
Quick reference

FICO R© Xpress Optimization Mosel Language

Quick reference

Last update 29 August, 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation. Receipt or possession of this
material does not convey rights to divulge, reproduce, use, or allow others to use it without the specific written authorization
of Fair Isaac Corporation and use must conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in this documentation, please
report them to us in writing. Neither Fair Isaac Corporation nor its affiliates warrant that this documentation is error-free, nor
are there any other warranties with respect to the documentation except as may be provided in the license agreement.

©2009–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its documentation is governed
by the software license agreement between the licensee and Fair Isaac Corporation (or its affiliate). Portions of the program
may contain copyright of various authors and may be licensed under certain third-party licenses identified in the software,
documentation, or both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this software and its documentation, even if Fair Isaac
Corporation or its affiliates have been advised of the possibility of such damage. The rights and allocation of risk between
the licensee and Fair Isaac Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The software and accompanying documentation, if any, provided
hereunder is provided solely to users licensed under the Fair Isaac Software License Agreement. Fair Isaac Corporation and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications except as required to
licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United States and may be
trademarks or registered trademarks of Fair Isaac Corporation in other countries. Other product and company names herein
may be trademarks of their respective owners.

FICO R© Xpress Mosel
Last Revised: 29 August, 2017

How to Contact the Xpress Team

Information, Sales and Licensing

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Product Support

Email: Support@fico.com
(Please include ’Xpress’ in the subject line)

Telephone:

NORTH AMERICA
Tel (toll free): +1 (877) 4FI-SUPP
Fax: +1 (402) 496-2224

EUROPE, MIDDLE EAST, AFRICA
Tel: +44 (0) 870-420-3777
UK (toll free): 0800-0152-153
South Africa (toll free): 0800-996-153
Fax: +44 (0) 870-420-3778

ASIA-PACIFIC, LATIN AMERICA, CARIBBEAN
Tel: +1 (415) 446-6185
Brazil (toll free): 0800-891-6146

For the latest news and Xpress software and documentation updates, please visit the Xpress website at
http://www.fico.com/xpress or subscribe to our mailing list.

mailto:XpressSalesUS@fico.com
mailto:XpressSalesUK@fico.com
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/xpress

Mosel Quick Reference

FICO R© Xpress Optimization

Mosel Language
Quick reference

29 August, 2017

Contents

1 Mathematical Programming basics . 2
1.1 Decision variables . 2
1.2 Constraints . 3
1.3 Objective function . 3
1.4 Optimization . 3
1.5 Viewing the matrix . 3
1.6 Viewing the solution . 3

2 Data handling basics . 4
2.1 Data types . 4
2.2 Sums and loops . 5
2.3 Index sets . 6
2.4 Reading data in from text files . 6
2.5 Writing data out to text files . 7
2.6 User defined data formats . 7
2.7 Using other data sources . 8

3 Model building style recommendations . 8
4 Mosel Language overview . 9

4.1 Structure of a Mosel model . 9
4.2 Data structures . 10
4.3 Selection statements . 12
4.4 Loops . 12
4.5 Operators . 13
4.6 Built in functions and procedures . 14
4.7 Constraint handling . 16
4.8 Problem handling . 16
4.9 Reserved words . 17
4.10 Annotations . 17

5 Using the Mosel Command Line . 18
5.1 Debugger commands . 18

6 Working with Xpress Workbench . 20

Contents Fair Isaac Corporation Confidential and Proprietary Information 1

Mosel Quick Reference

1 Mathematical Programming basics

model "Chess 1"
uses "mmxprs" ! Use Xpress Optimizer for solving

declarations
xs, xl: mpvar ! Decision variables

end-declarations

Time:= 3*xs + 2*xl <= 160 ! Constraint: limit on working hours
Wood:= xs + 3*xl <= 200 ! Constraint: raw mat. availability

xs is_integer; xl is_integer ! Integrality constraints

maximize(5*xs + 20*xl) ! Objective: maximize total profit

writeln("Solution: ", getobjval) ! Print objective function value

writeln("small: ", getsol(xs)) ! Print solution for xs
writeln("large: ", getsol(xl)) ! and xl

write("Time: ", getact(Time)) ! Constraint activity
writeln(" ", getslack(Time)) ! and slack

end-model

1.1 Decision variables

declarations
x, b, d: mpvar
ifmake: array(1..10, 1..20) of mpvar
y, z: array(1..10) of mpvar

end-declarations

mpvar means mathematical programming variable or decision variable, sometimes also just called
variable. Decision variables are unknowns: they have no value until the model is run, and the
optimizer finds values for the decision variables.
Variables can take values between 0 and infinity by default, other bounds may be specified:

x <= 10
y(1) = 25.5
y(2) is_free
z(2,3) >= -50
z(2,3) <= 50

Integer programming types are defined as unary constraints on previously declared decision
variables

b is_binary ! Single binary variable
forall(p in PRODS,l in LINES)

ifmake(p,l) is_binary ! An array of binaries
d is_integer ! An integer variable
d <= 25 ! Upper bound on the variable
x is_partint 10 ! Partial integer (integers up to 10, continuous beyond)
y(3) is_semcont 5 ! Semi-continuous (0 or greater or equal 5)

Mathematical Programming basics Fair Isaac Corporation Confidential and Proprietary Information 2

Mosel Quick Reference

1.2 Constraints

Constraint are declared just like decision variables, in LP/MIP problems they have type linctr –
linear constraint.

declarations
MaxCap: linctr
Inven: array(1..10) of linctr

end-declarations

The “value” of a constraint entity is a linear expression of decision variables, a constraint type (≤
, ≥ , =), and a constant term. It is set using an assignment statement:

MaxCap := 10*x + 20*y + 30*z <= 100
Ctr(3) := 4*x(1) - 3*x(2) >= 10
Inven(2) := stock(2) = stock(1) + buy(2) - sell(2)

1.3 Objective function

An objective function is just a constraint with no constraint type.

declarations
MinCost: linctr

end-declarations

MinCost := 10*x(1) + 20*x(2) + 30*x(3) + 40*x(4)

1.4 Optimization

minimize(MinCost)

maximize(MaxProfit)

1.5 Viewing the matrix

After defining the problem the matrix can be output to a file, to examine off line.

Specify LP format for constraint oriented file: exportprob(EP_MIN, "explout", MinCost)

Useful Optimizer control settings: setparam(’XPRS_VERBOSE’, true)
setparam(’XPRS_LOADNAMES’, true)

1.6 Viewing the solution

Always check the solution status of the problem before accessing any solution values.

if (getprobstat=XPRS_OPT) then
writeln(’optimal!’)

else
writeln(’not optimal!’)
exit(1)

end-if

Alternatively, testing all problem states:

case getprobstat of

Mathematical Programming basics Fair Isaac Corporation Confidential and Proprietary Information 3

Mosel Quick Reference

XPRS_OPT: writeln(’optimal’)
XPRS_INF: writeln(’infeasible’)
XPRS_UNB: writeln(’unbounded’)
XPRS_UNF: writeln(’unfinished’)

else
writeln(’unexpected problem status!’)

end-case

Accessing the solution values within the model:

writeln(’Maximum revenue: $’, getobjval)
writeln(’x(1) = ’, getsol(x(1)), ’ x(2) = ’, x(2).sol)

Solution values of constraints: activity value + slack value = RHS

MaxCap := 10*x + 20*y <= 30

Activity value: getsol(10*x + 20*y)
getact(MaxCap)

Slack value: getsol(30 - (10*x + 20*y))
getslack(MaxCap)

Xpress Workbench: assuming that the model runs successfully, the logging pane at the bottom of
the workspace reports that the run is complete. If a model has been run through the debugger,
you can browse solution values of decision variables and constraints in the Debugger tab on the
right side of the workspace.

2 Data handling basics

model "Chess 3"
uses "mmxprs"

declarations
R = 1..2 ! Index range
DUR, WOOD, PROFIT: array(R) of real ! Coefficients
x: array(R) of mpvar ! Array of variables

end-declarations

DUR :: [3, 2] ! Initialize data arrays
WOOD :: [1, 3]
PROFIT:: [5, 20]

sum(i in R) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in R) WOOD(i)*x(i) <= 200
forall(i in R) x(i) is_integer

maximize(sum(i in R) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

end-model

2.1 Data types

Constant data declarations
NWEEKS = 20
NDAYS = 7*NWEEKS
CONV_RATE = 1.425
DATA_DIR = ’c:\data’

end-declarations

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 4

Mosel Quick Reference

Variable data

Declaration declarations
NPROD: integer
SCOST: real
MAXREFVEG: real
DIR: string
IF_DEBUG: boolean
HARD: array(1..5) of real
COST: array(1..3,1..4) of real

end-declarations

Initialization NPROD := 20
SCOST := 5
MAXREFVEG := 200.0
DIR := ’c:\data’
IF_DEBUG := true
HARD :: [8.8, 6.1, 2.0, 4.2, 5.0]
COST :: [11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34]

2.2 Sums and loops

Summations Sum up an array of variables in a constraint:

MaxCap := sum(p in 1..10) buy(p) <= 100

MaxCap := sum(p in 1..10) (buy(p) + sum(r in 1..5) make(p,r)) <= 100

MaxCap := sum(p in 1..NP, t in 1..NT)
CAP(p)*buy(p,t) <= MAXCAP

MaxCap := sum(p in 1..NP) (2*CAP(p)*buy(p)/10 +
SCAP(p)*sell(p)) <= MAXCAP

Loops Use a loop to assign an array of constraints:

forall(t in 2..NT)
Inven(t) := bal(t) = bal(t-1) + buy(t) - sell(t)

Use do/end-do to group several statements into one loop

forall(t in 1..NT) do
MaxRef(t) := sum(i in 1..NI) use(i,t) <= MAXREF(t)

Inven(t) := store(t) = store(t-1) + buy(t) - use(t)
end-do

Can nest forall statements:

forall(t in 1..NT) do
MaxRef(t) := sum(i in 1..NI) use(i,t) <= MAXREF(t)

forall(i in 1..NI)
Inven(i,t) := store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)

end-do

Similarly for specification of bounds (a bound is just a simple unnamed
constraint):

forall(i in 1..NI) do
forall(t in 1..NT) store(i,t) <= MAXSTORE(t)
store(i,0) = STORE0

end-do

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 5

Mosel Quick Reference

May include conditions in sums or loops:

forall(c in 1..10 | CAP(c)>=100.0)
MaxCap(c) :=

sum(i in 1..10, j in 1..10 | i<>j)
TECH(i,j,c)*x(i,j,c) <= MAXTECH(c)

2.3 Index sets

Explicit statement: declarations
MaxCap: array(1..10) of linctr

end-declarations

forall(d in 1..10)
MaxCap(d) :=

sum(p in 1..10, m in 1..10)
TECH(p,m,d)*x(p,m,d) <= MAXTECH(d)

Defining named sets: declarations
PRODUCTS = 1..5
MATERIALS = {12,487,163}
DEPOTS = {"Boston","New York","Atlanta"}

MaxCap: array(DEPOTS) of linctr
end-declarations

forall(d in DEPOTS)
MaxCap(d) :=

sum(p in PRODUCTS, m in MATERIALS)
TECH(p,m,d)*x(p,m,d) <= MAXTECH(d)

Using named sets � improves the readability of a model

� makes it easier to apply the model to different sized data sets

� makes the model easier to maintain

2.4 Reading data in from text files

Read data into COST from cost.dat initializations from ’cost.dat’
COST

end-initializations

Data file cost.dat (dense data format) COST : [3.9 0 4.8
0 7.5 5.5]

Data file cost2.dat (sparse data format) COST: [("Oil1" 1) 3.9 ("Oil1" 3) 4.8
("Oil2" 2) 7.5 ("Oil2" 3) 5.5]

Mosel data format: � file may include single line comments, marked with ’!’

� format: label, colon, data value(s)

� for an array, use a single list enclosed in []

� list may be comma or space separated

� dense format: the values fill the data table starting at the first
position and varying the last index most rapidly

� sparse format: each data item is preceded by the corresponding
index tuple (in brackets)

Specifying the absolute path initializations from ’c:/data/cost.dat’
COST

end-initializations

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 6

Mosel Quick Reference

Path relative to current working directory initializations from ’../cost.dat’
COST

end-initializations

Read several data tables from a single file initializations from ’cost.dat’
SCOST
PCOST

end-initializations

Different data label and model object names initializations from ’cost.dat’
COST as ’COST_DETAILS’

end-initializations

Read several data arrays with identical index sets from a single table

initializations from ’chess.dat’
[DUR,WOOD,PROFIT] as ’ChessData’

end-initializations

2.5 Writing data out to text files

You can write out values in an analogous way to reading them in

initializations to ’cost.dat’
COST

end-initializations

To write out the solution values of variables, or other solution values (slack, activity, dual, reduced
cost) you must first put the values into a data table

declarations
make_sol: array(ITEMS,TIME) of real
obj_sol: real

end-declarations

forall(i in ITEMS, t in TIME)
make_sol(i,t) := getsol(make(i,t))

obj_sol := getobjval

initializations to ’make.dat’
make_sol
obj_sol

end-initializations

Alternatively, you can use evaluation of directly in the initializations block

initializations to ’make.dat’
evaluation of

array(i in ITEMS, t in TIME) getsol(make(i,t)) as ’make_sol’
evaluation of getobjval as ’obj_sol’

end-initializations

2.6 User defined data formats

Mosel also provides functions which allow you to read data in from and write data out to text
files using any format (see list in Section 4.6).

Reading in free format data declarations
ii, jj: integer ! Don’t use normal i,j

Data handling basics Fair Isaac Corporation Confidential and Proprietary Information 7

Mosel Quick Reference

end-declarations

fopen(’cost.dat’, F_INPUT)
while(not iseof)

readln(ii, ’,’, jj, ’,’, COST(ii,jj))
fclose(F_INPUT)

Writing out data in user format fopen(’xsol.dat’, F_OUTPUT)
forall(s in SUP, d in DEP)

writeln(s, ’,’, d, ’,’, getsol(x(s,d)))
fclose(F_OUTPUT)

2.7 Using other data sources

The initializations block can work with many different data sources and formats thanks to the
notion of I/O drivers.

I/O drivers for physical data files: � mmodbc.odbc for databases with ODBC connector

� mmsheet.excel for MS Excel spreadsheets

� mmsheet.xls and mmsheet.xlsx for generic
spreadsheet access, including on non-Windows
platforms

� mmsheet.csv for CSV format files

� mmoci.oci for Oracle databases

� mmetc.diskdata for mp-model style data files

Other drivers are available, e.g. for data exchange in memory between models or between a
model and the host application.

Change of the data source = change of the I/O driver, no other modifications to your model

initializations from "mmsheet.xls:mydat.xls"
COST as ’CostData’

end-initializations

initializations to "mmodbc.odbc:mydat.mdb"
SOL as ’SolTable’

end-initializations

3 Model building style recommendations

� Separation of problem logic and data

– Typically, the model logic stays constant once developed, with the data changing each
run

– Fix the model and obtain data from their source to avoid editing the model which can
create errors, expose intellectual property, and is impractical for industrial size data

� You should aim to build a model with sections in this order

– constant data: declare, initialize

– all non-constant objects: declare

– variable data: initialize / input / calculate

Model building style recommendations Fair Isaac Corporation Confidential and Proprietary Information 8

Mosel Quick Reference

– decision variables: create, specify bounds

– constraints: declare, specify

– objective: declare, specify, optimize

� Use a naming convention that distinguishes between different model object types, for
example

– known values (data) using upper case

– unknown values (variables) using lower case

– constraints using mixed case

� Variables are actions that your model will prescribe

– Use verbs for the names of variables. This emphasizes that variables represent ‘what to
do’ decisions

� Try to include ‘min’ or ‘max’ in the name of your objective function; an objective function
called ‘OBJ’ is not very helpful when taken out of context!

� Indices are the objects that the actions are performed on

– Use nouns for the names of indices

� Declare all objects in your model (optional unless using compiler option noimplicit)

– Allows the compiler to detect syntax errors more easily

– Mosel’s guessed declaration doesn’t always work

– A form of rigour and documentation

– An opportunity for a descriptive comment

� Comments are essential for a well written model

– Always use a comment to explain what each parameter, data table, variable, and
constraint is for when you declare it

– Add extra comments to explain any complex calculation etc

– Comments in Mosel:

declarations
make: array(1..NP, 1..NT) of mpvar ! Amount of p produced in time t
sell: array(1..NP, 1..NT) of mpvar ! Amount of p sold in time t

end-declarations

(! And here is a multi-line
comment !) forall(t in 1..NT) ...

4 Mosel Language overview

4.1 Structure of a Mosel model

A Mosel model (text file with extension .mos) has the form

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 9

Mosel Quick Reference

model model_name

Compiler directives

Parameters

Body

end-model

Compiler directives � Options are specified as a compiler directive, at the beginning of the
model

� Options include explterm, which means that each statement must
end with a semi-colon, and noimplicit, which forces all objects to be
declared

options explterm
options noimplicit

� uses statements are also compiler directives

uses "mmxprs", "mmodbc"

� Can define a version number for your model

version 1.0.0

Run-time parameters � Scalars (of type integer, real, boolean, or string) with a specified
default value

� Their value may be reset when executing the model

� Use initializations from for inputting structured data (arrays,
sets,...)

� At most one parameters block per model

Model body � Model statements other than compiler directives and parameters,
including any number of

– declarations
– initializations from / initializations to
– functions and procedures

Implicit declaration � Mosel does not require all objects to be declared

� Simple objects can be used without declaring them, if their type is
obvious

� Use the noimplicit option to force all objects to be declared before
using them (see item Compiler directives above)

Mosel statements � Can extend over several lines and use spaces

� However, a line break acts as an expression terminator

� To continue an expression, it must be cut after a symbol that implies
continuation (e.g. + - , *)

4.2 Data structures

array, set, list, record and any combinations thereof, e.g.,

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 10

Mosel Quick Reference

S: set of list of integer
A: array(range) of set of real

Arrays Array: collection of labeled objects of a given type where the label of an array
entry is defined by its index tuple

declarations
A: array(1..5) of real
B: array(range, set of string) of integer
x: array(1..10) of mpvar
C: array(1..5) of real

end-declarations

A:: [4.5, 2.3, 7, 1.5, 10]
A(2):= 1.2
B:: (2..4,["ABC", "DE", "KLM"])[15,100,90,60,40,15,10,1,30]
C:= array(i in 1..5) x(i).sol

Sets Set: collection of objects of the same type without establishing an order among
them (as opposed to arrays and lists)
Set elements are unique: if the same element is added twice the set still only
contains it once.

declarations
S: set of string
R: range

end-declarations

S:= {"A", "B", "C", "D"}
R:= 1..10

Lists List: collection of objects of the same type
A list may contain the same element several times. The order of the list
elements is specified by construction.

declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[[’A’,’B’,’C’], [’D’,’E’], [’F’,’G’,’H’,’I’]]

Records Record: finite collection of objects of any type
Each component of a record is called a field and is characterized by its name and
its type.

declarations
ARC: array(ARCSET:range) of record

Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5

User types User types are treated in the same way as the predefined types of the Mosel
language. New types are defined in declarations blocks by specifying a type
name, followed by =, and the definition of the type.

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 11

Mosel Quick Reference

declarations
myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

4.3 Selection statements

if ... end-if if c=1 then
writeln(’c equals 1’)

end-if

if ... else ... end-if if c=1 then
writeln(’c equals 1’)

else
writeln(’c does not equal 1’)

end-if

if ... elif ... else ... end-if if c=1 then
writeln(’c equals 1’)

elif c>1 then
writeln(’c is bigger than 1’)

else
writeln(’c is smaller than 1’)

end-if

case ... end-case case c of
1,2 : writeln(’c equals 1 or 2’)
3 : writeln(’c equals 3’)
4..6: do

writeln(’c is in 4..6’)
writeln(’c is not 1, 2 or 3’)

end-do
else

writeln(’c is not in 1..6’)
end-case

4.4 Loops

forall forall(f in FAC, t in TIME)
make(f,t) <= MAXCAP(f,t)

forall(t in TIME) do
use(t) <= MAXUSE(t)
buy(t) <= MAXBUY(t)

end-do

with equivalent to a forall loop stopped after the first iteration

with f=’F1’, t=1 do
make(f,t) <= MAXCAP(f,t)

end-do

while i := 1
while (i <= 10) do

write(’ ’, i)
i += 1

end-do

repeat ... until i := 1
repeat

write(’ ’, i)
i += 1

until (i > 10)

break, next � break jumps out of the current loop

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 12

Mosel Quick Reference

� break n jumps out of n nested loops (where n is a positive
integer)

� next jumps to the beginning of the next iteration of the current
loop

� use break ’looplabel’ and next ’looplabel’ with labeled
loops:

’L1’: repeat
’L2’: while (condition1) do

if condition2 then
break ’L1’

end-if
end-do

until condition3

counter � Use the construct as counter to specify a counter variable in a
bounded loop (i.e., forall or aggregate operators such as sum). At
each iteration, the counter is incremented

cnt:=0.0
writeln("Average of odd numbers in 1..10: ",

(sum(cnt as counter, i in 1..10 | isodd(i)) i) / cnt)

4.5 Operators

Assignment operators i := 10
i += 20 ! Same as i := i + 20
i -= 5 ! Same as i := i - 5

Assignment operators with linear constraints

C := 5*x + 2*y <= 20
D := C + 7*y

then D is

D := 5*x + 9*y - 20

The constraint type is dropped with :=

C := 5*x + 2*y <= 20
C += 7*y

then C is

C := 5*x + 9*y <= 20

The constraint type is retained with +=, -=

Arithmetic operators
standard: + - * /
power: ˆ
int. division/remainder: mod div
sum: sum(i in 1..10) ...
product: prod(i in 1..10) ...
minimum/maximum: min(i in 1..10) ...
count: count(i in 1..10 | isodd(i))

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 13

Mosel Quick Reference

Linear and non-linear expressions
Decision variables can be combined into linear or non-linear
expressions using the arithmetic operators

� module mmxprs only works with linear constraints, so no prod,
min, max, ...

� other solver modules, e.g., mmquad, mmnl, mmxnlp, also accept
(certain) non-linear expressions

Logical operators
constants: true, false
standard: and, or, not
AND: and(i in 1..10) ...
OR: or(i in 1..10) ...
comparison: <, >, =, <>, <=, >=

Set operators
constants: {’A’, ’B’}
union: +
union: union(i in 1..10) ...
intersection: *
intersection: inter(i in 1..10) ...
difference: -

Set comparison operators
subset: Set1 <= Set2
superset: Set1 >= Set2
equals: Set1 = Set2
not equals: Set1 <>Set2
element of: "Oil5" in Set1
not element of: "Oil5" not in Set1

List operators
constants: [1, 2, 3]
concatenation: +, sum
truncation: -
equals: L1 = L2
not equals: L1 <>L2

4.6 Built in functions and procedures

The following is a list of built in functions and procedures of the Mosel language (excluding
modules). Functions return a value; procedures do not.

Dynamic array handling create exists delcell isdynamic

Freeze (finalize) a dynamic set finalize

Rounding functions ceil floor round abs

Mathematical functions exp log ln sqrt
cos sin arctan
isodd

Special real values isfinite isinf isnan

Random number generator random setrandseed

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 14

Mosel Quick Reference

Minimum/maximum of a list of values v := minlist(5, 7, 2, 9)
w := maxlist(CAP(1), CAP(2))

Inline “if” function MAX_INVEN(t) := if(t < MAX_TIME, 1000, 0)

Inven(t) := stock(t) = buy(t) - sell(t) +
if(t > 1, stock(t-1), 0)

Matrix export to file exportprob

File handling fopen fclose fselect
getfid getfname getreadcnt
iseof fflush fskipline
fwrite[_] / fwriteln[_]
read / readln write[_] / writeln[_]

String handling strfmt substr _

Access and modify model objects getcoeff[s] setcoeff getvars
sethidden ishidden setname
gettype settype getsize
makesos1 makesos2
getfirst getlast findfirst
findlast reverse getreverse
gethead gettail cuthead
cuttail splithead splittail

Access solution values getobjval
getsol getrcost
getslack getact getdual

Exit from a model exit

Mosel controls getparam setparam

Date/time currentdate currenttime timestamp

Bit value handling bitflip bitneg bitset
bitshift bittest bitval

Miscellaneous asproc assert reset
setioerr setmatherr
publish unpublish

� Overloading of subroutines

– Some functions or procedures are overloaded: a single subroutine can be called with
different types and numbers of arguments

� Additional subroutines are provided by Mosel library modules, which extend the basic
Mosel language, e.g.,

– mmxprs: Xpress Optimizer

– mmodbc: ODBC data connection

– mmsystem: system calls; text handling

– mmjobs: handling multiple models and (remote) Mosel instances

– mmsvg: graphics

⇒ See the ‘Mosel Language Reference Manual’ for full details

� User-defined functions and procedures

– You can also write your own functions and procedures within a Mosel model

– Structure of subroutines is similar to a model (may have declarations blocks)

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 15

Mosel Quick Reference

– User subroutines may define overloaded versions of built in subroutines

⇒ See examples in the ‘Mosel User Guide’ (Chapter Functions and procedures)

� Packages

– Additional subroutines may also be provided through packages (Mosel libraries written
in the Mosel language as opposed to Mosel modules that are implemented in C)

⇒ See the ‘Mosel User Guide’ for further detail (Chapter Packages)

4.7 Constraint handling

Ctr1:= 2*x + y <= 10 ! Named constraints
Ctr2:= x is_integer

2*x + y <= 10 ! Anonymous constraints
y >= 5

Named constraints can be accessed: val:= getact(Ctr)
getvars(Ctr, vars)

hidden: sethidden(Ctr, true)
redefined: Ctr:= x+y <= 10

Ctr:= 2*x+5*y >= 5
modified: Ctr += 2*x

settype(Ctr, CT_UNB)
deleted (reset): Ctr:= 0

Anonymous constraints are constraints that are specified without assigning them to a linctr
variable. Bounds are (to Mosel) just simple constraints without a name. Anonymous constraints
are applied in the optimization problem just like ordinary constraints. The only difference is that
it is not possible to refer to them again, either to modify them, or to examine their solution
value.

4.8 Problem handling

� Mosel can handle several problems in a given model file. A default problem is associated
with every model.

� Built in type mpproblem to identify mathematical programming problems

– The same decision variable (type mpvar) may be used in several problems
– Constraints (type linctr) belong to the problem where they are defined

� The statement with allows to open a problem (= select the active problem):

declarations
myprob: mpproblem

end-declarations
...
with myprob do

x+y >= 0
end-do

� Modules can define other specific problem types. New problem types can also be defined by
combining existing ones, for instance:

mypbtyp = mpproblem and somepbtype

� Problem types support assignment: P1:= P2
and additive assignment: P1 += P2

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 16

Mosel Quick Reference

4.9 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and
and are keywords but not And). Do not use them in a model except with their built-in meaning.

a: and array as
b: boolean break
c: case count counter
d: declarations div do dynamic
e: elif else end evaluation
f: false forall forward from function
i: if imports in include initialisations initializations

integer inter is_binary is_continuous is_free is_integer
is_partint is_semcont is_semint is_sos1 is_sos2

l: linctr list
m: max min mod model mpvar
n: next not
o: of options or
p: package parameters procedure public prod
r: range real record repeat requirements return
s: set string sum
t: then to true
u: union until uses
v: version
w: while with

4.10 Annotations

� Annotations are meta data in a Mosel source file that are stored in the resulting BIM file
after compilation; no impact on the model itself (treated like comments); either global or
associated with public globally declared objects (including subroutines).

� Single-line annotations start with ’!@’ and a name; blocks are surrounded by ’(!@’ and ’!)’

� !@doc.descr denotes the annotation marker descr within category doc (predefined
category names are mc and doc, user-defined names can also be employed)

(!@doc. Enter category ’doc’ (this text is ignored)
@ descr This is the value of ’doc.descr’
@. Jump back to root (this text is ignored)
@mynote Contents of ’mynote’ (full name: ’.mynote’)
@.anote Complete form of an annotation in default category

!)

� Declaring annotations (via the mc.def compiler annotation): optional; enables the compiler
to check the validity of the definitions and reject non-compliant ones

! Defining an alias that redirects onto 2 different annotations:
!@mc.def descr alias doc.descr om.descr

� moseldoc tool: generates an XML model documentation that is processed into HTML pages

1. Compile source model file with option -D

mosel comp -D mymodel.mos

2. Run program moseldoc

moseldoc mymodel Generates HTML and XML
moseldoc -o mydir -html mymodel HTML only, specifying output directory
moseldoc -f -xml mymodel XML only, forcing output overwrite

See ‘Mosel Language Reference’, section Documenting models using annotations for a list
of the doc annotations

Mosel Language overview Fair Isaac Corporation Confidential and Proprietary Information 17

Mosel Quick Reference

5 Using the Mosel Command Line

The Mosel Command Line is supported on all platforms that Mosel can be run on.

Standard sequence for model execution from the command line:

mosel exec mymodel.mos Execute (=compile/load/run) model ’mymodel.mos’
mosel mymodel Short form (works with ’mymodel.mos’ or ’mymodel.bim’)

Some useful commands (see ‘Mosel Language Reference manual’ for the full list):

Command line help text: mosel -h

Mosel version: mosel -V

Display functionality: mosel exam[ine] [-cspthirvaum]

Execute a model file: mosel exec[ute]

Compile a model file: mosel comp[ile] mymodel.mos

Load and run a BIM file: mosel run mymodel.bim

Start the debugger: mosel debug mymodel.mos

Run the profiler: mosel prof[ile] mymodel.mos

Perfom a code coverage run: mosel cover[age] mymodel.mos

List available modules/packages: mosel lslib

Examples:

mosel comp mymodel.mos -o mybim.bim Compile to a specified BIM file name/location
mosel prof mymodel.mos Perform a profiler run (output in ’mymodel.mos.prof’)
mosel exam -h Display Mosel version info and paths
mosel exam -a mybim.bim Display annotations of a model or package
mosel exam -ps mmxprs Display parameters and subroutines of module ’mmxprs’

Setting model runtime parameters:

mosel exec mymodel NT=5 DATAFILE="mynewdata.dat" Source in mymodel.mos
mosel run mymodel NT=5 DATAFILE="mynewdata.dat" Loads mymodel.bim
mosel mymodel NT=5 DATAFILE="mynewdata.dat" With mymodel.mos or mymodel.bim

5.1 Debugger commands

Breakpoints: break delete bcond[ition] breakpoints breaksub

Model execution: cont next step finish model

Output: display undisplay list print info exportprob
lsattr lslibs lslocal lsmods lssymb

Stack access: up down where

Interpreter options: option

Termination: quit

Using the Mosel Command Line Fair Isaac Corporation Confidential and Proprietary Information 18

Mosel Quick Reference

Example: Simple debugging sequence

mosel debug debugexpl.mos Start Mosel debugger
break 20 Set breakpoint at line 20
cont Execute up to the breakpoint
print D Print out symbol ’D’
cont Continue model execution
info Arr Information about model object ’Arr’ (e.g. size)
lsmods Display model info (e.g. memory usage)
quit Quit the debugger

Example: Debugging a submodel

mosel debug debugmaster.mos Start Mosel debugger
breaksub 1 Stop at start of submodels
cont Execute up to the breakpoint
break 25 debugsub.mos Set breakpoint in the submodel
display SNumbers Display watch on object ’SNumbers’
cont Execute up to the breakpoint
break 31 debugsub.mos Another submodel breakpoint
bcond 2-2 SNumbers.size < 10 Condition on 2nd submodel breakpoint
cont Execute up to the breakpoint 2-2
quit Quit the debugger

Using the Mosel Command Line Fair Isaac Corporation Confidential and Proprietary Information 19

Mosel Quick Reference

6 Working with Xpress Workbench

Xpress Workbench is a graphical development environment for Mosel models and Xpress Insight
applications.

Workbench panes Model editor (central window), project directory navigation and
command history (left), model output and execution log information
(bottom), debugging, deployment and collaboration information (right).

Workspace preferences (settings).

Toggle full-screen view for logging pane.

Use menu Window�Presets�Full IDE to restore original window layout.

Editor Code folding and breakpoint markers appear in the grey area
immediately left to the text.

Open a new file/tab

Subdivide and re-arrange panes in the editor window

Code folding for blocks of Mosel statements

Unfold folded code

Line position markers during debugging

Model execution The name of the model is selected in the box next to these buttons, it may
be different from the model(s) opened in the editor.

Execute (compile/load/run) a model.

Execute a model in debug mode.

Start a tuning run for an optimization problem.

Use menu Run�Build to compile a model.

Debugger Breakpoints are set by clicking onto the gray area (left to the line number
if it is displayed) preceding each row in the editor window, breakpoint
conditions can be added via the right mouse button menu on the
breakpoint icon.

Delete breakpoint/desactivated breakpoint.

Delete a conditional/desactivated conditional breakpoint.

Navigating in the debugger:

Activate/desactivate all breakpoints.

Start/stop the debugger.

Resume/suspend model execution.

Step over an expression.

Step into an expression.

Step out of an expression.

Don’t pause on exceptions.

Working with Xpress Workbench Fair Isaac Corporation Confidential and Proprietary Information 20

Mosel Quick Reference

Deployment to Xpress Insight

Publish selected model to Insight.

Build an Insight app archive.

Debug a scenario.

Edit Tableau workbooks.

Refresh Insight scenario tree.

Working with Xpress Workbench Fair Isaac Corporation Confidential and Proprietary Information 21

	Mathematical Programming basics
	Decision variables
	Constraints
	Objective function
	Optimization
	Viewing the matrix
	Viewing the solution

	Data handling basics
	Data types
	Sums and loops
	Index sets
	Reading data in from text files
	Writing data out to text files
	User defined data formats
	Using other data sources

	Model building style recommendations
	Mosel Language overview
	Structure of a Mosel model
	Data structures
	Selection statements
	Loops
	Operators
	Built in functions and procedures
	Constraint handling
	Problem handling
	Reserved words
	Annotations

	Using the Mosel Command Line
	Debugger commands

	Working with Xpress Workbench

