsystem module provides a set of procedures and functions related to the operating system.Note that the behavior of these operators may vary between systems. To use this module, the followingline must be included in the header of the Mosel model file:
uses 'mmsystem'

16.1 New functionality for the Mosel language

16.1.1 The type text

This module provides the type text for text manipulation. Like the Mosel basic type string, this newtype may be generated from all objects that can be converted to a text representation and supports theusual string operations (like concatenation or formatting). In addition, text objects can be generatedfrom structured entities (like arrays or lists); altered (one can get and change a single as well as asequence of characters in a text); offer a wider set of operations (like insertion/deletion/search ofsubstrings) and, as all module types, are passed by reference to subroutines. Note that this typesupports implicit conversion from string: a routine expecting a text as parameter may be used witha string instead (in this case the compiler creates a temporary text from the provided string). Whencreating a text object from a structured type it is possible to specify a limit on the size of the generatedstring. For instance if S is a set, text(S,128) will produce a textual representation of S of at most 128characters.
16.1.2 The type date

As the name suggests, the type date is used to represent a calendar date. Internally, a date is storedas three independent integers for representing the year (-32768 to 32767), the month (-128 to 127) andthe day in the month (-128 to 127). The validity of a date can be checked using the function isvalid. Adate object can be initialized by a text string, a single or three numerical values. In the first case, theconversion is processed using a predefined date format (see datefmt); in the second case, the integeris interpreted as the number of days elapsed since 1/1/1970; finally, if three integers are used, they arerespectively interpreted as the year, month and day for the date. The constant SYS_NOWmay also beused to initialize a date: date(SYS_NOW) is the current date (local time). This type also supportscreation of constants (i.e. it can be used in sets of constants), assignment, comparison as well asdifference (returned in number of days) and addition/subtraction of an integer (number of days).
16.1.3 The type time

The type time is used to represent a time during the day. Internally, a time object is stored as aninteger representing a number of milliseconds. A time object can be initialized by a text string or one tofour numerical values. In the first case, the conversion is processed using a predefined time format

Fair Isaac Corporation Confidential and Proprietary Information 461

mmsystem

(see timefmt); in the second case, the integer is interpreted as a number of milliseconds. When two tofour integers are used, they are understood as the hours, minutes, seconds and milliseconds. Theconstant SYS_NOWmay also be used to initialize a time: time(SYS_NOW) is the current time (localtime). This type also supports creation of constants (i.e. it can be used in sets of constants),assignment, comparison as well as difference (returned in number of milliseconds) andaddition/subtraction of an integer (number of milliseconds).
16.1.4 The type datetime

The type datetime is used to represent a timestamp by combining a date and a time. A datetimeobject can be initialized by a text string, a pair date and time or a numerical value. In the first case, theconversion is processed using a predefined time format (see datetimefmt); in the third case, thenumber is interpreted as the number of seconds elapsed since 1/1/1970 at midnight. If the providednumber is a real value, the fractional part is stored as a number of milliseconds. The constant SYS_NOWmay also be used to initialize a datetime: datetime(SYS_NOW) is the current date and time (localtime). This type also supports creation of constants (i.e. it cand be used in sets of constants),assignment, comparison as well as difference (returned in number of seconds) andaddition/subtraction of a numerical value (number of seconds).
16.1.5 The type parsectx

This module publishes a set of routines for parsing input text strings (for instance parseint or
nextfield). These routines use several module parameters for both their configuration and as a wayto record their internal state: a variable of type parsectxmay be used as a replacement for thesemodule parameters in order to implement parsing procedures independent of the rest of the program.A single parsectx object integrates endparse (see sys_endparse), sepchar (see sys_sepchar),
trim (see sys_trim) and qtype (see sys_qtype). The current value of each of these componentscan be accessed using the corresponding set and get routine (for instance getendparse).

16.1.6 The type textarea

The textarea type is used by the regular expression matching function regmatch to return locationsin the input string. Each text area is defined by a starting position (that is an offset in the original string)and an ending position characterised by the offset of the character following the region to beconsidered. Functions getstart and getsucc can be used to retrieve these properties.
For instance, the following statement displays the region ta of the text txt:

writeln(copytext(txt,ta.start,ta.succ-1))

This can also be written as follows:
writeln(copytext(txt,ta))

16.2 Control parameters

Via the getparam function and the setparam procedure it is possible to access the following controlparameters of module mmsystem (the reader is reminded that parameters may be spelled with lower orupper case letters or a mix of both):
datefmt Date text format. p. 463
datetimefmt Date and time text format. p. 464

Fair Isaac Corporation Confidential and Proprietary Information 462

mmsystem

monthnames List of month names. p. 464
sys_endparse End of parsing position. p. 465
sys_fillchar Padding character for text resize. p. 465
sys_pid Process identification. p. 465
sys_qtype Text quoting convention. p. 465
sys_regcache Number of regular expressions in cache. p. 466
sys_sepchar Separator character. p. 466
sys_trim Whether to trim spaces in text parsing. p. 466
sys_txtmem Size of the text block. p. 467
timefmt Time text format. p. 463

datefmt

Description Define the text format for both reading and writing a date.
Type String, read/write
Default value "%.y-%0m-%0d"

Note The date format consists in a text string in which the date information (like day number) isspecified using tags. A tag begins by the character "%" optionally followed by "." or "0" anda character indicating which specific information must be provided. The possible values are:
C Century
Y Year number in the century
y Year
m Month (1-12)
N Name of month according to parameter monthnames
d Day (1-31)
% The symbol "%"If the second character is used, the corresponding information is produced in fixed formatwith space (".") or zero ("0") as the padding character. For instance, the day 1 will bedisplayed as "1" with the format "%d"; as " 1" with "%.d" and as "01" with "%0d".

See also datetimefmt,monthnames
Module mmsystem

timefmt

Description Define the text format for both reading and writing time.
Type String, read/write
Default value "%0H:%0M:%0S%f"

Fair Isaac Corporation Confidential and Proprietary Information 463

mmsystem

Note The time format consists in a text string in which the time information (like number ofseconds) is specified using tags. A tag begins by the character "%" optionally followed by
"." or "0" and a character indicating which specific information must be provided. Thepossible values are:
H Hour (0-23)
h Hour (1-12)
M Minute (0-59)
S Seconds (0-59)
s Milliseconds (0-999)
f Milliseconds as a fractonal value with a comma as the decimal separator (,001-,999)
F Milliseconds as a fractonal value with a dot as the decimal separator (.001-.999)
p text "pm" or "am"
P text "PM" or "AM"
% The symbol "%"If the second character is used, the corresponding information is produced in fixed formatwith space (".") or zero ("0") as the padding character. For instance, the hour 1 will bedisplayed as "1" with the format "%H"; as " 1" with "%.H" and as "01" with "%0H". Whenthe formats f or F are used for parsing they both accept dot and comma as the decimalseparator. The formats f and F without second character ("." or "0") display nothing if thenumber of milliseconds is 0.

See also datetimefmt

Module mmsystem

datetimefmt

Description Define the text format for both reading and writing a datetime object.
Type String, read/write
Default value "%.y-%0m-%0dT%0H:%0M:%0S%f"

Note The datetime format accepts the syntaxes of the date format and the time format in the samestring.
See also datefmt,timefmt
Module mmsystem

monthnames

Description Define month names to be used with the %N format.
Type String, read/write
Default value "jan feb mar apr may jun jul aug sep oct nov dec"

Note This parameter is used when converting dates from/to strings with the %N format. The stringmust contain 12 words separated by spaces. For conversions from strings, the comparison isnot case sensitive.
See also datefmt,datetimefmt
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 464

mmsystem

sys_endparse

Description Index in the text string where the parsing stopped. This parameter is updated and may beused (as a starting position) by the parse⁎ routines.
Type Integer, read/write
Set by routines parseint, parsereal, parseextn, parsetext, nextfield
Module mmsystem

sys_fillchar

Description Character code used to fill empty regions generated in text strings when using the function
setchar.

Type Integer, read/write
Values Between 1 and 127
Default value 32 (space character)
Affects routines setchar

Module mmsystem

sys_pid

Description System identification (Process ID) of the process running Mosel.
Type Integer, read only
Default value assigned by the operating system
Module mmsystem

sys_qtype

Description Convention to use when quoting/parsing a text string.
Type Integer, read/write
Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 465

mmsystem

Note Supported quoting conventions are:
0 Mosel: strings optionally quoted with either single or double quotes. With dou-ble quotes, escape sequences starting with the backslash character ("\") aresupported
1 C/C++: double quotes with escape sequences starting with the backslashcharacter ("\")
2 CSV: strings are optionally quoted with double quotes. The symbol "doublequotes" is doubled when it is included in a quoted string
-1 No quoting

Affects routines parsetext, quote
Module mmsystem

sys_regcache

Description Regular expression searches require a compilation procedure to be performed before theactual search. In order to speedup handling of expressions, a number of compiledexpressions are saved in a cache pool: this parameter specifies the size of this pool. Notethat setting this parameter has the effect of clearing the cache (even if the pool size if keptunchanged).
Type Integer, read/write
Values Between 1 and 25
Default value 3
Affects routines regmatch, regreplace
Module mmsystem

sys_sepchar

Description Character code used as a field separator for text parsing routines.
Type Integer, read/write
Values Between 1 and 127
Default value 32 (space character)
Affects routines parsetext, quote, nextfield
Module mmsystem

sys_trim

Description If this parameter is true, function nextfield skips blank characters around fieldseparators.

Fair Isaac Corporation Confidential and Proprietary Information 466

mmsystem

Type Boolean, read/write
Default value true
Affects routines nextfield

Set by routines nextfield

See also sys_sepchar

Module mmsystem

sys_txtmem

Description All text objects are stored in a single block of memory. This parameter corresponds to thesize of this block expressed in kilobytes. Changing this value makes it possible either topre-allocate memory by increasing the size of the block or release unused memory byreducing its size. If the requested size is not large enough to contain the currently defined textobjects, the memory block is reduced to the smallest possible size.
Type Integer, read/write
Default value 0 (at program startup)
Module mmsystem

16.3 Procedures and functions

In general, the procedures and functions of mmsystem do not fail but set a status variable that can beread with getsysstat. To make sure the operation has been performed correctly, check the value ofthis variable after each system call.
addmonths Add a number of months to a date or datetime. p. 471
compareic Compare 2 text strings ignoring case. p. 472
copytext Copy a part of a text or string. p. 473
cuttext Cut a part of a text returning a copy of the deleted string. p. 474
deltext Delete a part of a text. p. 475
endswith Check whether a text or string ends with a given string. p. 476
erase Securely deletes the content of a text entity. p. 477
expandpath Expand a path or file name. p. 478
fcopy Copy a file. p. 479
fdelete Delete a file. p. 480
findfiles Search for files according to file name patterns. p. 481
findtext Search for a string in a text or string. p. 482
fmove Rename or move a file. p. 483

Fair Isaac Corporation Confidential and Proprietary Information 467

mmsystem

formattext Create a text from a format string and its parameters. p. 484
getasnumber Convert a date, time or datetime into a number. p. 486
getchar Get a character in a string or text. p. 487
getcwd Get the current working directory. p. 488
getdate Get the date part of a datetime. p. 489
getday Get the day number in the month of a date or datetime. p. 490
getdaynum Get the day number in the year of a date or datetime. p. 491
getdays Get the number of days of a month. p. 492
getdirsep Get the directory separator of the running operating system. p. 493
getdsoparam Get the value of a control parameter. p. 494
getendparse, setendparse Get and set endparse property of a parser context. p. 495
getenv Get the value of an environment variable. p. 496
getfsize Get the size of a file. p. 497
getfstat, getflstat Get the status of a file or directory. p. 498
getftime Get time information of a file. p. 499
gethour Get the hour part of a time or datetime. p. 500
getminute Get the minute part of a time or datetime. p. 501
getmonth Get the month number of a date or datetime. p. 502
getmsec Get the millisecond part of a time or datetime. p. 503
getoserrmsg Get the message associated to a system error code. p. 505
getoserror Get the system error code of the last command. p. 504
getpathsep Get the path separator of the running operating system. p. 506
getqtype, setqtype Get and set qtype property of a parser context. p. 508
getsecond Get the second part of a time or datetime. p. 509
getsepchar, setsepchar Get and set sepchar property of a parser context. p. 510
getsize Get the size of a text. p. 511
getstart, setstart Get and set start property of a text area. p. 512
getsucc, setsucc Get and set succ (position of successor character) property of a text area.p. 507
getsysinfo Get information about the running operating system. p. 513
getsysstat Get the system status. p. 514
gettime Get a time measure or the time part of a datetime. p. 515
gettmpdir Get the temporary directory as a text object. p. 516
gettrim, settrim Get and set trim property of a parser context. p. 517

Fair Isaac Corporation Confidential and Proprietary Information 468

mmsystem

getweekday Compute the day of the week for a date or datetime. p. 518
getyear Get the year part of a date or datetime. p. 519
inserttext Paste a text or string into a text. p. 520
isvalid Check whether a date, time or datetime is valid. p. 521
jointext Merge elements of a list or set into a text string. p. 522
makedir Create a new directory in the given file system. p. 523
makepath Create a new directory including its parents if necessary. p. 524
newtar Create a Unix tar archive from a list of files. p. 525
newzip Create a Zip archive from a list of files. p. 526
nextfield Advance to next field in a structured text string. p. 527
openpipe Start an external process for bidirectional communication. p. 528
parseextn Initialise an object of a module type from a text. p. 529
parseint Convert a text into an integer. p. 530
parsereal Convert a text into a real. p. 532
parsetext Extract a text from a text. p. 533
pastetext Paste a text or string into a text. p. 535
pathmatch Check whether a file name matches a given pattern. p. 536
pathsplit Split a path into its components. p. 537
qsort Sort a list or an array or (a subset of) the indices of an array. p. 538
quote Quote and encode a text string. p. 540
readlink Get the value of a symbolic link. p. 541
readtextline Read a line of text from the current input stream. p. 542
regmatch Compare text strings using a regular expression. p. 543
regreplace Replace portions of a text string based on a regular expression. p. 545
removedir Remove a directory. p. 546
removefiles Remove files selected using file name patterns. p. 547
setchar Set a character in a text. p. 548
setdate Set the date part of a datetime. p. 549
setday Set the day number of a date or datetime. p. 550
setdsoparam Set the value of a control parameter. p. 551
setenv Set the value of an environment variable. p. 552
sethour Set the hour part of a time or datetime. p. 554
setminute Set the minute part of a time or datetime. p. 555
setmonth Set the month number of a date or datetime. p. 556

Fair Isaac Corporation Confidential and Proprietary Information 469

mmsystem

setmsec Set the millisecond part of a time or datetime. p. 557
setoserror Set the current system error code. p. 553
setsecond Set the second part of a time or datetime. p. 558
settime Set the time part of a datetime. p. 559
setyear Set the year part of a date or datetime. p. 560
sleep Suspend execution for a fixed amount of time. p. 561
splittext Split a text string. p. 562
startswith Check whether a text or string starts with a given string. p. 563
symlink Create a symbolic link. p. 564
system Execute an external program. p. 565
tarlist Get the list of files included in a Unix tar archive. p. 566
textfmt Create a formatted text from a string, a text or a number. p. 567
tolower Generate the lowercase version of the provided text. p. 569
toupper Generate the uppercase version of the provided text. p. 570
trim Remove blank characters at the beginning and/or end of a text string.p. 571
untar Extract files from a Unix tar archive. p. 572
unzip Extract files from a Zip archive. p. 573
ziplist Get the list of files included in a Zip archive. p. 574

Fair Isaac Corporation Confidential and Proprietary Information 470

mmsystem

addmonths

Purpose Add a number of months to a date or datetime.
Synopsis

function addmonths(d:date, nbm:integer):date
function addmonths(dt:datetime, nbm:integer):datetime

Arguments
d A date object
dt A datetime object
nbm The number of months to be added (can be negative)

Return valueThe modified date or datetime.
Example

writeln(addmonths(date(2000,1,31),1)) ! displays: 2000-02-29
writeln(addmonths(date(2012,12,12),-12)) ! displays: 2011-12-12

Further informationThe day number is preserved unless it is not compatible with the computed month: in this case the daynumber is moved to the last day of the month.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 471

mmsystem

compareic

Purpose Compare 2 text strings ignoring case.
Synopsis

function compareic(arg1:string|text, arg2:string|text):integer

Arguments
arg1 First operand for the comparison
arg2 Second operand for the comparison

Return value
0 if strings are identical, -1 if the first string is less than the second string and 1 otherwise.

Further informationThis function behaves like compare but ignoring case.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 472

mmsystem

copytext

Purpose Copy a part of a text or string.
Synopsis

function copytext(t:text|string, i1:integer, i2:integer):text
function copytext(t:text|string, ta:textarea):text

Arguments
t A string or text object
i1 Starting position of the region to copy
i2 End position of the region to copy
ta A text area object

Return valueA copy of the region.
Example The following:

writeln(copytext("abcdefgh",3,7))
writeln(copytext("abcdefgh",7,10))

produces this output:
cdefg
gh

Further informationThis function returns an empty text if the bounds are not compatible with the string (e.g. startingposition larger than the length of the string) or inconsistent (e.g. starting position after end position).
Related topics

deltext, inserttext, pastetext, cuttext
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 473

mmsystem

cuttext

Purpose Cut a part of a text returning a copy of the deleted string.
Synopsis

function cuttext(txt:text, i1:integer, i2:integer):text
function cuttext(txt:text, ta:textarea):text

Arguments
txt A text object
i1 Starting position of the region to cut
i2 End position of the region to cut
ta A text area object

Return valueA copy of the region. The input text is modified accordingly.
Example The following:

t:=text("abcdefgh")
writeln(cuttext(t,3,7))
writeln(t)

produces this output:
cdefg
abh

Further informationThis function returns an empty text if the bounds are not compatible with the string (e.g. startingposition larger than the length of the string) or inconsistent (e.g. starting position after end position).
Related topics

deltext, inserttext, pastetext, copytext
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 474

mmsystem

deltext

Purpose Delete a part of a text.
Synopsis

procedure deltext(txt:text, i1:integer, i2:integer)
procedure deltext(txt:text, ta:textarea)

Arguments
txt A text object
i1 Starting position of the region to delete
i2 End position of the region to delete
ta A text area object

Example The following:
t:=text("abcdefgh")
deltext(t,3,7)
writeln(t)

produces this output:
abh

Related topics
cuttext, inserttext, pastetext, copytext

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 475

mmsystem

endswith

Purpose Check whether a text or string ends with a given string.
Synopsis

function endswith(txt:text|string, tofs:text|string):boolean

Arguments
txt A string or text object
tofs String to find

Return value
true if the ending of txt corresponds to tofs.

Related topics
startswith

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 476

mmsystem

erase

Purpose Securely deletes the content of a text entity.
Synopsis

procedure erase(txt:text)

Argument
txt A text object to be erased

Further informationThis function resets the text string it receives after having replaced each of its characters by a space.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 477

mmsystem

expandpath

Purpose Expand a path or file name.
Synopsis

function expandpath(fname:string|text):text

Argument
fname File name to be expanded

Return valueAn absolute path to the given file name.
Further informationThis function expands a path or file name: it replaces all relative references (like "." or "..") andcompletes the path such that the returned string is an absolute path to the provided file name.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 478

mmsystem

fcopy

Purpose Copy a file.
Synopsis

procedure fcopy(namesrc:string|text, namedest:string|text)
procedure fcopy(namesrc:text, opts:integer, namedest:text, optd:integer)

Arguments
namesrc The name of the file to be copied
opts Open options for the input file
namedest The destination name
optd Open options for the output file

Example The following statement appends file "src" to file "dst":
fcopy("src",0,"dst",F_APPEND)

Further information

1. This procedure copies the file namesrc to namedest (that is replaced if it already exists). Theprovided names may use extended notation.
2. With the second form of the procedure it is possible to select options used to open the 2 files (as usedwith the fopen procedure). The first syntax corresponds to:

fcopy(src,F_SILENT+F_BINARY,dst,F_SILENT+F_BINARY)

Related topics
fopen

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 479

mmsystem

fdelete

Purpose Delete a file.
Synopsis

procedure fdelete(filename:string|text)

Argument
filename The extended name of the file to be deleted

Further informationThe provided name may use extended notation.
Related topics

removedir, removefiles.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 480

mmsystem

findfiles

Purpose Search for files according to file name patterns.
Synopsis

procedure findfiles(opt:integer,lsf:list of text,
dir:string|text,filters:string|text)

procedure findfiles(opt:integer,lsf:list of text,filters:string|text)
procedure findfiles(lsf:list of text,filters:string|text)
procedure findfiles(lsf:list of text)

Arguments
opt Options (several options can be combined):

SYS_RECURS Recursive search in subdirectories
SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories
SYS_REVORD Reverse sort order
SYS_NOSORT Do not sort resulting list

lsf Resulting list of file names
dir Base directory for the search (default: current directory)
filters File name filters (default: all files reported)

Example The following prints the list of files with extension .mos and .bim of the current directory:
findfiles(lsf,"⁎.mos|⁎.bim")
writeln(lsf)

Further information
1. The filters argument consists in a list of patterns separated by the symbol ";": for each of thesepatterns the function executes a search from the specified dir directory. A pattern is composed of apath (using the usual operating system conventions) which last component may include wildcardcharacters "⁎" (any text of any length), "?" (any single character) and "|" (logical "or"). For instance
"bin/⁎.exe;models/⁎.mos|⁎.dat" will select all files with extension ".exe" in the "bin"directory as well as files with extension ".mos" and ".dat" in the "models" directory.

2. File name matching is achieved using function pathmatch and differences may be observeddepending on the operating system (e.g. file names are case sensitive under Posix systems but notunder Windows).
3. Unless option SYS_NOSORT is used, the resulting list is sorted and duplicate entries are removed. Notealso that the provided list lsf is not reset: the result of the search is appended to this list.

Related topics
removefiles

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 481

mmsystem

findtext

Purpose Search for a string in a text or string.
Synopsis

function findtext(txt:text, toft:text, start:integer):integer
function findtext(txt:text, tofs:string, start:integer):integer
function findtext(str:string, tofs:string, start:integer):integer

Arguments
txt A text object
str String
toft Text to find
tofs String to find
start Starting position for the search

Return valueIndex of the string or 0 if not found.
Example The following:

writeln(findtext("abcdefgh","de",2))
writeln(findtext("abcdefgh","de",5))

produces this output:
4
0

Related topics
regmatch

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 482

mmsystem

fmove

Purpose Rename or move a file.
Synopsis

procedure fmove(namesrc:string|text,namedest:string|text)

Arguments
namesrc The name of the file to be moved or renamed
namedest The destination name and/or path

Further informationThis procedure renames the file namesrc to namedest. If the second name is a directory, the file ismoved into that directory; if it is an existing file it is first removed before the renaming. The providednames may use extended notation.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 483

mmsystem

formattext

Purpose Create a text from a format string and its parameters.
Synopsis

function formattext(fmt:string, a1, a2...):text
function formattext(fmt:string, l: list):text

Arguments
fmt Format string
ai Parameters of the format string
l List of parameters of the format string

Return valueFormatted text.
Example The following:

writeln(formattext("text1%8stext3", "text2"))
writeln(formattext("text1%-8stext3", "text2"))
r:=789.123456
writeln(formattext("%1$r %1$4.2f%1$8.0f",r))

produces this output:
text1 text2text3
text1text2 text3
789.123 789.12 789

Fair Isaac Corporation Confidential and Proprietary Information 484

mmsystem

Further information
1. This procedure behaves in a similar way as the sprintf function of the C language: the resulting textis generated by inserting each of the parameters ai in the format string at locations identified by amarker. This marker is of the form:

%[index$][flags][width][.precision]conv

Where index (a non negative integer), flags (string of ’ ’, ’-’, ’+’, ’0’ and ’#’), width (positiveinteger) and precision (non negative integer) are optional.The index indicates which parameter to use for the conversion (first parameter has number 1), when it isnot specified the marker position is used instead (e.g. the third marker is used for the third parameter).The flags essentially affect numerical conversions: with the flag ’0’ the value is zero padded; with ’-’the value is left justified; with a space a blank is put before positive numbers and with ’+’ positivenumbers are preceded by the ’+’ sign.The width defines a minimum width for the field.The precision gives the minimum number of digits to appear for an integer conversion. With a floatingpoint value and a conversion ’a’, ’A’, ’e’, ’E’ or ’f’ it states the number of digits to appear afterthe radix and for a ’g’ conversion it is the maximum number of significant digits. The precisionindicates a maximum number of characters to display with textual conversions.The conversion specifier conv is a letter indicating how to process the corresponding parameter andwhat to ouput. Possible values for this character are:
diouxX an integer value is output: the parameter must be an integer or a Boolean. The value isdisplayed as a decimal number (’d’ or ’i’), an octal number (’o’), an unsigned number(’u’) or a hexadecimal number (’x’ or ’X’)
eEfgraA a real value is output: the parameter must be a real or an integer. When using the ’r’conversion the optional part components of the marker are ignored and the value is convertedusing the current real printing format (according to realfmt and zerotol parameters, see

setparam). The conversion ’e’ and ’E’ format the number as [-]d.ddde+/-dd;conversion ’f’ uses a format of the form [-]ddd.ddd and conversion ’g’ selects format
’e’ or ’f’ depending on the value of the number. With ’a’ and ’A’ the value is converted toan hexadecimal representation of the form [-]0xh.hhhp[+/-]ddd where ’h’ arehexadecimal digits and ’d’ decimal digits.

b ’true’ or ’false’ is output: the parameter must be a Boolean
c a character is output: the parameter must be an integer that is interpreted as a Unicode codepoint
s a text string is output: the parameter must be a string or any type supporting conversion to text
p a pointer expressed in hexadecimal is output: the parameter can be any referenced entity

2. To include the symbol ’%’ in the format string use the sequence ’%%’.
Related topics

textfmt

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 485

mmsystem

getasnumber

Purpose Convert a date, time or datetime into a number.
Synopsis

function getasnumber(d:date):integer
function getasnumber(t:time):integer
function getasnumber(dt:datetime):real

Arguments
d A date object
t A time object
dt A datetime object

Return valueThe numerical representation of the argument.
Further informationA date is converted to an integer Julian Day Number (number of days since 1/1/1970 at midnight). Thisfunction returns an integer number of milliseconds for a time and a real number of seconds for a

datetime. This number represents the number of seconds and milliseconds (as the fractional part ofthe number) since 1/1/1970 at midnight.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 486

mmsystem

getchar

Purpose Get a character in a string or text.
Synopsis

function getchar(txt:text, index:integer):integer
function getchar(str:string, index:integer):integer

Arguments
txt A text object
str String
index Position of the character

Return valueCharacter code or -1 if the index is not valid.
Related topics

setchar

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 487

mmsystem

getcwd

Purpose Get the current working directory.
Synopsis

function getcwd:string

Return valueThe current working directory.
Further information

1. This function returns the current working directory, that is the directory where the model is beingexecuted and where files are looked for.
2. The returned value corresponds to getparam("workdir"). The current working directory can alsobe changed via this control parameter (for instance setparam("workdir","../somedir").

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 488

mmsystem

getdate

Purpose Get the date part of a datetime.
Synopsis

function getdate(dt:datetime):date

Argument
dt A datetime object

Return valueA date object.
Related topics

gettime, getasnumber
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 489

mmsystem

getday

Purpose Get the day number in the month of a date or datetime.
Synopsis

function getday(d:date):integer
function getday(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return valueDay number in the month.
Related topics

getyear, getmonth, getdaynum
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 490

mmsystem

getdaynum

Purpose Get the day number in the year of a date or datetime.
Synopsis

function getdaynum(d:date):integer
function getdaynum(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return valueDay number in the year.
Example

writeln(getdaynum(date(2010,2,1))) ! displays: 32

Related topics
getday

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 491

mmsystem

getdays

Purpose Get the number of days of a month.
Synopsis

function getdays(y:integer, m:integer):integer
function getdays(d:date):integer
function getdays(dt:datetime):integer

Arguments
y Year
m Month
d A date object
dt A datetime object

Return valueNumber of days for the given month in the specified year.
Example

writeln(getdays(2016,2)) ! displays: 29

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 492

mmsystem

getdirsep

Purpose Get the directory separator of the running operating system.
Synopsis

function getdirsep:string

Return value
"/" on Posix systems and "\" on Windows.

Related topics
getpathsep

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 493

mmsystem

getdsoparam

Purpose Get the value of a control parameter.
Synopsis

function getdsoparam(name:string|text):text

Argument
name Name of a control parameter (including the module name).

Return valueCurrent setting of the control parameter as a text.
Further information

1. This function is similar to getparam except that the control parameter name is searched at runtime.As a consequence this identifier does not need to be a constant string but the execution is significantlyslower than getparam and it cannot be applied to package parameters.
2. The provided parameter name must include the module name (e.g. "mmsystem.datefmt") otherwisethe identifier is searched only in the list of Mosel parameters.
3. As opposed to getparam this procedure does not raise an error in case of failure (like parameter notfound): use getsysstat to detect error conditions.

Related topics
setdsoparam.

Fair Isaac Corporation Confidential and Proprietary Information 494

mmsystem

getendparse, setendparse

Purpose Get and set endparse property of a parser context.
Synopsis

function getendparse(pctx:parsectx):integer
procedure setendparse(pctx:parsectx, ep:integer)

Arguments
pctx A parser context
ep New endparse value

Return valueCurrent endparse value stored in the context.
Related topics

sys_endparse, getsepchar, gettrim, getqtype
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 495

mmsystem

getenv

Purpose Get the value of an environment variable of the operating system.
Synopsis

function getenv(name:string|text):string

Argument
name Name of the environment variable

Return valueValue of the environment variable (an empty string if the variable is not defined).
Further informationThis procedure is included in the published interface of mmsystem (see Section 16.5).
Example The value of the environment variable PATH is retrieved as follows:

str:= getenv("PATH")

Related topics
setenv

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 496

mmsystem

getfsize

Purpose Get the size of a file.
Synopsis

function getfsize(filename:string|text):integer

Argument
filename Name (and path) of the file

Return valueThe size of the file in bytes or -1 in case of error
Further informationThe function returns -1 if the file cannot be found or accessed and MAX_INT if the size exceeds theinteger capacity (~2Gb).
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 497

mmsystem

getfstat, getflstat

Purpose Get the status (type and access mode) of a file or directory.
Synopsis

function getfstat(filename:string|text):integer
function getflstat(filename:string|text):integer

Argument
filename Name (and path) of the file or directory to check

Return valueBit encoded type and mode of the given file or 0 if the file cannot be accessed.
Example The following determines whether ftest is a directory and if it is writable:

fstat:= getfstat("ftest")
if bittest(fstat, SYS_TYP)=SYS_DIR
then writeln("ftest is a directory")
end-if
if bittest(fstat, SYS_WRITE)=SYS_WRITE
then writeln("ftest is writeable")
end-if

Further information

1. The returned status type may be decoded using the constant mask SYS_TYP (the types are exclusive).Possible values are:
SYS_DIR Directory
SYS_REG Regular file
SYS_LNK Symbolic link
SYS_OTH Special file (device, pipe...)
The access mode may be decoded using the constant mask SYS_MOD (the access modes areadditive). Possible values are:
SYS_READ Can be read
SYS_WRITE Can be modified
SYS_EXEC Is executable

2. The 2 versions of this function behave the same except for symbolic links: the first one (getfstat)reports the properties of the linked file while the second (getflstat) reports a type SYS_LNK.
Related topics

readlink

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 498

mmsystem

getftime

Purpose Get time information of a file.
Synopsis

function getftime(filename:string|text,what:integer):real

Arguments
filename Name (and path) of the file
what Information requested. Possible values:

SYS_FTIM_ACC Last access
SYS_FTIM_MOD Last modification

Return valueThe time requested as the number of seconds elapsed since 1/1/1970 at midnight or 0 in case of error.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 499

mmsystem

gethour

Purpose Get the hour part of a time or datetime.
Synopsis

function gethour(t:time):integer
function gethour(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return valueHour as an integer.
Related topics

getminute, getsecond, getmsec
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 500

mmsystem

getminute

Purpose Get the minute part of a time or datetime.
Synopsis

function getminute(t:time):integer
function getminute(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return valueMinute as an integer.
Related topics

gethour, getsecond, getmsec
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 501

mmsystem

getmonth

Purpose Get the month number of a date or datetime.
Synopsis

function getmonth(d:date):integer
function getmonth(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return valueMonth number in the year.
Related topics

getyear, getday

Fair Isaac Corporation Confidential and Proprietary Information 502

mmsystem

getmsec

Purpose Get the millisecond part of a time or datetime.
Synopsis

function getmsec(t:time):integer
function getmsec(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return valueMillisecond as an integer.
Related topics

gethour, getminute, getsecond
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 503

mmsystem

getoserror

Purpose Get the system error code of the last command.
Synopsis

function getoserror:integer

Return valueA system error code or 0 if the last operation of the module was executed sucessfully.
Further informationThis function reports the current system error code (corresponding to the C-variable errno on Posixand the C-function GetLastError() on Windows): it can be used after getsysstat has returned anon-zero status to get the actual system error (if the failure was actually due to a system error). Thiscode is system dependent but the corresponding error message might be retrieved using

getoserrmsg.
Related topics

setoserror

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 504

mmsystem

getoserrmsg

Purpose Get the message associated to a system error code.
Synopsis

function getoserrmsg(ec:integer):text

Argument
ec A system error code

Return valueThe message corresponding to the provided code or an empty string if the code is not known.
Further informationThis function returns an explanatory message associated to the error code obtained from

getoserror.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 505

mmsystem

getpathsep

Purpose Get the path separator of the running operating system.
Synopsis

function getpathsep:string

Return value
":" on Posix systems and ";" on Windows.

Related topics
getdirsep

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 506

mmsystem

getsucc, setsucc

Purpose Get and set succ (position of successor character) property of a text area.
Synopsis

function getsucc(ta:textarea):integer
procedure setsucc(ta:textarea, st:integer)

Arguments
ta A text area object
st New succ value

Return valueCurrent succ value stored in the object.
Related topics

getstart

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 507

mmsystem

getqtype, setqtype

Purpose Get and set qtype property of a parser context.
Synopsis

function getqtype(pctx:parsectx):integer
procedure setqtype(pctx:parsectx, qt:integer)

Arguments
pctx A parser context
qt New qtype value

Return valueCurrent qtype value stored in the context.
Related topics

sys_qtype, getsepchar, gettrim, getendparse
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 508

mmsystem

getsecond

Purpose Get the second part of a time or datetime.
Synopsis

function getsecond(t:time):integer
function getsecond(dt:datetime):integer

Arguments
t A time object
dt A datetime object

Return valueSecond as an integer.
Related topics

gethour, getminute, getmsec
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 509

mmsystem

getsepchar, setsepchar

Purpose Get and set sepchar property of a parser context.
Synopsis

function getsepchar(pctx:parsectx):integer
procedure setsepchar(pctx:parsectx, sc:integer)

Arguments
pctx A parser context
sc New sepchar value

Return valueCurrent sepchar value stored in the context.
Related topics

sys_sepchar, getendparse, gettrim, getqtype
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 510

mmsystem

getsize

Purpose Get the size of a text.
Synopsis

function getsize(txt:text):integer
function getsize(ta:textarea):integer

Arguments
txt A text object
ta A text area object

Return valueThe number of characters included in the text or text area.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 511

mmsystem

getstart, setstart

Purpose Get and set start property of a text area.
Synopsis

function getstart(ta:textarea):integer
procedure setstart(ta:textarea, st:integer)

Arguments
ta A text area object
st New start value

Return valueCurrent start value stored in the object.
Related topics

getsucc

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 512

mmsystem

getsysinfo

Purpose Get information about the running operating system.
Synopsis

function getsysinfo:string
function getsysinfo(what:integer):string
function getsysinfo(I:Mosel):string
function getsysinfo(I:Mosel,what:integer):string

Arguments
what What information to collect:

SYS_NAME Name of the operating system
SYS_VER Version name of the operating system
SYS_REL Release number of the operating system
SYS_PROC Processor type
SYS_ARCH Processor architecture (32 or 64 bit)
SYS_NODE Computer name
SYS_RAM Total amount of system memory (in megabytes)

I A Mosel instance
Return valueA text string reporting the requested information.
Example The following prints the computer name and its operating system version:

writeln("Node ",getsysinfo(SYS_NODE),
" is running ",getsysinfo(SYS_NAME+SYS_REL))

Further information
1. Several information items can be obtained in a single call by summing up the option codes. In such acase, the resulting string consists in the different items separated by commas.
2. When the function is used without the what parameter, all information items are returned.
3. This function may also be used with a Mosel instance as its first parameter. In this case the returnedinformation relates to the system running this instance instead of the current system.

Related topicsmmjobs
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 513

mmsystem

getsysstat

Purpose Get the system status.
Synopsis

function getsysstat:integer

Return value0 if the last operation of the module was executed sucessfully.
Example In this example we attempt to delete the file randomfile. If this is unsuccessful, a warning messageis displayed:

fdelete("randomfile")
if getsysstat <> 0 then
writeln("randomfile could not be deleted.")
end-if

Related topics
getoserror, getoserrmsg

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 514

mmsystem

gettime

Purpose Get a time measure or the time part of a datetime.
Synopsis

function gettime:real
function gettime(dt:datetime):time

Argument
dt A datetime object

Return valueTime measure in seconds or a time object.
Example The following prints the program execution time:

starttime:= gettime ! Get the start time
... ! Do something
write("Time: ",gettime-starttime)

Further information
1. The measure returned by this function corresponds to the elapsed time since the module has beeninitialized (just before execution of the model starts).
2. The second form of this function is used to extract the time part of a datetime structure.

Related topics
getdate, getasnumber

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 515

mmsystem

gettmpdir

Purpose Get the temporary directory as a text object.
Synopsis

function gettmpdir:text

Return valueTemporary directory as a text object.
Further informationThis function is equivalent to text(getparam("tmpdir")).
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 516

mmsystem

gettrim, settrim

Purpose Get and set trim property of a parser context.
Synopsis

function gettrim(pctx:parsectx):boolean
procedure settrim(pctx:parsectx, t:boolean)

Arguments
pctx A parser context
t New trim value

Return valueCurrent trim value stored in the context.
Related topics

sys_trim, getsepchar, getendparse, getqtype
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 517

mmsystem

getweekday

Purpose Compute the day of the week for a date or datetime.
Synopsis

function getweekday(d:date):integer
function getweekday(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return valueThe number of the day in the week (1-7).
Further informationThe first day of the week (number 1) is Monday.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 518

mmsystem

getyear

Purpose Get the year part of a date or datetime.
Synopsis

function getyear(d:date):integer
function getyear(dt:datetime):integer

Arguments
d A date object
dt A datetime object

Return valueYear as an integer.
Related topics

getmonth, getday
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 519

mmsystem

inserttext

Purpose Paste a text or string into a text.
Synopsis

procedure inserttext(txt:text, str:string, start:integer)
procedure inserttext(txt:text, src:text, start:integer)

Arguments
txt A text object
src A text object
str A string
start Insert position

Example The following:
t:=text("abcdefgh")
inserttext(t,"123",2)
writeln(t)
inserttext(t,"456",8)
writeln(t)

produces this output:
a123bcdefgh
a123bcd456efgh

Related topics
cuttext, deltext, pastetext, copytext

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 520

mmsystem

isvalid

Purpose Check whether a date, time or datetime is valid.
Synopsis

function isvalid(d:date):boolean
function isvalid(t:time):boolean
function isvalid(dt:datetime):boolean

Arguments
d A date object
t A time object
dt A datetime object

Return valueTrue if the argument is valid.
Further informationA date is valid if its month number is in the range 1-12 and its day number is in the range 1-31 and iscompatible with its month number (for instance 2006-2-29 is not a valid date). A time is valid if it ispositive and smaller than an entire day. A datetime is valid if both its date part and its time part arevalid.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 521

mmsystem

jointext

Purpose Merge elements of a list or set into a text string.
Synopsis

function jointext(ls:list|set):text
function jointext(ls:list|set, mxe:integer):text
function jointext(ls:list|set, sep:string):text
function jointext(ls:list|set, sep:string, mxe:integer):text

Arguments
ls List or set to use as input
sep Separator string (default: ’,’)
mxe Maximum number of elements to merge (default: 0 for no limit)

Return valueA text string consisting of the concatenation of set or list elements.
Further information

1. This function concatenates the elements of an input list or set to produce a text string. Items areseparated by the provided separator string that may be an empty string.
2. The argument mxemay be used to specify a maximum number of elements to process (the remainingportion of the input data is ignored). If this limit is negative then the elements are taken from the end ofthe collection (e.g. with -3 the last 3 elements of the collection are used), otherwise elements aretaken from the beginning.

Related topics
splittext.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 522

mmsystem

makedir

Purpose Create a new directory in the given file system.
Synopsis

procedure makedir(dirname:string|text)

Argument
dirname The name and path of the directory to be created

Related topics
removedir, makepath.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 523

mmsystem

makepath

Purpose Create a new directory including its parents if necessary.
Synopsis

procedure makepath(dirname:string|text)
procedure makepath(dirname:string|text,last_is_file:boolean)

Arguments
dirname The name and path of the directory to be created
last_is_file If true, the last component of the path is ignored

Further information
1. This routine creates the directory dirname as well as intermediate directories in the path if necessary.For instance, makepath("/tmp/dir1/dir2") will create "/tmp" then "/tmp/dir1" before
"/tmp/dir1/dir2" if these directories are missing.

2. As opposed to makedir, this routine does not return an error condition if the path already exists.
3. The second form of this procedure can be used when the argument is a path to a file in order to createthe directory in which the file can be created. For instance, makepath("/tmp/dir1/myfile",true)will create "/tmp/dir1" such that file /tmp/dir1/myfile" can be created.

Related topics
removedir, makedir.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 524

mmsystem

newtar

Purpose Create a Unix tar archive from a list of files.
Synopsis

procedure newtar(opt:integer, tarfile:text, dir:text,
lsf:list of text|string)

procedure newtar(tarfile:text, lsf:list of text|string)

Arguments
opt Options:

SYS_NODIR Do not store directories (only files)
SYS_DIRONLY Store only directories
SYS_FLAT Store all files in the root directory of the archive (i.e. do not preservedirectory structure)

tarfile File name of the archive
dir Base directory (default: current directory)
lsf List of files and directories to store in the archive (file names are relative to the dirdirectory)

Example The following creates an archive of the Xpress installation including only binary files:
findfiles(SYS_RECURS,lsf,getenv("XPRESSDIR"),"bin/⁎;lib/⁎;dso/⁎")
newtar(0,"xpress.tar",getenv("XPRESSDIR"),lsf)

Further information

1. This implementation processes only regular files, symbolic links (on Posix systems) and directories:other file types are silently ignored and not included in the archive.
2. By default file names are represented according the current system encoding in the archive. To select adifferent encoding use the enc: file name prefix (see Section 2.16) on the archive name (e.g.

"enc:utf-8,myarc.tar").
3. File names including ".." are silently ignored unless option SYS_FLAT is used.

Related topics
tarlist, untar, newzip

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 525

mmsystem

newzip

Purpose Create a Zip archive from a list of files.
Synopsis

procedure newzip(opt:integer, zipfile:text, dir:text,
lsf:list of text|string, password:text)

procedure newzip(opt:integer, zipfile:text, dir:text,
lsf:list of text|string)

procedure newzip(zipfile:text, lsf:list of text|string)

Arguments
opt Options:

SYS_NODIR Do not store directories (only files)
SYS_DIRONLY Store only directories
SYS_FLAT Store all files in the root directory of the archive (i.e. do not preservedirectory structure)

zipfile File name of the archive (that must be a physical file)
dir Base directory (default: current directory)
lsf List of files and directories to store in the archive (file names are relative to the dirdirectory)
password Password to generate en encrypted zip file

Example The following creates an archive of the Xpress installation including only binary files:
findfiles(SYS_RECURS,lsf,getenv("XPRESSDIR"),"bin/⁎;lib/⁎;dso/⁎")
newzip(0,"xpress.zip",getenv("XPRESSDIR"),lsf)

Further information

1. This implementation only supports the standard Zip format (only 32bit and basic encryption algorithm)with symbolic links on Posix systems.
2. By default file names are represented according the current system encoding in the archive. To select adifferent encoding use the enc: file name prefix (see Section 2.16) on the archive name (e.g.

"enc:utf-8,myarc.zip").
3. File names including ".." are silently ignored unless option SYS_FLAT is used.

Related topics
ziplist, unzip, newtar

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 526

mmsystem

nextfield

Purpose Advance to next field in a structured text string.
Synopsis

function nextfield(txt:text,start:integer,trim:boolean):boolean
function nextfield(txt:text):boolean
function nextfield(txt:text,pctx:parsectx):boolean

Arguments
txt A text object
pctx A parser context
start Starting position in the text
trim Whether to skip blank characters around separators

Return value
true if more data can be parsed.

Example The following function returns the list of records of a text string using comma as the field separatorcharacter:
function split(t:text):list of text
declarations
pctx:parsectx

end-declarations

pctx.sepchar:=44 ! ','
while(nextfield(t,pctx)) do
returned+=[parsetext(t,pctx)]

end-do
end-function

Further information
1. When start is 0, this routine saves the position of the first character of the text string in the controlparameter sys_endparse and returns true.
2. When start is greater than 0 and the character located at position start is the separator character

sys_sepchar, the position start+1 is saved in control parameter sys_endparse and true isreturned. In all other cases false is returned.
3. This function returns false if the provided text txt is empty or the starting position start is not valid.
4. If argument trim is true, blank characters are skipped before and after the separator character. Theprovided value is saved in parameter sys_trim when start is 0.
5. In the second form of the routine, parameters sys_endparse and sys_trim are used as defaultvalues for arguments start and trim.
6. The version using a parser context works with the information contained in this context instead of theglobal parameters (see Section 16.1.5).

Related topics
parseint, parsereal, parseextn, parsetext

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 527

mmsystem

openpipe

Purpose Start an external process for bidirectional communication.
Synopsis

procedure openpipe(cmd:string|text)

Argument
cmd The command to be executed in the separate process

Example The following example uses an external program sort (we assume it writes a sorted copy of what itreads) to display a sorted list of the content of set ToSort:
openpipe("sort")
forall(i in ToSort)
writeln(i)
fclose(F_OUTPUT)

while(not iseof) do
readln(l)
writeln(l)
end-do
fclose(F_INPUT)

Further information

1. Pipes required by this procedure are created using the pipe driver of this module (see Section 16.4.2).As a consequence, the string provided as argument must be suitable for the driver (i.e. a program namefollowed by its options separated by spaces).
2. This procedure opens both an input and output streams that must be closed explicitly using fclose.Note that the output stream must be closed first otherwise the program may lock up.
3. When Mosel is running in restricted mode (see Section 1.3.4), this procedure behaves like the systemprocedure.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 528

mmsystem

parseextn

Purpose Initialise an object of a module type from a text.
Synopsis

procedure parseextn(txt:text,start:integer,e:mtype)
procedure parseextn(txt:text,e:mtype)
procedure parseextn(txt:text,pctx:parsectx,e:mtype)
procedure parseextn(txt:text,ta:textarea,e:mtype)

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text
e An object of an external type

Example The following:
d:=date(SYS_NOW)
t:=text("1-Oct-2015")
setparam("datefmt", "%d-%N-%y")
parseextn(t,1,d)
if getsysstat<>0 then
writeln("Error")

else
writeln("year:",d.year)

end-if

produces this output:
year:2015

Further information

1. This function can only be used with types supporting initialisation from a string (like date or time forinstance). The parsing begins at the specified starting position and stops as soon as an invalidcharacter is found or when the end of the text is reached.
� Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in theparameter sys_endparse.

� Version using a parser context: the information contained in the parser context is used instead ofthe global parameters (see Section 16.1.5); the context property endparse indicates the startingposition and is updated with the location where parsing stops.
� Version using a textarea object: the routine uses the start property of the object (see Section16.1.6) as the starting position but it does not store the position where parsing stops, in particularit does not modify the parameter sys_endparse.

2. In case of error the system status is set with a non-zero value (see getsysstat).
Related topics

parseint, parsereal, parsetext, nextfield, sys_endparse
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 529

mmsystem

parseint

Purpose Convert a text into an integer.
Synopsis

function parseint(txt:text,start:integer):integer
function parseint(txt:text,start:integer,base:integer):integer
function parseint(txt:text):integer
function parseint(txt:text,pctx:parsectx):integer
function parseint(txt:text,pctx:parsectx,base:integer):integer
function parseint(txt:text,ta:textarea):integer
function parseint(txt:text,ta:textarea,base:integer):integer

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text
base Base to use for the conversion (between 2 and 36)

Return valueThe integer represented by the string.
Example The following:

t:=text("a123.4b")
writeln(parseint(t,2))
writeln(getparam("sys_endparse"))

produces this output:
123
5

Fair Isaac Corporation Confidential and Proprietary Information 530

mmsystem

Further information
1. The parsing begins at the specified starting position and stops as soon as an invalid character is foundor when the end of the text is reached.

� Standard (initial three) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in theparameter sys_endparse.

� Version using a parser context: the information contained in the parser context is used instead ofthe global parameters (see Section 16.1.5); the context property endparse indicates the startingposition and is updated with the location where parsing stops.
� Version using a textarea object: the routine uses the start property of the object (see Section16.1.6) as the starting position but it does not store the position where parsing stops, in particularit does not modify the parameter sys_endparse.

2. In case of error (no valid character found or overflow) the system status is set with a non-zero value(see getsysstat) and, depending on the situation, 0, MAX_INT or -MAX_INT-1 is returned.
3. The optional base argument may be used if the text is not expressed in base 10. Valid values for thisparameter is 0 and 2 to 36. If base is zero or 16, the string may then include a ’0x’ prefix, and thenumber will be read in base 16. Furthermore, if the base is 0, the text will be read in base 8 if the firstcharacter is 0 and in base 10 otherwise.
4. The base value may also be negative: in this case the input data is interpreted as an unsigned integer.

Related topics
parsereal, parseextn, parsetext, nextfield, sys_endparse

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 531

mmsystem

parsereal

Purpose Convert a text into a real.
Synopsis

function parsereal(txt:text,start:integer):real
function parsereal(txt:text):real
function parsereal(txt:text,pctx:parsectx):real
function parsereal(txt:text,ta:textarea):real

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text

Return valueThe real represented by the string.
Example The following:

t:=text("a123.4b")
writeln(parsereal(t,2))
writeln(getparam("sys_endparse"))

produces this output:
123.4
7

Further information
1. The parsing begins at the specified starting position and stops as soon as an invalid character is foundor when the end of the text is reached.

� Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in theparameter sys_endparse.

� Version using a parser context: the information contained in the parser context is used instead ofthe global parameters (see Section 16.1.5); the context property endparse indicates the startingposition and is updated with the location where parsing stops.
� Version using a textarea object: the routine uses the start property of the object (see Section16.1.6) as the starting position but it does not store the position where parsing stops, in particularit does not modify the parameter sys_endparse.

2. If the string starts with the sequence "0x" or "OX" an hexadecimal representation of a floating pointvalue will be expected. This representation is of the form "[+/-]0xh.hhhp[+/-]ddd" where ’h’are hexadecimal digits and ’d’ decimal digits.
3. In case of error (no valid character found or overflow) the system status is set with a non-zero value(see getsysstat) and, depending on the situation, 0, MAX_REAL or -MAX_REAL is returned.

Related topics
parseint, parseextn, parsetext, nextfield, sys_endparse

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 532

mmsystem

parsetext

Purpose Extract a text from a text.
Synopsis

function parsetext(txt:text,start:integer):text
function parsetext(txt:text):text
function parsetext(txt:text,pctx:parsectx):text
function parsetext(txt:text,ta:textarea):text

Arguments
txt A text object
pctx A parser context
ta A text area object
start Starting position in the text

Return valueDecoded text.
Example The following:

t:=text("a123.4b")
setparam("sys_sepchar",46) ! '.'
writeln(parsetext(t,2))
writeln(getparam("sys_endparse"))

produces this output:
123
5

Fair Isaac Corporation Confidential and Proprietary Information 533

mmsystem

Further information

1. The behaviour of this routine depends on 2 control parameters: sys_sepchar (or context property
sepchar) defines a field separator that may mark the end of a non-quoted string and the parameter
sys_qtype (or context property qtype) specifies the convention to use for quoted strings: if thisparameter has value 0 (the default), Mosel quoting convention is used (both single and double quotesmay be employed and with double quotes escape sequences are allowed); with value -1 no quoting isexpected; with value 1, C/C++ quoting convention applies (only double quotes with escape sequences).Finally, with value 2, CSV convention is expected (double quotes and repetition of double quotes toescape this character). The returned string is decoded: quotes are removed and escape sequences arereplaced by their corresponding characters.

2. The parsing begins at the specified starting position and stops as soon as the separator character(sys_sepchar or context property sepchar respectively) is found or the quoted string is terminated.
� Standard (initial two) versions: if start is not provided then the value of the control parameter
sys_endparse is used as starting position; the location where parsing stops is stored in theparameter sys_endparse.

� Version using a parser context: the information contained in the parser context is used instead ofthe global parameters (see Section 16.1.5); the context property endparse indicates the startingposition and is updated with the location where parsing stops.
� Version using a textarea object: the routine uses the start property of the object (see Section16.1.6) as the starting position but it does not store the position where parsing stops, in particularit does not modify the parameter sys_endparse.

3. In case of error, getsysstat will return a negative value. A positive value indicates that a quoted stringis unfinished (i.e. the end of the source text is reached although no matching quote has been found).
Related topics

parseint, parsereal, parseextn, nextfield, sys_sepchar, sys_qtype, sys_endparse
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 534

mmsystem

pastetext

Purpose Paste a text or string into a text.
Synopsis

procedure pastetext(txt:text, str:string, start:integer)
procedure pastetext(txt:text, src:text, start:integer)

Arguments
txt A text object
src A text object
str A string
start Paste position

Example The following:
t:=text("abcdefgh")
pastetext(t,"123",2)
writeln(t)
pastetext(t,"456",8)
writeln(t)

produces this output:
a123efgh
a123efg456

Related topics
cuttext, inserttext, deltext, copytext

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 535

mmsystem

pathmatch

Purpose Check whether a file name matches a given pattern.
Synopsis

function pathmatch(filename:string|text,pattern:string|text):boolean

Arguments
filename The file name to evaluate
pattern Matching pattern that may include ⁎ (any text of any length) or ? (any single character)

Return value
true if the file name matches the pattern.

Example The following function identifies Mosel source file names:
function is_mosel_file(f:text):boolean
returned:=pathmatch(f,"⁎.mos")
end-function

Further informationThe comparison respects the operating environment conventions and behaviour may differ dependingof the operating system. In particular, under Posix systems comparisons are case sensitive; this is notthe case on Windows (i.e. file names are not case sensitive).
Related topics

regmatch

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 536

mmsystem

pathsplit

Purpose Split a path into its components.
Synopsis

function pathsplit(how:integer,path:text,rem:text):text
function pathsplit(how:integer,path:text):text

Arguments
how How to split the path:

SYS_DIR Directory (i.e. part preceding the last directory separator)
SYS_FNAME File name (i.e. part following the last directory separator)
SYS_EXTN File name extension (i.e. part following the last dot)

path The path name to split
rem Remaining part of the path after the returned value has been removed

Return valueThe requested part of the path.
Example The following function returns the base name of a path (file name without directory and extension):

function basename(f:text):text
returned:=pathsplit(SYS_FNAME,f)
dummy:=pathsplit(SYS_EXTN,returned,returned)

end-function

Further informationArguments path and rem can be the same object.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 537

mmsystem

qsort

Purpose Sort a list or an array or (a subset of) the indices of an array.
Synopsis

procedure qsort(sense:boolean, lvals:list)
procedure qsort(sense:boolean, vals:array of integer|real|string)
procedure qsort(sense:boolean, cvals:array|list of array, ndx:array)
procedure qsort(sense:boolean, cvals:array|list of array, ndx:array,

sel:set)
procedure qsort(sense:boolean, cvals:array|list of array, lndx:list)
procedure qsort(sense:boolean, cvals:array|list of array, lndx:list,

sel:set)
procedure qsort(sense:boolean, cmpfct:string, cmpctx:?, vals:array,

ndx:array)
procedure qsort(sense:boolean, cmpfct:string, cmpctx:?, vals:array,

ndx:array, sel:set)
procedure qsort(sense:boolean, cmpfct:string, cmpctx:?, vals:array,

lndx:list)
procedure qsort(sense:boolean, cmpfct:string, cmpctx:?, vals:array,

lndx:list, sel:set)

Arguments
sense Sense of the sorting:

SYS_UP Ascending order
SYS_DOWN Descending order

lvals List to be sorted
vals One-dimensional array to be sorted
cvals One-dimensional array to be sorted or list of one-dimensional arrays
cmpfct The name of a comparator function of the form function

cmpfct(cmpctx,e1,e2):integer that behaves as compare with e1 and e2 of the sametype as the array to sort
cmpctx The value to be passed as the first argument to cmpfct (this parameter is not used by

qsort)
ndx One-dimensional array of the same type and size as the indexing set of vals
lndx List of the same type as the indexing set of vals
sel Subset of the indexing set of vals

Example The following example sorts an array of real numbers:
declarations
ar: array(1..10) of real

end-declarations

ar:: [1.2, -3, -8, 10.5, 4, 7, 2.9, -1, 0, 5]
qsort(true, ar)
writeln("Sorted array: ", ar)

Fair Isaac Corporation Confidential and Proprietary Information 538

mmsystem

Further information

1. In the first two versions of the procedure (with two arguments, sense and vals or lvals) the inputarray (list) vals (lvals) is overwritten by the resulting sorted array (list).
2. When an array ndx is provided, the resulting sorted array is returned in the argument ndx in the form ofits sorted index set. If a selection set sel of indices is provided, only the specified indices areprocessed.
3. When a list lndx is provided, the resulting sorted array is returned in the argument lndx in the form ofa list of sorted indices. If a selection set sel of indices is provided, only the specified indices areprocessed.
4. When applied to a dynamic array this procedure processes all indices of the index set including thosenot referring to an existing cell (a subset of the indexing set sel can be used to select only the existingentries).
5. The second version of the routine can handle arrays of integers, reals and strings. Other versions alsoaccept module types supporting ordering (like text or date for instance).
6. When the parameter cvals is a list of arrays it is expected that all these arrays have one dimensionand are all indiced by the same set. The list can contain up to 10 arrays. When performing the sortingthe routine will use the first array values as the primary sorting criteria and then the following array incase of equality.
7. A comparator routine may also be provided in the form of user-defined function which name is cmpfct(the function must be declared public). The first parameter of this function is given via cmpctx that canbe of any scalar type (including a record), it is not used by the qsort algorithm but may be employedby the comparator function to store data required for the comparison. The 2 other arguments, that areof the same type as the array to sort, are the elements to compare: the function must return 0 if the 2elements are identical, -1 if the first element is smaller or 1 otherwise. When using this form there is norestriction on the type of the array to sort.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 539

mmsystem

quote

Purpose Quote and encode a text string.
Synopsis

function quote(txt:text,qtype:integer,sepchar:integer):text
function quote(txt:text):text

Arguments
txt A text object
qtype Quoting convention
sepchar Code of the separator character or 0

Example The following statement:
writeln(quote('test CSV "quoted" string',2,44))

displays: "test CSV ""quoted"" string"

Further information
1. This function generates an encoded form of the provided text string according to the given quotingconvention qtype (see sys_qtype) and separator character sepchar. The provided text may bereturned unchanged if the selected convention does not require quotes and the text does not includeany special character or the specified separator character.
2. If argument sepchar is 0, quoting is enforced even if the selected quoting convention would notrequire quotes.
3. In the second form of the routine, parameters sys_qtype and sys_sepchar are used as defaultvalues for arguments qtype and sepchar.

Related topics
parsetext

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 540

mmsystem

readlink

Purpose Get the value of a symbolic link.
Synopsis

function readlink(string|txt:fname):text

Argument
fname A file name

Return valueLinked file name or an empty string if the file cannot be accessed.
Further informationThis function can be applied to a symbolic link to get its value. The file name itself is returned if theprovided file is not a symbolic link.
Related topics

getflstat, symlink

Fair Isaac Corporation Confidential and Proprietary Information 541

mmsystem

readtextline

Purpose Read a line of text from the current input stream.
Synopsis

function readtextline(txt:text):integer

Argument
txt A text object

Return valueNumber of characters read or -1 if end of file.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 542

mmsystem

regmatch

Purpose Compare text strings using a regular expression.
Synopsis

function regmatch(src:text, regex:string):boolean
function regmatch(src:text, regex:string, start:integer,

flags:integer):boolean
function regmatch(src:text, regex:string, start:integer, flags:integer,

mp:array(range) of textarea):boolean

Arguments
src Text to process
regex Regular expression
start Position where to start the search
flags Search options:

REG_EXTENDED Use Extended Regular Expression syntax (ERE), default is to interpret theexpression as a Basic Regular Expression (BRE)
REG_ICASE Comparison is performed case insensitive (by default it is case sensitive)
REG_NEWLINE The character newline (\n) is treated as the end of line (by default it ishandled as an ordinary symbol)
REG_NOTBOL The beginning of the text string is not the beginning of a line
REG_NOTEOL The end of the text string is not the end of a line

mp Matching regions as an array of text area objects
Return value

true if a match was found.
Example The following example extracts the value of ’pars2’ from an input text consisting of lines of the form

name=value:
declarations
m:array(range) of textarea
t:text
end-declarations

t:="p1=10\npars2=234\nparam9=56\n"
if regmatch(t,'pars2=\(.⁎\)$',1,REG_NEWLINE,m) then
pars2:=parseint(t,m(1))
writeln(pars2)
end-if

Further information

1. This function relies on the TRE library (see http://laurikari.net/tre). Please refer to the documentation ofthis library for a detailed description of the supported expression syntax.
2. When the mp argument is provided and the search is successful, the result of the processing is returnedvia this array as textarea objects (see Section 16.1.6): the array cell 0 refers to the entire matchingregion and the following ones to each of the subexpressions.

Related topics
findtext, pathmatch, regreplace, sys_regcache

Fair Isaac Corporation Confidential and Proprietary Information 543

http://laurikari.net/tre

mmsystem

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 544

mmsystem

regreplace

Purpose Replace portions of a text string based on a regular expression.
Synopsis

function regreplace(src:text, regex:string, repl:string):integer
function regreplace(src:text, regex:string, repl:string, start:integer,

flags:integer):integer

Arguments
src Text to process
regex Regular expression
repl Replacement string expression
start Position where to start the search
flags Search options:

REG_EXTENDED Use Extended Regular Expression syntax (ERE), default is to interpret theexpression as a Basic Regular Expression (BRE)
REG_ICASE Comparison is performed case insensitive (by default it is case sensitive)
REG_NEWLINE The character newline (\n) is treated as the end of line (by default it ishandled as an ordinary symbol)
REG_NOTBOL The beginning of the text string is not the beginning of a line
REG_NOTEOL The end of the text string is not the end of a line
REG_ONCE Stop after the first replacement (by default the entire input string isprocessed)

Return valueThe number of replacements performed.
Example The following statement transforms dates expressed as year-month-day to dates in the form

day/month/year

nbr:=regreplace(t,
'([[:digit:]]{4})-([01]?[[:digit:]])-([0-3]?[[:digit:]])',
'\3/\2/\1',1,REG_EXTENDED)

Further information

1. This function relies on the TRE library (see http://laurikari.net/tre). Please refer to the documentation ofthis library for a detailed description of the supported expression syntax.
2. In the replacement string repl the backslash character (’\’) has a special meaning: if followed byanother baskslash character it is replaced by a single backslash; if followed by a digit it is replaced bythe corresponding subexpression defined by the regular expression. The subexpression number 0corresponds to the entire matching region.

Related topics
regmatch, sys_regcache

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 545

http://laurikari.net/tre

mmsystem

removedir

Purpose Remove a directory.
Synopsis

procedure removedir(dirname:string|text)

Argument
dirname The name and path of the directory to delete

Further informationFor deletion of a directory to succeed, the given directory must be empty.
Related topics

fdelete, makedir, removefiles.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 546

mmsystem

removefiles

Purpose Remove files selected using file name patterns.
Synopsis

procedure removefiles(opt:integer, dir:text,filters:text)
procedure removefiles(filters:text)

Arguments
opt Options (several options can be combined):

SYS_RECURS Recursive search in subdirectories
SYS_NODIR Do not remove directories (only files)
SYS_DIRONLY Remove only directories

dir Base directory for the search (default: current directory)
filters File name filters (default: all files removed)

Example The following deletes directory "mydir" including its content:
removefiles(SYS_RECURS,"mydir","⁎")
removedir("mydir")

Further information
1. The filters argument consists in a list of patterns separated by the symbol ";". A pattern iscomposed of a path (using the usual operating system conventions) which last component mayinclude wildcard characters "⁎" (any text of any length), "?" (any single character) and "|" (logical"or"). For instance "bin/⁎.exe;models/⁎.mos|⁎.dat" will select all files with extension ".exe"in the "bin" directory as well as files with extension ".mos" and ".dat" in the "models" directory.
2. File name matching is achieved using function pathmatch and differences may be observeddepending on the operating system (e.g. file names are case sensitive under Posix systems but notunder Windows).

Related topics
findfiles, fdelete, removedir

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 547

mmsystem

setchar

Purpose Set a character in a text.
Synopsis

procedure setchar(txt:text, index:integer, c:integer)

Arguments
txt A text object
str String
index Position of the character
c Character code

Further informationIf the index requested is after the end of the text, the text is expanded as necessary and the newlycreated space is padded with the character which code is the parameter sys_fillchar.
Related topics

getchar, sys_fillchar, pastetext
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 548

mmsystem

setdate

Purpose Set the date part of a datetime.
Synopsis

procedure setdate(dt:datetime,d:date)

Arguments
dt A datetime object
d A date object

Related topics
settime

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 549

mmsystem

setday

Purpose Set the day number of a date or datetime.
Synopsis

procedure setday(d:date,j:integer)
procedure setday(dt:datetime,j:integer)

Arguments
d A date object
dt A datetime object
j Day number

Related topics
setyear, setmonth

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 550

mmsystem

setdsoparam

Purpose Set the value of a control parameter.
Synopsis

procedure
setdsoparam(name:string|text,val:integer|string|text|real|boolean)

Arguments
name Name of a control parameter (including the module name).
val New value for the control parameter

Further information
1. This procedure is similar to setparam except that the control parameter name is searched at runtime.As a consequence this identifier does not need to be a constant string but the execution is significantlyslower than setparam and it cannot be applied to package parameters.
2. The provided parameter name must include the module name (e.g. "mmsystem.datefmt") otherwisethe identifier is searched only in the list of Mosel parameters.
3. As opposed to setparam this procedure does not raise an error in case of failure (like parameter notfound or invalid value): use getsysstat to detect error conditions.

Related topics
getdsoparam.

Fair Isaac Corporation Confidential and Proprietary Information 551

mmsystem

setenv

Purpose Set the value of an environment variable of the operating system.
Synopsis

procedure setenv(name:string|text,value:string|text)

Arguments
name Name of the environment variable
value New value for the environment variable

Further information
1. The environment variable is deleted if it is assigned an empty string.
2. Variables created or modified with this procedure can be retrieved using the getenv function and areinherited by processes started by system or openpipe.
3. The effect of this procedure is local to the running model (i.e. system calls like the C function getenvwill not work for these variables). However, another module may access the environment maintained by

mmsystem using the IMCI function getenv (see Section 16.5).
4. This procedure is included in the published interface of mmsystem (see Section 16.5).

Related topics
getenv, system, openpipe.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 552

mmsystem

setoserror

Purpose Set the current system error code.
Synopsis

procedure setoserror(ec:integer)

Argument
ec A system error code

Further informationThis function sets the current system error code that can be retrieved using getoserror. As a sideeffect of using this routine the status returned by getsysstat is 0 if the error code is also 0 and 1otherwise.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 553

mmsystem

sethour

Purpose Set the hour part of a time or datetime.
Synopsis

procedure sethour(t:time,h:integer)
procedure sethour(dt:datetime,h:integer)

Arguments
t A time object
dt A datetime object
h Hour

Related topics
setminute, setsecond, setmsec

Fair Isaac Corporation Confidential and Proprietary Information 554

mmsystem

setminute

Purpose Set the minute part of a time or datetime.
Synopsis

procedure setminute(t:time,m:integer)
procedure setminute(dt:datetime,m:integer)

Arguments
t A time object
dt A datetime object
m Minute

Related topics
sethour, setsecond, setmsec

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 555

mmsystem

setmonth

Purpose Set the month number of a date or datetime.
Synopsis

procedure setmonth(d:date,m:integer)
procedure setmonth(dt:datetime,m:integer)

Arguments
d A date object
dt A datetime object
m Month number

Related topics
setyear, setday

Fair Isaac Corporation Confidential and Proprietary Information 556

mmsystem

setmsec

Purpose Set the millisecond part of a time or datetime.
Synopsis

procedure setmsec(t:time,ms:integer)
procedure setmsec(dt:datetime,ms:integer)

Arguments
t A time object
dt A datetime object
ms Millisecond

Related topics
sethour, setminute, setsecond

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 557

mmsystem

setsecond

Purpose Set the second part of a time or datetime.
Synopsis

procedure setsecond(t:time,s:integer)
procedure setsecond(dt:datetime,s:integer)

Arguments
t A time object
dt A datetime object
s Second

Related topics
sethour, setminute, setmsec

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 558

mmsystem

settime

Purpose Set the time part of a datetime.
Synopsis

procedure settime(dt:datetime,t:time)

Arguments
dt A datetime object
t A time object

Related topics
setdate

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 559

mmsystem

setyear

Purpose Set the year part of a date or datetime.
Synopsis

procedure setyear(d:date,y:integer)
procedure setyear(dt:datetime,y:integer)

Arguments
d A date object
dt A datetime object
y Year

Related topics
setmonth, setday

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 560

mmsystem

sleep

Purpose Suspend execution for a fixed amount of time.
Synopsis

procedure sleep(duration:int)

Argument
duration Sleep time in milliseconds

Further informationThe model uses no CPU while it is suspended.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 561

mmsystem

splittext

Purpose Split a text string.
Synopsis

function splittext(ts:text, sep:string):list of text
function splittext(ts:text, sep:string, mxe:integer):list of text
function splittext(qt:integer, ts:text, sep:string):list of text
function splittext(qt:integer, ts:text, sep:string, mxe:integer):list of

text

Arguments
qt Quoting type (see parameter sys_qtype, default: -1 for no quoting)
ts Text string to process
sep Separator string
mxe Maximum number of elements to collect (default: 0 for no limit)

Return valueThe list of identified items.
Example The following statements:

write(splittext(lst,"some/path/to/a.file","/",-2))
writeln(splittext(2,lst,'cv1,"cv""2""",cv3',","))

result in this display: [some/path/to,a.file][cv1,cv"2",cv3]
Further information

1. This function splits the input text string ts using the string sep as the field delimiter and returns theidentified items as a list of texts. The argument mxe defines a maximum number of elements to putinto this result list. If this limit is reached while the input string has not been entirely processed the lastadded item includes the remaining part of the input data as a single record.
2. When the quoting type is not specified or when it is set to -1 the separator string may be an emptystring and the maximum number of elements may take a negative value. With an empty separator theinput text is split into individual characters. If the maximum number of elements is negative thedecomposition is performed from the end of the string.
3. When quoting is active (i.e. qt is not -1) a parsing error may occur: in this case the system status it setto a non-zero value (see getsysstat) and the parsing is interrupted (typically after an error the lastitem added to the result list is not valid).

Related topics
jointext.

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 562

mmsystem

startswith

Purpose Check whether a text or string starts with a given string.
Synopsis

function startswith(txt:text|string, tofs:text|string):boolean
function startswith(txt:text|string, tofs:text|string,

start:integer):boolean

Arguments
txt A string or text object
tofs String to find
start Starting position for the search

Return value
true if the beginning of txt corresponds to tofs.

Related topics
endswith

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 563

mmsystem

symlink

Purpose Create a symbolic link.
Synopsis

procedure symlink(string|txt:target, string|txt:linkpath)

Arguments
target Value of the link
linkpath File to create

Further informationThis procedure works only on systems supporting symbolic links, in particular it cannot be executed onWindows (i.e. on this platform getsysstat will always report a failure after calling this routine).
Related topics

readlink

Fair Isaac Corporation Confidential and Proprietary Information 564

mmsystem

system

Purpose Execute an external program.
Synopsis

procedure system(command:string|text)

Argument
command The command to be executed

Example The following displays the functionality of the mmsystemmodule using the program mosel:
system('mosel -s -c "exam mmsystem"')

Further information
1. The given program is executed directly: if the specified expression is a shell command, it is necessaryto call the shell explicitly. For instance to get a directory listing under Windows the command will be
"cmd /C dir".

2. Using this procedure should be avoided in applications that are to be run on different systems becausesuch a call is always system dependent and may not be portable.
3. The generated process inherits the current system environment plus the environment variablesmodified/created using the setenv procedure.
4. On Windows the program to execute is located using the current process environment, as aconsequence any modification of the PATH environment variable or working directory has no effect onfinding this executable. The behaviour is different on Posix systems where the search for the programto execute is performed from the subprocess environment.
5. The default output and error streams of the generated process are redirected to the correspondingMosel streams. The default input stream is closed.
6. This procedure is included in the published interface of mmsystem (see Section 16.5).
7. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables thisroutine unless the environment variable MOSEL_EXECPATH is defined. This variable, used in a similarway as the PATH environment variable, gives a list of paths than can still be used under the restriction.In addition to directories, the definition of the variable may include paths to executables such that itmay directly specify a list of programs. It is also worth noting that no search is performed (i.e.executables must be given with their full path) and that path expansion is performed a the time ofloading mmsystem relative to the Mosel initial working directory.
8. The command may be preceded by the prefix "enc:" to specify the encoding of the output streams(see Section 2.16).

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 565

mmsystem

tarlist

Purpose Get the list of files included in a Unix tar archive.
Synopsis

procedure tarlist(opt:integer,tarfile:text,lsf:list of text,
filters:string)

procedure tarlist(tarfile:text,lsf:list of text)

Arguments
opt Options:

SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories

tarfile File name of the archive
lsf Resulting list of file names
filters File name filters (default: all files reported)

Example The following prints the list of files included in the archive myfiles.tar:
tarlist("myfiles.tar",lsf)
writeln(lsf)

Further information
1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file isreported if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differencesmay be observed depending on the operating system (e.g. file names are case sensitive under Posixsystems but not under Windows).
3. This implementation processes only regular files and directories: other file types included in the archive(like links) are silently ignored.
4. By default file names are expected to be represented according the current system encoding in thearchive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archivename (e.g. "enc:utf-8,myarc.tar").

Related topics
untar, newtar, ziplist

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 566

mmsystem

textfmt

Purpose Create a formatted text from a string, a text or a number.
Synopsis

function textfmt(str:string, len:integer):text
function textfmt(txt:text, len:integer):text
function textfmt(i:integer, len:integer):text
function textfmt(i:integer, len:integer, flag:integer, base:integer):text
function textfmt(r:real, len:integer):text
function textfmt(r:real, len:integer, dec:integer):text

Arguments
str String to be formatted
txt Text to be formatted
i Integer to be formatted
r Real to be formatted
len Reserved length (may be exceeded if given string is longer, in this case the string is always leftjustified).

<0 Left justified within reserved space
>0 Right justified within reserved space
0 Use defaults

flag Bit encoded options:
1 Left padding with "0" (instead of space)
2 Use capital letters for bases greater than 10

base Encoding base (between 2 and 36)
dec Number of digits after the decimal point

Return valueFormatted text.
Example The following:

writeln("text1", textfmt("text2",8), "text3")
writeln("text1", textfmt("text2",-8), "text3")
r:=789.123456
writeln(textfmt(r,0)," ", textfmt(r,4,2), textfmt(r,8,0))

produces this output:
text1 text2text3
text1text2 text3
789.123 789.12 789

Further information
1. If the resulting string is longer than the reserved space it is not cut but printed in its entirety, overflowingthe reserved space to the right.
2. When processing an integer specifying a base, the provided value is treated as an unsigned integer ifthe base is negative.

Related topics
formattext

Fair Isaac Corporation Confidential and Proprietary Information 567

mmsystem

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 568

mmsystem

tolower

Purpose Generate the lowercase version of the provided text.
Synopsis

function tolower(t:text|string):text
function tolower(c:integer):integer

Return valueThe lowercase version of the input string or a character code.
Arguments

t Text to convert
c Character code

Further informationWhen this function is used with a text string, it returns a copy of its argument converted to lowercase.When it is called with an integer, the returned value corresponds to the character code of the lowercaseversion of the provided code. In both cases, the function will return an unmodified copy of its argumentif no conversion can be done.
Related topics

toupper

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 569

mmsystem

toupper

Purpose Generate the uppercase version of the provided text.
Synopsis

function toupper(t:text|string):text
function toupper(c:integer):integer

Return valueThe uppercase version of the input string or a character code.
Arguments

t Text to convert
c Character code

Further informationWhen this function is used with a text string, it returns a copy of its argument converted to uppercase.When it is called with an integer, the returned value corresponds to the character code of the uppercaseversion of the provided code. In both cases, the function will return an unmodified copy of its argumentif no conversion can be done.
Related topics

tolower

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 570

mmsystem

trim

Purpose Remove blank characters at the beginning and/or end of a text string.
Synopsis

procedure trim(t:text)
procedure trim(t:text,where:boolean)

Arguments
t Text to trim
where Part of the text to trim:

SYS_LEFT Beginning of the string
SYS_RIGHT End of the string

Further informationWhen the function is used with a single argument, both starting and ending blank characters aredeleted.
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 571

mmsystem

untar

Purpose Extract files from a Unix tar archive.
Synopsis

procedure untar(opt:integer,tarfile:text,dir:text,
filters:string)

procedure untar(tarfile:text,dir:text)
procedure untar(tarfile:text)

Arguments
opt Options:

SYS_OVERWRT Replace existing files
SYS_NODIR Do not extract directories (only files)
SYS_DIRONLY Extract only directories
SYS_FLAT Extract files without directory structure
SYS_VERB Report activity to the error stream
SYS_NOFAIL Do not abort procedure if a file cannot be written

tarfile File name of the archive
dir Destination path (default: current directory)
filters File name filters (default: all files extracted)

Example The following extracts all files included in the archive myfiles.tar to directory mydir:
untar("myfiles.tar","mydir")

Further information
1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file isextracted if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differencesmay be observed depending on the operating system (e.g. file names are case sensitive under Posixsystems but not under Windows).
3. This implementation processes only regular files, symbolic links (when supported by the system) anddirectories: other file types included in the archive are silently ignored.
4. By default file names are expected to be represented according the current system encoding in thearchive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archivename (e.g. "enc:utf-8,myarc.tar").

Related topics
tarlist, newtar, unzip

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 572

mmsystem

unzip

Purpose Extract files from a Zip archive.
Synopsis

procedure unzip(opt:integer, zipfile:text, dir:text,
filters:string, password:text)

procedure unzip(opt:integer, zipfile:text, dir:text,
filters:string)

procedure unzip(zipfile:text, dir:text)
procedure unzip(zipfile:text)

Arguments
opt Options:

SYS_OVERWRT Replace existing files
SYS_NODIR Do not extract directories (only files)
SYS_DIRONLY Extract only directories
SYS_FLAT Extract files without directory structure
SYS_VERB Report activity to the error stream
SYS_NOFAIL Do not abort procedure if a file cannot be written

zipfile File name of the archive (that must be a physical file)
dir Destination path (default: current directory)
filters File name filters (default: all files extracted)
password Password to access an encrypted archive

Example The following extracts all files included in the archive myfiles.zip to directory mydir:
unzip("myfiles.zip","mydir")

Further information
1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file isextracted if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differencesmay be observed depending on the operating system (e.g. file names are case sensitive under Posixsystems but not under Windows).
3. This implementation only supports the standard Zip format (only 32bit and basic encryption algorithm)and symbolic links are silently ignored if the system does not support them.
4. By default file names are expected to be represented according the current system encoding in thearchive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archivename (e.g. "enc:utf-8,myarc.zip").

Related topics
ziplist, newzip, untar

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 573

mmsystem

ziplist

Purpose Get the list of files included in a Zip archive.
Synopsis

procedure ziplist(opt:integer, zipfile:text, lsf:list of text,
filters:string)

procedure ziplist(zipfile:text, lsf:list of text)

Arguments
opt Options:

SYS_NODIR Do not report directories (only files)
SYS_DIRONLY Report only directories

zipfile File name of the archive
lsf Resulting list of file names
filters File name filters (default: all files reported)

Example The following prints the list of files included in the archive myfiles.zip:
ziplist("myfiles.zip",lsf)
writeln(lsf)

Further information
1. The filters argument has a similar structure as the corresponding argument of procedure
findfiles except that wildcard characters "⁎" and "?"may appear anywhere in a path. A file isreported if it matches any of the patterns of this list.

2. When evaluating the filters, file name matching is achieved using function pathmatch and differencesmay be observed depending on the operating system (e.g. file names are case sensitive under Posixsystems but not under Windows).
3. By default file names are expected to be represented according the current system encoding in thearchive. To select a different encoding use the enc: file name prefix (see Section 2.16) on the archivename (e.g. "enc:utf-8,myarc.zip").

Related topics
unzip, newzip, tarlist

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 574

mmsystem

16.4 I/O drivers

The mmsystem module provides two IO drivers: the first one allows to use a string or text object as afile and the second connects a Mosel input or output stream to a program started in a differentprocess. Using this driver, it is possible to get the output of an external program (for instance the resultof a preprocessor to feed the Mosel compiler) or implement a basic bidirectional inter processcommunication thanks to the openpipe procedure (which relies on this IO driver).
16.4.1 Driver text

text:ident

This driver uses a model variable of type string or text as its input or output media. The identargument it requires is therefore the name of this variable that must be declared globally public to themodel or have been published with publish (such that it can always be found independently of thecompiler settings).String objects can only be accessed for reading while text entities can be used forboth reading and writing.
In the following example the constant string "T" is used as the initialization file for variable "A":

declarations
public T="A:123"
A:integer
end-declarations
initializations from "text:T"
A
end-initializations

16.4.2 Driver pipe
pipe:program [options...]

The file name for this driver is an external program with its options. Options are separated by spaces ortabulations and may be quoted using either single or double quotes. A quoted option may contain anykind of character except the quote used to delimit the string.
When the system opens a pipe, a new process is started for executing the given program and defaultinput and output streams are directed to system pipes. If the file is open for reading (resp. writing), thedefault ouput stream (resp. input stream) of the new process becomes the current input stream (resp.output stream) of the model. To locate the program to be executed, the system relies on the PATHenvironment variable. Detection of error (typically the program cannot be found or is not executable)differs depending on the operating system: under Windows, the error is reported immediately and thepipe is not open. With Posix systems, no error is reported but following IO operations fail.
When the file is closed, both input and output streams of the external process are closed then thesystem waits for its termination: in order to avoid a lock up of the Mosel program one must make surethat the external program ends its execution when default input and output streams are closed.
Example: the following command could be used with Mosel Console for compiling the model
mymod.mos after it has been processed by the C preprocessor. Note that we have to provide an outputfile name since the compiler cannot deduce it from the source file name.
For a Posix systems:

compile 'mmsystem.pipe:cpp mymod.mos' '' mymod.bim

For Windows (with MSVC):

Fair Isaac Corporation Confidential and Proprietary Information 575

mmsystem

compile 'mmsystem.pipe:cl /E mymod.mos' '' mymod.bim

When Mosel is running in restricted mode (see Section 1.3.4), this driver behaves like the systemprocedure.

16.5 Published library functions

The module mmsystem publishes its implementation of getenv, setenv and system as well as thefunctions gettxtsize, gettxtbuf and txtresize for text access via the service IMCI for use byother modules (see the Mosel Native Interface Reference Manual for more detail about services). Thelist of published functions is contained in the interface structure mmsystem_imci that is defined in themodule header file mmsystem.h.
From another module, the context of mmsystem and its communication interface can be obtainedusing functions of the Mosel Native Interface as shown in the following example.

static XPRMnifct mm;
XPRMcontext mmctx;
XPRMdsolib dso;
mmsystem_imci mmsys;
void ⁎⁎sysctxref;

dso=mm->finddso("mmsystem"); /⁎ Retrieve the mmsystem module⁎/
sysctxref=mm->getdsoctx(mmctx, dso, (void ⁎⁎)(&mmsys));

/⁎ Get the module context and the
communication interface of mmsystem ⁎/

Typically, a module calling functions that are provided by mmsystem will include this module into its listof dependencies in order to make sure that mmsystem will be loaded by Mosel at the same time as thecalling module. The “dependency” service of the Mosel Native Interface has to be used to set the list ofmodule dependencies:
static const char ⁎deplist[]={"mmsystem",NULL}; /⁎ Module dependency list ⁎/

static XPRMdsoserv tabserv[]= /⁎ Table of services ⁎/
{
{XPRM_SRV_DEPLST, (void ⁎)deplist}
};

Using these functions a module may access and modify the environment of the calling model andexecute an external program with automatic redirection of default streams:
mmsys->setenv(ctx,⁎sysctxref,"MYVAR","A_VALUE");
rts=mmsys->system(ctx,⁎sysctxref,"myprogram arg1 arg2");

16.5.1 Description of the library functions

getdate Get the date of a date object. p. 580
getdatetime Get the date and time of a datetime object. p. 582
gettime Get the time of a time object. p. 578
gettxtbuf Get a reference to the character buffer of a text object. p. 585
gettxtsize Get the size of a text object. p. 584
setdate Set the date of a date object. p. 581

Fair Isaac Corporation Confidential and Proprietary Information 576

mmsystem

setdatetime Set the date and time of a datetime object. p. 583
settime Set the time of a time object. p. 579
txtresize Resize a text object. p. 586

Fair Isaac Corporation Confidential and Proprietary Information 577

mmsystem

gettime

Purpose Get the time of a time object.
Synopsis

int gettime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎h, int ⁎mi, int ⁎s,
int ⁎ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a time object
h Reference to store the hours or NULL
mi Reference to store the minutes or NULL
s Reference to store the seconds or NULL
ms Reference to store the milliseconds or NULL

Return value0 if successful or -1 if t is NULL.
Further informationProvided references are set even if the function fails.
Related topics

settime

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 578

mmsystem

settime

Purpose Set the time of a time object.
Synopsis

int settime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int h, int mi, int s, int
ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a time object
h hours
mi minutes
s seconds
ms milliseconds

Return value0 if successful or -1 if t is NULL.
Related topics

gettime

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 579

mmsystem

getdate

Purpose Get the date of a date object.
Synopsis

int getdate(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎y, int ⁎m, int ⁎d);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Reference to store the years or NULL
m Reference to store the months or NULL
d Reference to store the days or NULL

Return value0 if successful or -1 if t is NULL.
Further informationProvided references are set even if the function fails.
Related topics

setdate

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 580

mmsystem

setdate

Purpose Set the date of a date object.
Synopsis

int setdate(XPRMctx ctx, void ⁎sysctx, void ⁎t, int y, int m, int d);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Years
m Months
d days

Return value0 if successful or -1 if t is NULL.
Related topics

getdate

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 581

mmsystem

getdatetime

Purpose Get the date and time of a datetime object.
Synopsis

int getdatetime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int ⁎y, int ⁎m, int ⁎d,
int ⁎h, int ⁎mi, int ⁎s, int ⁎ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Reference to store the years or NULL
m Reference to store the months or NULL
d Reference to store the days or NULL
h Reference to store the hours or NULL
mi Reference to store the minutes or NULL
s Reference to store the seconds or NULL
ms Reference to store the milliseconds or NULL

Return value0 if successful or -1 if t is NULL.
Further informationProvided references are set even if the function fails.
Related topics

setdatetime

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 582

mmsystem

setdatetime

Purpose Set the date and time of a datetime object.
Synopsis

int setdatetime(XPRMctx ctx, void ⁎sysctx, void ⁎t, int y, int m, int d,
int h, int mi, int s, int ms);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a date object
y Years
m Months
d days
h hours
mi minutes
s seconds
ms milliseconds

Return value0 if successful or -1 if t is NULL.
Related topics

getdatetime

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 583

mmsystem

gettxtsize

Purpose Get the size of a text object.
Synopsis

int gettxtsize(XPRMctx ctx, void ⁎sysctx, void ⁎t);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object

Return valueThe size of the character buffer (excluding the terminating 0 character).
Related topics

txtresize, gettxtbuf
Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 584

mmsystem

gettxtbuf

Purpose Get a reference to the character buffer of a text object.
Synopsis

char ⁎gettxtbuf(XPRMctx ctx, void ⁎sysctx, void ⁎t);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object

Return valueA reference to the character buffer.
Further information

1. The buffer returned is terminated by the character 0 (like a C string) and can be modified as long as thesize is not changed. If the length of the buffer has to be altered, use the function txtresize.
2. Since the memory management of the module may move text buffers when allocating memory, thepointer returned by this function is only valid until the next memory allocation.

Related topics
txtresize, gettxtsize

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 585

mmsystem

txtresize

Purpose Resize and get a reference to the character buffer of a text object.
Synopsis

char ⁎txtresize(XPRMctx ctx, void ⁎sysctx, void ⁎t, int s);

Arguments
ctx Mosel’s execution context
sysctx Context of mmsystem
t Reference to a text object
s New size of the buffer (terminating 0 is not counted)

Return valueA reference to the new character buffer or NULL in case of memory error.
Further information

1. The buffer returned is terminated by the character 0 (like a C string) and can be modified as long as thesize is not changed.
2. Since the memory management of the module may move text buffers when allocating memory, thepointer returned by this function is only valid until the next memory allocation.

Related topics
gettxtsize

Module mmsystem

Fair Isaac Corporation Confidential and Proprietary Information 586

CHAPTER 17

mmxml

This module provides an XML parser and generator for the manipulation of XML documents from Moselmodels. To use this module, the following line must be included in the header of the Mosel model file:
uses 'mmxml'

mmxml relies on the XML parser EXPAT by James Clark (http://www.libexpat.org) for loadingdocuments.

17.1 Document representation in mmxml

17.1.1 Data model

The XML document is stored as a list of nodes. Different node types are used to represent thedocument structure:
� element node
� text section
� comment
� CDATA
� processing instruction

In addition to these usual node types, the type DATA is used for XML constructs not supported by
mmxml (for instance a DOCTYPE declaration is recorded as a DATA section). Although they are notdirectly recorded in the document tree, attributes are also stored as nodes of a dedicated type.
Each node is characterised by a name and a value. Nodes of type text, comment, CDATA and DATA havea constant name. The name of a processing instruction is the processing instruction’s target and itsvalue the remaining part of the statement (e.g. the name of <?proc inst> is proc and its value is
inst). The value of comment and CDATA sections is the content of the section without its delimitersbut the value of a DATA block includes the delimiters. Element nodes have also an ordered list of childnodes. The value of an element node corresponds to the value of the first child text node (if any).
The root node is a special element node with no name, no parent and no successor that includes theentire document as its children.

Fair Isaac Corporation Confidential and Proprietary Information 587

http://www.libexpat.org

mmxml

Example of an XML document with node types:
<?xml version="1.0" encoding="iso-8859-1" standalone="no" ?> XML header
<?xml-stylesheet type="text/css" href="examplestyle.css" ?> Processing instruc.
<!DOCTYPE exampleList SYSTEM "examples.dtd" [DATA

<!ENTITY otherfile SYSTEM "anotherfile.xml">
]>

<!-- List of optimization application examples --> Comment
<exampleList> Element node

<!-- Example B3 --> Comment
<model id="book_B_3"> Element node
<modFile date="Mar.2002"> Element node
b3jobshop.mos Text node

</modFile>
<modData file="b3jobshop.dat" /> Element node
<modData file="b3jobshop2.dat" /> Element node
<modTitle> Element node
Job shop scheduling Text node

</modTitle>
<modRating> Element node
3 Text node

</modRating>
<modFeatures> Element node
<![CDATA[dynamic array, range, exists, forall-do]]> CDATA

</modFeatures>
</model>

</exampleList>

17.1.2 Paths in a document

Nodes can be retrieved using a path similar to a directory path used to locate a file. An XML pathconsists in a list of location steps separated by the slash character ("/"): each step selects a set ofnodes from the input set resulting from the preceding step (context nodes). The initial set of the path iseither the root node (absolute path) or some specified node (relative path).
A step is composed of an optional axis specifier followed by a node test and possibly completed by a
predicate. The axis specifies the tree relationship between the nodes selected by the step and thecontext node. The node test is either an element name (to select elements of the given name) or anode type (to select nodes by their type). The predicate is a Boolean expression the truth value of whichdecides whether a selected node is kept in the result set of the step.
Examples:
/examples/chapter all element nodes ’chapter’ under elements ’examples’
/examples/chapter/model/modRating[number()>=4]/.. all ’model’ nodes under’examples/chapter’ for which element ’modRating’ has a value greater thanor equal to 4
//⁎[@attribute1 and @attribute2=’value2’] all element nodes of the document having’attribute1’ defined and ’attribute2’ with value ’value2’
/descendant::text() all text sections of the document
.//mytag all element nodes named ’mytag’ starting from the current node

Fair Isaac Corporation Confidential and Proprietary Information 588

mmxml

17.1.2.1 Axis specifier

An axis specifier consists in an axis name followed the the symbol ::. The supported axes are:
child children of the context node (this is the default if no axis is given)
parent parent of the context node
self the context node itself
attribute the attributes of the context node
following following node of the context node
descendant-or-self the context node as well as all its descendants
descendant all descendants of the context node
17.1.2.2 Node test

By default only element nodes are considered, the node test is used to select the nodes by their name.The special name "⁎" will keep all element nodes. Alternatively, the test can be related to the type ofthe nodes; in this case all nodes are considered and the test is one of the following expressions:
text() to select text nodes
comment() to select comment nodes
cdata() to select CDATA nodes
data() to select DATA nodes
processing-instruction() to select processing instruction nodes
node() to keep all nodes (independently of the type and name)
17.1.2.3 Abbreviated notation

Common combinations of axis-node tests have an abbreviated notation. The supported abbrevationsare:
. is equivalent to self::node()
.. is equivalent to parent::node()
// (used in place of /) is the same as descendant-or-self::node()
17.1.2.4 Predicate

A predicate is a Boolean expression enclosed in square brakets. The expression evaluator supportsBoolean, text and numerical values (encoded as floating point numbers). Type conversions are implicitand implied by the operators: for instance the additive operator "+" operates on numbers, as aconsequence its operands are systematically converted to numbers. Constant strings must be quotedusing either single or double quotes.
The notation @attname designates the attribute which name is "attname": if used where a Booleanvalue is expected, it is true if the attribute is defined for the current node. Otherwise, this is the value ofthe attribute.

Fair Isaac Corporation Confidential and Proprietary Information 589

mmxml

Supported arithmetic operators include +, -, *, div (division on floating point numbers, not integraldivision as in Mosel!), mod (modulo on floating point numbers). Boolean expressions can becomposed using and and or; the usual comparators <, <=, >=, >, =, <>(or !=) can be applied to numbers.Note that equality testing (= and <>) is defined for all types. The following predefined functions can alsobe used in expressions:
name() name of the node
string() value of the node
number() value of the node as a number
boolean() value of the node as a Boolean
position() position of the current node in the selected set (first node hasposition 1)
not(boolexp) true if ’boolexp’ is false, false otherwise
true() value true
false() value false
string-length()/getsize() length of the node value
string-length(strexp)/getsize(strexp) length of the text passed as parameter
starts-with(strexp1,strexp2) true if text ’strexp1’ starts with text ’strexp2’
contains(strexp1,strexp2) true if text ’strexp1’ contains text ’strexp2’
round(numexp) rounded value of ’numexp’
floor(numexp) floor value of ’numexp’
ceiling(numexp)/ceil(numexpr) ceil value of ’numexp’
abs(numexp) absolute value of ’numexp’
If the predicate [expr] is not a Boolean value, the whole expression is interpreted as
[position()=expr].

17.1.3 JSON document as an XML tree

In addition to XML documents mmxml can also load and generate JSON documents represented asXML trees such that the information contained in the document can be handled using the routinespublished by this module. The procedure jsonload parses a JSON file that it maps to the internal XMLrepresentation using the following conventions: every JSON syntactic entity is converted to an XMLelement the value of which corresponds to the associated JSON value. The type of the value isidentified via the attribute "jst" that can be "str" (string), "num" (numeric), "boo" (Boolean),
"nul" (null object), "obj" (object) or "arr" (array). Names of object components can be mapped toeither the name of the XML element or to an attribute (the behaviour of the parser is selected via anoption of jsonload).
For instance, consider the following JSON document:

[{
"name": "bob",
"age": 25,
"student": true,
"phone": [

Fair Isaac Corporation Confidential and Proprietary Information 590

mmxml

{ "type": "home", "number": "1234567900" },
{ "type": "work", "number": "6789012345" }
]

}]

It will be represented by the following XML document when object member names are turned into XMLelement names:
<?xml version="1.0" encoding="iso-8859-1"?>
<jsv jst="arr">
<jsv jst="obj">
<name jst="str">bob</name>
<age jst="num">25</age>
<student jst="boo">true</student>
<phone jst="arr">

<jsv jst="obj">
<type jst="str">home</type>
<number jst="str">1234567900</number>

</jsv>
<jsv jst="obj">
<type jst="str">work</type>
<number jst="str">6789012345</number>

</jsv>
</phone>

</jsv>
</jsv>

Note that with this representation the generated XML document is not necessarily valid XML (thismapping can for instance produce XML elements that have a number as name) and trying to export aJSON document using the save procedure may produce a file that cannot be processed by an XMLparser. Using the second mode of operation avoids this problem: all elements are named "jsv" andobject names are represented by attributes. The resulting XML document is larger than the oneproduced with the first mode:
<?xml version="1.0" encoding="iso-8859-1"?>
<jsv jst="arr">
<jsv jst="obj">
<jsv jst="str" name="name">bob</jsv>
<jsv jst="num" name="age">25</jsv>
<jsv jst="boo" name="student">true</jsv>
<jsv jst="arr" name="phone">

<jsv jst="obj">
<jsv jst="str" name="type">home</jsv>
<jsv jst="str" name="number">1234567900</jsv>

</jsv>
<jsv jst="obj">
<jsv jst="str" name="type">work</jsv>
<jsv jst="str" name="number">6789012345</jsv>

</jsv>
</jsv>

</jsv>
</jsv>

Assuming an XML tree has been built using the above conventions, the procedure jsonsave can beused to generate a JSON document. The XML document may combine the two representationsdescribed above and in most cases the jst attribute can be omitted. Therefore, jsonsave willproduce the same JSON document as the example shown at the start of this section from the followingXML file:
<?xml version="1.0" encoding="iso-8859-1"?>
<jsv>
<jsv>
<name>bob</name>
<jsv name="age">25</jsv>

Fair Isaac Corporation Confidential and Proprietary Information 591

mmxml

<student>true</student>
<jsv name="phone">

<jsv>
<type>home</type>
<jsv name="number" jst="str">1234567900</jsv>

</jsv>
<jsv>
<jsv name="type">work</jsv>
<jsv name="number" jst="str">6789012345</jsv>

</jsv>
</jsv>

</jsv>
</jsv>

17.2 New functionality for the Mosel language

17.2.1 The type xmldoc

The type xmldoc represents an XML document stored in the form of a tree. Each node of the tree isidentified by a node number (an integer) that is attached to the document (i.e. a node number cannot beshared by different documents and in two different documents the same number represents twodifferent nodes). The root node of the document has number 0: the content of the document is storedas the children of this root node. In addition to structural properties (e.g. name, value, successor,parent) nodes have 2 formatting properties: vertical (setvspace) and horizontal (sethspace)spacing. These indications are used when the document is saved in text form for controling how theresulting text has to be organised (see save). The general formatting policy is defined by a set ofdocument settings: indentation mode (setindentmode), indentation skip (setindentskip) and linelength (setlinelen). Also used when exporting the documents are the XML version(setxmlversion), standalone status (setstandalone) and encoding (setencoding).

17.3 Procedures and functions

addnode Add a node to a document tree. p. 594
copynode Copy a node. p. 596
delattr Delete an attribute of an element node. p. 597
delnode Delete a node in a document tree. p. 598
getattr Get the value of an attribute. p. 599
getencoding Get the character encoding of the document. p. 601
getfirstattr Get the first attribute of an element node. p. 604
getfirstchild Get the first child of an element node. p. 606
gethspace Get horizontal spacing of a node. p. 614
getindentmode Get indent mode of the document. p. 616
getindentskip Get the size of an indentation step. p. 617
getlastchild Get the last child of an element node. p. 607
getlinelen Get the length of a line. p. 618
getmaxnodes Get the number of nodes currently allocated for a document. p. 619

Fair Isaac Corporation Confidential and Proprietary Information 592

mmxml

getname Get the name of a node. p. 602
getnext Get the successor of a node. p. 605
getnode Get the first node returned by a path specification. p. 608
getnodes Get the list of nodes returned by a path specification. p. 609
getparent Get the parent of a node. p. 610
getsize Get the size of a document. p. 620
getstandalone Get the standalone flag of the document. p. 612
gettype Get the type of a node. p. 611
getvalue Get the value of a node. p. 603
getvspace Get vertical spacing of a node. p. 615
getxmlversion Get the XML version of the document. p. 613
jsonload Load a JSON document. p. 621
jsonparse Parse a JSON document. p. 622
jsonsave Save a JSON document. p. 624
load Load an XML document. p. 625
save Save an XML document. p. 626
setattr Set the value of an attribute. p. 627
setencoding Set the character encoding of the document. p. 628
sethspace Set horizontal spacing of a node. p. 632
setindentmode Set indent mode for the document. p. 635
setindentskip Set the size of an indentation step. p. 636
setlinelen Set the length of a line. p. 637
setmaxnodes Set the number of allocated nodes for a document. p. 629
setname Set the name of a node. p. 630
setstandalone Set the standalone flag of the document. p. 638
setvalue Set the value of a node. p. 631
setvspace Set vertical spacing of a node. p. 634
setxmlversion Set the XML version of the document. p. 639
testattr Test existence of an attribute for a given element node. p. 600
xmlattr Get an attribute during parsing of an element. p. 640
xmldecode Decode a text string for XML. p. 642
xmlencode Encode a text string for XML. p. 641
xmlparse Parse an XML document. p. 643

Fair Isaac Corporation Confidential and Proprietary Information 593

mmxml

addnode

Purpose Add a node to a document tree.
Synopsis

function addnode(doc:xmldoc, n:integer, where:integer, type:integer,
name:string, value:text):integer

function addnode(doc:xmldoc, n:integer, where:integer, type:integer,
nameval:string|text):integer

function addnode(doc:xmldoc, n:integer, type:integer, name:string,
value:text):integer

function addnode(doc:xmldoc, n:integer, type:integer,
nameval:string|text):integer

function addnode(doc:xmldoc, n:integer, type:integer):integer
function addnode(doc:xmldoc, n:integer, name:string,

value:text|string|boolean|integer|real):integer

Arguments
doc Document to use
n Node number where to attach the new node
where How to attach the new node to the node n:

XML_FIRST as the first element of the list where node n is located
XML_LAST as the last element of the list where node n is located
XML_NEXT after node n
XML_FIRSTCHILD as the first child of node n (node nmust be an element)
XML_LASTCHILD as the last child of node n (node nmust be an element)
When the function is used without this parameter, XML_LASTCHILD is assumed.

type Type of node to add:
XML_ELT an element
XML_TXT a text block
XML_CDATA a CDATA section
XML_COM a comment
XML_DATA non interpreted data
XML_PINST processing instructionWhen the function is used without this parameter, XML_ELT is assumed.

name Name associated to the new node. Only element and processing instruction nodes have aname
value Value associated to the new node. An element node does not have any value: if thisparameter is provided for a node of this type, an additional text node with the specifiedvalue is added as the first child of the new node
nameval If the type is XML_ELT or XML_PINST this parameter is used as the name of this node.Otherwise it is the value of the new node

Return valueNumber of the newly created node within the document.
Example The following code extract appends a new node ’employee’ as last child to the node APAC. It showshow to use diffrent versions of addnode for the creation of descendants of the new node.

declarations
DB: xmldoc

Fair Isaac Corporation Confidential and Proprietary Information 594

mmxml

APAC, NewPers, n, k: integer
end-declarations

APAC:= getnode(DB, "personnelList/region[@id='APAC']")
! Append a new node to 'APAC' and set its attribute 'id':
NewPers:= addnode(DB, APAC, XML_LASTCHILD, XML_ELT, "employee")
setattr(DB, NewPers, "id", "T432")

! Create a comment:
n:= addnode(DB, NewPers, XML_COM, "This is a new employee")

! Add 2 nodes containing the specified text (nodes):
n:= addnode(DB, NewPers, XML_ELT, "startDate", text(2012))
n:= addnode(DB, NewPers, XML_ELT, "name", "Tim")

! Add an empty node, then set its contents:
n:= addnode(DB, NewPers, XML_ELT, "address")
setvalue(DB, n, "Sydney")

! Add an empty node, then create its contents as a text node:
n:= addnode(DB, NewPers, XML_ELT, "language")
k:= addnode(DB, n, XML_TXT, "English")

XML resulting from this code:
<employee id="T432">

<!--This is a new employee-->
<startDate>2012</startDate>
<name>Tim</name>
<address>Sydney</address>
<language>English</language>

</employee>

Further information
1. An element or processing instruction node must be named: trying to create a node of these types withan empty name will cause an error.
2. It is not possible to add attributes with this function. Use setattr for this purpose.

Related topics
copynode, delnode

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 595

mmxml

copynode

Purpose Copy a node.
Synopsis

function copynode(src:xmldoc, s:integer, dst:xmldoc, d:integer,
where:integer):integer

Arguments
src Document of node to be copied
s Number of the node to copy
dst Destination document
d Node number where to attach the new node in the destination document
where How to attach the copy of the source node to the node d:

XML_FIRST as the first element of the list where node d is located
XML_LAST as the last element of the list where node d is located
XML_NEXT after node d
XML_FIRSTCHILD as the first child of node d (node dmust be an element)
XML_LASTCHILD as the last child of node d (node dmust be an element)

Example The following code extract shows how to move (copy node, then delete original) and edit a node with allits descendants
declarations

DB: xmldoc
APAC, NewPers, Pers: integer

end-declarations

! Retrieve destination region node
APAC:= getnode(DB, "personnelList/region[@id='APAC']")
! Retrieve employee record (node) for 'Lisa'
Pers:=

getnode(DB, "personnelList/region/employee/name[string()='Lisa']/..")
! Employee Lisa moves to Delhi: copy node & delete in original location
NewPers:= copynode(DB, Pers, DB, APAC, XML_LASTCHILD)
delnode(DB, Pers)
! Update the 'address' information
setvalue(DB, getnode(DB, NewPers, "address"), "Delhi")

Further informationThis routine copies the node as well as all of its descendants if it is an element node. Source anddestination documents may be the same.
Related topics

addnode, delnode
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 596

mmxml

delattr

Purpose Delete an attribute of an element node.
Synopsis

procedure delattr(doc:xmldoc, n:integer, name:string)

Arguments
doc Document to use
n Element node to modify
name Name of the attribute to remove

Example See testattr.
Further informationThis routine has no effect if the element does not have any attribute of the specified name.
Related topics

setattr

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 597

mmxml

delnode

Purpose Delete a node in a document tree.
Synopsis

procedure delnode(doc:xmldoc, n:integer)

Arguments
doc Document to use
n Number of the node to delete

Example See copynode.
Further informationThis routine deletes the node as well as all of its descendants if it is an element node.
Related topics

addnode, copynode
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 598

mmxml

getattr

Purpose Get the value of an attribute.
Synopsis

function getattr(doc:xmldoc, n:integer, name:string):text
function getboolattr(doc:xmldoc, n:integer, name:string):boolean
function getintattr(doc:xmldoc, n:integer, name:string):integer
function getrealattr(doc:xmldoc, n:integer, name:string):real
function getstrattr(doc:xmldoc, n:integer, name:string):string

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute

Return valueThe value of the attribute or an empty string, 0 or false depending on the expected type.
Example The following code extract prints the contents of ’name’ (leftbound in a 10 character space) and theattributes ’id’ of all ’employee’ nodes, and the ’id’ of their parent node.

declarations
DB: xmldoc
AllEmployees: list of integer

end-declarations

getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(p in AllEmployees)

writeln(textfmt(getvalue(DB, getnode(DB, p, "name")), -10),
"(ID: ", getattr(DB,p,"id"), ") ",
"region: ", getattr(DB, getparent(DB, p), "id"))

Output produced by this code will look as follows:
Lisa (ID: L234) region: EMEA
James (ID: J876) region: APAC
Sarah (ID: S678) region: AM

Further information
1. Values of attributes are stored as text objects: the first version of the routine returns a reference tothe object containing the attribute value. Modifying this text will also alter the attribute value. Using oneof the alternative versions of this routine allows to avoid having to perform a type conversion. Notehowever that no validation is performed and a conversion error will result in a 0 for a number and
false for a Boolean without raising any error.

2. A default value (empty string, 0 or false) is returned if the requested attribute is not defined. Usefunction testattr to check whether a given node has a particular attribute.
Related topics

setattr, testattr, getfirstattr
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 599

mmxml

testattr

Purpose Test existence of an attribute for a given element node.
Synopsis

function testattr(doc:xmldoc, n:integer, name:string):boolean

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute

Return value
true if the requested attribute is defined for the node.

Example This example tests whether the attribute ’parttime’ is defined for an employee, and if this is the case theattribute gets deleted after printing the name of the employee.
declarations

DB: xmldoc
AllEmployees: list of integer

end-declarations

getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(p in AllEmployees | testattr(DB, p, "parttime")) do

writeln(getvalue(DB, getnode(DB, p, "name")))
delattr(DB, p, "parttime")

end-do

Related topics
setattr, getattr

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 600

mmxml

getencoding

Purpose Get the character encoding of the document.
Synopsis

function getencoding(doc:xmldoc):string

Argument
doc Document to use

Return valueCharacter encoding of the document
Related topics

getstandalone, getxmlversion
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 601

mmxml

getname

Purpose Get the name of a node.
Synopsis

function getname(doc:xmldoc, n:integer):string

Arguments
doc Document to use
n Node number

Return valueThe name of the node depending on the node type:
XML_ELT name of the element section
XML_TXT "#text"
XML_CDATA "#cdata-section"
XML_COM "#comment"
XML_DATA "#data"
XML_PINST processing instruction target
XML_ATTR name of the attribute

Example The following example collects the names of all element nodes occurring in a document.
declarations

DB: xmldoc
NodeList: list of integer
NodeNames: set of string

end-declarations

getnodes(DB, "/descendant-or-self::node()", NodeList)
NodeNames:= union(r in NodeList | gettype(DB,r)=XML_ELT) {getname(DB,r)}
writeln("Names of element nodes: ", NodeNames)

Further informationOnly element, attribute and processing instruction nodes have a name, for all other node types theabove listed constant name is returned.
Related topics

gettype, getvalue, setname
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 602

mmxml

getvalue

Purpose Get the value of a node.
Synopsis

function getvalue(doc:xmldoc, n:integer):text
function getboolvalue(doc:xmldoc, n:integer):boolean
function getintvalue(doc:xmldoc, n:integer):integer
function getrealvalue(doc:xmldoc, n:integer):real
function getstrvalue(doc:xmldoc, n:integer):string

Arguments
doc Document to use
n Node number

Return valueThe value of the node.
Example This code prints out the name of the employee with attribute id="T345".

declarations
DB: xmldoc

end-declarations

writeln("Person with id='T345': ", getvalue(DB, getnode(DB,
"personnelList/region/employee[@id='T345']/name")))

Further information
1. Values of nodes are stored as text objects: the first version of the routine returns a reference to theobject containing the value. Modifying this text will also alter the node value. Using one of thealternative versions of this routine allows to avoid having to perform a type conversion. Note howeverthat no validation is performed and a conversion error will result in a 0 for a number and false for aBoolean without raising any error.
2. Element nodes have no value: the returned value corresponds to the value of the first child of type textof this element (or an empty string if no such child can be found).

Related topics
gettype, getname, setvalue

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 603

mmxml

getfirstattr

Purpose Get the first attribute of an element node.
Synopsis

function getfirstattr(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return valueThe node number of the first attribute of the element node provided or -1 if there is no attribute.
Example The following example displays all attributes of node e:

declarations
DB: xmldoc
a,e: integer

end-declarations

a:=getfirstattr(DB,e)
while(a>0) do

writeln(getname(DB,a), "=", getvalue(DB,a))
a:=getnext(DB,a)

end-do

Further informationAttributes are represented by nodes of type XML_ATTR: all node-related routines can be applied toattribute nodes.
Related topics

getnext, getfirstchild, getlastchild, getparent
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 604

mmxml

getnext

Purpose Get the successor of a node.
Synopsis

function getnext(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return valueThe node number of the following node or -1 if the current node is the last of the list.
Example This example enumerates all child nodes within a specific region and displays the ’id’ for all ’employee’nodes on a single line, adding a line break after the last name:

declarations
DB: xmldoc
APAC, Pers: integer

end-declarations

APAC:= getnode(DB, "personnelList/region[@id='APAC']")
Pers:= getfirstchild(DB, APAC)
LastPers:= getlastchild(DB, APAC)
while(Pers>-1) do

if getname(DB, Pers)="employee" then
write(" ", getattr(DB,Pers,"id"))

end-if
if Pers=LastPers then writeln; end-if
Pers:= getnext(DB, Pers)

end-do

Further informationNode numbers returned by Mosel are not directly related to the order of nodes within the XML document(i.e. a larger node number does not imply that a node succeeds a node with a smaller number).
Related topics

getfirstattr, getfirstchild, getlastchild, getparent
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 605

mmxml

getfirstchild

Purpose Get the first child of an element node.
Synopsis

function getfirstchild(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return valueThe node number of the first child or -1 if there is no child.
Example See getnext.
Related topics

getfirstattr, getnext, getlastchild, getparent
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 606

mmxml

getlastchild

Purpose Get the last child of an element node.
Synopsis

function getlastchild(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number (must be an element)

Return valueThe node number of the last child or -1 if there is no child.
Example See getnext.
Related topics

getfirstattr, getfirstchild, getnext, getparent
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 607

mmxml

getnode

Purpose Get the first node returned by a path specification.
Synopsis

function getnode(doc:xmldoc, n:integer, p:string|text):integer
function getnode(doc:xmldoc, n:integer):integer
function getnode(doc:xmldoc, p:string):integer

Arguments
doc Document to use
n Base node number (0 when not provided)
p Path to the node ("⁎" when not provided)

Return valueThe node number of the first node selected by the path p; -1 if no node can be found.
Example The following example shows different forms of the getnode function.

declarations
DB: xmldoc
Root, EMEA: integer

end-declarations

! Get the first element that is not a comment or a processing instruction
Root:= getnode(DB,"⁎") ! Same as: getnode(DB,0,"⁎")

! Get the 'region' node with id=EMEA
EMEA:= getnode(DB, "personnelList/region[@id='EMEA']")

! Check for employee record (node) for 'Sam' under 'EMEA'
if getnode(DB, EMEA, "employee/name[string()='Sam']/..")<0 then
writeln("No employee called 'Sam' in EMEA")

end-if

Further information
1. Refer to section 17.1.2 for a detailed description of the syntax and semantic of XML paths.
2. This function is the same as getfirstchild when used without path specification.

Related topics
getnodes, getfirstchild

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 608

mmxml

getnodes

Purpose Get the list of nodes returned by a path specification.
Synopsis

procedure getnodes(doc:xmldoc, n:integer, p:string|text, l:list of integer)
procedure getnodes(doc:xmldoc, p:string, l:list of integer)
procedure getnodes(doc:xmldoc, n:integer, l:list of integer)

Arguments
doc Document to use
n Base node number (0 when not provided)
p Path to the node ("⁎" when not provided)
l List where result is returned

Example Here are a number of examples how to retrieve nodes with specific properties:
declarations

DB: xmldoc
Employees, AllEmployees: list of integer

end-declarations

! Get all employees in the Americas
getnodes(DB, "personnelList/region[@id='AM']/employee", Employees)

! All employees who started before 2005
getnodes(DB, "personnelList/region/employee/startDate[number()<2005]/..",

Employees)

! All employees whose names start with "J"
getnodes(DB, "personnelList/region/employee", AllEmployees)
forall(n in AllEmployees) do

getnodes(DB, n, "./name[starts-with(string(),'J')]/..", Employees)
forall(p in Employees) save(DB, p, "")

end-do

! Employees speaking at least 3 languages (=have a third "language" entry)
getnodes(DB, "personnelList/region/employee/language[position()=3]/..",

Employees)

Further information
1. Refer to section 17.1.2 for a detailed description of the syntax and semantic of XML paths.
2. This function resets the list it receives as parameter: the provided list is returned empty if no node canbe found.

Related topics
getnode

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 609

mmxml

getparent

Purpose Get the parent of a node.
Synopsis

function getparent(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return valueThe node number of the parent node or -1 if n=0 (root node has no parent).
Example See getattr.
Related topics

getfirstattr, getfirstchild, getlastchild, getnext
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 610

mmxml

gettype

Purpose Get the type of a node.
Synopsis

function gettype(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return valueThe type of the node:
XML_ELT an element
XML_TXT a text
XML_CDATA a CDATA section
XML_COM a comment
XML_DATA a data section
XML_PINST a processing instruction
XML_ATTR an attribute
-1 if the node number is not valid

Example See getname.
Further informationThis function returns -1 if the provided node number is not valid: this feature can be used to verify thevalidity of a node number before using it with other functions.
Related topics

getname, getvalue
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 611

mmxml

getstandalone

Purpose Get the standalone flag of the document.
Synopsis

function getstandalone(doc:xmldoc):integer

Argument
doc Document to use

Return valueStandalone flag:
-1 flag not specified
0 standalone=no
1 standalone=yes

Further informationThe value of this flag is not used by mmxml. This is just an information to be saved in the header of theXML document. The default value for this flag is -1.
Related topics

getencoding, getxmlversion
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 612

mmxml

getxmlversion

Purpose Get the XML version of the document.
Synopsis

function getxmlversion(doc:xmldoc):string

Argument
doc Document to use

Return valueXML version as a text string
Further informationThe XML version number is not used by mmxml. This is just an information to be saved in the header ofthe XML document. The default value for this option is 1.0.
Related topics

getencoding, getstandalone
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 613

mmxml

gethspace

Purpose Get horizontal spacing of a node.
Synopsis

function gethspace(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return valueNumber of spaces inserted before the node output
Further informationThis spacing indicates the number of spaces to insert before displaying the node from the start of anew line when outputing the document. The horizontal spacing setting is only used when theindentation is in manual mode (see setindentmode).
Related topics

getvspace, getindentmode
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 614

mmxml

getvspace

Purpose Get vertical spacing of a node.
Synopsis

function getvspace(doc:xmldoc, n:integer):integer

Arguments
doc Document to use
n Node number

Return valueNumber of carriage returns inserted before the node output
Further informationThis spacing indicates the number of empty lines to insert before displaying the node when outputingthe document. The vertical spacing setting is only used when the indentation is in manual mode (see

setindentmode).
Related topics

gethspace, getindentmode
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 615

mmxml

getindentmode

Purpose Get indent mode of the document.
Synopsis

function getindentmode(doc:xmldoc):integer

Argument
doc Document to use

Return valueIndent mode:
XML_AUTO automatic indentation
XML_NONE no formatting
XML_MANUAL use vertical/horizontal spacing settings of each node

Related topics
setindentmode, getindentskip, getlinelen

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 616

mmxml

getindentskip

Purpose Get the size of an indentation step.
Synopsis

function getindentskip(doc:xmldoc):integer

Argument
doc Document to use

Return valueNumber of spaces to add for each indentation
Related topics

setindentskip, getindentmode, getlinelen
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 617

mmxml

getlinelen

Purpose Get the length of a line.
Synopsis

function getlinelen(doc:xmldoc):integer

Argument
doc Document to use

Return valueLength of a line in characters for outputting the XML document
Related topics

setlinelen, getindentmode, getindentskip
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 618

mmxml

getmaxnodes

Purpose Get the number of nodes currently allocated for a document.
Synopsis

function getmaxnodes(doc:xmldoc):integer

Argument
doc Document to use

Return valueNumber of nodes currently allocated
Further informationThis function returns the amount of memory (in number of nodes) currently allocated for a givendocument. This amount may be larger than the amount actually in use.
Related topics

setmaxnodes, getsize
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 619

mmxml

getsize

Purpose Get the size of a document.
Synopsis

function getsize(doc:xmldoc):integer

Argument
doc Document to use

Return valueThe number of nodes used by the document.
Related topics

getmaxnodes

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 620

mmxml

jsonload

Purpose Load a JSON document.
Synopsis

procedure jsonload(doc:xmldoc, fname:text)
procedure jsonload(doc:xmldoc, fname:text, mode:integer)

Arguments
doc Document to use
fname File name of the document to load
mode How to handle JSON object names:

0 Object names are converted to XML element names (default)
1 Object names are saved as the attribute "name"

Further information
1. This routine replaces the content of the provided document object with the JSON file given as secondargument. If the file cannot be accessed or if an error occurs during reading, the procedure generatesan IO error (which may be intercepted if the control parameter ioctrl is true).
2. The parser converts the original JSON document into an XML representation (See Section 17.1.3). Usingthe version of the procedure without the mode argument is the same as using 0 for this parameter.

Related topics
jsonsave, jsonparse, load

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 621

mmxml

jsonparse

Purpose Parse a JSON document.
Synopsis

function jsonparse(afct:array(range) of string,ctx:ctxtype): integer

Arguments
afct Event function table. Each entry of this array is the name of the function to call when thecorresponding event occurs. The expected events are (all of these entries are optional):

JSON_FCT_OPEN_OBJ Opening of an object
JSON_FCT_CLOSE_OBJ Closing of an object
JSON_FCT_OPEN_ARR Opening of an array
JSON_FCT_CLOSE_ARR Closing of an array
JSON_FCT_TEXT A textual value
JSON_FCT_NUM A numerical value
JSON_FCT_BOOL A Boolean value
JSON_FCT_NULL The null value

ctx Value passed as firt argument of all event functions
Return value

0 if successful, 1 in case of parsing error or a non-zero value returned by an event function
Example This example displays values of object members "name" and "age" of a JSON document:

declarations
afct:array(range) of string
s_ctx=record
cnt:integer

end-record
c:s_ctx

end-declarations

public function setvalue_all(ctx:s_ctx,name:text,type:integer,val:text):integer
if name="name" or name="age" then
writeln(name,":",val)
ctx.cnt+=1

end-if
end-function

afct(JSON_FCT_TEXT):="setvalue_all" ! A value as a text
fopen("mydoc.json",F_INPUT)
rts:=jsonparse(afct,c)
fclose(F_INPUT)
writeln("line count:",c.cnt)

Fair Isaac Corporation Confidential and Proprietary Information 622

mmxml

Further information
1. This function is an alternative approach to jsonload for processing JSON documents: instead ofloading into memory the entire document this function calls a dedicated routine whenever it identifies aJSON entity. For instance a specific function is called when an object is open and another one when itis closed. It is up to the Mosel program to decide how to handle the document via these event handling

functions.
2. To each event type corresponds a specific function signature. These functions return an integer thatdecides whether parsing should continue: a non-zero value will cause the parsing to cancel (this valueis used as the return value of jsonparse). The expected function signatures are:

JSON_FCT_OPEN_OBJ function open_object(ctx:ctxtype, name:text):integer
JSON_FCT_CLOSE_OBJ function close_object(ctx:ctxtype):integer
JSON_FCT_OPEN_ARR function open_array(ctx:ctxtype, name:text):integer
JSON_FCT_CLOSE_ARR function close_array(ctx:ctxtype):integer
JSON_FCT_TEXT function text_val(ctx:ctxtype, name:text, type:integer,

val:text):integer
JSON_FCT_NUM function num_val(ctx:ctxtype, name:text, name:text,

val:real):integer
JSON_FCT_BOOL function bool_val(ctx:ctxtype, name:text, name:text,

val:boolean):integer
JSON_FCT_NULL function null_val(ctx:ctxtype, name:text):integer

In addition to the pre-defined arguments these functions take a context as their first parameter. Thisvariable (that can be of any type) is provided to the jsonparse routine and can be used by the eventfunctions for storing progress information.The name argument is not empty only when the value corresponds to an object member: in this casethis parameter is the label of this member. The type argument passed to the text_val functionindicates the type of the data (0 for null, 1 for text, 2 for numerical and 3 for Boolean): this function isused with the textual representation of the value when the required type-specific function is notavailable. For instance this function will be called with type=3 if a Boolean value has been read andthe entry JSON_FCT_BOOL is not defined in the function table.
3. An error message indicating the location of the error is displayed when the parsing fails or if an eventfunction returns a negative value (a positive value also interrupts parsing but no message is displayed).

Related topics
jsonload

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 623

mmxml

jsonsave

Purpose Save a JSON document.
Synopsis

procedure jsonsave(doc:xmldoc, fname:text)

Arguments
doc Document to save
fname Destination file name

Further information
1. This routine generates a JSON file from the provided xmldoc object. It is assumed that the documentis built according to the JSON conventions (See Section 17.1.3). The result is undefined if theconventions are not respected.
2. This procedure does not require that the elements of the tree are typed using the "jst" attribute: thetype is deduced from the value of the node when this attribute is missing. Moreover, both objectmember naming conventions can be used: when outputing an object, the member name can be takeneither from the element name or from the attribute "name". If both are available, the attribute takesprecedence.

Related topics
jsonload, save

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 624

mmxml

load

Purpose Load an XML document.
Synopsis

procedure load(doc:xmldoc, fname:text)

Arguments
doc Document to use
fname File name of the document to load

Example This code reads in a document and displays its contents on screen applying automatic formattinginstead of its original formatting.
declarations

DB: xmldoc
end-declarations

! Reading data from an XML file
load(DB, "refexample.xml")

! Set indentation mode for XML output (default after load: MANUAL)
setindentmode(DB, XML_AUTO)

! Display document contents on screen
save(DB, "")

Further informationThis routine replaces the content of the provided document object with the XML file given as secondargument: all properties of the document are reset to their default value and the indentation mode isset to XML_MANUAL (see setindentmode). Vertical and horizontal spacing of each loaded node areset in order to preserve as much as possible the original formatting of the document. If the file cannotbe accessed or if an error occurs during reading, the procedure generates an IO error (which may beintercepted if the control parameter ioctrl is true).
Related topics

save, xmlparse, jsonload
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 625

mmxml

save

Purpose Save an XML document.
Synopsis

procedure save(doc:xmldoc, fname:text)
procedure save(doc:xmldoc, n:integer, fname:text)

Arguments
doc Document to save
n Node number to use as root node (default: 0)
fname Destination file name

Example This example shows the two versions of this procedure.
declarations

DB: xmldoc
Pers: integer

end-declarations

! Save XML document to file 'results.xml'
save(DB, "results.xml")

! Display a subtree on screen
Pers:= getnode(DB, "personnelList/region/employee[@id='T345']")
save(DB, Pers, "")

Further information
1. This routine generates an XML file from the provided xmldoc object. The XML header is producedusing the properties defined with setencoding, setxmlversion and setstandalone. No headeris emitted if either the encoding or the version is an empty string.
2. When providing an alternative root node, only the specified part of the document tree is exportedwithout any XML header.
3. The document is formatted according to the indentation mode and its associated settings (see

setindentmode); XML control characters are encoded (see xmlencode).
Related topics

load, save
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 626

mmxml

setattr

Purpose Set the value of an attribute.
Synopsis

procedure setattr(doc:xmldoc, n:integer, name:string,
v:text|string|boolean|integer|real)

Arguments
doc Document to use
n Node number (must be an element)
name Name of the attribute
v New value for the attribute

Example See addnode.
Further information

1. Attribute values are stored as text objects: the versions of this procedure accepting other typesperform the conversion implicitly.
2. Attributes are nodes of type XML_ATTR: procedure setvaluemay also be used to change the value ofan attribute.
3. Setting an empty value to an attribute does not remove this attribute from the attribute list of theelement. Use delattr for this purpose.

Related topics
getattr, delattr

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 627

mmxml

setencoding

Purpose Set the character encoding of the document.
Synopsis

procedure setencoding(doc:xmldoc, enc:string)

Arguments
doc Document to use
enc Name of the character encoding

Further informationThe default character encoding is UTF-8.
Related topics

save, setstandalone, setxmlversion
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 628

mmxml

setmaxnodes

Purpose Set the number of allocated nodes for a document.
Synopsis

procedure setmaxnodes(doc:xmldoc, m:integer)

Arguments
doc Document to use
m Number of nodes to reserve

Further informationThis procedure sets the amount of memory reserved for a document. Normally, mmxml allocatesmemory on demand but using this procedure it is possible to allocate at once a larger block of memoryto possibly speedup the loading of very large documents. If the requested amount is smaller than whatis required to represent the document currently held in the doc object, the memory block is reduced asmuch as possible such that the document can still be stored.
Related topics

getmaxnodes

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 629

mmxml

setname

Purpose Set the name of a node.
Synopsis

procedure setname(doc:xmldoc, n:integer,name:string)

Arguments
doc Document to use
n Node number (must be an element or processing instruction)
name New name for the node

Further informationOnly element and processing instruction nodes can be modified with this routine; for all other nodetypes an error will be raised.
Related topics

setvalue

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 630

mmxml

setvalue

Purpose Set the value of a node.
Synopsis

procedure setvalue(doc:xmldoc, n:integer,
v:text|string|integer|real|boolean)

Arguments
doc Document to use
n Node number
v New value for the node

Example See copynode.
Further information

1. Node values are stored as text objects: the versions of this procedure accepting other types performthe conversion implicitly.
2. Element nodes have no value: this procedure will modify the value of the first child text node of theelement. If no such node exists, a new text node will be added to the beginning of the list of children.

Related topics
setname

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 631

mmxml

sethspace

Purpose Set horizontal spacing of a node.
Synopsis

procedure sethspace(doc:xmldoc, n:integer, s:integer)

Arguments
doc Document to use
n Node number
s Number of spaces to put before the node output

Example The following example reformats the XML document layout by adding an additional line before ’region’nodes and printing three consecutive tags within ’employee’ on a single line. The indentmode is set to’manual’ in order to apply the user formatting (instead of automatic or none).
declarations

DB: xmldoc
NodeList, Employees: list of integer

end-declarations

! New line without indentation for Root
setvspace(DB, Root, 1)

! Add extra line in between regions, keeping original indentation
getnodes(DB, "personnelList/region", NodeList)
forall(r in NodeList) setvspace(DB, r, 2)

! Spacing/indentation for 'employee' tag
getnodes(DB, "personnelList/region/employee", Employees)
forall(p in Employees) do

setvspace(DB, p, 1); sethspace(DB, p, 4)

! Within 'employee', display up to 3 consecutive tags on a single line
getnodes(DB, p, "child::node()[position() mod 3=1]", NodeList)
forall(r in NodeList) do

setvspace(DB, r, 1); sethspace(DB, r, 6)
end-do
getnodes(DB, p, "child::node()[position() mod 3<>1]", NodeList)
forall(r in NodeList) do

setvspace(DB, r, 0); sethspace(DB, r, 1)
end-do

end-do

! Set indentation mode to 'manual' to use our own formatting for display
setindentmode(DB, XML_MANUAL)
save(DB, "")

Further informationThis spacing indicates the number of spaces to skip from the start of a new line before displaying thenode when outputing the document. The horizontal spacing setting is only used when the indentation isin manual mode (see setindentmode).

Fair Isaac Corporation Confidential and Proprietary Information 632

mmxml

Related topics
setvspace, setindentmode

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 633

mmxml

setvspace

Purpose Set vertical spacing of a node.
Synopsis

procedure setvspace(doc:xmldoc, n:integer, s:integer)

Arguments
doc Document to use
n Node number
s Number of carriage return to put before the node output

Example See sethspace.
Further informationThis spacing indicates the number of empty lines to add before displaying the node when outputing thedocument. The vertical spacing setting is only used when the indentation is in manual mode (see

setindentmode).
Related topics

sethspace, setindentmode
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 634

mmxml

setindentmode

Purpose Set indent mode for the document.
Synopsis

procedure setindentmode(doc:xmldoc, imod:integer)

Arguments
doc Document to use
imod Indent mode:

XML_AUTO automatic indentation
XML_NONE no formatting
XML_MANUAL use vertical/horizontal spacing of each node

Example See sethspace.
Further informationThis parameter specifies how the XML document must be formatted by the save routine. Automaticindentation can be tuned by redefining the indent skip (setindentskip) and line length(setlinelen). If the indent mode is set to XML_NONE, the document is exported on a single linewithout formatting. Finally, with manual indenting, each node is placed according to itshorizontal/vertical spacing as specified by setvspace and sethspace.
Related topics

save, setindentskip, setlinelen
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 635

mmxml

setindentskip

Purpose Set the size of an indentation step.
Synopsis

procedure setindentskip(doc:xmldoc, skip:integer)

Arguments
doc Document to use
skip Number of spaces to add for each indentation (at least 1; default is 2)

Example This code reads in a document and displays its contents on screen applying automatic formatting withsingle space indentation and increased line length.
declarations

DB: xmldoc
end-declarations

! Reading data from an XML file
load(DB, "refexample.xml")

! Set indentation mode for XML output (default after load: MANUAL)
setindentmode(DB, XML_AUTO)

! Set smaller indentation skip than default
setindentskip(DB, 1)

! Increase default line length
setlinelen(DB, 80)

! Display document contents on screen
save(DB, "")

Further informationWhen the document is formatted automatically (see setindentmode) the number of spaces specifiedby this procedure is added to the current margin each time a new indent step is created.
Related topics

save, setindentmode, setlinelen
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 636

mmxml

setlinelen

Purpose Set the length of a line.
Synopsis

procedure setlinelen(doc:xmldoc, len:integer)

Arguments
doc Document to use
len Length of a line in characters (at least 1; default is 70)

Example See setindentskip.
Further informationWhen outputing the document, a line break is inserted between nodes or while displaying a list ofelement attributes whenever more than the specified number of characters has been written.
Related topics

save, setindentmode, setindentskip
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 637

mmxml

setstandalone

Purpose Set the standalone flag of the document.
Synopsis

procedure setstandalone(doc:xmldoc, std:integer)

Arguments
doc Document to use
std Standalone flag:

-1 flag not specified
0 standalone=no
1 standalone=yes

Further informationThe value of this flag is not used by mmxml. This is just an information to be saved in the header of theXML document. The default value for this flag is -1.
Related topics

save, setencoding, setxmlversion
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 638

mmxml

setxmlversion

Purpose Set the XML version of the document.
Synopsis

procedure setxmlversion(doc:xmldoc, xv:string)

Arguments
doc Document to use
xv XML version

Further informationThe XML version number is not used by mmxml. This is just an information to be saved in the header ofthe XML document. The default value for this option is 1.0.
Related topics

save, setencoding, setstandalone
Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 639

mmxml

xmlattr

Purpose Get an attribute during parsing of an element.
Synopsis

procedure xmlattr(ndx:integer, name:text, val:text)
procedure xmlattr(aname:string, val:text)

Arguments
ndx Attribute index
name Attribute name (returned by the procedure)
val Attribute value (returned by the procedure)
aname Attribute name (provided to the procedure)

Further information
1. This procedure can only be used from the open element function while parsing an XML document withthe xmlparse function.
2. With the first syntax, the attribute index ndx is returned by the procedure (both its name and value).This index value must range between 1 and the last index as passed to the open element function. Withthe second syntax the name of the attribute to retrieve is given to the procedure. An empty string isreturned if this attribute is not defined for the current element.

Related topics
xmlparse

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 640

mmxml

xmlencode

Purpose Encode a text string for XML.
Synopsis

function xmlencode(t:text):text

Argument
t text to encode

Further informationEncode a text string for XML by replacing control characters (<, >, &, ’, ") by their encoded equivalent.
Related topics

xmldecode

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 641

mmxml

xmldecode

Purpose Decode a text string for XML.
Synopsis

function xmldecode(t:text):text

Argument
t text to decode

Further informationDecode a text string from XML by replacing encoded sequences (< > & ' ") by thecorresponding control characters.
Related topics

xmlencode

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 642

mmxml

xmlparse

Purpose Parse an XML document.
Synopsis

function xmlparse(afct:array(range) of string,mode:integer,ctx:ctxtype):
integer

Arguments
afct Event function table. Each entry of this array is the name of the function to call when thecorresponding event occurs. The expected events are (all of these entries are optional):

XML_FCT_DECL Document declarations
XML_FCT_TXT A text node (same value as ML_TEXT)
XML_FCT_CDATA A CDATA node
XML_FCT_COM A commentary node
XML_FCT_DATA A DATA node
XML_FCT_PINST A processing instruction node
XML_FCT_OPEN_ELT Opening of a new element node
XML_FCT_CLOSE_ELT Closing of an element node

mode If 0, spaces are preserved and returned as text elements. Otherwise all text elements aretrimmed
ctx Value passed as first argument of all event functions

Return value
0 if successful, 1 in case of parsing error or a non-zero value returned by an event function

Example This example displays the structure of an XML document without loading it into memory.
! Display element name and update indentation
public function start_elt(spce:text,name:text,nba:integer):integer
writeln(spce,name)
spce+=" "
end-function

! Update indentation when element closes
public function end_elt(spce:text):integer
spce-=" "
end-function

declarations
afct:array(range) of string
end-declarations

afct(XML_FCT_OPEN_ELT):="start_elt" ! define open element
afct(XML_FCT_CLOSE_ELT):="end_elt" ! define close element
fopen("mydocument.xml",F_INPUT)
rts:=xmlparse(afct,1,text(""))
fclose(F_INPUT)

Fair Isaac Corporation Confidential and Proprietary Information 643

mmxml

Further information
1. This function is an alternative approach to load for processing XML documents: instead of loadinginto memory the entire document this function calls a dedicated routine whenever it identifies an XMLentity. For instance a specific function is called when an element is open and another one when it isclosed. It is up to the Mosel program to decide how to handle the document via these event handling

functions.
2. To each event type corresponds a specific function signature. These functions return an integer thatdecides whether parsing should continue: a non-zero value will cause the parsing to cancel (this valueis used as the return value of xmlparse). The expected function signatures are:

XML_FCT_DECL function xmldecl(ctx:ctxtype, vers:text, enc:text,
std:integer):integer

XML_FCT_TXT function text_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_CDATA function cdata_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_COM function comment_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_DATA function data_node(ctx:ctxtype, type:integer,
data:text):integer

XML_FCT_PINST function processing_instr(ctx:ctxtype, target:text,
data:text):integer

XML_FCT_OPEN_ELT function open_element(ctx:ctxtype, name:text,
nba:integer):integer

XML_FCT_CLOSE_ELT function close_element(ctx:ctxtype):integer

In addition to the pre-defined arguments these functions take a context as their first parameter. Thisvariable (that can be of any type) is provided to the xmlparse routine and can be used by the eventfunctions for storing progress information.The type passed to the text node functions is the XML type corresponding to the function (namely
XML_TXT, XML_CDATA, XML_COM, XML_DATA).The open_element function receives the name of the element as well as the number of definedattributes. To retrieve these attributes xmlattr can be used.

3. An error message indicating the location of the error is displayed when the parsing fails or if an eventfunction returns a negative value (a positive value also interrupts parsing but no message is displayed).
Related topics

load

Module mmxml

Fair Isaac Corporation Confidential and Proprietary Information 644

CHAPTER 18

mmxnlp

The mmxnlp module provides access to nonlinear solvers, extending the capabilities provided by the
mmxprs and mmnl modules. In particular, this module allows existing linear or mixed integer (MIP)models to be upgraded to include nonlinearities, without requiring unnecessary changes to theformulation. To use this module, the following line must be included in the header of the Mosel modelfile:

uses 'mmxnlp'

Problem type and module hierarchy
Module mmxprs provides

� linear models and
� mixed integer linear models.

Module mmnl adds support for
� convex quadratic models,
� convex quadratic mixed integer models,
� convex, quadratically constrained models, and
� convex, quadratically constrained mixed integer models.

Module mmxnlp adds support for
� general nonlinear problems and
� general nonlinear mixed integer problems.

If the mmxnlp module is used for a model which does not require a general nonlinear solver, this shouldbe equivalent to using the appropriate mmxprs or mmnl module directly.

18.1 New functionality for the Mosel language

18.1.1 The userfunc type

A nonlinear model may employ one or more black box evaluation functions, which can be used toprovide function evaluations to the solver. These are represented in mmxnlp by the new userfunctype. The implementation of each userfuncmust be described by calling one of:

Fair Isaac Corporation Confidential and Proprietary Information 645

mmxnlp

� userfuncMosel: to declare that a user function is implemented as a Mosel function
� userfuncExcel: to declare that a user function is implemented in an Excel file
� userfuncExcelMacro: to declare that a user function is implemented as a Visual Basic macroin Excel
� userfuncDLL: to declare that a user function is implemented in a dynamically linked library (DLL)

Note that user functions returning multiple arguments are support by the mmxnlp module. The Fconstruction allows a userfunc to be included in any nonlinear (nlctr) expression, and groups eachoccurrence of the userfunc with its parameters . During the solve, the parameters (which are of typenlctr themselves) will be evaluated at the current solution, and the real-valued results passed to the
userfunc implementation. The function userfuncinfo can be used to find out which parametersthe system has deduced it needs to pass to a particular userfunc.

18.1.2 The tolset type

The module provides a large number of configurable tolerances for users of the Xpress NonLinear SLPsolver. A tolset describes a convergence tolerance set, which can be used for those nonlinear solverssupporting variable-specific convergence tolerances. The elements of a tolerance set are defined byusing settol, and assigned to a variable or list of variables using settolset. For more details ontolerance sets, please refer to the Xpress NonLinear Reference Manual.
� XNLP_TOL_TC: The absolute closure tolerance
� XNLP_TOL_TA: The absolute delta tolerance
� XNLP_TOL_RA: The relative delta tolerance
� XNLP_TOL_TM: The absolute matrix tolerance
� XNLP_TOL_RM: The relative matrix tolerance
� XNLP_TOL_TI: The absolute impact tolerance
� XNLP_TOL_RI: The relative impact tolerance
� XNLP_TOL_TS: The relative slack impact tolerance
� XNLP_TOL_RS: The absolute slack impact tolerance

18.1.3 The mpproblem.xprs.xnlp problem type

When using the mmxnlp module, the type of the active Mosel problem is changed frommpproblem.xprs to the extended type mpproblem.xprs.xnlp. This means that all of the routinespresented in this section operate in the context of the current Mosel problem.

18.2 mmxnlp and the other Mosel modules

mmxnlp is designed to provide seamless integration with other Mosel functionalities. However, thefundamentally different nature of nonlinear problems makes some compromises necessary; these arelisted in this section.

Fair Isaac Corporation Confidential and Proprietary Information 646

mmxnlp

18.2.1 Overloaded functions

The following functionality is modified or extended by the mmxnlp module:
� Retrieval of solution values with getsol, both for variables and nonlinear constraints. A detaileddescription of the behaviour of this function can be found in the documentation for the mmxprsand mmnl modules.
� Functions implemented in the mmnl module are extended for nonlinear solvers:

– setinitval, clearinitvals and copysoltoinit to manage initial values.
– Mathematical functions: abs, exp, ln, log, sqrt, cos, sin, tan, arccos, arcsin, arctan.
– Mosel constraint and constraint visibility functions: gettype, settype, ishidden and
sethidden.

� Functions implemented in the mmxprs module are extended for nonlinear solvers:
– maximize and minimize to solve the problem.
– getprobstat to return the problem solution status.
– fixglobal for managing integer problems.
– Exporting the current status (for debugging purposes) with loadprob, writeprob and
savestate.

18.2.2 Module compatibility

The mmquad module is incompatible with the mmxnlp module, and should not be used together with it.
The mmxprs and mmnl modules are automatically loaded when using the mmxnlp module.
The mmnl module defines several discontinuous functions for use with decision variables (mpvar),which are not supported by the mmxnlp module. These constructions should instead be modelled withinteger constraints. The functions are: round, ceil, floor, idiv and mod.
The following standard functionalities are not available for nonlinear problems:

� Functions for working with a basis: loadbasis, readbasis and savebasis.
� Logical constraints of the form logctr, and their operators: implies, indicator, or, xor and
and.

� Functions for working with multiple MIP solutions, the solution pool and the solution enumerator:
selectsol, XPRS_enumduplpol, XPRS_enummaxsol and XPRS_enumsols.

� Functions for cut management, including model cuts and delayed rows: addcut, addcuts,
loadcuts, storecut, storecuts, delcuts, dropcuts, getcnlist and getcplist.

� Functions for determining irreducible infeasible sets, and for repairing infeasibility: getiis,
getiissense, getiistype, isiisvalid, resetiis and repairinfeas and getinfeas.

18.3 Control parameters

When using mmxnlp, getparam and setparam are extended to additionally provide access to all thecontrol and problem parameters of the Xpress NonLinear SLP solver. The module also provides thefollowing controls of its own:

Fair Isaac Corporation Confidential and Proprietary Information 647

mmxnlp

XNLP_AUTOELIM When set to true, Mosel uses the model’s semantics to break downnonlinear formulas and feed the information to the solver for nonlineareliminations and to detect network structures in the model. p. 648
XNLP_LOADASNL When set to true, quadratic expressions will be treated as being of generalnonlinear type. If they are known to be non-convex, the overhead ofattempting to treat the expression as convex initially is avoided. p. 648
XNLP_LOADNAMES When set to true, names from the Mosel file will be passed to theunderlying solver to improve the readability of messages it generates. Thisis an alias for XPRS_LOADNAMES. p. 649
XNLP_NLPSTATUS The solution status of the problem. For a detailed description of this value,please see the documentation for the XSLP_NLPSTATUS attribute in theXpress NonLinear Reference Manual. p. 649
XNLP_SOLVER Solver selection when available. p. 649
XNLP_VERBOSE When set to true, informative messages from any underlying nonlinearsolver will be displayed. This is an alias for XPRS_VERBOSE. p. 650

XNLP_AUTOELIM

Description When set to true, Mosel uses the model’s semantics to break down nonlinear formulas andfeed the information to the solver for nonlinear eliminations and to detect network structuresin the model.
Type Integer, read/write
Values 0 Disable

1 Enable
Default value 1
Module mmxnlp

XNLP_LOADASNL

Description When set to true, quadratic expressions will be treated as being of general nonlinear type. Ifthey are known to be non-convex, the overhead of attempting to treat the expression asconvex initially is avoided.
Type Integer, read/write
Values 0 Assume that quadratic expressions are convex

1 Assume that quadratic expressions are non-convex
Default value 0
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 648

mmxnlp

XNLP_LOADNAMES

Description When set to true, names from the Mosel file will be passed to the underlying solver to improvethe readability of messages it generates. This is an alias for XPRS_LOADNAMES.
Type Integer, read/write
Values 0 Names are not loaded into the solver

1 Names are loaded into the solver
Default value 0
Module mmxnlp

XNLP_NLPSTATUS

Description The solution status of the problem. For a detailed description of this value, please see thedocumentation for the XSLP_NLPSTATUS attribute in the Xpress NonLinear Reference Manual.
Type Integer, read only
Values 0 Optimization unstarted

1 Locally optimal
2 Optimal
3 Locally infeasible
4 Infeasible
5 Unbounded
6 Unfinished

Default value 0
Module mmxnlp

XNLP_SOLVER

Description Solver selection when available.
Type Integer, read/write
Values -1 Determine automatically, based on problem characteristics and availability of solvers

0 Xpress NonLinear (SLP)
1 Knitro

Default value -1
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 649

mmxnlp

XNLP_VERBOSE

Description When set to true, informative messages from any underlying nonlinear solver will bedisplayed. This is an alias for XPRS_VERBOSE.
Type Integer, read/write
Values 0 No solver logging

1 Solver log is displayed
Default value 0
Module mmxnlp

18.4 Procedures and functions

This section lists in alphabetical order the functions and procedures that are provided by the mmxnlpmodule.
addmultistart Loads a single or a set of multistart job(s) into the multistart job pool.p. 652
chgdeltatype Changes the type of a delta variable associated to an mpvar. p. 653
F Include a user function in a nonlinear constraint. p. 654
generateUFparallel Generates a parallel version of a Mosel user function that is implementedas a Mosel package. p. 656
printmodelmemory Print a summary of the current memory usage of the nonlinear module.p. 657
printmodelscaling Print a summary of the scaling of the model, as loaded into the solver.p. 658
setcallback Set nonlinear callback functions and procedures. p. 659
setcomplementary Set two variables as being complementary. p. 660
setdefvar Set a variable to be purely defined by a constriant. p. 662
setdelayedctr Mark a constraint as delayed. p. 661
setdetrow Set the determining row for a variable. p. 663
setenforcedctr Mark a nonlinear constraint as enforced. p. 664
setinitsb Provide the initial step bound for a variable. p. 665
settol Define a particular tolerance in a tolerance set. p. 666
settolset Assigns a tolerance set to a variable, or list of variables. p. 667
userfuncDLL Create a user function implemented as a dynamic linked library. p. 668
userfuncExcel Create a user function from a Microsoft Excel spreadsheet. p. 669
userfuncExcelMacro Create a user function from a Microsoft Excel macro. p. 670

Fair Isaac Corporation Confidential and Proprietary Information 650

mmxnlp

userfuncinfo Print the inferred prototype of the given user function. p. 671
userfuncMosel Create a user function from a Mosel function. p. 672
validate Print a summary of the feasibility of the current solution. p. 673

Fair Isaac Corporation Confidential and Proprietary Information 651

mmxnlp

addmultistart

Purpose Loads a single or a set of multistart job(s) into the multistart job pool.
Synopsis

addmultistart(descr:string)
addmultistart(descr:string, controls:array(set of string) of real)
addmultistart(descr:string, initvalues:array(set of mpvar) of real)
addmultistart(descr:string, initvalues:array(set of mpvar) of real,

controls: array(set of string) of real)
addmultistart(descr:string, controls:array(set of string) of real,

initvalues:array(set of mpvar) of real)
addmultistart(descr:string, preset:integer)
addmultistart(descr:string, preset:integer, cnt:integer)
addmultistart(descr:string, preset:integer, initvalues:array(set of mpvar)

of real, controls:array(set of string) of real)
addmultistart(descr:string, preset:integer, cnt:integer,

initvalues:array(set of mpvar) of real, controls:array(set of string)
of real)

Arguments
descr Text description of the job. Used in reporting and in callbacks.
controls An array containing the controls to be set for the loaded multistart job.
initvalues An array containing initial values to be set for the loaded multistart job.
preset The multistart preset of jobs to be loaded. Please see the Xpress NonLinear Reference

Manual for the list of possible presets.
cnt The upper bound on the number of jobs to be created, in case a preset is used.

Further informationAdds a job or a preset to the multistart job pool. Multistart jobs are automatically executed on the nextminimize/maximize command, unless the XSLP_MULTISTART control is set to 0. Please refer to the
Xpress NonLinear Reference Manual for a detailed description of multistart.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 652

mmxnlp

chgdeltatype

Purpose Changes the type of a delta variable associated to an mpvar.
Synopsis

procedure chgdeltatype(col:mpvar, type:integer, value:real)

Arguments
col The column for which the delta is to be changed.
type The new type of the delta.
value Value associated to the new delta type.

Further informationPlease refer to the Xpress NonLinear Reference Manual for more details about delta types.
Related topics

setinitval, setinitsb, setdetrow, setenforcedctr.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 653

mmxnlp

F

Purpose Include a user function in a nonlinear constraint.
Synopsis

function F(UF:userfunc, arg:linctr):nlctr
function F(UF:userfunc, arg:nlctr):nlctr
function F(UF:userfunc, arg:list of nlctr):nlctr
function F(UF:userfunc, arg:array(any sets) of nlctr):nlctr
function F(UF:userfunc, arg:list of nlctr, returnarg:integer):nlctr
function F(UF:userfunc, arg:array(any sets) of nlctr,

returnarg:integer):nlctr

Arguments
UF A user function of type userfunc
arg Argument to be passed to the user function
returnarg Return argument to be substituted into the formula for multivalued user functions

Return valueA nonlinear expression which may form part of any nlctr.
Example The following example shows how to implement a negative cosine function.

model "SimpleUF"
uses "mmxnlp"
declarations
obj: nlctr
x: mpvar
MinusSine: userfunc
end-declarations

! Creation and assignment of the user function
MinusSine := userfuncMosel("MinusSineImplementation")

! which can then be embedded into any nonlinear expression
obj := F(MinusSine,x)
minimize(obj)

public function MinusSineImplementation (x:real): real
returned := -sin(x)
end-function

end-model

Further informationUser functions allow extremely complex, recursive or non-algebraic expressions to be included innonlinear formulae. As such they may make use of simulators or other black box evaluators. The actualparameters to a user function depend upon the way it is bound to the model by the F function. Pleasesee the chapter on user functions for more details. Each user function instance defined by the meansof the F function must share the same argument syntax structure, however the actual formula contentmay differ: e.g. if a function takes an array of nonlinear expressions as input arguments, each instanceof the function corresponding to the same definition based on the same F instance must have the sameunderlying array structure, although the expressions stored in them may differ. If a separate F instanceis used using the same function implementation, this rule does not apply. Also note, that for Mosel tobe able to correctly cross reference the sets used in the definition of an array, the sets must be named.

Fair Isaac Corporation Confidential and Proprietary Information 654

mmxnlp

Related topics
userfuncDLL, userfuncMosel, userfuncExcel, userfuncExcelMacro.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 655

mmxnlp

generateUFparallel

Purpose Generates a parallel version of a Mosel user function that is implemented as a Mosel package.
Synopsis

procedure generateUFparallel(bimname:string, fctname:string)

Arguments
bimname Path to the compiled Mosel package implementing the user function.
fctname The public user function inside the package.

Further informationPlease refer to the Xpress NonLinear Reference Manual for more details about this functionality.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 656

mmxnlp

printmodelmemory

Purpose Print a summary of the current memory usage of the nonlinear module.
Synopsis

procedure printmodelmemory

Further informationThis procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose ofmodel analysis and debugging.
Related topics

validate, printmodelscaling, userfuncinfo.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 657

mmxnlp

printmodelscaling

Purpose Print a summary of the scaling of the model, as loaded into the solver.
Synopsis

procedure printmodelscaling

Further informationThis procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose ofmodel analysis and debugging.
Related topics

validate, printmodelmemory, userfuncinfo.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 658

mmxnlp

setcallback

Purpose Set nonlinear callback functions and procedures.
Synopsis

procedure setcallback(cbtype:integer, cb:string)

Arguments
cbtype Type of the callback:

XSLP_CB_ITERSTART SLP iteration start callback
XSLP_CB_ITEREND SLP iteration end callback
XSLP_CB_ITERVAR Nonlinear variable convergence check callback
XSLP_CB_CASCADESTART Cascading start callback
XSLP_CB_CASCADEVAR Variable cascaded callback
XSLP_CB_CASCADEEND Cascading end callback
XSLP_CB_START SLP solve start callback
XSLP_CB_END SLP solve end callback
XSLP_CB_PRENODE MISLP node setup callback
XSLP_CB_INTSOL New integer solution found callback
XSLP_CB_OPTNODE MISLP node solved and (SLP) optimal callback
XSLP_CB_CONSTRUCT Construct start callback
XSLP_CB_MSJOBSTART A new multistart job is about to be solved callback
XSLP_CB_MSJOBEND A multistart job has been solved callback
XSLP_CB_MSWINNER Winner multistart job callback

cb Name of the callback function/procedure; the parameters and the type of the return value (ifany) vary depending on the type of the callback:
function cb:integer XSLP_CB_ITERSTART
function cb:integer XSLP_CB_ITEREND
function cb(var:mpvar) : integer XSLP_CB_ITERVAR
function cb:integer XSLP_CB_CASCADESTART
function cb(var:mpvar):integer XSLP_CB_CASCADEVAR
function cb:integer XSLP_CB_CASCADEEND
function cb:integer XSLP_CB_START
function cb:integer XSLP_CB_END
function cb:integer XSLP_CB_PRENODE
function cb:integer XSLP_CB_INTSOL
function cb:integer XSLP_CB_OPTNODE
function cb:integer XSLP_CB_CONSTRUCT
function cb(description:string):integer XSLP_CB_MSJOBSTART
function cb(description:string):integer XSLP_CB_MSJOBEND
function cb(description:string):integer XSLP_CB_MSWINNER

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 659

mmxnlp

setcomplementary

Purpose Set two variables as being complementary.
Synopsis

procedure setcomplementary(var1:mpvar, var2:mpvar)

Arguments
var1 The first variable of the variable pair to be set as complementing
var2 The first variable of the variable pair to be set as complementing

Further informationA complementing variable pair implements the constraint that is equivalent with the product of thevariables being zero. However, the solvers may be able to treat such constraints in a special, moreefficient ways, which may make a difference if the complementarity constraints are the problematicpart of the model. Note that Knitro only allows non-overlapping complementary variables, and in thepresence of overlaps Xpress will default to use SLP. Complementary variables must have a lower boundof zero.
Related topics

setinitval, setinitsb, setdetrow, setenforcedctr.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 660

mmxnlp

setdelayedctr

Purpose Mark a constraint as delayed.
Synopsis

procedure setdelayedctr(row:nlctr, delay:integer)

Arguments
row The constraint to be delayed
delay Integer value defining the number of iterations in which the constraint should be ignored

Further informationA delayed constraint will be introduced after some number of solver iterations have occurred. This maybe useful for constraints that could aid the convergence of a solver, but which are not expected to bebinding at an optimal solution and which could make early iterations more expensive.
Related topics

setinitval, setinitsb, setdetrow, setenforcedctr.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 661

mmxnlp

setdefvar

Purpose Set a variable to be purely defined by a constriant.
Synopsis

procedure setdefvar(var:mpvar, row:linctr)
procedure setdefvar(var:mpvar, row:nlctr)

Arguments
var The variable being made defined by the constraint.
row The constraint that defines the value of the variable.

Further informationThe variable will be made free (its bounds removed) since it’s value is now defined by the contraint’svalue. Ideally, the variable should appear linearly in the constriant, in which case unless a circularreference is detected it will used for eliminate on in the nonlinear presolver. The purpose of theconstruct is to break large nonliner expressions.
Related topics

setdetrow

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 662

mmxnlp

setdetrow

Purpose Set the determining row for a variable.
Synopsis

procedure setdetrow(var:mpvar, row:linctr)
procedure setdetrow(var:mpvar, row:nlctr)
procedure setdetrow(row:linctr, var:mpvar)
procedure setdetrow(row:nlctr, var:mpvar)

Arguments
var The variable for which the determining row is provided
row The row that determines the value of the variable.

Further informationA row which is determining for a variable defines the value of that variable. This means that the variableis a derived value which is calculated in another part of the model. Some solvers will use suchdesignations to refine their search, and in particular in sequential linear programming, a process called
cascading makes use of determining rows. Please refer to the Xpress NonLinear Reference Manual(chapter ’Cascading’) for more information.

Related topics
setinitval, setinitsb, setenforcedctr, setdelayedctr.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 663

mmxnlp

setenforcedctr

Purpose Mark a nonlinear constraint as enforced.
Synopsis

procedure setenforcedctr(row:nlctr)

Argument
row The constraint to be set enforced

Further informationA constraint which is marked as enforced will not have penalty error vectors introduced upon it bysolvers which use such techniques. This may be useful for constraints which are hard to satisfy.
Related topics

setinitval, setinitsb, setdetrow, setdelayedctr.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 664

mmxnlp

setinitsb

Purpose Provide the initial step bound for a variable.
Synopsis

procedure setinitsb(var:mpvar, value:real)

Arguments
var The variable for which the step bound is provided
value Value to be used as initial value

Further informationThe initial step bounds define in turn the size of the initial trust region. Please refer to the Xpress
NonLinear Reference Manual for more information.

Related topics
setinitval, setdetrow, setenforcedctr, setdelayedctr.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 665

mmxnlp

settol

Purpose Define a particular tolerance in a tolerance set.
Synopsis

procedure settol(tset:tolset, which:integer, value:real)

Arguments
tset The tolerance set to be modified
which The tolerance which is being defined
value The new value of the tolerance

Further informationThe tolerances which may be defined by this method are:
XNLP_TOL_TC The absolute closure tolerance
XNLP_TOL_TA The absolute delta tolerance
XNLP_TOL_RA The relative delta tolerance
XNLP_TOL_TM The absolute matrix tolerance
XNLP_TOL_RM The relative matrix tolerance
XNLP_TOL_TI The absolute impact tolerance
XNLP_TOL_RI The relative impact tolerance
XNLP_TOL_TS The relative slack impact tolerance
XNLP_TOL_RS The absolute slack impact tolerance
Please refer to the Xpress NonLinear Reference Manual, and particularly the chapter ’Convergencecriteria’, for more information on these tolerances.

Related topics
setinitval, setinitsb, setdetrow, setenforcedctr.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 666

mmxnlp

settolset

Purpose Assigns a tolerance set to a variable, or list of variables.
Synopsis

procedure settolset(var:mpvar, tset:tolset)
procedure settolset(vars:list of mpvar, tset:tolset)

Arguments
var Variable to which the tolerance set is to be assigned
vars List pf variable to which the tolerance set is to be assigned
tset The tolerance set to be assigned to the variable(s)

Related topics
settol.

Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 667

mmxnlp

userfuncDLL

Purpose Create a user function implemented as a dynamic linked library.
Synopsis

function userfuncDLL(libfile:string, fctname:string):userfunc

Arguments
libfile Name of the dynamically linked library containing the implementation of the user function
fctname Name of the function inside the dynamic library

Return valueA userfunc object that can be used in the F functions to be embedded in formulas.
Further informationUser functions allow extremely complex, recursive or non-algebraic expressions to be included innonlinear formulae. As such they may make use of simulators or other black box evaluators. The actualparameters to a user function depend upon the way it is bound to the model by the F function. Pleasesee the chapter ’User functions’ of the Xpress NonLinear Reference Manual for more details.Dynamically linked libraries are supported on all platforms, and are usually the most computationallyefficient way to implement user functions in mmxnlp.
Related topics

F, userfuncMosel, userfuncExcel, userfuncExcelMacro.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 668

mmxnlp

userfuncExcel

Purpose Create a user function from a Microsoft Excel spreadsheet.
Synopsis

function userfuncExcel(filename:string, sheetname:string):userfunc
function userfuncExcel(filename:string, sheetname:string,

macro:string):userfunc

Arguments
filename Name of the Excel file including the function implementation
sheetname Name of the worksheet in the workbook used for input and output
macro Name of the Visual Basic macro to be called to recalculate the spreadsheet. Optional, ifnot provided recalculation is done by the standard recalculation request

Return valueA userfunc object that can be used in the F functions to be embedded in formulas.
Further informationUser functions allow extremely complex, recursive or non-algebraic expressions to be included innonlinear formulae. As such they may make use of simulators or other black box evaluators. The actualparameters to a user function depend upon the way it is bound to the model by the F function. Pleasesee the chapter on user functions for more details. Communication with Excel carries significantoverhead and performance degradation may result from using functions of this type.
Related topics

F, userfuncMosel, userfuncExcelMacro, userfuncDLL.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 669

mmxnlp

userfuncExcelMacro

Purpose Create a user function from a Microsoft Excel macro.
Synopsis

function userfuncExcelMacro(filename:string, sheetname:string,
macro:string):userfunc

Arguments
filename Name of the Excel file including the function implementation
sheetname Name of the worksheet in the workbook including the Visual Basic macro
macro Name of the Visual Basic macro implementing the user function

Return valueA userfunc object that can be used in the F functions to be embedded in formulas.
Further informationUser functions allow extremely complex, recursive or non-algebraic expressions to be included innonlinear formulae. As such they may make use of simulators or other black box evaluators. The actualparameters to a user function depend upon the way it is bound to the model by the F function. Pleasesee the chapter on user functions for more details. Communication with Excel carries significantoverhead and performance degradation may result from using functions of this type.
Related topics

F, userfuncMosel, userfuncExcel, userfuncDLL.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 670

mmxnlp

userfuncinfo

Purpose Print the inferred prototype of the given user function.
Synopsis

procedure userfuncinfo(UF:userfunc)

Argument
UF The user function to be analyzed

Further informationThe type and signature of a user function are inferred from its use in calls to the F function in thecurrent model. This procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for thepurpose of model analysis and debugging.
Related topics

validate, printmodelmemory, printmodelscaling.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 671

mmxnlp

userfuncMosel

Purpose Create a user function from a Mosel function.
Synopsis

function userfuncMosel(fctname:string):userfunc
function userfuncMosel(fctname:string, options:integer):userfunc

Arguments
fctname Name of the Mosel function to wrap
options Options describing special properties of the user function

Return valueA userfunc object that can be used in the F functions to be embedded in formulas.
Further informationUser functions allow extremely complex, recursive or non-algebraic expressions to be included innonlinear formulae. As such they may make use of simulators or other black box evaluators. The actualparameters to a user function depend upon the way it is bound to the model by the F function. Pleasesee the chapter on user functions for more details.

There is support for user functions providing their own derivatives. Currently, user functions taking anarray of nlctr and returning a single function values may provide their own derivatives. To mark afunction as returning it’s own derivatives, use option XNLP_DERIVATIVES or XNLP_DELTAS toindicate that the solver should suggest perturbation values for the variables.
Related topics

F, userfuncExcel, userfuncExcelMacro, userfuncDLL.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 672

mmxnlp

validate

Purpose Print a summary of the feasibility of the current solution.
Synopsis

procedure validate

Further informationThis procedure has no effect unless XNLP_VERBOSE is set. It is provided solely for the purpose ofmodel analysis and debugging.
Related topics

printmodelmemory, printmodelscaling, userfuncinfo.
Module mmxnlp

Fair Isaac Corporation Confidential and Proprietary Information 673

mmxnlp

18.5 Error codes issued by mmxnlp

1 Out of memory
The system has run out of memory.

2 No purchase authorization found
No license found

3 Failed to initialize XSLP
Cannot initialize the XPRS library. There may be a licensing problem

4 Unsupported XSLP version
The version of the ’XSLP’ library is incompatible with the current module. The Xpress installationmay be corrupt

5 Failed to create the XSLP problem object
Cannot create the XSLP optimizer problem. There may be a licensing problem

6 Unexpected mmxnlp user function signature
The provided user functions’ signature does not match any expected format.

7 Unexpected external token in mmxnlp
An unexpected external token found by the ’mmxnlp’ module. Please contact support.

8 Unsupported operator
The provided operator is not supported by ’mmxnlp’.

9 Failed to load problem
Could not load the problem into the optimizer.

10 Variable bound conflict in problem
Inconsistent bounds provided for the variable.

11 Failed to load user function
The user function could not be loaded into the optimizer.

12 Error evaluating user function
Error while evaluation the user function. The user function likely to have returned an error code.

13 Unknown tolerance set
The provided tolerance set is invalid.

14 List tpype error in user function
The list provided to the user function is not valid for the function.

15 Failed to create save file
The savefile could not be created.

16 Error in optimization
An error has occured during optimization.

17 Cannot reoptimize using a different objective (use named linctr or nlctr)
The objective has unexpectedly changed

Fair Isaac Corporation Confidential and Proprietary Information 674

mmxnlp

18 Internal error in mmxnlp. Please contact FICO support
An internal error has occurred. Please contact support.

20 Incompatible array definitions for user function arguments
The user function received incompatible arrays.

21 Non-Mosel user functions only take ’list of nlctr’ type arguments
User functions that are not implemented as a Mosel function can only take list of ’nlctr’arguments (no arrays).

22 Invalid argument list for external function
The provided argument list is not valid for the external function.

23 Provided user function is not returning a single real
The provided user function was expected to return a single real value.

24 Provided user function is not returning an array indexed by integers
The provided user function was expected to return an array of reals indexed by integers.

25 User function must be loaded before it’s properties can be retrieved
The user function must be loaded before it’s properties are interrogated. Please use ’loadprob’ toload the model including the user function.

26 Unexpected variable found. Please reload problem first using ’loadprob’
An unexpected variable has been used. Please reload the problem to load the variable.

27 Operation only supported on the main problem (e.g. not inside multi-start callbacks)
This operation is only supported in the main problem. It cannot be used on worker problems.

28 Math error while evaluating expression
A mathematical error has occurred while evaluating the expression.

Fair Isaac Corporation Confidential and Proprietary Information 675

CHAPTER 19

mmxprs

The mmxprs module provides access to FICO R© Xpress Optimizer from within a Mosel model and assuch it requires the Xpress Optimizer library (XPRS) to be installed on the system. To use this module,the following line must be included in the header of the Mosel model file:
uses 'mmxprs'

A large number of optimization-related routines are provided, ranging from those for finding a solutionto the problem, to those for setting callbacks and cut manager functions. Whilst a description of theirusage is provided in this manual, further details relating to the usage of these may be found byconsulting the Xpress Optimizer Reference Manual.

19.1 New functionality for the Mosel language

19.1.1 The problem type mpproblem.xprs

This module exposes its functionality through an extension to the mpproblem problem type. As aconsequence, all routines presented here are executed in the context of the current problem. Inparticular, the setting of a control parameter is applied only to the current problem and each problemhas its own set of settings and solution information. However, when a new problem instance is created,the value of the control parameters XPRS_colorder, XPRS_enummaxsol, XPRS_enumduplpol,
XPRS_loadnames and XPRS_verbose are initialised with the settings of the main problem.

19.1.2 The type basis

The module mmxprs defines the type basis to represent solution basis in the Mosel Language. Thisnew type is used to store a basis computed by the optimizer during its solution process (savebasis).A basis can then be loaded again into the optimiser with loadbasis, inspected (by getting the basisstatus of each variable/constraint it includes with getbstat) or modified (by changing this basisstatus using setbstat). The type basis supports assignment and test of equality. This comparisononly checks whether two basis contain the same information, it does not indicate whether the basis areequivalent.
19.1.3 The type mpsol

The type mpsol characterises a solution of an MP problem by associating a value to each decisionvariable (type mpvar) of the problem. Initialising such an object can be achieved by saving the currentsolution found by the optimiser (savesol or savemipsol) or by building it one variable at a time(setsol). Various routines requiring solution information support the solution object. For instance
getsolmay be used to evaluate an expression on a specific solution; loadmipsol and addmipsolaccept this object as input. A solution might be saved into a file using writesol and the resulting file

Fair Isaac Corporation Confidential and Proprietary Information 676

mmxprs

can be loaded into the optimiser with readsol. The type mpsol supports assignment and test ofequality.
19.1.4 The type logctr

The type logctr represents either a logical expression over linear constraints or an indicator constraint(see indicator). Logical expressions can be built using standard operators (and, or, not) or with thehelp of the dedicated functions implies and xor. These logical constructs are handled like linearconstraints: they are associated to the current problem, can be (re)defined via assignments and hiddenusing sethidden. Note however that logical constructs are not shown by exportprob although the
mmxprs routine writeprob will report them.
If logical expressions are employed in a model, the loading of the problem into the optimizer requiresthe use of the helper package "advmod":

uses 'advmod'

This package is not necessary when a model uses only indicator constraints directly.

19.2 Control parameters

This module extends the getparam function and the setparam procedure in order to access all thecontrol and problem parameters of Optimizer (for example the problem attribute LPSTATUS is mappedto the mmxprs control parameter XPRS_lpstatus). In addition to these, the following controlparameters are also defined:
XPRS_colorder Reorder matrix columns before loading the problem. p. 677
XPRS_enumduplpol Handling of duplicate solutions during an enumeration. p. 678
XPRS_enummaxsol Maximum number of solutions to be saved during an enumeration. p. 678
XPRS_enumsols Number of solutions found during the last enumeration. p. 678
XPRS_fullversion Optimizer version number. p. 679
XPRS_loadnames Enable/disable loading of MPS names into the Optimizer. p. 679
XPRS_problem Optimizer problem pointers. p. 679
XPRS_probname Read/set the problem name used by the Optimizer. p. 679
XPRS_verbose Enable/disable message printing by the Optimizer. p. 680
Example:

setparam("XPRS_verbose", true) ! Turn on message printing
pstat:= getparam("XPRS_lpstatus") ! Get the problem LP optimization status
writeln("Best bound=", getparam("XPRS_bestbound")) ! Display the best bound value

XPRS_colorder

Description Reorder matrix columns before loading the problem.

Fair Isaac Corporation Confidential and Proprietary Information 677

mmxprs

Type Integer, read/write
Values 0 Mosel implicit ordering

1,3 Reorder using a numeric criterion
2 Alphabetical order of the variable names (this requires the names to be available)
4 Random ordering

Default value 0
Module mmxprs

XPRS_enumsols

Description Number of solutions found during the last enumeration. The value of this parameter is -1 isno enumeration has been run.
Type Integer, read only
Affects routines maximize, minimize.
Module mmxprs

XPRS_enummaxsol

Description Maximum number of solutions to be saved during an enumeration.
Type Integer, read/write
Default value 10
Affects routines maximize, minimize.
Module mmxprs

XPRS_enumduplpol

Description Handling of duplicate solutions during an enumeration. Refer to the MSP control parameter
MSP_DUPLICATESOLUTIONSPOLICY for further information.

Type Integer, read/write
Values 0 All solutions kept

1 Continuous
2 Discrete and continuous separate
3 Discrete only

Default value 3
Affects routines maximize, minimize.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 678

mmxprs

XPRS_fullversion

Description The full Optimizer version number in the form major.minor.build (e.g."20.01.03").
Type String, read only
Module mmxprs

XPRS_loadnames

Description Enable/disable loading of MPS names into the Optimizer.
Type Boolean, read/write
Values true Enable loading of names

false Disable loading of names
Default value false

Affects routines loadprob, maximize, minimize.
Module mmxprs

XPRS_problem

Description The Optimizer problem (XPRSprob), MIP solution pool (XPRSmipsolpool) and MIP solutionenumerator (XPRSmipsolenum) pointers separated by spaces. This attribute is only requiredin applications using both Mosel and the Optimizer at the C level.
Type String, read only
Module mmxprs

XPRS_probname

Description Read/set the problem name used by the Optimizer to build its working files (this name maycontain a full path). If set to the empty string (default value), a unique name with a path to thetemporary directory of the operating system is generated.
Type String, read/write
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 679

mmxprs

XPRS_verbose

Description Enable/disable message printing by the Optimizer.
Type Boolean, read/write
Values true Enable message printing

false Disable message printing
Default value false

Module mmxprs

19.3 Procedures and functions

This section lists in alphabetical order the functions and procedures that are provided by the mmxprsmodule.
addmipsol Add a MIP solution to the optimizer. p. 683
basisstability Get basis stability information. p. 684
calcsolinfo Calculates a property of an mpsol solution. p. 685
clearmipdir Delete all defined MIP directives. p. 686
clearmodcut Delete all defined model cuts. p. 687
command Execute an Optimizer command. p. 688
copysoltoinit Copy solution values to initial values of an NL problem. p. 689
crossoverlpsol Crosses over a previously loaded LP solution to a basic solution. p. 690
defdelayedrows Define the set of constraints to be treated as delayed rows. p. 691
defsecurevecs Define the variables and constraints to be preserved. p. 692
estimatemarginals Estimate better marginal values for variables and constraints fordegenerate problems. p. 693
fixglobal Fix values of global entitites. p. 694
getbstat Get the status of a variable or constraint in a basis. p. 695
getdualray Get a dual ray for an infeasible problem. p. 696
getiis Compute then get the Irreductible Infeasible Sets (IIS). p. 697
getiissense Decode the sense part of an IIS bound type information. p. 698
getiistype Decode the type part of an IIS bound type information. p. 699
getinfcause Returns the variable or constraint causing infeasibility. p. 700
getinfeas Returns sets of infeasible primal and dual variables. p. 701
getlb Get the lower bound of a variable. p. 702

Fair Isaac Corporation Confidential and Proprietary Information 680

mmxprs

getloadedlinctrs Get the linear constraints loaded into the optimiser. p. 703
getloadedmpvars Get the decision variables loaded into the optimiser. p. 704
getname Get the name of a decision variable or constraint. p. 705
getprimalray Get a primal ray for an unbounded problem. p. 706
getprobstat Get the Optimizer problem status. p. 707
getrange Get a range value for a variable or constraint. p. 708
getsensrng Get sensitivity ranges for objective or RHS function coefficients. p. 709
getsize Get the size of a solution. p. 710
getsol Get the solution value of an expression from a solution object. p. 711
getub Get the upper bound of a variable. p. 712
getvars Get the set of variables of a solution. p. 713
hasfeature Check if a specific feature is supported by the currently used license. p. 714
implies Create an implies expression. p. 715
indicator Create an indicator constraint. p. 716
isiisvalid Check whether an IIS number exists. p. 717
isintegral Check whether a solution value is integral. p. 718
loadbasis Load a previously saved basis. p. 719
loadlpsol Load an LP solution into the optimizer. p. 720
loadmipsol Load a MIP solution into the optimizer. p. 721
loadprob Load a problem into the optimizer. p. 723
maximize, minimize Maximize/minimize the current problem. p. 724
postsolve Postsolve the current matrix. p. 726
readbasis Read a basis from a file. p. 727
readdirs Read directives from a file. p. 728
readsol Read a solution from a file. p. 729
refinemipsol Executes the MIP solution refiner on an mpsol solution. p. 730
rejectintsol Reject a PREINTSOL solution. p. 731
repairinfeas Relaxing bounds to repair infeasibility. p. 732
resetbasis Reset a basis. p. 734
resetiis Reset the search for IIS. p. 735
resetsol Reset a solution. p. 736
savebasis Save the current basis. p. 737
savemipsol Save the current solution into the provided array or solution object. p. 738
savesol Save the current solution into a solution object. p. 739

Fair Isaac Corporation Confidential and Proprietary Information 681

mmxprs

savestate Save current state of the Optimizer to a file. p. 740
selectsol Select one of the solutions found by solution enumerator. p. 741
setarchconsistency Sets the optimizer architecture control. p. 742
setbstat Set the status of a variable or constraint in a basis. p. 743
setcallback Set optimizer callback functions and procedures. p. 744
setcbcutoff Set cutoff for PREINTSOL callback. p. 747
setgndata Update data for GAPNOTIFY callback. p. 748
setlb Set the lower bound of a variable. p. 749
setmipdir Set a directive on a variable or Special Ordered Set. p. 750
setmodcut Mark a constraint as a model cut. p. 751
setsol Define the value associated to a decision variabe in a solution object. p. 752
setub Set the upper bound of a variable. p. 753
setucbdata Update data for CHGBRANCH callback. p. 754
stopoptimize Interrupt the optimizer algorithms. p. 755
unloadprob Unload the problem held in the optimizer. p. 756
uselastbarsol Sets up the last barrier solve’s solution as the current one if one is availablep. 757
writebasis Write the current basis to a file. p. 758
writedirs Write current directives to a file. p. 759
writeprob Write the current problem to a file. p. 760
writesol Write a solution to a file. p. 761
xor Create an exclusive or expression. p. 762

Fair Isaac Corporation Confidential and Proprietary Information 682

mmxprs

addmipsol

Purpose Add a MIP solution to the optimizer.
Synopsis

procedure addmipsol(solid:string,s:array(set of mpvar) of real)
procedure addmipsol(solid:string,ms:mpsol)

Arguments
solid Identifier to be assigned to the solution
s An array containing the solution
ms A solution object

Further information
1. This function is used to provide the expectations of the modeler on the values of selected variables inpossible MIP solutions. It is different to loadmipsol in that it is not necessary to provide full, feasibleMIP solutions. The values provided will be used by the Optimizer to attempt to generate full MIPsolutions. The addmipsol function can therefore be used to trial the feasibility of certain variablevalue assignments without the need to fix them in the problem formulation itself.
2. The solution value array s is created by assigning values to discrete variables in the problem, such as

s(x):= 1 (where x is a decision variable of type mpvar). It is also possible to use a solution that haspreviously been saved using the procedure savemipsol.
3. If the provided solution is found to be infeasible, a limited local search heuristic will be run in anattempt to find a close feasible integer solution.
4. The current problem definition must be loaded into the Optimizer for addmipsol to have any effect. Ifthis has not recently been done, e.g., by calling maximize or minimize, the problem must be explicitlyloaded using loadprob.
5. The function returns immediately after passing the solution to the Optimizer. The solution is placed in apool until the optimizer is able to analyze the solution during a MIP solve.
6. The SOLNOTIFY callback function can be used to discover the outcome of a loaded solution, based onthe identifier assigned to the solution (see setcallback).

Related topics
savemipsol, loadmipsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 683

mmxprs

basisstability

Purpose Get basis stability information.
Synopsis

function basisstability(type:integer,norm:integer,scaled:boolean):real

Arguments
type Which information to return. Possible values:

0 Condition number of the basis
1 Stability measure for the solution relative to the current basis
2 Stability measure for the duals relative to the current basis
3 Stability measure for the right hand side relative to the current basis
4 Stability measure for the basic part of the objective relative to the current basis

norm Which norm to use. Possible values:
0 Use the infinity norm
1 Use the 1 norm
2 Use the Euclidian norm for vectors, and the Frobenius norm for matrices

scaled If false, work on the unscaled matrix
Return valueBasis stability information.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 684

mmxprs

calcsolinfo

Purpose Calculates a property of an mpsol solution.
Synopsis

function calcsolinfo(solution:mpsol, option:integer):mpsol

Arguments
solution The solution to be checked
option Which information to return. Possible values:

XPRS_SOLINFO_ABSPRIMALINFEAS Calculate the maximum absolute primalinfeasibility
XPRS_SOLINFO_RELPRIMALINFEAS Calculate the maximum relative primalinfeasibility
XPRS_SOLINFO_MAXMIPFRACTIONAL Calculate the maximum fractionality of theinteger variables

Related topics
refinemipsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 685

mmxprs

clearmipdir

Purpose Delete all defined MIP directives.
Synopsis

procedure clearmipdir

Further informationThis procedure clears the list of directives defined so far.
Related topics

setmipdir.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 686

mmxprs

clearmodcut

Purpose Delete all defined model cuts.
Synopsis

procedure clearmodcut

Further informationThis procedure clears the list of model cuts defined so far.
Related topics

setmodcut.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 687

mmxprs

command

Purpose Execute an Optimizer command or enter interactive mode of the Optimizer.
Synopsis

procedure command(cmd:string)
procedure command

Argument
cmd Command or sequence of commands separated by "\n" character

Example Solve a MIP problem and then enter interactive mode:
command("minim\nglobal")
command

Further information
1. When used without parameter, this procedure enters an interactive mode of the Optimizer similar to theconsole mode: model execution is suspended and Optimizer commands can be typed directly. Modelexecution resumes after command quit has been typed or the input stream has reached an end of file.Using the alternate form of the procedure with an argument, one can send a command (or sequence ofcommands) to the Optimizer: this may be useful to execute commands for which there is no mmxprsinterface.During the execution of this procedure, callbacks set up in the model are effective and the problemsolution status of mmxprs is updated upon termination. Note that, commands altering the problemmust be avoided (like readprob, change of name of the problem, etc.) in order to preserve consistencybetween Mosel and Optimizer representations of the problem.
2. When Mosel is running in restricted mode (see Section 1.3.4), the restriction NoExec disables thisroutine.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 688

mmxprs

copysoltoinit

Purpose Copy solution values to initial values of an NL problem.
Synopsis

procedure copysoltoinit(ms:mpsol)

Argument
ms A solution object

Further information
1. This procedure copies the solution values of decision variables from the provided solution ms to theirinitial values for the next run. Doing so it overrides any previously set initial values for the involvedvariables. However, the settings for decision variables that are not included in the solution ms remainunchanged.
2. This operation can only be performed on a non-linear problem described using the module mmnl.

Related topics
copysoltoinit, clearinitvals, setinitval.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 689

mmxprs

crossoverlpsol

Purpose Crosses over a previously loaded LP solution to a basic solution.
Synopsis

function crossoverlpsol:boolean

Return valueOperation status:
FALSE No valid starting solution provided prior to call using loadlpsol
TRUE Crossover called

Further informationThis procedure calls the crossover procedure for an already loaded LP solution followed by the usualsimplex solve afterwards. The solution, solution status and all attributes are set up to match the solveand are available the usual way.
Related topics

loadlpsol.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 690

mmxprs

defdelayedrows

Purpose Define the set of constraints to be treated as delayed rows.
Synopsis

procedure defdelayedrows(cset:set of linctr)

Argument
cset Set of constraints to load or {} to reset a previous setting

Further informationThis procedure stores a reference to the provided set that is used when the problem is loaded into theoptimizer. This set can be modified after the call to this procedure: the optimizer will use the currentcontent of the set at the time of loading the problem.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 691

mmxprs

defsecurevecs

Purpose Define the sets of variables and constraints that must not be removed by presolve.
Synopsis

procedure defsecurevecs(vset:set of mpvar,cset:set of linctr)

Arguments
vset Set of decision variables to preserve or {} to reset a previous setting
cset Set of constraints to preserve or {} to reset a previous setting

Further informationThis procedure stores references to the provided sets that are used when the problem is loaded into theoptimizer. These sets can be modified after the call to this procedure: the optimizer will use the currentcontent of the sets at the time of loading the problem.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 692

mmxprs

estimatemarginals

Purpose Estimate better marginal values for variables and constraints for degenerate problems.
Synopsis

procedure estimatemarginals(sbvars:array(vars: set of mpvar) of real)
procedure estimatemarginals(dualslb:array(constriants: set of linctr) of

real, dualsub:array(constriants: set of linctr) of real)
procedure estimatemarginals(sbvars:array(vars: set of mpvar) of real,

efforlimit:integer, delta:real)
procedure estimatemarginals(dualslb:array(constriants: set of linctr) of

real, dualsub:array(constriants: set of linctr) of real,
effortlimit:integer)

Arguments
sbvars An array of reals that will be populated with the approximations for the marginal values.The approximation is carried out for the variables included in the variables set.
dualslb An array of reals that will be populated with the approximations for the lower boundsfor the row marginal values. The approximation is carried out for the constraints in the

constraints set.
dualsub An array of reals that will be populated with the approximations for the upper boundsfor the row marginal values. The approximation is carried out for the constraints in the

constraints set.
efforlimit Effort limit spent to approximate the effect of the move of a variable, expressed as anupper limit of simplex iterations per variable.
delta The size of the perturbation applied to force a movement in the variable.

Further information
1. This procedure can be used to estimate the marginal values of variables in degenerate problems. Indegenerate problems, the reduced costs and row duals do not always provide a good representation ofthe effect on the objective when forcing a move in a variable. Also, in degenerate problems, the reducedcosts and row duals may depend on the final basis found, and multiple correct alternatives mightexists. This function attempts to identify better marginal values by simulating a move in the variables.
2. Prior to calling estimatemarginals, the current LP problem must have been solved to optimality and anoptimal basis must be available.
3. It is important to note that the procedure provides an estimate only.
4. This procedure relies on the XPRSstrongbranch and XPRSestimaterowdualranges functions,refer to the Xpress Optimizer Reference Manual for more information.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 693

mmxprs

fixglobal

Purpose Fix values of global entitites according to the current solution.
Synopsis

procedure fixglobal
procedure fixglobal(ifrnd:boolean)

Argument
ifrnd if true, integer solution values are rounded

Example Solve the MIP problem, reload the problem after solving, fix global entities to their solution values, andfinally solve the LP for the continous variables in order to be able to use getrange.
minimize(obj)
fixglobal
minimize(XPRS_LIN, obj)
writeln(getrange(XPRS_UPACT,x))

Further information
1. This procedure fixes the non-continuous variables to their value of the current solution. A call to thisfunction is required when performing sensitivity analysis on MIP problems using getrange.
2. The first form of the procedure corresponds to fixglobal(false).

Related topics
getrange.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 694

mmxprs

getbstat

Purpose Get the status of a variable or constraint in a basis.
Synopsis

function getbstat(b:basis,v:mpvar):integer
function getbstat(b:basis,c:linctr):integer

Arguments
b A basis
v A decision variable
c A linear constraint

Return valueBasis status. For a variable:
-1 Variable is not in the basis
0 Variable is non-basic at lower bound, or superbasic at zero if the variable has no lower bound
1 Variable is basic
2 Variable is non-basic at upper bound
3 Variable is super-basic
For a constraint:
-1 Constraint is not in the basis
0 Slack, surplus or artificial is non-basic at lower bound
1 Slack, surplus or artificial is basic
2 Slack or surplus is non-basic at upper bound
3 Slack or surplus is super-basic

Related topics
savebasis, setbstat, resetbasis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 695

mmxprs

getdualray

Purpose Get a dual ray for an infeasible problem.
Synopsis

function getdualray(ray:array(set of linctr) of real):boolean

Argument
ray An array of reals over all constraints in the problem (as loaded) in which the dual ray isreturned.

Return valueThis procedure returns the dual ray found for the problem if the problem is found to be dual unbounded(thus primal infeasible) and one is available.
Further information

1. The return value of the function is true if a dual ray is available, and false otherwise.
2. The dimension and base set of the ray argument will be set up by the function.

Example

declarations
all_constraints : set of linctr
dual_ray : array(all_constraints) of real
end-declarations
if getprobstat <> XPRS_INF then

writeln("Problem not infeasible.")
else

HasRay := getdualray(dual_ray)
if HasRay then
writeln("Dual ray:")
forall (c in all_constraints)

writeln(getname(c), " ", dual_ray(c))
else
writeln("No dual ray was found")

end-if
end-if

Related topics
getprimalray

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 696

mmxprs

getiis

Purpose Compute then get the Irreductible Infeasible Sets (IIS).
Synopsis

procedure getiis(vset:set of mpvar,cset:set of linctr)
procedure getiis(numiis:integer,vset:set of mpvar,cset:set of linctr)
procedure getiis(numiis:integer,ctrtype:array(linctr) of integer)
procedure getiis(numiis:integer,duals:array(linctr) of real)
procedure getiis(numiis:integer,isolrow:array(linctr) of boolean)
procedure getiis(numiis:integer,bndtype:array(mpvar) of integer)
procedure getiis(numiis:integer,rdcs:array(mpvar) of real)
procedure getiis(numiis:integer,isolcol:array(mpvar) of boolean)

Arguments
vset Set to return the decision variables of the IIS or {} if not required
cset Set to return the constraints of the IIS or {} if not required
numiis Ordinal number of the IIS
ctrtype Array to return the sense or type of rows in the IIS (XPRS_IIS_LEQ, XPRS_IIS_GEQ,

XPRS_IIS_EQ , XPRS_IIS_SOS1, XPRS_IIS_SOS2 or XPRS_IIS_INDIC)
duals Array to return the dual multipliers associated with the rows of the IIS
isolrow Array to return the isolation status of the the rows of the IIS
bndtype Array to return the encoded sense and type of bounds in the IIS
rdcs Array to return the dual multipliers associated with the bounds of the IIS
isolcol Array to return the isolation status of the the bounds of the IIS

Further information
1. This procedure computes the IIS and stores the result in the provided parameters. The first form of theroutine (numiis not specified) computes all IIS and returns the last set found.
2. The bndtype values have to be decoded using getiissense and getiistype. The first routine mayreturn XPRS_IIS_LEQ (upper bound), XPRS_IIS_GEQ (lower bound), XPRS_IIS_RNG (lower andupper bound) or XPRS_IIS_EQ (fixed bound). The second one may give XPRS_IIS_BIN (binary),

XPRS_IIS_INT (integer), XPRS_IIS_PINT (partial integer), XPRS_IIS_SEC (semi continuous) or
XPRS_IIS_SINT (semi continuous integer).

3. The sets passed to this procedure are reset before being used.
Related topics

resetiis, isiisvalid, getinfeas.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 697

mmxprs

getiissense

Purpose Decode the sense part of an IIS bound type information.
Synopsis

function getiissense(i:bndtype):integer

Argument
bndtype A bound type as returned by getiis

Return valueSense part of an IIS bound type.
Related topics

getiis, getiistype.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 698

mmxprs

getiistype

Purpose Decode the type part of an IIS bound type information.
Synopsis

function getiistype(i:bndtype):integer

Argument
bndtype A bound type as returned by getiis

Return valueType part of an IIS bound type.
Related topics

getiis, getiissense.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 699

mmxprs

getinfcause

Purpose Returns the variable or constraint causing infeasibility.
Synopsis

procedure getinfcause(vars:set of mpvar,ctrs:set of linctr)

Arguments
vars Set to return the infeasible variable or {} if not required
ctrs Set to return infeasible constraint or {} if not required

Further information
1. This function can be used to get the variable or constraint responsible for an infeasibility detectedeither during matrix generation (invalid bound) or when presolving the problem.
2. The sets passed to this procedure are reset before being used.

Related topics
getinfeas.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 700

mmxprs

getinfeas

Purpose Returns sets of infeasible primal and dual variables.
Synopsis

procedure getinfeas(mx:set of mpvar,mslack:set of linctr,mdual:set of
linctr,mdj:set of mpvar)

Arguments
mx Set to return the infeasible variables or {} if not required
mslack Set to return infeasible constraints or {} if not required
mdual Set to return dual infeasible constraints or {} if not required
mdj Set to return the dual infeasible variables or {} if not required

Related topics
getiis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 701

mmxprs

getlb

Purpose Get the lower bound of a variable.
Synopsis

function getlb(x:mpvar):real

Argument
x A decision variable

Return valueLower bound of the variable.
Further informationThis function returns the lower bound of a variable that is currently held by the Optimizer. The boundvalue may be changed directly in the Optimizer using setlb. Changes to the variable in Mosel are nottaken into account by this function unless the problem has been reloaded since (procedure loadprob).
Related topics

getub, setlb, setub.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 702

mmxprs

getloadedlinctrs

Purpose Get the linear constraints loaded into the optimiser.
Synopsis

procedure getloadedlinctrs(sc:set of linctr)

Argument
sc A set of linear constraints

Further informationThe result of the operation is added to the current content of the provided set (i.e. the set is not cleared).
Related topics

getloadedmpvars

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 703

mmxprs

getloadedmpvars

Purpose Get the decision variables loaded into the optimiser.
Synopsis

procedure getloadedmpvars(sv:set of mpvar)

Argument
sv A set of decision variables

Further informationThe result of the operation is added to the current content of the provided set (i.e. the set is not cleared).
Related topics

getloadedlinctrs

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 704

mmxprs

getname

Purpose Get the name of a decision variable or constraint of the problem.
Synopsis

function getname(x:mpvar):string
function getname(c:linctr):string
function getname(nl:nlctr):string

Arguments
x A decision variable used in the problem
c A constraint (or SOS) of the problem
nl A non linear constraint of the problem

Return valueName of the given object.
Further information

1. This function returns the name of a decision variable or constraint of the problem that would be usedfor matrix exportation. The parameter of this function must be part of the problem — for instance ahidden constraint cannot be assigned a name.
2. This function requires that the matrix has been generated (e.g. by a call to exportprob or loadprob).When used with a non linear constraint it is further required for the problem to be loaded into theoptimiser and the parameter XPRS_loadnamesmust be true.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 705

mmxprs

getprimalray

Purpose Get a primal ray for an unbounded problem.
Synopsis

function getprimalray(ray:array(set of mpvar) of real):boolean

Argument
ray An array of reals over all constraints in the problem (as loaded) in which the primal ray isreturned.

Return valueThis procedure returns the primal ray found for the problem if the problem is found to be primalunbounded (thus dual infeasible) and one is available.
Further information

1. The return value of the function is true if a primal ray is available, and false otherwise.
2. The dimension and base set of the ray argument will be set up by the function.

Example

declarations
all_variables : set of mpvar
primal_ray : array(all_variables) of real
end-declarations
if getprobstat <> XPRS_UNB then

writeln("Problem is not unbounded.")
else

HasRay := getprimalray(primal_ray)
if HasRay then
writeln("Primal ray:")
forall (c in all_variables)

writeln(getname(c), " ", primalray(c))
else
writeln("No primal ray was found")

end-if
end-if

Related topics
getdualray

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 706

mmxprs

getprobstat

Purpose Get the Optimizer problem status.
Synopsis

function getprobstat:integer

Return valueStatus of the problem currently held in the Optimizer:
XPRS_OPT Solved to optimality
XPRS_UNF Unfinished
XPRS_INF Infeasible
XPRS_UNB Unbounded
XPRS_OTH Unsolved or objective worse than cutoff

Example The following procedure displays the current problem status:
procedure print_status
declarations
status: string

end-declarations

case getprobstat of
XPRS_OPT: status:="Optimum found"
XPRS_UNF: status:="Unfinished"
XPRS_INF: status:="Infeasible"
XPRS_UNB: status:="Unbounded"
XPRS_OTH: status:="Failed"
else status:="???"

end-case

writeln("Problem status: ", status)
end-procedure

Further informationMore detailed information than what is provided by this function can be obtained with function
getparam, retrieving the problem attributes XPRS_presolvestate, XPRS_lpstatus, and
XPRS_mipstatus (see the Xpress Optimizer Reference Manual).

Related topics
getparam.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 707

mmxprs

getrange

Purpose Get a range value for a variable or constraint.
Synopsis

function getrange(w:integer, x:mpvar):real
function getrange(w:integer, c:linctr):real

Arguments
w Which information to return. Possible values:

XPRS_UPACT Upper activity
XPRS_LOACT Lower activity
XPRS_UUP Upper unit cost
XPRS_UDN Lower unit cost
XPRS_UCOST Upper cost (variable only)
XPRS_LCOST Lower cost (variable only)

x A variable of the problem
c A constraint of the problem

Return valueRange information depending on the value of w.
Further informationThis function returns ranging information to be used for sensitivity analysis after the problem has beenoptimized. On MIP problems, global entities have to be “fixed” using the procedure fixglobal beforethis function can be called.
Related topics

fixglobal.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 708

mmxprs

getsensrng

Purpose Get sensitivity ranges for objective or RHS function coefficients.
Synopsis

function getsensrng(w:integer, x:mpvar):real
function getsensrng(w:integer, c:linctr):real

Arguments
w Which information to return. Possible values:

XPRS_UP Upper sensitivity range
XPRS_DN Lower sensitivity range

x A variable of the problem
c A constraint of the problem

Return valueSensivity range information depending on the value of w.
Further informationThis function returns sensitivity ranges for RHS function coefficients (if used with a constraint) and forobjective function coefficients (if used with a variable). getsensrng can be called only if an optimalLP solution is available and the problem is not MIP presolved.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 709

mmxprs

getsize

Purpose Get the size of a solution.
Synopsis

function getsize(ms:mpsol):integer

Argument
ms A solution object

Return valueThe number of variables stored in the solution.
Related topics

getvars.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 710

mmxprs

getsol

Purpose Get the solution value of an expression from a solution object.
Synopsis

function getsol(ms:mpsol,v:mpvar):real
function getsol(ms:mpsol,c:linctr):real
function getsol(ms:mpsol,nl:nlctr):real

Arguments
ms A solution object
v A decision variable
c A linear constraint
nl A non linear constraint

Return valueSolution value or 0.
Further informationThis function returns an evaluation of an expression using the provided solution object as solutionvalues for the decision variables.
Related topics

setsol, savesol, savemipsol.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 711

mmxprs

getub

Purpose Get the upper bound of a variable.
Synopsis

function getub(x:mpvar):real

Argument
x A decision variable

Return valueUpper bound of the variable.
Further informationThe bound value may be changed directly in the optimizer using setub. Changes to the variable inMosel are not taken into account by this function unless the problem has been reloaded since(procedure loadprob).
Related topics

getlb, setlb, setub.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 712

mmxprs

getvars

Purpose Get the set of variables of a solution.
Synopsis

procedure getvars(ms:mpsol,s:set of mpvar)

Arguments
ms A solution object
s A set of decision variables

Further informationThis procedure returns in the parameter s the set of variables used by a solution object. Note that thisprocedure replaces the content of the set.
Related topics

getsize.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 713

mmxprs

hasfeature

Purpose Check if a specific feature is supported by the currently used license.
Synopsis

function hasfeature(feature:string):boolean

Argument
feature The name of the feature to check, as it would appear in the Xpress license file

Return value
true if the requested feature is supported, false otherwise.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 714

mmxprs

implies

Purpose Create an implies expression.
Synopsis

function implies(c1:log_or_linctr,c2:log_or_linctr):logctr

Arguments
c1 A linear constraint (linctr) or logical expression (logctr)
c2 A linear constraint (linctr) or logical expression (logctr)

Return valueA new logctr representing the expression.
Example The following example shows several ways of stating the logical relation ’if x1 ≥ 10 then x1 + x2 ≥ 12and not x2 ≤ 5’. The implied constraint L is itself a logical constraint, built up by using the operators

and and not in combination with linear constraints.
declarations
R=1..2
C: array(range) of linctr ! Linear constraints
L: logctr ! Logical constraint
x: array(R) of mpvar ! Decision variables
end-declarations

C(1):= x(1)>=10 ! Define (temporary) linear ctrs
C(2):= x(2)<=5
C(3):= x(1)+x(2)>=12

implies(C(1), C(3) and not C(2)) ! State the implication
forall(j in 1..3) C(j):=0 ! Delete the auxiliary ctrs

! The same implication constraint can be stated by:
implies(x(1)>=10, x(1)+x(2)>=12 and not x(2)<=5)

! Or also by:
L:= x(1)+x(2)>=12 and not x(2)<=5 ! Define (temporary) logical ctr
implies(x(1)>=10, L) ! State the implication
L:= 0 ! Delete the auxiliary ctr

Further information
1. This function creates a logctr constraint representing an implies condition: if c1 is valid then c2 is

enforced.
2. The helper package ’advmod’ must be loaded if this function is used:

uses 'advmod'

Related topics
indicator, xor

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 715

mmxprs

indicator

Purpose Create an indicator constraint.
Synopsis

function indicator(type:integer,y:mpvar,ctr:linctr):logctr

Arguments
type The indicator type:

-1 for indicator y=0 -> ctr
1 for indicator y=1 -> ctr

y The variable associated to the constraint
ctr A linear inequality constraint

Return valueA new logctr representing the indicator.
Example This example shows how to define two indicator constraints. The second constraint labeled L is statedwith the help of an auxiliary linear constraint definition. This temporary constraint C needs to be deletedfrom the problem after having been used in the definition of the indicator constraint. The notation

b(1)=1 -> ... should be read as ’if b(1) takes the value 1 then ... must hold’
declarations
R=1..2, S=1..3
C: linctr ! Linear constraint
L: logctr ! Logical (indicator) constraint
x: array(S) of mpvar ! Decision variables
b: array(R) of mpvar ! Indicator variables
end-declarations

forall(i in R)
b(i) is_binary ! Indicator variables must be binaries

C:= x(2)+x(3)<=5 ! Constraint to transform into indicator ctr.

! Define 2 indicator constraints
indicator(1, b(1), x(1)+x(2)>=12) ! b(1)=1 -> x(1)+x(2)>=12
L:= indicator(-1, b(2), C) ! b(2)=0 -> x(2)+x(3)<=5

C:=0 ! Delete the auxiliary constraint definition

Related topics
implies, xor

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 716

mmxprs

isiisvalid

Purpose Check whether an IIS number exists.
Synopsis

function isiisvalid(numiis:integer):boolean

Argument
numiis Ordinal number of the IIS

Return value
true if numiis corresponds to an existing IIS.

Related topics
resetiis, getiis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 717

mmxprs

isintegral

Purpose Check whether a variable (or set of variables) solution value is integral.
Synopsis

function isintegral(x:mpvar):boolean
function isintegral(s:set of mpvar):boolean

Arguments
x A decision variable
s A set of decision variables

Return value
true if the variable (or all variables of the set) is integral.

Further informationThis function checks whether the current solution value of a variable is integral with respect to thetolerance value of the optimizer (XPRS_MIPSOL). When used with a set, the function returns true if allvariables of the set satisfy the condition.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 718

mmxprs

loadbasis

Purpose Load a previously saved basis.
Synopsis

procedure loadbasis(b:basis)

Argument
b A basis

Example The following saves a basis, changes the problem, and then loads it into the Optimizer, reloading theold basis:
declarations
MinCost:linctr
mybasis:basis
end-declarations

savebasis(mybasis)
...
loadprob(MinCost)
loadbasis(mybasis)

Further information
1. This procedure loads a basis into the optimizer that has previously been saved using procedure
savebasis or constructed using setbstat.

2. The problem must be loaded in the Optimzer for loadbasis to have any effect. If this has not recentlybeen carried out using maximize or minimize it must be explicitly loaded using loadprob.
Related topics

loadprob, savebasis, setbstat, getbstat, resetbasis.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 719

mmxprs

loadlpsol

Purpose Load an LP solution into the optimizer.
Synopsis

procedure loadlpsol(x:array(set of mpvar) of real, slack:array(set of
linctr) of real, dual:array(set of linctr) of real, dj:array(set of
mpvar) of real)

procedure loadlpsol(x:array(set of mpvar) of real, dual:array(set of
linctr) of real)

procedure loadlpsol(x:array(set of mpvar) of real)

Arguments
x An array containing the primal solution
slack An array containing the constraint slacks
dual An array containing the dual multipliers
dj An array containing the reduced cost values

Related topics
crossoverlpsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 720

mmxprs

loadmipsol

Purpose Load a MIP solution into the optimizer.
Synopsis

function loadmipsol(s:array(set of mpvar) of real):integer
function loadmipsol(solnum:integer):integer
function loadmipsol(ms:mpsol):integer

Arguments
s An array containing the solution
solnum Solution number (between 1 and XPRS_enumsols)
ms A solution object

Return valueOperation status:
-1 Solution rejected because an error occurred
0 Solution accepted
1 Solution rejected because it is infeasible
2 Solution rejected because it is cut off
3 Solution rejected because the LP reoptimization was interrupted

Example The following saves a MIP solution, modifies the problem, and then loads it into the Optimizer,reloading the MIP solution:
declarations
MinCost:linctr
mysol: array(set of mpvar) of real
result: integer

end-declarations

savemipsol(mysol)
... ! Make some changes

loadprob(MinCost)
result:= loadmipsol(mysol)
if result<>0 then writeln("Loading MIP solution failed"); end-if
minimize(MinCost)

Fair Isaac Corporation Confidential and Proprietary Information 721

mmxprs

Further information
1. This function loads a MIP solution into the optimizer that has previously been saved using procedure
savemipsol or constructed by some external heuristic. In the latter case a value needs to be assignedto each discrete variable in the problem, such as mysol(x):= 1 (where x is a decision variable of type
mpvar).

2. The values for the continuous variables in the s array are ignored and are calculated by fixing theinteger variables and reoptimizing.
3. The second form of the routine can be called after a search for n-best solutions has been performed bythe optimiser: the selected solution is used as input.
4. The current problem definition must be loaded into the Optimizer for loadmipsol to have any effect. Ifthis has not recently been done, e.g., by calling maximize or minimize, the problem must be explicitlyloaded using loadprob.
5. If the MIP solution is accepted by the Optimizer it causes the MIPABSCUTOFF control to be setaccordingly. The provided MIP solution may help guiding the MIP heuristics but the branch-and-boundsearch will start from the initial LP relaxation solution as usual.

Related topics
savemipsol, addmipsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 722

mmxprs

loadprob

Purpose Load a problem into the optimizer.
Synopsis

procedure loadprob(obj:linctr)
procedure loadprob(force:boolean,obj:linctr)
procedure loadprob(obj:linctr, extravar:set of mpvar)
procedure loadprob(force:boolean, obj:linctr, extravar:set of mpvar)
procedure loadprob(qobj:qexp)
procedure loadprob(qobj:qexp, extravar:set of mpvar)
procedure loadprob(nlobj:nlctr)
procedure loadprob(nlobj:nlctr, extravar:set of mpvar)
procedure loadprob(rbobj:robustctr)
procedure loadprob(rbobj:robustctr, extravar:set of mpvar)

Arguments
obj Objective function constraint
qobj Quadratic objective function (with module mmquad)
nlobj Non linear objective function (with module mmnl)
rbobj Robust objective function (with module mmrobust)
force Load the matrix even if not required
extravar Extra variables to include

Further information
1. This procedure explicitly loads a problem into the optimizer. It gets called automatically by theoptimization procedures minimize and maximize if the problem has been modified in Mosel sincethe last call to the optimizer. Nevertheless in some cases, namely before loading a basis, it may benecessary to reload the problem explicitly using this procedure. If the problem has not been modifiedsince the last call to loadprob, the problem is not reloaded into the optimizer. The parameter forcecan be used to force a reload of the problem in such a case. The parameter extravar is a set ofvariables to be included into the problem even if they do not appear in any constraint (i.e. they becomeempty columns in the matrix).
2. Support for quadratic programming requires the module mmnl.
3. Support for general nonlinear programming requires the module mmxnlp.
4. Support for robust programming requires the module mmrobust.

Related topics
maximize, minimize.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 723

mmxprs

maximize, minimize

Purpose Maximize/minimize the current problem.
Synopsis

procedure maximize(alg:integer, obj:linctr)
procedure maximize(obj:linctr)
procedure maximize(alg:integer, qobj:qexp)
procedure maximize(qobj:qexp)
procedure maximize(alg:integer, nlobj:nlctr)
procedure maximize(nlobj:nlctr)
procedure maximize(rbobj:robustctr)
procedure maximize(alg:integer, rbobj:robustctr)

Arguments
alg Algorithm choice:

XPRS_BAR Newton-Barrier to solve LP
XPRS_DUAL Dual simplex
XPRS_NET Network solver
XPRS_LIN Only solve LP ignoring all global entities
XPRS_PRI Primal simplex
XPRS_ENUM Start a search for the n-best MIP solutions
XPRS_LPSTOP Stop the MIP solution process after solving the first LP
XPRS_CONT Continue a previously interrupted solution process
XPRS_LOCAL Solve the linearization of the problem (mmxnlp only)
XPRS_CORELP Solve the linear part of the problem (mmxnlp only)
XPRS_TUNE Enable the tuner

obj Objective function constraint
qobj Quadratic objective function (with module mmquad)
nlobj Non linear objective function (with module mmnl)
rbobj Robust objective function (with module mmrobust)

Example The following maximizes Profit using the dual simplex algorithm and stops before the global search:
declarations
Profit:linctr

end-declarations

maximize(XPRS_DUAL+XPRS_LPSTOP, Profit)

The following minimizes MinCost using the Newton-Barrier algorithm and ignoring all global entities
declarations
MinCost:linctr

end-declarations

minimize(XPRS_BAR+XPRS_LIN, MinCost)

Fair Isaac Corporation Confidential and Proprietary Information 724

mmxprs

Further information

1. This procedure calls the Optimizer to maximize/minimize the current problem (excluding all hiddenconstraints) using the given constraint as objective function. Optionally, the algorithm to be used canbe defined. By default, the global search is executed automatically if the problem contains any globalentities. Where appropriate, several algorithm choice parameters may be combined (using plus signs).
2. If XPRS_LIN is specified, then the discreteness of all global entities is ignored, even during the presolveprocedure.
3. If XPRS_LPSTOP is specified, then just the LP at the top node is solved and no Branch-and-Boundsearch is initiated. But the discreteness of the global entities is taken into account in presolving the LPat the top node. Note also that getprobstat still returns information related to the MIP problem whenthis option is used although only an LP solve has been executed and the solution information returnedby getsol corresponds to the current LP solution. However, if the the MIP is solved to optimalityduring this call, the MIP optimal solution will be returned by getsol.
4. If XPRS_CONT is used after a solve has completed, the routine returns immediately without altering thecurrent problem status.
5. If XPRS_ENUM is specified, the optimiser starts a search for the n-best MIP solutions. The maximumnumber of solutions to store may be specified using the XPRS_enummaxsol (default: 10). After theexecution of the enumeration, the number of solutions found during the search is returned by thecontrol parameter XPRS_enumsols. The procedure selectsol can then be used to select one ofthese solutions.
6. If XNLP_LOCAL is specified for a non-linear problem having been loaded using mmxnlp and which havebeen solved using XSLP, then the current linearization will be reoptimized.
7. If XPRS_TUNE is specified the problem will be tuned and then solved with the best control settingsidentified by the tuner. For a user guide about the tuner, please refer to the documentation of the XpressOptimizer.
8. If XNLP_CORELP is specified for a non-linear problem having been loaded using mmxnlp, then only thelinear part of the problem will be loaded and optimized. This is usefull for checking if the linear part ofthe problem is well posed.
9. Support for quadratic programming requires the module mmnl.
10. Support for general nonlinear programming requires the module mmxnlp.
11. Support for robust programming requires the module mmrobust.

Related topics
postsolve, loadprob, selectsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 725

mmxprs

postsolve

Purpose Postsolve the current matrix.
Synopsis

procedure postsolve

Further informationAfter an optimisation operation has been interrupted before its completion, the matrix held into theoptimiser remains in a presolved state. In this state direct matrix operations (like fixing bounds) cannotbe applied: this routine restores the problem in its original state that is just after it was loaded into theoptimiser. As an alternative to postsolving the matrix, the problem may be entirely reloaded using
loadprob.

Related topics
maximize, minimize.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 726

mmxprs

readbasis

Purpose Read a basis from a file.
Synopsis

procedure readbasis(fname:string,options:string)

Arguments
fname Extended file name
options String of options

Further informationThis procedure reads in a basis from a file by calling the function XPRSreadbasis of the Optimizer.Note that basis save/read procedures can be used only if the constraint and variable names have beenloaded into the Optimizer (control parameter XPRS_loadnames set to true) and all constraints arenamed. For more detail on the options and behavior of this procedure refer to the Xpress Optimizer
Reference Manual.

Related topics
writebasis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 727

mmxprs

readdirs

Purpose Read directives from a file.
Synopsis

procedure readdirs(fname:string)

Argument
fname Extended file name

Further informationThis procedure reads in directives from a file by calling the function XPRSreaddirs of the Optimizer.Note that directives save/read procedures can be used only if variable names have been loaded into theOptimizer (parameter XPRS_loadnames set to true).
Related topics

writedirs.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 728

mmxprs

readsol

Purpose Read a solution from a file.
Synopsis

procedure readsol(fname:string,options:string)

Synopsis
procedure readsol(fname:string,options:string)
procedure readsol(sol:array(mpvar) of real,fname:string,options:string)
procedure readsol(sol:mpsol,fname:string,options:string)
procedure readsol(sol:mpvar,fname:string,options:string)

Arguments
fname Extended file name
options String of options
sol Object to load the solution into

Further informationThis procedure reads in a solution from a file by calling the function XPRSreadslxsol of theOptimizer. Note that solution save/read procedures can be used only if the constraint and variablenames have been loaded into the Optimizer (control parameter XPRS_loadnames set to true) and allconstraints are named. For more detail on the options and behavior of this procedure refer to the
Xpress Optimizer Reference Manual.

Related topics
writesol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 729

mmxprs

refinemipsol

Purpose Executes the MIP solution refiner on an mpsol solution.
Synopsis

function refinemipsol(solution:mpsol):mpsol
function refinemipsol(solution:mpsol, options:integer):mpsol

Arguments
solution The solution to be refined
options Options passed to the solution refiner. Please refer to XPRSrefinemipsol for theavailable options

Related topics
calcsolinfo.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 730

mmxprs

rejectintsol

Purpose Reject the solution provided to the PREINTSOL callback.
Synopsis

procedure rejectintsol

Further informationThis procedure cannot be called from outside of the PREINTSOL callback.
Related topics

setcallback.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 731

mmxprs

repairinfeas

Purpose Relaxing bounds to repair infeasibility.
Synopsis

procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of
real, albp:array(mpvar) of real, aubp:array(mpvar) of real)

procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of
real, albp:array(mpvar) of real, aubp:array(mpvar) of real,
phs2:string, delta:real,optfg:string)

procedure repairinfeas(flags:string, lrp:real, grp:real, lbp:real,
ubp:real, delta:real)

procedure repairinfeas(flags:string)
procedure repairinfeas(alrp:array(linctr) of real, agrp:array(linctr) of

real, albp:array(mpvar) of real, aubp:array(mpvar) of
real,alrb:array(linctr) of real,agrb:array(linctr) of
real,albb:array(mpvar) of real,aubb:array(mpvar) of
real,phs2:string,delta:real,optfg:string)

Arguments
alrp Array of preferences for relaxing the less or equal side of row
agrp Array of preferences for relaxing the greater or equal side of row
albp Array of preferences for relaxing lower bounds
aubp Array of preferences for relaxing upper bounds
alrb Array of upper bounds to be imposed on the amount of relaxation allowed for the less or equalside of row
agrb Array of upper bounds to be imposed on the amount of relaxation allowed for the greater orequal side of row
albb Array of upper bounds to be imposed on the amount of relaxation allowed for lower bounds
aubb Array of upper bounds to be imposed on the amount of relaxation allowed for upper bounds
phs2 A 1-character string controling the second phase optimization
lrp Preference for relaxing the less or equal side of row
grp Preference for relaxing the greater or equal side of row
lbp Preference for relaxing lower bounds
ubp Preference for relaxing upper bounds
delta Relaxation multiplier for the second phase-1
flags A 3-character string defining the p/o/g flags
optfg Flags to be passed to the optimizer

Fair Isaac Corporation Confidential and Proprietary Information 732

mmxprs

Further information
1. This routine is an interface to the Optimizer functions XPRSrepairweightedinfeas and
XPRSrepairinfeas. Please refer to the Xpress Optimizer Reference Manual for further details.

2. The 2 first forms call the Optimizer routine XPRSrepairweightedinfeas. Missing preferences aretreated as 0; the default value for phs2 is "d" and the default value for delta is 0.001.
3. The third and fourth forms call the Optimizer routine XPRSrepairinfeas. If flags is not specified(empty string), a default value of "cog" is used. If preferences and delta are not given, allpreferences are set to 1 and delta is 0.001.
4. The last form calls the Optimizer routine XPRSrepairweightedinfeasbounds, allowing to boundthe amount of relaxation applied on a per row or bound basis. Only positive bounds are applied; a zeroor negative bound is ignored and the amount of relaxation allowed for the corresponding row or boundis not limited. The effect of a zero bound on a row or bound would be equivalent with not relaxing it, andcan be achieved by setting its preference array value to zero instead, or not including it in thepreference arrays. The default value for phs2 is "d".
5. Negative preferences translate to quadratic penalties applied for the corresponding rows or bounds.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 733

mmxprs

resetbasis

Purpose Reset a basis.
Synopsis

procedure resetbasis(b:basis)

Argument
b A basis

Further informationThis function clears the information stored in a basis object.
Related topics

loadbasis, savebasis, setbstat, resetbasis.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 734

mmxprs

resetiis

Purpose Reset the search for IIS.
Synopsis

procedure resetiis

Further informationThis procedure resets the search for IIS and clears all information already computed related to IIS.
Related topics

getiis.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 735

mmxprs

resetsol

Purpose Reset a solution.
Synopsis

procedure resetsol(ms:mpsol)

Argument
ms A solution object

Further informationThis function clears the information stored in a solution object.
Related topics

setsol, savesol, savemipsol, getsize.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 736

mmxprs

savebasis

Purpose Save the current basis.
Synopsis

procedure savebasis(b:basis)

Argument
b A basis

Further informationThis function saves the current basis into the provided basis object.
Related topics

loadbasis, setbstat, getbstat, resetbasis.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 737

mmxprs

savemipsol

Purpose Save the current solution into the provided array or solution object.
Synopsis

procedure savemipsol(s:array(set of mpvar) of real)
procedure savemipsol(ms:mpsol)

Arguments
s An array to return the solution
ms A solution object

Further information
1. This procedure saves the current solution into the provided array. The resulting datastructure may beused as input for the loadmipsol function.
2. If the index set of the array is dynamic, the procedure may extend it in order to have all variables of theproblem. Otherwise the solution is saved only for the variables included in this set.
3. Only non-continuous variables are saved when this procedure is used with an mpsol argument. Use

savesol to save the values of all variables.
Related topics

loadmipsol, savesol.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 738

mmxprs

savesol

Purpose Save the current solution into a solution object.
Synopsis

procedure savesol(ms:mpsol)

Argument
ms A solution object

Further informationThis procedure saves the current solution into the provided solution object. As opposed to the
savemipsol routine all variables are saved independently of their type.

Related topics
savemipsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 739

mmxprs

savestate

Purpose Save current state of the Optimizer to a file.
Synopsis

procedure savestate(fname:string)

Argument
fname Extended file name

Further informationThe produced file can then be used as input to Optimizer console using optimizer’s command RESTORE.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 740

mmxprs

selectsol

Purpose Select one of the solutions found by solution enumerator.
Synopsis

procedure selectsol(solnum:integer)

Argument
solnum Solution number (between 1 and XPRS_enumsols)

Further information
1. This routine can be called after a search for n-best solutions has been performed by the optimizer inorder to select a particular solution.
2. Once a solution has been selected, the functions getsol (applied to decision variables) and

getobjval return values related to this solution.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 741

mmxprs

setarchconsistency

Purpose Sets the value of the optimizer architecture control.
Synopsis

procedure setarchconsistency(controlvalue:integer)

Argument
controlvalue Value of the optimizer architecture control

Further informationPlease refer to the Xpress Optimizer Reference Manual for more details.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 742

mmxprs

setbstat

Purpose Set the status of a variable or constraint in a basis.
Synopsis

procedure setbstat(b:basis,v:mpvar,s:integer)
procedure setbstat(b:basis,c:linctr,s:integer)

Arguments
b A basis
v A decision variable
c A linear constraint
s Basis status. For a variable:

-1 Remove the variable from the basis
0 Variable is non-basic at lower bound, or superbasic at zero if the variable has nolower bound
1 Variable is basic
2 Variable is non-basic at upper bound
3 Variable is super-basicFor a constraint:
-1 Remove the constraint from the basis
0 Slack, surplus or artificial is non-basic at lower bound
1 Slack, surplus or artificial is basic
2 Slack or surplus is non-basic at upper bound
3 Slack or surplus is super-basic

Related topics
savebasis, getbstat, resetbasis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 743

mmxprs

setcallback

Purpose Set optimizer callback functions and procedures.
Synopsis

procedure setcallback(cbtype:integer, cb:string)

Arguments
cbtype Type of the callback:

XPRS_CB_LPLOG Simplex log callback
XPRS_CB_CUTLOG Cut log callback
XPRS_CB_GLOBALLOG Global log callback
XPRS_CB_BARLOG Barrier log callback
XPRS_CB_CHGNODE User select node callback
XPRS_CB_PRENODE User preprocess node callback
XPRS_CB_OPTNODE User optimal node callback
XPRS_CB_INFNODE User infeasible node callback
XPRS_CB_INTSOL User integer solution callback
XPRS_CB_NODECUTOFF User cut-off node callback
XPRS_CB_NEWNODE New node callback
XPRS_CB_BARITER Barrier iteration callback
XPRS_CB_CUTMGR Cut manager (branch-and-bound node) callback
XPRS_CB_CHGBRANCH User choose branching variable callback
XPRS_CB_PREINTSOL Integer solution callback called before acceptation
XPRS_CB_GAPNOTIFY Gap notify callback
XPRS_CB_SOLNOTIFY Integer notify callback called each time a solution added with

addmipsol is processed
XPRS_CB_PRESOLVE A callback fired after presolve is performed

cb Name of the callback function/procedure (that must be public); the parameters and the type

Fair Isaac Corporation Confidential and Proprietary Information 744

mmxprs

of the return value (if any) vary depending on the type of the callback:
function cb:boolean XPRS_CB_-LPLOG
function cb:boolean XPRS_CB_-CUTLOG
function cb:boolean XPRS_CB_-GLOBALLOG
function cb:boolean XPRS_CB_-BARLOG
function cb(node:integer):integer XPRS_CB_-CHGNODE
function cb:boolean XPRS_CB_-PRENODE
function cb:boolean XPRS_CB_-OPTNODE
procedure cb XPRS_CB_-INFNODE
procedure cb XPRS_CB_-INTSOL
procedure cb(node:integer) XPRS_CB_-NODECUTOFF
procedure cb(parent:integer,new:integer,branch:integer) XPRS_CB_-NEWNODE
function cb:integer XPRS_CB_-BARITER
function cb:boolean XPRS_CB_-CUTMGR
procedure cb(e:integer,u:integer,d:real) XPRS_CB_-CHGBRANCH
procedure cb(soltype:integer,cutoff:real) XPRS_CB_-PREINTSOL
procedure cb(rt:real,at:real,aot:real,abt:real) XPRS_CB_-GAPNOTIFY
procedure cb(solid:string,status:integer) XPRS_CB_-SOLNOTIFY
procedure cb XPRS_CB_-PRESOLVE

Example The following example defines a procedure to handle solution printing and sets it to be called wheneveran integer solution is found using the integer solution callback:
public procedure printsol
declarations
objval:real
end-declarations

objval:= getparam("XPRS_lpobjval")
writeln("Solution value: ", objval)

end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

Fair Isaac Corporation Confidential and Proprietary Information 745

mmxprs

Further information
1. This procedure sets the optimizer callback functions and procedures. For a detailed description ofthese callbacks the user is referred to the Xpress Optimizer Reference Manual.
2. Passing an empty string ("") as the function name disables the corresponding callback.
3. The arguments of the Mosel subroutines implementing callback functions correspond to thearguments documented in the Xpress Optimizer Reference Manual, with the exception of argumentsthat are used for passing back information to the solver: these are replaced by the subroutine returnvalues. For the logging callbacks, the return value true interrupts the solving. For the PRENODE and

OPTNODE callbacks the return value true declares the current node to be infeasible. The return valueof the BARITER callback is the selected barrier action (see XPRSaddcbbariteraction in the Xpress
Optimizer Reference Manual for details). The cut manager routine is called repeatedly at each node untilit returns false.

4. Whilst the solution values can be accessed from Mosel in any callback function/procedure, all otherinformation such as the problem status or the value of the objective function must be obtained directlyfrom the Optimizer using function getparam.
5. The function setucbdata can be used to return information to the optimizer from the callback‘CHGBRANCH’.
6. The functions rejectintsol and setcbcutoff can be used to return information to the optimizerfrom the callback ‘PREINTSOL’.
7. The function setgndata can be used to return information to the optimizer from the callback‘GAPNOTIFY’.
8. When the mmxnlp model is used, this function can also be used to set the callbacks relevant tonon-linear problems only. Please see the documentation of the mmxnlp module for the list of extracallbacks.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 746

mmxprs

setcbcutoff

Purpose Set the cutoff to be returned to the Optimizer by the PREINTSOL callback.
Synopsis

procedure setcbcutoff(cutoff:real)

Argument
cutoff New cutoff value for the current solution

Further informationThis procedure cannot be called from outside of the PREINTSOL callback.
Related topics

setcallback.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 747

mmxprs

setgndata

Purpose Update data to be returned to the Optimizer by the GAPNOTIFY callback.
Synopsis

procedure setgndata(what:integer, target:real)

Arguments
what What target to update. Possible values:

XPRS_GN_RELTARGET Relative gap
XPRS_GN_ABSTARGET Absolute gap
XPRS_GN_ABSOBJTARGET Absolute gap on objective
XPRS_GN_ABSBOUNDTARGET Absolute gap on bound

target New target value
Further informationThis procedure stores the provided information that will be returned to the optimizer when the callbackterminates. This procedure cannot be called from outside of the GAPNOTIFY callback.
Related topics

setcallback.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 748

mmxprs

setlb

Purpose Set the lower bound of a variable.
Synopsis

procedure setlb(x:mpvar,r:real)

Arguments
x A decision variable
r Lower bound value

Further informationThis procedure changes the lower bound of a variable directly in the Optimizer, that is, the boundchange is not recorded in the problem definition held in Mosel. Since this change is immediate, there isno need to reload the problem into the Optimizer (indeed, doing so resets the variable to the lowerbound value computed by Mosel).
Related topics

getlb, getub, loadprob, setub.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 749

mmxprs

setmipdir

Purpose Set a directive on a variable or Special Ordered Set.
Synopsis

procedure setmipdir(x:mpvar,t:integer,r:real)
procedure setmipdir(x:mpvar,t:integer)
procedure setmipdir(c:linctr,t:integer,r:real)
procedure setmipdir(c:linctr,t:integer)

Arguments
x A decision variable
c A linear constraint (of type SOS)
r A real value
t Directive type, which may be one of:

XPRS_PR r is a priority (integer value between 1 and 1000 where 1 is the highest priority,1000 the lowest)
XPRS_UP Force up first
XPRS_DN Force down first
XPRS_PU r is an up pseudo cost
XPRS_PD r is a down pseudo cost
XPRS_BR Force branching even if satisfied

Further informationThis procedure sets a directive on a global entity. Note that the priority value is converted into aninteger. The directives are loaded into the Optimizer at the same time as the problem itself.
Related topics

clearmipdir, readdirs, writedirs.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 750

mmxprs

setmodcut

Purpose Mark a constraint as a model cut.
Synopsis

procedure setmodcut(c:linctr)

Argument
c A linear constraint

Further informationThis procedure marks the given constraint as a model cut. The list of model cuts is sent to theOptimizer when the matrix is loaded.
Related topics

clearmodcut.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 751

mmxprs

setsol

Purpose Define the value associated to a decision variabe in a solution object.
Synopsis

procedure setsol(ms:mpsol,v:mpvar,s:real)

Arguments
ms A solution object
v A decision variable
s The solution value

Further informationThis procedure associates a solution value to a decision variable in a solution object. If the variable isalready included in the solution, its value is replaced. Otherwise the solution is extended with the newvariable.
Related topics

getsol, savesol, savemipsol.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 752

mmxprs

setub

Purpose Set the upper bound of a variable.
Synopsis

procedure setub(x:mpvar,r:real)

Arguments
x A decision variable
r Upper bound value

Further informationThis procedure changes the upper(lower) bound of a variable directly in the Optimizer, that is, the boundis modified in the problem that is currently loaded in the Optimizer but does not get recorded in theproblem definition held in Mosel. If the problem has not yet been loaded into the Optimizer then thenew bound value is ignored. Reloading the problem into the Optimizer after a call to setub(setlb) willreset the upper (lower) bound for the variable to the value computed by Mosel, that is, the bound valueresulting from setub(setlb) is overwritten.
Related topics

getlb, getub, loadprob, setlb.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 753

mmxprs

setucbdata

Purpose Update data to be returned to the Optimizer by the CHGBRANCH callback.
Synopsis

procedure setucbdata(x:mpvar, u:integer, e:real)
procedure setucbdata(s:linctr, u:integer, e:real)
procedure setucbdata(n:integer, u:integer, e:real)

Arguments
x A decision variable
s An SOS
n A column or SOS number as provided by the optimizer
u Direction for branching. Possible values:

0 Upward branch made second (branch on column)
1 Upward branch made first (branch on column)
2 Upward branch made second (branch on SOS)
3 Upward branch made first (branch on SOS)

e Estimated degradation at the node
Further informationThis procedure stores the provided information that will be returned to the optimizer when the callbackterminates. This procedure cannot be called from outside of the CHGBRANCH callback.
Related topics

setcallback.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 754

mmxprs

stopoptimize

Purpose Interrupt the optimizer algorithms.
Synopsis

procedure stopoptimize(why:integer)

Argument
why The reason for stopping. Possible reasons:

XPRS_STOP_TIMELIMIT Time limit hit
XPRS_STOP_CTRLC Control C hit
XPRS_STOP_NODELIMIT Node limit hit
XPRS_STOP_ITERLIMIT Iteration limit hit
XPRS_STOP_MIPGAP MIP gap is sufficiently small
XPRS_STOP_SOLLIMIT Solution limit hit
XPRS_STOP_USER User interrupt

Further informationThis procedure can be called from any callback. It is ignored if used from outside an optimizationprocess.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 755

mmxprs

unloadprob

Purpose Unload the problem held in the optimizer.
Synopsis

procedure unloadprob

Further information
1. This procedure "unloads" the optimizer by releasing all the resources it has allocated for its processing(internal representation, solution information, working files).
2. This procedure resets the control parameters XPRS_EXTRACOLS, XPRS_EXTRAROWS,

XPRS_EXTRAELEMS to their default values.
Related topics

maximize, minimize, loadprob.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 756

mmxprs

uselastbarsol

Purpose Sets up the last barrier solve’s solution as the current one if one is available
Synopsis

function uselastbarsol:boolean

Return valueOperation status:
FALSE No barrier solution is available
TRUE The barrier solution is now the active solution

Further informationThis fucntion allows to access the barrier solution before a crossover was performed. The solution,solution status and objective are set up to match the barrier solution and are available the usual way.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 757

mmxprs

writebasis

Purpose Write the current basis to a file.
Synopsis

procedure writebasis(fname:string,options:string)

Arguments
fname Extended file name
options String of options

Further informationThis procedure writes the current basis to a file by calling the Optimizer function XPRSwritebasis.Note that basis save/read procedures can be used only if the constraint and variable names have beenloaded into the Optimizer (parameter XPRS_loadnames set to true) and all constraints are named.For more detail on the options and behavior of this procedure, refer to the Xpress Optimizer Reference
Manual.

Related topics
readbasis.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 758

mmxprs

writedirs

Purpose Write current directives to a file.
Synopsis

procedure writedirs(fname:string)

Argument
fname Extended file name

Further informationThis procedure writes the current directives to a file using the Optimizer file format.
Related topics

clearmipdir, setmipdir, readdirs.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 759

mmxprs

writeprob

Purpose Write the current problem to a file.
Synopsis

procedure writeprob(fname:string, options:string)
procedure writeprob(fname:string, options:string, fnamed:string)

Arguments
fname Extended file name for the matrix
options String of format options (default: full precision)
fnamed Extended file name for the directives

Example Load the current problem into the Optimizer and save it to an MPS file "mypb.mps" in hexadecimalformat (’x’) and to the file "mypb.lp" in LP format (’l’) using scrambled names (’s’):
loadprob(myobj)
setparam("xprs_objsense",1) ! for 'minimize'
writeprob("mypb.mps","x")
writeprob("mypb.lp","ls")

Further informationThis procedure writes the current problem held in the Optimizer to a file by calling the Optimizerfunction XPRSwriteprob and XPRSwritedirs if a file name for the directives is also specified. Notethat the matrix written by this procedure may be different from the one produced by exportprob sinceit may include the effects of presolve or cuts generated by the Optimizer. For more detail on the optionsand behavior of this procedure, refer to the Xpress Optimizer Reference Manual.
Related topics

exportprob, writedirs.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 760

mmxprs

writesol

Purpose Write a solution to a file.
Synopsis

procedure writesol(fname:string,options:string)
procedure writesol(ms:mpsol,sname:string,fname:string,options:string)

Arguments
fname Extended file name
options String of options
ms A solution object
sname Solution name

Further information
1. When using the first syntax this procedure writes the current solution to a file by calling the Optimizerfunction XPRSwriteslxsol. For more detail on the options and behavior of this procedure, refer tothe Xpress Optimizer Reference Manual.
2. With the second syntax, the file is generated from a solution object. In this case, the solution name hasto be provided (default name is "solution") and the only supported option is "x" to output thenumbers in hexadecimal.
3. Solution save/read procedures can be used only if the constraint and variable names have been loadedinto the Optimizer (parameter XPRS_loadnames set to true) and all constraints are named.

Related topics
readsol.

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 761

mmxprs

xor

Purpose Create an exclusive or expression.
Synopsis

function xor(c1:log_or_linctr,c2:log_or_linctr):logctr

Arguments
c1 A linear constraint (linctr) or logical expression (logctr)
c2 A linear constraint (linctr) or logical expression (logctr)

Return valueA new logctr representing the expression.
Example This example shows how to state an exclusive ’or’ constraint that expresses the disjunction betweentwo tasks with start time sj and fixed duration Dj. A non-exclusive ’or’ relation can be stated by using the

or operator as shown in the last line (constraint L).
declarations
R=1..2
C: array(range) of linctr ! Linear constraints
L: logctr ! Logical constraint
s: array(R) of mpvar ! Decision variables (start times)
D: array(R) of real ! Data (durations)
end-declarations

C(1):= s(1)+D(1)>=s(2) ! Define (temporary) linear constraints
C(2):= s(2)+D(2)>=s(1)

xor(C(1), C(2)) ! State an exclusive 'or'
forall(j in 1..2) C(j):=0 ! Delete the auxiliary constraints

! The same 'xor' constraint can be stated by:
xor(s(1)+D(1)>=s(2), s(2)+D(2)>=s(1))

! A non-exclusive 'or' relation is stated by using the 'or' operator:
L:= s(1)+D(1)>=s(2) or s(2)+D(2)>=s(1)

Further information
1. This function creates a logctr constraint representing an exclusive or condition: either c1 or c2 is

valid, not both.
2. The helper package ’advmod’ must be loaded if this function is used:

uses 'advmod'

Related topics
indicator, implies

Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 762

mmxprs

19.4 Cut Pool Manager

This section contains the functions and procedures of the Xpress Optimizer cut manager. For adetailed description of the cut manager and its functionality the user is referred to the Xpress Optimizer
Reference Manual. To run the cut manager from Mosel, it may be necessary to (re)set certain controlparameters of the optimizer. For example, switching off presolve and automatic cut generation, andreserving space for extra rows in the matrix may be useful:

setparam("XPRS_presolve", 0); ! Switch presolve off...
setparam("XPRS_presolveops", 2270); ! ...or use secure setting for presolve
setparam("XPRS_cutstrategy", 0); ! Switch automatic cut generation off
setparam("XPRS_extrarows", 5000); ! Reserve space for 5000 extra rows in

! the matrix

The callback functions and procedures that are relevant to the cut manager are initialized with function
setcallback, in common with the other Optimizer callbacks.
It should be noted that cuts are not stored by Mosel but sent immediately to the Optimizer.Consequently, if a problem is reloaded into the Optimizer, any previously defined cuts will be lost. InMosel, cuts are defined by specifying a linear expression (i.e. an unbounded constraint) and theoperator sign (inequality/equality). If instead of a linear expression a constraint is given, it will also beadded to the system as an additional constraint.
addcut Add a cut to the problem in the optimizer. p. 764
addcuts Add an array of cuts to the problem in the optimizer. p. 765
delcuts Delete cuts from the problem in the optimizer. p. 766
dropcuts Drop a set of cuts from the cut pool. p. 767
getcnlist Get the set of cuts active at the current node. p. 768
getcplist Get a set of cut indices from the cut pool. p. 769
loadcuts Load a set of cuts into the problem in the optimizer. p. 770
storecut Store a cut into the cut pool. p. 771
storecuts Store an array of cuts into the cut pool. p. 772

Fair Isaac Corporation Confidential and Proprietary Information 763

mmxprs

addcut

Purpose Add a cut to the problem in the optimizer.
Synopsis

procedure addcut(cuttype:integer, type:integer, linexp:linctr)

Arguments
cuttype Integer number for identification of the cut
type Cut type (equation/inequality), which may be one of:

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Linear expression (= unbounded constraint)
Further informationThis procedure adds a cut to the problem in the Optimizer. The cut is applied to the current node and allits descendants.
Related topics

addcuts, delcuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 764

mmxprs

addcuts

Purpose Add an array of cuts to the problem in the optimizer.
Synopsis

procedure addcuts(cuttype:array(range) of integer, type:array(range) of
integer, linexp:array(range) of linctr)

Arguments
cuttype Array of integer number for identification of the cuts
type Array of cut types (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Array of linear expressions (= unbounded constraints)
Further informationThis procedure adds an array of cuts to the problem in the Optimizer. The cuts are applied to thecurrent node and all its descendants. Note that the three arrays that are passed as parameters to thisprocedure must have the same index set.
Related topics

addcut, delcuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 765

mmxprs

delcuts

Purpose Delete cuts from the problem in the optimizer.
Synopsis

procedure delcuts(keepbasis:boolean, cuttype:integer,
interpret:integer,delta:real, cuts:set of integer)

procedure delcuts(keepbasis:boolean, cuttype:integer, interpret:integer,
delta:real)

Arguments
keepbasis false Cuts with non-basic slacks may be deleted

true Ensures that the basis will be valid
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Delete all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (delete cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (delete cut if all bits match those set in

cuttype)
delta Only delete cuts with an absolute slack value greater than delta. To delete all the cutsset this parameter to a very small value (e.g. -MAX_REAL)
cuts Set of cut indices, if not specified all cuts of type cuttype are deleted

Further informationThis procedure deletes cuts from the problem loaded in the Optimizer. If a cut is ruled out by any of thegiven criteria it will not be deleted.
Related topics

addcut, addcuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 766

mmxprs

dropcuts

Purpose Drop a set of cuts from the cut pool.
Synopsis

procedure dropcuts(cuttype:integer, interpret:integer, cuts:set of integer)
procedure dropcuts(cuttype:integer, interpret:integer)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Drop all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (delete cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (delete cut if all bits match those set in

cuttype)
cuts Set of cut indices in the cut pool, if not specified all cuts of type cuttype are deleted

Further informationThis procedure drops a set of cuts from the cut pool. Only those cuts which are not applied to activenodes in the branch-and-bound tree will be deleted.
Related topics

storecut, storecuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 767

mmxprs

getcnlist

Purpose Get the set of cuts active at the current node.
Synopsis

procedure getcnlist(cuttype:integer,interpret:integer, cuts:set of integer)

Arguments
cuttype Integer number for identification of the cut(s), -1 to return all active cuts
interpret The way in which the cut type is interpreted:

-1 Get all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (get cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (get cut if all bits match those set in cuttype)

cuts Set of cut indices
Further informationThis procedure gets the set of active cut indices at the current node in the Optimizer. The set of cutindices is returned in the parameter cuts.
Related topics

getcplist.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 768

mmxprs

getcplist

Purpose Get a set of cut indices from the cut pool.
Synopsis

procedure getcplist(cuttype:integer,interpret:integer,delta:real, cuts:set
of integer,viol:array(range) of real)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Get all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (get cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (get cut if all bits match those set in cuttype)

delta Only return cuts with an absolute slack value greater than delta
cuts Set of cut indices in the cut pool
viol Array where the slack variables for the cuts will be returned

Further informationThis procedure gets a set of cut indices from the cut pool. The set of indices is returned in theparameter cuts.
Related topics

getcnlist.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 769

mmxprs

loadcuts

Purpose Load a set of cuts from the cut pool into the problem in the optimizer.
Synopsis

procedure loadcuts(cuttype:integer, interpret:integer, cuts:set of integer)
procedure loadcuts(cuttype:integer, interpret:integer)

Arguments
cuttype Integer number for identification of the cut(s)
interpret The way in which the cut type is interpreted:

-1 Load all cuts
1 Treat cut types as numbers
2 Treat cut types as bitmaps (load cut if any bit matches any bit set in

cuttype)
3 Treat cut types as bitmaps (load cut if all bits match those set in cuttype)

cuts Set of cut indices in the cut pool, if not specified all cuts of type cuttype are loaded
Further informationThis procedure loads a set of cuts into the Optimizer. The cuts remain active at all descendant nodes.
Related topics

storecut, storecuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 770

mmxprs

storecut

Purpose Store a cut into the cut pool.
Synopsis

function storecut(nodupl:integer, cuttype:integer, type:integer,
linexp:linctr):integer

Arguments
nodupl Flag indicating how to deal with duplicate entries:

0 No check
1 Check for duplicates among cuts of the same cut type
2 Check for duplicates among all cuts

cuttype Integer number for identification of the cut
type Cut type (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Linear expression (= unbounded constraint)
Return valueIndex number of the cut stored in the cut pool.
Further informationThis function stores a cut into the cut pool without applying it to the problem at the current node. Thecut has to be loaded into the problem with procedure loadcuts in order to become active at thecurrent node.
Related topics

dropcuts, loadcuts, storecuts.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 771

mmxprs

storecuts

Purpose Store an array of cuts into the cut pool.
Synopsis

procedure storecuts(nodupl:integer, cuttype:array(range) of integer,
type:array(range) of integer,
linexp:array(range) of linctr,
ndx_a:array(range) of integer)

procedure storecuts(nodupl:integer, cuttype:array(range) of integer,
type:array(range) of integer,
linexp:array(range) of linctr,
ndx_s:set of integer)

Arguments
nodupl Flag indicating how to deal with duplicate entries:

0 No check
1 Check for duplicates among cuts of the same cut type
2 Check for duplicates among all cuts

cuttype Array of integer number for identification of the cuts
type Array of cut types (equation/inequality):

CT_GEQ Inequality (greater or equal)
CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Array of linear expressions (= unbounded constraints)
ndx_a Interval of index numbers of stored cuts
ndx_s Set of index numbers of stored cuts

Further informationThis function stores an array of cuts into the cut pool without applying them to the problem at thecurrent node. The cuts have to be loaded into the problem with procedure loadcuts in order tobecome active at the current node. The cut manager returns the indices of the stored cuts in the formof an array ndx_a or a set of integers ndx_s. Note that the four arrays that are passed as parametersto this procedure must have the same index set.
Related topics

dropcuts, loadcuts, storecut.
Module mmxprs

Fair Isaac Corporation Confidential and Proprietary Information 772

CHAPTER 20

python3

The python3 module makes it possible to easily exchange data with Python 3 and execute Python 3scripts.Python is an interpreted programming language for general-purpose programming that has alsobecome popular for scientific and numeric computing. The reference implementation (CPython) isavailable as Free Software under the terms of the Python Software Foundation License, which iscompatible with the GNU General Public License.To use this module, the following line must be included in the header of the Mosel model file:
uses "python3"

20.1 Introduction

This module implements functionality for exchanging data between a Mosel model and Python 3(CPython) and for calling Python 3 scripts.
The python3 module defines an I/O driver for exchanging data using the initializations fromand initializations toMosel constructs.
It is the Mosel run-time library that loads and runs the Python interpreter, not the other way round.
The purpose of the module is to make the extensive scientific and numeric capabilities of Pythonavailable from Mosel. This module does not implement an interactive Python shell. However, theinteraction of the Mosel model and the Python interpreter is similar to an interactive shell: transferringdata to Python and executing Python scripts changes the state of the interpreter.

20.1.1 Prerequisites

This module does not include Python binaries. In order to use Python you need a working installation ofPython 3 targeting the same platform as Mosel (you won’t be able to use, e.g., the Windows 32-bitversion of Python from the Windows 64-bit version of Mosel). The supported Python versions are 3.4.3to 3.7.5. Version 3.8.0 is not supported. It is recommended to download and install the AnacondaPython distribution from www.anaconda.com. Alternatively, Python binaries for Windows and Mac OSare also available at www.python.org. On Linux, Python 3 is most likely part of your distribution andprovided in a package called "python3" that can be installed via the package manager. Note that Python3 is not part of the Red Hat Enterprise Linux 7 standard repository. In order to use the latest Pythonrelease on Linux, we recommend to download the latest Anaconda Python distribution for Linux fromthe Anaconda website.
The Mosel module python3 tries to automatically locate the correct Python libraries on your system,applying the following rules. If the environment variable PYTHONHOME is specified, it will load thelibraries of the Python installation in that directory. Otherwise, it searches for the Python executable inthe directories specified in the PATH environment variable. If the Python executable has been found, the

Fair Isaac Corporation Confidential and Proprietary Information 773

http://www.anaconda.com
http://www.python.org

python3

module will try to load the libraries of the Python installation of that Python executable. If the librariescould not be loaded with the help of the environment variables, then on Windows they are loaded fromthe latest Python installation specified in the registry (keys: HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\3.⁎\InstallPath). If the previoussteps failed, then the python3module will load the most recent libraries from the standard library searchpaths. On Windows it looks for python3⁎.dll and python3.dll, on Linux for libpython3.⁎m.soand libpython3.so, and on Mac OSX for libpython3.⁎m.dylib and libpython3.dylib.
If you have multiple installations of Python, or if Python could not be located automatically, or if theinitialization of Python fails, you will need to set the environment variable PYTHONHOME to point to yourPython installation directory or set PATH to include the location of the Python executable.
Note that the loading of Python is not influenced by Mosel statements like
setparam("workdir",...) or setenv("PYTHONHOME",...) in the Mosel model that uses thePython module since these don’t affect the process environment used for Python loading. Theenvironment variables must be set before launching the Mosel instance that serves for executingPython scripts in order to influence the loading of Python.
As an example, if Python 3.7.0 is installed on Windows in "C:\opt\python370" then this directoryis also the correct value for the PYTHONHOME environment variable or alternatively, add this directory tothe PATH environment variable.
The module supports the conversion between Mosel types and pandas and NumPy types. Thesupported pandas versions are 0.19.2 to 0.25.2 and the supported NumPy versions are 1.11.3 to 1.17.3.

20.1.2 Windows Anaconda Setup

Set the PYTHONHOME system environment variable to the base directory of Anaconda or to the homedirectory of a specific Anaconda environment, e.g., C:\opt\anaconda3\envs\py373. The NumPymodule that ships with Anaconda requires the Math Kernel Library (MKL). It is necessary to add
%PYTHONHOME%\Library\bin

to the PATH system environment variable such that NumPy can find the DLLs of that library. If NumPycannot find the library, the import of NumPy and pandas will fail with an error message similar to:
Traceback ...

from . import _mklinit
ImportError: DLL load failed: The specified module could not be found.

If you change the system environment variables, then it is necessary to restart the Insight ExecutionWorker and Workbench such that the changes take effect. Note that if you run an Insight ExecutionWorker on the same machine, it will only pass the system environment variables to the Insight app, butthe user environment variables of your local user will not be applied in Insight apps, because the serverruns as a different user.
20.1.3 Linux Anaconda Setup

Set the PYTHONHOME environment variable to the base directory of Anaconda or to the home directoryof a specific Anaconda environment, e.g., /opt/anaconda3/envs/py373. The pandas module thatships with Anaconda may require a version of the C++ standard library which is more recent than theone that ships with your operating system. The required library ships with Anaconda and the loading ofthat library can be forced by adding
$PYTHONHOME/lib/libstdc++.so

to the LD_PRELOAD environment variable. If an incompatible version gets loaded, then the initialization

Fair Isaac Corporation Confidential and Proprietary Information 774

python3

of pandas will fail with an error message similar to:
ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found

20.1.4 Python initialization

The Python environment is automatically initialized at the point where a Mosel model uses for the firsttime any function that requires it. So we can have the following small example that just executes aPython script:
model "Python script example"
uses "python3"
pyrun("my-python-script.py")

end-model

Alternatively it is possible to explicitly initialize Python using the pyinit function. If the initializationfails, activate additional logging by setting the parameter pyinitverbose to true before initializingPython and double check the values of your environment variables (see previous sections).
At the end of the model execution, the Python environment will automatically be released. It is alsopossible to explicitly release the environment using pyunload. This can be useful for freeingresources allocated by Python.
It is only possible to initialize one Python interpreter per Mosel instance. For that reason it is notpossible to initialize and use the Python interpreter in two models in parallel if both models are run inthe same Mosel instance. However, you can initialize and use multiple interpreters in concurrentmodels if each model is run in a separate Mosel instance.

20.1.5 Data types

The types of data that can be exchanged with Python are the Mosel types boolean, integer, real,
string and text, plus arrays, lists and sets of these. Nested compositions are supported. Mosel listsand sets are exported to Python lists and sets. Both, dense and sparse Mosel arrays are supported andby default they are mapped to dictionaries of the corresponding element type. If the pandas interface isinitialized, then arrays and lists of arrays can also be mapped to pandas Series and DataFrames.Moreover, Mosel arrays can be initialized from NumPy ndarrays and Mosel scalars be initialized fromNumPy scalars (see pyinitpandas and pyusepandas for more details).
The following example shows how to invert a matrix with NumPy:

declarations
I, J: range
A, A_inverse: array(I, J) of real

end-declarations

writeln("Run Python script that defines invert_matrix function.")
pyinitpandas
pyrun("invert_matrix.py")

I := 0..2
J := 0..2
A :: [1,0,3,

0,1,2,
0,0,1]

writeln("Invert matrix with NumPy.")
pycall("invert_matrix", A_inverse, A)

writeln("Matrix A_inverse:")
writeln("A_inverse: ", A_inverse)

Fair Isaac Corporation Confidential and Proprietary Information 775

python3

At the beginning of this code snippet the pandas interface is initialized via a call to pyinitpandas.This enables the conversion of Mosel arrays from and to pandas Series and from NumPy arrays fromthis point onwards—this statement will typically occur at the beginning of the program, but standard
python3 functionality can already be used before to it. After the pandas initialization a Python examplescript in a separate file invert_matrix.py is executed, which defines the invert_matrix Pythonfunction. This function is then invoked via the pycall procedure. The first parameter of this procedureis the Python function name, the second one is the Mosel array that will be used for storing the result,and the last parameter is the input parameter for the Python function. The Python function takes apandas Series with a two-dimensional MultiIndex as input and returns a two-dimensional NumPyndarray:

def invert_matrix(series):
Get pivot table of MultiIndex Series as DataFrame.
df = series.unstack()

Compute and return inverse matrix as NumPy ndarray.
return inv(df)

See the model invert-matrix.mos for a full example. At first, the function creates a pivot table ofthe MultiIndex Series, such that the resulting DataFrame looks like a two-dimensional matrix. Thismatrix-like DataFrame is used as an input value for the NumPy inv function, which returns atwo-dimensional ndarray, which is then passed to Mosel.
Note that sparse Mosel arrays are exported to sparse Python dictionaries or pandas Series. In thisexample, the Mosel matrix A is dense, hence the pandas Series is also dense, that is, for each indextuple (i, j) in the cross product of I and J the pandas Series has a value.
When initializing a Mosel array, list, or set from a Python type, the initialization of the Mosel type isadditive, which means that the elements of the Python type are added to the existing Mosel array, list,or set. In the example above, the pandas Series is dense such that all elements of the Mosel array willbe overwritten. However, if the pandas Series (or dictionary) is sparse and the Mosel array is non-zero,it is necessary to manually clear its contents before initializing it with values from the sparse Pythontype. In that situation, the Mosel array should be cleared with reset. See Section 20.5.1 for an examplewith a sparse array and reset: io_example.mos.

20.2 Xpress Insight configuration

The python3 module can only be used when Mosel restrictions are disabled (MOSEL_RESTR=0). Whenthe restrictions are disabled, any executed Mosel and Python code have the same rights (in particularfor file system access) as the operating system user that runs the Insight Execution Worker. In order touse the python3 module in an Insight app, it is necessary to relax the Mosel restrictions in the InsightExecution Worker configuration file (xprmsrv.cfg). After relaxing the Mosel restrictions, we stronglyrecommend that the Insight administrator makes sure of the following points:
� The operating system user that runs the Insight Execution Worker should only be granted theminimal rights that are necessary for running the Insight app.
� Access to the workers should be protected by a password and additionally by IP filters (see theexample extract of the configuration file xprmsrv.cfg below).
� If the network is not trusted, the workers should only accept SSH connections: Set TCP_PORT=-1(configurable via xprmsrv.cfg) and use xssh instead of the xsrv protocol (Execution Workerconfiguration in the Insight admin interface).
� Only trusted users should be granted the right to upload trusted Insight apps to the Insight Server.

And the Insight app developer needs to address the following points:

Fair Isaac Corporation Confidential and Proprietary Information 776

python3

� The app should not execute any untrusted Python scripts that an end user may have uploaded asan app attachment (see pyrun function).
� The app should not concatenate untrusted strings entered by the end user (e.g. Insight scalars orarrays) into a Python evaluation string, because this could allow an attacker to inject and executecustom Python code. For example, the first function input parameter of pycall, pyexec and
pyget is a Python evaluation string. Note that it is safe to transfer untrusted data between Moseland Python variables. The developer just needs to avoid using untrusted strings directly in aPython evaluation string parameter.

If the Insight Execution Worker runs on the same machine as the Insight Server, it is recommended tomodify the configuration settings in xprmsrv.cfg as follows:
...
XPRMSRV_ACCESS=+127.0.0.1
[insight]
PASS=my_password
MOSEL_RESTR=0
PYTHONHOME=C:\opt\anaconda3
PATH=${PYTHONHOME}\Library\bin;${PATH}
...

Restart the Execution Worker after changing the configuration file. Then log into the Insight admininterface, go to Execution Services, edit the Execution Worker, enter the password in the password editfield and save the changes.
Depending on your system configuration, the PYTHONHOME environment variable is optional. The PATHentry is only necessary for Anaconda on Windows. You can also specify the PYTHONHOME and PATHenvironment variables as system environment variables. Note that it is not sufficient to specify themfor your personal user account, because the Insight service runs as a different user.

20.3 Control parameters

The following parameters are defined by the module python3:
pyinitverbose Show additional log messages when initializing Python. p. 777
pyusepandas Enable and control pandas and NumPy conversion. p. 778

pyinitverbose

Description Set this parameter to true to activate some additional logging of how the module looks forand finds your Python environment. The log messages are written to the model’s outputstream.
Type Boolean, read/write
Default value false
See also pyinit, pyinitpandas
Module python3

Fair Isaac Corporation Confidential and Proprietary Information 777

python3

pyusepandas

Description If this parameter is true, then the next usage of any Python functionality will trigger theinitialization of the pandas interface. When the interface is initialized, Mosel scalars can alsobe initialized from NumPy scalars, arrays can also be initialized from NumPy ndarrays andpandas Series, and lists of arrays can be initialized from pandas DataFrames. Once initialized,the pandas interface will remain initialized even after switching pyusepandas off. Inparticular, it will still be possible to initialize Mosel types from pandas and NumPy types.
When converting data from Mosel to Python, the target type depends on the value of
pyusepandas: When the parameter is true, Mosel arrays and lists of arrays are convertedto pandas Series and DataFrames; when it is false, then Mosel arrays will be converted toPython dictionaries. Mosel lists of arrays cannot be initialized to a Python type when thisparameter is disabled.

Type Boolean, read/write
Default value false
See also pyinitpandas, Driver python
Module python3

20.4 Procedures and functions

The procedures and functions of the python3 module fail in case of Python compile-time or run-timeerrors.
pycall Call a Python object, a function, with optional input arguments and convertthe result to a Mosel variable. p. 779
pyexec Execute Python statements from a string. p. 781
pyget Get the result of a Python expression as Mosel variable. p. 782
pygetdf Initialize a list of Mosel arrays from the columns of a pandas DataFrame.p. 783
pyinit Initialize the Python interpreter. p. 785
pyinitpandas Set pyusepandas parameter to true and initialize the pandas interface.p. 786
pyrun Run a Python script and wait until it is finished. p. 787
pyset Assign a Mosel value to a global Python variable. p. 788
pysetdf Convert a list of Mosel arrays to a pandas DataFrame. p. 789
pyunload Release the Python interpreter and its resources. p. 790

Fair Isaac Corporation Confidential and Proprietary Information 778

python3

pycall

Purpose Call a Python object, e.g. a function, with optional input arguments and convert the result to a Moselvariable.
Synopsis

procedure pycall(expr:string,result:array|set|list[, arg1...])
procedure pycallvoid(expr:string[, arg1...])
function pycallbool(expr:string[, arg1...]):boolean
function pycallint(expr:string[, arg1...]):integer
function pycallreal(expr:string[, arg1...]):real
function pycallstr(expr:string[, arg1...]):string
function pycalltext(expr:string[, arg1...]):text

Arguments
expr Global name of a callable Python object or Python expression that evaluates to acallable object
result Result Mosel array, set or list
arg1, arg2,... Optional input arguments for the object call

Example 1The following example calls the Python print and max functions. The Mosel input arguments areautomatically converted to Python objects and the return value of max is converted to a Mosel real.
pycallvoid("print", "Python objects:", true, 1, 2.2, [3,4], {5})
writeln("max: ", pycallreal("max", [1.1, 7.7, 4.4]))

Example 2The following example uses pandas to compute the mean value of two Mosel arrays. The Mosel inputarrays are passed as a single list of arrays with compatible array indices and are automaticallyconverted to a single pandas DataFrame. The return value of the mean function is a pandas Series andits elements will be written to the Mosel Result array.
declarations

Input1, Input2, Result: array(range) of real
end-declarations

Input1 :: (0..4)[1, 2, 3, 4, 5]
Input2 :: (0..4)[7, -1, -3, 1, 2]
pyinitpandas
pyexec("def mean(df, axis): return df.mean(axis)")
pycall("mean", Result, [Input1, Input2], 1)
writeln("mean: ", Result)

It is recommended to define small global wrapper functions like in this example, instead of callingfunctions or methods with the help of an expression like "pandas.Series.mean". The globalfunction can be found directly without having to perform an expensive Python string evaluation toretrieve the callable object.

Fair Isaac Corporation Confidential and Proprietary Information 779

python3

Further information
1. At first, the function interprets the expression string as a global Python object name and tries to accessit by getting it from the attributes of the Python __main__module. If this fails, the expression isevaluated by Python. Then the expression result object will be called with the optional input arguments.Finally, the result of the object call is stored in or returned as a Mosel variable. This is equivalent to thePython expression:

expr(arg1, ...)

It is a fatal error if the expression cannot be evaluated or if the object call or the type conversionbetween Python and Mosel fails.
2. The first version of the pycall routine stores the result in an array, set or list. Its behavior is additive: itwrites the new elements to the existing Mosel array, set or list without clearing previously existingelements. Use reset to manually clear an array, set or list before calling this function.
3. See the I/O Driver python Section for further details about type conversions.
4. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress

Insight configuration for more information.
Related topics

pyexec, pyget, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 780

python3

pyexec

Purpose Execute Python statements from a string.
Synopsis

procedure pyexec(code:string)

Argument
code Python statements to execute

Example The following model runs Python statements from a string:
model "Python script from string"

uses "python3"
writeln("Python version:")
pyexec("import platform; print(platform.python_version())")

end-model

Further information
1. This function compiles and runs a Python script from a string buffer and waits for its termination. It is afatal error if the compilation fails or if a Python run-time error occurs.
2. Use the I/O Driver python and the functions pyget and pyset to transfer data between Mosel andPython. Use pyget to evaluate a single expression with return value and use pycall to call a singlefunction with input arguments or return value.
3. Do not concatenate untrusted strings from the end user into the code string. See Section Xpress

Insight configuration for more information.
Related topics

pycall, pyget, pyrun, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 781

python3

pyget

Purpose Get the result of a Python expression as Mosel variable.
Synopsis

procedure pyget(expr:string,var:array|set|list)
function pygetbool(expr:string):boolean
function pygetint(expr:string):integer
function pygetreal(expr:string):real
function pygetstr(expr:string):string
function pygettext(expr:string):text

Arguments
expr Python expression to evaluate
var Destination Mosel array, set or list

Example The following example evaluates a Python dictionary expression and writes the result to a Mosel array.It then retrieves a real value from Python:
declarations

Arr: dynamic array(set of integer) of real
end-declarations

pyexec("import math")
Arr(0) := 0.1; Arr(1) := 1.1 ! Old array data
reset(Arr) ! Clear old array data
pyget("{1: math.pi, 2: math.e}", Arr) ! Add new data to array

writeln("Arr: ", Arr)
writeln("pi: ", pygetreal("math.pi"))

Further information
1. At first, the function interprets the expression as a global variable name and tries to access the variableby getting it from the attributes of the Python __main__module. If this fails, the expression isevaluated by Python and the result is written to or returned as a Mosel variable. It is a fatal error if theexpression evaluation or the type conversion fails.
2. The first version of the pyget routine is additive: it writes the new elements to the existing Mosel array,set or list without clearing previously existing elements. Use reset to manually clear an array, set orlist before calling this function.
3. See the I/O Driver python Section for further details about type conversions. Use pycall to call asingle function with input arguments or return value.
4. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress

Insight configuration for more information.
Related topics

pycall, pygetdf, pyset, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 782

python3

pygetdf

Purpose Initialize a list of Mosel arrays from the columns of a pandas DataFrame.
Synopsis

procedure pygetdf(expr:string,result:list of array)
procedure pygetdf(expr:string,result:list of array,labels:list of string)

Arguments
expr Python expression that evaluates to a pandas DataFrame
result Mosel list of arrays to be initialized from pandas DataFrame
labels Labels of the pandas DataFrame columns used for initialization

Example In this example, two Mosel arrays with the same index sets are initialized from a DataFrame. With thefirst call to pygetdf, the arrays are initialized based on the order of the DataFrame columns, with thesecond they are initialized using column labels.
declarations

I, J: set of integer
Numbers: dynamic array(I, J) of integer
Labels: dynamic array(I, J) of string

end-declarations

pyinitpandas
pyexec(`
import pandas as pd
df = pd.DataFrame(

data=[[11, "eleven"], [23, "twenty-three"], [42, "forty-two"]],
index=pd.MultiIndex.from_tuples([(1, 1), (2, 3), (4, 2)]),
columns=["number", "label"])

print(df)
`)

pygetdf("df", [Numbers, Labels])
writeln("I: ", I, "\nJ: ", J)
writeln("Numbers: ", Numbers, "\nLabels: ", Labels)

reset(Numbers); reset(Labels)
pygetdf("df", [Labels, Numbers], ["label", "number"])
writeln("Numbers: ", Numbers, "\nLabels: ", Labels)

Fair Isaac Corporation Confidential and Proprietary Information 783

python3

Further information
1. The first version of the procedure initializes the arrays based on the order of the DataFrame columns.The second version uses column labels to select the DataFrame columns that are used for theinitialization.
2. At first, the procedure interprets the expression as a global variable name and tries to access thevariable by getting it from the attributes of the Python __main__module. If this fails, the expression isevaluated by Python and the result is used for the Mosel array initialization. It is a fatal error if theexpression evaluation or the type conversion fails.
3. The initialization of the result arrays is additive: new elements are written to the existing arrays withoutclearing previously existing elements. Use reset to manually clear the arrays before calling thisprocedure.
4. DataFrame conversion is supported in all module functions that accept lists of arrays. In particular, it issupported by pycall and the I/O Driver python .
5. Do not concatenate untrusted strings from the end user into the expr string. See Section Xpress

Insight configuration for more information.
Related topics

pyget, pysetdf, pyinitpandas

Fair Isaac Corporation Confidential and Proprietary Information 784

python3

pyinit

Purpose Initialize the Python interpreter.
Synopsis

procedure pyinit

Example The following example initializes Python:
pyinit

Further information
1. The use of this procedure is optional: Python is automatically initialized upon first use.
2. You can only initialize one Python interpreter per Mosel instance. The initialization will fail if you attemptto initialize two interpreters in the same Mosel instance. Use pyunload to release the interpreter andits resources. The interpreter cannot be reinitialized in the same Mosel instance after unloading it.
3. In order to use multiple interpreters in parallel, it is necessary to create a new Mosel instance for eachadditional interpreter. Use the connect function from the mmjobs module to create a new instance.
4. If the initialization of Python fails, activate additional logging by setting the parameter

pyinitverbose to true before initializing Python, double check the values of your environmentvariables (see the Introduction section) and check the Troubleshooting section.
Related topics

connect, pyinitverbose, pyinitpandas, pyunload

Fair Isaac Corporation Confidential and Proprietary Information 785

python3

pyinitpandas

Purpose Set pyusepandas parameter to true and initialize the pandas interface.
Synopsis

procedure pyinitpandas

Example The following example first prints a Mosel array as Python dictionary and then initializes the pandasinterface and prints the array as pandas Series:
declarations

A: array(range) of real
end-declarations

A :: (-1..2)[-1.1, 0, 1.1, 2.2]
pycallvoid("print", "A as Python dict:\n", A)
pyinitpandas
pycallvoid("print", "A as pandas Series:\n", A)

Further information
1. This procedure is equivalent to the following two commands:

setparam("pyusepandas", true)
pyinit

See the documentation of pyusepandas and pyinit for further information. The I/O Driver pythonsection provides an overview of the additionally available type mappings after having initialized thepandas interface.
2. At first, the procedure sets the parameter pyusepandas to true, then it initializes the Python interpreterif it has not yet been initialized and finally it initializes the pandas interface if it has not yet beeninitialized. Once initialized, the pandas functionality will continue to be available even after switching

pyusepandas off. See pyusepandas for more information.
Related topics

pyinit, pyinitverbose, pyunload, pyusepandas, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 786

python3

pyrun

Purpose Run a Python script and wait until it is finished.
Synopsis

procedure pyrun(filename:string)

Argument
filename Regular file name of a Python script

Example The following model runs a Python script:
model "Python script example"

uses "python3"
pyrun("my-python-script.py")

end-model

Further information
1. The function compiles and runs a Python script and waits for its termination. It is a fatal error if thecompilation fails or if a Python run-time error occurs.
2. Use the I/O Driver python and the functions pyget and pyset to transfer data between Mosel andPython.
3. Do not run untrusted scripts, e.g., scripts provided by the end user. See Section Xpress Insight

configuration for more information.
Related topics

pycall, pyexec, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 787

python3

pyset

Purpose Assign a Mosel value to a global Python variable.
Synopsis

procedure
pyset(varname:string,var:boolean|integer|real|string|text|array|list|set)

Arguments
varname Global Python variable name
var Mosel value to be assigned to Python variable

Example The following example writes a Mosel array to a Python dictionary and a Mosel list to a Python list:
declarations

MosArray: array(set of string) of real
end-declarations

pyset('py_list', [1, 2, 3]) ! Mosel list -> Python list.
pyexec('print("py_list:", py_list)')

MosArray('e') := M_E; MosArray('pi') := M_PI

setparam('pyusepandas', false) ! Mosel array -> Python dictionary.
pyset('py_dict', MosArray)
pyexec('print("py_dict:", py_dict)')

setparam('pyusepandas', true) ! Mosel array -> Pandas Series.
pyset('pd_series', MosArray)
pyexec('print("pd_series:", pd_series, sep="\n")')

Further information
1. The procedure creates or overwrites the global variable by writing the new value to the attributes of thePython __main__module. If the variable name is not a valid Python variable identifier the procedurewill succeed anyway and write the value to the module attributes using the name specified in varname.
2. The procedure replaces previously existing global variables. It does not update or add data to existingPython structures.
3. See the I/O Driver python Section for more details about type conversions.

Related topics
pyget, pyexec, pysetdf, pyusepandas, Driver python

Fair Isaac Corporation Confidential and Proprietary Information 788

python3

pysetdf

Purpose Convert a list of Mosel arrays to a pandas DataFrame.
Synopsis

procedure pysetdf(varname:string,input:list of array)
procedure pysetdf(varname:string,input:list of array,labels:list of string)

Arguments
varname Global Python variable name for the new DataFrame
input Mosel list of arrays to be converted to the DataFrame
labels Labels for the DataFrame columns

Example In this example, two Mosel arrays with the same index sets are converted to a DataFrame. With the firstcall to pysetdf, a DataFrame is created with integer column labels and the second creates aDataFrame with string column labels.
declarations

I, J: set of integer
Numbers: dynamic array(I, J) of integer
Labels: dynamic array(I, J) of string

end-declarations

pyinitpandas
Numbers(1,1) := 11; Labels(1,1) := "eleven"
Numbers(2,3) := 23; Labels(2,3) := "twenty-three"
Numbers(4,2) := 42; Labels(4,2) := "forty-two"

writeln("Integer column labels:")
pysetdf("df", [Numbers, Labels])
pyexec("print(df)")

pysetdf("df", [Numbers, Labels], ["number", "label"])
writeln("\nString column labels:")
pyexec("print(df)")

Further information
1. The first version of the procedure creates a new DataFrame with numbers as column labels and thesecond version uses the provided string column labels.
2. The procedure creates or overwrites the global variable by writing the new value to the attributes of thePython __main__module. If the variable name is not a valid Python variable identifier the procedurewill succeed anyway and write the value to the module attributes using the name specified in varname.
3. The procedure replaces previously existing global variables. It does not update or add data to existingPython structures.
4. DataFrame conversion is supported in all module functions that accept lists of arrays. In particular, it issupported by pycall and the I/O Driver python .

Related topics
pygetdf, pyset, pyinitpandas

Fair Isaac Corporation Confidential and Proprietary Information 789

python3

pyunload

Purpose Release the Python interpreter and its resources.
Synopsis

procedure pyunload

Example The following example releases the Python interpreter:
pyunload

Further information
1. The use of this procedure is optional: the Python interpreter is automatically released at the end of amodel execution. However, you may prefer to release it sooner to free resources allocated by Python.
2. After unloading the interpreter it cannot be reinitialized in the same Mosel instance. This is due to a bugin Python’s finalization function and its extension modules. For example, NumPy and pandas do notwork after reinitializing the interpreter in the same process, i.e., in the same Mosel instance. Seehttps://docs.python.org/3/c-api/init.html#c.Py_FinalizeEx andhttps://github.com/numpy/numpy/issues/8097 for more details.

Related topics
pyinit

Fair Isaac Corporation Confidential and Proprietary Information 790

https://docs.python.org/3/c-api/init.html#c.Py_FinalizeEx
https://github.com/numpy/numpy/issues/8097

python3

20.5 I/O drivers

The python3 module provides a driver that is designed to be used in initializations blocks forboth reading data from and writing data to Python.
20.5.1 Driver python

python:optional_module_name

The driver can only be used in ‘initializations’ blocks. The optional string after the colon is the Pythonmodule name to read the data from or write the data to. If a module name is provided, then the optionalitem labels are understood as attribute names of the specified module. Initializing data to, for example,
"python:client_data" will create a new module called client_data. To access that module inPython, you need to import it like a normal Python module ("import client_data"). Afterimporting the module, the converted Mosel variables will be the attributes of the module, for example,
client_data.demand.
If no module name is provided, i.e. if the file name is "python:", then the driver behaves like pysetand pyget: When writing data to Python, the optional labels are understood as global variable names.The driver creates or overwrites the global variables by writing the new values to the attributes of thePython __main__module. If a variable name is not a valid Python variable identifier the driver willsucceed anyway and write the value to the module attributes using the name specified in the label.When reading data from Python, the optional labels are understood as Python expressions. At first, thedriver checks whether an expression is a global variable and tries to access it by getting it from theattributes of the Python __main__module. If this fails, the expression is evaluated by Python and theresult is written to the Mosel variable.
The driver throws an I/O error if the expression evaluation or the type conversion fails. Use theparameters ioctrl (see setparam) and iostatus (see getparam) to catch I/O errors.
When initializing data from Mosel to Python, a possibly existing Python object with the same name willbe replaced by a new Python object with a Python object type that matches the type of the Moselsource variable.
When initializing arrays, sets, or lists from Python to Mosel, the initialization behavior is additive: Theelements of the Python structures are added to the Mosel structures and existing elements in theMosel structures will not be deleted automatically. If, for example, the target Mosel array is dense andthe source Python dictionary or Series is sparse, then the Mosel array may contain old and new valuesafter initialization from Python. If the Mosel array is meant to contain only the values retrieved from thePython dictionary, it is recommended to clear the array with reset before initializing it from Python.
20.5.1.1 Type mapping to Python

� Mosel boolean→
– Python bool
– NumPy bool_ if element of pandas Series

� Mosel integer→
– Python int
– NumPy int64 if element of pandas Series

� Mosel real→
– Python float

Fair Isaac Corporation Confidential and Proprietary Information 791

python3

– NumPy float64 if element of pandas Series
� Mosel string/text→ Python str
� Mosel set→ Python set
� Mosel list→ Python list
� Mosel array(I)→

– If pyusepandas: pandas Series with one-dimensional index
– If not pyusepandas: Python dictionary with scalar keys

� Mosel array(I, J, ...)→
– If pyusepandas: pandas Series with multi-dimensional index
– If not pyusepandas: Python dictionary with tuples of scalars as keys

� Mosel list of array→
– If pyusepandas: pandas DataFrame with one- or multi-dimensional index
– If not pyusepandas: not supported

� Mosel nested types→ Python nested type
� Mosel records: not supported
� Other Mosel external types: not supported

20.5.1.2 Type mapping from Python

The NumPy and pandas types are only supported if the pandas interface is initialized.
� Mosel boolean← Python bool; NumPy bool_
� Mosel int← Python int, bool; NumPy integer, bool_
� Mosel real← Python float, int, bool; Numpy floating, integer, bool_
� Mosel string/text← String representation of Python object as returned by repr()
� Mosel list← Python list
� Mosel set← iterable types (e.g., set, generator expression, classes that implement __iter__())
� Mosel array←

– pandas Series with one- or multi-dimensional index
– NumPy ndarray with one or multiple dimensions
– Python dictionary with scalar or tuple keys

� Mosel list of array←
– pandas DataFrame with one- or multi-dimensional index

� Mosel nested types← Python nested type of supported subtypes
� Mosel records: not supported

Fair Isaac Corporation Confidential and Proprietary Information 792

python3

� Other Mosel external types: not supported
In the following example, a sparse array is transferred to Python and then the same array is reused forretrieving data from a sparse Python dictionary.

model "Python I/O example"
uses "python3"

declarations
I = 1..4
A: dynamic array(I) of integer

end-declarations

A(1) := 1⁎2; A(3) := 3⁎2

initializations to "python:"
I as "MyRange"
A

end-initializations

pyrun("io-example.py")
reset(A) ! Delete existing elements from array A.

initializations from "python:"
A

end-initializations

writeln("Values initialized from Python:")
writeln(" A = ", A)

end-model

The content of io-example.py:
print("Values initialized to Python:")
print(" MyRange =", MyRange)
print(" A =", A)
print("Modifying data in Python...")
A = {i: 2 ⁎ i for i in MyRange if i % 2 == 0}

Executing this model generates the following output:
Values initialized to Python:
MyRange = range(1, 5)
A = {1: 2, 3: 6}

Modifying data in Python...
Values initialized from Python:
A = [(2,4),(4,8)]

20.6 Troubleshooting

This section describes some known issues and possible solutions.
� Mosel: E-353: Module ‘python3’ disabled by restrictions.

This module does not handle Mosel restrictions, it will therefore fail to load if Mosel is run in
restricted mode. Section 20.2 provides information about configuring the security restrictions.

� If the initialization of a Python extension module fails when it is imported from within Mosel, thenfirst check which Python environment is used from within Mosel (set pyinitverbose to true)and check whether the extension module is installed in that environment. If it is installed and canbe imported from within the interactive shell of that environment, but fails when it is imported

Fair Isaac Corporation Confidential and Proprietary Information 793

python3

from within Mosel, then check whether your environment is set up correctly: Windows Anaconda
Setup, Linux Anaconda Setup.

Fair Isaac Corporation Confidential and Proprietary Information 794

CHAPTER 21

R

The module r makes it possible to easily exchange data with R and execute R scripts or evaluateexpressions in the R language.R is a free software environment for statistical computing and graphics. R is available as Free Softwareunder the terms of the Free Software Foundation’s GNU General Public License.To use this module, the following line must be included in the header of the Mosel model file:
uses 'r';

21.1 Introduction

This module implements functionality for exchanging data between a Mosel model and R and forcalling R functions from a Mosel model.
The r module also defines an I/O driver for exchanging data using the initializations from and
initializations toMosel constructs.
It is the Mosel run-time library that loads and runs R, not vice versa.
The purpose of the module is to make the extensive data processing capabilities of R available withinMosel. The interactive and graphing features of R are beyond the scope of this module as it does notimplement a full interactive R GUI. However, it is possible to use some of these to a limited extent.

21.1.1 Prerequisites

This module does not include R binaries. In order to use R you need a working installation of R, version3.0 or newer and targeting the same platform as Mosel (you won’t be able to use, e.g., the Windows32-bit version of R from the Windows 64-bit version of Mosel). The most recent supported R version is3.6.x. To download R, please visit the R Project web site at www.r-project.org.
This module will try to load R from the directory specified by the R_HOME environment variable, if set, orfrom the default R installation locations otherwise.
More specifically Mosel looks for a file named R.dll in Windows, libR.so in Linux, and libR.dylibin Mac OS X.
For Windows platforms, the default location is retrieved from the registry (from registry key
HKEY_LOCAL_MACHINE\Software\R-core\R\InstallationPath); it is
/Library/Frameworks/R.framework/Resources for Mac OS X, /usr/lib/R for 32bit Linux,and either /usr/lib64/R or /usr/lib/R for 64bit Linux.
If R_HOME and R_ARCH environment variables are defined, they are used to construct a path like
R_HOME/lib in Linux and like R_HOME\bin\R_ARCH in Windows (the default for R_ARCH is x64 or
i386 respectively for Windows 64-bit and Windows 32-bit).

Fair Isaac Corporation Confidential and Proprietary Information 795

http://www.r-project.org

R

If you have multiple installations of R, or if R is installed in a different location or not automaticallyfound, you will need to set the environment variable R_HOME to point to your R installation directory.
Note that the loading of R is not influenced by eventual Mosel statements like
setparam(’workdir’,...) or setenv(’R_HOME’,...) as these don’t affect the process’senvironment used for R loading. The environment variables or current path must eventually be setbefore launching Mosel in order for this to influence R loading.
As an example, if R 3.2.3 is installed in "C:\Program Files\R\R-3.2.3\bin\..." in Windows64-bit, then the correct value for the R_HOME environment variable (or registry key) is C:\Program
Files\R\R-3.2.3 (thus, without the bin subdirectory) and Mosel would try and load R.dll from
C:\Program Files\R\R-3.2.3\bin\x64\R.dll.

21.1.2 R initialization

The R environment is automatically initialized at the point where a Mosel model uses for the first timeany function that requires it. So we can have the following small example that just prints the R version(it prints the same output as if you typed R.version.string on an R console):
model "r version example"
uses 'r';
Rprint('R.version.string')

end-model

Alternatively it is possible to explicitly initialize R using the Rinit function. This can be useful in orderto retrieve a status code or to specify non-default initialization options.
By default, R is initialized with the options "–slave –vanilla", so no site or user environment, profile,history and workspace files are processed. Please refer to the R documentation for more details onthese and other options (http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R).
Upon startup, only the "utils", "stats", and "methods" R packages are loaded by default. Other packagescan be loaded via R statements (using for example the library or require R functions) or a differentinitial package list can be specified by setting the R_DEFAULT_PACKAGES environment variable (priorto running Mosel).
As R is single-threaded, it is not possible to create more than one R session per model, nor to executetwo models in parallel if both use R.

21.1.3 Memory limit on Windows

On Windows platforms, R has an internal mechanism that can limit the maximum amount of memory itcan use. The limit can be read or changed using the R memory.limit function; for example, thecurrent limit can be printed from Mosel with
writeln('R memory limit is ',Rgetreal("memory.limit()"),' MB')

and the limit can be set, e.g. to 16 GB, with
Reval("memory.limit(16⁎1024)")

Note that in versions of R prior to 3.6 the default value for this limit is different when R is executed as astandalone application rather than embedded in another application (including Mosel): in the first casethe limit is set to the amount of physical memory available whereas it is fixed to 2 GB for embeddedmode. Therefore, in order to allow R to use more than 2 GB of memory from Mosel on Windows it isnecessary to explicitly raise this limit as shown above. Starting with R version 3.6, by default there is nomemory limit anymore when R is executed in embedded mode.

Fair Isaac Corporation Confidential and Proprietary Information 796

http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R

R

21.1.4 Data types

The types of data that can be exchanged with R are the four Mosel elementary types boolean,
integer, real and string, plus arrays, lists and sets of these (nested compositions are notsupported). Both static and dynamic Mosel arrays are supported and mapped into R atomic vectors ofthe corresponding type. Mosel lists and sets can also be exported into R vectors.
In general, there is no direct mapping of more complex R types such as factors or data.frames, with theexception of the Rsetdf function, however these can be exchanged after conversion to basic types.For example, a factor can be loaded into a Mosel array as an array of integers with:

Rgetarr("unclass(f)", intarray)

or as an array of strings with:
Rgetarr("levels(f)[f]", strarray)

Note that the first is also equivalent to this simpler form:
Rgetarr("f", intarray)

since this module ignores the factor’s "class" and "levels" attributes; similarly the second is equivalentto the simpler:
Rgetarr("f", strarray)

since the casting to string, performed within R, automatically takes into account the "levels" attribute.
To load a data.frame into Mosel, it should be converted to a matrix (for instance using as.matrix ifthe column types allow that) or split into individual column vectors.
For the opposite operation, that is, exporting a Mosel array to R, note that, except for the Rsetdffunction, Mosel arrays are always exported as R (dense) atomic vectors. Any index that is not a 1-basedinteger range is created in R as a named index. Index names, in R, are always strings, so for example,when the Mosel array in the following example is converted to R, the index set J is kept as an unnamedinteger index, while I (which does not start with 1) and K (which has holes) are created as namedindices.

model "array to r"
uses "r"

declarations
I= 2..3
J= {1,2}
K= {1,3}
a: array(I,J,K) of integer

end-declarations

a(2,1,1):=4 ! Define some test data entry
Rset('aR',a) ! Copy data to R
writeln("Array in R:")
Rprint("aR") ! Display data held in R
writeln("dimnames(aR):")
Rprint("dimnames(aR)") ! Display R indices

end-model

Executing this model generates the following output:
Array in R:
, , 1

Fair Isaac Corporation Confidential and Proprietary Information 797

R

[,1] [,2]
2 4 0
3 0 0

, , 3

[,1] [,2]
2 0 0
3 0 0

dimnames(aR):
[[1]]
[1] "2" "3"

[[2]]
NULL

[[3]]
[1] "1" "3"

Note how the first and last entry of dimnames, which correspond to indices I and K respectively, areset to the list of index elements converted to strings; while the second entry is left to NULL since theindex set J is a 1-based integer index with contiguous elements.
Conversion to R data frames can be done using function Rsetdf. If this does not provide the requireddata frame format or other complex R data structures are needed, then the conversion should be donein the R realm and is outside of the scope of this guide. A few examples are shown below, but pleaserefer to the R documentation for further information.
Some common and useful R functions to convert vectors into data frames are e.g. data.frame(),
as.data.frame(), and the functions from the reshape or reshape2 packages, just to name a few.Also functions names() (for 1-dimensional vectors) or dimnames() (for any vectors) can be used toretrieve the index names of a vector.In the following example, a Mosel single-indexed demand array is converted to a 2-column R dataframe: the first column for the index and the second column for the value:

model "dataframe"
uses "r"

declarations
Locations = {12,34,56}
demand: dynamic array(Locations) of real

end-declarations

forall(l in Locations) demand(l):=l⁎100 ! Fill array with some data
Rset("demand", demand)
Rprint("table <- data.frame(Loc=names(demand),Dem=demand,row.names=NULL)")

end-model

This is the resulting output:
Loc Dem

1 12 1200
2 34 3400
3 56 5600

Note that this is the same result that you would get, more simply, with Rsetdf("table", demand,
["Loc","Dem"]).
Alternatively, calling data.frame just as data.frame(demand) without any other parameters wouldcreate a data frame with a single column (for demand) and named rows, thus yielding:

demand

Fair Isaac Corporation Confidential and Proprietary Information 798

R

12 1200
34 3400
56 5600

A bidimensional demand array such as:
declarations
Locations = {12,34,56}
C={"A","B"}
demand: dynamic array(Locations,C) of real

end-declarations
demand(12,"A"):=1234
demand(56,"B"):=6789
Rset("demand", demand)

using Rsetdf("df", demand, ["Loc","C", "Value"]) would yield:
Loc C Value

1 12 A 1234
2 56 B 6789

or it could be converted to a data frame via data.frame(Loc=dimnames(demand)[[1]],demand,
row.names=NULL) which results in the following form:

Loc A B
1 12 1234 NA
2 34 NA NA
3 56 NA 6789

Finally, for instance by calling function melt form the reshape2 package such as melt(demand,
varnames = c(’Loc’,’Prod’), value.name = ’Demand’), it is possible to obtain a dataframe with a column for each index plus a column with the array values like the following:

Loc Prod Demand
1 12 A 1234
2 34 A NA
3 56 A NA
4 12 B NA
5 34 B NA
6 56 B 6789

21.2 Example

The following example shows how to execute R statements and exchange data with the R workspace.
model "r example"
uses "r"

declarations
CITIES = {"LONDON", "PARIS", "ROME"}
ZONES = 1..4
mosarray, backarr, backarrio: array(ZONES, CITIES) of integer
backnum: real

end-declarations

setparam("Rverbose",true) ! Enable showing R error messages

! Reval evaluates arbitrary R statements
Reval("t<-Sys.time();now<-format(t, '%H:%M')")

! Rprint also prints the result (via the R print function)
Rprint("paste('Hello from R at',now)")

Fair Isaac Corporation Confidential and Proprietary Information 799

R

! Assign some Mosel scalars to R vars and show results
Rset("a_num", 1.2)
Reval("str(a_num)")
Rset("a_chr", "word")
Reval("str(a_chr)")

! The lvalue can be any R valid lvalue, e.g. the dim attribute
Rset("a_vec", 1..6) ! a_vec is an R vector
Rset("dim(a_vec)", [2,3]) ! change its dimensions
writeln("a_vec")
Rprint("a_vec") ! now it is a 2x3 matrix

! Assign a Mosel array to an R variable
forall(i in ZONES, c in CITIES) mosarray(i,c):=i⁎10+getsize(c)
Rset("arr", mos_array)

! The R vector keeps index names
writeln("arr")
Rprint("arr")

! Retrieve R variables
writeln("a_num is ", Rgetreal("a_num"))
writeln("a_chr is ", Rgetstr("a_chr"))
Rgetarr("arr", backarr)
writeln("arr is ", backarr)

! Data can also be exchanged via the I/O driver
newnumber:=1.3
mosarray(1,"LONDON"):=1

! Send data to R
initializations to "r.rws:"
newnumber as "a_num"
mosarray as "arr"

end-initializations
! Get data back from R
initializations from "r.rws:"
backnum as "a_num"
backarrio as "arr"

end-initializations
writeln("backnum is ", backnum)
writeln("backarrio is ", backarrio)

end-model

21.3 Control parameters

The following parameters are defined by the module r:
Rcleanscript R cleanup script to be run at the end of a session. p. 801
Rinteractive Control the R interactive flag. p. 801
Rsessionmode R session handling mode. p. 802
Runloadscript R unload script to be run at the end of a session. p. 802
Rusemosstreams Enable/disable R output redirection. p. 801
Rverbose Enable/disable R error messages. p. 801

Fair Isaac Corporation Confidential and Proprietary Information 800

R

Rverbose

Description Enables or disables the printing of error messages when errors occur during the evaluation ofR statements. When this parameter is set, two corresponding R options are set accordingly,namely show.error.messages, which is set to the same value as this parameter, and warnwhich is set to 1 or -1 when this parameter is set to true or false respectively.
Type Boolean, read/write
Default value false
Module r

Rinteractive

Description This has effects on eventual user prompts and confirmation requests from R, please refer toR documentation (e.g. on "interactive()") for more details.
Type Boolean, read/write
Default value false
Module r

Rusemosstreams

Description By default R sends output to stdout and stderr. Using this parameter it is possible to redirectR console output to Mosel streams instead. Note that the R notion of stdin connection isnot affected by this parameter.
Type Boolean, read/write
Default value true
Module r

Rcleanscript

Description This parameter can be used to specify the R statement(s) to be executed at the end of an Rsession; its purpose should be to clear the R workspace. Note that this script is run only forsession modes 2 and 3.
Type String, write only
Default value remove all objects currently defined in the R workspace

Affects routines Rfree.
Module r

Fair Isaac Corporation Confidential and Proprietary Information 801

R

Runloadscript

Description This parameter can be used to specify the R statement(s) to be executed at the end of an Rsession; its purpose should be to free and unload all resources used by R. Note that this scriptis run only for session mode 3 and after the Rcleanscript statement(s).
Type String, write only
Default value unload all packages and dynamic libraries

Affects routines Rfree.
Module r

Rsessionmode

Description Specifies what actions are taken at the end of an R session.
Type Integer, read/write
Values 0 END: the R session is ended.

1 KEEP: the R session is kept alive and the current R workspace is preserved.
2 CLEAR: the R session is kept alive and the Rcleanscript is executed.
3 UNLOAD: both the Rcleanscript and Runloadscript are executed, then R is unloaded.

Default value 2
Notes This parameter is useful mainly when multiple Mosel models that use R are executed withinthe same process.When an R session is ended, R does not allow the creation of further sessions, therefore R willnot be usable again within the same process.Session mode 3, by unloading R, should enable the possibility to create new R sessions withinthe same process, however it may not completely free all resources allocated by R.
Affects routines Rfree.
Module r

21.4 Procedures and functions

All R statements are evaluated in the R Global Environment, more often known as the user’s workspace.
In general, the procedures and functions of r do not fail in case of R parsing or evaluation errors but setan internal status variable that can be read with Rerrcode. To make sure that an operation has beenperformed correctly, it is recommended to check the value of this variable after each call.
Rclearerr Clear the last error code and message. p. 818
Rerrcode Get the last error code. p. 816
Rerrmsg Get the last error message. p. 817

Fair Isaac Corporation Confidential and Proprietary Information 802

R

Reval Evaluate R statements. p. 804
Rfree Terminate an R session. p. 805
Rgetarr Get the resulting array of an R expression. p. 806
Rgetbool Get the boolean value of an R expression. p. 807
Rgetint Get the integer value of an R expression. p. 808
Rgetreal Get the real value of an R expression. p. 809
Rgetstr Get the string value of an R expression. p. 810
Rinit Initialize an R session. p. 811
Rprint Evaluate R statements and print the result. p. 812
Rset Assign a Mosel value to an R object. p. 813
Rsetdf Assign a Mosel array to an R data.frame object. p. 814
Rsource Evaluate an R script file. p. 815

Fair Isaac Corporation Confidential and Proprietary Information 803

R

Reval

Purpose Evaluate R statements.
Synopsis

procedure Reval(cmd:string)

Argument
cmd Statements to evaluate

Example The following example loads the datasets package, calculates summary statistics of the attenudataset and prints results:
Reval('library(datasets); s<-summary(attenu)')
Rprint('s')

Further informationIt is possible to evaluate multiple statements separating them with semicolons.
Related topics

Rprint.

Fair Isaac Corporation Confidential and Proprietary Information 804

R

Rfree

Purpose Terminate an R session.
Synopsis

procedure Rfree

Example The following example terminates the R session:
Rfree

Further informationThe use of this procedure is optional: R is automatically terminated at the end of a model execution.However you may prefer to terminate it sooner to free resources allocated by R.
Related topics

Rinit.

Fair Isaac Corporation Confidential and Proprietary Information 805

R

Rgetarr

Purpose Get the resulting array of an R expression.
Synopsis

procedure Rgetarr(cmd:string, arr:array)

Arguments
cmd Statements to evaluate
arr Destination Mosel array

Example The following example loads the R cars example dataset into the Mosel array cars:
declarations
cars:array(range, set of string) of integer

end-declarations
Rgetarr('as.matrix(datasets::cars)',cars)

Further information
1. If cmd contains more than one statement, the returned value is the result of the last one.
2. The Mosel array arrmust have the same number of dimensions as the R array; NA entries in R areskipped and corresponding entries in arr are left unchanged (note that arr is not cleared beforeloading R data).
3. Supported index types for the arr array are string and integer. In the case of strings, the R array musthave a valid names or dimnames attribute for the corresponding dimension; in the case of integers, theR integer indices (1 to n) are used. All entries of the R array are converted to the same type as thedestination array within R.

Related topics
Rgetarr, Rgetint, Rgetreal, Rgetstr

Fair Isaac Corporation Confidential and Proprietary Information 806

R

Rgetbool

Purpose Get the boolean value of an R expression.
Synopsis

function Rgetbool(cmd:string):boolean

Argument
cmd Statements to evaluate

Return valueThe result of the evaluation as a boolean.
Example The following example checks if the R entity vec is atomic and sets the boolean variable boolvaraccordingly:

boolvar:=Rgetbool('is.atomic(vec)')

Further informationIf cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then false is returned. The returned value is first converted to logical within R.

Related topics
Rgetarr, Rgetint, Rgetreal, Rgetstr

Fair Isaac Corporation Confidential and Proprietary Information 807

R

Rgetint

Purpose Get the integer value of an R expression.
Synopsis

function Rgetint(cmd:string):integer

Argument
cmd Statements to evaluate

Return valueThe result of the evaluation as an integer.
Example The following example retrieves the length of the R entity vec into variable intvar:

intvar:=Rgetint('length(vec)')

Further informationIf cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then the R NA_Integer value (-231) is returned. The returned value is first converted to integerwithin R.

Related topics
Rgetarr, Rgetbool, Rgetint, Rgetstr

Fair Isaac Corporation Confidential and Proprietary Information 808

R

Rgetreal

Purpose Get the real value of an R expression.
Synopsis

function Rgetreal(cmd:string):real

Argument
cmd Statements to evaluate

Return valueThe result of the evaluation as a real.
Example The following example retrieves the mean of the speed/dist ratios for the cars dataset into thevariable realvar:

realvar:=Rgetreal('mean(cars$speed/cars$dist)')

Further informationIf cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then a NaN value is returned. The returned value is first converted to numeric within R.

Related topics
Rgetarr, Rgetbool, Rgetint, Rgetstr

Fair Isaac Corporation Confidential and Proprietary Information 809

R

Rgetstr

Purpose Get the string value of an R expression.
Synopsis

function Rgetstr(cmd:string):string

Argument
cmd Statements to evaluate

Return valueThe result of the evaluation as a string.
Example The following example retrieves the version string of R into the variable strvar:

strvar:=Rgetstr('R.version.string')

Further informationIf cmd contains more than one statement, the returned value is the result of the last one. If the results is
NA, then the string "NA" is returned. The returned value is first converted to string within R.

Related topics
Rgetarr, Rgetbool, Rgetreal, Rgetstr

Fair Isaac Corporation Confidential and Proprietary Information 810

R

Rinit

Purpose Initialize an R session.
Synopsis

function Rinit([args:string...]): integer

Argument
args List of R startup options (optional)

Return value0 if the initialization was successful.
Example The following example initializes R with default options:

initok:=Rinit
if initok<>0 then writeln('Failed to initialize R')
end-if

Further informationThe use of this function is optional: R is automatically initialized upon first use. Default R startupoptions are "–slave", "–vanilla", so no site or user environment, profile, history and workspace files areprocessed. Please refer to the R documentation for the exact meaning of these and other options(http://cran.r-project.org/doc/manuals/r-release/R-intro.html#Invoking-R).
Related topics

Rfree.

Fair Isaac Corporation Confidential and Proprietary Information 811

R

Rprint

Purpose Evaluate R statements and print the result.
Synopsis

procedure Rprint(cmd:string)

Argument
cmd Statements to evaluate and print

Example The following example prints the R version number and summary statistics of the cars dataset:
Rprint("R.version.string")
Rprint('library(datasets); summary(cars)')

Further informationIt is possible to evaluate multiple statements separating them with semicolons. The return value of thelast statement is printed using R’s own print function, thus with R style and formatting.
Related topics

Reval.

Fair Isaac Corporation Confidential and Proprietary Information 812

R

Rset

Purpose Assign a Mosel value to an R object.
Synopsis

procedure Rset(dst:string, value:[set|array|list of]
boolean|integer|real|string)

Arguments
dst An R variable name
value The Mosel value to be assigned to dst

Example The following example assigns values 1.2, "hello" and an array with numbers 1 to 6 to the R objects
a_num, a_string and a_vec respectively:

Rset('a_num', 1.2)
Rset('a_string', 'hello')
Rset("a_vec", 1..6) ! An R vector with real values 1 to 6
Rset("dim(a_vec)", [2,3]) ! Change its dimensions into a 2x3 matrix

Further information
1. A new temporary R entity is created from value and then assigned to dst, unless value is a scalarand dst is an existing R entity of the corresponding type, in which case dst is just set to the new value
2. Argument dst can represent any assignable expression (including subsetting and attributes).
3. The type of argument value can be any elementary Mosel type, or an array, list or set of these(compositions are not supported).
4. When value is an array, for each of the array’s dimensions, its index values are exported into thecorresponding R array’s names or dimnames attribute (after conversion to string) unless the indicesare integer values from 1 to that dimension size.
5. If value is a dynamic array, only the existing values are copied to R and the remaining array entries areset to NA (Not Available).

Related topics
Reval, Rsetdf.

Fair Isaac Corporation Confidential and Proprietary Information 813

R

Rsetdf

Purpose Assign a Mosel array to an R data.frame object.
Synopsis

procedure Rsetdf(dst:string, arr:array of boolean|integer|real|string)

Synopsis
procedure Rsetdf(dst:string, arr:array of boolean|integer|real|string,

cname:list of string)

Arguments
dst An R variable name
arr The Mosel array to be assigned to dst
cname List of names to be assigned to the data.frame columns

Example The following:
declarations
CITIES = {"LONDON", "NEW YORK", "ROME"}
ZONES = 1..4
myarray: dynamic array(ZONES, CITIES) of integer

end-declarations
myarray(1,'LONDON') := 8
myarray(1,'ROME') := 3
myarray(2,'NEW YORK') := 9
Rsetdf("a_df", myarray, ['Zone','City','Value'])
Rprint("a_df")

produces this output:
Zone City Value

1 1 LONDON 8
2 1 ROME 3
3 2 NEW YORK 9

Further information
1. A new R data.frame is created from arr and assigned to dst
2. The argument dst can represent any assignable expression (including subsetting and attributes).
3. The R data.frame is constructed with n+1 columns (where n is the number of dimensions of arr): onecolumn for each of the array’s indices, plus one column for the array’s values; and one row for eachexisting value of the array.
4. Rows are numbered from 1 to the number of existing values of arr and column names are taken fromthe cname argument, when given.
5. Only the first n+1 strings from cname are used; if cname is shorter, then the right-most columns are leftunnamed.

Related topics
Reval, Rset.

Fair Isaac Corporation Confidential and Proprietary Information 814

R

Rsource

Purpose Evaluate an R script file.
Synopsis

procedure Rsource(filename:string)

Argument
filename Filename of the R script to evaluate

Example The following example executes the myscript.R file:
Rsource('myscript.R')

Related topics
Reval.

Fair Isaac Corporation Confidential and Proprietary Information 815

R

Rerrcode

Purpose Get the last error code.
Synopsis

function Rerrcode:integer

Return value0 if the last operations were executed successfully.
Example The following example prints an error message in case of errors in R evaluations:

Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Further informationThe Rerrcode is set to non-zero values in case of errors, but not cleared after successful operations,so it is possible to check it after several operations to verify that all executed without errors. To clear it,use function Rclearerr.
Related topics

Rclearerr, Rerrmsg.

Fair Isaac Corporation Confidential and Proprietary Information 816

R

Rerrmsg

Purpose Get the last error message.
Synopsis

function Rerrmsg:string

Return valueThe last error message in case of errors, or the empty string otherwise.
Example The following example prints an error message in case of errors in R evaluations:

Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Further informationThe message returned by this function is a top-level description of the error. It is possible to alsoretrieve R own error message for example with Rgetstr("geterrmessage()").
Related topics

Rclearerr, Rerrcode.

Fair Isaac Corporation Confidential and Proprietary Information 817

R

Rclearerr

Purpose Clear the last error code and message.
Synopsis

procedure Rclearerr

Example The following example prints an error message in case of errors in R evaluations and subsequentlyclears the error information:
Reval('missingfunction()')
if Rerrcode<>0 then
writeln('Something went wrong: ', Rerrmsg)
Rclearerr

end-if

Related topics
Rerrcode, Rerrmsg.

Fair Isaac Corporation Confidential and Proprietary Information 818

R

21.5 I/O drivers

In order to simplify access to R this module provides a driver that is designed to be used in
initializations blocks for both reading and writing data, providing the same functionalities as theRget and Rset functions.

21.5.1 Driver rws
rws:

The driver can only be used in ‘initializations’ blocks. It does not take any argument and providesaccess to the R workspace.
In the block, each label entry is understood as one or more R statements. For ’from’ blocks, if the labelcontains more than one statement, the value from the last one is returned. For ’to’ blocks, the labelmust contain only one expression.
This driver requires an existing R session, therefore it is necessary to initialize R (either by callingfunction Rinit or any of the other module functions that create an R session) before using it.
Example:

initok:=Rinit ! Initialize R
initializations to "r.rws:" ! Send data to R
scalarvar as "val"
arrayvar as "arr"

end-initializations
initializations from "r.rws:" ! Get data from R
backscalar as "val"
backarr as "arr"

end-initializations

21.6 Troubleshooting

This section describes some known issues and possible solutions.
� When running a model in Windows, a dialog is shown with title ’Unable to locate component’ andcontent ’The application has failed to start because Rlapack.dll was not found...’.This may occur with Windows 2003. Please add your R binary directory (usually ’C:\ProgramFiles\R\R-3.x.x\bin\i386’ or ’C:\Program Files\R\R-3.x.x\bin\x64’ to the system PATH environmentvariable.
� When an R session is initialized in Windows, R installs a console handler to detect Ctrl-C eventswhich may prevent Mosel from properly detecting these same events itself.
� In Linux, R may fail to load if the dynamic libraries in $R_HOME/lib cannot be found by thedynamic linker. In this case, please add $R_HOME/lib to the LD_LIBRARY_PATH environmentvariable.
� This module is not compatible with Mosel security restrictions, therefore it would fail to load ifMosel is run in restricted mode.
� On Mac OS X, if the R release being used is linking the Apple CoreFoundation library, then thismodule can only be successfully initialized from the main thread of the process in which Mosel isrunning (because the CoreFoundation library can only be loaded from the main thread of aprocess). So, for example, the module would fail to load R from an mmjobs submodel and woulddisplay an error like ’R: this module requires CoreFoundation framework to be loaded from main

Fair Isaac Corporation Confidential and Proprietary Information 819

R

thread’. In this case, it ispossible to overcome this issue by setting the environment variable DYLD_INSERT_LIBRARIES to
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation(use the correct path to the CoreFoundation library on your system) before launching the Moselprocess, thus forcing an anticipated loading of the CoreFoundation library at process creation.

Fair Isaac Corporation Confidential and Proprietary Information 820

CHAPTER 22

zlib

The zlib Mosel module is an interface to the zlib compression library by Jean-Loup Gailly and MarkAdler (http://zlib.net). Thanks to two IO drivers it makes possible the creation and use of compressedfiles from Mosel models. As an additional feature this module also integrates the MiniZip library byGilles Vollant (http://www.winimage.com/zLibDll/minizip.html) for supporting the ZIP archive format.

22.1 I/O drivers

The following two drivers behave the same: a stream open for reading is decompressed and a streamopen for writing is created compressed. Both drivers are also based on the same compressionalgorithm (deflate) but use different container formats. The last published driver (zip) can only beopen for reading: it will be used to access a file stored in a zip archive. For more advanced use of ZIParchives please refer to the dedicated routines proposed by the mmsystem module.
22.1.1 Driver gzip

gzip:filename

This driver handles files compressed using the gzip compression format: this corresponds to filescreated using the gzip compression tool.
For instance the following statement decompresses the file "myfile.gz":

fcopy("zlib.gzip:myfile.gz","myfile")

22.1.2 Driver deflate
deflate:filename

This driver handles files compressed using the zlib compression format. This driver can readdocuments compressed by gzip but compressed files it generates are not compatible with this tool.
22.1.3 Driver zip

zip:zipfile,filename

This driver handles archives using the ZIP format. It can be used only for reading files: the filename ofthis driver consists in two parts separated by a coma. The first part is the name of the archive to open(that must be a physical file) and the second one is the archive member name.
For instance the following statement compiles the file "main.mos" stored in the archive
"myproject.zip":

Fair Isaac Corporation Confidential and Proprietary Information 821

http://zlib.net
http://www.winimage.com/zLibDll/minizip.html

zlib

compile("G","zlib.zip:myproject.zip,main.mos","tmp:main.bim")

Fair Isaac Corporation Confidential and Proprietary Information 822

Appendix

APPENDIX A

Syntax diagrams for the Mosel language

A.1 Main structures and statements

〈Model〉 ::=-- ‘model ’ 〈Label〉 · · ·
· · · 〈Directives〉 〈Parameters〉 〈Body〉 ‘end-model ’ -�

1

〈Label〉 ::=- � String� Identifier ��-

1

i

〈Package〉 ::=-- ‘package ’ Identifier · · ·
· · · 〈Directives〉 〈Parameters〉 〈Body〉 ‘end-package ’ -�

〈Directives〉 ::=-
� �� �

� ‘uses ’
� ‘, ’ �� String � �

� ‘imports ’
� ‘, ’ �� String � �

� ‘options ’
� ‘, ’ �� Identifier � �

� ‘namespace ’
� ‘, ’ �� Identifier � �

� ‘nssearch ’
� ‘, ’ �� Identifier � �� ‘nsgroup ’ Identifier �

� ‘: ’
� ‘, ’ �� String � �

� �
� ‘version ’ Integer �� ‘. ’ Integer �� ‘. ’ Integer �� �� �

� �-

1

〈Parameters〉 ::=- · · ·
· · · ‘parameters ’ · · ·

· · ·
� �� �Identifier ‘=’ 〈Expression〉� String ‘: ’ � ‘integer ’� ‘real ’ �� ‘string ’ �� ‘boolean ’ �

� �� � · · ·

· · · ‘end-parameters ’ -

1

Fair Isaac Corporation Confidential and Proprietary Information 824

Syntax diagrams for the Mosel language

〈Body〉 ::=-
� �� �� 〈Declarations〉 �� 〈Requirements〉 �� 〈SubProgram decl〉 �� 〈SubProgram def〉 �� ‘include ’ � String� Identifier �� �

� 〈Statement〉 �

� �-

1

〈Declarations〉 ::=- · · ·
· · · �� ‘public’ �� ‘declarations’ · · ·

· · ·
� �� ��� ‘public’ ��� Identifier ‘=’ � 〈Expression〉� 〈Type descr〉 ��

�� ‘,’ �� Identifier � ‘:’ �� ‘shared’ �� 〈Type descr〉 �
�

� 〈Procedure head〉 �� 〈Function head〉 �

� � · · ·

· · · ‘end-declarations’ -

1

〈Requirements〉 ::=- · · ·
· · · ‘requirements ’ · · ·

· · ·

� �
� �� ‘, ’ �� Identifier � ‘: ’ 〈Type descr〉� 〈Procedure head〉 �� 〈Function head〉 �

� � · · ·

· · · ‘end-requirements ’ -

1

〈Type descr〉 ::=- · · ·
· · · � 〈Type name〉� �� ‘dynamic’ �� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �

� �� ‘dynamic’ �� ‘set’ ‘of’ �� ‘constant’ �� 〈Type descr〉 �
� ‘list’ ‘of’ 〈Type descr〉 �
� � ‘and’ �� ‘Identifier’ � �
��� ‘dynamic’ �� ‘hashmap’ �

� ‘array’ ‘(’
� ‘,’ �� 〈Set def〉 � ‘)’ ‘of’ 〈Type descr〉 �

� �� ‘public’ �� ‘record’
� �� 〈Field descr〉 � ‘end-record’ �

�-

1

〈Field descr〉 ::=- �� ‘public ’ �� Identifier ‘: ’ 〈Type name〉 -

1

Fair Isaac Corporation Confidential and Proprietary Information 825

Syntax diagrams for the Mosel language

〈Type name〉 ::=- � ‘integer ’� ‘real ’ �� ‘string ’ �� ‘boolean ’ �� ‘mpvar ’ �� ‘linctr ’ �� Identifier �

�-

1

〈Set def〉 ::=- ��� Identifier ‘:’ �� ‘set’ ‘of’ �� ‘constant’ �� 〈Type name〉� �� Identifier ‘:’ �� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �
� 〈Type name〉 �� 〈Set expr〉 �

�-

1

〈SubProgram_decl〉 ::=- ‘forward ’ �〈Procedure_head〉� 〈Function_head〉 ��-

〈SubProgram_def〉 ::=- �〈Procedure_head〉
� �� �〈Declarations〉� 〈Statement〉 �� � ‘end-procedure ’

� 〈Function_head〉
� �� �〈Declarations〉� 〈Statement〉 �� � ‘end-function ’ �

�-

〈Procedure_head〉 ::=- �� ‘public ’ �� ‘procedure ’ Identifier �� 〈Form_params〉 ��-
〈Function head〉 ::=- · · ·

· · · �� ‘public ’ �� ‘function ’ Identifier �� 〈Form params〉 �� ‘: ’ 〈Type name〉 -

1

〈Form_params〉 ::=- ‘(’
� ‘, ’ �� 〈Form_param〉 � ‘) ’ -

〈Form param〉 ::=- · · ·

· · · � � ‘,’ �� Identifier � ‘:’ � 〈Type name〉� ‘range’ �� ‘set’ ‘of’ ‘integer’ �� �
� ‘set’ ‘of’ �� ‘constant’ �� 〈Type name〉 �

�

� Identifier ‘:’ ‘array’ ‘(’
� ‘,’ �� 〈Set def〉 � ‘)’ ‘of’ 〈Type name〉 �

�-

1

Fair Isaac Corporation Confidential and Proprietary Information 826

Syntax diagrams for the Mosel language

〈Statement〉 ::=- · · ·
· · · � 〈Name ref〉 � ‘:= ’� ‘+=’ �� ‘-= ’ �

� 〈Expression〉

� Identifier �‘(’
� ‘, ’ �� 〈Expression〉 � ‘) ’� �� �

� 〈Ctr expr〉 �� ‘if ’ 〈Bool expr〉 ‘then ’ 〈Stat list〉 〈Elif body〉 �� 〈Else body〉 �� ‘end-if ’ �
� ‘case ’ 〈Expression〉 ‘of ’ 〈Case list〉 �� 〈Else body〉 �� ‘end-case ’ �
� �� 〈Label〉 �� ‘forall ’ ‘(’ 〈Iterator list〉 ‘) ’ � 〈Statement〉� 〈Do block〉 �� �
� �� 〈Label〉 �� ‘while ’ ‘(’ 〈Bool expr〉 ‘) ’ � 〈Statement〉� 〈Do block〉 �� �
� �� 〈Label〉 �� ‘repeat ’ 〈Stat list〉 ‘until ’ 〈Bool expr〉 �
� ‘next ’ �� Integer �� 〈Label〉 �

� �
� ‘break ’ �� Integer �� 〈Label〉 �

� �
� 〈Name ref〉 ‘:: ’ �

� ‘(’
� ‘, ’ �� 〈Expression〉 � ‘) ’ �

� ‘[’
� ‘, ’ �� 〈Expression〉 � ‘] ’ �

� �� 〈Label〉 �� 〈With block〉 �
� 〈Init block〉 �� ‘return ’ �

�-

1

〈Elif_body〉 ::=- �� �� ‘elif ’ 〈Bool_expr〉 ‘then ’ 〈Stat_list〉 �� ��-
〈Else_body〉 ::=- ‘else ’ 〈Stat_list〉 -

〈Case_body〉 ::=-
� �� 〈Expression〉 ‘: ’ �〈Statement〉� 〈Do_block〉 �� �-

〈With block〉 ::=- ‘with ’ � 〈Name ref〉� � ‘and ’ �� Identifier � �
�� ‘, ’ �� Identifier ‘=’ 〈Expression〉 � �

� ‘do ’ · · ·

· · ·
� �� � 〈Statement〉� 〈Declarations〉 �� � ‘end-do ’ -

1

Fair Isaac Corporation Confidential and Proprietary Information 827

Syntax diagrams for the Mosel language

〈Init block〉 ::=- ‘initializations ’ �‘from ’� ‘to ’ �� 〈String expr〉 · · ·

· · ·
� �� � 〈Init item〉�� 〈Init item〉� ‘[’

� ‘, ’ �� 〈Init item〉 � ‘] ’ �
� ‘as ’ 〈String expr〉 �� � · · ·

· · · ‘end-initializations ’ -

1

〈Init item〉 ::=- �Identifier �
� ‘(’

� ‘, ’ �� 〈Init fieldsel〉 � ‘) ’ �
�

� ‘evaluation of ’ 〈Expression〉 �
�-

1

〈Init fieldsel〉 ::=- Identifier �
� ‘(’

� ‘, ’ �� 〈Init fieldsel〉 � ‘) ’ �
�-

1

〈Do_block〉 ::=- ‘do ’ 〈Stat_list〉 ‘end-do ’ -

〈Stat_list〉 ::=-
� �� 〈Statement〉 �-

A.2 Expressions

〈Expression〉 ::=- � 〈Bool expr〉� 〈Set expr〉 �� 〈List expr〉 �� 〈Arith expr〉 �� 〈String expr〉 �� 〈Array expr〉 �� 〈NewRec expr〉 �� 〈Ctr expr〉 �

�-

1

〈Comparator〉 ::=- � ‘<’� ‘<=’ �� ‘=’ �� ‘<>’ �� ‘>=’ �� ‘>’ �

�-

Fair Isaac Corporation Confidential and Proprietary Information 828

Syntax diagrams for the Mosel language

〈Bool_expr〉 ::=- � 〈Bool_expr〉 �‘and ’� ‘or ’ �� 〈Bool_expr〉� �‘and ’� ‘or ’ �� ‘(’ 〈Iterator_list〉 ‘) ’ 〈Bool_expr〉 �
� 〈Expression〉 �� ‘not ’ �� ‘in ’ 〈Set_expr〉 �
� 〈Expression〉 〈Comparator〉 〈Expression〉 �� ‘not ’ 〈Bool_expr〉 �� ‘if ’ ‘(’ 〈Bool_expr〉 ‘, ’ 〈Bool_expr〉 ‘, ’ 〈Bool_expr〉 ‘) ’ �� 〈Name_ref〉 �� ‘true ’ �� ‘false ’ �� ‘boolean ’ ‘(’ 〈Expression〉 ‘) ’ �� ‘(’ 〈Bool_expr〉 ‘) ’ �

�-

〈Set expr〉 ::=- � 〈Set expr〉 � ‘+’� ‘- ’ �� ‘* ’ �
� 〈Set expr〉

� � ‘union ’� ‘inter ’ �� ‘(’ 〈Iterator list〉 ‘) ’ 〈Set expr〉 �
� ‘if ’ ‘(’ 〈Bool expr〉 ‘, ’ 〈Set expr〉 ‘, ’ 〈Set expr〉 ‘) ’ �� 〈Name ref〉 �� ‘{ ’ ‘} ’ �
� ‘{ ’

� ‘, ’ �� 〈Expression〉 � ‘} ’ �� 〈Arith expr〉 ‘.. ’ 〈Arith expr〉 �� ‘set ’ ‘(’ � 〈Set expr〉� 〈List expr〉 �� ‘) ’ �
� ‘(’ 〈Set expr〉 ‘) ’ �

�-

1

〈List expr〉 ::=- � 〈List expr〉 � ‘+’� ‘- ’ �� 〈List expr〉� ‘sum’ ‘(’ 〈Iterator list〉 ‘) ’ 〈List expr〉 �� ‘if ’ ‘(’ 〈Bool expr〉 ‘, ’ 〈List expr〉 ‘, ’ 〈List expr〉 ‘) ’ �� 〈Name ref〉 �� ‘[’ ‘] ’ �
� ‘[’

� ‘, ’ �� 〈Expression〉 � ‘] ’ �� ‘list ’ ‘(’ � 〈List expr〉� 〈Set expr〉 �� ‘) ’ �
� ‘(’ 〈List expr〉 ‘) ’ �

�-

1

Fair Isaac Corporation Confidential and Proprietary Information 829

Syntax diagrams for the Mosel language

〈Arith expr〉 ::=- � 〈Arith expr〉 � ‘+’� ‘- ’ �� ‘* ’ �� ‘/ ’ �� ‘div ’ �� ‘mod’ �� ‘ˆ ’ �

� 〈Arith expr〉

� � ‘sum’� ‘prod ’ �� ‘min ’ �� ‘max’ �
� ‘(’ 〈Iterator list〉 ‘) ’ 〈Arith expr〉 �

� ‘count ’ ‘(’ 〈Iterator list〉 ‘) ’ �� ‘- ’ 〈Arith expr〉 �� ‘if ’ ‘(’ 〈Bool expr〉 ‘, ’ 〈Arith expr〉 ‘, ’ 〈Arith expr〉 ‘) ’ �� 〈Name ref〉 �� Integer �� Real �� ‘integer ’ ‘(’ 〈Expression〉 ‘) ’ �� ‘real ’ ‘(’ 〈Expression〉 ‘) ’ �� ‘(’ 〈Arith expr〉 ‘) ’ �

�-

1

〈String_expr〉 ::=- �〈String_expr〉 � ‘+’� ‘- ’ �� 〈Expression〉� 〈Name_ref〉 �� String �� ‘string ’ ‘(’ 〈Expression〉 ‘) ’ �� ‘(’ 〈String_expr〉 ‘) ’ �

�-

〈NewRec expr〉 ::=- Identifier ‘(’
� ‘, ’ �� ‘. ’ Identifier ‘:= ’ 〈Expression〉 � ‘) ’ -

1

〈Array expr〉 ::=- ‘array ’ ‘(’ 〈Iterator list〉 ‘) ’ 〈Arith expr〉 -

1

〈Ctr_expr〉 ::=- � 〈Arith_expr〉 ��� ‘<=’� ‘>=’ �� ‘=’ �
� 〈Arith_expr〉 �

� ‘is_sos1 ’ �� ‘is_sos2 ’ �

�

� 〈Name_ref〉 � � ‘is_integer ’� ‘is_binary ’ �� ‘is_continuous ’ �� ‘is_free ’ �
�

�� ‘is_semcont ’� ‘is_semint ’ �� ‘is_partint ’ �
� 〈Arith_expr〉 �

� �

� ‘(’ 〈Ctr_expr〉 ‘) ’ �

�-

〈Iterator_list〉 ::=-
� ‘, ’ �� 〈Iterator〉 �-

Fair Isaac Corporation Confidential and Proprietary Information 830

Syntax diagrams for the Mosel language

〈Iterator〉 ::=- � � 〈Set expr〉� 〈List expr〉 ��
�� ‘, ’ �� Identifier � ‘in ’ � 〈Set expr〉� 〈List expr〉 ���� ‘| ’ 〈Bool expr〉 �� �
� Identifier ‘=’ 〈Expression〉 �� ‘| ’ 〈Bool expr〉 �� �
� Identifier ‘as counter ’ �

�-

1

〈Name ref〉 ::=-

� ‘. ’ �
� Identifier �‘(’

� ‘, ’ �� 〈Expression〉 � ‘) ’� �� �-

1

A.3 Initializations data file format

〈Records〉 ::=-
� �� �Identifier� String �� ‘: ’ 〈Value〉 �-

1

〈Value〉 ::=- � Identifier� String �� Integer �� Real �� ‘true ’ �� ‘false ’ �� ‘* ’ �� 〈Value list〉 �

�-

1

〈Value list〉 ::=- � ‘[’ ‘] ’� ‘[’
� �� �

� ‘(’
� �� 〈Value〉 � ‘) ’ �

� 〈Value〉 � ‘] ’ �
�-

1

Fair Isaac Corporation Confidential and Proprietary Information 831

APPENDIX B

Remote Invocation Protocol

A Mosel instance may be started remotely using either the connect procedure of the module mmjobsor its equivalent routine of the XPRD library. From any of these environments one can compile, load andrun models as well as access files on the remote system. The remote invocation protocol also makes itpossible to control more precisely the execution of models (e.g. suspending execution or profiling) andquery information of a model (such as the value of entities) or the entire instance (e.g. to retrieve thelist of available modules).
This protocol relies on two mechanisms:

1. the procedure setcontrol (available in mmjobs and XPRD) to (re)define Mosel instance controlparameters
2. the special remote file ’mcmd’ that only supports read access: the file name is interpreted as aquery and the retrieved data is the answer to this request

B.1 Instance control parameters

Mosel instance control parameters are either defined at the instance level or they apply to a specificmodel (see setcontrol). Some of the parameters serve for changing the behaviour of othercommands, others provide a means to execute some specific command.
The supported instance parameters are:

� zerotol (real,instance): set the zero tolerance used for comparison and displaying real numbers(i.e. a real number smaller than the tolerance is treated as 0)
� realfmt (string,instance): set the C-format used to display reals
� flushdso (none,instance): unloads unused modules (i.e. calls XPRMflushdso)
� lang (string,instance): set the language of the instance
� defaultnode (integer,instance): set the default node number used by the "rmt:" IO driverwhen it is used without node reference (see Section 7.5.6)
� runmode (int,model): set the execution mode of a model (cannot be changed during theexecution of the model):

– 0: default
– 1: debug
– 2: profile
– 3: tracing

Fair Isaac Corporation Confidential and Proprietary Information 832

Remote Invocation Protocol

� dbgctrl (string,model): send a command to the debugger (model must be running in debugmode). See Section B.4
� dbgbrksub (int,model): toggle breaksub mode during a debugging session (default is 0)
� sdmax (int,instance): set the maximum depth of a call stack dump (default is 0)

B.2 mcmd pseudo file

The special remote file ’mcmd’ takes the form of an I/O driver where the file name is interpreted as aquery and the retrieved data is the answer to this request. Except for the dsostream command thatcan also be open in write mode, ’mcmd’ only supports read access. A file name for this driver has thefollowing form:
mcmd:cmd[-opts][@mod[.submod]] cmdargs

cmd: the operation to execute (e.g. ’eval’,’profres’...).
opts: options to change the format of the result. By default all data are sent using the Mosel binaryformat ’bin:’. Adding option ’t’ switches to text format (still compatible with initialisationsblocks) and ’j’ will cause results to be sent as a JSON object (not compatible withinitialisations blocks). If option ’z’ is used the resulting file is compressed with gzip. A givencommand may also support additional options (see ’lslib’). Except for the ’eval’command, the result set publishes always the same records that are either scalars of basictypes or lists of basic types. When a collection of values is returned a specific label indicatingthe dimension of the list precedes the list.
mod: master model on which the operation will be performed.
submod: submodel. Only some operations can be applied to a submodel. Note that submodel ’0’ isthe master model itself (the first submodel has ID ’1’).
Supported commands:
covres (model)Retrieve profiling results for test coverage. This command can only be called after the model hasbeen run in profiling mode (see Section B.3).

tottime:real
Rlines: range
lines: array(Rlines) of integer
iters: array(Rlines) of integer
Rfiles: range
files: array(Rfiles) of string
Rstarts:range
starts: array(Rstarts) of integer

dbgbrkp [lndx [cond|⁎]] (model or submodel)Breakpoint management. The model must be suspended. Without any parameters thiscommand returns the current list of breakpoints; the first parameter is interpreted as a line indexand the second parameter is a logical expression (i.e. the breakpoint condition). With only oneparameter, the breakpoint on the corresponding line index is removed (no operation is performedif there was no breakpoint). Use ’*’ to remove all breakpoints. With two parameters thecorresponding breakpoint is created (or modified). To set an unconditional breakpoint use ’*’ asthe condition. Note that breakpoints are attached to a model: even if several models runningconcurrently are resulting from the same source file, setting a breakpoint for one model(instance) will have no effect on the others.

Fair Isaac Corporation Confidential and Proprietary Information 833

Remote Invocation Protocol

Rlndx: range
lndx: array(Rlndx) of integer
cond: array(Rlndx) of string

dbgflndx [fctname|⁎] (model or submodel)Line indices corresponding to a function name. This command returns the line indicescorresponding to the beginning of the requested function (several values are returned when theroutine is overloaded). Without any arguments or with argument ’*’, the command returns allfunctions of the model. If option ’N’ is used, the arrays are sorted according to the functionnames. With option ’L’ arrays are sorted following the line indices order.
Rsign: range
sign: array(Rsign) of string
lndx: array(Rsign) of integer
name: array(Rsign) of string

dbglndx (model or submodel)Retrieve the mapping of the line indices of a model/submodel. The model must be eithersuspended or not running. The debugger interface works on line indices: each line indexcorresponds to a file name and a line number in this file.
Rfiles: range
files: array(Rlines:range) of integer
Rlines: range
lines: array(Rfiles:range) of string

dbgstat (model or submodel)Current execution status of a model. The model must be suspended. If no submodel isspecified, statuses of all submodels are returned in addition to the master model (to get thestatus of the master model only use submodel ’0’).
Rid: range
id: array(Rid) of integer
stat: array(Rid) of integer
stlev:array(Rid) of integer
lndx: array(Rid) of integer

dbgstlev [stlev|⁎ [maxlev]] (model or submodel)Stack management. The model must be suspended. Without any arguments or with argument’*’, the command returns a stack dump (i.e. a list of line indices). If the argument is ≥ 0, itbecomes the current stack level. The optional argument ’maxlev’ defines the maximum numberof levels to return (default:10). The stack level defines the context in which expressionevaluations are performed in the ’eval’ command.
Rid: range
id: array(Rid) of integer
stat:array(Rid) of integer
stlev:array(Rid) of integer
lndx:array(Rid) of integer

dsostream dsoname [specific parameters] (model or submodel)This command opens a stream to the specified module (this command supports both read andwrite mode). The module must implement the SRV_DSOSTRE service. The behaviour of thestream and the expected parameters depend on the implementation.
eval label:expression [range] (model or submodel)Evaluate an expression in the context of the provided model/submodel. Execution of the modelmust be completed or suspended. If option ’i’ is used, array indices are reported as ordernumbers instead of values. With option ’n’ array values are replaced by empty strings. Thelabel "label" is used to identify the expresion in the result file: if it is ’.’ no label is generated (the

Fair Isaac Corporation Confidential and Proprietary Information 834

Remote Invocation Protocol

data result is directly sent to the result file), if it is omitted then the expression itself is used asthe label, otherwise the provided string is the label. Several expressions may be evaluated in asingle request (in this case they must all be labelled).It is possible to grab only a part of a collection (array, set or list) by specifying range information.Ranges definitions take one of these two forms:
� [maxelt]: get at most ’maxelt’ elements
� [skip maxelt]: get at most ’maxelt’ entries after skipping ’skip’ elements

Several range definitions may be specified (separated by blanks): they are used when exploringcomplex structures (e.g. a list of list). The structure and type of the result set depends on theexpression.
info (instance, model or submodel)This command reports all symbols defined by Mosel (if used without specifying any argument),a module (the argument is the module name) or a model (the argument is a model or submodelID). In the case of a module, the command loads the module if it is not yet in memory. For amodel (or package), it must have been loaded prior to this command since it is referenced by itsID and be either not running or suspended. Information returned by the ’info’ command:

fmt: integer
Rhdr: range
hdr: array(Rhdr) of string
Rdeps: range
deps: array(Rdeps) of integer
depsvers:array(Rdeps) of integer
depstyp: array(Rdeps) of integer
Rtyps: range
typs: array(Rtyps) of string
typscod: array(Rtyps) of integer
Rparms: range
parms: array(Rparms) of string
parmsval:array(Rparms) of integer
parmsdesc:array(Rparms) of string
Rconsts: range
consts: array(Rconsts) of string
conststyp:array(Rconsts) of integer
Rcstint: range
cstint: array(Rcstint) of integer
Rcststr: range
cststr: array(Rcststr) of string
Rcstdbl: range
cstdbl: array(Rcstdbl) of real
Rvars: range
vars: array(Rvars) of string
varstyp: array(Rvars) of integer
Rarrndx: range
arrndx: array(Rarrndx) of string
Rfct: range
fct: array(Rfct) of string
fctsign: array(Rfct) of string
fcttyp: array(Rfct) of integer
Rdtyp: range
dtyp: array(Rdtyp:range) of string
dtyptyp: array(Rdtyp) of integer
Rrecsstart:range
recsstart:array(Rrecsstart) of integer
Rrecfield:range
recfield:array(Rrecfield) of string
recftype:array(Rrecfield) of integer
Riodrv: range
iodrv: array(Riodrv) of string
iodrvinfo:array(Riodrv) of string
Rannsident:range
annsident:array(Rannsidente) of string

Fair Isaac Corporation Confidential and Proprietary Information 835

Remote Invocation Protocol

Rannsstart:range
annsstart:array(Rannsstart) of integer
Ranns: range
anns: array(Ranns) of string

lsattr (model or submodel)Return the list of available types attributes. The array ’attrsntyp’ gives the type supporting theattribute and ’attrsatyp’ is the type of the attribute.
Rattrs: range
attrs: array(Rattrs) of string
attrsntyp: array(Rattrs) of integer
attrsatyp: array(Rattrs) of integer

lslib (instance)Return the list of available packages and modules. If option ’p’ is used, packages are reportedwith their full path.
Rpkgs: range
pkgs: array(Rpkgs) of string
Rdsos: range
dsos: array(Rdsos) of string

lsloc (model or submodel)This command is similar to ’info’ but it can only be applied to a suspended model: it reports alllocal variables.
Rtyps: range
typs: array(Rtyps) of string
typscod: array(Rtyps) of integer
Rvars: range
vars: array(Rvars) of string
varstyp: array(Rvars) of integer
Rarrndx: range
arrndx: array(Rarrndx) of string

profrep [srcpath] (model)Ask for generation of result files after a profiling or covering execution, the result of thisoperation is a list of strings corresponding to the messages displayed by the commands
profile or cover. This command can only be called after the model has been run in profilingor covering mode (see Section B.3). The optional srcpath argument is a list of paths(conforming to the operating system conventions) where the source files can be found. Theoption ’C’ implies the generation of the coverage files (e.g. ’file.mos.cov’), with option ’c’ thesame files are produced but without counting of lines (i.e. a line that is executed is marked with
’1’ instead of the actual number of executions). The option ’P’ (the default) will generate theprofiling files (e.g. ’file.mos.prof’), with option ’p’ timings are reported in percentage of the totalamount of time (instead of elapsed time).

msg:list of string

profres [path] (model)Retrieve profiling results. This command can only be called after the model has been run inprofiling mode (see Section B.3). The path argument indicates which execution is requested:several "executions" may be available when the model starts other models with ’mmjobs’ (thereturned data set includes the number of additional executions available via the nbsub field).For instance the path 1.3 corresponds to the third "execution" started by the first "execution".
tottime:real
nbsub: integer
nbnoprf:integer

Fair Isaac Corporation Confidential and Proprietary Information 836

Remote Invocation Protocol

Rlines: range
lines: array(Rlines) of integer
iters: array(Rlines) of integer
times: array(Rlines) of real
elaps: array(Rlines) of real
Rfiles: range
files: array(Rfiles) of string
Rstarts:range
starts: array(Rstarts) of integer

B.3 Profiler interface

Profiling a model requires a bim file compiled with option ’-G’. The runmode has to be set to ’2’ beforestarting the execution. After the end of the profiler run, calls to the command ’mcmd:profres’,’mcmd:profrep’ or ’mcmd:covres’ can be used for retrieving the results.

B.4 Debugger interface

The debugger can be started even if the flag ’-G’ has not been used for compilation but in this casemost commands will fail to return useful information. To run a debugging session the runmode of themodel must be set to ’1’ before starting its execution. If the model was compiled with ’-G’, theexecution is immediately suspended before the first statement of the model and a notification event issent.
During a debugging session changes of the model execution status are notified by specific events ofclass ’EVENT_DBG’ (32770). The value of these events is a 32bit integer (cast to a real): the first 16bits are a parameter (meaning depending on the reason) and the following 16 bits indicate the reasonfor the notification:

� DBG_NOTIF_START (1«16): Submodel starting (the parameter is the submodel ID)
� DBG_NOTIF_END (2«16): Submodel ending (the parameter is the submodel ID)
� DBG_NOTIF_STOP (3«16): Execution suspended (the parameter is the VM status)

When an event ’DBG_NOTIF_STOP’ is received, the model (and its submodels) is in suspended stateand can be sent commands (see Section B.2). To continue execution a control parameter ’dbgctrl’has to be set. The possible values are (the operation applies to the master model unless a submodelnumber ’num’ is given):
� C: continue
� E: end of execution, abort debugging session
� N [num]: continue to next statement
� S [num]: step into subroutine
� F [num]: continue up to end of subroutine
� T num lndx: continue up to the specified line number on submodel ’num’ (0 for master model)

Additionally, during the execution of a model running in debugging mode (but that is not suspended),the following ’dbgctrl’ commands can be used:
� B: suspend execution (e.g. consequence of ctrl-C)

Fair Isaac Corporation Confidential and Proprietary Information 837

Remote Invocation Protocol

� E: end of execution, abort debugging session
When the execution of the model is about to end (including after an error), it is suspended just beforeexiting such that the user can look at the current status.

Fair Isaac Corporation Confidential and Proprietary Information 838

APPENDIX C

Error messages

The Mosel error messages listed in the following are grouped according to the following categories:
� General errors: may occur either during compilation or when running a model.
� Parser/compiler errors: raised during the model compilation.
� Runtime errors: when running a model.

All messages are identified by their code number, preceded either by the letter E for error or W for
warning. Errors cause the compilation or execution of a model to fail, warnings simply indicate thatthere may be something to look into without causing a failure or interruption.
This chapter documents the error mesages directly generated by Mosel, not the messages stemmingfrom Mosel modules or from other libraries used by modules.

C.1 General errors

These errors may occur either during compilation or when running a model.
E-1 Internal error in ‘location’ (errortype)An unrecoverable error has been detected, Mosel exits. Please contact Xpress Support.
E-2 General error in ‘location’ (errortype)An internal error has been detected but Mosel can recover. Please contact Xpress Support.
E-4 Not enough memoryYour system has not enough memory available to compile or execute a Mosel model.
E-21 I cannot open file ‘file’ for writing (driver_error)Likely causes are an incorrect access path or write-protected files.
E-22 I cannot open file ‘file’ for reading (driver_error)Likely causes are an incorrect access path or filename or not read-enabled files.
E-23 Error when writing to the file ‘file’ (driver_error)The file could be opened for writing but an error occurred during writing (e.g. disk full).
E-24 Error when reading from the file ‘file’ (driver_error)The file could be opened for reading but an error occurred while reading it.
E-25 Unfinished stringA string is not terminated, or different types of quotes are used to indicate start and end of astring.

Examples:

Fair Isaac Corporation Confidential and Proprietary Information 839

Error messages

writeln("mytext)

E-26 Identifier expectedMay occur when reading data files: a label is missing or a numerical value has been foundwhere a string is expected.
Examples:

declarations
D: range
end-declarations

initializations from "test.dat"
D
end-initializations

Contents of test.dat:
[1 2 3]

The label D: is missing.
E-27 Number expectedMay occur when reading data files: another data type has been found where a numericalvalue is expected.

Examples:
declarations
C: set of real
end-declarations

initializations from "test.dat"
C
end-initializations

Contents of test.dat:
C: [1 2 c]

c is not a number.
E-28 Digit expected for constant exponentMay occur when using scientific notation for real values.

Examples:
b:= 2E -10

Emust be immediately followed by a signed integer (i.e. no spaces).
E-29 Wrong file descriptor number for selection (num)

fselect is used with an incorrect parameter value.
E-34 I cannot find IO driver ‘driver’The system cannot locate the IO driver driver for opening a file. This may happen if the driveris provided by a module not already loaded in memory. To avoid this problem the modulename should be given with the driver name. For instance use "mmodbc.odbc" instead of

"odbc" alone.
E-35 Error when closing file ‘file’ (driver_error)An error occurred while closing a file. Typically the last write operation for clearing buffersfailed.
E-36 Read error (file)I/O error during file reading.

Fair Isaac Corporation Confidential and Proprietary Information 840

Error messages

E-37 Invalid characterInvalid character sequence found while reading a text file, non-conforming to the currentencoding. Possibly an incorrect encoding (Mosel default is UTF-8) has been specified foraccessing this file.
E-38 Unknown compiler flag(s) ‘flag’ ignoredSome of the flag(s) used with compile have not been recognized, please refer to the listdocumented for compile.
E-39 Unknown BIM reader flag(s) ‘flag’ ignoredSome of the flag(s) used with load have not been recognized, please refer to the listdocumented for load.
E-40 Unsupported encoding ‘encoding’ (ignored)The encoding name specified after the marker !@encoding is unknown.

C.2 Parser/compiler errors

Whenever possible Mosel displays the location where an error has been detected during compilation inthe format (line_number/character_position_in_line).
E-100 Syntax error before tokenThe parser cannot continue to analyze the source file because it has encountered anunexpected token. When the error is not an obvious syntax error, make sure you are not usingan identifier that has not been defined before.

Examples:

token:)

writeln(3 mod)

modmust be followed by an integer (or a numerical expression evaluating to aninteger).
token: write

if i > 0
write("greater")
end-if

then has been omitted.
token: end

if i > 0 then write("greater") end-if

A semicolon must be added to indicate termination of the statement preceeding the
end-if.

E-101 Incompatible types (type_of_problem)We try to apply an operation to incompatible types. Check the types of the operands.
Examples:

type_of_problem: assignment

i:=0
i:=1.5

The first assignment defines i as an integer, the second tries to re-assign it a realvalue: i needs to be explicitly declared as a real.
type_of_problem: cmp

Fair Isaac Corporation Confidential and Proprietary Information 841

Error messages

12=1=2

A truth value (the result of 12=1 is compared to a numerical value.
E-102 Incompatible types for parameters of ‘routine’A subroutine is called with the wrong parameter type. This message may also be displayedinstead of E-104 if a subroutine is called with the wrong number of parameters. (This is due tothe possibility to overload the definition of subroutines).

Examples:
procedure myprint(a:integer)
writeln("a: ", a)
end-procedure

myprint(1.5)

The subroutine myprint is called with a real-valued argument instead of an integer.
E-103 Incorrect number of subscripts for ‘array’(num1/num2)An array is used with num2 subscripts instead of the number of subscripts num1 indicated atits declaration.

Examples:

‘array’(num1/num2): ‘A’(2/1)

declarations
A: array(1..5,range) of integer
end-declarations

writeln(A(3))

E-104 Incorrect number of parameters for ‘routine’(num1/num2)Typically displayed if write or read are used without argument(s).
E-106 Division by zero detectedExplicit division by 0 (otherwise error only detected at runtime).
E-107 Math error detected on function ‘fct’For example, a negative number is used with a fractional exponent.
E-108 Logical expression expected hereSomething else than a logical condition is used in an if statement.
E-109 Trying to redefine ‘name’Objects can only be defined once, changing their type is not possible.

Examples:
i:=0

declarations
i: real
end-declarations

i is already defined as an integer by the assignment.
E-111 Logical expression expected for operator ‘op’

Examples:

op: and

2+3 and true

E-112 Numeric expression expected for operator ‘op’
Examples:

Fair Isaac Corporation Confidential and Proprietary Information 842

Error messages

op: +

12+{13}

op: *

uses "mmxprs"

declarations
x:mpvar
end-declarations

minimize(x⁎x)

Multiplication of decision variables of type mpvar is only possible if a suitablemodule (like mmnl) supporting non-linear expressions is loaded.
E-113 Wrong type for conversionMosel performs automatic conversions when required (for instance from an integer to a real)or when explicitly requested by using the type name, e.g. integer(12.5). This error israised when an unsupported conversion is requested or when no implicit conversion can beapplied.
E-114 Unknown type for constant ‘const’A constant is defined but there is not enough information to deduce its type or the typeimplied cannot be used for a constant (for instance a linear constraint).
E-115 Expression cannot be passed by referenceWe try to use a constant where an identifier is expected. For instance, only non-constants canbe used in an initializations block.
E-118 Wrong logical operatorA logical opeartor is used with a type for which it is not defined.

Examples:
if("abc" in "acd") then writeln("?"); end-if

The operator in is not defined for strings.
W-121 Statement with no effectA statement is used that has no effet, for example r += 0.
E-122 Control parameter ‘param’ unknownThe control parameters of Mosel are documented in the Mosel Reference manual underfunction getparam. All control parameters provided by a module, e.g. mmxprs, can bedisplay with the command EXAM, e.g. exam -p mmxprs. In IVE this information is displayedby the module browser.
E-123 ‘identifier’ is not defined

identifier is used without or before declaring it. Check the spelling of the name. If identifier isdefined by a module, make sure that the corresponding module is loaded. If identifier is asubroutine that is defined later in the program, add a forward declaration at the beginning ofthe model.
E-124 An expression cannot be used as a statementAn expression stands where a statement is expected. In this case, the expression is ignored— typically, a constraint has been stated and the constraint type is missing (i.e. >= or <= ...) oran equality constraint occurs without decision variables, e.g. 2=1.This error also appears when the return value of a function call is not retrieved.
E-125 Set expression expectedFor instance computing the union between an integer constant and a set of integers:

union(12+{13})

Fair Isaac Corporation Confidential and Proprietary Information 843

Error messages

E-126 String expression expectedA string is expected here: for instance a file name for an initializations block.
E-127 A function cannot be of type ‘type’Some types cannot be the return value of a function. Typically no function can return adecision variable (type mpvar).
E-128 Type ‘type’ has no field named ‘field’Trying to access an unknown field in a record type.

Examples:
declarations
myrec=record

i,j:integer
end-record

r:myrec
end-declarations
r.k:=0

k is not a field of r.
E-129 Type ‘type’ is not a recordTrying to use a record dereference on an object that is not a record. For instance using i.jwith i defined as an integer.
E-130 A type definition cannot be localIt is not possible to declare a type in a procedure or function.
W-131 Array ‘identifier’ is not indexed by ranges: assignment may be incorrectWhen performing an inline initialization (operator ::) on an array, it is recommended to listindices if the indexing sets are not ranges. Indeed, since order of set elements is notguaranteed the values provided may not be assigned to the expected cells in the array.

Examples:
declarations
a:array({3,2,1}) of integer
end-declarations
! a::[3,2,1] !=> a(1)=3 a(2)=2 a(3)=1
a::([3,2,1])[3,2,1] !=> a(1)=1 a(2)=2 a(3)=3

E-132 Set or list expression expectedAggregate operators (like sum or forall) require sets or lists to describe the domains fortheir loops.
Examples:

declarations
i:integer
end-declarations
forall(i = 2) writeln(i)

Since i is declared as an integer before the loop, the expression i=2 is a logicalexpression (it checks whether i is equal to 2) instead of an index definition.
W-144 Symbol ‘identifier’ implicitly declaredWhen a model is compiled with option -wi this message gets displayed for every symbol thatis not explicitly declared by the model.
E-147 Trying to interrupt a non existing loop

break or next is used outside of a loop.
E-148 Procedure/function ‘identifier’ declared but not definedA procedure or functions is declared with forward, but no definition of the subroutine bodyhas been found or the subroutine body does not contain any statement.

Fair Isaac Corporation Confidential and Proprietary Information 844

Error messages

E-149 Some requirements are not metA package may declare requirements: these are symbols that must be declared by modelsusing this package. This error occurs when a model uses a package without providing thedefinitions for all the requirements.
E-150 End of file inside a commentaryA commentary (usually started with (!) is not terminated. This error may occur, for instance,with several nested commentaries.
E-151 Incompatible type for subscript num of ‘identifier’The subscript counter num may be wrong if an incorrect number of subscripts is used.

Examples:
declarations
A:array(1..2,3..4) of integer
end-declarations

writeln(A(1.3))

This prints the value 2 for num, although the second subscript is actually missing.
W-152 Empty set for a loop detectedThis warning will be printed in a few cases where it is possible to detect an empty set duringcompilation.
E-153 Trying to assign the index ‘idx’Loop indices cannot be re-assigned.

Examples:
declarations
C: set of string
D: range
end-declarations

forall(d in D) d+=1
forall(c in C) if (c='a') then c:='A'; end-if

Both of these assignments will raise the error. To replace an element of the set C, theelement needs to be removed and the new element added to the set.
E-154 Unexpected end of fileMay occur, for instance, if an expression at the end of the model file is incomplete and inaddition end-model is missing.
E-155 Empty ‘case’A case statement is used without defining any choices.
E-156 ‘identifier’ has no typeThe type of identifier cannot be deduced. Typically, an undeclared object is assigned anempty set.
E-157 Scalar expression expected

Examples:
declarations
B={'a','b','c'}
end-declarations

case B of
1: writeln("stop")
end-case

The case statement can only be used with the basic types (integer, real, boolean,string).

Fair Isaac Corporation Confidential and Proprietary Information 845

Error messages

D:: [1,2]

Declaration of arrays by assignment is only possible if the index set can be deduced(e.g. definition of an array of linear constraints in a loop).
E-159 Compiler option ‘option’ unknownValid compiler options include explterm and noimplicit. See section 2.3.3 for moredetails.
E-160 Definition of functions and procedures cannot be nestedMay occur, for instance, if end-procedure or end-function is missing and the definitionof a second subroutine follows.
E-161 Expressions not allowed as procedure/function parameterOccurs typically if the index set(s) of an array are defined directly in the procedure/functionprototype.

Examples:
procedure myproc(F:array(1..5) of real)
writeln("something")
end-procedure

Replace either by array(range) or array(set of integer) or define
A:=1..5 outside of the subroutine definition and use array(A)

E-162 Non empty string expected hereThis error is raised, for example, by uses ""

E-163 Array declarations in the form of a list are not allowed as procedure/function parameterBasic types may be given in the form of a list, but not arrays.
Examples:

procedure myproc(F,G,H:array(range) of real, a,b,c:real)
writeln("something")
end-procedure

Separate declaration of every array is required:
procedure myproc(F:array(range) of real, G:array(range) of real,

H:array(range) of real, a,b,c:real)

W-164 A local symbol cannot be made public
Examples:

procedure myproc
declarations
public i:integer
end-declarations
i:=1
end-procedure

Any symbol declared in a subroutine is local and cannot be made public.
E-165 Declaration of ‘identifier’ hides a parameterThe name of a function/procedure parameter is re-used in a local declaration.

Examples:
procedure myproc(D:array(range) of real)
declarations
D: integer
end-declarations
writeln(D)
end-procedure

Rename either the subroutine argument or the name used in the declaration.

Fair Isaac Corporation Confidential and Proprietary Information 846

Error messages

W-166 ‘;’ missing at end of statementIf the option explterm is employed, then all statements must be terminated by a semicolon.
E-167 Operator ‘op’ not definedA constructor for a type is used in a form that is not defined.

Examples:
uses "complex"
c:=complex(1,2,3)

The module complex defines constructors for complex numbers from one or tworeals, but not from three.
E-168 ‘something’ expected hereSpecial case of “syntax error” (E-100) where the parser is able to provide a guess of what ismissing.

Examples:

something: :=

a: 3

The assignment is indicated by :=.
something: of

declarations
S: set integer
end-declarations

of has been omitted.
something: ..

declarations
A: array(1:2) of integer
end-declarations

Ranges are specified by ...
E-169 ‘identifier’ cannot be used as an index name (the identifier is already in use or declared)

Examples:
i:=0
sum(i in 1..10)

The identifier i has to be replaced by a different name in one of these lines.
E-170 ‘=’ expects a scalar here (use ‘in’ for a set)Special case of syntax error (E-100).

Examples:
sum(i = 1..10)

Replace = by in.
E-171 The [upper/lower] bound of a range is not an integer expression

Examples:
declarations
A: array(1..2.5) of integer
end-declarations

Ranges are intervals of integers, so the upper bound of the index range must bechanged to either 2 or 3.
E-172 Only a reference to a public set is allowed hereAll index sets of a public array must also be public.

Fair Isaac Corporation Confidential and Proprietary Information 847

Error messages

E-173 Statement allowed in packages onlyThe block requirements can only be used in packages.
E-175 Index sets of array types must be namedUser types defined as arrays must be indexed by named sets (i.e. declared separately). Forinstance it is not allowed to use range or set of string as an index of such an array.
E-176 Only a public type is allowed hereIf a user type depending on another user type is declared declared public, the secondary typemust also be public. For instance, assuming type T1 is private, it is not possible to declare T2as a public T2=set of T1.
E-177 Incorrect number of initializers (n1/n2)In an inline initialization (operator ::) the number of provided values to assign does notmatch the list of indices.
E-202 Integer constant expectedVersions numbers (stated by means of the version compiler directive) must consist in 1 to 3numbers separated by dots (e.g. 1.2.3). This error is displayed if a version number does notconform to this syntax.
E-207 Problem reference/type expected hereThe operator with is used with something that is not a problem.
E-208 There can be only one counterThe as counter declaration can appear only once in an iterator list.
E-209 Missing loop indicesTypically an iterator list contains only a counter declaration: it is necessary to provide at leastone index.
E-210 String starting at line line is unfinishedA multiline string is not correctly terminated with the matching end marker.
E-211 Invalid annotation syntax (ignored)Malformed annotation that cannot be identified (e.g. containing .. or invalid characters—onlyalphanumeric and underscore are allowed in annotation names).
E-212 Annotations: invalid path ‘name’Some portion of the path forming an annotation identifier, e.g. cat1.cat2 is the path for theannotation !@cat1.cat2.name, cannot be accessed.
E-213 Annotations: name ‘name’ not foundSome portion of the path forming an annotation identifier, e.g. cat1.cat2 is the path for theannotation !@cat1.cat2.name, is not defined.
E-214 Annotations: trying to redefine ‘name’ (ignored)An annotation can only be defined once.
E-215 Annotations: invalid definition string for ‘name’ (value)Incorrect or incomplete annotation declaration in an @mc.def statement, such as duplicateor missing property or value, use of an unknown keyword. Please refer to the list ofpermissible declaration statements in Section 2.14.3.
E-217 Annotations: wrong value ‘value’ for ‘name’ (expecting: value2)An annotation is assigned a value that does not correpond to the value type or set of valuesthat have been specified in its declaration (via @mc.def).
E-218 Annotations: missing chapter for ‘name’

moseldoc is trying to add a documentation entry under a chapter or section that has not (yet)been defined.

Fair Isaac Corporation Confidential and Proprietary Information 848

Error messages

C.2.1 Errors related to modules

E-302 The symbol ‘identifier’ from ‘module’ cannot be defined (redefinition)Two different modules used by a model define the same symbol (incompatible definitions).
E-303 Wrong type for symbol ‘identifier’ from ‘module’Internal error in the definition of a user module (an unknown type is used): refer to the list oftype codes in the Native Interface reference manual.
W-306 Unknown operator ‘op’ (code num) in module ‘module’Internal error in the definition of a user module: refer to the list of operator codes in the NativeInterface reference manual.
E-307 Operator ‘op’ (code num) from module ‘module’ rejectedInternal error in the definition of a user module: an operator is not defined correctly.
E-308 Parameter string of a native routine corruptedInternal error in the definition of a user module: refer to the list of parameter type codes in theNative Interface reference manual.
W-309 Problem type ‘typ’ unknown: extension ‘ext’ ignoredA module declares a native type as a problem extension but the compiler cannot find the basetype. For instance the new type is named "myprob.pb" but "myprob" does not exist.

C.2.2 Errors related to packages

E-320 Package ‘package’ not foundA package has not been found in the module path (see section 2.3.1 for the search rules).
E-321 ‘file’ is not a packageTypically displayed if a model is used as a package (the source for the bim file starts with the

model keyword instead of package).
E-322 Wrong version for package ‘package’(using:num1.num2.num3/required:num4.num5.num6)A model is compiled with package A depending on a package B. The bim file Mosel hasloaded for B is not compatible with the one used for compiling A (found version

num1.num2.num3, required version is num4.num5.num6).
E-323 Package ‘package’ imported several timesA package cannot be imported several times in a model. This error occurs usually when amodel uses packages A and B, and package B already includes A.

C.3 Runtime errors

Runtime errors are usually displayed without any information about where they have occurred. Toobtain the location of the error, use the flag g with the COMPILE, CLOAD, or EXECUTE command.
C.3.1 Initializations

E-30 Duplicate label ‘label’ at line num of file ‘file’ (ignored)The same label is used repeatedly in a data file.
Examples:

D: [1 2 3]
D: [1 2 4]

Fair Isaac Corporation Confidential and Proprietary Information 849

Error messages

E-31 Error when reading label ‘label’ at (num1,num2) of file ‘file’The data entry labeled label has not been read correctly. Usually this message is preceded bya more detailed one, e.g. E-24, E-27 or E-28.
E-32 Error when writing label ‘label’ at (num1,num2) of file ‘file’The data entry labeled label has not been written correctly. Usually this message is precededby a more detailed one, e.g. E-23.
E-33 Initialization with file ‘file’ failed for: list_of_identifierSummary report at the end of an initializations section. Usually this message ispreceded by more detailed ones, e.g. E-27, E-28, E-30, E-31.

C.3.2 General runtime errors

E-6 Number of running concurrent models authorized by license is exceededA program or model is trying to use more (sub)models than what is authorized by the licence.
E-51 Division by zeroDivision by 0 resulting from the evaluation of an expression.
E-52 Math error performing function ‘identifier’For example ln used with inadmissible argument, such as 0 or negative values.
E-72 Not a runnable model (main procedure not found)Most likely, you are trying to execute a ’package’ as if it were a ’model’.
E-1000 Inconsistent rangeTypically displayed if the lower bound specified for a range is greater than its upper bound.

Examples:
D:=3..-1

E-1001 Conflicting types in set operation (op)A set operation can only be carried out between sets of the same type.
Examples:

declarations
C: set of integer
D: range
end-declarations

C:={5,7}
D:=C

The inverse, C:=D, is correct because ranges are a special case of sets of integers.
E-1002 An index is out of rangeAn attempt is being made to access an array entry that lies outside of the index sets of thearray.
E-1003 Trying to modify a finalized or fixed setOccurs, for instance, when it is attempted to re-assign a constant set or to add elements to afixed set.
E-1004 Trying to access an uninitialized object (type_of_object)Occurs typically in models that define subroutines.

Examples:

type_of_object: array

Fair Isaac Corporation Confidential and Proprietary Information 850

Error messages

forward procedure myprint
myprint
declarations
A:array(1..2,3..4) of integer
end-declarations

procedure myprint
writeln(A(1,2))
end-procedure

Move the declaration of A before the call of the subroutine
E-1005 Wrong type for “procedure”Occurs when procedures settype or getvars are used with incorrect types.
E-1006 Null reference (internal_function)This error is a special case of E-1004 when the problem is detected on an external type orscalar (e.g. accessing a record field on an object that has not been initialized).
E-1009 Too many initializersThe number of data elements exceeds the maximum size of an array.

Examples:
declarations
A:array(1..3) of integer
end-declarations

A::[1,2,3,4]

E-1010 Trying to extend a unary constraintMost types of unary constraints cannot be transformed into constraints on several variables.
Examples:

declarations
x,y: mpvar
end-declarations

c:=x is_integer
c+=y

E-1011 Dense array too bigThe model is trying to create a dense array with more than 4 billion cells, typically such anarray should have been declared as sparse (dynamic or hashmap). This error will be raisedwhen the array is allocated (after its declaration or when it is first accessed).
E-1013 Infeasible constraintThe simple cases of infeasible unnamed constraints that are detected at run time include:

Examples:
declarations
x:mpvar
end-declarations
i:=-1
if(i>=0,x,0)>=1

! or:
x-x>=1

E-1014 Conflicting types in array operation (op)An array operation (like assignment) can only be carried out between arrays of the same typeand structure.
E-1015 Trying to modify a constant listOccurs, for instance, when it is attempted to apply a destructive operation (like splittail)to a constant list.

Fair Isaac Corporation Confidential and Proprietary Information 851

Error messages

E-1016 Trying to get an element in an empty setThe function getfirst or getlast is applied to an empty set.
E-1017 Trying to get an element in an empty listThe function getfirst or getlast is applied to an empty list.
E-1018 Invalid identifier ‘identifier’ for publishThe publish command has received an invalid identifier name (e.g. not a valid Moselidentifier or the name is already in use as Mosel idientifier).
E-1100 Empty problemWe are trying to generate or load an empty problem into a solver (i.e. no constraints; boundsdo not count as constraints).
E-1102 Problem capacity of student license exceeded (num1 type_of_object >num2)The problem is too large to be solved with a student license. Use a smaller data set or try toreformulate the problem to reduce the number of variables, constraints, or global entities.
E-1103 Too many matrix coefficientsMatrix size exceeds machine capacity: for 32bit versions the limit are 2billion (2 · 10E9)elements.

C.3.3 BIM reader

E-80 ‘file’ is not a BIM fileTrying to load a file that does not have the structure of a BIM file.
E-82 Wrong file version (current:num1/required:num2) for file ‘file’A BIM file is loaded with an incompatible version of Mosel: preferably the same versionsshould be used for generating and running a BIM file.
E-83 Bim file ‘file’ corruptedA BIM file has been corrupted, e.g. by saving it with a text editor.
E-84 File ‘file’: model cannot be renamedA model file that is being executed cannot be re-loaded at the same time.
W-85 Trailing data at end of file ‘file’ ignoredAt the end of a BIM file additional, unidentifiable data has been found (may be a sign of filecorruption).
E-88 Bim file ‘file’ corruptedIncomplete or otherwise damaged BIM file.
E-90 Signature error (description)During the generation of a BIM file, a problem with the signature has occurred.
E-91 Signature verification error (description)While reading a BIM file, a problem with the signature has occurred (e.g. trying to checksignature for a file that is not signed; or the keys that have been employed don’t match).
E-92 Encryption error (description)Problem with encryption during the generation of a BIM file (e.g. invalid or missing key).
E-93 Decryption error (description)Problem with decryption while reading a BIM file (e.g. invalid or missing key).

Fair Isaac Corporation Confidential and Proprietary Information 852

Error messages

C.3.4 Module manager errors

E-350 Module ‘module’ not foundA module has not been found in the module path (see section 2.3.1 for the search rules). Thismessage is also displayed, if a module depends on another library that has not been found(e.g. module mmxprs has been found but Xpress Optimizer has not been installed or cannotbe located by the operating system).
E-351 File ‘file’ is not a Mosel DSOTypically displayed if Mosel cannot find the module initialization function.
E-352 Module ‘module’ requires a more recent version of Mosel (unsupported interface)A module is not compatible with the Mosel version used to load it.
E-353 Module ‘module’ disabled by restrictionsModule module either does not implement restriction handling at all or it requires featuresthat are not authorized.

Examples:

mmxprs will fail with the restriction setting NoTmp
E-354 Error when initializing module ‘module’Usually preceded by an error message generated by the module. Please refer to thedocumentation of the module for further detail.
E-355 Wrong version for module ‘module’(using:num1.num2.num3/required:num4.num5.num6)A model is run with a version of a module that is different from the version that has been usedto compile the model (trying to run with version num1.num2.num3, required version is

num4.num5.num6).
E-358 Error when resetting module ‘module’A module cannot be executed (e.g. due to a lack of memory).
E-359 Driver ‘pkg.driver’ rejected (reason)A module publishes an IO driver which name is invalid or that is missing some mandatoryfunction.
E-360 Control parameter ‘module.param’ unknown (setting ignored)It is possible to set module parameters when running a model (using the RUN command forinstance): in the list of assignments, a control parameter cannot be found in the indicatedmodule.
E-361 Version number truncated (‘vernum’)A version number (for module, model or package) consists in three positive numbers a.b.c.This error is raised if one of these numbers is larger than 999.
E-362 The operating system failed to load file ‘file’ (‘description’)The module file has been found but cannot be loaded by the system—there will typically besome system error message indicating the exact cause, such as wrong architecture (e.g.using a library compiled for Windows under Linux or bitness mismatch) or missing additionalfiles (e.g. tyring to use module matlab without having previously installed Matlab—see themanual Xpress MATLAB Interface for further detail, or attempting to use mmoci withouthaving installed the Oracle Instant Client—see setup instructions in the whitepaper Using

ODBC and other database interfaces with Mosel).

Fair Isaac Corporation Confidential and Proprietary Information 853

APPENDIX D

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 854

http://www.fico.com/en/product-support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 855

http://www.fico.com/optimization
http://www.fico.com
http://community.fico.com/welcome
http://www.fico.com

Index

Symbols
!, 15
!), 15
!@, 51
(!, 15
(!@, 51
⁎, 31, 32+, 31, 32
+, 16, 31, 32
+=, 34
,, 16-, 31, 32
-, 16, 31, 32
-=, 34
., 589
.., 31, 589
/, 31
//, 589
::, 35
:=, 34;, 16
;, 16, 34=, 32
=, 32, 33
@, 51
_, 15, 63
_c, 63
Numbers
1, 674
2, 674
3, 674
4, 674
5, 674
6, 674
7, 674
8, 674
9, 674
10, 674
11, 674
12, 674
13, 674
14, 674
15, 674
16, 674
17, 674
18, 675
20, 675
21, 675
22, 675
23, 675
24, 675

25, 675
26, 675
27, 675
28, 675
A
abs, 67, 300, 590absolute value, 67, 300access mode, 498activity, 105robust constraint, 376add array of cuts, 765cut, 764image, 428, 429
addcut, 764
addcuts, 765
addmipsol, 683
addmonths, 471
addmultistart, 652
addnode, 594aggregate operator, 29alias, 237define, 239delete, 235list, 238
and, 16, 30, 32, 677annotation, 50category, 51current category, 51documentation, 59, 62global, 52multi-line, 51name, 51predefined categories, 51property, 53annual discount, 171anonymous constraint, 36appendfile, 101
arccos, 300
arcsin, 300
arctan, 68, 300arguments, 42arithmetic expression, 30array, 24automatic, 34compare, 32create a cell, 80declaration, 24delete a cell, 88dereference, 27

Fair Isaac Corporation Confidential and Proprietary Information 856

Index

in/output, 172
array, 16, 30, 34
as, 16
asproc, 69
assert, 70assign R object, 813, 814assignment, 34additive, 34constraints, 34subtractive, 34asymmetric ciphers, 388asynchronous HTTP request, 185attributedelete, 597get first, 604get value, 599set value, 627test existence, 600
attribute, 589
autofinal, 117, 155axis specifier, 588, 589
B
base64, 416basic type, 22basisload, 719read, 727reset, 734save, 737status, 695, 743write, 758
basis, 676basis stability, 684
basisstability, 684
BCONDITION, 6best bound, 677BIM, 1, 3documentation enabled, 59encryption, 3signed, 3
bimprefix, 117, 155
bin, 55
bitflip, 71
bitneg, 72
bitset, 73
bitshift, 74
bittest, 75
bitval, 76bitwiseand, 75not, 72or, 73shift, 74value, 76xor, 71bodymodel, 17
boolean, 16, 22, 29, 590Boolean expression, 32

BREAK, 7
break, 16, 41
BREAKPOINTS, 7
BREAKSUB, 7buffer size, 316, 335
ByteBuffer, 225
C
calcsolinfo, 685call Python function, 779call Python object, 779callback, 659, 744
canceltimer, 268
cardinality, 374cascading, 663
case, 16, 40case-insensitive, 6case-sensitive, 16casting, 28
cb, 55
CDATA, 587
cdata, 589
ceil, 77, 300
ceiling, 590certificateclient, 390server, 391certificate file, 390character encoding, 55, 601, 628
chgdeltatype, 653
child, 589child model, 269cipher algortihm, 388classevent, 267clear errorR, 818
clearaliases, 235
clearinitvals, 301
clearmipdir, 686
clearmodcut, 687
clearqexpstat, 368client certificate, 390client private key, 391clone, 245closefile, 57, 95stream, 95coefficient, 106set, 150color, 438column order, 677commandOptimizer, 688system, 565
command, 688command line interpreter, 1commandsshortening, 10comment, 8, 15, 37, 587

Fair Isaac Corporation Confidential and Proprietary Information 857

Index

sign, 103skip, 103
comment, 589commentarymulti-line, 15communication interface, 363, 576comparator, 32
compare, 78
compareic, 472compilemodel, 3
compile, 242compiled, 17compiler annotations, 51compiler directives, 17compiler library, 1compiler options, 19concatenation, 31list, 32condition, 30configuration directory, 389path, 393configuration file, 294connect, 320, 343
connect, 233connectionnumber, 316, 336connection template, 229connector, 26
conntmpl, 229constant, 25compile time, 25definition, 25run time, 25
constant, 16, 23constants, 66constraint, 22activity, 105anonymous, 36coefficient, 106, 107dual, 108hide, 151name, 36, 154ranging information, 708right hand side, 33sensitivity ranges, 709set coefficient, 150set of variables, 127set type, 158slack, 123test hidden, 131type, 33, 126, 381
contains, 590context, 363, 576problem, 45context node, 588
CONTINUE, 7control parameter, 20documentation, 62get, 116, 494

local set, 136Mosel instance, 832restore, 147set, 155, 551convergence tolerance, 646conversionbasic type, 29copyfile, 479
copynode, 596
copysoltoinit, 302, 689
copytext, 473
cos, 79, 300
count, 16, 29, 30
counter, 16createdirectory, 523, 524
create, 24, 80cross recursion, 44
crossoverlpsol, 690
crypt, 416
csv, 386
CT_BIN, 126, 158
CT_CARD, 381
CT_CONT, 126, 158
CT_EQ, 126, 158, 307, 309, 381, 383
CT_FREE, 126, 158
CT_GEQ, 126, 158, 307, 309, 381, 383
CT_INT, 126, 158
CT_LEQ, 126, 158, 307, 309, 381, 383
CT_PINT, 126, 158
CT_RNG, 126
CT_SCEN, 381
CT_SEC, 126, 158
CT_SINT, 126, 158
CT_SOS1, 126, 158
CT_SOS2, 126, 158
CT_UNB, 126, 158, 307, 309, 381, 383
currentdate, 81
currenttime, 82cut add, 764add array, 765delete, 766drop, 767get active, 768list from cut pool, 769load, 770store, 771store array, 772
cutelt, 83
cutfirst, 84
cuthead, 85
cutlast, 86
cuttail, 87
cuttext, 474
D
DATA, 587data

Fair Isaac Corporation Confidential and Proprietary Information 858

Index

initialization, 36input, 172local, 42output, 172read, 145save, 38sharing, 228
data, 589data frame, 814databaseconnect, 320, 343disconnect, 345logoff, 321transaction, 342, 355
datablock, 89date, 81
date, 461
datefmt, 463
datetime, 462
datetimefmt, 464debug modeOCI, 317ODBC, 336debugger, 6declaration, 17, 21forward, 45implicit, 35list, 23record, 24set, 23
declarations, 16, 21declarative, 17decryptprivate key, 401public key, 400
defaultnode, 229
defdelayedrows, 691
deflate, 821
defsecurevecs, 692
delattr, 597delayed rows, 691nonlinear, 661
delcell, 88
delcookies, 187
delcuts, 766
DELETE, 7deletecut, 766directives, 686directory, 546file, 480model cuts, 687
delnode, 598delta variable, 653
deltext, 475dense, 317, 338dependencymodule, 363, 576service, 363, 576deploy executable, 57

descendant, 589
descendant-or-self, 589
detach, 244determining row, 663difference, 32list, 32set, 32string, 31digital signature, see electronic signaturedirective, 750delete, 686directivesread, 728write, 759directory, 488access mode, 498create, 523, 524delete, 546new, 523, 524remove, 546status, 498
disc, 171disconnect, 321, 345
disconnect, 234
diskdata, 172, 174
DISPLAY, 7displayinfo, 7model, 7models, 8
div, 16, 31divisionintegral, 31remainder, 31
do, 16
doc, 51, 59
doc.annot, 62
doc.cparam, 62documentationenable, 59target location, 60documentation annotations, 59
DOWN, 7drawarrow, 425ellipse, 426, 427line, 430, 433pie, 431point, 432polyline, 430, 433rectangle, 434text, 435, 436drop cut, 767
dropcuts, 767
dropnextevent, 279DSO, 8dual value, 108
dynamic, 16, 24dynamic array

Fair Isaac Corporation Confidential and Proprietary Information 859

Index

of variables, 24dynamic shared objectversion, 8Dynamic Shared Objects manager, 1
dynonly, 19
E
E-1, 839
E-100, 841
E-1000, 850
E-1001, 850
E-1002, 850
E-1003, 850
E-1004, 850
E-1005, 851
E-1006, 851
E-1009, 851
E-101, 841
E-1010, 851
E-1011, 851
E-1013, 851
E-1014, 851
E-1015, 851
E-1016, 852
E-1017, 852
E-1018, 852
E-102, 842
E-103, 842
E-104, 842
E-106, 842
E-107, 842
E-108, 842
E-109, 842
E-1100, 852
E-1102, 852
E-1103, 852
E-111, 842
E-112, 842
E-113, 843
E-114, 843
E-115, 843
E-118, 843
E-122, 843
E-123, 843
E-124, 843
E-125, 843
E-126, 844
E-127, 844
E-128, 844
E-129, 844
E-130, 844
E-132, 844
E-147, 844
E-148, 844
E-149, 845
E-150, 845
E-151, 845
E-153, 845
E-154, 845
E-155, 845

E-156, 845
E-157, 845
E-159, 846
E-160, 846
E-161, 846
E-162, 846
E-163, 846
E-165, 846
E-167, 847
E-168, 847
E-169, 847
E-170, 847
E-171, 847
E-172, 847
E-173, 848
E-175, 848
E-176, 848
E-177, 848
E-2, 839
E-202, 848
E-207, 848
E-208, 848
E-209, 848
E-21, 839
E-210, 848
E-211, 848
E-212, 848
E-213, 848
E-214, 848
E-215, 848
E-217, 848
E-218, 848
E-22, 839
E-23, 839
E-24, 839
E-25, 839
E-26, 840
E-27, 840
E-28, 840
E-29, 840
E-30, 849
E-302, 849
E-303, 849
E-307, 849
E-308, 849
E-31, 850
E-32, 850
E-320, 849
E-321, 849
E-322, 849
E-323, 849
E-33, 850
E-34, 840
E-35, 840
E-350, 853
E-351, 853
E-352, 853
E-353, 853
E-354, 853
E-355, 853

Fair Isaac Corporation Confidential and Proprietary Information 860

Index

E-358, 853
E-359, 853
E-36, 840
E-360, 853
E-361, 853
E-362, 853
E-37, 841
E-38, 841
E-39, 841
E-4, 839
E-40, 841
E-51, 850
E-52, 850
E-6, 850
E-72, 850
E-80, 852
E-82, 852
E-83, 852
E-84, 852
E-88, 852
E-90, 852
E-91, 852
E-92, 852
E-93, 852electronic signature, 388create, 406verify, 407element node, 587elementary type, 22
elif, 16, 39
else, 16, 39, 40
enc:, 55encoding, 55encryptprivate key, 402public key, 403encryptionBIM, 3encryption key, 388
end, 16
end-case, 40
end-declarations, 21
end-function, 44
end-if, 39
end-model, 17
end-package, 17
end-procedure, 44
endswith, 476enumeratequadratic terms, 369environmentcurrent, 294process, 294environment variable, 496, 552MOSEL_BIM, 18, 294MOSEL_DSO, 18, 294MOSEL_EXECPATH, 294, 565MOSEL_RESTR, 11, 294MOSEL_ROPATH, 11, 294MOSEL_RWPATH, 11, 294

MOSEL_SDMAX, 3MOSEL_SSL, 393eof, 129
EP_HEX, 93, 361
EP_MAX, 93, 361
EP_MIN, 93, 361
EP_MPS, 93, 361
EP_STRIP, 93, 361
erase, 477errordetection, 17ODBC, 334error codeR, 816error controlIO, 101, 117, 155Maths, 155error messageR, 817error stream, 95, 101, 102escape sequence, 31escape sequences, 31
estimatemarginals, 693
ETC_APPEND, 172
ETC_AUTONDX, 172
ETC_CSV, 172
ETC_DENSE, 172
ETC_EMPTYNDX, 172
ETC_IN, 172
ETC_NOQ, 172
ETC_NOZEROS, 172
ETC_OUT, 172
ETC_SGLQ, 172
ETC_SKIPH, 172
ETC_SPARSE, 172
ETC_TRANS, 172evaluate Python expression, 782evaluate R script, 815evaluate R statement, 804
evaluation, 16even number, 134
Event, 267eventclass, 285drop next, 279get next, 278null, 281peek next, 288queue, 280send, 269sender group ID, 283sender ID, 282sender user ID, 284value, 287wait for, 273event class, 267wait for, 275event queue, 227event value, 267
EVENT_END, 252

Fair Isaac Corporation Confidential and Proprietary Information 861

Index

EVENT_HTTPEND, 185
EVENT_HTTPNEW, 215, 220
EVENT_TIMER, 270
excel, 386execution environment, 291, 294
exists, 90
exit, 91exit codemodel, 261
exp, 92, 300
expandpath, 478
explterm, 16, 19exponential function, 92, 300exportproblem, 93quadratic problem, 361
EXPORTPROB, 7
exportprob, 93, 361expression, 26linear constraint, 33list, 32print, 104, 168set, 31set type, 158, 309, 383string, 31terminator, 16type, 27extended syntax, 337
F
F, 654
F_APPEND, 101
F_BINARY, 101
F_ERROR, 95, 101, 110, 113
F_INPUT, 95, 101, 110, 113
F_LINBUF, 101
F_OUTPUT, 95, 101, 110, 113
F_SILENT, 101
F_TEXT, 101failure, 318, 338
false, 16, 22, 590
fclose, 57, 95
fcopy, 479
fctasproc, 19
fdelete, 480
fflush, 57, 96file access mode, 498append, 101close, 95compressed, 821copy, 479delete, 480ID, 110in/output, 172inclusion, 20, 89initialization, 37IO, 57move, 483name, 113

open, 101read, 56, 145rename, 483select, 102size, 497status, 498time, 499write, 104, 168file extension, 3file name prefixfile inclusion, 3files BIM, 17finalizeset, 97
finalize, 24, 97
findcookie, 188
findfiles, 481
findfirst, 98
findlast, 99
findtext, 482
findxsrvs, 240
FINISH, 7fix variable, 694
fixglobal, 694
floor, 100, 300, 590flush buffer, 96
fmove, 483
following, 589
fopen, 57, 101
forall, 16, 40format string, 163
formattext, 484
forward, 16, 45free info table, 368
from, 16
fselect, 57, 102
fskipline, 57, 101, 103
fsrvdelay, 231
fsrvnbiter, 231
fsrvport, 230functionreturn value, 43type, 43
function, 16function call, 27
fwrite, 104
fwrite_, 63
fwriteln, 104
fwriteln_, 63
G
generateUFparallel, 656get active cuts, 768cuts from cut pool, 769get pandas DataFrame, 783get Python variable, 782, 791

Fair Isaac Corporation Confidential and Proprietary Information 862

Index

get R array, 806get R boolean, 807get R integer, 808get R real, 809get R string, 810
getact, 105, 376
getaliases, 238
getannidents, 265
getannotations, 266
getasnumber, 486
getattr, 599
getbanner, 236
getboolattr, 599
getboolvalue, 603
getbstat, 695
getchar, 487
getclass, 285
getcnlist, 768
getcoeff, 106
getcoeffs, 107
getcplist, 769
getcwd, 488
getdate, 489, 580
getdatetime, 582
getday, 490
getdaynum, 491
getdays, 492
getdirsep, 493
getdsoparam, 494
getdsoprop, 253
getdsopropnum, 253
getdual, 108
getdualray, 696
getelt, 109
getencoding, 601
getendparse, 495
getenv, 496
getexitcode, 261
getfid, 57, 110
getfirst, 111
getfirstattr, 604
getfirstchild, 606
getflstat, 498
getfname, 113
getfromgid, 283
getfromid, 282
getfromuid, 284
getfsize, 497
getfstat, 498
getftime, 499
getgid, 254
gethead, 112
gethostalias, 237
gethour, 500
gethspace, 614
getid, 255
getiis, 697
getiissense, 698
getiistype, 699
getindentmode, 616

getindentskip, 617
getinfcause, 700
getinfeas, 701
getintattr, 599
getintvalue, 603
getlast, 114
getlastchild, 607
getlb, 702
getlinelen, 618
getloadedlinctrs, 703
getloadedmpvars, 704
getmaxnodes, 619
getminute, 501
getmodprop, 256
getmodpropnum, 256
getmonth, 502
getmsec, 503
getname, 602, 705
getnext, 605
getnextevent, 278
getnode, 257, 608
getnodes, 609
getnominal, 380
getobjval, 115
getoserrmsg, 505
getoserror, 504
getparam, 101, 116, 315, 334, 389, 462, 677, 707
getparent, 610
getpathsep, 506
getprimalray, 706
getprobstat, 707
getqexpnextterm, 369
getqexpsol, 366
getqexpstat, 367
getqtype, 508
getrange, 708
getrcost, 119
getreadcnt, 120
getrealattr, 599
getrealvalue, 603
getreverse, 121
getrmtid, 258
getsecond, 509
getsensrng, 709
getsepchar, 510
getsize, 122, 511, 590, 620, 710
getslack, 123
getsol, 124, 304, 362, 366, 375, 711
getstandalone, 612
getstart, 512
getstatus, 259
getstrattr, 599
getstrvalue, 603
getsucc, 507
getsysinfo, 513
getsysstat, 514
gettail, 125
gettime, 515, 578
gettimer, 286
gettmpdir, 516

Fair Isaac Corporation Confidential and Proprietary Information 863

Index

gettrim, 517
gettxtbuf, 585
gettxtsize, 584
gettype, 126, 307, 381, 611
getub, 712
getuid, 260
getvalue, 287, 603
getvars, 127, 713
getvspace, 615
getweekday, 518
getxmlversion, 613
getyear, 519GID event sender, 283model, 254, 272wait for, 275graph, 418graphical interface, 2
gzip, 821
H
hasfeature, 714
hashmap, 16, 24
hex, 416hidden constraint, 131, 151, 305, 306robust constraint, 377, 379
hmac, 417horizontal spacing, 614, 632host alias, see aliashttp driver, 224HTTP requestasynchronous mode, 185delete, 190get, 191head, 193post, 194put, 195status code, 196synchronous mode, 185HTTP server, 176start, 220stop, 221
HTTP_ACCEPTED, 184
http_async, 177
HTTP_BAD_REQUEST, 184
http_browser, 177
http_cookies, 178
HTTP_CREATED, 184
http_defpage, 178
http_defport, 178
http_expire, 179
HTTP_FORBIDDEN, 184
http_freeasync, 179
http_keephdr, 179
http_listen, 179
http_maxasync, 181
http_maxconn, 180
http_maxcontime, 180
http_maxreq, 180
http_maxreqtime, 181

HTTP_METHOD_NOT_ALLOWED, 184
HTTP_NO_CONTENT, 184
HTTP_NOT_ACCEPTABLE, 184
HTTP_NOT_FOUND, 184
HTTP_OK, 184
HTTP_PAYMENT_REQUIRED, 184
http_port, 181
http_proxy, 182
HTTP_PROXY_AUTHENTICATION_REQUIRED, 184
http_proxyport, 182
HTTP_REQUEST_TIMEOUT, 184
HTTP_RESET_CONTENT, 184
http_srvconfig, 182
http_startwb, 183
HTTP_UNAUTHORIZED, 184
httpcancel, 189
httpdel, 190
httpget, 191
httpgetheader, 192
httphead, 193
httppending, 205
httppost, 194
httpput, 195
httpqueueinfo, 206
httpreason, 196
httpreply, 207
httpreplycode, 208
httpreplyjson, 209
httpreqcookies, 210
httpreqfile, 211
httpreqfrom, 212
httpreqheader, 213
httpreqlabel, 214
httpreqpop, 215
httpreqpush, 216
httpreqpushlim, 217
httpreqstat, 218
httpreqtype, 219
https_cacerts, 390
https_ciphers, 390
https_cltcrt, 390
https_cltkey, 391
https_defport, 183
https_listen, 183
https_port, 184
https_srvcrt, 391
https_srvkey, 391
https_trustsrv, 392
httpstartsrv, 220
httpstopsrv, 221
II/O driver, 54bin:, 55cb:, 55default, 54deploy.csrc:, 57deploy.exe:, 57mem:, 55mmetc.diskdata:, 174

Fair Isaac Corporation Confidential and Proprietary Information 864

Index

mmhttp.url:, 224mmjava.java:, 225mmjava.jraw:, 226mmjobs.mempipe:, 289mmjobs.rcmd:, 290mmjobs.rmt:, 291mmjobs.shmem:, 289mmjobs.xsrv:, 290mmjobs.xssh:, 290mmoci.oci:, 328mmodbc.odbc:, 358mmsheet.csv:, 386mmsheet.excel:, 386mmsheet.xls:, 386mmsheet.xlsx:, 386mmssl.base64:, 416mmssl.crypt:, 416mmssl.hex:, 416mmssl.hmac:, 417mmsystem.pipe:, 575mmsystem.text:, 575null:, 55python3.python:, 791r.rws:, 819raw:, 55sysfd:, 55tee:, 55tmp:, 54zlib.deflate:, 821zlib.gzip:, 821zlib.zip:, 821ID event sender, 282file, 110model, 255stream, 110identifier, 15
if, 16, 27, 39IIS, see irreducible infeasible set, see irreducibleinfeasible setreset search, 735IMCI, 363, 576
implies, 715
imports, 16, 17
in, 16, 32
include, 16, 20indent mode, 616, 635indent skip, 617, 636indexing set, 24
indicator, 716indicator constraint, 677, 716INFINITY, 130, 132, 153
INFINITY, 66
INFO, 7info quadratic expression, 367initial step bound, 665initial value, 298copy solution, 302, 689delete, 301

set, 303initialisation vector, 416size, 408
initialisations, 16
initializations, 16initialize pandas interface, 786initialize Python, 785initialize R, 811inline initialization, 35input file, 172input stream, 95, 101, 102, 225, 247read, 145test eof, 129
InputStream, 225
inserttext, 520instancebanner, 236connect, 233disconnect, 234instance control parameter, 832integerread, 323, 352
integer, 16, 22, 29integrality check, 718
inter, 16, 30, 32inter-module communication, 363, 576interfaceinter-module communication, 363, 576interpreted, 17intersection, 32IO error, 101, 117, 155status, 101, 117switching between streams, 57IO driver, see I/O driver
ioctrl, 101, 117, 155
iostatus, 101, 117irreducible infeasible set, 697, 717
is_binary, 16, 33
is_continuous, 16, 33
is_free, 16, 33
is_integer, 16, 33
is_partint, 16, 33
is_semcont, 16, 33
is_semint, 16, 33
is_sos1, 16, 33
is_sos2, 16, 33
isdynamic, 128
iseof, 129
isfinite, 130
ishidden, 131, 305, 377
isiisvalid, 717
isinf, 132
isintegral, 718
isnan, 133
isodd, 134
isqueueempty, 280
isvalid, 521item number read, 117

Fair Isaac Corporation Confidential and Proprietary Information 865

Index

iterator, 30
JJavaIO drivers, 225
java, 225
jobid, 230
jointext, 522
jraw, 225
JSON_FCT_BOOL, 622
JSON_FCT_CLOSE_ARR, 622
JSON_FCT_CLOSE_OBJ, 622
JSON_FCT_NULL, 622
JSON_FCT_NUM, 622
JSON_FCT_OPEN_ARR, 622
JSON_FCT_OPEN_OBJ, 622
JSON_FCT_TEXT, 622
jsonload, 621
jsonparse, 622
jsonsave, 624
jsonwrite, 222
K
keepalive, 230
keepassert, 19, 70key, 416key derivation, 416key size, 409keywordSQL, 334keywords, 10, 16
L
lang, 117language, 15largest value, 139legend, 418lengthstring, 316, 336libraryRun Time, 1
linctr, 16, 22, 298, 300, 359, 360, 363, 371line breaking, 16line control directive, 21line length, 618, 637linesnumber affected, 318, 338number transferred, 318, 338
LIST, 7list, 23compare, 32constant, 32finalize, 97find element, 98, 99first element, 84, 111head, 112last element, 86, 114remove elements, 85, 87reverse, 121, 148size, 122

split, 160, 161tail, 125
list, 16, 32
ln, 135, 300load basis, 719cut, 770module, 17package, 17, 18problem, 723
load, 245, 625load document, 621, 625
loadbasis, 719
loadcookies, 197
loadcuts, 770
loadlpsol, 720
loadmipsol, 721
loadprob, 359, 723
localedir, 117, 155
localsetparam, 136location step, 588
log, 137, 300logarithmbase 10, 137, 300natural, 135, 300
logctr, 677, 716logical and, 32logical expression, 677exclusive or, 762implication, 715logical negation, 33logical or, 32loop, 40loop statement, 34lower bound, 702set, 749LP format, 7maximization, 93minimization, 93LP solutionload, 720save, 739LP status, 677
LSATTR, 8
LSLIBS, 8
LSMODS, 8
M
M_E, 66
M_PI, 66
makedir, 523
makepath, 524
makesos1, 33, 138
makesos2, 33, 138marginal values, 693
mathctrl, 155Mathserror, 155matrixcolumn order, 677

Fair Isaac Corporation Confidential and Proprietary Information 866

Index

matrix output, 7
max, 16, 30, 31
MAX_INT, 66
MAX_REAL, 66
maximize, 359, 724maximum value, 31, 139
maxlist, 139
mc, 51
mc.def, 52
mc.flush, 52
mc.set, 54
mem, 55memory pipe, 289memory usage, 140, 256
memoryuse, 140
mempipe, 289message catalog, 63, 65message digest, 389, 392, 405size, 410message domain, 64message printing, 319, 339Optimizer, 680message translation, 63
min, 16, 30, 31
minimize, 359, 724minimum value, 31, 141
minlist, 141MIP solutionadd, 683load, 721save, 738
mksetcookie, 223mmsslconfiguration directory, 389
MMSVGDISPLAY, 421
MMSVGTGZ, 422
mod, 16, 31
MODEL, 8
Model, 241modelactive, 8body, 17clone, 245compile, 242exit code, 261GID, 254, 272handling multiple, 227ID, 255load, 245memory usage, 140, 256name, 8pause execution, 447properties, 256reset, 263run, 3, 252sequence number, 8size, 8source, 1status, 259stop, 262

structure, 17UID, 260, 271unload, 264version, 8web service, 176
model, 8, 16, 17model cut, 751delete, 687model management, 241model manager, 1model parameter, 20
model_version, 117
modelname, 117module, 2dependency, 363, 576memory usage, 140module structureadvantages, 2modules, 15
monthnames, 464
Mosel, 232mosel, 1debugger, 6invocation, 2restricted mode, 11Mosel compiler, 1Mosel Console, 1Mosel instance, see instance, 513Mosel Remote Launcher, 291
MOSEL_BIM, 18, 294
MOSEL_DSO, 18, 294
MOSEL_EXECPATH, 294, 565
MOSEL_RESTR, 11, 294
MOSEL_ROPATH, 11, 294
MOSEL_RWPATH, 11, 294
MOSEL_SDMAX, 3
MOSEL_SSL, 393moseldoc, 62movefile, 483MP type, 22
mpproblem, 45MPS format, 7, 93mpsolreset, 736
mpsol, 676
mpvar, 16, 22, 298, 359, 363
msgdigest, 405
msgsign, 406
msgverify, 407multiple models, 227multiple problems, 45multistart job, 652
Nnamescramble, 93, 361variable, 705
name, 590names

Fair Isaac Corporation Confidential and Proprietary Information 867

Index

loading, 679
namespace, 16NAN, 130, 133, 153
NAN, 66
nbread, 117, 145new line, 31
newmuid, 142
newtar, 525
newzip, 526
NEXT, 8
next, 16, 41
nextfield, 527
nlctr, 298, 300
noautofinal, 19
NoDB, 12node, 608, 609add, 594copy, 596delete, 598get first child, 606get last child, 607get name, 602get next, 605get parent, 610get type, 611get value, 603set name, 630set value, 631
node, 589node test, 588, 589
nodenumber, 229
NoExec, 11
noimplicit, 19, 35nominal value, 380, 382non-relational, 317, 338nonlinearcomplementary variables, 660feasibility, 673memory usage, 657scaling, 658tolerance, 666nonlinear constraintenforced, 664hide, 306name, 308set type, 309solution, 304test hidden, 305type, 307
NoRead, 11
not, 16, 33, 590, 677
not in, 32
NoTmp, 11
NoWrite, 11
nsgroup, 16
nssearch, 16
null, 55
nullevent, 281numberconnection, 316, 336

lines, 318, 338
number, 590NumPy conversion, 778
Oobject group, 418objective value, 115OCI debug mode, 317IO driver, 328
oci, 328
OCIautocommit, 315
OCIautondx, 315
OCIbufsize, 316
OCIcolsize, 316
OCIcommit, 326
OCIconnection, 316, 320
OCIdebug, 317
OCIexecute, 322
OCIfirstndx, 317
OCIlogoff, 321
OCIlogon, 320
OCIndxcol, 317
OCIreadinteger, 323
OCIreadreal, 324
OCIreadstring, 325
OCIrollback, 327
OCIrowcnt, 318
OCIrowxfr, 318
OCIsuccess, 318
OCItruncsize, 318
OCIverbose, 319ODBCdebug mode, 336odd number, 134
of, 16openfile, 101stream, 101
openpipe, 528operationelementary, 34operator, 26arithmetic, 31ealuation order, 27optimizationdirection, 7Optimizerloading names, 679message printing, 680problem name, 679problem pointer, 679version number, 679optimizer problem status, 707
OPTION, 8
options, 16, 17
or, 16, 30, 32, 677output file, 172output stream, 95, 101, 102, 225, 247flush, 96

Fair Isaac Corporation Confidential and Proprietary Information 868

Index

write, 104, 168
OutputStream, 225
Ppackage, 48annotation declaration, 54structure, 17
package, 16, 17pandas conversion, 778parameter, 20, 116, 136, 147, 155, 494, 551parameters, 17
parameters, 16
parent, 589parent model, 269
parentnumber, 230
parseextn, 529
parseint, 530parser context, 462parser parameter, 117
parser_date, 117
parser_file, 117
parser_line, 117
parser_time, 117
parser_UTCdate, 117
parser_UTCtime, 117
parser_version, 117
parsereal, 532
parsetext, 533passphrase, 388
pastetext, 535
pathmatch, 536
pathsplit, 537pausemodel execution, 447
peeknextevent, 288PEM format, 388plot add, 424PO, see Portable ObjectPortable Object, 65Portable Object Template, 64
position, 590
postsolve, 726POT, see Portable Object Templatepredicate, 588, 589primal solution, 124
PRINT, 9print, 104, 168problem, 93quadratic problem, 361R, 812printing, 319, 339printing format, 117, 155
printmodelmemory, 657
printmodelscaling, 658private key, 388private key file, 394private symbol, 47problem, 7export, 93

handling multiple, 45load, 723main, 45maximize, 724postsolve, 726print, 93status, 707unload, 756write, 760problem context, 45problem nameOptimizer, 679problem pointerOptimizer, 679problem type, 45extensions, 45procedural, 17procedure, 36body, 43
procedure, 16procedurespassing of formal parameters, 43processing instruction, 587
processing-instruction, 589
prod, 16, 30, 31product, 31
public, 16, 47public key, 388, 389
publish, 143
pycall, 779
pycallbool, 779
pycallint, 779
pycallreal, 779
pycallstr, 779
pycalltext, 779
pycallvoid, 779
pyexec, 781
pyget, 782
pygetbool, 782
pygetdf, 783
pygetint, 782
pygetreal, 782
pygetstr, 782
pygettext, 782
pyinit, 785
pyinitpandas, 786
pyinitverbose, 777
pyrun, 787
pyset, 788
pysetdf, 789
pyunload, 790
pyusepandas, 778
QQCQP, see Quadratically Constrained QuadraticProgramming
qexp, 359, 360
qsort, 538quadratic expressionenumerate terms, 369

Fair Isaac Corporation Confidential and Proprietary Information 869

Index

get info, 367solution, 362quadratic problemexport, 361print, 361Quadratically Constrained Quadratic Programming,299
QUIT, 9quote, 31
quote, 540
R
random, 144random data file, 412random number, 144, 156, 411range, 23first element, 84, 111last element, 86, 114
range, 16, 32range set, 31ranging information, 708
raw, 55
Rcleanscript, 801
Rclearerr, 818
rcmd, 290read basis, 727directives, 728integer value, 323, 352number of items, 117real value, 324, 353string, 325, 354write, 758
read, 57, 101, 117, 145
readbasis, 727
readcnt, 117, 120, 155
readdirs, 728
readlink, 541
readln, 57, 101, 145
readsol, 729
readtextline, 542real printing format, 117, 155read, 324, 353
real, 16, 22, 29, 300
realfmt, 117, 155
recloc, 117, 155record, 24compare, 32dereference, 27
record, 16recursion, 42reduced cost value, 119
refinemipsol, 730
REG_EXTENDED, 543, 545
REG_ICASE, 543, 545
REG_NEWLINE, 543, 545
REG_NOTBOL, 543, 545
REG_NOTEOL, 543, 545
REG_ONCE, 545

regmatch, 543
regreplace, 545
rejectintsol, 731release Python, 790remote command driver, 290remote driver, 291remote invocation protocol, 832remote launcher, 291removedirectory, 546
removedir, 546
removefiles, 547renamefile, 483
repairinfeas, 732
repeat, 16, 41
reqqueue, 176requestclient IP, 212data file, 211header, 213label, 214status, 218type, 219requirement, 48
requirements, 16
Rerrcode, 816
Rerrmsg, 817reset, 146
reset, 146, 263
resetbasis, 734
resetiis, 735
resetmodpar, 248
resetsol, 736
restoreparam, 147
restrict, 117restricted mode, 11restrictions, 11
return, 16, 43
returned, 43
Reval, 804
reverse, 148
Rfree, 805
Rgetarr, 806
Rgetbool, 807
Rgetint, 808
Rgetreal, 809
Rgetstr, 810
Rinit, 811
Rinteractive, 801
rmt, 291
robctr, 370
robust_check_feas_original_problem, 373
robust_check_feas_uncertainty_set, 372
robust_uncertain_overlap, 372
robustctr, 370, 371, 378root node, 587
round, 149, 300, 590rounding, 77, 100, 149, 300
Rprint, 812

Fair Isaac Corporation Confidential and Proprietary Information 870

Index

RSA cryptographic system, 388RSA keycheck private, 398fingerprint, 395load, 399save, 404size, 397RSA key pair, 389, 396
RSAfingerprint, 395
RSAgenkey, 396
RSAgetkeysize, 397
RSAisprivate, 398
RSAloadkey, 399
RSAprivdecrypt, 401
RSAprivencrypt, 402
RSApubdecrypt, 400
RSApubencrypt, 403
RSAsavekey, 404
Rsessionmode, 802
Rset, 813
Rsetdf, 814
Rsource, 815
run, 252run Python script, 787run Python script from string, 781
Runloadscript, 802running time, 515
runparams, 117
Rusemosstreams, 801
Rverbose, 801
Ssalt, 417save basis, 737Optimizer status, 740
save, 626save document, 624, 626
savebasis, 737
savecookies, 198
savemipsol, 738
savesol, 739
savestate, 740
scenario, 378secure vectors, 692selectfile, 102stream, 102selection statement, 34, 39
selectsol, 741
self, 589
send, 269sensitivity ranges, 709servertrust, 392server certificate, 391server private key, 391serviceinter-module communication, 363, 576module dependency, 363, 576

set, 23callback, 659, 744compare, 32finalize, 97fixed, 24in/output, 172size, 122
set, 16, 32set pandas DataFrame, 789set Python variable, 788
setarchconsistency, 742
setattr, 627
setbstat, 743
setcallback, 659, 744
setcbcutoff, 747
setchar, 548
setcoeff, 150
setcomplementary, 660
setcontrol, 249
setcookie, 199
setdate, 549, 581
setdatetime, 583
setday, 550
setdefstream, 247
setdefvar, 662
setdelayedctr, 661
setdetrow, 663
setdsoparam, 551
setencoding, 628
setendparse, 495
setenforcedctr, 664
setenv, 552
setgid, 272
setgndata, 748
sethidden, 151, 306, 379
sethostalias, 239
sethour, 554
sethspace, 632
setindentmode, 635
setindentskip, 636
setinitsb, 665
setinitval, 303
setioerr, 152
setlb, 749
setlinelen, 637
setmatherr, 153
setmaxnodes, 629
setminute, 555
setmipdir, 750
setmodcut, 751
setmodpar, 250
setmonth, 556
setmsec, 557
setname, 154, 308, 630
setnominal, 382
setoserror, 553
setparam, 155, 315, 334, 389, 462, 677
setqtype, 508
setrandseed, 156
setrange, 157

Fair Isaac Corporation Confidential and Proprietary Information 871

Index

setsecond, 558
setsepchar, 510
setsol, 752
setstandalone, 638
setstart, 512
setsucc, 507
settime, 559, 579
settimer, 270
settol, 666
settolset, 667
settrim, 517
settype, 158, 309, 383
setub, 753
setucbdata, 754
setuid, 271
setvalue, 631
setvspace, 634
setworkdir, 251
setxmlversion, 639
setyear, 560
shared, 16, 22, 228shared memory driver, 289
sharingstatus, 117, 228
shmem, 289sign, 300
sign, 300signatureelectronic, 388
sin, 159, 300size array, 122file, 497list, 122set, 122skip comment, 103slack value, 123
sleep, 561smallest value, 141solution value, 124, 362nonlinear constraint, 304robust constraint, 375uncertain, 375sorting, 538SOS, 138declaration, 33set type, 158type, 126special ordered set, 138
splithead, 160
splittail, 161
splittext, 562SQL commandexecute, 322, 346update, 357SQL parametersdefine, 348get value, 349
SQLautocommit, 335
SQLautondx, 335

SQLbufsize, 335
SQLcolsize, 336
SQLcolumns, 341
SQLcommit, 342
SQLconnect, 343
SQLconnection, 336, 344
SQLdebug, 336
SQLdisconnect, 345
SQLdm, 337
SQLexecute, 346
SQLextn, 337
SQLfirstndx, 337
SQLgetparam, 349
SQLindices, 350
SQLndxcol, 338
SQLparam, 348
SQLprimarykeys, 351
SQLreadinteger, 352
SQLreadreal, 353
SQLreadstring, 354
SQLrollback, 355
SQLrowcnt, 338
SQLrowxfr, 338
SQLsuccess, 338
SQLtables, 356
SQLtruncsize, 339
SQLupdate, 357
SQLverbose, 339
sqrt, 162, 300square root, 162, 300
sshcmd, 231
ssl_cipher, 392
ssl_digest, 392
ssl_dir, 393
ssl_privkey, 394
sslivsize, 408
sslkeysize, 409
sslmdsize, 410
sslrandom, 411
sslrandomdata, 412stack dump, 3standalone flag, 612, 638start value, see initial value
starts-with, 590
startswith, 563statement, 34separator, 34status, 318, 338directory, 498file, 498IO, 101, 117model, 259problem, 707save, 740system, 514
STEP, 9
stop, 262
stopoptimize, 755storearray of cuts, 772

Fair Isaac Corporation Confidential and Proprietary Information 872

Index

cut, 771
storecut, 771
storecuts, 772streamclose, 95ID, 110input, 247open, 101output, 247select, 102
strfmt, 163stringformatted, 163get substring, 164maximum length, 316, 336read, 325, 354
string, 16, 22, 29, 590string expressioncompare, 32
string-length, 590stylesheet, 442, 446, 454, 458submodel, 227subproblem, 45subroutine, 42subset, 32
substr, 164success, 318, 338suffix notation, 9, 45
sum, 16, 30, 31summation, 31superset, 32SVG, 418
SVG_BLACK, 419
SVG_BLUE, 419
SVG_BROWN, 419
SVG_COLOR, 419
SVG_CURRENT, 419
SVG_CYAN, 419
SVG_DECORATION, 419
SVG_FILL, 419
SVG_FILLOPACITY, 419
SVG_FONT, 419
SVG_FONTFAMILY, 419
SVG_FONTSIZE, 419
SVG_FONTSTYLE, 419
SVG_FONTWEIGHT, 419
SVG_GOLD, 419
SVG_GRAY, 419
SVG_GREEN, 419
SVG_LIME, 419
SVG_MAGENTA, 419
SVG_NONE, 419
SVG_OPACITY, 419
SVG_ORANGE, 419
SVG_PINK, 419
SVG_PURPLE, 419
SVG_RED, 419
SVG_SILVER, 419
SVG_STROKE, 419
SVG_STROKEDASH, 419

SVG_STROKEOPACITY, 419
SVG_STROKEWIDTH, 419
SVG_TEXTANCHOR, 419
SVG_WHITE, 419
SVG_YELLOW, 419
svgaddarrow, 425
svgaddcircle, 426
svgaddellipse, 427
svgaddfile, 428
svgaddgroup, 424
svgaddimage, 429
svgaddline, 430
svgaddpie, 431
svgaddpoint, 432
svgaddpolygon, 433
svgaddrectangle, 434
svgaddtext, 435
svgaddxmltext, 436
svgclosing, 437
svgcolor, 438
svgdelobj, 439
svgerase, 440
svggetgraphstyle, 441
svggetgraphstylesheet, 442
svggetgraphviewbox, 443
svggetlastobj, 444
svggetstyle, 445
svggetstylesheet, 446
svgpause, 447
svgrefresh, 448
svgsave, 449
svgsetgraphlabels, 450
svgsetgraphpointsize, 451
svgsetgraphscale, 452
svgsetgraphstyle, 453
svgsetgraphstylesheet, 454
svgsetgraphviewbox, 455
svgsetreffreq, 456
svgsetstyle, 457
svgsetstylesheet, 458
svgshowgraphaxes, 459
svgwaitclose, 460symboldeclaration, 43import, 17
SYMBOLS, 8
symlink, 564symmetric cipher, 392symmetric ciphers, 388symmetric cypherinitialisation vector, 408key size, 409synchronization mechanism, 227syntax, 15
sys_endparse, 465
sys_fillchar, 465
SYS_MOD, 498
SYS_NOW, 461, 462
sys_pid, 465
sys_qtype, 465

Fair Isaac Corporation Confidential and Proprietary Information 873

Index

sys_regcache, 466
sys_sepchar, 466
sys_trim, 466
sys_txtmem, 467
SYS_TYP, 498
SYS_ARCH, 513
SYS_DIR, 498, 537
SYS_DIRONLY, 481, 525, 526, 547, 566, 572–574
SYS_DOWN, 538
SYS_EXEC, 498
SYS_EXTN, 537
SYS_FLAT, 525, 526, 572, 573
SYS_FNAME, 537
SYS_LEFT, 571
SYS_LNK, 498
SYS_NAME, 513
SYS_NODE, 513
SYS_NODIR, 481, 525, 526, 547, 566, 572–574
SYS_NOFAIL, 572, 573
SYS_NOSORT, 481
SYS_OTH, 498
SYS_OVERWRT, 572, 573
SYS_PROC, 513
SYS_RAM, 513
SYS_READ, 498
SYS_RECURS, 481, 547
SYS_REG, 498
SYS_REL, 513
SYS_REVORD, 481
SYS_RIGHT, 571
SYS_UP, 538
SYS_VER, 513
SYS_VERB, 572, 573
SYS_WRITE, 498
sysfd, 55
system, 565system command, 565system information, 513system status, 514
Ttable of symbols, 47
tagpriv, 19
tan, 300
tarlist, 566
tcpping, 200
tee, 55temporary directory, 56termenumerate, 369terminate R, 805termination, 91test eof, 129hidden constraint, 131hidden nonlinear constraint, 305
testattr, 600
text, 461, 589text section, 587
textfmt, 567

then, 16time, 82file, 499
time, 461time measure, 515
timefmt, 463timestamp, 165
timestamp, 165
tmp, 54
tmpdir, 117
to, 16tolerancezero, 117, 155tolerance set, 667
tolower, 569
tolset, 646
toupper, 570transactioncommit, 326rollback, 327trigonometric functions, 68, 79, 159, 300
trim, 571
true, 16, 22, 29, 590
txtresize, 586type constraint, 126, 158nonlinear constraint, 307, 309problem, 45SOS, 126, 158variable, 33, 126, 158type conversion, 28
UUID event sender, 284model, 260, 271wait for, 275
uncertain, 370
uncertainctr, 370unconstrained, 33
UNDISPLAY, 9union, 32
union, 16, 30, 32unique identifier, 142
unload, 264
unloadprob, 756
unpublish, 166
untar, 572
until, 16, 41
unzip, 573
UP, 9upper bound, 712set, 753
url, 224URL encoding, 201
urlencode, 201
uselastbarsol, 757user comment, 8user function, 645, 654DLL, 668

Fair Isaac Corporation Confidential and Proprietary Information 874

Index

Excel, 669Excel macro, 670info, 671Mosel, 672parallel, 656user graph, 418add file, 428, 429add plot, 424axes labels, 450closing, 437color, 438delete object, 439draw arrow, 425draw circle, 426draw ellipse, 427draw line, 430draw pie, 431draw point, 432draw polygon, 433draw rectangle, 434draw text, 435, 436erase, 440get object, 444get style, 442, 446get style property, 441, 445get viewbox, 443model termination, 460point size, 451refresh, 448refresh frequency, 456save, 449scaling, 452set style, 454, 458set style property, 453, 457view box, 455user type, 26definition, 26
userfunc, 645
userfuncDLL, 668
userfuncExcel, 669
userfuncExcelMacro, 670
userfuncinfo, 671
userfuncMosel, 672
uses, 16, 17
UTC, 117, 155
V
validate, 673valueevent, 267variable, 22check intregrality, 718environment, 496, 552fix, 694initial value, 298, 303lower bound, 702name, 705ranging information, 708reduced cost, 119sensitivity ranges, 709

set coefficient, 150set lower bound, 749set type, 158set upper bound, 753solution, 124type, 126upper bound, 712
version, 8, 16, 17
versionnum, 167
versionstr, 167vertical spacing, 615, 634viewbox, 443VIMA, 1visual environment, 2
W
W-121, 843
W-131, 844
W-144, 844
W-152, 845
W-164, 846
W-166, 847
W-306, 849
W-309, 849
W-85, 852
wait, 273
waitexpired, 274
waitfor, 275
waitforend, 277
WDOnly, 11
WHERE, 10
while, 16, 41
with, 16, 42, 46
workdir, 117, 155working directory, 56, 251, 488writedirectives, 759problem, 760
write, 57, 101, 168, 363
write_, 63
writebasis, 758
writedirs, 759
writeln, 57, 101, 168, 363
writeln_, 63
writeprob, 760
writesol, 761
XX509 certificate, 389compatibility, 413create, 415information, 414
x509check, 413
x509getinfo, 414
x509newcrt, 415
xbim, 19
xls, 386
xlsx, 386XML decode, 642

Fair Isaac Corporation Confidential and Proprietary Information 875

Index

encode, 641XML document, 592XML document structure, 587XML node number, 592XML node type, 587XML path, 588xml version, 613, 639
XML_ATTR, 602, 611
XML_AUTO, 616, 635
XML_CDATA, 594, 602, 611
XML_COM, 594, 602, 611
XML_DATA, 594, 602, 611
XML_ELT, 594, 602, 611
XML_FCT_CDATA, 643
XML_FCT_CLOSE_ELT, 643
XML_FCT_COM, 643
XML_FCT_DATA, 643
XML_FCT_DECL, 643
XML_FCT_OPEN_ELT, 643
XML_FCT_PINST, 643
XML_FCT_TXT, 643
XML_FIRST, 594, 596
XML_FIRSTCHILD, 594, 596
XML_LAST, 594, 596
XML_LASTCHILD, 594, 596
XML_MANUAL, 616, 635
XML_NEXT, 594, 596
XML_NONE, 616, 635
XML_PINST, 594, 602, 611
XML_TXT, 594, 602, 611
xmlattr, 640
xmldecode, 642
xmldoc, 592
xmlencode, 641
xmlparse, 643
XNLP_AUTOELIM, 648
XNLP_LOADASNL, 648
XNLP_LOADNAMES, 649
XNLP_NLPSTATUS, 649
XNLP_SOLVER, 649
XNLP_TOL_RA, 646
XNLP_TOL_RI, 646
XNLP_TOL_RM, 646
XNLP_TOL_RS, 646
XNLP_TOL_TA, 646
XNLP_TOL_TC, 646
XNLP_TOL_TI, 646
XNLP_TOL_TM, 646
XNLP_TOL_TS, 646
XNLP_VERBOSE, 650
xor, 762Xpress Optimizer, 2Xpress Workbench, 2
xprmsrv, 291
XPRS_colorder, 677
XPRS_enumduplpol, 678
XPRS_enummaxsol, 678
XPRS_enumsols, 678
XPRS_fullversion, 679
XPRS_loadnames, 679

XPRS_problem, 679
XPRS_probname, 679
XPRS_verbose, 680
XPRS_BAR, 724
XPRS_BR, 750
XPRS_CB_BARITER, 744
XPRS_CB_BARLOG, 744
XPRS_CB_CHGBRANCH, 744
XPRS_CB_CHGNODE, 744
XPRS_CB_CUTLOG, 744
XPRS_CB_CUTMGR, 744
XPRS_CB_GAPNOTIFY, 744
XPRS_CB_GLOBALLOG, 744
XPRS_CB_INFNODE, 744
XPRS_CB_INTSOL, 744
XPRS_CB_LPLOG, 744
XPRS_CB_NEWNODE, 744
XPRS_CB_NODECUTOFF, 744
XPRS_CB_OPTNODE, 744
XPRS_CB_PREINTSOL, 744
XPRS_CB_PRENODE, 744
XPRS_CB_PRESOLVE, 744
XPRS_CB_SOLNOTIFY, 744
XPRS_CONT, 724
XPRS_CORELP, 724
XPRS_DN, 709, 750
XPRS_DUAL, 724
XPRS_ENUM, 724
XPRS_INF, 707
XPRS_LCOST, 708
XPRS_LIN, 724
XPRS_LOACT, 708
XPRS_LOCAL, 724
XPRS_LPSTOP, 724
XPRS_NET, 724
XPRS_OPT, 707
XPRS_OTH, 707
XPRS_PD, 750
XPRS_PR, 750
XPRS_PRI, 724
XPRS_PU, 750
XPRS_STOP_CTRLC, 755
XPRS_STOP_ITERLIMIT, 755
XPRS_STOP_MIPGAP, 755
XPRS_STOP_NODELIMIT, 755
XPRS_STOP_SOLLIMIT, 755
XPRS_STOP_TIMELIMIT, 755
XPRS_STOP_USER, 755
XPRS_TUNE, 724
XPRS_UCOST, 708
XPRS_UDN, 708
XPRS_UNB, 707
XPRS_UNF, 707
XPRS_UP, 709, 750
XPRS_UPACT, 708
XPRS_UUP, 708
XSLP_CB_CASCADEEND, 659
XSLP_CB_CASCADESTART, 659
XSLP_CB_CASCADEVAR, 659
XSLP_CB_CONSTRUCT, 659

Fair Isaac Corporation Confidential and Proprietary Information 876

Index

XSLP_CB_END, 659
XSLP_CB_INTSOL, 659
XSLP_CB_ITEREND, 659
XSLP_CB_ITERSTART, 659
XSLP_CB_ITERVAR, 659
XSLP_CB_MSJOBEND, 659
XSLP_CB_MSJOBSTART, 659
XSLP_CB_MSWINNER, 659
XSLP_CB_OPTNODE, 659
XSLP_CB_PRENODE, 659
XSLP_CB_START, 659
xsrv, 290
xssh, 290
Zzero tolerance, 117, 155
zerotol, 117, 155
zip, 821
ziplist, 574

Fair Isaac Corporation Confidential and Proprietary Information 877

	Introduction
	What is Mosel?
	General organization
	Running Mosel
	mosel command: invocation
	mosel command: interactive debugger
	mosel command: tracing mode
	mosel command: restricted mode
	mosel command: securing bim files

	References
	Structure of this manual

	I Core System
	The Mosel Language
	Introduction
	Comments
	Identifiers
	Reserved words
	Separation of instructions, line breaking
	Conventions in this document

	Structure of the source file
	The compiler directives
	Directive uses
	Directive imports
	Directive options
	Directive version

	The parameters block
	Source file preprocessing
	Source file character encoding
	Source file inclusion
	Line control directives

	The declaration block
	Elementary types
	Basic types
	MP types

	Sets
	Lists
	Arrays
	Special case of dynamic arrays of a type not supporting assignment

	Records
	Constants
	User defined types
	Naming new types
	Combining types

	Expressions
	Type conversions and constructors
	Aggregate operators
	Arithmetic expressions
	String expressions
	Set expressions
	List expressions
	Boolean expressions
	Linear constraint expressions
	Automatic arrays

	Statements
	Simple statements
	Assignment
	Assignment of structured types
	About implicit declarations
	Inline initialization
	Linear constraint expression
	Procedure call

	Initialization block
	About automatic finalization

	Selections
	If statement
	Case statement

	Loops
	Forall loop
	While loop
	Repeat loop
	break and next statements
	with statement

	Procedures and functions
	Definition
	Formal parameters: passing convention
	Local declarations
	Overloading
	Forward declaration
	Suffix notation

	Problems
	The mpproblem type

	The public qualifier
	Packages
	Version management
	The requirements block
	Control parameters

	Namespaces
	Annotations
	Syntax
	Symbol association
	Declaration

	File names and input/output drivers
	Character encoding of text files
	Working directory and temporary directory
	Handling of input/output
	Deploying models
	Documenting models using annotations
	doc annotation category
	Global definitions
	Document structure
	Symbol definitions
	Annotation definitions
	Package control parameters

	moseldoc documentation processor
	Running moseldoc
	Structure of the generated document
	Processing of annotation values

	Message translation
	Preparing the model source
	Building the message catalogs
	Model execution

	Predefined functions and procedures
	abs
	arctan
	asproc
	assert
	bitflip
	bitneg
	bitset
	bitshift
	bittest
	bitval
	ceil
	compare
	cos
	create
	currentdate
	currenttime
	cutelt
	cutfirst
	cuthead
	cutlast
	cuttail
	delcell
	datablock
	exists
	exit
	exp
	exportprob
	fclose
	fflush
	finalize
	findfirst
	findlast
	floor
	fopen
	fselect
	fskipline
	fwrite, fwriteln
	getact
	getcoeff
	getcoeffs
	getdual
	getelt
	getfid
	getfirst
	gethead
	getfname
	getlast
	getobjval
	getparam
	getrcost
	getreadcnt
	getreverse
	getsize
	getslack
	getsol
	gettail
	gettype
	getvars
	isdynamic
	iseof
	isfinite
	ishidden
	isinf
	isnan
	isodd
	ln
	localsetparam
	log
	makesos1, makesos2
	maxlist
	memoryuse
	minlist
	newmuid
	publish
	random
	read, readln
	reset
	restoreparam
	reverse
	round
	setcoeff
	sethidden
	setioerr
	setmatherr
	setname
	setparam
	setrandseed
	setrange
	settype
	sin
	splithead
	splittail
	sqrt
	strfmt
	substr
	timestamp
	unpublish
	versionnum, versionstr
	write, writeln

	II Modules
	mmetc
	Procedures and functions
	disc
	diskdata

	I/O drivers
	Driver diskdata

	mmhttp
	New functionality for the Mosel language
	The type reqqueue

	Control parameters
	http_async
	http_browser
	http_cookies
	http_defpage
	http_defport
	http_expire
	http_freeasync
	http_keephdr
	http_listen
	http_maxconn
	http_maxcontime
	http_maxreq
	http_maxreqtime
	http_maxasync
	http_port
	http_proxy
	http_proxyport
	http_srvconfig
	http_startwb
	https_defport
	https_listen
	https_port

	Constants
	Procedures and functions
	HTTP client
	delcookies
	findcookie
	httpcancel
	httpdel
	httpget
	httpgetheader
	httphead
	httppost
	httpput
	httpreason
	loadcookies
	savecookies
	setcookie
	tcpping
	urlencode

	HTTP server
	httppending
	httpqueueinfo
	httpreply
	httpreplycode
	httpreplyjson
	httpreqcookies
	httpreqfile
	httpreqfrom
	httpreqheader
	httpreqlabel
	httpreqpop
	httpreqpush
	httpreqpushlim
	httpreqstat
	httpreqtype
	httpstartsrv
	httpstopsrv
	jsonwrite
	mksetcookie

	I/O drivers
	Driver url

	mmjava
	I/O drivers
	Driver java
	Driver jraw

	mmjobs
	Example
	Data sharing between models
	Control parameters
	conntmpl
	nodenumber
	defaultnode
	jobid
	parentnumber
	keepalive
	fsrvport
	fsrvdelay
	fsrvnbiter
	sshcmd

	Procedures and functions
	Mosel instance management
	connect
	disconnect
	clearaliases
	getbanner
	gethostalias
	getaliases
	sethostalias
	findxsrvs

	Model management
	compile
	detach
	load
	setdefstream
	resetmodpar
	setcontrol
	setmodpar
	setworkdir
	run
	getdsoprop, getdsopropnum
	getgid
	getid
	getmodprop, getmodpropnum
	getnode
	getrmtid
	getstatus
	getuid
	getexitcode
	stop
	reset
	unload
	getannidents
	getannotations

	Synchronization
	canceltimer
	send
	settimer
	setuid
	setgid
	wait
	waitexpired
	waitfor
	waitforend
	getnextevent
	dropnextevent
	isqueueempty
	nullevent
	getfromid
	getfromgid
	getfromuid
	getclass
	gettimer
	getvalue
	peeknextevent

	I/O drivers
	Driver shmem
	Driver mempipe
	Driver rcmd
	Driver xsrv
	Driver xssh
	Driver rmt

	The Mosel Remote Launcher xprmsrv
	Running the xprmsrv command
	Main command line options
	Secure server
	Private key management
	Mode of operation

	Configuration file
	Access control list

	mmnl
	New functionality for the Mosel language
	The problem type mpproblem.nl
	The type nlctr and its operators
	Setting initial values
	Example: using mmnl for QCQP

	Procedures and functions
	clearinitvals
	copysoltoinit
	setinitval
	getsol
	ishidden
	sethidden
	gettype
	setname
	settype

	mmoci
	Prerequisite
	Example
	Data transfer between Mosel and Oracle
	From Oracle to Mosel
	From Mosel to Oracle

	Control parameters
	OCIautocommit
	OCIautondx
	OCIbufsize
	OCIcolsize
	OCIconnection
	OCIdebug
	OCIfirstndx
	OCIndxcol
	OCIrowcnt
	OCIrowxfr
	OCIsuccess
	OCItruncsize
	OCIverbose

	Procedures and functions
	OCIlogon
	OCIlogoff
	OCIexecute
	OCIreadinteger
	OCIreadreal
	OCIreadstring
	OCIcommit
	OCIrollback

	I/O drivers
	Driver oci

	mmodbc
	Prerequisite
	Example
	Data transfer between Mosel and the database
	From the database to Mosel
	From Mosel to the database

	ODBC and MS Excel
	Control parameters
	SQLautocommit
	SQLautondx
	SQLbufsize
	SQLcolsize
	SQLconnection
	SQLdebug
	SQLdm
	SQLextn
	SQLfirstndx
	SQLndxcol
	SQLrowcnt
	SQLrowxfr
	SQLsuccess
	SQLtruncsize
	SQLverbose

	Procedures and functions
	SQLcolumns
	SQLcommit
	SQLconnect
	SQLdisconnect
	SQLexecute
	SQLparam
	SQLgetparam
	SQLindices
	SQLprimarykeys
	SQLreadinteger
	SQLreadreal
	SQLreadstring
	SQLrollback
	SQLtables
	SQLupdate

	I/O drivers
	Driver odbc

	mmquad
	New functionality for the Mosel language
	The type qexp and its operators
	Example: using mmquad for Quadratic Programming

	Procedures and functions
	exportprob
	getsol

	Published library functions
	Complete module example
	Description of the library functions
	getqexpsol
	getqexpstat
	clearqexpstat
	getqexpnextterm

	mmrobust
	New functionality for the Mosel language
	The problem type mpproblem.xprs.robust
	The type uncertain
	The type robustctr and its operators
	The type uncertainctr and its operators
	Example: using mmrobust for solving a robust problem

	Control parameters
	robust_uncertain_overlap
	robust_check_feas_uncertainty_set
	robust_check_feas_original_problem

	Procedures and functions
	cardinality
	getsol
	getact
	ishidden
	scenario
	sethidden
	getnominal
	gettype
	setnominal
	settype

	mmsheet
	I/O drivers
	Driver excel
	Driver xls/xlsx
	Driver csv

	mmssl
	Overview
	Document encryption in Mosel
	The mmssl command

	Control parameters
	https_cacerts
	https_ciphers
	https_cltcrt
	https_cltkey
	https_srvcrt
	https_srvkey
	https_trustsrv
	ssl_cipher
	ssl_digest
	ssl_dir
	ssl_privkey

	Procedures and functions
	RSAfingerprint
	RSAgenkey
	RSAgetkeysize
	RSAisprivate
	RSAloadkey
	RSApubdecrypt
	RSAprivdecrypt
	RSAprivencrypt
	RSApubencrypt
	RSAsavekey
	msgdigest
	msgsign
	msgverify
	sslivsize
	sslkeysize
	sslmdsize
	sslrandom
	sslrandomdata
	x509check
	x509getinfo
	x509newcrt

	I/O drivers
	Driver base64
	Driver hex
	Driver crypt
	Driver hmac

	mmsvg
	SVG graph structure
	Object groups
	SVG styling
	Interaction with the graphical display
	Example

	Control parameters
	MMSVGDISPLAY
	MMSVGTGZ

	Procedures and Functions
	svgaddgroup
	svgaddarrow
	svgaddcircle
	svgaddellipse
	svgaddfile
	svgaddimage
	svgaddline
	svgaddpie
	svgaddpoint
	svgaddpolygon
	svgaddrectangle
	svgaddtext
	svgaddxmltext
	svgclosing
	svgcolor
	svgdelobj
	svgerase
	svggetgraphstyle
	svggetgraphstylesheet
	svggetgraphviewbox
	svggetlastobj
	svggetstyle
	svggetstylesheet
	svgpause
	svgrefresh
	svgsave
	svgsetgraphlabels
	svgsetgraphpointsize
	svgsetgraphscale
	svgsetgraphstyle
	svgsetgraphstylesheet
	svgsetgraphviewbox
	svgsetreffreq
	svgsetstyle
	svgsetstylesheet
	svgshowgraphaxes
	svgwaitclose

	mmsystem
	New functionality for the Mosel language
	The type text
	The type date
	The type time
	The type datetime
	The type parsectx
	The type textarea

	Control parameters
	datefmt
	timefmt
	datetimefmt
	monthnames
	sys_endparse
	sys_fillchar
	sys_pid
	sys_qtype
	sys_regcache
	sys_sepchar
	sys_trim
	sys_txtmem

	Procedures and functions
	addmonths
	compareic
	copytext
	cuttext
	deltext
	endswith
	erase
	expandpath
	fcopy
	fdelete
	findfiles
	findtext
	fmove
	formattext
	getasnumber
	getchar
	getcwd
	getdate
	getday
	getdaynum
	getdays
	getdirsep
	getdsoparam
	getendparse, setendparse
	getenv
	getfsize
	getfstat, getflstat
	getftime
	gethour
	getminute
	getmonth
	getmsec
	getoserror
	getoserrmsg
	getpathsep
	getsucc, setsucc
	getqtype, setqtype
	getsecond
	getsepchar, setsepchar
	getsize
	getstart, setstart
	getsysinfo
	getsysstat
	gettime
	gettmpdir
	gettrim, settrim
	getweekday
	getyear
	inserttext
	isvalid
	jointext
	makedir
	makepath
	newtar
	newzip
	nextfield
	openpipe
	parseextn
	parseint
	parsereal
	parsetext
	pastetext
	pathmatch
	pathsplit
	qsort
	quote
	readlink
	readtextline
	regmatch
	regreplace
	removedir
	removefiles
	setchar
	setdate
	setday
	setdsoparam
	setenv
	setoserror
	sethour
	setminute
	setmonth
	setmsec
	setsecond
	settime
	setyear
	sleep
	splittext
	startswith
	symlink
	system
	tarlist
	textfmt
	tolower
	toupper
	trim
	untar
	unzip
	ziplist

	I/O drivers
	Driver text
	Driver pipe

	Published library functions
	Description of the library functions
	gettime
	settime
	getdate
	setdate
	getdatetime
	setdatetime
	gettxtsize
	gettxtbuf
	txtresize

	mmxml
	Document representation in mmxml
	Data model
	Paths in a document
	Axis specifier
	Node test
	Abbreviated notation
	Predicate

	JSON document as an XML tree

	New functionality for the Mosel language
	The type xmldoc

	Procedures and functions
	addnode
	copynode
	delattr
	delnode
	getattr
	testattr
	getencoding
	getname
	getvalue
	getfirstattr
	getnext
	getfirstchild
	getlastchild
	getnode
	getnodes
	getparent
	gettype
	getstandalone
	getxmlversion
	gethspace
	getvspace
	getindentmode
	getindentskip
	getlinelen
	getmaxnodes
	getsize
	jsonload
	jsonparse
	jsonsave
	load
	save
	setattr
	setencoding
	setmaxnodes
	setname
	setvalue
	sethspace
	setvspace
	setindentmode
	setindentskip
	setlinelen
	setstandalone
	setxmlversion
	xmlattr
	xmlencode
	xmldecode
	xmlparse

	mmxnlp
	New functionality for the Mosel language
	 The userfunc type
	 The tolset type
	 The mpproblem.xprs.xnlp problem type

	 mmxnlp and the other Mosel modules
	 Overloaded functions
	 Module compatibility

	Control parameters
	XNLP_AUTOELIM
	XNLP_LOADASNL
	XNLP_LOADNAMES
	XNLP_NLPSTATUS
	XNLP_SOLVER
	XNLP_VERBOSE
	Procedures and functions
	addmultistart
	chgdeltatype
	F
	generateUFparallel
	printmodelmemory
	printmodelscaling
	setcallback
	setcomplementary
	setdelayedctr
	setdefvar
	setdetrow
	setenforcedctr
	setinitsb
	settol
	settolset
	userfuncDLL
	userfuncExcel
	userfuncExcelMacro
	userfuncinfo
	userfuncMosel
	validate

	Error codes issued by mmxnlp

	mmxprs
	New functionality for the Mosel language
	The problem type mpproblem.xprs
	The type basis
	The type mpsol
	The type logctr

	Control parameters
	XPRS_colorder
	XPRS_enumsols
	XPRS_enummaxsol
	XPRS_enumduplpol
	XPRS_fullversion
	XPRS_loadnames
	XPRS_problem
	XPRS_probname
	XPRS_verbose

	Procedures and functions
	addmipsol
	basisstability
	calcsolinfo
	clearmipdir
	clearmodcut
	command
	copysoltoinit
	crossoverlpsol
	defdelayedrows
	defsecurevecs
	estimatemarginals
	fixglobal
	getbstat
	getdualray
	getiis
	getiissense
	getiistype
	getinfcause
	getinfeas
	getlb
	getloadedlinctrs
	getloadedmpvars
	getname
	getprimalray
	getprobstat
	getrange
	getsensrng
	getsize
	getsol
	getub
	getvars
	hasfeature
	implies
	indicator
	isiisvalid
	isintegral
	loadbasis
	loadlpsol
	loadmipsol
	loadprob
	maximize, minimize
	postsolve
	readbasis
	readdirs
	readsol
	refinemipsol
	rejectintsol
	repairinfeas
	resetbasis
	resetiis
	resetsol
	savebasis
	savemipsol
	savesol
	savestate
	selectsol
	setarchconsistency
	setbstat
	setcallback
	setcbcutoff
	setgndata
	setlb
	setmipdir
	setmodcut
	setsol
	setub
	setucbdata
	stopoptimize
	unloadprob
	uselastbarsol
	writebasis
	writedirs
	writeprob
	writesol
	xor

	Cut Pool Manager
	addcut
	addcuts
	delcuts
	dropcuts
	getcnlist
	getcplist
	loadcuts
	storecut
	storecuts

	python3
	Introduction
	Prerequisites
	Windows Anaconda Setup
	Linux Anaconda Setup
	Python initialization
	Data types

	Xpress Insight configuration
	Control parameters
	pyinitverbose
	pyusepandas

	Procedures and functions
	pycall
	pyexec
	pyget
	pygetdf
	pyinit
	pyinitpandas
	pyrun
	pyset
	pysetdf
	pyunload

	I/O drivers
	 Driver python
	Type mapping to Python
	Type mapping from Python

	Troubleshooting

	R
	Introduction
	Prerequisites
	R initialization
	Memory limit on Windows
	Data types

	Example
	Control parameters
	Rverbose
	Rinteractive
	Rusemosstreams
	Rcleanscript
	Runloadscript
	Rsessionmode

	Procedures and functions
	Reval
	Rfree
	Rgetarr
	Rgetbool
	Rgetint
	Rgetreal
	Rgetstr
	Rinit
	Rprint
	Rset
	Rsetdf
	Rsource
	Rerrcode
	Rerrmsg
	Rclearerr

	I/O drivers
	Driver rws

	Troubleshooting

	zlib
	I/O drivers
	Driver gzip
	Driver deflate
	Driver zip

	Appendix
	Syntax diagrams for the Mosel language
	Main structures and statements
	Expressions
	Initializations data file format

	Remote Invocation Protocol
	Instance control parameters
	mcmd pseudo file
	Profiler interface
	Debugger interface

	Error messages
	General errors
	Parser/compiler errors
	Errors related to modules
	Errors related to packages

	Runtime errors
	Initializations
	General runtime errors
	BIM reader
	Module manager errors

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

