
Whitepaper

FICO R© Xpress Optimization Using ODBC and other database inter-
faces with Mosel

Data exchange with spreadsheets and databases

FICO R© Xpress Optimization whitepaper

Last update 19 October, 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation. Receipt or possession of this
material does not convey rights to divulge, reproduce, use, or allow others to use it without the specific written authorization
of Fair Isaac Corporation and use must conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in this documentation, please
report them to us in writing. Neither Fair Isaac Corporation nor its affiliates warrant that this documentation is error-free, nor
are there any other warranties with respect to the documentation except as may be provided in the license agreement.

©2004–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its documentation is governed
by the software license agreement between the licensee and Fair Isaac Corporation (or its affiliate). Portions of the program
may contain copyright of various authors and may be licensed under certain third-party licenses identified in the software,
documentation, or both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this software and its documentation, even if Fair Isaac
Corporation or its affiliates have been advised of the possibility of such damage. The rights and allocation of risk between
the licensee and Fair Isaac Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The software and accompanying documentation, if any, provided
hereunder is provided solely to users licensed under the Fair Isaac Software License Agreement. Fair Isaac Corporation and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications except as required to
licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United States and may be
trademarks or registered trademarks of Fair Isaac Corporation in other countries. Other product and company names herein
may be trademarks of their respective owners.

FICO R© Xpress Mosel
Last Revised: 19 October, 2017

How to Contact the Xpress Team

Information, Sales and Licensing

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Product Support

Email: Support@fico.com
(Please include ’Xpress’ in the subject line)

Telephone:

NORTH AMERICA
Tel (toll free): +1 (877) 4FI-SUPP
Fax: +1 (402) 496-2224

EUROPE, MIDDLE EAST, AFRICA
Tel: +44 (0) 870-420-3777
UK (toll free): 0800-0152-153
South Africa (toll free): 0800-996-153
Fax: +44 (0) 870-420-3778

ASIA-PACIFIC, LATIN AMERICA, CARIBBEAN
Tel: +1 (415) 446-6185
Brazil (toll free): 0800-891-6146

For the latest news and Xpress software and documentation updates, please visit the Xpress website at
http://www.fico.com/xpress or subscribe to our mailing list.

mailto:XpressSalesUS@fico.com
mailto:XpressSalesUK@fico.com
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/xpress

Using ODBC / database interfaces with Mosel

Using ODBC and other database interfaces
with Mosel
Data exchange with spreadsheets and databases

S. Heipcke

Xpress Team, FICO, FICO House, Starley Way, Birmingham B37 7GN, UK
http://www.fico.com/xpress

19 October, 2017

Abstract
This document gives an introduction to the available Mosel interfaces for accessing databases and spreadsheets
from within a model. It provides a large number of examples illustrating topics such as sparse and dense data
formats, tables holding entries of several data arrays, data arrays read in from several tables, use of the data
structures ’list’ and ’record’, and the handling of dates and time data.
The ODBC protocol is supported by many database software products. Data may be transfered between a
model and an external (ODBC) data source through initializations blocks, using the odbc I/O driver, or with
the help of SQL commands. The latter option provides greater flexibility but requires some knowledge of the
SQL language.
The software-specific interface for working with Oracle databases defined by the module mmoci is very similar
to the ODBC interface (I/O driver and SQL)—the differences are explained by indicating the necessary modifica-
tions to the examples.
This paper also discusses the spreadsheet interfaces defined by the module mmsheet, namely the direct,
software-specific access to Excel spreadsheets via the I/O driver excel, the more generic xls and xlsx drivers,
and the interface to CSV format data.

Contents

1 Introduction . 2
2 Software setup . 3

2.1 Setting up ODBC . 3
2.1.1 ODBC connection strings in Mosel . 4

2.2 The Excel interface . 4
2.3 The Oracle interface . 4
2.4 The SQLite interface . 5

3 Introductory example . 5
3.1 ODBC . 6

3.1.1 Data input using odbc . 6
3.1.2 Data output using odbc . 6

3.2 Spreadsheets: Excel and CSV . 7
3.2.1 Data input using the excel or xls I/O drivers 8
3.2.2 Data output using excel or xls . 9
3.2.3 Data input using the csv I/O driver . 10
3.2.4 Data output using csv . 11

3.3 Oracle . 12
3.3.1 Data input using oci . 12
3.3.2 Data output using oci . 12

Contents Fair Isaac Corporation Confidential and Proprietary Information 1

Using ODBC / database interfaces with Mosel

4 Advanced example: using SQL queries . 13
4.1 ODBC . 13

4.1.1 Data input with SQL statements . 14
4.1.2 Data output with SQL statements . 14

4.2 Oracle . 15
4.2.1 Data input with SQL statements . 15
4.2.2 Data output with SQL statements . 16

5 Parameter settings to aid debugging . 17
6 Examples . 18

6.1 Outputting solution values . 18
6.2 Dense vs. sparse data format . 19

6.2.1 Rectangular format . 22
6.3 Reading several arrays from a single table . 23
6.4 Outputting several arrays into a single table . 24
6.5 Reading an array from several tables . 25
6.6 Selection of columns/fields . 28
6.7 SQL selection statements . 29
6.8 Accessing structural information from databases 30
6.9 Working with lists . 31
6.10 Working with records . 33
6.11 Handling dates and time . 34

7 Trouble shooting . 38
8 SQL commands . 39

1 Introduction

The Mosel distribution contains several different interfaces for exchanging data between a model
and a database or spreadsheet. As well as an ODBC interface there are software-specific
implementations for Oracle and MS Excel, all of which are presented in this document.

ODBC is a protocol for working with databases as external data sources. It can also be used to
access data in spreadsheets such as certain versions of MS Excel. However, with spreadsheets some
restrictions apply since spreadsheets do not implement the full functionality of databases,
especially for writing data into them. As an alternative to ODBC therefore different spreadsheet
interfaces (supporting MS Excel formats) are available that remedy some of these drawbacks,
they should be used for accessing data in spreadsheets in place of the ODBC interface.

The Mosel module mmodbc provides access to ODBC functionality from within Mosel models.
This module requires a specific licence. As always with Mosel modules, when we wish to use this
module in a model, we need to indicate its name in a uses statement at the beginning of our
model, immediately after the model name:

uses "mmodbc"

The reader will find the complete documentation of the Mosel module mmodbc in the
‘Mosel Language Reference Manual’, Chapter ‘mmodbc’.

A separate module, mmoci, defines a software-specific interface to Oracle databases (OCI). This
module requires an extra licence. The functionality and manner of use of this module closely
resembles that of the ODBC module. The uses statement for working with OCI is:

uses "mmoci"

Introduction Fair Isaac Corporation Confidential and Proprietary Information 2

Using ODBC / database interfaces with Mosel

The OCI module is documented in the ‘Mosel Language Reference Manual’, Chapter ‘mmoci’.

The spreadsheet and CSV interfaces are provided by the Mosel module mmsheet that is equally
documented in the ‘Mosel Language Reference Manual’, Chapter ‘mmsheet’. The corresponding
uses statement for this module is:

uses "mmsheet"

The aim of the present document is to explain the different features of the ODBC module (and by
analogy, the OCI module) by means of a collection of examples. In the beginning we show how to

� set up ODBC,

� work with the odbc I/O driver in initializations blocks,

� use the full functionality of the module mmodbc in the formulation of SQL queries,

� access MS Excel spreadsheets via the dedicated spreadsheet I/O drivers, and

� set module parameters that may be helpful for debugging.

The main part of this document describes a number of examples that illustrate topics such as

� sparse vs. dense data format,

� reading from / writing to tables holding entries of several data arrays,

� data arrays read from several tables,

� defining SQL queries,

� using the data structures ’list’ and ’record’,

� working with date and time data types.

All examples described in this document are provided as part of the Xpress distribution
(subdirectory examples/mosel/Whitepapers/MoselODBC). Most examples have six versions, namely
(1) using an ODBC connection with standard Mosel data initializations to access databases, (2)
using SQL statements with the same data sources, (3) using the dedicated Excel interface (driver
excel), (4) using the Oracle interface, (5) using the generic Excel interface (drivers xls/xslx), and (6)
using the CSV interface.

The last section contains some hints on how to detect and solve typical problems that may occur
when working with ODBC.

2 Software setup

2.1 Setting up ODBC

The ODBC technology is available for many database/platform combinations. It relies on a driver
manager that is used as an interface between applications (like mmodbc) and a data source that
is accessed through a dedicated driver. The Mosel module mmodbc provides an interface to
ODBC, it does not contain any drivers or driver managers. These must therefore be installed and
set up on the operating system before this module can be used.

Software setup Fair Isaac Corporation Confidential and Proprietary Information 3

Using ODBC / database interfaces with Mosel

Under Windows, usually the driver manager is part of the system and most data sources (e.g., MS
Access, MS Excel, SQLserver) are provided with their ODBC driver. The ODBC drivers are set up as
User Data Source in the ODBC Data Source Administrator. To check which drivers are set up under
Windows (2000 or more recent) select Start � Settings � Control Panel � Administrative Tools �
Data Sources (ODBC). For example, for MS Access there should be a data source named MS Access
Database (this name is refered to in ODBC as DSN, the data source name). If the drivers are not set
up, you may add the DSN for Access by clicking Add and selecting Microsoft Access Driver (*.mdb,
*.accdb).

On the other supported operating systems it may be necessary to install a driver manager as well
as the required driver(s). The module mmodbc supports two driver managers: iODBC
(http://www.iodbc.org) and unixODBC (http://www.unixodbc.org). The module initialization
succeeds only if one of these two driver managers is installed and can be accessed (in general this
requires updating some environment variables). In addition, you must make sure that the ODBC
driver for the data source you wish to use is installed. For the database MySQL, for instance, you
can download the required ODBC driver, MyODBC, from
http://dev.mysql.com/downloads/connector/odbc.

2.1.1 ODBC connection strings in Mosel

When connecting to a database from a Mosel model the filename is given in the form of a
connection string that consists of the DSN and the name of the external data source (abbreviated
as DBQ (Windows) or DB), such as ’DSN=mysql;DB=data’ or ’DSN=MS Access
Database;DBQ=C:/xpress/examples/data.mdb’. Please note that some databases do not accept
blank spaces in the connection string.

Under Windows it is not necessary to state explicitely the DSN in the connection string since
Mosel will automatically locate the appropriate driver (if it is installed). We may therefore work
with connection strings shortened to the name of the external data source, such as ’data.mdb’.

For a more general introduction to the concept of database connection strings the reader is
refered to http://www.connectionstrings.com.

2.2 The Excel interface

The spreadsheet interfaces defined by the module mmsheet do not require any extra setup or
additional software as this is the case with ODBC. The dedicated Excel driver excel can only be
used if MS Excel is installed and licensed. The drivers xls, xlsx, and csv are independent of Excel
and can be used, including, on non-Windows platforms.

Excel spreadsheets are accessed by simply stating their file name, preceded by the driver prefix as
shown below (see Section 3.2).

Although certain spreadsheets support some ODBC functionality, we recommend to use one of
the dedicated spreadsheet interfaces in the place of an ODBC connection. The access to the
spreadsheet is more direct and hence more efficient and these interfaces remove some restrictions
and possible sources of problems specific to the use of ODBC technology with Excel spreadsheets.

2.3 The Oracle interface

The Oracle interface defined by the module mmoci accesses Oracle databases via the Oracle Call
Interface (OCI). Oracle’s Instant Client package must be installed on the machine that runs the
Mosel model. The Oracle Instant Client package is available for download from
http://www.oracle.com/technology/tech/oci/instantclient

Software setup Fair Isaac Corporation Confidential and Proprietary Information 4

http://www.iodbc.org
http://www.unixodbc.org
http://dev.mysql.com/downloads/connector/odbc
http://www.connectionstrings.com
http://www.oracle.com/technology/tech/oci/instantclient

Using ODBC / database interfaces with Mosel

The logon information for an Oracle database comprises the user name and password along with
the database name, formated as a string such as ’myusername/mypassword@dbname’.

It is possible to access Oracle databases via an ODBC connection (that is, using module mmodbc
instead of mmoci). In this case, an appropriate ODBC driver must be installed.

2.4 The SQLite interface

SQLite databases can be accessed via the ODBC interface. SQLite is included in the mmodbc
module on all platforms that are supported by Xpress. The ODBC driver mmsqlite to access SQLite
equally forms part of the distribution, no ODBC setup and no additional installations are required
when using this driver. The full connection string to employ in this case has the form
’DRIVER=mmsqlite;READONLY=false;DB=mydatabase.sqlite’ (notice that instead of referring to a
DSN definition we directly use the built-in ODBC driver). However, it is sufficient to simply state
the database filename (and path) if it has one of the extensions sqlite, sqlite3, db, or db3 —
Mosel will automatically generate the complete connection string.

Alternatively, if you wish to use a different version of SQLite than the one provided with Mosel,
you need to follow the ODBC installation procedure: after downloading an external ODBC driver
for SQLite, a DSN must be setup as explained above in Section 2.1. Assuming that we have called
the DSN ’sqlite’, this results in a connection string of the form
’DSN=sqlite;DATABASE=mydatabase.sqlite’.

For visualizing and editing SQLite databases, you may choose to install additional software, such
as the SQLite Manager plugin for Firefox browsers that can be downloaded from
https://addons.mozilla.org/addon/sqlite-manager or the DB Browser for SQLite at
http://sqlitebrowser.org

3 Introductory example

The standard Mosel syntax for reading and writing data uses initializations blocks to access
external files, such as

declarations
A: array(set of integer) of real ! Array of unknown size (=dynamic)
B: array(1..7) of string ! Array of known size (=static)

end-declarations

initializations from "mydata.dat"
A
B as "MyB"

end-initializations

where the datafile mydata.dat may have the following contents:

A: [(3) 2 (1) 4.2 (6) 9 (10) 7.5 (-1) 3]
MyB: ["Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"]

To obtain access to file types other than text files in Mosel format we merely need to modify the
filename string, prefixing the name of the data source by the I/O driver we want to use followed
by a colon. For instance, to read a text file in comma separated format we may use the driver
prefix "mmetc.diskdata:". I/O drivers may be seen as filters that decode data from some other
format, transforming it into the format used by Mosel—or the other way round. For further
detail on the concept of I/O drivers, the reader is referred to the Xpress Whitepaper Generalized
file handling in Mosel.

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 5

https://addons.mozilla.org/addon/sqlite-manager
http://sqlitebrowser.org
http://community.fico.com/xpress
http://community.fico.com/xpress

Using ODBC / database interfaces with Mosel

3.1 ODBC

To access spreadsheets or databases through initializations blocks using an ODBC connection
we need to prefix the name of the data source (ODBC connection string as described in Section
2.1.1) by the name of the ODBC I/O driver followed by a colon, that is, "mmodbc.odbc:".

3.1.1 Data input using odbc

As a first example we shall now see how to read data from an MS Access database into a Mosel
array. Let us suppose that in a database called data.mdb you have created the following table
MyDataTable with 3 fields holding the following data values:

Index_i Index_j Value

1 1 12.5

2 3 5.6

10 9 -7.1

3 2 1

We may then use the following model duo.mos to read in the array A4 from the database and
print it out.

model "Duo input (1)"
uses "mmodbc"

declarations
A4: dynamic array(range,range) of real

end-declarations

! Use an initializations block with the odbc driver to read data
initializations from "mmodbc.odbc:data.mdb"
A4 as ’MyDataTable’

end-initializations

! Print out the data we have read
writeln(’A4 is: ’, A4)

end-model

If we want to read the data from another database, say the SQLite database data.sqlite, the
only change we need to make is to change the filename string to "mmodbc.odbc:data.sqlite".
For a MySQL database data we would have to use the long form of the connection string:
"mmodbc.odbc:DSN=mysql;DB=data". Any database we use with the model printed above needs to
contain a table called ‘MyDataTable’ with three fields, the first two (for the indices) of type
integer, and the third of type double.

3.1.2 Data output using odbc

Outputting data from a Mosel model through the odbc I/O driver again only requires few
changes to the model. Consider the following example (file duo_out.mos)—notice that the index
ranges are -1, 0, 1 and 5, 6, 7 and not the standard 1, 2, 3:

model "Duo output (1)"
uses "mmodbc"

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 6

Using ODBC / database interfaces with Mosel

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use an initializations block with the odbc driver for writing data
initializations to "mmodbc.odbc:data.mdb"
A as "MyOutTable1"

end-initializations

end-model

When we wish to write data to a database we need to prepare a suitable data table to receive
the data: our table needs to be named ‘MyOutTable1’ with fields that correspond to the data
array we want to write. In our case, the first two (index) fields must be of type integer and the
third field of type double.

In terms of database functionality, when writing out data with initializations to, Mosel
performs an “insert”, no replacement or update. If the data table contains already some data, for
instance from previous model runs, the new output will be appended to the existing data.

In the case of a database table, the insertion will fail if a key field has been defined and you are
trying to write the same data entries a second time. The deletion of any existing data in the
table(s) used for output must be done manually directly in the database or spreadsheet, or with
the corresponding SQL commands in the Mosel model (the latter option only applies to
databases). With this objective, the odbc I/O driver may be used in combination with other
mmodbc functionality, for instance to execute specific SQL queries (see Section 4.1).

3.2 Spreadsheets: Excel and CSV

MS Excel spreadsheets can be accessed directly from a Mosel model with the help of the excel or
xls/xlsx I/O drivers. The use of these drivers is similar to what we have seen above for the odbc
driver.

Yet another method for accessing spreadsheet data consists in using the CSV driver csv with
spreadsheets that have been saved in CSV format. All the dedicated spreadsheet drivers are
defined by the module msheet. The main differences between the functionality and usage of the
various spreadsheet drivers are summarized in the following table.

Table 1: Comparison of spreadsheet I/O drivers

excel xsl/xslx csv

File type physical file physical file extended file

Supported platforms Windows Windows, Linux, Mac all Xpress platforms

Requirements Excel + open interactive
session

none,
can be used remotely

none,
can be used remotely

File creation for output no yes yes

Output writing mechanism on-screen display without
saving if application run-
ning, otherwise data saved
into file

data saved into file data saved into file

Named ranges yes yes no

Multiple worksheets yes yes no

VBA macros yes no no

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 7

Using ODBC / database interfaces with Mosel

3.2.1 Data input using the excel or xls I/O drivers

We shall work with a spreadsheet that has the following contents:

A B C D E

1

2 Index_i Index_j Value

3 1 1 12.5

4 2 3 5.6

5 10 9 -7.1

6 3 2 1

7

Assuming that we have named ’MyDataTable2’ the cell range B3:D6 (that is, selecting just the
data, excluding the header row) we can then read in these data with the following model
duoexc.mos.

model "Duo input (Excel)"
uses "mmsheet"

declarations
A4: dynamic array(range,range) of real

end-declarations

! Use the excel driver for reading the data
initializations from "mmsheet.excel:data.xls"
A4 as ’MyDataTable2’

end-initializations

! Print out the data we have read
writeln(’A4 is: ’, A4)

end-model

It is also possible to read the data from a range ’MyDataTable’ that inludes the header row (that
is, selecting the area B2:D6). In this case we need to specify the driver option skiph to skip the
header line of the selected data range:

initializations from "mmsheet.excel:data.xls"
A4 as ’skiph;MyDataTable’

end-initializations

Yet another possibility is to use directly the worksheet and cell references instead of defining a
named range (NB: the first sheet of the workbook is selected if no worksheet name is specified
and the used cells of the selected sheet are assumed if no cell range selection is provided):

initializations from "mmsheet.excel:data.xls"
A4 as ’[Sheet1$B3:D6]’

end-initializations

Working with named ranges has the advantage over this explicit form that modifications to the
spreadsheet layout repositioning the data range will not make it necessary to modify the model.

Instead of the excel driver that can only be used with an existing MS Excel installation, we can
switch to the generic xsl driver by modifying the file name to

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 8

Using ODBC / database interfaces with Mosel

"mmsheet.xls:data.xls"

All else, including the driver options and the usage of named ranges, remains unchanged.
Note: with a spreadsheet saved in XLSX format (files with the extension .xlsx) we would have to
use the driver xlsx.

3.2.2 Data output using excel or xls

The following model duoexc_out.mos writes out the array A into the spreadsheet range F3:H3 that
we have called ’MyOutTable3’. These cells denote the first row of the rectangular area into which
we wish to write.

model "Duo output (Excel)"
uses "mmsheet"

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use an initializations block with the excel driver for writing data
initializations to "mmsheet.excel:data.xls"
A as "grow;MyOutTable3"

end-initializations

end-model

In this model we have used the option grow of the excel driver to indicate that the actual output
area may grow (= add more rows, the number of selected columns must be sufficient) beyond the
specified output range as required by the data. Alternatively, we may also specify the complete
output range such as in

initializations to "mmsheet.excel:data.xls"
A as ’[Sheet1$F3:H11]’

end-initializations

or more dynamically:

initializations to "mmsheet.excel:data.xls"
A as ’[Sheet1$F3:H’ + (3+A.size-1) + ’]’

end-initializations

If the output range has been defined to include the header row (ODBC-compatible format) we
need to use again the option skiph.

initializations to "mmsheet.excel:data.xls"
A as ’skiph;grow;MyOutTable1’

end-initializations

When using the excel or xls/xlsx drivers the definition of the output range in the spreadsheet
remains unchanged even if the actual output area exceeds its length. As a consequence, the
output from a second model run will start at exactly the same place as the first, overwriting any
previous results in the same location (but not deleting any lines if the output from the second run
uses fewer rows than the first).

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 9

Using ODBC / database interfaces with Mosel

A specific feature of the excel driver is that the Excel spreadsheet file may remain open while
writing to it from Mosel. In this case the data written to the spreadsheet does not get saved,
enabling the user thus to experiment with model runs without causing any unwanted lasting
effects to the output file. However, when using the xls/xlsx drivers, output data is saved directly
into the spreadsheet file—the output file needs to be closed if the application used for displaying
it locks write access to the file by other programs.

With the excel driver, the output file must exist prior to writing to it from Mosel. The xls/xlsx
drivers will create a new spreadsheet file of the corresponding format if the specified file is not
found, in which case it is obviously not possible to work with predefined ranges, but the option
skiph+ can be used to output a header line, for example as in the following version that writes
output into the columns F to H of the first sheet of a new spreadsheet file ’anewfile.xls’:

initializations to "mmsheet.xls:anewfile.xls"
A as ’skiph+;[1$F:H](Index1,Index2,Value_of_A)’

end-initializations

3.2.3 Data input using the csv I/O driver

Now assume that the spreadsheet from Section 3.1.1 has been saved in CSV format into the file
data.csv. We can then read in these data with the following model duosheet.mos.

model "Duo input (CSV)"
uses "mmsheet"

declarations
A6: dynamic array(range,range) of real

end-declarations

! Use the csv driver for reading the data
initializations from "mmsheet.csv:data.csv"
A6 as ’[B3:D6]’

end-initializations

! Print out the data we have read
writeln(’A6 is: ’, A6)

end-model

The CSV format does not support the definition of named ranges and there is no notion of
’worksheet’ (when saving an Excel spreadsheet in CSV format the user selects the sheet to be
saved). We therefore need to address cell ranges explicitly by indicating their position using the
(letter,number) notation as shown above or alternatively, with RC (row-column) notation:

initializations from "mmsheet.csv:data.csv"
A6 as ’[R3C2:R6C4]’

end-initializations

Driver options such as skiph to skip the range header line apply as before

initializations from "mmsheet.csv:data.xls"
A4 as ’skiph;[B2:D6]’

end-initializations

As for the spreadsheet drivers, it is also possible to use an empty range definition, in which case
all contents of the CSV file is considered as the selected area.

initializations from "mmsheet.csv:data.csv"

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 10

Using ODBC / database interfaces with Mosel

A6 as ’[]’
end-initializations

If we want to read all the content of columns B to D, skipping the first line, we can use the
following shorthand notation (NB: this notation without row numbers, just like the row-column
notation works with all mmsheet drivers):

initializations from "mmsheet.csv:data.xls"
A4 as ’skiph;[B:D]’

end-initializations

The main advantage of CSV over Excel format is its greater portability (CSV format is supported
on all Xpress platforms) and the possibility to combine the csv driver freely it with other drivers,
such as shmem or rmt that are not compatible with the other spreadsheet drivers.

3.2.4 Data output using csv

The following model duosheet_out.mos writes out the array A into the spreadsheet range F3:H3.
These cells denote the first row of the rectangular area into which we wish to write.

model "Duo output (Excel)"
uses "mmodbc"

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use an initializations block with the csv driver for writing data
initializations to "mmsheet.csv:data.csv"
A as "grow;[F3:H3]"

end-initializations

end-model

In this model we have used the option grow of the excel driver to indicate that the actual output
area may grow (= add more rows, the number of selected columns must be sufficient) beyond the
specified output range as required by the data. Alternatively, we may also specify the complete
output range such as in

initializations to "mmsheet.csv:data.csv"
A as ’[F3:H11]’

end-initializations

Yet another option that is available with the csv driver is the possibility to output the names of
column headers via the option skiph+ (note also that just like xsl/xslx, the csv driver will create
the output file if it does not exist). The following version of our output example writes output
into the columns F to H of a newly created file ’anewfile.csv’ where the first row of each column
contains the indicated header text (note that if the file and column headers exist already, the
header text is expected to match the existing).

initializations to "mmsheet.csv:anewfile.csv"
A as ’skiph+;[F:H](Index1,Index2,Value_of_A)’

end-initializations

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 11

Using ODBC / database interfaces with Mosel

3.3 Oracle

When accessing Oracle databases using initializations blocks we need to use the OCI I/O driver
name, "mmoci.oci", followed by the database logon information, resulting in an extended file
name such as "mmoci.oci:myname/mypassword@dbname".

The introductory examples in this section are documented in full length. However, given the
similarity of the ODBC and OCI interfaces, most of the examples in the ’Examples’ section of this
whitepaper are presented only in their ODBC version without repeating every time the
modifications to the driver name/database connection string that are required to obtain their OCI
version. Nevertheless, many examples are available with an Oracle version in the Examples
Database on the Xpress website.

3.3.1 Data input using oci

Let us assume we are working with a database dbname that contains a table ‘MyDataTable’ with
three fields, the first two (for the indices) of type integer, and the third of type float, filled with
the data displayed in Section 3.1.1.

We may then use the following model duooci.mos to read in the array A4 from the database and
print it out. Only the module name in the uses statement and the extended filename for the
database connection differ from what we have seen previously for an ODBC connection.

model "Duo input OCI (1)"
uses "mmoci"

declarations
A4: dynamic array(range,range) of real

end-declarations

! Use an initializations block with the odbc driver to read data
initializations from "mmoci.oci:myname/mypassword@dbname"
A4 as ’MyDataTable’

end-initializations

! Print out the data we have read
writeln(’A4 is: ’, A4)

end-model

3.3.2 Data output using oci

Outputting data from a Mosel model through the oci I/O driver again only requires few changes
to the model version for ODBC. Consider the following example (file duooci_out.mos):

model "Duo output OCI (1)"
uses "mmoci"

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use an initializations block with the oci driver for writing data
initializations to "mmoci.oci:myname/mypassword@dbname"
A as "MyOutTable1"

Introductory example Fair Isaac Corporation Confidential and Proprietary Information 12

http://examples.xpress.fico.com/example.pl
http://examples.xpress.fico.com/example.pl

Using ODBC / database interfaces with Mosel

end-initializations

end-model

The array A is written out to a data table named ‘MyOutTable1’ in the database dbname. This table
must have been created before executing the Mosel model, with fields that correspond to the
data array we want to write. That is, a total of three fields where the first two (index) fields have
the type integer and the third field is of type float.

In terms of database functionality, when writing out data with initializations to, Mosel
performs an “insert”, no replacement or update. If the data table already contains some data, for
instance from previous model runs, the new output will be appended to the existing data. This
means that the insertion will fail if key fields have been defined and you are trying to write the
same data entries a second time. The deletion of any existing data in the table(s) used for output
must be done manually directly in the database prior to the model run, or by adding the
corresponding SQL commands to the Mosel model. For the latter, it is possible to use the oci I/O
driver in combination with other mmoci functionality, such as calling specific SQL queries (see
Section 4.2).

4 Advanced example: using SQL queries

Certain tasks related to database access, such as deletion or update of existing data or the
formulation of advanced selection statements, cannot be performed through initializations
blocks. The ODBC and OCI modules therefore provide an alternative (lower level) means of
accessing databases, namely using standard SQL commands.

4.1 ODBC

The module mmodbc defines the following subroutines for accessing external data sources
through ODBC.

SQLconnect, SQLdisconnect: Connect to a database / terminate the active connection.

SQLexecute: Execute an SQL command.

SQLreadinteger, SQLreadreal, SQLreadstring: Read an integer or real value, or a string from
the database.

SQLupdate Update the selected data with the provided array(s).

The procedures SQLconnect, SQLdisconnect and SQLread... can be used with any data source.
SQLupdate only works if a data source supports positioned updates (this is typically the case for
databases, but not for MS Excel). Depending on the data source the use of SQLexecute may be
restricted to certain SQL commands: select and insert may be used with all data sources;
commands like create, delete, and update will work with databases, but generally not with
spreadsheets.

The procedures SQLexecute and SQLupdate allow the user to formulate his own SQL queries (using
standard SQL). In this document we give a few examples of such queries, but these are by no
means exhaustive. For a more thourough introduction to SQL the reader is refered to SQL
tutorials and documentation such as those referenced at the site
http://www.thefreecountry.com/documentation/onlinesql.shtml.

Advanced example: using SQL queries Fair Isaac Corporation Confidential and Proprietary Information 13

http://www.thefreecountry.com/documentation/onlinesql.shtml

Using ODBC / database interfaces with Mosel

4.1.1 Data input with SQL statements

The following Mosel model corresponds to the model we have seen in Section 3.1.1 with the
difference that we are now using SQL statements to read the data instead of an initializations
block.

model "Duo input (2)"
uses "mmodbc"

declarations
A5: dynamic array(range,range) of real

end-declarations

! Use SQL statements to read the data
SQLconnect(’data.sqlite’)
SQLexecute("select Index_i,Index_j,Value from MyDataTable", A5)
SQLdisconnect

! Print out the data we have read
writeln(’A5 is: ’, A5)

end-model

The SQL statement "select Index_i,Index_j,Value from MyDataTable" says ‘select
fields Index_i, Index_j, and Value from a table called MyDataTable. If this table only contains
these three fields and in the given order we might equally use the query
"select * from MyDataTable" which says ‘select everything from the range MyDataTable’. By
using SQL statements directly in the Mosel model it is possible to have much more complex
selection statements than the ones we have used here (see for instance the SQL queries
formulated in Section 6.7).

If we wish to read data from the MS Access database data.mdb, we need to use the connection
string ’DSN=MS Access Database;DBQ=C:/xpress/examples/data.mdb’ (or its short form
’data.mdb’); similarly, for a MySQL database named data the corresponding string would be
’DSN=mysql;DB=data’.

4.1.2 Data output with SQL statements

The example from Section 3.1.2 that outputs an array to a database via initializations to may
be rewritten as follows with SQL statements:

model "Duo output (2)"
uses "mmodbc"

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use SQL statements for writing data
SQLconnect(’data.sqlite’)
SQLexecute("insert into MyOutTable2 (Index1,Index2,AValue) values (?,?,?)", A)
SQLdisconnect

end-model

The insertion command says ‘write the contents of the array A in the form of value-triples to the

Advanced example: using SQL queries Fair Isaac Corporation Confidential and Proprietary Information 14

Using ODBC / database interfaces with Mosel

fields Index1, Index2, and AValue of the table MyOutTable2’. The question marks are placeholders
for the index tuple, followed by the value of the array entry (first question mark = first index
value, second question mark = second index value, ..., last question mark = array entry). Their
number must correspond to the number of output table columns that are named. It is possible to
select which indices/values to output and in which order (see Section 6.6). Please note that the
third column of the output range has been given the header AValue: when writing data through
SQL statements we cannot use the header Value since this is a reserved word for certain data
sources. In the version of the example using initializations to the headers of the columns are
not used (nevertheless, a header line must be present) and this word therefore does not cause
any problems.

As explained for the first version of this example (Section 3.1.2) we need to make sure that the
output range does not contain any data from previous runs by deleting data with the command
sequence Edit � Delete � Shift cells up before the model execution.

For the Access database data.mdb the connection string would be ’DSN=MS Access
Database;DBQ=C:/xpress/examples/data.mdb’ (or simply ’data.mdb’). When writing to a
database, we might remove data in the output table by hand, but it is certainly easier to clear the
contents of this table by adding the following line to our Mosel model (immediately after the
SQLconnect statement):

SQLexecute("delete from MyOutTable2")

4.2 Oracle

The module mmoci defines the following subroutines for accessing Oracle databases via SQL
commands.

OCIlogon, OCIlogoff: Connect to a database / terminate the active connection.

OCIexecute: Execute a PL/SQL command (select, insert, update, delete,
create table, etc.).

OCIreadinteger, OCIreadreal, OCIreadstring: Read an integer or real value, or a string from
the database.

OCIcommit, OCIrollback: Commit / roll back the current transaction (depending on
setting of parameter OCIautocommit).

Please notice that there are some differences (other than the replacement of the prefix SQL by
OCI) from the set of subroutines defined by module mmodbc: there is no separate ’update’
procedure (data table updates can be formulated with OCIexecute), and an extra feature of this
interface is the possibility to roll back transactions.

4.2.1 Data input with SQL statements

The following Mosel model corresponds to the model we have seen in Section 3.1.1 with the
difference that we are now using SQL statements to read the data instead of an initializations
block.

model "Duo input OCI (2)"
uses "mmoci"

declarations
A5: dynamic array(range,range) of real

Advanced example: using SQL queries Fair Isaac Corporation Confidential and Proprietary Information 15

Using ODBC / database interfaces with Mosel

end-declarations

! Use SQL statements to read the data
OCIlogon("myname/mypassword@dbname")
OCIexecute("select Index_i,Index_j,Value from MyDataTable", A5)
OCIlogoff

! Print out the data we have read
writeln(’A5 is: ’, A5)

end-model

An alternative, equivalent formulation of the database logon statement uses three separate
strings for the user name, password, and database name:

OCIlogon("myname", "mypassword", "dbname")

The SQL statement "select Index_i,Index_j,Value from MyDataTable" says ‘select
columns Index_i, Index_j, and Value from the table called MyDataTable. If this table contains
only these three columns and in the given order we might equally use the query
"select * from MyDataTable" which says ‘select everything from the table MyDataTable’. In any
case, we can work with exactly the same statement as in the ODBC version of this model since
these are standard SQL queries. By using SQL statements directly in the Mosel model it is possible
to have much more complex selection statements than the ones we have used here (see for
instance the SQL queries formulated in Section 6.7).

4.2.2 Data output with SQL statements

The example from Section 3.1.2 that outputs an array to an Oracle database via initializations
to may be rewritten as follows with SQL statements:

model "Duo output OCI (2)"
uses "mmoci"

declarations
A: array(-1..1,5..7) of real

end-declarations

A :: [2, 4, 6,
12, 14, 16,
22, 24, 26]

! Use SQL statements for writing data
OCIlogon(’mmoci.oci:myname/mypassword@dbname’)
OCIexecute("delete from MyOutTable2")
OCIexecute("insert into MyOutTable2 (Index1,Index2,AValue) values (:1,:2,:3)", A)
OCIlogoff

end-model

The insertion command says ‘write the contents of the array A in the form of value-triples to the
fields Index1, Index2, and AValue of the table MyOutTable2’. The markers :1, :2 etc. are
placeholders for the index tuple, followed by the value of the array entry (:1 = first index value,
:2 = second index value, :3 = array entry). Their number must correspond to the number of
output table columns that are named. By these markers it is possible to select which
indices/values to output and in which order (see Section 6.6).

As explained for the I/O driver version of this example (Section 3.3.2) we need to make sure that
the output table does not contain any data. Instead of removing data from the database table

Advanced example: using SQL queries Fair Isaac Corporation Confidential and Proprietary Information 16

Using ODBC / database interfaces with Mosel

“by hand”, this SQL implementation clears the contents of the output table by executing a
‘delete’ command in the Mosel model before inserting the new data. Alternatively, we might
have chosen to update the existing data in the output table by writing out array A with the
following command:

OCIexecute("update MyOutTable2 set AValue=:3 where Index1=:1 and Index2=:2", A)

5 Parameter settings to aid debugging

While developing an application that involves access to external data sources (and in particular
when using ODBC) it is advisable to enable the output of error messages from the driver and
possibly other debug information. The module mmodbc defines the following parameters to
enable debug output and to retrieve information about the SQL statements that have been
executed (for a complete list of the module parameters the reader is refered to the mmodbc
documentation in the ‘Mosel Language Reference Manual’). To obtain the corresponding mmoci
parameter names, replace the prefix SQL by OCI.

SQLverbose Enable/disable mesasge printing by the ODBC driver.

SQLdebug Enable/disable debug mode.

SQLrowcnt Number of lines affected by the last SQL command.

SQLrowxfr Number of lines transfered by the last SQL command.

SQLsuccess Indicates whether the last SQL command succeeded.

SQLconnection Identification number of the active connection to a database.

Parameters are set and retrieved with Mosel statements similar to the following:

setparam("SQLdebug", true)
writeln("Number of lines transfered: ", getparam("SQLrowxfr"))

With the odbc driver you may also use the ‘debug’ option of the driver instead of the global
setting:

initializations to "mmodbc.odbc:debug;data.xls"
A as "MyOutTable1"

end-initializations

or

initializations to "mmodbc.odbc:data.xls"
A as "debug;MyOutTable1"

end-initializations

In the first case, the setting applies to the whole initializations block, in the second case only
to the specific statement (there may be any number of statements in a single block).

With the oci driver, a connection string including the ‘debug’ option as global setting will look as
follows:

initializations to "mmoci.oci:debug;myusername/mypassword@dbname"
A as "MyOutTable1"

end-initializations

Examples Fair Isaac Corporation Confidential and Proprietary Information 17

Using ODBC / database interfaces with Mosel

6 Examples

6.1 Outputting solution values

Writing the results of an optimization run to a database/spreadsheet is a two stage process.

1. Gather the solution data into a Mosel array.

2. Use ODBC/SQL/spreadsheet drivers to write to the external data source.

Using decision variables or constraints directly when writing out the data will not result in the
solution values being written out.

The following Mosel model soleg.mos implements a tiny transportation problem using decision
variables x of type mpvar. The array SOL receives the solution values of these variables. This array
is then written out to an external data source (spreadsheet or database).

model "Solution values output"
uses "mmxprs", "mmodbc"

declarations
R = 1..3
S = 1..2
SOL: array(R,S) of real ! Array for solution values
x: array(R,S) of mpvar ! Decision variables

end-declarations

! Define and solve the problem
forall(i in R) sum(j in S) x(i,j) <= 4
forall(j in S) sum(i in R) x(i,j) <= 6
maximise(sum(i in R, j in S) (i*j)*x(i,j))

! Get solution values from LP into the array SOL
forall(i in R, j in S) SOL(i,j) := getsol(x(i,j))

! Use an initializations block with the odbc driver to write out data
initializations to "mmodbc.odbc:soleg.sqlite"
SOL as "MyOut1"

end-initializations

end-model

The alternative method of using SQL statements for writing out the data looks as follows for this
problem:

SQLconnect("soleg.sqlite")
SQLexecute("insert into MyOut2 (First, Second, Solution) values (?,?,?)", SOL)
SQLdisconnect

When working with a database, it may be preferable to use SQLupdate instead of SQLexecute to
avoid having to clear the contents of the output table before every model run. (Notice that the
‘update’ command will only work if the table contains already data from previous runs). The
corresponding SQL statement is:

SQLupdate("select First, Second, Solution from MyOut2", SOL)

This command cannot be used with a spreadsheet; the results from previous runs always need to
be removed by hand directly in the spreadsheet. With MS Excel we therefore recommend to use

Examples Fair Isaac Corporation Confidential and Proprietary Information 18

Using ODBC / database interfaces with Mosel

the excel driver instead of an ODBC connection to be able to overwrite any existing output data
in the spreadsheet:

initializations to "mmsheet.excel:soleg.xls"
SOL as "skiph;MyOut1"

end-initializations

Note: Instead of explicitly creating an array SOL to hold the solution values, it is also possible to
create a temporary array immediately within the initializations to block using evaluation of
in conjunction with the array operator:

initializations to "mmodbc.odbc:soleg.sqlite"
evaluation of array(i in R, j in S) x(i,j).sol as "MyOut1"

end-initializations

Or the corresponding form within a SQL query:

SQLexecute("insert into MyOut2 (First, Second, Solution) values (?,?,?)",
array(i in R, j in S) x(i,j).sol)

6.2 Dense vs. sparse data format

All examples we have seen so far use sparse data format, i.e., every data entry in the database
tables or spreadsheets is given with its complete index tuple. If the index set(s) of an array are
defined in the model or fixed otherwise it is also possible to work with data in dense format, i.e.,
just the data entries without their index tuples.

The following example (file indexeg.mos) shows how data tables given in different formats may
be read in by a Mosel model. We have enabled the ‘debug’ option to see the SQL statements
generated by Mosel.

model ODBCImpEx
uses "mmodbc"

declarations
A: array(1..3, 1..2) of real
B: array(1..2, 1..3) of real
C: array(1..2, 1..3) of real
CSTR: string

end-declarations

CSTR:= ’mmodbc.odbc:debug;indexeg.sqlite’

! Data must be dense - there are not enough columns to serve as index!
initializations from CSTR
A as ’Range3by2’

end-initializations

forall(i in 1..3)
writeln("Row(",i,"): ", A(i,1), " ", A(i,2))

! Dense data
initializations from CSTR
B as ’noindex;Range2by3’

end-initializations

forall(i in 1..2)
writeln("Row(",i,"): ", B(i,1), " ", B(i,2), " ", B(i,3))

! Indexed data
initializations from CSTR

Examples Fair Isaac Corporation Confidential and Proprietary Information 19

Using ODBC / database interfaces with Mosel

C as ’Range2by3i’
end-initializations

forall(i in 1..2)
writeln("Row(",i,"): ", C(i,1), " ", C(i,2), " ", C(i,3))

end-model

The first array, A is read from a table that helds data in dense format—just the data, no indices:

First Second

1.2 2.2

2.1 2.2

3.1 4.4

This table has two columns and three rows. Since data in sparse format would require at least
three columns, there is no confusion possible between the two formats and mmodbc will deduce
automatically the correct format to use. (However, if you wish to document clearly which data
format is expected you may choose to add the option ‘noindex’ as in the following case.)

If an input table has a sufficiently large number of columns to serve as indices as is the case for
the table Range2by3 and array B, then the situation is ambiguous and we need to state explicitly
that no indices are specified by using the option ‘noindex’. Otherwise mmodbc will use its default
(namely sparse format), which will lead to an error message in the present example since the data
type (real) of the first two columns does not correspond to the type of the indices (integer)
indicated in the model:

First Second Third

1.2 1.2 1.3

2.1 2.2 2.3

The third case, table Range2by3i and array C, corresponds to the (default) format that we have
already seen in the previous examples—each data item is preceded by its index tuple. This table
defines exactly the same data as the previous one:

Firsti Secondi Value

1 2 1.1

1 2 1.2

1 3 1.3

2 2 2.1

2 2 2.2

2 3 2.3

The same model as above may be rewritten with SQL commands instead of initializations
blocks (the driver option ‘noindex’ is replaced by resetting the value of the mmodbc parameter
SQLndxcol):

model ODBCImpEx2
uses "mmodbc"

Examples Fair Isaac Corporation Confidential and Proprietary Information 20

Using ODBC / database interfaces with Mosel

declarations
A: array(1..3, 1..2) of real
B: array(1..2, 1..3) of real
C: array(1..2, 1..3) of real
CSTR: string

end-declarations

CSTR:= ’indexeg.sqlite’

SQLconnect(CSTR)
setparam("SQLdebug",true)

! Data must be dense - there are not enough columns to serve as index!
SQLexecute("select * from Range3by2 ", A)
forall(i in 1..3)
writeln("Row(",i,"): ", A(i,1), " ", A(i,2))

setparam("SQLndxcol", false) ! Dense data
SQLexecute("select * from Range2by3 ", B)
forall(i in 1..2)
writeln("Row(",i,"): ", B(i,1), " ", B(i,2), " ", B(i,3))

setparam("SQLndxcol", true) ! Indexed data
SQLexecute("select * from Range2by3i ", C)
forall(i in 1..2)
writeln("Row(",i,"): ", C(i,1), " ", C(i,2), " ", C(i,3))

SQLdisconnect

end-model

If using the excel driver instead of an ODBC connection, we need to use the noindex option also
with the first data table (’Range3by2’) since this driver does not do any ’guessing’ about the table
format.

model ODBCImpEx3
uses "mmodbc"

declarations
A: array(1..3, 1..2) of real
B: array(1..2, 1..3) of real
C: array(1..2, 1..3) of real
CSTR: string

end-declarations

CSTR:= ’mmsheet.excel:indexeg.xls’

! Dense data (’noindex’), skipping the header line (’skiph’)
initializations from CSTR
A as ’skiph;noindex;Range3by2’

end-initializations

forall(i in 1..3)
writeln("Row(",i,"): ", A(i,1), " ", A(i,2))

! Dense data
initializations from CSTR
B as ’skiph;noindex;Range2by3’

end-initializations

forall(i in 1..2)
writeln("Row(",i,"): ", B(i,1), " ", B(i,2), " ", B(i,3))

! Indexed data
initializations from CSTR
C as ’skiph;Range2by3i’

Examples Fair Isaac Corporation Confidential and Proprietary Information 21

Using ODBC / database interfaces with Mosel

end-initializations

forall(i in 1..2)
writeln("Row(",i,"): ", C(i,1), " ", C(i,2), " ", C(i,3))

end-model

6.2.1 Multidimensional tables in rectangular format

Quite frequently, particularly when working with spreadsheets, multidimensional input data
arrays are formatted in 2-dimensional (rectangular) form. For example, take a look at the
following table: we want to populate an array Aijkwith 3 dimensions from the data held in seven
columns, where the first 2 columns are indices (i and j) and the remaining columns are data values
corresponding to different index values for the third and last index k of the array.

Firsti Secondi Value_1 Value_2 Value_3 Value_4 Value_5

2 B 22.1 22.2 22.3 22.4 22.5

1 D 14.1 14.2 14.3 14.4 14.5

This table can be read by the following Mosel code (see example file threedimarr.mos). Notice
that the contents of the first two index sets is not defined in the model—their contents is read
with the input data. However, the last index k that is written ’across the table columns’ needs to
be defined in the model and it has to be of type range (that is, using a set type that has an
ordering) to make sure that the entries will be read in the same order as expected by the model.
With this data format we need to use the partndx option of the I/O drivers to indicate that not all
indices are to be read in with the input data. Furthermore, as the input data only defines values
for a few index tuples, we use a dynamic array that will only contain those elements for which
values are specified in the data file.

model "ThreeDimArr"
uses "mmodbc"

declarations
I: range
J: set of string
K = 1..5 ! The last index set must be defined in the model
A: dynamic array(I,J,K) of real

end-declarations

initializations from ’mmsheet.excel:partndx;threedim.xls’
A as ’Tab_23’

end-initializations

writeln("A: ")
forall(i in I, j in J, k in K | exists(A(i,j,k)))
writeln("A(", i, ",", j, ",", k, "): ", A(i,j,k))

end-model

To read the same data with the odbc driver we can use

initializations from ’mmodbc.odbc:partndx;threedim.sqlite’
A as ’Tab_23’

end-initializations

and to obtain the corresponding version using SQL statements, the initializations block can be
replaced by the following lines.

Examples Fair Isaac Corporation Confidential and Proprietary Information 22

Using ODBC / database interfaces with Mosel

declarations
Idx3: text

end-declarations

SQLconnect("threedim.sqlite")

setparam("SQLndxcol", false) ! Partially indexed data

forall(k in K) Idx3+= (", Value_"+k)
SQLexecute("select Firsti, Secondi" + Idx3 + " from Tab_23", A)
SQLdisconnect

6.3 Reading several arrays from a single table

If two or more data arrays have the same index sets, then their values may be defined in a single
spreadsheet range/database table, such as the following table where the first two columns hold
the indices and the last two colums the data entries for two arrays:

Products Mach Cost Duration

prod1 1 1.2 3

prod1 3 2.4 2

prod2 3 3 1

prod2 2 2

prod4 1 4 5

prod4 4 3.2 2

prod3 3 5.7 2

prod3 4 2.9 8

prod3 1 3

Notice that in this table not all entries are defined for every array.

The following Mosel model multicol.mos reads the data from the range ProdData into two array,
COST and DUR. For every array only those entries that are specified in the input data will actually
be defined:

model "Multiple data columns"
uses "mmodbc"

declarations
PRODUCTS: set of string
MACH: range
COST: dynamic array(PRODUCTS,MACH) of real
DUR: dynamic array(PRODUCTS,MACH) of integer

end-declarations

initializations from "mmodbc.odbc:multicol.sqlite"
[COST,DUR] as ’ProdData’

end-initializations

writeln(COST); writeln(DUR)

end-model

The SQL version of this model is as follows:

SQLconnect(’multicol.sqlite’)

Examples Fair Isaac Corporation Confidential and Proprietary Information 23

Using ODBC / database interfaces with Mosel

setparam("SQLverbose",true)
SQLexecute("select * from ProdData ", [COST,DUR])
SQLdisconnect

If we wish to read data from a different database, also defining the table ProdData, we again
simply need to adapt the filename or the connection string to the database name.

To use the excel driver with a data range definition that includes the header line the option skiph
needs to be employed.

initializations from "mmsheet.excel:multicol.xls"
[COST,DUR] as ’skiph;ProdData’

end-initializations

6.4 Outputting several arrays into a single table

Similarly to what we have seen in the previous section for data input we may also write out
several data arrays to a single spreadsheet range/database table, provided that all arrays have the
same index sets.

The following example multiout.mos reads in two data arrays from a text file in Mosel format
and outputs them to a spreadsheet range and also to a database table. Both the spreadsheet
range and the database table must have been created before this model is run.

model "Output multiple data columns"
uses "mmodbc"

declarations
PRODUCTS: set of string
MACH: range
COST: dynamic array(PRODUCTS,MACH) of real
DUR: dynamic array(PRODUCTS,MACH) of integer

end-declarations

! Read data
initializations from "multiout.dat"
COST DUR

end-initializations

! Write data to the Access database multicol.mdb
! (this assumes that the table ’CombData’ has been created previously):
initializations to "mmodbc.odbc:debug;multicol.mdb"
[COST,DUR] as ’CombData’

end-initializations

! Write data to the Excel spreadsheet multicol.xls
! (this assumes that the range ’CombData’ has been created previously):
initializations to "mmsheet.excel:skiph;grow;multicol.xls"
[COST,DUR] as ’CombData’

end-initializations

! Alternative: specify the range/worksheet
initializations to "mmsheet.excel:multicol.xls"
[COST,DUR] as ’grow;[Sheet1$L4:O4]’

end-initializations

end-model

The input data file contains the same data as has been used for the previous example, that is,
different entries are defined for every array. In the resulting output tables some entries will
therefore be left empty.

Examples Fair Isaac Corporation Confidential and Proprietary Information 24

Using ODBC / database interfaces with Mosel

COST: [(prod1 1) 1.2 (prod1 3) 2.4 (prod2 3) 3 (prod4 1) 4 (prod4 4) 3.2
(prod3 3) 5.7 (prod3 4) 2.9 (prod3 1) 3]

DUR: [(prod1 1) 3 (prod1 3) 2 (prod2 3) 1 (prod2 2) 2 (prod4 1) 5
(prod4 4) 2 (prod3 3) 2 (prod3 4) 8]

The SQL version of the model above may look as follows. For the database, we have added an
SQL command (‘create’) that creates the database table before the data is written out. This
command cannot be used with Excel spreadsheets: the output range must be prepared before
the Mosel model is run. In this example the fields of the database table/columns of the
spreadsheet range use the same names as our Mosel model entities: this is just coincidence and by
no means a necessity.

! Write data to the Access database multicol.mdb
! (create the output table and then output the data)
SQLconnect(’multicol.mdb’)
setparam("SQLdebug", true)
SQLexecute("create table CombData (Products varchar(10), Mach integer, Cost double,
Duration integer)")
SQLexecute("insert into CombData(Products, Mach, Cost, Duration) values (?,?,?,?)",

[COST,DUR])
SQLdisconnect

In this example the insertion statements output quadruples (denoted by the four question
marks), each consisting of an index tuple, followed by the corresponding entries of the two arrays
in the given order. That is, an output tuple has the form (i,j,COST(i,j),DUR(i,j)). These tuples are
written into the four selected columns of the table CombData.

6.5 Reading an array from several tables

Especially when working with arrays of more than two dimensions it may happen that the input
data is split into several spreadsheet ranges/database tables.

We wish to read an array, INCOME, indexed by the sets CUST and PERIOD from three tables (one
table per customer). In the first instance, assume that every data table includes both the CUST and
the PERIOD index column, such as (table COLDAT1):

CUST PERIOD INCOME

1 1 11

1 2 21

1 3 31

1 4 41

1 5 51

In this case we may read in the data with three statements within a single initializations block:

model "multiple data sources"
uses "mmodbc"

declarations
CUST: set of integer
PERIOD: range
INCOME: dynamic array(CUST,PERIOD) of real

end-declarations

Examples Fair Isaac Corporation Confidential and Proprietary Information 25

Using ODBC / database interfaces with Mosel

! Method 1: Data in columns, with CUST index value included
initializations from ’mmodbc.odbc:multitab.sqlite’
INCOME as ’COLDAT1’
INCOME as ’COLDAT2’
INCOME as ’COLDAT3’

end-initializations

writeln("1: ", INCOME)

end-model

The same with SQL statements:

SQLconnect(’multitab.sqlite’)
SQLexecute("select CUST,PERIOD,INCOME from COLDAT1", INCOME)
SQLexecute("select CUST,PERIOD,INCOME from COLDAT2", INCOME)
SQLexecute("select CUST,PERIOD,INCOME from COLDAT3", INCOME)
SQLdisconnect

Now assume that the input data table for each customer only contains the PERIOD index and the
data value itself:

PERIOD INCOME

1 11

2 21

3 31

4 41

5 51

In this case we need to introduce an auxiliary array TEMP with just one index into which we read
the data for every customer and that gets copied into the array INCOME. (This method supposes
that we know the contents of the set CUST; with the first method this was not required.)

! Method 2: Data in columns, without CUST index value
procedure readcol(cust:integer, table:string)
declarations
TEMP: array(PERIOD) of real

end-declarations

initializations from ’mmodbc.odbc:multitab.sqlite’
TEMP as table

end-initializations
forall(p in PERIOD) INCOME2(cust,p):=TEMP(p)

end-procedure

forall(c in CUST) readcol(c, "COLDAT"+c+"A")
writeln("2: ", INCOME)

If we wish to employ SQL statements for reading the data, the procedure readcol may look as
follows (all else remains unchanged):

procedure readcol(cust:integer, table:string)
declarations
TEMP: array(PERIOD) of real

end-declarations

SQLexecute("select PERIOD,INCOME from "+table, TEMP)
forall(p in PERIOD) INCOME(cust,p):=TEMP(p)

end-procedure

Examples Fair Isaac Corporation Confidential and Proprietary Information 26

Using ODBC / database interfaces with Mosel

In this case and with the rowwise representation shown below the formulation with SQL
statements is likely to be more efficient since we only need to connect once to the data source
and then execute a series of ‘select’ commands. For initializations blocks we open and close an
ODBC connection with every new block, that is, at every execution of the procedure readcol.

As a third case consider a representation of the data in transposed form, that is, not columnwise
but rowwise as shown in the following example table. (This format may occur with spreadsheets
but it is certainly less likely, though not impossible, with databases.) With Excel we always need
to define a header row for a data range—here we have simply filled it with zeros since its
contents is irrelevant. Any row headers written at the left or right of the data range are purely
informative, they must not be selected as part of the range.

DUMMY 0 0 0 0 0

PERIOD 1 2 3 4 5

INCOME 11 21 31 41 51

Such rowwise formatted data may be read with the following Mosel code. As with the previous
method, we define a procedure readrow to read data from a single data range. Both index sets,
CUST and PERIOD, must be known and the set PERIOD must be finalized (this means that its
contents cannot change any more and the set is treated by Mosel similarly to a constant set).

! Method 3: Data in rows, without CUST index value
procedure readrow(cust:integer, table:string)
declarations
TEMP: array(1..2,PERIOD) of real

end-declarations

initializations from ’mmsheet.excel:multitab.xls’
TEMP as ’noindex;’+table

end-initializations
forall(p in PERIOD) INCOME3(cust,p):=TEMP(2,p)

end-procedure

finalize(PERIOD) ! The index sets must be known+fixed
forall(c in CUST) readrow(c, "ROWDAT"+c)
writeln("3: ", INCOME3)

The corresponding SQL code looks as follows (notice the setting of the parameter SQLndxcol):

procedure readrow(cust:integer, table:string)
declarations
TEMP: array(1..2,PERIOD) of real

end-declarations

SQLexecute("select * from "+table, TEMP)
forall(p in PERIOD) INCOME3(cust,p):=TEMP(2,p)

end-procedure

finalize(PERIOD) ! The index sets must be known+fixed
setparam("sqlndxcol",false) ! Data specified in dense format (no indices)
forall(c in CUST) readrow(c, "ROWDAT"+c)
setparam("sqlndxcol",true)

To read the data from a database using the odbc driver instead of excel we merely need to
change the file name:

Examples Fair Isaac Corporation Confidential and Proprietary Information 27

Using ODBC / database interfaces with Mosel

initializations from ’mmodbc.odbc:skiph;multitab.sqlite’
...

6.6 Selection of columns/fields

The structure of the tables read from or written to using ODBC does not necessarily have to be
the same as the tables in the Mosel model: tables may have more fields than required, or fields
may be defined in a different order. To choose the fields from such tables that we wish to access
we need to indicate the field names in the ODBC queries. In some of the previous SQL examples
we have already named the fields we wish to access (instead of using a wildcard, such as select *
from). With initializations blocks it is equally possible to indicate the names of the fields as is
shown in the following example.

We work with the example from Sections 6.3 and 6.4 where a single table in the data source
holds data for several Mosel arrays. The following Mosel model odbcinv.mos reads in the two
arrays COST and DUR separately. The index sets of the array COST are in inverse order.

model "ODBC selection of columns"
uses "mmodbc"

declarations
PRODUCTS: set of string
MACH: range
COST: dynamic array(MACH,PRODUCTS) of real
DUR: dynamic array(PRODUCTS,MACH) of integer

end-declarations

initializations from "mmodbc.odbc:debug;multicol.mdb"
COST as "ProdData(Mach,Products,Cost)"
DUR as "ProdData(Products,Mach,Duration)"

end-initializations

! Print out what we have read
writeln(COST); writeln(DUR)

! Delete and re-create the output table
SQLconnect(’multicol.mdb’)
SQLexecute("drop table CombData2")
SQLexecute("create table CombData2 (Products varchar(10), Mach integer, Cost double,
Duration integer)")
SQLdisconnect

initializations to "mmodbc.odbc:debug;multicol.mdb"
COST as "CombData2(Mach,Products,Cost)"
DUR as "CombData2(Products,Mach,Duration)"

end-initializations

end-model

When writing out the two arrays into the result table CombData using initializations to the
data does not appear the way we would wish: the data for the second array gets appended to
the data of the first instead of filling the remaining field with the additional data. The reason for
this is that initializations to performs an ‘insert’ command and not an ‘update’ which is the
command to use if the table already holds some data. To fill the table in the desired way it is
therefore necessary to use SQL queries for completing the output. Below follows the complete
SQL version of this model.

declarations
TEMP: array(PRODUCTS,MACH) of integer

end-declarations

Examples Fair Isaac Corporation Confidential and Proprietary Information 28

Using ODBC / database interfaces with Mosel

setparam("SQLdebug",true)
SQLconnect(’multicol.mdb’)

! Read data from the table ’ProdData’
SQLexecute("select Mach,Products,Cost from ProdData", COST)
SQLexecute("select Products,Mach,Duration from ProdData", DUR)

! Print out what we have read
writeln(COST); writeln(DUR)

! Write out data to another table (after deleting and re-creating the table)
SQLexecute("drop table CombData")
SQLexecute("create table CombData (Products varchar(10), Mach integer, Cost double,
Duration integer)")

! Write out the ’COST’ array
SQLexecute("insert into CombData (Mach,Products,Cost) values (?,?,?)", COST)

! Fill the ’Duration’ field of the output table:
! 1. update the existing entries, 2. add new entries
SQLupdate("select Products,Mach,Duration from CombData", DUR)
forall(p in PRODUCTS, m in MACH | exists(DUR(p,m)) and not exists(COST(m,p)))
TEMP(p,m) := DUR(p,m)

SQLexecute("insert into CombData (Products,Mach,Duration) values (?,?,?)",
TEMP)

SQLdisconnect

A second possibility for formulating the SQL output query for the array COST is to use the
numbering of columns (?1, ?2, etc.) to select which of the indices/value columns of the data array
we want to write out (we might choose, for instance, to write out only a single index set), and in
which order. This functionality has no direct correspondence in the formulation with
initializations to blocks.

SQLexecute("insert into CombData (Products,Mach,Cost) values (?2,?1,?3)",
COST)

There is also an equivalent formulation of the ‘update’ statement using the SQL command
‘update’ instead of SQLupdate. We use again the numbering of columns to indicate where the
indices and data entries of the Mosel array DUR are to be inserted:

SQLexecute("update CombData set Duration=?3 where Products=?1 and Mach=?2", DUR)

6.7 SQL selection statements

As has been said before, using SQL statements instead of initializations blocks gives the user
considerably more freedom in the formulation of his SQL queries. In this section we are going to
show examples of advanced functionality that cannot be achieved with initializations blocks.

We are given a database with two tables. The first table, called MYDATA, has the following
contents.

ITEM COST DIST

A 10 100

B 20 2000

C 30 300

D 40 5000

E 50 1659

Examples Fair Isaac Corporation Confidential and Proprietary Information 29

Using ODBC / database interfaces with Mosel

The second table, USER_OPTIONS, defines a few parameters, that is, it has only a single entry per
field/column. We may perform, for instance, the following tasks:

� Select all data entries from table MYDATA for which the DIST value is greater than the value
of the parameter MINDIST in the table USER_OPTIONS.

� Select all data entries with indices among a given set.

� Select all data entries for which the ratio COST/DIST lies within a given range.

� Retrieve the data entry for a given index value.

� Apply some functions to the database entries.

The following Mosel model odbcselfunc.mos shows how to implement these tasks as SQL qeries.

model "ODBC selection and functions"
uses "mmodbc"

declarations
Item: set of string
COST1,COST2,COST3: dynamic array(Item) of real

end-declarations

setparam("SQLdebug",true)
SQLconnect(’odbcsel.mdb’)

! Select data depending on the value of a second field, the limit for which
! is given in a second table USER_OPTIONS
SQLexecute("select ITEM,COST from MYDATA where DIST > (select MINDIST from
USER_OPTIONS)", COST1)

! Select data depending on the values of ITEM
SQLexecute("select ITEM,COST from MYDATA where ITEM in (’A’, ’C’, ’D’, ’G’)",

COST2)

! Select data depending on the values of the ratio COST/DIST
SQLexecute("select ITEM,COST from MYDATA where COST/DIST between 0.01 and 0.1",

COST3)

writeln(COST1, COST2, COST3)

! Print the DIST value of item ’B’
writeln(SQLreadreal("select DIST from MYDATA where ITEM=’B’"))

! Number of entries with COST>30
writeln("Count COST>30: ",

SQLreadinteger("select count(*) from MYDATA where COST>30"))

! Total and average distances
writeln("Total distance: ", SQLreadreal("select sum(DIST) from MYDATA"),

", average distance: ", SQLreadreal("select avg(DIST) from MYDATA"))

end-model

6.8 Accessing structural information from databases

With SQL commands, it is possible to access detailed information about the contents of a
database, including the complete list of tables and for each table, the names and types of its
fields. The model odbcinspectdb.mos printed below shows how to retrieve and display the
structural information for a given database.

Examples Fair Isaac Corporation Confidential and Proprietary Information 30

Using ODBC / database interfaces with Mosel

model "Analyze DB structure"
uses "mmodbc"

declarations
tables: list of string
pkeylist: list of string
pkeyind: list of integer
fnames: dynamic array(Fields: range) of string
ftypes: dynamic array(Fields) of integer
ftypenames: dynamic array(Fields) of string

end-declarations

setparam("SQLverbose",true)
SQLconnect("personnel.sqlite")

! Retrieve list of database tables
SQLtables(tables)
forall(t in tables) do

! Retrieve primary keys
SQLprimarykeys(t, pkeylist)
writeln(t, " primary key field names: ", pkeylist)
SQLprimarykeys(t, pkeyind)
writeln(t, " primary key field indices: ", pkeyind)

! Retrieve table structure
writeln(t, " has ", SQLcolumns(t,fnames,ftypes), " fields")
res:=SQLcolumns(t,fnames,ftypenames)
forall(f in Fields | exists(fnames(f)))

writeln(f, ": ", fnames(f), " ", ftypes(f), ": ", ftypenames(f))

! Delete aux. arrays for next loop iteration
delcell(fnames); delcell(ftypes); delcell(ftypenames)

end-do

SQLdisconnect
end-model

6.9 Working with lists

Data in spreadsheets or databases is stored in the form of ranges or tables and so far we have
always used Mosel arrays as the corresponding structure within our models. Yet there are other
possibilities. In this section we shall see how to work with Mosel lists in correspondence to
1-dimensional tables/ranges in the data source. The next section shows how to work with the
Mosel data structure ’record’.

Assume we are given a spreadsheet listdata.xls with two 1-dimensional ranges, List1 and
List2 and an integer A:

List1

1 2 3 4 5 6 7 8

A List2

2002 Jan May Jul Nov Dec

The following Mosel model listinout.mos reads in the two ranges as lists and also the integer A,
makes some modifications to each list and writes them out into predefined output ranges in the

Examples Fair Isaac Corporation Confidential and Proprietary Information 31

Using ODBC / database interfaces with Mosel

spreadsheet.

model "List handling (Excel)"
uses "mmodbc"

declarations
R: range
LI: list of integer
A: integer
LS,LS2: list of string

end-declarations

initializations from "mmsheet.excel:listdata.xls"
LI as "List1"
A
LS as "List2"

end-initializations

! Display the lists
writeln("LI: ", LI)
writeln("A: ", A, ", LS: ", LS)

! Reverse the list LI
reverse(LI)

! Append some text to every entry of LS
LS2:= sum(l in LS) [l+" "+A]

! Display the modified lists
writeln("LI: ", LI)
writeln("LS2: ", LS2)

initializations to "mmsheet.excel:listdata.xls"
LI as "List1Out"
LS2 as "List2Out"

end-initializations

end-model

Please note that we may choose as input ranges a column or a row of a spreadsheet. Similarly,
when using the excel driver to access the spreadsheet the output area of a list may also be a
column or a row. List data in databases is always represented as a field of a database table.

The same model implemented with SQL commands looks as follows.

setparam("SQLverbose",true)
SQLconnect("listdata.sqlite")
SQLexecute("select * from List1", LI)
A:= SQLreadinteger("select * from A")
SQLexecute("select * from List2", LS)

...

SQLexecute("delete from List1Out") ! Cleaning up previous results: works
SQLexecute("delete from List2Out") ! only for databases, cannot be used

! with spreadsheets (instead, delete
! previous solutions directly in the
! spreadsheet file)

SQLexecute("insert into List1Out values (?)", LI)
SQLexecute("insert into List2Out values (?)", LS2)
SQLdisconnect

The modules mmodbc, mmoci and mmsheet do not accept composed structures involving lists like
’array of list’ (such constructs are permissible when working with text files in Mosel format).

Examples Fair Isaac Corporation Confidential and Proprietary Information 32

Using ODBC / database interfaces with Mosel

6.10 Working with records

In this section we work once more with the data range ProdData that has already been used in
the example of Section 6.3:

Products Mach Cost Duration

prod1 1 1.2 3

prod1 3 2.4 2

prod2 3 3 1

prod2 2 2

prod4 1 4 5

prod4 4 3.2 2

prod3 3 5.7 2

prod3 4 2.9 8

prod3 1 3

We now want to read this data into a record data structure, more precisely, an array of records
where each record contains the data for one product-machine pair. Such a record may be defined
in different ways: it may contain just the fields ’Cost’ and ’Duration’, using the product and
machine as indices, or we could define a record with four fields, ’Product’, ’Mach’, ’Cost’, and
’Duration’, using a simple counter as index to the array. The model recordin.mos printed below
implements both cases.

model "Record input (Excel)"
uses "mmodbc"

declarations
PRODUCTS: set of string
MACH: range
ProdRec = record
Cost: real
Duration: integer

end-record
PDATA: dynamic array(PRODUCTS,MACH) of ProdRec

R = 1..9
AllDataRec = record
Product: string
Mach: integer
Cost: real
Duration: integer

end-record
ALLDATA: array(R) of AllDataRec

end-declarations

! **** Reading complete records

initializations from "mmsheet.excel:recorddata.xls"
PDATA as "ProdData"
ALLDATA as "noindex;ProdData"

end-initializations

! Now let us see what we have
writeln(’PDATA is: ’, PDATA)
writeln(’ALLDATA is: ’, ALLDATA)

end-model

Examples Fair Isaac Corporation Confidential and Proprietary Information 33

Using ODBC / database interfaces with Mosel

This model will fill the fields of each record in the order of their definition with the data from a
row of the input range in the order of the columns. That is, the first two columns of range
ProdData will become the indices of PDATA, the third column is read into the ’Cost’ field, and the
forth column into the ’Duration’ field. The record array ALLDATA will have the first column of
ProdData in its first field (’Product’), the second column in the field ’Mach’, and so on.

It is also possible (a) to select certain columns from a database table or spreadsheet range and (b)
to specify which record fields to initialize. The former can be used to read data from a
spreadsheet range or database table that contains other data or has columns/fields arranged in a
different order from the Mosel model as we have already seen in the example of Section 6.6. The
following code extract shows how to read the contents of some record fields from specified parts
of the input data range.

declarations
PDATA2: dynamic array(PRODUCTS,MACH) of ProdRec
ALLDATA2: array(R) of AllDataRec

end-declarations

! **** Reading record fields

initializations from "mmodbc.odbc:recorddata.sqlite"
PDATA2(Cost) as "ProdData(IndexP,IndexM,Cost)"
ALLDATA2(Product,Mach,Duration) as "noindex;ProdData(IndexP,IndexM,Duration)"

end-initializations

This results in an array of records PDATA2 with values in the ’Cost’ field and all ’Duration’ fields at
0 and an array of records ALLDATA2 with values in the ’Product’, ’Mach’, and ’Duration’ fields and
all ’Cost’ fields at 0.

When using the excel driver for accessing a spreadsheet it is equally possible to select columns
from a spreadsheet range, either via column header names if they are included in the range
specification or via column order numbers within the seleted range:

initializations from "mmsheet.excel:recorddata.xls"
PDATA as "skiph;ProdData"
ALLDATA as "skiph,noindex;AllData"
PDATA2(Cost) as "ProdData(#1,#2,#3)"
ALLDATA2(Product,Mach,Duration) as "noindex;ProdData(#1,#2,#4)"

end-initializations

With SQL statements it would be possible to select columns from a spreadsheet range (or
database table fields). However Mosel’s syntax does not provide any means to select fields for an
array of records in the SQLexecute statement. We can initialize the complete arrays of records as
shown below, but it is not possible to select just certain record fields when reading or writing
data (it would of course be possible to employ some auxiliary data structures for reading in the
data and copy their contents to the array of records).

setparam("SQLverbose",true)
SQLconnect("recorddata.xls")
SQLexecute("select * from ProdData", PDATA)
setparam("SQLndxcol", false) ! Dense data
SQLexecute("select * from AllData", ALLDATA)
SQLdisconnect

6.11 Handling dates and time

Fields of databases that are defined as date or time types find their direct correspondence in the
types date, time, or datetime of the Mosel module mmsystem. The modules mmodbc, mmoci and

Examples Fair Isaac Corporation Confidential and Proprietary Information 34

Using ODBC / database interfaces with Mosel

mmsheet support these types for reading and writing data and we explain here how to work
with them.

Dates and times are passed in their textual representation from a database to Mosel (or from
Mosel to the database). The representation of date and time information within databases is
different from one product to another and may not be compatible with Mosel’s default format.
The first step when starting to work with date and time related data therefore always is to
retrieve sample data in the form of a string and print it out to analyze its format. This can be
done by a few lines of Mosel code, such as:

declarations
sd,st: string

end-declarations

initializations from "datetest.dat"
sd as "ADate"
st as "ATime"

end-initializations

writeln("sd: ", sd, ", st: ", st)

The date and time formats are defined by setting the parameters timefmt, datefmt, and
datetimefmt of module mmsystem. The encoding of the format strings is documented in the
’Mosel Language Reference Manual’, Chapter ’mmsystem’.

In the model displayed below we read a first set of dates/times that are defined as such in the
data source. The second set are simply strings in the data source and Mosel transforms them into
dates/times according to the format defined by our model before reading the data. For the
output we use Mosel’s own format; depending on the data source the result will be interpreted
as strings or as time/date data.

model "Dates and times (ODBC)"
uses "mmsystem", "mmodbc"

declarations
T: time
D: date
DT: datetime
Dates: list of date

end-declarations

! Select the format used by the spreadsheet/database
! (database fields have date/time types)
setparam("timefmt", "%y-%0m-%0d %0H:%0M:%0S")
setparam("datefmt", "%y-%0m-%0d")
setparam("datetimefmt", "%y-%0m-%0d %0H:%0M:%0S")

initializations from "mmodbc.odbc:datetime.mdb"
T as "Time1"
D as "Date1"
DT as "DateTime1"
Dates as "Dates"

end-initializations

setparam("timefmt", "%h:%0M %p")
writeln(D, ", ", T)
writeln(DT)
writeln(Dates)

! Read date / time from strings (database fields have some string type)
setparam("timefmt", "%Hh%0Mm")
setparam("datefmt", "%dm%0my%0y")
setparam("datetimefmt", "%dm%0my%0y, %Hh%0Mm")

Examples Fair Isaac Corporation Confidential and Proprietary Information 35

Using ODBC / database interfaces with Mosel

initializations from "mmodbc.odbc:datetime.mdb"
T as "Time2"
D as "Date2"
DT as "DateTime2"

end-initializations

writeln(D, ", ", T)
writeln(DT)

! Use Mosel’s default format
setparam("timefmt", "")
setparam("datefmt", "")
setparam("datetimefmt", "")

writeln(D, ", ", T)
writeln(DT)

! The following assumes that the database output fields have type string
! since we are not using the date/time formatting expected by the database
initializations to "mmodbc.odbc:datetime.mdb"
T as "TimeOut"
D as "DateOut"
DT as "DateTimeOut"

end-initializations
end-model

The formatting for dates and times at the beginning of the model where we read database fields
with date/time types (Time1, Date1, DateTime1, and Dates) applies to Access and Excel read
through ODBC. For an SQLite or mysql database this would be

setparam("timefmt", "%0H:%0M:%0S")
setparam("datefmt", "%y-%0m-%0d")
setparam("datetimefmt", "%y-%0m-%0d %0H:%0M:%0S")

and an Oracle database uses the following format:

setparam("timefmt", "%0d-%N-%0Y %0h.%0M.%0S.%0s %P")
setparam("datefmt", "%0d-%N-%0Y")
setparam("datetimefmt", "%0d-%N-%0Y %0h.%0M.%0S.%0s %P")

The xls and xslx drivers receive dates, times and timestamps in encoded form, the conversion to
the text form always uses the default format of mmsystem. This means that we can simply leave
out the setparam calls at the beginning of the model, or explicitly reset the parameters to their
default values with

setparam("timefmt", "")
setparam("datefmt", "")
setparam("datetimefmt", "")

When using the excel driver for accessing Excel spreadsheets we need to be careful when reading
times since these are passed as a real value that needs to be converted to Mosel’s representation
of times (the second half of the model working with strings remains unchanged).

declarations
T: time
D: date
DT: datetime
Dates: list of date
r: real

end-declarations

Examples Fair Isaac Corporation Confidential and Proprietary Information 36

Using ODBC / database interfaces with Mosel

! Select the format used by the spreadsheet
setparam("timefmt", "%0h:%0M:%0S %P")
setparam("datefmt", "%0m/%0d/%y")
setparam("datetimefmt", "%0d/%0m/%y %0H:%0M:%0S")

initializations from ’mmsheet.excel:datetime.xls’
r as "skiph;Time1" ! Time is stored as a real
D as "skiph;Date1"
DT as "skiph;DateTime1"
Dates as "skiph;Dates"

end-initializations

T:=time(round(r*24*3600*1000))
writeln(D, ", ", T)
writeln(DT)
writeln(Dates)

For the csv driver only the second part of the model (reading from strings) is relevant since date
and time values in CSV format files are always encoded as strings.

Our model implemented with SQL statements looks as follows.

model "Dates and times (SQL)"
uses "mmsystem", "mmodbc"

declarations
T,: time
D: date
DT: datetime
Dates: list of date

end-declarations

setparam("SQLverbose",true)
SQLconnect("datetime.mdb")

! Select the format used by the spreadsheet/database
! (database fields have date/time types)
setparam("timefmt", "%y-%0m-%0d %0H:%0M:%0S")
setparam("datefmt", "%y-%0m-%0d")
setparam("datetimefmt", "%y-%0m-%0d %0H:%0M:%0S")

T:=time(SQLreadstring("select * from Time1"))
D:=date(SQLreadstring("select * from Date1"))
DT:=datetime(SQLreadstring("select * from DateTime1"))
SQLexecute("select * from Dates", Dates)

setparam("timefmt", "%h:%0M %p")
writeln(D, ", ", T)
writeln(DT)
writeln(Dates)

! Read date / time from strings (database fields have some string type)
setparam("timefmt", "%Hh%0Mm")
setparam("datefmt", "%dm%0my%0y")
setparam("datetimefmt", "%dm%0my%0y, %Hh%0Mm")

T:=time(SQLreadstring("select * from Time2"))
D:=date(SQLreadstring("select * from Date2"))
DT:=datetime(SQLreadstring("select * from DateTime2"))

writeln(D, ", ", T)
writeln(DT)

! Use Mosel’s default format
setparam("timefmt", "")
setparam("datefmt", "")

Examples Fair Isaac Corporation Confidential and Proprietary Information 37

Using ODBC / database interfaces with Mosel

setparam("datetimefmt", "")

writeln(D, ", ", T)
writeln(DT)

SQLexecute("delete from TimeOut") ! Cleaning up previous results: works
SQLexecute("delete from DateOut") ! only for databases, cannot be used
SQLexecute("delete from DateTimeOut") ! with spreadsheets (instead, delete

! previous solutions directly in the
! spreadsheet file)

SQLexecute("insert into TimeOut values (?)", [T])
SQLexecute("insert into DateOut values (?)", [D])
SQLexecute("insert into DateTimeOut values (?)", [DT])

SQLdisconnect
end-model

7 Trouble shooting

� The module mmodbc cannot be initialized: check whether the ODBC driver manager is
installed and can be found and accessed by the application (in particular on Unix platforms).

� Missing ODBC driver: the ODBC driver is a separate piece of software (not included in
mmodbc) that is sometimes provided directly with the data source (typically the case under
Windows), but in general it needs to be installed and set up separately.

� Connection strings should not contain any blanks. (This remark applies, for instance, to
MySQL).

� Spreadsheets are not databases.

– Close the spreadsheet file while executing a Mosel model that writes to it.

– Make sure that the file is not opened in ‘Read only’ mode (this may happen, for
instance, if several users access the file at the same time).

– Columns in a spreadsheet range are not typed. The Excel driver scans the data in the
first 8 rows to deduce the type of the data in every column. The number of rows
scanned by the driver may be changed with the option MAXSCANROWS.

– You have to have enough space below the header line to fit in all the values you are
going to write. So it is best to have nothing below the range.

– To delete data from a range in an Excel spreadsheet you cannot just delete the entries
in the cells (otherwise further data will be added after a blank rectangle). You have to
remove completely the data rows and the enlarged range with the sequence Edit �
Delete � Shift cells up.

� Insertion failed: check whether a key field is defined and the database table holds already
data. Check the structure of the data table (sufficient number of columns, column names,
field types). Close the database/spreadsheet before running the Mosel model (especially
under Windows).

� Reserved words: Prod, Time, Value, Params etc. Inadvertent use of database keywords
(depending on the database) often leads to difficult-to-diagnose error messages. We
therefore suggest using longer, problem-specific names or ‘myProducts’, ‘myParameters’,
etc. that will not clash with any reserved words. It is also possible to use quotes to indicate
that a word should not be interpreted by the database; please refer to the documentation
of your database for further detail (quotation characters are database-dependent).

SQL commands Fair Isaac Corporation Confidential and Proprietary Information 38

Using ODBC / database interfaces with Mosel

8 SQL commands

The following SQL commands are used in the examples:

� select: select *: Sections 4.1.1, 6.2, 6.3, 6.5, select with specification of fields: Sections 4.1.1,
6.1, 6.5, 6.6, select with conditions: Section 6.7.

� insert: Sections 4.1.2, 6.1, 6.4, 6.6.

� create table: Sections 6.4, 6.6.

� delete: Section 4.1.2.

� drop table: Section 6.6.

� update: Sections 6.1, 6.6.

SQL commands Fair Isaac Corporation Confidential and Proprietary Information 39

	Introduction
	Software setup
	Setting up ODBC
	ODBC connection strings in Mosel

	The Excel interface
	The Oracle interface
	The SQLite interface

	Introductory example
	ODBC
	Data input using odbc
	Data output using odbc

	Spreadsheets: Excel and CSV
	Data input using the excel or xls I/O drivers
	Data output using excel or xls
	Data input using the csv I/O driver
	Data output using csv

	Oracle
	Data input using oci
	Data output using oci

	Advanced example: using SQL queries
	ODBC
	Data input with SQL statements
	Data output with SQL statements

	Oracle
	Data input with SQL statements
	Data output with SQL statements

	Parameter settings to aid debugging
	Examples
	Outputting solution values
	Dense vs. sparse data format
	Rectangular format

	Reading several arrays from a single table
	Outputting several arrays into a single table
	Reading an array from several tables
	Selection of columns/fields
	SQL selection statements
	Accessing structural information from databases
	Working with lists
	Working with records
	Handling dates and time

	Trouble shooting
	SQL commands

