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Preface

‘Getting Started’ is a quick and easy-to-understand introduction to modeling and solving different types
of optimization problems with FICO Xpress Optimization. It shows how Linear, Mixed-Integer, and
Quadratic Programming problems are formulated with the Mosel language and solved by Xpress
Optimizer. We work with these Mosel models by means of the graphical user interface Xpress
Workbench. Two alternatives to using this high-level language are also discussed: a model may be
defined in a programming language environment using the model builder library Xpress BCL or directly
input into the Optimizer in the form of a matrix.

Throughout this book we employ variants of a single problem, namely optimal portfolio selection. To
readers who are interested in other types of optimization problems we recommend the book
‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002), see also

http://examples.xpress.fico.com/example.pl#mosel_app
This book shows how to formulate and solve a large number of application problems with Xpress.

A short introduction such as the present book highlights certain features but necessarily remains
incomplete. The interested reader is directed to various other documents available from the Xpress
online documentation website, such as the user guides and reference manuals for the various pieces of
software of the FICO Xpress Optimization suite (Xpress Solver, Mosel language, Mosel modules, etc.)
and the collection of white papers on modeling topics. A list of the available documentation is given in
the appendix.

Whom this book is intended for

This book is an ideal starting point for software evaluators as it gives an overview of the various Xpress
products and shows how to get up to speed quickly through experimenting with the models discussed
via a high-level language used in a graphical environment.

Starting from a simple linear model, every chapter adds new features to it. First time users are taken in
small steps from the textual description, via the mathematical model to a complete application
(Chapter 9) or the implementation of a solution heuristic that involves some more advanced
optimization tasks (Chapter 8).

The variety of topics covered may also help occasional users to quickly refresh their knowledge of
Mosel, Workbench, BCL and the Optimizer.

How to read this book

For a complete overview and introduction to modeling and solving with the FICO Xpress Optimization
product suite, we recommend reading the entire document. However, readers who are only interested in
certain topics, may well skip certain parts or chapters as shown in the following diagram.

Fair Isaac Corporation Confidential and Proprietary Information 1
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Figure 1: Suggested flow through the book

Using the Mosel language with Xpress Workbench

The approach presented in the first part of this book is recommended for first time users, novices to
Mathematical Programming, and users who wish to develop and deploy new models quickly, supported
by graphical displays for problem and solution analysis.

For example, if you wish to develop a Linear Programming (LP) model and embed it into some existing
application, you should read the first four chapters, followed by Chapter 9 on embedding Mosel models.

To find out how to model and solve Quadratic Programming (QP) problems with Xpress, you should
read at least Chapters 1-3, the beginning of Chapter 4 and then Chapter 7; for Mixed Integer Quadratic
Programming (MIQP) also include Chapter 6 on Mixed Integer Programming (MIP).

To see how you may implement your own solution algorithms and heuristics in the Mosel language, we
suggest reading Chapters 1-3, the beginning of Chapter 4, followed by Chapter 6 on MIP and then
Chapter 8 on Heuristics.

Working in a programming language environment

Users who wish to develop their entire application in a programming language environment have two
options, using the model builder library BCL or inputting their problem directly into Xpress Optimizer.

Users who are looking for modeling support whilst model execution speed is a decisive factor in their
choice of the tool should look at the model builder library BCL. Due to the modeling objects defined by
BCL, the resulting code remains relatively close to the algebraic model and is easy to maintain. BCL
supports modeling of LP, MIP, and QP problems (Chapters 10-12). Model input with BCL may be
combined with direct calls to Xpress Optimizer to define solution algorithms as shown with the
example in Chapter 13.

Fair Isaac Corporation Confidential and Proprietary Information 2



Preface

The direct access to the Optimizer (discussed in the last part) is provided mainly for low-level
integration with applications that possess their own matrix generation routines (Chapters 15-17 for LP,
MIP, and QP problems), or to solve matrices given in standard format (MPS or LP) that were generated
externally (Chapter 14). The possibility to directly access very specific features of the Optimizer is also
appreciated by advanced users, mostly in the domain of research, who implement their own algorithms
involving the solution of LP, MIP, or QP problems.
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CHAPTER 1
Introduction

1.1

Mathematical Programming

Mathematical Programming is a technique of mathematical optimization. Many real-world problems in
such different areas as industrial production, transport, telecommunications, finance, or personnel
planning may be cast into the form of a Mathematical Programming problem: a set of decision
variables, constraints over these variables and an objective function to be maximized or minimized.

Mathematical Programming problems are usually classified according to the types of the decision
variables, constraints, and the objective function.

A well-understood case for which efficient algorithms (Simplex, interior point) are known comprises
Linear Programming (LP) problems. In this type of problem all constraints and the objective function
are linear expressions of the decision variables, and the variables have continuous domains—i.e., they
can take on any, usually non-negative, real values. Luckily, many application problems fit into this
category. Problems with hundreds of thousands, or even millions of variables and constraints are
routinely solved with commercial Mathematical Programming software like Xpress Optimizer.

Researchers and practitioners working on LP quickly found that continuous variables are insufficient to
represent decisions of a discrete nature ('yes’/'no’ or 1,2,3,...). This observation lead to the development
of Mixed Integer Programming (MIP) where constraints and objective function are linear just as in LP
and variables may have either discrete or continuous domains. To solve this type of problems, LP
techniques are coupled with an enumeration (known as Branch-and-Bound) of the feasible values of the
discrete variables. Such enumerative methods may lead to a computational explosion, even for
relatively small problem instances, so that it is not always realistic to solve MIP problems to optimality.
However, in recent years, continuously increasing computer speed and even more importantly,
significant algorithmic improvements (e.g. cutting plane techniques and specialized branching
schemes) have made it possible to tackle ever larger problems, modeling ever more exactly the
underlying real-world situations.

Another class of problems that is relatively well-handled are Quadratic Programming (QP) problems:
these differ from LPs in that they have quadratic terms in the objective function (the constraints remain
linear). The decision variables may be continuous or discrete, in the latter case we speak of Mixed
Integer Quadratic Programming (MIQP) problems. In Chapters 7 and 12 of this book we show examples
of both cases.

More difficult is the case of non-linear constraints or objective functions, Non-linear Programming (NLP)
problems. Frequently heuristic or approximation methods are employed to find good (locally optimal)
solutions. One method for solving problems of this type is Successive Linear Programming (SLP); such
a solver forms part of the FICO Xpress Optimization suite. However, in this book we shall not enlarge on
this topic.

Building a model, solving it and then implementing the ‘answers'’ is not generally a linear process. We
often make mistakes in our modeling which are usually only detected by the optimization process,
where we could get answers that were patently wrong (e.g. unbounded or infeasible) or that do not
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Introduction

accord with our intuition. If this happens we are forced to reflect further about the model and go into an
iterative process of model refinement, re-solution and further analyses of the optimum solution. During
this process it is quite likely that we will add extra constraints, perhaps remove constraints that we
were mislead into adding, correct erroneous data or even be forced to collect new data that we had
previously not considered necessary.

Analysis

Description Modeling Deployment

Figure 1.1: Scheme of an optimization project

This books takes the reader through all these steps: from the textual description we develop a
mathematical model which is then implemented and solved. Various improvements, additions and
reformulations are suggested in the following chapters, including an introduction of the available
means to support the analysis of the results. The deployment of a Mathematical Programming
application typically includes its embedding into other applications to turn it into a part of a company’s
information system.

1.2 Xpress product suite

Arising from different users’ needs and preferences, there are several ways of working with the
modeling and optimization tools that form the FICO Xpress Optimization product suite:

1. High-level language: the Xpress Mosel language allows the user to define his models in a form
that is close to algebraic notation and to solve them in the same environment. Mosel’s
programming facilities also make it possible to implement solution algorithms directly in this
high-level language. Mosel may be used as a standalone program or through the Xpress
Workbench development environment that provides, amongst many other tools, Mosel syntax and
debugging support.

Via the concept of modules the Mosel environment is entirely open to additions; modules of the
Xpress distribution include access to solvers (Xpress Optimizer for LP, MIP, and convex QP,
Xpress Nonlinear, and Xpress Kalis), data handling facilities (e.g. via ODBC), access to system
functions, graphing capabilities, distributed and remote computing functionality via the Mosel
Distributed Framework, and also interfaces to statistics packages such as R or Matlab. In
addition, via the Mosel Native Interface users may define their own modules to add new features
to the Mosel language according to their needs (e.g. to implement problem-specific data
handling, or connections to external solvers or solution algorithms).

2. Deployment as a web app: Mosel models can be deployed via Xpress Insight as multi-user web
apps running locally, on-premises or on a cloud. Insight web apps are configured via a set of XML
files that are packaged into an archive along with the Mosel model and its input data.

3. Libraries for embedding: two different options are available for embedding mathematical models
into host applications. A model developed using the Mosel language may be executed and
accessed from a programming language environment (e.g. C, C++, Java, etc.) through the Mosel

Fair Isaac Corporation Confidential and Proprietary Information 5
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GUI '
(Aavelopment/ Xpress Workbench Xpress Insight
deployment)
Language Mosel language
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Figure 1.2: Xpress product suite

libraries; certain modules also provide direct access to their functions from a programming
language environment.

The second possibility consists of developing a model directly in a programming language with
the help of the model builder library Xpress-BCL. BCL allows the user to formulate his models with
objects (decision variables, constraints, index sets) similar to those of a dedicated modeling
language.

All libraries are available for C, C++, Java, C#, and Visual Basic (VBA).

4. Direct access to solvers: on the lowest, most immediate level, it is possible to work directly with
the Xpress Optimizer or Xpress NonLinear in the form of a library or a standalone program. This
facility may be useful for embedding Xpress Optimizer into applications that possess their own,
dedicated matrix generation routines.

Advanced Xpress users may wish to employ special features of Xpress Optimizer that are not
available through the different interfaces, possibly using a matrix that has previously been
generated by Mosel or BCL.

Of the three above mentioned approaches, a high-level language certainly provides the
easiest-to-understand access to Mathematical Programming. So in the first and largest part of this
book we show how to define and solve problems with the Xpress Mosel language, and also how the
resulting models may be embedded into applications using the Mosel libraries or Xpress Insight. We
work with Mosel models in the graphical user interface Xpress Workbench, exploiting its facilities for
debugging and solution analysis and display.

In the reminder of this book we show how to formulate and solve Mathematical Programming
problems directly in a programming language environment. This may be done with modeling support
from BCL or directly using the Optimizer library. With BCL, models can be implemented in a form that is
relatively close to their algebraic formulation and so are quite easy to understand and to maintain. We
discuss BCL implementations of the same example problems as used with Mosel.

The last part of this book explains how problems may be input directly into Xpress Optimizer, either in
the form of matrices (possibly generated by another tool such as Mosel or BCL) that are read from file,
or by specifying the problem matrix coefficient-wise directly in the application program. The facility of
working directly with the Xpress Optimizer library is destinated at embedders and advanced Xpress
users. It is not recommendable as a starting point for the novice in Mathematical Programming.
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1.2.1 Note on product versions

The Mosel examples in this book have been updated to the FICO Xpress Optimization Release 8.7
(Mosel 5.0); Xpress Workbench screenshots have been taken with Release 8.7 (Workbench version
3.1.0). The Xpress Insight examples have been developed with Xpress Release 8.7 (Insight 4.51). The
BCL examples are using BCL 4.8.11 that is distributed with Xpress Release 8.3. The Xpress Optimizer
examples have equally been updated to the Xpress Release 8.3 (Optimizer 31.01.09). If the examples
are run with other product versions the output obtained may look different. In particular, improvements
to the algorithms or modifications to the default settings in the Optimizer may influence the behavior of
the LP search or the shape of the MIP branching trees. The Xpress Workbench interface may also
undergo slight changes in future releases as new features are added, but this will not affect the actions
described in this book.

Fair Isaac Corporation Confidential and Proprietary Information 7



CHAPTER 2
Building models

This chapter shows in detail how the textual description of a real world problem is converted into a
mathematical model. We introduce an example problem, optimal portfolio selection, that will be used
throughout this book.

Though not requiring any prior experience of Mathematical Programming, when formulating the
mathematical models we assume that the reader is comfortable with the use of symbols such as x ory
to represent unknown quantities, and the use of this sort of variable in simple linear equations and
inequalities, for example:

x+y <6

which says that ‘the quantity represented by x plus the quantity representetd by y must be less than or
equal to six’.

You should also be familiar with the idea of summing over a set of variables. For example, if produce; is
used to represent the quantity produced of product i then the total production of all items in the set
ITEMS can be written as:

> produce;

i€ITEMS

This says 'sum the produced quantities produce; over all products i in the set ITEMS'.

Another common mathematical symbol that is used in the text is the all-quantifier V (read for all’): if
ITEMS consists in the elements 1,4,7,9 then writing

Vi € ITEMS : produce; < 100

is a shorthand for

produce; < 100
produce, <100
produce; < 100
produceqg < 100

Computer based modeling languages, and in particular the language we use, Mosel, closely mimic the
mathematical notation an analyst uses to describe a problem. So provided you are happy using the
above mathematical notation the step to using a modeling language will be straightforward.

2.1 Example problem

An investor wishes to invest a certain amount of money. He is evaluating ten different securities
(‘shares’) for his investment. He estimates the return on investment for a period of one year. The
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Building models

following table gives for each share its country of origin, the risk category (R: high risk, N: low risk) and
the expected return on investment (ROI). The investor specifies certain constraints. To spread the risk
he wishes to invest at most 30% of the capital into any share. He further wishes to invest at least half of
his capital in North-American shares and at most a third in high-risk shares. How should the capital be
divided among the shares to obtain the highest expected return on investment?

Table 2.1: List of shares with countries of origin and estimated return on investment

Number Description Origin Risk ROl
1 treasury Canada N 5
2 hardware USA R 17
3 theater USA R 26
4 telecom USA R 12
5 brewery UK N 8
6 highways France N 9
7 cars Germany N
8 bank Luxemburg N
9 software India R 31

10 electronics ~ Japan R 21

To construct a mathematical model, we first identify the decisions that need to be taken to obtain a
solution: in the present case we wish to know how much of every share to take into the portfolio. We
therefore define decision variables fracs that denote the fraction of the capital invested in share s. That
means, these variables will take fractional values between 0 and 1 (where 1 corresponds to 100% of the
total capital). Indeed, every variable is bounded by the maximum amount the investor wishes to spend
per share: at most 30% of the capital may be invested into every share. The following constraint
establishes these bounds on the variables fracs (read: ‘for all s in SHARES ...).

Vs € SHARES : 0 < fracs < 0.3

In the mathematical formulation, we write SHARES for the set of shares that the investor may wish to
invest in and RET; the expected ROI per share s. NA denotes the subset of the shares that are of
North-American origin and RISK the set of high-risk values.

The investor wishes to spend all his capital, that is, the fractions spent on the different shares must add
up to 100%. This fact is expressed by the following equality constraint:

Z fracs = 1

SESHARES

We now also need to express the two constraints that the investor has specified: At most one third of
the values may be high-risk values—i.e., the sum invested into this category of shares must not exceed
1/3 of the total capital:

Z fracs < 1/3
SERISK

The investor also insists on spending at least 50% on North-American shares:

Z fracs > 0.5
SENA

These two constraints are inequality constraints.

The investor’s objective is to maximize the return on investment of all shares, in other terms, to
maximize the following sum:

Z RET; - fracs
SESHARES

Fair Isaac Corporation Confidential and Proprietary Information 9



Building models

This is the objective function of our mathematical model.

After collecting the different parts, we obtain the following complete mathematical model formulation:

maximize Z RETs - fracs
SESHARES
Z fracs < 1/3
SERISK

Z fracs > 0.5
SeNA

Z fracs =1

SESHARES
Vs € SHARES : 0 < fracg < 0.3

In the next chapter we shall see how this mathemetical model is transformed into a Mosel model that
is then solved with Xpress Optimizer. In Chapter 10 we show how to use BCL for this purpose and
Chapter 15 discusses how to input this model directly into the Optimizer without modeling support.
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CHAPTER 3

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to transform it into a Mosel
model which is solved as an LP using Xpress Workbench. More precisely, this involves the following
steps:

m starting up Xpress Workbench,

m creating and saving the Mosel file,

m using the Mosel language to enter the model|,

m correcting errors and debugging the model,

m solving the model and understanding the displays in Workbench,

m viewing and verifying the solution and understanding the solution in terms of the real world

problem instance.

Chapter 10 shows how to formulate and solve the same example with BCL and in Chapter 15 the
problem is input and solved directly with Xpress Optimizer.

3.1 Starting up Xpress Workbench and creating a new model

We shall develop and execute our Mosel model with the graphical environment Xpress Workbench. If
you have followed the standard installation procedure for Xpress, start the program;

m In Windows, double click the Workbench icon @ on the desktop or select Start > Programs >

FICO > Xpress > Xpress Workbench. Otherwise, you can start up Workbench by typing
xpworkbench at the command prompt.

m On the Mac, you may have created a shortcut during the installation by dragging the Workbench
icon @n to the Dock. Otherwise, type 'Workbench’ into Spotlight, or open Applications > FICO
Xpress and double click the Xpress Workbench icon.

In either operating system, you can double click an installed model file (file with extension .mos) to
start Workbench.
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# FICO® Xpress Workbench = e

FICO® Xpress Workbench FICOcom  Community

HELP ~

Recent projects

Choose from the options below. You will be asked to select a folder location in which the project
files will be created.

Create project

Open existing file or folder Create an Xpress Mosel project

The project will contain a simple Mosel source file template. Choose this option if you want to
Examples develop a new Mosel model which is not intended to run within Xpress Insight.

Introductory examples
'CREATE MOSEL PROJECT

Insight examples

Nonlinear examples Create an Xpress Insight project

The project will contain templates for a Mosel model, custom views and companion file. Choose
this option if you want to develop a new Xpress Insight app.

CREATE INSIGHT PROJECT

Calling R from Mosel
Calling Python from Mosel

Browse all examples

Xpress Documentation

Ask the Xpress community

Figure 3.1: Workbench at startup

If you are starting Workbench without having selected any Mosel model you will see the entry screen
shown in Figure 3.1 where you need to select the option Create an Xpress Mosel project. You will be
prompted for location where to create the project. Browse to the desired location and select the folder
name. After confirming with Upload you will see the welcome page of the Workbench workspace.

"% Welcome - FICO® Xpress Workbench =i

. Project File Edit Find View Goto Run Tools Window Help model mos M O =

OPEN FILES £+ B Welcome x
X readme.htm!

Project

Welcome to FICO® Xpress Workbench

v (23 Folio

D DzEIES This project contains a simple Mosel source file. Follow the steps below to start debugging the model

source. mos

<> readme.html

Teeonaeallieeneon. wbrusssiol| 1t

Debug

end-model

Figure 3.2: Workbench welcome page

Note: If you have started Workbench by selecting a model file this file is opened in the central editor
window and the directory listing on its left lists all files in the same location.

The Xpress Workbench workspace window is subdivided into several panes:

At the top, we have the menu and tool bars. The central are is the editor window where the working file
will be displayed, and at its bottom opens the logging window during model execution. The window on
the left is the project navigation and command history, and the right window contains the debugger and
Xpress Insight panes. You may configure the windows displayed via the Window menu.

To create a new model file select File >> New >> Mosel file or alternatively, double click on the template
file model .mos in the directory listing on the left to open it in the central editor window. Select File >
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Save As... and enter foliolp.mos as the name of the new file. Click Save to confirm your choice. The

central window of Workbench is now ready for you to enter the model into the displayed model input

template.

B Welcome % foliolp.mos x

model ModelName
options noimplicit
uses "mmxprs"™

declarations
]

Objective:linctr
end-declarations

writeln("Begin running model™)
.'l...

writeln("End running model™)
end-model

Figure 3.3: Mosel model template

3.2 LP model

The mathematical model in the previous chapter may be transformed into the following Mosel model

entered into Workbench:

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress Optimizer

declarations

SHARES = 1..10

RISK = {2,3,4,9,10}

NA = {1,2,3,4}

RET: array (SHARES) of real

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

frac: array (SHARES) of mpvar ! Fraction of capital used per share

end-declarations
RET:: [5,17,26,12,8,9,7,6,31,21]

! Objective: total return
Return:= sum(s in SHARES) RET (s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= 1/3

! Minimum amount of North-American values
sum(s in NA) frac(s) >= 0.5

! Spend all the capital
sum(s in SHARES) frac(s) =1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= 0.3

! Solve the problem
maximize (Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100,

"%")
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end-model

Let us now try to understand what we have just written.

3.2.1 General structure

Every Mosel program starts with the keyword mode1l, followed by a model name chosen by the user.
The Mosel program is terminated with the keyword end-model.

All objects must be declared in a declarations section, unless they are defined unambiguously
through an assignment (however, if you have kept the option 'noimplicit’ from the Workbench model
template then all entities must be declared). For example,

Return:= sum(s in SHARES) RET (s) *frac(s)
defines Return as a linear constraint and assigns to it the expression
sum(s in SHARES) RET (s)*frac(s)

There may be several such declarations sections at different places in a model.

In the present case, we define three sets, and two arrays:

B SHARES is a so-called range set—i.e., a set of consecutive integers (here: from 1to 10).
B RISK and NA are simply sets of integers.

B RET is an array of real values indexed by the set SHARES, its values are assigned after the
declarations.

®m frac is an array of decision variables of type mpvar, also indexed by the set SHARES. These are
the decision variables in our model.

The model then defines the objective function, two linear inequality constraints and one equality
constraint and sets upper bounds on the variables.

As in the mathematical model, we use a forall loop to enumerate all the indices in the set SHARES.

3.2.2 Solving

With the procedure maximize, we call Xpress Optimizer to maximize the linear expression Return. As
Mosel is itself not a solver, we specify that Xpress Optimizer is to be used with the statement

uses "mmxprs"

at the begin of the model (the module mmxprs is documented in the ‘Mosel Language Reference
Manual’).

Instead of defining the objective function Return separately, we could just as well have written

maximize (sum(s in SHARES) RET (s)*frac(s))

3.2.3 Output printing

The last two lines print out the value of the optimal solution and the solution values for all variables.

To print an additional empty line, simply type writeln (without arguments). To write several items on
a single line use write instead of writeln for printing the output.
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3.2.4 Formating

Indentation, spaces, and empty lines in our model have been added to increase readability. They are
skipped by Mosel.

Line breaks: It is possible to place several statements on a single line, separating them by semicolons,
like

RISK = {2,3,4,9,10}; NA = {1,2,3,4}

But since there are no special ‘line end’ or continuation characters, every line of a statement that
continues over several lines must end with an operator (+, >=, etc.) or characters like *, ' that make it
obvious that the statement is not terminated.

As shown in the example, single line comments in Mosel are preceded by !. Comments over multiple
lines start with (! and terminate with !).

3.3 Correcting errors and debugging a model

Having entered the model printed in the previous section, we now wish to execute it, that is, solve the
optimization problem and retrieve the results. Choose Run > Run foliolp.mos or alternatively, click on
the run button: @ making sure that the desired model filename is selected in the dropdown box next
to it.

At a first attempt to run a model, you are likely to see the message ‘Failed to parse Mosel source file'.
The bottom window displays the error messages generated by Mosel, for instance as shown in the
following figure (Figure 3.4), where clicking on the error message takes you to the indicated location in
the Mosel file.

model "Portfolio optimization with LP"

declarations

SHARES = 1..10 ! Set of shares

RISK = {2,3,4,9,10} ! Set of high-risk values among shares
NA = {1,2,3,4} ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

| RET:: [5,17,26,12,8,9,7,6,31,21

I Objective: total return
Return := sum(s in SHARES) RET(s)*frac(s)

I Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= 1/3

foliolperrmos - ¢ x

Run Command: | foliolperrmos ¥  Runner:Mosel  CWD ENV

Compiling foliolperr.mos to out\foliolperr.bim with -g
Mosel: E-100 at (26JS2)GFIFoliolpennimesy: Syntax error
Failed to parse Mosel source file

Figure 3.4: Logging output with error messages

When typing in the model from the previous section (there printed in its correct form), we have
deliberately introduced some common mistakes that we shall now correct—see the example file
foliolperr .mos for the erroneous model.

The first message:

Mosel: E-100 at (26,32) of “foliolperr.mos': Syntax error.

takes us to the line

RET:: [5,17,26,12,8,9,7,6,31,21
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We need to add the closing bracket to terminate the definition of RET (if the definition continues on the
next line, we need to add a comma at the end of this line to indicate continuation).

The next messages that appear after re-running the model:

Mosel: E-100 at (29,9) of “foliolperr.mos': Syntax error before “='.
Mosel: E-123 at (29,9) of “foliolperr.mos': ‘Return' is not defined.
Mosel: E-124 at (29,42) of “foliolperr.mos': An expression cannot be used as a statement.

take us to the line

Return = sum(s in SHARES) RET (s) *frac(s)

Finding the error here requires taking a very close look: instead of : = we have used =. Since Return
should have been defined by assigning it the sum on the right side, this statement now does not have
any meaning.

After correcting this error, we try to run the model again, but we are still left with one error message:

Mosel: E-123 at (44,17) of “foliolperr.mos': "maximize' is not defined.

located in the line

maximize (Return)

The procedure maximize is defined in the module mmxprs but we have forgotten to add the line

uses "mmxprs"

at the beginning of the Mosel model. After adding this line, the model compiles correctly.

If you do not remember the correct name of a Mosel keyword while typing in a model, then you may use
the code completion feature of the Workbench editor: while you are typing the editor brings up a list of
suggestions with Mosel keywords and subroutines.

3.3.1 Debugging

If a model is correct from Mosel'’s point of view, this does of course not guarantee that it really does
what we would like it to do. For instance, we may have forgotten to initialize data, or variables and
constraints are not created correctly (they may be part of complex expressions, including logical tests
etc.). To check what has indeed been generated by Mosel, we may pause the execution of the model
immediately before it terminates by running the model in debug mode: select button ;‘eto run the

model. The model will pause on the last statement to allow you to inspect the model entities in the
Debugger window on the right side of the workspace window. Expand the entries under the heading
Variables to view the definitions of individual model objects.
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# foliolp.mos - FICO® Xpress Workbench —lal x

. Project File Edit Find View Goto Run Tools Window Help foliolp.mos M ENCHEE Y = ol
B opEN FILES - B foliolp.mos x » 3+ 2 O &
o @
o SRS Return:= sum(s in SHARES) RET(s)*frac(s) ¥ Watch Expressions 8
Expression Value Type 2
v 03 Folio I Limit the percentage of high-risk values o
» B0 out sum(s in RISK) frac(s) <= 1/3
& v Call Stack =
1> foliolp.mos ) ini - )
! Minimum amount of North-American values - - n ca I|E
sum(s in NA) frac(s) >= 0.5 2
(Model ended) folilpmos 39 2
I Spend all the capital v Variables =
sum(s in SHARES) frac(s) = 1 2
Variable Value Type &
s
! Upper bounds on the investment per share v @ Giobals Globals =
forall(s in SHARES) frac(s) <= 0.3 5O (10 entries) array of m
I Solve the problem voNA (4 entries) set ofinte
maximize(Return) @ entry 1 integer
. L @ ent 2 integer
I Solution printing 4 <
if getprobstat=XPRS_OPT then Senty 3 integer
writeln("Total return: ", getobjval) ety 4 .
foﬁall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%") Inspectin table
end-if
> @ Retum  14.088667 linctr
end-model v @ RET (10 entries) array of real
foliolp.mos - Ru 3% g8 x > 5 real
B stop Command: [foliolpmos Runn.. CWD  ENV %2 17 real
>3 2 real
Running model 508 12 real
Debug session 99bc4d2a76414e9ced156b3934679152 started
Total return: 14.06666667 » @5 8 real
1: 3e%
2: ox% » 96 9 real
3: 20% »e7 7 real
a:
5: 6.666666667% CO8 @ feal
& > 99 31 real
7: 0%
s: > 10 21 real
9: 13.33333333%
Sl v Breakpoints
The model is suspended after execution Output  Immediate
m

Figure 3.5: Workbench debugger

If you wish to display or trace the values of model entities at other locations you can set breakpoints by
clicking onto the grey area in front of the line numbers and re-run the model in debug mode.

B foliolp.mos x P 3 4 ¢ O {5
3
model "Portfolio optimization with LP" ¥ Watch Expressions 13
uses "mmxprs” Expression Value Type g
=
declarations
SHARES = 1..10 I Set of shares ¥ Call Stack z
= 1 ] igh-ri
RISK = {2,3,4,9,10} ! set of high rlslk ualuelvs among si?ures Function File In Col 2
NA = {1,2,3,4} ! Set of shares issued in N.-America 2
RET: array(SHARES) of real ! Estimated return in investment [model] foliolp.mos 13 2
¥ Variables =
frac: array(SHARES) of mpvar ! Fraction of capital used per share g
end-declarations Variable Value Type %
» @ Globals Globals -
[+) RET:: [5,17,26,12,8,9,7,6,31,21] v Breakpoints
I Objective: total return foliolp.mos:13
Return:= sum(s in SHARES) RET(s)*frac(s) RET:: [5,17,26,12,5,9,7,6,31,21]

I Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= 1/3

I Minimum amount of North-American values
sum(s in NA) frac(s) >= 0.5

I Spend all the capital

sum(s in SHARES) frac(s) =1
Output  Immediate

Figure 3.6: Debug run with breakpoint

The debugger controls at the top of the Debugger window (step over: /%, stepinto: 4 _, stepout: _*)
allow you to step through the model line-by-line or resume/pause its execution ( | ).

3.4 Solving and viewing the solution

As mentioned in the previous section, to execute our model we have to select Run > Run foliolp.mos or
alternatively, click on the run button: @ After the successful execution of our model the screen display
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changes to the following (Figure 3.7).

B foliolp.mos X

model "Portfolio optimization with LP"
uses "mmxprs”

declarations

SHARES = 1..10 ! Set of shares

RISK = {2,3,4,9,10} ! Set of high-risk values among shares
NA = {1,2,3,4} ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

RET:: [5,17,26,12,8,9,7,6,31,21]

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

I 1imit +ho norrontnno nf hinh_ricbh unlioc

foliolp.mos - Sto x L

Run Command: | foliolp.mos ' Run... CWD ENV

Compiling foliolp.mos to out\foliolp.bim with -g
Running model

Total return: 14.06666667
1: 3e%

%

20%

a%

6.666666667%

3e%

ax

a%

13.33333333%

Q: 0%

2
3
4
5
6
7
8
9
L

Process exited with code: @

Figure 3.7: Display after model execution

The bottom window contains the log of the Mosel execution and if running in debug mode the left
window displays all model entities. Choose the icon =' window to toggle full-screen display of the
output printed by our program:

Total return: 14.0667
30%

0%

20%

0%
6.66667%
30%

0%

0%
13.3333%
0: 0%

P O oo Joud WhN R

This means, that the maximum return of 14.0667 is obtained with a portfolio consisting of shares 1, 3, 5,
6, and 9. 30% of the total amount are spent in shares 1 and 6 each, 20% in 3,13.3333% in 9 and 6.6667%
in 5. It is easily verified that all constraints are indeed satisfied: we have 50% of North-American shares
(1 and 3) and 33.33% of high-risk shares (3 and 9).

Now add the line

setparam ("XPRS_VERBOSE", true)

into you model before the call to maximize and re-run it. You will now see more detailed solution
information than what is printed by our model (Figure 3.8). The upper part of the log contains some
statistics about the matrix, in its original and in presolved form (presolving a problem means applying
some numerical methods to simplify or transform it). The center part tells us which LP algorithm has
been used (Simplex), and the number of iterations and total time needed by the algorithm. Since this

Fair Isaac Corporation Confidential and Proprietary Information 19



Inputting and solving an LP problem Getting started with Mosel

problem is very small, it is solved almost instantaneously. After the solver log you see as before the
output produced by your model.

B foliolp.mos x
‘setparam("XDRS)/ERBOSE“J true) ! Enable solver logging output
maximize(Return) I Solve the problem
foliolp.mos - Sto x g x
Run Command: | foliolp.mos ' Run... CWD ENV

Compiling foliolp.mos to out\foliolp.bim with -g
Running model

Reading Problem \xprs_2d94d38
Problem Statistics

3 ( @ spare) rous
10 ( @ spare) structural columns
19 ( @ spare) non-zero elements
Global Statistics
@ entities 0 sets @ set members

FICO Xpress v8.7.9, Hyper, solve started 16:53:39, Oct 15, 2019
Maximizing LP \xprs_2d94d38
Original problem has

3 rows 1@ cols 19 elements
Presolved problem has:
3 rows 10 cols 19 elements

Presolve finished in @ seconds
Heap usage: 87KB (peak 183KB, 486KB system)

Coefficient range original solved
Coefficients [min,max] : [ 1.00e+0@, 1.00e+00] / [ 1.00e+0@, 1.20e+00]
RHS and bounds [min,max] : [ 3.00e-@1, 1.00e+0@] / [ 3.0@e-21, 1.00e+00]
Objective [min,max] : [ 5.00e+8@, 3.10e+81] / [ 5.00e+00, 3.10e+01]

Its 0bj Value S Ninf Nneg Sum Dual Inf Time
] 42.600000 D 2 2} 200000 ]
5 14.066667 D 2] (7] -200000 e

Uncrunching matrix
Optimal solution found
Dual solved problem
5 simplex iterations in @s

Final objective : 1.4096666666666667e+01
Max primal violation (abs/rel) : @.0 / @.0
Max dual violation (abs/rel) : .8/ @.0
Max complementarity viol. (abs/rel) : 9.2 / Q.0

All values within tolerances
Total return: 14.06666667

Figure 3.8: Solver log display

3.4.1 String indices

To make the output of the model more easily understandable, it may be a good idea to replace the
numerical indices by string indices.

In our model, we replace the three declaration lines

SHARES = 1..10
RISK = {2,3,4,9,10}
NA = {1,2,3,4}

by the following lines:

SHARES = {"treasury", "hardware", "theater", "telecom", "brewery",
"highways", "cars", "bank", "software", "electronics"}

RISK = {"hardware", "theater", "telecom", "software", "electronics"}

NA = {"treasury", "hardware", "theater", "telecom"}

And in the initialization of the array RET we now need to use the indices:

RET:: (["treasury", "hardware", "theater", "telecom", "brewery",
"highways", "cars", "bank", "software", "electronics"]) [
5,17,26,12,8,9,7,6,31,21]

No other changes in the model are required. We save the modified model as foliolps.mos.
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The solution output then prints as follows which certainly makes the interpretation of the result easier

and more immediate:

Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%

bank: 0%

software: 13.3333%
electronics: 0%

Of course, the entity display also works with these string names:

B foliolps.mos  x

model “Portfolio optimization with LP"
uses "mmxprs”

declarations
I Set of shares
SHARES = {"treasury", "hardware", "theater", "telecom", "brewery",
"highways", "cars", “bank", "software", "electronics"}
I Set of high-risk values among shares
RISK = {"hardware", "theater", "telecom”, "software", "electronics"}
I Set of shares issued in N.-America
NA = {"treasury”, "hardware", “theater", “telecom"}

RET: array(SHARES) of real ! Estimated return in investment

frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

:(["treasury”, "hardware”, “theater”, "telecom”, “brewery", “highways”,
“cars™, "bank", “"software”, "electronics"])[5,17,26,12,8,9,7,6,31,21]

I Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

foliolps.mos -R =/
B s Command: [ foliolps.mos Runn..  CWD ENV

Compiling foliolps.mos to out\foliolps.bim with -G
Running model

Debug session 271465c9d33e7b359e2499b45639398 started
Total return: 14.86666667

bank: €%

brewery: 6.666666667%

cars: @%

electronics: 0%

harduare: 0%

highways: 30%

software: 13.33333333%

telecom: @%

theater: 20%

treasury: 30%

The model is suspended after execution

Figure 3.9: Entity display

> 2 X £|O

¥ Watch Expressions

Expression Value
v Call Stack
Function File
(Model ended) foliolps.mos
¥ Variables
Variable Value
v @ Globals
v & frac (10 entries)
» @ "bank” 0
» @ "brewery’  0.066667
> & cars’ 0
» @ “electronics” 0
» @ "hardware” 0
> & "highways" 0.3
» @ “software” 0.133333
» @ telecom” 0
> & theater” 02
» @ “treasury” 03
Inspect in table
> & NA (4 entries)
» & Return 14.066667
» @ RET (10 entries)
» & RISK (5 entries)
» @ SHARES (10 entries)

¥ Breakpoints

No breakpoints

Output  Immediate

Type

Ln Col
57 2

Type
Globals
array of m
mpvar
mpvar
mpvar
mpvar
mpvar
mpvar
mpvar
mpvar
mpvar

mpvar

set of string
linctr

array of real
set of string

set of string

Fair Isaac Corporation Confidential and Proprietary Information

21



CHAPTER 4

Working with data

In this chapter we introduce some basic data handling facilities of Mosel:

m the initializations block for reading and writing data in Mosel-specific format,
m data output to a file in free format,
m parameterization of files names and numerical constants, and

m some output formatting.

4.1 Data input from file

With Mosel, there are several different ways of reading and writing data from and to external files. For
simplicity’s sake we shall limit the discussion here to files in text format. Mosel also provides specific
modules to exchange data with spreadsheets and databases, for instance using an ODBC connection,
but this is beyond the scope of this book and the interested reader is refered to the documentation of
these modules (see the Mosel Language Reference Manual and the whitepaper Using ODBC and other
database interfaces with Mosel).

The datafile folio.dat that we are going to work with has the following contents:

! Data file for “folio*.mos'

RET: [("treasury") 5 ("hardware") 17 ("theater") 26 ("telecom") 12
("brewery") 8 ("highways") 9 ("cars") 7 ("bank") 6
("software") 31 ("electronics") 21 ]

RISK: ["hardware" "theater" "telecom" "software" "electronics"]

NA: ["treasury" "hardware" "theater" "telecom"]

Just as in model files, single-line comments preceded by ! may be used in data files. Every data entry
is labeled with the name given to the corresponding entity in the model. Data items may be separated
by blanks, tabulations, line breaks, or commas.

We modify the Mosel model from Chapter 3 as follows:

declarations

SHARES: set of string
RISK: set of string

NA: set of string

RET: array (SHARES) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

initializations from "folio.dat"
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RISK RET NA
end-initializations

declarations
frac: array (SHARES) of mpvar ! Fraction of capital used per share
end-declarations

As opposed to the previous model foliolp.mos, all index sets and the data array are now declared
without fixing their contents: their size is not known at their creation and they are initialized later with
data from the file folio.dat. Optionally, after the initialization from file, we may finalize the sets to
make them static. This will make more efficient the handling of any arrays indexed by these sets, and
more importantly, this allows Mosel to check for ‘out of range’ errors that cannot be detected if the sets
are allowed to grow dynamically. (Note that sets and arrays in Mosel can also be explicitly marker as
dynamic in order to prevent them from being finalized/fixed.)

finalize (SHARES); finalize (RISK); finalize (NA)

Notice that we do not initialize explicitly the set SHARES, it is filled automatically when the array RET is
read. Notice further that we only declare the decision variables after initializing the data, and hence
when their index set is known.

4.2 Formated data output to file

Just like initializations frominthe previous section, initializations to also existsin
Mosel to write out data in a standardized format. However, if we wish to redirect to a file exactly the
text that is currently displayed in the logging window of Workbench, then we simply need to surround
the printing of this text by calls to the procedures fopen and fclose:

fopen("result.dat", F_OUTPUT)

writeln("Total return: ", getobjval)

forall (s in SHARES) writeln(s, ": ", getsol(frac(s))=*100, "%")
fclose (F_OUTPUT)

The first argument of fopen is the name of the output file, the second indicates in which mode to open
it: with the settings shown above, at every re-execution of the model the contents of the result file will
be replaced. To append the new output to the existing file contents use:

fopen ("result.dat", F_OUTPUT+F_APPEND)

We may now also wish to format the output more nicely, for instance:

forall (s in SHARES)
writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))=*100,5,2), "$")

The function strfmt indicates the minimum space reserved for printing a string or a number. A
negative value for its second argument means left-justified printing. The optional third argument
denotes the number of digits after the decimal point. With this formated way of printing the result file
has the following contents:

Total return: 14.0667

treasury : 30.00%
hardware : 0.00%
theater : 20.00%
telecom : 0.00%
brewery : 6.67%
highways : 30.00%
cars : 0.00%
bank : 0.00%
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software : 13.33%
electronics : 0.00%

4.3 Parameters

It is commonly considered a good modeling style to hard-code as little information as possible directly
in a model. Instead, parameters and data should be specified and read from external sources during
the execution of a model to make it more versatile and easily re-usable. With Mosel it is therefore
possible to define, for example, file names and numerical constants in the form of parameters the
values of which may be modified at an execution without changing the model itself.

In our example, we may define the input and output file as parameters and also the constant terms
(‘right hand side’ values) of the constraints and bounds. These parameter definitions must be added to
the beginning of the model file, immediately after the uses statement:

parameters

DATAFILE= "folio.dat"
OUTFILE= "result.dat"
MAXRISK = 1/3

MAXVAL = 0.3

MINAM = 0.5
end-parameters

File with problem data

Output file

Max. investment into high-risk values
Max. investment per share

Min. investment into N.-American values

and in the rest of the model the actual file names and data values are replaced by the parameters.

To modify the settings of these parameters when executing a model with Workbench, enter the new
values for the parameters after the filename in the Command input box of the output pane. For instance
to change the value of MINAM:

model "Portfolio optimization with LP"
uses "mmxprs”

parameters

DATAFILE= "folio.dat" ! File with problem data

OUTFILE= "result.dat” I output file

MAXRISK = 1/3 I Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share

| MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations

SHARES: set of string ! Set of shares

RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from DATAFILE
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar
Return: linctr

Fraction of capital used per share
Objective function

foliodata.mos - ¢ x

Run Command: [foliodatamos MINAM=02'| ¥ Runner:Mosel  CWD  ENV

FICO Xpress Mosel 64-bit v5.0.2

(€) Copyright Fair Isaac Corporation 2001-2019. All rights reserved
Compiling foliodata.mos to out\foliodata.bim with -g

Running model

Figure 4.1: Changing model parameter settings

Notice that parameters really become important when the model is not just run in the development
environment Workbench but rather used for testing and experimentation (batch mode, scripts using the
command line interface) and for final deployment (see Chapter 8). For example, we may wish to write a
batch file that runs our model foliodata.mos repeatedly with different parameter settings, and
writes out the results each time to a different file. To do so, we simply need to add the following lines to
a batch file (we then use the standalone version of Mosel to execute the model, which is invoked with
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the command mosel):

mosel exec foliodata MAXRISK=0.l1l OUTFILE='resultl.dat'
mosel exec foliodata MAXRISK=0.2 OUTFILE='result2.dat'
mosel exec foliodata MAXRISK=0.3 OUTFILE='result3.dat'
mosel exec foliodata MAXRISK=0.4 OUTFILE='result4.dat'

Another advantage of the use of parameters is that if models are distributed as BIM files (portable,
compiled Blnary Model files), then they remain parameterizable, without having to disclose the model
itself and hence protecting your intellectual property.

4.4 Complete example

The complete model file foliodata.mos with all the features discussed in this chapter looks as
follows:

model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress Optimizer

parameters

DATAFILE= "folio.dat"
OUTFILE= "result.dat"
MAXRISK = 1/3

MAXVAL = 0.3

MINAM = 0.5
end-parameters

File with problem data

Output file

Max. investment into high-risk values
Max. investment per share

Min. investment into N.-American values

declarations

SHARES: set of string
RISK: set of string

NA: set of string

RET: array (SHARES) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

initializations from DATAFILE
RISK RET NA
end-initializations

declarations
frac: array (SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET (s) *frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) =1

! Upper bounds on the investment per share
forall (s in SHARES) frac(s) <= MAXVAL

! Solve the problem
maximize (Return)

! Solution printing to a file

fopen (OUTFILE, F_OUTPUT)
writeln("Total return: ", getobjval)
forall (s in SHARES)
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writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))=*100,2,3), "s$")
fclose (F_OUTPUT)

end-model
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CHAPTER 5
Drawing user graphs

In this chapter we show how to draw a user-defined SVG graph. The graph we wish to display is
generated as a result of repeated executions of a model with different parameter settings. So we shall
first see an example of writing a simple algorithm in the Mosel language involving

m re-definition of constraints,

repeated re-optimization,

saving solution information,

m definition of a user graph: drawing points, lines, and texts, and

simple programming tasks (loops and selections).

5.1 Extended problem description

In addition to the data considered so far (see table in Chapter 2), the investor now also has at hand the
estimations of the deviations from the expected return per share (Table 5.1). With this additional
information, he decides to run the LP model with different limits on the portion of high-risk shares and
to represent the results as a graph, plotting the resulting total return against the deviation as a measure
of risk.

Table 5.1: Estimated deviations

Number Description Deviation

1 treasury 0.1
2 hardware 19
3 theater 28
4 telecom 22
5 brewery 4
6 highways 3.5
7 cars 5
8 bank 0.5
9 software 25
10 electronics 16

5.2 Looping over optimization

We are going to modify the model foliodata.mos from the previous chapter in such a way that the
problem is re-optimized repeatedly with different limits on the percentage of high-risk values.
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In detail, the model will be transformed to implement the following algorithm:

1. Definition of the part of the model that remains unchanged by the parameter changes.

2. For every parameter value:

m Re-define the constraint limiting the percentage of high-risk values.
m Solve the resulting problem.
m If the problem is feasible: store the solution values.

3. Draw the result graph.

To store the solution value and the total estimated deviation of the result after each optimization run,
we declare the following two arrays:

declarations
SOLRET: array(range) of real ! Solution values (total return)
SOLDEV: array (range) of real ! Solution values (average deviation)

end-declarations

The following code fragment introduces a loop around the definition of the constraint limiting the
portion of high-risk shares and the solution procedure. To be able to override its previous definition at
every iteration, we now give this constraint a name, Risk. If the constraint did not have a name, then
each time the loop was executed, a new constraint would be added, and the existing constraint would
not be replaced.

ct:=0

forall(r in 0..20) do
! Limit the percentage of high-risk values
Risk:= sum(s in RISK) frac(s) <= r/20

maximize (Return) ! Solve the problem
if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1

SOLRET (ct) :
SOLDEV (ct) :
else
writeln("No solution for high-risk values <= ", 100xr/20, "%")
end-if
end-do

getobjval
getsol(sum(s in SHARES) DEV (s)*frac(s))

Above we have used the second form of the forall loop, namely forall/do. This form must be used when
several statements are included in the loop. The loop is terminated by end-do.

Another new feature in this code extract is the if/then/else/end-if statement. We only want to save the
values for a problem instance if the optimal solution has been found—the solution status is obtained
with function getprobstat and tested whether it is ‘solved to optimality’, represented by the constant
XPRS_OPT.

The selection statement has two other forms, if/then/end-if and if/then/elif/then/else/end-if where
elif/then may be repeated several times.

For further examples and a complete description of all loops and selection statements available in
Mosel the reader is refered to the ‘Mosel User Guide'.

5.3 Drawing a user graph

We now have gathered all the data required to draw the graph. Graphing functions are provided by the
module mmsvg (documented in the ‘Mosel Language Reference Manual’), so it needs to be loaded at
the beginning of the model by adding the following line:
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uses "mmsvg"

Then the following lines draw the graph (note the use of the sum operator to create a list of points):

svgaddgroup ("GrS", "Solution values", SVG_GREY)
forall(r in 1..ct) svgaddpoint ("GrS", SOLRET (r), SOLDEV (r))
svgaddline ("GrS", sum(r in 1..ct) [SOLRET(r), SOLDEV(r)])

The user graph will be displayed in the editor window of the Workbench workspace. Select the tab SVG
drawing to move it to the foreground. With the above we obtain the following output (due to the
interplay of the various constraints the resulting graph is not a straight line as one might have expected

at first thought):
B folioloop_graph/ x = Model graph %
] W Solution values
2
200
180
c
2 160
g
=
S 1w
T
]
2 1
o]
73
100
8
|

120 140 160 180 0 20 240

Expected return

folioloop_graph x

Run Command: | folioloop_graph mos * R cwp ENV
FICO Xpress Mosel 64-bit v5.0.2
(c) Copyright Fair Isaac Corporation 2001-2019. All rights reserved
Compiling folioloop_graph.mos to out\folioloop_graph.bim with -g
Running model
No solution for high-risk values <= @%
No solution for high-risk values <= 5%
No solution for high-risk values <= 1@%
No solution for high-risk values <= 15%

Figure 5.1: Plot of the result graph

In addition to this graph, we may also display labeled points representing the input data (‘GrL for low
risk shares and ‘GrH’ for high risk shares):

svgaddgroup ("GrL", "Low risk", SVG_GREEN)
svgaddgroup ("GrH", "High risk", SVG_RED)

forall(s in SHARES - RISK) do

svgaddpoint ("GrL", RET(s), DEV(s))

svgaddtext ("GrL", RET(s)+1l, 1.3%(DEV(s)-1), s)
end-do

forall (s in RISK) do
svgaddpoint ("GrH", RET(s), DEV(s))
svgaddtext ("GrH", RET(s)-2.5, DEV(s)-1, s)
end-do

Notice the set notation: SHARES - RISK means ‘all elements of SHARES that are not contained in
RISK.

The complete output now is:
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Figure 5.2: Plot of result graph and data

5.4 Complete example

The complete model file folioloop_graph.mos with all the features discussed in this chapter looks
as follows. Notice that the two modules mmxprs and mmive may be loaded with a single uses
statement. The deviation data may either be added to the original data file or, as shown here, read from
a second file.

model "Portfolio optimization with LP"
uses "mmxprs", "mmsvg" ! Use Xpress Optimizer with SVG graphing

parameters

DATAFILE= "folio.dat"
DEVDATA= "foliodev.dat"
MAXVAL = 0.3

MINAM = 0.5
end-parameters

File with problem data

File with deviation data

Max. investment per share

Min. investment into N.-American values

declarations

SHARES: set of string

RISK: set of string

NA: set of string

RET: array (SHARES) of real
DEV: array (SHARES) of real
SOLRET: array(range) of real
SOLDEV: array(range) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment
Standard deviation

Solution values (total return)
Solution values (average deviation)

initializations from DATAFILE
RISK RET NA
end-initializations

initializations from DEVDATA
DEV
end-initializations

declarations
frac: array (SHARES) of mpvar ! Fraction of capital used per share
Return, Risk: linctr ! Constraint declaration (optional)

end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET (s)*frac(s)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) =1
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! Upper bounds on the investment per share
forall (s in SHARES) frac(s) <= MAXVAL

! Solve the problem for different limits on high-risk shares
ct:=0
forall(r in 0..20) do

! Limit the percentage of high-risk values

Risk:= sum(s in RISK) frac(s) <= r/20

maximize (Return) ! Solve the problem
if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1

SOLRET (ct) :
SOLDEV (ct) :
else
writeln("No solution for high-risk values <= ", 100xr/20, "%")
end-if

end-do

getobjval
getsol(sum(s in SHARES) DEV (s)*frac(s))

! Drawing a graph to represent results ('GrS') and data ('GrL' & 'GrH')

svgaddgroup ("GrS", "Solution values", SVG_GREY)
svgaddgroup ("GrL", "Low risk", SVG_GREEN)
svgaddgroup ("GrH", "High risk", SVG_RED)

forall(r in 1..ct) svgaddpoint ("GrS", SOLRET (r), SOLDEV(r))
svgaddline ("GrS", sum(r in 1..ct) [SOLRET(r), SOLDEV(r)])

forall (s in SHARES - RISK) do

svgaddpoint ("GrL", RET(s), DEV(s))

svgaddtext ("GrL", RET(s)+1l, 1.3%(DEV(s)-1), s)
end-do

forall(s in RISK) do
svgaddpoint ("GrH", RET(s), DEV(s))
svgaddtext ("GrH", RET(s)-2.5, DEV(s)-1, s)
end-do

! Scale the size of the displayed graph
svgsetgraphscale (10)
svgsetgraphpointsize (2)

! Optionally save graphic to file
svgsave ("foliograph.svg")

! Display the graph and wait for window to be closed by the user
svgrefresh
svgwaitclose

end-model

The problem is not feasible for small limit values on the constraint Risk. Besides the graphs we
therefore obtain the following text output:

No solution for high-risk values <= 0%
No solution for high-risk values <= 5%
No solution for high-risk values <= 10%
No solution for high-risk values <= 15%
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CHAPTER 6
Mixed Integer Programming

This chapter extends the model developed in Chapter 3 to a Mixed Integer Programming (MIP)
problem. It describes how to

m define different types of discrete variables,
m understand and exploit the MIP optimization displays.

Chapter 11 shows how to formulate and solve the same example with BCL and in Chapter 16 the
problem is input and solved directly with Xpress Optimizer.

6.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities to
formulate this constraint:

1. Limiting the number of different shares taken into the portfolio.

2. If a share is bought, at least a certain minimum amount MINVAL = 10% of the budget is spent on
the share.

We are going to deal with these two constraints in two separate models.

6.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set of
variables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1if the share s is taken into the portfolio and 0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of MAXNUM. It
expresses the constraint that at most MAXNUM of the variables buys may take the value 1 at the same
time.
> buys < MAXNUM
SESHARES

We now still need to link the new binary variables buys with the variables fracs, the quantity of every
share selected into the portfolio. The relation that we wish to express is ‘if a share is selected into the
portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1'. The following
inequality formulates this implication:

Vs € SHARES : fracs < buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at
0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that these
constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matter
in our case, since any solution in which this is the case is also valid with both variables, buys and fracs,
at 0.

Implementation with Mosel

We extend the LP model developed in Chapter 3 (using the initialization of data from file introduced in
Chapter 4) with the new variables and constraints. The fact that the new variables are binary variables
(i.e. they only take the values 0 and 1) is expressed through the is_binary constraint.

Another common type of discrete variable is an integer variable, that is, a variable that can only take on
integer values between given lower and upper bounds. This variable type is defined in Mosel with an
is_integer constraint. In the following section (MIP model 2) we shall see yet another example of
discrete variables, namely semi-continuous variables.

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
MAXRISK = 1/3
MAXVAL = 0.3
MINAM = 0.5
MAXNUM = 4
end-parameters

Max. investment into high-risk values
Max. investment per share

Min. investment into N.-American values
Max. number of different assets

declarations

SHARES: set of string
RISK: set of string

NA: set of string

RET: array (SHARES) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array (SHARES) of mpvar ! Fraction of capital used per share
buy: array (SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise

end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET (s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) =1

! Upper bounds on the investment per share
forall (s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall (s in SHARES) do

buy (s) is_binary ! Turn variables into binaries
frac(s) <= buy(s) ! Linking the variables
end-do
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! Solve the problem
maximize (Return)

! Solution printing
writeln("Total return: ", getobjval)
forall (s in SHARES)
writeln(s, ": ", getsol(frac(s))*100, "% (", getsol(buy(s)), ")")

end-model

In the model foliomipl.mos above we have used the second form of the forall loop, namely forall/do,

that needs to be used if the loop encompasses several statements. Equivalently we could have written

forall(s in SHARES) buy(s) is_binary
forall(s in SHARES) frac(s) <= buy(s)

6.2.2 Analyzing the solution
As the result of our model execution we obtain the following output:

Total return: 13.1
treasury: 20% (1)
hardware: 0% (0)
theater: 30% (1)
telecom: 0% (0)
brewery: 20% (1)
highways: 30% (1)
cars: 0% (0)

bank: 0% (0)
software: 0% (0)
electronics: 0% (0)

The maximum return is now lower than in the original LP problem due to the additional constraint. As

required, only four different shares are selected to form the portfolio.
Let us now have a look at the detailed solver information:

Enable the Optimizer logging output by adding the line

setparam ("XPRS_VERBOSE", true)

into the model before the call to maximize and re-run the model. There are now more rows

(constraints) and columns (variables) than in the LP matrix of the previous chapters.

Run Command: | foliomip1 mos {3 = cwD ENV

Compiling foliomipl.mos to out\foliomipl.bim with -g
Running model

Reading Problem \xprs_2645da8
Problem Statistics

1 ( © spare) rous
20 ( © spare) structural columns
29 ( @ spare) non-zero elements

Global Statistics
10 entities 0 sets 0 set members

FICO Xpress v8.7.8, Hyper, solve started 18:29:46, Oct 15, 2019
Maximizing MILP \xprs 2645da8
Original problem has

14 rous 20 cols 49 elements 10 globals
Presolved problem has:

13 rows 19 cols 146 elements 9 globals
LP relaxation tightened
Presolve finished in @ seconds
Heap usage: 115KB (peak 136KB, 486KB system

Coefficient range original solved
Coefficients [min,max] : [ 1.08e+00, 1.00e+00] / [ 1.33e-01, 1.00e+00
RHS and bounds [min,max] : [ 3.08e-01, 4.00e+00] / [ 1.33e-01, 3.00e+00
Objective [min,max] : [ 5.09e+00, 3.10e+01] / [ 5.00e+00, 3.10e+0L

Figure 6.1: Solver log for MIP problem - part 1: statistics
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Run Command: | foliomip1 mos ® - WD ENV
Will try to keep branch and bound tree memory usage below 15.8G8
Starting concurrent solve with dual
Concurrent-Selve,  @s
Dual
objective dual inf
D 14.066667 .0000000
——————— optimal --------
Concurrent statistics
Dual: 4 simplex iterations, .08s
Optimal solution found
Its Obj Value S Ninf Nneg  Sum Dual Inf Time
14.066667 D [ ) .008000 )
Dual solved problem
4 simplex iterations in @s
Final objective : 1.486666666666667e+01
Max primal violation (absfrel) : 5.551e-17 / 5.551e-17
Max dual violation (abs/rel) : 0.0 / 0.0
Max complementarity viol. (abs/rel) : 0.0 / 0.0
A1l values within tolerances
Starting root cutting & heuristics
Tts Type  BestSoln  BestBound Sols  Add  Del Gap GInf  Time
13.160000  14.066667 1 6.87% 0 [
1K 13.160008  13.908571 1 1 @  5.81% 2 [
2 K 13.160000  13.580000 1 12 e  3.53% 3 3

*** Search completed *** Time: @ lodes: 1
Number of integer feasible selutions found is 1
Best integer solution found is  13.100000

Figure 6.2: Solver log for MIP problem - part 2: algorithm

As we have seen, it is relatively easy to turn an LP model into a MIP model by adding an integrality
condition on some (or all) variables. However, the same does not hold for the solution algorithms: MIP
problems are solved by repeatedly solving LP problems. Initially, the problem is solved without any
integrality constraints (the LP relaxation). Then, one at a time, a discrete variable is chosen that does
not satisfy the integrality condition in the current solution and new upper or lower bounds are added for
this variable to bring it to an integer value. If we represent every LP solution as a node and connect
these nodes by the bound changes or added constraints, then we obtain a tree-like structure, the
Branch-and-Bound tree.

In particular, the branching information tells us how many Branch-and-Bound nodes have been needed
to solve the problem: here it is just one, the enumeration did not even start. By default, Xpress
Optimizer enables certain MIP pre-treatment algorithms (see the ‘Optimizer Reference Manual’ for
further detail on algorithmic settings), among others the automated generation of cuts—i.e., additional
constraints that cut off parts of the LP solution space, but no solution of the MIP. This problem is of
very small size and becomes so easy through the pre-treatment that it is solved immediately.

Add the lines

setparam ("XPRS_CUTSTRATEGY", 0)
setparam ("XPRS_HEURSTRATEGY", 0)
setparam ("XPRS_PRESOLVE", 0)

to your model before the call to maximize and re-execute it. You have now switched off the MIP
pre-treatment routines for automated cut generation and MIP heuristics, and also the presolve
mechanism (a treatment to the matrix that tries to reduce its size and improve its numerical properties).

It now takes several nodes to solve the problem:
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Run Command: | foliomip1.mos * - cwp ENV
Its Obj Value S Ninf Nneg Sum Dual Inf Time
5 14.866667 o ] e .800000 3
Dual solved problem
5 simplex iterations in s
Final objective : 1.4B6666666666667e+81
Max primal violation (abs/rel) : 0.0 / K]
Max dual violation (abs/rel) : 0.0 / 0.0
Max complementarity viol. (abs/rel) : 0.0 / (LX)

A1l values within tolerances

Starting root cutting & heuristics

Its Type  BestSoln  BestBound Sols  Add  Del Gap GInf  Time
Starting tree search.

Deterministic mode with up to 8 running threads and up to 16 tasks.

Heap usage: 2885KB (peak 5091KB, G603KB system)

Node BestSoln  BestBound Sols Active Depth Gap GInf Time

1 14.066667 [} 2 1 [}
2 14.866667 [} 2 3 2 [}

3 14.866667 [ 2 3 3 [}

4 14.866667 [ 2 a 2 [}

6 14.066667 [ 2 4 2 @

8 13.700000 3 3 5 2 [}

9 13.700000 [} 5 a 2 [}

* 10 13.100000  13.700000 1 5 5 4.38% e [}
12 13.100000  13.700000 1 5 5 4.38% 1 [}

0

STOPPING - MIPRELSTOP target reached (MIPRELSTOP=8.0001 gap=1.07379e-006).
*** Search completed *** Time:  Nodes: 20

Number of integer feasible solutions found is 1

Best integer solution found is  13.100000

Figure 6.3: Solver log for MIP problem with Branch-and-Bound

6.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 3. The new
constraint we wish to formulate is ‘if a share is bought, at least a certain minimum amount

MINVAL =10% of the budget is spent on the share.’ Instead of simply constraining every variable fracg
to take a value between 0 and MAXVAL, it now must either lie in the interval between MINVAL and
MAXVAL or take the value 0. This type of variable is known as semi-continuous variable. In the new
model, we replace the bounds on the variables fracs by the following constraint:

Vs € SHARES : fracs = 0 or MINVAL < fracs < MAXVAL

6.3.1 Implementation with Mosel

The following model foliomip2.mos implements the MIP model 2, again starting with the LP model
from Chapter 3 augmented by the data initialization from file explained in Chapter 4. The
semi-continuous variables are defined with the is_semcont constraint.

A similar type is available for integer variables that take either the value 0 or an integer value between a
given limit and their upper bound (so-called semi-continuous integers): is_semint. A third composite
type is a partial integer which takes integer values from its lower bound to a given limit value and is
continuous beyond this value (marked by is_partint).

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
MAXRISK = 1/3
MINAM = 0.5
MAXVAL = 0.3
MINVAL = 0.1
end-parameters

Max. investment into high-risk values
Min. investment into N.-American values
Max. investment per share

Min. investment per share

declarations

SHARES: set of string
RISK: set of string

NA: set of string

RET: array (SHARES) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

Fair Isaac Corporation Confidential and Proprietary Information 36



Mixed Integer Programming

Getting started with Mosel

initializations from "folio.dat"

RISK RET NA
end-initializations
declarations

frac: array (SHARES) of mpvar

end-declarations

! Objective: total return

Return:= sum(s in SHARES) RET (s) *frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values

sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) =1

! Upper and lower bounds on the investment per share

forall (s in SHARES) do
frac(s) <= MAXVAL

frac(s) is_semcont MINVAL
end-do

! Solve the problem
maximize (Return)

! Solution printing

writeln("Total return: ", getobjval)

forall (s in SHARES) writeln(s,

end-model

getsol (frac(s))*100,

! Fraction of capital used per share

When executing this model of the solution information window) we obtain the following output:

Total return: 14.0333
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 10%
highways: 26.6667%
cars: 0%

bank: 0%

software: 13.3333%
electronics: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the total
investment. Due to the additional constraint, the optimal MIP solution value is again lower than the

initial LP solution value.
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CHAPTER 7
Quadratic Programming

In this chapter we turn the LP problem from Chapter 3 into a Quadratic Programming (QP) problem, and
the first MIP model from Chapter 6 into a Mixed Integer Quadratic Programming (MIQP) problem. The
chapter shows how to

m define quadratic objective functions,
m incrementally define and solve problems,

m understand and exploit the MIP optimization displays.

Chapter 12 shows how to formulate and solve the same examples with BCL and in Chapter 17 the QP
problem is input and solved directly with Xpress Optimizer.

7.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes to
minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of getting
estimates of the variance/covariance matrix of estimated returns on the securities. (For example,
hardware and software company worths tend to move together, but are oppositely correlated with the
success of theatrical production, as people go to the theater more when they have become bored with
playing with their new computers and computer games.) The return on theatrical productions are highly
variable, whereas the treasury bill yield is certain. The estimated returns and the variance/covariance
matrix are given in the following table:

Table 7.1: Variance/covariance matrix

treasury hardw. theater telecom brewery highways cars bank softw. electr.

treasury 0.1 0 0 0 0 0 0 0 0 0
hardware 0 19 -2 4 1 1 1 0.5 10 5
theater 0 -2 28 1 2 1 1 0 -2 -1
telecom 0 4 1 22 0 1 2 0 3 4
brewery 0 1 2 0 4 -1.5 2 1 1
highways 0 1 1 1 -1.5 3.5 2 05 1 1.5
cars 0 1 1 2 2 2 5 05 1 2.5
bank 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5
software 0 10 -2 3 1 1 1 0.5 25 8
electronics 0 5 -1 4 1 1.5 25 0.5 8 16
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Question 1: Which investment strategy should the investor adopt to minimize the variance subject to
getting some specified minimum target yield?

Question 2: Which is the least variance investment strategy if the investor wants to choose at most four
different securities (again subject to getting some specified minimum target yield)?

The first question leads us to a Quadratic Programming problem, that is, a Mathematical Programming
problem with a quadratic objective function and linear constraints. The second question necessitates
the introduction of discrete variables to count the number of securities, and so we obtain a Mixed
Integer Quadratic Programming problem. The two cases will be discussed separately in the following
two sections.

7.2 QP

7.2.1

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to make
the following changes:

m New objective function: mean variance instead of total return.
m The risk-related constraint disappears.

m Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:

> VAR - fracs - frac
S,teSHARES

where VARg; is the variance/covariance matrix of all shares. This is a quadratic objective function (an
objective function becomes quadratic either when a variable is squared, e.g., frac12, or when two
variables are multiplied together, e.g., frac - frac,).

The target yield constraint can be written as follows:

Z RET - fracs > TARGET
SseSHARES

The limit on the North-American shares as well as the requirement to spend all the money, and the
upper bounds on the fraction invested into every share are retained. We therefore obtain the following
complete mathematical model formulation:

minimize )" VARg - fracs - frac
s.teSHARES

Z fracs > MINAM
SeNA

Z fracs = 1
SeSHARES

> RETs-fracs > TARGET
SESHARES
Vs € SHARES : 0 < fracs < MAXVAL

Implementation with Mosel

In addition to the Xpress Optimizer module mmxprs we now also need to load the module mmn/ that
adds to the Mosel language the facilities required for the definition of quadratic expressions (mmnl is
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documented in the ‘Mosel Language Reference Manual’). We can then use the optimization function
maximize (or alternatively minimize) for quadratic objective functions to start the solution process.

This model uses a different data file (foliogp.dat) than the previous models:

! trs haw thr tel brw hgw car bnk sof elc

RET: [ (1) 5 17 26 12 8 9 7 6 31 21]

VAR: [ (1 1) 0.1 0 0 0 0 0 0 0 0 0 ! treasury
(2 1) 0 19 -2 4 1 1 1 0.5 10 5 ! hardware
(3 1) 0 -2 28 1 2 1 1 0 -2 -1 ! theater
(4 1) 0 4 1 22 0 1 2 0 3 4 ! telecom
(5 1) 0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
(6 1) 0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
(7 1) 0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
(8 1) 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
(9 1) 0 10 -2 3 1 1 1 0.5 25 8 ! software
(10 1) 0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics

]

RISK: [2 3 4 9 10]
NA: [1 2 3 4]

Note that we have chosen to use numerical instead of string indices. Since the set SHARES is defined in
the model, we do not have to list the index-tuple for every data entry in the file—those tuples given are
for clarity’s sake only.

model "Portfolio optimization with QP/MIQP"
uses "mmxprs", "mmnl" ! Use Xpress Optimizer with QP solver

parameters
MAXVAL = 0.3
MINAM = 0.5
MAXNUM = 4
TARGET = 9.0
end-parameters

Max. investment per share

Min. investment into N.-American values
Max. number of different assets
Minimum target yield

declarations

SHARES = 1..10

RISK: set of integer

NA: set of integer

RET: array (SHARES) of real

VAR: array (SHARES, SHARES) of real

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment
Variance/covariance matrix of
estimated returns

end-declarations

initializations from "foliogp.dat"
RISK RET NA VAR
end-initializations

declarations
frac: array (SHARES) of mpvar ! Fraction of capital used per share

end-declarations

! Objective: mean variance
Variance:= sum(s,t in SHARES) VAR(s,t)*frac(s)x*frac(t)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) =1

! Target yield
sum(s in SHARES) RET (s)*frac(s) >= TARGET

! Upper bounds on the investment per share
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forall (s in SHARES) frac(s) <= MAXVAL

! Solve the problem
minimize (Variance)

! Solution printing

writeln("With a target of ", TARGET, " minimum variance is
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100,

end-model

", getobjval)

This model (file foliogp.mos) produces the following solution output (tab Output/input of the

solution information window):

With a target of 9 minimum variance is 0.557393
30%
7.15391%
7.38246%
5.46363%
12.6554%
5.91228%
0.332458%
30%
1.09983%
0: 0%

O oo Jo0 b Wbh K

Similarly to the algorithm shown in Chapter 5, we may re-solve this problem with different values of
TARGET and plot the results in a target return/standard deviation graph, know as the ‘efficient frontier’

(model file foliogp_graph.mos):

B Solution values
W Low risk
W High risk
theatér
software
telecom
hardware

50 cectionics

50 . cars ,'/

—
-
- PRy

o T
B2y

1
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Figure 7.1: Graph of the efficient frontier

7.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may be
selected into the portfolio, subject to all other constraints of the previous QP model. In Chapter 6 we
have already seen how this can be done, namely by introducing an additional set of binary decision

variables buys that are linked logically to the continuous variables:

Vs € SHARES : fracs < buys

Through this relation, a variable buys will be at 1if a fraction fracs greater than 0 is selected into the

portfolio. If, however, buys equals 0, then fracs must also be 0.
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To limit the number of different shares in the portfolio, we then define the following constraint:

> buys < MAXNUM
SESHARES

7.3.1 Implementation with Mosel

We may modify the previous QP model or simply add the following lines to the end of the QP model in
the previous section: the problem is then solved once as a QP and once as a MIQP in a single model run.

declarations
buy: array (SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall (s in SHARES) do
buy (s) is_binary
frac(s) <= buy(s)
end-do

! Solve the problem
minimize (Variance)

writeln("With a target of ", TARGET," and at most ", MAXNUM,
" assets, minimum variance is ", getobjval)
forall (s in SHARES) writeln(s, ": ", getsol(frac(s))=*100, "%")

When executing the MIQP model, we obtain the following solution output:

With a target of 9 and at most 4 assets,
minimum variance is 1.24876
30%

20%

0%

0%

23.8095%

26.1905%

0%

0%

0%

0: 0%

P O oo Joudbd WK

With the additional constraint on the number of different assets the minimum variance is more than
twice as large as in the QP problem.

7.3.2 Analyzing the solution

If we enable the Optimizer logging output display by setting XPRS_VERBOSE to 'true’ we see the
following information:
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Run Command: | foliomige.mos ‘ = cwD

Compiling foliomigc.mos to out\foliomigc.bim with -g
Running model

Reading Problem \xprs_2e2c2c8
Problem Statistics

13 ( @ spare) rous
20 ( @ spare) structural columns
44 ( © spare) non-zero elements
Global Statistics
10 entities 0 sets @ set members

FICO Xpress v8.7.0, Hyper, solve started 18:45:54, Oct 15, 2019

Maximizing MIQCQP \xprs_2e2c2c8

Original problem has
14 rows 20 cols 44 elements 10 globals
1 qrows 43 growelem

Converted 1 quadratic matrices to their separable equivalent

Converted 1 separable quadratic matrices to rotated cones

Presolved problem has
35 rows 43 cols 103 elements 10 globals
11 cones 22 celems

LP relaxation tightened

Presolve finished in @ seconds

Heap usage: 433(B (peak 461KB, 51eKB system)

Coefficient range original solved
Coefficients [min,max] : [ 1.00e+60, 1.00e+00] / [ 2.34e-02, 1.80e+00
RHS and bounds [min,max] : [ 3.00e-01, 4.60e+00] / [ 2.82e-02, 4.00e+00
Objective [min,max] : [ 5.00e+00, 3.10e+01] / [ 5.00e+00, 3.10e+01
Quadratic [min,max] : [ 2.60e-01, 5.60e+01] / [ 2.002+00, 2.00e+00

Will try to keep branch and bound tree memory usage below 15.8GB
Barrier cache sizes : L1-32K L2-8192K

Using AVX support

Cores per CPU (CORESPERCPU): 8

Barrier starts after @ seconds, using up to 8 threads, 4 cores

Matrix ordering - Dense cols. 30 NZ(L) 580 Flops: 5016

o

ts  P.inf D.inf U.inf Primal obj. Dual obj. Compl
© 1.05e+001 3.10e+001 1.91e+600 1.4200000e+002 3.9056252e+001 1.2e+002
1 4.36e+000 1.29e+001 7.92e-001 7.1010230e+001 2.8228674e+001 7.0e+001
2 1.090+000 3.22e+000 1.98e-001 3.0367038e+001 1.9649337¢+001 1.9e+001

Figure 7.2: Detailed MIQP solution information

This is quite similar to the MIP statistics, perhaps with the exception of the LP solution algorithm: the

initial LP relaxation has been solved by the Newton-Barrier algorithm.

Just as with linear problems, the root solving as continuous problem is followed by a root cutting and

heuristics phase:

Starting root cutting & heuristics

Its Type  BestSoln BestBound Sols  Add  Del Gap GInf  Time
10 12.835517 ] 17 1 [ 1
2 0 12.364084 [} 22 13 6 1
30 11.850442 ] 28 20 8 1

Figure 7.3: MIQP root cutting and heuristics

A single integer fesaible solution is found during the Branch-and-Bound search. The search has been
completed, this means that optimality of this solution has been proven (we may have chosen to stop
the search, for example, after a given number of nodes, in which case it may not be possible to prove

optimality or even to find the best solution).

Cuts in the matrix i 23
Cut elements in the matrix : 184

Starting tree search.
Deterministic mode with up to 8 running threads and up to 16 tasks.
Heap usage: 3353KB (peak 7201KB, 598KB system

Node BestSoln BestBound  Sols Active Depth Gap GInf  Time

1 11.055248 [} 2 1
2 11.855248 2 2 5 1
3 11.038710 [} 1 3 3 1
4 11.838710 ] 1 4 2 1

c 5 9.172764  11.@38718 1 1 5  16.96% ] 1
€ 9.172764 11.038710 1 1 5 16.90% 2 1
8 9.172764 9.178014 1 3 1 0.06% 1 1
9 9.172764 9.178014 1 3 5  0.06% 2 1
10 9.172764 9.178014 1 3 6  0.06% 2 1

STOPPING - MIPRELSTOP target reached (MIPRELSTOP=0.8001 gap=1.96355¢-005).

*** Search completed *** Time: 1 Nodes: 10

Number of integer feasible solutions found is 1

Best integer solution found is 9.172764

Best bound is 9.172944

Figure 7.4: MIQP Branch-and-Bound search
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CHAPTER 8
Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves

m structuring a Mosel model via the definition of subroutines, and
m a heuristic solution procedure interacting with Xpress Optimizer through parameter settings,
saving and recovering bases, and modifications of variable bounds.

Chapter 13 shows how to implement the same heuristic with BCL.

8.1 Binary variable fixing heuristic
The heuristic we wish to implement should perform the following steps:

1. Solve the LP relaxation and save the basis of the optimal solution

2. Rounding heuristic: Fix all variables ‘buy’ to 0 if the corresponding fraction bought is close to 0,
and to 1if it has a relatively large value.

3. Solve the resulting MIP problem.
4. If an integer feasible solution was found, save the value of the best solution.

5. Restore the original problem by resetting all variables to their original bounds, and load the saved
basis.

6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in this
case we may choose 0.2. In other applications, for binary variables a more suitable choice may be 1 - ¢,
where ¢ is a very small value such as 107°.

Step 6: Setting a cutoff value means that we only search for solutions that are better than this value. If
the LP relaxation of a node is worse than this value it gets cut off, because this node and its
descendants can only lead to integer feasible solutions that are even worse than the LP relaxation.

8.2 Implementation with Mosel

For the implementation (file folioheur .mos) of the variable fixing solution heuristic we work with the
MIP 1 model from Chapter 6. Through the definition of the heuristic in the form of a subroutine (more
precisely, a procedure) we only make minimal changes to the model itself: at the beginning we declare
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the procedure using the keyword forward, and before solving our problem with the standard call to the
maximization function we execute our own solution heuristic. The solution printing also has been

adapted.

model "Portfolio optimization solved heuristically"”

uses "mmxprs"
parameters
MAXRISK 1/3
MAXVAL = 0.3
MINAM 0.5
MAXNUM 4
end-parameters

forward procedure solve_heur

declarations

SHARES: set of string
RISK: set of string
NA: set of string
RET: array (SHARES)
end-declarations

of real

initializations from "folio.dat"
RISK RET NA

end-initializations

declarations
frac: array (SHARES)
buy: array (SHARES)
end-declarations

of mpvar
of mpvar

! Objective: total return

Return:= sum(s in SHARES) RET (s)

! Use Xpress Optimizer

! Max. investment into high-risk values

! Max. investment per share

! Min. investment into N.-American values
! Max. number of assets

! Heuristic solution procedure

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

! Fraction of capital used per share
! 1 if asset is in portfolio, 0 otherwise

*frac(s)

! Limit the percentage of high-risk values

sum(s in RISK) frac(s) <=

MAXRISK

! Minimum amount of North-American values

sum(s in NA) frac(s) >= MINAM
! Spend all the capital
sum(s in SHARES) frac(s) =1

! Upper bounds on the investment
forall (s in SHARES)

per share

frac(s) <= MAXVAL

! Limit the total number of assets

sum(s in SHARES) buy(s) <=

forall (s in SHARES) do

buy(s) is_binary
frac(s) <= buy(s)
end-do

! Solve problem heuristically
solve_heur

! Solve the problem
maximize (Return)

! Solution printing
if getprobstat=XPRS_OPT then
writeln ("Exact solution: Total
forall (s in SHARES) writeln(s,
else
writeln ("Heuristic solution is
end-if

MAXNUM

return:
”.

"
’

getobjval)
, getsol (frac(s))=*100,

" "%n)

optimal.")

Fair Isaac Corporation Confidential and Proprietary Information

45



Heuristics Getting started with Mosel

procedure solve_heur

declarations
TOL: real ! Solution feasibility tolerance
fsol: array (SHARES) of real ! Solution values for “frac' variables
bas: basis ! LP basis

end-declarations

setparam ("XPRS_VERBOSE", true) ! Enable message printing in mmxprs
setparam ("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts

setparam ("XPRS_HEURSTRATEGY", 0) ! Disable automatic MIP heuristics
setparam ("XPRS_PRESOLVE", 0) ! Switch off presolve

TOL:=getparam ("XPRS_FEASTOL") ! Get feasibility tolerance
setparam ("ZEROTOL", TOL) ! Set comparison tolerance

maximize (XPRS_LPSTOP, Return) ! Solve the LP problem
savebasis (bas) ! Save the current basis

! Fix all variables ‘buy' for which “frac' is at 0 or at a relatively
! large value

forall (s in SHARES) do

fsol(s) := getsol (frac(s)) ! Get the solution values of ‘frac'

if (fsol(s) = 0) then

setub (buy(s), 0)
elif (fsol(s) >= 0.2) then
),

setlb (buy (s 1)
end-if
end-do
maximize (XPRS_CONT, Return) ! Solve the MIP problem
ifgsol:=false
if getprobstat=XPRS_OPT then ! If an integer feas. solution was found
ifgsol:=true
solval:=getobjval ! Get the value of the best solution
writeln ("Heuristic solution: Total return: ", solval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")
end-if

! Reset variables to their original bounds
forall (s in SHARES)
if ((fsol(s) = 0) or (fsol(s) >= 0.2)) then
setlb(buy(s), 0)
setub (buy(s), 1)

end-if
loadbasis (bas) ! Load the saved basis
if ifgsol then ! Set cutoff to the best known solution
setparam ("XPRS_MIPABSCUTOFF", solval+TOL)
end-if

end-procedure

end-model

This model certainly requires some more detailed explanations.

8.2.1 Subroutines

A subroutine in Mosel has a similar structure as the model itself: a procedure starts with the keyword
procedure, followed by the name of the procedure, and terminates with end-procedure. Similarly, a
function starts with the keyword function, followed by its name, and terminates with
end-function. Both types of subroutines may take a list of arguments and for functions in addition
the return type must be indicated, for example:

function myfunc (myint: integer, myarray: array(range) of string): real
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for a function that returns a real and takes as input arguments an integer and an array of string.

As shown in our example, a subroutine may contain one (or several) declarations blocks. The
objects defined in a subroutine are only valid locally and are deleted at the end of the subroutine.

Subroutine definitions may be overloaded, that is, a single subroutine may take different combinations
of arguments. It is possible to overload any subroutines defined by Mosel and its modules, provided
that the new definition differs from the existing one(s) in at least one argument.

For more detail and further examples of subroutine definition see the ‘Mosel User Guide'.

8.2.2 Optimizer parameters and functions

Parameters: The solution heuristic starts with parameter settings for Xpress Optimizer. For a detailed
explanation of all Optimizer parameters the reader is refered to the ‘Optimizer Reference Manual’. All
parameters are accessed through the Mosel subroutines setparam and getparam. In the example,
we first enable the output printing by the module mmxprs. As a result, more information than what is
printed by our model will be displayed in the logging pane:

Run Command: [ folicheurmos #$ - cw e
Its Obj Value S Ninf Nneg Sum Dual Inf Time
5 14.066667 D ] @ . 000000 @
Dual solved problem
5 simplex iterations in @s
Final objective 1 1.406666666666667e+01
Max primal violation (abs/rel) : -0
Max dual violation (abs/rel) : 0.0 / 0.9
Max complementarity viol. (abs/rel) : 8.0 / ]
All values within tolerances
*** Search unfinished *** Time: © Nodes: e
Number of integer feasible solutions found is @
Best bound is 14.066667
Starting root cutting & heuristics
Its Type BestSoln BestBound  Sols Add Del Gap GInf  Time
* 13.100000 13.100000 1 -9.00% ] L)

**x Search completed *** Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is  13.100600
Best bound is  13.108000
Heuristic solution: Total return: 13.1
treasury: 20%
hardware: 0%
theater: 3%
telecom: 0%
brewery: 20%
highuays: 30%
cars: 0%
bank: 0%
software: 0%
electronics: 0%
FICO Xpress v8.7.0, Hyper, solve started 19:04:38, Oct 15, 2019
Maximizing MILP \xprs 2b51478
Original problem has
14 rows 20 cols 49 elements 10 globals

Figure 8.1: Optimizer output display

Switching off the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP heuristics
(parameter XxPRS_HEURSTRATEGY) is optional,

whereas it is required in our case to disable the presolve mechanism (a treatment of the matrix that
tries to reduce its size and improve its numerical properties, set with parameter XPRS_PRESOLVE),
because we interact with the problem in the Optimizer in the course of its solution and this is only
possible correctly if the matrix has not been modified by the Optimizer.

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:
the Optimizer works with tolerance values for integer feasibility and solution feasibility that are typically
of the order of 107° by default. When evaluating a solution, for instance by performing comparisons, it
is important to take into account these tolerances.

Optimization statement: We use a new version of the maximization procedure with an additional
argument, XPRS_LPSTOP, indicating that we only want to solve the top node LP relaxation (and not yet
the entire MIP problem). To continue with MIP solving from the point where we have stopped the
algorithm we use the argument XPRS_CONT. This is an example of an overloaded subroutine definition.

Saving and loading bases: To speed up the solution process, we save (in memory) the current basis of
the Simplex algorithm after solving the initial LP relaxation, before making any changes to the problem.
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This basis is loaded again at the end, once we have restored the original problem. The MIP solution

algorithm then does not have to re-solve the LP problem from scratch, it resumes the state where it was
‘interrupted’ by our heuristic.

Bound changes: When a problem has already been loaded into the Optimizer (e.g. after executing an
optimization statement or following an explicit call to Loadprob) bound changes via set1b and
setub are passed on directly to the Optimizer. Any other changes (addition or deletion of constraints
or variables) always lead to a complete reloading of the problem.

For more detail on the Optimizer functionality used in this example see the documentation of the
module mmxprs in the ‘Mosel Language Reference Manual'.

8.2.3 Comparison tolerance

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of Mosel
(zEROTOL) to this value TOL. This means that the test £sol (s) = 0 evaluates to true if £sol (s) lies
between -TOL and TOL, and fsol (s) >= 0.2 is satisfied if the value of £so01 (s) is at least
0.2-TOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this
parameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 48



CHAPTER 9
Embedding a Mosel model in an application

Mosel models frequently need to be embedded in applications so they can be deployed easily. In this
chapter we discuss

how to generate a deployment template,

the meaning and use of BIM files,

m embedding Mosel models into a host application,

the use of parameterized model and BIM files,

how to export matrix files with Mosel, and

m how to create an Xpress Insight application from a model file.

9.1 Generating a deployment template

Open menu File > New and select the entry Mosel deployment - Java. (For deployment with C, C#, or
any other supported language the procedure is similar.)

# foliodata.mos - FICO® Xpress Workbench o[E] X

. Project File Edit Find View Goto Run Tools Window Help foliodatamos M ECHEE TR = ol
3 &
g o T ... o :
£ x ohwm g g
I File with problem data 3
Insight View (vVDL) h g
B P Rece ' I output file B
| Mosel File I Max. investment into high-risk values
save ot ! Max. investment per share =
fo Companion File I Min. investment into N.-American values g
Save As cul-shifts ! Min. : g
» fo Tuner Method 3
W0 SaveAl
re  ReverttoSaved  Ctrl-Shift-Q CSS File =}
evertio Save s I Set of shares 3
Revert All to Saved  Alt-Shift-Q JavaScript File ! Set of high-risk values among shares 8

! Set of shares issued in N.-America
! Estimated return in investment

HTML File
Line Endings »

Mosel C Deployment

Close File ctlw
Mosel Java Deployment

Close All Files  Ctrl-Shift-W 5
Mosel VBA Deployment & x
Run Mosel VB.NET Deployment oo (ESiisaararmss &  RumerMosel  CWD ENV
Mosel C# Deployment

FICO Xpress Mosel 64 —.. ._..._

(¢) Copyright Fair Isaac Corporation 2001-2019. All rights reserved

Compiling foliodata.mos to out\foliodata.bim with -g

Running model

Figure 9.1: Choosing the deployment type

This will open a new file in the editor window with the resulting code:
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B  Welcome % foliodata.mos *  Untitled1.java

// To compile: javac -classpath .;%XPRESSDIR¥\Lib\xprm.jar RunModel.java
// To run: java -classpath .;%XPRESSDIR%\Lib\xprm.jar RunModel

import java.io.*;
import com.dashoptimization.*;

public class RunModel

// Replace this with the path to your compiled bim file
private static final String BIM_FILE = "testLhim";

public static void main(String[] args)

{

int result;

try {
result=runMoselModel();

System.out.println("Model execution returned: "+result);

catch(XPRMLicenseError e)

{
System.out.println("Failed to licence Mosel : " + e.getMessage());
}
catch(java.lang.Exception e)
{
System.out.println("Model loading or execution error : " + e.getMessage());
}
¥

static int runMoselModel() throws XPRMLicenseError, IOException

XPRMModel model;
XPRM xprm;
int result;

// Initialize Mosel
xprm = new XPRM();

// Load compiled model (.BIM file)
model=xprm.loadModel(BIM FILE);

Figure 9.2: Code preview

Find the constant with the value test .bim near the top of the file and change its value to the name of
your BIM file (e.g. foliodata.bim). Use the menu File > Save As... to set the name (folio. java)
and location of the new file. At the top of the code window a standard compilation line for Java under
Windows is shown. To use it with the file we have just generated, replace RunModel . java by the
name of our file, folio. java.

The Java program may be run on all systems for which Mosel is available. To compile under Linux or
Solaris use:

javac —cp .:${XPRESSDIR}/lib/xprm.jar folio.java

For other systems please refer to the examples makefile of the corresponding Mosel distribution.

9.2 BIMfiles

Mosel models are typically distributed in the form of a BIM file (Blnary Model file). A BIM file is a
compiled version of the . mos model file that is portable across all platforms for which Mosel is
available. It does not include any data read from external files. These must still be provided in separate
files, thus making it possible to run the same BIM file with different data sets (see section Parameters
below).

To generate a BIM file with Workbench you may use Run >> Compile or equivalently, click on the button
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-ra?. The BIM file will then be created in the subdirectory out of the Workbench project by appending
the extension .bim to the file name (instead of .mos). You may also use the Compiler Options dialog
(opened either from the Run menu or by clicking on the tools button = ) to configure, for example,
various debugging settings for the compilation.

It is also possible to execute Mosel source files (. mos) directly from an application (see the following
section). In this case the BIM file does not need to be generated.

9.3 Embedding Mosel models into a host application

9.3.1 Executing Mosel models

The following simple Java program can be used to run a Mosel model that is provided in the form of a
BIM file (for simplicity’s sake we are leaving out any kind of error handling):

import com.dashoptimization.x*;

public class folio

{

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
model = mosel.loadModel ("foliodata.bim"); // Load compiled model
model.run () ; // Run the model
System.out.println("Model execution returned: " + model.getResult());

This Java program may be run on all systems for which Mosel is available. Under Windows use these
commands to compile and run the program:

javac -classpath .:%XPRESSDIR%\lib\xprm.jar folio.java
java -classpath .:%$XPRESSDIR%\lib\xprm.jar folio

To compile under Linux or Solaris use:

javac —-cp .:${XPRESSDIR}/lib/xprm.jar folio.java

If we also wish to create the BIM file from the Java application, we may compile, load, and run the
Mosel model foliodata.mos directly from the Java program, for instance as shown in the following
code fragment. The compilation functionality is equally contained in the JAR file xprm. jar so that we
can use the same compilation command as before.

import com.dashoptimization. *;

public class folio

{

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile ("foliodata.mos"); // Compile the model
model = mosel.loadModel ("foliodata.bim"); // Load compiled model
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model.run(); // Run the model

System.out.println("Model execution returned: " + model.getResult());
}
}

9.3.2 Parameters

In Chapter 4 we have shown how to modify parameter settings with Workbench or when running the
Mosel standalone version (for instance in batch files or scripts). The model parameters may also be
reset when a Mosel model or BIM file is embedded in an application, making it possible to solve many
different problem instances without having to change the model source.

In this example we modify the name of the result file and the settings for two numerical parameters of
our model foliodata.mos. All other model parameters will take the default values specified at their
definition in the model.

import com.dashoptimization.*;

public class folioparam

{

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile("foliodata.mos"); // Compile the model
model = mosel.loadModel ("foliodata.bim"); // Load compiled model

// Set the run-time parameters

model.execParams = "OUTFILE=result2.dat,MAXRISK=0.4,MAXVAL=0.25";
model.run () ; // Run the model
System.out.println (" foliodata' returned: " + model.getResult());

9.3.3 Retrieving solution information

After running a model, it is possible to retrieve information about the model objects and the solution of
the (last) optimization run. The following example shows how to test the problem status and retrieve
the objective function value.

import com.dashoptimization.*;

public class folioobj

{

public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile("foliodata.mos"); // Compile the model
model = mosel.loadModel ("foliodata.bim"); // Load compiled model
model.run(); // Run the model

// Test whether a solution is found and print the objective value
if (model.getProblemStatus () ==XPRMModel.PB_OPTIMAL)
System.out.println("Objective value: " + model.getObjectiveValue());
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9.4 Matrix files

9.4.1 Exporting matrices

If the optimization process with Xpress Optimizer is started from within a Mosel program, or if the
solving procedure is part of the application into which a Mosel model has been embedded, then the
problem matrix is loaded in memory into the solver without writing it out to a file (which would be
expensive in terms of running time). However, in certain cases it may still be required to be able to
produce a matrix. With Xpress, the user has the choice between two matrix formats: extended MPS
and extended LP format, the latter being in general more easily human-readable since constraints are
printed in algebraic form.

With Mosel, there are several possibilities for generating a matrix:

1. With a matrix generation statement in the model file:
to create an MPS matrix for our problem add the line

exportprob (EP_MPS, "folio", Return)

for an LP format matrix (which we intend to maximize at some point) add the line

exportprob (EP_MAX, "folio", Return)

immediately before or instead of the optimization statement.

2. From a Java application after having executed the model file:

XPRMModel model;
model.exportProblem("m", "folio");

This will output the matrix in MPS format. To print with LP format change the first argument of
exportProblem:

model.exportProblem("p", "folio");

9.5 Deployment to Xpress Insight

Xpress Insight embeds Mosel models into a multi-user application for deploying optimization models in
a distributed client-server architecture. Through the Xpress Insight GUI, business users interact with
Mosel models to evaluate different scenarios and model configurations without directly accessing to
the model itself.

9.5.1 Preparing the model file

For embedding a Mosel model into Xpress Insight, we need to make a few edits to the Mosel model in
order to establish the connection between Mosel and Xpress Insight.

Firstly, we need to load the package mminsight that provides the required additional functionality. Since
Insight manages the data scenarios, we only need to read in data from the original sources when
loading the scenario (also referred to as baseline run) into Insight (triggered by the test of the run mode
with insightgetmode in the model below). Scenario data will otherwise be input directly from Xpress
Insight at the insertion point marked with insightpopulate. All model entities that are to be
managed by Xpress Insight need to be declared as public. Furthermore, the solver call to start the
optimization is replaced by insightminimize / insightmaximize.
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The resulting model file folioinsight .mos (based on foliodata.mos) has the following
contents—this model can also simply be run standalone, e.g. from Workbench or the Mosel command
line, this is the case handled by INSIGHT_ MODE_NONE.

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress Optimizer
uses "mminsight" ! Use Xpress Insight
parameters

DATAFILE= "folio.dat"
MAXRISK = 1/3

MAXVAL = 0.3

MINAM = 0.5
end-parameters

File with problem data

Max. investment into high-risk values
Max. investment per share

Min. investment into N.-American values

public declarations

SHARES: set of string
RISK: set of string

NA: set of string

RET: array (SHARES) of real
end-declarations

Set of shares

Set of high-risk values among shares
Set of shares issued in N.-America
Estimated return in investment

case insightgetmode of
INSIGHT_MODE_LOAD: do ! 'Load data' mode: Read data, then stop
initializations from DATAFILE
RISK RET NA
end-initializations

exit (0)
end-do

INSIGHT_MODE_RUN: ! 'Run' mode: Inject scen. data, continue
insightpopulate

INSIGHT_MODE_NONE : ! Standalone run: Read data and continue

initializations from DATAFILE
RISK RET NA
end-initializations

else
writeln ("Unknown execution mode")
exit (1)

end-case

public declarations

frac: array (SHARES) of mpvar ! Fraction of capital used per share
Return, LimitRisk, LimitAM, TotalOne: linctr ! Constraints
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET (s)*frac(s)

! Limit the percentage of high-risk wvalues
LimitRisk:= sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
LimitAM:= sum(s in NA) frac(s) >= MINAM

! Spend all the capital
TotalOne:= sum(s in SHARES) frac(s) =1

! Upper bounds on the investment per share
forall (s in SHARES) frac(s) <= MAXVAL

! Solve the problem through Xpress Insight
insightmaximize (Return)

end-model

Note that we have removed all solution output from this model: we are going to use Xpress Insight for
representing the results.
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9.5.1.1 The app archive

Xpress Insight expects models to be provided in compiled form, that is, as BIM files—see Section 9.2 on
how to generate BIM files from the model source. Since Xpress Insight executes Mosel models in a
distributed architecture (so, possibly not on the same machine from where the model file is input) we
recommend to include any input data files used by the model in the Xpress Insight app archive. The app
archive is a ZIP archive that contains the BIM file and the optional subdirectories model_resources
(data files), client_resources (custom view definitions), and source (Mosel model source files).
For our example, we create a ZIP archive folioinsight.zip with the file folioinsight.bimand
the data file folio.dat in the subdirectory model_resources.

[ == FICO® Xpress Workbench =B $%

FICO® Xpress Workbench FICO.com Community

HELP ~

Recent projects Choose from the options below. You will be asked to select a folder location in which the project

files will be created.

Open existing file or folder Create an Xpress Mosel project

The project will contain a simple Mosel source file template. Choose this option if you want to
Examples develop a new Mosel model which is not intended to run within Xpress Insight.

Introductory examples
[ CREATE MOSEL PROJECT

Insight examples
Nonlinear examples Create an Xpress Insight project

) The project will contain templates for a Mosel model, custom views and companion file. Choose
Calling R from Mosel this option if you want to develop a new Xpress Insight app.

Calling Python from Mosel
CREATE INSIGHT PROJECT

Browse all examples

Xpress Documentation

Ask the Xpress community

Figure 9.3: Creating a new Insight project

With Xpress Workbench, select the option 'Create project’ followed by 'Create Insight project’ at startup
to create the directory structure expected by Xpress Insight and replace the template model (in
subdirectory source), configuration (application.xml and subdirectory client_resources), and
data files (in subdirectory model_resources) by the files of your Mosel project. In order to work with
an existing app, select Open existing file or folder followed by Open project when starting up Workbench
and browse to the desired folder or double click on a Mosel file in the source subdirectory and select
‘Open Insight app’ in the dialog box.

Fair Isaac Corporation Confidential and Proprietary Information 55



Embedding a Mosel model in an application Getting started with Mosel

% Welcome - FICO® Xpress Workbench o[B] %

+ Project File Edit Find View Goto Run Tools Window Help application. mos - e & - =
S open Fiies - B Welcome x App
£ % readmentml =z 4 o
®
Welcome to FICO™ Xpress Workbench sk 2 to pubih to Xpress nsight

v [ Getstarted

866G S3NPO  JuBIsul ssaldy Q

v () dlient_resources . . . .
- Follow the steps below to publish the project to FICO® Xpress Insight and start debugging.
>0 css
<> inputdl
<> introduction.vdl Views
&> results.vdl View Group  VDLView ~ C'
v [0 model_resources &
2has Name Type
input.dat A " o
in
v @ source PP ublish to Xpres T M )
TR P £ = = Introduction VDL
/> application.mos
"pp = Input oL
<I> application.xml
v Gree ¥ = Results VDL
Debug
Deby Tableau Workbooks
Workbooks are not synced
Name Status.
evaludy No workbooks found
evaluatil
evaluati

eng-ini

end-model

Figure 9.4: Default Xpress Insight app template

Select the button ¥, to create the app archive or [ to publish the app directly to Insight. If the app

has been published successfully the link ‘Open in Xpress Insight’ in the green message box will take
you to the app loaded in the Insight web client opened with your default web browser.

£ folioinsightxml.mos - FICO® Xpress Workbench o B 5%

~ Project File Edit Find View Goto Run Tools Window Help folioinsightxml.mos v o Q
50 open FiLES B B Welcome % folioinsightxmls « App ¥
13 3
S % readme.html " . R = 3, ul v 2
o= o ] model “Portfolio optimization c 2
x_folioinsightxml.mos uses “mmxprs" I Use Xpress Optimizer » [ Portfolio optimization 2
uses "mminsight" I Use Xpress Insight 5
v (2 foliinsightan
) clent_resources version 1.0.0 g
£
> folio.vdl paraneters 2
/> foliocompare.vdl DATAFILE= "folio.dat" ! File with problem data Views
. : ) . . I o
model_resources MAXRISK = 1/3 ! Max. investment into high-risk values VewGroup VoLview C 8
folio.dat MAXVAL = 0.3 ! Max. investment per share s
) MINAM = 0.5 ! Min. investment into N.-American values  Name Type <
out end-parameters v @3 vain N
> () source 3
/> folioinsightxml.xml forward procedure readdata = Portfolio data VoL

folioinsightxml ®  Scenario comparison VDL
& omemep 1@insight.manage=input

nnhlic darlaratiane

Tableau Workbooks

__ Syncedless than aminute ago
Publish Insight ¢ 8 x
JIE Name Status

Run Publish Insigh| Command Runner: Publi... cwD ENV No workbooks found

(c) Copyright Fair Isaac Corporation 2001-2019. All rights reserved
Compiling with trace information to enable Insight debugging

Compiling source\folioinsightxml.mos to out\folioinsightxml.bim with -G
Writing folioinsightxml.zip

Publishing to Xpress Insight

App successfully uploaded.

Figure 9.5: Deploying an app to Xpres Insight

9.5.2 Working with the Xpress Insight Web Client

Open the Xpress Insight Web Client by directing your web browser to the Web Client entry page: with a
default desktop installation of Xpress Insight this will be the page
http://localhost:8860/insight
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fo [ =

N
& () ) http:/localhost:2860/insight/ P ~ & | = rico® Xpress Optimization

FICO® Xpress Optimization
HOME JOBS ADMIN DEMO USER ~ HELP ~

UPLOAD APP

No apps available

s e gEeEEercE B R\ AR USRS

Figure 9.6: Xpress Insight web client entry page

If you have currently loaded any apps in Insight these will show up on the Web Client entry page,
otherwise this page only displays the ‘Upload app’ icon. We now upload the app archive
folioinsightxml.zip that adds a VDL view definition file and an XML configuration file to the
archive folioinsight.zip. The Mosel model has been extended with the array ctrSol to store
some result and data values in a convenient format for display (note the use of annotation marker
!@insight .manage thatis required to inform Xpress Insight that these data are not input but result
values):

!'@insight.manage=result
public declarations

CTRS: set of string ! Constraint names
CTRINFO: set of string ! Constraint info type
CtrSol: dynamic array (CTRS,CTRINFO) of real ! Solution values

end-declarations

! Save solution values for GUI display

CtrSol:: ("Limit high risk shares", ["Activity","Lower limit","Upper limit"])
[LimitRisk.act, 0, MAXRISK]
CtrSol:: ("Limit North-American", ["Activity","Lower limit", "Upper limit"])

[LimitAM.act, MINAM, 1]
forall(s in SHARES | frac(s).sol>0) do
CtrSol ("Limit per value: "+s,"Activity"):= frac(s).sol

CtrSol("Limit per value: "+s,"Upper limit") := MAXVAL
CtrSol ("Limit per value: "+s,"Lower limit"):= 0
end-do

Optionally, we can also add annotations to individual declarations in order to configure the GUI display
of model entities:

public declarations

SHARES: set of string !@insight.alias Shares

RET: array (SHARES) of real !'Qinsight.alias Estimated return in investment
frac: array (SHARES) of mpvar !@insight.alias Fraction used

Return: linctr !@insight.alias Total return

TotalOne: linctr !@insight.hidden true

end-declarations
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Once you have successfully loaded the app archive, the app 'Portfolio Optimization’ will show up as a
new icon:

fo [ =

& G) 2| httpy//localhost:2860/insiht/ L-¢

FICO® Xpress Optimization
HOME JOBS ADMIN DEMO USER ~ HELP ~

&= FICO® Xpress Optimization %

UPLOAD APP

Portfolio optimization

Figure 9.7: Xpress Insight web client after loading the Portfolio app

Select the 'Portfolio Optimization’ app icon to open the app. Note that if you have deployed an app from
Workbench and followed the link 'Open in Xpress Insight’ you will immediately be taken to this page.

Portfolio optimization
HOME APP JOBS ADMIN DEMO USER ~ HELP ~

Click here to select scenarios

MAIN ~ Portfolio data Scenario comparison 52
(i} To start using this app, select one or more
scenarios by clicking on the shelf above.
(] Drag to change the order of scenarios on the shelf

Figure 9.8: App entry page

Now click on the text Click here to select scenarios in the shelf to create a scenario. In the 'Scenario
Explorer’ window, select ‘Scenario 1" and confirm with Close.
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Scenario Explorer

®New scenario.. s New folder..  cHiimport...
/

() Scenario 1

CLOSE DESELECT ALL

Figure 9.9: Scenario creation in the Xpress Insight web client

Use the Load entry from the drop-down menu on the scenario name in the shelf to load the baseline
data.

Portfolio optimization
HOME APP JOBS ADMIN DEMO USER ~ HELP ~

Click here to select scenarios

Deselect Scenario comparison

Run Please load or remove them to continue

K2
’%%

O One or more scenarios on the shelf are not loaded

Clone...
View Run Log...
Attachments...
Export...

Properties...

Figure 9.10: Scenario menu in the Xpress Insight web client

After loading the scenario the view display changes, showing the input data of our optimization model.
You can edit these data by entering new values into the input fields or table cells. Use the Run button on
the view or the corresponding entry in the scenario menu to run the model with the data shown on
screen.

Portfolio optimization

HOME APP JOBS ADMIN DEMO USER ~ HELP ~
Click here to select scenarios
MAIN ~ Portfolio data Scenario comparison [CX - §34
- - A
Configuration
Maximum investment into high-risk values 0.33333333 Shares = Estimated return in investment RUN OPTIMIZATION
bank 6.0
Maximum investment per share 03 —— 20
Minimum investment into North-American values 05 cars 70
electronics 21.0
harcware 17.0
highways 9.0
software 31.0
telecom 120
theater 26.0
treasury 50
v

no results available

Figure 9.11: Display after scenario loading

After a successful model run the placeholder message no results available in the lower half of our view
is replaced by the results display, as shown below.

Fair Isaac Corporation Confidential and Proprietary Information 59



Embedding a Mosel model in an application Getting started with Mosel

Portfolio optimization

HOME APP JOBS ADMIN DEMO USER ~ HELP ~
Click here to select scenarios
MAIN ~ Portfolio data Scenario comparison [CF « 334
Maximum investment into high-risk values 0.33333333: Shares = Estimated return in investment RUN OPTIMIZATION
bank 60 2
Maximum investment per share 03 e A
Minimum investment into North-American values 05 cars 70
electronics 210
hardware 170
highways 9.0
software 31.0
telecom 120
theater 26.0
treasury 50
Results
Total expected return: £14.07
PORTFOLIO COMPOSITION
Shares = Fraction used W teasury
bank 00 highways
brewery 0.0667 W theater
cars 00 M software
electronics 00 W brewery
hardware 00 | cars
. bank
highways 03
electronics
software 01333 B telecom
telecom oo W hardware
theater 02 v
treasury 03

Figure 9.12: VDL view with input and result data elements

You can create new scenarios from existing ones (selecting 'Clone’ in the scenario menu) or with the
original input data by selecting 'New scenario’ in the Scenario Explorer window. The results of multiple
scenarios can be displayed in a single view for comparison.

Portfolio optimization
HOME APP JOBS ADMIN DEMO USER ~ HELP ~

- [ @ Scenario 2 ~ [ @ Scenario 3 - el EECEREEREIEILE

MAIN - Portfoliodata  Scenario comparison Y-

Comparison of scenario results

Viewing 3 scenario(s).

CONSTRAINTS AND OBJECTIVE PORTFOLIO COMPOSITION E
Results Results Results Shares - Scenario 1 Scenario 2 Scenario 3
Constraints ~ * Scenario 1 Scenario 2 Scenario 3
bank 0.0 0.0 0.0
Largest position 03 02 04
brewery 0.0667 02 0.0
Total high risk 0.3333 0.3333 0.3333 [
e cars 00 0.0667 00
Total North- 05 05 05 electronics 00 00 00
American hardware 0.0 01 00
Total return 14.0667 128 14.2333 highways 03 02 0.2667
software 01333 0.0333 0.2333
telecom 0.0 0.0 0.0
theater 02 02 01
treasury 03 02 04

Figure 9.13: VDL view comparing several scenarios

9.5.2.1 VDL

VDL (View Definition Language) is a markup language for the creation of views for Xpress Insight apps
from a set of predefined components and built-in styling options. Optionally, VDL view definitions can
be extended with HTML tags and Javascript code for further customization.

Xpress Workbench includes a drag-and-drop editor for the creation and editing of VDL views. Within
Xpress Workbench, select menu File > New > Insight View (VDL) to launch the view creation dialog.
Enter 'Portfolio data’ as the view title and folio.vdl as the filename for the view and in the following
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screen select 'Basic view' layout before terminating the dialog with ‘Finish’. In the drag-and-drop editor
that now shows, drag objects from the palette on the left onto the central artboard area—when doing so
the editor will provide guidance regarding which combinations of objects are permitted (for example, a
‘row’ needs to contain ‘columns’ into which you can then add objects like 'table’, ‘chart’ or "text’).

2 folio.vdl - FICO® Xpress Workbench =laf x
+ Project File Edit Find View Goto Run Tools Window Help folioinsightaml mos M O = -o-
3 LAYOUT B Welome @ folioinsightxml > folic.vdl x SECTION ¥
& H
[ View Designer | Code Heading 13
Section Row Configuratior] 3
£ !
T Heading level +
o Section
H 6
| Column || Comtainer Portfolio data 2 | ey <
3
g
e Layout =
COMPONENTS fixed (default) v ¢
o)
Table o
Table Column R Section STVLE g
Configuration Height g
Chart P
‘ Chart Series z
Color EE
B
3
b
Index Filter B
If Open Wizard
Celumn
‘ orm ‘ ruid ‘
Visible' Open Wizard
Button ‘ Text ‘

Figure 9.14: VDL view designer in Xpress Workbench

The attributes for the currently selected element in the editor can be edited in the pane on the right
hand side.

# folio.vdl - FICO® Xpress Workbench =g x
. Project File Edit Find View Goto Run Tools Window Help folioinsight mos RO TR s ol
3 LAYOUT B Welcome % foliodl x BUTTON ¥
o 3
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Section Row . secuon Run optimization 2
Configuration &
Execution mode =
Column || Container Fow] RUN =
g
Column Column Target entity g
COMPONENTS sl ©
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5] =) &1 o
Table Target value g
Table o jod
olumn Maximum investment into RET RUN s
high-risk values OPTIMIZATION <
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Series
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Button Text
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Results oot openWizara
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Figure 9.15: VDL view designer: editing view elements

For certain elements (table, chart) specific dialog windows will open to guide the user through their
configuration.
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% foliovdl - FICO® Xpress Workbench

Table wizard

—
SELECT DATA

Search Table ¥ Show related entities only

Entity
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|
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RET Estimated return in investment
array(SHARES) of real input
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0 entities selected

CANCEL PREVIOUS FINISH

Figure 9.16: VDL view designer: table definition wizard

Note that at any time during the editing of VDL views in Workbench the app can be published to Insight
by selecting the button =* in order to inspect the actual appearance of the web views when they are
populated with scenario data.

The view 'Portfolio data’ shown as web view in Figure 9.12 and in the VDL designer in Figure 9.15 is
created entirely from the following VDL view definition (file folio.vd1l in the subdirectory

client_resources of the app archive). All data entities marked as 'editable’ can be modified by the
Ul user.

<vdl version="4.7">

<vdl-page>
<!-- VDL header and 'page' must always be present ——>
<!-- Structural element 'section': print header text for a section -->

<vdl-section heading="Configuration">

<!-- Structural element 'row': arrange contents in rows -->
<vdl-row>
<!-- Several columns within a 'row' for display side-by-side,
dividing up the total row width of 12 via 'size' setting
on each column. —-—>
<vdl-column size="5">
<!-- A form groups several input elements -->
<vdl-form>
<!-- Input fields for constraint limits -->

<vdl-field parameter="MAXRISK" size="3" label-size="9"
label="Maximum investment into high-risk values"/>
<vdl-field parameter="MAXVAL" size="3" label-size="9"
label=" Maximum investment per share"/>
<vdl-field parameter="MINAM" size="3" label-size="9"
label="Minimum investment into North-American values" />
<!-- default sizes: 2 units each -->
</vdl-form>
</vdl-column>
<vdl-column size="4">
<!-- Display editable input values, default table format -->
<vdl-table>
<vdl-table-column entity="RET" editable="true"/>
</autotable>
</vdl-column>

Fair Isaac Corporation Confidential and Proprietary Information 62



Embedding a Mosel model in an application Getting started with Mosel

<vdl-column size="3">
<vdl-form>
<!—— 'Run' button to launch optimization -->
<vdl-execute-button caption="Run optimization"/>
</vdl-form>
</vdl-column>
</vdl-row>
</vdl-section>

<!-- Placeholder message for 'Results' section -->
<vdl-container vdl-if="=!scenario.summaryData.hasResultData">
<span vdl-text="no results available"></span></vdl-container>

<!—-— Structural element 'section';
display: with option 'none' nothing gets displayed by default
if hasResultData: display section once result values become available
(after scenario execution) -->
<vdl-section heading="Results"
vdl-if="=scenario.summaryData.hasResultData" style="display: none">

<vdl-row>
<vdl-column>
<!-- Display text element with the objective value -->
<span vdl-text="='Total expected return: &#163;' +
insight.Formatter.formatNumber (scenario.entities.Return.value,
"#4.00') "></span>
</vdl-column>
</vdl-row>

<vdl-row>
<vdl-column size="4" heading="Portfolio composition">
<!-- Display the 'frac' solution values, default table format -->
<vdl-table>
<vdl-table-column entity="frac"></vdl-table-column>
</vdl-table>
</vdl-column>
<vdl-column size="8">
<!-- Display the 'frac' solution values as a pie chart -->
<vdl-chart style="width:400px; ">
<vdl-chart-series entity="frac" type="pie"></vdl-chart-series>
</vdl-chart>
</vdl-column>
</vdl-row>
</vdl-section>
</vdl-page>
</vdl>

VDL views need to be declared in an app archive via an XML configuration file (the so-called companion
file). When VDL views are created via the view designer in Workbench then the required entry is added
automatically to this file. Companion files can also be created and edited using the Workbench editor
(select File > New > Companion file ). The following companion file definition integrates the VDL view
folio.vdl and a second view 'Scenario comparison’ into our example app folioinsightxml.zip.

<?xml version="1.0" encoding="iso-8859-1"7?>
<model-companion version="3.0"
xmlns="http://www.fico.com/xpress/optimization-modeler/model-companion" >
<client>
<view-group title="Main">
<vdl-view title="Portfolio data" default="true" path="folio.vdl" />
<vdl-view title="Scenario comparison" default="false" path="foliocompare.vdl"/>
</view-group>
</client>
</model-companion>
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CHAPTER 10

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to implement the model
with BCL. With some extensions to the initial formulation we also introduce input and output
functionalities of BCL:

m writing an LP model with BCL,

m data input from file using index sets,

m output facilities of BCL,

m exporting a problem to a matrix file.

Chapter 3 shows how to formulate and solve the same example with Mosel and in Chapter 15 the
problem is input and solved directly with Xpress Optimizer.

10.1 Implementation with BCL

All BCL examples in this book are written with C++. Due to the possibility of overloading arithmetic
operators in the C++ programming language, this interface provides the most convenient way of stating
models in a close to algebraic form. The same models can also be implemented using the C, Java, or
C# interfaces of BCL.

The following BCL program implements the LP example introduced in Chapter 2:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares

#define NRISK 5 // Number of high-risk shares

#define NNA 4 // Number of North-American shares
double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares

int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char **argv)
{

int s;
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XPRBprob p("FolioLP"); // Initialize a new problem in BCL
XPRBexpr Risk, Na,Return, Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for (s=0; s<NSHARES; s++) frac[s] = p.newVar ("frac");

// Objective: total return
for (s=0; s<NSHARES; s++) Return += RET[s]*frac[s];
p.setObj (Return) ; // Set the objective function

// Limit the percentage of high-risk values
for (s=0; s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr ("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[NA[s]];
p.newCtr ("NA", Na >= 0.5);

// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac[s];
p.newCtr ("Cap", Cap == 1);

// Upper bounds on the investment per share
for (s=0; s<NSHARES; s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense (XPRB_MAXIM) ;
p.lpOptimize("");

// Solution printing

cout << "Total return: " << p.getObjVal() << endl;
for (s=0; s<NSHARES; s++)
cout << s << ": " << frac[s].getSol()*100 << "$" << endl;

return O;

}

Let us now have a closer look at what we have just written.

Initialization

To use the BCL C++ interface you need to include the header file xprb_cpp.h. We also define the
namespace to which the BCL classes belong.

If the software has not been initialized previously, BCL is initialized automatically when the first problem
is created, that is by the line

XPRBprob p("FolioLP");

which creates a new problem with the name ‘FolioLP’.

General structure

The definition of the model itself starts with the creation of the decision variables (method newvar),
followed by the definition of the objective function and the constraints. In C++ (and Java, C#)
constraints may be created starting with linear expressions as shown in the example. Equivalently, they
may be constructed termwise, for instance the constraint limiting the percentage of high-risk shares:

XPRBctr CRisk;

CRisk = p.newCtr ("Risk");

for (s=0; s<NRISK; s++) CRisk.addTerm(frac[RISK[s]], 1);
CRisk.setType (XPRB_L) ;

CRisk.addTerm(1.0/3);
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10.2

This second type of constraint definition is common to all BCL interfaces and is the only method of
defining constraints in C where overloading is not available.

Notice that in the definition of equality constraints (here the constraint stating that we wish to spend all
the capital) we need to employ a double equality sign ==.

The method setUB is used to set the upper bounds on the decision variables £rac. Alternatively to this
separate function call, we may also specify the bounds directly at the creation of the variables, but in
this case we need to provide the full information including the name, variable type (XxPRB_PL for
continuous), lower and upper bound values:

for (s=0; s<NSHARES; s++) frac[s] = p.newVar ("frac", XPRB_PL, 0, 0.3);

Giving string names to modeling objects (decision variables, constraints, etc.) as shown in our example
program is optional. If the user does not specify any name, BCL will generate a default name. However,
user-defined names may be helpful for debugging and for the interpretation of output produced by the
Optimizer.

Solving

Prior to launching the solver, the optimization direction is set to maximization with a call to setSense.
With the method 1pOptimize we then call Xpress Optimizer to maximize the objective function
(Return) set with the method set0Ob3j, subject to all constraints that have been defined. The empty

string argument of 1pOptimize indicates that the default LP algorithm is to be used. Other possible
values are "p" for primal, "d" for dual Simplex, and "b" for Newton-Barrier.

Output printing

The last few lines print out the value of the optimal solution and the solution values for all variables.

Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer and BCL, you may compile
this file with the following command under Windows (note that it is important to use the flag /MD):

cl /MD /I%$XPRESSDIR%\include $XPRESSDIR%\lib\xprb.lib foliolp.cpp
For Linux or Solaris use

cc —-D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.C -o foliolp -lxprb

For other systems please refer to the example makefile provided with the corresponding distribution.

Running the resulting program will generate the following output:

Reading Problem FolioLP
Problem Statistics

3 0 spare) rows
10 ( 0 spare) structural columns
19 ( 0 spare) non-zero elements
Global Statistics
0 entities 0 sets 0 set members

Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:
3 rows 10 cols 19 elements
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Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0

Uncrunching matrix
Optimal solution found
Dual solved problem
5 simplex iterations in Os

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances
Problem status: optimal
Total return: 14.0667
0: 30%

0%

20%

0%

6.66667%

30%

0%

0%

13.3333%

0%

O oo ~Joy U WN KK

The upper half of this display is the log of Xpress Optimizer: the size of the matrix, 3 rows (i.e.
constraints) and 10 columns (i.e. decision variables), and the log of the LP solution algorithm (here: ‘D’
for dual Simplex). The lower half is the output produced by our program: the maximum return of
14.0667 is obtained with a portfolio consisting of shares 1, 3, 5, 6, and 9. 30% of the total amount are
spent in shares 1 and 6 each, 20% in 3,13.3333% in 9 and 6.6667% in 5. It is easily verified that all
constraints are indeed satisfied: we have 50% of North-American shares (1 and 3) and 33.33% of
high-risk shares (3 and 9).

It is possible to modify the amount of output printing by BCL and Xpress Optimizer by adding the
following line before the start of the optimization:

p.setMsgLevel (1) ;

This setting will disable all output (including warnings) from BCL and Xpress Optimizer, with the
exception of error messages. The possible values for the printing level range from 0 to 4. In Chapter 13
we show how to access the Optimizer control parameters directly which, for instance, allows fine
tuning the message display.

10.3 Data input from file

Instead of simply numbering the decision variables, we may wish to use more meaningful indices in our
model. For instance, the problem data may be given in file(s) using string indices such as the file
foliocpplp.dat we now wish to read:

! Return
"treasury" 5
"hardware" 17
"theater" 26
"telecom" 12
"brewery" 8
"highways" 9
"cars" 7
"bank" 6
"software" 31
"electronics" 21
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We modify our previous model as follows to work with this data file:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace

#define DATAFILE "foliocpplp.dat"
#define NSHARES 10

#define NRISK 5

#define NNA 4

double RET[NSHARES];
char RISK[][100] = {"hardware",

"electronics"};
"hardware",

char NA[][100] = {"treasury",

XPRBindexSet SHARES;
XPRBprob p("FolioLP");

void readData (void)
{
double value;
int s;
FILE *datafile;
char name[100];

SHARES=p.newIndexSet ("Shares", NSHARES) ;

// Read 'RET' data from file
datafile=fopen (DATAFILE, "r");
for (s=0; s<NSHARES; s++)

{

XPRBreadlinecb (XPRB_FGETS,
RET [SHARES+=name]=value;

}

fclose (datafile);

SHARES.print () ;
}

int main(int argc,
{

int s;

XPRBexpr Risk,Na,Return, Cap;
XPRBvar frac[NSHARES];

char **argv)

// Read data from file
readData () ;

// Create the decision variables
for (s=0; s<NSHARES; s++) frac[s] =

// Objective: total return
for (s=0; s<NSHARES; s++) Return +=
p.setObj (Return);

"theater",

datafile,

: :dashoptimization;

// Number of shares
// Number of high-risk shares
// Number of North-American shares

// Estimated return in investment
"telecom", "software",

// High-risk values among shares
"theater", "telecom"};

// Shares issued in N.-America

// Set of shares

// Initialize a new problem in BCL

// Create the ‘SHARES' index set

200, "T g", name, &value);

// Print out the set contents

// Fraction of capital used per share

p.newVar ("frac");

RET[s]*xfrac[s];
// Set the objective function

// Limit the percentage of high-risk values
for (s=0; s<NRISK; s++) Risk += frac[SHARES[RISK[s]]];

p.newCtr ("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[SHARES[NA[s]]];

p.newCtr ("NA", Na >= 0.5);
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// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac[s];
p.newCtr ("Cap", Cap == 1);

// Upper bounds on the investment per share
for (s=0; s<NSHARES; s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense (XPRB_MAXIM) ;
p.lpOptimize("");

// Solution printing

cout << "Total return: " << p.getObjvVal() << endl;

for (s=0; s<NSHARES; s++)

cout << SHARES[s] << ": " << frac[s].getSol()=*100 << "&" << endl;
return 0;

}

The arrays RISK and NA now store indices in the form of strings and we have added a new object, the
index set SHARES that is defined while the return-on-investment values RET are read from the data file.
In this example we have initialized the index set with exactly the right size. This is not really necessary
since index sets may grow dynamically if more entries are added to them than the initially allocated
space. The actual set size can be obtained with the method getsize.

For reading the data we use the function XPRBreadlinecb. It will skip comments preceded by ! and
any empty lines in the data file. The format string "T g" indicates that we wish to read a text string
(surrounded by single or double quotes if it contains blanks) followed by a real number, the two
separated by spaces (including tabulation). If the data file used another separator sign such as ‘; then
the format string could be changed accordingly (e.g. "T, g").

In the model itself, the definition of the linear expressions Risk and Na has been adapted to the new
indices.

Another modification concerns the solution printing: we print the name of every share, not simply its
sequence number and hence the solution now gets displayed as follows:

Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%

bank: 0%

software: 13.3333%
electronics: 0%

Output functions and error handling

Most BCL modeling objects (XPRBprob, XPRBvar, XPRBctr, XPRBsos, and XPRBindexSet) have a
method print. For variables, depending on where the method is invoked either their bounds or their
solution value is printed: adding the line

frac([2] .print();
before the call to the optimization will print the name of the variable and its bounds,
frac2: [0,0.3]

whereas after the problem has been solved its solution value gets displayed:
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frac2: 0.2

Whenever BCL detects an error it stops the program execution with an error message so that it will
usually not be necessary to test the return value of every operation. If a BCL program is embedded into
some larger application, it may be helpful to use the explicit initialization to check early on that the
software can be accessed correctly, for instance:

if (XPRB::init () != 0)

{
cout << "Initialization failed." << endl;
return 1;

}

The method getLPStat may be used to test the LP problem status. Only if the LP problem has been
solved successfully BCL will return or print out meaningful solution values:

char *LPSTATUS[] = {"not loaded", "optimal", "infeasible",
"worse than cutoff", "unfinished", "unbounded",
"cutoff in dual", "unsolved", "nonconvex"};
cout << "Problem status: " << LPSTATUS[p.getLPStat()] << endl;

Exporting matrices

If the optimization process with Xpress Optimizer is started from within a BCL program (methods
1pOptimize or mipOptimize of XPRBprob), then the problem matrix is loaded in memory into the
solver without writing it out to a file (which would be expensive in terms of running time). However, in
certain cases it may still be required to be able to produce a matrix. With Xpress, the user has the
choice between two matrix formats: extended MPS and extended LP format, the latter being in general
more easily human-readable since constraints are printed in algebraic form.

To export a matrix in MPS format add the following line to your BCL program, immediately before or
instead of the optimization statement; this will create the file Folio.mat in your working directory:

p.exportProb (XPRB_MPS, "Folio");
For an LP format matrix use the following:

p.setSense (XPRB_MAXIM) ;
p.exportProb (XPRB_LP, "Folio");

The LP format contains information about the sense of optimization. Since the default is to minimize,
for maximization we first need to reset the sense. The resulting matrix file will have the name
Folio.lp.
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Mixed Integer Programming

This chapter extends the model developed in Chapter 10 to a Mixed Integer Programming (MIP)
problem. It describes how to

m define different types of discrete variables,
m get the MIP solution status and understand the MIP optimization log produced by Xpress

Optimizer.

Chapter 6 shows how to formulate and solve the same example with Mosel and in Chapter 16 the
problem is input and solved directly with Xpress Optimizer.

11.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities to
formulate this constraint:

1. Limiting the number of different shares taken into the portfolio.

2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

11.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set of
variables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1if the share s is taken into the portfolio and 0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of MAXNUM. It
expresses the constraint that at most MAXNUM of the variables buys may take the value 1 at the same
time.
> buys < MAXNUM
SESHARES

We now still need to link the new binary variables buys with the variables fracs, the quantity of every
share selected into the portfolio. The relation that we wish to express is ‘if a share is selected into the
portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1'. The following
inequality formulates this implication:

Vs € SHARES : fracs < buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at
0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that these
constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matter
in our case, since any solution in which this is the case is also valid with both variables, buys and fracs,
at 0.

Implementation with BCL

We extend the LP model developed in Chapter 10 with the new variables and constraints. The fact that
the new variables are binary variables (i.e. they only take the values 0 and 1) is expressed through the
type XPRB_BV at their creation.

Another common type of discrete variable is an integer variable, that is, a variable that can only take on
integer values between given lower and upper bounds. These variables are defined in BCL with the type
XPRB_UTI. In the following section (MIP model 2) we shall see yet another example of discrete
variables, namely semi-continuous variables.

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected
#define NSHARES 10 // Number of shares

#define NRISK 5 // Number of high-risk shares

#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares

int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char x*xargv)

{

int s;

XPRBprob p("FolioMIP1"); // Initialize a new problem in BCL
XPRBexpr Risk,Na, Return,Cap, Num;

XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy [NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables (including upper bounds for “frac')
for (s=0; s<NSHARES; s++)

{

frac[s] = p.newVar ("frac", XPRB_PL, 0, 0.3);

buy[s] = p.newVar ("buy", XPRB_BV);

}

// Objective: total return
for (s=0; s<NSHARES; s++) Return += RET[s]*frac[s];
p.setObj (Return) ; // Set the objective function

// Limit the percentage of high-risk values
for (s=0; s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr (Risk <= 1.0/3);

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[NA[s]];
p.newCtr (Na >= 0.5);

// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac[s];
p.newCtr (Cap == 1);

// Limit the total number of assets

Fair Isaac Corporation Confidential and Proprietary Information 73



Mixed Integer Programming Getting started with BCL

for (s=0; s<NSHARES; s++) Num += buy[s];
p.newCtr (Num <= MAXNUM) ;

// Linking the variables
for (s=0; s<NSHARES; s++) p.newCtr (frac[s] <= buyl[s]);

// Solve the problem
p.setSense (XPRB_MAXIM) ;
p.mipOptimize ("");

// Solution printing

cout << "Total return: " << p.getObjval() << endl;

for (s=0; s<NSHARES; s++)

cout << s << ": " << frac[s].getSol()*100 << "% (" << buyl[s].getSol()
<< ")" << endl;

return 0;

}

Besides the additional variables and constraints, the choice of optimization algorithm needs to be
adapted to the problem type: we now wish to solve a MIP problem via Branch-and-Bound, and we
therefore use the method mipOptimize.

Just as with the LP problem in the previous chapter, it is usually helpful to check the solution status
before accessing the MIP solution—only if the MIP status is ‘unfinished (solution found)’ or ‘optimal’
will BCL print out a meaningful solution:

char *MIPSTATUS[] = {"not loaded", "not optimized", "LP optimized",
"unfinished (no solution)",
"unfinished (solution found)", "infeasible",

"optimal", "unbounded"};

cout << "Problem status: " << MIPSTATUS[p.getMIPStat ()] << endl;

11.2.2 Analyzing the solution
As the result of the execution of our program we obtain the following output:

Reading Problem FolioMIP1
Problem Statistics
14 ( 514 spare) rows
20 ( 0 spare) structural columns
49 ( 5056 spare) non-zero elements
Global Statistics
10 entities 0 sets 0 set members
Maximizing MILP FolioMIP1
Original problem has:

14 rows 20 cols 49 elements 10 globals
Presolved problem has:
13 rows 19 cols 46 elements 9 globals

LP relaxation tightened
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, Os
Dual

objective dual inf
D 14.066667 .0000000
——————— optimal —-——-————-
Concurrent statistics:

Dual: 4 simplex iterations, 0.00s

Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
4 14.066667 D 0 0 .000000 0
Dual solved problem
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4 simplex iterations in Os

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 5.551e-17 / 5.551e-17
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
c 13.100000 14.066667 1 6.87
1 K 13.100000 13.908571 1 1 0 5.81 0
2 K 13.100000 13.580000 1 12 0 3.53 0
**x*x Search completed *x*=x Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100014

Uncrunching matrix
Problem status: optimal
Total return: 13.1
0: 20% (1)

0% (0)

30% (1)

0% (0)

20% (1)

30% (1)

0% (0)

0% (0)

0% (0)

0% (0)

W oo ~Jo U WDN K

At the beginning we see the log of the execution of Xpress Optimizer: the problem statistics (we now
have 14 constraints and 20 variables, out of which 10 are MIP variables, refered to as ‘entities’), the log
of the execution of the LP algorithm (concurrently solving with primal and dual simplex on a multi-core
processor), the log of the built-in MIP heuristics (a solution with the value 13.1 has been found) and the
automated cut generation (a total of 13 cuts of type ‘K’ = knapsack have been generated). Since this
problem is very small, it is solved by the MIP heuristics and the addition of cuts (additional constraints
that cut off parts of the LP solution space, but no MIP solution) tightens the LP formulation in such a
way that the solution to the LP relaxation becomes integer feasible. The Branch-and-Bound search
therefore stops at the first node and no log of the Branch-and-Bound search gets displayed.

The output printed by our program tells us that the problem has been solved to optimality (i.e. the MIP
search has been completed and at least one integer feasible solution has been found). The maximum
return is now lower than in the original LP problem due to the additional constraint. As required, only
four different shares are selected to form the portfolio.

11.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 10. The
new constraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10% of the
budget is spent on the share.’ Instead of simply constraining every variable fracs to take a value
between 0 and 0.3, it now must either lie in the interval between 0.1 and 0.3 or take the value 0. This
type of variable is known as semi-continuous variable. In the new model, we replace the bounds on the
variables fracs by the following constraint:

Vs € SHARES : fracs =0 or 0.1 < fracs < 0.3
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11.3.1 Implementation with BCL

The following program implements the MIP model 2. The semi-continuous variables are defined by the
type XPRB_SC. By default, BCL assumes a continuous limit of 1, se we need to set this value to 0.1 with
the method setLim.

A similar type is available for integer variables that take either the value 0 or an integer value between a
given limit and their upper bound (so-called semi-continuous integers): XPRB_SI. A third composite
type is a partial integer which takes integer values from its lower bound to a given limit value and is
continuous beyond this value (marked by XPRB_P1I).

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares

#define NRISK 5 // Number of high-risk shares

#define NNA 4 // Number of North-American shares
double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares

int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char **argv)

{

int s;

XPRBprob p("FolioSC"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return, Cap;

XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for (s=0; s<NSHARES; s++)
{
frac[s] = p.newVar ("frac", XPRB_SC, 0, 0.3);
frac[s].setLim(0.1);
}

// Objective: total return
for (s=0; s<NSHARES; s++) Return += RET[s]*frac[s];
p.setObj (Return) ; // Set the objective function

// Limit the percentage of high-risk values
for (s=0; s<NRISK; s++) Risk += frac[RISK[s]];
p.newCtr (Risk <= 1.0/3);

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[NA[s]];
p.newCtr (Na >= 0.5);

// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac(s];
p.newCtr (Cap == 1);

// Solve the problem
p.setSense (XPRB_MAXIM) ;
p.mipOptimize ("");

// Solution printing

cout << "Total return: " << p.getObjVal() << endl;

for (s=0; s<NSHARES; s++)

cout << s << ": " << frac[s].getSol()*100 << "$" << endl;
return 0;

}
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When executing this program we obtain the following output (leaving out the part printed by the
Optimizer):

Total return: 14.0333
30%

0%

20%

0%

10%
26.6667%
0%

0%
13.3333%
0%

W oo JoyUd WDNREO

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the total
investment. Due to the additional constraint, the optimal MIP solution value is again lower than the
initial LP solution value.
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Quadratic Programming

12.1

12.2

In this chapter we turn the LP problem from Chapter 10 into a Quadratic Programming (QP) problem,
and the first MIP model from Chapter 11 into a Mixed Integer Quadratic Programming (MIQP) problem.
The chapter shows how to

m define quadratic objective functions,

m incrementally define and solve problems.

Chapter 7 shows how to formulate and solve the same examples with Mosel and in Chapter 17 the QP
problem is input and solved directly with Xpress Optimizer.

Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes to
minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of getting
estimates of the variance/covariance matrix of estimated returns on the securities. (For example,
hardware and software company worths tend to move together, but are oppositely correlated with the
success of theatrical production, as people go to the theater more when they have become bored with
playing with their new computers and computer games.) The return on theatrical productions are highly
variable, whereas the treasury bill yield is certain.

Question 1: Which investment strategy should the investor adopt to minimize the variance subject to
getting some specified minimum target yield?

Question 2: Which is the least variance investment strategy if the investor wants to choose at most four
different securities (again subject to getting some specified minimum target yield)?

The first question leads us to a Quadratic Programming problem, that is, a Mathematical Programming
problem with a quadratic objective function and linear constraints. The second question necessitates
the introduction of discrete variables to count the number of securities, and so we obtain a Mixed
Integer Quadratic Programming problem. The two cases will be discussed separately in the following
two sections.

QP

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to make
the following changes:

m New objective function: mean variance instead of total return.
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12.2.1

m The risk-related constraint disappears.

m Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:

>~ VARg - fracs - fracy
S,teSHARES

where VARg; is the variance/covariance matrix of all shares. This is a quadratic objective function (an
objective function becomes quadratic either when a variable is squared, e.g., frac12, or when two
variables are multiplied together, e.g., frac - fracy).

The target yield constraint can be written as follows:

> RETs-fracs > TARGET
SESHARES

The limit on the North-American shares as well as the requirement to spend all the money, and the
upper bounds on the fraction invested into every share are retained. We therefore obtain the following
complete mathematical model formulation:

minimize > VARg - fracs - frac
st€SHARES

Z fracs > 0.5
SeNA

Z fracs = 1
SESHARES

Z RETs - fracs > TARGET
seSHARES
Vs € SHARES : 0 < fracg < 0.3

Implementation with BCL

The estimated returns and the variance/covariance matrix are given in the data file
foliocppgp.dat:

! trs haw thr tel brw hgw car bnk sof elc

0.1 0 0 0 0 0 0 0 0 0 ! treasury
0 19 -2 4 1 1 1 0.5 10 5 ! hardware
0 -2 28 1 2 1 1 0 -2 -1 ! theater
0 4 1 22 0 1 2 0 3 4 ! telecom
0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
0 10 -2 3 1 1 1 0.5 25 8 ! software
0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics

We may read this datafile with the function XxPRBreadarrlinechb: all comments preceded by ! and
also empty lines are skipped. We read an entire line at once indicating the format of an entry (‘g’) and
the separator (any number of spaces or tabulations).

For the definition of the objective function we now use a quadratic expression (equally represented by
the class XPRBexpr). Since we now wish to minimize the problem, we use the default optimization
sense setting and optimization as a continuous problem is again started with the method 1poptimize
(with empty string argument indicating the default algorithm).
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#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define DATAFILE "foliocppgp.dat"

#define TARGET 9 // Target yield

#define MAXNUM 4 // Max. number of different assets
#define NSHARES 10 // Number of shares

#define NNA 4 // Number of North-American shares
double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int NA[] = {0,1,2,3}; // Shares issued in N.-America

double VAR[NSHARES] [NSHARES]; // Variance/covariance matrix of

// estimated returns

int main(int argc, char **xargv)

{

int s, t;

XPRBprob p("FolioQP"); // Initialize a new problem in BCL
XPRBexpr Na,Return, Cap,Num,Variance;

XPRBvar frac[NSHARES]; // Fraction of capital used per share

FILE *datafile;

// Read ‘VAR' data from file
datafile=fopen (DATAFILE, "r");
for (s=0; s<NSHARES; s++)
XPRBreadarrlinecb (XPRB_FGETS, datafile, 200, "g ", VAR[s], NSHARES);
fclose (datafile);

// Create the decision variables
for (s=0; s<NSHARES; s++)
frac[s] = p.newVar (XPRBnewname ("frac(%d)",s+1), XPRB_PL, 0, 0.3);

// Objective: mean variance

for (s=0; s<NSHARES; s++)

for (t=0; t<NSHARES; t++) Variance += VAR([s] [t]*frac[s]*frac[t];
p.setObj (Variance); // Set the objective function

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[NA[s]];
p.newCtr (Na >= 0.5);

// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac[s];
p.newCtr (Cap == 1);

// Target yield
for (s=0; s<NSHARES; s++) Return += RET[s]*frac[s];
p.newCtr (Return >= TARGET) ;

// Solve the problem
p.lpOptimize("");

// Solution printing
cout << "With a target of " << TARGET << " minimum variance is " <<
p.getObjval () << endl;
for (s=0; s<NSHARES; s++)
cout << s << ": " << frac[s].getSol()*100 << "&" << endl;

return 0;

}

This program produces the following solution output with a dual-core processor (notice that the default
algorithm for solving QP problems is Newton-Barrier, not the Simplex as in all previous examples):
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Reading Problem FolioQP
Problem Statistics

3 0 spare) rows
10 ( 0 spare) structural columns
24 ( 0 spare) non-zero elements

76 quadratic elements
Global Statistics
0 entities
Minimizing QP FolioQP
Original problem has:
3 rows
76 gobjelem
Presolved problem has:
3 rows
76 gobjelem
Barrier cache sizes
Using AVX support
Cores per CPU (CORESPERCPU): 8

0 sets 0 set members

10 cols 24 elements

10 cols 24 elements

L1=32K L2=8192K

Barrier starts, using up to 8 threads, 4 cores
Matrix ordering - Dense cols.: 9 NZ (L) : 92 Flops: 584
Its P.inf D.inf U.inf Primal obj. Dual obj. Compl.
0 1.90e+001 1.85e+002 3.70e+000 8.7840000e+002 -1.1784000e+003 4.5e+003
1 1.69e-001 1.58e+000 3.29e-002 7.1810240e+000 -2.7042733e+002 3.1le+002
2 3.31e-003 1.48e-002 6.45e-004 5.1672666e+000 -1.2127681e+001 1.7e+001
3 6.12e-007 2.66e-015 2.78e-017 1.5558934e+000 -4.8803143e+000 6.4e+000
4 9.71e-017 1.39e-015 2.78e-017 7.2498306e-001 1.4062618e-001 5.8e-001
5 3.64e-017 1.0le-015 5.55e-017 5.6634270e-001 5.2690100e-001 3.9e-002
6 3.97e-017 7.15e-016 5.55e-017 5.5894833e-001 5.5591229e-001 3.0e-003
7 1.22e-016 1.33e-015 5.55e-017 5.5760205e-001 5.5726378e-001 3.4e-004
8 9.18e-017 1.68e-015 5.55e-017 5.5741308e-001 5.5738503e-001 2.8e-005
9 2.36e-016 3.29e-016 5.55e-017 5.5739403e-001 5.5739328e-001 7.5e-007
Barrier method finished in 0 seconds

Uncrunching matrix
Optimal solution found
Barrier solved problem

9 barrier iterations in Os

Final objective 5.573940299651456e-01

Max primal violation (abs / rel) 7.347e-17 / 7.347e-17
Max dual violation (abs / rel) 0.0 / 0.0
Max complementarity viol. (abs / rel) 6.075e-07 / 1.012e-07

All values within tolerances

With a target of 9 minimum variance is 0.557394
0: 30%

1: 7.15401%

2: 7.38237%

3: 5.46362%

4: 12.6561%

5: 5.91283%

6: 0.333491%

7: 29.9979%

8: 1.0997%

9: 6.97039e-06%

12.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may be
selected into the portfolio, subject to all other constraints of the previous QP model. In Chapter 11 we
have already seen how this can be done, namely by introducing an additional set of binary decision
variables buys that are linked logically to the continuous variables:

Vs € SHARES : fracs < buys

Through this relation, a variable buys will be at 1if a fraction fracs greater than 0 is selected into the
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portfolio. If, however, buys equals 0, then fracs must also be 0.
To limit the number of different shares in the portfolio, we then define the following constraint:

> buys < MAXNUM
SESHARES

12.3.1 Implementation with BCL

We may modify the previous QP model or simply append the following lines to the program of the
previous section, just after the solution printing: the problem is then solved once as a QP and once as a
MIQP in a single program run.

XPRBvar buy [NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables
for (s=0; s<NSHARES; s++)
buy[s] = p.newVar (XPRBnewname ("buy (%d)", s+1), XPRB_BV);

// Limit the total number of assets
for (s=0; s<NSHARES; s++) Num += buy[s];
p.newCtr (Num <= MAXNUM) ;

// Linking the variables
for (s=0; s<NSHARES; s++) p.newCtr (frac[s] <= buyl[s]);

// Solve the problem
p.mipOptimize ("");

// Solution printing
cout << "With a target of " << TARGET << " and at most " << MAXNUM <<

" assets, minimum variance is " << p.getObjVval() << endl;
for (s=0; s<NSHARES; s++)
cout << s << ": " << frac[s].getSol()*100 << "% (" << buy[s].getSol()
<< ")" << endl;

When executing the MIQP model, we obtain the following solution output:

Reading Problem FolioQP
Problem Statistics

14 ( 514 spare) rows
20 ( 0 spare) structural columns
54 ( 5056 spare) non-zero elements

76 quadratic elements
Global Statistics
10 entities 0 sets 0 set members
Minimizing MIQP FolioQP
Original problem has:
14 rows 20 cols 54 elements 10 globals
76 gobjelem
Presolved problem has:
14 rows 20 cols 54 elements 10 globals
76 gobjelem
LP relaxation tightened
Will try to keep branch and bound tree memory usage below 14.8Gb
Crash basis containing 0 structural columns created

Its Obj Value S Ninf Nneg Sum Inf Time
0 .000000 P 1 4 .100000 0
8 .000000 P 0 0 .000000 0
8 4.609000 P 0 0 .000000 0
Its Obj Value S Nsft Nneg Dual Inf Time
27 .557393 QP 0 0 .000000 0

QP solution found
Optimal solution found
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Primal solved problem
27 simplex iterations in Os

Final objective
Max primal violation (abs / rel)
Max dual violation (abs / rel)
Max complementarity viol. (abs / rel)
All values within tolerances
Starting root cutting & heuristics
Its Type BestSoln BestBound Sols
a 4.094715 .557393 1
b 1.839000 .557393 2
q 1.825619 .557393 3
k 1.419003 .557393 4
1 K 1.419003 .557393 4
2 K 1.419003 .557393 4
3 K 1.419003 .557393 4
4 K 1.419003 .557393 4
5 K 1.419003 .557393 4
6 K 1.419003 .558122 4
7 K 1.419003 .570670 4
8 K 1.419003 .570670 4
9 K 1.419003 .583638 4
10 K 1.419003 .612496 4
11 K 1.419003 .618043 4
12 K 1.419003 .620360 4
13 K 1.419003 .620360 4

Heuristic search started
Heuristic search stopped

Cuts in the matrix : 14
Cut elements in the matrix : 138

Starting tree search.

Deterministic mode with up to 8 running threads and up to 16 tasks.

Node BestSoln BestBound
a 9 1.248762 .919281
*x* Search completed *x*x Time:

N, PO

.573934108103899%e
.804e-16 / 1.804e
.776e-15 / 1.776e
.670e-16 / 1.007e

Add Del

86.
69.
69.

60
60
60

60
60

[ =
OO U R U JOWw
[

fary
D O WwWNhwOVwOU DN O

Sols Active Depth
5 2 5 26
0 Nodes: 15

Number of integer feasible solutions found is 5

Best integer solution found is
Best bound is 1.248752
Uncrunching matrix

With a target of 9 and at most 4 assets,

0: 30% (1)
1: 20% (1)
2: 0% (0)
3: 0% (0)
4: 23.8095% (1)
5: 26.1905% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

The log of the Branch-and-Bound search tells us this time that 5 integer feasible solutions have been
found (all by the MIP heuristics) and a total of 15 nodes have been enumerated to complete the

1.248762

60.

60.
59.
59.
58.
56.
56.
56.
56.

-01
-16
-15
-16

Gap
39
69
47
.72
.72
.72
72
.72
.72
67
78
78
87
84
45
28
28

Gap
.38

minimum variance is 1.24876

GInf

OO O OO0 O0OOO0OOoOOoO oo

GInf

Time

Time

search.With the additional constraint on the number of different assets the minimum variance is more

than twice as large as in the QP problem.
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CHAPTER 13
Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves a heuristic
solution procedure interacting with Xpress Optimizer through

m parameter settings,

m saving and recovering bases, and

m modifications of variable bounds.

Chapter 8 shows how to implement the same heuristic with Mosel.

13.1 Binary variable fixing heuristic

The heuristic we wish to implement should perform the following steps:

1. Solve the LP relaxation and save the basis of the optimal solution

2. Rounding heuristic: Fix all variables ‘buy’ to 0 if they are close to 0, and to 1 if they have a relatively
large value.

3. Solve the resulting MIP problem.
4. If an integer feasible solution was found, save the value of the best solution.

5. Restore the original problem by resetting all variables to their original bounds, and load the saved
basis.

6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in this
case we may choose 0.2. In other applications, for binary variables a more suitable choice may be 1 -¢,
where ¢ is a very small value such as 107°.

Step 6: Setting a cutoff value means that we only search for solutions that are better than this value. If
the LP relaxation of a node is worse than this value it gets cut off, because this node and its
descendants can only lead to integer feasible solutions that are even worse than the LP relaxation.
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13.2

Implementation with BCL

For the implementation of the variable fixing solution heuristic we work with the MIP 1 model from
Chapter 11. Through the definition of the heuristic in a separate function we only make minimal
changes to the model itself: before solving our problem with the standard call to the method
mipOptimize we execute our own solution heuristic and the solution printing also has been adapted.

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected
#define NSHARES 10 // Number of shares

#define NRISK 5 // Number of high-risk shares

#define NNA 4 // Number of North-American shares

void solveHeur () ;

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares

int NA[] = {0,1,2,3}; // Shares issued in N.-America

XPRBprob p("FolioMIPHeur"); // Initialize a new problem in BCL

XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

int main(int argc, char **argv)

{

int s;

XPRBexpr Risk,Na,Return,Cap, Num;

// Create the decision variables (including upper bounds for “frac')
for (s=0; s<NSHARES; s++)

{

frac[s] = p.newVar ("frac", XPRB_PL, 0, 0.3);

buy[s] = p.newVar ("buy", XPRB_BV);

}

// Objective: total return
for (s=0; s<NSHARES; s++) Return += RET[s]*frac[s];
p.setObj (Return) ; // Set the objective function

// Limit the percentage of high-risk values
for (s=0; s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr (Risk <= 1.0/3);

// Minimum amount of North-American values
for (s=0; s<NNA; s++) Na += frac[NA[s]];
p.newCtr (Na >= 0.5);

// Spend all the capital
for (s=0; s<NSHARES; s++) Cap += frac([s];
p.newCtr (Cap == 1);

// Limit the total number of assets
for (s=0; s<NSHARES; s++) Num += buy[s];
p.newCtr (Num <= MAXNUM) ;

// Linking the variables
for (s=0; s<NSHARES; s++) p.newCtr (frac[s] <= buyl[s]);

// Solve problem heuristically
p.setSense (XPRB_MAXIM) ;
solveHeur () ;
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// Solve the problem
p.mipOptimize ("");

// Solution printing

if (p.getMIPStat ()==4 || p.getMIPStat ()==6)
{
cout << "Exact solution: Total return: " << p.getObjval() << endl;
for (s=0; s<NSHARES; s++)
cout << s << ": " << frac[s].getSol()*100 << "&" << endl;
}
else

cout << "Heuristic solution is optimal." << endl;

return 0;

}

void solveHeur ()

{

XPRBbasis basis;

int s, ifgsol;

double solval, bsol [NSHARES], TOL;

XPRSsetintcontrol (p.getXPRSprob (), XPRS_CUTSTRATEGY, O0);

// Disable automatic cuts
XPRSsetintcontrol (p.getXPRSprob (), XPRS_HEURSTRATEGY, O0);

// Disable MIP heuristics
XPRSsetintcontrol (p.getXPRSprob (), XPRS_PRESOLVE, O0);

// Switch presolve off
XPRSgetdblcontrol (p.getXPRSprob (), XPRS_FEASTOL, &TOL);

// Get feasibility tolerance

p.mipOptimize ("1"); // Solve the LP-relaxation
basis=p.saveBasis(); // Save the current basis

// Fix all variables ‘buy' for which ‘frac' is at 0 or at a relatively
// large value
for (s=0; s<NSHARES; s++)
{
bsol[s]=buy[s].getSol(); // Get the solution values of ‘frac'
if (bsol[s] < TOL) buyl[s].setUB(0);
else if (bsol[s] > 0.2-TOL) buyl[s].setLB(1l);
}

p.mipOptimize ("c"); // Solve the MIP-problem

ifgsol=0;

if (p.getMIPStat ()==4 || p.getMIPStat ()==6)

{ // If an integer feas. solution was found
ifgsol=1;

solval=p.getObjval(); // Get the value of the best solution
cout << "Heuristic solution: Total return: " << p.getObjVval() << endl;

for (s=0; s<NSHARES; s++)
cout << s << ": " << frac[s].getSol()*100 << "$" << endl;

}

// Reset variables to their original bounds
for (s=0; s<NSHARES; s++)
if ((bsol[s] < TOL) || (bsol[s] > 0.2-TOL))
{
buy[s].setLB(0);
buy[s].setUB(1);
}

p.loadBasis (basis) ; /* Load the saved basis: bound changes are
immediately passed on from BCL to the
Optimizer if the problem has not been modified
in any other way, so that there is no need to
reload the matrix */

basis.reset(); // No need to store the saved basis any longer

if (ifgsol==1)
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XPRSsetdblcontrol (p.getXPRSprob (), XPRS_MIPABSCUTOFF, solval+TOL);
// Set the cutoff to the best known solution

The implementation of the heuristic certainly requires some explanations.

In this example for the first time we use the direct access to Xpress Optimizer. To do so, we need to
include the Optimizer header file xprs.h. The Optimizer functions are applied to the problem
representation (of type XPRSprob) held by the Optimizer which can be retrieved with the method
getXPRSprob of the BCL problem. For more detail on how to use the BCL and Optimizer libaries in
combination the reader is refered to the ‘BCL Reference Manual’. The complete documentation of all
Optimizer functions and parameters is provided in the ‘Optimizer Reference Manual'.

Parameters: The solution heuristic starts with parameter settings for the Xpress Optimizer. Switching
off the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP heuristics (parameter
XPRS_HEURSTRATEGY) is optional, whereas it is required in our case to disable the presolve
mechanism (a treatment of the matrix that tries to reduce its size and improve its numerical properties,
set with parameter XPRS_PRESOLVE), because we interact with the problem in the Optimizer in the
course of its solution and this is only possible correctly if the matrix has not been modified by the
Optimizer.

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:
the Optimizer works with tolerance values for integer feasibility and solution feasibility that are typically
of the order of 1076 by default. When evaluating a solution, for instance by performing comparisons, it
is important to take into account these tolerances.

The fine tuning of output printing mentioned in Chapter 10 can be obtained by setting the parameters
XPRS_LPLOG and XPRS_MIPLOG (both to be set with function XPRSsetintcontrol).

Optimization calls: We use the optimization method mipOptimize with the argument "1", indicating
that we only want to solve the top node LP relaxation (and not yet the entire MIP problem). To continue
with MIP solving from the point where we have stopped the algorithm we use the argument "c".

Saving and loading bases: To speed up the solution process, we save (in memory) the current basis of
the Simplex algorithm after solving the initial LP relaxation, before making any changes to the problem.
This basis is loaded again at the end, once we have restored the original problem. The MIP solution
algorithm then does not have to re-solve the LP problem from scratch, it resumes the state where it was
‘interrupted’ by our heuristic.

Bound changes: When a problem has already been loaded into the Optimizer (e.g. after executing an
optimization statement or following an explicit call to method 10adMat) bound changes via setLB and
setUB are passed on directly to the Optimizer. Any other changes (addition or deletion of constraints
or variables) always lead to a complete reloading of the problem.

The program produces the following output. As can be seen, when solving the original problem for the
second time the Simplex algorithm performs 0 iterations because it has been started with the basis of
the optimal solution saved previously.

Reading Problem FolioMIPHeur
Problem Statistics

14 ( 0 spare) rows
20 ( 0 spare) structural columns
49 ( 0 spare) non-zero elements
Global Statistics
10 entities 0 sets 0 set members

Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, Os
Dual
objective dual inf
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D 14.066667 .0000000
——————— optimal —-——-————-
Concurrent statistics:
Dual: 5 simplex iterations, 0.00s
Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
5 14.066667 D 0 0 .000000 0
Dual solved problem
5 simplex iterations in Os

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances

**x* Search unfinished **x* Time: 0 Nodes: 0

Number of integer feasible solutions found is 0

Best bound is 14.066667

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
a 13.100000 14.066667 1 6.87
Heuristic search started
Heuristic search stopped

*** Search completed **xx* Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100014
Heuristic solution: Total return: 13.1
0: 20%

1: 0%
2: 30%
3: 0%
4: 20%
5: 30%
6: 0%
7: 0%
8: 0%
9: 0%

Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, Os
Dual
objective dual inf
D 14.066667 .0000000
——————— optimal —-——————-

Concurrent statistics:
Dual: 0 simplex iterations, 0.00s
Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
0 14.066667 D 0 0 .000000 0
Dual solved problem
0 simplex iterations in Os

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances

Starting root cutting & heuristics

Fair Isaac Corporation Confidential and Proprietary Information 88



Heuristics

Getting started with BCL

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
Heuristic search started
Heuristic search stopped

Starting tree search.
Deterministic mode with up to 8 running threads and up to 16 tasks.

Node BestSoln BestBound Sols Active Depth Gap GInf Time
*** Search completed **xx* Time: 0 Nodes: 5
Problem is integer infeasible
Number of integer feasible solutions found is 0
Best bound is 13.100001
Heuristic solution is optimal.

Observe that the heuristic found a solution of 13.1, and that the MIP optimizer without the heuristic
could not find a better solution (hence the infeasible message). The heuristic solution is therefore
optimal.
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CHAPTER 14
Matrix input

14.1

14.2

In this chapter we show how to

m initialize Xpress Optimizer,
m load matrices in MPS or LP format into the Optimizer,
m solve a problem, and

m write out the solution to a file.

Matrix files

With Xpress, the user has the choice between two matrix formats: extended MPS and extended LP
format, the latter being in general more easily human-readable since constraints are printed in algebraic
form. Such matrices may be written out by Xpress Optimizer, but more likely they will have been
generated by some other tool.

If the optimization process with Xpress Optimizer is started from within a Mosel or BCL program, then
the problem matrix is loaded in memory into the solver without writing it out to a file (which would be
expensive in terms of running time). However, both tools may also be used to produce matrix files (see
Chapter 9 for matrix generation with Mosel and Chapter 10 for BCL).

Implementation
To load a matrix into Xpress Optimizer we need to perform the following steps:

1. Initialize Xpress Optimizer.
2. Create a new problem.

3. Read the matrix file.

The following C program folioinput.c (similar interfaces exist for Java and C#) shows how to load
a matrix file, solve it, and write out the results. For clarity’s sake we have omitted all error checking in
this program. In general it is recommended to test the return value of the initialization function and also
whether the problem has been created and read correctly.

To use Xpress Optimizer, we need to include the header file xprs . h.
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#include <stdio.h>
#include "xprs.h"

int main(int argc, char *xargv)
{
XPRSprob prob;

XPRSinit (NULL) ;
XPRScreateprob (&prob) ;

/* Initialize Xpress Optimizer =*/
/* Create a new problem */
XPRSreadprob (prob, "Folio", ""); /* Read the problem matrix */

XPRSchgobjsense (prob, XPRS_OBJ_MAXIMIZE) ; /* Set sense to maximization */
XPRSlpoptimize (prob, ""); /* Solve the problem %/

XPRSwriteprtsol (prob, "Folio.prt", ""); /* Write results to ‘Folio.prt' =/

XPRSdestroyprob (prob) ;
XPRSfree();

/* Delete the problem x*/
/* Terminate Xpress */

return 0;

14.3 Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer, you may compile this file
with the following command under Windows:

cl /MD /I%XPRESSDIR%\include $XPRESSDIR%\1lib\xprs.lib folioinput.c

For Linux or Solaris use

cc —-D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib folioinput.c -o folioinput -lxprs

For other systems please refer to the example makefile provided with the corresponding distribution.

If we run this program with the matrix Folio.mat produced by BCL for the LP example problem of
Chapter 2, then we obtain an output file Folio.prt with the following contents:

Problem Statistics
Matrix FolioLP
Objective *OBJ*

RHS *RHS~*

Problem has 4 rows and 10 structural columns
Solution Statistics
Maximization performed

Optimal solution found after 5 iterations

Objective function value is 14.066659
Rows Section
Number Row At Value Slack Value Dual Value RHS
N 1 *OBJ* BS 14.066659 -14.066659 .000000 .000000
E 2 Cap EQ 1.000000 .000000 8.000000 1.000000
G 3 NA LL .500000 .000000 -5.000000 .500000
L 4 Risk UL .333333 .000000 23.000000 .333333
Columns Section
Number Column At Value Input Cost Reduced Cost
C 5 frac UL .300000 5.000000 2.000000
C 6 frac_1 LL .000000 17.000000 -9.000000
C 7 frac_2 BS .200000 26.000000 .000000
C 8 frac_3 LL .000000 12.000000 -14.000000
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9
10
11
12
13
14

oo NoNe!

frac_4
frac_5
frac_6
frac_7
frac_8
frac_9

BS
UL
LL
LL
BS
LL

.066667
.300000
.000000
.000000
.133333
.000000

N W

H P oJdw o

.000000
.000000
.000000
.000000
.000000
.000000

.000000

1.
-1.
-2.
.000000
-10.

000000
000000
000000

000000

The upper half contains some statistics concerning the problem size and the solution algorithm: the
optimal LP solution found has a value of 14.066659. The Rows Section gives detailed solution
information for the constraints in the problem. The solution values for the decision variables are

located in the column labeled value of the Columns Section.
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CHAPTER 15

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to input and solve this
problem with Xpress Optimizer. In detail, we shall discuss the following topics:

m transformation of an LP model into matrix format,
m LP problem input with Xpress Optimizer,

m solving and solution output.

Chapter 3 shows how to formulate and solve this example with Mosel and Chapter 10 does the same
for BCL.

15.1 Matrix representation

As a first step in the transformation of the mathematical problem into the form required by the LP
problem input function of Xpress Optimizer we write the problem in the form of a table where the
columns represent the decision variables and the rows are the constraints. All non-zero coefficients are
then entered into this table, resulting in the problem matrix, completed by the operators and the
constant terms (the latter are usually refered to as the right hand side, RHS, values).

Table 15.1: LP matrix

frac, frac, fracs frac, fracs fracq frac; fracg fraceg fracqg
0 1 2 3 4 5 6 7 8 9 Oper. RHS

2 5 8 15 T

Risk 0 1 1 1 1 1 < 1/3
MinNA IR L A L > 05
AIIfrac 2 71 14 17 _I'IO n 12 13 14 16 18 - _l
T T
rowidx matval
colbeg 0 2 5 8 1 12 13 14 15 17 19
nelem 2 3 3 3 1 1 1 1 2 2

The matrix specified to Xpress Optimizer does not consist of the full number_of_rows x
number_of_columns table; instead, only the list of non-zero coefficients is given and an indication
where they are located. The superscripts in the table above indicate the order of the matrix entries in
this list. The coefficient values will be stored in the array matval, the corresponding row numbers in
the array rowidx, the values of the first few entries of these arrays are printed in italics to highlight
them (see the code example in the following section for the full definition of these arrays). To complete
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this information, the array colbeg contains the index of the first entry per column and the array nelem
the number of entries per column.

15.2 Implementation with Xpress Optimizer

The following C program foliolp.c shows how to input and solve this LP problem with Xpress
Optimizer. We have also added printing of the solution. Before trying to access the solution, the LP
problem status is checked (see the ‘Optimizer Reference Manual’ for further explanation). To use
Xpress Optimizer, we need to include the header file xprs . h.

To load a problem into Xpress Optimizer we need to perform the following steps:

1. Initialize Xpress Optimizer.
2. Create a new problem.

3. Load the matrix data.

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char x*xargv)
{

XPRSprob prob;

int s, status;

double objval, =*sol;

/* Problem parameters x/
int ncol = 10;
int nrow = 3;

/* Row data */
char rowtypel] { 'L','G','E"};
double rhs[] = {1.0/3,0.5, 1};

/* Column data =/

double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};

double 1b[] = { O, 0, 0, 0, 0, 0, 0, 0, 0, 0};

double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/* Matrix coefficient data */

int colbegl] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};

int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};

double matval(] = {1,1,1,1,1,1,1,1,1,21,1, 1, 1, 1, 1, 1,1, 1,1};
XPRSinit (NULL) ; /* Initialize Xpress Optmizer =/
XPRScreateprob (&prob) ; /* Create a new problem */

/* Load the problem matrix =*/
XPRSloadlp (prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,
obj, colbeg, NULL, rowidx, matval, 1lb, ub);

XPRSchgobjsense (prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization x*/

XPRSlpoptimize (prob, ""); /* Solve the problem */
XPRSgetintattrib (prob, XPRS_LPSTATUS, &status); /* Get LP sol. status x/
if (status == XPRS_LP_OPTIMAL)

{
XPRSgetdblattrib (prob, XPRS_LPOBJVAL, &objval); /* Get objective value x/
printf ("Total return: %g\n", objval);

sol = (double *)malloc (ncol*sizeof (double)) ;
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XPRSgetlpsol (prob, sol, NULL, NULL, NULL); /* Get primal solution *x/
for (s=0;s<ncol;s++) printf ("%d: %g%%\n", s+l1, sol[s]*100);
}

XPRSdestroyprob (prob) ; /* Delete the problem x*/
XPRSfree () ; /* Terminate Xpress */
return 0;

Instead of defining colbeg with one extra entry for the last+1 column we may give the numbers of
coefficients per column in the array nelem:

/* Matrix coefficient data */

int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17};
int nelem[] = {2, 3, 3, 3, 1, 1, 1, 1, 2, 2};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matvall] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

/* Load the problem matrix =*/
XPRSloadlp (prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,
obj, colbeg, nelem, rowidx, matval, 1lb, ub);

The seventh argument of the function xPRS1oadlp remains empty for our problem since it is reserved
for range information on constraints.

The second argument of the optimization function XPRS1poptimize indicates the algorithm to be
used: an empty string stands for the default LP algorithm. After solving the problem we check whether
the LP has been solved and if so, we retrieve the objective function value and the primal solution for the
decision variables.

Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer, you may compile this file
with the following command under Windows:

cl /MD /I%$XPRESSDIR%\include $XPRESSDIR%\lib\xprs.lib foliolp.c

For Linux or Solaris use

cc —-D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.c -o foliolp -lxprs

For other systems please refer to the example makefile provided with the corresponding distribution.

Running the resulting program will generate the following output:

Total return: 14.0667
30%

0%

20%

0%
6.66667%
30%

0%

0%
13.3333%
0: 0%

O oo Jo0 b WD

Under Unix this is preceded by the log of Xpress Optimizer:
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Reading Problem FolioLP
Problem Statistics

3 0 spare) rows
10 ( 0 spare) structural columns
19 ( 0 spare) non-zero elements
Global Statistics
0 entities 0 sets 0 set members

Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:
3 rows 10 cols 19 elements
Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0
Uncrunching matrix
5 14.066667 D 0 0 .000000 0

Optimal solution found

Windows users can retrieve the Optimizer log by redirecting it to a file. Add the following line to your
program immediately after the problem creation:

XPRSsetlogfile (prob, "logfile.txt");

The Optimizer log displays the size of the matrix, 3 rows (i.e. constraints) and 10 columns (i.e. decision
variables), and the log of the LP solution algorithm (here: ‘D’ for dual Simplex). The output produced by
our program tells us that the maximum return of 14.0667 is obtained with a portfolio consisting of
shares 1, 3, 5, 6, and 9. 30% of the total amount are spent in shares 1 and 6 each, 20% in 3, 13.3333% in
9 and 6.6667% in 5. It is easily verified that all constraints are indeed satisfied: we have 50% of
North-American shares (1 and 3) and 33.33% of high-risk shares (3 and 9).
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16.1

16.2

This chapter extends the LP problem from Chapter 2 to a Mixed Integer Programming (MIP) problem. It
describes how to

m transform a MIP model into matrix format,

m input MIP problems with different types of discrete variables into Xpress Optimizer,

m solve MIP problems and output the solution.

Chapter 6 shows how to formulate and solve this example with Mosel and in Chapter 11 the same is
done with BCL.

Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities to
formulate this constraint:
1. Limiting the number of different shares taken into the portfolio to 4.

2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set of
variables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1if the share s is taken into the portfolio and 0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of 4 different
ones. It expresses the constraint that at most 4 of the variables buys may take the value 1 at the same

time.
Z buys < 4
SESHARES

We now still need to link the new binary variables buys with the variables fracs, the quantity of every
share selected into the portfolio. The relation that we wish to express is ‘if a share is selected into the
portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1. The following
inequality formulates this implication:

Vs € SHARES : fracs < buys
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16.2.1

16.2.2

If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at
0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that these
constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matter
in our case, since any solution in which this is the case is also valid with both variables, buys and fracs,
at 0.

Matrix representation

The mathematical model can be transformed into the following table. Compared to the LP matrix of the
previous chapter, we now have ten additional columns for the variables buys and ten additional rows for
the constraints linking the two types of variables. Notice that we have to transform the linking
constraints so that all terms involving decision variables are on the left hand side of the operator sign.

Table 16.1: MIP matrix

0123456 7 8 910 1 12 13 14 15 16 17 18 19 Op. RHS
37 376

Risk o 1711 1% < 3

MinNA 7 1° 1" 1° 17 > 05

Alifrac 2 1'17° 1" 1% 1° 171" 17 147 = 1

Maxnum 3 129 131 133 135 137 139 141 143 145 147 < 4

Linking 4 7’ 4% < 0
5 1° 4% < 0
6 10 _134 < 0
7 114 _136 < 0
8 116 _138 < 0
9 18 _140 < 0
10 20 _142 < 0
1 1% a* < 0
12 1% 1% < 0
13 1% A% < o
T 1

rowidx matval
colbeg 03 7 111517 19 21 23 26 29 31 33 35 37 39 41 43 45 47 49

The superscripts for the matrix coefficients indicate again the order of the entries in the arrays rowidx
and matval, the first three entries of which are highlighted (printed in italics).

Implementation with Xpress Optimizer

In addition to the structures related to the matrix coefficients that are in common with LP problems, we
now also need to specify the MIP-specific information, namely the types of the MIP variables (here all
marked ’ B’ for binary variable) in the array miptype and the corresponding column indices in the
array mipcol.

Another common type of discrete variable is an integer variable, that is, a variable that can only take on
integer values between given lower and upper bounds. These variables are defined with the type " 17.
In the following section (MIP model 2) we shall see yet another example of discrete variables, namely
semi-continuous variables.

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char **argv)

{
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XPRSprob prob;
int s, status;
double objval, =*sol;

/* Problem parameters x/
int ncol = 20;

14;

10;

int nrow =
int nmip =

/* Row data */

char rowtype[]= { 'L','G','E','L','L','L','L','L','L','L','L', 'L, 'L", 'L'};
double rhs[] = {1.0/3,0.5, 1, 4, o0 ©O0 ©O O 0 O O O, O, O0};
/* Column data =*/

double obj[]l= { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21,0,0,0,0,0,0,0,0,0,0};
double 1b[] = { O, 0, O, O, O, 0, O, O, O, 0,0,0,0,0,0,0,0,0,0,0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1,1,1,1,1,1,1,1,1,1};

/* Matrix coefficient data =*/
int colbegl[] = {0,3,7,11,15,17,19,21,23,26,29,31,33,35,37,39,41,43,45,47,49};
int rowidx[] = {1,2,4,0,1,2,5,0,1,2,6,0,1,2,7,2,8,2,9,2,10,2,11,0,2,12,0, 2,
13,3,4,3,5,3,6,3,7,3,8,3,9,3,10,3,11,3,12,3,13};
double matvalf] = {(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
ll lr_ll 11_11 11_1r 17_1/ 11_11 ll_lr 11_11 11_11 17_11 11_1);

/* MIP problem data */
Char miptype[] = (‘B','B','B','B','B','B',’B','B','B','B');

int mipcoll[] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
XPRSinit (NULL) ; /* Initialize Xpress Optimizer =*/
XPRScreateprob (&prob) ; /* Create a new problem */
/* Load the problem matrix =*/
XPRSloadglobal (prob, "FolioMIP1l", ncol, nrow, rowtype, rhs, NULL,
obj, colbeg, NULL, rowidx, matval, 1lb, ub,
nmip, 0, miptype, mipcol, NULL, NULL, NULL, NULL, NULL);

XPRSchgobjsense (prob, XPRS_OBJ_MAXIMIZE) ;

XPRSmipoptimize (prob,

nwy .

XPRSgetintattrib (prob, XPRS_MIPSTATUS,

if ((status == XPRS_MIP_OPTIMAL)
{

XPRSgetdblattrib (prob, XPRS_MIPOBJVAL,

printf ("Total return: %$g\n",
sol =
XPRSgetmipsol (prob, sol,
for (s=0;s<ncol/2; s++)

printf ("$d: %9%% (%g9)\n", s,
}

XPRSdestroyprob (prob) ;
XPRSfree();

return O;

objval);

&status);

&objval);

(double *)malloc(ncolxsizeof (double));
NULL) ;

sol[s]*100,

/* Set sense to maximization */
/* Solve the problem */

/* Get MIP sol. status x/

(status == XPRS_MIP_SOLUTION) )

/* Get objective value x/

/* Get primal solution */

sol[ncol/2+s]);

/* Delete the problem x*/
/* Terminate Xpress */

To load the problem into Xpress Optimizer we now use the function xPRS1loadglobal. The first 14
arguments of this function are the same as for XxPRS1oadlp. The use of the 19th argument will be
discussed in the next section; the remaining four arguments are related to the definition of SOS
(Special Ordered Sets)—the value 0 for the 16th argument indicates that there are none in our problem.

In this program, not only the function for loading the problem but also those for solving and solution
access have been adapted to the problem type: we now solve a MIP problem via a Branch-and-Bound
search (the second argument " " of the optimization function XxPRSmipoptimize stands for 'default
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16.3

16.3.1

16.3.2

MIP algorithm’). We then retrieve the MIP solution status and if an integer feasible solution has been
found we print out the objective value of the best integer solution found and the corresponding solution
values of the decision variables.

Running this program produces the following solution output. The maximum return is now lower than
in the original LP problem due to the additional constraint. As required, only four different shares are
selected to form the portfolio:

Total return: 13.1
20% (1)
0% (0)
30% (1)
0% (0)
20% (1)
30% (1)
0% (0)
0% (0)
0% (0)
0% (0)

W oo ~JoUd WDNREO

MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 15. The new
constraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10% of the budget is
spent on the share.’ Instead of simply constraining every variable fracs to take a value between 0 and
0.3, it now must either lie in the interval between 0.1 and 0.3 or take the value 0. This type of variable is
known as semi-continuous variable. In the new model, we replace the bounds on the variables fracs by
the following constraint:

Vs € SHARES : fracs =0 or 0.1 < fracs < 0.3

Matrix representation

This problem has the same matrix as the LP problem in the previous chapter, and so we do not repeat it
here. The only changes are in the specification of the MIP-related column data.

Implementation with Xpress Optimizer

The following program foliomip2.c loads the MIP model 2 into the Optimizer. We have the same
matrix data as for the LP problem in the previous chapter, but the variables are now semi-continuous,
defined by the type marker ’ s’ . By default, Xpress Optimizer assumes a continuous limit of 1, we
therefore specify the value 0.1in the array sc1im. Please note in this context that limits for
semi-continuous and semi-continuous integer variables given in the array sc1im are overwritten by the
value in the array 1b if the latter is different from 0.

Other available composite variable types are semi-continuous integer variables that take either the value
0 or an integer value between a given limit and their upper bound (marked by ’ R’ ) and partial integers
that take integer values from their lower bound to a given limit value and are continuous beyond this
value (marked by ' p*).

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char x*xargv)
{

XPRSprob prob;

int s, status;

double objval, =*sol;
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/* Problem parameters x/

int ncol = 10;
int nrow = 3;
int nmip = 10;

/* Row data =*/

char rowtypel[] = { 'L','G','E'};

double rhs/[] {1.0/3,0.5, 1};

/* Column data =/

double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};

double 1b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

double ubl[] {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/* Matrix coefficient data */

int colbegl[] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};
int rowidx[] {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matvall] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};
/* MIP problem data */

char mlptype[] = {'Sl,lsl,lsl,lsl’lsl,lSl,lSl’lSl’lSl,lsl};

int mipcolf[] ={ 0 1, 2, 3, 4, 5, 6, 7, 8, 9};

double sclim][]

XPRSinit (NULL) ;
XPRScreateprob (&prob) ;

{0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};

/* Initialize Xpress Optimizer =*/
/* Create a new problem */

/* Load the problem matrix =*/

XPRSloadglobal (prob, "FolioSC", ncol, nrow, rowtype, rhs,
obj, colbeg, NULL, rowidx, matval, 1lb, ub,
nmip, 0, miptype, mipcol, sclim,

XPRSchgobjsense (prob, XPRS_OBJ_MAXIMIZE) ;
XPRSmipoptimize (prob, "");

NULL,
NULL, NULL, NULL, NULL);

/* Set sense to maximization */
/* Solve the problem */

XPRSgetintattrib (prob, XPRS_MIPSTATUS, &status); /* Get MIP sol. status =*/
if ((status == XPRS_MIP_OPTIMAL) || (status == XPRS_MIP_SOLUTION) )

{

XPRSgetdblattrib (prob, XPRS_MIPOBJVAL, &objval); /* Get objective value x/

printf ("Total return: %g\n", objval);

sol (double *)malloc (ncolxsizeof (double));
XPRSgetmipsol (prob, sol, NULL);
for (s=0;s<ncol;s++) printf("%d: %g%%\n",
}

s, sol[s]*100);

XPRSdestroyprob (prob) ;
XPRSfree();

return O;

}

When executing this program we obtain the following output:

Total return: 14.0333
30%

0%

20%

0%

10%
26.6667%
0%

0%
13.3333%
0%

W oo ~JoUd WDNREO

/* Get primal solution */

/* Delete the problem x*/
/* Terminate Xpress */
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Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the total
investment. Due to the additional constraint, the optimal MIP solution value is again lower than the
initial LP solution value.
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CHAPTER 17
Quadratic Programming

17.1

17.2

In this chapter we turn the LP problem from Chapter 15 into a Quadratic Programming (QP) problem,
showing how to

m transform a QP model into matrix format,

m input and solve QP problems with Xpress Optimizer.

Chapter 7 shows how to formulate and solve this example with Mosel and in Chapter 12 the same is
done with BCL.

Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes to
minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of getting
estimates of the variance/covariance matrix of estimated returns on the securities. Which investment
strategy should the investor adopt to minimize the variance subject to getting a minimum target yield of
9?

QP model

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to make
the following changes:

m New objective function: mean variance instead of total return.

m The risk-related constraint disappears.

m Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:

>~ VARg - fracs - fracy
s.teSHARES

where VARg; is the variance/covariance matrix of all shares. This is a quadratic objective function (an
objective function becomes quadratic either when a variable is squared, e.g., frac12, or when two
variables are multiplied together, e.g., fracq - frac,).
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The target yield constraint can be written as follows:

Z RETs - fracs > 9
SESHARES

The limit on the North-American shares as well as the requirement to spend all the money, and the
upper bounds on the fraction invested into every share are retained. We therefore obtain the following
complete mathematical model formulation:

minimize )" VARg - fracs - frac
SteSHARES

Z fracs > 0.5
SENA

Z fracs = 1

SESHARES

> RETs-fracs > 9
SESHARES
Vs € SHARES : 0 < fracs < 0.3

17.3 Matrix representation

For the problem input into Xpress Optimizer, the mathematical model is transformed into the following
constraint matrix (Table 17.1).

Table 17.1: QP matrix

fracy frac, fracs frac, fracs fracq frac; fracg frace fracqg
0 1 2 3 4 5 6 7 8 9 Oper. RHS

MinNA o 1 1 1 1 > 05
A||frac 1 11 14 17 110 112 114 16 18 120 122 - 1
Yield 2 52 17° 268 12" 8% o 77 §° 377 1% > 9
) 0
rowidx matval
colbeg 0 3 6 9 12 14 16 18 20 22 24

As in the previous chapters, the superscripts for the matrix coefficients indicate the order of the entries
in the arrays rowidx and matval, the first three entries of which are highlighted (printed in italics).

The coefficients of the quadratic objective function are given by the following variance/covariance
matrix (Table 17.2).

17.4 Implementation with Xpress Optimizer

The following program foliogp.c loads the QP problem into Xpress Optimizer and solves it. Notice
that the quadratic part of the objective function must be specified in triangular form, that is, either the
lower or the upper triangle of the original matrix. Here we have chosen the upper triangle, which means
that instead of 4 - frac, - fracy + 4 - fracy - fraco we only specify the sum of these terms, 8 - frac, - fracy.
Due to the input conventions of the Optimizer the values of the main diagonal also need to be
multiplied with 2. As with the matrix coefficients, only quadratic terms with non-zero coefficients are
specified to the Optimizer (hence the spaces in the array definitions below).
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Table 17.2: Variance/covariance matrix

fraci frac, fracs fracy4 fracs frace frac; fracg fracg fracqy
0 1 2 3 4 5 6 7 8 9
frac, 0 01
frac, 1 19 -2 4 1 1 1 0.5 10 5
fracs 2 -2 28 1 2 1 1 -2 -1
fracy 3 4 1 22 1 2 3 4
fracs 4 1 2 4 -1.5 -2 -1 1 1
fracg 5 1 1 1 -1.5 3.5 2 0.5 1 1.5
fracy 6 1 1 2 -2 2 5 0.5 1 2.5
fracg 7 0.5 -1 0.5 0.5 1 0.5 0.5
fracg 8 10 -2 3 1 1 1 0.5 25 8
fracqg 9 5 -1 4 1 1.5 2.5 0.5 8 16
#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"
int main(int argc, char **argv)
{
XPRSprob prob;
int s, status;
double objval, =*sol;
/* Problem parameters x*/
int ncol = 10;
int nrow = 3;
int ngt = 43;
/* Row data */
char rowtypel[] {'G','"E','G"};
double rhs[] = {0.5, 1, 9};
/* Column data =/
double obj[] = { O, 0, 0, 0, 0, 0, O, , 0, O0};
double 1b[] =4{ o0, O, O0, 0, 0, O, O, , 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};
/* Matrix coefficient data */
int colbegl[] = {0, 3, 6, 9 , 14, 16,
int rowidx[] = {0,1,2,0,1, 2,0,1, 2,0,1, 2,1,2,1,2,1
double matval(] = {1,1,5,1,1,17,1,1,26,1,1,12,1,8,1,9,1,
/* QP problem data */
int gcoll[] = {0,
i,1,1,1,1,1,1,1,1,
2,2,2,2,2, 2,2,
3 3,3, 3,3,
4,4,4,4,4,4,
5,5,5,5,5,
6,6,6,6,
7,7,7,
8,8,
9};
int gcol2[] = {0,
1,2,3,4,5,6,7,8,9,
2,3,4,5,6, 8,9,
3, 5,6, 8,9,
4,5,6,7,8,9,
5,6,7,8,9,
6,7,8,9,
7,8,9,
8797
9};
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double gval[] = {0.1,
19,-2, 4,1, 1, 1,0.5, 10, 5,
28, 1,2, 1, 1, -2, -1,
22, 1, 2, 3, 4,
4,-1.5,-2, -1, 1, 1,
3.5, 2,0.5, 1,1.5,
5,0.5, 1,2.5,
1,0.5,0.5,
25, 8,
16};

for (s=0;s<ngt;s++) gval[s]*=2;

XPRSinit (NULL) ;
XPRScreateprob (&prob) ;

/* Initialize Xpress Optimizer =/
/* Create a new problem */

/* Load the problem matrix =*/
XPRSloadgp (prob, "FolioQP", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval,

ngt, qgcoll, gcol2, gval);

XPRSchgobjsense (prob, XPRS_OBJ_MINIMIZE); /* Set sense to maximization =/
/* Solve the problem */

XPRSlpoptimize (prob, "");

1b,

XPRSgetintattrib (prob, XPRS_LPSTATUS, &status);

if (status == XPRS_LP_OPTIMAL)
{

XPRSgetdblattrib (prob, XPRS_LPOBJVAL, &objval);

printf ("Minimum variance: %g\n", objval);

sol = (double x)malloc (ncolx*sizeof (double));

XPRSgetlpsol (prob, sol, NULL, NULL, NULL);
for (s=0;s<ncol;s++) printf ("%d: %g%%\n", s,
}

XPRSdestroyprob (prob) ;
XPRSfree();

return O;

}

A QP problem is loaded into the Optimizer with the function XxPRS1o0adqgp. This function takes the

ub,

/* Get solution status */

/* Get objective value *x/

/* Get primal solution *x/
sol[s]*100);

/* Delete the problem */
/* Terminate Xpress */

same arguments as function XPRS1oad1lp with four additional arguments at the end for the quadratic
part of the objective function: the number of quadratic terms, ngt, the column numbers of the variables

in every quadratic term (gcol1l and gcol2) and their coefficient, gval.

If we wish to load a Mixed Integer Quadratic Programming (MIQP) problem, then we need to use the

function XxPRS1oadgglobal that takes the same arguments as XPRS1oadgp plus the nine arguments

for MIP problems introduced with function XPRS1loadglobal in the previous chapter.

As opposed to the previous examples we now minimize the objective function. Notice that for solving

and solution access we use the same functions as for LP problems. When solving MIQP problems,
correspondingly we need to use the MIP solving and solution functions presented in Chapter 16.

Executing this program produces the following output:

Minimum variance: 0.557394
0: 30%

1: 7.15401%

2: 7.38237%

3: 5.46362%

4: 12.6561%

5: 5.91283%

6: 0.333491%

7: 29.9979%

8: 1.0997%

9: 6.97039%e-06%
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All but the last share are selected into the portfolio (the value printed for 9 is so close to 0 that Xpress
Optimizer interprets it as 0 with its default tolerance settings).
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APPENDIX A

Going further

A1

Installation, licensing, and trouble shooting

Detailed information on how to install Xpress is provided with every distribution (see subdirectory
docs). The ‘Xpress Installation Guide’ is also accessible online from the Xpress online documentation
website. To obtain a license key please contact your nearest Xpress sales office.

Should you encounter any problems with installing the software or setting up the license, please
contact Xpress Support:

support@fico.com
(Please include 'Xpress’, in the subject line.)
You may also consult the Xpress FAQs and discussion groups on the FICO website:

https://community.fico.com/community/fico-optimization-community/xpressdiscuss

A.2 User guides, reference manuals, and other publications

A.2.1

A.2.2

Under the following address you may find the complete online documentation for Xpress:
http://www.fico.com/fico-xpress-optimization/docs/latest

The whitepapers and all of the documents refered to in the following sections are included in PDF
format in the Xpress distribution, for an overview direct your webbrowser to the subdirectory docs of
your Xpress installation directory.

A useful online resource is the searchable database of Xpress examples that you can reach following
this link:

http://examples.xpress.fico.com/example.pl
Modeling

The book ‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002) shows how to
formulate and solve a large number of application problems with Xpress:

http://examples.xpress.fico.com/example.pl#mosel_app

Mosel

For a more in-depth introduction to working with Mosel, we suggest to read the ‘Mosel User Guide'.
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A.2.3

A.2.4

A.2.5

The ‘Mosel Language Reference Manual’ provides a complete documentation of the Mosel language,
also including the features defined by the modules of the Mosel distribution (mmxprs, mmodbc,
mmsvg, etc.).

The whitepaper ‘Using ODBC and other database interfaces with Mosel’ discusses examples of data
exchange with spreadsheets and databases. The topic of /0 drivers is covered more generally by the
whitepaper ‘Generalized file handling in Mosel’

The Mosel Compiler and Mosel Run-time libraries are documented in the ‘Mosel Libraries Reference
Manual'.

To learn how to implement your own Mosel modules, please refer to the ‘Mosel NI User Guide'.

The Mosel Native Interface is documented in the ‘Mosel NI Reference Manual'.

BCL

The ‘BCL Reference Manual’ contains further examples of the use of BCL and a complete
documentation of all C library functions and C++ classes.

For Java, a separate '‘BCL Java on-line documentation’ is available, and similarly the 'BCL .NET on-line
documentation’ for C#.

Optimizer

All functions of the Optimizer library are documented in the ‘Xpress Optimizer Reference Manual'. In
this manual you also find exhaustive lists of all problem attributes and control parameters that may be
used with Xpress Optimizer.

An introduction to fully automated tuning of the optimization algorithms for your problems is provided
in the section ‘Using the Tuner’ of the Xpress Optimizer Reference Manual'.

Other solvers and solution methods

The FICO Xpress Optimization suite comprises some other products that have not been mentioned in
this manual since they are typically reserved for more advanced uses. Each of these components
comes with its own documentation. However, reading the introduction to Mosel in the first part of this
manual is recommended to all first-time users who wish to employ these other products as Mosel
modules.

Xpress NonLinear comprises a set of solvers for solving general Non-linear Programming (NLP)
problems to (local) optimality, including the Successive Linear Programming (SLP) solver Xpress SLP
and also the NLP solver Knitro. Xpress NonLinear is provided in the form of a Mosel module, mmxnip,
Xpress SLP can also be used as a C library or in console mode. For further detail see the Xpress
NonLinear Reference Manual'.

Constraint Programming (CP) is an approach to problem solving that has been particularly successful
for dealing with nonlinear constraint relations over discrete variables, such as frequently occur in
scheduling and planning applications. The Xpress Kalis software, an interface to the Artelys Kalis
constraint solver is provided in the form of a Mosel module, kalis, which defines aggregate modeling
objects specialized for scheduling and planning problems. For a description of this software see the
‘Xpress Kalis Reference Manual’ and ‘Xpress Kalis User Guide'.
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APPENDIX B
Glossary

Basis: when solving an LP problem with the Simplex algorithm, the basis provides the complete
information about which variables and constraints are active in a given solution. It can therefore be
used to save and quickly restore the status of the solution algorithm at a given point.

Binary model file (BIM file): a compiled version of the .mos model file that is portable across all
platforms for which Mosel is available. It does not include any data read from external files. These
must still be provided in separate files, thus making it possible to run the same BIM file with different
data sets.

Bound: equality or inequality constraint on a single decision variable. When working with Xpress
Optimizer through Mosel or BCL, bounds may be changed without having to reload the problem.

Branch-and-Bound: solution method for MIP problems consisting of an enumeration of the feasible
values of the discrete variables (branching) coupled with LP techniques (providing bounding
information). Typically represented in the form of a Branch-and-Bound tree where every node stands for
the solution of an LP problem, and the connections between these nodes are the bound changes or
added constraints. Such enumerative methods may lead to a computational explosion, even for
relatively small problem instances, so that it is not always realistic to solve MIP problems to optimality.

Branch-and-Cut: solution algorithm for MIP problems similar to Branch-and-Bound. At some or all
nodes of the search tree violated cuts are added to the problem to tighten the LP relaxation.

Builder Component Library (BCL): model builder library for developing a model directly in a
programming language. BCL allows users to formulate their models with objects (decision variables,
constraints, index sets) similar to those of a dedicated modeling language.

Constraint: relation between decision variables. Constraint types include equality constraints (operator
= in Mosel and == in BCL C++), inequality constraints (operators >= and <= in Mosel and BCL C++), and
integrality conditions. Bounds are special cases of inequality or equality constraints.

Cut: also called valid inequality; additional constraint in MIP problems that is not required to
characterize the set of integer solutions, but must be satisfied by all feasible solutions. Cuts tighten the
LP relaxation by drawing the LP solution space closer to the convex hull of the MIP solution space.

Decision variable (or variable for short): unknown that needs to be assigned a value by the solution
algorithm. The basic variable type is a continuous variable (a variable taking values from a continuous
domain between a given lower and upper bound). Discrete variable types include binary variables (also
called indicator variables; variables that may only take the values 0 or 1); integer variables (taking values
in an integer range between given lower and upper bounds); semi-continuous variables (either 0 or
values from a continuous interval between a given limit and upper bound); semi-continuous integer
variables (either 0 or integer values between a given limit and upper bound); partial integer variables
(integer-valued from the lower bound to a given limit and continuous beyond this limit value)

Declaration: the declaration of an object states its form and type and usually precedes the definition of
its contents. With Mosel, the declaration of basic types and linear constraints is optional, but decision
variables must always be declared; subroutines must be declared if they are used in a model prior to
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their definition.

Dense array: arrays in Mosel can be either dense or sparse. By default arrays in Mosel are dense, that
is, every possible index tuple is associated to a cell in the array. A dense array is fixed if its index sets
are constant or have been finalized to make them static; non-fixed arrays can increase dynamically with
the contents assigned to them, however it is generally more efficient to finalize their index sets as early
as possible, this also allows Mosel to check for ‘out of range’ errors that cannot be detected if the sets
are dynamic.

Dynamic set, dynamic array: sets and arrays in Mosel can be marked explicitly as dynamic. Dynamic
sets cannot be finalized to make them static; dynamic arrays and hashmap arrays are two forms of
(sparse) arrays for storing and efficiently enumerating sparse data tables. Non-fixed dense arrays are
sometimes referred to as implicitly dynamic arrays, particularly for earlier versions of Mosel.

Heuristic: algorithm for finding feasible solution(s) to a problem. Some heuristics guarantee a bound
on the solution quality but usually no proof of optimality is possible.

Index set: set used for indexing an array. Using string indices may help to make the output produced by
Mosel or BCL more easily understandable.

Interactive Visual Environment (IVE): development environment for Mosel that provides,
amongst many other tools, graphical displays of solution information.

Linear Programming (LP) problem: a Mathematical Programming problem where all constraints and
the objective function are linear expressions of the decision variables, and the variables have
continuous domains—i.e., they can take on any, usually non-negative, real values. A well-understood
case for which efficient algorithms (Simplex, interior point) are known.

Loop: Loops group actions that need to be repeated a certain number of times, either for all values of
some index or counter (forall in Mosel) or depending on whether a condition is fulfilled or not (while,
repeat until in Mosel).

LP relaxation: in a MIP problem, the LP relaxation is obtained by dropping the integrality conditions on
the decision variables.

Mathematical Programming problem (or problem for short): a set of decision variables, constraints
over these variables and an objective function to be maximized or minimized.

Matrix: the matrix representation of Mathematical Programming problems with linear constraints is a
table where the columns are the variables and the rows represent the constraints. The table entries are
the coefficients of the variables in the constraints, usually stored in sparse format, that is, only the
non-zero entries are given.

Mixed Integer Programming (MIP) problem: a Mathematical Programming problem where constraints
and objective function are linear just as in LP and variables may have either discrete or continuous
domains. To solve this type of problems, LP techniques are coupled with an enumeration (known as
Branch-and-Bound).

Modeling language: a high-level language (such as the Mosel language) that allows the user to state
Mathematical Programming problems in a form close to their algebraic representation. Carries out
automatically the transformation to the representation required by the solver(s).

Model: algebraic representation of a problem; also employed to denote the implementation with a
modeling tool such as Mosel or BCL.

Module: also called dynamic shared object (DSO); dynamic library written in the C programming
language that observes the conventions set out by the Mosel Native Interface. Modules enable users to
extend the Mosel language with new features (e.g. to implement problem-specific data handling, or
connections to external solvers or solution algorithms). Modules of the Xpress distribution include
access to Xpress Solver(Xpress Optimizer for LP, MIP, QP, Xpress NonLinear for NLP, and Xpress Kalis
for CP), data handling facilities (e.g. via ODBC) and access to system functions, graphing capabilities,
distributed and remote computing functionality via the Mosel Distributed Framework, and also
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interfaces to statistics packages such as R or Matlab.

Mosel: modeling and solving environment comprising the Mosel language (a modeling and
programming language), the Mosel libraries (for embedding Mosel models into applications), and the
Mosel Native Interface (opening up the Mosel language to external additions in the form of modules).

Mosel Native Interface (NI): a subroutine library giving access to Mosel models during their execution;
defines also the conventions to be observed by Mosel modules. The NI enables users to extend the
Mosel language with new features.

Newton-Barrier algorithm: also interior point algorithm; solution algorithm for LP and QP problems that
proceeds from some initial interior point in the set of feasible solutions towards an optimal solution
without touching the border of the feasible set.

Non-linear Programming (NLP) problem: a Mathematical Programming problem with non-linear
constraints or objective function. Frequently heuristic or approximation methods are employed to find
good (locally optimal) solutions. A method provided by Xpress for solving problems of this type is
Successive Linear Programming (SLP).

Objective function: an expression of decision variables to be minimized or maximized (in this manual
only linear or quadratic expressions are considered).

Optimization: finding a feasible solution to a problem that minimizes or maximizes a given objective
function.

Optimizer: the Xpress solver for LP, MIP, and QP. Available in the form of a library or a standalone
program.

Overloading: subroutines that are defined in several versions for different types or numbers of
arguments; operators that are defined for different operand types or combinations of operand types.

Parameter: depending on the context this term has several slightly different meanings: the settings of
model parameters (in Mosel) may be changed at run-time, for instance to define different input data
sets; problem parameters (in the Optimizer usually called problem attributes) provide access to
information about a problem (e.g. solution status) and are typically read-only; algorithm control
parameters are used to control algorithmic settings (choice of the solution algorithm, tolerances, etc.).

Problem instance: a Mathematical Programming problem complete with a specific data set.

Quadratic Programming (QP) problem: differs from LP problems in that there are quadratic terms in
the objective function (the constraints remain linear). The decision variables may be continuous or
discrete, in the latter case we speak of Mixed Integer Quadratic Programming (MIQP).

Range set: (in Mosel) a set of consecutive integers.

Right hand side (RHS): constant term of a (linear) constraint; a standard format (used, for example, in
the matrix representation) is to write all terms involving decision variables on the left of the operator
sign and the constant term on its right side.

Selection statement: statement to express a selection between different actions to be taken in a
program. In Mosel these are if/then/elif/then/else/end-if and case.

Simplex algorithm: solution algorithm for LP problems. The idea of the Simplex algorithm is moving
from vertex to vertex of the polytope (‘simplex’) that represents the set of feasible solutions for an LP
problem, to improve the objective function value.

Solution: this term may be used with two different meanings: it may denote an assignment of values to
all decision variables that satisfies all constraints (feasible solution). In optimization problems where
the best possible solution is sought—i.e., a solution minimizing or maximizing a given objective
function, the term solution usually is equivalent to optimal solution.

Solver: software used to solve (usually optimize) a problem. With Xpress we use Xpress Solver
(comprising Xpress Optimizer, Xpress NonLinear and Xpress Kalis).
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Sparse array: arrays in Mosel can be either dense or sparse. Sparse arrays are created empty and may
grow on demand as their entries are created or get assigned values. Mosel has two types of sparse
arrays: dynamic arrays require less memory and are faster for linear enumeration, hashmap arrays are
faster for random access.

Status information: Mosel, BCL, and the Optimizer define different parameters providing status
information, such as the LP or MIP status that tell the user among others whether the problem has
been solved correctly and a solution is available.

Subroutine: substructures allowing programs to be broken down into smaller subtasks that are easier
to understand and to work with. In Mosel, subroutines may be employed in the form of procedures or
functions. Procedures are called as a program statement, they have no return value, functions must be
called in an expression that uses their return value.

Successive Linear Programming (SLP): method for solving NLP problems via a sequence of LP
problems.
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APPENDIX C

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections for
more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICO
technical support engineer. Support is available to all clients who have purchased a FICO product and
have an active support or maintenance contract. You can find support contact information and a link to
the Customer Self Service Portal (online support) on the Product Support home page
(www.fico.com/en/product-support).

The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days a
week from the Product Support home page. The portal allows you to open, review, update, and close
cases, as well as find solutions to common problems in the FICO Knowledge Base.

Please include ‘Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and training
tools for both new user enablement and ongoing performance support. For additional information, visit
the Product Education homepage at www.fico.com/en/product-training or email
producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services we
provide. If you have comments or suggestions regarding how we can improve this documentation, let
us know by sending your suggestions to techpubs@fico.com.

Please include your contact information (name, company, email address, and optionally, your phone
number) so we may reach you if we have questions.
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Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenance
contracts or other sales-related items, contact FICO by:

m Phone: +1(408) 535-1500 or +44 207 940 8718

m Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting time
to assist you in using FICO Optimization Modeler to meet your business needs. Additional consulting
time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services. For
announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,
support your business, and solve common business challenges. You can get informal technical
support, build relationships with local and remote professionals, and improve your business practices.
For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.
Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analytics
and data science to improve operational decisions. FICO holds more than 165 US and foreign patents
on technologies that increase profitability, customer satisfaction, and growth for businesses in
financial services, telecommunications, health care, retail, and many other industries. Using FICO
solutions, businesses in more than 100 countries do everything from protecting 2.6 billion payment
cards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars are
in the right place at the right time. Learn more at www.fico.com.
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Symbols
7,16
==, 67

A
annotation, 57
argument
subroutine, 46
array
definition, 15
dense, 113
dynamic, 23, 113
sparse, 115

B
basis, 112

loading, 47, 87

saving, 47, 87
BCL, 6,112

initialization, 66

model, 66
BIM file, 25, 50, 112
binary variable, 32, 72, 98, 112
bound, 9, 67,112

modification, 48, 87
Branch-and-Bound, 4, 35, 74, 100, 112
Branch-and-Bound tree, 35, 112
Branch-and-Cut, 112

Cc
case, 114
code completion, 17
column, 94, 113
comments, 16, 22, 70, 79
companion file, 63
comparison tolerance, 48
compilation, 67,92, 96
constraint, 112
definition, 15, 66
equality, 9, 67, 112
inequality, 9, 112
linear, 15, 66
name, 28
Constraint Programming, 111
continuous variable, 112
control parameter, 114
CP, see Constraint Programming
cut, 35, 75,112
cut generation, 35, 47,75, 87
cutoff value, 44, 84

D
data

input from file, 22, 30, 40, 70, 79
data file, 22, 30, 40, 68, 79
data handling, 5
debugger window, 13
debugging, 17
decision variable, 9, 112
creation, 66
declaration, 15, 23
type, 33, 73, 99
declaration, 112
declarations, 15,47
dense array, 113
deployment template, 49
discrete variable, 33, 73, 112
distributed computing, 5, 113
DSO, see dynamic shared object
dynamic array, 23, 113, 115
dynamic set, 23, 113
dynamic shared object, 113

E
editor window, 13
elif/then, 28
embedding, 5, 49
empty line, 16
end-do, 28
end-function, 46
end-model, 15
end-procedure, 46, 47
equality constraint, 9, 67,112
error handling, 16, 71, 91
exportprob, 53
expression
linear, 15, 66
quadratic, 79

F
F_APPEND, 23
F_OUTPUT, 23
fclose, 23
feasibility tolerance, 47, 87
feasible solution, 114
finalize, 23,113
fixed array, 113
fopen, 23
forall, 15, 28,113
forall/do, 28
formating, 16

output, 23
forward, 45
function, 46,115
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G

getLPStat, /1

getMIPStat, 74

getparam, 47
getprobstat, 28
getXPRSprob, 87

graph drawing, 28

graphical user interface, 5, 113

H
hashmap array, 115
heuristic, 113

variable fixing, 44, 84

|
if/then/else/end-if, 28,114
if/then/end-if, 28
indentation, 16
index

string, 20, 68,113
index set, 70, 113
indicator variable, 32, 72, 98, 112
inequality constraint, 9, 112
initialization

BCL, 66

explicit, 71

Mosel, 51

Optimizer, 91
initializations from, 23
initializations to, 23
input file, 22, 70
Insight, see Xpress Insight
integer variable, 33, 73, 99, 112
integrality condition, 35, 112
interior point algorithm, 114
is_binary, 33
is_integer, 33
is_partint, 36
is_semcont, 36
is_semint, 36
IVE, 113

L

language
modeling, 5
solving, 5

library
embedding, 5

limit value, 76, 101, 112

line break, 16

linear constraint, 15, 66

linear expression, 15, 66

Linear Programming, 4, 12, 65, 94, 113
optimization information, 19, 68, 93, 97
problem status, 71,95
relaxation, 35, 113

list, 29

loadMat, 87

loadprob, 48

loop, 15, 28, 113

optimization, 27
LP, see Linear Programming
LP format, 53, 71, 91
1pOptimize, 67,79

M
mathematical model, 10
Mathematical Programming, 4
Mathematical Programming problem, 4, 113
Matlab, 5, 114
matrix, 113
export, 53, 71
format, 53, 71, 91
import, 91
matrix representation, 94, 99, 105, 114
maximize, 67
maximize, 15,17, 35,47
minimize, 40
MIP, see Mixed Integer Programming
MIP heuristics, 35, 47,75, 87
mipOptimize, 71,74, 87
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Programming, 4, 32, 72,98, 113
optimization information, 34, 75, 87
problem status, 74, 101
search, 35, 75,100
Mixed Integer Quadratic Programming, 4, 38, 78, 107,
14
optimization information, 43, 83
mminsight, 53
model, 113
BCL, 66
embedding, 5
incremental definition, 42, 82
Mosel, 14
parameter, 24, 114
model, 15
model building, 4, 8
modeling language, 5, 113
modeling objects, 6, 112
modeling style, 24
module, 5, 113
Mosel, 114
environment, 5
language, 5, 114
libraries, 5, 114
model, 14
Native Interface, 5, 114
standalone, 24
mosel, 25
Mosel Compiler Library, 51
Mosel Run-time Library, 51
MPS format, 53, 71, 91
mpvar, 15

N
names
constraint, 28
defining, 67
namespace, 66

Fair Isaac Corporation Confidential and Proprietary Information

119



Index

Getting started with the Optimizer

Newton-Barrier, 80, 114

newVar, 66

NI, see Mosel Native Interface

NLP, see Non-linear Programming
node, 35, 112

noimplicit, 15

Non-linear Programming, 4, 111, 114

0

objective function, 10, 114
definition, 15, 66
quadratic, 39, 79, 104

ODBC, 5, 113

optimal solution, 114

optimization, 15, 67, 95, 114
loop, 27, 41

optimization project, 5

Optimizer, see Xpress Optimizer, 15, 67, 114
direct access, 87

option
noimplicit, 15

output, 15,19, 67,95
formating, 23
redirection, 97

output file, 24, 52,92

overloading, 47, 114

P
parameter, 114
parameter settings, 24, 35, 47, 52, 87,114
parameters, 24,114
partial integer variable, 36, 76,101, 112
presolving, 35, 47, 87
print, /0
printing, 15, 67
problem
change, 48, 87
creation, 66
input, 95
instance, 52, 114
matrix, 94, 113
parameter, 114
problem status, 28, 114, 115
LP, 71,95
MIP, 74,101
QP, 107
procedure, 46, 115
programming language, 5
project navigation, 13

Q

QP, see Quadratic Programming

quadratic expression, 79

quadratic objective function, 39, 79, 104

Quadratic Programming, 4, 38, 78, 104, 114
algorithm, 80
optimization information, 80
problem status, 107

R
R, 5,114

range set, 15, 114

remote computing, 5, 113
repeat until, 113
return value, 47

right hand side, 24, 94, 114
row, 94, 113

S
selection statement, 114
semi-continuous integer, 36, 76, 101, 112
semi-continuous variable, 36, 76, 101, 112
set
definition, 15
dynamic, 23, 113
range, 15, 114
setLB, 87
setlb, 48
setLim, /6
setMsgLevel, 68
setObj, 67
setparam, 35,47
setSense, 67,71
setUB, 87
setub, 48
Simplex, 19, 80, 87, 114
SLP, see Successive Linear Programming
solution, 114
feasible, 114
optimal, 114
solution heuristic, 44, 84
solution information, 19, 115
retrieving, 52
solver, 114
solving, 15, 67, 95, 114
space, 16
sparse array, 115
sparse format, 113
strfmt, 23
string indices, 20, 68, 113
subroutine, 46, 115
subroutine definition
overloading, 47
Successive Linear Programming, 4, 111, 115
sum, 29
system functions, 5, 113

T
tolerance value, 47, 87

U

user graph, 28, 41
user module, 5, 113
uses, 15, 30

\'}

valid inequality, see cut
variable, see decision variable
VDL, 57, 60

view definition, 57
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w

web deployment, 5

while, 113

Workbench, see Xpress Workbench
starting, 12

write, 15

writeln, 15

X

XPRB_BV, 73

XPRB_PI, 76

XPRB_SC, 76

XPRB_SI, /6

XPRB_UI, 73

XPRBctr, 70

XPRBexpr, /9
XPRBindexSet, 70
XPRBprob, 70
XPRBreadarrlinecb, 79
XPRBreadlinecb, 70
XPRBsos, /0

XPRBvar, /0

Xpress Insight, 5, 53
Xpress Kalis, 111

Xpress Mosel, see Mosel
Xpress NonLinear, 6, 111
Xpress Optimizer, 6
Xpress SLP, 111

Xpress Solver, 6, 114
Xpress-BCL, see BCL
XPRS_CONT, 47
XPRS_CUTSTRATEGY, 35, 47, 87
XPRS_HEURSTRATEGY, 35, 47, 87
XPRS_LPLOG, 87
XPRS_LPSTOP, 47
XPRS_MIPLOG, 87
XPRS_OPT, 28
XPRS_PRESOLVE, 35, 47, 87
XPRSchgobjsense, 107
XPRSloadglobal, 100
XPRSloadlp, 96
XPRSloadgglobal, 107
XPRSloadgp, 107
XPRSlpoptimize, 96
XPRSmipoptimize, 100
XPRSprob, 87
XPRSsetintcontrol, 87
XPRSsetlogfile, 97

z
ZEROTOL, 48
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