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Preface

‘Getting Started’ is a quick and easy-to-understand introduction to modeling and solving different typesof optimization problems with FICO Xpress Optimization. It shows how Linear, Mixed-Integer, andQuadratic Programming problems are formulated with the Mosel language and solved by XpressOptimizer. We work with these Mosel models by means of the graphical user interface XpressWorkbench. Two alternatives to using this high-level language are also discussed: a model may bedefined in a programming language environment using the model builder library Xpress BCL or directlyinput into the Optimizer in the form of a matrix.
Throughout this book we employ variants of a single problem, namely optimal portfolio selection. Toreaders who are interested in other types of optimization problems we recommend the book‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002), see also

http://examples.xpress.fico.com/example.pl#mosel_app
This book shows how to formulate and solve a large number of application problems with Xpress.
A short introduction such as the present book highlights certain features but necessarily remainsincomplete. The interested reader is directed to various other documents available from the Xpressonline documentation website, such as the user guides and reference manuals for the various pieces ofsoftware of the FICO Xpress Optimization suite (Xpress Solver, Mosel language, Mosel modules, etc.)and the collection of white papers on modeling topics. A list of the available documentation is given inthe appendix.

Whom this book is intended for

This book is an ideal starting point for software evaluators as it gives an overview of the various Xpressproducts and shows how to get up to speed quickly through experimenting with the models discussedvia a high-level language used in a graphical environment.
Starting from a simple linear model, every chapter adds new features to it. First time users are taken insmall steps from the textual description, via the mathematical model to a complete application(Chapter 9) or the implementation of a solution heuristic that involves some more advancedoptimization tasks (Chapter 8).
The variety of topics covered may also help occasional users to quickly refresh their knowledge ofMosel, Workbench, BCL and the Optimizer.

How to read this book

For a complete overview and introduction to modeling and solving with the FICO Xpress Optimizationproduct suite, we recommend reading the entire document. However, readers who are only interested incertain topics, may well skip certain parts or chapters as shown in the following diagram.
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Preface

Figure 1: Suggested flow through the book

Using the Mosel language with Xpress Workbench

The approach presented in the first part of this book is recommended for first time users, novices toMathematical Programming, and users who wish to develop and deploy new models quickly, supportedby graphical displays for problem and solution analysis.
For example, if you wish to develop a Linear Programming (LP) model and embed it into some existingapplication, you should read the first four chapters, followed by Chapter 9 on embedding Mosel models.
To find out how to model and solve Quadratic Programming (QP) problems with Xpress, you shouldread at least Chapters 1-3, the beginning of Chapter 4 and then Chapter 7; for Mixed Integer QuadraticProgramming (MIQP) also include Chapter 6 on Mixed Integer Programming (MIP).
To see how you may implement your own solution algorithms and heuristics in the Mosel language, wesuggest reading Chapters 1-3, the beginning of Chapter 4, followed by Chapter 6 on MIP and thenChapter 8 on Heuristics.

Working in a programming language environment

Users who wish to develop their entire application in a programming language environment have twooptions, using the model builder library BCL or inputting their problem directly into Xpress Optimizer.
Users who are looking for modeling support whilst model execution speed is a decisive factor in theirchoice of the tool should look at the model builder library BCL. Due to the modeling objects defined byBCL, the resulting code remains relatively close to the algebraic model and is easy to maintain. BCLsupports modeling of LP, MIP, and QP problems (Chapters 10-12). Model input with BCL may becombined with direct calls to Xpress Optimizer to define solution algorithms as shown with theexample in Chapter 13.
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The direct access to the Optimizer (discussed in the last part) is provided mainly for low-levelintegration with applications that possess their own matrix generation routines (Chapters 15-17 for LP,MIP, and QP problems), or to solve matrices given in standard format (MPS or LP) that were generatedexternally (Chapter 14). The possibility to directly access very specific features of the Optimizer is alsoappreciated by advanced users, mostly in the domain of research, who implement their own algorithmsinvolving the solution of LP, MIP, or QP problems.
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CHAPTER 1

Introduction

1.1 Mathematical Programming

Mathematical Programming is a technique of mathematical optimization. Many real-world problems insuch different areas as industrial production, transport, telecommunications, finance, or personnelplanning may be cast into the form of a Mathematical Programming problem: a set of decisionvariables, constraints over these variables and an objective function to be maximized or minimized.
Mathematical Programming problems are usually classified according to the types of the decisionvariables, constraints, and the objective function.
A well-understood case for which efficient algorithms (Simplex, interior point) are known comprises
Linear Programming (LP) problems. In this type of problem all constraints and the objective functionare linear expressions of the decision variables, and the variables have continuous domains—i.e., theycan take on any, usually non-negative, real values. Luckily, many application problems fit into thiscategory. Problems with hundreds of thousands, or even millions of variables and constraints areroutinely solved with commercial Mathematical Programming software like Xpress Optimizer.
Researchers and practitioners working on LP quickly found that continuous variables are insufficient torepresent decisions of a discrete nature (‘yes’/‘no’ or 1,2,3,...). This observation lead to the developmentof Mixed Integer Programming (MIP) where constraints and objective function are linear just as in LPand variables may have either discrete or continuous domains. To solve this type of problems, LPtechniques are coupled with an enumeration (known as Branch-and-Bound) of the feasible values of thediscrete variables. Such enumerative methods may lead to a computational explosion, even forrelatively small problem instances, so that it is not always realistic to solve MIP problems to optimality.However, in recent years, continuously increasing computer speed and even more importantly,significant algorithmic improvements (e.g. cutting plane techniques and specialized branchingschemes) have made it possible to tackle ever larger problems, modeling ever more exactly theunderlying real-world situations.
Another class of problems that is relatively well-handled are Quadratic Programming (QP) problems:these differ from LPs in that they have quadratic terms in the objective function (the constraints remainlinear). The decision variables may be continuous or discrete, in the latter case we speak of Mixed
Integer Quadratic Programming (MIQP) problems. In Chapters 7 and 12 of this book we show examplesof both cases.
More difficult is the case of non-linear constraints or objective functions, Non-linear Programming (NLP)problems. Frequently heuristic or approximation methods are employed to find good (locally optimal)solutions. One method for solving problems of this type is Successive Linear Programming (SLP); sucha solver forms part of the FICO Xpress Optimization suite. However, in this book we shall not enlarge onthis topic.
Building a model, solving it and then implementing the ‘answers’ is not generally a linear process. Weoften make mistakes in our modeling which are usually only detected by the optimization process,where we could get answers that were patently wrong (e.g. unbounded or infeasible) or that do not
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accord with our intuition. If this happens we are forced to reflect further about the model and go into aniterative process of model refinement, re-solution and further analyses of the optimum solution. Duringthis process it is quite likely that we will add extra constraints, perhaps remove constraints that wewere mislead into adding, correct erroneous data or even be forced to collect new data that we hadpreviously not considered necessary.

Modeling

Solving

Analysis

DeploymentDescription

Figure 1.1: Scheme of an optimization project

This books takes the reader through all these steps: from the textual description we develop amathematical model which is then implemented and solved. Various improvements, additions andreformulations are suggested in the following chapters, including an introduction of the availablemeans to support the analysis of the results. The deployment of a Mathematical Programmingapplication typically includes its embedding into other applications to turn it into a part of a company’sinformation system.

1.2 Xpress product suite

Arising from different users’ needs and preferences, there are several ways of working with themodeling and optimization tools that form the FICO Xpress Optimization product suite:
1. High-level language: the Xpress Mosel language allows the user to define his models in a formthat is close to algebraic notation and to solve them in the same environment. Mosel’sprogramming facilities also make it possible to implement solution algorithms directly in thishigh-level language. Mosel may be used as a standalone program or through the Xpress

Workbench development environment that provides, amongst many other tools, Mosel syntax anddebugging support.Via the concept of modules the Mosel environment is entirely open to additions; modules of theXpress distribution include access to solvers (Xpress Optimizer for LP, MIP, and convex QP,Xpress Nonlinear, and Xpress Kalis), data handling facilities (e.g. via ODBC), access to systemfunctions, graphing capabilities, distributed and remote computing functionality via the Mosel
Distributed Framework, and also interfaces to statistics packages such as R or Matlab. Inaddition, via the Mosel Native Interface users may define their own modules to add new featuresto the Mosel language according to their needs (e.g. to implement problem-specific datahandling, or connections to external solvers or solution algorithms).

2. Deployment as a web app: Mosel models can be deployed via Xpress Insight as multi-user webapps running locally, on-premises or on a cloud. Insight web apps are configured via a set of XMLfiles that are packaged into an archive along with the Mosel model and its input data.
3. Libraries for embedding: two different options are available for embedding mathematical modelsinto host applications. A model developed using the Mosel language may be executed andaccessed from a programming language environment (e.g. C, C++, Java, etc.) through the Mosel
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GUI
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(development/
deployment)

Xpress Workbench
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Figure 1.2: Xpress product suite

libraries; certain modules also provide direct access to their functions from a programminglanguage environment.The second possibility consists of developing a model directly in a programming language withthe help of the model builder library Xpress-BCL. BCL allows the user to formulate his models withobjects (decision variables, constraints, index sets) similar to those of a dedicated modelinglanguage.All libraries are available for C, C++, Java, C#, and Visual Basic (VBA).
4. Direct access to solvers: on the lowest, most immediate level, it is possible to work directly withthe Xpress Optimizer or Xpress NonLinear in the form of a library or a standalone program. Thisfacility may be useful for embedding Xpress Optimizer into applications that possess their own,dedicated matrix generation routines.Advanced Xpress users may wish to employ special features of Xpress Optimizer that are notavailable through the different interfaces, possibly using a matrix that has previously beengenerated by Mosel or BCL.

Of the three above mentioned approaches, a high-level language certainly provides theeasiest-to-understand access to Mathematical Programming. So in the first and largest part of thisbook we show how to define and solve problems with the Xpress Mosel language, and also how theresulting models may be embedded into applications using the Mosel libraries or Xpress Insight. Wework with Mosel models in the graphical user interface Xpress Workbench, exploiting its facilities fordebugging and solution analysis and display.
In the reminder of this book we show how to formulate and solve Mathematical Programmingproblems directly in a programming language environment. This may be done with modeling supportfrom BCL or directly using the Optimizer library. With BCL, models can be implemented in a form that isrelatively close to their algebraic formulation and so are quite easy to understand and to maintain. Wediscuss BCL implementations of the same example problems as used with Mosel.
The last part of this book explains how problems may be input directly into Xpress Optimizer, either inthe form of matrices (possibly generated by another tool such as Mosel or BCL) that are read from file,or by specifying the problem matrix coefficient-wise directly in the application program. The facility ofworking directly with the Xpress Optimizer library is destinated at embedders and advanced Xpressusers. It is not recommendable as a starting point for the novice in Mathematical Programming.
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1.2.1 Note on product versions

The Mosel examples in this book have been updated to the FICO Xpress Optimization Release 8.7(Mosel 5.0); Xpress Workbench screenshots have been taken with Release 8.7 (Workbench version3.1.0). The Xpress Insight examples have been developed with Xpress Release 8.7 (Insight 4.51). TheBCL examples are using BCL 4.8.11 that is distributed with Xpress Release 8.3. The Xpress Optimizerexamples have equally been updated to the Xpress Release 8.3 (Optimizer 31.01.09). If the examplesare run with other product versions the output obtained may look different. In particular, improvementsto the algorithms or modifications to the default settings in the Optimizer may influence the behavior ofthe LP search or the shape of the MIP branching trees. The Xpress Workbench interface may alsoundergo slight changes in future releases as new features are added, but this will not affect the actionsdescribed in this book.
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CHAPTER 2

Building models

This chapter shows in detail how the textual description of a real world problem is converted into amathematical model. We introduce an example problem, optimal portfolio selection, that will be usedthroughout this book.
Though not requiring any prior experience of Mathematical Programming, when formulating themathematical models we assume that the reader is comfortable with the use of symbols such as x or yto represent unknown quantities, and the use of this sort of variable in simple linear equations andinequalities, for example:

x + y ≤ 6
which says that ‘the quantity represented by x plus the quantity representetd by y must be less than orequal to six’.
You should also be familiar with the idea of summing over a set of variables. For example, if producei isused to represent the quantity produced of product i then the total production of all items in the set
ITEMS can be written as: ∑

i∈ITEMS
producei

This says ‘sum the produced quantities producei over all products i in the set ITEMS’.
Another common mathematical symbol that is used in the text is the all-quantifier ∀ (read ‘for all’): if
ITEMS consists in the elements 1, 4, 7, 9 then writing

∀i ∈ ITEMS : producei ≤ 100
is a shorthand for

produce1 ≤ 100
produce4 ≤ 100
produce7 ≤ 100
produce9 ≤ 100

Computer based modeling languages, and in particular the language we use, Mosel, closely mimic themathematical notation an analyst uses to describe a problem. So provided you are happy using theabove mathematical notation the step to using a modeling language will be straightforward.

2.1 Example problem

An investor wishes to invest a certain amount of money. He is evaluating ten different securities(‘shares’) for his investment. He estimates the return on investment for a period of one year. The
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following table gives for each share its country of origin, the risk category (R: high risk, N: low risk) andthe expected return on investment (ROI). The investor specifies certain constraints. To spread the riskhe wishes to invest at most 30% of the capital into any share. He further wishes to invest at least half ofhis capital in North-American shares and at most a third in high-risk shares. How should the capital bedivided among the shares to obtain the highest expected return on investment?
Table 2.1: List of shares with countries of origin and estimated return on investment
Number Description Origin Risk ROI

1 treasury Canada N 5
2 hardware USA R 17
3 theater USA R 26
4 telecom USA R 12
5 brewery UK N 8
6 highways France N 9
7 cars Germany N 7
8 bank Luxemburg N 6
9 software India R 31
10 electronics Japan R 21

To construct a mathematical model, we first identify the decisions that need to be taken to obtain asolution: in the present case we wish to know how much of every share to take into the portfolio. Wetherefore define decision variables fracs that denote the fraction of the capital invested in share s. Thatmeans, these variables will take fractional values between 0 and 1 (where 1 corresponds to 100% of thetotal capital). Indeed, every variable is bounded by the maximum amount the investor wishes to spendper share: at most 30% of the capital may be invested into every share. The following constraintestablishes these bounds on the variables fracs (read: ‘for all s in SHARES ...’).
∀s ∈ SHARES : 0 ≤ fracs ≤ 0.3

In the mathematical formulation, we write SHARES for the set of shares that the investor may wish toinvest in and RETs the expected ROI per share s. NA denotes the subset of the shares that are ofNorth-American origin and RISK the set of high-risk values.
The investor wishes to spend all his capital, that is, the fractions spent on the different shares must addup to 100%. This fact is expressed by the following equality constraint:∑

s∈SHARES
fracs = 1

We now also need to express the two constraints that the investor has specified: At most one third ofthe values may be high-risk values—i.e., the sum invested into this category of shares must not exceed1/3 of the total capital: ∑
s∈RISK

fracs ≤ 1/3
The investor also insists on spending at least 50% on North-American shares:∑

s∈NA
fracs ≥ 0.5

These two constraints are inequality constraints.
The investor’s objective is to maximize the return on investment of all shares, in other terms, tomaximize the following sum: ∑

s∈SHARES
RETs · fracs
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This is the objective function of our mathematical model.
After collecting the different parts, we obtain the following complete mathematical model formulation:

maximize ∑
s∈SHARES

RETs · fracs∑
s∈RISK

fracs ≤ 1/3
∑
s∈NA

fracs ≥ 0.5
∑

s∈SHARES
fracs = 1

∀s ∈ SHARES : 0 ≤ fracs ≤ 0.3
In the next chapter we shall see how this mathemetical model is transformed into a Mosel model thatis then solved with Xpress Optimizer. In Chapter 10 we show how to use BCL for this purpose andChapter 15 discusses how to input this model directly into the Optimizer without modeling support.
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CHAPTER 3

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to transform it into a Moselmodel which is solved as an LP using Xpress Workbench. More precisely, this involves the followingsteps:
� starting up Xpress Workbench,
� creating and saving the Mosel file,
� using the Mosel language to enter the model,
� correcting errors and debugging the model,
� solving the model and understanding the displays in Workbench,
� viewing and verifying the solution and understanding the solution in terms of the real worldproblem instance.

Chapter 10 shows how to formulate and solve the same example with BCL and in Chapter 15 theproblem is input and solved directly with Xpress Optimizer.

3.1 Starting up Xpress Workbench and creating a new model

We shall develop and execute our Mosel model with the graphical environment Xpress Workbench. Ifyou have followed the standard installation procedure for Xpress, start the program;
� In Windows, double click the Workbench icon on the desktop or select Start� Programs�

FICO� Xpress� Xpress Workbench. Otherwise, you can start up Workbench by typing
xpworkbench at the command prompt.

� On the Mac, you may have created a shortcut during the installation by dragging the Workbench
icon to the Dock. Otherwise, type ’Workbench’ into Spotlight, or open Applications� FICO
Xpress and double click the Xpress Workbench icon.

In either operating system, you can double click an installed model file (file with extension .mos) tostart Workbench.
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Figure 3.1: Workbench at startup

If you are starting Workbench without having selected any Mosel model you will see the entry screenshown in Figure 3.1 where you need to select the option Create an Xpress Mosel project. You will beprompted for location where to create the project. Browse to the desired location and select the foldername. After confirming with Upload you will see the welcome page of the Workbench workspace.

Figure 3.2: Workbench welcome page

Note: If you have started Workbench by selecting a model file this file is opened in the central editorwindow and the directory listing on its left lists all files in the same location.
The Xpress Workbench workspace window is subdivided into several panes:
At the top, we have the menu and tool bars. The central are is the editor window where the working filewill be displayed, and at its bottom opens the logging window during model execution. The window onthe left is the project navigation and command history, and the right window contains the debugger and
Xpress Insight panes. You may configure the windows displayed via the Window menu.
To create a new model file select File� New�Mosel file or alternatively, double click on the templatefile model.mos in the directory listing on the left to open it in the central editor window. Select File�
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Save As... and enter foliolp.mos as the name of the new file. Click Save to confirm your choice. Thecentral window of Workbench is now ready for you to enter the model into the displayed model inputtemplate.

Figure 3.3: Mosel model template

3.2 LP model

The mathematical model in the previous chapter may be transformed into the following Mosel modelentered into Workbench:
model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress Optimizer

declarations
SHARES = 1..10 ! Set of shares
RISK = {2,3,4,9,10} ! Set of high-risk values among shares
NA = {1,2,3,4} ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

RET:: [5,17,26,12,8,9,7,6,31,21]

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= 1/3

! Minimum amount of North-American values
sum(s in NA) frac(s) >= 0.5

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= 0.3

! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")
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end-model

Let us now try to understand what we have just written.
3.2.1 General structure

Every Mosel program starts with the keyword model, followed by a model name chosen by the user.The Mosel program is terminated with the keyword end-model.
All objects must be declared in a declarations section, unless they are defined unambiguouslythrough an assignment (however, if you have kept the option ’noimplicit’ from the Workbench modeltemplate then all entities must be declared). For example,

Return:= sum(s in SHARES) RET(s)⁎frac(s)

defines Return as a linear constraint and assigns to it the expression
sum(s in SHARES) RET(s)⁎frac(s)

There may be several such declarations sections at different places in a model.
In the present case, we define three sets, and two arrays:

� SHARES is a so-called range set—i.e., a set of consecutive integers (here: from 1 to 10).
� RISK and NA are simply sets of integers.
� RET is an array of real values indexed by the set SHARES, its values are assigned after thedeclarations.
� frac is an array of decision variables of type mpvar, also indexed by the set SHARES. These arethe decision variables in our model.

The model then defines the objective function, two linear inequality constraints and one equalityconstraint and sets upper bounds on the variables.
As in the mathematical model, we use a forall loop to enumerate all the indices in the set SHARES.

3.2.2 Solving

With the procedure maximize, we call Xpress Optimizer to maximize the linear expression Return. AsMosel is itself not a solver, we specify that Xpress Optimizer is to be used with the statement
uses "mmxprs"

at the begin of the model (the module mmxprs is documented in the ‘Mosel Language ReferenceManual’).
Instead of defining the objective function Return separately, we could just as well have written

maximize(sum(s in SHARES) RET(s)⁎frac(s))

3.2.3 Output printing

The last two lines print out the value of the optimal solution and the solution values for all variables.
To print an additional empty line, simply type writeln (without arguments). To write several items ona single line use write instead of writeln for printing the output.
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3.2.4 Formating

Indentation, spaces, and empty lines in our model have been added to increase readability. They areskipped by Mosel.
Line breaks: It is possible to place several statements on a single line, separating them by semicolons,like

RISK = {2,3,4,9,10}; NA = {1,2,3,4}

But since there are no special ‘line end’ or continuation characters, every line of a statement thatcontinues over several lines must end with an operator (+, >=, etc.) or characters like ‘,’ that make itobvious that the statement is not terminated.
As shown in the example, single line comments in Mosel are preceded by !. Comments over multiplelines start with (! and terminate with !).

3.3 Correcting errors and debugging a model

Having entered the model printed in the previous section, we now wish to execute it, that is, solve theoptimization problem and retrieve the results. Choose Run� Run foliolp.mos or alternatively, click on
the run button: making sure that the desired model filename is selected in the dropdown box next
to it.
At a first attempt to run a model, you are likely to see the message ‘Failed to parse Mosel source file’.The bottom window displays the error messages generated by Mosel, for instance as shown in thefollowing figure (Figure 3.4), where clicking on the error message takes you to the indicated location inthe Mosel file.

Figure 3.4: Logging output with error messages

When typing in the model from the previous section (there printed in its correct form), we havedeliberately introduced some common mistakes that we shall now correct—see the example file
foliolperr.mos for the erroneous model.
The first message:

Mosel: E-100 at (26,32) of `foliolperr.mos': Syntax error.

takes us to the line
RET:: [5,17,26,12,8,9,7,6,31,21
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We need to add the closing bracket to terminate the definition of RET (if the definition continues on thenext line, we need to add a comma at the end of this line to indicate continuation).
The next messages that appear after re-running the model:

Mosel: E-100 at (29,9) of `foliolperr.mos': Syntax error before `='.
Mosel: E-123 at (29,9) of `foliolperr.mos': `Return' is not defined.
Mosel: E-124 at (29,42) of `foliolperr.mos': An expression cannot be used as a statement.

take us to the line
Return = sum(s in SHARES) RET(s)⁎frac(s)

Finding the error here requires taking a very close look: instead of := we have used =. Since Returnshould have been defined by assigning it the sum on the right side, this statement now does not haveany meaning.
After correcting this error, we try to run the model again, but we are still left with one error message:

Mosel: E-123 at (44,17) of `foliolperr.mos': `maximize' is not defined.

located in the line
maximize(Return)

The procedure maximize is defined in the module mmxprs but we have forgotten to add the line
uses "mmxprs"

at the beginning of the Mosel model. After adding this line, the model compiles correctly.
If you do not remember the correct name of a Mosel keyword while typing in a model, then you may usethe code completion feature of the Workbench editor: while you are typing the editor brings up a list ofsuggestions with Mosel keywords and subroutines.

3.3.1 Debugging

If a model is correct from Mosel’s point of view, this does of course not guarantee that it really doeswhat we would like it to do. For instance, we may have forgotten to initialize data, or variables andconstraints are not created correctly (they may be part of complex expressions, including logical testsetc.). To check what has indeed been generated by Mosel, we may pause the execution of the model
immediately before it terminates by running the model in debug mode: select button to run the
model. The model will pause on the last statement to allow you to inspect the model entities in the
Debugger window on the right side of the workspace window. Expand the entries under the heading
Variables to view the definitions of individual model objects.
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Figure 3.5: Workbench debugger

If you wish to display or trace the values of model entities at other locations you can set breakpoints byclicking onto the grey area in front of the line numbers and re-run the model in debug mode.

Figure 3.6: Debug run with breakpoint

The debugger controls at the top of the Debugger window (step over: , step into: , step out: )
allow you to step through the model line-by-line or resume/pause its execution ( ).

3.4 Solving and viewing the solution

As mentioned in the previous section, to execute our model we have to select Run� Run foliolp.mos oralternatively, click on the run button: After the successful execution of our model the screen display
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changes to the following (Figure 3.7).

Figure 3.7: Display after model execution

The bottom window contains the log of the Mosel execution and if running in debug mode the leftwindow displays all model entities. Choose the icon window to toggle full-screen display of the
output printed by our program:

Total return: 14.0667
1: 30%
2: 0%
3: 20%
4: 0%
5: 6.66667%
6: 30%
7: 0%
8: 0%
9: 13.3333%
10: 0%

This means, that the maximum return of 14.0667 is obtained with a portfolio consisting of shares 1, 3, 5,6, and 9. 30% of the total amount are spent in shares 1 and 6 each, 20% in 3, 13.3333% in 9 and 6.6667%in 5. It is easily verified that all constraints are indeed satisfied: we have 50% of North-American shares(1 and 3) and 33.33% of high-risk shares (3 and 9).
Now add the line

setparam("XPRS_VERBOSE", true)

into you model before the call to maximize and re-run it. You will now see more detailed solution
information than what is printed by our model (Figure 3.8). The upper part of the log contains somestatistics about the matrix, in its original and in presolved form (presolving a problem means applyingsome numerical methods to simplify or transform it). The center part tells us which LP algorithm hasbeen used (Simplex), and the number of iterations and total time needed by the algorithm. Since this
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problem is very small, it is solved almost instantaneously. After the solver log you see as before theoutput produced by your model.

Figure 3.8: Solver log display

3.4.1 String indices

To make the output of the model more easily understandable, it may be a good idea to replace thenumerical indices by string indices.
In our model, we replace the three declaration lines

SHARES = 1..10
RISK = {2,3,4,9,10}
NA = {1,2,3,4}

by the following lines:
SHARES = {"treasury", "hardware", "theater", "telecom", "brewery",

"highways", "cars", "bank", "software", "electronics"}
RISK = {"hardware", "theater", "telecom", "software", "electronics"}
NA = {"treasury", "hardware", "theater", "telecom"}

And in the initialization of the array RET we now need to use the indices:
RET::(["treasury", "hardware", "theater", "telecom", "brewery",

"highways", "cars", "bank", "software", "electronics"])[
5,17,26,12,8,9,7,6,31,21]

No other changes in the model are required. We save the modified model as foliolps.mos.
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The solution output then prints as follows which certainly makes the interpretation of the result easierand more immediate:
Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%

Of course, the entity display also works with these string names:

Figure 3.9: Entity display
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CHAPTER 4

Working with data

In this chapter we introduce some basic data handling facilities of Mosel:
� the initializations block for reading and writing data in Mosel-specific format,
� data output to a file in free format,
� parameterization of files names and numerical constants, and
� some output formatting.

4.1 Data input from file

With Mosel, there are several different ways of reading and writing data from and to external files. Forsimplicity’s sake we shall limit the discussion here to files in text format. Mosel also provides specificmodules to exchange data with spreadsheets and databases, for instance using an ODBC connection,but this is beyond the scope of this book and the interested reader is refered to the documentation ofthese modules (see the Mosel Language Reference Manual and the whitepaper Using ODBC and other
database interfaces with Mosel).
The data file folio.dat that we are going to work with has the following contents:

! Data file for `folio⁎.mos'

RET: [("treasury") 5 ("hardware") 17 ("theater") 26 ("telecom") 12
("brewery") 8 ("highways") 9 ("cars") 7 ("bank") 6
("software") 31 ("electronics") 21 ]

RISK: ["hardware" "theater" "telecom" "software" "electronics"]

NA: ["treasury" "hardware" "theater" "telecom"]

Just as in model files, single-line comments preceded by ! may be used in data files. Every data entryis labeled with the name given to the corresponding entity in the model. Data items may be separatedby blanks, tabulations, line breaks, or commas.
We modify the Mosel model from Chapter 3 as follows:

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
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RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

As opposed to the previous model foliolp.mos, all index sets and the data array are now declaredwithout fixing their contents: their size is not known at their creation and they are initialized later withdata from the file folio.dat. Optionally, after the initialization from file, we may finalize the sets tomake them static. This will make more efficient the handling of any arrays indexed by these sets, andmore importantly, this allows Mosel to check for ‘out of range’ errors that cannot be detected if the setsare allowed to grow dynamically. (Note that sets and arrays in Mosel can also be explicitly marker as
dynamic in order to prevent them from being finalized/fixed.)

finalize(SHARES); finalize(RISK); finalize(NA)

Notice that we do not initialize explicitly the set SHARES, it is filled automatically when the array RET isread. Notice further that we only declare the decision variables after initializing the data, and hencewhen their index set is known.

4.2 Formated data output to file

Just like initializations from in the previous section, initializations to also exists inMosel to write out data in a standardized format. However, if we wish to redirect to a file exactly thetext that is currently displayed in the logging window of Workbench, then we simply need to surroundthe printing of this text by calls to the procedures fopen and fclose:
fopen("result.dat", F_OUTPUT)
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")
fclose(F_OUTPUT)

The first argument of fopen is the name of the output file, the second indicates in which mode to openit: with the settings shown above, at every re-execution of the model the contents of the result file willbe replaced. To append the new output to the existing file contents use:
fopen("result.dat", F_OUTPUT+F_APPEND)

We may now also wish to format the output more nicely, for instance:
forall(s in SHARES)
writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))⁎100,5,2), "%")

The function strfmt indicates the minimum space reserved for printing a string or a number. Anegative value for its second argument means left-justified printing. The optional third argumentdenotes the number of digits after the decimal point. With this formated way of printing the result filehas the following contents:
Total return: 14.0667
treasury : 30.00%
hardware : 0.00%
theater : 20.00%
telecom : 0.00%
brewery : 6.67%
highways : 30.00%
cars : 0.00%
bank : 0.00%

Fair Isaac Corporation Confidential and Proprietary Information 23



Working with data Getting started with Mosel

software : 13.33%
electronics : 0.00%

4.3 Parameters

It is commonly considered a good modeling style to hard-code as little information as possible directlyin a model. Instead, parameters and data should be specified and read from external sources duringthe execution of a model to make it more versatile and easily re-usable. With Mosel it is thereforepossible to define, for example, file names and numerical constants in the form of parameters thevalues of which may be modified at an execution without changing the model itself.
In our example, we may define the input and output file as parameters and also the constant terms(‘right hand side’ values) of the constraints and bounds. These parameter definitions must be added tothe beginning of the model file, immediately after the uses statement:

parameters
DATAFILE= "folio.dat" ! File with problem data
OUTFILE= "result.dat" ! Output file
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

and in the rest of the model the actual file names and data values are replaced by the parameters.
To modify the settings of these parameters when executing a model with Workbench, enter the newvalues for the parameters after the filename in the Command input box of the output pane. For instanceto change the value of MINAM:

Figure 4.1: Changing model parameter settings

Notice that parameters really become important when the model is not just run in the developmentenvironment Workbench but rather used for testing and experimentation (batch mode, scripts using thecommand line interface) and for final deployment (see Chapter 8). For example, we may wish to write abatch file that runs our model foliodata.mos repeatedly with different parameter settings, andwrites out the results each time to a different file. To do so, we simply need to add the following lines toa batch file (we then use the standalone version of Mosel to execute the model, which is invoked with
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the command mosel):
mosel exec foliodata MAXRISK=0.1 OUTFILE='result1.dat'
mosel exec foliodata MAXRISK=0.2 OUTFILE='result2.dat'
mosel exec foliodata MAXRISK=0.3 OUTFILE='result3.dat'
mosel exec foliodata MAXRISK=0.4 OUTFILE='result4.dat'

Another advantage of the use of parameters is that if models are distributed as BIM files (portable,compiled BInary Model files), then they remain parameterizable, without having to disclose the modelitself and hence protecting your intellectual property.

4.4 Complete example

The complete model file foliodata.mos with all the features discussed in this chapter looks asfollows:
model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
DATAFILE= "folio.dat" ! File with problem data
OUTFILE= "result.dat" ! Output file
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from DATAFILE
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem
maximize(Return)

! Solution printing to a file
fopen(OUTFILE, F_OUTPUT)
writeln("Total return: ", getobjval)
forall(s in SHARES)
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writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))⁎100,2,3), "%")
fclose(F_OUTPUT)

end-model
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CHAPTER 5

Drawing user graphs

In this chapter we show how to draw a user-defined SVG graph. The graph we wish to display isgenerated as a result of repeated executions of a model with different parameter settings. So we shallfirst see an example of writing a simple algorithm in the Mosel language involving
� re-definition of constraints,
� repeated re-optimization,
� saving solution information,
� definition of a user graph: drawing points, lines, and texts, and
� simple programming tasks (loops and selections).

5.1 Extended problem description

In addition to the data considered so far (see table in Chapter 2), the investor now also has at hand theestimations of the deviations from the expected return per share (Table 5.1). With this additionalinformation, he decides to run the LP model with different limits on the portion of high-risk shares andto represent the results as a graph, plotting the resulting total return against the deviation as a measureof risk.
Table 5.1: Estimated deviations
Number Description Deviation

1 treasury 0.1
2 hardware 19
3 theater 28
4 telecom 22
5 brewery 4
6 highways 3.5
7 cars 5
8 bank 0.5
9 software 25
10 electronics 16

5.2 Looping over optimization

We are going to modify the model foliodata.mos from the previous chapter in such a way that theproblem is re-optimized repeatedly with different limits on the percentage of high-risk values.
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In detail, the model will be transformed to implement the following algorithm:
1. Definition of the part of the model that remains unchanged by the parameter changes.
2. For every parameter value:

� Re-define the constraint limiting the percentage of high-risk values.
� Solve the resulting problem.
� If the problem is feasible: store the solution values.

3. Draw the result graph.
To store the solution value and the total estimated deviation of the result after each optimization run,we declare the following two arrays:

declarations
SOLRET: array(range) of real ! Solution values (total return)
SOLDEV: array(range) of real ! Solution values (average deviation)
end-declarations

The following code fragment introduces a loop around the definition of the constraint limiting theportion of high-risk shares and the solution procedure. To be able to override its previous definition atevery iteration, we now give this constraint a name, Risk. If the constraint did not have a name, theneach time the loop was executed, a new constraint would be added, and the existing constraint wouldnot be replaced.
ct:=0
forall(r in 0..20) do
! Limit the percentage of high-risk values
Risk:= sum(s in RISK) frac(s) <= r/20

maximize(Return) ! Solve the problem
if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1
SOLRET(ct):= getobjval
SOLDEV(ct):= getsol(sum(s in SHARES) DEV(s)⁎frac(s))
else
writeln("No solution for high-risk values <= ", 100⁎r/20, "%")
end-if

end-do

Above we have used the second form of the forall loop, namely forall/do. This form must be used whenseveral statements are included in the loop. The loop is terminated by end-do.
Another new feature in this code extract is the if/then/else/end-if statement. We only want to save thevalues for a problem instance if the optimal solution has been found—the solution status is obtainedwith function getprobstat and tested whether it is ‘solved to optimality’, represented by the constant
XPRS_OPT.
The selection statement has two other forms, if/then/end-if and if/then/elif/then/else/end-if where
elif/then may be repeated several times.
For further examples and a complete description of all loops and selection statements available inMosel the reader is refered to the ‘Mosel User Guide’.

5.3 Drawing a user graph

We now have gathered all the data required to draw the graph. Graphing functions are provided by themodule mmsvg (documented in the ‘Mosel Language Reference Manual’), so it needs to be loaded atthe beginning of the model by adding the following line:
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uses "mmsvg"

Then the following lines draw the graph (note the use of the sum operator to create a list of points):
svgaddgroup("GrS", "Solution values", SVG_GREY)
forall(r in 1..ct) svgaddpoint("GrS", SOLRET(r), SOLDEV(r))
svgaddline("GrS", sum(r in 1..ct) [SOLRET(r), SOLDEV(r)])

The user graph will be displayed in the editor window of the Workbench workspace. Select the tab SVG
drawing to move it to the foreground. With the above we obtain the following output (due to theinterplay of the various constraints the resulting graph is not a straight line as one might have expectedat first thought):

Figure 5.1: Plot of the result graph

In addition to this graph, we may also display labeled points representing the input data (‘GrL’ for lowrisk shares and ‘GrH’ for high risk shares):
svgaddgroup("GrL", "Low risk", SVG_GREEN)
svgaddgroup("GrH", "High risk", SVG_RED)

forall(s in SHARES - RISK) do
svgaddpoint("GrL", RET(s), DEV(s))
svgaddtext("GrL", RET(s)+1, 1.3⁎(DEV(s)-1), s)
end-do

forall(s in RISK) do
svgaddpoint("GrH", RET(s), DEV(s))
svgaddtext("GrH", RET(s)-2.5, DEV(s)-1, s)
end-do

Notice the set notation: SHARES - RISKmeans ‘all elements of SHARES that are not contained in
RISK’.
The complete output now is:
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Figure 5.2: Plot of result graph and data

5.4 Complete example

The complete model file folioloop_graph.mos with all the features discussed in this chapter looksas follows. Notice that the two modules mmxprs and mmive may be loaded with a single usesstatement. The deviation data may either be added to the original data file or, as shown here, read froma second file.
model "Portfolio optimization with LP"
uses "mmxprs", "mmsvg" ! Use Xpress Optimizer with SVG graphing

parameters
DATAFILE= "folio.dat" ! File with problem data
DEVDATA= "foliodev.dat" ! File with deviation data
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
DEV: array(SHARES) of real ! Standard deviation
SOLRET: array(range) of real ! Solution values (total return)
SOLDEV: array(range) of real ! Solution values (average deviation)
end-declarations

initializations from DATAFILE
RISK RET NA
end-initializations

initializations from DEVDATA
DEV
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
Return, Risk: linctr ! Constraint declaration (optional)
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1
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! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem for different limits on high-risk shares
ct:=0
forall(r in 0..20) do
! Limit the percentage of high-risk values
Risk:= sum(s in RISK) frac(s) <= r/20

maximize(Return) ! Solve the problem

if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1
SOLRET(ct):= getobjval
SOLDEV(ct):= getsol(sum(s in SHARES) DEV(s)⁎frac(s))
else
writeln("No solution for high-risk values <= ", 100⁎r/20, "%")
end-if

end-do

! Drawing a graph to represent results (`GrS') and data (`GrL' & `GrH')
svgaddgroup("GrS", "Solution values", SVG_GREY)
svgaddgroup("GrL", "Low risk", SVG_GREEN)
svgaddgroup("GrH", "High risk", SVG_RED)

forall(r in 1..ct) svgaddpoint("GrS", SOLRET(r), SOLDEV(r))
svgaddline("GrS", sum(r in 1..ct) [SOLRET(r), SOLDEV(r)])

forall(s in SHARES - RISK) do
svgaddpoint("GrL", RET(s), DEV(s))
svgaddtext("GrL", RET(s)+1, 1.3⁎(DEV(s)-1), s)
end-do

forall(s in RISK) do
svgaddpoint("GrH", RET(s), DEV(s))
svgaddtext("GrH", RET(s)-2.5, DEV(s)-1, s)
end-do

! Scale the size of the displayed graph
svgsetgraphscale(10)
svgsetgraphpointsize(2)

! Optionally save graphic to file
svgsave("foliograph.svg")

! Display the graph and wait for window to be closed by the user
svgrefresh
svgwaitclose

end-model

The problem is not feasible for small limit values on the constraint Risk. Besides the graphs wetherefore obtain the following text output:
No solution for high-risk values <= 0%
No solution for high-risk values <= 5%
No solution for high-risk values <= 10%
No solution for high-risk values <= 15%
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CHAPTER 6

Mixed Integer Programming

This chapter extends the model developed in Chapter 3 to a Mixed Integer Programming (MIP)problem. It describes how to
� define different types of discrete variables,
� understand and exploit the MIP optimization displays.

Chapter 11 shows how to formulate and solve the same example with BCL and in Chapter 16 theproblem is input and solved directly with Xpress Optimizer.

6.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities toformulate this constraint:
1. Limiting the number of different shares taken into the portfolio.
2. If a share is bought, at least a certain minimum amount MINVAL = 10% of the budget is spent onthe share.

We are going to deal with these two constraints in two separate models.

6.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set ofvariables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1 if the share s is taken into the portfolio and 0 otherwise.
We introduce the following constraint to limit the total number of assets to a maximum of MAXNUM. Itexpresses the constraint that at most MAXNUM of the variables buys may take the value 1 at the sametime. ∑

s∈SHARES
buys ≤ MAXNUM

We now still need to link the new binary variables buys with the variables fracs, the quantity of everyshare selected into the portfolio. The relation that we wish to express is ‘if a share is selected into theportfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1’. The followinginequality formulates this implication:
∀s ∈ SHARES : fracs ≤ buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that theseconstraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matterin our case, since any solution in which this is the case is also valid with both variables, buys and fracs,at 0.
6.2.1 Implementation with Mosel

We extend the LP model developed in Chapter 3 (using the initialization of data from file introduced inChapter 4) with the new variables and constraints. The fact that the new variables are binary variables(i.e. they only take the values 0 and 1) is expressed through the is_binary constraint.
Another common type of discrete variable is an integer variable, that is, a variable that can only take oninteger values between given lower and upper bounds. This variable type is defined in Mosel with an
is_integer constraint. In the following section (MIP model 2) we shall see yet another example ofdiscrete variables, namely semi-continuous variables.

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of different assets
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary ! Turn variables into binaries
frac(s) <= buy(s) ! Linking the variables
end-do
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! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES)
writeln(s, ": ", getsol(frac(s))⁎100, "% (", getsol(buy(s)), ")")

end-model

In the model foliomip1.mos above we have used the second form of the forall loop, namely forall/do,that needs to be used if the loop encompasses several statements. Equivalently we could have written
forall(s in SHARES) buy(s) is_binary
forall(s in SHARES) frac(s) <= buy(s)

6.2.2 Analyzing the solution

As the result of our model execution we obtain the following output:
Total return: 13.1
treasury: 20% (1)
hardware: 0% (0)
theater: 30% (1)
telecom: 0% (0)
brewery: 20% (1)
highways: 30% (1)
cars: 0% (0)
bank: 0% (0)
software: 0% (0)
electronics: 0% (0)

The maximum return is now lower than in the original LP problem due to the additional constraint. Asrequired, only four different shares are selected to form the portfolio.
Let us now have a look at the detailed solver information:
Enable the Optimizer logging output by adding the line

setparam("XPRS_VERBOSE",true)

into the model before the call to maximize and re-run the model. There are now more rows(constraints) and columns (variables) than in the LP matrix of the previous chapters.

Figure 6.1: Solver log for MIP problem - part 1: statistics
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Figure 6.2: Solver log for MIP problem - part 2: algorithm

As we have seen, it is relatively easy to turn an LP model into a MIP model by adding an integralitycondition on some (or all) variables. However, the same does not hold for the solution algorithms: MIPproblems are solved by repeatedly solving LP problems. Initially, the problem is solved without anyintegrality constraints (the LP relaxation). Then, one at a time, a discrete variable is chosen that doesnot satisfy the integrality condition in the current solution and new upper or lower bounds are added forthis variable to bring it to an integer value. If we represent every LP solution as a node and connectthese nodes by the bound changes or added constraints, then we obtain a tree-like structure, the
Branch-and-Bound tree.
In particular, the branching information tells us how many Branch-and-Bound nodes have been neededto solve the problem: here it is just one, the enumeration did not even start. By default, XpressOptimizer enables certain MIP pre-treatment algorithms (see the ‘Optimizer Reference Manual’ forfurther detail on algorithmic settings), among others the automated generation of cuts—i.e., additionalconstraints that cut off parts of the LP solution space, but no solution of the MIP. This problem is ofvery small size and becomes so easy through the pre-treatment that it is solved immediately.
Add the lines

setparam("XPRS_CUTSTRATEGY",0)
setparam("XPRS_HEURSTRATEGY",0)
setparam("XPRS_PRESOLVE",0)

to your model before the call to maximize and re-execute it. You have now switched off the MIPpre-treatment routines for automated cut generation and MIP heuristics, and also the presolvemechanism (a treatment to the matrix that tries to reduce its size and improve its numerical properties).
It now takes several nodes to solve the problem:
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Figure 6.3: Solver log for MIP problem with Branch-and-Bound

6.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 3. The newconstraint we wish to formulate is ‘if a share is bought, at least a certain minimum amount
MINVAL = 10% of the budget is spent on the share.’ Instead of simply constraining every variable fracsto take a value between 0 and MAXVAL, it now must either lie in the interval between MINVAL and
MAXVAL or take the value 0. This type of variable is known as semi-continuous variable. In the newmodel, we replace the bounds on the variables fracs by the following constraint:

∀s ∈ SHARES : fracs = 0 or MINVAL ≤ fracs ≤ MAXVAL

6.3.1 Implementation with Mosel

The following model foliomip2.mos implements the MIP model 2, again starting with the LP modelfrom Chapter 3 augmented by the data initialization from file explained in Chapter 4. Thesemi-continuous variables are defined with the is_semcont constraint.
A similar type is available for integer variables that take either the value 0 or an integer value between agiven limit and their upper bound (so-called semi-continuous integers): is_semint. A third compositetype is a partial integer which takes integer values from its lower bound to a given limit value and iscontinuous beyond this value (marked by is_partint).

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MINAM = 0.5 ! Min. investment into N.-American values
MAXVAL = 0.3 ! Max. investment per share
MINVAL = 0.1 ! Min. investment per share
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations
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initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper and lower bounds on the investment per share
forall(s in SHARES) do
frac(s) <= MAXVAL
frac(s) is_semcont MINVAL
end-do

! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")

end-model

When executing this model of the solution information window) we obtain the following output:
Total return: 14.0333
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 10%
highways: 26.6667%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the totalinvestment. Due to the additional constraint, the optimal MIP solution value is again lower than theinitial LP solution value.
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Quadratic Programming

In this chapter we turn the LP problem from Chapter 3 into a Quadratic Programming (QP) problem, andthe first MIP model from Chapter 6 into a Mixed Integer Quadratic Programming (MIQP) problem. Thechapter shows how to
� define quadratic objective functions,
� incrementally define and solve problems,
� understand and exploit the MIP optimization displays.

Chapter 12 shows how to formulate and solve the same examples with BCL and in Chapter 17 the QPproblem is input and solved directly with Xpress Optimizer.

7.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead ofmaximizing the estimated return and limiting the portion of high-risk investments he now wishes tominimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of gettingestimates of the variance/covariance matrix of estimated returns on the securities. (For example,hardware and software company worths tend to move together, but are oppositely correlated with thesuccess of theatrical production, as people go to the theater more when they have become bored withplaying with their new computers and computer games.) The return on theatrical productions are highlyvariable, whereas the treasury bill yield is certain. The estimated returns and the variance/covariancematrix are given in the following table:
Table 7.1: Variance/covariance matrix

treasury hardw. theater telecom brewery highways cars bank softw. electr.
treasury 0.1 0 0 0 0 0 0 0 0 0
hardware 0 19 -2 4 1 1 1 0.5 10 5
theater 0 -2 28 1 2 1 1 0 -2 -1
telecom 0 4 1 22 0 1 2 0 3 4
brewery 0 1 2 0 4 -1.5 -2 -1 1 1
highways 0 1 1 1 -1.5 3.5 2 0.5 1 1.5
cars 0 1 1 2 -2 2 5 0.5 1 2.5
bank 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5
software 0 10 -2 3 1 1 1 0.5 25 8
electronics 0 5 -1 4 1 1.5 2.5 0.5 8 16
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Question 1: Which investment strategy should the investor adopt to minimize the variance subject togetting some specified minimum target yield?
Question 2: Which is the least variance investment strategy if the investor wants to choose at most fourdifferent securities (again subject to getting some specified minimum target yield)?
The first question leads us to a Quadratic Programming problem, that is, a Mathematical Programmingproblem with a quadratic objective function and linear constraints. The second question necessitatesthe introduction of discrete variables to count the number of securities, and so we obtain a Mixed
Integer Quadratic Programming problem. The two cases will be discussed separately in the followingtwo sections.

7.2 QP

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to makethe following changes:
� New objective function: mean variance instead of total return.
� The risk-related constraint disappears.
� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function (anobjective function becomes quadratic either when a variable is squared, e.g., frac21 , or when twovariables are multiplied together, e.g., frac1 · frac2).
The target yield constraint can be written as follows:∑

s∈SHARES
RETs · fracs ≥ TARGET

The limit on the North-American shares as well as the requirement to spend all the money, and theupper bounds on the fraction invested into every share are retained. We therefore obtain the followingcomplete mathematical model formulation:
minimize ∑

s,t∈SHARES
VARst · fracs · fract∑

s∈NA
fracs ≥ MINAM

∑
s∈SHARES

fracs = 1
∑

s∈SHARES
RETs · fracs ≥ TARGET

∀s ∈ SHARES : 0 ≤ fracs ≤ MAXVAL

7.2.1 Implementation with Mosel

In addition to the Xpress Optimizer module mmxprs we now also need to load the module mmnl thatadds to the Mosel language the facilities required for the definition of quadratic expressions (mmnl is
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documented in the ‘Mosel Language Reference Manual’). We can then use the optimization function
maximize (or alternatively minimize) for quadratic objective functions to start the solution process.
This model uses a different data file (folioqp.dat) than the previous models:

! trs haw thr tel brw hgw car bnk sof elc
RET: [ (1) 5 17 26 12 8 9 7 6 31 21]

VAR: [ (1 1) 0.1 0 0 0 0 0 0 0 0 0 ! treasury
(2 1) 0 19 -2 4 1 1 1 0.5 10 5 ! hardware
(3 1) 0 -2 28 1 2 1 1 0 -2 -1 ! theater
(4 1) 0 4 1 22 0 1 2 0 3 4 ! telecom
(5 1) 0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
(6 1) 0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
(7 1) 0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
(8 1) 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
(9 1) 0 10 -2 3 1 1 1 0.5 25 8 ! software
(10 1) 0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics
]

RISK: [2 3 4 9 10]
NA: [1 2 3 4]

Note that we have chosen to use numerical instead of string indices. Since the set SHARES is defined inthe model, we do not have to list the index-tuple for every data entry in the file—those tuples given arefor clarity’s sake only.
model "Portfolio optimization with QP/MIQP"
uses "mmxprs", "mmnl" ! Use Xpress Optimizer with QP solver

parameters
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of different assets
TARGET = 9.0 ! Minimum target yield
end-parameters

declarations
SHARES = 1..10 ! Set of shares
RISK: set of integer ! Set of high-risk values among shares
NA: set of integer ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
VAR: array(SHARES,SHARES) of real ! Variance/covariance matrix of

! estimated returns
end-declarations

initializations from "folioqp.dat"
RISK RET NA VAR
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: mean variance
Variance:= sum(s,t in SHARES) VAR(s,t)⁎frac(s)⁎frac(t)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Target yield
sum(s in SHARES) RET(s)⁎frac(s) >= TARGET

! Upper bounds on the investment per share
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forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem
minimize(Variance)

! Solution printing
writeln("With a target of ", TARGET, " minimum variance is ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")

end-model

This model (file folioqp.mos) produces the following solution output (tab Output/input of thesolution information window):
With a target of 9 minimum variance is 0.557393
1: 30%
2: 7.15391%
3: 7.38246%
4: 5.46363%
5: 12.6554%
6: 5.91228%
7: 0.332458%
8: 30%
9: 1.09983%
10: 0%

Similarly to the algorithm shown in Chapter 5, we may re-solve this problem with different values of
TARGET and plot the results in a target return/standard deviation graph, know as the ‘efficient frontier’(model file folioqp_graph.mos):

Figure 7.1: Graph of the efficient frontier

7.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may beselected into the portfolio, subject to all other constraints of the previous QP model. In Chapter 6 wehave already seen how this can be done, namely by introducing an additional set of binary decisionvariables buys that are linked logically to the continuous variables:
∀s ∈ SHARES : fracs ≤ buys

Through this relation, a variable buys will be at 1 if a fraction fracs greater than 0 is selected into theportfolio. If, however, buys equals 0, then fracs must also be 0.
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To limit the number of different shares in the portfolio, we then define the following constraint:∑
s∈SHARES

buys ≤ MAXNUM

7.3.1 Implementation with Mosel

We may modify the previous QP model or simply add the following lines to the end of the QP model inthe previous section: the problem is then solved once as a QP and once as a MIQP in a single model run.
declarations
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary
frac(s) <= buy(s)
end-do

! Solve the problem
minimize(Variance)

writeln("With a target of ", TARGET," and at most ", MAXNUM,
" assets, minimum variance is ", getobjval)

forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")

When executing the MIQP model, we obtain the following solution output:
With a target of 9 and at most 4 assets,
minimum variance is 1.24876
1: 30%
2: 20%
3: 0%
4: 0%
5: 23.8095%
6: 26.1905%
7: 0%
8: 0%
9: 0%
10: 0%

With the additional constraint on the number of different assets the minimum variance is more thantwice as large as in the QP problem.
7.3.2 Analyzing the solution

If we enable the Optimizer logging output display by setting XPRS_VERBOSE to ’true’ we see thefollowing information:
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Figure 7.2: Detailed MIQP solution information

This is quite similar to the MIP statistics, perhaps with the exception of the LP solution algorithm: theinitial LP relaxation has been solved by the Newton-Barrier algorithm.
Just as with linear problems, the root solving as continuous problem is followed by a root cutting andheuristics phase:

Figure 7.3: MIQP root cutting and heuristics

A single integer fesaible solution is found during the Branch-and-Bound search. The search has beencompleted, this means that optimality of this solution has been proven (we may have chosen to stopthe search, for example, after a given number of nodes, in which case it may not be possible to proveoptimality or even to find the best solution).

Figure 7.4: MIQP Branch-and-Bound search
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CHAPTER 8

Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves
� structuring a Mosel model via the definition of subroutines, and
� a heuristic solution procedure interacting with Xpress Optimizer through parameter settings,saving and recovering bases, and modifications of variable bounds.

Chapter 13 shows how to implement the same heuristic with BCL.

8.1 Binary variable fixing heuristic

The heuristic we wish to implement should perform the following steps:
1. Solve the LP relaxation and save the basis of the optimal solution
2. Rounding heuristic: Fix all variables ‘buy’ to 0 if the corresponding fraction bought is close to 0,and to 1 if it has a relatively large value.
3. Solve the resulting MIP problem.
4. If an integer feasible solution was found, save the value of the best solution.
5. Restore the original problem by resetting all variables to their original bounds, and load the savedbasis.
6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in thiscase we may choose 0.2. In other applications, for binary variables a more suitable choice may be 1 – ε,where ε is a very small value such as 10–5.
Step 6: Setting a cutoff value means that we only search for solutions that are better than this value. Ifthe LP relaxation of a node is worse than this value it gets cut off, because this node and itsdescendants can only lead to integer feasible solutions that are even worse than the LP relaxation.

8.2 Implementation with Mosel

For the implementation (file folioheur.mos) of the variable fixing solution heuristic we work with theMIP 1 model from Chapter 6. Through the definition of the heuristic in the form of a subroutine (moreprecisely, a procedure) we only make minimal changes to the model itself: at the beginning we declare
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the procedure using the keyword forward, and before solving our problem with the standard call to themaximization function we execute our own solution heuristic. The solution printing also has beenadapted.
model "Portfolio optimization solved heuristically"
uses "mmxprs" ! Use Xpress Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of assets
end-parameters

forward procedure solve_heur ! Heuristic solution procedure

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary
frac(s) <= buy(s)
end-do

! Solve problem heuristically
solve_heur

! Solve the problem
maximize(Return)

! Solution printing
if getprobstat=XPRS_OPT then
writeln("Exact solution: Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")
else
writeln("Heuristic solution is optimal.")
end-if
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!-----------------------------------------------------------------

procedure solve_heur
declarations
TOL: real ! Solution feasibility tolerance
fsol: array(SHARES) of real ! Solution values for `frac' variables
bas: basis ! LP basis
end-declarations

setparam("XPRS_VERBOSE",true) ! Enable message printing in mmxprs
setparam("XPRS_CUTSTRATEGY",0) ! Disable automatic cuts
setparam("XPRS_HEURSTRATEGY",0) ! Disable automatic MIP heuristics
setparam("XPRS_PRESOLVE",0) ! Switch off presolve
TOL:=getparam("XPRS_FEASTOL") ! Get feasibility tolerance
setparam("ZEROTOL",TOL) ! Set comparison tolerance

maximize(XPRS_LPSTOP,Return) ! Solve the LP problem
savebasis(bas) ! Save the current basis

! Fix all variables `buy' for which `frac' is at 0 or at a relatively
! large value
forall(s in SHARES) do
fsol(s):= getsol(frac(s)) ! Get the solution values of `frac'
if (fsol(s) = 0) then
setub(buy(s), 0)
elif (fsol(s) >= 0.2) then
setlb(buy(s), 1)
end-if
end-do

maximize(XPRS_CONT,Return) ! Solve the MIP problem
ifgsol:=false
if getprobstat=XPRS_OPT then ! If an integer feas. solution was found
ifgsol:=true
solval:=getobjval ! Get the value of the best solution
writeln("Heuristic solution: Total return: ", solval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))⁎100, "%")
end-if

! Reset variables to their original bounds
forall(s in SHARES)
if ((fsol(s) = 0) or (fsol(s) >= 0.2)) then
setlb(buy(s), 0)
setub(buy(s), 1)
end-if

loadbasis(bas) ! Load the saved basis

if ifgsol then ! Set cutoff to the best known solution
setparam("XPRS_MIPABSCUTOFF", solval+TOL)
end-if
end-procedure

end-model

This model certainly requires some more detailed explanations.
8.2.1 Subroutines

A subroutine in Mosel has a similar structure as the model itself: a procedure starts with the keyword
procedure, followed by the name of the procedure, and terminates with end-procedure. Similarly, afunction starts with the keyword function, followed by its name, and terminates with
end-function. Both types of subroutines may take a list of arguments and for functions in additionthe return type must be indicated, for example:

function myfunc(myint: integer, myarray: array(range) of string): real
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for a function that returns a real and takes as input arguments an integer and an array of string.
As shown in our example, a subroutine may contain one (or several) declarations blocks. Theobjects defined in a subroutine are only valid locally and are deleted at the end of the subroutine.
Subroutine definitions may be overloaded, that is, a single subroutine may take different combinationsof arguments. It is possible to overload any subroutines defined by Mosel and its modules, providedthat the new definition differs from the existing one(s) in at least one argument.
For more detail and further examples of subroutine definition see the ‘Mosel User Guide’.

8.2.2 Optimizer parameters and functions

Parameters: The solution heuristic starts with parameter settings for Xpress Optimizer. For a detailedexplanation of all Optimizer parameters the reader is refered to the ‘Optimizer Reference Manual’. Allparameters are accessed through the Mosel subroutines setparam and getparam. In the example,we first enable the output printing by the module mmxprs. As a result, more information than what isprinted by our model will be displayed in the logging pane:

Figure 8.1: Optimizer output display

Switching off the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP heuristics(parameter XPRS_HEURSTRATEGY) is optional,whereas it is required in our case to disable the presolve mechanism (a treatment of the matrix thattries to reduce its size and improve its numerical properties, set with parameter XPRS_PRESOLVE),because we interact with the problem in the Optimizer in the course of its solution and this is onlypossible correctly if the matrix has not been modified by the Optimizer.
In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:the Optimizer works with tolerance values for integer feasibility and solution feasibility that are typicallyof the order of 10–6 by default. When evaluating a solution, for instance by performing comparisons, itis important to take into account these tolerances.
Optimization statement: We use a new version of the maximization procedure with an additionalargument, XPRS_LPSTOP, indicating that we only want to solve the top node LP relaxation (and not yetthe entire MIP problem). To continue with MIP solving from the point where we have stopped thealgorithm we use the argument XPRS_CONT. This is an example of an overloaded subroutine definition.
Saving and loading bases: To speed up the solution process, we save (in memory) the current basis ofthe Simplex algorithm after solving the initial LP relaxation, before making any changes to the problem.
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This basis is loaded again at the end, once we have restored the original problem. The MIP solutionalgorithm then does not have to re-solve the LP problem from scratch, it resumes the state where it was‘interrupted’ by our heuristic.
Bound changes: When a problem has already been loaded into the Optimizer (e.g. after executing anoptimization statement or following an explicit call to loadprob) bound changes via setlb and
setub are passed on directly to the Optimizer. Any other changes (addition or deletion of constraintsor variables) always lead to a complete reloading of the problem.
For more detail on the Optimizer functionality used in this example see the documentation of themodule mmxprs in the ‘Mosel Language Reference Manual’.

8.2.3 Comparison tolerance

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of Mosel(ZEROTOL) to this value TOL. This means that the test fsol(s) = 0 evaluates to true if fsol(s) liesbetween -TOL and TOL, and fsol(s) >= 0.2 is satisfied if the value of fsol(s) is at least
0.2-TOL.
Comparisons in Mosel always use a tolerance, with a very small default value. By resetting thisparameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the Optimizer.
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CHAPTER 9

Embedding a Mosel model in an application

Mosel models frequently need to be embedded in applications so they can be deployed easily. In thischapter we discuss
� how to generate a deployment template,
� the meaning and use of BIM files,
� embedding Mosel models into a host application,
� the use of parameterized model and BIM files,
� how to export matrix files with Mosel, and
� how to create an Xpress Insight application from a model file.

9.1 Generating a deployment template

Open menu File� New and select the entry Mosel deployment - Java. (For deployment with C, C#, orany other supported language the procedure is similar.)

Figure 9.1: Choosing the deployment type

This will open a new file in the editor window with the resulting code:
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Figure 9.2: Code preview

Find the constant with the value test.bim near the top of the file and change its value to the name ofyour BIM file (e.g. foliodata.bim). Use the menu File� Save As... to set the name (folio.java)and location of the new file. At the top of the code window a standard compilation line for Java underWindows is shown. To use it with the file we have just generated, replace RunModel.java by thename of our file, folio.java.
The Java program may be run on all systems for which Mosel is available. To compile under Linux orSolaris use:

javac -cp .:${XPRESSDIR}/lib/xprm.jar folio.java

For other systems please refer to the examples makefile of the corresponding Mosel distribution.

9.2 BIM files

Mosel models are typically distributed in the form of a BIM file (BInary Model file). A BIM file is acompiled version of the .mosmodel file that is portable across all platforms for which Mosel isavailable. It does not include any data read from external files. These must still be provided in separatefiles, thus making it possible to run the same BIM file with different data sets (see section Parametersbelow).
To generate a BIM file with Workbench you may use Run� Compile or equivalently, click on the button
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. The BIM file will then be created in the subdirectory out of the Workbench project by appending
the extension .bim to the file name (instead of .mos). You may also use the Compiler Options dialog
(opened either from the Run menu or by clicking on the tools button ) to configure, for example,
various debugging settings for the compilation.
It is also possible to execute Mosel source files (.mos) directly from an application (see the followingsection). In this case the BIM file does not need to be generated.

9.3 Embedding Mosel models into a host application

9.3.1 Executing Mosel models

The following simple Java program can be used to run a Mosel model that is provided in the form of aBIM file (for simplicity’s sake we are leaving out any kind of error handling):
import com.dashoptimization.⁎;

public class folio
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
model = mosel.loadModel("foliodata.bim"); // Load compiled model
model.run(); // Run the model

System.out.println("Model execution returned: " + model.getResult());
}
}

This Java program may be run on all systems for which Mosel is available. Under Windows use thesecommands to compile and run the program:
javac -classpath .:%XPRESSDIR%\lib\xprm.jar folio.java
java -classpath .:%XPRESSDIR%\lib\xprm.jar folio

To compile under Linux or Solaris use:
javac -cp .:${XPRESSDIR}/lib/xprm.jar folio.java

If we also wish to create the BIM file from the Java application, we may compile, load, and run theMosel model foliodata.mos directly from the Java program, for instance as shown in the followingcode fragment. The compilation functionality is equally contained in the JAR file xprm.jar so that wecan use the same compilation command as before.
import com.dashoptimization.⁎;

public class folio
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile("foliodata.mos"); // Compile the model
model = mosel.loadModel("foliodata.bim"); // Load compiled model
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model.run(); // Run the model

System.out.println("Model execution returned: " + model.getResult());
}
}

9.3.2 Parameters

In Chapter 4 we have shown how to modify parameter settings with Workbench or when running theMosel standalone version (for instance in batch files or scripts). The model parameters may also bereset when a Mosel model or BIM file is embedded in an application, making it possible to solve manydifferent problem instances without having to change the model source.
In this example we modify the name of the result file and the settings for two numerical parameters ofour model foliodata.mos. All other model parameters will take the default values specified at theirdefinition in the model.

import com.dashoptimization.⁎;

public class folioparam
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile("foliodata.mos"); // Compile the model
model = mosel.loadModel("foliodata.bim"); // Load compiled model

// Set the run-time parameters
model.execParams = "OUTFILE=result2.dat,MAXRISK=0.4,MAXVAL=0.25";
model.run(); // Run the model

System.out.println("`foliodata' returned: " + model.getResult());
}
}

9.3.3 Retrieving solution information

After running a model, it is possible to retrieve information about the model objects and the solution ofthe (last) optimization run. The following example shows how to test the problem status and retrievethe objective function value.
import com.dashoptimization.⁎;

public class folioobj
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel model;

mosel = new XPRM(); // Initialize Mosel
mosel.compile("foliodata.mos"); // Compile the model
model = mosel.loadModel("foliodata.bim"); // Load compiled model
model.run(); // Run the model

// Test whether a solution is found and print the objective value
if(model.getProblemStatus()==XPRMModel.PB_OPTIMAL)
System.out.println("Objective value: " + model.getObjectiveValue());

}
}
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9.4 Matrix files

9.4.1 Exporting matrices

If the optimization process with Xpress Optimizer is started from within a Mosel program, or if thesolving procedure is part of the application into which a Mosel model has been embedded, then theproblem matrix is loaded in memory into the solver without writing it out to a file (which would beexpensive in terms of running time). However, in certain cases it may still be required to be able toproduce a matrix. With Xpress, the user has the choice between two matrix formats: extended MPSand extended LP format, the latter being in general more easily human-readable since constraints areprinted in algebraic form.
With Mosel, there are several possibilities for generating a matrix:

1. With a matrix generation statement in the model file:to create an MPS matrix for our problem add the line
exportprob(EP_MPS, "folio", Return)

for an LP format matrix (which we intend to maximize at some point) add the line
exportprob(EP_MAX, "folio", Return)

immediately before or instead of the optimization statement.
2. From a Java application after having executed the model file:

XPRMModel model;
model.exportProblem("m", "folio");

This will output the matrix in MPS format. To print with LP format change the first argument of
exportProblem:

model.exportProblem("p", "folio");

9.5 Deployment to Xpress Insight

Xpress Insight embeds Mosel models into a multi-user application for deploying optimization models ina distributed client-server architecture. Through the Xpress Insight GUI, business users interact withMosel models to evaluate different scenarios and model configurations without directly accessing tothe model itself.
9.5.1 Preparing the model file

For embedding a Mosel model into Xpress Insight, we need to make a few edits to the Mosel model inorder to establish the connection between Mosel and Xpress Insight.
Firstly, we need to load the package mminsight that provides the required additional functionality. SinceInsight manages the data scenarios, we only need to read in data from the original sources when
loading the scenario (also referred to as baseline run) into Insight (triggered by the test of the run modewith insightgetmode in the model below). Scenario data will otherwise be input directly from XpressInsight at the insertion point marked with insightpopulate. All model entities that are to bemanaged by Xpress Insight need to be declared as public. Furthermore, the solver call to start theoptimization is replaced by insightminimize / insightmaximize.
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The resulting model file folioinsight.mos (based on foliodata.mos) has the followingcontents—this model can also simply be run standalone, e.g. from Workbench or the Mosel commandline, this is the case handled by INSIGHT_MODE_NONE.
model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress Optimizer
uses "mminsight" ! Use Xpress Insight

parameters
DATAFILE= "folio.dat" ! File with problem data
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

public declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

case insightgetmode of
INSIGHT_MODE_LOAD: do ! 'Load data' mode: Read data, then stop

initializations from DATAFILE
RISK RET NA
end-initializations
exit(0)
end-do

INSIGHT_MODE_RUN: ! 'Run' mode: Inject scen. data, continue
insightpopulate

INSIGHT_MODE_NONE: ! Standalone run: Read data and continue
initializations from DATAFILE
RISK RET NA
end-initializations

else
writeln("Unknown execution mode")
exit(1)

end-case

public declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
Return, LimitRisk, LimitAM, TotalOne: linctr ! Constraints
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)⁎frac(s)

! Limit the percentage of high-risk values
LimitRisk:= sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
LimitAM:= sum(s in NA) frac(s) >= MINAM

! Spend all the capital
TotalOne:= sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem through Xpress Insight
insightmaximize(Return)

end-model

Note that we have removed all solution output from this model: we are going to use Xpress Insight forrepresenting the results.
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9.5.1.1 The app archive

Xpress Insight expects models to be provided in compiled form, that is, as BIM files—see Section 9.2 onhow to generate BIM files from the model source. Since Xpress Insight executes Mosel models in adistributed architecture (so, possibly not on the same machine from where the model file is input) werecommend to include any input data files used by the model in the Xpress Insight app archive. The apparchive is a ZIP archive that contains the BIM file and the optional subdirectories model_resources(data files), client_resources (custom view definitions), and source (Mosel model source files).For our example, we create a ZIP archive folioinsight.zip with the file folioinsight.bim andthe data file folio.dat in the subdirectory model_resources.

Figure 9.3: Creating a new Insight project

With Xpress Workbench, select the option ’Create project’ followed by ’Create Insight project’ at startupto create the directory structure expected by Xpress Insight and replace the template model (insubdirectory source), configuration (application.xml and subdirectory client_resources), anddata files (in subdirectory model_resources) by the files of your Mosel project. In order to work withan existing app, select Open existing file or folder followed by Open project when starting up Workbenchand browse to the desired folder or double click on a Mosel file in the source subdirectory and select’Open Insight app’ in the dialog box.
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Figure 9.4: Default Xpress Insight app template

Select the button to create the app archive or to publish the app directly to Insight. If the app
has been published successfully the link ’Open in Xpress Insight’ in the green message box will takeyou to the app loaded in the Insight web client opened with your default web browser.

Figure 9.5: Deploying an app to Xpres Insight

9.5.2 Working with the Xpress Insight Web Client

Open the Xpress Insight Web Client by directing your web browser to the Web Client entry page: with adefault desktop installation of Xpress Insight this will be the page
http://localhost:8860/insight
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Figure 9.6: Xpress Insight web client entry page

If you have currently loaded any apps in Insight these will show up on the Web Client entry page,otherwise this page only displays the ’Upload app’ icon. We now upload the app archive
folioinsightxml.zip that adds a VDL view definition file and an XML configuration file to thearchive folioinsight.zip. The Mosel model has been extended with the array CtrSol to storesome result and data values in a convenient format for display (note the use of annotation marker
!@insight.manage that is required to inform Xpress Insight that these data are not input but resultvalues):

!@insight.manage=result
public declarations
CTRS: set of string ! Constraint names
CTRINFO: set of string ! Constraint info type
CtrSol: dynamic array(CTRS,CTRINFO) of real ! Solution values
end-declarations

! Save solution values for GUI display
CtrSol::("Limit high risk shares", ["Activity","Lower limit","Upper limit"])

[LimitRisk.act,0,MAXRISK]
CtrSol::("Limit North-American", ["Activity","Lower limit","Upper limit"])

[LimitAM.act,MINAM,1]
forall(s in SHARES | frac(s).sol>0) do
CtrSol("Limit per value: "+s,"Activity"):= frac(s).sol
CtrSol("Limit per value: "+s,"Upper limit"):= MAXVAL
CtrSol("Limit per value: "+s,"Lower limit"):= 0
end-do

Optionally, we can also add annotations to individual declarations in order to configure the GUI displayof model entities:
public declarations
SHARES: set of string !@insight.alias Shares
RET: array(SHARES) of real !@insight.alias Estimated return in investment
frac: array(SHARES) of mpvar !@insight.alias Fraction used
Return: linctr !@insight.alias Total return
TotalOne: linctr !@insight.hidden true
end-declarations
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Once you have successfully loaded the app archive, the app ’Portfolio Optimization’ will show up as anew icon:

Figure 9.7: Xpress Insight web client after loading the Portfolio app

Select the ’Portfolio Optimization’ app icon to open the app. Note that if you have deployed an app fromWorkbench and followed the link ’Open in Xpress Insight’ you will immediately be taken to this page.

Figure 9.8: App entry page

Now click on the text Click here to select scenarios in the shelf to create a scenario. In the ’ScenarioExplorer’ window, select ’Scenario 1’ and confirm with Close.
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Figure 9.9: Scenario creation in the Xpress Insight web client

Use the Load entry from the drop-down menu on the scenario name in the shelf to load the baselinedata.

Figure 9.10: Scenario menu in the Xpress Insight web client

After loading the scenario the view display changes, showing the input data of our optimization model.You can edit these data by entering new values into the input fields or table cells. Use the Run button onthe view or the corresponding entry in the scenario menu to run the model with the data shown onscreen.

Figure 9.11: Display after scenario loading

After a successful model run the placeholder message no results available in the lower half of our viewis replaced by the results display, as shown below.
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Figure 9.12: VDL view with input and result data elements

You can create new scenarios from existing ones (selecting ’Clone’ in the scenario menu) or with theoriginal input data by selecting ’New scenario’ in the Scenario Explorer window. The results of multiplescenarios can be displayed in a single view for comparison.

Figure 9.13: VDL view comparing several scenarios

9.5.2.1 VDL

VDL (View Definition Language) is a markup language for the creation of views for Xpress Insight appsfrom a set of predefined components and built-in styling options. Optionally, VDL view definitions canbe extended with HTML tags and Javascript code for further customization.
Xpress Workbench includes a drag-and-drop editor for the creation and editing of VDL views. WithinXpress Workbench, select menu File� New� Insight View (VDL) to launch the view creation dialog.Enter ’Portfolio data’ as the view title and folio.vdl as the filename for the view and in the following
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screen select ’Basic view’ layout before terminating the dialog with ’Finish’. In the drag-and-drop editorthat now shows, drag objects from the palette on the left onto the central artboard area—when doing sothe editor will provide guidance regarding which combinations of objects are permitted (for example, a’row’ needs to contain ’columns’ into which you can then add objects like ’table’, ’chart’ or ’text’).

Figure 9.14: VDL view designer in Xpress Workbench

The attributes for the currently selected element in the editor can be edited in the pane on the righthand side.

Figure 9.15: VDL view designer: editing view elements

For certain elements (table, chart) specific dialog windows will open to guide the user through theirconfiguration.
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Figure 9.16: VDL view designer: table definition wizard

Note that at any time during the editing of VDL views in Workbench the app can be published to Insight
by selecting the button in order to inspect the actual appearance of the web views when they are
populated with scenario data.
The view ’Portfolio data’ shown as web view in Figure 9.12 and in the VDL designer in Figure 9.15 iscreated entirely from the following VDL view definition (file folio.vdl in the subdirectory
client_resources of the app archive). All data entities marked as ’editable’ can be modified by theUI user.

<vdl version="4.7">
<vdl-page>
<!-- VDL header and 'page' must always be present -->

<!-- Structural element 'section': print header text for a section -->
<vdl-section heading="Configuration">

<!-- Structural element 'row': arrange contents in rows -->
<vdl-row>
<!-- Several columns within a 'row' for display side-by-side,

dividing up the total row width of 12 via 'size' setting
on each column. -->

<vdl-column size="5">
<!-- A form groups several input elements -->
<vdl-form>
<!-- Input fields for constraint limits -->
<vdl-field parameter="MAXRISK" size="3" label-size="9"
label="Maximum investment into high-risk values"/>

<vdl-field parameter="MAXVAL" size="3" label-size="9"
label=" Maximum investment per share"/>

<vdl-field parameter="MINAM" size="3" label-size="9"
label="Minimum investment into North-American values" />

<!-- default sizes: 2 units each -->
</vdl-form>

</vdl-column>
<vdl-column size="4">
<!-- Display editable input values, default table format -->
<vdl-table>
<vdl-table-column entity="RET" editable="true"/>

</autotable>
</vdl-column>
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<vdl-column size="3">
<vdl-form>
<!-- 'Run' button to launch optimization -->
<vdl-execute-button caption="Run optimization"/>

</vdl-form>
</vdl-column>

</vdl-row>
</vdl-section>

<!-- Placeholder message for 'Results' section -->
<vdl-container vdl-if="=!scenario.summaryData.hasResultData">

<span vdl-text="no results available"></span></vdl-container>

<!-- Structural element 'section';
display: with option 'none' nothing gets displayed by default
if hasResultData: display section once result values become available

(after scenario execution) -->
<vdl-section heading="Results"

vdl-if="=scenario.summaryData.hasResultData" style="display: none">

<vdl-row>
<vdl-column>
<!-- Display text element with the objective value -->
<span vdl-text="='Total expected return: &#163;' +

insight.Formatter.formatNumber(scenario.entities.Return.value,
'##.00')"></span>

</vdl-column>
</vdl-row>

<vdl-row>
<vdl-column size="4" heading="Portfolio composition">
<!-- Display the 'frac' solution values, default table format -->
<vdl-table>
<vdl-table-column entity="frac"></vdl-table-column>

</vdl-table>
</vdl-column>
<vdl-column size="8">
<!-- Display the 'frac' solution values as a pie chart -->
<vdl-chart style="width:400px;">
<vdl-chart-series entity="frac" type="pie"></vdl-chart-series>

</vdl-chart>
</vdl-column>

</vdl-row>
</vdl-section>

</vdl-page>
</vdl>

VDL views need to be declared in an app archive via an XML configuration file (the so-called companion
file). When VDL views are created via the view designer in Workbench then the required entry is addedautomatically to this file. Companion files can also be created and edited using the Workbench editor(select File� New� Companion file ). The following companion file definition integrates the VDL view
folio.vdl and a second view ’Scenario comparison’ into our example app folioinsightxml.zip.

<?xml version="1.0" encoding="iso-8859-1"?>
<model-companion version="3.0"
xmlns="http://www.fico.com/xpress/optimization-modeler/model-companion" >
<client>

<view-group title="Main">
<vdl-view title="Portfolio data" default="true" path="folio.vdl" />
<vdl-view title="Scenario comparison" default="false" path="foliocompare.vdl"/>

</view-group>
</client>

</model-companion>
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CHAPTER 10

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to implement the modelwith BCL. With some extensions to the initial formulation we also introduce input and outputfunctionalities of BCL:
� writing an LP model with BCL,
� data input from file using index sets,
� output facilities of BCL,
� exporting a problem to a matrix file.

Chapter 3 shows how to formulate and solve the same example with Mosel and in Chapter 15 theproblem is input and solved directly with Xpress Optimizer.

10.1 Implementation with BCL

All BCL examples in this book are written with C++. Due to the possibility of overloading arithmeticoperators in the C++ programming language, this interface provides the most convenient way of statingmodels in a close to algebraic form. The same models can also be implemented using the C, Java, orC# interfaces of BCL.
The following BCL program implements the LP example introduced in Chapter 2:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char ⁎⁎argv)
{
int s;
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XPRBprob p("FolioLP"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac");

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr("NA", Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr("Cap", Cap == 1);

// Upper bounds on the investment per share
for(s=0;s<NSHARES;s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.lpOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "%" << endl;

return 0;
}

Let us now have a closer look at what we have just written.
10.1.1 Initialization

To use the BCL C++ interface you need to include the header file xprb_cpp.h. We also define thenamespace to which the BCL classes belong.
If the software has not been initialized previously, BCL is initialized automatically when the first problemis created, that is by the line

XPRBprob p("FolioLP");

which creates a new problem with the name ‘FolioLP’.
10.1.2 General structure

The definition of the model itself starts with the creation of the decision variables (method newVar),followed by the definition of the objective function and the constraints. In C++ (and Java, C#)constraints may be created starting with linear expressions as shown in the example. Equivalently, theymay be constructed termwise, for instance the constraint limiting the percentage of high-risk shares:
XPRBctr CRisk;
CRisk = p.newCtr("Risk");
for(s=0;s<NRISK;s++) CRisk.addTerm(frac[RISK[s]], 1);
CRisk.setType(XPRB_L);
CRisk.addTerm(1.0/3);
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This second type of constraint definition is common to all BCL interfaces and is the only method ofdefining constraints in C where overloading is not available.
Notice that in the definition of equality constraints (here the constraint stating that we wish to spend allthe capital) we need to employ a double equality sign ==.
The method setUB is used to set the upper bounds on the decision variables frac. Alternatively to thisseparate function call, we may also specify the bounds directly at the creation of the variables, but inthis case we need to provide the full information including the name, variable type (XPRB_PL forcontinuous), lower and upper bound values:

for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);

Giving string names to modeling objects (decision variables, constraints, etc.) as shown in our exampleprogram is optional. If the user does not specify any name, BCL will generate a default name. However,user-defined names may be helpful for debugging and for the interpretation of output produced by theOptimizer.
10.1.3 Solving

Prior to launching the solver, the optimization direction is set to maximization with a call to setSense.With the method lpOptimize we then call Xpress Optimizer to maximize the objective function(Return) set with the method setObj, subject to all constraints that have been defined. The emptystring argument of lpOptimize indicates that the default LP algorithm is to be used. Other possiblevalues are "p" for primal, "d" for dual Simplex, and "b" for Newton-Barrier.
10.1.4 Output printing

The last few lines print out the value of the optimal solution and the solution values for all variables.

10.2 Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer and BCL, you may compilethis file with the following command under Windows (note that it is important to use the flag /MD):
cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprb.lib foliolp.cpp

For Linux or Solaris use
cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.C -o foliolp -lxprb

For other systems please refer to the example makefile provided with the corresponding distribution.
Running the resulting program will generate the following output:

Reading Problem FolioLP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
19 ( 0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:

3 rows 10 cols 19 elements
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Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0

Uncrunching matrix
Optimal solution found
Dual solved problem
5 simplex iterations in 0s

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances
Problem status: optimal
Total return: 14.0667
0: 30%
1: 0%
2: 20%
3: 0%
4: 6.66667%
5: 30%
6: 0%
7: 0%
8: 13.3333%
9: 0%

The upper half of this display is the log of Xpress Optimizer: the size of the matrix, 3 rows (i.e.constraints) and 10 columns (i.e. decision variables), and the log of the LP solution algorithm (here: ‘D’for dual Simplex). The lower half is the output produced by our program: the maximum return of14.0667 is obtained with a portfolio consisting of shares 1, 3, 5, 6, and 9. 30% of the total amount arespent in shares 1 and 6 each, 20% in 3, 13.3333% in 9 and 6.6667% in 5. It is easily verified that allconstraints are indeed satisfied: we have 50% of North-American shares (1 and 3) and 33.33% ofhigh-risk shares (3 and 9).
It is possible to modify the amount of output printing by BCL and Xpress Optimizer by adding thefollowing line before the start of the optimization:

p.setMsgLevel(1);

This setting will disable all output (including warnings) from BCL and Xpress Optimizer, with theexception of error messages. The possible values for the printing level range from 0 to 4. In Chapter 13we show how to access the Optimizer control parameters directly which, for instance, allows finetuning the message display.

10.3 Data input from file

Instead of simply numbering the decision variables, we may wish to use more meaningful indices in ourmodel. For instance, the problem data may be given in file(s) using string indices such as the file
foliocpplp.dat we now wish to read:

! Return
"treasury" 5
"hardware" 17
"theater" 26
"telecom" 12
"brewery" 8
"highways" 9
"cars" 7
"bank" 6
"software" 31
"electronics" 21
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We modify our previous model as follows to work with this data file:
#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define DATAFILE "foliocpplp.dat"

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[NSHARES]; // Estimated return in investment
char RISK[][100] = {"hardware", "theater", "telecom", "software",

"electronics"}; // High-risk values among shares
char NA[][100] = {"treasury", "hardware", "theater", "telecom"};

// Shares issued in N.-America

XPRBindexSet SHARES; // Set of shares

XPRBprob p("FolioLP"); // Initialize a new problem in BCL

void readData(void)
{
double value;
int s;
FILE ⁎datafile;
char name[100];

SHARES=p.newIndexSet("Shares",NSHARES); // Create the `SHARES' index set

// Read `RET' data from file
datafile=fopen(DATAFILE,"r");
for(s=0;s<NSHARES;s++)
{
XPRBreadlinecb(XPRB_FGETS, datafile, 200, "T g", name, &value);
RET[SHARES+=name]=value;
}
fclose(datafile);

SHARES.print(); // Print out the set contents
}

int main(int argc, char ⁎⁎argv)
{
int s;
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Read data from file
readData();

// Create the decision variables
for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac");

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[SHARES[RISK[s]]];
p.newCtr("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[SHARES[NA[s]]];
p.newCtr("NA", Na >= 0.5);
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// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr("Cap", Cap == 1);

// Upper bounds on the investment per share
for(s=0;s<NSHARES;s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.lpOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << SHARES[s] << ": " << frac[s].getSol()⁎100 << "%" << endl;

return 0;
}

The arrays RISK and NA now store indices in the form of strings and we have added a new object, the
index set SHARES that is defined while the return-on-investment values RET are read from the data file.In this example we have initialized the index set with exactly the right size. This is not really necessarysince index sets may grow dynamically if more entries are added to them than the initially allocatedspace. The actual set size can be obtained with the method getSize.
For reading the data we use the function XPRBreadlinecb. It will skip comments preceded by ! andany empty lines in the data file. The format string "T g" indicates that we wish to read a text string(surrounded by single or double quotes if it contains blanks) followed by a real number, the twoseparated by spaces (including tabulation). If the data file used another separator sign such as ‘,’ thenthe format string could be changed accordingly (e.g. "T,g").
In the model itself, the definition of the linear expressions Risk and Na has been adapted to the newindices.
Another modification concerns the solution printing: we print the name of every share, not simply itssequence number and hence the solution now gets displayed as follows:

Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%

10.4 Output functions and error handling

Most BCL modeling objects (XPRBprob, XPRBvar, XPRBctr, XPRBsos, and XPRBindexSet) have amethod print. For variables, depending on where the method is invoked either their bounds or theirsolution value is printed: adding the line
frac[2].print();

before the call to the optimization will print the name of the variable and its bounds,
frac2: [0,0.3]

whereas after the problem has been solved its solution value gets displayed:
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frac2: 0.2

Whenever BCL detects an error it stops the program execution with an error message so that it willusually not be necessary to test the return value of every operation. If a BCL program is embedded intosome larger application, it may be helpful to use the explicit initialization to check early on that thesoftware can be accessed correctly, for instance:
if(XPRB::init() != 0)
{
cout << "Initialization failed." << endl;
return 1;

}

The method getLPStatmay be used to test the LP problem status. Only if the LP problem has beensolved successfully BCL will return or print out meaningful solution values:
char ⁎LPSTATUS[] = {"not loaded", "optimal", "infeasible",

"worse than cutoff", "unfinished", "unbounded",
"cutoff in dual", "unsolved", "nonconvex"};

cout << "Problem status: " << LPSTATUS[p.getLPStat()] << endl;

10.5 Exporting matrices

If the optimization process with Xpress Optimizer is started from within a BCL program (methods
lpOptimize or mipOptimize of XPRBprob), then the problem matrix is loaded in memory into thesolver without writing it out to a file (which would be expensive in terms of running time). However, incertain cases it may still be required to be able to produce a matrix. With Xpress, the user has thechoice between two matrix formats: extended MPS and extended LP format, the latter being in generalmore easily human-readable since constraints are printed in algebraic form.
To export a matrix in MPS format add the following line to your BCL program, immediately before orinstead of the optimization statement; this will create the file Folio.mat in your working directory:

p.exportProb(XPRB_MPS, "Folio");

For an LP format matrix use the following:
p.setSense(XPRB_MAXIM);
p.exportProb(XPRB_LP, "Folio");

The LP format contains information about the sense of optimization. Since the default is to minimize,for maximization we first need to reset the sense. The resulting matrix file will have the name
Folio.lp.
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Mixed Integer Programming

This chapter extends the model developed in Chapter 10 to a Mixed Integer Programming (MIP)problem. It describes how to
� define different types of discrete variables,
� get the MIP solution status and understand the MIP optimization log produced by XpressOptimizer.

Chapter 6 shows how to formulate and solve the same example with Mosel and in Chapter 16 theproblem is input and solved directly with Xpress Optimizer.

11.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities toformulate this constraint:
1. Limiting the number of different shares taken into the portfolio.
2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

11.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set ofvariables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1 if the share s is taken into the portfolio and 0 otherwise.
We introduce the following constraint to limit the total number of assets to a maximum of MAXNUM. Itexpresses the constraint that at most MAXNUM of the variables buys may take the value 1 at the sametime. ∑

s∈SHARES
buys ≤ MAXNUM

We now still need to link the new binary variables buys with the variables fracs, the quantity of everyshare selected into the portfolio. The relation that we wish to express is ‘if a share is selected into theportfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1’. The followinginequality formulates this implication:
∀s ∈ SHARES : fracs ≤ buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that theseconstraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matterin our case, since any solution in which this is the case is also valid with both variables, buys and fracs,at 0.
11.2.1 Implementation with BCL

We extend the LP model developed in Chapter 10 with the new variables and constraints. The fact thatthe new variables are binary variables (i.e. they only take the values 0 and 1) is expressed through thetype XPRB_BV at their creation.
Another common type of discrete variable is an integer variable, that is, a variable that can only take oninteger values between given lower and upper bounds. These variables are defined in BCL with the type
XPRB_UI. In the following section (MIP model 2) we shall see yet another example of discretevariables, namely semi-continuous variables.

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char ⁎⁎argv)
{
int s;
XPRBprob p("FolioMIP1"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap,Num;
XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables (including upper bounds for `frac')
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);
buy[s] = p.newVar("buy", XPRB_BV);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Limit the total number of assets
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for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.mipOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "% (" << buy[s].getSol()

<< ")" << endl;

return 0;
}

Besides the additional variables and constraints, the choice of optimization algorithm needs to beadapted to the problem type: we now wish to solve a MIP problem via Branch-and-Bound, and wetherefore use the method mipOptimize.
Just as with the LP problem in the previous chapter, it is usually helpful to check the solution statusbefore accessing the MIP solution—only if the MIP status is ‘unfinished (solution found)’ or ‘optimal’will BCL print out a meaningful solution:

char ⁎MIPSTATUS[] = {"not loaded", "not optimized", "LP optimized",
"unfinished (no solution)",
"unfinished (solution found)", "infeasible",
"optimal", "unbounded"};

cout << "Problem status: " << MIPSTATUS[p.getMIPStat()] << endl;

11.2.2 Analyzing the solution

As the result of the execution of our program we obtain the following output:
Reading Problem FolioMIP1
Problem Statistics

14 ( 514 spare) rows
20 ( 0 spare) structural columns
49 ( 5056 spare) non-zero elements

Global Statistics
10 entities 0 sets 0 set members

Maximizing MILP FolioMIP1
Original problem has:

14 rows 20 cols 49 elements 10 globals
Presolved problem has:

13 rows 19 cols 46 elements 9 globals
LP relaxation tightened
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, 0s
Dual

objective dual inf
D 14.066667 .0000000
------- optimal --------
Concurrent statistics:

Dual: 4 simplex iterations, 0.00s
Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
4 14.066667 D 0 0 .000000 0

Dual solved problem
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4 simplex iterations in 0s

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 5.551e-17 / 5.551e-17
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
c 13.100000 14.066667 1 6.87

1 K 13.100000 13.908571 1 1 0 5.81 0
2 K 13.100000 13.580000 1 12 0 3.53 0

⁎⁎⁎ Search completed ⁎⁎⁎ Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100014
Uncrunching matrix
Problem status: optimal
Total return: 13.1
0: 20% (1)
1: 0% (0)
2: 30% (1)
3: 0% (0)
4: 20% (1)
5: 30% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

At the beginning we see the log of the execution of Xpress Optimizer: the problem statistics (we nowhave 14 constraints and 20 variables, out of which 10 are MIP variables, refered to as ‘entities’), the logof the execution of the LP algorithm (concurrently solving with primal and dual simplex on a multi-coreprocessor), the log of the built-in MIP heuristics (a solution with the value 13.1 has been found) and theautomated cut generation (a total of 13 cuts of type ‘K’ = knapsack have been generated). Since thisproblem is very small, it is solved by the MIP heuristics and the addition of cuts (additional constraintsthat cut off parts of the LP solution space, but no MIP solution) tightens the LP formulation in such away that the solution to the LP relaxation becomes integer feasible. The Branch-and-Bound searchtherefore stops at the first node and no log of the Branch-and-Bound search gets displayed.
The output printed by our program tells us that the problem has been solved to optimality (i.e. the MIPsearch has been completed and at least one integer feasible solution has been found). The maximumreturn is now lower than in the original LP problem due to the additional constraint. As required, onlyfour different shares are selected to form the portfolio.

11.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 10. Thenew constraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10% of thebudget is spent on the share.’ Instead of simply constraining every variable fracs to take a valuebetween 0 and 0.3, it now must either lie in the interval between 0.1 and 0.3 or take the value 0. Thistype of variable is known as semi-continuous variable. In the new model, we replace the bounds on thevariables fracs by the following constraint:
∀s ∈ SHARES : fracs = 0 or 0.1 ≤ fracs ≤ 0.3
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11.3.1 Implementation with BCL

The following program implements the MIP model 2. The semi-continuous variables are defined by thetype XPRB_SC. By default, BCL assumes a continuous limit of 1, se we need to set this value to 0.1 withthe method setLim.
A similar type is available for integer variables that take either the value 0 or an integer value between agiven limit and their upper bound (so-called semi-continuous integers): XPRB_SI. A third compositetype is a partial integer which takes integer values from its lower bound to a given limit value and iscontinuous beyond this value (marked by XPRB_PI).

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char ⁎⁎argv)
{
int s;
XPRBprob p("FolioSC"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_SC, 0, 0.3);
frac[s].setLim(0.1);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.mipOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "%" << endl;

return 0;
}
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When executing this program we obtain the following output (leaving out the part printed by theOptimizer):
Total return: 14.0333
0: 30%
1: 0%
2: 20%
3: 0%
4: 10%
5: 26.6667%
6: 0%
7: 0%
8: 13.3333%
9: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the totalinvestment. Due to the additional constraint, the optimal MIP solution value is again lower than theinitial LP solution value.
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CHAPTER 12

Quadratic Programming

In this chapter we turn the LP problem from Chapter 10 into a Quadratic Programming (QP) problem,and the first MIP model from Chapter 11 into a Mixed Integer Quadratic Programming (MIQP) problem.The chapter shows how to
� define quadratic objective functions,
� incrementally define and solve problems.

Chapter 7 shows how to formulate and solve the same examples with Mosel and in Chapter 17 the QPproblem is input and solved directly with Xpress Optimizer.

12.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead ofmaximizing the estimated return and limiting the portion of high-risk investments he now wishes tominimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of gettingestimates of the variance/covariance matrix of estimated returns on the securities. (For example,hardware and software company worths tend to move together, but are oppositely correlated with thesuccess of theatrical production, as people go to the theater more when they have become bored withplaying with their new computers and computer games.) The return on theatrical productions are highlyvariable, whereas the treasury bill yield is certain.
Question 1: Which investment strategy should the investor adopt to minimize the variance subject togetting some specified minimum target yield?
Question 2: Which is the least variance investment strategy if the investor wants to choose at most fourdifferent securities (again subject to getting some specified minimum target yield)?
The first question leads us to a Quadratic Programming problem, that is, a Mathematical Programmingproblem with a quadratic objective function and linear constraints. The second question necessitatesthe introduction of discrete variables to count the number of securities, and so we obtain a Mixed
Integer Quadratic Programming problem. The two cases will be discussed separately in the followingtwo sections.

12.2 QP

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to makethe following changes:
� New objective function: mean variance instead of total return.
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� The risk-related constraint disappears.
� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function (anobjective function becomes quadratic either when a variable is squared, e.g., frac21 , or when twovariables are multiplied together, e.g., frac1 · frac2).
The target yield constraint can be written as follows:∑

s∈SHARES
RETs · fracs ≥ TARGET

The limit on the North-American shares as well as the requirement to spend all the money, and theupper bounds on the fraction invested into every share are retained. We therefore obtain the followingcomplete mathematical model formulation:
minimize ∑

s,t∈SHARES
VARst · fracs · fract∑

s∈NA
fracs ≥ 0.5

∑
s∈SHARES

fracs = 1
∑

s∈SHARES
RETs · fracs ≥ TARGET

∀s ∈ SHARES : 0 ≤ fracs ≤ 0.3
12.2.1 Implementation with BCL

The estimated returns and the variance/covariance matrix are given in the data file
foliocppqp.dat:

! trs haw thr tel brw hgw car bnk sof elc
0.1 0 0 0 0 0 0 0 0 0 ! treasury
0 19 -2 4 1 1 1 0.5 10 5 ! hardware
0 -2 28 1 2 1 1 0 -2 -1 ! theater
0 4 1 22 0 1 2 0 3 4 ! telecom
0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
0 10 -2 3 1 1 1 0.5 25 8 ! software
0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics

We may read this datafile with the function XPRBreadarrlinecb: all comments preceded by ! andalso empty lines are skipped. We read an entire line at once indicating the format of an entry (‘g’) andthe separator (any number of spaces or tabulations).
For the definition of the objective function we now use a quadratic expression (equally represented bythe class XPRBexpr). Since we now wish to minimize the problem, we use the default optimizationsense setting and optimization as a continuous problem is again started with the method lpOptimize(with empty string argument indicating the default algorithm).
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#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define DATAFILE "foliocppqp.dat"

#define TARGET 9 // Target yield
#define MAXNUM 4 // Max. number of different assets

#define NSHARES 10 // Number of shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int NA[] = {0,1,2,3}; // Shares issued in N.-America
double VAR[NSHARES][NSHARES]; // Variance/covariance matrix of

// estimated returns

int main(int argc, char ⁎⁎argv)
{
int s,t;
XPRBprob p("FolioQP"); // Initialize a new problem in BCL
XPRBexpr Na,Return,Cap,Num,Variance;
XPRBvar frac[NSHARES]; // Fraction of capital used per share
FILE ⁎datafile;

// Read `VAR' data from file
datafile=fopen(DATAFILE,"r");
for(s=0;s<NSHARES;s++)
XPRBreadarrlinecb(XPRB_FGETS, datafile, 200, "g ", VAR[s], NSHARES);
fclose(datafile);

// Create the decision variables
for(s=0;s<NSHARES;s++)
frac[s] = p.newVar(XPRBnewname("frac(%d)",s+1), XPRB_PL, 0, 0.3);

// Objective: mean variance
for(s=0;s<NSHARES;s++)
for(t=0;t<NSHARES;t++) Variance += VAR[s][t]⁎frac[s]⁎frac[t];
p.setObj(Variance); // Set the objective function

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Target yield
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.newCtr(Return >= TARGET);

// Solve the problem
p.lpOptimize("");

// Solution printing
cout << "With a target of " << TARGET << " minimum variance is " <<

p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "%" << endl;

return 0;
}

This program produces the following solution output with a dual-core processor (notice that the defaultalgorithm for solving QP problems is Newton-Barrier, not the Simplex as in all previous examples):
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Reading Problem FolioQP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
24 ( 0 spare) non-zero elements
76 quadratic elements

Global Statistics
0 entities 0 sets 0 set members

Minimizing QP FolioQP
Original problem has:

3 rows 10 cols 24 elements
76 qobjelem

Presolved problem has:
3 rows 10 cols 24 elements
76 qobjelem

Barrier cache sizes : L1=32K L2=8192K
Using AVX support
Cores per CPU (CORESPERCPU): 8
Barrier starts, using up to 8 threads, 4 cores
Matrix ordering - Dense cols.: 9 NZ(L): 92 Flops: 584

Its P.inf D.inf U.inf Primal obj. Dual obj. Compl.
0 1.90e+001 1.85e+002 3.70e+000 8.7840000e+002 -1.1784000e+003 4.5e+003
1 1.69e-001 1.58e+000 3.29e-002 7.1810240e+000 -2.7042733e+002 3.1e+002
2 3.31e-003 1.48e-002 6.45e-004 5.1672666e+000 -1.2127681e+001 1.7e+001
3 6.12e-007 2.66e-015 2.78e-017 1.5558934e+000 -4.8803143e+000 6.4e+000
4 9.71e-017 1.39e-015 2.78e-017 7.2498306e-001 1.4062618e-001 5.8e-001
5 3.64e-017 1.01e-015 5.55e-017 5.6634270e-001 5.2690100e-001 3.9e-002
6 3.97e-017 7.15e-016 5.55e-017 5.5894833e-001 5.5591229e-001 3.0e-003
7 1.22e-016 1.33e-015 5.55e-017 5.5760205e-001 5.5726378e-001 3.4e-004
8 9.18e-017 1.68e-015 5.55e-017 5.5741308e-001 5.5738503e-001 2.8e-005
9 2.36e-016 3.29e-016 5.55e-017 5.5739403e-001 5.5739328e-001 7.5e-007

Barrier method finished in 0 seconds
Uncrunching matrix
Optimal solution found
Barrier solved problem
9 barrier iterations in 0s

Final objective : 5.573940299651456e-01
Max primal violation (abs / rel) : 7.347e-17 / 7.347e-17
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 6.075e-07 / 1.012e-07

All values within tolerances
With a target of 9 minimum variance is 0.557394
0: 30%
1: 7.15401%
2: 7.38237%
3: 5.46362%
4: 12.6561%
5: 5.91283%
6: 0.333491%
7: 29.9979%
8: 1.0997%
9: 6.97039e-06%

12.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may beselected into the portfolio, subject to all other constraints of the previous QP model. In Chapter 11 wehave already seen how this can be done, namely by introducing an additional set of binary decisionvariables buys that are linked logically to the continuous variables:
∀s ∈ SHARES : fracs ≤ buys

Through this relation, a variable buys will be at 1 if a fraction fracs greater than 0 is selected into the
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portfolio. If, however, buys equals 0, then fracs must also be 0.
To limit the number of different shares in the portfolio, we then define the following constraint:∑

s∈SHARES
buys ≤ MAXNUM

12.3.1 Implementation with BCL

We may modify the previous QP model or simply append the following lines to the program of theprevious section, just after the solution printing: the problem is then solved once as a QP and once as aMIQP in a single program run.
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables
for(s=0;s<NSHARES;s++)
buy[s] = p.newVar(XPRBnewname("buy(%d)",s+1), XPRB_BV);

// Limit the total number of assets
for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve the problem
p.mipOptimize("");

// Solution printing
cout << "With a target of " << TARGET << " and at most " << MAXNUM <<

" assets, minimum variance is " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "% (" << buy[s].getSol()

<< ")" << endl;

When executing the MIQP model, we obtain the following solution output:
Reading Problem FolioQP
Problem Statistics

14 ( 514 spare) rows
20 ( 0 spare) structural columns
54 ( 5056 spare) non-zero elements
76 quadratic elements

Global Statistics
10 entities 0 sets 0 set members

Minimizing MIQP FolioQP
Original problem has:

14 rows 20 cols 54 elements 10 globals
76 qobjelem

Presolved problem has:
14 rows 20 cols 54 elements 10 globals
76 qobjelem

LP relaxation tightened
Will try to keep branch and bound tree memory usage below 14.8Gb
Crash basis containing 0 structural columns created

Its Obj Value S Ninf Nneg Sum Inf Time
0 .000000 p 1 4 .100000 0
8 .000000 p 0 0 .000000 0
8 4.609000 p 0 0 .000000 0

Its Obj Value S Nsft Nneg Dual Inf Time
27 .557393 QP 0 0 .000000 0

QP solution found
Optimal solution found
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Primal solved problem
27 simplex iterations in 0s

Final objective : 5.573934108103899e-01
Max primal violation (abs / rel) : 1.804e-16 / 1.804e-16
Max dual violation (abs / rel) : 1.776e-15 / 1.776e-15
Max complementarity viol. (abs / rel) : 2.670e-16 / 1.007e-16

All values within tolerances

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
a 4.094715 .557393 1 86.39
b 1.839000 .557393 2 69.69
q 1.825619 .557393 3 69.47
k 1.419003 .557393 4 60.72

1 K 1.419003 .557393 4 3 0 60.72 0
2 K 1.419003 .557393 4 9 2 60.72 0
3 K 1.419003 .557393 4 7 6 60.72 0
4 K 1.419003 .557393 4 5 6 60.72 0
5 K 1.419003 .557393 4 11 5 60.72 0
6 K 1.419003 .558122 4 8 10 60.67 0
7 K 1.419003 .570670 4 11 9 59.78 0
8 K 1.419003 .570670 4 5 12 59.78 0
9 K 1.419003 .583638 4 5 3 58.87 0
10 K 1.419003 .612496 4 4 0 56.84 0
11 K 1.419003 .618043 4 6 5 56.45 0
12 K 1.419003 .620360 4 8 4 56.28 0
13 K 1.419003 .620360 4 0 6 56.28 0

Heuristic search started
Heuristic search stopped

Cuts in the matrix : 14
Cut elements in the matrix : 138

Starting tree search.
Deterministic mode with up to 8 running threads and up to 16 tasks.

Node BestSoln BestBound Sols Active Depth Gap GInf Time
a 9 1.248762 .919281 5 2 5 26.38
⁎⁎⁎ Search completed ⁎⁎⁎ Time: 0 Nodes: 15
Number of integer feasible solutions found is 5
Best integer solution found is 1.248762
Best bound is 1.248752
Uncrunching matrix
With a target of 9 and at most 4 assets, minimum variance is 1.24876
0: 30% (1)
1: 20% (1)
2: 0% (0)
3: 0% (0)
4: 23.8095% (1)
5: 26.1905% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

The log of the Branch-and-Bound search tells us this time that 5 integer feasible solutions have beenfound (all by the MIP heuristics) and a total of 15 nodes have been enumerated to complete thesearch.With the additional constraint on the number of different assets the minimum variance is morethan twice as large as in the QP problem.
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CHAPTER 13

Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves a heuristicsolution procedure interacting with Xpress Optimizer through
� parameter settings,
� saving and recovering bases, and
� modifications of variable bounds.

Chapter 8 shows how to implement the same heuristic with Mosel.

13.1 Binary variable fixing heuristic

The heuristic we wish to implement should perform the following steps:
1. Solve the LP relaxation and save the basis of the optimal solution
2. Rounding heuristic: Fix all variables ‘buy’ to 0 if they are close to 0, and to 1 if they have a relativelylarge value.
3. Solve the resulting MIP problem.
4. If an integer feasible solution was found, save the value of the best solution.
5. Restore the original problem by resetting all variables to their original bounds, and load the savedbasis.
6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in thiscase we may choose 0.2. In other applications, for binary variables a more suitable choice may be 1 – ε,where ε is a very small value such as 10–5.
Step 6: Setting a cutoff value means that we only search for solutions that are better than this value. Ifthe LP relaxation of a node is worse than this value it gets cut off, because this node and itsdescendants can only lead to integer feasible solutions that are even worse than the LP relaxation.
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13.2 Implementation with BCL

For the implementation of the variable fixing solution heuristic we work with the MIP 1 model fromChapter 11. Through the definition of the heuristic in a separate function we only make minimalchanges to the model itself: before solving our problem with the standard call to the method
mipOptimize we execute our own solution heuristic and the solution printing also has been adapted.

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

void solveHeur();

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

XPRBprob p("FolioMIPHeur"); // Initialize a new problem in BCL
XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

int main(int argc, char ⁎⁎argv)
{
int s;
XPRBexpr Risk,Na,Return,Cap,Num;

// Create the decision variables (including upper bounds for `frac')
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);
buy[s] = p.newVar("buy", XPRB_BV);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]⁎frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Limit the total number of assets
for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve problem heuristically
p.setSense(XPRB_MAXIM);
solveHeur();

Fair Isaac Corporation Confidential and Proprietary Information 85



Heuristics Getting started with BCL

// Solve the problem
p.mipOptimize("");

// Solution printing
if(p.getMIPStat()==4 || p.getMIPStat()==6)
{
cout << "Exact solution: Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "%" << endl;

}
else
cout << "Heuristic solution is optimal." << endl;

return 0;
}

void solveHeur()
{
XPRBbasis basis;
int s, ifgsol;
double solval, bsol[NSHARES],TOL;

XPRSsetintcontrol(p.getXPRSprob(), XPRS_CUTSTRATEGY, 0);
// Disable automatic cuts

XPRSsetintcontrol(p.getXPRSprob(), XPRS_HEURSTRATEGY, 0);
// Disable MIP heuristics

XPRSsetintcontrol(p.getXPRSprob(), XPRS_PRESOLVE, 0);
// Switch presolve off

XPRSgetdblcontrol(p.getXPRSprob(), XPRS_FEASTOL, &TOL);
// Get feasibility tolerance

p.mipOptimize("l"); // Solve the LP-relaxation
basis=p.saveBasis(); // Save the current basis

// Fix all variables `buy' for which `frac' is at 0 or at a relatively
// large value
for(s=0;s<NSHARES;s++)
{
bsol[s]=buy[s].getSol(); // Get the solution values of `frac'
if(bsol[s] < TOL) buy[s].setUB(0);
else if(bsol[s] > 0.2-TOL) buy[s].setLB(1);
}

p.mipOptimize("c"); // Solve the MIP-problem
ifgsol=0;
if(p.getMIPStat()==4 || p.getMIPStat()==6)
{ // If an integer feas. solution was found
ifgsol=1;
solval=p.getObjVal(); // Get the value of the best solution
cout << "Heuristic solution: Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()⁎100 << "%" << endl;

}

// Reset variables to their original bounds
for(s=0;s<NSHARES;s++)
if((bsol[s] < TOL) || (bsol[s] > 0.2-TOL))
{
buy[s].setLB(0);
buy[s].setUB(1);
}

p.loadBasis(basis); /⁎ Load the saved basis: bound changes are
immediately passed on from BCL to the
Optimizer if the problem has not been modified
in any other way, so that there is no need to
reload the matrix ⁎/

basis.reset(); // No need to store the saved basis any longer
if(ifgsol==1)
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XPRSsetdblcontrol(p.getXPRSprob(), XPRS_MIPABSCUTOFF, solval+TOL);
// Set the cutoff to the best known solution

}

The implementation of the heuristic certainly requires some explanations.
In this example for the first time we use the direct access to Xpress Optimizer. To do so, we need toinclude the Optimizer header file xprs.h. The Optimizer functions are applied to the problemrepresentation (of type XPRSprob) held by the Optimizer which can be retrieved with the method
getXPRSprob of the BCL problem. For more detail on how to use the BCL and Optimizer libaries incombination the reader is refered to the ‘BCL Reference Manual’. The complete documentation of allOptimizer functions and parameters is provided in the ‘Optimizer Reference Manual’.
Parameters: The solution heuristic starts with parameter settings for the Xpress Optimizer. Switchingoff the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP heuristics (parameter
XPRS_HEURSTRATEGY) is optional, whereas it is required in our case to disable the presolvemechanism (a treatment of the matrix that tries to reduce its size and improve its numerical properties,set with parameter XPRS_PRESOLVE), because we interact with the problem in the Optimizer in thecourse of its solution and this is only possible correctly if the matrix has not been modified by theOptimizer.
In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress Optimizer:the Optimizer works with tolerance values for integer feasibility and solution feasibility that are typicallyof the order of 10–6 by default. When evaluating a solution, for instance by performing comparisons, itis important to take into account these tolerances.
The fine tuning of output printing mentioned in Chapter 10 can be obtained by setting the parameters
XPRS_LPLOG and XPRS_MIPLOG (both to be set with function XPRSsetintcontrol).
Optimization calls: We use the optimization method mipOptimize with the argument "l", indicatingthat we only want to solve the top node LP relaxation (and not yet the entire MIP problem). To continuewith MIP solving from the point where we have stopped the algorithm we use the argument "c".
Saving and loading bases: To speed up the solution process, we save (in memory) the current basis ofthe Simplex algorithm after solving the initial LP relaxation, before making any changes to the problem.This basis is loaded again at the end, once we have restored the original problem. The MIP solutionalgorithm then does not have to re-solve the LP problem from scratch, it resumes the state where it was‘interrupted’ by our heuristic.
Bound changes: When a problem has already been loaded into the Optimizer (e.g. after executing anoptimization statement or following an explicit call to method loadMat) bound changes via setLB and
setUB are passed on directly to the Optimizer. Any other changes (addition or deletion of constraintsor variables) always lead to a complete reloading of the problem.
The program produces the following output. As can be seen, when solving the original problem for thesecond time the Simplex algorithm performs 0 iterations because it has been started with the basis ofthe optimal solution saved previously.

Reading Problem FolioMIPHeur
Problem Statistics

14 ( 0 spare) rows
20 ( 0 spare) structural columns
49 ( 0 spare) non-zero elements

Global Statistics
10 entities 0 sets 0 set members

Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, 0s
Dual

objective dual inf
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D 14.066667 .0000000
------- optimal --------
Concurrent statistics:

Dual: 5 simplex iterations, 0.00s
Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
5 14.066667 D 0 0 .000000 0

Dual solved problem
5 simplex iterations in 0s

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances
⁎⁎⁎ Search unfinished ⁎⁎⁎ Time: 0 Nodes: 0
Number of integer feasible solutions found is 0
Best bound is 14.066667

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
a 13.100000 14.066667 1 6.87
Heuristic search started
Heuristic search stopped
⁎⁎⁎ Search completed ⁎⁎⁎ Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100014
Heuristic solution: Total return: 13.1
0: 20%
1: 0%
2: 30%
3: 0%
4: 20%
5: 30%
6: 0%
7: 0%
8: 0%
9: 0%
Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals
Will try to keep branch and bound tree memory usage below 14.8Gb
Starting concurrent solve with dual

Concurrent-Solve, 0s
Dual

objective dual inf
D 14.066667 .0000000
------- optimal --------
Concurrent statistics:

Dual: 0 simplex iterations, 0.00s
Optimal solution found

Its Obj Value S Ninf Nneg Sum Dual Inf Time
0 14.066667 D 0 0 .000000 0

Dual solved problem
0 simplex iterations in 0s

Final objective : 1.406666666666667e+01
Max primal violation (abs / rel) : 0.0 / 0.0
Max dual violation (abs / rel) : 0.0 / 0.0
Max complementarity viol. (abs / rel) : 0.0 / 0.0

All values within tolerances

Starting root cutting & heuristics
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Its Type BestSoln BestBound Sols Add Del Gap GInf Time
Heuristic search started
Heuristic search stopped

Starting tree search.
Deterministic mode with up to 8 running threads and up to 16 tasks.

Node BestSoln BestBound Sols Active Depth Gap GInf Time
⁎⁎⁎ Search completed ⁎⁎⁎ Time: 0 Nodes: 5
Problem is integer infeasible
Number of integer feasible solutions found is 0
Best bound is 13.100001
Heuristic solution is optimal.

Observe that the heuristic found a solution of 13.1, and that the MIP optimizer without the heuristiccould not find a better solution (hence the infeasible message). The heuristic solution is thereforeoptimal.
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CHAPTER 14

Matrix input

In this chapter we show how to
� initialize Xpress Optimizer,
� load matrices in MPS or LP format into the Optimizer,
� solve a problem, and
� write out the solution to a file.

14.1 Matrix files

With Xpress, the user has the choice between two matrix formats: extended MPS and extended LPformat, the latter being in general more easily human-readable since constraints are printed in algebraicform. Such matrices may be written out by Xpress Optimizer, but more likely they will have beengenerated by some other tool.
If the optimization process with Xpress Optimizer is started from within a Mosel or BCL program, thenthe problem matrix is loaded in memory into the solver without writing it out to a file (which would beexpensive in terms of running time). However, both tools may also be used to produce matrix files (seeChapter 9 for matrix generation with Mosel and Chapter 10 for BCL).

14.2 Implementation

To load a matrix into Xpress Optimizer we need to perform the following steps:
1. Initialize Xpress Optimizer.
2. Create a new problem.
3. Read the matrix file.

The following C program folioinput.c (similar interfaces exist for Java and C#) shows how to loada matrix file, solve it, and write out the results. For clarity’s sake we have omitted all error checking inthis program. In general it is recommended to test the return value of the initialization function and alsowhether the problem has been created and read correctly.
To use Xpress Optimizer, we need to include the header file xprs.h.
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#include <stdio.h>
#include "xprs.h"

int main(int argc, char ⁎⁎argv)
{
XPRSprob prob;

XPRSinit(NULL); /⁎ Initialize Xpress Optimizer ⁎/
XPRScreateprob(&prob); /⁎ Create a new problem ⁎/

XPRSreadprob(prob, "Folio", ""); /⁎ Read the problem matrix ⁎/

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /⁎ Set sense to maximization ⁎/
XPRSlpoptimize(prob, ""); /⁎ Solve the problem ⁎/

XPRSwriteprtsol(prob, "Folio.prt", ""); /⁎ Write results to `Folio.prt' ⁎/

XPRSdestroyprob(prob); /⁎ Delete the problem ⁎/
XPRSfree(); /⁎ Terminate Xpress ⁎/

return 0;
}

14.3 Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer, you may compile this filewith the following command under Windows:
cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprs.lib folioinput.c

For Linux or Solaris use
cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib folioinput.c -o folioinput -lxprs

For other systems please refer to the example makefile provided with the corresponding distribution.
If we run this program with the matrix Folio.mat produced by BCL for the LP example problem ofChapter 2, then we obtain an output file Folio.prt with the following contents:

Problem Statistics
Matrix FolioLP
Objective ⁎OBJ⁎

RHS ⁎RHS⁎
Problem has 4 rows and 10 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 5 iterations
Objective function value is 14.066659

Rows Section
Number Row At Value Slack Value Dual Value RHS

N 1 ⁎OBJ⁎ BS 14.066659 -14.066659 .000000 .000000
E 2 Cap EQ 1.000000 .000000 8.000000 1.000000
G 3 NA LL .500000 .000000 -5.000000 .500000
L 4 Risk UL .333333 .000000 23.000000 .333333

Columns Section
Number Column At Value Input Cost Reduced Cost

C 5 frac UL .300000 5.000000 2.000000
C 6 frac_1 LL .000000 17.000000 -9.000000
C 7 frac_2 BS .200000 26.000000 .000000
C 8 frac_3 LL .000000 12.000000 -14.000000
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C 9 frac_4 BS .066667 8.000000 .000000
C 10 frac_5 UL .300000 9.000000 1.000000
C 11 frac_6 LL .000000 7.000000 -1.000000
C 12 frac_7 LL .000000 6.000000 -2.000000
C 13 frac_8 BS .133333 31.000000 .000000
C 14 frac_9 LL .000000 21.000000 -10.000000

The upper half contains some statistics concerning the problem size and the solution algorithm: theoptimal LP solution found has a value of 14.066659. The Rows Section gives detailed solutioninformation for the constraints in the problem. The solution values for the decision variables arelocated in the column labeled Value of the Columns Section.
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CHAPTER 15

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to input and solve thisproblem with Xpress Optimizer. In detail, we shall discuss the following topics:
� transformation of an LP model into matrix format,
� LP problem input with Xpress Optimizer,
� solving and solution output.

Chapter 3 shows how to formulate and solve this example with Mosel and Chapter 10 does the samefor BCL.

15.1 Matrix representation

As a first step in the transformation of the mathematical problem into the form required by the LPproblem input function of Xpress Optimizer we write the problem in the form of a table where thecolumns represent the decision variables and the rows are the constraints. All non-zero coefficients arethen entered into this table, resulting in the problem matrix, completed by the operators and theconstant terms (the latter are usually refered to as the right hand side, RHS, values).
Table 15.1: LP matrix

frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10
0 1 2 3 4 5 6 7 8 9 Oper. RHS

Risk 0 12 15 18 115 117 ≤ 1/3
MinNA 1 10 13 16 19 ≥ 0.5
Allfrac 2 11 14 17 110 111 112 113 114 116 118 = 1

↑ ↑
rowidx matval

colbeg 0 2 5 8 11 12 13 14 15 17 19
nelem 2 3 3 3 1 1 1 1 2 2

The matrix specified to Xpress Optimizer does not consist of the full number_of_rows x
number_of_columns table; instead, only the list of non-zero coefficients is given and an indicationwhere they are located. The superscripts in the table above indicate the order of the matrix entries inthis list. The coefficient values will be stored in the array matval, the corresponding row numbers inthe array rowidx, the values of the first few entries of these arrays are printed in italics to highlightthem (see the code example in the following section for the full definition of these arrays). To complete
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this information, the array colbeg contains the index of the first entry per column and the array nelemthe number of entries per column.

15.2 Implementation with Xpress Optimizer

The following C program foliolp.c shows how to input and solve this LP problem with XpressOptimizer. We have also added printing of the solution. Before trying to access the solution, the LPproblem status is checked (see the ‘Optimizer Reference Manual’ for further explanation). To useXpress Optimizer, we need to include the header file xprs.h.
To load a problem into Xpress Optimizer we need to perform the following steps:

1. Initialize Xpress Optimizer.
2. Create a new problem.
3. Load the matrix data.

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char ⁎⁎argv)
{
XPRSprob prob;
int s, status;
double objval, ⁎sol;

/⁎ Problem parameters ⁎/
int ncol = 10;
int nrow = 3;

/⁎ Row data ⁎/
char rowtype[] = { 'L','G','E'};
double rhs[] = {1.0/3,0.5, 1};

/⁎ Column data ⁎/
double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/⁎ Matrix coefficient data ⁎/
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

XPRSinit(NULL); /⁎ Initialize Xpress Optmizer ⁎/
XPRScreateprob(&prob); /⁎ Create a new problem ⁎/

/⁎ Load the problem matrix ⁎/
XPRSloadlp(prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /⁎ Set sense to maximization ⁎/
XPRSlpoptimize(prob, ""); /⁎ Solve the problem ⁎/

XPRSgetintattrib(prob, XPRS_LPSTATUS, &status); /⁎ Get LP sol. status ⁎/

if(status == XPRS_LP_OPTIMAL)
{
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval); /⁎ Get objective value ⁎/
printf("Total return: %g\n", objval);

sol = (double ⁎)malloc(ncol⁎sizeof(double));
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XPRSgetlpsol(prob, sol, NULL, NULL, NULL); /⁎ Get primal solution ⁎/
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s+1, sol[s]⁎100);
}

XPRSdestroyprob(prob); /⁎ Delete the problem ⁎/
XPRSfree(); /⁎ Terminate Xpress ⁎/

return 0;
}

Instead of defining colbeg with one extra entry for the last+1 column we may give the numbers ofcoefficients per column in the array nelem:
/⁎ Matrix coefficient data ⁎/
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17};
int nelem[] = {2, 3, 3, 3, 1, 1, 1, 1, 2, 2};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

...
/⁎ Load the problem matrix ⁎/

XPRSloadlp(prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,
obj, colbeg, nelem, rowidx, matval, lb, ub);

The seventh argument of the function XPRSloadlp remains empty for our problem since it is reservedfor range information on constraints.
The second argument of the optimization function XPRSlpoptimize indicates the algorithm to beused: an empty string stands for the default LP algorithm. After solving the problem we check whetherthe LP has been solved and if so, we retrieve the objective function value and the primal solution for thedecision variables.

15.3 Compilation and program execution

If you have followed the standard installation procedure of Xpress Optimizer, you may compile this filewith the following command under Windows:
cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprs.lib foliolp.c

For Linux or Solaris use
cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.c -o foliolp -lxprs

For other systems please refer to the example makefile provided with the corresponding distribution.
Running the resulting program will generate the following output:

Total return: 14.0667
1: 30%
2: 0%
3: 20%
4: 0%
5: 6.66667%
6: 30%
7: 0%
8: 0%
9: 13.3333%
10: 0%

Under Unix this is preceded by the log of Xpress Optimizer:
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Reading Problem FolioLP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
19 ( 0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:

3 rows 10 cols 19 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0

Uncrunching matrix
5 14.066667 D 0 0 .000000 0

Optimal solution found

Windows users can retrieve the Optimizer log by redirecting it to a file. Add the following line to yourprogram immediately after the problem creation:
XPRSsetlogfile(prob, "logfile.txt");

The Optimizer log displays the size of the matrix, 3 rows (i.e. constraints) and 10 columns (i.e. decisionvariables), and the log of the LP solution algorithm (here: ‘D’ for dual Simplex). The output produced byour program tells us that the maximum return of 14.0667 is obtained with a portfolio consisting ofshares 1, 3, 5, 6, and 9. 30% of the total amount are spent in shares 1 and 6 each, 20% in 3, 13.3333% in9 and 6.6667% in 5. It is easily verified that all constraints are indeed satisfied: we have 50% ofNorth-American shares (1 and 3) and 33.33% of high-risk shares (3 and 9).
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CHAPTER 16

Mixed Integer Programming

This chapter extends the LP problem from Chapter 2 to a Mixed Integer Programming (MIP) problem. Itdescribes how to
� transform a MIP model into matrix format,
� input MIP problems with different types of discrete variables into Xpress Optimizer,
� solve MIP problems and output the solution.

Chapter 6 shows how to formulate and solve this example with Mosel and in Chapter 11 the same isdone with BCL.

16.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities toformulate this constraint:
1. Limiting the number of different shares taken into the portfolio to 4.
2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

16.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set ofvariables buys in the LP model developed in Chapter 2. These variables are indicator variables or binary
variables. A variable buys takes the value 1 if the share s is taken into the portfolio and 0 otherwise.
We introduce the following constraint to limit the total number of assets to a maximum of 4 differentones. It expresses the constraint that at most 4 of the variables buys may take the value 1 at the sametime. ∑

s∈SHARES
buys ≤ 4

We now still need to link the new binary variables buys with the variables fracs, the quantity of everyshare selected into the portfolio. The relation that we wish to express is ‘if a share is selected into theportfolio, then it is counted in the total number of values’ or ‘if fracs >0 then buys = 1’. The followinginequality formulates this implication:
∀s ∈ SHARES : fracs ≤ buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys is at0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice that theseconstraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this does not matterin our case, since any solution in which this is the case is also valid with both variables, buys and fracs,at 0.
16.2.1 Matrix representation

The mathematical model can be transformed into the following table. Compared to the LP matrix of theprevious chapter, we now have ten additional columns for the variables buys and ten additional rows forthe constraints linking the two types of variables. Notice that we have to transform the linkingconstraints so that all terms involving decision variables are on the left hand side of the operator sign.
Table 16.1: MIP matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Op. RHS
Risk 0 13 17 111 123 126 ≤ 1/3
MinNA 1 10 14 18 112 ≥ 0.5
Allfrac 2 11 15 19 113 115 117 119 121 124 127 = 1
Maxnum 3 129 131 133 135 137 139 141 143 145 147 ≤ 4
Linking 4 12 -130 ≤ 0

5 16 -132 ≤ 0
6 110 -134 ≤ 0
7 114 -136 ≤ 0
8 116 -138 ≤ 0
9 118 -140 ≤ 0
10 120 -142 ≤ 0
11 122 -144 ≤ 0
12 125 -146 ≤ 0
13 128 -148 ≤ 0
↑ ↑

rowidx matval
colbeg 0 3 7 11 15 17 19 21 23 26 29 31 33 35 37 39 41 43 45 47 49

The superscripts for the matrix coefficients indicate again the order of the entries in the arrays rowidxand matval, the first three entries of which are highlighted (printed in italics).
16.2.2 Implementation with Xpress Optimizer

In addition to the structures related to the matrix coefficients that are in common with LP problems, wenow also need to specify the MIP-specific information, namely the types of the MIP variables (here allmarked ’B’ for binary variable) in the array miptype and the corresponding column indices in thearray mipcol.
Another common type of discrete variable is an integer variable, that is, a variable that can only take oninteger values between given lower and upper bounds. These variables are defined with the type ’I’.In the following section (MIP model 2) we shall see yet another example of discrete variables, namelysemi-continuous variables.

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char ⁎⁎argv)
{
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XPRSprob prob;
int s, status;
double objval, ⁎sol;

/⁎ Problem parameters ⁎/
int ncol = 20;
int nrow = 14;
int nmip = 10;

/⁎ Row data ⁎/
char rowtype[]= { 'L','G','E','L','L','L','L','L','L','L','L','L','L','L'};
double rhs[] = {1.0/3,0.5, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

/⁎ Column data ⁎/
double obj[]= { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21,0,0,0,0,0,0,0,0,0,0};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1,1,1,1,1,1,1,1,1,1};

/⁎ Matrix coefficient data ⁎/
int colbeg[] = {0,3,7,11,15,17,19,21,23,26,29,31,33,35,37,39,41,43,45,47,49};
int rowidx[] = {1,2,4,0,1,2,5,0,1,2,6,0,1,2,7,2,8,2,9,2,10,2,11,0,2,12,0,2,

13,3,4,3,5,3,6,3,7,3,8,3,9,3,10,3,11,3,12,3,13};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1};

/⁎ MIP problem data ⁎/
char miptype[] = {'B','B','B','B','B','B','B','B','B','B'};
int mipcol[] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19};

XPRSinit(NULL); /⁎ Initialize Xpress Optimizer ⁎/
XPRScreateprob(&prob); /⁎ Create a new problem ⁎/

/⁎ Load the problem matrix ⁎/
XPRSloadglobal(prob, "FolioMIP1", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nmip, 0, miptype, mipcol, NULL, NULL, NULL, NULL, NULL);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /⁎ Set sense to maximization ⁎/
XPRSmipoptimize(prob, ""); /⁎ Solve the problem ⁎/

XPRSgetintattrib(prob, XPRS_MIPSTATUS, &status); /⁎ Get MIP sol. status ⁎/

if((status == XPRS_MIP_OPTIMAL) || (status == XPRS_MIP_SOLUTION))
{
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &objval); /⁎ Get objective value ⁎/
printf("Total return: %g\n", objval);

sol = (double ⁎)malloc(ncol⁎sizeof(double));
XPRSgetmipsol(prob, sol, NULL); /⁎ Get primal solution ⁎/
for(s=0;s<ncol/2;s++)
printf("%d: %g%% (%g)\n", s, sol[s]⁎100, sol[ncol/2+s]);

}

XPRSdestroyprob(prob); /⁎ Delete the problem ⁎/
XPRSfree(); /⁎ Terminate Xpress ⁎/

return 0;
}

To load the problem into Xpress Optimizer we now use the function XPRSloadglobal. The first 14arguments of this function are the same as for XPRSloadlp. The use of the 19th argument will bediscussed in the next section; the remaining four arguments are related to the definition of SOS(Special Ordered Sets)—the value 0 for the 16th argument indicates that there are none in our problem.
In this program, not only the function for loading the problem but also those for solving and solutionaccess have been adapted to the problem type: we now solve a MIP problem via a Branch-and-Boundsearch (the second argument "" of the optimization function XPRSmipoptimize stands for ’default

Fair Isaac Corporation Confidential and Proprietary Information 100



Mixed Integer Programming Getting started with the Optimizer

MIP algorithm’). We then retrieve the MIP solution status and if an integer feasible solution has beenfound we print out the objective value of the best integer solution found and the corresponding solutionvalues of the decision variables.
Running this program produces the following solution output. The maximum return is now lower thanin the original LP problem due to the additional constraint. As required, only four different shares areselected to form the portfolio:

Total return: 13.1
0: 20% (1)
1: 0% (0)
2: 30% (1)
3: 0% (0)
4: 20% (1)
5: 30% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

16.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 15. The newconstraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10% of the budget isspent on the share.’ Instead of simply constraining every variable fracs to take a value between 0 and0.3, it now must either lie in the interval between 0.1 and 0.3 or take the value 0. This type of variable isknown as semi-continuous variable. In the new model, we replace the bounds on the variables fracs bythe following constraint:
∀s ∈ SHARES : fracs = 0 or 0.1 ≤ fracs ≤ 0.3

16.3.1 Matrix representation

This problem has the same matrix as the LP problem in the previous chapter, and so we do not repeat ithere. The only changes are in the specification of the MIP-related column data.
16.3.2 Implementation with Xpress Optimizer

The following program foliomip2.c loads the MIP model 2 into the Optimizer. We have the samematrix data as for the LP problem in the previous chapter, but the variables are now semi-continuous,defined by the type marker ’S’. By default, Xpress Optimizer assumes a continuous limit of 1, wetherefore specify the value 0.1 in the array sclim. Please note in this context that limits forsemi-continuous and semi-continuous integer variables given in the array sclim are overwritten by thevalue in the array lb if the latter is different from 0.
Other available composite variable types are semi-continuous integer variables that take either the value0 or an integer value between a given limit and their upper bound (marked by ’R’) and partial integersthat take integer values from their lower bound to a given limit value and are continuous beyond thisvalue (marked by ’P’).

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char ⁎⁎argv)
{
XPRSprob prob;
int s, status;
double objval, ⁎sol;
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/⁎ Problem parameters ⁎/
int ncol = 10;
int nrow = 3;
int nmip = 10;

/⁎ Row data ⁎/
char rowtype[] = { 'L','G','E'};
double rhs[] = {1.0/3,0.5, 1};

/⁎ Column data ⁎/
double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/⁎ Matrix coefficient data ⁎/
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

/⁎ MIP problem data ⁎/
char miptype[] = {'S','S','S','S','S','S','S','S','S','S'};
int mipcol[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double sclim[] = {0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};

XPRSinit(NULL); /⁎ Initialize Xpress Optimizer ⁎/
XPRScreateprob(&prob); /⁎ Create a new problem ⁎/

/⁎ Load the problem matrix ⁎/
XPRSloadglobal(prob, "FolioSC", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nmip, 0, miptype, mipcol, sclim, NULL, NULL, NULL, NULL);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /⁎ Set sense to maximization ⁎/
XPRSmipoptimize(prob, ""); /⁎ Solve the problem ⁎/

XPRSgetintattrib(prob, XPRS_MIPSTATUS, &status); /⁎ Get MIP sol. status ⁎/

if((status == XPRS_MIP_OPTIMAL) || (status == XPRS_MIP_SOLUTION))
{
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &objval); /⁎ Get objective value ⁎/
printf("Total return: %g\n", objval);

sol = (double ⁎)malloc(ncol⁎sizeof(double));
XPRSgetmipsol(prob, sol, NULL); /⁎ Get primal solution ⁎/
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s, sol[s]⁎100);
}

XPRSdestroyprob(prob); /⁎ Delete the problem ⁎/
XPRSfree(); /⁎ Terminate Xpress ⁎/

return 0;
}

When executing this program we obtain the following output:
Total return: 14.0333
0: 30%
1: 0%
2: 20%
3: 0%
4: 10%
5: 26.6667%
6: 0%
7: 0%
8: 13.3333%
9: 0%
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Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the totalinvestment. Due to the additional constraint, the optimal MIP solution value is again lower than theinitial LP solution value.
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CHAPTER 17

Quadratic Programming

In this chapter we turn the LP problem from Chapter 15 into a Quadratic Programming (QP) problem,showing how to
� transform a QP model into matrix format,
� input and solve QP problems with Xpress Optimizer.

Chapter 7 shows how to formulate and solve this example with Mosel and in Chapter 12 the same isdone with BCL.

17.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead ofmaximizing the estimated return and limiting the portion of high-risk investments he now wishes tominimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of gettingestimates of the variance/covariance matrix of estimated returns on the securities. Which investmentstrategy should the investor adopt to minimize the variance subject to getting a minimum target yield of9?

17.2 QP model

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need to makethe following changes:
� New objective function: mean variance instead of total return.
� The risk-related constraint disappears.
� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function (anobjective function becomes quadratic either when a variable is squared, e.g., frac21 , or when twovariables are multiplied together, e.g., frac1 · frac2).
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The target yield constraint can be written as follows:∑
s∈SHARES

RETs · fracs ≥ 9

The limit on the North-American shares as well as the requirement to spend all the money, and theupper bounds on the fraction invested into every share are retained. We therefore obtain the followingcomplete mathematical model formulation:
minimize ∑

s,t∈SHARES
VARst · fracs · fract∑

s∈NA
fracs ≥ 0.5

∑
s∈SHARES

fracs = 1
∑

s∈SHARES
RETs · fracs ≥ 9

∀s ∈ SHARES : 0 ≤ fracs ≤ 0.3

17.3 Matrix representation

For the problem input into Xpress Optimizer, the mathematical model is transformed into the followingconstraint matrix (Table 17.1).
Table 17.1: QP matrix

frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10
0 1 2 3 4 5 6 7 8 9 Oper. RHS

MinNA 0 10 13 16 19 ≥ 0.5
Allfrac 1 11 14 17 110 112 114 116 118 120 122 = 1
Yield 2 52 175 268 1211 813 915 717 619 3121 2123 ≥ 9

↑ ↑
rowidx matval

colbeg 0 3 6 9 12 14 16 18 20 22 24

As in the previous chapters, the superscripts for the matrix coefficients indicate the order of the entriesin the arrays rowidx and matval, the first three entries of which are highlighted (printed in italics).
The coefficients of the quadratic objective function are given by the following variance/covariancematrix (Table 17.2).

17.4 Implementation with Xpress Optimizer

The following program folioqp.c loads the QP problem into Xpress Optimizer and solves it. Noticethat the quadratic part of the objective function must be specified in triangular form, that is, either thelower or the upper triangle of the original matrix. Here we have chosen the upper triangle, which meansthat instead of 4 · frac2 · frac4 + 4 · frac4 · frac2 we only specify the sum of these terms, 8 · frac2 · frac4.Due to the input conventions of the Optimizer the values of the main diagonal also need to bemultiplied with 2. As with the matrix coefficients, only quadratic terms with non-zero coefficients arespecified to the Optimizer (hence the spaces in the array definitions below).
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Table 17.2: Variance/covariance matrix
frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10
0 1 2 3 4 5 6 7 8 9

frac1 0 0.1
frac2 1 19 -2 4 1 1 1 0.5 10 5
frac3 2 -2 28 1 2 1 1 -2 -1
frac4 3 4 1 22 1 2 3 4
frac5 4 1 2 4 -1.5 -2 -1 1 1
frac6 5 1 1 1 -1.5 3.5 2 0.5 1 1.5
frac7 6 1 1 2 -2 2 5 0.5 1 2.5
frac8 7 0.5 -1 0.5 0.5 1 0.5 0.5
frac9 8 10 -2 3 1 1 1 0.5 25 8
frac10 9 5 -1 4 1 1.5 2.5 0.5 8 16

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char ⁎⁎argv)
{
XPRSprob prob;
int s, status;
double objval, ⁎sol;

/⁎ Problem parameters ⁎/
int ncol = 10;
int nrow = 3;
int nqt = 43;

/⁎ Row data ⁎/
char rowtype[] = {'G','E','G'};
double rhs[] = {0.5, 1, 9};

/⁎ Column data ⁎/
double obj[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/⁎ Matrix coefficient data ⁎/
int colbeg[] = {0, 3, 6, 9, 12, 14, 16, 18, 20, 22, 24};
int rowidx[] = {0,1,2,0,1, 2,0,1, 2,0,1, 2,1,2,1,2,1,2,1,2,1, 2,1,2};
double matval[] = {1,1,5,1,1,17,1,1,26,1,1,12,1,8,1,9,1,7,1,6,1,31,1,21};

/⁎ QP problem data ⁎/
int qcol1[] = {0,

1,1,1,1,1,1,1,1,1,
2,2,2,2,2, 2,2,
3, 3,3, 3,3,

4,4,4,4,4,4,
5,5,5,5,5,
6,6,6,6,
7,7,7,

8,8,
9};

int qcol2[] = {0,
1,2,3,4,5,6,7,8,9,
2,3,4,5,6, 8,9,
3, 5,6, 8,9,
4,5,6,7,8,9,
5,6,7,8,9,
6,7,8,9,
7,8,9,

8,9,
9};
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double qval[] = {0.1,
19,-2, 4,1, 1, 1,0.5, 10, 5,

28, 1,2, 1, 1, -2, -1,
22, 1, 2, 3, 4,

4,-1.5,-2, -1, 1, 1,
3.5, 2,0.5, 1,1.5,

5,0.5, 1,2.5,
1,0.5,0.5,

25, 8,
16};

for(s=0;s<nqt;s++) qval[s]⁎=2;

XPRSinit(NULL); /⁎ Initialize Xpress Optimizer ⁎/
XPRScreateprob(&prob); /⁎ Create a new problem ⁎/

/⁎ Load the problem matrix ⁎/
XPRSloadqp(prob, "FolioQP", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nqt, qcol1, qcol2, qval);

XPRSchgobjsense(prob, XPRS_OBJ_MINIMIZE); /⁎ Set sense to maximization ⁎/
XPRSlpoptimize(prob, ""); /⁎ Solve the problem ⁎/

XPRSgetintattrib(prob, XPRS_LPSTATUS, &status); /⁎ Get solution status ⁎/

if(status == XPRS_LP_OPTIMAL)
{
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval); /⁎ Get objective value ⁎/
printf("Minimum variance: %g\n", objval);

sol = (double ⁎)malloc(ncol⁎sizeof(double));
XPRSgetlpsol(prob, sol, NULL, NULL, NULL); /⁎ Get primal solution ⁎/
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s, sol[s]⁎100);
}

XPRSdestroyprob(prob); /⁎ Delete the problem ⁎/
XPRSfree(); /⁎ Terminate Xpress ⁎/

return 0;
}

A QP problem is loaded into the Optimizer with the function XPRSloadqp. This function takes thesame arguments as function XPRSloadlp with four additional arguments at the end for the quadraticpart of the objective function: the number of quadratic terms, nqt, the column numbers of the variablesin every quadratic term (qcol1 and qcol2) and their coefficient, qval.
If we wish to load a Mixed Integer Quadratic Programming (MIQP) problem, then we need to use thefunction XPRSloadqglobal that takes the same arguments as XPRSloadqp plus the nine argumentsfor MIP problems introduced with function XPRSloadglobal in the previous chapter.
As opposed to the previous examples we now minimize the objective function. Notice that for solvingand solution access we use the same functions as for LP problems. When solving MIQP problems,correspondingly we need to use the MIP solving and solution functions presented in Chapter 16.
Executing this program produces the following output:

Minimum variance: 0.557394
0: 30%
1: 7.15401%
2: 7.38237%
3: 5.46362%
4: 12.6561%
5: 5.91283%
6: 0.333491%
7: 29.9979%
8: 1.0997%
9: 6.97039e-06%
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All but the last share are selected into the portfolio (the value printed for 9 is so close to 0 that XpressOptimizer interprets it as 0 with its default tolerance settings).
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APPENDIX A

Going further

A.1 Installation, licensing, and trouble shooting

Detailed information on how to install Xpress is provided with every distribution (see subdirectory
docs). The ‘Xpress Installation Guide’ is also accessible online from the Xpress online documentationwebsite. To obtain a license key please contact your nearest Xpress sales office.
Should you encounter any problems with installing the software or setting up the license, pleasecontact Xpress Support:

support@fico.com
(Please include ’Xpress’, in the subject line.)
You may also consult the Xpress FAQs and discussion groups on the FICO website:

https://community.fico.com/community/fico-optimization-community/xpressdiscuss

A.2 User guides, reference manuals, and other publications

Under the following address you may find the complete online documentation for Xpress:
http://www.fico.com/fico-xpress-optimization/docs/latest

The whitepapers and all of the documents refered to in the following sections are included in PDFformat in the Xpress distribution, for an overview direct your webbrowser to the subdirectory docs ofyour Xpress installation directory.
A useful online resource is the searchable database of Xpress examples that you can reach followingthis link:

http://examples.xpress.fico.com/example.pl
A.2.1 Modeling

The book ‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002) shows how toformulate and solve a large number of application problems with Xpress:
http://examples.xpress.fico.com/example.pl#mosel_app

A.2.2 Mosel

For a more in-depth introduction to working with Mosel, we suggest to read the ‘Mosel User Guide’.
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The ‘Mosel Language Reference Manual’ provides a complete documentation of the Mosel language,also including the features defined by the modules of the Mosel distribution (mmxprs, mmodbc,
mmsvg, etc.).
The whitepaper ‘Using ODBC and other database interfaces with Mosel’ discusses examples of dataexchange with spreadsheets and databases. The topic of I/O drivers is covered more generally by thewhitepaper ‘Generalized file handling in Mosel’
The Mosel Compiler and Mosel Run-time libraries are documented in the ‘Mosel Libraries ReferenceManual’.
To learn how to implement your own Mosel modules, please refer to the ‘Mosel NI User Guide’.
The Mosel Native Interface is documented in the ‘Mosel NI Reference Manual’.

A.2.3 BCL

The ‘BCL Reference Manual’ contains further examples of the use of BCL and a completedocumentation of all C library functions and C++ classes.
For Java, a separate ’BCL Java on-line documentation’ is available, and similarly the ’BCL .NET on-linedocumentation’ for C#.

A.2.4 Optimizer

All functions of the Optimizer library are documented in the ‘Xpress Optimizer Reference Manual’. Inthis manual you also find exhaustive lists of all problem attributes and control parameters that may beused with Xpress Optimizer.
An introduction to fully automated tuning of the optimization algorithms for your problems is providedin the section ’Using the Tuner’ of the ‘Xpress Optimizer Reference Manual’.

A.2.5 Other solvers and solution methods

The FICO Xpress Optimization suite comprises some other products that have not been mentioned inthis manual since they are typically reserved for more advanced uses. Each of these componentscomes with its own documentation. However, reading the introduction to Mosel in the first part of thismanual is recommended to all first-time users who wish to employ these other products as Moselmodules.
Xpress NonLinear comprises a set of solvers for solving general Non-linear Programming (NLP)problems to (local) optimality, including the Successive Linear Programming (SLP) solver Xpress SLPand also the NLP solver Knitro. Xpress NonLinear is provided in the form of a Mosel module, mmxnlp,Xpress SLP can also be used as a C library or in console mode. For further detail see the ‘XpressNonLinear Reference Manual’.
Constraint Programming (CP) is an approach to problem solving that has been particularly successfulfor dealing with nonlinear constraint relations over discrete variables, such as frequently occur inscheduling and planning applications. The Xpress Kalis software, an interface to the Artelys Kalisconstraint solver is provided in the form of a Mosel module, kalis, which defines aggregate modelingobjects specialized for scheduling and planning problems. For a description of this software see the‘Xpress Kalis Reference Manual’ and ‘Xpress Kalis User Guide’.
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APPENDIX B

Glossary

Basis: when solving an LP problem with the Simplex algorithm, the basis provides the completeinformation about which variables and constraints are active in a given solution. It can therefore beused to save and quickly restore the status of the solution algorithm at a given point.
Binary model file (BIM file): a compiled version of the .mosmodel file that is portable across allplatforms for which Mosel is available. It does not include any data read from external files. Thesemust still be provided in separate files, thus making it possible to run the same BIM file with differentdata sets.
Bound: equality or inequality constraint on a single decision variable. When working with XpressOptimizer through Mosel or BCL, bounds may be changed without having to reload the problem.
Branch-and-Bound: solution method for MIP problems consisting of an enumeration of the feasiblevalues of the discrete variables (branching) coupled with LP techniques (providing boundinginformation). Typically represented in the form of a Branch-and-Bound tree where every node stands forthe solution of an LP problem, and the connections between these nodes are the bound changes oradded constraints. Such enumerative methods may lead to a computational explosion, even forrelatively small problem instances, so that it is not always realistic to solve MIP problems to optimality.
Branch-and-Cut: solution algorithm for MIP problems similar to Branch-and-Bound. At some or allnodes of the search tree violated cuts are added to the problem to tighten the LP relaxation.
Builder Component Library (BCL): model builder library for developing a model directly in aprogramming language. BCL allows users to formulate their models with objects (decision variables,constraints, index sets) similar to those of a dedicated modeling language.
Constraint: relation between decision variables. Constraint types include equality constraints (operator
= in Mosel and == in BCL C++), inequality constraints (operators >= and <= in Mosel and BCL C++), and
integrality conditions. Bounds are special cases of inequality or equality constraints.
Cut: also called valid inequality; additional constraint in MIP problems that is not required tocharacterize the set of integer solutions, but must be satisfied by all feasible solutions. Cuts tighten theLP relaxation by drawing the LP solution space closer to the convex hull of the MIP solution space.
Decision variable (or variable for short): unknown that needs to be assigned a value by the solutionalgorithm. The basic variable type is a continuous variable (a variable taking values from a continuousdomain between a given lower and upper bound). Discrete variable types include binary variables (alsocalled indicator variables; variables that may only take the values 0 or 1); integer variables (taking valuesin an integer range between given lower and upper bounds); semi-continuous variables (either 0 orvalues from a continuous interval between a given limit and upper bound); semi-continuous integer
variables (either 0 or integer values between a given limit and upper bound); partial integer variables(integer-valued from the lower bound to a given limit and continuous beyond this limit value)
Declaration: the declaration of an object states its form and type and usually precedes the definition ofits contents. With Mosel, the declaration of basic types and linear constraints is optional, but decisionvariables must always be declared; subroutines must be declared if they are used in a model prior to
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their definition.
Dense array: arrays in Mosel can be either dense or sparse. By default arrays in Mosel are dense, thatis, every possible index tuple is associated to a cell in the array. A dense array is fixed if its index setsare constant or have been finalized to make them static; non-fixed arrays can increase dynamically withthe contents assigned to them, however it is generally more efficient to finalize their index sets as earlyas possible, this also allows Mosel to check for ‘out of range’ errors that cannot be detected if the setsare dynamic.
Dynamic set, dynamic array: sets and arrays in Mosel can be marked explicitly as dynamic. Dynamicsets cannot be finalized to make them static; dynamic arrays and hashmap arrays are two forms of(sparse) arrays for storing and efficiently enumerating sparse data tables. Non-fixed dense arrays aresometimes referred to as implicitly dynamic arrays, particularly for earlier versions of Mosel.
Heuristic: algorithm for finding feasible solution(s) to a problem. Some heuristics guarantee a boundon the solution quality but usually no proof of optimality is possible.
Index set: set used for indexing an array. Using string indices may help to make the output produced byMosel or BCL more easily understandable.
Interactive Visual Environment (IVE): development environment for Mosel that provides,amongst many other tools, graphical displays of solution information.
Linear Programming (LP) problem: a Mathematical Programming problem where all constraints andthe objective function are linear expressions of the decision variables, and the variables havecontinuous domains—i.e., they can take on any, usually non-negative, real values. A well-understoodcase for which efficient algorithms (Simplex, interior point) are known.
Loop: Loops group actions that need to be repeated a certain number of times, either for all values ofsome index or counter (forall in Mosel) or depending on whether a condition is fulfilled or not (while,
repeat until in Mosel).
LP relaxation: in a MIP problem, the LP relaxation is obtained by dropping the integrality conditions onthe decision variables.
Mathematical Programming problem (or problem for short): a set of decision variables, constraintsover these variables and an objective function to be maximized or minimized.
Matrix: the matrix representation of Mathematical Programming problems with linear constraints is atable where the columns are the variables and the rows represent the constraints. The table entries arethe coefficients of the variables in the constraints, usually stored in sparse format, that is, only thenon-zero entries are given.
Mixed Integer Programming (MIP) problem: a Mathematical Programming problem where constraintsand objective function are linear just as in LP and variables may have either discrete or continuousdomains. To solve this type of problems, LP techniques are coupled with an enumeration (known as
Branch-and-Bound).
Modeling language: a high-level language (such as the Mosel language) that allows the user to stateMathematical Programming problems in a form close to their algebraic representation. Carries outautomatically the transformation to the representation required by the solver(s).
Model: algebraic representation of a problem; also employed to denote the implementation with amodeling tool such as Mosel or BCL.
Module: also called dynamic shared object (DSO); dynamic library written in the C programminglanguage that observes the conventions set out by the Mosel Native Interface. Modules enable users toextend the Mosel language with new features (e.g. to implement problem-specific data handling, orconnections to external solvers or solution algorithms). Modules of the Xpress distribution includeaccess to Xpress Solver(Xpress Optimizer for LP, MIP, QP, Xpress NonLinear for NLP, and Xpress Kalisfor CP), data handling facilities (e.g. via ODBC) and access to system functions, graphing capabilities,distributed and remote computing functionality via the Mosel Distributed Framework, and also
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interfaces to statistics packages such as R or Matlab.
Mosel: modeling and solving environment comprising the Mosel language (a modeling andprogramming language), the Mosel libraries (for embedding Mosel models into applications), and the
Mosel Native Interface (opening up the Mosel language to external additions in the form of modules).
Mosel Native Interface (NI): a subroutine library giving access to Mosel models during their execution;defines also the conventions to be observed by Mosel modules. The NI enables users to extend theMosel language with new features.
Newton-Barrier algorithm: also interior point algorithm; solution algorithm for LP and QP problems thatproceeds from some initial interior point in the set of feasible solutions towards an optimal solutionwithout touching the border of the feasible set.
Non-linear Programming (NLP) problem: a Mathematical Programming problem with non-linearconstraints or objective function. Frequently heuristic or approximation methods are employed to findgood (locally optimal) solutions. A method provided by Xpress for solving problems of this type is
Successive Linear Programming (SLP).
Objective function: an expression of decision variables to be minimized or maximized (in this manualonly linear or quadratic expressions are considered).
Optimization: finding a feasible solution to a problem that minimizes or maximizes a given objectivefunction.
Optimizer: the Xpress solver for LP, MIP, and QP. Available in the form of a library or a standaloneprogram.
Overloading: subroutines that are defined in several versions for different types or numbers ofarguments; operators that are defined for different operand types or combinations of operand types.
Parameter: depending on the context this term has several slightly different meanings: the settings of
model parameters (in Mosel) may be changed at run-time, for instance to define different input datasets; problem parameters (in the Optimizer usually called problem attributes) provide access toinformation about a problem (e.g. solution status) and are typically read-only; algorithm control
parameters are used to control algorithmic settings (choice of the solution algorithm, tolerances, etc.).
Problem instance: a Mathematical Programming problem complete with a specific data set.
Quadratic Programming (QP) problem: differs from LP problems in that there are quadratic terms inthe objective function (the constraints remain linear). The decision variables may be continuous ordiscrete, in the latter case we speak of Mixed Integer Quadratic Programming (MIQP).
Range set: (in Mosel) a set of consecutive integers.
Right hand side (RHS): constant term of a (linear) constraint; a standard format (used, for example, inthe matrix representation) is to write all terms involving decision variables on the left of the operatorsign and the constant term on its right side.
Selection statement: statement to express a selection between different actions to be taken in aprogram. In Mosel these are if/then/elif/then/else/end-if and case.
Simplex algorithm: solution algorithm for LP problems. The idea of the Simplex algorithm is movingfrom vertex to vertex of the polytope (‘simplex’) that represents the set of feasible solutions for an LPproblem, to improve the objective function value.
Solution: this term may be used with two different meanings: it may denote an assignment of values toall decision variables that satisfies all constraints (feasible solution). In optimization problems wherethe best possible solution is sought—i.e., a solution minimizing or maximizing a given objectivefunction, the term solution usually is equivalent to optimal solution.
Solver: software used to solve (usually optimize) a problem. With Xpress we use Xpress Solver(comprising Xpress Optimizer, Xpress NonLinear and Xpress Kalis).
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Sparse array: arrays in Mosel can be either dense or sparse. Sparse arrays are created empty and maygrow on demand as their entries are created or get assigned values. Mosel has two types of sparsearrays: dynamic arrays require less memory and are faster for linear enumeration, hashmap arrays arefaster for random access.
Status information: Mosel, BCL, and the Optimizer define different parameters providing statusinformation, such as the LP or MIP status that tell the user among others whether the problem hasbeen solved correctly and a solution is available.
Subroutine: substructures allowing programs to be broken down into smaller subtasks that are easierto understand and to work with. In Mosel, subroutines may be employed in the form of procedures orfunctions. Procedures are called as a program statement, they have no return value, functions must becalled in an expression that uses their return value.
Successive Linear Programming (SLP): method for solving NLP problems via a sequence of LPproblems.
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APPENDIX C

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.
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Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.
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Aannotation, 57argumentsubroutine, 46arraydefinition, 15dense, 113dynamic, 23, 113sparse, 115
Bbasis, 112loading, 47, 87saving, 47, 87BCL, 6, 112initialization, 66model, 66BIM file, 25, 50, 112binary variable, 32, 72, 98, 112bound, 9, 67, 112modification, 48, 87Branch-and-Bound, 4, 35, 74, 100, 112Branch-and-Bound tree, 35, 112Branch-and-Cut, 112
C
case, 114code completion, 17column, 94, 113comments, 16, 22, 70, 79companion file, 63comparison tolerance, 48compilation, 67, 92, 96constraint, 112definition, 15, 66equality, 9, 67, 112inequality, 9, 112linear, 15, 66name, 28Constraint Programming, 111continuous variable, 112control parameter, 114CP, see Constraint Programmingcut, 35, 75, 112cut generation, 35, 47, 75, 87cutoff value, 44, 84
Ddata

input from file, 22, 30, 40, 70, 79data file, 22, 30, 40, 68, 79data handling, 5debugger window, 13debugging, 17decision variable, 9, 112creation, 66declaration, 15, 23type, 33, 73, 99declaration, 112
declarations, 15, 47dense array, 113deployment template, 49discrete variable, 33, 73, 112distributed computing, 5, 113DSO, see dynamic shared objectdynamic array, 23, 113, 115dynamic set, 23, 113dynamic shared object, 113
Eeditor window, 13
elif/then, 28embedding, 5, 49empty line, 16
end-do, 28
end-function, 46
end-model, 15
end-procedure, 46, 47equality constraint, 9, 67, 112error handling, 16, 71, 91
exportprob, 53expressionlinear, 15, 66quadratic, 79
F
F_APPEND, 23
F_OUTPUT, 23
fclose, 23feasibility tolerance, 47, 87feasible solution, 114
finalize, 23, 113fixed array, 113
fopen, 23
forall, 15, 28, 113
forall/do, 28formating, 16output, 23
forward, 45
function, 46, 115
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G
getLPStat, 71
getMIPStat, 74
getparam, 47
getprobstat, 28
getXPRSprob, 87graph drawing, 28graphical user interface, 5, 113
Hhashmap array, 115heuristic, 113variable fixing, 44, 84
I
if/then/else/end-if, 28, 114
if/then/end-if, 28indentation, 16indexstring, 20, 68, 113index set, 70, 113indicator variable, 32, 72, 98, 112inequality constraint, 9, 112initializationBCL, 66explicit, 71Mosel, 51Optimizer, 91
initializations from, 23
initializations to, 23input file, 22, 70Insight, see Xpress Insightinteger variable, 33, 73, 99, 112integrality condition, 35, 112interior point algorithm, 114
is_binary, 33
is_integer, 33
is_partint, 36
is_semcont, 36
is_semint, 36IVE, 113
Llanguagemodeling, 5solving, 5libraryembedding, 5limit value, 76, 101, 112line break, 16linear constraint, 15, 66linear expression, 15, 66Linear Programming, 4, 12, 65, 94, 113optimization information, 19, 68, 93, 97problem status, 71, 95relaxation, 35, 113list, 29
loadMat, 87
loadprob, 48loop, 15, 28, 113

optimization, 27LP, see Linear ProgrammingLP format, 53, 71, 91
lpOptimize, 67, 79
Mmathematical model, 10Mathematical Programming, 4Mathematical Programming problem, 4, 113Matlab, 5, 114matrix, 113export, 53, 71format, 53, 71, 91import, 91matrix representation, 94, 99, 105, 114maximize, 67
maximize, 15, 17, 35, 47
minimize, 40MIP, see Mixed Integer ProgrammingMIP heuristics, 35, 47, 75, 87
mipOptimize, 71, 74, 87MIQP, see Mixed Integer Quadratic ProgrammingMixed Integer Programming, 4, 32, 72, 98, 113optimization information, 34, 75, 87problem status, 74, 101search, 35, 75, 100Mixed Integer Quadratic Programming, 4, 38, 78, 107,114optimization information, 43, 83
mminsight, 53model, 113BCL, 66embedding, 5incremental definition, 42, 82Mosel, 14parameter, 24, 114
model, 15model building, 4, 8modeling language, 5, 113modeling objects, 6, 112modeling style, 24module, 5, 113Mosel, 114environment, 5language, 5, 114libraries, 5, 114model, 14Native Interface, 5, 114standalone, 24
mosel, 25Mosel Compiler Library, 51Mosel Run-time Library, 51MPS format, 53, 71, 91
mpvar, 15
Nnamesconstraint, 28defining, 67namespace, 66
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Newton-Barrier, 80, 114
newVar, 66NI, see Mosel Native InterfaceNLP, see Non-linear Programmingnode, 35, 112
noimplicit, 15Non-linear Programming, 4, 111, 114
Oobjective function, 10, 114definition, 15, 66quadratic, 39, 79, 104ODBC, 5, 113optimal solution, 114optimization, 15, 67, 95, 114loop, 27, 41optimization project, 5Optimizer, see Xpress Optimizer, 15, 67, 114direct access, 87optionnoimplicit, 15output, 15, 19, 67, 95formating, 23redirection, 97output file, 24, 52, 92overloading, 47, 114
Pparameter, 114parameter settings, 24, 35, 47, 52, 87, 114
parameters, 24, 114partial integer variable, 36, 76, 101, 112presolving, 35, 47, 87
print, 70printing, 15, 67problemchange, 48, 87creation, 66input, 95instance, 52, 114matrix, 94, 113parameter, 114problem status, 28, 114, 115LP, 71, 95MIP, 74, 101QP, 107
procedure, 46, 115programming language, 5project navigation, 13
QQP, see Quadratic Programmingquadratic expression, 79quadratic objective function, 39, 79, 104Quadratic Programming, 4, 38, 78, 104, 114algorithm, 80optimization information, 80problem status, 107
RR, 5, 114

range set, 15, 114remote computing, 5, 113
repeat until, 113return value, 47right hand side, 24, 94, 114row, 94, 113
Sselection statement, 114semi-continuous integer, 36, 76, 101, 112semi-continuous variable, 36, 76, 101, 112set definition, 15dynamic, 23, 113range, 15, 114
setLB, 87
setlb, 48
setLim, 76
setMsgLevel, 68
setObj, 67
setparam, 35, 47
setSense, 67, 71
setUB, 87
setub, 48Simplex, 19, 80, 87, 114SLP, see Successive Linear Programmingsolution, 114feasible, 114optimal, 114solution heuristic, 44, 84solution information, 19, 115retrieving, 52solver, 114solving, 15, 67, 95, 114space, 16sparse array, 115sparse format, 113
strfmt, 23string indices, 20, 68, 113subroutine, 46, 115subroutine definitionoverloading, 47Successive Linear Programming, 4, 111, 115
sum, 29system functions, 5, 113
Ttolerance value, 47, 87
Uuser graph, 28, 41user module, 5, 113
uses, 15, 30
Vvalid inequality, see cutvariable, see decision variableVDL, 57, 60view definition, 57
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Wweb deployment, 5
while, 113Workbench, see Xpress Workbenchstarting, 12
write, 15
writeln, 15
X
XPRB_BV, 73
XPRB_PI, 76
XPRB_SC, 76
XPRB_SI, 76
XPRB_UI, 73
XPRBctr, 70
XPRBexpr, 79
XPRBindexSet, 70
XPRBprob, 70
XPRBreadarrlinecb, 79
XPRBreadlinecb, 70
XPRBsos, 70
XPRBvar, 70Xpress Insight, 5, 53Xpress Kalis, 111Xpress Mosel, see MoselXpress NonLinear, 6, 111Xpress Optimizer, 6Xpress SLP, 111Xpress Solver, 6, 114Xpress-BCL, see BCL
XPRS_CONT, 47
XPRS_CUTSTRATEGY, 35, 47, 87
XPRS_HEURSTRATEGY, 35, 47, 87
XPRS_LPLOG, 87
XPRS_LPSTOP, 47
XPRS_MIPLOG, 87
XPRS_OPT, 28
XPRS_PRESOLVE, 35, 47, 87
XPRSchgobjsense, 107
XPRSloadglobal, 100
XPRSloadlp, 96
XPRSloadqglobal, 107
XPRSloadqp, 107
XPRSlpoptimize, 96
XPRSmipoptimize, 100
XPRSprob, 87
XPRSsetintcontrol, 87
XPRSsetlogfile, 97
Z
ZEROTOL, 48
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