
Reference manual

FICO R© Xpress Optimization XPRNLS command tool and library

Reference manual

Release 1.0

Last update December 2015

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©2015–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

XPRNLS

Deliverable Version: A

Last Revised: December 2015

Version 1.0

Contents

1 Introduction 1
1.1 Character encoding conversion . 1
1.2 Message translation with XPRNLS . 2

1.2.1 Example . 2
1.2.2 PO, POT and MO file formats . 3

2 XPRNLS Command line tool 5

3 XPRNLS library 7
3.1 General . 7

XNLSinit . 8
XNLSfinish . 9
XNLSgetencid . 10
XNLSgetencname . 11

3.2 Handling of program parameters . 12
XNLSconvargv . 13
XNLSfreeargv . 14
XNLSprogpath . 15

3.3 Buffer and string encoding conversion . 16
XNLSconvstrfrom . 17
XNLSconvstrto . 18
XNLSconvbuffrom . 19
XNLSconvbufto . 20
XNLSutf8tocode . 21
XNLScodetoutf8 . 22

3.4 Stream encoding conversion . 23
XNLSopenconv . 24
XNLSconvwrite . 25
XNLSconvread . 26
XNLSgetfd . 27
XNLSgetenc . 28
XNLSgetoffset . 29
XNLScloseconv . 30

3.5 Translation . 31
XNLSsetlang . 32
XNLSopenmsgdom . 33
XNLSclosemsgdom . 34
XNLSfindmsgdom . 35
XNLSsetlocaledir . 36
XNLSgettext . 37

Appendix 38

A Contacting FICO 38
Product support . 38

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

Product education . 38
Product documentation . 38
Sales and maintenance . 39
Related services . 39
About FICO . 39

Index 40

Fair Isaac Corporation Confidential and Proprietary Information ii

CHAPTER 1

Introduction

The Xpress Natural Language Support (XPRNLS) component comes as a command line tool and a
library.

� The command line tool supports various commands for transcoding text files (such as
converting a text file from one encoding to another encoding) and managing message
catalogs (for message translations).

� The library offers a system-independent set of routines for converting text buffers and
streams from/to some encoding to/from UTF-8. It also implements a mechanism to handle
message translation.

1.1 Character encoding conversion

The main feature of the XPRNLS library is character encoding conversion: it provides dedicated
routines to ease the writing of programs that work with text data encoded with heterogeneous
encodings. The reference encoding used by the XPRNLS library is UTF-8 and the functions it
publishes handle conversions between UTF-8 and other encodings.

The functionality of the library is made accessible from the command line via the xprnls
command tool that enables shell scripts to convert text files from one encoding to another.

Character encodings are identified by encoding names. The library supports natively the
encodings UTF-8, UTF-16, UTF-32, ISO-8859-1, ISO-8859-15, CP1252 and US-ASCII: these encodings
are therefore available on all systems. By default UTF-16 and UTF-32 use the byte order of the
architecture of the running system (e.g. big endian on a Sparc processor) but the byte order may
be selected by appending LE (Little Endian) or BE (Big Endian) to the encoding name (e.g.
UTF-16LE).

The availability and names of other encodings depend on the operating system:

� On Windows the library relies on the win32 API routines MultiByteToWideChar and
WideCharToMultiByte. The encoding names (that are not case sensitive) can be either the
code page number prefixed by CP (like CP28605) or the usual name (e.g. ISO-8859-15).
Except for GB18030 (that is a variable size encoding), only single and 2-bytes encodings are
supported.

� On Posix systems the library is based on the iconv function of the standard C library.
Depending on the implementation the encoding names may be case sensitive.

An encoding name may also be one of the following aliases: RAW (no encoding), SYS (default
system encoding), WCHAR (wide character for the C library), FNAME (encoding used for file names),
TTY (encoding of the output stream of the console), TTYIN (encoding of the input stream of the
console), STDIN, STDOUT, STDERR (encoding of the default input/output/error stream).

Fair Isaac Corporation Confidential and Proprietary Information 1

Introduction

1.2 Message translation with XPRNLS

The creation of message translations typically involves three steps:

1. extraction of the message texts to be translated from a program source (⇒ Portable Object
Template (POT) file)

2. instantiation with the translations for a particular language (⇒ Portable Object (PO) file)

3. compilation of the message translations (⇒ Machine Object (MO) file)

Translations are stored in a set of message catalog files: each of these files is specific to a
language and a domain. A domain is a collection of messages, typically all messages of an
application are grouped under a given domain. The xprnls command tool supports the necessary
operations for building and managing these message catalog files.

Translations are applied in programs via the XPRNLS gettext framework for message translation:
in a program using this system all strings to be translated are passed to a translation function
(XNLSgettext). During the execution of the program this function returns a version of the
message for the current language or the original English text itself if no translation can be found.

1.2.1 Example

The following example shows a minimal program using the message translation functionality:

int main(int argc,char *argv[])
{
XNLSdomain dom;

dom=XNLSopenmsgdom("myprg",NULL); /* Open domain ’myprg’ */
printf(XNLSgettext(dom,"Hello!\n")); /* Display translation of "hello" */
XNLSclosemsgdom(dom); /* Close domain */
return 0;

}

This example requires message catalog files for the domain "myprg". The first step in the
generation of the message catalogs is to produce a Portable Object Template (POT) file for the
domain: this text file collects all messages to be translated. For our example the file myprg.pot
includes only one message (the generation of such a file can be automated using tools like GNU
xgettext):

msgid "Hello!\n"
msgstr ""

From this template one Portable Object (PO) file per supported language has to be produced.
The creation of an initial PO file can be done using the XPRNLS command tool (see Section 2). For
instance, to generate the file myprg.fr.po (we assume that the operating system is configured for
French):

xprnls init -o myprg.fr.po myprg.pot

The contents of the file myprg.fr.po generated by this command looks as follows:

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

"POT-Creation-Date: 2015-12-01 16:03+0100\n"
"PO-Revision-Date: 2015-12-01 16:03+0100\n"
"Last-Translator: Your name\n"
"Language: fr\n"
"Content-Type: text/plain; charset=ISO8859-15\n"

msgid "Hello!\n"
msgstr ""

In addition to the message to translate the command tool has created a header record: this
portion is mostly just informative (it is however recommended to complete the missing entries)
but 2 entries are exploited by XPRNLS, namely the language (of this translation) and content type
(encoding of the file) must be correct: here, the language is French (fr) and the encoding is
ISO-8859-15 — these settings correspond to the configuration of the system on which we have
performed the xprnls command. It will be necessary to edit these values when preparing
translations for a language that is different from the configuration of the operating system.

Completing a PO file consists in entering a translation for each of the messages (i.e. make sure
that every msgid entry is followed by a non-empty msgstr record). Our example has only one
message, the minimal form of our translation file for French therefore is the following:

msgid ""
msgstr ""
"Language: fr\n"
"Content-Type: text/plain; charset=ISO8859-15\n"

msgid "Hello!\n"
msgstr "Bonjour!\n"

Once all translations have been prepared, the message catalogs are created by running the
following command:

xprnls mogen -d locale myprg.*.po

This command creates the directory locale (if necessary) that contains one subdirectory per
language. In each of these language specific subdirectories another directory (LC_MESSAGES) is
created to store the message catalogs. Each message catalog is named after the domain name
with the extension .mo (Machine Object): this is the binary version of the corresponding PO file.
When executing our example program on a system configured for French the function
XNLSgettext looks for the file locale/fr/LC_MESSAGES/myprg.mo to locate the required
translations.

1.2.2 PO, POT and MO file formats

Portable Object (PO) and Portable Object Template (POT) files are text files consisting in a list of
pairs of entries of the form:

msgid message
msgstr translation

Where message is a text identifying the message to translate (it is usually expressed in English)
and translation its translation in the language associated to the file. A POT file has only empty
msgstr entries and serves as a basis for the creation of the PO files.

The ’#’ symbol marks the beginning of a comment: any text following after it up to the end of
line is ignored.

Both the message and its translation must be expressed in the form of lists of double-quoted
strings separated by spaces or newlines (each list is merged into a single text string by the PO

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

processor). Text strings may contain C escape sequences (like "\n") as well as format markers (e.g.
"%s"). A translation must include the same format markers as the original text and they must
appear in the same order (otherwise the translation will be ignored).

Usually PO files include the special message empty string ("") the translation of which is used to
record management information (like name of the author, date of creation etc) instead of an
actual translation. The syntax of such a record is a succession of definitions of the form:

property : value \n

Although the command xprnls init (used to create an initial PO file from a POT file) will
generate a certain number of assignments for this header, only two of them are effectively used
by XPRNLS: the language associated to the file (e.g. "Language: it\n") and its encoding (e.g.
"Content-Type: text/plain; charset=ISO8859-1\n").

A Machine Object (MO) file is a compiled version of a PO file that is created by the command
xprnls mogen: this is the format required by the translation routines of XPRNLS. The binary MO
format used by XPRNLS is platform independent and compatible with the GNU version of gettext
(GMO).

Fair Isaac Corporation Confidential and Proprietary Information 4

CHAPTER 2

XPRNLS Command line tool

The command line tool xprnls is typically used with the following syntax from an operating
system console:

xprnls command command_arguments

The command parameter is one of the following commands and command_arguments are the
associated arguments (square brackets indicate optional arguments):

info
Display system configuration information relative to native language support: current
system language, character encodings of system, console, file system, and actual encoding
of the C type wchar (wide characters).

conv [-s] [-f frenc] [-dos|-unix|-sys] [-t toenc] [-o dest] [-bom|-nobom] file
Convert the text file file from the character encoding frenc (default: UTF-8) to character
encoding toenc (default: UTF-8). The resulting file is saved into dest (default: console). By
default encoding errors are ignored (e.g. an incomplete sequence is replaced by some
default symbol) but using option ’-s’ makes the conversion fail in case of error. The option
’-nobom’ disables the insertion of a BOM (Byte Order Mark) at the beginning of the file
when it is required (a BOM is inserted when producing UTF-16 or UTF-32 documents) while
option ’-bom’ forces insertion of a BOM when creating an UTF-8 document (this is usually
not required for this encoding).
The options ’-dos’ and ’-unix’ select the appropriate settings regarding BOM and line
termination for the specified environment. The option ’-sys’ selects the system encoding
for the destination file and enables option ’-dos’ or ’-unix’ depending on the executing
environment.

poconv [-s] [-dos|-unix|-sys] [-t toenc] [-o dest] [-bom|-nobom] pofile
This command is a special version of the conv command described above specifically
designed for PO (Portable Object) files (see Section 1.2): it retrieves the source encoding
from the file header and updates the output header according to the destination encoding.

init [-o dest] potfile
Create an initial PO file from the provided POT (Portable Objecy Template) file potfile.
The resulting data is sent to the console or saved into dest.

mogen [-d dir] [-o dest] pofile [[-o dest] pofile [...]]
Compile a PO file pofile into an MO (Machine Object) file. If no destination name dest is
provided the resulting file has the same name as the source file with the file extension ’.mo’
instead of ’.po’. If a locale directory dir is specified then the resulting file is saved under
’dir/lang/LC_MESSAGES’ where lang is the language specified in the PO file (missing
directories are automatically created). The destination file name is of the form ’domain.mo’
assuming the source file name is of the form ’domain.lang.po’. Several PO files may be
specified for a single operation.

Fair Isaac Corporation Confidential and Proprietary Information 5

XPRNLS Command line tool

update [-f] [-m] pofile [pofile ...] potfile
Update a group of PO files with the POT file potfile: messages of the POT file that are
missing from the PO files are added and messages not included in the POT file are turned
into comments. If the option ’-m’ is used then the comment "#, missing" is put before
missing translations (to ease their localisation). The PO file is not changed if it already
contains all messages of the POT file unless option ’-f’ is selected.

merge [-o dest] [-c] pofile [pofile ...]
Merge a collection of PO (or POT) files, the resulting data is saved into dest (default:
console). If the option ’-c’ is used then the first PO file is completed with the other files
(i.e. missing translations of the first file are searched for in the other files but no additional
message is added).

Fair Isaac Corporation Confidential and Proprietary Information 6

CHAPTER 3

XPRNLS library

3.1 General

The XPRNLS library must be initialized with a call to XNLSinit before being used. This
initialization function may be called several times and each call must be matched with a call to
XNLSfinish after terminating the use of the library.

All encoding conversion routines expect an encoding ID to identify an encoding. This numerical
identifier is obtained from an encoding name via XNLSgetencid.

XNLSfinish Release resources used by the library. p. 9

XNLSgetencid Get the ID associated with an encoding name. p. 10

XNLSgetencname Get the name corresponding to an encoding ID. p. 11

XNLSinit Initialize the library. p. 8

Fair Isaac Corporation Confidential and Proprietary Information 7

XPRNLS library

XNLSinit

Purpose
Initialize the library.

Synopsis
int XNLSinit(void);

Return value
0 if executed successfully, any other value indicates a failure.

Further information

1. This function initializes the library. It must be called before any other function described in this
document may be executed.

2. This initialisation procedure may be called more than once. In this case the termination routine
XNLSfinish must be used the same number of times in order for all resources to be cleared.

Related topics
XNLSfinish.

Fair Isaac Corporation Confidential and Proprietary Information 8

XPRNLS library

XNLSfinish

Purpose
Release resources used by the library.

Synopsis
void XNLSfinish(void);

Further information
This function should be called when the library is not longer required. It releases all resources
allocated by the library since its initialization.

Related topics
XNLSinit.

Fair Isaac Corporation Confidential and Proprietary Information 9

XPRNLS library

XNLSgetencid

Purpose
Get the ID associated with an encoding name.

Synopsis
int XNLSgetencid(char *enc);

Argument
enc Encoding name

Return value
Encoding ID or a negative value in case of failure.

Further information

1. All encoding conversion routines require an encoding ID to identify the encoding to use: this
routine returns the ID associated with a given encoding name.

2. XPRNLS supports natively UTF-8, UTF-16LE (Little Endian), UTF-16BE (big endian), UTF-32LE,
UTF-32BE, US-ASCII, ISO-8859-1, ISO-8859-15, CP1252 and RAW (no encoding). For these encodings
the same IDs are always returned and a call to this function can be replaced by the corresponding
constants: XNLS_ENC_UTF8, XNLS_ENC_UTF16LE, XNLS_ENC_UTF16BE, XNLS_ENC_UTF32LE,
XNLS_ENC_UTF32BE, XNLS_ENC_ASCII, XNLS_ENC_88591, XNLS_ENC_885915, XNLS_ENC_CP1252 and
XNLS_ENC_RAW. With other encoding names the function may return a different ID for a given
encoding after the library has been reset or the program restarted.

3. The availability of not natively supported encodings (for instance "iso-8859-3") depends on the
operating system.

4. In addition to proper encoding names the function also accepts the following aliases: "SYS"
(default system encoding), "WCHAR" (wide char representation for the system), "FNAME" (file
names, on most systems this is the same as "SYS"), "TTY" (encoding of the console output stream),
"TTYIN" (encoding of the input stream of the console, this is usually the same as "TTY"), "STDIN"
(encoding of the default input stream), "STDOUT" (encoding of the default output stream),
"STDERR" (encoding of the default error stream), "UTF-16" (UTF-16LE or UTF-16BE depending on
the architecture), "UTF-32" (UTF-32LE or UTF-32BE depending on the architecture).

Related topics
XNLSgetencname.

Fair Isaac Corporation Confidential and Proprietary Information 10

XPRNLS library

XNLSgetencname

Purpose
Get the name corresponding to an encoding ID.

Synopsis
const char *XNLSgetencname(int eid);

Argument
eid Encoding ID

Return value
Encoding name or an empty string if the ID is not valid.

Related topics
XNLSgetencid.

Fair Isaac Corporation Confidential and Proprietary Information 11

XPRNLS library

3.2 Handling of program parameters

In addition to transcoding routines the library also provides an operating system independent
method for retrieving program parameters (namely argc and argv of the main function of the C
program) encoded as UTF-8. The procedure requires the main program to be named XNLS_MAIN
and the argv parameter to be of type XNLSargv. The function XNLSconvargv can then be called to
get the converted arguments. The following example shows how to organise the main function
of a program using this feature:

int XNLS_MAIN(int argc,XNLSargv sargv[])
{
char **argv;

argv=XNLSconvargv(&argc,sargv); /* ’argv’ is encoded in UTF-8 */

/* Insert here the body of the function using ’argc’ and ’argv’ as usual */

XNLSfreeargv(argv);
return 0;

}

XNLSconvargv Generate a UTF-8 version of the program parameters. p. 13

XNLSfreeargv Release the datastructures allocated by XNLSconvargv. p. 14

XNLSprogpath Get the full path to the running program. p. 15

Fair Isaac Corporation Confidential and Proprietary Information 12

XPRNLS library

XNLSconvargv

Purpose
Generate a UTF-8 version of the program parameters.

Synopsis
char **XNLSconvargv(int *argc, XNLSargv argv[]);

Arguments
argc Number of program parameters

argv Array of program parameters

Return value
A version of argv encoded in UTF-8.

Further information

1. This function calls XNLSinit, it is therefore not necessary to initialise the library when using this
routine.

2. Under Windows the arguments including wildcard characters are expanded (on Posix systems this
is done by the shell). As a consequence the number of arguments argc may be increased by the
call.

Related topics
XNLSfreeargv.

Fair Isaac Corporation Confidential and Proprietary Information 13

XPRNLS library

XNLSfreeargv

Purpose
Release the datastructures allocated by XNLSconvargv.

Synopsis
void XNLSfreeargv(char **argv);

Argument
argv Array of program parameters returned by a previous call to XNLSconvargv

Further information
This function calls XNLSfinish.

Related topics
XNLSconvargv.

Fair Isaac Corporation Confidential and Proprietary Information 14

XPRNLS library

XNLSprogpath

Purpose
Get the full path to the running program.

Synopsis
const char *XNLSprogpath(const char *name);

Argument
name Program name or path (e.g. argv[0]) encoded in UTF-8.

Return value
Full path to running program or name in case of error.

Further information

1. On Posix systems the argument name should be argv[0]: it is expanded in order to get a full path.
Under Windows it is not used (unless an error occurs).

2. The string returned by this function is the result of a call to XNLSconvstrfrom.

Related topics
XNLSfreeargv.

Fair Isaac Corporation Confidential and Proprietary Information 15

XPRNLS library

3.3 Buffer and string encoding conversion

The functions in this section serve for converting character strings from and to UTF-8 encoding.
The functions XNLSconvstrfrom and XNLSconvbuffrom return a statically allocated buffer (that is
re-used each time any of these functions is called) while XNLSconvbuffrom and XNLSconvbufto
require a destination buffer.

XNLScodetoutf8 Generate a UTF-8 sequence from a Unicode code point. p. 22

XNLSconvbuffrom Convert a text buffer to UTF-8. p. 19

XNLSconvbufto Convert a text buffer from UTF-8 to a given encoding. p. 20

XNLSconvstrfrom Convert a text string to UTF-8. p. 17

XNLSconvstrto Convert a UTF-8 text string to a given encoding. p. 18

XNLSutf8tocode Get the corresponding code point of a UTF-8 sequence. p. 21

Fair Isaac Corporation Confidential and Proprietary Information 16

XPRNLS library

XNLSconvstrfrom

Purpose
Convert a text string to UTF-8.

Synopsis
const char *XNLSconvstrfrom(int eid, const char *src, int srclen, int *dstlen);

Arguments
eid Encoding ID of the source

src Text buffer to transcode

srclen Length in bytes of the source text buffer (or -1 for a null terminated string)

dstlen A location where to return the length (in bytes) of the generated string

Return value
The converted null terminated string or NULL in case of memory allocation error.

Further information

1. This function returns a thread-specific statically allocated buffer that it shares with
XNLSconvstrto: each call to any of these functions will overwrite the result of the previous call.

2. Any invalid character is replaced by a default symbol (middle dot) in the converted string.

3. Mosel uses this function extensively: it is therefore recommended to duplicate any string
returned by this routine if you need to pass it to a Mosel API function. Alternatively, use the
XNLSconvbuffrom form of this function where you can specify your own buffer.

Related topics
XNLSconvbuffrom, XNLSconvstrto.

Fair Isaac Corporation Confidential and Proprietary Information 17

XPRNLS library

XNLSconvstrto

Purpose
Convert a UTF-8 text string to a given encoding.

Synopsis
const char *XNLSconvstrto(int eid, const char *src, int srclen, int *dstlen);

Arguments
eid Encoding ID of the destination

src Text buffer to transcode

srclen Length in bytes of the source text buffer (or -1 for a null terminated string)

dstlen A location where to return the length (in bytes) of the generated string (can be NULL)

Return value
The converted null terminated string or NULL in case of memory allocation error.

Further information

1. This function returns a thread-specific statically allocated buffer that it shares with
XNLSconvstrfrom: each call to any of these functions will overwrite the result of the previous call.

2. Any invalid character is replaced by a default symbol (specific to the destination encoding) in the
converted string.

3. Mosel uses this function extensively: it is therefore recommended to duplicate any string
returned by this routine if you need to pass it to a Mosel API function. Alternatively, use the
XNLSconvbufto form of this function where you can specify your own buffer.

Related topics
XNLSconvbufto, XNLSconvstrfrom.

Fair Isaac Corporation Confidential and Proprietary Information 18

XPRNLS library

XNLSconvbuffrom

Purpose
Convert a text buffer to UTF-8.

Synopsis
int XNLSconvbuffrom(int eid, char **srcstart, char *srcend, char **dststart, char

*dstend, int flags);

Arguments
eid Encoding ID of the source

srcstart Reference to a pointer at the beginning of the input buffer

srcend Pointer to the character after the end of the input buffer

dststart Reference to a pointer at the beginning of the output buffer

dstend Pointer to the character after the end of the output buffer

flags Conversion flags (can be combined):
XNLS_UTF_FLAG_STRICT Fail in case of invalid sequence (otherwise skip it)
XNLS_UTF_FLAG_PARTIAL Stop and return XNLS_CONV_PARTIAL when buffer ends

on an incomplete sequence (instead of failing)

Return value
XNLS_CONV_OK Function executed sucessfully

XNLS_CONV_PARTIAL Input buffer terminates on an incomplete sequence (process stopped at the
beginning of the sequence)

XNLS_CONV_DSTOUT Output buffer not large enough

XNLS_CONV_FAIL Process stopped at an invalid sequence

Further information
The arguments srcstart and dststart are updated such that they point to the byte following
the decoded sequence (input buffer) or the first unused byte (output buffer) after the function
returns.

Related topics
XNLSconvbufto, XNLSconvstrfrom.

Fair Isaac Corporation Confidential and Proprietary Information 19

XPRNLS library

XNLSconvbufto

Purpose
Convert a text buffer from UTF-8 to a given encoding.

Synopsis
int XNLSconvbufto(int eid, char **srcstart, char *srcend, char **dststart, char

*dstend, int flags);

Arguments
eid Encoding ID of the destination

srcstart Reference to a pointer at the beginning of the input buffer

srcend Pointer to the character after the end of the input buffer

dststart Reference to a pointer at the beginning of the output buffer

dstend Pointer to the character after the end of the output buffer

flags Conversion flags (can be combined):
XNLS_UTF_FLAG_STRICT Fail in case of invalid sequence (otherwise skip it)
XNLS_UTF_FLAG_PARTIAL Stop and return XNLS_CONV_PARTIAL buffer ends on an

incomplete sequence (instead of failing)

Return value
XNLS_CONV_OK Function executed sucessfully

XNLS_CONV_PARTIAL Input buffer terminates on an incomplete sequence (process stopped at the
beginning of the sequence)

XNLS_CONV_DSTOUT Output buffer not large enough

XNLS_CONV_FAIL Process stopped at an invalid sequence

Further information
The arguments srcstart and dststart are updated such that they point to the byte following
the decoded sequence (input buffer) or the first unused byte (output buffer) after the function
returns.

Related topics
XNLSconvbuffrom, XNLSconvstrto.

Fair Isaac Corporation Confidential and Proprietary Information 20

XPRNLS library

XNLSutf8tocode

Purpose
Get the corresponding code point of a UTF-8 sequence.

Synopsis
int XNLSutf8tocode(const char **src, const char *srcend);

Arguments
src Reference to a pointer at the beginning of the sequence

srcend Pointer to the character after the end of the buffer

Return value
Unicode code point or -1 if the sequence is not valid or incomplete

Further information
The argument src is updated such that it points to the byte following the decoded sequence
after the function returns.

Related topics
XNLScodetoutf8.

Fair Isaac Corporation Confidential and Proprietary Information 21

XPRNLS library

XNLScodetoutf8

Purpose
Generate a UTF-8 sequence from a Unicode code point.

Synopsis
int XNLScodetoutf8(unsigned int ucp, char *dst);

Arguments
ucp Code point

dst Destination buffer (must be of at least 4 bytes length)

Return value
Number of bytes written to the ouput buffer (between 1 and 4)

Related topics
XNLSutf8tocode.

Fair Isaac Corporation Confidential and Proprietary Information 22

XPRNLS library

3.4 Stream encoding conversion

These functions are designed for the transcoding of text streams. The creation of a stream with
XNLSopenconv requires an additional function used to read (or write for an output stream) a block
of data: it is called whenever the internal buffer of the transcoder is empty (or full if writing).
When the stream is open for reading the user calls iteratively the reader routine XNLSconvread to
get the data of the stream encoded in UTF-8. If the stream is open for writing the data sent to
XNLSconvwrite is expected to be encoded in UTF-8 and it is transcoded to the encoding specified
at the creation of the stream.

XNLScloseconv Close a transcoder stream. p. 30

XNLSconvread Read from an input transcoder stream. p. 26

XNLSconvwrite Write to an output transcoder stream. p. 25

XNLSgetenc Get the encoding ID and status of a transcoder stream. p. 28

XNLSgetfd Get reader/writer file descriptor of a transcoder stream. p. 27

XNLSgetoffset Get the current offset in a transcoder stream. p. 29

XNLSopenconv Open a transcoder stream. p. 24

Fair Isaac Corporation Confidential and Proprietary Information 23

XPRNLS library

XNLSopenconv

Purpose
Open a transcoder stream.

Synopsis
XNLSstream XNLSopenconv(int eid, int flags, long (*fsync)(void *vctx,void *fd,void

*buf,unsigned long bufsize), void *fd);

Arguments
eid Encoding ID of the destination

flags Conversion flags:
XNLS_OPT_READ Convert to UTF-8
XNLS_OPT_WRITE Convert from UTF-8
XNLS_OPT_STRICT Fail in case of invalid sequence (otherwise skip it)
XNLS_OPT_NOBOM Do not put a BOM when writing (by default a BOM is emitted for

UTF-16 and UTF-32) and do not look for a BOM when reading
XNLS_OPT_BOM Force BOM (by default no BOM is emitted for UTF-8), option

ignored for a reader stream
fsync Data reader or writer function

fd Data reader/writer file descriptor

Return value
A stream context or NULL in case of error.

Further information

1. When a stream is created for reading (i.e. option flags is XNLS_OPT_READ), input data is expected
to be encoded in the specified encoding eid. The converter gets the stream of data to process
from a callback function: the provided read function fsync takes as parameters some general
context vctx (provided to XNLSconvread), the file descriptor for this stream (specified with this call
as fd) and a buffer buf where it puts up to bufsize bytes of data. This function must return the
amount of data transfered, 0 when the end of file has been reached or a negative value to
indicate an error condition.

2. When a stream is created for writing (i.e. option flags is XNLS_OPT_WRITE), output data is encoded
in the specified encoding eid. The converter outputs the stream of data it has processed using a
callback function: the provided write function fsync takes as parameters some general context
vctx (provided to XNLSconvwrite), the file descriptor for this stream (specified with this call as fd)
and a buffer buf of bufsize bytes of data to save. This function is expected to return a non-zero
value on success (i.e. all data has been saved) and 0 on failure.

3. The option XNLS_OPT_NOBOM tells the routine not to try to find a BOM (Byte Order Mark) when
opening a stream for reading. This BOM consists in a sequence of bytes at the beginning of the
stream to identify the Unicode encoding used for the stream. Unless the option XNLS_OPT_NOBOM is
used, this BOM detection is effective when the selected encoding is Unicode (either UTF-8, UTF-16
or UTF-32). When applied to a stream open for writing, this option disables the insertion of a
BOM when creating a stream encoded in UT-F16 or UTF-32 (it is gnored for all other encodings).

4. The option XNLS_OPT_BOM forces the insertion of the BOM when openning a stream encoded in
UTF-8 for writing (this encoding usually does not require a BOM).

Related topics
XNLScloseconv.

Fair Isaac Corporation Confidential and Proprietary Information 24

XPRNLS library

XNLSconvwrite

Purpose
Write to an output transcoder stream.

Synopsis
long XNLSconvwrite(void *vctx,XNLSstream stream,const void *buf,unsigned long size);

Arguments
vctx Runtime context for data writer

stream Stream open for writing

buf Buffer to output encoded in UTF-8

size size of buf

Return value
1 if successful, -1 in case of conversion error and 0 for other errors.

Further information
The parameter vctx is passed as the first argument to the sync function defined when opening
the stream.

Related topics
XNLSopenconv.

Fair Isaac Corporation Confidential and Proprietary Information 25

XPRNLS library

XNLSconvread

Purpose
Read from an input transcoder stream.

Synopsis
long XNLSconvread(void *vctx,XNLSstream stream,void *buf,unsigned long size);

Arguments
vctx Runtime context for data reader

stream Stream open for reading

buf Destination buffer for the UTF-8 encoded string

size size of buf

Return value
The number of bytes read if successful, -1 in case of conversion error, -2 for other errors and 0
when the end of file has been reached.

Further information
The parameter vctx is passed as the first argument to the sync function defined when opening
the stream.

Related topics
XNLSopenconv.

Fair Isaac Corporation Confidential and Proprietary Information 26

XPRNLS library

XNLSgetfd

Purpose
Get reader/writer file descriptor of a transcoder stream.

Synopsis
void *XNLSgetfd(XNLSstream stream);

Argument
stream A stream

Return value
Data reader/writer file descriptor as passed to XNLSopenconv.

Related topics
XNLSgetenc, XNLSopenconv.

Fair Isaac Corporation Confidential and Proprietary Information 27

XPRNLS library

XNLSgetenc

Purpose
Get the encoding ID and status of a transcoder stream.

Synopsis
int XNLSgetenc(XNLSstream stream, int *status);

Arguments
stream A stream

status An area where to return the current status of the stream (may be NULL)
0 initial state
1 normal processing
2 a BOM has been found
3 end of file
4 error

Return value
Current encoding ID of the stream.

Related topics
XNLSgetfd, XNLSopenconv.

Fair Isaac Corporation Confidential and Proprietary Information 28

XPRNLS library

XNLSgetoffset

Purpose
Get the current offset in a transcoder stream.

Synopsis
int XNLSgetoffset(XNLSstream stream);

Argument
stream A stream

Return value
Current offset in the stream.

Further information
The offset corresponds to the total amount of data written (for an output stream) or read (for an
input stream).

Related topics
XNLSgetfd.

Fair Isaac Corporation Confidential and Proprietary Information 29

XPRNLS library

XNLScloseconv

Purpose
Close a transcoder stream.

Synopsis
int XNLScloseconv(void *vctx, XNLSstream stream);

Arguments
vctx Runtime context for data reader/writer

stream Stream to close

Return value
0 if successful, any other value indicates an error.

Related topics
XNLSopenconv.

Fair Isaac Corporation Confidential and Proprietary Information 30

XPRNLS library

3.5 Translation

The library publishes an implementation of the so-called gettext system for automatic translation
of text strings in a program. This system relies on message catalog files containing for each
message of the application both the English version and its translation in a particular language
(there is therefore one message catalog file per language and application). The message catalog
files are organised in a dedicated directory hierarchy: the root directory of the localisation data
(usually named locale) contains one sub-directory per language named after its ISO 639 code (for
instance de for German, it for Italian etc). The message catalogs for a given language are stored
under the LC_MESSAGES sub-directory of this language specific directory. Each message catalog file
has the name of the domain it provides translations for (typically the name of the application)
with the extension .mo (Machine Object). An mo file is generated using the command xprnls
mogen (see Section 2) from a po file (Portable Object).

A program using the XPRNLS translation framework must first open the domain for which it
needs translations using XNLSopenmsgdom in order to get a domain descriptor. Then each message
translation can be obtained by applying XNLSgettext to the English version of the text: the
translated message is returned if the message catalog file for the current language has been
found and includes the translation. Otherwise the original English text is used as the return
value.

XNLSclosemsgdom Close a message domain. p. 34

XNLSfindmsgdom Find an open message domain based on its name. p. 35

XNLSgettext Get the translation of a text string. p. 37

XNLSopenmsgdom Open a message domain. p. 33

XNLSsetlang Set or get the active language for message translation. p. 32

XNLSsetlocaledir Define the default or domain specific locale directory. p. 36

Fair Isaac Corporation Confidential and Proprietary Information 31

XPRNLS library

XNLSsetlang

Purpose
Set or get the active language for message translation.

Synopsis
const char *XNLSsetlang(const char *lang);

Argument
lang An ISO 639 language code (e.g. en, de, ja, zh...), or NULL or an empty string ""

Return value
The new language code.

Further information

1. The language code is used to select the locale directory in which catalog files are searched from.
During the library initialisation the language is set according to the current system settings.

2. If NULL is used as the language code the function returns the current language. If an empty string
is given then the language is set to the system default setting (as after library initialisation).

3. Special language names "C", "POSIX" as well as "en" disable translation (since initial messages are
written in English).

4. All loaded message catalogs are unloaded when a call to this routine modifies the current
language.

Related topics
XNLSgettext, XNLSsetlocaledir.

Fair Isaac Corporation Confidential and Proprietary Information 32

XPRNLS library

XNLSopenmsgdom

Purpose
Open a message domain.

Synopsis
XNLSdomain XNLSopenmsgdom(const char *name, const char *localedir);

Arguments
name Domain name

localedir Locale directory for this domain (can be NULL)

Return value
A context for the domain or NULL in case of error.

Further information

1. The default locale directory is used if the localedir parameter is NULL. The current working
directory will be used if the resulting locale directory is NULL.

2. The domain name name is used to build file names of message catalogs. For instance the message
catalog for domain "mosel", language "es" in the locale directory "/usr/share/locale" is
"/usr/share/locale/es/LC_MESSAGES/mosel.mo"

3. Message catalogs are opened when the first XNLSgettext call is issued, not at the time of opening
the domain.

4. The same domain context will be returned if a given domain name is open several times (the
localedir parameter is ignored when the domain is already open). The system keeps track of the
number of times each domain context has been returned and requires an equal number of calls
to XNLSclosemsgdom to release properly the resources associated with the domain.

Related topics
XNLSgettext, XNLSsetlocaledir, XNLSclosemsgdom.

Fair Isaac Corporation Confidential and Proprietary Information 33

XPRNLS library

XNLSclosemsgdom

Purpose
Close a message domain.

Synopsis
void XNLSclosemsgdom(XNLSdomain domain);

Argument
domain Domain to close

Further information
Every call to XNLSopenmsgdom should be completed by a matching call to this procedure once the
domain is no longer required in order to release the resources associated with the domain.

Related topics
XNLSopenmsgdom.

Fair Isaac Corporation Confidential and Proprietary Information 34

XPRNLS library

XNLSfindmsgdom

Purpose
Find an open message domain based on its name.

Synopsis
XNLSdomain XNLSfindmsgdom(const char *name);

Argument
name Name of the doamin

Return value
A context for the domain or NULL if no domain of this name has been open so far.

Further information
This function does not modify the reference count of the domain.

Related topics
XNLSopenmsgdom.

Fair Isaac Corporation Confidential and Proprietary Information 35

XPRNLS library

XNLSsetlocaledir

Purpose
Define the default or domain specific locale directory.

Synopsis
const char *XNLSsetlocaledir(XNLSdomain domain, const char *localedir);

Arguments
domain Domain (NULL to change the global default setting)

localedir Locale directory (can be NULL)

Return value
The new locale directory.

Further information

1. Modifying the locale directory of a domain has no effect on already loaded message catalogs (i.e.
they are not reloaded from the new location).

2. Changing the default locale directory does not affect the domains that are already open.

Related topics
XNLSopenmsgdom.

Fair Isaac Corporation Confidential and Proprietary Information 36

XPRNLS library

XNLSgettext

Purpose
Get the translation of a text string.

Synopsis
const char *XNLSgettext(XNLSdomain domain, const char *txt);

Arguments
domain Domain

txt Message to translate

Return value
Translated message or txt if no translation could be found.

Further information
The function returns its argument txt if the current language is English or no translation is found
or the text to translate is NULL or an empty string.

Related topics
XNLSopenmsgdom.

Fair Isaac Corporation Confidential and Proprietary Information 37

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 38

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 39

Index

A
active language, 32

B
BOM, see Byte Order Mark
Byte Order Mark, 5

C
code point

from UTF-8, 21
to UTF-8, 22

E
encoding ID, 7

get, 10
encoding name, 1, 10

get, 11

F
file descriptor

transcoder stream, 27

G
gettext, 31

I
initialization

XPRNLS, 8

L
locale directory, 36

M
Machine Object, 3
message catalog, 2, 31
message domain, 2

close, 34
find open, 35
locale directory, 36
open, 33

message translation, 37
MO, see Machine Object

P
PO, see Portable Object Template
Portable Object, 2
Portable Object Template, 2
POT, see Portable Object Template
program parameter

conversion, 13

S
string conversion

from UTF-8, 18
to UTF-8, 17

T
termination

XPRNLS, 9
text buffer conversion

from UTF-8, 20
to UTF-8, 19

transcoder stream
close, 30
encoding ID, 28
file descriptor, 27
offset, 29
open, 24
read, 26
status, 28
write, 25

translation, 37
active language, 32

X
XNLScloseconv, 30
XNLSclosemsgdom, 34
XNLScodetoutf8, 22
XNLSconvargv, 13, 14
XNLSconvbuffrom, 19
XNLSconvbufto, 20
XNLSconvread, 26
XNLSconvstrfrom, 17
XNLSconvstrto, 18
XNLSconvwrite, 25
XNLSfindmsgdom, 35
XNLSfinish, 9
XNLSfreeargv, 14
XNLSgetenc, 28
XNLSgetencid, 10
XNLSgetencname, 11
XNLSgetfd, 27
XNLSgetoffset, 29
XNLSgettext, 37
XNLSinit, 8
XNLSopenconv, 24
XNLSopenmsgdom, 33
XNLSprogpath, 15
XNLSsetlang, 32
XNLSsetlocaledir, 36
XNLSutf8tocode, 21
Xpress Natural Language Support, 1
XPRNLS, see Xpress Natural Language Support
xprnls, 5

Fair Isaac Corporation Confidential and Proprietary Information 40

	Introduction
	Character encoding conversion
	Message translation with XPRNLS
	Example
	PO, POT and MO file formats

	XPRNLS Command line tool
	XPRNLS library
	General
	XNLSinit
	XNLSfinish
	XNLSgetencid
	XNLSgetencname

	Handling of program parameters
	XNLSconvargv
	XNLSfreeargv
	XNLSprogpath

	Buffer and string encoding conversion
	XNLSconvstrfrom
	XNLSconvstrto
	XNLSconvbuffrom
	XNLSconvbufto
	XNLSutf8tocode
	XNLScodetoutf8

	Stream encoding conversion
	XNLSopenconv
	XNLSconvwrite
	XNLSconvread
	XNLSgetfd
	XNLSgetenc
	XNLSgetoffset
	XNLScloseconv

	Translation
	XNLSsetlang
	XNLSopenmsgdom
	XNLSclosemsgdom
	XNLSfindmsgdom
	XNLSsetlocaledir
	XNLSgettext

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

